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ON A GEOMETRICAL
INTERPRETATION OF
DIFFERENTIAL-ALGEBRAIC
EQuATIONS*

Sebastian Reich®

Abstract. The subject of this paper is tte relation of differential-algebraic ecuations
(DAE:s) to vector fields on manifolds. For that reason, we introduce the notion of a
regular DAE as a DAF to which a vectcr field uniquely corresponds. Furthermore, a
technique is described which yields a family of manifolds for a given DAE. This so-
called family of cons:raint manifolds allows in turn the formulation of sufficient
conditions for the regularity of a DAE, and the definition of the index of a regular
DAE. We also state a method for the reduction of higher-index DAEs to lowzr-index
ones that can be solved without introducing additional constants of integration.
Finally, the notion cf realizability of a given vector field by a regular DAE is
introduced, and it is shown that any vector field can be realized by a regular DAE.
Throughout this paper the problem of path-tracing is discussed as an illustration of
the mathematical phenomena.

1. Introduction

Two important mathematical concepts are currently applied to modeling of
lumped physical systems such as el:ctronic circuits and mechanical systems.
These concepts are, on the one hand, differential-algebraic equations (DAEs)
and, on the other hand, vector fields on manifolds. While DAEs have been
used for a long tirne, the vector-field approach to modeling is still rather
young. For examrle, the vector-field approach to modeling of electronic
circuits was descrioed for the first time in a paper by Smale [1] in 1972.
Vector fields have become an essential tool whenever a global study of
lumped physical systems is undertaken (see, for instance, [2] and [3]). In line
with this, it is hardly surprising that in recent years interest has increased in
the development of numerical methods for the computational analysis of
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vector fields. On the other hand, with the improvement of numerical
integration methods for DAEs during the seventies, DAE formulation has
been used nearly exclusively for the computational analysis of lumped
physical systems. For a long time, DAEs were simply regarded as implicitly
written ordinary differential equations. Only in about 1981, after the failure of
numerical integration methods applied to certain DAEs had been repeatedly
reported, did Gear and Petzold [4], Newcomb [5], Campbell [6], Rheinboldt
[7], and Griepentrog and Marz [8] inspire discussion about the theoretical
foundations of DAEs and the numerical treatment of DAEs.

In this context, it is rather surprising that until now, with the exception of
Rheinboldt [7], little research has been done on the investigation of the
relation of DAEs to vector fields. It seems that further progress in global, as
well as in computational, analysis of lumped physical systems can be
achieved by a close interaction of both these mathematical concepts. We
want to establish some foundations for this here. Our aim is to formulate
conditions under which a DAE is equivalent to a vector field and vice versa.
This provides us, in turn, with new insights into the properties of DAEs and
vector fields. In this paper special emphasis is put on the higher-index DAEs
[4] (algebraic incomplete in [7], nontransferable in [8] DAEs, respectively).

More specifically, after a summary of necessary definitions, we introduce,
in Section 3, the notion of a regular DAE as a DAE to which a vector field
uniquely corresponds. In Section 4 we describe a technique which yields, for a
given DAE, a family of manifolds. With this so-called family of constraint
manifolds, we hope to provide a better geometrical insight into the algebraic
incomplete DAEs. Furthermore, the family of constraint manifolds allows the
formulation of sufficient conditions for the regularity of a DAE and the
definition of the index of a regular DAE. In Section 5 we state a method for
the reduction of higher-index DAEs to lower-index ones that can be solved
although not introducing any constant of integration. Moreover, by means of
this reduction method, we can show that our definition of the index of a DAE
is equivalent in essence to the definition of the global index by Gear, Lotstedt,
and Petzold [4], [9], [10]. In Section 6 we show that a regular DAE
corresponds to any vector field such that the solutions of the DAE and the
vector field are in one-to-one correspondence. This DAE is then called the
realization of the given vector field. As a running example, the problem of
path-tracing is used throughout this paper. Path-tracing is needed in various
fields of applications, for example in the computation of characteristics of
resistive circuits [11] and elsewhere [7]. Based on ideas of Haase [11] and
Gear [12], we propose a DAE for the computation of a given path and
investigate its properties.

2. Notation

We restrict our study to quasi-linear, time-invariant DAEs of the form

A@2)7 = f(2)
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This restriction simplifies the results significantly and is motivated by he fact
that analysis of many lumped physical systems leads to DAEs of this type.
Furthermore, we can easily generalize the results obtained in this paper to the
time-varying case. This can be done by the well-known techniques for
reducing a time-varying DAE into a time-invariant one [7].

Definition 1. By a diferential-algebraic equation (abbreviated DAE), we mean
a triple (E, 4, f) where E is a finite-dimensional real Banach space and
A: E— L(E,E), f: E - E are arbitrary mappings.

A solution of the DAE (E, A, f)is a differentiable mapping c: I — E (where
I denotes an interval in the real lin¢) such that, for all t € I,

dc
Ac(£)) 7 (1) = f(e(®)).

Throughout this paper we use the following notations. If M is a differenti-
able manifold, then TM denotes the tangent bundle of M and T .M is the
tangent space of M at x € M. A vector field on a differentiable manifold M is a
mapping v: M — TM such that v(x) e T, M for all x e M. By a solution of a
vector field v: M — TM, we mean a differentiable mapping w: I - M (where I
denotes an interval in the real line) such that, for all t € I,

dw .
E(t) = v(w(t)).

Let f: M — E be a differentiable mapping from a manifold M into a real
Banach space E. We denote the derivative of the mapping f by Df: TM —» E
and the derivative at x e M by Df (x) € L(T .M, E). By definition, a differenti-
able and bijective mapping f: E — E is a diffeomorphism if the inverse
mapping f ! is differentiable too. Additionally, if M is a manifold with
M < E, thenletj: M — E be the natural injection. (For an introduction in the
theory of manifolds and vector fields we refer to [13].)

As we will see, many propertics of DAEs discussed in this paper are
invariant with respect to a coordinate transformation u: E — E and a scaling
by a mapping S: E — L(E, E). Consequently, we arrive at the following
definition.

Definition 2. Let (I2, A, f) and (E, 4%, f*) be DAEs over the same space E.
We say these DAEs are equivalent if there exists a difftomorphism u: E - E
and a mapping S: E — L(E, E) such that

(1) S(z) € L(E, E) is a difftomorphism for all z € E and
() f(z) =S f*u(z), A(z)= S(z2)A*(u(z))Du(z) for all z€E.

Let (E, A, f) ard (E, A*, f#) be equivalent DAEs. Then it is readily seen
from Definition 2 that the mapping c¢: I — E is a solution of the DAE
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(E, 4, f) if and only if the composed mapping ¢* := uoc is a solution of the
DAE (E, A%, f*).

Because we like to give a geometrical interpretation of DAEs, the set
defined in the next definition turns out to be of special importance.

Definition 3. Let (E, A, f) be a DAE. Then we call the set
N =/{(z,z)eE x E: A(2)?' = f(2)}
the corresponding set of the DAE (E, A, f).

Note, in Definition 3, the DAE
A(z)z' = f(2)

is considered as a nonlinear system of equations in the variables z and z'. For
that reason, the corresponding set N of a DAE (E, 4, f)is a subset of E x E.

Clearly, a differentiable mapping c: I — E is a solution of this DAE if and
only if (c(t), (dc/dt)(t)) € N for all t € I. Therefore, with respect to the solutions
of a DAE, we can instead consider the corresponding set. This fact is explored
further in Section 4.

3. Regular DAEs

In [7] Rheinboldt developed the idea of considering DAE:s as vector fields on
manifolds. Inspired by this, we propose the following definition of a regular
DAE.

Definition 4. Let (E, 4, f) be a DAE. Then this DAE is called a regular DAE if
there is a differentiable manifold M < E and a vector field v: M - TM such
that a differentiable mapping w: I - M is a solution of the vector field if and
only if the mapping c: =jow: I — E is a solution of the DAE (E, A, f).

The manifold M is then called the configuration space and the vector field v
the corresponding vector field of the DAE (E, A, f).

In the following we focus our attention on the investigation of regular
DAE:s. But it should also be mentioned that nonregular DAEs provide an
interesting tool for the study of lumped physical systems with jump behavior
[14]. Evidently, the next proposition may be of interest in practical applica-
tions and in the development for a theory of normal forms for regular DAEs.

Proposition 1. Let (E, A, f) and (E, A*, f*) be two equivalent DAEs. Then the
DAE (E, A, f) is regular if and only if the DAE (E, A%, f*) is a reqular DAE
too.
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Proof. Let u: E — E be a coordinate transformation according to Definition
2. As already mentioned, a differentiable mapping c: I — E is a solution of the
DAE (E, A, f) if and only if the mapping ¢* := u o c is a solution of the DAE
(E, A, ). Therefore, if one of the two DAESs is regular, the other DAE is
regular as well. O

We would like to illustrate the concept of a regular DAE by the problem of
path-tracing. In the following example we suggest a vector field and a DAE
for the computatior. of a given patk. S.

Example 1. Let us assume that the given path S is a one-dimensional
differentiable manifold. Consequently, we can propose the following vector
field v: S - TS for path-tracing this path S.

The vector field v on M is defined by the correspondence x+— 1 where 1
denotes the unity element of T,S according to a given orientation on S. Let
c¢: I - S be any solution of this vector field v. Then the image of the interval I
by the mapping c is a segment of S.

Clearly, this approach is not convenient for numerical computations.
Accordingly, we are led to consider a DAE for the path-tracing. Therefore, let
us assume that the path S can be de’ined by a smooth mapping g: R? — R by

= {(x1, x2) € R?: g(xy, x,) = 0}.

In the following we assume that Dg(x,, x,) has full rank for all (x, x,) € R?,
and that the orientation on S was chosen such that the unity element 1 € TS
satisfies

—D,g(xy, x,)x) + Dyg(xy, x5)x5 >0

for all x € S where (x,, x,) = j(x), (X}, x,) = Dj(x)1, and j: S - R? denotes
the natural injection. Furthermore. we introduce the two abbreviations
a=D,g(x;,x;) and b= D,g(x,,X,).

Using ideas of Haase [11] and Gear [12], we now propose the DAE

(E, A, f) with
(i) E:=R3, z = (x4, x,,y)€E,

(1 0 0
(i) A(z):== |0 1 0],
|0 0 0
[ —b/[a® + b*1' + ay
(i) f(z):= a/la® + b*]'2 + by
g(xb x2)
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We show that this DAE is a regular DAE. Let j: S — E be the natural
injection and let 1 be the unity element of T.S. Clearly, because

f(i(x)) = Dj(x)1

for any x € S, we have, for all x e S,

AGCDj(x)u(x) = f(j(x))-

Consequently, for any solution w of the vector field v, the mapping ¢: = jowis
a solution of the DAE (E, 4, f). Furthermore, using results of [12], we can
show that, for any solution c of the DAE (E, A4, f), c(t)e S for all t € I. From
this, we conclude that w is a solution of the vector field v if and only if the
mapping c¢: =jow is a solution of the DAE (E, A, f). Therefore, the DAE
(E, A, f)is aregular DAE, the vector field v is the corresponding vector field,
and S is the configuration space of the DAE.

4. Constraint manifolds and regular DAEs

In this section we derive sufficient conditions for the regularity of a DAE.
Furthermore, we state a technique by means of which we can obtain the
configuration space M and the corresponding vector field v for a given
regular DAE. To start we make the following observation.

Observation 1. Let N be the corresponding set of a given DAE (E, A4, f). We
now consider the projection of this set onto the first component, that is the set

M,:=p,(N) < E.

Let us assume that M, is a differentiable manifold. Clearly, under this
assumption, a differentiable mapping c: I — E is a solution of the DAE
(E, A, f) if and only if

d
<c(t), d—: (t)) e(TM, A N)
for all t € I. In general, we will have N = (TM,; n N). Therefore, we consider
the set
M, =p,(NnTM,) < M,.

If, now, the set M, is a differentiable manifold as well, we again conclude that
a differentiable mapping c¢: I — E is a solution of the DAE (E, 4, f) if and
only if

<c(t), % (t)> e(TM, N N)
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for all ¢t € I. This process can be continued as long as the set
M;=py(NnTM;_,)
is a differentiable manifold and may be stopped if M;,, = M;.

This observation leads us in a natural way to the following definition.

Definition 5. Let N be the corresponding set of a given DAE (E, A, f). Then
we define a family (M,;);-, , of manifolds M, by the following recursion:
(i) M, =E,
i) M;,, =p(NnTM;)(i=0,...,s—1),

where s is the largest irteger such that the sets M; are differentiable manifolds
and M,_, # M,. In case M, = E, we define s = 0.

We call the family (M) the family of constraint manifolds and the integer s
the degree of the DAE.

Remark. From (ii) in Definition 5, we conclude dim(M,, ;) < dim(M;) for all
i=0,...,s — 1. If dim(M,, )= dim(M;) > 0, we have

TMi:TMi+1U< U T.;CM1>

xeMi/Mi+1
and consequently
NnTM;=NnTM,,,.

This allows the important conclusion that the degree s of an arbitrary DAE
(E, A, f) satisfies s < dim(E).

Remark. In [7] Rheinboldt describes a procedure for obtaining a famrily of
manifolds as the solutions of an overdetermined system of equations. We can
show that this family is identical with our family of constraint man:folds.
Therefore, our definition can be considered as a geometrical interpretation of
the procedure given in [7].

By means of the family of constraint manifolds, we can state suficient
conditions for the regularity of a DAE.

Theorem 1. Let N be the corresponding set, let (M;) be the family of constraint
manifolds, and let s be the degree of a DAE (E, A, f). Then this DAE is regular if
the condition

Cl: N n T M, contains exactly one element for each x € M

is satisfied.
Under this condition, the configuration space of the DAE (E, A, f) is given
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by M = M., and the corresponding vector field v: M — TM is, for all x e M,
defined by

{v(x)} = N n T M,.

Proof. Condition C1 ensures that the mapping v: M, — T M, defined by
{0()} = N 0 .M,

for all x € M, is a vector field on M,. Furthermore, from Observation 1, it is
easily derived that a differentiable mapping w: I — M, is a solution of the
vector field v if and only if the mapping ¢: = jow: I — E is a solution of the
DAE (E, 4, f). O

Clearly, Theorem 1 allows the development of a solution theory for
regular DAEs by “translating” related results of vector fields to regular
DAE:s. To do this is beyond the scope of this paper, and we refer instead to
[15].

In several papers [4], [9], [10] the properties of DAEs are characterized
by an integer called the index. We want to state here a definition of an index
of a DAE as well and show in Section 5 that our definition is in essence
equivalent to the one given in [4], [9], and [10].

Definition 6. Let N be the corresponding set, let (M;) be the family of
constraint manifolds, and let s be the degree of a DAE (E, A, f). Then this
DAE is called a DAE of index s if it satisfies Condition C1 of Theorem 1.

Remark. We like to emphasize that any DAE, for which an index can be
defined, is a regular DAE according to Theorem 1.

It should be mentioned that the index of a DAE is invariant under
coordinate transformations and scalings of the DAE. Once again, this may be
of interest in practical applications and in the development of a theory for
normal forms.

Proposition 2. Let (E, A, f) and (E, A*, f*) be two equivalent DAEs. Then
(E, A, f)isa DAE of index i if and only if (E, A*, f*)is a DAE of index i too.

Proof. Let u: E — E be a coordinate transformation according to Definition
2. Then, for the corresponding sets of both DAEs, we have

N = (u, Du)(N*)
and, for the constraint manifolds,

M, =uM?) (i=0,...,5)
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Because, u is a difftomorphism, it follows that the DAE (E, 4, f)is a DAE of
index i if and only if the DAE (E, 4%, f#) has index i too. O

At the end of this section we want to illustrate the results obtained so far
by the problem of path-tracing.

Example 2. Let us consider the DAE (E, 4, f) of Example 1. Clearly,
according to Definition 5 the set M, is given by
M, = {(x}, X, ) € R*: g(x4, x,) = 0}
=S xR

Clearly, M, is a differentiable manifold and the tangent bundle TM; can be
identified with the solutions of the following nonlinear system of equations:

g(x1,x,) =0,
Dg(x;, x,)(x7, x3)T = 0.

In turn, this yields that N n TM, is given by the solutions of the nonlinear
system of equations:

g(x1, x5) =0,

Dg(x;. x;)(x7, x3)T =0,
x; = —b/[a® + b*]'? + ay,
a/[a* + b>]'? + by,
0 = g(xy, x,),
where the last three equations are the DAE of Example 1 with the abbrevia-
tions used there. Elimination of x’, arid x’, in the above nonlinear system of
equations yields
M, = {(x1, X3, y) € R*: g(x4, x;) = 0 and y = 0}
N

v

I

X3

Il

Clearly, the set N n T,M, contains exactly one element for each z € M. This
element z' = (x, x5, y') is given by

»y = —bf[e* + BT,
x, = a/[a® + b?]'/3,
y =0.

Consequently, the DAE satisfies Condition C1 of Theorem 1 with s = 2, and,
therefore, the DAE (E, A, f) is a DAE of index two. The configuratiorn space
is given by M = M, = S, and the corresponding vector field is equivalent to
the vector field v of Example 1.
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5. Reduction of higher-index DAEs

Within the framework of regular DAEs, the DAEs of index one are especially
well understood. For such DAEs, the configuration space is identical with the
constraint manifold M, and can therefore be easily determinated. Moreover,
the properties and the methods for the numerical treatment of DAEs of index
one are well investigated [8].

But while, in the past, DAEs of index one were in the centre of attention, in
the future, regular DAEs, which are not of index one, may take the focus of
interest. For these DAEs, the configuration space is identical with some
constraint manifold M; with i > 1. Therefore they are called algebraic
incomplete in [7].

Our approach here is to characterize algebraic incomplete DAEs geometri-
cally by a reduction proposed in [16] for the first time. The idea behind this
reduction method is to pass over from a given DAE of index i (i > 1) to a new
one of index i — 1 such that the solutions of both DAEs are identical.
Consequently, during the process of reduction, no additional constant of
integration is introduced. Clearly, by means of this reduction method, any
higher-index DAE can be reduced to a DAE of index one. This enables us to
investigate a much more simple DAE of index one instead of a higher-index
DAE.

Remark. Another reduction method is stated in [10] for the reduction of
higher-index problems to lower ones that can be solved while not introducing
any additional constant of integration. But in general, by this method, we can
reduce a given higher-index DAE only to a DAE of index two.

Before we state the reduction method, we make the following observation.

Observation 2. Let (E, A, f) be a DAE, let (M,) be the family of constraint
manifolds, let N be the corresponding set, and let s be the degree of this DAE.
By definition, we have

M, = {z € E: there is a z' € E such that A(z)z' = f(z)}
and
M, = {z € E: there is a z’ € T,M, such that A(z)z' = f(z)}.

This is equivalent to
M, = {ze E: f(z) e im(A(2))}

and
M, = {zeE: f(z) e AQT,M,)},

respectively. Now let Q: E — L(E, E) be an arbitrary mapping such that, for
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all ze M, Q(z) is a pro ection onto T,M,. Then this yields

M, = {zeE: f(z) ¢ im(A(z)Q(2))}.
This leads us to the investigation of a new DAE (E*, 4%, %) with

(i) E* = E,
(i) A% =400,
(i) /% =1,

where the composition is to be interpreted like 4 Q(z) = A(z)Q(z) for all
zeE.

Let (M} ) be the family of constraint manifolds, let N* be the correspcnd-
ing set, and let s* be the degree of this new DAE. Clearly, we have

M} =M,.
From this, we conclude
N*"TM? =NnTM,

and therefore

s =5 —1,

M =M, (i=1,..,s—1).

This observation lzads us in a natural way to the definition of the
reduction of a DAE of index i (i > 1).

Definition 7. Let (E, 4, ) be a DAE of index i with i > 1 and let (M) bz the
family of constraint manifolds of this DAE. Furthermore, let Q: E — L(E, E)
be an arbitrary mapping such that Q(z) is a projection onto T,M, for all
ze M,. Then we call the DAE (E, A%, f) with A* = A< Q the reduced DAE
of the DAE (E, A, f). By a reduction, we mean the transition from the DAE
(E, A, f) to the DAE (E, A*, f).

We now formulate the main result of this section.

Theorem 2. Let (E, A, f) be a DAE of index i withi > 1 and let (E, A*, f) bea
reduced DAE of this DAE. Then the reduced DAE is a DAE of index i — 1 and
the corresponding vecior fields of both DAEs are identical.

Proof. This follows immediately from Observation 2, the definition of an
index, and the definition of the corresponding vector field of a DAE. O

By using results of [17], the proposed reduction method also allows
comparison of the defnition of an incex in the sense of Gear and Petzold [4]
with our definition.
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Proposition 3. Let (E, A, f) be a DAE of index i in the sense of Gear and
Petzold [4]. Then this DAE is a DAE of index i in the sense of Definition 6.

Proof. In [17] it is shown that any DAE of index i (i > 1) in the sense of Gear
and Petzold can be reduced (i — 1) times by the reduction given in Definition
7. Furthermore, it follows from Definitions 6 and 7 that a DAE (E, 4, f) has
the index i in our sense if and only if (i — 1) times reductions of the DAE
(E, A, f) yield a DAE of index one. O

Finally, we illustrate our reduction method with the DAE of Example 1.

Example 3. The DAE (E, A4, f) of Example 1 has the following constraint
manifold M, :

M, = {(xn X3, Y) € R3: g(xy, x3) = 0}-

Consequently, the mapping Q: E — L(E, E) in Definition 7 can be chosen
such that

b? —ab 0
O(xy, X5, y) =[a* +b*]' | —ab a? 0
0 0 1

for all (x,, x,, y) € R3, where we use the abbreviations given in Example 1.
Thus we get the reduced DAE (E, 4%, ) with

b> —ab O
A*(z) = A(2)Q(z) = [a* + b*]"! | —ab a> 0
0 0 0

for all (x,, x,, y) € R*. The constraint manifold M} of this DAE is given by
M} = {(x;, x5, y) € R®: g(x4, x,) = 0 and y = 0}.

Because the DAE (E, A4, f) is a DAE of index two, the DAE (E, A”, f)is a
DAE of index one, and the configuration space M of both DAEs is identical
with the manifold M} = §.

6. Realization of vector fields by regular DAEs

In the previous sections we investigated conditions under which a given DAE
is a regular one. In this section we now address the question under what
conditions a regular DAE corresponds to a given vector field. Therefore, we
introduce the notion of realizability of a vector field.
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Definition 8. A regular DAE (E, A4, f) is called a realization of a given vector
field v:M — TM if the vector field is the corresponding vector field to the
DAE (E, 4, f).

We make the follow ng observation.

Observation 3. Let v: M — T M be an arbitrary vector field on a differentiable
manifold M. In the follcwing we construct a DAE of index two, which realizes
this given vector field .

By a theorem of Whitney (see, for example, [13]), any k-dimensional
manifold can be embedded in an n-dimensional Euclidean space R" with
n > 2k. Therefore, let us assume that the manifold M has been embedded in
an R". Then there exists a mapping g: R" — R"~* such that

M = {xeR" g(x) =0}
and a mapping h: R" - R" such that, for all x e M,
h(x) = v(x).
Using an idea of Gear [12], we now consider the DAE

x' = h(x) + R(x)y,
0 = g(x),

where R: R" - L(R" ™% R") is a mapping with (i) rank(R(x)) = n — k and (ii)
im(R(x)) @ T.M = R" for all xe M. This DAE is a DAE of index two
because

M, = {x,y)e R" x R"*: g(x) = 0},
M, ={xy)eR" x R"*: g(x) =0and y =0},

and
NATM,={(x,y)eR" x R" ¥ x' = h(x) and y’ = 0}

for all z = (x, y) e M,. In addition, the corresponding vector field of this
DAE is identical with the vector field v. Thus, this DAE is a realization of the
vector field v.

Remark. The mapping g in the above observation can, for example, be
defined by

(x) = 0 for xeM,
E= 1 for x¢ M.

But, in general, g can be chosen to be differentiable. Furthermore, if Dg(x) has
full rank for all x € M, then the mapping R can be given by

R(x) = Dg(x)"

for all x e R".
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With Observation 3 in mind, we are able to state the main result of this
section.

Theorem 3. Any vector field can be realized by a DAE of index i for any i > 0.

Proof. The DAE of index two in Observation 3 can be constructed for an
arbitrary vector field v, and can be reduced to a DAE of index one according
to the results of Section 5. At the same time, we can add to this DAE of index
one a higher-index DAE, which posses only the trival solution c¢(t) = 0.
Consequently, we have shown that any vector field can be realized by a DAE
of index i for any i > 0. The analysis of many practical problems, like the
analysis of electronic circuits and mechanical systems, can lead to semi-
explicit DAEs [5], [8]. Consequently, here we investigate this class of
DAEs in more detail. O

Definition 9. A DAE (E, A, f) is called a semiexplicit DAE if A(z) = A, with
Ao € L(E, E) for all ze E.

Proposition 4. Let M be a differentiable manifold. Then an arbitrary vector field
v: M — TM on M can be realized by a semiexplicit DAE of index one if and
only if there exists a coordinate splitting E: = E, x E,, with the projection
pi: E — E|, such that the restriction of p, to M is a diffeomorphism.

Proof. We first show the conditions of Proposition 4 to be sufficient. Clear-
ly, if the conditions of Proposition 4 are satisfied, we have a mapping
d:=p,ojo(p,|M)~! where j: M — E is the natural injection and p,: E — E,
is a projection. Therefore, the manifold M can be described by

M = {(x, )€ E; x E,: y=d(x)}.
Furthermore, let h: E — E; be an arbitrary mapping such that
h(z) = py°u(2)
for all ze M. We now consider the DAE
x' = h(x, y),
0=y —d(x).

Clearly, this DAE is a semiexplicit DAE of index one, and the corresponding
vector field is identical with the vector field v.

It remains to show that the conditions of Proposition 4 are necessary too.
According to Definition 6, for any semiexplicit DAE of index one

{v(z)} = {z eR": 2’ e T,M and Ayz' = f(z)}

must hold for all z € M. Thus, a necessary condition for us to be able to find a
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semiexplicit DAE of index one, which satisfies the above equality for an
arbitrary vector field v, is the existence of a mapping A, € L(E, E) such that

e T,M,
7z eker(A,)

has a unique solution for each z € M. Now, such a mapping A, can be found
for a given manifold M if and only if the conditions of Proposition 4 are
satisfied. O

Remark. A necessary condition, for the existence of a coordinate splitting
with the properties given in Proposition 4, is the existence of an atlas for the
manifold M, which consists of only one chart (see [13]). Some manifolds
which do not satisfy this property are the torus, the circle, and the
n-dimensional sphere.

Remark. Clearly, any vector field v can be realized by a semiexplicit DAE of
index two. This becomes obvious from Observation 3.

The surprising fact about semiexplicit DAEs is that not all vector fields can
be realized by a semiexplicit DAE of index one. We illustrate this again by the
example of path-tracing.

Example 4. Let us assume that the path S of Example 1 can be described by
M = {(xy, X) € R?: x, = d(xy)}.

Clearly, there exists a semiexplicit DAE of index one for the computation of
this path. Consider, for example, tte semiexplicit DAE

xi=1,
0 =x, —d(xy).
In general, the path S cannot be described by an explicit function, but only by
an implicit one [11]. Then, according to the last proposition, there is, in
general, no semiexplicit DAE of inclex one for the computation of the path M
and we have to use other DAE:s like, for example, the DAE of Example 1. This

DAE is a realization of the vector field v given in Example 1 by the method
described in Observation 3. The mapping h of Observation 3 is in this case

given by
--b/[a* + b*]*?
h(Z) = l: a/[02 + bz:ll/z]

forallze E.
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7. Concluding remarks

This paper has described a number of theoretical results concerning the
relation of DAE:s to vector fields. We have found that both regular DAEs and
vector fields can be used for modeling lumped physical systems. While the
vector-field approach allows global analysis, regular DAEs are needed for
computational analysis. Accordingly, it seems that both mathematical con-
cepts are very important for a complete understanding of the behavior of
lumped physical systems. Further studies about the relation of DAEs and
vector fields on special fields, such as bifurcation and stability theory, are still
needed. We hope that the twofold way of modeling lumped physical systems
turns out to be useful.
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