

Wirtschafts- und Sozialwissenschaftliche Fakultät

Eldar Sultanow | Christian Koch | Sean Cox

Collatz Sequences in the Light of Graph Theory

Fourth Version

Preprint published at the Institutional Repository of the Potsdam University: https://doi.org/10.25932/publishup-44325
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-443254
1 Introduction 3
1.1 Motivation 3
1.2 Related Research 3
2 The Collatz Tree 7
2.1 The Connection between Groups and Graphs 7
2.2 Defining the Tree 8
2.3 Relationship of successive nodes in H_{C} 10
2.4 Relationship of sibling nodes in H_{C} 11
2.5 A vertex's n-fold left-child and right-sibling in H_{C} 13
2.6 Left-child and right-sibling in the $5 x+1$ variant of H_{C} 13
2.7 A remark about cycles 14
2.8 Which variants of H_{C} have non-trivial cycles? 15
2.9 Existence of a solitary cycle for $k=1$ 17
2.10 Verifying alpha's upper limit for the $1 x+1$ variant of H_{C} 18
3 Examination of $H_{C, 3}$ 21
3.1 The product in the condition for alpha's upper limit 21
4 Conclusion and Outlook 23
4.1 Summary 23
4.2 Further Research 23
A Appendix 25
A. 1 An alternative proof for alpha's upper limit for $H_{C, 1}$ 25
Literature 27

Abstract

About Us31

1. Introduction

Abstract

It is well known that the inverted Collatz sequence can be represented as a graph or a tree. Similarly, it is acknowledged that in order to prove the Collatz conjecture, one must demonstrate that this tree covers all odd natural numbers. A structured reachability analysis is hitherto not available. This paper investigates the problem from a graph theory perspective. We define a tree that consists of nodes labeled with Collatz sequence numbers. This tree will be transformed into a sub-tree that only contains odd labeled nodes. The analysis of this tree will provide new insights into the structure of Collatz sequences. The findings are of special interest to possible cycles within a sequence. Next, we describe the conditions which must be fulfilled by a cycle. Finally, we demonstrate how these conditions could be used to prove that the only possible cycle within a Collatz sequence is the trivial cycle, starting with the number one, as conjectured by Lothar Collatz.

1.1 Motivation

The Collatz conjecture is a number theoretical problem, which has puzzled countless researchers using myriad approaches. Presently, there are scarcely any methodologies to describe and treat the problem from the perspective of the Algebraic Theory of Graphs. Such an approach is promising with respect to facilitating the comprehension of the Collatz sequence's "mechanics".

The current gap in research forms the motivation behind the present contribution. The authors are convinced that exploring the Collatz conjecture in an algebraic manner, relying on the findings and fundamentals of Graph Theory, will contribute to a simplification of the problem as a whole.

1.2 Related Research

The following literature study is largely based on one given by a similar earlier essay [1] which deals with the Collatz conjecture from the vantage of automata theory.

The Collatz conjecture is one of the unsolved "Million Buck Problems" [2]. When Lothar Collatz began his professorship in Hamburg in 1952, he mentioned this problem to his colleague Helmut Hasse. From 1976 to 1980, Collatz wrote several letters but missed referencing that he first proposed the problem in 1937. He introduced a function $g: \mathbb{N} \rightarrow \mathbb{N}$ as follows:

$$
g(x)= \begin{cases}3 x+1 & 2 \nmid x \tag{1.1}\\ x / 2 & \text { otherwise }\end{cases}
$$

This function is surjective, but it is not injective (for example $g(3)=g(20)$) and thus is not reversible.

In his book "The Ultimate Challenge: The $3 x+1$ Problem" [3], along with his annotated bibliographies [4], [5] and other manuscripts like an earlier paper from 1985 [6], Lagarias reseached and put together different approaches from various authors intended to describe and solve the Collatz conjecture.

For the integers up to $2,367,363,789,863,971,985,761$ the conjecture holds valid. For instance, see the computation history given by Kahermanes [7] that provides a timeline of the results which have already been achieved.

Inverting the Collatz sequence and constructing a Collatz tree is an approach that has been carried out by many researchers. It is well known that inverse sequences [8] arise from all functions $h \in H$, which can be composed of the two mappings $q, r: \mathbb{N} \rightarrow \mathbb{N}$ with $q: m \mapsto 2 m$ and $r: m \mapsto(m-1) / 3$:

$$
H=\left\{h: \mathbb{N} \rightarrow \mathbb{N} \mid h=r^{(j)} \circ q^{(i)} \circ \ldots, i, j, h(1) \in \mathbb{N}\right\}
$$

An argumentation that the Collatz Conjecture cannot be formally proved can be found in the work of Craig Alan Feinstein [9], who presents the position that any proof of the Collatz conjecture must have an infinite number of lines and thus no formal proof is possible. However, this statement will not be acknowledged in depth within this study.

Treating Collatz sequences in a binary system can be performed as well. For example, Ethan Akin [10] handles the Collatz sequence with natural numbers written in base 2 (using the Ring \mathbb{Z}_{2} of two-adic integers), because divisions by 2 are easier to deal with in this method. He uses a shift map σ on \mathbb{Z}_{2} and a map τ :

$$
\sigma(x)=\left\{\begin{array}{lll}
(x-1) / 2 & 2 \nmid x & \tau(x)= \begin{cases}(3 x+1) / 2 & 2 \nmid x \\
x / 2 & \text { otherwise }\end{cases} \\
x / 2 & \text { otherwise }
\end{array}\right.
$$

The shift map's fundamental property is $\sigma(x)_{i}=x_{i+1}$, noting that $\sigma(x)_{i}$ is the i-th digit of $\sigma(x)$. This property can easily be comprehended by an example $x=5=1010000 \ldots=$ $x_{0} x_{1} x_{2} \ldots$, containing $\sigma(x)=2=0100000 \ldots$

Akin then defines a transformation $Q: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by $Q(x)_{i}=\tau^{i}(x)_{0}$ for non-negative integers i which means $Q(x)_{i}$ is zero if $\tau^{i}(x)$ is even and then it is one in any other instance. This transformation is a bijective map that defines a conjugacy between τ and $\sigma: Q \circ \tau=\sigma \circ Q$ and it is equivalent to the map denoted Q_{∞} by Lagarias [6] and it is the inverse of the map Φ introduced by Bernstein [11]. Q can be described as follows: Let x be a 2 -adic integer. The transformation result $Q(x)$ is a 2-adic integer y, so that $y_{n}=\tau^{(n)}(x)_{0}$. This means, the first bit y_{0} is the parity of $x=\tau^{(0)}(x)$, which is one, if x is odd and otherwise zero. The next bit y_{1} is the parity of $\tau^{(1)}(x)$, and the bit after next y_{2} is parity of $\tau \circ \tau(x)$ and so on. The conjugancy $Q \circ \tau=\sigma \circ Q$ can be demonstrated by transforming the expression as follows: $(\sigma \circ Q(x))_{i}=Q(x)_{i+1}=\tau^{(i+1)}(x)_{0}=\tau^{(i)}(\tau(x))_{0}=Q(\tau(x))_{i}$

A simulation of the Collatz function by Turing machines has been presented by Michel [12]. He introduces Turing machines that simulate the iteration of the Collatz function, where he considers them having 3 states and 4 symbols. Michel examines both turing machines, those that never halt and those that halt on the final loop.

A function-theoretic approach to this problem has been provided by Berg and Meinardus [13], [14] as well as Gerhard Opfer [15], who consistently relies on the Berg's and Meinardus' idea. Opfer tries to prove the Collatz conjecture by determining the kernel intersection of two linear operators U, V that act on complex-valued functions. First he determined the kernel of V , and then he attempted to prove that its image by U is empty. Benne de Weger [16] contradicted Opfer's attempted proof.

Reachability Considerations based on a Collatz tree exist as well. It is well known that the inverted Collatz sequence can be represented as a graph; to be more specific, they can be depicted as a tree [17], [18]. It is acknowledged that in order to prove the Collatz conjecture, one needs to demonstrate that this tree covers all (odd) natural numbers.

The Stopping Time theory has been introduced by Terras [19], it has been taken up and continued, inter alia, by Silva [20] and Idowu [21]. Terras introduces another notation of the Collatz function $T(n)=\left(3^{X(n)} n+X(n)\right) / 2$, where $X(n)=1$ when n is odd and $X(n)=0$ when n is even, and defined the stopping time of n, denoted by $\chi(n)$, as the least positive k for which $T^{(k)}(n)<n$, if it exists, or otherwise it reaches infinity. Let L_{i} be a set of natural numbers, it is observable that the stopping time exhibits the regularity $\chi(n)=i$ for all n fulfilling $n \equiv l\left(\bmod 2^{i}\right), l \in L_{i}, L_{1}=\{4\}, L_{2}=\{5\}, L_{4}=\{3\}, L_{5}=\{11,23\}, L_{7}=\{7,15,59\}$ and so on. As i increases, the sets L_{i}, including their elements, become significantly larger. Sets L_{i} are empty when $i \equiv l(\bmod 19)$ for $l=3,6,9,11,14,17,19$. Additionally, the largest element of a non-empty set L_{i} is always less than 2^{i}.

Dynamical systems provide a wide basis for examining the Collatz sequence as well [22]. A dynamical system [23, p. 464] is a triple (M, G, Φ) for a set M, a group ($G,+$) and a map $\Phi: M \times G \rightarrow M$ for which $\Phi(\cdot, 0)=i d_{M}(\cdot)$ firstly applies and secondly $\Phi(\Phi(m, s), t)=\Phi(m, s+t)$ for all $m \in M, s, t \in G$. The set M is called phase space. Terence Tao [24] considers orbits of the dynamical system generated by the Collatz map (an orbit is a subset of the phase space). He proved that almost all of these orbits attain almost bounded values. To achieve this, he advanced the results of Allouche [25] and Korec [26]. Their main idea was to prove that the set of positive integers with finite stopping time has density one, whereas the term density refers to the concept of natural density (also referred to as asymptotic density). It measures how large a subset of the set of natural numbers is. The natural density of a set $M \subseteq \mathbb{N}$ is defined as:

$$
\lim _{n \rightarrow \infty} \frac{\#\{m \in M: m<n\}}{n}
$$

In this context, the authors used the Collatz map as the map Φ. They showed that the set $\{x \in \mathbb{N}:(\exists t \in \mathbb{N})(\Phi(x, t)<x)\}$ has a natural density one.

Many other approaches exist as well. From an algebraic perspective Trümper [27] analyzes the Collatz problem in the light of an Infinite Free Semigroup. Kohl [28] generalized the problem by introducing residue class-wise affine, in short, by utilizing rcwa mappings. A polynomial analogue of the Collatz Conjecture has been provided by Hicks et al. [29] [30] and there are also stochastical, statistical and Markov chain-based and permutation-based approaches to proving this elusive theory.

2. The Collatz Tree

2.1 The Connection between Groups and Graphs

Let $\left(a_{k}\right)$ be a numerical sequence with $a_{k}=g^{(k)}(m)$, then a reversion produces an infinite number of sequences of reversely-written Collatz members [8].

Let S be a set containing two elements q and r, which are bijective functions over \mathbb{Q} :

$$
\begin{align*}
& q(x)=2 x \\
& r(x)=\frac{1}{3}(x-1) \tag{2.1}
\end{align*}
$$

Let a binary operation be the right-to-left composition of functions $q \circ r$, where $q \circ r(x)=$ $q(r(x))$. Composing functions is an associative operation. All compositions of the bijections q and r and their inverses q^{-1} and r^{-1} are again bijective. The set, whose elements are all these compositions, is closed under that operation. It forms a free group F of rank 2 with respect to the free generating set S, where the group's binary operation \circ is the function composition and the group's identity element is the identity function $i d_{\mathbb{Q}}=e$. We call e an empty string. F consists of all expressions (strings) that can be concatenated from the generators q and r. The corresponding Cayley graph $\operatorname{Cay}(F, S)=G$ is a regular tree whose vertices have four neighbors [31, p. 66]. A tree is called regular or homogeneous when every vertex has the same degree, in this case, $d(v)=4$ for every vertex v in G. The Cayley graph's set of vertices is $V(G)=F$, and its set of edges is $E(G)=\left\{\{f, f \circ s\} \mid f \in F, s \in\left(S \cup S^{-1}\right) \backslash\{e\}\right\}[31$, p. 57]. More precisely, the vertices are labeled by the elements (strings) of F.

In conformance with graph-theoretical precepts [32], [33], [34] we specify a subgraph H of G as a triple $\left(V(H), E(H), \psi_{H}\right)$ consisting of a set $V(H)$ of vertices, a set $E(H)$ of edges, and an incidence function ψ_{H}. The latter is, in our case, the restriction $\left.\psi_{G}\right|_{E(H)}$ of the Cayley graph's incidence function to the set of edges that only join vertices, which are labeled by a string over alphabet $\{r, q\}$ without the inverses: $E(H)=\{\{f, f \circ s\} \mid f \in F, s \in S \backslash\{e\}\}$.

This subgraph corresponds to the monoid S^{*}, which is freely generated by S follows related thoughts [27] that examine the Collatz problem in terms of a free semigroup on the set S^{-1} of inverse generators. Note that this semigroup is not to be confused with an inverse semigroup "in which every element has a unique inverse" [35, p. 26], [31, p. 22].

Let $Y^{X}=\{f \mid f$ is a map $X \rightarrow Y\}$ be the set of functions, which in category theory is referred to as the exponential object for any sets X, Y. The evaluation function $e v: Y^{X} \times X \rightarrow Y$ sends the pair (f, x) to $f(x)$. For a detailed description of this concept, see [36, p. 127], [37, p. 155], [38, p. 54] and [39, p. 188]. We define the evaluation function $e v_{S^{*}}: S^{*} \times\{1\} \rightarrow \mathbb{Q}$ that evaluates an element of S^{*}, id est a composition of q and r, for the given input value 1 .

Figure 2.1: Small section of H_{T} with darkly highlighted subtree H_{U}

Furthermore we define the corestriction $e v_{S^{*}}^{0}$ of $e v_{S^{*}}$ to \mathbb{N}. Since a corestricion of a function resricts the function's codomain [40, p.3], the function $e v_{S^{*}}^{0}$ operates on a subset $T \subset S^{*}$ that contains only those compositions of q and r, which return a natural number when inputting the value 1 .

The set T forms not a monoid under function composition, for example $e v_{S^{*}}\left(q^{2} q^{4}, 1\right)=10$ and $e v_{S^{*}}\left(r q^{6}, 1\right)=21$, but the composition $q r q^{4} r q^{6}$ does not lie in T, because the evaluation $e v_{S^{*}}\left(q r q^{4} r q^{6}, 1\right)$ yields a value outside the codomain \mathbb{N}. However, each element of this set labels a vertex of a tree $H_{T} \subset H$, which is a proper subtree of H.

Let $U \subset T$ be a subset of T, which does not contain a reduced word with two or more successive characters r. The corresponding tree $H_{U} \subset H_{T}$ reflects Collatz sequences as demonstrated in figure 2.1.

When talking about trees having a root ("rooted trees"), another important concept should be explained: the level of a vertex or often called depth of a vertex is the length of the path from the root to this vertex [41, p. 804]. In other words, it is the vertex's distance (the number of edges in the path) from the root. The height of a vertex is its level plus one level $(v)+1=$ height (v), see [42, p. 169].

2.2 Defining the Tree

The starting point for specifying our tree is H_{U}. Due to its significance, we first concertize H_{U} by the definition 2.1 below, which establishes four essential characteristics.

Definition 2.1 The graph H_{U} possess the following key properties:

- H_{U} is a directed graph (digraph): Fundamentally, when we consider the more general case, an undirected graph as a triple (V, E, ψ), the incidence function maps an edge to an arbitary vertex pair $\psi: E \rightarrow\{X \subseteq V:|X|=2\}$. In a digraph, the set $V \times V$ represents ordered vertex pairs. Accordingly the incidence function is more specifically defined, namely as a mapping of the edges to that set $\psi: E \rightarrow$ $\{(v, w) \in V \times V: v \neq w\}$, see [43, p. 15].
- H_{U} is a rooted tree: According to Rosen [41, p. 747], a rooted tree is "a tree in which one vertex has been designated as the root and every edge is directed away from the root." Peculiarly, this definition considers the directionality as an inherent part of rooted trees. Unlike Mehlhorn and Sanders [44, p. 52], for example, who distinguish between an undirected and directed rooted tree.

Note: As long as we do not stipulate that vertices may collapse, it is absolutely guaranteed that the graph is a tree.

- H_{U} is an out-tree: There is exactly one path from the root to every other node [44, p. 52], which means that edge directions go from parents to children [45, p. 108]. This property is implied in Rosen's definition for a rooted tree as well by saying "every edge is directed away from the root." An out-tree is sometimes designated as out-arborescence [45, p. 108].
- H_{U} is a labeled tree: For defining a labeled graph, Ehrig et al. [46, p. 23] use a label alphabet consisting of a vertex label set and an edge label set. Since we only label the vertices, in our case the specification of a vertex label set L_{V} together with the vertex label function $l_{V}: V \rightarrow L_{V}$ is sufficient. Originally, we said vertex labels are strings over the alphabet $S=\{q, r\}$, through which the free monoid S^{*} is generated. We illustrate labeling H_{U} by defining $l_{V\left(H_{U}\right)}(v)=e v_{S^{*}}^{0}\left(l_{V(G)}(\iota(v)), 1\right)$, whereby $\iota: V\left(H_{U}\right) \hookrightarrow V(G)$ is the inclusion map [47, p. 142] from the set of vertices of H_{U} to the set of vertices from the previously defined Cayley graph G.

We define a tree H_{C} by taking the tree H_{U} as a basis and for every vertex $v \in V\left(H_{U}\right)$ satisfying $2 \mid l_{V\left(H_{U}\right)}(v)$, we contract the incoming edge. We attach the label of the parent of v to the new vertex, which results by replacing (merging) the two overlapping vertices that the contracted edge used to connect. Visually, we obtain H_{C} by contracting all edges in H_{U} that have an even-labeled target vertex, which (due to contraction) gets "merged into its parent." Edge contraction is occasionally referred to as collapsing an edge. For more details and examples on edge contraction, one can see Voloshin [48, p. 27] and Loehr [49].

The tree H_{C} is a minor of H_{U}, since it can be obtained from H_{U} "by a sequence of any vertex deletions, edge deletions and edge contractions" [48, p. 32]. The sequence of contracting the edges between adjacent (in our case even-labeled) vertices is called path contraction.

A small section of the tree H_{C} is shown in figure 2.2. Other definitions of the same tree exist, see for example Conrow [50] or Bauer [51, p. 379].

Figure 2.2: Small section of H_{C} (displaying the trivial cycle is waived)

2.3 Relationship of successive nodes in H_{C}

Let v_{1} and v_{1+n} be two vertices of H_{C}, where v_{1} is reachable from v_{1+n} with $\operatorname{level}\left(v_{1}\right)-$ $\operatorname{level}\left(v_{1+n}\right)=n$. Hence, a path $\left(v_{1+n}, \ldots, v_{1}\right)$ exists between these two vertices. Theorem 2.1 specifies the following relationship between v_{1} and v_{1+n}.

Theorem $2.1 \quad l_{V\left(H_{C}\right)}\left(v_{1+n}\right)=3^{n} l_{V\left(H_{C}\right)}\left(v_{1}\right) \prod_{i=1}^{n}\left(1+\frac{1}{3 l_{V\left(H_{C}\right)}\left(v_{i}\right)}\right) 2^{-\alpha_{i}}$. In order to simplify readability, we waive writing down the vertex label function and put it shortly: $v_{1+n}=3^{n} v_{1} \prod_{i=1}^{n}\left(1+\frac{1}{3 v_{i}}\right) 2^{-\alpha_{i}}$. The value $\alpha_{i} \in \mathbb{N}$ is the number of edges which have been contracted between v_{i} and v_{i+1} in H_{U}.

In order to demonstrate the construction produced by theorem 2.1 in an illustrative fashion, example 2.1 runs through a concrete path in H_{C}.

Example 2.1 For example, the two vertices $v_{1}=45$ and $v_{1+3}=v_{4}=5$ are connected via the path $(5,13,17,45)$, see figure 2.2. Furthermore, one can retrace in figure 2.3 the uncontracted path between these two nodes within H_{U}. When applied to this example, theorem 2.1 produces the following:

$$
5=v_{1+3}=3^{3} * 45 *\left(1+\frac{1}{3 * 45}\right) * 2^{-3} *\left(1+\frac{1}{3 * 17}\right) * 2^{-2} *\left(1+\frac{1}{3 * 13}\right) * 2^{-3}
$$

Proof. This relationship of successive nodes can simply be proven inductively. For the base case, we set $n=1$ and retrieve

$$
v_{1+1}=3 v_{1}\left(1+\frac{1}{3 v_{1}}\right) 2^{-\alpha_{1}}=\left(3 v_{1}+1\right) 2^{-\alpha_{1}}=v_{2}
$$

The path from v_{2} to v_{1} can conformly be expressed by a string $r q \cdots q$ of S^{*}, because of $v_{1}=$
$r \circ q^{\alpha_{1}}\left(v_{2}\right)$. We set $n=n+1$ for the step case, which leads to

$$
\begin{aligned}
v_{n+2} & =3^{n+1} v_{1} \prod_{i=1}^{n+1}\left(1+\frac{1}{3 v_{i}}\right) 2^{-\alpha_{i}} \\
& =3^{n+1} v_{1}\left(1+\frac{1}{3 v_{n+1}}\right)^{-\alpha_{n+1}} \prod_{i=1}^{n}\left(1+\frac{1}{3 v_{i}}\right) 2^{-\alpha_{i}} \\
& =3\left(1+\frac{1}{3 v_{n+1}}\right) 2^{-\alpha_{n+1}} 3^{n} v_{1} \prod_{i=1}^{n}\left(1+\frac{1}{3 v_{i}}\right) 2^{-\alpha_{i}} \\
& =3\left(1+\frac{1}{3 v_{n+1}}\right) 2^{-\alpha_{n+1}} v_{1+n} \\
& =\left(3 v_{1+n}+1\right) 2^{-\alpha_{n+1}}
\end{aligned}
$$

In this case the path from v_{n+2} to v_{n+1} is conformly expressable by a string $r q \cdots q$ of S^{*} too, since $v_{n+1}=r \circ q^{\alpha_{n+1}}\left(v_{n+2}\right)$.
Theorem 2.1 can be used for specifying the condition of a cycle as follows:

$$
\begin{align*}
& v_{1}=3^{n} v_{1} \prod_{i=1}^{n}\left(1+\frac{1}{3 v_{i}}\right) 2^{-\alpha_{i}} \tag{2.2}\\
& 2^{\alpha_{1}+\cdots+\alpha_{n}}=\prod_{i=1}^{n}\left(3+\frac{1}{v_{i}}\right)
\end{align*}
$$

A similar condition has been formulated by Hercher [52]. Taking a first look at equation 2.2 , we are able to recognize the trivial cycle for $n=1$. One might easily come to the false conclusion that only this trivial solution exists since we are multiplying fractional numbers. However, we might change our position on this triviality when we examine the following case of using 5 instead of 3 which indeed forms a cycle in the $5 x+1$ variant of Collatz sequences:

$$
128=2^{7}=\left(5+\frac{1}{13}\right)\left(5+\frac{1}{33}\right)\left(5+\frac{1}{83}\right)
$$

A detailed elaboration of the divisibility and a deeper understanding of the tree H_{C} needs to be performed in order to get towards any proof of the Collatz conjecture.

2.4 Relationship of sibling nodes in H_{C}

In a rooted tree, vertices which have the same parent are called "siblings" [36, p. 702], [41, p. 747]. Sibling vertices accordingly have the same level.

Let w be a vertex, from which a path exists to the vertex v_{1}. Let v_{2} be the immediate right-sibling of v_{1}, then $l_{V\left(H_{C}\right)}\left(v_{2}\right)=4 * l_{V\left(H_{C}\right)}\left(v_{1}\right)+1$. This fact has been expressed differently by Kak [18] as follows: "If an odd number a leads to another odd number (after several applications of the Collatz transformation) b, then $4 a+1$ also leads to b."

Applied to our approach, consider w as the parent of v_{1} and v_{2}. Suppose, in H_{U}, a path consisting of $n+1$ edges goes from w to v_{1}. Then we can straightforwardly show that n edges in H_{U} have been contracted between both nodes w and v_{1} and $n+2$ edges between w and v_{2} (for simplicity we again omit writing the label function):

$$
\begin{aligned}
& v_{1}=\frac{w * 2^{n}-1}{3} \\
& v_{2}=\frac{w * 2^{n+2}-1}{3}=4 * v_{1}+1
\end{aligned}
$$

For example, $n=3$ edges in H_{U} have been contracted between $w=5$ and $v_{1}=13$ and $n+2=5$ edges between w and $v_{2}=53$, whereby in H_{C}, the vertex v_{2} is the right-sibling of v_{1} and these two sibling vertices are immediate children of w.

Figure 2.3: Section of H_{U} containing the path from 5 to 45

2.5 A vertex's n-fold left-child and right-sibling in H_{C}

Referring to the "left-child, right-sibling representation" of rooted trees [53, p. 246], the function left-child : $V \rightarrow V$ returns the leftmost child of a vertex v. Nesting this function n times leads to the definition of a vertex's n-fold left-child, which is given by left-child $n(v)$. As shown in figure 2.2, for example left-child ${ }^{3}(13)=7$.

The function right-sibling : $V \rightarrow V$ points to the sibling of a vertex v immediately to its right [53, p. 246]. If this function is nested n times, we get a vertex's n-fold right-sibling defined by right-sibling ${ }^{n}(v)$. One example is right-sibling ${ }^{2}(113)=1813$ which has been demonstrated in figure 2.2 too.

Let w be a vertex in H_{C} and v_{0} the left-child of w. The n-fold right-sibling of v_{0} can be calculated as follows:

$$
\begin{equation*}
v_{n}=\text { right-sibling }^{n}\left(v_{0}\right)=\frac{1}{3} *\left(w * 2^{2 * n+\pi_{3}(w \bmod 3)}-1\right) \tag{2.3}
\end{equation*}
$$

The function π_{3} is the self-inverse permutation (involution):

$$
\pi_{3}=\left(\begin{array}{ll}
1 & 2 \tag{2.4}\\
2 & 1
\end{array}\right)
$$

We consider permutations of the set $\{1,2\}$ and not of $\{0,1,2\}$, due to the fact that $w \bmod 3$ cannot be zero. A node w in H_{C}, which is labeled by an integer divisible by 3 is a leaf; and therefore such node has no left-child, more specifically it has no children at all.

When setting $n=0$, we trivially retrieve the vertex's w left-child:

$$
v_{0}=\text { left }-\operatorname{child}(w)=\frac{1}{3} *\left(w * 2^{\pi_{3}(w \bmod 3)}-1\right)
$$

Example 2.2 Let us refer to figure 2.2 again and pick out $w=5$. Then the vertex's w left-child is $v_{0}=3$ and the threefold right-sibling $v_{3}=213$:

$$
\begin{aligned}
& v_{0}=\frac{1}{3} *\left(5 * 2^{\pi_{3}(5 \bmod 3)}-1\right)=3 \\
& v_{3}=\frac{1}{3} *\left(5 * 2^{2 * 3+\pi_{3}(5 \bmod 3)}-1\right)=213
\end{aligned}
$$

2.6 Left-child and right-sibling in the $5 x+1$ variant of H_{C}

In the following we take a look at the $5 x+1$ variant of H_{C}. We name this graph $H_{C, 5}$ and must note that it is not a tree and moreover that not all of its vertices are reachable from the root. We define the permutation π_{5} as follows:

$$
\pi_{5}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right)
$$

Figure 2.4: Section of the graph $H_{C, 5}$ starting at its root (without branches that reflect a subsequence containing the trivial cycle)

Next, by letting w be a vertex in $H_{C, 5}$ and v_{0} the left-child of w we obtain the n-fold right-sibling of v_{0} by the function that is slightly different to the one defined by 2.3:

$$
\begin{equation*}
v_{n}=\text { right-sibling }{ }^{n}\left(v_{0}\right)=\frac{1}{5} *\left(w * 2^{4 * n+\pi_{5}(w \bmod 5)}-1\right) \tag{2.5}
\end{equation*}
$$

Analogous to 2.4 only permutations on the set without zero $\{1,2,3,4\}$ need to be considered, since $w \bmod 5$ cannot be zero. Otherwise, if $w \equiv 0(\bmod 5)$ which means that w were labeled by an integer divisible by 5 , then the node w has no successor in $H_{C, 5}$.
By setting $n=0$, the function (above given by 2.5) returns the left child of w :

$$
v_{0}=\operatorname{left-child}(w)=\frac{1}{5} *\left(w * 2^{\pi_{5}(w \bmod 5)}-1\right)
$$

Figure 2.4 illustrates a small section of $H_{C, 5}$ starting at its root. The particularly interesting thing about the graph $H_{C, 5}$ is that it contains three cycles, the trivial cycle starting from the root 1,3 and two non-trivial cycles $43,17,27$ and $83,33,13$. To be precise, three cycles are known (as it will become apparent later in section 2.8), and on the basis of present knowledge it cannot be concluded with any certainty that other cycles exist.

2.7 A remark about cycles

In graph theory, a path of length $n \geq 1$ that starts and ends at the same vertex is called a circuit. A circuit, in which no vertex is repeated with the sole exception that the initial vertex is the terminal vertex, is called a cycle. A cycle of length n is referred to as an n-cycle. For these definitions, we rely on [41, p. 599], [54, p. 35] and [55, p. 445]. Furthermore, we call a cycle originating from the root a trivial cycle.

In order for the cycles to become graphically visible, we now require that in a graph H two vertices v_{1} and v_{2} are one and the same if the label of both nodes are identical: $l_{V(H)}\left(v_{1}\right)=l_{V(H)}\left(v_{2}\right) \rightarrow v_{1}=v_{2}$. As a consequence, there is no guarantee that the graph precisely refers to the algebraic structure of a free monoid anymore. A free monoid requires that each of its elements can be written in one and only one way.

When different nodes collapse on one, the graph is no longer necessarily a tree. Let us point to the monoid S^{*}, which we introduced in section 2.1. Take for example four of its elements, the empty string e, the strings $q q r$, qqrqqr, and qqrqqrqqr. These elements lie as

Figure 2.5: Section of $H_{C, 5}$ including the 3-cycle 43,17,27
well within the subset $U \subset T \subset S^{*}$, and they are represented by nodes of the tree H_{U} that all have the same label $1=e v_{S^{*}}(q q r, 1)=e v_{S^{*}}(q q r q q r, 1)=e v_{S^{*}}(q q r q q r q q r, 1)$. These nodes are one and the same, the root of H_{U}. Visually, then in H_{U} a directed edge goes from the vertex labeled with 4 back to the root node. Analogically, in H_{C} a loop connects the root to itself, since due to the path contraction even labeled nodes do not exist in H_{C}. The aforementioned example reflects the trivial cycle of the Collatz sequence.

Figure 2.5 depicts a section of $H_{C, 5}$, which includes the 3 -cycle $43,17,27$. Because of the two non-trivial cycles $43,17,27$ and $83,33,13$, in $H_{C, 5}$ there does not exist a path between the root and the vertex 43 and between the root and the vertex 83 . Hence, $H_{C, 5}$ is said to be a disconnected graph. Generally, a graph is called a disconnected graph if it is impossible to walk (along its edges) from any vertex to any other [54, pp. 46-47].

The following considerations focus on non-trivial cycles, and therefore on cycles that do not originate from the root, but cause the graph to be a disconnected graph. Utilizing the example of the graph $H_{C, 5}$ we are able to deduct from the cycle $43,17,27$ the simple and self-evident equality left-child ${ }^{3}(43)=43$:

$$
\begin{aligned}
& \text { left-child }(43)=\frac{1}{5} *\left(43 * 2^{1}-1\right)=17 \\
& \text { left-child }(17)=\frac{1}{5} *\left(17 * 2^{3}-1\right)=27 \\
& \text { left-child }(27)=\frac{1}{5} *\left(27 * 2^{3}-1\right)=43
\end{aligned}
$$

Obviously, the authors note, it would be interesting to find out what circumstances enable a graph to have non-trivial cycles, whether it be the $5 x+1$ variant of H_{C}, the $7 x+1$ variant of H_{C} or any variant of H_{C}; let us say the $k x+1$ variant of H_{C} with $k \geq 1$.

2.8 Which variants of H_{C} have non-trivial cycles?

Let us refer to a $k x+1$ variant of H_{C} as $H_{C, k}$. By having introduced and proven theorem 2.1 we already started an assertion about the reachability of successive nodes in H_{C}. This reachability relationship can be generalized for any graph $H_{C, k}$ as follows:

$$
\begin{equation*}
v_{1+n}=k^{n} v_{1} \prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right) 2^{-\alpha_{i}} \tag{2.6}
\end{equation*}
$$

This generalization leads to the condition for an existence of an n-cycle in any $k x+1$ variant of H_{C}, which looks analogous to the condition given by equation 2.2 that specifies H_{C} has a cycle:

$$
\begin{equation*}
2^{\alpha}=\prod_{i=1}^{n}\left(k+\frac{1}{v_{i}}\right) \tag{2.7}
\end{equation*}
$$

The natural number α is the sum of edges that have been contracted between the vertices v_{i} forming the cycle, in other words α is the number of divisions by 2 within the sequence. The natural number n is the cycle length and k obviously specifies the variant of H_{C}. Since between each vertex at least one edge has been contracted (at least one division by 2 took place), we know that our exponent alpha is greater than or equal to the sequence length:

$$
\begin{equation*}
\alpha \geq n \tag{2.8}
\end{equation*}
$$

Using incremental search, one can calculate cycles through trial and error. Table 2.1 lists all empirically discovered cycles having a length up to 100 that appear in $k x+1$ variants of H_{C} for $k \in[1,1000]$. Within each of these variants, the cycles have been searched at potential starting nodes v_{1} with a label between 1 and 1000 . Note that the cycles in table 2.1 are written in reverse order, i.e. in the order which corresponds to the Collatz sequence. To obtain the cycles in terms of graph theory referring to the graph H_{C}, read them from right to left.

\boldsymbol{k}	cycle	α	non-trivial
1	1	1	
3	1	2	
5	1,3	5	
5	$13,33,83$	7	\checkmark
5	$27,17,43$	7	\checkmark
7	1	3	
15	1	4	
31	1	5	
63	1	6	
127	1	7	
181	27,611	15	\checkmark
181	35,99	15	\checkmark
255	1	8	
511	1	9	

Table 2.1: Known n-cycles in $k x+1$ variants of H_{C} for $k \leq 1000, n \leq 100$
Based on the results shown in table 2.1 we state the following theorem 2.2 that renders more precisely the prerequisite for cycles that may occur in variants of H_{C}.

Theorem 2.2 An n-cycle can only exist in a graph $H_{C, k}$, that means in a $k x+1$ variant of H_{C}, if the following equation holds:

$$
2^{\bar{\alpha}}=2^{\left\lfloor n \log _{2} k\right\rfloor+1}=\prod_{i=1}^{n}\left(k+\frac{1}{v_{i}}\right)
$$

The key of theorem 2.2 consists in the claim that, in order for an n-cycle to occur, the exponent α has to be $\bar{\alpha}=\left\lfloor n \log _{2} k\right\rfloor+1$. We approach a proof by expressing formally that $\bar{\alpha}$ is not allowed to be smaller and it is not allowed to be greater than $\left\lfloor n \log _{2} k\right\rfloor+1$, in other words we indicate a lower and an upper limit for $\bar{\alpha}$ as follows:

$$
\begin{align*}
& \bar{\alpha}>\left\lfloor n \log _{2} k\right\rfloor \tag{2.9}\\
& \bar{\alpha}<\left\lfloor n \log _{2} k\right\rfloor+2 \tag{2.10}
\end{align*}
$$

The validity of the first part (2.9), which specifies $\left\lfloor n \log _{2} k\right\rfloor+1$ as the lower limit for $\bar{\alpha}$, can be demonstrated in a fairly simple way: Our starting point is equation 2.6, which describes the relationship of successive vertices in $H_{C, k}$. Having a cycle, requires us to consider the first and the last vertex being one and the same $v_{1+n}=v_{1}$. Setting a smaller exponent $\bar{\alpha}=\left\lfloor n \log _{2} k\right\rfloor$ into equation 2.6 results in the inequality $v_{1+n}>v_{1}$, which is in any case a true statement:

$$
\begin{aligned}
& k^{n} v_{1} 2^{-\left\lfloor n \log _{2} k\right\rfloor} \prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)>v_{1} \\
& k^{n} \prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)>2\left\lfloor n \log _{2} k\right\rfloor \\
& \log _{2}\left(k^{n} \prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)\right)>\left\lfloor n \log _{2} k\right\rfloor \\
& n \log _{2} k+\log _{2}\left(\prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)\right)>\left\lfloor n \log _{2} k\right\rfloor
\end{aligned}
$$

The validity of the second part (2.10) is not so trivial to prove. Analogous to the aboveshown proof of alpha's lower limit, we again refer to equation 2.6 as our starting point and we need to show that v_{1+n} is smaller than v_{1} if $\alpha=\left\lfloor n \log _{2} k\right\rfloor+2$:

$$
\begin{aligned}
& k^{n} v_{1} 2^{-\left(\left\lfloor n \log _{2} k\right\rfloor+2\right)} \prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)<v_{1} \\
& k^{n} \prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)<2^{\left(\left\lfloor n \log _{2} k\right\rfloor+2\right)}
\end{aligned}
$$

This leads to the following general condition for the validity of alpha's upper limit:

$$
\begin{equation*}
n \log _{2} k-\left\lfloor n \log _{2} k\right\rfloor<2-\log _{2}\left(\prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)\right) \tag{2.11}
\end{equation*}
$$

2.9 Existence of a solitary cycle for $k=1$

As per theorem 2.2 , for $k=1$, the only possible alpha for a cycle is 1 :

$$
\bar{\alpha}=\left\lfloor n \log _{2} 1\right\rfloor+1=1
$$

In accordance with the condition $\alpha \geq n$ stated by 2.8 it is clear that between two successive vertices at least one edge has been contracted or respectively one division by two took place. This exactly is the reason why, if theorem 2.2 is true, a cycle can only occur for $n=1$. Based on equation 2.7 we can show that this is the case for the trivial cycle, starting at the root $v_{1}=1$:

$$
2^{\bar{\alpha}}=2^{\left\lfloor 1 \log _{2} 1\right\rfloor+1}=2^{1}=\left(1+\frac{1}{v_{1}}\right)=\left(1+\frac{1}{1}\right)
$$

Since no other value of v_{1} results in a natural number, no other cycle for $n=1$ is possible. In order to prove theorem 2.2 for $k=1$, we now have to show that condition 2.11 is true.

2.10 Verifying alpha's upper limit for the $1 x+1$ variant of H_{C}

Demonstrating that condition 2.11 is true for $k=1$ is not difficult. What makes this case so special and therefore so manageable is that the equation in theorem 2.2 constantly yields 2^{1}, whatever value we use for n. By setting $k=1$, the condition becomes reduced to:

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{v_{i}+1}{v_{i}}<2^{2} \tag{2.12}
\end{equation*}
$$

One can see instantly that the condition 2.12 above is met for $n=v_{1}=1$. This trivial cycle only includes the sole vertex $v_{1}=1$. The fact which causes a worst case sequence $v_{n}, v_{n-1}, \ldots, v_{2}, v_{1}$ describing a path from v_{n} to v_{1} is precisely that between two successive nodes a division by two was only made once:

$$
\begin{align*}
& v_{n}=2^{n-1} \cdot\left(v_{1}-1\right)+1 \\
& v_{n-1}=2^{n-2} \cdot\left(v_{1}-1\right)+1 \\
& \vdots \tag{2.13}\\
& v_{2}=2^{1} \cdot\left(v_{1}-1\right)+1=2 v_{1}-1 \\
& v_{1}=2^{0} \cdot\left(v_{1}-1\right)+1=v_{1}
\end{align*}
$$

Why might such a sequence be referred to as worst case? Ultimately, it is because one needs to show that the product stays below the upper limit $2^{2}=4$. The smaller the values (labels) of the vertices, the larger the product. If we allowed additional divisions by 2 , the vertices' values would be larger and the product would consequently be smaller. One example for such a sequence is $v_{4}=17, v_{3}=9, v_{2}=5, v_{1}=3$.

Setting the worst case sequence $v_{n}=2^{n-1}\left(v_{1}-1\right)+1$ into the product 2.12 leads to the following product:

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{2^{i-1}\left(v_{1}-1\right)+2}{2^{i-1}\left(v_{1}-1\right)+1} \tag{2.14}
\end{equation*}
$$

As previously mentioned, we have to consider the worst case scenario, which results in the maximum product. We provoke the worst case if a vertex's value is as small as possible, which we achieve with the sequence $1,3,5,9,17, \ldots$ that is composed from two partial sequences, namely the one-element sequence $v_{1}=1$ and the sequence defined by 2.13 starting with $v_{1}=3$. As product we then receive the composed product given below which must remain below the limit 4:

$$
\prod_{i=1}^{1} \frac{v_{i}+1}{v_{i}} \prod_{i=1}^{n} \frac{2^{i-1}\left(v_{1}-1\right)+2}{2^{i-1}\left(v_{1}-1\right)+1}=2 \prod_{i=1}^{n} \frac{2^{i}+2}{2^{i}+1}<4
$$

The first sub-product refers to 2.12 and comprises only a single iteration. We insert the value $v_{1}=1$ yielding a final result of 2 . The second sub-product is sourced from 2.14 and has been simplified by setting $v_{1}=3$. We further facilitate this second sub-product as shown below:

$$
\prod_{i=1}^{n} \frac{2^{i}+2}{2^{i}+1}=2^{n} \prod_{i=1}^{n} \frac{2^{i-1}+1}{2^{i}+1}=2^{n} \frac{\left(2^{0}+1\right)\left(2^{1}+1\right)\left(2^{2}+1\right) \cdots\left(2^{n-1}+1\right)}{\left(2^{1}+1\right)\left(2^{2}+1\right) \cdots\left(2^{n-1}+1\right)\left(2^{n}+1\right)}=\frac{2^{n+1}}{2^{n}+1}
$$

The upper limit of this second sub-product is 2 and consequently the entire product composed by both sub-products therefore converges from below towards 4 , which leads to our condition 2.12 being fulfilled even in the worst case:

$$
\prod_{i=1}^{\infty} \frac{2^{i}+2}{2^{i}+1}=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{2^{n}+1}=2
$$

An alternative proof of condition 2.11 for $k=1$ is given in appendix A.1. A sketch of evidence of the condition 2.11 for other cases, namely for those cases where $k>1$, will be provided in subsequent versions of this paper. At this point, the authors again point out that with the above explanation, the Collatz conjecture is still far from being proven. We have proved only a part, namely that the exponent α required for the existence of a cycle is definitely bigger than the specified lower limit $\left\lfloor n \log _{2} k\right\rfloor$. It still needs to be proven that α is smaller than the upper limit $\left\lfloor n \log _{2} k\right\rfloor+2$ for all $k>1$. We further have to prove by using theorem 2.2 that no cycles can occur for $k=3$, except the trivial cycle.

3. Examination of $/ H_{C, 3}$

3.1 The product in the condition for alpha's upper limit

Let us take a closer look at the product contained in condition 2.11 for the case $k=3$. The exciting main question is, does this product have a limit value even in the worst case?

Special sequences, for example the ascending sequence of odd integers $v_{i}=2 i-1$ (beginning at $v_{1}=1$), allow us to transform this product into a limit analyzable function using the Pochhammer's symbol (sometimes referred to as the rising factorial or shifted factorial), which is denoted by $(x)_{n}$ and defined as follows [56], [57, p. 679] and [58, p. 1005]:

$$
(x)_{n}=x(x+1)(x+2) \cdots(x+n-1)=\prod_{i=0}^{n-1}(x+i)=\prod_{i=1}^{n}(x+i-1)=\frac{\Gamma(x+n)}{\Gamma(x)}
$$

Setting $v_{i}=2 i-1$ into the product expressed by condition 2.11 and setting $x=\frac{k+1}{2 k}$ into Pochhammer's symbol $(x)_{n}$ interestingly makes it possible for us to perform the following transformation:

$$
\prod_{i=1}^{n}\left(1+\frac{1}{k v_{i}}\right)=\frac{\prod_{i=1}^{n}\left(k v_{i}+1\right)}{\prod_{i=1}^{n} k v_{i}}=\frac{\prod_{i=1}^{n}(k(2 i-1)+1)}{k^{n} \prod_{i=1}^{n}(2 i-1)}=\frac{2^{2 n} n!}{(2 n)!} \cdot \frac{\Gamma\left(\frac{k+1+2 k n}{2 k}\right)}{\Gamma\left(\frac{k+1}{2 k}\right)}
$$

Example 3.1 One simple example that is easy to recalculate may be provided by choosing $k=3$ and $n=4$:

$$
\left(1+\frac{1}{3 * 1}\right)\left(1+\frac{1}{3 * 3}\right)\left(1+\frac{1}{3 * 5}\right)\left(1+\frac{1}{3 * 7}\right)=1,6555=\frac{2^{8} * 4!}{8!} \cdot \frac{\Gamma\left(\frac{14}{3}\right)}{\Gamma\left(\frac{4}{6}\right)}
$$

This product is divergent, it does not converge to a limiting value. Thankfully, the ascending sequence of natural odd numbers overshoots the worst-case scenario. According to this scenario we would not have contracted a single edge between two successive nodes. A worst case sequence $v_{n+1}, v_{n}, \ldots, v_{2}, v_{1}$ describing a path in $H_{C, 3}$ from v_{n+1} down to v_{1} allows at most one division by 2 between two successive nodes. This sequence forms the following ascending continued fraction (cf. also [59, p. 11]):

$$
\begin{equation*}
v_{n+1}=\frac{3 \frac{3 \frac{3 v_{1}+1}{2}+1}{2}+1}{2} \cdots=\frac{3^{n} v_{1}+\sum_{i=0}^{n-1} 3^{i} 2^{n-1-i}}{2^{n}}=\frac{3^{n}\left(v_{1}+1\right)-2^{n}}{2^{n}} \tag{3.1}
\end{equation*}
$$

The sum of the products of the powers of three and two, contained within the above term, can be simplified to the difference $3^{n}-2^{n}$ by converting the sum expression into the form $(x-1)\left(1+x+x^{2}+\cdots+x^{n-2}+x^{n-1}\right)=x^{n}-1$ as follows:

$$
\frac{2^{n}}{2^{n}}(3-2) \sum_{i=0}^{n-1} 3^{i} 2^{n-1-i}=\frac{2^{n}}{2^{n-1}} \cdot \frac{3-2}{2} \sum_{i=0}^{n-1} 3^{i} 2^{n-1-i}=2^{n}\left(\frac{3}{2}-1\right) \sum_{i=0}^{n-1}\left(\frac{3}{2}\right)^{i}=2^{n}\left(\left(\frac{3}{2}\right)^{n}-1\right)
$$

Example 3.2 A concrete example for such a sequence is $v_{1}=31, v_{2}=47, v_{3}=71$, $v_{4}=107, v_{5}=161$. And, to follow that example, we can calculate the label of the vertex v_{5} in a straightforward way:

$$
v_{5}=v_{n+1}=\frac{3^{4}(31+1)-2^{4}}{2^{4}}=161
$$

Ascending variants of a continued fraction, such as used in equation 3.1, shall not be confused with continued fractions as treated for example in [60], [61], [62]. These ascending continued fractions correspond to the so-called "Engel Expansions" [63].

As illustrated below, we can formulate the ascending continued fractions in a generalized fashion, whereas the equivalence to 3.1 is given by $b_{1}=b_{2}=b_{3}=b_{4}=2$ and $a_{1}=3^{0}, a_{2}=3^{1}$, $a_{3}=3^{2}$ and $a_{4}=3^{3}+3^{4} v_{1}$:

$$
\frac{a_{1}+\frac{a_{2}+\frac{a_{3}+\frac{a_{4}}{b_{4}}}{b_{3}}}{b_{2}}}{b_{1}} \cdots=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{1} b_{2}}+\frac{a_{3}}{b_{1} b_{2} b_{3}}+\frac{a_{4}}{b_{1} b_{2} b_{3} b_{4}}+\cdots
$$

4. Conclusion and Outlook

4.1 Summary

We defined an algebraic graph structure that expresses the Collatz sequences in the form of a tree. Next, the vertex reachability properties were unveiled by examining the relationship between successive nodes in H_{C}. Moreover, we dealt with graphs that represent other variants of Collatz sequences, for instance $5 x+1$ or $181 x+1$. The interesting part of both variants just mentioned is that for these sequences the existence of cycles is known. This compact definitory digression serves as the basis for further investigations of the tree H_{C}.

4.2 Further Research

In subsequent studies, the properties of vertices in H_{C} might be elaborated upon more closely by taking into account a vertex's label as well as its properties. In addition, future steps may include a detailed analysis of theorem 2.2.

In the next version of our manuscript we will take a more thorough look at the product expressed by condition 2.11 including the effort to show that (and why) the product always stays below a certain limit for any $k>1$.

A. Appendix

A. 1 An alternative proof for alpha's upper limit for $H_{C, 1}$

We prove that theorem 2.2 is true for $k=1$ using the following equation. The formula calculates the node v_{n+1} for a sequence, in which we divide by 2 only once per iteration:

$$
\begin{equation*}
v_{n+1}=\frac{v_{1}+2^{n}-1}{2^{n}} \tag{A.1}
\end{equation*}
$$

Example A. 1 Let us consider the sequence $v 1=17, v_{2}=9, v_{3}=5, v_{4}=3$. Setting $v_{1}=17$ and $n=3$ results in:

$$
v_{3+1}=v_{4}=\frac{17+2^{3}-1}{2^{3}}=3
$$

Equation A. 1 represents the (hypothetical) case in which a sequence progresses to the highest possible successive node for a specific starting node v_{1}. Actually, the sequence decreases in any case except $v_{1}=1$ and $n=1$. We can show that setting $v_{1}=1$ and $n=1$ results in the trivial cycle:

$$
v_{1}=1=v_{2}=\frac{1+2^{1}-1}{2^{1}}
$$

The equation above, complies to (and verifies) theorem 2.2, since $1=n=\alpha=\bar{\alpha}$:

$$
\bar{\alpha}=\left\lfloor n * \log _{2} 1\right\rfloor+1=1
$$

The condition 2.8, namely the inequality $\alpha \geq n$, can be used to prove that no other α than $\bar{\alpha}$ leads to a cycle. To show this, we set $v_{n+1}=v_{1}$:

$$
v_{1}=\frac{v_{1}+2^{n}-1}{2^{n}}=\frac{v_{1}}{2^{n}}-\frac{1}{2^{n}}+1=\frac{v_{1}-1}{2^{n}}+1
$$

The above term is only true for $v_{1}=1$ and $n=\alpha=\bar{\alpha}=1$. Any higher value for v_{1}, n or α leads to a result less than v_{1}. Therefore, a cycle is not possible for $\alpha \neq 1$ and theorem 2.2 is true for $k=1$. A cycle can only occur for the case $v_{1}=1$ and $\alpha=\bar{\alpha}=n=1$. For any other case the following condition applies:

$$
v_{1}>\frac{v_{1}-1}{2^{n}}+1
$$

Knowing that theorem 2.2 is true, we can revisit condition 2.11 determining the upper limit of $\bar{\alpha}$. We set $k=1$ into this condition and obtain:

$$
\begin{equation*}
n \log _{2} 1-\left\lfloor n \log _{2} 1\right\rfloor<2-\log _{2}\left(\prod_{i=1}^{n}\left(1+\frac{1}{1 v_{i}}\right)\right) \tag{A.2}
\end{equation*}
$$

The above given inequality gets simplified to a condition which is true and proves that the product in condition 2.11 is always less than four:

$$
4<\prod_{i=1}^{n}\left(1+\frac{1}{v_{i}}\right)
$$

[1] E. Sultanow, D. Volkov, and S. Cox. "Introducing a Finite State Machine for Processing Collatz Sequences". In: International Journal of Pure Mathematical Sciences 19 (2017), pp. 10-19.
[2] S. W. Williams. "Million Buck Problems". In: National Association of Mathematicians Newsletter 31.2 (2000), pp. 1-3.
[3] J. C. Lagarias. The Ultimate Challenge: The $3 x+1$ Problem. Providence, RI: American Mathematical Society, 2010. ISBN: 978-0821849408.
[4] J. C. Lagarias. "The 3x + 1 Problem: An Annotated Bibliography (1963-1999)". In: ArXiv Mathematics e-prints (2011). eprint: math/0309224v 13.
[5] J. C. Lagarias. "The 3x + 1 Problem: An Annotated Bibliography, II (2000-2009)". In: ArXiv Mathematics e-prints (2012). eprint: math/0608208v6.
[6] J. C. Lagarias. "The $3 x+1$ Problem and Its Generalizations". In: The American Mathematical Monthly 92.1 (1985), pp. 3-23.
[7] S. Kahermanes. Collatz Conjecture. Tech. rep. Math 301 Term Paper. San Francisco State University, 2011.
[8] M. Klisse. "Das Collatz-Problem: Lösungs- und Erklärungsansätze für die 1937 von Lothar Collatz entdeckte (3n+1)-Vermutung". 2010.
[9] C. A. Feinstein. "The Collatz 3n+1 Conjecture is Unprovable". In: Global Journal of Science Frontier Research Mathematics and Decision Sciences 12.8 (2012), pp. 13-15.
[10] E. Akin. "Why is the $3 \mathrm{x}+1$ Problem Hard?" In: Chapel Hill Ergodic Theory Workshops. Ed. by I. Assani. Vol. 356. Contemporary Mathematics. Providence, RI: American Mathematical Society, 2004, pp. 1-20. Dor: http://dx.doi.org/10. 1090/conm/ 364.
[11] D. J. Bernstein and J. C. Lagarias. "The $3 x+1$ Conjugacy Map". In: Canadian Journal of Mathematics 48 (1996), pp. 1154-1169.
[12] P. Michel. "Simulation of the Collatz $3 x+1$ function by Turing machines". In: ArXiv Mathematics e-prints (2014). eprint: 1409.7322 v 1.
[13] L. Berg and G. Meinardus. "Functional Equations Connected With The Collatz Problem". In: Results in Mathematics 25.1 (1994), pp. 1-12. Dor: 10. 1007/BF 03323136.
[14] L. Berg and G. Meinardus. "The 3n+1 Collatz Problem and Functional Equations". In: Rostocker Mathematisches Kolloquium. Vol. 48. Rostock, Germany: University of Rostock, 1995, pp. 11-18.
[15] G. Opfer. "An analytic approach to the Collatz 3n + 1 Problem". In: Hamburger Beiträge zur Angewandten Mathematik 2011-09 (2011).
[16] B. de Weger. Comments on Opfer's alleged proof of the $3 n+1$ Conjecture. Tech. rep. Eindhoven University of Technology, 2011.
[17] S. Andrei and C. Masalagiu. "About the Collatz conjecture". In: Acta Informatica 35.2 (1998), pp. 167-179. DOI: 10. 1007/s002360050117.
[18] S. Kak. Digit Characteristics in the Collatz $3 n+1$ Iterations. Tech. rep. Oklahoma State University, 2014. URL: https: / / subhask. okstate. edu/sites/default / files/ collatz4.pdf.
[19] R. Terras. "A stopping time problem on the positive integers". In: Acta Arithmetica 30.3 (1976), pp. 241-252.
[20] T. Oliveira e Silva. "Maximum Excursion and Stopping Time Record-Holders for the 3x + 1 Problem: Computational Results". In: Mathematics of Computation 68.225 (1999), pp. 371-384.
[21] M. A. Idowu. "A Novel Theoretical Framework Formulated for Information Discovery from Number System and Collatz Conjecture Data". In: Procedia Computer Science 61 (2015), pp. 105-111.
[22] G. J. Wirsching. The Dynamical System Generated by the 3n+1 Function. Springer, 1998. Doi: 10.1007 /BFb0095985.
[23] G. Walz, ed. Lexikon der Mathematik. 2nd ed. Vol. 1. Springer, 2017. Dor: 10. 1007/978-3-662-53498-4.
[24] T. Tao. "Almost all orbits of the collatz map attain almost bounded values". In: ArXiv Mathematics e-prints (2019). eprint: 1909. 03562.
[25] J.-P. Allouche. "Sur la conjecture de "Syracuse-Kakutani-Collatz"". In: Séminaire de Théorie des Nombres de Bordeaux (1978), pp. 1-15. issn: 09895558. url: https : / /www . jstor.org/stable/44166344.
[26] I. Korec. "A density estimate for the $3 x+1$ problem". In: Mathematica Slovaca 44.1 (1994), pp. 85-89. url: http://dml.cz/dmlcz/ 133225.
[27] M. Trümper. "The Collatz Problem in the Light of an Infinite Free Semigroup". In: Chinese Journal of Mathematics (2014), pp. 105-111. Dor: http : / / dx . doi . org / 10 . 1155/2014/756917.
[28] S. Kohl. "On conjugates of Collatz-type mappings". In: International Journal of Number Theory 4.1 (2008), pp. 117-120. Doi: http:/ / dx. doi.org/ $10.1142 / \mathrm{S} 1793042108001237$.
[29] K. Hicks et al. "A Polynomial Analogue of the $3 n+1$ Problem". In: The American Mathematical Monthly 115.7 (2008), pp. 615-622.
[30] B. Snapp and M. Tracy. "The Collatz Problem and Analogues". In: Journal of Integer Sequences 11.4 (2008).
[31] C. Löh. Geometric Group Theory: An Introduction. Springer, 2017. Dor: https : / / doi . org/10.1007/978-3-319-72254-2.
[32] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier Science, 1976. ISBN: 0-444-19451-7.
[33] C. P. Bonnington and C. H.C. Little. The Foundations of Topological Graph Theory. Springer, 1995. Doi: 10. 1007/978-1-4612-2540-9.
[34] E. A. Bender and S. G. Williamson. Mathematics for Algorithm and System Analysis. Dover, 2005. ISBN: 0-486-44250-0.
[35] J. Almeida. "Profinite semigroups and applications". In: Structural Theory of Automata, Semigroups, and Universal Algebra. Ed. by V. B. Kudryavtsev and I. G. Rosenberg. Vol. 207. NATO Science Series II: Mathematics, Physics and Chemistry. Dordrecht, Netherlands: Springer, 2005, pp. 1-45.
[36] R. Johnsonbaugh. Discrete Mathematics. 8th ed. Pearson, 2017. isbn: 0-321-96468-3.
[37] S. Mac Lane and G. Birkhoff. Algebra. 3rd ed. AMS Chelsea Publishing, 1999. isbs: 0821816462.
[38] V. Novák, I. Perfilieva, and J. Močkoř. Mathematical Principles of Fuzzy Logic. Springer, 1999. Doi: 10. 1007/978-1-4615-5217-8.
[39] R. Angot-Pellissier. "The Relation Between Logic, Set Theory and Topos Theory as It Is Used by Alain Badiou". In: The Road to Universal Logic: Festschrift for the 50th Birthday of Jean-Yves Beziau. Ed. by A. Koslow and A. Buchsbaum. Vol. 2. Birkhäuser, 2015, pp. 181-200. dor: 10.1007/978-3-319-15368-1.
[40] A. Ya. Helemskii. Lectures and Exercises on Functional Analysis. American Mathematical Society, 2006. Isbn: 0-8218-4098-3.
[41] K. H. Rosen. Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill, 2011. isbs: 978-0-07-338309-5.
[42] D. Makinson. Sets, Logic and Maths for Computing. 2nd ed. Springer, 2012. Dor: 10 . 1007/978-1-4471-2500-6.
[43] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. 6th ed. Springer, 2018. Dor: https://doi.org/10.1007/978-3-662-56039-6.
[44] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer, 2008. Doi: 10. 1007/978-3-540-77978-0.
[45] D.-Z. Du, K.-I Ko, and Z. Hu. Design and Analysis of Approximation Algorithms. Springer, 2012. Doi: 10. 1007/978-1-4614-1701-9.
[46] H. Ehrig et al. Fundamentals of Algebraic Graph Transformation. Springer, 2006. Dor: 10. 1007/3-540-31188-2.
[47] L. N. Childs. A Concrete Introduction to Higher Algebra. 3rd ed. Springer, 2006. Dor: 10. 1007/978-0-387-74725-5.
[48] V. I. Voloshin. Introduction to Graph and Hypergraph Theory. Nova Science Publishers, 2011. Isbn: 978-1-61470-112-5.
[49] N. A. Loehr. Combinatorics. 2nd ed. CRC Press, 2017. IsBn: 978-1-4987-8025-4.
[50] K. Conrow. The Structure of the Collatz Graph; A Recursive Production of the Predecessor Tree; Proof of the Collatz 3x+1 Conjecture. 2010. URL: http:// citeseerx. ist. psu. edu/viewdoc/summary?doi=10.1.1.423.3396.
[51] F. L. Bauer. Historische Notizen zur Informatik. Springer, 2009. Dor: 10.1007/978-3-540-85790-7.
[52] C. Hercher. "Über die Länge nicht-trivialer Collatz-Zyklen". In: Die Wurzel (Hefte 6 und 7 2018).
[53] T. H. Cormen et al. Introduction to Algorithms. 3rd ed. The MIT Press, 2009. IsBn: 978-0-262-03384-8.
[54] A. Benjamin, G. Chartrand, and P. Zhang. The Fascinating World of Graph Theory. Princeton University Press, 2015. Isbs: 978-0-691-16381-9.
[55] G. Chartrand and P. Zhang. Discrete Mathematics. Waveland Press, Inc., 2011. Isbs: 978-1-57766-730-8.
[56] D. Zwillinger and S. Kokoska. Standard Probability and Statistics Tables and Formulae. Chapman \& Hall/CRC, 2000. isbn: 1-58488-059-7.
[57] Y. A. Brychkov. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Chapman \& Hall/CRC, 2008. Isbn: 978-1-58488-956-4.
[58] M. Trott. The Mathematica GuideBook for Symbolics. Springer Science+Business Media, Inc., 2006. Isbs: 978-0387-95020-4.
[59] T.M.M. Laarhoven. "The $3 n+1$ conjecture". Eindhoven University of Technology, July 2009.
[60] C. G. Moore. Introduction to Continued Fractions. National Council of Teachers of Mathematics, 1964.
[61] D. Hensley. Continued Fractions. World Scientific Publishing, 2006. Isbn: 981-256-4772.
[62] J. Borwe et al. Neverending Fractions: An Introduction to Continued Fractions. Cambridge University Press, 2014. IsbN: 978-0-521-18649-0.
[63] C. Kraaikamp and J. Wu. "On a New Continued Fraction Expansion with Non-Decreasing Partial Quotients". In: Monatshefte für Mathematik 143 (4 2004), pp. 285-298. dor: 10.1007/s00605-004-0246-3.

About Us

Eldar Sultanow is an Architect at Capgemini. In 2015, he completed his doctoral studies at the Chair of Business Information Systems and Electronic Government at the University of Potsdam. He likes mathematics, computer science and scuba diving.

- eldar.sultanow@capgemini.com

Christian Koch is a Data Architect at TeamBank AG and lecturer at the Institute of Technology (Technische Hochschule Georg Simon Ohm) in Nuremberg. He began his career as an IT-Consultant and has since developed analytical systems for various European banks and public institutions. Christian likes programming, data science and swimming.christian.koch@th-nuernberg.de

Sean Cox is an Analyst at RatPac-Dune Entertainment. He is an expert in mathematics of finance and econometrics. Previously he worked for The Blackstone Group as mathematician and analyst. In his spare time he pursues outdoor activities.
sean.cox@ratpacent.com

