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O N THE LOCAL 
QUALITATIVE BEHAVIOR OF 
DIFFERENTIAL-ALGEBRAIC 
EQUATIONS* 

Sebastian Reich1 

Abstract. A theoretical Tamework for the investigation of the qualitative behavior of 

differential-algebraic equations (DAEs) near an equilibrium point is established. The key 

notion of our approach is the notion of regularity. A D A E is called regular locally around 

an equilibrium point if there is a unique vector field such that the solutions of the D A E 

and the vector field are in one-to-one correspondence in a neighborhood of this equili Drium 
point. Sufficient conditions for the regularity of an equilibrium point are stated. This in turn 

allows us to translate several local results, as formulated for vector fields, to D A E s that are 

regular locally around a g: ven equilibrium point (e.g. Local Stable and Unstable M a i i f o l d 

Theorem, Hopf theorem). It is important that ihese theorems are stated in terms of the given 

problem and not in terms of the corresponding vector field. 

1. Introduct ion 

Differential-algebraic equat ions (DAEs) are frequently identified as implici t equa­
tions 

F(x,x')=0 (1) 

for which x' cannot be expressed explicitly as a function of x. Such equat ions arise 
in many areas of science and engineering. In particular, constrained mechanical 
systems and electronic c ircuits may be model led using equat ions of type (1) [2 ] . But 
the investigation of cor t ro l systems described by ordinary differential equat ions 
with certain outputs required to be identically zero can be done in terms of D A E s 
as well [14] . In recent years the literature on existence and uniqueness results has 
been growing rapidly (see, e.g., [2] , [16], [18], [17], [3]). However , up to now, 
results on the quali tat ive behavior are available only for a few selected classes of 
D A E s that are character ized by restrictive condi t ions on the form of the mapping 
F i n ( l ) ( s e e , e.g., [6] , [13] , [14], [21]). 

* Received October 25, 1392; revised July 22, 1993. 
1 Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, Berlin, O-1086, Germany. 



4 2 8  

In this paper we investigate the quali tat ive behavior of a D A E (1) near an 
equi l ibr ium point x0; i.e., a point satisfying F(xo, 0) = 0. The key notion of our 
approach is regularity. W e call a D A E regular locally around an equi l ibr ium point if 
there is a un ique vector field such that the solutions of the vector field and the D A E 
are in one- to-one cor respondence in a neighborhood of the equi l ibr ium point under 
considerat ion. By associat ing to the D A E (1) a family of overdetermined DAEs , 
w e derive in Section 3 sufficient condi t ions for the regularity of the D A E near an 
equi l ibr ium point . No te that our approach is c lose to an approach taken, e.g., in [3] 
where the equat ion (1) is differentiated several t imes with respect to t ime to obtain 
the so-called derivative array equat ions . However, in contrast to the approach taken 
in [3], w e e l iminate the second order derivative x" after each differentiation and 
thus avoid having higher order derivatives of x enter into the equat ions . We show 
that this e l iminat ion step can be done by s imple manipulat ions on matr ix valued 
functions. In Section 4 w e discuss the l inearization of a nonlinear D A E in terms of 
the l inearized D A E and the corresponding vector field. W e also show in this section 
how the spect rum of the l inearized vector field can be obtained in a direct way from 
the l inearized DAE. These results are used in Section 5 to " t rans la te" the Local 
Stable and Unstable Manifold Theorem and the Hopf theorem [10], as formulated 
for vector fields, to D A E s that are regular locally around the equi l ibr ium point 
under considerat ion. It is important that these theorems are formulated in terms of 
the given D A E rather than in terms of the corresponding vector fields. 

2. Mathemat ica l background 

In this section we collect some basic material needed throughout the remainder 
of this presentat ion. We begin with some standard terminology (see, e.g., [1] for 
details) . 

Throughout this presentat ion we consider only submanifolds of R" , n > 0, 
which, for simplici ty of exposit ion, are assumed to be of class C°° . 

If M c R" is a submanifold of R", then TM denotes the tangent bundle of M 
and TXM denotes the tangent space of M at x e M. N o w the tangent space TXM 
and the tangent bundle TM can be associated canonically with a l inear subspace of 
R" and a submanifold of R" x R", respectively, by means of canonical embeddings 
j x : TXM R" , and : TM - » R " x R". In the sequel we will not dist inguish 
be tween TXM and jx(TxM) (TM and j(TM)) and denote both spaces by TXM 
(TM). Le t prj : R" x R" - > R" denote the projection of R" x R" onto the 
first c o m p o n e n t and let TM c R n x R" be the tangent bundle of a submanifold 
M C I ' . Then M = p r , ( 7 M ) . 

As in the case of manifolds w e as sume for simplicity that all the mappings 
under considerat ion will be of class C°° al though, once again, this condit ion can 
be reduced easily. By a vector field on a submanifold M c R" w e mean a mapping 
v : M R" such that v(x) e TXM for all x e M. A mapping x : I ->• R" on 
the open interval / c R is called a solution of a given vector field v : M —> R" 
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if, for all t e I, x(t) e M and x'(t) = v(x(t)). Given a point (x0, p0) e R" x R", 
U (XQ, pa) c R " x R" will a lways denote a sufficiently small ne ighborhood of 
(xo, po) in R " x R " . We will often wri te U instead of U(x0, p0) to further simplify 
notat ions. 

In Sect ion 3 we will focus on D A E s of the type 

where G : U - > R m with U = U(x0,p0) c R " x R " , / i < m < 2n, and 
(XQ, po) e G~x (0) in some fixed points in R" x R" . For the analysis of such D A E s 
we will need the following results. 

W e call G admissible (locally around (xo, po)) if rank DG(XQ, po) == m and 
rank DpG(x, p) = r < m is constant for all (x, p) e G _ 1 ( 0 ) . The following result 
for admiss ib le mapp ings G was proven in [17]: If G : U —• R m is admissible , 
then the sets N = G - 1 (0) and M = (N) are submanifolds of R" x R ' and R" 
respectively. Fur thermore , it was shown in [16] that for admissible mapp ings G 
the tangent space TxM of M at x e T(M can be characterized by 

where (x, p) e N. However, to obtain a characterizat ion of TXM in terms of an 
implicit sys tem of equat ions we need the following. 

Proposi t ion l.LetG : U —> R m be an admissible mapping withr&r\kDpG{x, p) = 
r for all (x, p) e G _ 1 (0). Then there exists a smooth mapping S : U —s- L ( R m , 
W"~r) such that S(x p) has full rank for all (x, p) e U andS(x, p)DpG(x, p) = 
Ofor all (x, p) e A'. We call the mapping S a mapping associated to G. 

Proof. W e give a constructive proof in three steps: 

Step 1. The re are permutat ions P i , P2 € L ( R m ) such that 

where L is defined for all ( j e , p) in a sufficiently small ne ighborhood Ü of >[x0, p0), 
Ö c U. Let us assume, for simplicity, that U was chosen such that Ü = U. Then 
we obtain on U 

Now, because rank Vu(x, p) = rank DpG(x, p) for all (x, p) € G l(0), V 2 2 -
V2iV-1Vn = 0 o n G - ' ( 0 ) . 

G(x,x') = 0 

TXM = {x € R" : DxG(x, p)x e rge DpG(x, p)} 

with Vu(x0, po) nor s ingular and r x r . 

Step 2 . Define 
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Step 3 . N o w the mapp ing S can be defined by 

s = (-v21v{il /)/>, 

and satisfies S(x, p)DpG(x, p) = S(x, p)DpG(x, p)P2 = 0 for all (x, p) e 
G ~1 (0) as required. • 

As a consequence of Proposi t ion 1 we obtain that TXM is given by 

TXM =ker[S(x, p)DxG(x, p)] 

where (x, p) e N. No te that in contrast to results in [16] , the mapp ing S in 
Proposi t ion 1 is of class C°° al though the rank of DpG(x, p) is not constant on 
the whole set U but only on N = G~x (0) . 

Remark . The construct ion described in the proof of Proposi t ion 1 might not be 
numerical ly robust unless the rank of the derivatives involved is constant in a 
whole ne ighborhood of (x0, po)- Hence our formulation in terms of constant rank 
condi t ions on submanifolds can b e exploi ted mainly in an analytical or symbol ic 
analysis . 

E x a m p l e 1. Cons ider the mapp ing G : U c R 3 x R 3 - > R 3 given by 

/ Pi + P2 - x\ \ 
G(x, p) = I (xi + x2)p2 + x 3 \ . 

\ X \ + X 2 I 

Because rank DG(x, p) = 3 and rank DpG(x, p) = 1 for (x, p) e G ~ ' ( 0 ) , G is 
admiss ible . Now, as 

/ 0 1 IX 
DpG(x,p) = 0 JC! +x2 0 

, 0 0 0 / 

we pu t P\ = I and 
/ 0 0 IX 

P2 = 1 O 0 . 
\ 0 1 0 / 

/ I 1 OX 
V = I *i + x2 0 

V O OO/ 

/ - ( ^ + x 2 ) 1 0 \ 
A _ V O O I / ' 

Let G : U(x0, po) c R" x R n - > R m be an admissible mapping . Then w e call the 
D A E 

G(x,x')=0 (2) 

Thus 

and 
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overdetermined if m. > n . By a solution of a D A E (2) we mean a mapp ing x : 
/ R" on the open interval / c R such that, for all t e I, (x(t),x'(t)) e U 
and G{x(t), x'{t)) --= 0. Fur thermore , we call the D A E regular (locally around 
(*o, Po)) if there exists a unique submanifold W of W and a unique vector field 
v : IV —>• R" such i ia t a mapp ing x : I —> R" is a solution of the D A E if and 
only if x is a solution of the vector field v. The vector field v is then called the 
corresponding vector field and the manifold W the configuration space. 

E x a m p l e 2 . A pendu lum with mass m at tached at the end of a rigid mass] ess wire 
with length I at tached at the origin in the (q\, q2) p lane satisfies the DAE 

Ii = v \ 

Qi = v2 

mv'2 = — Xq2 — mg 

Q^ql + q l - l 2 

where X is the (unkr own) tension of i:he wire and g is the gravity constant . If we 
introduce the new variables x — (q\, q2, v\, v2, X) e R 5 , p = (q\,q'2, v[, v'2, X') e 
R 5 , then the p rob lem assumes the form (2) with 

G(x, p) 

V 

P\ - * 3 
Pi - x 4 

mpi +x$x\ 
mp4 + x5x2 + mg 

X 1 ~T" ) 

On the other hand it is well known that in polar coordinates (r, <f>) the mot ion of 
the pendu lum is described by the second order differential equation 

0" + I sin(0) - 0. (3) 

We will see in Section 3 that (3) is the corresponding vector field of the above 
D A E writ ten as a second order differential equation. 

Let us finally introduce the following notat ions. Let vl : M —>• R" be a linear 
vector field on a linear subspace M of R" ; i.e., vl e L(M, R " ) . Then the spectrum 
of vl, denoted by p(v'), is the set of all p. € C such that there exists a y e M, 
y zfz 0, with 

(jij - v')y = 0 

where j : M R" is the canonical embedding of M into R" . Consider now the 
matrix pencil (A, B) [8] with A, B e L ( R " ) . Then the set of all p, e C satisfying 
det(/xA + B) = 0, denoted by p ( A , B), is called the spectrum ofthe matrix pencil. 
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3 . Exis tence and uniqueness of solut ions near an 
equi l ibr ium point 

Throughou t this paper w e consider DAEs 

F(x,x')=0, (4) 

F : R" x R" R" , with an equilibrium point x0 e R" ; i.e.,F(x0, 0) = 0. We 
assume that 

A l : rank DxF(XQ, 0) = n, 

which impl ies that XQ is an isolated equi l ibr ium point of (4) , and that 

A 2 : rank DpF(x, p) = const 

in a ne ighborhood of (xo, 0) in F-1(0). Both assumpt ions together imply that the 
mapp ing F is admiss ible locally around (XQ, 0 ) . 

In this section w e derive results on the existence and uniqueness of solutions 
near the equi l ibr ium point xo, a l though mos t of the results of this section can be 
easily general ized to arbitrary points (x, p) e F~l (0) . For that reason we consider 
(4) only on a sufficiently small ne ighborhood U = U(x,0 , 0) of the equi l ibr ium 
point (JCO, 0 ) . In contrast to other approaches on the exis tence and uniqueness of 
solutions (see, e.g., [3] , [17]) our results are based on a family of overdetermined 
D A E s which w e define as follows: 

Definit ion 1. Le t a D A E (4) with an equi l ibr ium point ;to be given. A s s u m e that 
assumpt ions A l and A 2 hold. Let U be a sufficiently small ne ighborhood of (x0, 0 ) . 
Then w e define the family ( G , ) of mappings G, : U -> W"' by: 

G 0 ( x , p) := F(x, p) 

- U . A . , ) , ) "•=' *-» 
where S, is a mapp ing associated to G, (see Proposi t ion 1) and s is the largest 
integer such that the G , ' s are admiss ible and Gj1 (0) ^ G~}t (0) . W e say that the 
D A E (4) is of degree s locally around the equi l ibr ium point XQ. 

E x a m p l e 3 . T h e D A E associated to the mapping G, as considered in E x a m p l e 1, 
is of degree one. The mapping G ] is given by 

/ G(x, p) \ 
G\(x, p) = I (xi +x2)p\ + p2(Pi + Pi) + P3 j 

V pi + pi I 

and G2 = G\ because rank DpG\{x, p) = 3 . 
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E x a m p l e 4. Le t us consider quasi l inear D A E s 

F(x,x') := A(x)x' + f(x) = 0 

i.e., D A E s for which x' enters linearly into the equat ions . Let us assume that rank 
A(x) = k for all x i\ V, where V is a sufficiently small ne ighborhood of xo in R" , 
f(xo) = 0, and rank Df(xo) = n. In this case F is admissible and we simply have 
DpF = A. If S is a mapping associated to F; i.e., = 0, then w e obtain 

A/ = [x € R" : g(x) := S{x)f(x) = 0} 

and 

TXM ••= ker £>#(*). 

Thus the mapp ing G\ in Definition 1 can be modified to 

r (r „ ^ - ( A { x ) p + f { x ) \ 
G l ( ^ - ( Dg(x)p ) 

which is again linear in the variable p and, consequently, similar modifications 
can be m a d e for all mappings G, . 

In the following proposi t ion we use the special structure of the DAEi (4) near 
XQ to state sufficient condi t ions for the admissibil i ty of the mappings G, . 

Proposi t ion 2 . Assume that G,-_i is admissible. Then G,- is admissible ( / r a n k 
DpGi(x, p) = conat for all (x, p) e G]~\0). 

Proof. W e have to show that the admissibil i ty of G,_i implies that D G , ( . c 0 , 0) has 
full rank. By definition (and using the fact that po = 0) 

nr f r (DxG0(x0l0) DpG0(x0,0) \ 
, l 0 ' } ~ \ 0 S |_ , to, 0 ) A r G , _ i ( * o , 0)) • 

Now rank DXGQ(XC, 0) — n by assumption A l and 5 , _ i ( ^ 0 - 0 ) D ^ G , _ i ( . t o , 0) has 
full r ank by the admissibil i ty of G , _ i . • 

We associate now with each of the mappings G, a D A E of type (2). Compar ing 
their solut ion behavior we obtain 

Propos i t ion 3 . Let (4) be a DAE of degree s locally around XQ, then the DAEs 

Gi(x,x')=--0 (i=0,...,s) 

have identicalsolu'ion behavior. 
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Proof. Let us introduce the sets Nt = GJX (0) , Mt = pr , (TV,-). By the admissibil i ty 
of the mapp ings G, , the sets A',, A/, are manifolds and satisfy A^+i c A',-, Af,+i c 
Mi. Thus , by the definition of the mappings G; : 

NI+I = \ J [N0N{x x TxMt}] 
XEMT 

and thus Ni+1 = N0 D T M , . N o w because of Afo n TMt = N0D TMi-\ D T M , = 
Ni D T M , , w e obtain Ni+\ = Nt n TM,-. A s already shown in [18] , a mapp ing 
x : / ->• R" satisfies (x(t), x'(t)) 6 M if and only if (*(*), JC'(O) e A7,- n 7 M , . • 

Remark . Our approach is c lose to an approach taken, e.g., in [3] where the equat ion 
(4) is differentiated several t imes with respect to t to obtain the so-called derivative 
array equat ions . However, in contrast to the approach taken in [3], w e el iminate the 
second order derivative x" after each differentiation and thus avoid having higher 
order derivatives of x enter into the equat ions. The advantage of the approach taken 
in [3] is that it does not involve constant rank condit ions in the intermediate steps. 

We are now ready to state sufficient condi t ions for the regularity of a D A E (4) 
locally around an equi l ibr ium point XO. 

T h e o r e m 1. Let (4) be a DAE of degree s locally around (XQ, 0) . If 

rank DpGs(x0,0) = n 

then (4) is regular locally around (xo, 0) . The corresponding vector field v : W —> 
R" is characterized by 

graph u = G 7 1 ( 0 ) . 

Proof. Rank DpGs(xo, 0) = n implies that A ĵ = Gjl(0) is the graph of a function 
v : Ms ->• R". Because Ns n TMS = Ns, v(x) e TXMS for all x e Ms. Thus 
Proposi t ion 3 implies the regularity of (4) locally around (x0, 0 ) . • 

Definit ion 2 . In cor respondence with the definitions given, e.g., in [2] , [17] , we 
call a D A E (4) of index s locally around (XQ, 0) if the condi t ions of T h e o r e m 1 are 
satisfied. 

E x a m p l e 5 . The D A E considered in Example 2 is of index three. The D A E corre­
sponding to the mapp ing G3 can be rewrit ten as 
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qx = vx 

q'2 = v2 

mv\ = —Xqx 

mv'2 = —Xq2 — mg 

X' = j2-(3mv2g + 2viqtX + 2v2q2X) 

0 = q\ + q l - ! 2 

0 = <?ii>i + q2v2 

I2 

0 = —X + q2g-(v] + v2

2). 
m 

Int roducing polar coordinates (r, 0) in :he (q\, q2)-p\ane and denot ing r' cind cp' 
by p , 8, respectively, this D A E reduces to (after el imination of the variable X) 

<p' = 6 

r' = p 

10' = -g sin(0) 
p' = 0 

0 = r 2 - I2 

0 = rp 

and the resul t ing O D E 

0' = 0 

0 ' = - | s i n ( 0 ) 

represents the corresponding vector field of the D A E on the manifold M = {{q, v) : 

Ii + ll = r l = , 2 > 9\Pi + qiP2 = rp ~ 0} . 

4. Linearizat ion of a D A E in an equi l ibr ium point 

M a n y local quali tat ive results for vector fields are based on the l inearization of 
a vector field v : M —> W a long a given solution x : I —> W. In the sequel 
we focus on prob lems where this solution is an equilibrium point XQ e M; i.e., 
V(XQ) = 0. T h e investigation of the result ing linear vectorfieldv1 e L(TXoM ,W), 
given by 

vl := Dv(x0), 

allows us in many cases to determine the qualitative solution propert ies of the 
vector field v in a sufficiently small ne ighborhood of the equi l ibr ium point [10]. 
Of course one would like to apply this strategy to regular D A E s as well . For that 
reason let x0 6 W be an equil ibr ium point of the D A E (4); i.e., a s sume thai 

0=F(x0,0). 
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Then the l inearization of the D A E (4) a long the solution x(t) = x0 results in the 
l inear D A E 

Ax' + Bx = 0 (5) 

where A = DpF(x0, 0) and B = DxF(x0,0). 
It seems reasonable to conjecture that, whenever the D A E (4) is regular locally 

around an equi l ibr ium point Xo, the l inearized D A E (5) is regular too and that the 
corresponding vector field of (5) is given by the l inearization of the corresponding 
vector field of (4) at XQ. However, as shown by Example 6, this conjecture does 
not a lways hold. 

E x a m p l e 6. Consider the D A E 

xx' = - x 2 , (6) 

x e R . N o t e that this D A E does not satisfy assumpt ions A l and A 2 of Section 3 
at (0, 0) and that therefore no degree can be defined for the D A E locally around 
( 0 , 0 ) . However , the D A E is regular locally around ( 0 , 0 ) and the corresponding 
vector field is given by x' = —x. Now, this is already a linear differential equat ion 
and w e expect l inearization of (6) at (0, 0) to yield a regular D A E with x' = —x 
as the cor responding vector field. However, what we obtain really is the " D A E " 
0 = 0, which is obviously nonregular. No te that this situation can never occur for 
a D A E (4) that satisfies assumption A l . 

Assumpt ion A l implies that the l inearized D A E (5) is regular whether or not 
the given D A E (4) is regular locally around the equi l ibr ium. But even if the D A E 
(4) is regular this does not imply that the corresponding vector field of the linear 
D A E (5) is equivalent to the l inearization of the corresponding vector field of the 
nonl inear p rob lem at xo. 

E x a m p l e 7. Cons ider the D A E 

x' = -y (7) 

0 = y 3 - x (8) 

with (x,y) e R x R. This D A E satisfies assumpt ions A l and A 2 but does not 
satisfy the condi t ions of Theorem 1. However, because (x(t), y(t)) = ( 0 , 0 ) is the 
only solution with (x(0), y (0 ) ) = ( 0 , 0 ) , the corresponding vector field of (7) is 
given by 

( > ^ _ J ( - > • - V 3 y ) for (x, y) e M , \ {(0, 0)} 
<• ' y ' ~ \ ( 0 , 0 ) f o r ( x . y ) = ( 0 , 0 ) . 

Because this vector field has a discontinuity at the equil ibr ium point (0, 0) no lin­
earization of the vector field at the equi l ibr ium point exists. However, l inearization 
of the D A E (7) at (0, 0) yields the l inear D A E 
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which is of index two and possesses only the trivial solution (x(t), y(t)) = (0, 0 ) . 

In the following theorem w e state sufficient condit ions under which the lin­
earized D A E (5) properly reflects the linearized solution behavior of the given 
nonl inear p rob lem (4). 

T h e o r e m 2. Let (4) be a DAE of index s locally around an equilibrium point XQ. 
Assume that the DAE satisfies assumption Al. Denote the corresponding vector 
field of {A) by v : M —*• R" and the corresponding vector field of the linearized 
DAE (5) by v' : Ml - » R". Then we have 

Dv(x0) = v1 

where DV{XQ) e L(TXoM, R" ) is the linearization ofv at XQ and Ml = TXoM. 

Proof. A s in the proof of Proposi t ion 3 we introduce the sets Af, = GJl{0), 
Mi = prl(Ni), i = 0 , . . . , s. We denote the corresponding sets of the linearized 
D A E by NJ, M\, respectively. We prove the theorem by induction. By definition 
we have N0 = T^^N^. Let us assume that N- = T^XOi0)Ni holds for some i, 
s > i > 0. Then M\ = TXoMi and TM\ --= T^^TMi as well . Now, as shown in 
the proof of Proposi t ion 3 , we have 

Ni+\ = A"j n TMj 

which implies that 

T(Xo,0)Ni+x = TM)(Ni DTMi). 

N o w the admissibil i ty of the mapping G< gives 

0̂,0)̂ 1+1 = T(xo,o)Ni n T(XOt0)TMi 

= Nlil TM\ 

Finally w e observe that graph v = Ns and graph v1 = Nl

s. • 

In the following proposi t ion w e show that the regularity of the l inearized D A E 
simplifies the condi t ions for the regularity of the nonlinear problem as stated in 
Theo rem 1. 

Propos i t ion 4. Let xfl be an equilibrium point of a DAE (4) and let (5) be the 
linearization of (4) in XQ. Assume that (5) is of index s and that the DAE (4) is at 
least of degree s — 1 locally around x^. Then (4) is of index s locally around the 
equilibrium point XQ. 

Proof. W e use the same notation as in the proof of Theo rem 2. Because (4) is at 
least of degree s — 1 G.,_i is defined and admissible . Thus Gs is defined too and, 
as shown in the proof of Proposi t ion 2, DGs(xo, 0) has full rank. Therefore Nj = 
Ns-\C\TMs-\ i s a m a n i f o l d a n d r ^ o i A ^ = Nl

s. This implies rank DpGs(x0,0) — 
n. Thus G.5 is admiss ib le and satisfies, the condit ions of Theorem 1. • 
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E x a m p l e 8. Let x0 b e an equi l ibr ium point of a quasi l inear D A E 

F(x, x') = A(x)x' + f(x) = 0. 

A s s u m e that rank A{x) = k for all JC e V, where V is a sufficiently small 
ne ighborhood of x0 in R" , and that rank Df(xo) = n. This implies that F is 
admiss ible . Fur thermore , Fp = A. Let Six) be the mapping associated to F and 
define the mapp ing g : V -*• R"~* by = S ( J C ) / ( ; C ) . Then Afo and M 0 are 
given by 

No = K*. P ) € V x R" : A(x)p = f(x)} 

M0 = {xeV: gix) = 0} . 

If now the l inearized D A E is of index one, then Proposi t ion 4 implies that the D A E 
is of index one locally around the equi l ibr ium point *o- M o r e generally, if 

, ( Mx) \ rank I . . = const . 
V D8(x) J 

for all x G V, then the mapp ing G\ given by 

C (r - ( MX)P + fix)\ 
G ^ ' p ) - { D g ( x ) p ) 

is admiss ib le too. Thus , if the l inearized D A E is of index two, then Proposi t ion 
4 yields in this case that the D A E is of index two locally around the equi l ibr ium 
point XQ. 

It is wel l known that the spect rum p ( i / ) of a l inear vector field vl p lays a crucial 
role in comput ing the solution behavior. If vl is the corresponding vector field of 
a l inear D A E (5), then, as shown in the next proposit ion, the spectrum p ( u ' ) can 
be obtained directly from the matr ix pencil (A , B) of the linear DAE. 

Proposi t ion 5. Let (5) be a DAE of index s and let vl : Ml -»• R" be the corre­
sponding vector field of this DAE. Then the spectrum of vl and the spectrum of 
(A , B) satisfy 

Piv1) = piA, B). 

Proof. If ß e piv1) then there is a y e A/ ' , y # 0, such that 

ifij - v')y = 0. 

Fur thermore , by definition of the corresponding vector field we have 

( A i / + B)y = 0 

for all y e M1. Thus , if /z e piv1) then p. e p ( A , B) because of 

(pA + B)y = 0. (10) 

O n the other hand, if p. e p ( A , B), then the corresponding y e R" in (10) has to 
satisfy y e Ml. This implies piv1) = p ( A , B). • 
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5. Appl icat ions 

The preced ing results , especially Theorem 1, Theo rem 2, and Proposit ion 5, can be 
used to discuss the solution behavior of D A E s near an equi l ibr ium point XQ e Ii". 
Accord ing to the results of Section 4 one can hope that the l inearized D A E plays 
a crucial role in determining the qualitative behavior of (4) near an equi l ibr ium 
point XQ. For that reason let (5) be the linearization of (4) at JCO and assume that (5) 
is regular. Then, according to Proposi t ion 5 the solution propert ies of the linear 
D A E (5) can be obtained from the spect rum p{A,B) with 

p: : = {ße p(A, B) : Re p < 0} 

p: : = {pe p{A, B) : Rep = 0} 

p" : = {p,e p(A, B) :Rep> 0} . 

Especially, then are invariant subspaces of the D A E (5) associated to p * , * = 
s, c, u, call these X*, and Ml = Xs © Xc © X" where Ml is the configuration 
space of the D A E (5). The associat ion is that X* is spanned by the eigenvectors 
vi e R " corresponding lo the eigenvalues, pt e p*, i.e., 

(PiA + B)Vi = 0. 

Any solution x of (5) with x(0) e Xs tends exponential ly to 0 as t -*• oo and any 
solution with jc(0) e X" to 0 as t —> —oo. A s long as the eigenvalues of pc are 
s imple , the solutions with x(0) e Xc are periodic. 

W e turn now to the nonl inear p rob lem (4) and assume that the condi t ions of 
Theo rem 1 are satisfied. Then , in accordance with corresponding definitions for 
vector fields, we call Xo a hyperbolic equilibrium point if the l inearized D A E 
satisfies p° = 0 . Fur thermore , let x(-\ r,a) : I W denote solutions of (4) in a 
sufficiently small ne ighborhood U of (*o, 0) with x(0, xa) = xa, then we define 
[10] 

W : = \xa e R" : 3x(-; x„) : [0, oo) - > R" 

suchthat x(t; xa) -* xo for t - * oo} 

W : = {xa e R" : 3x(- ; xa) : [0, - o o ) - > R" 

suchthat x(t; xa) -+ x0 for / - > —oo}. 

For hyperbol ic equi l ibr ium points the solutions of (5) resemble the solution be­
havior of (4) in a sufficiently small neighborhood of xQ. Specifically: 

T h e o r e m 3 (Local Stable and Unstable Manifold) . Let x0 be an equilibrium 
point of the DAE (4). Assume that (4) is of index s, s > 1, locally around x0 and 
that x0 is a hyperbolic equilibrium point. Consider the DAE (4) on a sufficiently 
small neighborhood U of(x0, 0) . Then the sets Ws and W are submanifolds of 
the configuration space W that are tangent to Xs, X", respectively, a;' x0; i.e., 
TX0WS =XS andTi0Wu = XU. 
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Proof. By assumpt ion the D A E ( 4 ) is regular on U. Fur thermore , by Theo rem 2 and 
Proposi t ion 5 , the point XQ is a hyperbol ic equi l ibr ium point of the corresponding 
vector field. Thus one can apply the stable and unstable manifold theorem as 
formulated for vector fields in [ 1 0 ] to the D A E ( 4 ) . • 

R e m a r k s . The set Ws (Wu) is called the local stable (unstable) manifold. These 
manifolds can be used to give a coordinate sys tem on the configuration space in 
a ne ighborhood of x0. Fur thermore , if p " = 0 , then the equil ibr ium point *(> is 
asymptotically stable in the sense of Lyapunov [ 1 0 ] . 

E x a m p l e 9 . A Lagrangian formulation of the equat ions descr ibing a constrained 
mul t ibody system m a y be written as 

q' = v 

M(q)v' = f(q, v) - GT(q)k 

0 = g(q) 

where M(q) is a regular (symmetr ic , posit ive definite) mass matrix, / is a vector 
of applied forces, and k represents the Lagrange multipliers or constraint forces 
coupled to the system by the constraint matr ix G (q) := Dg (q), which is assumed to 
have full rank. This implies that the above D A E is of index three. Let us assume that 
f(qo, 0 ) = 0 , then the point (go, 0 ) is an equi l ibr ium solution of the corresponding 
mechanica l sys tems. To de termine the stability propert ies of (q0,0) we can m a k e 
use of T h e o r e m 3 . Linear izat ion yields the following linear D A E : 

/ 0 0 \ / q ' \ / 0 / 0 \ /q 
0 M(q0) 0 0' = D„f(q0,0) Dvf(q0,0) -GT(q0) i 
0 0 0 / UV \ G(q0) 0 0 / \X 

F r o m this one gets the matr ices A and B and finally one has to compute the 
general ized eigenvalues of the matr ix pencil (A , B) [7]. 

T h e study of fixed points becomes more delicate when they are not hyperbol ic . 
Nonhyperbol ic fixed points often arise in bifurcation problems. Here we restrict 
ourselves to the case in which pc contains two s imple eigenvalues =L jw on the 
imaginary axis . For vector fields the result ing bifurcation is called the Hopf bifur­
cation [ 1 0 ] , [ 1 1 ] . A first result on Hopf bifurcations for D A E s of index one can be 
found in [ 2 1 ] . 

Let 
F(x,x';k) = 0 (k e R ) ( 1 1 ) 

be a one-parametr ic family of D A E s with an equi l ibr ium point x0 for A. = 0 . 
A s s u m e that assumpt ion A l holds for k = 0 . Then the implicit function theorem 
impl ies that there are ne ighborhoods A c R and V c R" of 0 and x0 such that 
the sys tem of equat ions 

F(x, 0 ; A.) = 0 
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has exactly one solution x e V fir all A e A ; i.e., there is a one-parametr ic family 
;co(A.) of equi l ibr ium points with co(0) = xo. 

A s s u m e that (11) is of index s locally around x0(X) for all X e A and that the 
mapp ing Gs(.,.; A.) depends smoothly on X. Then the corresponding vector field 
y( . ; X) also depend smoothly on X. Fur thermore , the l inearized D A E s 

with A(X) := DpF(x0(X), 0; X) and 5 (A) := DxF(x0(X), 0; A.) are regular. A s ­
sume now that the spect rum of the matr ix pencil (A(A), B(X)) contains exactly 
one pair of complex eigenvalues p i 2 = p(A) ± jco(X) such that 

and that (12) has no other eigenvalues on the imaginary axis for A = 0. This 
impl ies that, for A = 0, the l inearized D A E satisfies p° = (±<u(0)} and that the 
equi l ibr ium points XQ(X) are hyperbolic for A •£ 0. Using results in [10], a Hopf 
theorem for D A E s of the above type follows easily. Specifically: 

T h e o r e m 4 (Hopf) . Let us consider the one-parametric family of DAEs (11) where 
XQ is an equilibrium point of (11) for X = 0 satisfying assumption Al. Assume 
that (11) is of index s locally around XQ{X) for all X e A and that the mapping 
G. v ( . , . ; A) depends smoothly on X. Let us assume furthermore that assumption A3 
holds. Then, in any neighborhood U ofxo in R" and any given A 0 there is a A with. 
\X\ < XQ such that (11) with, A = A has a nontrivial periodic solution in U. 

Remark . T h e theorem in its above formulation does not al low us to draw any 
conclus ion on whether the per iodic solution is locally un ique or not. To obtain 
such results we would need a theory of normal forms for DAEs . First results in 
that direct ion can be founci in [5] . 

As an application of Theorem 4, let us consider the numerical computa t ion of 
Hopf points for D A E s in terms of an augmented system of nonlinear equat ions . 
This so-called direct approach has been very successfully applied in the O D E 
context [20] . Here we give a brief outline on how to general ize these results, to 
D A E s . 

Le t us a s sume that all the condi t ions of Theorem 4 are satisfied. Then the Hopf 
point is character ized (lccally) by the un ique solution of the following augmented 
sys tem of nonl inear equat ions: 

A(X)x' + B(X)x = 0 (A € A ) (12) 

A 3 : 
p ( 0 ) = 0 , (o(0) # 0 

D p ( 0 ) 0 

0 = F(x, 0; A) 

0 = aA(x; X)r + B(x; X)s 

0 = aA(x;X)s - B(x;X)r 

0 = N(r, s) 

(13) 

where N : R" x R " ->• R 2 is a normalizat ion function and A(x; A) = Fp(x. 0; A), 
B(x; A) = Fx(x, 0; A) .Fo l lowing the same arguments as given in [ 12] and [20] for 
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the O D E case , one can show that (13) has (locally) an isolated solution provided 
N is chosen properly. For example , one could chose the following normal izat ion 
function N: 

0 = y'r 

0 = r'r - 1 
with j e R " suitably selected [20] . 

E x a m p l e 10. A nonl inear au tonomous R L C circuit [4] which, for simplicity, is 
a s sumed to have a connected graph with b branches can b e descr ibed by the D A E 

0 = Bv (14) 

0 = Qi (15) 

q' = ic ( 1 6 ) 

0 = / c ( " c , < 7 ) ( 1 7 ) 

4>' = u, ( 1 8 ) 

0 = / / ( « / , * ) ( 1 9 ) 

0=fr(ur,ir). (20) 

Here u e R * denotes the co lumn vector of branch voltages and i e Rh denotes 
the co lumn vector of branch currents , parti t ioned, respectively, as (vc, vi, vr) and 
O'o Ui h) where subscript c (I, r, respectively) denotes the variable corresponding 
to capaci tors ( inductors , resistors, respectively). Equat ions (16) through (20) rep­
resent the const i tute relations of the capaci tors , inductors, and resistors. Equat ions 
(14) and (15) represent the interconnection of all circuit e lements . The sys tem of 
equat ions (14) through (20) is the standard system of circuit equat ions [4]; mod­
ifications of this sys tem, such as the nodal analysis, are widely used in circuit 
analysis packages [4]. 

In [15] , condi t ions for the exis tence of oscillations in oscil lator circuits [4], 
such as the Wien bridge oscillator, were derived via a s tate-space analysis and 
the s tandard Hopf theorem for O D E s . The results in this paper show that the same 
results can be obtained by a direct analysis of the corresponding standard sys tem of 
circuit equat ions , and a corresponding Hopf point can be computed by using (13). 
Such an approach is preferable especially for large circuits where the state-space 
form is difficult to obtain. 
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