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ON THE LOCAL
QUALITATIVE BEHAVIOR OF
DIFFERENTIAL-ALGEBRAIC
EQUATIONS*

Sebastian Reich!

Abstract. A theoretical ‘ramework for the investigation of the qualitative behavior of
differential-algebraic equations (DAEs) near an equilibrium point is established. The key
notion of our approach is the notion of regularity. A DAE is called regular locally around
an equilibrium point if there is a unique vector field such that the solutions of the DAE
and the vector field are in one-to-one correspondence in a neighborhood of this equilisrium
point. Sufficient conditions for the regularity of an equilibrium point are stated. This in turn
allows us to translate several local results, as formulated for vector fields, to DAE:s that are
regular locally around a g:ven equilibrium pcint (e.g. Local Stable and Unstable Manifold
Theorem, Hopf theorem). It is important that these theorems are stated in terms of the given
problem and not in terms of the corresponding vector field.

1. Introduction

Differential-algebraic equations (DAEs) are frequently identified as implicit equa-
tions
F(x,x)=0 e))

for which x’ cannot be expressed explicit'y as a function of x. Such equations arise
in many areas of science and engineerirg. In particular, constrained mechanical
systems and electronic circuits may be mcdelled using equations of type (1) [2]. But
the investigation of cortrol systems described by ordinary differential equations
with certain outputs required to be identically zero can be done in terms of DDAEs
as well [14]. In recent years the literature: on existence and uniqueness results has
been growing rapidly (see, e.g., [2], [16], [18], [17], [3]). However, up to now,
results on the qualitative behavior are available only for a few selected classes of
DAE:s that are characterized by restrictive conditions on the form of the mapping
F in (1) (see, e.g., [6], | 13], [14], [21]).

* Received October 25, 1392; revised July 22, 1993.
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In this paper we investigate the qualitative behavior of a DAE (1) near an
equilibrium point xo; i.e., a point satisfying F(xp, 0) = 0. The key notion of our
approach is regularity. We call a DAE regular locally around an equilibrium point if
there is a unique vector field such that the solutions of the vector field and the DAE
are in one-to-one correspondence in a neighborhood of the equilibrium point under
consideration. By associating to the DAE (1) a family of overdetermined DAEs,
we derive in Section 3 sufficient conditions for the regularity of the DAE near an
equilibrium point. Note that our approach is close to an approach taken, e.g., in [3]
where the equation (1) is differentiated several times with respect to time to obtain
the so-called derivative array equations. However, in contrast to the approach taken
in [3], we eliminate the second order derivative x” after each differentiation and
thus avoid having higher order derivatives of x enter into the equations. We show
that this elimination step can be done by simple manipulations on matrix valued
functions. In Section 4 we discuss the linearization of a nonlinear DAE in terms of
the linearized DAE and the corresponding vector field. We also show in this section
how the spectrum of the linearized vector field can be obtained in a direct way from
the linearized DAE. These results are used in Section 5 to “translate” the Local
Stable and Unstable Manifold Theorem and the Hopf theorem [10], as formulated
for vector fields, to DAEs that are regular locally around the equilibrium point
under consideration. It is important that these theorems are formulated in terms of
the given DAE rather than in terms of the corresponding vector fields.

2. Mathematical background

In this section we collect some basic material needed throughout the remainder
of this presentation. We begin with some standard terminology (see, e.g., [1] for
details).

Throughout this presentation we consider only submanifolds of R*, n > 0,
which, for simplicity of exposition, are assumed to be of class C*.

If M C R” is a submanifold of R", then T M denotes the tangent bundle of M
and T, M denotes the tangent space of M at x € M. Now the tangent space T, M
and the tangent bundle 7'M can be associated canonically with a linear subspace of
R" and a submanifold of R" x R", respectively, by means of canonical embeddings
Jx : TyM — R", and j : TM — R" x R". In the sequel we will not distinguish
between T, M and j,(T;M) (TM and j(T M)) and denote both spaces by T, M
(TM). Let pr; : R" x R* — R” denote the projection of R” x R" onto the
first component and let TM C R" x R" be the tangent bundle of a submanifold
M C R". Then M = pr(TM).

As in the case of manifolds we assume for simplicity that all the mappings
under consideration will be of class C* although, once again, this condition can
be reduced easily. By a vector field on a submanifold M € R" we mean a mapping
v : M — R” such that v(x) € T, M forall x € M. A mappingx : I — R" on
the open interval I C R is called a solution of a given vector field v : M — R"
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if, forall ¢t € I, x(t) € M and x'(t) = v(x(¢)). Given a point (xy, pg) € R" x R",
U (xo0, po) € R"* x R" will always clenote a sufficiently small neighborhood of
(x0, po) in R™ x R". We will often write U instead of U (xg, po) to further simplify
notations.

In Section 3 we v/ill focus on DAEs of the type

G(e,x)=0

where G : U — R™ with U = U(xg, po) € R* xR", n < m < 2n, and
(x0, po) € G~'(0) in some fixed poinrs in R” x R”. For the analysis of such DAEs
we will need the following results.

We call G admissible (locally around (xg, po)) if rank DG (xg, po) == m and
rank D,G(x, p) =r < misconstantforall (x, p) € G~1(0). The following result
for admissible mappings G was proven in [17]: If G : U — R™ is admissible,
then the sets N = G~!(0) and M = pr, (N) are submanifolds of R” x R" and R"
respectively. Furthermore, it was shown in [16] that for admissible mappings G
the tangent space T, M of M atx € 7, M can be characterized by

.M = {x € R" : D;G(x, p)X € 1ge D,G(x, p)}
where (x, p) € N. However, to obtain a characterization of 7, M in terms of an

implicit system of equations we need the following.

Proposition1.LetG : U — R™ bean admissible mapping withrank D,G (x, p) =
r for all (x, p) € G~1(0). Then there exists a smooth mapping S : U — L(R™,
R™=") such that S(x. p) has full rankjorall (x, p) € U and S(x, p)D,G(x, p) =
0 for all (x, p) € N. We call the mapping S a mapping associated to G.

Proof. We give a constructive proof in three steps:

Step 1. There are permutations P, P, € L(R™) such that

Vitlx, p)  Vialx, P))

PD,G(x, p)P, =V(x,p) = (Vzl(x p) Vnlx, p)

with Vy;(xo, po) norsingular and r X r.

Step 2. Define
1 0
L= .
("VZIVH] 1)

where L is defined for all (x, p) in a st fficiently small neighborhood l:l of (xg, po),
U C U. Let us assuine, for simplicity, that U was chosen such that U = U. Then

we obtain on U
Vi Viz )
LV = _ ‘
( 0 Vy—Vy V11' Vi2

Now, because rank 4 (x, p) = rank D,G(x, p) for all (x, p) € G~0), Vyy —
Va1 Vl_ll Vi =0o0n G! (0).
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Step 3. Now the mapping S can be defined by
S=(-VuV;i' I)P

and satisfies S(x, p)D,G(x, p) = S(x, p)D,G(x, p)P, = O for all (x, p) €
G~1(0) as required. O

As a consequence of Proposition 1 we obtain that 7, M is given by
M = ker[S(x, p) D, G (x, p)]

where (x, p) € N. Note that in contrast to results in [16], the mapping S in
Proposition 1 is of class C* although the rank of D,G (x, p) is not constant on
the whole set U but only on N = G~1(0).

Remark. The construction described in the proof of Proposition 1 might not be
numerically robust unless the rank of the derivatives involved is constant in a
whole neighborhood of (xg, py). Hence our formulation in terms of constant rank
conditions on submanifolds can be exploited mainly in an analytical or symbolic
analysis.

Example 1. Consider the mapping G : U € R? x R?® — R? given by

p3+pr—x
Gx,p)=| (xi+x)p2+x3 |.
X1+ x2

Because rank DG(x, p) = 3 and rank D,G(x, p) = 1 for (x, p) € GH0), G is
admissible. Now, as

0 1 1
D,G(x, p) = (O X1+ X3 O)
0 0 0

0 01
P2=(1 0 0).
010

1 1 0
V=(x1+x2 0 )
0 0 0

S = (“(x1+x2) 1 0).

we put P, = I and

Thus

and

0 01

Let G : U(xo, po) € R"* x R" — R™ be an admissible mapping. Then we call the
DAE
G(x,x)=0 )
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overdetermined if m. > n. By a solution of a DAE (2) we mean a mapping x :
I — R” on the open interval / € R such that, for all t € I, (x(¢),x'(¢)) € U
and G(x(z), x'(t)) := 0. Furthermore, we call the DAE regular (locally around
(x0, po)) if there exists a unique submanifold W of R" and a unique vector field
v : W — R” such “hat a mapping x : I — R”" is a solution of the DAE if and
only if x is a solution of the vector field v. The vector field v is then called the
corresponding vector field and the manifold W the configuration space.

Example 2. A pendulum with mass m attached at the end of a rigid massless wire
with length [ attached at the origin in the (g1, g2) plane satisfies the DAE

!/

9 =9
4 =1,
mvy = —Aq,
mvy = —Ag, — mg

0=gq;+q;— ¢

where A is the (unkrown) tension of the wire and g is the gravity constant. If we
introduce the new variables x = (g1, g2, V1, V2,A) € R%, p = (g1, g5, vy, 05, M) €
R, then the problem assumes the form (2) with

P1—X3
P2 — X4
G(x, p)= mp3 + xsx
mps + Xsxo +mg
x?+x3— 2

On the other hand it is well known that in polar coordinates (r, ¢) the motion of
the pendulum is described by the second order differential equation

¢H€wmm=a 3)

We will see in Section 3 that (3) is the corresponding vector field of the above
DAE written as a second order differential equation.

Let us finally introduce the following notations. Let v/ : M — R" be a linear
vector field on a linear subspace M of R";i.e., v! € L(M, R"). Then the spectrum
of v!, denoted by p(v'), is the set of all 4 € C such that there exists a y € M,
y # 0, with

(uj =)y =0
where j : M — R" is the canonical ¢mbedding of M into R”. Consider now the

matrix pencil (A, B) [8] with A, B € L(R"). Then the set of all u € C satisfying
det(uA+ B) = 0, denoted by p(A, B), is called the spectrum of the matrix pencil.
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3. Existence and uniqueness of solutions near an
equilibrium point

Throughout this paper we consider DAEs
F(x,x)=0, 4

F : R*" x R* — R", with an equilibrium point xy € R"; i.e.,F(x9,0) = 0. We
assume that

Al : rank D, F(xp,0) = n,
which implies that xj is an isolated equilibrium point of (4), and that
A2 : rank D, F(x, p) = const

in a neighborhood of (xo, 0) in F~!(0). Both assumptions together imply that the
mapping F is admissible locally around (x, 0).

In this section we derive results on the existence and uniqueness of solutions
near the equilibrium point xo, although most of the results of this section can be
easily generalized to arbitrary points (x, p) € F~!(0). For that reason we consider
(4) only on a sufficiently small neighborhood U = U (x,q, 0) of the equilibrium
point (xo, 0). In contrast to other approaches on the existence and uniqueness of
solutions (see, e.g., [3], [17]) our results are based on a family of overdetermined
DAEs which we define as follows:

Definition 1. Let a DAE (4) with an equilibrium point xy be given. Assume that
assumptions A1 and A2 hold. Let U be a sufficiently small neighborhood of (xo, 0).
Then we define the family (G;) of mappings G; : U — R™ by:

Go(x, p) := F(x, p)

— Go(x, p) . B
Git1(x, p) '_(Si(x,p)DxGi(x,p)p) E=1iuis8=1)

where S; is a mapping associated to G; (see Proposition 1) and s is the largest
integer such that the G;’s are admissible and Gs‘1 ) # Gs__l1 (0). We say that the
DAE (4) is of degree s locally around the equilibrium point xg.

Example 3. The DAE associated to the mapping G, as considered in Example 1,
is of degree one. The mapping G is given by

G(x, p)
Gi(x, p) =\ (x1 + x2)p1 + p2(p1 + p2) + p3
p1+p2

and G, = G, because rank D,G(x, p) = 3.
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Example 4. Let us consider quasilincar DAEs
F(x,x):=Ax)x"+ f(x) =0

i.e., DAEs for which x’ enters linearly into the equations. Let us assume that rank
A(x) = kforall x ¢ V, where V is a sufficiently small neighborhood of x, in R",
f (x0) = 0, and rank: Df (xo) = n. In this case F is admissible and we simply have
D, F = A.If S is a mapping associated to F; i.e., S(x)A(x) = 0, then w/e obtain

M={x eR":¢(x):=Sx)f(x) =0}
and
Ty M = ker Dg(x).

Thus the mapping GG in Definition 1 can be modified to

AX)p+ f (x)>
Dg(x)p

which is again linear in the variable p and, consequently, similar modifications
can be made for all mappings G;.

Gl(x’ p) = (

In the following proposition we use the special structure of the DAE. (4) near
X to state sufficient: conditions for the admissibility of the mappings G;.

Proposition 2. Assume that G;_; is admissible. Then G; is admissib(e if rank
D,G(x, p) = const. for all (x, p) € G (0).

Proof. We have to show that the admssibility of G;_; implies that DG;(.tg, 0) has
full rank. By definition (and using the fact that py = 0)

‘ _{ DxGo(x0.0) D, Go(xo, 0)
DG:(XO, :)) = ( 0 Si-—l(x(h O)DxGi—l(x()’ 0)) ’

Now rank D, Go(x¢, 0) = n by assumption A1 and S;_; (xo, 0) D, G; (¢, 0) has
full rank by the admissibility of G;_;. O

We associate now with each of the mappings G; a DAE of type (2). Comparing
their solution behavior we obtain

Proposition 3. Let (4) be a DAE of degree s locally around x, then the DAEs
Gi(x,x)==0 (i=0,...,9)

have identical solu'ion behavior.
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Proof. Let us introduce the sets N; = Gl.‘1 (0), M; = pr,(N;). By the admissibility
of the mappings G;, the sets N;, M; are manifolds and satisfy N;;; € N;, M; 1| C
M;. Thus, by the definition of the mappings G;:

Nigt = [JINo N {x x T M;}]

xeM;

and thus N;+1 = NoNT M;. Now because of NoNTM; = NoNTM;_1NTM; =
N; N TM;, we obtain N;y; = N; N TM;. As already shown in [18], a mapping
x : I — R" satisfies (x(t), x'(t)) € N; if and only if (x(¢), x'(¢)) € N;NTM;. (]

Remark. Our approach is close to an approach taken, e.g., in [3] where the equation
(4) is differentiated several times with respect to ¢ to obtain the so-called derivative
array equations. However, in contrast to the approach taken in [3], we eliminate the
second order derivative x” after each differentiation and thus avoid having higher
order derivatives of x enter into the equations. The advantage of the approach taken
in [3] is that it does not involve constant rank conditions in the intermediate steps.

We are now ready to state sufficient conditions for the regularity of a DAE (4)
locally around an equilibrium point xo.

Theorem 1. Let (4) be a DAE of degree s locally around (xy, 0). If
rank D,G(x9,0) =n

then (4) is regular locally around (xo, 0). The corresponding vector fieldv : W —
R" is characterized by

graph v = G;1(0).

Proof. Rank D, G (xo, 0) = n implies that Ny = G;‘ (0) is the graph of a function
v : My — R" Because Ny N TM; = N, v(x) € T, M, for all x € M;. Thus
Proposition 3 implies the regularity of (4) locally around (x, 0). Od

Definition 2. In correspondence with the definitions given, e.g., in [2], [17], we
call a DAE (4) of index s locally around (xy, 0) if the conditions of Theorem 1 are
satisfied.

Example 5. The DAE considered in Example 2 is of index three. The DAE corre-
sponding to the mapping G3 can be rewritten as



435

!/

91 =Y
4 =",
mv; = g,
mvy = —Aq, — mg

, 1
A= 1—2(3mv2g +2v1g1A + 2v2g21)

0=gf+4q; -

0= qiv1 + govn
12
=~ 48 = (] +v)).

Introducing polar coordinates (r, ¢) in the (g;, g2)-plane and denoting r’ and ¢’
by p, 0, respectively, this DAE reduces to (after elimination of the variable 1)

¢ =6

r'=p

16’ = — g sin(¢)
p=0
0=r"-1
O=rp

and the resulting ODE
¢/ =0
o' = —25 sin(¢)

represents the corresponding vector field of the DAE on the manifold M = {(g, v) :
ai+a; =r* =1 qp+qpr=rp =0}

4. Linearization of a DAE in an equilibrium point

Many local qualitative results for vector fields are based on the linearization of
a vector field v : M -» R” along a given solution x : / — R”". In the sequel
we focus on problems where this solution is an equilibrium point xo € M i.e.,
v(xp) = 0. The investigation of the resulting linear vector field v € L(T,,M, R"),
given by
v = Du(xo),

allows us in many cases to determine the qualitative solution properties of the
vector field v in a sufficiently small neighborhood of the equilibrium point [10].

Of course one would like to apply this strategy to regular DAEs as well. For that
reason let xo € R” be an equilibrium point of the DAE (4); i.e., assume that

0 = F (xo, 0).
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Then the linearization of the DAE (4) along the solution x(¢) = xq results in the
linear DAE
Ax'+ Bx =0 &)

where A = D, F(xp, 0) and B = D, F(xg, 0).

It seems reasonable to conjecture that, whenever the DAE (4) is regular locally
around an equilibrium point xo, the linearized DAE (5) is regular too and that the
corresponding vector field of (5) is given by the linearization of the corresponding
vector field of (4) at xo. However, as shown by Example 6, this conjecture does
not always hold.

Example 6. Consider the DAE
xx' = —x2, 6)

x € R. Note that this DAE does not satisfy assumptions A1 and A2 of Section 3
at (0, 0) and that therefore no degree can be defined for the DAE locally around
(0, 0). However, the DAE is regular locally around (0, 0) and the corresponding
vector field is given by x’ = —x. Now, this is already a linear differential equation
and we expect linearization of (6) at (0, 0) to yield a regular DAE with x’ = —x
as the corresponding vector field. However, what we obtain really is the “DAE”
0 = 0, which is obviously nonregular. Note that this situation can never occur for
a DAE (4) that satisfies assumption Al.

Assumption Al implies that the linearized DAE (5) is regular whether or not
the given DAE (4) is regular locally around the equilibrium. But even if the DAE
(4) is regular this does not imply that the corresponding vector field of the linear
DAE (5) is equivalent to the linearization of the corresponding vector field of the
nonlinear problem at xg.

Example 7. Consider the DAE

x'=-y @)
0=y>—x ®)

with (x, y) € R x R. This DAE satisfies assumptions Al and A2 but does not
satisfy the conditions of Theorem 1. However, because (x(¢), y(t)) = (0, 0) is the
only solution with (x(0), y(0)) = (0, 0), the corresponding vector field of (7) is
given by
o',y = 1 9 —1/3y) for(x, y) € My \ {(0,0)}
i (0, 0) for (x, y) = (0, 0).
Because this vector field has a discontinuity at the equilibrium point (0, 0) no lin-

earization of the vector field at the equilibrium point exists. However, linearization
of the DAE (7) at (0, 0) yields the linear DAE

Il
=1 <

x 9
0 ®
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which is of index two and possesses only the trivial solution (x(¢), y(¢)) = (0, 0).

In the following theorem we state sufficient conditions under which the lia-
earized DAE (5) properly reflects the linearized solution behavior of the given
nonlinear problem (4).

Theorem 2. Let (4) be a IDAE of index s lccally around an equilibrium point .
Assume that the DAE satisfies assumption Al. Denote the corresponding vecior
field of (4) by v : M — R" and the corresponding vector field of the linearized
DAE (5) by v' : M' — R". Then we have

Dv(xg) = v'

where Dv(xo) € L(T,,M,R") is the linearization of v at xo and M' = T, M.

Proof. As in the proof of Proposition 3 we introduce the sets N; = G, 1(0),
M; = pr;(N;), i = 0,...,s. We denote the corresponding sets of the linearized
DAE by N/, M/, respectively. We prove the theorem by induction. By definition
we have N} = Ty, 0)No. Let us assume that N} = Ty, 0)N; holds for some i,
s > i > 0. Then Mi’ = T,,M; and TM} == T(x,,00T M; as well. Now, as shown in
the proof of Proposition 3, we have

Nipi =N NTM;
which implies that
Tixo,0)Ni+1 = T0,0(Ni N T M;).
Now the admissibility of the mapping G; gives
0,0 Ni+1 = Tixg,00Ni N Tixy,00 T M,
=N/ \TM|
= N!,;.

i

Finally we observe that graph v = N, and graph v/ = N.. O

In the following proposition we shov that the regularity of the linearized DAE
simplifies the conditions for the regularity of the nonlinear problem as stated in
Theorem 1.

Proposition 4. Let x\ be an equilibrium point of a DAE (4) and let (5) be the
linearization of (4) in xo. Assume that (5) is of index s and that the DAE (4) is at
least of degree s — 1 locally around x,,. Then (4) is of index s locally aro:und the
equilibrium point xo.

Proof. We use the same notation as in the proof of Theorem 2. Because (4) is at
least of degree s — 1, G4_; is defined and admissible. Thus Gy is defined too and,
as shown in the proof of Proposition Z, DG (xo, 0) has full rank. Therefore Ny =
N;_1NT M;_, is amanifold and Ty, o) Ny = Ns’. This implies rank D, G (xo, 0) =
n. Thus G, is admissible and satisfies. the conditions of Theorem 1. O
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Example 8. Let x; be an equilibrium point of a quasilinear DAE
F(x,x') = A(x)x' + f(x) =0.

Assume that rank A(x) = k for all x € V, where V is a sufficiently small
neighborhood of xp in R”, and that rank Df(xp) = n. This implies that F is
admissible. Furthermore, F, = A. Let S(x) be the mapping associated to F and
define the mapping g : V — R" % by g(x) = S(x) f(x). Then Ny and M, are
given by
No={(x,p) e VxR": A(x)p = f(x)}
My={xeV:gkx)=0}

If now the linearized DAE is of index one, then Proposition 4 implies that the DAE
is of index one locally around the equilibrium point xo. More generally, if

A(x) '\ _

rank ( Dg (x)) = const.

for all x € V, then the mapping G; given by

AX)p+ f (x))
Dg(x)p

is admissible too. Thus, if the linearized DAE is of index two, then Proposition
4 yields in this case that the DAE is of index two locally around the equilibrium
point xg.

G](x’ P) = <

It is well known that the spectrum p (v') of a linear vector field v’ plays a crucial
role in computing the solution behavior. If v’ is the corresponding vector field of
a linear DAE (5), then, as shown in the next proposition, the spectrum p (v') can
be obtained directly from the matrix pencil (A, B) of the linear DAE.

Proposition 5. Let (5) be a DAE of index s and let v' : M' — R" be the corre-
sponding vector field of this DAE. Then the spectrum of v' and the spectrum of
(A, B) satisfy

p(v') = p(A, B).

Proof. If . € p(v') then thereisa y € M', y # 0, such that

(nj — vy =0.
Furthermore, by definition of the corresponding vector field we have
(Av' + B)y =0

for all y € M. Thus, if u € p(v') then i € p(A, B) because of
(LA + B)y = 0. (10)

On the other hand, if 4 € p(A, B), then the corresponding y € R" in (10) has to
satisfy y € M'. This implies p(v') = p(A, B). O
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5. Applications

The preceding results, especially Theorem 1, Theorem 2, and Proposition 5, can be
used to discuss the solution behavior of DAEs near an equilibrium point xq € R”.
According to the results of Section 4 one can hope that the linearized DAE plays
a crucial role in determining the qualitative behavior of (4) near an equilibrium
point xq. For that reason let (5) be the linearization of (4) at xo and assume that (5)
is regular. Then, according to Proposition 5 the solution properties of the linear
DAE (5) can be obtained from the spectrum p(A, B) with

p':={u e p(A, B) :Re u < 0}
p°:={u € p(A, B):Re u =0}
p*:={ne€ p(A, B):Reu >0}

Especially, then are invariant subspaces of the DAE (5) associated to p*, x =
s, c, u, call these X*, and M! = X° @ X° @ X* where M' is the configuration
space of the DAE (5). The association is that X* is spanned by the eigenvectors
v; € R" corresponding to the eigenvalues u; € p*, i.e.,

(uiA + B)v; = 0.

Any solution x of (5) with x(0) € X* terds exponentially to 0 as t — oo and any
solution with x(0) € X* to 0 as¢t — —oo. As long as the eigenvalues of p¢ are
simple, the solutions with x(0) € X¢ are periodic.

We turn now to the nonlinear problem (4) and assume that the conditions of
Theorem 1 are satisfied. Then, in accordance with corresponding definitions for
vector fields, we call xq a hyperbolic equilibrium point if the linearized DAE
satisfies p¢ = . Furthermore, let x(-; »,) : I — R" denote solutions of (4) in a
sufficiently small neighborhood U of (xg, 0) with x(0, x,) = x,, then we define
(10]

W= {x, € R" : 3x(;; x4) : [0, 00) = R"
suchthat x(t; x,) — xo for t — oo}

W : = {x, € R" : 3x(-; xo) : [0, —00) - R"
suchthat x(¢; x,) — xo for t - —o0}.

For hyperbolic equilibrium points the solutions of (5) resemble the solution be-
havior of (4) in a sufficiently small neighborhood of xy. Specifically:

Theorem 3 (Local Stable and Unstable Manifold). Let xo be an equilibrium
point of the DAE (4). Assume that (4) is of index s, s > 1, locally around xg and
that xq is a hyperbolic equilibrium point. Consider the DAE (4) on a sufficiently
small neighborhooc! U of (xo, 0). Then the sets W* and W" are submanifolds of
the configuration space W that are tangent to X*, X", respectively, ai' xo; i.e.,
T,,W* = X* and T,W* = X".
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Proof. By assumption the DAE (4) is regular on U. Furthermore, by Theorem 2 and
Proposition 5, the point xg is a hyperbolic equilibrium point of the corresponding
vector field. Thus one can apply the stable and unstable manifold theorem as
formulated for vector fields in [10] to the DAE (4). O

Remarks. The set W* (W*) is called the local stable (unstable) manifold. These
manifolds can be used to give a coordinate system on the configuration space in
a neighborhood of xp. Furthermore, if p* = @, then the equilibrium point x, is
asymptotically stable in the sense of Lyapunov [10].

Example 9. A Lagrangian formulation of the equations describing a constrained
multibody system may be written as

q'=v
M(g)v' = f(g,v) — GT(g)r
0=g(q)

where M (q) is a regular (symmetric, positive definite) mass matrix, f is a vector
of applied forces, and A represents the Lagrange multipliers or constraint forces
coupled to the system by the constraint matrix G(gq) := Dg(q), which is assumed to
have full rank. This implies that the above DAE is of index three. Let us assume that
f(qo, 0) = 0, then the point (go, 0) is an equilibrium solution of the corresponding
mechanical systems. To determine the stability properties of (go, 0) we can make
use of Theorem 3. Linearization yields the following linear DAE:

I 0 0\ /¢ 0 I 0 g
(0 M (qo) 0) <1_7’> = (Dpf(quO) D, f(qo, 0) —GT(qo)) (v)
0o o0 o/ \¥ G(qo) 0 0 by

From this one gets the matrices A and B and finally one has to compute the
generalized eigenvalues of the matrix pencil (A, B) [7].

The study of fixed points becomes more delicate when they are not hyperbolic.
Nonhyperbolic fixed points often arise in bifurcation problems. Here we restrict
ourselves to the case in which p¢ contains two simple eigenvalues =+ jw on the
imaginary axis. For vector fields the resulting bifurcation is called the Hopf bifur-
cation [10], [11]. A first result on Hopf bifurcations for DAEs of index one can be
found in [21].

Let

F(x,x;2)=0 (AeR) (11)

be a one-parametric family of DAEs with an equilibrium point xy for A = 0.
Assume that assumption A1 holds for A = 0. Then the implicit function theorem
implies that there are neighborhoods A € R and V € R” of 0 and x, such that
the system of equations

F(x,0;1) =0
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has exactly one solution x € V forall A € Aj;i.e., there is a one-parametric family
xo(X) of equilibrium points with .tg(0) = xo.

Assume that (11) is of index s locally around xo()) for all A € A and that the
mapping G,(., .; A) depends smoothly on A. Then the corresponding vector field
v(.; A) also depend smoothly on A. Furthermore, the linearized DAEs

AT +BMI=0 (AeA) (12)

with A(X) := D, F(xo(A), 0; 1) and B(A) := D, F(xo(L), 0; 1) are regular. As-
sume now that the spectrum of the matrix pencil (A(X), B(X)) contains exactly
one pair of complex eigenvalues 1, = p(A) £+ jw(X) such that

A3 - p0)=0, 00 #0
Dp(0) 540
and that (12) has no other eigenvalues on the imaginary axis for A = 0. This
implies that, for A = 0, the linearized DAE satisfies p¢ = {+(0)} and that the
equilibrium points xo(A) are hyperbolic for A :# 0. Using results in [10], a Hopf
theorem for DAEs of the above type follows easily. Specifically:

Theorem 4 (Hopf). Let us consider the one-parametric family of DAEs (11) where
Xo is an equilibrium point of (11) for A = 0 satisfying assumption Al. Assume
that (11) is of index s locally around xo(A) for all A € A and that the mapping
G;(., .; A) depends smoothly on . Let us assume furthermore that assumption A3
holds. Then, in any neighborhood U of xo in R" and any given A there is a X with.
|| < Ao such that (11) with. A = X has a nontrivial periodic solution in U.

Remark. The theorem in its above formulation does not allow us to draw any
conclusion on whether the periodic solution is locally unique or not. To obtain
such results we would need a theory of normal forms for DAEs. First results n
that direction can be founci in [5].

As an application of Theorem 4, let us consider the numerical computation of
Hopf points for DAEs in terms of an augmented system of nonlinear equations.
This so-called direct approach has been very successfully applied in the ODE
context [20]. Here we give a brief outline. on how to generalize these results to
DAE:s.

Let us assume that all the conditions of Theorem 4 are satisfied. Then the Hopf
point is characterized (lccally) by the unicjue solution of the following augmented
system of nonlinear equations:

0= F(x,0;2)
0=caA(x; Ar 4+ B(x; A)s
0=aA(x;A)s — B(x; Mr
0= N(,s)

13)

where N : R" x R" —- R? is a normalization function and A(x; A) = F,(x. 0; 1),
B(x; A) = Fy(x, 0; A). Following the same arguments as given in [12] and [20] for



442

the ODE case, one can show that (13) has (locally) an isolated solution provided
N is chosen properly. For example, one could chose the following normalization
function N:

0=yr

O0=r'r—1

with y € R” suitably selected [20].

Example 10. A nonlinear autonomous RLC circuit [4] which, for simplicity, is
assumed to have a connected graph with b branches can be described by the DAE

0= Bv (14)
0= Qi (15)
q' =i (16)
0= fe(uc, q) a7
¢ =u (18)
0= fi(ir, ) (19)
0= fr(ur,ir). (20)

Here v € R? denotes the column vector of branch voltages and i € R? denotes
the column vector of branch currents, partitioned, respectively, as (v, v;, v,) and
(i, i1, i) where subscript ¢ (/, r, respectively) denotes the variable corresponding
to capacitors (inductors, resistors, respectively). Equations (16) through (20) rep-
resent the constitute relations of the capacitors, inductors, and resistors. Equations
(14) and (15) represent the interconnection of all circuit elements. The system of
equations (14) through (20) is the standard system of circuit equations [4]; mod-
ifications of this system, such as the nodal analysis, are widely used in circuit
analysis packages [4].

In [15], conditions for the existence of oscillations in oscillator circuits [4],
such as the Wien bridge oscillator, were derived via a state-space analysis and
the standard Hopf theorem for ODEs. The results in this paper show that the same
results can be obtained by a direct analysis of the corresponding standard system of
circuit equations, and a corresponding Hopf point can be computed by using (13).
Such an approach is preferable especially for large circuits where the state-space
form is difficult to obtain.
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