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Abstract. High-latitude treeless ecosystems represent spa-
tially highly heterogeneous landscapes with small net car-
bon fluxes and a short growing season. Reliable observa-
tions and process understanding are critical for projections
of the carbon balance of the climate-sensitive tundra. Space-
borne remote sensing is the only tool to obtain spatially con-
tinuous and temporally resolved information on vegetation
greenness and activity in remote circumpolar areas. How-
ever, confounding effects from persistent clouds, low sun
elevation angles, numerous lakes, widespread surface inun-
dation, and the sparseness of the vegetation render it highly
challenging. Here, we conduct an extensive analysis of the
timing of peak vegetation productivity as shown by satel-
lite observations of complementary indicators of plant green-
ness and photosynthesis. We choose to focus on productivity
during the peak of the growing season, as it importantly af-
fects the total annual carbon uptake. The suite of indicators
are as follows: (1) MODIS-based vegetation indices (VIs) as
proxies for the fraction of incident photosynthetically active
radiation (PAR) that is absorbed (fPAR), (2) VIs combined
with estimates of PAR as a proxy of the total absorbed radia-
tion (APAR), (3) sun-induced chlorophyll fluorescence (SIF)
serving as a proxy for photosynthesis, (4) vegetation optical
depth (VOD), indicative of total water content and (5) empir-
ically upscaled modelled gross primary productivity (GPP).
Averaged over the pan-Arctic we find a clear order of the
annual peak as APAR 5 GPP < SIF < VIs/VOD. SIF as an

indicator of photosynthesis is maximised around the time of
highest annual temperatures. The modelled GPP peaks at a
similar time to APAR. The time lag of the annual peak be-
tween APAR and instantaneous SIF fluxes indicates that the
SIF data do contain information on light-use efficiency of
tundra vegetation, but further detailed studies are necessary
to verify this. Delayed peak greenness compared to peak pho-
tosynthesis is consistently found across years and land-cover
classes. A particularly late peak of the normalised difference
vegetation index (NDVI) in regions with very small season-
ality in greenness and a high amount of lakes probably origi-
nates from artefacts. Given the very short growing season in
circumpolar areas, the average time difference in maximum
annual photosynthetic activity and greenness or growth of 3
to 25 days (depending on the data sets chosen) is important
and needs to be considered when using satellite observations
as drivers in vegetation models.

1 Introduction

Landscapes in circumpolar regions are characterised by
sparse vegetation, bare soil, rocks, large surface areas inun-
dated by open water and a long snow-covered period. Despite
large carbon amounts being stored in the often permanently
frozen grounds, net fluxes of carbon between the land sur-
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face and the atmosphere are small and their CO2 balance is
close to neutrality (McGuire et al., 2012). Because of their
strong sensitivity to environmental conditions, carbon ex-
change processes are highly variable in space and time (Oli-
vas et al., 2011; Pirk et al., 2017; Lafleur and Humphreys,
2008; Welker et al., 2004) and an ecosystem might switch
between being a carbon sink or source from year to year
depending on the weather conditions (Huemmrich et al.,
2010b).

Warming happens at accelerated rates compared to mid-
dle and lower latitudes (AMAP, 2012). The carbon budgets
of both the tundra ecosystem and the Arctic boreal zone
as a whole are undergoing major changes – with possibly
strong feedbacks to climate (Pearson et al., 2013). The future
evolution of the net ecosystem exchange (NEE), its com-
ponent fluxes gross primary productivity (GPP) and respi-
ration in Arctic landscapes is highly uncertain. Higher tem-
peratures, the accompanying mineralization, and higher at-
mospheric CO2 concentrations fertilise vegetation (Yi et al.,
2014; Zhu et al., 2016; Welker et al., 2004). Accordingly,
changes in species composition (Chapin et al., 1995) are ob-
served and satellite records indicate a greening in large re-
gions in the Arctic (Jia et al., 2003; Verbyla, 2008). This is
interpreted as increased growth (Stow et al., 2004; Elmen-
dorf et al., 2012; Huemmrich et al., 2010a; Chapin et al.,
1995) or even as a woody encroachment into tundra (Racine
et al. in Stow et al., 2004; Dass et al., 2016; Sturm et al.,
2001). Yet, higher leaf mass and growth do not necessarily
linearly translate into enhanced GPP in every case, as in-
creased growth might also cause enhanced self-shading and
lower nitrogen amounts per unit leaf area (Street et al., 2007;
McFadden et al., 2003). A warmer climate might extend the
snow-free period (Myneni et al., 1997), but there are contra-
dicting indications of whether (Ueyama et al., 2013b; Lund
et al., 2010; Kross et al., 2014) or not (Gamon et al., 2013;
Oberbauer et al., 1998; López-Blanco et al., 2017; Lafleur
and Humphreys, 2008) a longer growing season enhances
seasonal carbon uptake and growth. Photosynthetic activity
and plant growth further depend on soil moisture conditions
(Gamon et al., 2013; Opała-Owczarek et al., 2018; Lafleur
and Humphreys, 2008; Welker et al., 2004), therefore warm-
ing and shorter and shallower snow packs do not necessar-
ily increase productivity (Zhang et al., 2008; Gamon et al.,
2013; Yi et al., 2014; Huemmrich et al., 2010a, b; Parida and
Buermann, 2014). Soil warming promotes thaw and stronger
drainage. Heterogeneous respiration and carbon emissions
into the atmosphere are stimulated in warmer soils at a low-
ered water table depth (Billings et al., 1982; Yi et al., 2014;
Oechel et al., 1993; Huemmrich et al., 2010b; Commane
et al., 2017). The balance between the photosynthetic carbon
uptake and respirational losses is further modulated by per-
mafrost disturbances (Cassidy et al., 2016). Polar treeless re-
gions are spatially highly heterogeneous ecosystems (Welker
et al., 2004) but have widespread full vegetation cover. NEE,
GPP and respiration are governed by variable conditions re-

garding the wetness and temperature, microtopography, geo-
morphology and type, and acidity of the soils (Kwon et al.,
2006; Walker et al., 1998; Olivas et al., 2011; Emmerton
et al., 2016; Pirk et al., 2017). It is not clear whether, where
and when the land surface in Arctic tundra actually acts as
a sink or source of CO2 (Cahoon et al., 2012; McGuire
et al., 2012) and what the direction and magnitude of changes
in altered climatic conditions will be (Oechel et al., 1993;
Billings, 1987; Sitch et al., 2007). This has given rise to
extensive and long-term project studies of the Arctic like
the Arctic-Boreal Vulnerability Experiment (ABoVE, https:
//above.nasa.gov/about.html, last access: 22 August 2018)
or the Carbon in Arctic Reservoirs Vulnerability Experi-
ment (CARVE, https://carve.jpl.nasa.gov/Missionoverview/,
last access: 22 August 2018), both of which are not limited
to CO2.

Observing carbon fluxes in these inaccessible and remote
areas is difficult. Several long-term monitoring sites exist
where phenological observations, spectral reflectance as well
as gas flux measurements are conducted in situ, both under
natural conditions and in manipulative experiments. Many
studies can be found in the literature that evaluate eddy co-
variance (EC) or the chamber gas flux measurements with
respect to the spatial patterns of NEE at a fixed point in time
or in situ NEE integrated over the growing season and its
variations between years (López-Blanco et al., 2017; Lund
et al., 2010; Ueyama et al., 2013a; McFadden et al., 2003;
Williams and Rastetter, 1999; Marushchak et al., 2013; Kross
et al., 2014). However, only a few sites exist compared to
temperate regions, and observations are usually not done in
a continuous manner over the complete year but during indi-
vidual measurement campaigns or dedicated periods during
the growing season. Even if automated instrumentation can
provide more continuous measurements throughout the year,
it is still hampered by the difficulty of access in the case of
equipment failure. Compared to more temperate sites, tundra
poses additional challenges on the calculation of NEE and
its component flux GPP and respiration (Pirk et al., 2017).
Due to the small magnitudes of the net fluxes, different flux
calculation methods might even differ in whether they indi-
cate a source or a sink at a given time (Pirk et al., 2017).
Snow and soil freezing can act as a barrier for gas exchange
with the atmosphere and cause a temporal decoupling be-
tween the registration at the sensors and when the gas con-
centrations have actually been changed by the heterotrophic
respiration in the soil (Arneth et al., 2006) or by the photo-
synthesis of evergreens under the snow (Starr and Oberbauer,
2003). Continuous illumination during the polar day chal-
lenges temperature–respiration relationships obtained from
night-time data (Runkle et al., 2013). Further, the hetero-
geneity of the landscape poses limits to the spatial repre-
sentativeness of the relationships between the carbon fluxes
and meteorological and soil conditions that have been iden-
tified in situ (Pirk et al., 2017; Tuovinen et al., 2018). There-
fore, in spatial up-scaling exercises (Ueyama et al., 2013a;
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Marushchak et al., 2013; Huemmrich et al., 2013; Tramon-
tana et al., 2016), strong extrapolations are necessary. Yet,
the modelling of the future evolution of the vegetation and
carbon fluxes (including their timing and magnitude) in cir-
cumpolar areas requires an understanding of GPP and res-
piration as well as accurate spatially and temporally explicit
observations of their drivers.

Satellite remote sensing can help in constraining the com-
ponent flux of GPP and additionally in extending point ob-
servations to larger areas with repetitive coverage in time.
Depending on the monitoring approach, different assets and
limitations need to be considered to infer GPP. Optical re-
flectance measurements can give an indication of the abun-
dance of green plant material and hence photosynthetic po-
tential. From spectral observations of greenness, information
can be inferred on the fraction of incident photosynthetically
active radiation (PAR) that is absorbed (fAPAR) and can po-
tentially be used for carbon fixation. Following the concept
of the light-use efficiency of plant productivity by Monteith
(1972), the amount of absorbed radiation (APAR, the product
of fAPAR and the incident PAR) is an important determinant
of spatial and seasonal variations in GPP along with the effi-
ciency with which the absorbed energy is used in carbon fix-
ation. Site-level studies have confirmed a highly linear rela-
tionship between APAR and GPP (Huemmrich et al., 2010a,
b). Indeed, in the last decades, spatial extrapolations of in situ
observations of carbon fluxes in tundra and peatland showed
the skill of indicators of greenness (leaf area index – LAI –
and reflectance-based indices like the NDVI or the green ra-
tio) as predictors for GPP and NEE (Ueyama et al., 2013a, b;
Chadburn et al., 2017; McFadden et al., 2003; Williams and
Rastetter, 1999; Street et al., 2007; Marushchak et al., 2013).
At many sites, moss makes up 2 or 3 times the amount of
biomass of vascular plants. However, its photosynthetic ca-
pacity is much lower (Yuan et al., 2014; Williams and Rastet-
ter, 1999; Huemmrich et al., 2013; Zona et al., 2011), and its
seasonality is often dissimilar (Gamon et al., 2013) as a con-
sequence of their different sensitivities to environmental con-
ditions (Zona et al., 2011). Microtopography affects moisture
conditions, even within small elevation changes of about 1 m
(Olivas et al., 2011; Gamon et al., 2013; Pirk et al., 2017).
As a consequence, distinct spatial distributions of the plant
functional types and highly variable patterns of photosyn-
thetic light-use efficiency are observed. Vascular plants pre-
fer lower, wetter places, and their growth increases biomass,
productivity, NDVI and LAI. However, when the ground be-
comes drier, NDVI will increase, but actual productivity will
decline (Olivas et al., 2011; Gamon et al., 2013; Buchhorn
et al., 2013). Consequently, the wetness of the surface con-
founds the interpretation of spectral reflectance with respect
to productivity, which is problematic, as soils are often water-
saturated (Stow et al., 2004). Next to the confounding ef-
fect of moisture on spectral reflectance, changes in GPP have
been observed as not necessarily translating into changes in
the NDVI (Olivas et al., 2011). The dynamics of field mea-

surements of the NDVI are not necessarily related to total
photosynthetic phytomass but are rather driven by only parts
of the live foliar component (Riedel et al., 2005). In addi-
tion to these challenges, spectral reflectance observations are
affected by large signals from the background and shadows
cast by the microtopography and vegetation itself. Snow and
open water from the many rivers, small ponds and thaw lakes
(globally, the highest abundance and areal coverage of lakes
is between 55 and 75◦ N, Verpoorter et al., 2014), and lit-
ter and dry plant materials influence the spectra to seasonally
changing extents. Further, persistent cloud cover, low illumi-
nation and viewing geometry (Stow et al., 2004; Laidler and
Treitz, 2003), and the relatively large pixel size compared to
the high heterogeneity of the landscape render reflectance-
based observations of circumpolar productivity difficult.

Recently, independent and complementary approaches to
spectral reflectance have become available to remotely study
vegetation dynamics. First, sun-induced chlorophyll fluores-
cence (SIF) is an electromagnetic signal emitted by chloro-
phyll as a “by-product” of photosynthesis. Because it is di-
rectly related to photosynthetic activity (e.g. Porcar-Castell
et al., 2014) it is expected to give a more direct and accurate
picture of actual photosynthesis (as compared to greenness
or growth) and is much less affected than vegetation indices
by open water, snow or background effects, the heterogene-
ity of the land surface, and plant functional types. However,
the footprints of the sensors from which SIF measurements
are available, which cover the course of several years, are
very large and integrate over many different growing condi-
tions. Further, the SIF signal is generally weak in the tundra
regions due to the low vegetation abundance and photosyn-
thetic rates, and in combination with low illumination angles,
it is subject to high noise levels.

A second type of complementary satellite information lies
in passive microwave remote sensing. Specifically, vegeta-
tion optical depth (VOD) is a radiometric variable describ-
ing the attenuation of microwave radiation emitted from the
soil and the vegetation itself due to the water contained in
the canopy. It can therefore be directly related to vegetation
water content and biomass. VOD increases with vegetation
density, but is strongly controlled by vegetation emissions in
very dense vegetation (Liu et al., 2011). Depending on the
wavelength of observation, the signal is sensitive to different
depths in the canopy and objects of variable sizes (e.g. small
objects like leaves versus large trunks or branches). Follow-
ing Teubner et al. (2018), in moderately and sparsely vege-
tated areas, there is a chain of proportionalities from VOD
to GPP. VOD indicates the total water content, which is re-
lated to leaf area and is, in turn, an important determinant
of GPP. In their comprehensive study, Teubner et al. (2018)
evaluated the temporal behaviour between different VOD
data sets, the modelled GPP and SIF and found widespread
high positive correlations both between the raw time series as
well as patterns of anomalies globally. Although dynamics in
tundra vegetation have not been explored explicitly, correla-

www.biogeosciences.net/15/6221/2018/ Biogeosciences, 15, 6221–6256, 2018



6224 S. Walther et al.: Assessing the dynamics of vegetation productivity in circumpolar regions

tions between the VOD and GPP were consistently high in
landscapes characterised by shrubs, grasses or sparse vegeta-
tion. Similarly, the highest correlations between phenological
dates derived from the VOD and vegetation indices were ob-
tained in low biomass regions (Jones et al., 2011). VOD ob-
servations are insensitive to cloud cover and to variations in
day light, a strong advantage in the high latitudes of interest
in our study. However, as for SIF, currently available satel-
lite observations have a coarse spatial resolution compared
to optical measurements. Further, the careful corrections of
the effects of soil moisture, open water and frozen grounds,
and snow and ice, among others are necessary in the retrieval,
and it is therefore not clear whether VOD can be a useful pa-
rameter in evaluating the vegetation dynamics in the specific
context of tundra.

Neither greenness, SIF nor VOD can be directly translated
into the amount of carbon taken up through photosynthesis.
Nevertheless, they all represent important observation-based
driving variables for the modelling of the tundra carbon ex-
changes at the landscape scale and over the course of multi-
ple years (e.g. Luus et al., 2017). Therefore, their ability to
accurately represent the timing and relative changes of pho-
tosynthetic activity and growth is of key importance for real-
istic model estimates of carbon fluxes. In this study, we com-
pare the timing of the peak growing season as indicated by
several satellite vegetation indices, the VOD and SIF, in cir-
cumpolar treeless regions. We aim at analysing their com-
plementary information content with respect to maximum
greenness and photosynthetic activity – despite all aforemen-
tioned challenges – and relate them to environmental con-
ditions. In addition, GPP empirically up-scaled from eddy-
covariance observations using satellite measurements of dif-
ferent variables describing the land surface and meteorolog-
ical reanalysis data (Tramontana et al., 2016) is included in
the study. In doing so, a comprehensive evaluation of several
state-of-the-art satellite-based products is achieved in this
study with a special focus on the timing of the peak grow-
ing season, as this represents the most important period with
respect to total annual carbon uptake. In addition to the use
of the broad array of complementary space-borne data sets,
we perform this analysis for the total circumpolar pan-Arctic
treeless regions, and it therefore represents an extension with
respect to the majority of published tundra ecosystem studies
that are mostly confined to specific regions like Alaska.

2 Methods and materials

2.1 Methods

The different vegetation proxies are evaluated at a 0.5◦ spa-
tial resolution and with daily sampling. A temporal running
mean in a window of 16 days is applied to all data sets. The
resulting data still contain values for every day in a year,
but the effective temporal resolution corresponds to 16 days.

Gaps due to missing data are not aligned between data sets.
The timing of the annual maximum is defined as the average
day of year (DOY) of all days at which the values exceed the
95th quantile of all valid values of the time series in a year
in a given pixel. Because of frequently low data quality and
long and intermittent data gaps in those high latitude regions
of interest, we mostly base our analysis on multi-year aver-
ages of the DOYs of annual maximum (henceforth referred
to as the avg.peak). We test the uncertainties by bootstrap-
ping each annual time series 50 times per year and pixel for
selected vegetation proxies (DOYs sampled consistently be-
tween vegetation proxies, with a replacement, and restricted
to DOYs 100–300).

We use tower eddy-covariance measurements as a test of
consistency between satellite observations sampled at the
towers and site-level conditions.

2.2 Data sets

2.2.1 Environmental variables

Air temperature at a height of 2 m (t2m) every 6 h between
2007–2015 is obtained from ERAInterim reanalysis data
(Dee et al., 2011) and aggregated to 16-day temporal reso-
lution with daily sampling.

Daily global radiation (Rg) for the years 2007–2015 is ob-
tained from measurements of the Clouds and the Earth’s Ra-
diant Energy System (CERES Ed4A, Wielicki et al., 1996;
Doelling et al., 2013) onboard the Aqua and Terra satellites.
From the 1◦ spatial resolution product (the “SYN1deg-Day
product” with all-sky surface shortwave downward fluxes
and initial fluxes), we disaggregate to 0.5◦ spatial resolution
by bilinear interpolation. Subsequently, daily data are aver-
aged in a daily moving window of 16 days.

We further include surface-soil moisture (SM, 0–10 cm
depth in m3 m−3) model results from the Global Land Evapo-
ration Amsterdam Model (GLEAM) project (v3.1a, Miralles
et al., 2011; Martens et al., 2017). GLEAM is provided at
a daily temporal and 0.25◦ spatial resolution for the years
2007–2015. For the analysis we aggregate them to a 0.5◦

and 16-day resolution with daily sampling. In the case of
moisture-related variables, we will also explore the timing of
the annual minimum in order to get an indication of the po-
tential moisture stress or confounding effects on reflectance
measurements. Accordingly, the timing of the minima are de-
fined as the average of all DOYs at which the values are be-
low the 5th quantile of all valid values in a year in a given
pixel.

2.2.2 Reflectance-based indices

We use MODIS reflectance measurements to obtain the en-
hanced vegetation index or EVI (Huete et al., 2002), the nor-
malised difference vegetation index or NDVI (Tucker, 1979),
and the near infrared reflectance of vegetation or NIRv (Bad-
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gley et al., 2017) as proxies of greenness for the years 2007–
2015. These indices have been calculated from the nadir
bidirectional reflectance distribution function Adjusted Re-
flectance (NBAR) from the MODIS MCD43C4v006 product
(MCD43C4, 2017) at 0.05◦. This means that the reflectance
values are modelled to a value as if they were viewed from
directly above. After a quality check (only pixels with bi-
directional reflectance distribution function – BRDF; Quality
flags 0, 1 retained) and snow filter (all pixel values containing
any snow removed) the data are aggregated to the 0.5◦ spa-
tial resolution and left at their native temporal resolution of
16 days with daily sampling. We will refer to these through-
out the paper as EVI, NDVI and NIRv.

As the amount of incoming photosynthetically active ra-
diation is proportional to the total downwelling shortwave
radiation, we calculate an estimate of APAR as the product
of global radiation and EVI (denoted EVI.Rg) or NDVI (de-
noted NDVI.Rg), both of which are assumed to be a valid
approximation of fAPAR here. In the following we will refer
to both of them together as APAR and will otherwise refer
separately to EVI.Rg and NDVI.Rg.

We additionally include the MODIS vegetation index
products of the NDVI and EVI from Aqua MYD13C1v006
(MYD13C1, 2017) and Terra MOD13C1v006 (MOD13C1,
2017) in the analysis. In contrast to EVI, NDVI and NIRv
from the MCD43C4 data, those are obtained from re-
flectances with different viewing angles that do not necessar-
ily correspond to nadir. Including them in the comparison can
therefore help to get an idea of the influence of directional ef-
fects on the seasonality and of the consistency of the results.
From the 0.05◦ products generated with an 8-day frequency
using a period encompassing the previous 8 and the follow-
ing 8 days of acquisitions, we removed data that were not of
good quality using the vegetation index (VI) quality indica-
tor. We further remove pixel values that are flagged as cloudy,
contain snow or ice or those that were not processed as indi-
cated by the quality reliability flag. The remaining pixel val-
ues are aggregated to 0.5◦ grid cells. Throughout the paper
we will name these EVI. VIproduct and NDVI.VIproduct or
refer to them together as the MODIS VIproduct. The data
from the MODIS VIproduct are different from all other data
sets in that they are sampled every 8 days, not daily.

2.2.3 Vegetation optical depth and land surface
parameters

A data set of various land parameters simultaneously de-
rived from passive microwave measurements of the AMSR-
E onboard the Aqua and AMSR2 onboard the GCOM-W1
is used for the years 2007–2015 (v2, here called AMSR-
E/2; Du et al., 2017a, b). The data records are combined
but not continuous. In 2011 data are available until DOY277
and restart after that in 2012 only at DOY206. Because the
peak growing season is covered in 2011, we use data from
2011 but not from 2012. Of the observations made in de-

scending orbits with an equatorial crossing at 01:30 LT, we
use the VOD and volumetric surface-soil moisture (0–1 cm
depth in cm3 cm−3) derived from X-band (10.7 GHz) as well
as estimates of the fraction of open water. We use the de-
scending orbit as retrievals are generally more accurate when
vertical temperature gradients are low (Liu et al., 2011). The
retrieval specifically accounts for the effects of open water
on the VOD and surface-soil moisture (Du et al., 2017b). The
accompanying quality flags are used to remove all pixel val-
ues observed under non-favourable conditions with respect
to frozen soils, snow, ice or large areas of open water on the
surface, very dense vegetation, precipitation, radio frequency
interference, or microwave signal saturation. The daily files
with the native 25 km resolution data in an Equal-Area Scal-
able Earth Grid (EASE-grid) projection are first filtered for
quality, reprojected to 0.25◦ longitude and latitude relative to
WGS84, and are subsequently aggregated to 0.5◦. For tempo-
ral consistency we aggregate to 16 days with daily sampling,
as in all other data sets.

2.2.4 Sun-induced chlorophyll fluorescence

Sun-induced chlorophyll fluorescence (SIF) as a proxy of
photosynthetic activity is retrieved from GOME-2 measure-
ments onboard Metop-A at 740 nm (Köhler et al., 2015, it
will henceforth be called SIF GFZ) for January 2007 until the
end of 2015. We remove the individual measurements that
have unfavourable observational conditions, namely those
that have an effective cloud fraction of more than 50 % (based
on the FRESCO cloud mask that is provided with GOME2
L1b data, which are based on reflectances in the O2-A band;
Wang et al., 2008), those that are measured before 08:00 or
after 14:00 local solar time (which is important as in high
latitudes during the solar day additional measurements in
the evening are possible but subject to high noise) or un-
der sun-zenith angles of more than 70◦, and those whose
retrieval resulted in a residual sum of squares larger than
2 W m−2 sr−1 µm−1. We also remove those SIF values for
which no cloud fraction information is available. The indi-
vidual remaining measurements are aggregated to the 0.5◦

resolution based on the centre coordinates of a given foot-
print over the 16-day intervals, similar to the MODIS data,
for each individual year to obtain a time series.

We added to the comparison SIF data retrieved from
GOME-2 with a slightly different method (Joiner et al., 2013,
2016, V26, henceforth SIF NASA). The individual measure-
ments are filtered in the same way as for the SIF GFZ data
set, except for the fact that the data are delivered filtered for
an effective cloud fraction of smaller than 0.3 (we treat neg-
ative cloud fractions as zero). The SIF NASA uses a similar,
but not identical method to obtain effective cloud fractions by
using cloud radiance fractions at 865 nm (Joiner et al., 2012).
We then average in the same way spatially and temporally as
previously done for the years 2007–2015.
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As SIF represents an instantaneous observation at a given
time of the day and a comparison to the GPP seasonality
would be hampered by the fact that GPP represents an aver-
age daily value (Zhang et al., 2018), additional comparisons
are carried out for the SIF observations scaled to daily values
(henceforth SIF.daily.int GFZ). Through a geometrical ap-
proximation of incoming PAR by the cosine of the sun-zenith
angle, the correction to daily values is achieved by the multi-
plication of the instantaneous SIF by the ratio of the daily in-
tegrated (in 10 min steps) cosine of the sun-zenith angle and
the cosine of the sun angle at the time of measurement. This
correction is expected to account for the effects of season-
ally and daily changing illumination. Caution is warranted
for this correction, as it assumes that the same environmental
conditions prevail over the entire day and may further am-
plify noise.

SIF can be approximated in a similar way as the GPP
following Monteith (1972), as the product of fAPAR, PAR,
which is approximated as cos(SZA), and the efficiency with
which the energy is used in fluorescence emission. Hence,
the comparison of SIF to vegetation indices is also more ap-
propriate if one accounts for the illumination effects on SIF
that are not included in the greenness indices. In that case,
the SIF values are normalised by the cosine of the sun-zenith
angle at the time of measurement and used in the analysis
(henceforth SIF.cosSZA GFZ and SIF.cosSZA NASA). Ac-
cording to the SIF Monteith model, SIF.cos(SZA) therefore
represents a convolution of canopy fAPAR and the efficiency
of fluorescence emissions.

As a cross check of the plausibility of the GOME-2 SIF
additional comparisons to SIF at 757 nm retrieved from
OCO-2 are done using the OCO-2 SIF lite files (B8100r)
from September 2014 to mid October 2017 (OCO-2 Sci-
ence Team/Michael Gunson, 2017; Frankenberg et al., 2014;
Sun et al., 2018). We filter all measurements taken with a
sun-zenith angle of less than 70◦ in nadir mode over regions
whose IGBP land cover does not consist of water, forests or
crops or is not urban or mosaic. Samplings of the OCO-2
SIF (henceforth OCO2) and the OCO-2 SIF corrected for il-
lumination conditions through the division by the cos(SZA)
in the same way as the GOME-2 measurements (henceforth
OCO2.cosSZA; OCO2 and GOME-2 have different over-
pass times and therefore different instantaneous illumina-
tions at the time of measurement) are averaged to a climatol-
ogy based on 16-day averages sampled daily as a spatial av-
erage over different smaller regions of interest. The regional
averaging is necessary, as OCO-2 is not continuously sam-
pled like GOME-2.

2.2.5 Modelled GPP (FLUXCOM)

Another indicator of photosynthetic activity is provided by
the modelled GPP simulations from the FLUXCOM ini-
tiative (http://www.fluxcom.org/products.html, last access:
20 August 2018 Tramontana et al., 2016). The relation-

ships between land surface and environmental variables
and land–atmosphere energy and carbon fluxes learned at
FLUXNET eddy-covariance sites in the La-Thuile data
set (http://fluxnet.fluxdata.org/data/la-thuile-dataset/, last ac-
cess: 10 August 2018) are spatially up-scaled to the globe us-
ing a set of machine-learning techniques. FLUXCOM GPP
is generated in two set-ups, the “remote sensing set-up (RS-
GPP)” and the “meteorology+ remote sensing (METGPP)”
set-up. The former uses satellite-observed land surface con-
ditions to estimate the GPP at the 8-daily temporal resolution
and 1/12◦, and we use the years 2007–2015. The METGPP
represents an ensemble of GPP, where the mean annual cy-
cle of land surface conditions and additional information on
actual meteorological conditions from reanalysis is used in
the prediction at the 0.5◦ and daily resolution. We restrict the
METGPP data to the years 2007–2010, as simulation results
from all ensemble members are available for those years. We
aggregate to the 16-day averages sampled every day, consis-
tent with the MODIS sampling in the MCD43C4v006 data.
The RSGPP is linearly interpolated to daily values at 1/12◦.
The subsequent aggregation to 0.5◦ and running means over
16 days match the spatiotemporal resolution to all other data
sets. Together RSGPP and METGPP are referred to as the
modelled GPP.

2.2.6 Land cover

We use the ESA CCI land-cover classification and ag-
gregate it to the broader classes of mossy, bare/sparse,
grassy/herbaceous, woody, water covered and oth-
ers. The ESA CCI provides a tool to convert dis-
crete land-cover classes to continuous vegetation frac-
tions (http://maps.elie.ucl.ac.be/CCI/viewer/download/
ESACCI-LC-Ph2-PUGv2_2.0.pdf, last access: 23 Febru-
ary 2018, and Poulter et al., 2015), and we use it to obtain
land-cover fractions from the native 300 m pixels in 0.5◦

pixels for the period 2008–2012 (Fig. A1 in Appendix A).
The distribution of moss in these products is expected to be
problematic, because it is a complicated class to characterise
in terms of global land-cover products. Being partly based on
regional maps with varying thematic detail in their legends,
it is possible that this moss class in the ESA CCI is not
always accurately identified over certain regions, explaining
why moss cover is barely indicated in Siberia.

2.2.7 Eddy-covariance-derived GPP

We use eddy-covariance measurements from a subset of
the FLUXNET2015 data (http://fluxnet.fluxdata.org/, last ac-
cess: 29 July 2018; please note that FLUXCOM has been
trained on the earlier La Thuile dataset). We chose sites based
on data availability after 2007, situated north of 55◦ and that
were not characterised as forests (details on sites and site-
years used are provided in Table A1 in Appendix A). We use
the daily GPP derived using night-time (NT) and daytime
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Figure 1. ESA CCI land cover in regions with less than 5 % tree cover according to Hansen et al. (2013). Atmospherically corrected true
colour images are from Sentinel-2, taken at different dates in 2017. For the region shown in each image the majority land cover is given and
the tree cover percentage according to Hansen et al. (2013).

(DT) partitioning and aggregate it to 16 day-averages, mask-
ing out those days where less than 80 % of reliable measured
and gap-filled NEE values were available (with variable Us-
tar threshold and reference selected on the basis of the model
efficiency). Site-level air temperature (consolidated by ERA-
Interim and the MDS algorithm) was filtered for good quality
and gap-filling in the same way.

We also include the daily GPP derived from NEE by
night-time partitioning (Reichstein et al., 2005) from mea-
surements in Cherskiy, Russia (control site RU-Ch2; data
courtesy Mathias Göckede, Max-Planck-Institute for Bio-
geochemistry, Jena, Germany), where only days are used in
the average with short data gaps filled (less than 1 day).

2.3 The study area

Operational satellite-derived land-cover data sets exhibit sub-
stantial differences in the classes they assign to circumpo-
lar regions. We compared the ESA CCI land cover, Glo-
beLand30 by Chen et al. (2015) and the IGBP classification
from MODIS MCD12C1 and found that the classification of
the same area can range from barren to grasslands to open
shrub lands depending on the chosen data set (not shown). A
clear and generally accepted delineation of a class “tundra”
is not given. We therefore define our study area based on tree
cover as “polar treeless regions”.

Global data on annual forest cover gain and loss have been
provided by Hansen et al. (2013) based on Landsat images.
We take 2009 as representative of the period of investigation.
Based on information on the global tree cover in 2000, the
yearly losses until 2009 and the gains until 2009 (assuming
that the growth between 2000 and 2012 that is given in the
data set is linear), global tree cover in 2009 is estimated. We
aggregated from the original 30 arcsec resolution to 0.5◦. Re-
gions with less than 5 % tree cover north of 55◦ N are fixed
as our study area (cf. Fig. 1). In the data from Hansen et al.
(2013), a tree is defined to have a minimum height of 5 m,
which is tall for circumpolar areas. The studied area will
therefore include parts of the taiga–tundra transition zone,
tundra and polar deserts.

The landscape in this study area exhibits a complex mi-
crotopography caused by polygons and is characterised by
abundant (thaw) lakes. Though vegetation often fully covers
the ground (Stow et al., 2004), vascular plant cover is sparse
and the growing season and carbon uptake period, consisting
of 1 to 3 months, are short in high-latitude tundra. The RGB
images from Sentinel-2 for selected spots in Fig. 1 give ex-
amples of what tundra landscapes and the tundra–taiga tran-
sition can look like. Further, for small areas on the Alaska
North Slope and at the bottom of the Taymyr Peninsula (the
corresponding places are indicated in Fig. 1), Figs. 2 and 3 il-
lustrate the mean annual cycles of environmental conditions
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Figure 2. Climatologies of different atmospheric and land surface variables for a small area on the Taymyr Peninsula in Russia, indicated
in Fig. 1. Bold lines indicate the time period when air temperatures are above the freezing point (no axes displayed for temperature and
incoming radiation). Vertical dashed lines indicate the time of the year when the Sentinel-2 images shown in the second panel were taken.
Sentinel-2 images are atmospherically corrected and taken in 2017.

along with Sentinel-2 images at given points in time during
the growing season. Temperatures rise above the zero degree
Celsius line in late May, and snow melt is often only com-
pleted in June. The soil moisture modelled by GLEAM is
usually highest at the time of the start of the growing sea-
son and illumination is also close to its maximum. Tempera-
tures keep increasing until July (ice layers on lakes can per-
sist until July, cf. Fig. 1, example of the tundra close to the
Laptev Strait). GLEAM soil moisture is lowest at the time of
highest temperatures, while areas of open water are largest.
Light conditions are already diminishing. Temperatures fall
below the freezing point in late September to October. Dur-
ing this short period of favourable growing conditions vege-
tation phenology rapidly develops (cf. temporal sequences of
RGBs in Figs. 2, 3 and Arneth et al., 2006).

For the evaluation of soil moisture we will focus the
analysis on GLEAM data. GLEAM and AMSR-E/2 data
on soil moisture partly show different qualitative behaviour
(Figs. 2, 3, while they are more similar qualitatively in addi-
tional examples in Fig. A2 middle and bottom panel). Possi-
ble explanations might include the following: (1) Both refer
to slightly different quantities. AMSR-E/2 denotes the vol-
umetric soil moisture in the uppermost 1 cm of land sur-
face while GLEAM refers to surface-soil moisture (denoted
as 0-10 cm depth). Full comparability might thus not be
given. (2) The applicability of GLEAM data for high lati-
tudes has not been shown. (3) The fraction of open water
from AMSR-E/2 shows surprising behaviour, in that we ex-

pected the annual maximum to appear in early summer and
not very late in the summer. In the examples above of differ-
ent behaviour in the GLEAM and AMSR-E/2 soil moisture,
the latter shows similarly unexpected behaviour. This is in-
dicative of the problems that still need to be faced for soil
moisture retrievals in the high latitudes. (4) It is actually not
clear what these quantities mean in tundra ecosystems. The
microwave signal from the persistently wet peat base of the
moss layer can penetrate the dry moss layers (which might
reach a thickness of tens of centimetres), but the signal in
GLEAM in similar cases is unclear.

3 Results

3.1 Timing of the annual peak in vegetation activity
and greenness

The distribution of the timing of the annual maximum in po-
lar treeless regions (Fig. 4, regionally and over years) shows
a distinct order of the satellite vegetation proxies. All prox-
ies indicate the highest plant activity and biomass after the
summer solstice. While APAR is highest around DOY191
(10 July), the METGPP indicates the maximum photosyn-
thetic activity at a similar time and the RSGPP 4 days later. It
is the time when surface-soil moisture is almost at minimum,
according to GLEAM (Fig. A3). The SIF GFZ peaks only
about 1 week later (4 days later in the case of SIF.daily.int
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Figure 3. Climatologies of different atmospheric and land surface variables for a small area in the North Slope in Alaska, indicated in Fig. 1.
Bold lines indicate the time period when air temperatures are above the freezing point (no axes displayed for temperature and incoming
radiation). Vertical dashed lines indicate the time of the year when the Sentinel-2 images shown in the second panel were taken. Sentinel-2
images are atmospherically corrected and taken in 2017.

GFZ) around DOY202 (21 July). The observations show that
the SIF GFZ peak, potentially indicative of the highest photo-
synthesis, is reached in close synchrony with the annual tem-
perature peak. In fact, SIF GFZ is the only variable whose
distribution of the peak timing is not significantly different
from the one of temperature (paired two-sided t-test, sig-
nificance level of 5 %). On average, the SIF NASA peaks
only on 28 July (DOY 209), a similar time to when sur-
face inundation through open water is highest (Fig. A3, al-
though both the SIF NASA and AMSR-E/2 data indicate
a large range). Removing the effect of incoming radiation
from the SIF measurement by dividing by cos(sun zenith an-
gle) shifts the annual maximum for SIF.cosSZA GFZ by 6
days compared to SIF GFZ and by 11 days for SIF.cosSZA
NASA compared to SIF NASA, and there is comparatively
large scatter. The yearly maximum in vegetation indices oc-
curs in late July to early August, where EVI and NIRv peak
at around 31 July (DOY212), 1.5 weeks after the tempera-
ture and SIF GFZ maxima. On average, the VOD peaks in
close temporal agreement with EVI and NIRv. Finally, up to
5 days later the MODIS VIproduct as well the NDVI reach
their maxima in the first week of August. Statistically, the
NDVI peak timing is significantly different from the one of
all other vegetation proxies (paired two-sided t-test, 5 %).
The scatter between years and regions (standard deviation)
is smallest for the modelled GPP data, where the RS set-up
interestingly shows a larger spread. APAR and the vegeta-

tion indices based on MCD43C4 have standard deviations
of 12 to 14 days, slightly smaller than those of the MODIS
VIproducts and of the SIF GFZ data sets (17 to 20 days). The
largest uncertainties are shown by the SIF NASA data sets
and the VOD. Still, grouping indicators based on the simi-
larity of their intrinsic properties (e.g. RSGPP and METGPP,
SIF GFZ and SIF NASA, EVI, and NIRv) shows that such
groups have a consistent behaviour and follow a certain pat-
tern; APAR indices < modelled GPP < SIF < fAPAR (with
EVI, NIRv, VOD < NDVI).

3.2 Spatial patterns of the annual maxima of the
satellite vegetation proxies and of the lags
between them

There is considerable spatial variability in the timing of the
maximum for each satellite indicator (Fig. 5). In areas close
to the Date Line (i.e. easternmost Siberia and Alaska), most
proxies peak slightly earlier than in northern Canada (main-
land and islands) or the coasts of western and central Siberia
(i.e. Taymyr Peninsula and regions of the Lena delta and the
Laptev Strait). In general, the spatial pattern of the timing of
the annual maximum of the satellite indicators closely corre-
sponds qualitatively to the dynamics seen in air temperature
and partly in the surface-soil moisture (GLEAM). Incoming
light shows partly reversed patterns with an earlier maximum
irradiance in northern Canada and western-central Siberia.
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Figure 4. Distribution of the DOY of the peak of the different vegetation proxies over the study region and between years (spatial sampling
matched between data sets for each year). Bars in the boxes indicate the median, stars indicate the mean and the numbers below the bars
denote the spatiotemporal mean (standard deviation). Colours of the bars denote grouping of the different variables according to the families
of fAPAR, APAR, the modelled GPP, SIF and VOD.

We test whether the annual maximum is shifted system-
atically or whether there are spatial gradients in the peak
lag between proxies and plot maps of the average lag be-
tween the peaks of selected proxies and NDVI. We take the
NDVI because it is the most widely used vegetation index
for productivity studies, both from the satellite as well as in
ground-based observations, particularly in the polar tundra.
Figure 6 confirms the general pattern of a shifted annual peak
of NDVI as compared to NDVI.Rg, RSGPP, SIF GFZ, VOD
and the similar timing to EVI over the entire study area. The
NDVI.Rg, RSGPP, SIF GFZ, VOD and air temperature reach
their annual maxima at significantly different times than the
NDVI (Fig. A4). Figure 6 further shows that the lag is not
homogeneous in space, but that it is largest in vast areas of
polar desert in northern Canada, on Iceland and in the north-
ern part of the Siberian Taymyr Peninsula. Interestingly, the
tundra regions that exhibit the largest time difference of the
annual maximum between the individual vegetation prox-
ies and NDVI tend to correspond to those where the annual
maximum is reached comparatively late (Fig. 5). In contrast
to the denser vegetation cover on the Siberian coast, very
sparse vegetation (i.e. devoid of shrubs or woody vegetation)
characterises the northern Canadian regions, both the islands
and the mainland as well as the northern part of the Taymyr
Peninsula (cf. Fig. A1; Walker et al., 2005, their Fig. 1). In

addition, there is a comparatively high amount of lakes and
a high fraction of barren regions in the areas of large NDVI
lags in the central Siberian coastal areas (close to the Laptev
Strait), coastal Alaska North Slope and in mainland Canada
northwest of Hudson Bay. Similar results are obtained for
EVI.Rg, METGPP, SIF.daily.int GFZ (Fig. A5). Next to these
general observations, the VOD indicates a much later peak in
smaller but contiguous areas in northwestern Canada as well
as in the lake-rich regions on the Siberian coast (again the
coast close to the Laptev Strait). The NDVI lags to METGPP
are generally slightly larger than those to the RSGPP. No out-
standing region emerges for the lags when compared to SIF
NASA. The illumination correction of SIF (SIF.cosSZA) re-
duces the time difference to the NDVI when compared to the
instantaneous SIF, as expected.

3.3 Spatial patterns of peak timing and of peak lags to
the NDVI in relation to environmental variables

Putting the annual maximum of the NDVI into relation with
that of the environmental variables, partially similar spatial
patterns to the vegetation proxies emerge (Fig. 6). More pre-
cisely, air temperature and soil moisture (GLEAM minimum)
peak earlier everywhere and have the largest time difference
to the NDVI in the sparsely vegetated areas on Iceland, north-
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Figure 5. DOY of the annual maximum averaged over all years, as indicated by selected vegetation proxies.

ern Canada and parts of the Taymyr. Conversely, for the mi-
crowave retrievals of the amount of open water on the sur-
face, mixed temporal relationships with the NDVI peak are
observed. Most of the water mapped from microwave remote
sensing is present after the time of NDVI peak in large parts
of northern Canada, Greenland and inland masses close to the
Date Line, while the NDVI is at its maximum after the frac-
tion of open water in all other regions. Summer precipitation
might increase surface wetness and influence the microwave
fraction of open water, as the highest surface inundation is
typically expected to happen immediately after snow melt.

It is further interesting to test whether a certain tempo-
ral relationship between the maximum in photosynthesis or
greenness and the dynamics of the environmental conditions
holds across years. In Fig. 7, the environmental variable with
the highest absolute value of the rank correlation, with the
timing of the maximum of the given satellite proxy across
years in a spatial moving window, is displayed. The impor-
tant role of energy-related variables for vegetation activity
and growth, mostly temperature, is highlighted by the high-
est widespread correlations with temperature and radiation
for RSGPP, SIF GFZ, EVI and NDVI, while moisture-related
variables are most important only in about one third of the
pixels. The VOD and NDVI.Rg do show a strong relation-
ship, with the annual temperature maximum only in 25 % to
30 % of the pixels and about half of the pixels show a higher

importance of soil moisture or open water on the surface. It
is worth noting that the contiguous regions with higher re-
lationships with moisture-related variables for RSGPP, EVI
and NDVI are situated in northwestern Canada and parts of
the Taymyr (Fig. A6).

Interestingly, apart from the strong correlative relationship
of photosynthesis with temperature, the lags in the annual
peak timing between the temperature and SIF GFZ (Fig. A7)
are barely statistically significant. Peak lags between the RS-
GPP and temperature are only significant in northern Canada
and easternmost Siberia. Conversely, EVI, NDVI, VOD and
in the largest parts of the study area also NDVI.Rg, peak at
significantly different times in the year than air temperature.

3.4 Consistency of the annual peak lags between
different land covers and across years

The fact that there is spatial variability in the shift between
the annual peaks of the satellite proxies relative to the NDVI
suggests that the proxies differ in how strongly they indicate
the spatial gradients in the peak DOY. We test to what extent
the shift of the annual maximum holds across different years
and whether there is a dependency on the land cover. Figure 8
(and Fig. A8, but here based on the actual time series and not
the bootstrapped values) shows the peak lags as a function of
land cover based on the ESA CCI for all years in the study
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Figure 6. Average time difference of the maximum across years of selected vegetation proxies and the NDVI.

period separately. Peak lags to the NDVI per proxy are gener-
ally similar between land covers, although there is a tendency
in several proxies (excluding the VIproducts of MxD13C1,
METGPP, SIF NASA) towards larger lags in regions classi-
fied as moss. According to Fig. A1, this largely corresponds
to the sparsely vegetated areas in northern Canada, also with
high cover fractions of water and barren. The smallest lags of
RSGPP and SIF GFZ are shown for the mixed shrub and tree
land covers. There is also some variability between years,
which is largest for the timing of the moisture-related vari-
ables of the maximum extent of open water and the GLEAM
soil moisture minimum. Conversely, the variability in the
peak lag per land cover is smaller for the vegetation prox-
ies between years. The VOD is maximised 5 to 7 days earlier
than the NDVI in tundra-like vegetation types, but it has no
consistent relationship with the NDVI in forests and water.
Interesting patterns are the large NDVI-t2m lags in 2015 in
grass and herb areas and 2012 in mossy areas as well as the
particularly small lag in 2013 in mixed shrub and tree areas.
This behaviour between years is qualitatively similar to the
RSGPP-NDVI and SIF GFZ-NDVI but is rather caused by
the variability in the peak timing of temperature than of the
NDVI (not shown).

4 Discussion

Despite the considerable challenges for remote sensing ap-
plications in high latitudes and inherent comparatively large
variability in the timing of the annual maximum, the differ-
ences in the peak timing of families or groups of key satel-
lite indicators of plant productivity appear to be ordered in
the polar tundra. Absorbed energy (APAR, both EVI.Rg and
NDVI.Rg) is maximised roughly 1 month after peak irradi-
ance in early July. Regarding the modelled GPP and SIF as
indicators of photosynthetic activity, there is a time lag be-
tween them of 4 days to 2.5 weeks, depending on the com-
bination of data sets. The modelled GPP peaks at a simi-
lar time to APAR. SIF GFZ reaches its maximum 1 to 1.5
weeks after (21 July) at a very similar time to air tempera-
ture, but SIF NASA only reaches its maximum at the end of
July (DOY 209, 28 July). Greenness (EVI and NIRv) cul-
minates 3 weeks after APAR and 1.5 weeks after SIF GFZ.
NDVI maximum is delayed an average of 3 more days. Peak
vegetation water content is indicated by the VOD at a similar
time as EVI and NIRv. The spread in space and across years
is, however, large.

Vegetation activity is highly (though not exclusively)
temperature-driven in tundra (Stow et al., 2004; May et al.,
2017; Chapin, 1987). In the beginning of the growing season,
light is abundant and plants rely on rhizome nutrient and car-
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Figure 7. Frequency distribution of the pixel-wise Spearman’s rank correlation between the peak DOY of the vegetation proxies across
years and the peak DOY of environmental variables in spatial moving windows of 1.5◦ (9 spatial pixels times 10 years at most, correlated
only if more than 20 data points available). Plotted here is the variable with the highest absolute correlation without the filter for statistical
significance. Full correlations have been calculated (no partial correlations).

bohydrate reserves to rapidly increase photosynthetic activ-
ity (Arneth et al., 2006) and growth (Chapin, 1987) through
exposed moss, lichens and evergreens after snow melt and
the rapid leaf-out process of deciduous plants. The fact that
the photosynthesis seasonal maximum is reached in close
and significant (SIF GFZ and RSGPP) temporal agreement
with air temperature adds plausibility to the observed pat-
terns in the modelled GPP and SIF. As the time of favourable
environmental conditions for growth is short, several plant
types strongly build up their photosynthetic capacity until
late in the growing season to make use of the available light
and temperature (Rogers et al., 2017). At the time when
greenness is at a maximum, photosynthetic rates are decreas-
ing, as PAR is already strongly reduced and the tempera-
ture peak has also passed. The peak timing of the SIF be-
fore greenness might hence indicate that although photosyn-
thetic potential (fAPAR) is not yet fully developed, plants
profit from the higher amounts of light and maximal tem-
perature still present in the year to reach peak photosyn-
thetic rates in the second half of July. The prolonged build-up
of photosynthates in plant tissue results in a delayed maxi-
mum of green biomass. The widespread agreement between
greenness proxies and photosynthesis proxies in high corre-

lation with the temperature maximum across years and space
(Fig. 7) are also indicative of the coordinated dynamics of an-
nual maximum photosynthetic activity and the resulting peak
photosynthetic potential (fAPAR) with temperature.

The results of Chadburn et al. (2017) support this inter-
pretation of the patterns in the satellite observations. In their
site-level evaluation of carbon fluxes in the high latitudes in
Earth system models, GPP always depends on temperature
but is limited rather by the LAI in the first part of the growing
season until the end of July. After that, GPP is more driven
by light, which qualitatively agrees with the earlier photo-
synthesis peak seen in our results. Besides, at the site-level,
gas flux measurements show a similar timing of the maxi-
mum GPP in the first half of July or mid-July (Emmerton
et al., 2016) and at the time of the annual temperature peak
(Kross et al., 2014; Welker et al., 2004). This is similar to
Lafleur and Humphreys (2008), who report on the largest an-
nual site-level NEE after the summer solstice near the annual
temperature maximum between DOYs190–210 and the dom-
inant role of gross ecosystem productivity (GEP) in driving
these dynamics.

An interesting aspect of the general time lags between
proxies is the 10- to 12-day time difference between peak
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Figure 8. Average of the time difference between the peaks of one selected variable per family (APAR, fAPAR, SIF, GPP, VOD) and the
NDVI as a reference, weighted with fractional cover per vegetation type (based on ESA CCI) and per year. Each bar represents the average
of 50 bootstrap samples of the time series per year, pixel and vegetation proxy; error bars indicate a multiple of 1.96 of the standard deviation
across the 50 samples.

APAR and peak SIF GFZ. According to the Monteith model
for SIF, the observation of a time difference of peak APAR
and the peak SIF suggests that SIF might contain informa-
tion on the temporal dynamics of the actual photosynthetic
light-use-efficiency of tundra vegetation. Circum-arctic veg-
etation is adapted to low light intensities to also allow pho-
tosynthesis at low irradiance (Chapin, 1987; Rogers et al.,
2017, and references therein). Consequently, photosynthe-
sis will rapidly become light-saturated, a situation that calls
for high levels of non-photochemical quenching in order to
avoid photodamage and inhibition by excess energy. Under
these conditions, the efficiencies of carbon fixation and flu-
orescence emission are positively correlated (Porcar-Castell
et al., 2014). Consequently, our results indicate a potential
benefit of also using SIF in modelling the photosynthetic car-
bon uptake in the circumpolar tundra for its apparent sensi-
tivity to both APAR and photosynthetic light-use efficiency.

Although they did not report on results on GPP, Luus et al.
(2017) found higher agreement between the modelled NEE
and eddy-covariance-derived NEE when phenology is pre-
scribed by SIF instead of EVI in the tundra in Alaska.

Although the modelled GPP, SIF GFZ and SIF NASA are
indicators of photosynthetic activity and they peak closer to
the annual temperature maximum than both the APAR and
greenness indices, they do differ in peak timing as well. In
the following, we test a suite of possible explanations from a
physiological decoupling of SIF and GPP to artefacts origi-
nating from data processing and data characteristics.

1. The time difference of the yearly maximum of the GPP
model and SIF GFZ cannot be fully explained. Since
the SIF maximum is reached in close and statistically
significant temporal agreement with air temperature, it
might indicate that SIF shows a higher sensitivity of
photosynthetic rates to temperature. The earlier peak
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of the modelled GPP might be explained by a possi-
ble higher sensitivity to radiation as it is challenging to
model the effects of the water table depth and tempera-
ture acclimation. This is especially true for the MET-
GPP that culminates slightly earlier than the RSGPP,
which is driven by a mean seasonal cycle and greenness
that is not temporally resolved. Generally, the model
performance of the modelled GPP is reduced in ex-
treme climates (Tramontana et al., 2016). Furthermore,
the FLUXCOM GPP might not accurately represent the
GPP in tundra due to the small size of training data. The
FLUXCOM GPP is trained at the FLUXNET sites and
according to Tramontana et al. (2016), there are 11 sites
north of 55◦ that are not classified as forest or temperate
and serve the modelling of the GPP in our study area.
Five of them are located north of 65◦ and the three train-
ing sites classified as arctic are all located in Alaska.

We attempted to get an indication of whether – com-
pared to an in situ eddy-covariance-derived GPP and
site-level temperature – there is a systematic shift of
either the modelled GPP (for the 0.5◦ grid box whose
centre coordinates are closest to the flux tower) or the
SIF GFZ (16-day averages of all GOME-2 footprints
with centre coordinates within a radius of 30 km from
the flux tower). Such comparisons of satellite observa-
tions with site-level measurements can be very helpful
for the interpretation of the patterns seen from space,
but here they remain inconclusive. There is agreement
between the site-level and regional analyses with re-
spect to the order of the modelled GPP before temper-
ature, but the order regarding the time of the peak SIF
GFZ and temperature is reversed (SIF GFZ earlier at
the site level, but after temperature at the regional scale,
Figs. A9, A10). The comparison is hampered by a num-
ber of issues, including the (i) mismatch of scale and
spatial representativeness, (ii) limited temporal overlap
of site data with satellite records, (iii) data quality of the
NEE and temperature at the site level (e.g. Figs. A11–
A14), and (iv) quality of partitioning at the site level
(partly strongly different behaviour between partition-
ing methods; see Figs. A12, A14, though they mostly
converge versus the peak growing season; see also Run-
kle et al., 2013; Parazoo et al., 2018), (v) temporal scale
of daily integrated EC measurements and instantaneous
SIF observations in the morning (Parazoo et al., 2018,
who find similar effects in studying the start of the grow-
ing season). These issues clearly suggest that EC can-
not always be used as the “truth” in evaluating satellite
observations. At the same time these results strongly
underline the observational problems in the tundra ex-
plained in the introduction and call for more in situ mea-
surements that are well characterised and understood in
order to interpret the signals seen from the satellite.

As we do not find a physiological explanation, artefacts
in SIF might originate from seasonal cloud cover as well
as from satellite over-pass time and explain the time dif-
ference in the annual peak between the modelled GPP
and SIF GFZ. Clouds affect the SIF values, both physio-
logically at the leaf level and on its way from the canopy
to the satellite. A possible bias of rather clear-sky in-
stantaneous observations of SIF in the morning hours
compared to the modelled GPP, which is an all-day mea-
sure, might occur (Parazoo et al., 2018). Although there
have been no tests in tundra, in both model simulations
(Frankenberg et al., 2012) and empirical analyses (Köh-
ler et al., 2015) choosing different thresholds of cloud
cover does not strongly affect temporal patterns of SIF,
and a large fraction can still be detected in moderately
thick clouds. In our tests (Fig. A15), stricter cloud fil-
ters tend to slightly enlarge the lag between the mod-
elled GPP and SIF GFZ, while SIF NASA shows no
change. Conversely, SIF GFZ peak time shows no sensi-
tivity to over-pass time, while in SIF NASA, noon over
passes indicate a slightly earlier peak than using mea-
surements between 08:00 and 14:00 LST Although data
availability becomes problematic in the case of OCO-2,
resulting in discontinuous climatologies, there is mostly
agreement with OCO-2 SIF when averaged from larger
regions (Fig. A17). This suggests that the peak timing
obtained from GOME-2 SIF GFZ observations is reli-
able.

2. There is also a relatively large inconsistency between
SIF GFZ and SIF NASA. We conducted tests in which
we strictly filtered for the same cloud fractions (0.3) and
over-pass times (08:00–14:00 LST) in both data sets.
We did not attempt a one-to-one allocation of individ-
ual soundings between data sets, and it must be noted
that the cloud fraction is defined in a slightly different
way between SIF GFZ and SIF NASA (see methods).
Indeed, a stricter cloud filter of 0.3 instead of 0.5 de-
lays the SIF GFZ peak slightly, bringing it into closer to
but not reaching a full temporal agreement with the SIF
NASA peak (Fig. A15). Strict filtering for midday over
pass times advances (as expected; Parazoo et al., 2018)
the annual peak, but for other combinations of over-pass
filters no systematics appear.

We argue that the NASA data set is more prone to
noise (for example, for retrievals over bright surfaces
when there is partial snow cover) due to the generally
lower absolute values that result from a narrower re-
trieval window and that this severely affects the iden-
tification of the annual peak. This is indicated by the
large spread in Fig. 4, by the less pronounced spatial
patterns in Fig. 6 and by the time series examples in
Fig. A16. Further, the illumination correction amplifies
noise in the time series. This is thus an example for the
degradation of the signal by the division by cos(SZA)
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and calls for caution in applying it. We conclude that
the different cloud fractions can explain a part of the
difference between the SIF GFZ and SIF NASA and ar-
gue that the remaining difference might be ascribed to
the different noise levels in the two data sets that make a
reliable peak identification in SIF NASA more difficult
than in SIF GFZ and also lead to a larger spread.

In our results, the NDVI and the MODIS VIproducts are
the latest greenness proxies and peak around DOY216 (4 Au-
gust). The NDVI is a widely used indicator of productiv-
ity, and a comparison to both ground-based measurements
and satellite observations with the AVHRR instrument shows
mostly support for the NDVI peak in very late July or the
beginning of August. The ground NDVI along a transect in
Alaska by Stow et al. (2004) and Stow et al. (2004) agree
with the MODIS NDVI in that the seasonal maximum is ob-
served at DOY218 in the beginning of August. In a second
year there is even a second peak at DOY230 in the ground-
based NDVI. Huemmrich et al. (2010a) show a time series of
ground-based NDVI in Alaska that reaches the peak about 2
weeks earlier (at DOY203) than the average MODIS NDVI
in our results but remains high until the end of August. How-
ever, May et al. (2017) report on peak dates of in situ mea-
sured NDVI in Alaska roughly 1 week to 2 weeks earlier
(DOY 199-207) and talk about the beginning of senescence
after the first sunset in late July to the beginning of August.
Finally, the satellite-based biweekly NDVI from the AVHRR
instrument is shown to peak between 22 July and 4 August
(Stow et al., 2004; Zhou et al., 2001). Still, the onset and the
peak timing of MODIS-based NDVI have also been found
to be inconsistent with ground-based observations of NDVI
(Gamon et al., 2013), which might suggest partly question-
able reliability of satellite NDVI.

While the reported ground observations were all con-
ducted in Alaska, in our circumpolar results the NDVI largely
agrees with the other vegetation indices of the EVI and NIRv,
only peaking later in the north-easternmost parts of Canada
(Figs. 6 and A5). In addition to the Taymyr and coastal North
Slope Alaska, these are the same regions where the NDVI
lags to all other proxies are also largest. According to the
ESA CCI land cover, those regions are characterised by moss
(Fig. 1). Moss often has no clear seasonal cycle of greenness,
making a peak identification difficult. Moreover, vegetation
is particularly sparse in the form of prostrate dwarf shrubs,
and there are extensive barren areas with rich lake cover in
those northern Canadian areas (Fig. A1; Walker et al., 2005,
their Figs. 1, 2e and 3). This renders the reflectance-based
observation particularly sensitive to background conditions,
especially without a clear seasonality in greenness (Walker
et al., 2005, their Fig. 2f). Confirmation for this hypothe-
sis of the strong contamination of the NDVI signal is given
by the sharp transition from the very large lags in northeast-
ern mainland Canada (eastern Barren Grounds) to lower al-
beit still negative lags to the northwestern part of mainland

Canada (Fig. 6 and A5, corresponding to the land-cover tran-
sition between bare and sparse in the western parts of the
Barren Grounds to moss in the more easterly regions of the
Barren Grounds in Fig. 1). Similar to the northern Canadian
islands and northeastern mainland, northwestern Canada is
characterised by many lakes (Walker et al., 2005), and the
ESA CCI land-cover reports sparse vegetation with much
moss and open water as well (Fig. A1). However, in these
more western areas, vegetation changes to erect dwarf shrubs
and graminoids instead (Walker et al., 2005, their Fig. 3),
which exhibit a clearer seasonality (Fig. A18, panel of north-
western Canada) than the very sparse vegetation in the east-
ern parts with prostrate shrubs (Fig. A18, northern mainland
and islands of the Canadian Arctic Archipelago, northeastern
Canada and Iceland). These are also less affected by increas-
ing values at the beginning and at the end of the growing
season that are even partially higher than the summer max-
imum, severely influencing the identification of the annual
peak. We speculate that possible explanations for this might
be an increasing effect of low SZA late in the growing season
(Kobayashi et al., 2016), affecting low NDVI in particularly
sparse vegetation heavily. The NDVI might also be strongly
decreased by standing surface water (Gamon et al., 2013)
from snow melt or intermittent precipitation that has not yet
drained or evaporated until later in the growing season. Only
upon drying will the NDVI increase due to the missing water
absorption in the near infrared, and this might most strongly
affect the trajectory of the NDVI in the sparsely vegetated
regions with the largest peak lags.

The highest vegetation water content is indicated by the
VOD at a very similar time to the peak values of the vegeta-
tion indices, which might corroborate the usefulness of VOD
to indicate vegetation biomass in tundra ecosystems, too.
Both vegetation indices and the VOD are sensitive to veg-
etation structure and density and VOD in addition to water
content (Liu et al., 2011). Especially in low biomass regions
– as applied for tundra – a linear relationship between the
VOD and vegetation water content has been found (Teubner
et al., 2018). The similarity of the VOD as an indicator of to-
tal aboveground biomass to the vegetation indices might also
support our interpretation of delayed peak greenness com-
pared to photosynthesis, which is due to the longer-lasting al-
location of plant material and pigments and indicate that the
proposed relationship by Teubner et al. (2018) between the
VOD, vegetation water content, LAI and GPP does not fully
hold in the tundra. Conversely, when looking at examples of
the mean seasonality of the VOD in comparison to the other
vegetation proxies for selected regions (Fig. A19), the VOD
annual cycle appears broader and the peak less well defined
than the one of the vegetation indices. This could indicate
that the vegetation water content changes only slightly dur-
ing the growing season, while the chlorophyll concentrations
possibly independently exhibit more pronounced dynamics
and affect the vegetation indices to a greater degree. Another
possible factor contributing to the broader annual cycle is the
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VOD’s relation to the water content of the total aboveground
biomass (as opposed to green or photosynthetic biomass), in-
cluding moss, woody components and litter. If persistently
wet, moss might drive the VOD signal and the greenness
signal, though to a lesser degree. There is a high sensitiv-
ity of moss to air humidity as a consequence of the absence
of roots. Despite a wet peat layer, there might be several cen-
timetres of dry moss material. In grassy land, consistently
high emissions and a consequently lower VOD seasonality
were ascribed to the contributions of litter and wet vegeta-
tion components (Grant et al., 2016). Similar mechanisms
might also hold for the VOD observations in tundra, espe-
cially considering that carbon turnover is slow in the high
latitudes. It is also not clear what the VOD signal on water
saturated soil might be. Moreover, the retrieval of the VOD is
strongly dependent on the representation of open water and
soil moisture. Considering that the retrieval algorithms have
not been calibrated for tundra-like conditions and that with
the high heterogeneity regarding plant types and landscape
components, it might be difficult to accurately separate the
contributions of vegetation from soil and water, it is not clear
what the VOD in tundra means. In future studies it would
be useful to analyse a suite of different VOD products from
different sensors and wavelengths along with in situ observa-
tions in order to understand whether greenness and vegeta-
tion water content are strongly coupled in tundra or not and
to what extent different retrievals affect the results.

Overall it must be stated that gaps in the data and the short
growing season with often small seasonality and high noise
levels challenge the reliable identification of phenological
dates in all data sets.

5 Conclusions

We analysed and compared satellite-based indicators of plant
productivity with respect to the timing of their maximum in
arctic treeless regions. Over the whole study area, peak pro-
ductivity is generally reached in July with an order of APAR,
culminating in the first half of July along with the modelled
GPP and followed by SIF GFZ one week later in synchrony
with the highest annual temperatures. SIF NASA is delayed
by 1 week. The EVI and NIRv indicate maximum greenness
in the end of July, along with VOD as a proxy for vegeta-
tion water content. NDVI and MODIS VIproducts peak only
in the first week of August. We interpret this sequence as
the growth and synthesis of leaf tissue and pigments even
after optimal conditions for assimilation regarding light and
temperature have passed. Peak photosynthesis occurs earlier,
at a time when full photosynthetic potential has not yet de-
veloped but when light is still abundant and the temperature
favourable. The largest lags between the NDVI and photo-
synthesis indicators are found in regions with particularly
sparse vegetation and without a clear seasonality in spectral

reflectance that can heavily be confounded by low sun angles
and the high abundance of lakes.

To our knowledge, only few studies of tundra vegetation
have been based on other variables observed than spectral
reflectance (Luus et al., 2017; Parazoo et al., 2018). It was
questioned a priori whether current satellite-based SIF data
sets are useful for tundra vegetation considering the very
large footprints, high susceptibility to noise and very small
signals from the sparse vegetation. However, the spatial pat-
terns of peak productivity of SIF are qualitatively similar to
the ones seen in the modelled GPP and reflectance-based ob-
servations. Furthermore, the fact that the SIF maximum is
reached in close temporal agreement with air temperature
might indicate a benefit for photosynthesis from the high-
est temperatures. The general time difference between the
proxies of APAR and SIF suggest that there is information
on light-use-efficiency contained in the SIF observations.
Still, further studies are needed to verify this. The results of
our study confirm the important separation between indica-
tors of greenness and photosynthesis and also highlight non-
negligible differences between data sets of the same indica-
tors. Regarding data availability in the future, similar cross
comparisons to the chlorophyll–carotenoid index (Gamon
et al., 2016) and the photochemical reflectance index (Ga-
mon et al., 1992) in tundra might still add additional comple-
mentary information on circumpolar vegetation dynamics.

Code and data availability. Code and data available upon request.

www.biogeosciences.net/15/6221/2018/ Biogeosciences, 15, 6221–6256, 2018



6238 S. Walther et al.: Assessing the dynamics of vegetation productivity in circumpolar regions

Appendix A

Averaged over all sites and years (Fig. A9), site-GPP peaks
about 10 days earlier than site-level air temperature, with
both partitioning and the quality filter shifting the peak time
up to 5 days. Time lags of very similar magnitudes are shown
by the grid-cell modelled GPP. In this respect the patterns at
the site level agree with the slightly earlier GPP-model peak,
compared to the temperature peak seen in the regional and
interannual analyses (Fig. 4). Conversely, while in the large-
scale pattern, SIF GFZ and SIF NASA peak close to but
slightly later than the air temperature; at the site level, SIF
GFZ indicates a maximum at a similar time to the modelled
GPP and the EC-derived GPP (excluding spurious results
from sites NO-Adv, DK-ZaF and DK-ZaH, where strong dif-
ferences between the partitionings are apparent and/or an an-
nual cycle in the SIF data are absent; Fig. A12) and peaks
before air temperature.

Figure A1. Fractions of the aggregated land-cover classes for the ESA CCI land-cover data set. The aggregated classes comprise “moss”
(class 100 in the ESA CCI classification), “bare/sparse” (classes 28–30, 35–37, fractions of 16 and 19), “grass/herbaceous” (classes 26,
fractions of 13, 16, 19, 21–25, 33), “woody” (shrubs and trees, classes 10–12, 14, 15, 17, 18, 20, fractions of 13, 16, 19, 21–25, 31–33),
“water” (class 38, fractions of 31–33) and “other” (remaining classes and fractions).

For individual sites the patterns are less clear. Despite a
frequent tendency for an earlier peak of the EC-GPP, the
signs of the time lags between the peak EC-GPP and tem-
perature are not consistent. For NO-Adv, RU-Cok, RU-Sam
and SE-St1, partially strong dependencies of the peak DOY
on the partitioning method and the quality filter are seen. The
modelled GPP is maximised somewhat earlier than the site-
level temperature, and at some sites the lags become very
small. For the sites where the SIF time series show a growing
season and not pure noise, which excludes DK-ZaF, DK-ZaH
(Fig. A12) and NO-Adv, SIF GFZ reaches its maximum ear-
lier on average than the site-level temperature, although there
is a large spread in the magnitude of the lag of 3 to 26 days
between sites.
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Laptev grass

Laptev Strait

Siberian forest

Figure A2. Climatologies of different atmospheric and land surface variables for different small area indicated in Fig. 1. Bold lines indicate
the time period when air temperatures are above the freezing point (no axes displayed for temperature and incoming radiation).
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Figure A3. Distribution of the DOY of the peak of the different environmental variables over the study region and between years (spatial
sampling matched between data sets for each year). Bars in the boxes indicate the median, stars indicate the mean and the numbers below
the bars denote the spatial mean (standard deviation).

Figure A4. Average time difference of the yearly maximum across years between selected vegetation proxies and the NDVI based on 50
bootstrap samples of each year’s time series. Shown are only statistically significant differences at a level of 5 %.
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Figure A5. Average time difference of the maximum across years of selected vegetation proxies and the NDVI.

Figure A6. Spearman’s rank correlation between the peak DOY of the vegetation proxies across years and the peak DOY of environmental
variables in spatial moving windows of 1.5◦ (9 spatial pixels times 10 years at most, correlated only if more than 20 data points available).
Plotted here is the variable with the highest absolute correlation without filter for statistical significance. Full correlations have been calculated
(no partial correlations).
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Figure A7. Average time difference of the yearly maximum across years between selected vegetation proxies and the air temperature based
on 50 bootstrap samples of the time series. Shown are only statistically significant differences at a level of 5 %.

Figure A8. Average of the time difference between the peaks of various variables and the NDVI as a reference per vegetation type (based on
ESA CCI) and per year. The “avg.peak” represents the average of the lags in the individual years.
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Figure A9. Difference in peak timing in the different indicators to site-level temperature over years at selected FLUXNET sites. Diamonds
represent the average peak lag across all years and sites, while squares indicate the average peak time across years and sites, excluding
NO-Adv, DK-ZaH and DK-ZaF (where either no seasonality in SIF or strong issues between different partitioning methods are apparent).

Figure A10. Difference in peak timing of the different indicators to site-level temperature over years at selected FLUXNET sites. Diamonds
represent the average peak lag across all years per site and variable.
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Figure A11. SE-St1: Time series (16 day averages) of quality filtered air temperature and NEE; blue bars indicate fraction of available good
quality temperature data and gray bars indicate fraction of good and gap-filled NEE data. The middle panel depicts the GPP derived from
the night-time and daytime partitioning of NEE measurements, filtered for 80 % of good quality and gap-filled NEE along with unfiltered
measurements. The modelled GPP is taken from the 0.5◦ grid cell with centre coordinates closest to the tower. The bottom panel displays
the 16 day averages of SIF GFZ footprints within 30 km of the site.
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Figure A12. DK-ZaH: Time series (16 day averages) of quality filtered air temperature and NEE; blue bars indicate fraction of available good
quality temperature data and gray bars indicate fraction of good and gap-filled NEE data. The middle panel depicts the GPP derived from
the night-time and daytime partitioning of NEE measurements, filtered for 80 % of good quality and gap-filled NEE along with unfiltered
measurements. The modelled GPP is taken from the 0.5◦ grid cell with centre coordinates closest to the tower. The bottom panel displays
the 16 day averages of SIF GFZ footprints within 30 km of the site.
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Figure A13. FI-Lom: Time series (16 day averages) of quality filtered air temperature and NEE; blue bars indicate fraction of available good
quality temperature data and gray bars indicate fraction of good and gap-filled NEE data. The middle panel depicts the GPP derived from
the night-time and daytime partitioning of NEE measurements, filtered for 80 % of good quality and gap-filled NEE along with unfiltered
measurements. The modelled GPP is taken from the 0.5◦ grid cell with centre coordinates closest to the tower. The bottom panel displays
the 16 day averages of SIF GFZ footprints within 30 km of the site.
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Figure A14. RU-Cok: Time series (16 day averages) of quality filtered air temperature and NEE; blue bars indicate fraction of available good
quality temperature data and gray bars indicate fraction of good and gap-filled NEE data. The middle panel depicts the GPP derived from
the night-time and daytime partitioning of NEE measurements, filtered for 80 % of good quality and gap-filled NEE along with unfiltered
measurements. The modelled GPP is taken from the 0.5◦ grid cell with centre coordinates closest to the tower. The bottom panel displays
the 16 day averages of SIF GFZ footprints within 30 km of the site.
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Figure A15. Distribution of the annual peak DOY across years and the study area of SIF GFZ and SIF NASA, with different filters for cloud
cover and over-pass time applied. Please note that the sampling of peak values is matched for each year between data sets, which explains
slightly differing means and sd values depending on which vegetation proxies are included in the comparison.
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Figure A16. Mean seasonal cycles of SIF data from GOME-2 for the two retrievals GFZ and NASA. Values are given in mW/(m2 sr nm).
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Figure A17. Mean seasonal cycles of SIF data from GOME-2 and OCO-2 as a comparison. Values are scaled to 0/1.
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Figure A18. Mean seasonal cycles of MODIS vegetation indices calculated from NBAR reflectances (MCD43C4) and as provided by the
MODIS VIproduct (MxD13C1). Values are scaled to 0/1.

Figure A19. Mean seasonal cycles of selected proxies averaged over smaller regions, as indicated in Fig. 1.
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Table A1. Sites and years used for a comparison of eddy-covariance derived GPP, SIF footprints within 30 km radius of the tower as well as
the modelled GPP from the closest 0.5◦ grid cell.

Site ID Years IGBP Long Lat doi

NO-Adv 2012–2014 WET 15.923 78.186 https://doi.org/10.18140/FLX/1440241
DK-ZaF 2008–2011 WET −20.5545 74.4814 https://doi.org/10.18140/FLX/1440223
DK-ZaH 2007–2014 GRA −20.5503 74.4732 https://doi.org/10.18140/FLX/1440224
RU-Sam 2007–2014 GRA 126.4958 72.3738 https://doi.org/10.18140/FLX/1440185
RU-Tks 2010–2014 GRA 128.8878 71.5943 https://doi.org/10.18140/FLX/1440244
RU-Cok 2007–2013 OSH 147.4943 70.8291 https://doi.org/10.18140/FLX/1440182
US-Atq 2007–2008 WET −157.4089 70.4696 https://doi.org/10.18140/FLX/1440067
SE-St1 2012–2014 WET 19.0503 68.3541 https://doi.org/10.18140/FLX/1440187
FI-Lom 2007–2009 WET 24.2092 67.9972 https://doi.org/10.18140/FLX/1440228
DK-NuF 2008–2014 WET −51.3861 64.1308 https://doi.org/10.18140/FLX/1440222
US-Ivo 2007 WET −155.7503 68.4865 https://doi.org/10.18140/FLX/1440073
RU-Ch2 2013–2016 WET 161.3509 68.61689 https://doi.org/10.18140/FLX/1440181
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