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Differential-Algebraic Equations and Applications in Circuit 
Theory 

Sebastian Reich 

Differential-Algebraic Equations and 
Applications in Circuit Theory 
Technical and physical systems, especially electronic 
circuits, are frequently modeled as a system of differ­
ential and nonlinear implicit equations. In the litera­
ture such systems of equations are called differential-
algebraic equations (DAEs). It turns out that the numer­
ical and analytical properties of a DAE depend on an in­
teger called the index of the problem. For example, the 
well-known BDF method of Gear can be applied, in gen­
eral, to a DAE only if the index does not exceed one. In 
this paper we give a geometric interpretation of higher-
index DAEs and indicate problems arising in connection 
with such DAEs by means of several examples. 

Algcbrodifferentialgleichungen in der 
Netzwerktheorie 
Die mathematische Modellierung technisch physikalischer 
Systeme wie elektrische Netzwerke, führt häufig auf ein 
System von Differentialgleichungen und nichtlinearen im­
pliziten Gleichungen sogenannten Algebrodifferentialglei-
chungen (ADGL). Es zeigt sich, daß die numerischen und 
analytischen Eigenschaften von ADGL durch den Index 
des Problems charakterisiert werden können. Insbesondere 
können die bekannten Integrationsformeln von Gear im all­
gemeinen nur auf ADGL mit dem Index eins angewendet 
werden. In diesem Beitrag wird eine geometrische Interpre­
tation von ADGL mit einem höheren Index gegeben sowie 
auf Probleme im Zusammenhang mit derartigen ADGL an 
Hand verschiedener Beispiele hingewiesen. 

1. Introduction 

Many physical and technical systems are described 
mathematically by differential-algebraic equations 
(DAEs) of the type 

x' = f{x,y), 0 = h(x,y) (1) 

where / : X x Y -» R«, h : X x Y -* W are 
sufficiently smooth mappings, and X C R ? , Y C W 
are open sets in R ? , W respectively. The analysis of 
electronic circuits by means of the most familiar and 
easily programmed (modified) nodal analysis [1] leads 
to a system of equations of type (1). 

Frequently (see, e.g. [2]) a DAE (1) is considered as 
the limiting system of a stiff (or singularly perturbed) 
ordinary differential equation (ODE) of type 

x'= f(x,y), cy' = h(x,y) 

where e £ R is a small parameter. This approach has 
been proved to be extremely useful whenever the par­
tial derivative of the mapping h with respect to the sec­
ond variable is nonsingular; i.e. det[D2/i(x, y)] ^ 0, 
for all (x, y) £ X x Y. Especially, as shown by Gear 
in [3], numerical methods for stiff ODEs can be applied 
to DAEs under this assumption. 

This result marked a break-through for the numeri­
cal transient analysis of large-scale electronic circuits. 
While beforehand complicated algorithms [1] had to be 
used to formulate the circuit equations in state space 
form [1], the circuit equations obtained by means of 
nodal analysis could now be integrated directly [4]. 
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Based on this approach, codes like SPICE and NAP2 
were developed for the transient analysis of large-scale 
integrated circuits. 

However, as reported recently in several publications 
(see, e.g., [5] and [6]), this approach to the numerical 
and analytical analysis of DAEs is not suitable in gen­
eral. Instead it could be shown by means of differential-
geometric techniques [7], [8], that rather general DAEs 
induce ODEs on suitable submanifolds of X x Y. In­
deed, already in [9] Desoer and Wu could show that 
the circuit equations of a nonlinear RLC circuit can 
be considered, under certain conditions, as an implicit 
description of an ODE on a submanifold of the space 
of branch voltages and branch currents. Thus, follow­
ing these results, we have introduced in [8] the notion 
of a regular DAE as a DAE to which uniquely corre­
sponds an ODE on a manifold. This ODE is then called 
the corresponding ODE of the problem. Furthermore, 
it could be shown (see, e.g., [5] and [6]) that the numer­
ical properties of a regular DAE depend on an integer 
called the index of the DAE. For example, a regular 
DAE (1) is of index one if D2h(x, y) remains nonsin­
gular for all (x, y) £ X X Y and is of higher index 
otherwise. Problems in circuit theory, control theory, 
and mechanical engineering, which give rise to higher 
index formulations, are discussed in Section 3. Now, as 
shown, e.g., in [5] and [6], DAEs can be solved by stiff 
ODE methods in general only if the index does not ex­
ceed one. To make higher index problems numerically 
tractable, recent investigations have focused on numer­
ical methods for ODEs on manifolds (see, e.g., [10], 
[11], and [6]). 

In this paper we summarize the differential-
geometric approach to higher index DAEs as devel­
oped in [8] and [12]. We state necessary conditions for 
the regularity of a DAE which allow also for compu­
tation of the corresponding ODE of a regular DAE. 
Throughout this paper we illustrate our approach by 
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Fig. 1. Illustration of a differentiable submanifold of R n . 

means of several examples. Finally we suggest a gen­
eralization of DAEs of type (1) with X = Kg and 
Y = W to DAEs where X and Y are arbitrary Banach 
spaces [13]. It is shown that Maxwell's field equations 
and the semiconductor device equations can be consid­
ered as special cases of such generalized DAEs. 

2. Mathematical Background 

In this paper we restrict our study to quasilinear and 
time-invariant DAEs of type 

A(z)z' = g{z) (2) 

where g : Z — R m , A : Z — L ( R n , R m ) are suf­
ficiently smooth mappings and Z C R" is an open 
set in R". If m > n (m < n), then the DAE (2) is 
called an overdetermined (underdeterrnined) DAE. The 
restriction to time-invariant DAEs simplifies the results 
significantly and is motivated by the fact that one can 
easily generalize the results obtained in this paper to 
time-varying DAEs [12]. 

By a solution of a DAE (2) we mean a differentiable 
mapping z : I —* Z (where / denotes an open interval 
in the real line with 0 £ 1) such that, for all t G / , 
A(z(t))z'(t) = g(z(t)). 

We summarize now a few concepts from differential 
geometry. For more detailed results we refer the reader 
to standard texts like [13] and [14]. Let Z be an open 
set in R n and let / : Z C R n -> R m , n > m, be a 
differentiable mapping with rank[D/(z)] = m for all 
z £ Z. Then the set M, defined by 

M := {z £ Z : / (*) = 0}, 

has the structure of a differentiable submanifold of Z 
(Fig. 1). Let M denote the closure of the set M in 
R n . Then the differentiable submanifold M, as defined 
above, satisfies M D Z = M. For each z G M, let 
Tz M denote the set of all tangent vectors of M at z, 
called the tangent space at z (Fig 2). Now the tangent 
space TZM can be associated in a natural way (Fig. 2) 
with a linear subspace of R n by means of an embed­
ding j , :TZM ^ R n ; i . e . 

jz(TzM) = {z G R n : Df(z)z = 0}. 

Let TM denote the disjoint union of all T, M with z G 

/ J z ( T z M ) 

Jz 
M 

/ TZM \ 

R N \ 

Fig. 2. For each point z o n a differentiable submanifold M of 
R", the plane tangent to M at z is denoted by Tz M. By means 
of the embedding jz, the tangent plane Tz M can be associated 
with a linear subspace of R". 

M, called the tangent bundle of M. Again, the tangent 
bundle TM can be associated in a natural way with a 
submanifold of Z x R n by means of an embedding 
j :TM -> Z x R";i.e. 

j{TM) = {(z,z) e Z x R n : 
0 = / ( * ) , 0 = D/(z)£}. 

In the sequel we will not distinguish between the sets 
TZM and jz(TzM) (TM and j(TM), respectively) 
and denote both sets simply by TZM (TM, respec­
tively). 

By a vector field on a differentiable submanifold M 
of Z we mean a mapping v : M —+ R n such that 
v{z) &TZM for all z G M (Fig. 3). With any vec­
tor field v on M we associate an ODE on the manifold 
M by means of 

z' = v(z), z G M. (3) 

By a solution of an ODE (3) on M we mean a differ­
entiable mapping z : I —• Z such that z(i) G M and 
z'(t) = v(z(t)) for all t G I. Now let Q. C R x M 
be an open set in R x M, then a differentiable map­
ping g : —> Z is called a flow on M if the mapping 
g satisfies g(0,x) = x, x £ M, and g{t + s,x) = 
g(t,g(s,x)) for all (s,x) G and all t £ R with 
(t,g(s,x)) £ f2. Flows are associated to ODEs on 
manifolds in the following way [14]: If v : M —* Z 
defines an ODE on M and if the mapping v is differ­
entiable, then there is a unique open set f2 C R x M 
and a unique flow g : Q —+ Z such that a differentiable 
mapping z : / —+ Z is a solution of the ODE if and 
only if / x {z(0)} C Q and z(t) = g(t,z(0)) for all 
t e l . 

Finally, we restate the notion of regularity for a DAE 
(2) as introduced in [8] and [12]. A DAE (2) is called a 
regularDAE if there is a unique differentiable subman­
ifold M of Z and a unique ODE (3) on M such that a 
differentiable mapping z : I —• Z is a solution of the 
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Fig. 3. Illustration of a vector field v onadifferentiablesubman-
ifold M. 

DAE if and only if 2 is a solution of the ODE (3). The 
manifold M is then called the configuration space and 
the ODE (3) the corresponding ODE of the DAE. Let 
M denote the closure of the configuration space M in 
R". Then we call a regular DAE strongly regular if its 
configuration space satisfies M D Z = M . In Section 
4 we will formulate sufficient conditions for the reg­
ularity of a DAE (2). In this section an example of a 
DAE, which is regular but is not strongly regular, will 
be discussed as well. 

3. Examples 

In this section we display some of the variety of D AEs 
encountered in applications, and hopefully justify the 
study of general DAEs of type (2). 

Example 1. We consider a nonlinear autonomous 
RLC circuit Af which, for simplicity, is assumed to 
have a connected graph with b branches. Electrical cou­
pling among branches of the same kind is allowed; thus 
controlled sources are viewed as coupled resistors. Let 
v G R J denote the column vector of branch voltages 
and let i £ R 6 denote the column vector of branch cur­
rents, partitioned as (vc, vr, vi) and ( i e , ir, if) respec­
tively, where subscript c (r, f, respectively) denotes the 
variable corresponding to capacitors (resistors, induc­
tors, respectively). Let us assume that the circuit Af 
consists of nr resistors, ?ic capacitors, and n\ induc­
tors and that nullators and norators are considered, for 
notational simplicity, as resistors. 

Given any tree of Af, KVL is expressed by 

0 = Bv, 0 = Qi (4) 

where B and Q are the corresponding fundamental loop 
and cutset matrices, respectively. Let us assume that the 
constitute relations of the resistors, capacitors, and in­
ductors are given by the following system of equations 

0 = /r(«r,»V), 0 = fe(uc,q), Q-f,(ih(f>) (5) 

where the charge q, the current ic, the flux (f>, and the 
voltage u; are related by 

q'-ic, (j>' = u,. (6 ) 

The system of equations (4) to (6) is the standard sys­
tem of circuit equations [15]. Clearly, these equations 
constitute a nonlinear DAE (2) with z = (q, (p, u, i) £ 
Z — R" c x R"' x R 4 x R 6 . If nullators and norators 
appear in pairs only, then the standard system of circuit 
equations contains as many equations as there are vari­
ables; i.e., we obtain a DAE of type (2) with n — m. 
However, whenever the number of norators exceeds the 
number of nullators, then the resulting circuit equations 
constitute an underdetermined DAE; i.e. m < n. This 
case occurs, for example, if the terminal behavior of a 
Af-pole is computed by connecting norators to the N 
terminals of the TV-pole in an appropriated way [16]. 

We call an RLC circuit Af well-posed if the standard 
system of circuit equations constitutes a stronly regu­
lar DAE. The consequences of this definition will be 
discussed in Section 4 by means of several examples. 

In several papers (see, e.g., [9], [17], and [15]) con­
ditions have been stated so that the solution set of the 
nonlinear equations (4) and (5), denoted by M\, has 
the structure of a differentiable submanifold of Z and 
that the differential equations (6) define a unique ODE 
on this submanifold M\ (see, e.g., [9], [17], and [15]). 
Thus, under these conditions, the standard system of 
circuit equations (4) to (6) is a stronly regular DAE of 
index one and therefore the circuit Af is well-posed. 
However, there are various examples of circuits (see, 
e.g., [15]) which are well-posed but for which the stan­
dard system of circuit equations is not a DAE of index 
one. For example, circuits containing capacitor loops 
and/or inductor cutsets yield index two formulations 
(compare Example 6 in Section 4). However, it is even 
possible to obtain examples of well-posed circuits con­
taining operational amplifiers for which the standard 
system of circuit equations is of arbitrary high index 
(see, e.g., [5]). • 

Example 2. In a control problem we usually have a 
differential equation of the form x' = f(x, u), where 
u G R represents a control, together with an output 
equation y = h(x), where y G R denotes the output. 
Now the problem of output tracking [5]; i.e., problems 
where a control u must be applied such that the output 
y satisfies some constraint 0 = g(y), is naturally cast 
as a DAE. Let us demonstrate this for the problem of 
zeroing the output; i.e. y = 0. This problem leads to 
the DAE formulation 

x1 = f(x,u), 0 = h(x). 

Now, if rank[D/i(x)D2/(a;, u)] = 1 for all (x, y) G 
R ' x R, then this DAE is strongly regular and of index 
two. Furthermore, the corresponding ODE is defined 
on the manifold M2 which is given by 

Mi = {(x,u) G R* x R' : 
0 = h(x),0 = Dh(x)f(x,u)}. O 

Example 3. An interesting class of DAEs appears in 
modelling of constrained mechanical systems. Let us 
first consider a system of free particles with mass 
matrix M on which a force F acts. Let p G R 3 A r be the 
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column vector of position coordinates and v G R the 
column vector of velocities. Then, according to New­
ton's second law, the motion of this unconstrained sys­
tem is governed by the ODE Mv' = F(v, p) together 
with p' — v. Suppose now that we have some con­
straints g(p) = 0 on our movement. Then the result­
ing constrained mechanical system is governed by the 
DAE [5] 

Mv' = F(p, v) - Dg(p)X, p'= v, 0 = g(p) 

where A denotes the Lagrange multipliers correspond­
ing to the constraints g(p) = 0. It can be shown (see, 
e-g-> [5]) that this DAE is a strongly regular DAE of 
index three. • 

4. Regular DAEs 

In this section we discuss DAEs of type (2) by means 
of a differential-geometric approach. Let us introduce 
the sets N E Z x R n and Nz G R", z G Z, by 

N := {(z,z)eZxKn : A(z)z=g(z)}, 
Nz := {zEZ: A(z)z = g(z)}. 

We call the set the corresponding set of the DAE. 
Consider now the projection of this set onto the first 
component; i.e. the set 

M x := pr^JV). 

Obviously we have 

N = ( J {z}xN,. 

The set Mi is a subset of Z and reflects algebraic 
constraints on the solutions of (2); i.e., any solution 
z : I —> Z of the DAE has to satisfy z(t) G Mi. 
Let us assume that M\ is a differentiable submanifold 
of Z. Clearly, under this assumption, a differentiable 
mapping z : I —• Z is a solution of the given DAE 
if and only if, for all t G /, z(t) G M x and z'(t) G 
(Nz n TzMi). This is equivalent to (z(t),z'(t)) G 
(N n TMi). In general, (N n TMX) will be a subset 
of N. Therefore, we consider the set 

M 2 := prj(AT n TMX). 

This implies however that a point z G M\ is an ele­
ment of M2 if and only if the point z satisfies (Nz n 
7; M i ) ^ 0 (Fig. 4). If now the set M 2 is a differen­
tiable submanifold of Z as well, we conclude again that 
a differentiable mapping z : I —* R" is a solution of 
theDAEifandonlyif(z(0,2'(0) G (N n TM2) for 
all t G / . This process can be continued as long as the 
set 

Mi -pi^N n TMi-i) 

is a differentiable submanifold of Z and may be 
stopped whenever M ; = M,-_i. In accordance with 

Fig. 4. Schematic representation of the set N2 D TZM\, 
z G Mi. The picture on the left illustrates the case ( P i 
Tz Mi) = 0 and thus z £ Mi. The picture on the right illus­
trates the opposite case. 

this, we call the family (M,-)*^...,, the family of con­
straint manifolds and the integer s the degree of the 
DAE where s is the largest integer such that the sets M; 
are differentiablesubmanifolds of Z and M s _i ^ Ms. 
In case Mi = R", we define s = 0. 

The family (Mj) of constraint manifolds can be ob­
tained directly from a DAE (2) of degree s in the fol­
lowing way: Let R(z) be a projection along im[j4(z)] 
for all 2 G Z. Then the constraint manifold Mi is given 
by the solutions z G Z of 

Rg (z) :=R(z)g(z) = 0. 

Thus the set N D TM\ is given by the solutions 
(z,z) G Z X R" of the following system of equations 

A(z)z = g(z), D(Rg)(z)z = 0. 

By substituting the variable z through z', this system of 
equations can be rewritten as an overdetermined DAE 
of type (2). This new DAE is of degree s = s — 1 
and has the corresponding set N = (N D TM\). 
Thus the constraint manifold M 2 of the DAE (2) is now 
given by M 2 = M\ where the constraint manifold Mi 
is obtained from the overdetermined DAE, by means 
of an appropriated chosen projector R(z), in the same 
way as the constraint manifold Mi from the DAE (2). 
This process can be continued and one obtains succes­
sively the constraint manifolds M,- for i = 3 , . . . , s. In 
the literature (see, e.g., [5]) such recursive definitions 
of DAEs of lower degree are called index transforma­
tions. 

In [8] we have derived another technique for com­
putation of the constraint manifolds (M;) by means of 
an index transformation which, in contrast to the above 
technique, does not increase the number of equations. 
For linear DAEs of type (2) this technique can be iden­
tified with the well-known algorithm of Dervisoglu and 
Desoer [ 18] which can be carried out by means of stan­
dard linear algebra (Gauss algorithm). 

By means of the family of constraint manifolds, we 
can state sufficient conditions for the regularity of a 
DAE. 
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Theorem 1 ([8]) . Let TV be the corresponding set, let 
(Mi) be the family of constraint manifolds, and let s 
be the degree of a given DAE (2). Then this DAE is 
regular if the set (TV n TZMS) contains exactly one 
element for each z £ Ms. Under this condition, the 
configuration space M of the DAE is given by M = 
Ms and the corresponding ODE is defined by {v(x)} = 
(TV n T2Ms) for all z G Ms. 

In the literature (see, e.g., [5]) DAEs of degree s, 
which satisfy the conditions of Theorem 1, are often 
called DAEs of index s. Let us remark that underdeter-
mined DAEs cannot be regular because there are less 
equations then variables. Finally, we like to state an ex­
istence and uniqueness result for regular DAEs. 
Proposition 1 ( [12] ). Let as assume that a DAE (2) 
of degree s satisfies the conditions of Theorem 1 and 
that the set (TV f~l TMS) is a differentiable submanifold 
of Z x R n . Then there is a unique open set Cl C R x 
Ms and a unique flow g : fi —• Z on Ms such that 
a differentiable mapping z : I —• Z is a solution of 
the DAE if and only if I x {z(0)} C fi and z(t) = 
g(t,z(t)) foralH G I. 
Example 4. Let us rewrite the standard system of cir­
cuit equations (4) to (6) in the form 

q' = ic, <j>' = u,, 0 = F(q,(j),u,i) (7) 

with F : Z = R"° x R n ' x R 6 x R* —• R 2 6 . We 
assume that the mapping F is sufficiently smooth and 
that rank[DF(g, <j>, u, ?')] = 2b for all (q, <f>, u, i) G Z. 
Then the constraint manifold M\ is given by the solu­
tions (q, <j>, u, i) G Z of 

0 = F(q,<f>,u,i), 

and the set (Nz n TZM\) is characterized for all z = 
(q, <j>, u, i) G Mi by the solutions z — (q, <j>, ü,i) G Z 
of 

q = ic DF(q,<f>,u,i) 
u 

= 0, (8) 

Now, if 

rank[D 3 F( g , <j>, u, i) \ D4F(q,<f>,u, i)] = 2b (9) 

for all (q, <f>, u, i) G Mi, then (8) has a unique solution 
and thus the set (TV̂  n TZM\) contains exactly one 
element for all z = (q, <f>, u, i) G Mi. Therefore, if (9) 
holds, then (7) is a strongly regular DAE of index one. 
• 

Example 5. In this example we discuss circuits for 
which (9) fails for some but not all (q, <f>, u, i) G Mi. 
Let us introduce the set 

S := {(q,<j>,u,i) G Mi : 
rank[B3F(q,<f>,u,i) \ D4F(q,<j>,u,i)] < 2b}. 

We assume that the set S is a differentiable subman­
ifold of Mi with dim [5] < dim[Mi] and that, for 

3* 
y 

1 i » Y i • 
X 

M2 

Y 

Fig. 5. Illustration of the corresponding vector field of the de­
generate van der Pol oscillator. 

all z — (q,(f>,u,i) G S, (8) has no solution; i.e. 
(TV, n TZM\) = 0. These assumptions imply that the 
constraint manifold M2 is given by M2 = Mi \ S and 
that (7) is regular on M2. 

Now the constraint manifold M2 satis­
fies dim[M2] = dim[Mi] and M 2 = Mi where M 2 

denotes the closure of Mo in Mi. Thus the DAE (7) 
is regular but not strongly regular. Furthermore, there 
are solutions z : (0, T) -> Z, T < 00, of (7) with 
limt_.T-o = ZT G S; i.e., the solution z : (0,T) —* Z 
cannot be extended beyond the point ZT G S. There­
fore points ZT G S are called impasse points [15], [1]. 
Impasse points give rise to the so called jump behavior 
of circuits [1]. A simple example of this phenomenon 
is given by the van der Pol oscillator 

x' = y, (y1 = 3y - y3 - 2x 

for i = 0 [1], [12]. For c = 0, the constraint manifold 
Mi is given by the solutions (a?, y) G R 2 of 

0 = 3y - y3 - 2x 

and the constraint manifold M2 is given by M 2 = 
Mi \ {(1,1), ( - 1 , - 1 ) } . Thus the two points (1,1) 
and (—1,-1) are impasse points. The vector field v : 
M 2 —• R 2 is depicted schematically in Fig. 5. 

Let us finally remark that impasse points cannot oc-
cure for strongly regular DAEs. This fact also moti­
vates our notion of a well-posed circuit. • 

Example 6. Let us consider now the 3-pole of Fig. 6 
which is given by a capacitor only loop consisting of 
the three capacitors C\, C2, and C3 . For analysing the 
terminal behavior of this 3-pole, we transform the 3-
pole into the circuit of Fig. 6 by connecting two nora-
tors TVi and TV2 to the terminals of the 3-pole. The stan­
dard system of circuit equations of the resulting circuit 
is given by (after eliminating the charges q\, 32, and qz) 

0 = uCl - uC2 + wC 3, 0 = i„, - iC3 + iCl, 
0 = uCl - uni, 0 = in2 + iC2 + ic3, 
0 = u C 2 - u „ 2 , (10) 
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Fig. 6. 3-pole consisting of a capacitor loop and the resulting 
circuit for computation of its terminal behavior. 

Cl««, ='ci. C2u'C3 = i c , , C3u'C3 = iC3. (11) 
These eight equations constitute an underdetermined 
DAE for the ten unknown branch voltages and currents 
(u, i) £ R 1 0 . The constraint manifold M\ of this DAE 
is given by the solutions (u, i) of the linear equations 
(10). Now differentiating the constraints (10) with re­
spect to time yields, among others, the equation 

0 = u'ci - < + u'C3 

which implies together with the differential equations 
(11) that die constraint manifold M 2 is given by 

M 2 = {(u,z) e M i : icJd - icjC2 + icjC3 = 0} 

Straightforward calculation yields now that the equa­
tions (10) to (11) constitute an underdetermined DAE 
of degree two (which, of course, is not regular). Fur­
thermore, any well-posed network containing the 3-
pole of Fig. 6 gives a standard system of circuit equa­
tions with index s > 2. 

Let us now show that different techniques for 
analysing circuits can lead to DAEs of different degree. 
For that reason let us analyse the circuit of Fig. 6 by 
means of the nodal analysis [1]. If we chose the node 
R as the reference node, then we obtain the following 
underdetermined DAE: 

(c1 + c3 - c 8 A ( < \ ( i n A 
^ - C s C2 + C3) {u'cJ + [ i n J - U -

This system of equations does not contain algebraic 
equations and thus the DAE is of degree zero with the 
constraint manifold M 0 = R 4 . 

The fact that different techniques for analysis of cir­
cuits leads to DAE formulations of different degree (in­
dex) seems to be important for the numerical transient 
analysis. This is due to the fact that, in general, only 
DAEs of index one can be solved numerically by stan­
dard integration codes for stiff ODEs [5]. This example 
seems to imply that the (modified) nodal analysis [ 1] is 
more suited for the numerical transient analysis of cir­
cuits containing capacitor loops than the sparse tableau 
approach [1] which leads to the standard system of 
circuit equations. This corresponds to the fact that the 
modified nodal analysis is used in almost all current 
network analysis programs like SPICE and NAP2. 

In several papers (see, e.g., [15]) a circuit transfor­
mation technique to eliminate capacitor loops has been 

Fig. 7. Circuit transformation for the removal of capacitor loops. 

described. For the 3-pole of Fig. 6 this results in the new 
3-pole of Fig. 7. If the terminal behavior of this 3-pole 
is analysed in the same way as for the 3-pole of Fig. 6, 
then it is easy to show that the resulting standard system 
of circuit equations is now a DAE of degree one. Thus, 
this circuit transformation technique can be considered 
as an index transformation for the standard circuit eqs. 
(10), (11) in the sense of Section 3. • 

5. Infinite Dimensional DAEs 

In several books (see, e.g., [19]) the notion of a ODE 
on a submanifold of R n has been generalized to ODEs 
on submanifolds of arbitrary finite or infinite dimen­
sional Banach spaces [ 13]. This generalization has been 
proved to be very useful in analysis of parabolic par­
tial differential equations (see, e.g., [19]). Here we like 
to generalize the concept of a DAE (2), as introduced 
in Section 2, to the case that the space Z is now an 
arbitrary finite or infinite dimensional Banach space. 
It can be shown that the results of Section 4 remain 
valid without further modifications. However it must 
be taken into consideration that the constraint man­
ifolds M, are no longer finite dimensional submani­
folds of Z = R n , but submanifolds of (in general infi­
nite dimensional) Banach spaces [13]. Furthermore, the 
corresponding ODE is now, in general, an infinite di­
mensional ODE on a infinite dimensional manifold. Fi­
nally we like to remark that Proposition 1 is very useful 
in any study of DAEs over finite dimensional Banach 
spaces but has only very rare application for DAEs over 
infinite dimensional Banach spaces. This is due to the 
fact that for those DAEs the set(N D TMS) is, in gen­
eral, not a differentiable submanifold of Z x Z. 

We like to discuss our concept of a DAE over an in­
finite dimensional Banach space by means of the fol­
lowing example. 
Example 7. Classical electromagnetism is governed 
by Maxwell's field equation. The form of these equa­
tions depends on the physical units chosen, and chang­
ing these units introduce factors like 4 t , c (speed of 
light), eo (dielectricconstant), and po (magneticperme­
ability). This discussion assumes that eo, /<o are con­
stants; the choice of units is such that the equations take 
the simplest form; thus c = e 0 = /'o = 1 afld factors 
47T disappear. Therefore we can identify E with D, and 
B with H and the electromagnetic field in a smoothly 
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bounded three dimensional domain Cl C R 3 is given 
by the solutions of 

H' = - cu r l£ , E' = curl/7 - j , (12) 

0 = d i v £ - p , 0 = divH (13) 

where:E G C°°(fi, R 3 ) is called the electric field, H G 
C°°(Q, R 3 ) the magnetic field, j G C°°(Ü, R 3 ) the 
current density, and p G C°° (fi, R ) the charge density. 
The current density and the charge density satisfy the 
continuity equation 

p' = - d i v j . (14) 

For simplicity, let us assume that we consider initial 
boundary value problems 

E(0) = E0,Em(t) = 0, 
H(0) = H0,H\an(t) = 0, (t > 0) 

p(0) = po,p\an(t) = 0, 

where Ö denotes the closure of Q in R 3 , c<0 the bound­
ary of f2, and subscript |<9f2 the restriction of a func­
tion on Ö to the boundary 9 0 . The differential equa­
tions (12) and (14) together with the constraints (13) 
constitute an overdetermined infinite dimensional DAE 
in the four unknowns E, H, j , and p . The space Z 
is given by the Banach space of smooth functions on 
Q, which are identical zero on the boundary <9f2 of f2; 
i.e., (E, H, j , p) G Z - V x V x V x W where we 
used the abbreviations V := C £ ° ( Ö , R 3 ) and W := 
C Q ° ( Ö , R ) . A detailed discussion of this infinite di­
mensional DAE can be found in [20]. • 

A similar example of this type are the systems of par­
tial differential equations describing the flow of elec­
trons and holes in a semiconductor [21]. 

Let us finally remark that, whenever an infinite di­
mensional DAEs is discretized with respect to the spa­
tial variable by means of a finite difference method or 
by a finite element method as in the method of lines 
[22], then the resulting system of equation is a finite 
dimensional DAE. 
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