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Allgemeinverständliche Zusammenfassung

“De novo binning strategy to analyze and visualize multi-dimensional cytometric data”

Yen Hoang, Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin

Massen- und Durchflusszytometrie-Messungen ermöglichen die detaillierte Einteilung
von Zellgruppen nach Eigenschaften vor allem in der Diagnostik und in der Grundla-
genforschung anhand der Erfassung von biologischen Informationen auf Einzelzellebene.
Sie unterstützen die detaillierte Analyse von komplexen, zellulären Zusammenhängen,
um physiologische und pathophysiologische Prozesse zu erkennen, und funktionelle oder
krankheitsspezifische Characteristika und rare Zellgruppen genauer zu spezifizieren und
zu extrahieren. In den letzten Jahren haben zytometrische Technologien einen enormen
Innovationssprung erfahren, sodass heutzutage bis zu 50 Proteine pro Zelle parallel gemes-
sen werden können. Und das mit einem Durchsatz von Hunderttausenden bis mehreren
Millionen von Zellen aus einer Probe. Bei der Zunahme der Messparameter steigen jedoch
die Dimensionen der kombinierten Parameter exponentiell, sodass eine komplexe Kom-
binatorik entsteht, die mit konventionellen, manuellen Untersuchungen von bi-axialen
Diagrammen nicht mehr durchführbar sind. Derzeit gibt es schon viele neue Datenanalyse-
Ansätze, die vorranging auf Cluster- bzw. Dimensionsreduktionstechniken basieren und
meist mit einem vorgeschalteten Downsampling in Kombination eingesetzt werden. Diese
Tools produzieren aber komplexe Ergebnisse, die größtenteils nicht reproduzierbar sind
oder Proben- und Gruppenvergleiche erschweren.

Um dieses Problem anzugehen wurde in dieser Dissertation ein reproduzierbarer, halb-
automatisierter Datenanalyse-Workflow namens PRI entwickelt, was für pattern recogniti-
on of immune cells (Mustererkennung von Immunzellen) steht. Dieser Workflow ist in drei
Hauptteile untergliedert: die Datenvorbereitung und -Ablage; die Entwicklung innovativer,
bin-basierter Merkmale von drei kombinierten Parametern namens TriploTs und dessen
weiterführende Einteilung in vier gleich große TriploT-Areale; und die Anwendung von
einem maschinellen Lernansatz basierend auf der Information von diesen Arealen. Als
Ergebnis bekommt man eine Selektion der Areale, die am häufigsten von den überwachten
Modellen ausgewählt wurden. Dies soll dem Wissenschaftler entscheidend dabei helfen,
Zellpopulationen zu identifizieren, die am besten zwischen zwei Gruppen unterschei-
den. Der vorgestellte Workflow PRI ist exemplarisch an einem kürzlich veröffentlichten
Massenzytometrie-Datensatz validiert worden. Die von den Originalautoren hervorgeho-
bene Zellpopulation konnte nicht nur identifiziert werden, sondern sogar wesentlich weiter
spezifiziert werden. Außerdem wurden weitere Erkenntnisse von relevanten, kombinatori-
schen Proteinexpressionen festgestellt. Die Entwicklung der reproduzierbaren TriploTs
führt dazu, dass sie als Basis für verständliche und leicht interpretierbare Visualisierungen,
für eine strukturierte Erforschung der Daten mithilfe der Selektion der Areale, und für
neuronale Netzwerkkonstrukte genutzt werden können.

PRI ermöglicht eine optimierte, semi-kontinuierliche Bestimmung der Expressionsstufen,
die die Identifizierung von dominant vorherrschenden und diskriminierenden Proteinen
in Zellsubpopulationen wesentlich erleichtert. Darüberhinaus erlaubt es die intuitive
Erfassung von korrelierenden Mustern durch die innovative, reproduzierbare Darstellung
der Proteinkombinationen und hilft bei der Erforschung von Zellsubpopulationen.



Abstract

“De novo binning strategy to analyze and visualize multi-dimensional cytometric data”
- Engineering of combinatorial variables for supervised learning approaches -

Yen Hoang, German Rheumatism Research Center (DRFZ) Berlin

Since half a century, cytometry has been a major scientific discipline in the field of
cytomics - the study of system’s biology at single cell level. It enables the investigation
of physiological processes, functional characteristics and rare events with proteins by ana-
lysing multiple parameters on an individual cell basis. In the last decade, mass cytometry
has been established which increased the parallel measurement to up to 50 proteins. This
has shifted the analysis strategy from conventional consecutive manual gates towards
multi-dimensional data processing. Novel algorithms have been developed to tackle these
high-dimensional protein combinations in the data. They are mainly based on clustering
or non-linear dimension reduction techniques, or both, often combined with an upstream
downsampling procedure. However, these tools have obstacles either in comprehensible
interpretability, reproducibility, computational complexity or in comparability between
samples and groups.

To address this bottleneck, a reproducible, semi-automated cytometric data mining
workflow PRI (pattern recognition of immune cells) is proposed which combines three main
steps: i) data preparation and storage; ii) bin-based combinatorial variable engineering of
three protein markers, the so called triploTs, and subsequent sectioning of these triploTs
in four parts; and iii) deployment of a data-driven supervised learning algorithm, the cross-
validated elastic-net regularized logistic regression, with these triploT sections as input
variables. As a result, the selected variables from the models are ranked by their prevalence,
which potentially have discriminative value. The purpose is to significantly facilitate the
identification of meaningful subpopulations, which are most distinguish between two
groups. The proposed workflow PRI is exemplified by a recently published public mass
cytometry data set. The authors found a T cell subpopulation which is discriminative
between effective and ineffective treatment of breast carcinomas in mice. With PRI, that
subpopulation was not only validated, but was further narrowed down as a particular Th1
cell population. Moreover, additional insights of combinatorial protein expressions are
revealed in a traceable manner. An essential element in the workflow is the reproducible
variable engineering. These variables serve as basis for a clearly interpretable visualization,
for a structured variable exploration and as input layers in neural network constructs.

PRI facilitates the determination of marker levels in a semi-continuous manner. Jointly
with the combinatorial display, it allows a straightforward observation of correlating
patterns, and thus, the dominant expressed markers and cell hierarchies. Furthermore, it
enables the identification and complex characterization of discriminating subpopulations
due to its reproducible and pseudo-multi-parametric pattern presentation. This endorses its
applicability as a tool for unbiased investigations on cell subsets within multi-dimensional
cytometric data sets.
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1 Introduction

Studies of cells are important in the field of fundamental research, clinical diagnostics, water
analytics, physiology and pathophysiology. There are two main fundamental strategies
to be distinguished: bulk and single cell analyses. Bulk cell analyses can examine cell
compounds as a whole and has provided key insights in, for example, cancer biology and
micro-biomedical research. However, only the average genotype or expression signal for
an ensemble of cells can be measured. To reveal the heterogeneity of cell populations
and to discover the underlying combinatorial cell mechanisms, single cell analyses are
necessary. Among these analyses, cytometry allows profound investigation of physiological
processes, such as intracellular cytokine production and cellular proliferation, functional
characteristics like cell viability and cell cycle, and rare events by analyzing multiple
proteins on an individual cell basis, and by categorizing these cells with characteristics
such as producing or non-producing for a certain protein [1, 2, 3].

In the field of cytometry, there are mass and flow cytometers, which measure the protein
abundances by labelling the cells with metal isotopes and fluorescent markers, respectively.
In the last decade, these techniques have witnessed a great increase in the number of
measurable parameters. Present mass cytometers detect up to 50 channels in parallel, with
the throughput of hundreds of thousands to millions of cells from an individual sample [4].
This leads to large data sets with a large number of protein combinations, which require
efficient and comprehensive examination. A more extensive analysis would enable a
better understanding in characterizing the properties of combined protein expression and
in detecting intracellular interactions which coordinate activities of various cell types
according to genetic and environmental contexts.

In cytometric data, each cell has its own unique expression of surface and intracellular
proteins. Dealing with millions of cells with different characteristics, it is especially difficult
to detect a cell subpopulation, which has a discriminative expression pattern between
two or more groups. These subpopulations have the potential to be part of a disease
mechanism or can be used as a biomarker, for example, to discriminate between responder
and non-responder in cancer therapies. They are therefore the major target of many
cytometric analyses. However, since the protein interactions are not fully understood,
the expression of one protein in a cell can have a strong or weak activating or inhibitory
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1.1. Making sense of high-dimensional cytometric data

effect, or no effect at all. These basic characteristics of proteins suggest a complexity that
can be difficult to investigate, especially when trying to understand protein function in
the proper biological context.

If m = 50 proteins are measured from each sample and each protein expression is con-
sidered only to be binary, as either positive or negative, the number of possible ‘protein
combinations’ reaches over a billion (2m=50). In addition, in many studies there is a
limited amount of samples available to deeply explore biological interrelationships. When
the ratio of protein combinations (p = 250) to the number of samples (N) is dispropor-
tionately high, one faces a p >> N problem in classification or cluster analysis, and
multidimensional scaling. The problem of estimating a predictive and accurate function
becomes vastly harder as p, the dimension of the protein combinations as variables x,
increases. This is called the curse of dimensionality [5]. In summary, with increasing
number of dimensions p, more samples are required, storage and running time scale
up exponentially and model results are prone to over-fit. Thus, small data sets with
high-dimensional protein combinations underlie the curse of dimensionality. The more
variables are present, the more data points are needed in order to fill the space and to avoid
over-fitting. This is a common problem in the biotechnological and clinical area [6, 7].

1.1 Making sense of high-dimensional cytometric data

As the number of the measured proteins rises, conventional manual inspections on bi-
axial contour plots are time consuming and not viable, since the number of these plots
increases exponentially with the number of measured protein markers. In other words,
a sample in an experiment with m = 50 marker would require the investigation of
m · (m− 1) = 2, 450 plots from every two marker combination. In the last decade, many
sophisticated analysis techniques have been developed to examine cytometric data with an
emphasis to overcome the curse of dimensionality in order to obtain information about the
underlying characteristics of the cells. Some of them have been reviewed and benchmarked
several times [3, 8, 9, 10, 11]. viSNE is one of the most popular dimensionality reduction
techniques, which makes use of the algorithm t-distributed stochastic neighbor embedding
(t-SNE) [12]. Another tool is Scaffold Maps, which uses the cluster algorithm partitioning
around medioids (PAM) and combines the resulting clusters with manual landmarks to
create force-directed graphs [13]. Citrus combines hierarchical clustering of cell events with
machine learning approaches to identify statistically significant clusters between groups of
samples, or to build a predictive model for a particular sample type [14]. However, these
clustering algorithms need the amount of clusters or the minimum amount of cells to define
a cluster to be set beforehand, and are often unable to detect low expression differences or
rare cell subtypes due to the similar characteristics of the cells compared to other major
populations. Matching these small cell populations across multiple samples is even more
challenging. Manual analysis is often subjective and not reproducible, but prior biological
knowledge provides guidance to reasonably identify these populations. Nevertheless,
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integrating this information into the exploratory clustering process has not often been
deployed [15]. Furthermore, these methods are facing high computational efforts, which
leads to integration of downsampling techniques in their approaches. Therefore, rare
cell types are often not placed in any cluster since they are likely not contained in the
remaining cells after the downsampling step. Hence, the pursuit of suitable methods
is ongoing: a tool which is computationally inexpensive and is capable of generating
reproducible, intuitively interpretable results with group comparison possibilities.

1.2 Author’s approach

The author’s approach is addressing cytometric data, in which information of a single
experiment is represented by thousands to millions of rows. Each row represents a single cell
and each column a protein marker with signal intensities (SIs) as values. This dissertation
proposes a workflow named PRI for pattern recognition of immune cells, and is divided
into three main steps: data preparation and storage, combinatorial variable engineering
(VE), and subsequent machine learning on the basis of these innovative variables (Fig. 1.2).
In particular, the workflow begins with processing the data directly after obtaining the
raw files from the measurement device. It involves gating, data storage with the in-group
implemented database management system PRI-base, data transformation, outlier removal
and quality control. The second step is the VE method which is based on a binning
strategy and combines information about two and three parameters. These engineered
variables are herein called diploT and triploT, respectively. They serve for subsequent
downstream analysis, and for visualization and manual inspection. Furthermore, they
function as explanatory variables explored in the embedded variable ranking (VR) or, for
example, as input layer in deep learning.
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Figure 1.1: Scheme of the raw cytometric data structure and the dimension reduction due to variable
engineering and domain knowledge filtering.
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After the VE, the data structure is transformed from N number of sample tables which
has different number of cells (c) multiplied by a fixed number of protein markers (m)
into one table of N sample rows with p input variables as columns. Figure 1.1 illustrates
the crucial data transformation and dimension reduction of the raw data, but the table
incorporates the statistical measurements extracted from the original bi-axial plots. The
elastic-net regularized logistic regression (erLR), a supervised machine learning algorithm,
used in a nested cross validation (CV) proposes a ranking table of these engineered
variables, which are significant and differentiate most between two groups.
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Figure 1.2: Proposed analysis workflow pattern recognition of immune cells (PRI ) for cytometric
data includes three main steps. In the data preparation step, raw files are gated and are stored within the
in-group database management system tool PRI-base, signal intensity (SI) values are transformed, outliers are
removed, and optional normalization and filters are applied. The data files are then combined to one structured
data set. In the variable engineering (VE) step, cells in a uni-axial or bi-axial plot are grouped into bins and
different statistical operations are applied discretely on these bin cells. Data visualization can hereby follow
for manual inspection (top arrow). To obtain a list of interesting protein marker combinations, an additional
refining step is deployed which outcomes then serve as basis for a supervised machine learning algorithm.
Ranked variables are then suggested to the examiner to support the detection of subpopulations which can lead
to biologically novel insights in cellular interactions (middle arrow). Another option arises for deep learning
algorithms to create precise classification models (bottom arrow).
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1.3 Objective

The goal of this study is to develop a comprehensive analysis workflow for cytometric
data. To present the feasibility of the workflow, it is applied on the recently published
public mass cytometric data set from Spitzer et al. [13]. The data is obtained from female
mice with breast carcinomas, which were treated in four different ways. These treatments
are categorized in two groups: effective and ineffective treatments. The authors identified
a T cell subpopulation which discriminates between both treatments. Chapter 2 describes
the example data set in more detail, as well as the basis of cytometric data along with
conventional and recent approaches to examine these data. VE and variable selection (VS)
are also introduced, with the focus on the embedded machine learning technique erLR
and nested CV deployed in this dissertation. The demonstrated re-analysis in Chapter 3
strives, firstly, for manifesting the added value of the engineered variables. Subsequently,
it is aimed to show the practicability of the VR approach which is designed to guide the
investigator with specific discriminative three-protein marker combinations. To further
facilitate the usage of this workflow, the implementation of a tool in R with a graphical
user interface (GUI) is intended. Moreover, the combined VE and VR workflow is under
review in Chapter 4. Both parts are subject to comparison with the previously introduced
conventional and state-of-the-art analysis strategies. The purpose is to discover, if they
enable a reproducible and interpretable examination at low computational cost which can
cope with the high-dimensional marker combinations. At the end, Chapter 5 summarizes
the overall findings in this dissertation and advises the scope and improvements that can
be made in future work.
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2 Background

This chapter provides an outline of the topics involved in this dissertation, consisting of four
sections. The first section briefly presents the technology of mass cytometry with its bene-
fits and limitations compared to the similar technique flow cytometry. The second section
introduces the conventional and state-of-the-art cytometric analysis tools and that used
from Spitzer et al [13]. Section three gives an overview of variable selection (VS). It will de-
pict the three general approaches, whereby the embedded method is used in this study. The
supervised variable ranking (VR) algorithm with the applied regularization and statistics
are then introduced. The last section contains description of the biological data, which was
re-analyzed with the proposed analysis workflow, and the original authors’ main results.

2.1 Mass cytometry

Cytometry involves measurement of single cells and analyses of quantitative single cells.
It paves the way for research on cellular heterogeneity, characterization of rare cell
subpopulations, discovery of biomarkers, understanding functionality, tracing lineages
of cellular phenotypes, and comparing abundance of cell populations between different
conditions, for example between patient groups [16]. Flow cytometry and the more recently
introduced mass cytometry, also called cytometry by time-of-flight mass spectrometry,
are high-throughput technologies that measure protein abundance on exterior surface
or intracellular on a single-cell level. Due to the nature of the chosen example data set,
the generation of cytometric marker intensities and the process of cytometric marker
measurements in mass cytometry is described, and benefits and limitations compared
with flow cytometry are presented in the following sections.

2.1.1 Technology

Mass cytometry utilizes antibodies tagged with metal isotopes from the lanthanide series
[17]. In general, these labeled antibodies bind to specific proteins on exterior surface of the
cell or intracellular. Up to 50 different labeled antibodies can then be detected per cell by a
cytometer in parallel (Fig. 2.1). Thus, the signal intensity (SI) of each antibody is propor-
tional to the abundance of the specifically bound protein. After measurement,the cytome-
ter device will produce a table with m columns for m protein markers and c rows, each row
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2.1. Mass cytometry

corresponding to one cell, where the position of the cells are not relevant. The data is stored
in flow cytometry standard (FCS) format, which is a combination of textual data with
device specific information, followed by the intensity measurement as binary data [18].

Figure 2.1: Schematic workflow of generation of cytometric marker intensities and the process
of cytometric marker measurements in mass cytometry. Cells labeled with metal-conjugated antibodies
in solution (A) are injected into the nebulizer (B). They are reduced to single cell-containing droplets and are
directed to the torch, where they are vaporized, atomized, and ionized in the plasma (C). The low-mass ions are
removed (D), resulting in an ion cloud that enters the time-of-flight mass analyzer. The ions are separated based
on their mass and are accelerated to the detector (E). The detector measures the quantity of each isotope for each
individual cell in the sample. The data is generated in the FCS format (G) and analyzed e.g. in a conventional
manner with bi-axial scatter plots (H) [17].

2.1.2 Advantages and disadvantages of mass cytometry compared to
flow cytometry

Flow cytometry has been developed early in the 1950’s and uses fluorophore labeled
antibodies which attach to the protein. This has the advantage, that this method is
non-destructive, thus, can be used to sort cells for further analysis. Common flow
cytometric experiments measure 6–12 parameters, with modern systems measuring up
to 20 channels [19], while new developments (e.g. BD FACSymphony [20]) promise to
increase this capacity towards 50. Moreover, flow cytometry offers the highest throughput
with tens of thousands of cells measured per second at relatively low operating costs per
sample. The order of magnitude is about 105 − 107 cells per sample. However, because of
the spectral overlap between fluorophores, the number of parameters that can be reliably
measured in parallel is still limited, and antibody panel design and correcting the so-called
spillover of the data is a crucial part of flow cytometry [21]. On the contrary, by using rare
metal isotopes, mass cytometry is not light- or time sensitive. Cell auto-fluorescence can
be avoided, and the spectral overlap is drastically reduced, but is still present due to metal
impurities and oxide formations, e.g. through coupling of antibodies to neighboring metals
[22]. Yet, mass cytometry supports a higher dimension of parameters reliably measured per
cell, with current panels using 50 parameters and the promise of up to 135, but the process
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2.2. Conventional and state-of-the-art analysis strategies

throughput is slower (hundreds of cells per second) [17]. Combined with the study design,
mass cytometric measurements usually result in a lower magnitude of cells per sample
(103 − 106). Furthermore, the cells are destroyed during the ionization step (Fig. 2.1B).

Another aspect is normalization. In general, to assure a qualitative comparison of
individual or groups of samples, it is necessary to normalize the data set. It is difficult
to estimate if variations are background noise due to technical issues (e.g. instrument
performance, sample storage and preparation) or real biological differences between
samples [22, 23]. This is especially difficult with multi-center studies. For single-cell
RNA sequencing there are house-keeping targets which can be used to remove technical
variations from a sample and to determine data quality [15]. For flow cytometric data,
examiners can use the modified measurements called fluorescence minus one (FMOs).
An FMO contains all the fluorochromes in a panel, except for one. Hence, for m protein
markers in a staining panel, one has m FMOs. As a consequence, SIs of a protein marker
found in the FMOs are false signals due to background light contamination. Therefore,
thresholds for true positive protein marker signals can be set. However, for mass cytometric
data it is especially challenging, since there are no similar standard procedures.

Due to the fast development of cytometers and thus the fast increase of measurable
parameters, the demand for suitable exploratory tools to cope with high-dimensional
data is present. In the following section, state-of-the-art analysis strategies are presented,
which are used for comparison with author’s approach.

2.2 Conventional and state-of-the-art analysis strategies

Due to the recent increase in the amount of simultaneous channel detection, many complex
approaches for cytometric analyses have been developed to tackle the newly present curse
of dimensionality in the marker combinations. These tools are mainly based on dimension
reduction, clustering or graph theory [2, 3, 8, 11]. In this dissertation the common
conventional and state-of-the-art techniques in single-cell analysis are introduced. For
the latter, viSNE and Citrus are two of such widely used tools [12, 14]. viSNE refers to
the visualization of the local data structure, and Citrus aims at identifying significant
clusters in group comparisons. Scaffold Maps is a clustering-based technique as well and is
presented in this dissertation, since this algorithm was used in the original authors’ study
from to eventually obtain their results [13]. Last but not least, CellCnn is introduced,
which firstly uses a deep learning technique [24].

2.2.1 Conventional approaches

In the field of cytometry, the identification of cell population typically has been processed
by manual gating, where a series of two-dimensional scatter plots are visually analyzed
one after another. At each scatter plot, a subset of cells, either positive or negative for
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2.2. Conventional and state-of-the-art analysis strategies

the two visualized markers, is selected and further filtered in the subsequent iterations
until populations of interest across a range of marker combinations are captured. In
the end, means and frequencies of subpopulations are opposed by bar, box or circle
plots (Fig. 2.2). However, this so-called manual gating has drawbacks, such as subjectivity
in setting the cutoff between positive and negative and bias toward well-known cell types.
Furthermore, it is inefficient when analyzing large datasets, which also contributes to a lack
of reproducibility. This inefficiency increases with the amount of measured parameters.
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Figure 2.2: Conventional approaches to visualize and analysis cytometric data. Exemplified bi-
axial scatter (a) and contour plots (b) are serially gated until populations of interest across a range of marker
combinations are captured for each sample. The means or frequencies of each subpopulation are captured and
compared between samples with circle, bar or box plots with optional significance analysis (c).

2.2.2 Recent approaches

viSNE

viSNE is a dimension reduction technique and makes use of the unsupervised t-distributed
stochastic neighbor embedding (t-SNE) algorithm combined with a multi-core-processing
option. The algorithm begins by calculating the pairwise similarity matrix in high-
dimensional space and randomizing a starting position for each point in the low-dimensional
space using the Euclidean metric (Fig. 2.3). It iteratively updates the position of points
in low-dimensional space, resulting in the minimization of the relation between the simi-
larities in high- and low-dimensional space using the Kullback-Leibler divergence (Eq. 2.1-
2.6 [12]). There are four parameters to configure. Default options are: iterations = 1, 000,
perplexity = 20, theta = 0.5, and eta = 200. iterations denotes the number of iterations
to calculate the distances between the cells, perplexity is the number of neighbors, while
eta describes the learning rate. theta is a scale between 0 and 1, which indicates the
trade-off between speed and accuracy. The higher the value of theta, the higher the
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approximation. The applied algorithm and the Kullback-Leibler divergence is shown in
the following equations.

Let ai be the ith object in high dimensional space,

with σi as ai’s variance (∼perplexity).

Let bi be the ith object in low dimensional space.

Construct probabilities:

pj|i =
e(−||ai−aj ||

2/2σ2
i )∑

k 6=i e
(−||ai−ak||2/2σ2

i )
(2.1)

qj|i =
e(−||bi−bj ||

2)∑
k 6=i e

(−||bi−bk||2)
, with pi|i = qi|i = 0 .

(2.2)

The joint similarity of ai and aj in high-dimensional space is described as

pij =
pj|i + pi|j

2n
(2.3)

Student t distribution with one degree of freedom is used to represent the low dimension:

qij =
(1 + ||bi − bj ||2)−1∑
k 6=l(1 + ||bk − bl||2)−1

(2.4)

Minimizing the sum of Kullback-Leibler divergences between the joint probability
distributions P and Q with

C = KL(P ||Q) =
∑
i

∑
j

pijlog(
pij
qij

) (2.5)

by the gradient of the cost function
δC

δbi
= 4

∑
j

(pij − qij)(bi − bj)(1 + ||bi − bj ||2)−1 .

(2.6)

Figure 2.3: Scheme of the t-SNE al-
gorithm from three dimensions to two
dimensions. “1,000 points are randomly
distributed with normally distributed noise
around a polynomial of the third degree.
viSNE projects a one-dimensional curve em-
bedded in three dimensions (left) onto two
dimensions (right). The color gradient shows
that points that are in close proximity in three
dimensions remain in close proximity in two
dimensions” [12].

Citrus

Citrus is a mixture of unsupervised and supervised algorithms and comprises three
main steps. The first step uses the conventional agglomerative hierarchical clustering
to identify cell clusters within the dataset. The dissimilarity between any two cells

10



2.2. Conventional and state-of-the-art analysis strategies

is specified by Ward’s linkage used as the agglomeration method and the Euclidean
metrics between cluster markers (Eq. 2.7-2.8). The second step consists of the calcula-
tion of a statistical feature from these clusters, which is either the median expression
level of the markers or the frequency of the cell clusters compared to the whole sam-
ple. The last step is the model construction with either supervised classification or
survival regression, dependent on the number of groups. Citrus uses statistical features
as input variables and group assignments as observations. The model determines the
clusters which best predict the observation of the data set or an individual’s survival
risk. The classification uses L1-regularized logistic regression model (Sec. 2.4), and for
the survival regression, many L1-regularized Cox proportional-hazards models [25] are
constructed. The models are evaluated using k-fold cross validation, and the regulariza-
tion thresholds minimizing the cross-validation error rate λmin and within 1 standard
error of the minimum model λ1se is used to determine the subset of clusters for further
prediction (Sec. 2.4.4). To use this tool, ten parameters requires configuration. De-
fault options are Compensation = File-internal; Cluster characterization = abundance;
Event sampling = 5, 000; Event sampling method = equal; Minimum cluster size =

5%; CV folds = 5; FDR = 1%; Normalize scales = false; Transform cofactor = 5;
Association models = glmnet.

Figure 2.4: Schematic workflow of Citrus. “Cells from all
samples (i) are combined and clustered by using hierarchical cluster-
ing (ii). Descriptive features of identified cell subsets are calculated
on a per-sample basis (iii) and used in conjunction with additional
experimental metadata (iv) to train a regularized regression model
predictive of the experimental endpoint (v). Predictive subset fea-
tures are plotted as a function of experimental endpoint (vi), along
with scatter or density plots of the corresponding informative sub-
set (vii). In this example, the abundance of cells in subset A was
found to differ between healthy and diseased samples (vi; H, subset A
abundance in healthy patients; D, subset A abundance in diseased
patients). Scatter plots show that cells in subset A have high ex-
pression of marker 1 and low expression of marker 2 relative to all
measured cells (shown in gray)” [14].

For clusters A,B and centroids ā, b̄ :

DWard(A,B) =
d(ā, b̄)2

1/|A|+ 1/|B|
(2.7)

with Euclidean metrics:

d(ā, b̄)2 = ||ā− b̄||2 . (2.8)
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Scaffold Maps

The single-cell analysis by the fixed force- and landmark-directed maps (Scaffold Maps)
algorithm consists of three main steps (Fig. 2.5) [26]. The first step is the creation of
a cluster map which comprises cell clusters from manually identification (red nodes)
and from conventional cell clustering by the clustering for large applications (CLARA)
algorithm (blue nodes, App. A, Alg. A). CLARA makes use of the algorithm partitioning
around mediods. Thus, it works similar to k-means clustering, but uses the medoids
instead the means. A mediod in this context is the cell with the smallest dissimilarity
to all others in the cluster. The second step generates a force-directed graph from both
blue and red nodes in which similar nodes are located close together according to the
similarity, and is used as the reference map with land mark populations. Each node is
associated with a vector containing the median marker values of the cells in the cluster.
The edge weights are defined as the cosine similarity between these vectors. Additional
samples are also clustered by CLARA, and the resulting clusters are manually overlaid
onto the red landmarks.

Figure 2.5: Schematic workflow of Scaffold maps. “(i) Bone marrow sample is the reference sample. (ii)
Leukocytes are grouped according to prior knowledge to define landmark cell populations as reference points on
the map. The same leukocytes are subjected to conventional clustering to provide an objective view of the tissue
composition and organization. An illustration is provided with the two major lineages of mature T cells, which
express either CD4 or CD8. (iii, iv) Both landmark populations (red nodes) and unsupervised clusters (blue
nodes) are used to generate a force-directed graph in which similar nodes are located close together according to
the similarity of their protein expression. Size of unsupervised clusters denotes the relative number of cells in that
grouping. (v) Landmark populations from the bone marrow are fixed in place for subsequent maps to provide
points of reference for rapid human interpretation. (vi) Additional samples are each subjected to conventional
clustering via the same clustering algorithm. (vii) The resulting clusters for each sample are overlaid onto the
original landmark nodes to generate tissue-specific Scaffold maps” [26].

CellCnn

CellCnn uses also a supervised learning algorithm, in which each observation corresponds
to single-cell abundance profiles and each label is the corresponding phenotype. The values
of each uni-variate marker is percentile normalized and the intensities are simplified to high
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and low. Original samples are distributed into training, validation and test set, which are
used as input layer in convolutional neural network (CNN). The training set is randomly
subsetted with replacement for multi-cell input training samples of the same size as the
test set. The number of multi-cell inputs is chosen equally for each label. The distribution
to training, validation and test set, the number of applied models and some of its corre-
sponding parameters (filters, learning rate, dropout) and k-folds in cross validation (CV),
and the choice of pooling measurement changes according to their best results and aim in
the different public data sets. After training a model, the trained filter weights are used for
variable selection (VS). The weights which correspond to the molecular profiles of relevant
cell subgroups are extracted. These profiles can then be matched with the individual patch
vector of the cells. Density-based clustering is then applied to detect filters with more than
one cell type. The filtered cell types are eventually compared to the residual cells and are
characterized in more detail with conventional approaches such as density and bar plots.

Figure 2.6: Schematic workflow of
CellCnn . “CellCnn takes multi-cell inputs,
where each input is annotated with a phe-
notype. Node activities in the convolutional
layer are defined as weighted sums over
single-cell molecular profiles. Nodes in the
pooling layer evaluate the presence (max
pooling) or frequency (mean pooling) of spe-
cific cell subsets. The output of the network
estimates the sample-associated phenotype.
Network training optimizes weights to match
training data set phenotype. Trained filter
weights correspond to molecular profiles of
relevant cell subsets and allow for assignment
of the cell subset membership of individual
cells (cell-filter response)” [24].

2.2.3 Challenges

Common drawbacks of non-linear reduction algorithms as in viSNE is the difficult in-
terpretation, the high complexity and the crowding problem. Citrus and Scaffold Maps
are using clustering approaches on single cell information which results into intensive
computation. It is therefore infeasible to apply these approaches to large data sets, which
contain more than 50,000 cells, and prior downsampling procedures bears the risk of
loosing rare subpopulations. CellCnn on the other hand does not work properly with
small data sets, and needs more computational power compared to the other tools. There
are also many other alternatives to this study’s workflow, and several new algorithms are
emerging or current ones are optimized. Many have also been reviewed [2, 3, 4]. How-
ever, an easily interpretable and conclusive visualization connected to a comprehensible,
reproducible differential analysis is still lacking. Therefore, VS, in particular VR, and the
machine learning algorithm and evaluation techniques deployed in the proposed workflow
are introduced in the following sections.
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2.3 Variables and their modifications

A variable in this dissertation describes an input variable or explanatory, predictive vari-
able for a machine learning approach, and is distinct from a raw variable. A raw variable
in this context is a raw measurement e.g. a SI from a protein marker in the published
mass cytometric data set. In the following the two main categories are introduced which
modify the variable space.

2.3.1 Variable engineering as a key part in data mining

Variable engineering (VE), also called feature engineering or variable construction, is
an upstream domain and a key step in data mining. It supports the usage of domain
knowledge of the data, while generating a new, relevant mathematical representation
from the raw data. These engineered variables are used as input variables in machine
learning approaches with the aim of helping these algorithms to build a robust model,
and to improve the model performance on unseen data. Compared to the raw values, the
modified variables can have the same, an enlarged or a reduced space dimensionality, or
a combination of either direction [27]. The general question in VE is, if manipulating
variables, such as removing or combining raw variables, is reasonable and whether it is
more useful than the raw version.

In this study, VE is applied on the arcsinh-transformed SIs of the measured protein
markers from the example data set from Spitzer et al. The novel engineered variables
are subject to visualization, manual inspection and to variable ranking, which latter is
further described in the following section.

2.3.2 Variable selection methods

Only “a few percentage points of variation among cells can produce outcome differences
of more than two orders of magnitude...” and “...can make all the difference between
health and substantial autoimmune pathology” [28]. Variable selection (VS), also known
as feature (subset) selection, could help to find these cells. It is a type of dimension
reduction and is also a key step in statistics and the readability and interpretability of
the machine learning outcomes. It allows for filtering out irrelevant variables which have
no to little predictive value. Thus, it selects a subset from the predefined set of variables
and does not create new ones (as in VE). There are three main categories of VS, which
are shortly described in the following sections: filter, wrapper, and embedded methods
(Fig. 2.7) [29]. Selecting the appropriate VS method can achieve the following [30]:

• interpretability of predictive models (simplification),
• reduction of data size,
• decrease of model training times,
• elimination of noisy variables,
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• improvement of generalization (reducing over-fitting), and
• avoidance of the curse of dimensionality.

Feature
selection

Classi�cation

(a) filter

Classi�cation

Feature selection

(b) embedded
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subset

Classi�cation

(c) wrapper

Figure 2.7: Scheme of the three variable selection methods.

Filter methods

Filter methods evaluate the relevance of the variables prior to the model algorithm as
a pre-processing step. They are also independent from the model algorithm and do not
take into account any biases of the downstream algorithm, hence, making these methods
comparably fast. Popular examples for filter methods are correlation based and variable
weight based VS [31, 32]. In classification problems, each variable is individually evaluated
to check if there is a plausible relationship between it and the observed classes. A common
downside of filter methods is that they include redundant variables, and they do not
capture inter-correlations between variables very well.

Wrapper methods

Wrapper methods evaluate variables indirectly by evaluating multiple models with different
variable subsets. They add or remove variables to find the optimal combination that max-
imizes the model performance [27]. In classification problems, each variable is individually
evaluated to check if there is a plausible relationship between the variable and the observed
classes. Variables with important relationships are included in a classification model.
Wrapper methods eliminate dependent and irrelevant variables very well. However, these
methods are very intensive in computation, and even a small number of variables can lead to
a combinatorial explosion. In addition, there is an increased risk of over-fitting with small
sample sizes. Classical representations are deterministic greedy methods (forward selection
and backward elimination), stochastic genetic algorithms, and support vector machines.

Embedded method

Embedded methods integrate VS or variable weighting as a part of model construction.
The error function is optimized, and penalization of too many variables in the model is
simultaneously applied. This leads to a quicker design than wrapper methods and less
danger of over-fitting. Embedded methods for variable ranking (VR) assess individual
variables by assigning weights to them according to their degrees of relevance in the
process of training [29]. Some embedded strategies include decision tree learning, neural
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networks, and regularized models, the latter of which is deployed in this study and
introduced in the following section.

2.4 Elastic-net regularized logistic models

In this section, the elements of the embedded VR is introduced, which is deployed in this
dissertation. Fundamental elements of a supervised linear model (LM), its extension to
generalized linear model (GLM), the elastic-net regularization to extend and optimize the
model, cross validation (CV) and error measurements to evaluate the model performance
are shown with the applied notations.

2.4.1 Linear regression models

Amodel is a simplification of a complex situation for better understanding of a phenomenon
of interest. There are highly innovative tools in statistics available, but the main tool of
the applied statistician remains the linear model (LM), which is a supervised learning
approach. It is called supervised, because of the presence of the response variable which
guides the learning process. It has the simplest and seemingly most restrictive statistical
properties: independence, normality, constancy of variance, and linearity [33, 34, 35].
Linear models can be used for predictions, data description, parameter estimation, and
variable selection, and can be applied to transformations of the original input variables.

In a linear regression setting, there are N samples where Y = {y1, . . . , yj , . . . , yN} is the
response variable vector and each explanatory variable X′ = {xj1, . . . , xji, . . . , xjp} is
a p-dimensional associated vector of variables. Dependant response variable Y can be
predicted by a linear combination of explanatory variables. The term “linear model” usually
encompasses both systematic and random components in a statistical model. It is assumed
that the response variable has a normal distribution [33, 34]. The LM has the form

yj = ηj + εj = βj0 +

p∑
i=1

βji · xji + εj , (2.9)

where model error εj is the Gaussian noise to the predicted values, which cannot be
explained by the combination of xji and βji. Thus, εj is independent of xj1, . . . , xjp, the
expected value from εj is E[εj ] = 0, and the variance is V ar[εj ] = σ2. βji are unknown
coefficients (regression weights β′j = (βj1, . . . , βjp) and an intercept (or ’bias’) term βj0

∈ R), which are needed to be estimated.

Generalized linear regression models

Generalized linear models (GLMs) are an extension of LMs, which allows the response
variable to be non-gaussian [36]. With these models, it is possible to deal with problems
by assuming that Y has an arbitrarily different distribution, e.g. if your response variable
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is binary. To model the distribution of Y conditional on a number of random variables
X′ to the type of conditional distribution P (Y|X′), there are four key assumptions:

1. The influences of the variables X′ on Y can be summarized into an intermediate
form, the linear predictor ηj ;

2. ηj is a linear combination of X′;
3. There is a smooth, invertible function l mapping ηj to the expected value E[Y] = µ;
4. The distribution P (Y = yj ;µ) of Y around µ is a member of a certain class of noise

function and is not otherwise sensitive to the variables X′.

Assumptions 1 to 3 can be expressed by the following two equations. Assumption 4
implies conditional independence of Y from the variables X′ given ηj .

ηj = β0 +

p∑
i=1

βixi + εj (linear predictor) (2.10)

ηj = l(µ) (link function). (2.11)

Summarized, a GLM has three parts: a structural component, a link function, and a
response distribution. A link function is a function of the mean of the response variable
Y, which is used as the response instead of Y itself, which describes the relationship
between the random and systematic components.

The logit link function

The logit transformation is a link function from the sigmoid function classes, which converts
a real number from (−∞,+∞) to a probability number [0, 1] (Fig. 2.8). The function
is the canonical link function for the Bernoulli distribution and is the natural log of the
odds, that Y equals one of the categories. It is inserted into Equation 2.11 [33, Chap. 4.3].

logit(P ) = ln

(
µ

1− µ

)
= βj0 +

p∑
i=1

βjixji , for 0 < P < 1 (2.12)

µ

1− µ
= exp

(
βj0 +

p∑
i=1

βjixji

)
, with xj0 = 1 (2.13)

= exp
( p∑
i=0

βjixji
)

(2.14)

=

p∏
i=0

exp(βjixji) . (2.15)

With the logit link function described in Equation 2.12-2.15, coefficients and variables
are multiplicative rather than additive as in a LM. Thus, the coefficients need to be
interpreted exponentially. If βji = 0.55, then exp(βji) = 1.73 and the variable xji affects
the odds ratio of the response to 1.73 of being true and has thus more influence than in
a LM with the same value [37]. Combining GLM with a logit link function results in a
generalized logistic regression model, short logistic regression (LR) model.
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Figure 2.8: Logit link function.

Minimizing the loss function

The goal is to find the best vector xji. For this pupose, the loss function (Y−ηj(x)) needs
to be minimized. With the coefficients βji, it is possible to adjust the influence (relevance)
of the variables xji in the regression. As the true βji are unknown, they have to be
estimated from the data set. The common approach is the ordinary least squares (OLS),
where β̂ji are estimated by minimizing the squared-error loss function (Eq. 2.16). This
leads to nonzero coefficients, which means that all variables are involved in the model.

β̂ji = argminβ{
N∑
j=1

(
yj − βj0 −

p∑
i=1

βjixji
)2} . (2.16)

The classical OLS cannot distinguish variables with little or no influence. Thus, this
model is most likely over-fitted in p > N data sets, which results in a poor predictive
power on unseen data. To solve that problem, regularizations on the estimation process
with the principle of sparsity are applied. The principle and several regularizations are
introduced in the following section.

2.4.2 Principle of sparsity

The principle of sparsity helps to reduce the number of variables p in classifications, e.g.
in LR models. This is mainly applied on disproportional data sets. If the number of the
variables p is much higher than the number of samples N , the models tend to over-fit,
so that the model performs badly on unseen data. There are several different kinds of
sparsity. The classical sparsity states that only a small number p′ are relevant among
the p explanatory variables. Another statement is, that although all of the p explanatory
variables are important, one can find a small number of linear combinations of those
variables that explain most of the variation in the response [38].
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2.4.3 Regularizations

A regularization, or a constraint, in LR applies a penalty term to the loss function, so
that the variance is reduced at the cost of introducing some bias [34]. There are many
regularizations available, which improve the prediction accuracy by shrinking the values
of the regression coefficients, or setting some coefficients to zero. The simplest penalty
term takes the form of a sum of squares of all coefficients ||βji||2. This so-called L2 norm,
a further popular regularization L1 norm, and a mixture of both L1 and L2 (elastic-net)
are presented in the following sections.

L2-Regularization

If multi-collinearity is present in the data, there is no unique solution to estimate the
coefficients. There are rather infinite possibilities, which would result to the same
minimal loss. One solution to handle this problem is the deployment of the L2, or ridge,
regularization. It shrinks the coefficients in a regression towards zero by imposing a
penalty term on the sum of the squares of the coefficients (Eq. 2.17). This regularization
does not shrink the variable count p, and operates in situations in which p < N .

β̂ = argminβ{
N∑
j=1

(
yj − βj0 −

p∑
i=1

βjixji
)2

+ λ

p∑
i=1

βji
2} , (2.17)

where regularization parameter λ ≥ 0 is a penalty parameter that controls the amount
of shrinkage, which can be estimated by an external procedure such as cross-validation
(Sec. 2.4.4). The bigger the λ, the more variables are filtered out.

L1-Regularization

The L1, or LASSO, regularization seeks to minimize the squared error loss (Eq. 2.16)
under a norm analogous to the L2. Specifically, the loss function is subject to the sum
of the absolute values of the coefficients βji (Eq. 2.18) [39]. This solution tries to solve
the p >> N problem by setting many β estimates to zero. If there are many correlating
variables, this approach tends to highly increase the coefficient of one variable and set the
coefficients of the other correlating variables to zero. Thus variable shrinkage is conducted,
resulting in a very sparse set of variables p′ ≤ N .

β̂ = argminβ{
N∑
j=1

(
yj − βj0 −

p∑
i=1

βjixji
)2

+ λ

p∑
i=1

|βji|} . (2.18)

Elastic-net regularization

Elastic-net regularization overcomes some of the limitations of the L1 by borrowing
strength from the L2 [34]. Specifically, it
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• allows to select p > N amount of variables
• tends to jointly select or leave out groups of highly correlated variables, and
• improves the predictive performance with respect to L1.

The penalty function has both norms incorporated, resulting in a loss function of

β̂ = argminβ
1

2N

N∑
j=1


(
yj − βj0 −

p∑
i=1

βjixji

)2

+ λ

p∑
i=1

(
α|βji|+ (1− α)βji

2
)
 .

The second term (similar to L2 norm) averages highly correlated variables, while the
first term (L1 norm) encourages a sparse solution in the coefficients of these averaged
variables. The elastic-net can yield more than N non-zero coefficients. This is especially
advantageous for a data set with p >> N . Regularization parameter α constraints the
scale of both terms.

The hyper parameters α and λ affect the sensitivity of the algorithms to detecting patterns,
the bias-variance trade-off and the trade-off between model complexity and fitting of
the data. To estimate these parameters, the model performance needs to be evaluated.
Cross-validation is especially useful for limited data, and is therefore presented in the
following section.

2.4.4 Cross-validation

After building a model, an evaluation of that model is important to assure a high accuracy
of the prediction on unseen data. Thus, the data set needs to be divided in training and
validation set. However, in order to build an accurate predictive model, many data is
needed for training. With small data sets, the validation set is very small to profoundly
estimate the performance of the model. One solution to solve this problem is to use
the k-fold CV protocol, which is arguably the most common out-of-sample performance
estimation protocol for relatively small sample sizes. In the following, CV and the deviance
as error measurement in LRs is introduced.

The algorithm divides the samples into k folds and uses one fold for validation and the
k − 1 folds for training the model [33]. Specifically, k-fold CV iterates as follows:

• for i = 1, . . . , k, hold out portion i and fit the model from the rest of the data;
• for i = 1, . . . , k, use the fitted model to predict the hold-out samples;
• average the performance measurement over the k different fits.

This is repeated k times with another fold as validation set until all folds have been
processed. Hence, the data set does not need to be divided into two sets initially. In
this way, the combination of the regularization parameters α and λ can be determined
to build the best model.
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2.4.5 Error measurements

Deviance

The OLS method minimizes the sum of squared-error loss function (Eq. 2.16). Using the
logit function in LRs, the coefficients and variables are factors rather than summands due
to the log odds. Therefore, the error measurement deviance dev is used, which is a specific
transformation of a likelihood ratio [40]. It is defined as minus twice the log-likelihood
(Alg. 2.1). The model is estimated on the k − 1 folds of the CV and applied to the
remaining kth fold. For the application on the remaining fold the log-likelihood-score is
calculated. This is repeated k times and the mean of the k results for each λ of the above
defined deviance measure is returned.

Algorithm 2.1: Mean deviance measurement
Input: Observations Y; chosen number of variables by λ: p̂; left_out samples
Output: mean(dev)

1 it = 0
2 foreach j in samples do
3 next if j ==left_out
4 it +1= it
5 dev[it] = −2 ·

(
yj · log(p̂j) + (1− yj) · log(1− p̂j)

)
6 end

Root mean square error

The root mean square error (RMSE) is the standard deviation of the prediction errors.
It is the square root of the summed differences between predicted values and observed
values. Thus, it is always non-negative, and a value of 0 would indicate a perfect fit to
the data. The formula is

RMSE =

√∑
j(ŷj − yj)2

N
. (2.20)

To demonstrate the proposed VR approach, a publicly mass cytometric data set was used,
which is summarized in the following section.

2.5 Example data set

For an appropriate comparison of different cytometric analysis strategies, it is important
that the selected data set has:

• the typical sample sizes in biological and clinical studies,
• a minimum amount of samples in each condition (n = 3),
• sufficient cell events,
• a good quality of the data,
• clear statements concerning a disease or other conditions, and
• an outlined subpopulation.
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The data set from Spitzer et al. [13] fulfills all these requirements and are presented after
a short introduction to the immune system, which serves for a better understanding of
the nature of the data set and the re-analyses in Chapter 3.

2.5.1 Short introduction to the immune system

The immune system is a complex system which includes various organs, cell types and
molecules. Its main functions are the protection against pathogens and the elimination of
degenerated cells. In many species, two major subsystems have developed to mount an
effective immune response: innate and adaptive immune system [41]. Macrophages, mast
cells, dendritic cells, granulocytes and natural killer cells belong to the innate immune
defense. Their response is fast, but non-specific for antigens. Instead, they recognize
evolutionary conserved pathogen associated molecular patterns. Thus, the innate immune
system is inflexible to detect novel pathogens. This is balanced with the antigen specificity
of the adaptive immune system. B and T cells are part of that system and feature a
high adaptive capacity towards unseen or changed germs. An important link for the
communication between both systems are the T cells, which can be further categorized in
CD8+ and CD4+ T cells. The former are considered as cytotoxic T cells and the latter
have several functions and secrete certain small proteins, the so-called cytokines, which
are regulating the immune response. To perform these functions the naïve CD4+ T cells
need to be activated and differentiated into regulatory (Treg) or T helper (Th) cells,
among the latter are follicular T helper cells (Tfh), Th1, Th2, and Th17 cells [42, 43]. The
differentiation into these T cell subpopulations are controlled by their master transcription
factors (Fig. 2.9).

Th1 Th2 Th17 Tfh Treg

T-bet GATA3 ROR-gT Bcl6 FoxP3

cellular
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Figure 2.9: Scheme of CD4+ T cell differentiation.

2.5.2 Structure of the data set from Spitzer et al.

Spitzer et al. used female mice from mouse model MMTV-PyMT (murine mammary tumor
virus-polyoma middle T), which is a widely used spontaneous model of carcinoma [13].
These mice develop a very aggressive triple-negative breast cancer (ER−HER−PgR−),
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which was treated when the primary tumor reaches a certain size. This day was referred to
as day 0. They used four different treatment types in which two fall into ineffective (ineff)
treatment: anti-PD-1 (aPD1) and no treatment (untr). The other two fall into effective
(eff) treatment: treatment of an antibody-mix from two different mouse breeds (Tab. 2.1).

Table 2.1: Blood sample overview of Spitzer et al. [13].
Treatment Samples Treatment
untr 3 no treatment
aPD1 3 250 mg anti-PD-1
CD1 3+1 400 mg CD1 allo-IgG, 100 mg anti-CD40 and 100 mg IFNg
B6 3 400 mg B6 allo-IgG, 100 mg anti-CD40 and 100 mg IFNg

Anti-PD-1 serves here as a model for ineff treatment because its lack of efficacy in this
tumor model. The antibody mix of the eff treatments consists of allogeneic immunoglobulin
G (allo-IgG), anti-CD40 (aCD40) antibody and Interferon g (IFNg), where the two latter
activate specific immune cells to battle against tumor cells. IgG identifies tumor cells by
chance, and was extracted from an outbred CD-1 (CD1) and an inbred C57BL/6 (B6)
mouse. They sacrificed mice from each treatment (n = 3 per treatment, with one extra
replicate sample) and tissue from tumor, lymph node, spleen, bone marrow and blood
were obtained. 41 protein markers were measured and the full parameter list consists of
59 parameters, which includes of protein markers and other device parameters (App. A,
Tab. T1 and T2). Additional columns are listed such as Time, Event_length and several
numbers of bar codes.

2.5.3 Main results from Spitzer et al.

Spitzer et al. deployed unsupervised clustering on all cells and visualized similarities using
force-directed graph (Sec. 2.2.2). Each tissue was colored uniquely, and cells from animals
left untreated or treated with ineff therapy are indicated in black. They then ranked the
populations by their connectivity in the network, and they saw, that CD4+ T cells were
most prominent in the top ranks. So they hypothesized that the CD4+ T cells are more
central to effective immune response than CD8+ T cells, which is intriguing in the light
of the dominant focus on CD8+ T cell responses and targets for therapy [13].

They manually inspected these CD4+ T cells with the Scaffold Maps and conventional uni-
variate density plots. They found a subpopulation, which is most discriminative between
eff and ineff treatment and they proposed this subpopulation as an activated, effector
memory Th1 subset. It was specified by the protein characteristics CD44+CD69+CD62L-

CD27lowCD90+T-bet+ in eff treatment ( – as negative, not produced; low as low expression;
and + as produced, either low or high). Furthermore, PD-L1 was identified to be
upregulated in the T cells of the eff treatment group. PD-L11 is an immunsuppressor, which

1Not to confuse with PD-1.

23



2.5. Example data set

inhibits the intended anti-tumor immune response. They tested another mouse group with
a combined eff-anti-PD-L1 treatment, which resulted in an even more effective treatment.

In the end, the blood data set from Spitzer et al. [13] fulfills all aspects and is therefore
chosen for this dissertation as an example data to proof the concept of this study’s
PRI. Certainly, the goal of a re-analysis is to first validate the main findings, second,
to present the data information in the best possible way, and third, to extract more
relevant information. Thus, the procedure and the results using the PRI approach are
demonstrated in the following chapter.
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3 Results

The acquisition of one cytometric sample generates a signal intensity (SI) matrix with
the dimension of c×m, according to c number of cells and m number of protein markers
(Fig. 1.1). One marker SI is proportional to the abundance of the bound protein on or
in the cell. The markers are considered dependent to each other to some extent, and
the expression is individual for each cell. In the last decade, cytometric measurements
has witnessed significant technical improvements, so that cytometers can detect up to
50 protein markers in parallel. Dividing the SIs of each marker in positive and negative
(producing and non-producing protein) expression, the number of marker combinations
comprises 250 possibilities. Due to the high dimensionality of these combinations, the
traditional analysis approach, to solely visually inspect a series of bi-axial plots, became
increasingly laborious [4, 10, 44]. Although a variety of novel computational analysis
approaches are available, none have fully fulfilled the requirements to create reproducible
and interpretable results, and simultaneously support discriminant studies [1, 2].

This study proposes a cytometric data analysis workflow named PRI which combines
three main steps: i) data preparation and storage, ii) bin-based variable engineering (VE)
of several protein marker combinations, whose resulting variables serve for visualization in
manual inspection, as well as input variables for the subsequent embedded variable ranking
(VR) approach, and thus iii) the deployment of the supervised learning algorithm elastic-net
regularized logistic regression (erLR) in a nested cross validation (CV) manner in order to
rank these variables by their informative values for the purpose of substantially improving
the identification of meaningful subpopulations associated to a specific phenotype. A
proof of concept is presented herein by re-analyzing a published and publicly available
mass cytometric data set from Spitzer et al., as previously described in Section 2.5 [13].
They studied whether systemic immune activation can be detected in early phases of
cancer therapies, and if there is a distinct subpopulation to classify an effective (eff) and
ineffective (ineff) treatment. For this purpose, female mice with mammary tumors were
treated in four different ways, in which two fall into ineff treatment, and the other two
into eff treatment. They identified a promising subpopulation in blood samples which
discriminates between both treatments. Herein, this subpopulation is preprocessed and
then evaluated firstly by manual inspection with this study’s novel bin-based visualization
methods which are named ‘diploT’ and ‘triploT’. Secondly, the proposed VRs workflow is
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applied on the triploT information to extract discriminating three-marker combinations.
Additionally, results from the examination with the ‘gold standard’ visualization tool
viSNE, and the classification tool Citrus is compared to the outcome of this work’s
approach [12, 14].

3.1 Data preparation and storage

The example data set from Spitzer et al. is downloaded from the completely web-based
cytometric data storage and analysis platform Cytobank [45]. The 13 blood samples at
day 3 are collected (n = 3 per treatment, with one extra replicate sample), where 41
protein markers were measured (App. A, Tab. T1).

For mass cytometric measurements, the number of cells ranges commonly between 103 to
106 cells, dependent on the analysis strategy and project design. However, the measurement
values can vary between different cytometers [4]. There can be small variations e.g. in
detector gain or sensitivity. Storage, preparation and staining can also affect the results [22].
Additionally, cytometer settings can change with time and reagents used. Therefore,
careful data preparation is important, particularly since uniformity is crucial for clear and
accurate differentiation between groups. In the following, the preparation steps applied
to the example data is displayed and constituted in chronological order. Step 1 explains
the gating process. The steps ‘outlier removal’ (step 3), ‘data transformation’ (step 4)
and ‘normalization’ (step 5) are essential for sample and group comparisons. The step
‘data curation and storage’ (step 2) facilitates data handling immensely, and the last step
‘quality control’ (step 6) shows initial quality issues by descriptive analyses.

Step 1: Gate on CD4+ T cells

To have a meaningful comparison of the re-analysis in this work to the final outcome
of Spitzer et al., all 13 blood samples are gated firstly on living cells (CD45+ and
Cisplatin- [46]) and subsequently on the CD3+CD4+ cell subgroup. CD3 is a T cell
co-receptor and is consequently a marker for T cells. CD4 is a marker for helper T cells.
This subgroup, referred to as CD4+ T cells, has helping and regulatory activities such
as activation, proliferation, and differentiation to immune cells [47, 48]. The full gating
strategy is displayed in Appendix A, Figure S1, and is similar to the gating strategy of
Spitzer et al. . For this purpose, relevant bi-axial plots are inspected.

Step 2: Data curation and storage

In some data sets, curating names and metadata may be necessary, since manual entry
and export errors can occur. To ensure proper downstream analysis, the first step is
therefore to check for uniform parameter count and names. The original file names are
shortened, systematically named as [treatment]_[day#]_[tissue][ID] and are subsequently
used as the sample ID. Treatments are abbreviated as untr for untreated, aPD1 for
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(classical) anti-PD1 treatment, B6 for treatment with B6-antibody mix, and CD1 for
treatment with CD1-antibody mix.

Furthermore, the order of parameters is important for the VE step and needs to be
consistent in all files. Consequently, all file parameters are harmonized using the structure
and order of sample CD1_d3_Bl1 as reference template. For the curation, marker names
are transformed into low capital letters. Numbers are kept, but any other symbols and
punctuation characters are removed. A short code is listed in Appendix D, Listing 2.

The web-based application PRI-base was implemented within the research group2 to
assure data storage in a standardized manner [49]. The gated and curated samples
are interactively uploaded with PRI-base, which enables the replication of necessary
information. It includes the request of meta information such as species, tissue type, date
of experiment and name of experimenter [49, 50, 51]. Instrument details and annotation
of experiment conditions are also stored as proposed from the International Society
for Analytical Cytology Data Standards Task Force [18]. PRI-base has an organized
infrastructure to easily access raw SI values of each sample in each project.

If the samples are stored in one file, future (re-)processing steps and accesses for reruns
are accelerated. To have a consistent data structure, the samples with all 41 transformed
protein marker SIs are concatenated into one single matrix file. To distinguish the cells,
one column with their unique sample ID for identification is added.

Step 3: Outlier removal

Outlier cells are common in cytometric data, and it is a common procedure to remove these
outliers from analysis [11, 52]. They affect the variables by increasing the marker range on
the right end side and subsequently change the bin affiliation for each marker combination.
Additionally, they increase the variation of the calculations in the bins. After gating (step
1), the majority of outliers are removed. However, only a few markers were inspected in
that step and a systematical outlier removal is missing. Therefore, the residual, untouched
markers by the gating process in each file are trimmed consecutively by cells which have
the highest 0.05% SI, also called 0.05% quantile (App. D, Lst. 1). A total of 5,521 cells
were trimmed from the sum of 347,788 CD4+ T cells across all blood samples.

Step 4: Data transformation

A SI value of flow and mass cytometric data usually has a logarithmic relation to
the biological concentration of the protein markers in and on the cell. Besides other
transformation functions, the logarithmic arcsinh transformation is the simplest and most
common way to display the cytometric data in an optimal data spread [14, 16, 53, 54]. With
the arcsinh transformation, the linear scale at small values is preserved and the logarithmic
scale at higher values is transformed to obtain an approximately linear relationship.

2Main development by Isabelle Kadner and Yen Hoang, further development by Alexander Rybak.
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Other cytometric data studies suggest to use a co-factor for either skewing or widening the
marker range. A co-factor of 5 is applied on several mass cytometric data [14, 55]. After
exploring the densities of the protein marker SIs and some triploTs, widening (instead
of compressing as with co-factor 5) the SI range of all markers in the example data set
is deployed. Since grouping with other cells occurs to a lesser extent, cell subpopulations
are then better separated and are more likely to be detected. However, additional arti-
ficial and thus falsely population separation can occur by widening the range too much.
Therefore, the co-factor cof = 0.1 is used to facilitate visualization and interpretation.
The following equations show the applied transformation and the resulting SIs are those
used for subsequent analyses in the workflow.

arcsinh(x) = ln
(
x+

√
x2 + 1

)
(3.1)

SI = arcsinh(SI/cof) . (3.2)

Step 5: Normalization

Spitzer et al. have already applied a bead normalization method to the example data set
prior to storing. However, first descriptive explorations show that variations between sam-
ples still occur in terms of cell count, range and frequencies (Fig. 3.1 and App. B, Fig. S2).
Although samples are heterogeneous throughout the groups, further normalization has not
been deployed, since these sample variations are supposed to be true biological variations
after bead standardization. Furthermore, in order to minimize technical variations, Spitzer
et al. have simultaneously processed the samples and used the same antibody cocktails
for all samples.

Step 6: Quality control

Particularly in high-dimensional data, it is common to use visualization methods to
examine if technical errors occurred in individual samples while processing. To check for
data quality, conventional metric multi-dimensional scaling (MDS) is herein deployed to
visualize the distances between the samples. In general, if a sample from one group clusters
to samples from another group, this sample is considered to be of low quality or too much
noise, or both. It is then recommended to exclude this sample from further analyses.

Pairwise Euclidean distances are calculated on median expressions of the 41 biological
markers in each sample. Figure 3.1a displays clearly that sample untr_d3_Bl3 has
different SI medians compared to other samples of the same ineff treatments (red), and is
located closer to sample CD1_d3-2_Bl1 from eff treatments (green). The other samples
within ineff treatment are close together, and the samples within eff treatment are close
only on the vertical axis (MDS2). An equivalent behaviour of the sample untr_d3_Bl3 is
seen with the dendrogram resulted from Ward ’s hierarchical clustering (Fig. 3.1b). Both
results suggest to exclude that sample from further examination with PRI. In addition,
the cell count of that sample is the lowest compared to all other samples (Fig. 3.1c).
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3.2. Variable engineering with a binning strategy to analyze cytometric data

Further dendrograms in Appendix B, Figures S3a and S3b are shown with all samples
except sample untr_d3_Bl3 and CD1_d3-2_Bl1, respectively. The exclusion of sample
untr_d3_Bl3 results in correct clustering of sample CD1_d3-2_Bl1 to its treatment
group, but the other direction does not hold true. Therefore, the exclusion of sample
untr_d3_Bl3 seems reasonable and is also realised.
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Figure 3.1: Descriptive plots of blood samples color-coded by experimental condition: eff (green)
and ineff (red) treatments. Calculations are based on the median of the arcsinh-transformed SIs of all
41 markers across all cells measured after outlier removal for each sample. Euclidean distances between samples’
marker medians are applied in the MDS (a), as well as in the dendrogram using the Ward ’s hierarchical clustering
method (b). Colored bar plots of cell count of each sample is shown in (c). Label names indicate sample IDs.

The prepared data set has 336,545 rows of data spread across 12 samples after outlier
removal (and exclusion of sample untr_d3_Bl3 ). The example data set is ready for
further processing, which is described in the following section.

3.2 Variable engineering with a binning strategy to ana-
lyze and visualize cytometric data

Variable engineering (VE) is the process of constructing explanatory variables from a
given data set. It is a powerful step to extract significant variables. Additionally, expert
knowledge can be brought in to enable successful model deployment. With this work’s
machine learning approach, a single table is required. Hence, VE in this context means
consolidating all relevant information about each sample in one row with each column
as an input variable.
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3.2. Variable engineering with a binning strategy to analyze cytometric data

Simple features in descriptive statistics such as arithmetic mean, median, minimum or
maximum of a signal are commonly used in the field of cytometry [14, 54, 56]. This
dissertation proposes de novo engineered variables which can be used as clear interpretable
visualizations, for a structured variable exploration and as pattern layers in neural
network constructs. This section shows different types of engineered variables, which are
demonstrated on the example data set from Spitzer et al. The two-parameter combinatorial
diploTs are the first effort of VE, and three parametric combinations are added with
triploTs. Variables from both, diploTs and triploTs, are used for visualization and manual
inspection. Furthermore, they are deployed for classification studies of cytometric data.
The transformation of the triploTs for this usage is described in the last subsection.

3.2.1 DiploT - a two-parameter combinatorial binning scaffold

The first engineered variables are uni-axial representations which are called ‘diploTs’.
The diploT is a compact illustration of a conventional contour plot, common in manual
cytometric data studies. For a diploT, the range of protein marker A is subdivided
into bins of a specific size. Cells falling into a specific bin are captured if the minimum
number of cells is reached in order to maintain stable information. Different bin sizes
and minimum number of cells are shown and the applied bin size of arcsinh(x) = 0.2 is
applied and the minimum number of cells= 20 are justified in Appendix B, Figure S5a
and S5b. The cells in the bins can then be characterized by different features such as
cell density, relative standard error of the mean (RSEM) and standard deviation (SD),
respectively. These descriptive features capture uni-variate information, where the two
latter features are mainly used for additional quality control.

For a bi-variate examination, information about another protein marker B is needed.
Accordingly, the diploT bins display features such as mean signal intensity (MSI)(B),
mean signal intensity of positive cells (MSI+)(B) or frequency of marker B+ cells. The
two latter features need a cutoff threshold of marker B for B+ cells identification in order
to create an additional insight in the analysis.

Transition of a conventional contour plot to a diploT

The transition from a conventional contour plot to a diploT is shown in Figure 3.2, using
sample B6_d3_Bl2 from the example data set. Protein markers CD44 and CD62L are
subjects of interest, since they are part of the final cell subpopulation proposed by Spitzer
et al. (Sec. 2.5). In addition, they are negatively associated, which can be visualized
compactly by the diploTs. The top row displays the conventional contour plot of protein
marker CD62L over CD44. The plot contains cell distribution corresponding to these
markers. The information in the density plot (middle row) of marker CD44 is then reduced
into a vertical bar and divided into small equally sized bins. The resulting combinatorial
bins are named diploTs and are shown in the bottom row. Thus, the diploT with the
similar information compared with the contour plot is shown in Figure 3.2c, line 5. A
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3.2. Variable engineering with a binning strategy to analyze cytometric data

fixed bin size of arcsinh(x) = 0.2 and a minimum number of cells to 20 per bin is set to
display a bin in pseudo colors: low values are represented by shades of blue, median values
by green and high values by red. For better understanding and systematic denotation:
protein marker plotted on x-axis is called ’basis marker’ (CD44), protein marker displayed
as bin information is called ’associated marker’ (CD62L). The histogram above the diploTs
shows that the peak in the histogram equals the maximum cell density in the diploT
which is shown by red coloring (Fig. 3.2, line 6). The most dense regions in the contour
plot are similarly positioned.
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Figure 3.2: Transition of a conventional
contour plot to diploTs.
(a) Bi-axial contour plot of cell distribution
arranged by CD62L over CD44 created and
exported with standard application FlowJo
showing contour lines with each line containing
5% of cells. Range and arcsinh transformation
could not be adjusted in concordance with the
triploTs due to the nature of the configuration
in the tool [57]. (b) Density plot of CD44
SIs with histogram of prevalences starting
from arcsinh(x) = 0.2. (c) DiploTs display-
ing top down: cell density, MSI(CD62L),
MSI(CD62L+), frequency(CD62L+), SD
(min/max=0.65/1.81) and RSEM (min/
max=0%/5%). The black lines indicate the
cutoff for CD44+ and percentage values in
black are the cell rate to total cells left and
right to the cutoff of CD44. Percentage
values indicate the rate of producing cells of
CD62L compared to total cells (green) and
compared to total cells left and right to the
cutoff (red), respectively. Bin sizes are set
to arcsinh(x) = 0.2 and minimum number
of cells= 20 per bin to color-code the bins.
Dotted lines in the back of arcsinh(x) = 2 are
plotted for better orientation.

max

100

min

0 50

%A of all cells

%B+ of A+/- cells
%B+ of all cells

decimal color code

The features SD and RSEM characterize the stability of the values in diploTs for MSI(B).
SD shows the SI dispersion around the mean of the cells in the bins. The darkest bins are
in the CD44+ region in the top end of the diploT (Fig. 3.2, line 2), with a peak SD value of
1.81 regarding this sample. This indicates a high dispersion around the displayed bin means
where the mean range is only 1.79. However, with RSEM in the bins, which quantifies the
relative uncertainty in the estimate of the bin mean, the values stay below 10%, with the
general estimate, that a RSEM of 25% or greater are subject to high sampling error and
should be used with caution. Both values together indicate that the bin mean is acceptable,
but with regards to the CD44+ region there might be more than one cell subpopulation.

Additional information on the diploTs is provided by percentage values (Fig. 3.2, line 3
and 4). A cutoff for the basis marker displayed by a black vertical line indicates that
the bins on the right hand side include cells which produce the basis marker (A+), and
bins on the left are considered negative for the basis marker (A-). The values in different
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3.2. Variable engineering with a binning strategy to analyze cytometric data

colors provide different indications. The black values indicate the cell rate of cells left
and right of the cutoff of the basis marker to total cells. Moreover, red values show the
cell rate of the associated marker B+ in relation to the cells before and after the cutoff,
and percentage values in green represent the cell rate of the associated marker B+ left
and right to the cutoff compared to total cell counts. Cutoffs can be set manually or by
the approximation function presented in Appendix D, Listing 7.

Informative value with stacked diploTs

Figure 3.3 shows the MSIs of certain protein markers in relation to CD44 expression and
their respective diploT illustration. CD44 is plotted as the basis marker and the residual
markers are displayed using pseudo-colors, presenting the associated markers. CD44 is a
memory T cell marker and Tbet is a marker of differentiated Th1 cells. CD90 and CD86
are T cell activation markers and CD27 is a co-stimulatory receptor. Foxp3 is a marker for
regulatory T cells and CD69 is a marker for tissue residency. They are all associated with
an active immune system. In contrast, CD62L is considered as a marker for naïve cells
and, as a consequence, should be absent with increased SI of CD44. In the stacked diploTs
a clear positive correlation between CD44 with Tbet, CD90, CD86, Foxp3 and CD69 (line
1-5) as well as a negative correlation with CD62L (line 7) can be seen at a glance. CD27
in line 6 is present throughout the bins but is also highest at the right end of the diploT.
A clear cutoff for CD44+ can be seen at arcsinh(x) = 6 (forth dashed line from the left).

These examples show the informative value and compact view of the stacked diploTs. In
contrast to conventional approaches, no further gating is needed to extract these intensity
distributions. CD44 expression is plotted along the horizontal axis. The complete con-
tinuous distribution of CD44 is displayed. Seven stacked diploTs display compactly the
correlation of CD44 with seven different markers which play or do not play a role in T cell
activation. To use the diploT information as variables, the bin color indices of the MSIs
can be extracted to bin vectors in order to capture two-protein marker combinatorial
interrelations. These vectors can then be used for further correlation studies between
samples or groups. The approach based on the diploT intensities and its curve attributes
are successfully applied in [58].

3.2.2 TriploT - a three-parameter combinatorial scaffold binning

In this dissertation, VE involves multiple transformations and filtering steps with the
goal of identifying cell subpopulations which differentiate best between two groups. After
the diploT development, one more parameter is desired for the combinatorial analysis
to expand the dimension to improve the interpretative power. For this purpose, the
innovative bin-based triploTs are engineered. The bin scaffold serves as an expanded
visualization technique. In addition, several filtering steps and a transformation lead to
variables which are used in the supervised learning algorithm in the subsequent section.
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Figure 3.3: Stacked diploTs of CD44 as basis marker from sample B6_d3_Bl2. MSIs of Tbet,
CD62L, CD86, CD69, CD90 and CD27 are shown as associated markers. Bin sizes are set to arcsinh(x) = 0.2
and minimum number of cells= 20 per bin to color-code the bins. Dotted lines in the back of arcsinh(x) = 2 are
plotted for better orientation.

Transition of conventional contour plot to a triploT

The transition of a conventional contour plot to a triploT is shown in Figure 3.4a and
3.4b, and is explained as follows: First, the bi-axial contour plot area of basis markers A
and B is distributed in quadrant bins of equal sizes of arcsinh(x) = 0.2, resulting in a
grid of bins. Similar to the diploTs in Section 3.2.1, cells falling into a specific bin are
captured and displayed if the minimum number of five cells is reached. The bins are
displayed in pseudo colors: low values are represented by shades of blue, median values
by green and high values by red. Subsequently, the grid of bins can be extended with a
statistical information such as cell density, SD and RSEM, and other information about
marker C for each bin by the calculation of, for example, MSI, MSI(+) and frequency
of marker C+. There are many statistical methods which can be applied to this bin
construct. This bin scaffold is used for further investigation. For systematic denotation, a
triploT is termed ‘[Marker A]-[Marker B]-statistical method([Marker C])’.

Additional information about cell rates is displayed with percentage values. These num-
bers are presented in diverse colors and indicate different pieces of information. The black
values are only calculated if cutoffs for the basis markers are set. Then the bin area is
partitioned by the cutoffs to four quadrants. The percentage numbers in each quadrant
indicate the rate of cells to total cells in black. If the cutoff for the associated marker is
set, the rate of producing cells of the associated marker compared to cells in the quadrant
(red), compared to total cells (green) and compared to total producing cells (blue), are
calculated and displayed. The cutoffs can be set manually or by a function as proposed
in Appendix D, Listing 7.

Batch size calculation for triploT matrices

To create these triploT visualizations a matrix with the associated color values is calcu-
lated beforehand. There are three for -loops to create all combinatorial triploT matrices
for one observation (sample). To reduce the running time, matrices are halved without
duplicate axes marker combinations, meaning only one marker combination A over B or
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Figure 3.4: Transition from a conventional contour plot to triploTs demonstrated on sample B6_d3_Bl2.
Bi-axial contour plot of cell distribution (a) arranged with CD90 on x-axis and CD44 on y-axis created and
exported with standard application FlowJo showing contour lines with each line containing 5% of the cells (range
and arcsinh transformation could not be adjusted in concordance with the triploTs due to the nature of the
configuration in the tool). The bi-axial plot is divided into even sized square bins of size arcsinh = 0.2, x and y
axes range: arcsinh = [0.2, 12). The colored bins consist of 5 cells at minimum, and bins with 4 cells or lower
are not visible. Colors decode the cell density (b), MSI (c) and MSI(+) (d) of the associated marker CD27,
respectively. Grey lines indicate cutoffs for CD90high (vertical at 8.7) and CD44+ (horizontal at 6.0), respectively,
and a cutoff for CD27+ is set at 3.6. Dotted grid lines of arcsinh(x) = 2 are plotted for better orientation.
Percentage values indicate different rates in each quadrant as shown in the legend. Numbers in red, green and
blue are calculated if cutoff of associated marker (here CD27 (d)) is set. Grey bins in (d) indicate bins with less
than five CD27+ cells.

B over A on the axes is present, depending on the order of the markers listed in the data
set (step 2 of Sec. 3.1). Equations 3.3-3.10 summarize the batch size for m given numbers
of protein markers.

With a total number of 41 protein markers, the batch size of the example data set from
Spitzer et al. is Bm=41 = 1

2 × (41− 2)× (41− 1)× 41 = 31, 980 triploT matrices for each
observation yj . Listing 3 (App. D) manifests the simple frame of the batch size calculation
as pseudo-code which also shows the algorithm complexity (O(m3 ·N) for N observations).
These matrices are used as visualization in the form of triploTs for manual inspection. The
following section shows the intuitive and reproducible analysis with the semi-continuous
visualization. Moreover, this batch of matrices for each sample can be used in machine
learning, or even deep learning approaches. A detailed approach for machine learning is
presented later in Section 3.2.3. Investigations with the latter approach have started, but
preliminary results cannot be shown yet. However, the hypothetical concept is presented
and discussed in Section 4.2.5.

o1 = 1, 2, . . . , (m− 2), (m− 1) (3.3)

o2 = (o1 + 1), (o1 + 2), . . . , (m− 1),m (3.4)

o3 = 1, 2, . . . ,m , with o3 6= o1, o2 (3.5)

summing up to

Bm =

m−1∑
o1

m∑
o2=o1+1

m∑
o3\(o1,o2)

1 (3.6)

transforming sums of (o1, o2)
m−1∑
o1

m∑
o2=o1+1

=

m−1∑
o1

m−1∑
o2=o1

=

m−1∑
o1

o1 (3.7)
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with m̂th partial sum for (o1,o2):
m̂∑

k=1

k =
m̂ · (m̂+ 1)

2

and with o3 = (m− 2)∑
(o3) ·

∑
(o1, o2) = (m− 2) ·

m−1∑
i=1

i (3.8)

= (m− 2) · (m− 1) · (m− 1 + 1)

2
(3.9)

Bm =
1

2
· (m− 2) · (m− 1) ·m. (3.10)

Representing the subpopulation from Spitzer et al. with triploTs

The example mass cytometric data set from Spitzer et al. is used to proof the concept
of this study’s data analysis workflow on cytometric data. Spitzer et al. found a cell
subpopulation which discriminates between eff and ineff treatment after day 3 in blood. It
is characterized by CD44+CD69+CD62L-CD27lowCD90+T-bet+ in CD4+ T cells (Fig. 3.5
and Sec. 2.5) and is firstly manually inspected with the triploTs in this work.

Figure 3.5: Final re-
sults from Spitzer et al.
Scaffold map and identi-
fied subpopulation (E) in
CD4+ T cells is discrimi-
native between eff and in-
eff treatment. The sub-
population is characterized
by CD44+CD69+CD62L-

CD27lowCD90+T-bet+.

The comparing triploTs are shown in Figure 3.6 and the findings are stated as follows:
The surface markers CD90, CD44 and CD27 are, combined, an optimal triploT (A-B-C)
to show the difference between eff and ineff treatment. With biological expert knowledge,
cutoffs for CD90high and CD44+ are identified and indicated as grey lines. Due to the axes
arrangement with CD90 on the x-axis and CD44 on the y-axis, neighboring regions are
highlighted since they differ between both treatments. These bin regions are characterized
by bin region I (CD90+,CD44-) and bin region III (CD90-,CD44+). Bin region I is
characterized as CD44-, CD62Lhigh and CD27high which resembles naïve T cells (Fig. 2.9).
In sample B6_d3_Bl2 from eff treatment, that bin region indicates the absence of cells
since there are no colored bins, but for sample untr_d3_Bl1 from ineff treatment, these
bins are present. This leads to the conclusion that these cells are activated in eff treatment.
Furthermore, Foxp3high cells are only located in bin region II, thus the cells in this region
represent memory Treg cells.
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The triploTs enable the visual determination and differentiation of subpopulations within
and between groups of samples. The scaled color-codes are helpful in terms of comparing
the SIs. It is effortless to visually capture more than +/– populations, but in particular
different levels of MSIs (–, low, med, high), since a semi-continuous display is achieved
with the summarized and grouped cells in the bins. In addition, every subpopulation is
characterized further with other markers due to the pseudo-multi-parametric view. With
the additional information of the percentage values, an increase of the cell count to the
factor of three in eff treatment is easily captured. This applies to the rate of general cell
count (black) and the rate of producing cells of the associated marker (green) of bin region
II and III compared to total cells, respectively (Fig. 3.6). These are meaningful pieces
of information which are not easily tangible with conventional approaches, such as in bar
or contour plots. With this study’s approach it was also possible to further narrow down
the treatment-induced T cell subpopulation which was introduced by Spitzer et al. The
specified subpopulations could be characterized in more detail using its specific pattern.
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Figure 3.6: Pseudo-multi-parametric inspection of triploTs. Combinatorial triploTs are shown for CD90-
CD44-MSI(Foxp3/T-bet/CD27/CD62L/CD69) for eff treatment (sample B6_d3_Bl2, top) and ineff treatment
(untr_d3_Bl1, bottom) example with bin size of arcsinh(x) = 0.2 and minimum number of cells= 5, x and y
axes range: arcsinh(x) = [0.2, 12). Bin colors are scaled according to minimum and maximum of both samples.
Legend shows the bin regions indicated with different line types in orange. Grey continuous lines indicate cutoffs
for CD90high (vertical at 8.7) and CD44+ (horizontal at 6.0), respectively. The cutoffs for the associate markers
C+ from left are set at 3.0, 3.0, 3.6, 4.0 and 3.0. Grey dashed line indicates cutoff of CD90+ (vertical at 6.0).

3.2.3 TriploT section values as input variables in the model

Despite of the implementation of the triploTs, which improves and facilitates the analysis
of cytometric data, sole visual inspection is no longer feasible with the fast development
of the cytometers. With every additional parameter, the amount of parameter combi-
nations increases exponentially, and with this the amount of potential subpopulations.
Manually exploring the data set with all 41 parameters by conventional gating strategies
(12 × 41× (41− 1) = 820 plots) or even with triploTs (B41 = 31, 980 plots) become too
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much to handle and too time consuming. For example, when spending an average of
30 seconds on each plot, this takes roughly 7 hours and 11 days with contour plots and
triploTs, respectively. Furthermore, manual inspection is hypothesis driven. Not all
markers may be useful in the examination of e.g. T cells. Due to the biological meaning,
some markers are considered to be not expressed in this context, but there are still too
many triploTs to inspect even when only half of the total markers are of interest for
T cells (B20 = 3, 420 triploTs). To cope with the examination of the huge amount of
triploTs, this dissertation’s workflow provides an additional VE step which endorses the
usage of a computational approach by filtering the triploTs to those whose three marker
combinations are most significant and differentiating between two groups.

A first attempt to transform the triploT matrix information into informative variables as
basis in a supervised machine learning approach for VR is illustrated in Figure 3.7. The
range of the bins in a triploT is evenly divided into four rectangular sections. Depending
on the selected calculation method, either mean, maximum, variance, relative or absolute
range of the bin values in these triploT sections are extracted and added to the variable
table. Only the absolute range as section calculation is demonstrated in this dissertation,
since its results show the most differentiating variables after deploying the machine
learning approach. The variable table construction is similar to the triploT matrix
calculation but results in four values instead of a matrix in each for -loop (App. D, Lst. 4).
Similar to the equation in Section 3.2.2, there are three for -loops for each observation.
With m = 41 number of protein markers and sections of q = 4, the total variable count
consists of pm=41,q=4 = 1

2 × (41 − 2) × (41 − 1) × 41 × 4 = 109, 668 section values for
each sample. The emphasis is on values and not matrices. The characteristics of the
sections are labeled corresponding to the marker position, calculation method and section
(e.g.̃‘CD44_CD90_CD27_absRange_S4’). In the subsequent steps the section values are
called explanatory variables p.

S1

S2 S3

S4

S3S2

S1 S4

S1=|  |

S2=|  |

S3=|  |

S4=|  |

Figure 3.7: Scheme to calculate triploT bin sections S1-S4. The range of the bins in a triploT is evenly
divided into four sections. The absolute range of the MSIs in the bin section is applied on each section and is
extracted as four variables of each three-marker-combinatorial triploT. The section values are then used as input
variables in the VR step. Illustration is shown on sample untr_d3_Bl1 with CD44-CD90-MSI(CD27).

Filtering steps to reduce the curse of dimensionality

Apart from the enormous reduction of computational and storage costs, removing irrelevant
and redundant variables without significant loss of information also reduces the curse of
dimensionality in a sparse problem [37]. The ratio of variables p to samples N decreases,
as well as the p >> N problem in classification models. As a consequence, the models
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are less prone to overfitting and have better predictive power. Fur this purpose, the four
following filtering steps are developed and applied to the example data set.

Filter I The following protein markers are not further investigated in the subsequent
analysis: Ter119, CD19, CD8, IgD, IgM, B220, F4-80, PγMT, NK1.1, as
well as FcER1a (Tab. T1). These protein markers are considered not to be
expressed by CD4+ cells. Hence, the protein marker count reduces from 41
to m = 31 which results in a lower number of p′ = 2× 31× 30× 29 = 53, 940

sections as input variable.

Filter II The density plot of each marker shows a different amount of cells with zero
SI. This indicates no signal by the respective antibody (Fig. S2). However,
these cells cannot be assigned correctly concerning their intensity values
only for the respective marker. Therefore, the first bin rows and columns
of [0, 0.2) for each basis marker combination (A-B) are not considered for
section calculations and the subsequent VR algorithm (Fig. S8). The cells
falling into these bins are kept for other marker combinations, since they can
still be correctly assigned in other intensity measurements. Thus, this filter
does not reduce the dimension but increases the quality of the variables.

Filter III According to the expert knowledge, values of section S1 (Fig. 3.4) are much
less informative in this study because these areas contain double negative
cells (A-B-) and background signals from other markers, and are consequently
filtered out. As a result, the variable space reduces to p′ = 53, 940÷ 4× 3 =

40, 455 section variables.

Filter IV If a specific three-parametric combinatorial triploT matrix of a sample has
a total displayed bin count of less than 400 bins, section values for this
sample are set to not available (NA). Manual inspections showed that the
X-Y-plane of a triploT with less than 400 bins is not scattered enough to
extract meaningful section values compared to triploTs with other different
basis marker combinations in this data set. An example is demonstrated
in Figure S11b: sample untr_d3_Bl3 (bottom right) has only 297 bins.
The range of the bins (CD90: 3.4-10.6; PD-L1: 3.2-6.4) is different to the
other samples in the ineff group (CD90: ∼ 0.4− 10.6; PD-L1: ∼ 0.6− 6.4).
Furthermore, the bins with the low MSIs(CD86) is located in a different area
compared to the other ineff samples. On the contrary, sample CD1_d3-2_Bl1
from eff treatment (bottom left) has 412 bins and lacks of solely a few bins,
but shows the same pattern compared to the other samples of the eff group.
After finishing section calculations for the whole data set, each section value
is reviewed. If there are 80% or more of the total number of samples (here 10
or more out of 12 samples) NA values, these section values are in turn not
considered for further analysis.

After deploying the four filtering steps, the number of variables are reduced by a factor
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of 43. Table 3.1 shows the whole transformation from the raw data set over gating and
filtering to the final engineering of the section values, of which gating and engineering
constitute the majority part of the dimension reduction. The final dimension of the matrix
comprises p′′ = 2, 523 triploT section values as explanatory variables and N = 12 samples
as observations. This matrix is deployed for the further investigation in the embedded
method in introduced in the following section, as a consequence to provide a variable
table which ranks these variables in the order of the prevalence picked by the method.

Table 3.1: Data dimension reduction with the proposed VE workflow. The steps are shown where data
dimension of example data set from Spitzer et al. are decreased. Final dimension on last row is then used for the
subsequent VR step.

Workflow steps Rows × columns (× samples)
Raw data set 1,726,796 × 41 (µ =132,830 × 41 × 13)

Gate CD4+ 347,788 × 41 (µ =26,753 × 41 × 13)
Quality control 341,973 × 41 (µ =28,497 × 41 × 12)
Remove outlier 336,545 × 41 (µ =28,045 × 41 × 12)

Filter I: select biological marker 336,545 × 31 (µ =28,045 × 31 × 12)
Engineering variables: sections S1-S4 12 × 53,940

Filter III: select sections S2-S4 12 × 40,455
Filter IV: if 80% of samples have #bins≥ 400 12 × 2,523

3.3 Variable ranking based on regression analyses

Statistical models are used to learn specific patterns from a pool of training data. They
are applied for instance in the fields of automated diagnostics, computer vision, speech
recognition, credit card fraud detection and stock market screening. There are many
categories of models available, such as models for unsupervised or supervised learning,
models for classification or regression problems, and models based on linear regressions or
decision trees. Herein, the embedded variable selection (VS) method elastic-net regularized
logistic regression (erLR) is deployed for the labeled example data set. The model is a
simple approach, thus has a low computational cost, and it allows to handle data sets with a
p >> N problem. The applied regularization deals with the multi-collinearity of the input
variables and regulates the over-fitting of the model. The main goal is to provide significant
and relevant triploT sections and protein markers, to guide the examiner, where to begin
the inspection of the triploTs and subsequently uncovering interesting marker combinations
to identify discriminating subpopulations. With 31 biological markers of interest out of
41 protein markers, there are 53, 940 and 109, 668 possible sections, respectively.

In this dissertation, data preparation and filtering steps are deployed, resulting in a
drastic reduction of the amount of triploT section values, from possible p = 109, 668 to
p′′ = 2, 523 (Sec. 3.1 and 3.2.3). The resulting sections (S2-S4) for each three marker
combination serve as input variables for erLR. With the assumption of sparsity most of
the variables are not significant in multi-dimensional data. Consequently they will not
have much additional information about the data and are therefore not predictive [37].

39



3.3. Variable ranking based on regression analyses

The erLR tries to select only the variables which explain a very large proportion of the
variation in the data. Hence, these variables play an important role in distinguishing
between different phenotypes. They are extracted from several iterations and are ranked
in order of prevalence. The model is evaluated by cross validation (CV) in a nested
manner which includes the tuning of two regularization parameters.

Originally, the example data set from Spitzer et al. has a multi-class problem which has
been reduced to a binary problem. With the sparse amount of samples it is recommended
to simplify the question. Therefore, this study uses the lowest reasonable number of
groups. Additionally, since the treatments were categorized in two groups by the original
author, it is reasonable to assemble them into two groups as well. Thus, treatments of
antibody mix with CD1 or B6 antibodies are categorized into eff treatments. On the
other hand, classical non-specific treatment of the antibody mix with anti-PD1 or no
treatment (untreated) are summarized as ineff treatments.

3.3.1 Variable ranking comprises two cross-validation steps

The erLR with CV has two regularization parameters which need to be tuned: α and λ.
α tunes the erLR towards either L1 (LASSO) or L2 (ridge) regularizations, which are
introduced in Section 2.4.3. λ tunes the variable restriction of each CV. To estimate the
performance of each configuration the error rates (deviances) of these models are calculated.
The tuning of both parameters are processed in two consecutive CVs. Figure 3.8 shows
an overview of the algorithm resulting in the final collected variables which are highly
differentiating between both groups (eff and ineff treatment).

full
variable

set

RMSE(predict(    ))
RMSE(predict(        )) <0.05

collect 
variablesq-value(variable) <0.05

�nd α

100 iterations 500 iterations

CV on training set

it=1

it=2

it=l

it=1

it=2

it=3

CV on full variable set

select model w/ λ1se

training validation test

Figure 3.8: Schematic variable ranking workflow with triploT sections as explanatory variables.

The entire preprocessed example data set and the training subset are divided into k = 3

folds, with k = 3 meaning one third of the training set is left out for the internal validation
(full set in 1st CV cycle=4/4/4, training set in 2nd CV cycle=3/3/4). The standard fold
is set to k = 10. Due to the small amount of samples, a setting with k > 3 is not desired.
However, a warning message using less than eight samples per fold appears after each
CV run (App. D, Lst. 6). This warning is tolerated, as k = 3 is considered to be a good
trade off between having at least one condition in one fold and still have some variance
and stability with at least one more sample of a condition. To vary the partition and
support the stability of the model, the folds are resampled in each CV run.
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A generalized linear model as an embedded technique for variable ranking

With the classifier generalized linear model (GLM), there are N = 12 observations for the
response variable Y = y1, ..., yj , ..., yN and p′′ = 2, 523 associated explanatory variables
presented as xji = (xj1, . . . , xjp′′)

T (Sec. 2.4). The response variable yj can be described
and predicted by a linear combination of the standardized explanatory variables. Binary
response variables are created (1 = eff, 0 = ineff) and are added as a column to the data
structure. Consequently, the relationship between probability and the response variables
is not linear, but sigmoidal. Hence, a function of the probability is required which converts
probability into a value that ranges from −∞ to +∞ and which has a linear relationship
with the variables X. For this purpose, the logit of Y (Sec. 2.4.1) as the outcome in the
regression equation is used.

Determination of the regularization in the first cross-validation

Regularization in regression models is a crucial technique to control the over-fitting, thus
poor generalization, phenomenon. This involves the addition of a penalty term to the
error function in order to restrict the other regularization parameter λ from reaching
large values. Fewer variables would result in a less complex and more stable model that
is less sensitive to statistical fluctuations in the input data. Regularization constrains the
coefficient estimate λ towards zero. The elastic-net penalty is deployed in this analysis
which combines both L1 and L2 regularizations mentioned in Section 2.4.3 [59]. The
mixing parameter α adjusts the elastic-net to regularize more as a L1 or as a L2. As
α→ 0, the L2 regularization gains more weight than the L1 which results in an increase
of explanatory variable numbers. The opposite happens for α→ 1: the variable amount
shrinks. As a consequence, erLR produces a regression model that is penalized with both
the L1 and L2 regularizations resulting in an effective shrink of coefficients (like in L2),
and some coefficients are set to zero (as in L1).

The Algorithm 3.1 finds the best setting between L1 and L2 regularizations for this data
set. In the first CV, there is no need to partition the data set, since the aim of this CV is
solely to find the suited configuration of α. A predefined but sampled set.foldid vector for
k-folds is used with k = 3. In this way, each row is assigned to a random fold with both
treatments integrated. α is iterated in the CV runs between 0 and 1 with step size= 0.1 and,
importantly, with the same fold setting. For each α the deviances are collected and after
one full iteration of α, the global minimal deviance determines the best α in this iteration,
as illustrated in Appendix B, Figure S9. Then a new global iteration starts with a new
random fold set and the iteration of α. This algorithm has been repeated ten times to see
if 100 iterations are sufficient to get a stable α. In each repetition α = 0.9 is picked more
than 50 times. Associated R code for elastic-net is presented in Appendix D, Listing 5.
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Algorithm 3.1: erLRM cross-validation to find suitable α.
Input: The variable matrix X′ = (xji); an outcome vector Y = y1,..,N ; a vector

α = 0, 0.1, ..., 1; a randomized seed vector seeds;
Output: α′ (α which is collected the most)

1 for i← 1 to 100 do
2 Step 1 set var seed = seeds[i]
3 Step 2 set vector foldid ∈ 0, 1, 2 into 3 folds, every fold incorporates samples

from both treatments
4 foreach α do
5 Step 3 do CV with cv.glmnet(X′,Y,α,foldid)
6 Step 4 collect min(deviance)
7 end
8 Step 5 collect α with min(deviance)
9 end

Nested cross-validation to cope with the p >> N problem

The true number of variables with informative and predictive value is not known before-
hand. With too few variables the model cannot describe the data sufficiently and too
many variables lead to over-fitting. In both scenarios, the predictive power is low. With
logistic regression (LR) and the existent p >> N problem in the example data set, it will
eventually lead to over-fitting. To overcome this problem, this work’s algorithm uses the
CV technique, which aids in estimating the error over the data set, and in deciding what
parameters work best for the model. In fact, a nested CV is deployed, which combines
an inner CV which is equivalent to the training partition within an outer CV which is
equivalent to the test partition. Hence, the data set is divided into training and test set
with the ratio of 4:1 (80%/20%). To balance the need to use data to select a model and
the need to use data to asses prediction, 3-fold cross-validation is used. Purely random
partitioning can result in partitions containing only one condition, especially with such a
small amount of samples. To assure proper classification in every run of the inner and
outer CV, each condition is represented in both the training and test set as well as in the
3-fold partitions in the CV.

Algorithm 3.2 shows the second CV cycle to tune λ. This time, the CV uses the estimated
α from the first CV cycle to extract predictive section values and their coefficients. To
select the best configuration of these parameters to employ on the data set, only the
training samples are used for this CV. In the final step of the performance estimation the
separate test set is used to further evaluate the model. The section values as variables
are collected for every iteration if the performance of the model is sufficient.
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Algorithm 3.2: erLRM in a nested CV to extract differentiating triploT sections.
Input: A matrix X′ = (xji), divided into training and test set (ratio 4:1); outcome

vector Y = y1,...,n; a seed vector seeds; regularization parameter α′

Output: v;coeff
1 Step 0 Initialize v, coeff , success.it = 0
2 for i← 1 to 500 do
3 Step 1 set var seed = seeds[i]
4 Step 2 set vector foldid ∈ 0, 1, 2 training set into 3 folds, every fold incorporates

samples from both treatments
5 Step 3 do CV with cv.glmnet(training,Y, α′, foldid)
6 Step 4 select λ1se from CV
7 Step 5 calculate RMSE with prediction model and λ1se
8 - on training test
9 - on test set

10 if | RMSE(test)-RMSE(training) | < 0.05 then
11 success_it+ 1 = success_it
12 extract variables and associated coefficients from prediction model
13 if q-value(variables)< 0.05 then
14 collect variables to v[success.it] and associated coefficients to

coeff [success.it] from prediction model
15 end
16 end
17 end

3.3.2 Error measurements for evaluation

Deviance as error measurement in cross-validation

To measure the goodness-of-fit of models an evaluation method is used. The deviance
is commonly applied and is defined as minus two multiplied by the log-likelihood on the
left-out test fold in a CV (Sec. 2.4.5). The deviance function is very useful for comparing
two models when one model has parameters that are a subset of the second model [34, 36].
It is therefore the difference of their individual residual deviances. Figure 3.9 shows
two scenarios of the CV. They are exemplary for all other CV runs. The penalization
is in terms of shrinkage of the model variables. On the left is the deviance for the full,
λ-unpenalized model and on the right, there is the heavily shrunk fit with large penalties.
The mean deviances with different log(λ) are displayed as red dots. The bars below
and above the dots indicate the ± standard error of the mean deviance from the three
replications. The two dashed lines show the locations of two different λ values. log(λmin)

(left line) is the log(λ) with the lowest deviance error, and log(λ1se) (right line) is the
largest log(λ) value within 1 standard error of log(λmin). The numbers across the top
are the amount of variables. Usually, the model with log(λ1se) is chosen for further steps
to reduce the effect of over-fitting [37].

The deviance is steadily increasing with larger values of log(λ) on the rightmost edge of
the plot. However, in the beginning the deviance is relatively flat over a large range of
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values of log(λ) as the number of variables decreases (on top of the plot). This indicates
little to no change in deviance while the number of variables in the model declines. Hence,
removing some variables does not severely affect the model fit. These results lead to the
conclusion that variable selection does work while handling correlated covariates with
the elastic-net regularization. Furthermore, the results agree with the assumption of
sparsity mentioned at the beginning of this chapter. However, standard errors do vary
a lot between different CV runs. scenario 1 (Fig. 3.9a) shows high variation between
the 3-folds. On the other hand, scenario 2 (Fig. 3.9b) is more precise with less standard
error, thus restricting shrinkage of the variables with the usage of log(λ1se). This implies
that the sparse amount of samples still affects the outcome of the model. To further
restrict the models, additional error measurements were deployed in this work to assure
qualitative extraction of the most differentiating variables.
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Figure 3.9: Two deviance measurement representatives of different log(λ), with α = 0.9 and section
calculation = absolute range. Confidence intervals represent error estimates for the loss metric (red dots). They
are computed using 3-fold CV. The two dashed lines show the locations of log(λ). log(λmin) on the left and
log(λ1se) on the right. The numbers across the top are the numbers of variables.

Two additional measurements to evaluate the resulting model and variables

The test set consists of only two samples, one representative from each condition. Hence,
the test set is very small compared to the likewise small training set of ten samples. Root
mean square error (RMSE) is used for this purpose (Sec. 6). The error of the training set
is almost zero in any of the second CV runs (RMSE(training) < 1e−7). The difference
between the RMSE of training and test set lies between (0.0002, 0.1661), where 70%
quantile is < 0.05 (357 out of 500 runs). Algorithm 3.2 shows that variables from each
CV run are only collected if the difference from RMSE of the test and training set is
lower than 0.05. This restricts to usage of the variables of the model to only those that
do not lead to over-fitting, and the CV run is then termed successful.

A final restriction is not applied to the model but to the selected variables. The vari-
ables from each successful CV run are individually tested if the means of the variables
between both treatment groups are significantly different. Given that these samples are
independent from one another, unpaired two-sided t-tests are deployed with adjustments
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on the p-values using the Benjamini and Hochberg [60] correction method. 97 different
variables are selected from the models, which are significant between both treatments
and are examined in the following section.

3.4 Variable ranking table as examination guidance

Building a highly predictive classification model with small amount of samples is cumber-
some and not the main goal of this study. This workflow uses erLRM-CV as an embedded
VR tool. The outcome of this workflow is a VR table which provides the most differen-
tiating section variables from three marker combinations and a ranked marker table by
prevalence. These variables can then be used as guidance to look for interesting subpop-
ulations in triploTs with the three-parametric combinations extracted from the variables.

3.4.1 General description of the variable ranking table

Ranking of three combinatorial marker sections

The collected section variables are ranked in order of prevalence as predictive variable
outcome of each erLRM-CV run in each iteration. These variables comprise the absolute
range of the MSIs in the sections and are not based on biological importance. The original
section count could be further drastically reduced by the erLR from 2,523 to 97, resulting
in a reduction factor of 26 fold. The total rank table of the section variables is shown
in Table T5, where the three markers on position A, B and C and the section number,
which discriminates between eff and ineff treatment, are extracted from these variables
and displayed on the right. In addition, prevalence count, frequency of these counts, and
mean coefficient values are listed. The count values can be used for cutoff setting, and
the latter value is the mean of all regression coefficients and shows the direction of the
variable. If the coefficient is positive, the section value is higher in eff treatment than
in ineff treatment. Most variables have positive coefficients (83 out of 97). The ranked
variables are subsequently ranked again corresponding to their positions in a triploT. The
10 highest positions are evaluated by manual inspection in the following subsections.

Ranking of markers relating to their position in a triploT

Apart from ranking the three combinatorial variables to assist identifying differentiating
subpopulations, two additional tables are provided. The tables present the ranked markers
in the order of prevalence as axes marker on x- or y-axis (A+B) and in the order of
prevalence as associated marker (C), respectively. Table 3.2a and 3.2b show the ranked
marker counts from the total rank table. It is evident that the number of ranked markers
of combined axes positions is smaller than the number of associated markers in position C
in a triploT. This is due to the restrain by the deployed Filter IV from Section 3.2.3, which
filters the axes combination where the ranges from both markers are wide enough, so that
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the triploT bin count is 400 or higher. Furthermore, it is apparent that the prevalence in
each table falls rapidly in the first three positions. Position 5 (CD86 in Tab. 3.2a and
KLRG1 in Table 3.2b) appears less than 8% in both tables, suggesting that the biggest
differences between eff and ineff treatment occur mainly in a few marker combinations.

Table 3.2: Full VR table (Tab. T5) grouped by markers in x and y axes (a) and in position C as
associated marker (b), ordered by prevalence. The ranking is the outcome of a nested erLRM-CV with α = 0.9
and section calculation = absolute range.

(a) markers in axes positions x and y (A,B)

Pos Rank Marker A+B Counts % Counts
1 1 CD90 48 0.247
2 2 CD44 27 0.139
3 3 Ki67 21 0.108
4 4 CD138 18 0.093
5 5 CD86 15 0.077
6 6 KLRG1 14 0.072
7 7 PDCA.1 10 0.052
8 8 PD.L1 9 0.046
9 8 CD62L 9 0.046
10 10 T.bet 8 0.041
11 10 CD103 8 0.041
12 12 CD16.32 3 0.015
13 12 CD69 3 0.015
14 14 Ly6G 1 0.005

(b) markers in position C

Pos Rank Marker C Counts % Counts
1 1 CD86 25 0.258
2 2 Ly6C 10 0.103
3 3 PD.L1 9 0.093
4 3 CD27 9 0.093
5 5 KLRG1 6 0.062
6 5 T.bet 6 0.062
7 7 CD90 5 0.052
8 7 MHC-II 5 0.052
9 9 CD44 4 0.041
10 10 CD45 3 0.031
11 10 Foxp3 3 0.031
12 12 CD11c 2 0.021
13 13 Ki67 1 0.01
14 13 CD138 1 0.01
15 13 PDCA.1 1 0.01
16 13 CD62L 1 0.01
17 13 CD103 1 0.01
18 13 CD16.32 1 0.01
19 13 CD11b 1 0.01
20 13 CD64 1 0.01
21 13 RORgt 1 0.01
22 13 SiglecF 1 0.01

3.4.2 Evaluation of top ranked variables

The highest ten ranked variables are visually inspected to evaluate this study’s approach.
It is evident that these variables have positive coefficients, meaning all section values,
which decode for the absolute range of the MSIs in the sections, are increased in eff
treatments. The box plots of these variables also show clear separation of both treatments
(App. B, Fig. S10).

The top five positions (pos. 1-5) of the VR table are selected in every model of a successful
CV run and consequently have the same prevalence count of 357 (Tab. 3.4), but there is
no sharp decline in counts with the following five positions. CD90 and CD86 are dominant
in this table: in seven positions, both markers appear together in combination, and in
two positions either CD90 or CD86 is placed. Only one position does not include any of
them (pos. 6). This can also be captured in the VR table of markers grouped by axes
and associated marker C from the top ten ranked only (App. B, Tab. T3). In addition,
the section S2 is only selected in one position (pos. 9). All other positions are determined
in section S3 (6x) and S4 (3x).
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Table 3.4: VR table from 10 most selected section values. From left: ranking position, prevalence count
and frequency, mean model coefficient and split variable information (marker combination for x and y axes (A,B)
and associated marker (C)) and section selection (S). The ranking table is part of the outcome of erLRM-CV with
α = 0.9 and section calculation = absolute range (absRange).
Pos Rank Variables Counts % Counts Coeff A B C S
1 1 CD86.CD138.CD90.absRange.S3 357 0.046 0.3686 CD86 CD138 CD90 S3
2 1 CD90.CD103.CD86.absRange.S4 357 0.046 0.3892 CD90 CD103 CD86 S4
3 1 CD90.CD138.CD86.absRange.S3 357 0.046 0.4979 CD90 CD138 CD86 S3
4 1 CD90.KLRG1.CD86.absRange.S4 357 0.046 0.3696 CD90 KLRG1 CD86 S4
5 1 CD90.PD.L1.CD86.absRange.S3 357 0.046 0.6033 CD90 PD.L1 CD86 S3
6 6 CD138.Ki67.CD27.absRange.S4 355 0.046 0.9503 CD138 Ki67 CD27 S4
7 7 Ly6G.CD90.CD86.absRange.S3 347 0.045 0.1607 Ly6G CD90 CD86 S3
8 8 CD90.PDCA.1.CD86.absRange.S3 345 0.045 0.1442 CD90 PDCA.1 CD86 S3
9 9 CD62L.Ki67.CD86.absRange.S2 337 0.044 0.3056 CD62L Ki67 CD86 S2
10 10 CD90.CD138.Ly6C.absRange.S3 333 0.043 0.2321 CD90 CD138 Ly6C S3

Manual inspection of the top 10 with triploTs from all samples shows that almost all
positions have noticeable, small dense subpopulations which are high in eff treatment.
Figure 3.10 illustrates the triploTs from the previously used samples Bl6_d3_Bl2 from eff
and untr_d3_Bl1 from ineff treatment. Only position 10 shows fewer differences between
both treatments. In positions 1-5 it is evident firstly that CD90 and CD86 are positively
correlated and that the CD90high bin area is CD86+ and highly discriminative between
both treatments. This can be observed with CD90 as basis marker and CD86 as associated
marker (pos. 2-5 and 8) and vice versa (pos. 1). The triploTs in position 4 indicate a
bin area at KLRG1high in eff treatment which is not present in the other group. KLRG1
is a differentiation marker which should be increased in a well-functioning treatment and
therefore this triploT information agrees with this VR outcome. The subpopulation can
also be characterized as regulatory T cells, and is CD86+ (Fig. 3.10). Position 6 is the
only one in which the MSI values are higher in ineff treatment. Furthermore, the marker
combination in this position does not include CD90 and CD86. CD27 appears to be
higher in Ki67+ in eff treatment, but acts inversely with ineff treatment.

3.4.3 Additional characteristics of the subpopulation with guidance
of the variable ranking table

TriploTs from positions 1 to 5, 7 and 8 in Figure 3.10 give a clear indication of a subpopu-
lation in eff treatment which is characterized by CD86+ and CD90high, and absent in ineff
treatment. Both markers are higher expressed in eff treatment. To find a better separation
of the subpopulations, triploTs with basis markers CD90 and CD86 are subsequently
inspected.

A strong correlation between marker CD44 with both basis markers CD90 and CD86 is
observed in eff treatment (Fig. 3.11). The subpopulation CD86+CD90high is hence not only
CD44+, but CD44high (orange rectangle). Furthermore, the cells of this subpopulation are
positive for Tbet, CD69, and Ki67, which emphasizes that these are Th1 cells (Tbethigh),
are activated (CD69high), and are proliferating (Ki67high). Interestingly, due to this axes
arrangement with CD90 in x-axis and CD86 in y-axis, the cells in this area are missing in
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Figure 3.10: TriploTs of samples B6_d3_Bl2 in eff treatment and untr_d3_Bl1 in ineff treatment
with top 10 ranked three marker combinations. Numbers on the left representing the positions in the
table. The bin sections selected from the embedded VR are approximately marked with orange rectangles. The
bin colors in both samples are scaled according to the global minimum and maximum of MSI(C).

ineff treatment which confirms the statement made with the triploTs from position 1 to 5,
7 and 8 in Figure 3.10. Another interesting point is, that the immunosuppressor PD-L1 is
also highly expressed in eff treatment (App. B, Fig. S11 and S12). This was also reported
from Spitzer et al. (Sec. 2.5). Albeit technically, PD-L1 could be a discriminative marker
between eff and ineff treatment, in the biological meaning, this marker is not part of a
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functional subpopulation of activation markers. It is therefore not listed together in one
subpopulation. Foxp3 is notable as well, which marks for Treg cells. It is not distinct in
this plotting frame (App. B, Fig. S12), and is found by sole visual inspection with triploTs.
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Figure 3.11: Pseudo-multi-parametric inspection of triploTs. Combinatorial triploTs of CD90-CD86-
MSI(CD44/Tbet/Foxp3/CD69/Ki67) in eff treatment (B6_d3_Bl2, top) and ineff treatment (untr_d3_Bl1, bot-
tom). Bin colors of both samples are scaled according to the global minimum and maximum of both samples.
Orange rectangles indicate subpopulation found with guidance of VR algorithm. Grey continuous lines indicate
cutoffs of CD90high (vertical at 8.7) and CD86+ (horizontal at 4.5), respectively. The cutoffs for the associate
markers are set at 4.0, 3.0, 3.0, 3.0 and 5.5 (from the left). TriploTs with basis markers CD90 and CD86 and all
residual associate markers from both samples are displayed in Appendix B, Figure S12 and S13.

In conclusion, after the exclusively manual inspection of the subpopulation from Spitzer
et al. in Section 3.2.2, the identified subpopulation could be narrowed down to three
subregions, namely naïve, Th1 and Treg cells. With guidance of both top 10 VR, the total
marker table and their respective triploTs, one clearly observes a concentration of cells. The
Th1 cells are further characterized by CD90highCD86+CD44highTbethighCD69highKi67high.

A proof-of-concept of this study’s proposed workflow is demonstrated on the example
data from Spitzer et al. With the consolidation of data preparation, engineering triploTs
and their respective section values, the cross-validated erLR, and the biological knowledge,
an interesting subpopulation is extracted which is highly significant between eff and ineff
treatment. Now one is curious to see if these results are comparable to the results from
the current gold standard visualization tool viSNE and the classifying tool Citrus.

3.4.4 State-of-the-art tools as validation

A well-established visualization technique is based on a dimension reduction algorithm
t-distributed stochastic neighbor embedding called viSNE (Sec. 2.2.2) [12, 61]. As a
result, artificial axes emerge from the calculation similar to the MDS, against which the
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3.4. Variable ranking table as examination guidance

cells are plotted. The considerable difference between viSNE and MDS is that viSNE
is a non-linear approach. Ideally, there would be separable groups of cells on these axes
which represent subpopulations with differentiating characteristics. The state-of-the-art
classifying tool Citrus uses a similar cluster approach as in other popular tools, but
additionally is comprised of a classification algorithm (Sec. 2.2.2) [14]. It has been
successfully applied to mass cytometry based cancer diagnosis. Both tools are deployed
with default options using the same raw data set after gating on CD4+ T cells (after data
preparation step 1) with the 31 biological relevant markers and with exclusion of sample
untr_d3_Bl3, as filtered from this study to have a comparable starting point.

viSNE map shows same subpopulation found with PRI ’s ranking table

Despite the use of the provided markers from Spitzer et al. (Sec. 3.2.2), it is not straight-
forward to identify their subpopulation with the viSNE map. With the suggestions
from PRI ’s VR table, the Th1 subpopulation could be further narrowed down, and thus
more markers could be used to find the subpopulation in the viSNE map. Figure 3.12
presents one version of this map with marks of a cell cluster which has (partly) similar
characteristics to the Th1 subpopulation (Sec. 3.4.3). Several runs of viSNE could not
reproduce the same viSNE map, but the same subpopulation could be recognized again on
another location on the map (App. C, Fig. S19). This validates the further characterized
subpopulation. Interestingly, many cells of eff treatment are located on the map where
the cells of ineff treatment are not positioned and vice versa, leading to the conclusion
that the characteristics of the cells are to some extent different between the treatments.
It should be noted, that the cells from the marked cluster is uniformly CD90high and
CD44high, but show a mixed composition of low to high expressed CD86, CD69, Tbet
and Ki67. The subpopulation Treg from sole manual inspection (Sec. 3.2.2, bin region
II) could not be captured even after several viSNE runs with random seeding.
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Figure 3.12: viSNE map using all samples except of sample untr_d3_Bl3 , showing the SIs of CD90,
CD86, CD44, CD69, Tbet and Ki67 with global scale between samples of eff and ineff treatment. Orange
circles indicate the location of the subpopulation Th1 found with guidance of pattern recognition of immune cells
(PRI )’s VR table (CD90highCD86+CD44highCD69highTbethighKi67high in CD4+ T cells). Default settings: total
events=100,000 with proportional subsampling; iterations=1,000; perplexity=30; theta=0.5; random seed.
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Citrus’ clusters have different characteristics

Citrus begins with hierarchical clustering on the down-sampled data set. The median
expressions of the resulting cell clusters are then used as input in the supervised learning
algorithm to find the best predictor clusters. The classifier is similar to this study’s
approach: L1-regularized generalized logistic regression (Sec. 2.2.2). The resulting 33
clusters of cellular populations are visualized by a tree and labeled by numbers as
identifiers (App. C, Fig. S20). These clusters contain redundant events so that each
branch is a subgroup of the mother cluster. Compared to the whole down-sampled data
set, the clusters are selected by the model, and are colored in dark red using CV with
log(λ1se). In this scenario, the selected clusters from CV with log(λ1se) and with log(λmin)

are the same. Five out of 33 clusters are identified to be most predictive between both
treatments, out of which the main clusters with ID 59930, 59950 and 59956 are picked
subsequently for comparison with this study’s outcome, because the two other significant
clusters show similar behaviour to their respective mother cluster.

Next to the feature tree, overlapped densities are provided from Citrus, which show
the intensity distribution from 11 out of 31 protein markers of clusters with ID 59930,
59950 and 59956, respectively, to the total residual down-sampled data set. Herein,
these 11 markers are distributed in markers with highest visible variation to background
(Fig. 3.13a), and in markers, which have been reported with discriminative character from
Spitzer et al. and PRI (Fig. 3.13b). If the density distribution of a marker in a cluster
is shifted to the right compared with the background, it is presumed that this marker
is produced in the cells (+), and a shift to the left results in a non-production of the
respective marker (-).

In general, there are many density distributions of the clusters, which have almost
zero to only small variation in peak location and distribution, or both, compared to
the density distribution of the background. Only five out of 31 markers have in some
extent discernible variations, which are markers CD90, CD44, CD27, CD62L and PD-L1
(Fig. 3.13a). These markers also appear in the top eight ranks of this study’s VR
table ordered by axes positions (Tab. 3.2a), but CD27 only appears at rank 3 in the
marker table of position C as associated marker (Tab. 3.2b). Looking at the VR table,
all markers are present in the top 10 ranks except for CD44. CD44 appears first at
position 13, which is still highly ranked (App. B, Tab. T5). The characteristics with
CD90+CD44lowCD62Llow in the cluster with ID 59956 show the most similarities to the
subpopulation from Spitzer et al. (CD44+CD69+CD62L-CD27lowCD90+T-bet+), but has
contrasting specifics of CD27 (Fig. 3.13a). For PRI ’s Th1 subpopulation on the contrary
(CD90highCD86+CD44highCD69highTbethighKi67high), only the characteristics of marker
CD27 are similar in the clusters with ID 59930 and 59956, and the opposite characteristics
of CD62 can be seen in cluster ID 59950. Looking at PD-L1, only cluster ID 59550
has similar specifications (+) to the reports from Spitzer et al. and PRI (PD-L1high).
Peculiarly, markers CD69 and Tbet, which are part of the subpopulation from Spitzer et al.,
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Figure 3.13: Citrus’ overlapped density distribution output from 11 out of 31 marker intensities
from cells in clusters with ID 59930, 59950 and 59956, respectively, to the residual down-sampled cells after
running Citrus with default options. Density plots are distributed in markers with highest discernible variation
between cluster and background (a) and in markers of interest in Spitzer et al. and PRI (b). Orange label
marks common characteristics to the subpopulation of Spitzer et al. * and PRI ◦, respectively, and brackets
show some approximated characteristics. Complete overlapped density distribution from cluster ID 59956 is
displayed in Appendix, Figure S21.

do not appear differently compared with the background. The same statement holds
true for PRI with all markers shown in Figure 3.13b. Thus, one could conclude, that
the subpopulation of neither Spitzer et al. nor the narrow downed one of PRI can be
identified by one of the selected clusters from Citrus.

Currently, investigators without programming expertise in the biological field are common
[11]. To support them and to facilitate prospective analyses and comparisons, a user-
friendly graphical user interface (GUI) is developed. This tool connects to the databases
created by PRI-base, displays and saves diploTs and triploTs, with selected markers and
selected plot and bin parameters. This is processed intuitively without any coding or
query preparation, which is preferred by many biologists.
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3.5 User-friendly GUI to facilitate the use of PRI

To develop a user-friendly tool, a GUI is deployed to interactively control and execute
data preparation, to facilitate the diploTs and triploTs generation for manual inspection,
and to apply VR on a selected data set. The tool is named PRI-ana as in ‘analyzer’.
By sourcing the script, PRI-ana begins directly with a pop-up window which asks for
the selection of a database to start the analysis with. These databases are created by
PRI-base. PRI-ana is thus aligned with PRI-base’s database structure.

3.5.1 Main window

The GUI’s main window consists of three frames: the sample selection on top, the marker
selection and cutoff setting on the left, and - the biggest part - the tab frame on the right
with diploTs and triploTs functions, respectively, the table info and the log tab. The
manual cutoffs can be set as arcsinh-values or in percentage values of the top highest values
when the box on the right is checked. Furthermore, there are two drop-down menus at the
top of the main window. In the first menu it is possible to chose a different project within
the database, a different database entirely or an ordinary closing. The second menu consists
of preparation steps including interactive or automated cutoff setting. When choosing
this function, another window pops up. For an interactive cutoff setting, histograms of
selected markers are displayed. When clicking on a position in the graph, the associated
x-value will be saved for the cutoff between +/– population of the respective marker. The
histogram of another selected marker displays directly after the click. For the automated
cutoff setting, the algorithm determines the slope characteristics. It approximates the
cutoff at a valley if there is a bi-modal density function. If no valley is detected, a shoulder
with minimal slope or a cutoff at 20% highest intensity is set (App. D, Lst. 7).

There are many extensions implemented for ease of use and plotting. For one, if-queries
are introduced and a pop-up window appears to notify the user if the cases occur. In an
instance where the plot range excludes more than 5% of the cells, the whole bin structure
will most likely not be displayed. In another event, a pop-up window appears when cutoffs
for the selected markers are not set but is necessary for the selected statistical method
such as frequency or MSI(+). Another extension is the scaling option of the MSI for the
associated markers. Due to this, differences in tendencies or highlights in diploTs and
triploTs can be easily captured in comparison between samples or groups. Furthermore,
tooltips have been deployed, which appear when the mouse cursor hovers the radio and
check buttons for a short description of the functions.

The two tabs with functions of plotting diploTs and triploTs, respectively, are described
in the following subsections. The window frame in the tab table info shows the meta data
listed in the database such as device information, user information, and file and column
identifier, respectively. The window frame in the tab log lists the bug fixes and add-ons
implemented in each published version of PRI-ana in reverse chronological order.
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Figure 3.14: GUI of PRI-ana with frame n-diploTs in focus.

3.5.2 The window frame in the tab n-diploTs

The window frame in the tab n-diploTs starts with the selection area with options to
choose different bin sizes, minimum number of cells (minCount) and basis markers and
associated markers labeled as ‘Feature A’ and ‘Feature B’, respectively (Fig. 3.14). The
subsequent buttons create a diploT with the set configurations and plots histograms of the
selected markers from above, respectively. In the subframe ‘Plot options’, plot areas and
bin color range can be set. Additional information such as grids for coordination guidance
or file name and date stamps can be plotted for correct assignments when saving these
plots for subsequent analyses. The subframe ‘Options’ supports different transformation
methods and statistical methods applied on the bins. In addition, outlier removal or
doublets removal (with flow cytometric data) can be applied before plotting. Also, bins
can be displayed in pale colors if there are cells but are not sufficient to be displayed in
full colors due to the minimum number of cells setting.

To speed up the plotting process, additional buttons are added which create multiple
diploTs of the selected markers. Either diploTs with fixed basis marker A and all other
selected associated markers are plotted in a window (Button ‘Plot diploT-Overview with
fixed feature A’), or a file in PDF-format will be created with each selected marker as
basis marker and all others as associated markers (Button ‘Plot diploT-Overview total’).
In addition, diGraph-Overviews can be created which show the chosen statistical method
as overlapped line graphs (App. B, Fig. S6).
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3.5.3 The window frame in the tab n-triploTs

The window frame in the tab n-triploTs has a similar structure to the one in the tab
n-diploTs in order to get the user familiarized with this tool (Fig. 3.15). First, drop-down
menus are arranged one by one for bin sizes, minimum number of cells (minCount) and
basis markers A and B and associated marker C. Large buttons ‘Plot triploT’ and ‘Plot
histograms’ follow which create a triploT and histograms of the set markers, respectively.
The two subframes labeled with ‘Plot options’ and ‘Options’ also have similar checking
choices.

Figure 3.15: GUI of the window frame n-triploTs.

This tab also provides several multi-plotting options. One function takes both basis
markers A and B from the section above and puts the selected markers from the left
frame as associated marker C. Another one takes only the basis marker A from the
section above and puts the selected markers from the left frame as basis marker B and
associated marker C, respectively. Button ‘Plot triploT-Overview’ takes all selected
markers and creates triploTs with any possible combination of three markers. With these
plot options, a PDF file is created in the desired directory path. Furthermore, if the
cutoffs are appropriately set and additional percentage information is provided on the
triploTs, a table in csv-format is created, which include one row for each plotted triploT.
The row comprises the information of the marker combination, the cutoffs of the markers
and the percentage values indicated in black, red, green or blue.

Subframe ‘Graphics’ helps with the size of the plotting frame. A window with the size of
the chosen number of rows and columns is invoked with several slots of empty plots, and
triploTs called with the function ‘Plot triploT’ will be plotted in these slots. The active
plotting frame can then be saved in a PDF format. The subframe ‘Set rectangle’ on the
right provides the manual gating option. It can be used as a detailed triploT where only
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3.5. User-friendly GUI to facilitate the use of PRI

cells inside the rectangle are calculated and plotted. It can also be used as a further
gating strategy. For this purpose, the option ‘Gate data’ needs to be checked.

PRI-ana is developed by continuous exchange with several group members of AG Baum-
grass who are mainly not familiarized with programming and who will very likely use
this tool the most. The GUI is designed for an intuitive and day-to-day usage. Several
error pop-up windows are implemented to notice the users if parameters are falsely set.
To use this tool, three R packages need to be installed, while one of them is already
installed when using PRI-base. This tool can be used on different operating systems
(Unix, Windows, Mac OS). PRI-ana is the wrapped and user-friendly implementation
of the majority of this study’s presented workflow.
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4 Discussion

A raw mass cytometric sample has c millions of cells as rows and up to m = 50 protein
markers as columns, with signal intensities (SIs) as values. The dimension of this type
of data is long and skinny, and one could argue, that this data is simple to analyze, but
there are several aspects to consider. Firstly, every cell needs to be regarded individually,
and some cells have similar SIs of the same markers. Furthermore, categorizing the SIs
in at least positive or negative would lead to ≥ 2m marker combinations in each cell. In
the end, a central component in biology is the few percentages of cells which make the
difference between two groups, for example, healthy and diseased, but not all measured
proteins are obliged to be relevant. With these points, the data is highly complex and
suffers from the curse of dimensionality, thus it is difficult to inspect. Many tools have
been developed to discover the discriminative group of cells, the so-called subpopulation,
but they are facing the problems of either reproducibility, comprehensible interpretation,
high computational complexity or suitability for group comparisons.

The goal of this dissertation is firstly to demonstrate that the innovative process of
obtaining engineered variables from measured cytometric data contain more concise
information, and its visualization results in a more continuous and combinatorial view
compared to conventional and state-of-the-art data analysis strategies; and secondly, to
show that this study’s variable ranking (VR) table reduces the examination time drastically
by serving as guidance to identify meaningful subpopulations which are discriminative
between two groups. The herein proposed workflow pattern recognition of immune cells
(PRI ) is applied on an already published mass cytometric data set from Spitzer et al. They
used female mice with breast cancer and treated them in four different ways, in which two
fall into effective (eff) and the other two in ineffective (ineff) treatment. The results of the
re-analysis with PRI were presented and evaluated, and subsequently compared to the
outcome of Spitzer et al., the ‘gold-standard’ visualization tool viSNE and classification
tool Citrus to show the added value of the new approach.

In the following, all three main steps from this study’s workflow are addressed. Particu-
larly, steps 4, 5 and 6 of the data preparation and storage part are subject for discussion.
Furthermore, the engineered variables, diploTs and triploTs, and the attributes of the
latter are intensively discussed and compared to conventional and state-of-the-art ap-
proaches. Next, the elastic-net regularized logistic regression (erLR) used as an embedded
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VR tool is addressed. Finally, the examination with the VR table and the resulting
subpopulations are reviewed in terms of biological knowledge and in comparison to the
approaches from Spitzer et al. and Citrus.

4.1 Data preparation and quality control

Due to the novel invention of mass cytometry and the fast development of flow cytometers
in the last decade, parallel measurements of protein markers has risen from a few markers
to up to 50 protein markers. Thus, manual inspection of a series of conventional contour
plots has become unfeasible. However, computational cytometric data analysis is still in
the early stages of development. Many approaches and bioinformatics tools are introduced
to identify subpopulations, but data preparation is often of secondary importance. This
study’s workflow includes six steps for necessary data preparation and manipulation. In
the following, the steps are addressed, whose configurations have a potentially big impact
on the outcome of this approach.

4.1.1 Effects of data alteration

Normalization

Recent mass cytometric measurements have included beads with specific metals [23].
These beads should function similarly as house-keeping targets, analogous to sequencing
studies. Spitzer et al. incorporated this technique and applied a bead normalization.
However, the data set still shows noticeable variation. Thus, several single channel
normalization methods were herein tested. Method ‘range’ normalizes the ranges and
method ‘warp’ normalizes by the peaks of the densities of the samples in each group. Both
methods work well on many channels, where variations in the groups have been diminished.
However, a few channels show distortions after normalization (App. B, Fig. S7). These
distortions show different behaviour and can lead to artificially skewed results. As a
consequence, no further normalization is herein deployed on this example data set.

Co-factor in arcsinh transformation

The bigger the co-factor the more skewed the density curve, and the smaller the range
of the values. The opposite effect occurs with co-factors cof < 1: the curve and the
range widens. A common co-factor cof = 5 is applied to several mass cytometric studies
[10, 14, 54, 62], but after manual inspection of the density plots, another co-factor is herein
chosen. The triploTs and the corresponding density plots in Figure S17 (App. B) show
the effect of the usage of different co-factors. With the co-factor cof = 0.1, the range has
almost doubled and the bi-modal distribution is enhanced. The cell populations are better
separated, as seen with CD90 and CD44. A shoulder at CD27 is also better captured
with the smaller co-factor. However, caution is needed, because applying a co-factor
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which is too small can lead to formation of an artificial cell population. Among others,
CD86 shows a bi-modal curve development with the applied co-factor, which has been not
identified before. The examination with the guidance of biological expert knowledge leads
to the assumption that this population can be acknowledged as biologically meaningful,
and would get lost with the common co-factor setting. This emphasizes the fact, that
biological and computational experts need to work hand in hand to develop an optimized
and meaningful analysis workflow.

4.1.2 Introduction to compensation on mass cytometric data

Flow cytometry is a well-established and older technique than mass cytometry. The main
difference is the protein labeling with fluorochromes instead of metal isotopes. This results
to a smaller amount of measured protein marker, because of its well known problem of
numerous interference and overlaps in the light spectrum of different fluorescent dyes [63].
This means that some SIs of the protein marker can be artificial signals, or signals from
other fluorescent dyes. There are already procedures that were introduced to overcome
this problem. For one, it is compensation: the process of correcting the spillover from
one primary signal in each secondary channel it is measured in. Another step is to use
fluorescence minus one (FMO) controls to assure the proper cutoff setting from a positive
population. These procedures are common practice and are also implemented in several
computational approaches [57, 64, 65].

With the newer technology mass cytometry, signal overlap is supposed to be minimal,
since the cytometer detects discrete isotope peaks without relevant overlap (Sec. 2.1) [66].
However, minor spillover effects from other metal channels are still captured in this
example mass cytometric data set. This can occur due to isotopic impurities or unspecific
binding in the antibody panel. In addition, the panel design for mass cytometry is
dependent upon the choice of the metal tag, as there are less sensitive channels at the
extreme ends of the mass range than in the central range [67]. Recently, authors have
suggested the deployment of panel optimization procedures and single stain experiments
with each antibody used in the experiment, and apply tools for systematic correction of
these spillovers, analoguously to FMOs in flow cytometric investigations [67, 68].

The varying peak sizes found in the lower range of each channel within the re-analyzed
samples from Spitzer et al. can be explained by these spillover effects (App. B, Fig. S8).
Since no single stain experiments have been realized, a systematic correction is not possible.
One approach to reduce the impact of these effects is deployed in Filter II (Sec. 3.2.3).
There, the first bin rows and columns [0,0.2) of each basis marker are not regarded for
visualization, nor for the VR algorithm. For prospective re-analysis of mass cytometric
data sets, it is advisable to first do descriptive explorations with, e.g. overlapped density
and multi-dimensional scaling (MDS) plots as in Section 3.1, to capture the quality of
the data set and eventually apply specific preparation steps to reduce noise effects, for
example, removing outliers or Filter II.
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4.1.3 Descriptive statistics to identify outlier samples

The medians from all markers from each sample are used as input in MDS and hierar-
chical clustering. Since the sample size is so small, every sample is of high importance.
Figures 3.1a and 3.1b show that sample untr_d3_Bl1 clusters within the other treatment
group, but tendencies and similar patterns in the triploTs might still be visible. It is
possible that some subpopulations are missing in sample untr_d3_Bl1 but one could
argue that the inclusion of this sample could also emphasize some other triploT sections
as variables listed further down in the VR table. However, sample untr_d3_Bl1 has
the smallest cell count of the data set, and has different signal medians compared to the
other samples of the same treatment. These properties, coupled with the setting of the
minimum number of cells within the plots, can lead to an artificially smaller or shifted
range of the (colored) bins. Since the variables for the VR are based on equal distributions
into four triploT sections, the sections of that sample would include different information
than the other samples of the same treatment (App. B, Fig. S11). Furthermore, it is
possible that the subpopulation of interest is not present, or differently expressed, in a
sample of low quality, resulting in an artificial outlier variable. Therefore, samples of
similarly low quality, and also having a low amount of cells, should not be included in
further studies with the proposed workflow.

4.2 Novel engineered variables based on a bin scaffold

The proposed workflow of this study involves variable engineering (VE), whose resulting
variables serve both as visualization in manual inspection as well as input variables in
VR. This investigation of cytometric data is based on subgrouping (binning) of the cells
of similar characteristics. The similarity of the cells is specified by the SIs of one or two
specific protein markers. In the following, both PRI variables are discussed in detail.

4.2.1 Added values compared to conventional approaches

Commonly, a sample undergoes a series of manual gates in bi-axial contour plots, and
the amount of cells or the mean signal intensities (MSIs) of protein markers of interest
are collected at the end. Then, bar or pie charts of either frequencies or MSIs of these
cells in different combinations are compared to another subgroup, or to the total cells
(App. B, Fig. S15). This conventional process is highly subjective, hypothesis-driven,
time-consuming, and gets more complex with the increasing amount of measured proteins.
Last but not least, other potentially relevant subpopulations are likely to be overlooked.

Stacked diploTs as a compact visualization technique

A diploT is a novel illustration method for cytometric data. It depicts statistical mea-
surements of a protein marker as an associated marker compared to the whole range of
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one basis marker which is distributed in bins. Displaying several protein markers com-
pared to one basis marker on stacked diploTs results in a compact and easily explorable
visualization (Fig. 3.3). Appendix B, Figure S6 shows another visualization example
similar to diploTs and are named diGraphs, which have the same information as in the
stacked diploTs, but require much more space without a clear overview. The expression
correlations between markers are better captured on the basis of the color gradient in
the diploTs rather than on the curve shape in the diGraphs. Thus, assumptions can be
made more rapidly with the compact stacked diploTs. Furthermore, the semi-continuous
and reproducible display supports not only the comparison between groups, but also
the comparison of progression studies. Shifts of SIs and frequencies can be recognized
without difficulties. However, if the tendencies of some markers do not differ strongly
among them, underlying small subpopulations cannot be seen clearly. This compactness
and simplicity can lead to a loss of information, particularly if heterogeneous populations
are examined or unsuitable markers were chosen. Nonetheless, the insightful illustration
is likely also accessible to a broader community, compared with conventional plots. Due
to the semi-continuous visualization of at least one associate marker, existing correlative
patterns are observed in a straightforward manner. This is accomplished without any
further time-consuming and biased gating strategies, and results in a fast general overview
of the associated markers’ inter-relationships with respect to the basis marker.

TriploTs for intuitive capturing of inter-correlations

With triploTs, one additional dimension is added in the vertical direction. The similarity
of the cells is therefore specified by the SIs of two basis markers and is plotted as a
bi-axial plot. This plot is partitioned in quadrant bins of equal sizes resulting in a bin
scaffold. The cells in each bin are then aggregated. This aggregation and the setting
of the minimum number of cells allows for numerous stable calculations of statistical
methods such as the MSI of a third parameter within each bin. The range of the statistical
attributes are then displayed in pseudo-colors.

In fact, the visualization with these triploTs provides many advantages compared to
conventional diagrams. The binning of conventional bi-axial plots supports the plotting
of many statistical methods of (at least) one associated marker in the same plot area
(Fig. 3.4). Several statistical methods as bin properties have been successfully applied
to identify and characterize novel subpopulations [69]. Furthermore, each bin takes a
group of cells into consideration, rather than the information of an individual cell. Along
with the setting of the minimum number of cells, the bin information is more reliable
and inter-correlations between the basis markers (A,B) and the associated marker (C)
can be captured without much effort. The triploTs applied on the example cytometry
data set Spitzer et al. showed, that a clear highlighting was rapidly recognized in the
upper left and upper right bin region (Fig. 3.4c), and the cutoffs for CD90high and
CD44high could be set in a straightforward manner which resulted in a clear division of
the bin scaffold into regions that differ in CD27 expression. This visualization strategy is
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particularly beneficial, for example, for capturing clinical relevant changes in compositions
of population.

Further auxiliary information is displayed with several percentage calculations. If the
cutoffs for both basis markers (A,B) are set, the cell rate in the quadrants in relation
to the total amount of the cells is presented in black. In addition, if the cutoff for the
associated marker (C) is set, the cell rate of the marker producing cells in the quadrants
can also be displayed without any further gating strategies for each quadrant. The cell
rate of C+ in each quadrant is presented either in relation to the amount of cells in its
respective quadrant (red) or in relation to the total amount of cells (green). Consequently,
the percentages in red and green show the cell rates of the three marker combination
(A-B-C), which have not yet been applied in any plots for cytometric investigations.
The added value of this information is demonstrated with the triploTs of CD90-CD44-
MSI(Foxp3/Tbet/CD27/CD62L/CD69) in Figure 3.6. It is apparent in bin region I
(CD90+,CD44-), that in eff treatment there are no colored bins, but in ineff treatment
there are. The corresponding percentages in black (eff=0.5% and ineff=2.7%) confirm
this. However, an increase in bin count of high MSIs, as highlighted in bin region II
(CD90+,CD44+) for Tbet and CD69, and in bin region III (CD90-,CD44+) for Foxp3 in eff
treatment, also presumes a higher amount of producing cells of the associated markers, but
does not show how much it is increased. With the information of the percentages in red
and green, the increase is numerical. E.g. an increase of the presented associated markers
compared to the total amount of cells (green) by a factor of roughly three can be recognized
in bin region II (difference: 3.44± 0.48 s.e.m.) and III (difference: 7.20± 1.11 s.e.m.) in
eff treatment. To obtain that information with conventional contour plots, an additional
gating step for each percentage number in each quadrant would be necessary.

4.2.2 TriploT functionalities for visual pattern perception

This section aims at exploring the possibilities and possible limitations of the triploTs in
greater detail. It is investigated whether patterns can also be derived in terms of visual
examination and the performance and interpretability of such patterns will be compared
to those based on state-of-the-art visualization techniques.

Fixed width bins are better interpretable than varying bin widths

The engineered PRI variables have fixed-width bins with a varying number of cells, rather
than varying bin widths containing a fixed number of cells, throughout the re-analysis.
This visualization was chosen, because the cells tend to accumulate near the center of the
data but flatten out fast near the boundary of the data (contour plots in Figure 3.2 and 3.4).
Moreover, it is more difficult to interpret the data with varying bin widths, for example,
with percentile-based bins which are deployed in [70, 71]. The outcome of percentile-based
bins is highly affected by the pre-chosen number of bins, thus the number of percentiles.
In contrast, the plots with fixed bin widths can have different bin sizes, but the pattern
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is similar and can still be recognized, which allows an enhanced comparability between
samples and groups (App. B, Fig. S16). In addition, the comparability is further supported
by standardization in the sample acquisition, so that sample outcomes are more robust
and variations are minimal. Appendix B, Figure S11 shows that even the omitted sample
untr_d3_BL3 has a similar triploT pattern compared to the other samples in its group.

TriploTs require many cells

The omitted sample untr_d3_BL3 may resemble the other samples in the eff treatment.
However, that sample has less than one tenth of the biggest sample. A cell count which is
too low can lead to an artificial shift of the range and the mean values, and therefore also
a shift of the corresponding cell rates which are displayed in different colors representing
percentage values (Sec. 3.1).

The bin calculation methods standard deviation (SD) and relative standard error of the
mean (RSEM) are two adequate options for display. They aid in the configuration of bin
size and minimum number of cells, and in examination of the variation in the bins. As a
consequence, they present the stability of the bin information in, for example, the MSI,
as similarly shown with the diploTs (Sec. 3.2.1). Furthermore, these displays are also
suitable to check if the cells in some bins are more heterogeneous than the cells in other
bins. If there is a bin region with high variation of the associated marker, this can be a
hint, that there is either no specific or more than one subpopulation.

TriploTs support pseudo-multi-parametric viewing

With the triploT’s bin scaffold, it is possible to study statistical properties of small
populations per bin. These properties are visualized in pseudo-colors, and as a result,
correlating patterns can be observed. If different associated markers are plotted next to
each other, a pseudo-multi-parametric view is achieved (Fig. 3.6), which can be analogously
considered to the stacked diploTs. Due to the easily interpretable approach, a lot of
meaningful information could already be accessed through visual examination.

The heterogeneity of the samples within the groups can be seen in the uni-variate display
(App B, Fig. S2 and S11a). Nevertheless, PRI approaches the data in the combinatorial
matter as triploTs (App B, Fig. S11b). The varying percentages of the upper right bin
region in black lead to non-significant information (of two-marker combinations A-B)
as seen in the box plots (App B, Fig. S11c). Similar conclusions can be made with
conventional manual gatings and bar plotting (App B, Fig. S15). However, the triploT
patterns are different between eff and ineff treatment. In the eff group, a concentrated
highlighting can be recognized. To obtain the percentage values displayed in green
and red with conventional approaches, several further manual gating steps would be
necessary. The significance of the colored percentages in the box plots confirms that, even
without additional gating steps, the pattern of the triploTs can already indicate interesting
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subpopulations which are discriminative between two or more groups. Another advantage
is the semi-continuous visualization. Some cells can develop in a hierarchical structure,
for example, naïve CD4+ T cells to Th1, Th2 and Treg cells and further (Fig. 2.9). As
a consequence, the transition between the cells results in a continuum rather than in
distinct clusters [4]. With PRI, these transition states can be visually captured.

Further narrow down of the subpopulation from Spitzer et al. with triploTs

The aforementioned benefits of the examination with triploTs are demonstrated by
re-analyzing an example biological data set (Sec. 3.2.2). Spitzer et al. identified a
T cell subpopulation which is described by CD44+CD69+CD62L-CD27lowCD90+T-bet+

(Fig. 3.5). This phenotype is most likely comparable to the bin region II, which is
characterized as Th1 cells with T-bethigh (Fig. 3.6). Nonetheless, the characteristics of
the highlighted subpopulation are refined with triploTs. CD69 is not positive but has the
highest MSI present, and CD62L is positive in this region, and not negative as proposed.
Table 4.1 shows the summarized comparison of the residual markers’ characteristics.
Another finding is the two to three fold increase of cell rates in the bin regions II and III
from eff treatment compared to ineff treatment. This is seen in greater abundance of
percentages in black and respective to the associated markers in green. It is also evident
that CD27high cells are only located in these regions. Thus CD27low, which is proposed by
Spitzer et al., is not discriminative, but CD27high is seen in the CD44+ area. Furthermore,
CD69+ and CD62L- are confirmed in the bin region III for Treg cells, but solely CD62L-

is discriminative between eff and ineff treatment.

Table 4.1: Summary of statements from Spitzer et al. compared to this study’s manual inspection
with triploTs. TriploT’s bin regions II and III of CD90-CD44-MSI regarding markers CD62L, CD69 and CD27.
Discordant statements are colored in red.

CD62L CD69 CD27

Spitzer et al. - + low

triploT - bin region II (Th1) med high +

triploT - bin region III (Treg) - + high

In conclusion, the manual inspection with triploTs confirms the result of Spitzer et al. that
CD90 and CD44 are discriminative markers in general. The amount of T-bet+ cells is also
increased in eff treatment. However, with a trained eye, it is evident that CD90+ (grey
dashed lines) is not discriminative, but CD90high (grey continuous line) is. In the end, with
CD90 and CD44 as basis markers, three bin regions are separately characterized. These
bin regions refer to naïve (region I), Th1 (region II), and Treg cells (region III) (Fig. 2.9).
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4.2.3 TriploTs compared to state-of-the-art visualization techniques

Color Maps has a similar approach

The providers of the broadly used cytometric analysis tool FlowJo also realized that the
color-coding of a third parameter can significantly facilitate the investigation of cytometric
data [57]. They have simultaneously developed a similar graphical display which is called
Color Maps (App. C, Fig. S18). It also uses fixed-width bins (of unknown size) to display
a third marker in a color-coded manner. Next to MSIs of neighboring groups, Color
Maps also displays SIs from scattered cells. This means that all bins are shown with at
least one cell involved. This preserves some single cell information, but actually distorts
the pattern, since information of possible outlier cells is presented in combination with
information about groups of cells. As a result, the similar color-coding does not explain
the subpopulations very well. Furthermore, there is no setting of bin size and minimum
number of cells involved. Thus they display only the statistical attributes in the bins.

The triploTs go beyond all this. Firstly, they allow to manually or automatically set cutoffs
for SIs for positive and negative populations without further gating. As a consequence,
frequencies and mean signal intensity of positive cells (MSI+) and other statistical
information of at least one associated marker can be visualized and auxiliary information
in percentages are additionally provided. Furthermore, the optional configuration of
the minimum number of cells has the advantage of displaying more robust and reliable
statistics on the bins, and in addition, it supports diminishing the effect of outliers. This
results in a clearer illustration, and subpopulations are captured more easily (Fig. 3.6).
However, increasing the minimum number of cells or decreasing the bin sizes leads to the
requirement that many cells need to be measured. In practice, at least 10,000 cells are
necessary for the display with triploTs and 20,000 or more cells are needed to comfortably
work with percentage values of samples within same groups in general. As also seen with
sample untr_d3_Bl1, 5,000 cells are generally insufficient (App. B, Fig. S11).

TriploTs compared to the dimension reduction method viSNE

In general, the interpretation of the viSNE maps is cumbersome, since the algorithm
ignores the global structure (Fig. 3.12 and App. C, S19). Cells with similar characteristics
are displayed closely together, but cells from another random location can also have these
characteristics. In turn, neighboring cells do not have to be similar. As a consequence, this
visualization technique bears the risk of over-interpretation in structures and distances.
Moreover, the transformation of the data using suitable coordinate axes is convenient
for cluster detection, but this makes it more difficult to reach biological inferences from
these plots compared to bi-axial marker plots [72]. The cell populations may be properly
clustered, but a viSNE map contains no information on the SI interdependence of the
markers. As a result, these clusters need to be subsequently visualized in another manner.
Conventional overlapped density plots, bar plots and heat maps are commonly used subse-
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quently to see significant differences in groups [12, 24, 73]. The examination with PRI , on
the other hand, has SIs from two basis markers (A,B) as axes and is bin-based. This allows
for an intuitive and reproducible pseudo-multi-parametric display based on bin patterns,
where changes in expression of the associated marker (C) are tangible and interpretable.

The subregions found with manual inspection could not be directly identified with viSNE.
However, the further narrowed down characteristics of the Th1 subpopulation, which
resulted by the guidance of the VR table, enabled its recognition within the viSNE map
(Sec. 3.4.4). One prominent reason why only the Th1 subpopulation among the three
bin regions was found is due to the subsampling step in viSNE, which randomly selects a
certain amount of cells (default=5,000) within each sample. A stochastic exclusion of
some or many cells of this subgroup within the samples can occur, which can result in a
cell count which is too low to be visually identifiable on the viSNE map.

Another limitation of viSNE is that the complexity of this algorithm is high (O(c2 ·m))
with c number of cells and m number of markers. Due to the quadratic relation to the
number of cells it is not feasible to apply viSNE to data sets that contain more than
100,000 cells4. To overcome this issue, subsampling methods are commonly deployed
beforehand and also advised from the authors [12]. This in turn is also problematic
since many, or often the majority, of cells are not considered which can lead to a loss
of rare and small but important cell subgroups. And due to the arbitrary choice of
the subsampling and starting point, the algorithm creates different maps with different
subsamples (App. C, Fig. S19). Hence, the reproducibility is also poor while using viSNE.
In particular, if samples are added or removed, the maps might drastically change, because
the subsampled data contains another mixture of different cells from each sample.

4.2.4 TriploT section values as basis in variable ranking

This study demonstrates the first attempt to use the triploT information as basis for
a regression algorithm. The approach uses properties of equally sized triploT sections
mimicking the manual cutoff setting without any bias. As a result, four conjunctive section
values from every three-parametric combinatorial triploT without duplicate axes marker
combinations are collected. With 31 protein markers which are potentially important in
differentiating the treatments, the amount of sections is at p′ = 53, 940. After two further
filtering steps (Filter III and IV in Sec. 3.2.3), the triploT section count is drastically
reduced to p′′ = 2, 523.

After fruitless deployment of several common descriptive statistic features (mean, median,
standard deviation and variance) as section properties in the VR step, the relative and
absolute range of the MSIs were applied, from which the latter resulted in the most
differentiating triploT sections in the top 10 ranking list after using these properties as
variables in this work’s embedded function for VR. In fact, this resulted in many useful

4A viSNE run with 50,000 cells took more than 18 hours.
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combinations of markers which has a bin area with localized cell subgroups (Fig. 3.10).
Hence, the results depend on the way the sections are defined.

In the used mass cytometric data set, there are no similar controls such as FMOs for flow
cytometric data sets. Due to these FMO controls, compensation issues can be resolved as
briefly mentioned in Section 4.1.2 and the question can be clarified as to which position to
set the threshold between positive and negative population. The option to deploy manual
cutoffs or automatic cutoffs (e.g. with the implemented function in App. D, Lst. 7) for
triploT sectioning is therefore strongly advised for flow cytometric data. Herein, some
cutoffs are easier to set than others. CD45+ or CD19-CD3+ and CD4+CD8-, as seen in
the last set gates of Appendix A, Figure S1, are clearly separated subgroups which can
be gated in a few seconds. Other cutoffs, however, are more difficult to define. This is
especially true when there are activation markers within a continuum, or low levels of
positivity, as with the protein marker Foxp3 in regulatory T cells. Nevertheless, setting
manual cutoffs is subjective and time-consuming. For this reason, the use of equal division
of the sections is preferred in this study.

Equal sectioning is fast and, most importantly, the output of the VR workflow is then
easier to comprehend. Moreover, it is expandable to a matrix of 3 × 3, 4 × 4 or more
sections. The area of each section will be reduced, which potentially leads to more
concentrated subpopulations. Nevertheless, a larger sectioning will increase the section
count as well. The resulting amount of variables will also face the curse of dimensionality.
This is counteractive to the current p >> N problem with the example data set. To
overcome this issue, another idea has been developed using matrices of higher section
counts in artificial neural networks, which in fact comprises multiple layers of logistic
regression (LR) models and is described in the following section.

4.2.5 TriploT matrices as input in deep learning

Deep learning is a subdomain of machine learning which uses artificial neural networks
with numerous hidden layers between the input and the output layer. Convolutional
neural network (CNN) is a class of deep neural networks [74]. It is originally designed
to process two-dimensional structures and is consequently one of the most popular neural
network architectures which are broadly used for image processing. This approach is
famous for the high performance of the supervised learning on the public image data sets
MNIST, CIFAR-10 and CIFAR-100 [75, 76]. In particular, it is useful for large data sets,
if (non-linear) inter-correlations are unknown. That is where the triploT variables come
into play. The idea is actually not to section the bin area in a matrix of 2× 2 or higher
dimensions. In fact, the already created (triploT’s) bin matrices, which are used for
inspection and have the bin properties bin size of arcsinh(x) = 0.2 and minimum number
of cells= 5, can be used as input analogous to image studies using pixel intensities. Instead
of using the pseudo-color-visualization, the bin information matrices with the respective
phenotype as label are directly used as input layer for CNN, hence skipping the converting
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step from image to matrix. Furthermore, by including the upstream data preparation,
filtering and VR step, only the most informative and discriminative triploTs are selected
to construct the model. This will certainly increase the prediction power of the model.

CNN was first used in the field of cytometry by the tool CellCnn (Sec. 2.2.2) [24]. Each
line is one cell and its patch vector of high and low intensities is individually assigned.
These vectors are used as input in a CNN with three layers, and are labeled with the
associated disease status or survival information. After training the model, the trained
filter weights are used for variable selection (VS). The weights which correspond to the
molecular profiles of relevant cell subgroups are then matched with the individual patch
vector of the cells. The filtered cells are then compared to the residual cells and are
characterized in more detail with conventional approaches such as density and bar plots.

The CNN approach herein, however, uses bin information of grouped cells instead of using
single cell information. An advantage is, that the input size is not dependent on the
amount of cells (in the samples) but the amount of protein markers and samples. That
is to say, that the cell count can grow to hundreds of millions but still does not affect the
input size. This is especially useful with big data sets, but the limitation here is again the
minimum cell count in each sample as mentioned in Section 4.2.3. Another advantage is,
that PRI scales the bin properties from 0 to 9. This scale keeps tendencies tangible instead
of the reduction to low and high. In the end, the main difference to CellCnn is, that this
study’s CNN approach is to build a classification model rather than to use CNN for VS.

In conclusion, the engineered PRI features paves the way for reproducible and automat-
able cytometric analyses. In addition, they provide a statistically robust pattern map for
visual inspections and serve as input for pattern recognition in deep learning approach.

4.3 Regularized logistic regression as an embedded vari-
able ranking tool

Due to the deployment of the filters in Section 3.2.3 the total amount of triploT section
values is reduced from p = 109, 668 to p′′ = 2, 523, but with N = 12 samples, one still faces
the curse of dimensionality. However, practical experience suggests that, in some cases, it
is still possible to make good statistical inferences and predictions. The intuition behind
these approaches is a form of simplicity, namely the sparsity principle (Sec. 2.4.2) [34, 37].
Only a small fraction of the total variables explains a very large proportion of the variation
in the data and therefore, this fraction plays an important role in discriminating between
groups. This is where VS comes into play. It facilitates data understanding and opposes
the curse of dimensionality by improving the performance of models.

There are three techniques of VS: filters, wrappers and embedded methods (Sec. 2.3).
Filters are a variable subset selection alone without choosing a classifier and are used in
the preprocessing step. It is argued that filters are the fastest technique, because they are
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not based on any learning algorithm. However, they do not capture the combinatorics of
the variables [27, 77]. Wrappers typically use a predefined model’s learning performance
to evaluate variable relevance. They focus on finding a subset that is useful to build a good
model [37, p.658]. Traditional approaches use exhaustive search which repeatedly chooses
a subset of variables and then evaluate the performance, but this is computationally
intensive [29, 78]. Furthermore, variables for building a model are not necessarily relevant
variables in the biological context. And contrarily, correlative variables are mainly excluded
due to their redundant information [29], but these correlations might be important
functions in biology. Correlative variables are also necessary for the highlighting of the
triploT bin areas in PRI . Embedded methods, on the other hand, deploy VS in the process
of training. They couple the classification algorithm with the parameter estimation and
are usually optimized with a single objective function like error rates [29, 79]. They
include the benefits of both wrapper and filter methods: an embedding VS with model
learning are more efficient compared to wrappers [78]. An embedded method is therefore
chosen for this study’s VR workflow.

4.3.1 Logistic regression fits to the data complexity

The underlying function in the data set Spitzer et al. is unknown and possibly not linear.
It could be almost linear, and require some minor transformation of the input data to work
correctly. It could be also non-linear in which case the assumption to use a LR is wrong
and the approach will produce poor results. Simple models might not be able to capture
the relevant inputs which are driving the variable of interest. Using a LR to describe the
data set means, that this model is highly constrained by that form, which may turn out
to be unsuitable for a particular application [33, p.68]. Instead of using this model type,
which is a parametric distributed, generalized linear function, the non-parametric methods
k-nearest neighbors or decision trees could be applied for example [80]. Non-parametric
methods, also referred to as distribution-free methods, work particularly well when there
is no prior knowledge available, and if there is no time or intention to adjust or optimize
the model with, for example, VS. However, these complex algorithms need a large volume
of data, because they are prone to over-fitting with small data sets. Moreover, many
complex algorithms cannot be applied as an embedded VS tool.

There is not a so-called ‘best method’ for a specific problem setting. In this study,
using the engineered triploT section values as input variables, the dimensionality hence
the complexity has been reduced. The results from this approach demonstrated that
this model complexity suffices to extract meaningful variables from the biological mass
cytometric data set obtained by Spitzer et al. . Summarized, there are several advantages
using this type of model. Firstly, these models are very fast to learn from data. Hence,
they do not require as much training data and can work well even if the fit to the data
is not perfect [37]. Furthermore, LR models are easy to understand, and results have a
simple and intuitive meaning represented by coefficients that are either negative for a
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decrease, or positive for an increase within the variables according to the category. One
only needs to keep in mind the exponential attribute of the coefficients (Sec. 2.4.1). And
last but not least, this model form enables its usage as an embedded method for the
deployed VR workflow, to support and speed up the inspection of the novel engineered
variables by providing a list of most differentiating three parametric marker combinations.

4.3.2 Elastic-net regularization deals with multi-collinearity

With the assumption of sparsity, the total engineered variable set from example data
set Spitzer et al. has many non-informative sections. In general, using erLR has a good
trade-off between the goodness-of-fit and the model complexity. The former is aimed to
be maximized and for the latter, the number of explanatory variables is desired to be
minimized [40]. The model form is rather simple. LR creates a generalized linear model
(GLM) with all variables supplied to the regression. A regularization to the model deploys
penalties to the function and allows the favored shrinkage of the explanatory variables.

The characteristics of an individual cell, hence the inter-relationship between the protein
expressions of the cells are in some extent collinear. Citrus is considered to be the
state-of-the-art classification tool. It uses L1 regularization on SI medians in the cell clus-
ters (Sec. 2.2.2). The advantage of the L1 regularization, is that it shrinks the coefficients
to be exactly zero if the variables have minor contribution to the model. It produces a
more modest model that incorporates only a reduced set of the variables as predictors.
However, using this regularization, the variables are restricted to the number of samples N .
This might work on cluster level, but is not suited for PRI variables. Another issue with
applying the L1-norm is that they tend to pick one variable among the correlated ones
and put all the (coefficient) weight on it [37, 40]. This is problematic, when it comes to the
biological meaning. If there are multiple proteins highly expressed but only one is chosen
by the L1-regularization, the resulting variables in the model do not reflect the importance
of the proteins in reality. Therefore, the biological interpretation is cumbersome.

The properties of the three-parametric combinatorial triploT sections aggregate infor-
mation of the bins. This means, the values do not include the multi-collinearity on the
single cell level. However, with inclusion of information of the three-parametric marker
combinations and the large amount of variables, the variables are possibly still correlated.
L2 regularization selects all of the correlated variables, and shrink their coefficients
towards each other. The tendency is for all of those coefficients to be equal. Nevertheless,
it does not shrink the amount of variables. This is where elastic-net comes to practise [59].
Due to the combination of both L1 and L2 penalties, elastic-net is powerful when there
are correlations among the explanatory variables, and especially useful when a sparse
solution is either necessary or desirable [34, 40]. To identify the influence degree of the
penalties, cross validation (CV) is deployed with different L1/L2 influences, as conveyed
by the constraint α. That is why α is an important factor, which is adjustable according
to the nature of the data to improve the model fitting.
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4.3.3 Cross-validation to assess the model fitness

In this study, the 3-fold CV is applied in two separate cycles (Fig. 3.8). The first cycle is
aimed at identifying the degree to which the two techniques L1 (α = 0) or L2 (α = 1) are
working best on this particular example data set. Appendix B, Figure S9 illustrates an
example dot plot to obtain the best α for each iteration of a CV run. Other iterations have
similar outcomes, only varying in the maximum value of min(deviance). Interestingly,
either α = 0, α = 1, or both perform worst in these iterations. This supports the
hypothesis that the elastic-net regularization is a better choice for this VR approach and
this data set than the classical L1 and L2 regularizations. The second cycle involves
determining λ1se only and is used for variable collection after certain criteria are met.
Using this construct, there are actually three hyper-parameters to adjust: k, α and λ1se,
however the first parameter is dependent on the sample size N and the latter is usually
defined by the error measurement in the CV.

Root mean square error (RMSE)5 is deployed as the performance metric of the resulted
LR model, because of the following three reasons: i) the sample size is low, ii) the
sample distribution into training and test set is subsequently unbalanced, and iii) the
test set consists of only one sample from each treatment. Therefore, any metric from the
conventional confusion matrix is not suitable in this scenario, since the test set consists of
two samples and some metrics would be just zero or not available (NA), depending on
the constellation in the matrix. The accuracy, for instance, of the resulting model in all
500 CV achieved 100%, meaning both samples in the test set were predicted correctly.
However, this metric is not conclusive with only two samples in the test set. Furthermore,
models with 100% performance tend to over-fit. Thus, the variable set might not be
optimal or the model performance measurement is not suited. RMSE is a less biased
estimate of error variance, since the division by n removes the effect for different sample
sizes. Additionally, the square root ensures the same scaling and unit as the prediction
variable. The amount of models which achieved a difference of RMSE< 0.5 was only
∼ 70% (357 out of 500 runs). It is therefore a good evaluation metric for this purpose.

The particular strength of this VR tool is that it takes the advantages of: i) LR as an
effective and less computationally intensive model structure for less data and for variable
shrinkage in combination with ii) elastic-net regularization for handling with collinear
variables, and iii) nested CV and error measurements for model optimization. After
applying this VR approach, the resulting ranking list is discussed in comparison to cluster
approaches in the following section.

5Not to confuse with RSEM, the relative standard error of the mean.
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4.4 Variable ranking table provides discriminant three
marker combinations

The focus of this study is to develop an upstream filter, firstly, to guide the inspection
of most relevant markers with triploTs, and secondly, to drastically decrease manual
examination and computation time. To implement a workflow, properties of combinatorial
marker intensities are used and a specific machine learning approach is deployed to rank
the marker combinations which discriminate best between two groups of samples, and
with optimised visualization configurations.

4.4.1 Ranking table facilitates the identification of subpopulations

Looking at the top 10 of the VR table (Tab. 3.4) from the erLR-CV cycle, the absolute
range from the triploT section was obtained (Fig. 3.10). KLRG1 appears in row 4 (rank 1)
in combination with CD90 and CD86. It is of special biological interest in this context,
because KLRG1 is known to be expressed by highly differentiated T cells. Furthermore,
PD-L1 in row 5 (rank 1) is very interesting as well. It is also placed on rank 8 as axes
positions (basis markers) and even on rank 3 as position C (associated marker) from
the total VR table (Tab. 3.2). This marker could be part of a counter regulation of
the immune system activation, thus was not considered in this context so far [81, 82].
However, a counter regulation implies the intended immune system activation by the
eff treatment. Moreover, PD-L1 was also found highly expressed by Spitzer et al. and
should be consequently further inspected in this context. Recapitulated, these marker
proposals and the further narrowed down Th1 subpopulation mentioned in Section 3.4.3
with the characteristics of CD90highCD86+CD44highTbethighCD69highKi67high in CD4+

T cells shows that this VR table helps biological experts to analyze high-dimensional
cytometric data by guiding which parameter to set as basis or associated marker in PRI.

CD90 and CD44 in combination as basis markers are selected by manual inspection to
identify the different bin regions I-III (Fig. 3.6), but this combination is not directly
selected by the top 10 ranks of the VR table. Actually, CD90 and CD44 in combination
as variables (CD44.CD90.XX in the VR table) are selected twice at rank 39 and 41
respectively, with CD27 and PD-L1 as associated markers, but this accounts for less
than 0.5% of the total set of the variables (App. B, Tab. T5b). A reason could be
the too rough distribution of the bin range into (only) four triploT sections. Looking
at Figure 3.6 more precisely, one can see that a division into 3 × 3 sections would
separate these bin regions more accurately. On top of that, another reason could be the
underlying heterogeneous expression within the four sections of the samples. Looking at
the section values with other combinations as basis markers, such as CD138 (rank 24 with
CD44.CD138.CD27.absRange.S2, rank 25 with CD90.CD138.PD.L1.absRange.S2), it is
noticeable that these values are significantly more different compared to the CD44-CD90
basis marker combination (App. B, Fig. S14). It is evident, that the distance of the median
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values are higher and the p-values are lower between eff and ineff treatment for CD138-X
basis markers than CD44-CD90 basis markers. This leads to the conclusion, that the
marker CD1386 is a good choice for a basis marker (as also seen in Table 3.2a), since it is
clearly a good differentiator between groups. That aside, the marker combination CD44-
CD90-CD27 might be not listed in the top ranks, but CD44 and CD90 are the top selected
basis markers (Tab. 3.2a) and CD27 is at rank 3 for the associated marker (Tab. 3.2b).
The examination with guidance of both tables would potentially lead to the identification
of this marker combination and subsequently the characterization of the bin regions I-III.

Due to the reproducible display and the fixed choices of the x- and y-axes, a further benefit
with triploTs is the comparable expression pattern of a marker combination in different
samples. An example is shown in Appendix B, Figure S11. CD90-PD.L1-MSI(CD86) is
displayed for all samples with cutoff settings for CD90high, PD-L1+ and CD86high. Looking
at the frequencies of CD90highPD-L1+, which are placed as percentage numbers in the
upper right quadrant, the cell count of the quadrant (black, eff: 3,6-7.2%, ineff: 4.2-7.7%)
and of marker CD86high (green, eff: 1.1-4.9%, ineff: 0.1-0.2%) compared to total cell count,
respectively, the numbers fluctuate in different scales. Despite the varying frequencies,
concentrated areas, which indicate subpopulations, can still be seen as a consequence
of the continuous display of the expression distribution from associated marker C. It
promotes an intuitive capture and comprehensible interpretation of these patterns and
facilitate the characterization of cell subpopulations within and between groups.

4.4.2 PRI results differ from Citrus and Scaffold Maps

The comparison of the three studied approaches PRI , Citrus and Scaffold Maps, has
heterogeneous results, and are summarized in Table 4.2. Firstly, despite their differences
in the algorithms, five markers were found consistently to be discriminative: CD90, CD44,
PD-L1, CD62L and CD27. Furthermore, the outcome of PRI has the same amount of
protein markers in common with Citrus (7) and with Scaffold Maps (7) in regard to their
discriminative power. However, looking deeper into the characteristics (– or + for low/high)
of the markers, they are mainly not concordant and depict, in part, contradictory pop-
ulations (Sec. 3.2.2 and 3.4.4). Thus, the identified subpopulations of each approach have
manifestly different characteristics. One reason for the different outcomes are the different
approaches. Spitzer et al. uses Scaffold Maps which is based on a clustering algorithm, and
so does Citrus, whereas PRI uses a collection of three-parametric-combinatorial bin prop-
erties which are aligned to different combinations of two basis markers. In principle, Citrus
uses a similar classification algorithm to PRI , but deploys cluster information as input
variables in its algorithm. The results need to be validated in vivo or in vitro to objectively
benchmark the quality of the outcomes. Recent authors also suggest to apply multiple
tools in order to view data in different ways and fully extract biological meaning [9, 86, 87].

6CD138 plays an important role in, among others, wound healing and translocation in endothelial cells
and fibroblasts [83], and regulates homeostasis in innate-like T cells [84, 85]. The biological meaning
of CD138 in the context of tumor-specific CD4+ T cells needs to be further investigated.
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Table 4.2: Summary of the outcomes of PRI , Citrus and Scaffold Maps. Top five highest marker
counts from VR table (sum of markers in Tab. 3.2a and 3.2b), markers from manual inspection with triploTs,
Citrus’ noticeably different markers from discriminating clusters, and the identified subpopulation of Spitzer
et al., ordered by total prevalence count of the full VR in Appendix B, Table T5. Check marks indicate the
discriminating proteins, disregarded if either positive or negative population. Underlined markers are common
in the three approaches.

Marker Table 3a and 3b PRI Citrus Spitzer et al.
CD90 48 + 5 = 53 X X X

CD86 15 + 25 = 40 X X -
CD44 27 + 4 = 32 X X X

Ki67 21 + 1 = 22 X - -
KLRG1 14 + 6 = 20 X - -
PD-L1 9 + 9 = 18 X X X

CD138 18 + 0 = 18 X X -
Tbet 8 + 6 = 14 X - X

CD62L 9 + 1 = 10 X X X

Ly6C 0 + 10 = 10 X - -
CD27 0 + 9 = 9 X X X

CD69 3 + 0 = 3 - - X

Foxp3 0 + 3 = 3 - - -

Notably, Ki67, KLRG1 and Ly6C are reported discriminative in the top ranked table of
PRI ’s VR workflow (Tab. 3.2a+b), but this have not been seen with Citrus or Scaffold
Maps, even though Ki67, at least, as a proliferation marker might be of interest. The
protein marker Foxp3, which marks for Treg cells and is found to be an important marker
in the manual inspection with the triploTs (Fig. 3.6), but is not picked by PRI ’s VR
(only appears three times in the full VR table, but could have been observed in the
CD90-CD44-plane) or Citrus or Scaffold Maps. This indicates that it is difficult to find
populations which are either low in quantity or low in changes. For PRI , the triploT
sectioning into 2 × 2 is, again, possibly too broadly ranged. One could increase the
sectioning to 3 × 3 or 4 × 4 to better capture the bin properties in the region where
Foxp3 is highly concentrated. Another possible reason is the choice of the cofactor in the
arcsinh transformation of the data which can result in an alteration of the differential
power of a protein marker. However, running Citrus with cof = 0.1 resulted in an even
worse consensus to the results with PRI and Scaffold Maps.

The quality in characterizing the markers are very different between these approaches. Scaf-
fold Maps provides a very complex map, but subpopulations need to be selected and char-
acterized manually. Spitzer et al. subsequently used density plots for this purpose. Even
though Citrus provides the density plots of the discriminative clusters, but it also does not
support further characterization. Thus, both approaches lead to a rough characterization of
the markers in mainly positive (+) and negative (-). PRI however, uses the triploTs as visu-
alization and as basis in the classification algorithm. This has the advantage, that discrimi-
native three-combinatorial triploT sections are chosen, which can be in turn easily validated
with the triploT visualization itself. A further characterization, such as negative, low or
high SI of a marker in a discriminating subpopulation can be visually perceived, because of
the full SI range of the markers and information provided in the triploTs (Fig. 3.6 and 3.11).
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4.5 Bin-based PRI approach vs. clustering techniques

Clustering techniques are commonly used in the field of cytometry, for example, the
gold standard classification tool Citrus, and Scaffold Maps. Among others, SPADE
is also a frequently used approach, which is based on hierarchical clustering [54, 61].
This approach is particularly advantageous for rare cell detection due to its upstream
density-based down-sampling procedure, but provides a highly simplified overview of the
cellular phenotype. Scaffold Maps also uses a clustering algorithm (k-mediods, Tab. 4.3),
but does not work fully automated. In fact, it is to its advantage, that manually gated
landmark populations can be included in their workflow. They are connected with the
computationally defined clusters. This process is performed with biological expertise.
However, the interpretation of the behaviors or phenotypes of the identified cell clusters
are still challenging [72, 88]. Both tools, SPADE and Scaffold Maps, lack in providing
a method to highlight differentially expressed cell clusters between the groups, and a
visualization method to characterize the phenotypes of these clusters. Furthermore, the
underlying algorithm k-medoids is prone to background noise and outliers, since all cells
are regarded in the calculation of the cluster centers (App. A, Alg. A). Citrus on the other
hand, has only few parameters to adjust and runs without manual interaction, and uses
L1-regularized LR to solve the differentiation. However, Citrus only provides overlapped
density distributions of the clusters compared to the residual cells as visualization. In
addition, in clustering one does not know the subpopulation size, hence the cluster size.
Manual merging of clusters is cumbersome, not only because of the necessity of the
biological expert knowledge but also the speculation of many unclear definitions of the
clusters. And in the end, results of cluster algorithms are not reproducible when including,
excluding or concatenating different samples. This is a crucial point in clinical diagnostics.

Another concern with clustering techniques in general, is that cell transitions, as they
occur in a hematopoietic system, are continuous rather than discrete as mentioned in
Section 4.2.2. This makes the evaluation and characterization of clusters additionally
challenging, because the clustering resolution is considerably low for homogeneous popula-
tions. They are often unable to cluster cell populations with relatively similar phenotypes,
such as activated and non-activated T cells. Then again, PRI provides a semi-continuous
visualization where also small inter-correlations are easily identifiable.

With the VR table as guidance with where to look for subpopulations, the top 10 highest
rankings are manually inspected and confirmed with triploTs. They all show differentiating
characters in the absolute ranges of the triploT sections between both treatments. After
consultation with biological experts, these areas are partly not biologically relevant or
already known. Since this algorithm exclusively uses the bin properties, the biological rel-
evance cannot be evaluated by this tool. However, the narrowed down Th1 subpopulation
(CD90highCD86+CD44+Tbet+CD69+Ki67+) is identified with the aid of this table, which
could not be validated by the clustering approach Citrus, but could be validated with
the dimension reduction technique viSNE (Sec. 3.4.4). This subpopulation is enriched
of highly proliferating cells.
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Furthermore, the examination with PRI includes a novel visualization technique which is
insightful and easily interpretable. Due to the bin structure, other statistical information
than the cell density (as in contour plots) can be displayed such as MSI, frequency and
MSI+ of at least one associated marker. In fact, even several associated markers can be
visualized, which leads to a comprehensive pseudo-multi-parametric visualization. The
first attempt to plot the frequencies of two associated markers (resulting to a combinatorial
display of four markers) shows the additional benefit of these PRI variables [69]. Of
course, this combinatorial display is limited to three or four markers, but it is difficult for
the human eye to understand and visualize more inter-correlations at once. Therefore,
the information of these insightful visualizations are used as input variables in the erLR
to extract the discriminative three-parametric marker combinations, from which the
examiner can investigate further with the triploTs.

4.6 PRI as a complement to current analysis strategies

Several section properties have been tested in which the results with absolute range were
fruitful. There are endless options to define the section properties which, in combination
with an increased sectioning in a 3× 3 or 4× 4 grid, could lead to the identification of
smaller significant subpopulations. The aforementioned deployment of the +/− cutoff
setting function would be another option for sectioning which would also increase the
automation of this workflow. In addition, including these cutoffs would enable the display
of, among others, MSI(C+) and frequency(C+), which could lead to an optimization
of this workflow. The vast array of options can confuse and lead to the question of
whether or not this approach is valuable. In fact, the combination of intuitive and
reproducible visualization linked with the guided analysis strategy actually makes this
approach already very valuable. Since the results from this workflow can be validated
easily through visual perceptions, this strategy is more accessible to the community in the
field of cytometry than other approaches. Furthermore, the PRI workflow, especially the
VE part, is designed, but not restricted, to mass and flow cytometric data. Any numerical
three-combinatorial parameter can be visualized if row count and bin range are suitable.

Another advantage of PRI is elucidated in Table 4.3. The table lists the time complexity
of dimension reduction and clustering techniques addressed in this study. It manifests
again, that PRI is independent from the cell count c, which is the biggest factor in this
scenario. With greater numbers of samples, the cell count increases rapidly into hundreds
of millions. Therefore, other algorithms need to use upstream downsampling approaches,
which possibly leads to a loss of information as practised with viSNE (Section 4.2.3).
However, PRI groups the cells into bins and extracts the bin information for downstream
analysis. Hence, PRI workflow is especially suitable for large cytometry data studies.

In this study, with the additional interactive tools PRI-base and PRI-ana, this straight-
forward interpretable workflow is possibly more accessible to the biological community
of cytometry than comparable interactive cytometric workflow tools such as cytofkit,
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cytofast and the commercial Cytobank and FlowJo [87, 89, 45, 57]. Cytofast provides
an interactive platform for clustering and visualization, mainly based on t-SNE. The
other tools also provide a preparation step, and a variety of clustering and visualization
techniques. Defining what constitutes a successful analytical approach is difficult in
general. This study’s workflow bridges the gap between conventional gating strategies
and semi-automated analyses to extract meaningful information, and aids in discovering
interesting subpopulations on a basis of comprehensive three-parametric combinatorial
bi-axial plots. The focus of this study is to create variables and to build an embedded
VR workflow whose outcomes are more tangible for biologists, rather than cell clusters or
arbitrary axes which are difficult to comprehend and interpret. Thus, PRI ’s approach
facilitates examinations with intuitively interpretable results but is limited in a minimal
cell count, and its focus is not in single cell resolution, whereas many cluster and dimension
reduction techniques show single cell information, but are limited in cell count and need
to use upstream downsampling procedures. Hence, PRI is an excellent complement to
already established tools, and combining PRI with several other algorithms is preferred
to cover the full scope of analysis approaches. A migration of PRI into the interactive
cytometric workflow applications would reduce the examiner’s familiarization phase with
the GUI, and a comprehensive investigation with several approaches would be facilitated.
An expansion of cytofkit with PRI would be especially preferred, since cytofkit is freely
available, it is also written in R, and it already contains several approaches. PRI would
substantially extend their major components: pre-processing, cell subset detection, and
cell subset visualization and interpretation [87].

Table 4.3: Algorithms and their time complexity with c cells, k clusters, m markers, N samples, p variables
(derived from m) and it iterations. Tools for cytometric data are listed, which includes these algorithms (partly).

Method Example tools Time complexity
hierarchical clustering Citrus, SPADE O(c3)

k-means flowMeans [90] O(it · k · c)
k-mediods Scaffold Maps O(c3 + k(c− k)2 · it) [91]
t-SNE viSNE O(c2 ·m)

GLM Citrus, PRI O((N2m+m3) · it)
triploT sectioning PRI O(m3 ·N)
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5 Conclusion and outlook

Manual gating strategies combined with conventional plots are time-consuming and
cannot fully capture the combinatorics of high-dimensional mass and flow cytometric
data. State-of-the-art analysis strategies are mainly based on clustering algorithms and
the respective frequencies of the clusters. The central problems with these methods are
the scope of interpretation, reproducibility and computational complexity. To address
these problems, the cytometric analysis and visualization workflow pattern recognition
of immune cells (PRI ) is proposed in this dissertation. The proof of concept of this
workflow is demonstrated by re-analyzing the already published mass cytometric data
set from Spitzer et al. . With discriminating protein marker combinations discovery in
focus, the workflow starts from scratch with data preparation and storage. Subsequently,
it goes through bin-based variable engineering (VE) and dimension reduction to variable
ranking (VR) with characteristics of the engineered variables by elastic-net regularized
logistic regression (erLR). Moreover, the implementation of the interactive and standalone
database management system PRI-base and the visualization and analysis tool PRI-ana
have greatly facilitated the examination of in-group created flow cytometric data and
re-analyses of mass cytometry data.

PRI , with its various bin-based visualizations and calculation methods, have been invented
to tackle the difficulties to generate reproducible, comprehensible and comparable results
between groups. It allows to identify and characterize cell subpopulations and correlating
patterns in a homogeneous system, which are not easily tangible with conventional and
state-of-the-art approaches. The use of markers on the axes combined with the bins in
triploTs enables a reproducible, pseudo-continuous display and a comparable scaffold for
pseudo-multi-parametric viewing. Similar and state-of-the-art visualization alternatives
Color Maps and viSNE are provided and shown on the data set to perform less well and
less insightful. Due to the absence of artificial axes, the interpretation of the depicted
subpopulation from Spitzer et al. is intuitive and has resulted in a characterization of
three different subregions. Furthermore, this study’s workflow is valuable to guide and
design prospective experiments, e.g. the choice of the protein markers in flow and mass
cytometric studies.

These triploTs were further engineered to serve as variables in a machine learning approach
for VR. The usage of filters and logistic regression (LR) coupled with two optimized
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5.1. Key features of the proposed approach

regularization parameters α and λ resulted in a drastic reduction of the variable count
from 109,668 to 97. The deployed embedded VR pipeline provided a shorten variable
table with sections of three-marker-combinatorial triploTs which are most discriminative
between the effective (eff) and ineffective (ineff) treatments.

With the help of this study’s triploTs, the subpopulation from Spitzer et al. could be
further narrowed down into three subpopulations which are referred to as naïve, Th1
and Treg cells. With neither Scaffold Maps nor Citrus and viSNE, one has captured the
characterization of these subpopulations. Furthermore, the inspection of the VR table
resulted in a further specification of the depicted Th1 subpopulation which is character-
ized by CD90highCD86+CD44highTbethighCD69highKi67high. With that specification, this
subpopulation could be validated by the established approach viSNE. PRI is therefore
an essential complement for the current analysis strategies.

5.1 Key features of the proposed approach

Three particular strengths of the proposed PRI approach are i) the innovative VE which
enables conclusive visualization techniques, ii) the inclusion of expert-guided upstream
filters, and iii) the combination of erLR with the information of the engineered variables
as basis. The first two points lead to a drastic dimension reduction, and a conclusive repre-
sentation of the raw data, which is straightforward to follow and justify. The latter point
has the advantage, that the model has a low complexity and handles multi-collinearity,
and the results in the VR table are comprehensive and its variables are, as a matter of
fact, evaluable by their own visualization in PRI . The advantages and limitations of PRI
are recapitulated in Table 5.1.

5.2 Outlook

The study presented in this dissertation has opened a number of research lines that
should be explored in the future. Firstly, to validate the proposed workflow, one option is
to confirm the resulting three discriminative subpopulations. This could be processed
statistically by another (larger) project with the same setting of model, disease and
treatment. A biological validation could be the inspection of the functionalities of the
found subpopulation in knock-out mice, and if successful, it is necessary to examine
if this mouse model is transferable to humans. Therefore, one should investigate if
this subpopulation can be found in blood tissue of breast cancer patients, which would
hopefully indicate a successful treatment. Another option would be, in general, a proof
of concept of PRI with a biologically different mass or flow cytometric data set, which
has sufficient cell count per sample. It would be of particular interest, if this workflow is
scalable to bigger data sets and multiple groups. And of course, one could also benchmark
this workflow on a data set provided from the FlowCAP challenge [92]. Last but not least,
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5.2. Outlook

another milestone is the evaluation of the expert-guided filters and, particularly, their
possible generalized application, since they are critical for the outcome of this approach.
The role of the error measurements in the embedded VR should be also addressed.

Table 5.1: Benefits and limitations of PRI.

Benefits Limitations

+ reproducible and conclusive visualization
+ setting of bin size and minimum number

of cells support statistical robustness
+ intuitive capturing of inter-correlations

and characteristics of a subpopulation of
combinatorial markers

+ same patterns are easily obtained, includ-
ing those between different samples

+ a lot of useful statistical information dis-
playable

+ particularly suitable for homogeneous
populations

+ insightful visualization as a basis for VR
workflow

+ VR reduces the marker combinations
only to those significant between groups

+ VR table as guidance similar to RNAseq
analyses

+ automatable
+ less complex computation
+ easy handling with GUI

– many cells are necessary (>∼ 10, 000)
– broad bin range for subpopulation iden-

tification
– no single cell resolution (but single cell

information remains stored)
– the right marker combination for A-B-C

is necessary to obtain meaningful infor-
mation

– data-driven (VR does not include biolog-
ical meaning)

In this study, the deployed embedded variable selection (VS) method resulted in a VR
table. An important goal is to set a frequency cutoff on that table to turn a ranking
of variables into a smaller relevant variable subset. Applying this workflow to several
data sets, a trend can be presumably determined. A more simplistic approach is a cutoff
score such as only the top 20 or top 25 variables, or the point at which the frequency
of the summed variables crosses a threshold of 80% or 90% of the total VR set. A
more sophisticated option is the downstream deployment of a filter method such as the
minimum redundancy maximum relevance selection. The main benefit of this method
is, that by reducing mutual redundancy within the ranked variable set, these variables
capture the class characteristics in a broader scope. Further, it is independent of class
prediction methods, and thus does not directly aim at producing the best results for
any prediction method. Last but not least, another option is to subsequently deploy a
wrapper method to find the best subset of features, which should not be computational
demanding, since there are only 97 selected triploT sections in the VR table.

In general, choosing the appropriate VS method for a given scenario is not an easy-to-solve
question. To optimize the results of this study’s VR workflow in another way, an aggre-
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5.2. Outlook

gated VR could be deployed. It may be that a combination with another VR method is
even more robust and reliable. For instance, random forest is also a robust, multi-variate
and embedded, but non-linear VR method. This method has also the advantage as in
PRI , that the complexity is independent from the number of cells (t

√
N · p · log(p), with

t number of trees) [27]. The variable sets can be aggregated by intersection, and the
selected variables could be then ranked with a combined importance score. The first
application of random forest on cytometric data was established in [93], which uses the
information of this method to improve the distances of cell clusters in the viSNE map.
Nonetheless, this method might not work well with such a small sample size.

Last but not least, PRI ’s workflow could be migrated into already published interactive
cytometric analyses applications, such as cytofkit [87] and cytofast [89], and the commercial
FlowJo [57] and Cytobank [45]. A collaboration could be requested, although the authors
from the first two mentioned tools would be preferred, since these applications are written
in R, and are non-commercial.
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A Appendices: Spitzer et al.

Panel overview of Spitzer et al.

Table T1: Panel overview of example data provided by [13], with two additional columns to the right. In
column ‘*Bio’: 1 indicates the relevant marked proteins and 0 indicates the proteins which are irrelevant for this
study since these proteins should be negative when gated for CD4+ T cells, also called T helper cells. Column
‘*Location’ shows the location of the protein expression extracted from [94, 95]. Ter119 (listed as #1) is a marker
for erythrocytes which are red blood cells and are therefore not part of the immune system; immunglobulins IgG
and IgM and the subunit FcER1a of IgE (listed as #4,30,38) are (parts of) antibodies which are produced in
B and plasma cells; PγMT (listed as #8) marks viral T antigens; CD8 is a marker for cytotoxic T cells, which
express F4-80 (listed as #19,33), and was filtered in the last gating step (Fig. S1); and B220 and CD19 (listed
as #23,37) are expressed by the B cell lineage. These ten proteins have therefore no biological meaning in the
context of CD4+ T cells.

# Channel Metal Protein Clone *Bio *Location
1 113 In Ter119 TER119 0 Monoclonal antibody
2 115 In CD45 30-F11 1 hematopoietic cells
3 139 La Ly6G 1A8 1 neutrophils
4 140 Ce IgD 11-26c.2a 0 mature naive B cells
5 141 Pr CD16/32 2.4G2 1 NK cells, neutrophils and macrophages
6 142 Nd CD49b HM2 1 B-cells, monocytes, activated T-cells,...
7 143 Nd CD11c HL3 1 T- and B-cell subsets, monocytes„...
8 144 Nd PyMT PyMT 0 polyoma middle tumor
9 145 Nd CD27 LG.3A10 1 T-cells
10 146 Nd CD138 281-2 1 pre-B-cells, breast cancer cells,...
11 147 Sm PD-L1 10F.9G2 1 activated T- and B-cells,...
12 148 Nd CD103 20000000 1 lymphocytes
13 149 Sm SiglecF E50-2440 1 neutrophils
14 150 Nd PDCA-1 120g8 1 T-cells, monocytes, NK cells,...
15 151 Eu Ly6C HK1.4 1 monocytes, macrophagesm,...
16 152 Sm Ki67 SolA15 1 various stages in the cell cycle
17 153 Eu CD11b M1/70 1 monocytes, NK cells, T- and B-cells,...
18 154 Sm cKit 2B8 1 hematopoietic stem cells and progenitors
19 155 Gd CD8 53-6.7 0 thymocyte subsets, cytotoxic T cells,...
20 156 Gd CD4 RM4-5 1 thymocyte subsets, Th cells, Treg cells,...
21 157 Gd CD3 17A2 1 mature T-cells and thymocytes
22 158 Gd PD-1 29F.1A12 1 activated T- and B-cells
23 159 Tb B220 RA3-6B2 0 hematopoietic cells in B cell lineage
24 160 Gd NK1.1 PK136 1 NK cells
25 161 Dy T-bet 04-46 1 Th1 cells
26 162 Dy TCRgd GL3 1 T subset
27 163 Dy CD62L-FITC MEL-14 1 B- and T-cell subsets,monocytes,...
28 164 Dy CD86 GL-1 1 activated B- and T-cells,macrophages,...
29 165 Ho CD69 H1.2F3 1 activated leukocytes and macrophages,...
30 166 Er FcER1a MAR-1 0 Subunit of receptor of IgE
31 167 Er Foxp3 NRRF-30 1 T subsets
32 168 Er RORgt B2D 1 lymphoid compartments
33 169 Tm F4/80 BM8 0 wide range of mature tissue macrophages
34 170 Er CD115 AFS98 1 monocytes, macrophages,...
35 171 Yb CD64 X54-5/7.1 1 monocytes and macrophages
36 172 Yb KLRG1 2F1 1 mast cells
37 173 Yb CD19 6D5 0 B cells and follicular dendritic cells
38 174 Yb IgM RMM-1 0 B cells
39 175 Lu CD44 IM7 1 most lymphohematopoietic cells
40 176 Yb CD90 G7 1 hematopoeitic cells
41 209 Bi MHC M5/114.15.2 1 macrophages
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Full column table list in the fcs-files

Table T2: The column table list in the fcs-files has 59 entries in total, including protein markers, bar codes
and other device specific measurements.
1 Ba138Di 11 Foxp3 21 NK1.1 31 CD49b 41 BC4 51 Time
2 beadDist 12 RORgt 22 CD69 32 CD11c 42 BC5 52 Tl203Di
3 MHC-II 13 CD115 23 I127Di 33 PyMT 43 BC6 53 Tl205Di
4 IgD 14 Ly6C 24 Ter119 34 CD27 44 PD.L1 54 F4-80
5 Cs133Di 15 CD11b 25 CD45 35 CD138 45 CD16.32 55 Xe131Di
6 T.bet 16 Event_length 26 DNA1 36 CD103 46 Cisplatin 56 CD64
7 TCRgd 17 CD8 27 DNA2 37 PDCA.1 47 SiglecF 57 KLRG1
8 CD62L 18 CD4 28 Ly6G 38 BC1 48 Ki67 58 CD19
9 CD86 19 CD3 29 CD44 39 BC2 49 cKit 59 IgM
10 FcER1a 20 PD.1 30 CD90 40 BC3 50 B220

Gating scheme applied on example data set Spitzer et al.

CD4+ subset
69.3

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset
CD19-, CD3+ subset

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset
CD19-, CD3+ subset
CD4+ subset

Gd156Di :: CD4
x

Gd155Di :: CD8

CD19-, CD3+ subset
20.9

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset
- (CD19-, CD3+ subset)
CD4+ subset

Yb173Di :: CD19
x

Gd157Di :: CD3

CD45+ subset
87.5

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
- (CD45+ subset)
CD19-, CD3+ subset
CD4+ subset

Ir193Di :: DNA2
x

In115Di :: CD45

BC4, BC2 subset
94.9

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
- (BC4, BC2 subset)
CD45+ subset
CD19-, CD3+ subset
CD4+ subset

Pd106Di :: BC4
x

Pd104Di :: BC2

BC5, BC3 subset
99.2

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset

DNA2, DNA1 subset
DNA2, Cisplatin subset
DNA2, IgD subset
- (BC5, BC3 subset)
BC4, BC2 subset
CD45+ subset
CD19-, CD3+ subset
CD4+ subset

Pd108Di :: BC5
x

Pd105Di :: BC3

DNA2, IgD subset
99.9

DNA2, DNA1 subset
DNA2, Cisplatin subset

DNA2, DNA1 subset
DNA2, Cisplatin subset
- (DNA2, IgD subset)
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset
CD19-, CD3+ subset
CD4+ subset

Ir193Di :: DNA2
x

Ce140Di :: IgD

DNA2, Cisplatin subset
99.9

DNA2, DNA1 subset

DNA2, DNA1 subset
- (DNA2, Cisplatin subset)
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset
CD19-, CD3+ subset
CD4+ subset

Ir193Di :: DNA2
x

Pt195Di :: Cisplatin

DNA2, DNA1 subset
66.3

Ungated

- (DNA2, DNA1 subset)
DNA2, Cisplatin subset
DNA2, IgD subset
BC5, BC3 subset
BC4, BC2 subset
CD45+ subset
CD19-, CD3+ subset
CD4+ subset

Ir193Di :: DNA2
x

Ir191Di :: DNA1

Figure S1: The gating process is rapidly performed by the software FlowJo (v9.9.6) [57], guided by a mass
cytometry specialist.
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Algorithm clustering for large applications (CLARA)

Algorithm .0: CLARA applied by Spitzer et al.
Input: A data frame Df with c cells and m markers; K medoids, with 0 < K < c; j

subsample size, with K < j ≤ c
Output: A data frame D̂f with cluster assignment for each cell

1 Step 1: Partition cells into j subsets
2 foreach partition Cj do
3 Step 2: Initialize cluster centers (K medoids)
4 Step 3: Assign each cell to the closest medoid:
5 foreach cluster Ck do
6 Find cell w in the cluster minimizing total distance to other cells in that

cluster:

i∗k = argmin{i:C(i)=k}
∑

C(i′)=k

D(wi, wi′) (.1)

Then mk = wi∗k,k=1,2,...,K are the current estimates of the cluster centers.
7 end
8 Minimize total error by assigning each cell to the closest cluster center:

C(i) =1≤k≤K D(wi,mk) (.2)

Step 4: Repeat Step 3 until assignment does not change.
9 end

iii



B Appendices: PRI analysis

Overlapped density plots of all biological relevant markers
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Figure S2: Overlapped density plots of all samples showing the 31 biological relevant markers after
arcsinh-transformation with cof = 0.1.
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Dendrograms of all samples except one
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Figure S3: Dendrograms of all blood samples except of sample untr_d3_Bl3 (a) and sample
CD1_d3_Bl1-2 (b), respectively, color-coded by experimental group: eff (green) and ineff (red) treatments.
Hierarchical clustering method ward.D2 was applied. Label names indicate sample IDs.

Density plots with different normalizations
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Figure S4: Density plots before and after the applied normalization warp (left) and range (right) for
two example markers in which curve properties have changed a lot.
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DiploTs bin size and minimum count of cells setting

Both configurations, bin size and the minimum number of cells, are adjustable. To
elucidate the current setting, diploTs are created with different settings. Bin sizes of 0.1,
0.2, and 0.4 and the minimum number of cells of 10, 20 and 40, respectively are shown in
Appendice B. Looking at Figure S5a at MSI(CD44), MSI(CD62L+) and freq(CD62L+),
respectively, the diploTs with bins of size arcsinh(x) = 0.2 have a more stable resolution
and preserves the continuity of the bins compared to arcsinh(x) = 0.1. The diploTs
with bins of size arcsinh(x) = 0.2 and 0.4 have similar tendency information, but for
smaller subpopulations the setting with smaller bin sizes is preferred. Looking at the
configuration of the minimum number of cells in Figure S5b, the diploTs with different
minimum number of cells are very similar. Only diploTs with the minimum number of
cells= 10 shows differences at the right end. The diploTs have one additional bin which are
highest for SD and RSEM. This effect can be seen at MSI(CD62L+) and freq(CD62L+).
The diploTs with the minimum number of cells= 40 have fewer bins on the left in all
diploTs, which could contain interesting information. Therefore, the setting with bin size
arcsinh(x) = 0.2 and minimum number of cells= 20 is chosen for the subsequent analysis.
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Figure S5: DiploTs of CD44 as basis marker and CD62L as associate marker from sample B6_d3_Bl2,
with different minimum number of cells (a) and bin size (b, next page) settings. The statistical method and its
range are listed on the right of each diploT.
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Figure S6: Digraphs of CD44 as basis marker and mean signal intensities (MSIs) of Tbet, CD62L, CD86,
CD69, CD90 and CD27 are shown as associated markers, analogous to the diploTs in Fig. 3.3. Bin sizes are set
to arcsinh(x) = 0.2 and minimum number of cells= 20. The MSIs in the bins are shown on the y-axis.
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Density plots with different normalizations
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Figure S7: Density plots before and after the applied normalization warp (left) and range (right) for
two example markers in which curve properties have changed a lot.
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0.
00

0.
15

0.
25

0.00.40.81.2

D
en

si
ty

CD90

C
D

44

0 1e1 1e2 1e3 1e4 1e5 1e6

0
1e

1
1e

2
1e

3
1e

4
1e

5

# cells 

5.0

80.2

193.0

305.8

381.0

Density

Figure S8: TriploT CD90-CD44-density and density plots from exemplary sample B6_d3_Bl2.
Orange rectangle indicate the bins of the first row and column in the CD90-CD44-plane, respectively, and the
respective peak at the density plots.

viii



Cross-validation to find α
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Figure S9: Example dot plot of minimal deviance (error rate) of cross validation (CV) runs with
different α. Orange line indicate the α with the lowest error rate in one CV cycle. Therefore α = 0.9 is depicted
in this iteration. When the absolute range of the MSIs in the bin sections were deployed as input variables,
α = 0.9 was chosen the most.

Variable ranking table of top 10 variables grouped into axes positions
and associated marker

Table T3: Variable ranking table of top 10 variables only, grouped into x and y axes (a), and
associated marker (b), ordered by prevalence in Table 3.4. The ranking table is the outcome of erLR in
a nested CV, and with syma = 0.9 and the absolute range of the MSIs in the bin sections (absRange) deployed
as input variables.

(a) marker list of combined axes positions

Pos Rank Marker A+B Counts % Counts
1 1 CD90 7 0.35
2 2 CD138 4 0.2
3 3 Ki67 2 0.1
4 4 CD86 1 0.05
5 4 CD103 1 0.05
6 4 KLRG1 1 0.05
7 4 PDCA.1 1 0.05
8 4 PD.L1 1 0.05
9 4 Ly6G 1 0.05
10 4 CD62L 1 0.05

(b) marker list of position C

Rank Marker C Counts % Counts
1 CD86 7 0.7
2 CD90 1 0.1
3 Ly6C 1 0.1
4 CD27 1 0.1

Box plots of top 10 ranked variables
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Figure S10: Dot plots of top 10 ranked variables with boxplots. From CV runs with settings α = 0.9
and calc.meth = absolute range (absRange). Significance test with unpaired two-sided t-test on section values,
labeled with asterisks: p-values ≤ 0.0001(****) and p ≤ 0.001 (***).

ix



Full variable ranking table

Table T5: Variable ranking table from selected section values (part1). From left: ranking position,
prevalence count and frequency, mean model coefficient and split variable information (marker combination for x
and y axes (A,B) and associated marker (C)) and section selection (S). The ranking table is the outcome of erLR
in a nested CV with α = 0.9 and the absolute range of the MSIs in the bin sections (absRange) deployed as input
variables.

Pos Rank Variables Counts % Counts Coefficient A B C S
1 1 CD86.CD138.CD90.absRange.S3 357 0.046 0.3686 CD86 CD138 CD90 S3
2 1 CD90.CD103.CD86.absRange.S4 357 0.046 0.3892 CD90 CD103 CD86 S4
3 1 CD90.CD138.CD86.absRange.S3 357 0.046 0.4979 CD90 CD138 CD86 S3
4 1 CD90.KLRG1.CD86.absRange.S4 357 0.046 0.3696 CD90 KLRG1 CD86 S4
5 1 CD90.PD.L1.CD86.absRange.S3 357 0.046 0.6033 CD90 PD.L1 CD86 S3
6 6 CD138.Ki67.CD27.absRange.S4 355 0.046 0.9503 CD138 Ki67 CD27 S4
7 7 Ly6G.CD90.CD86.absRange.S3 347 0.045 0.1607 Ly6G CD90 CD86 S3
8 8 CD90.PDCA.1.CD86.absRange.S3 345 0.045 0.1442 CD90 PDCA.1 CD86 S3
9 9 CD62L.Ki67.CD86.absRange.S2 337 0.044 0.3056 CD62L Ki67 CD86 S2
10 10 CD90.CD138.Ly6C.absRange.S3 333 0.043 0.2321 CD90 CD138 Ly6C S3
11 11 CD90.CD103.Ly6C.absRange.S3 332 0.043 0.2337 CD90 CD103 Ly6C S3
12 12 CD86.Ki67.CD90.absRange.S3 313 0.041 0.1405 CD86 Ki67 CD90 S3
13 13 CD62L.CD44.CD86.absRange.S2 284 0.037 0.3523 CD62L CD44 CD86 S2
14 14 Ki67.KLRG1.Ly6C.absRange.S4 268 0.035 0.1179 Ki67 KLRG1 Ly6C S4
15 15 CD44.Ki67.CD86.absRange.S3 258 0.034 0.316 CD44 Ki67 CD86 S3
16 16 CD62L.CD86.CD90.absRange.S3 195 0.025 0.1055 CD62L CD86 CD90 S3
17 17 CD44.CD138.T.bet.absRange.S2 160 0.021 -0.1815 CD44 CD138 T.bet S2
18 18 CD62L.CD44.CD27.absRange.S4 155 0.02 0.1977 CD62L CD44 CD27 S4
19 19 CD62L.CD90.CD86.absRange.S2 145 0.019 0.1402 CD62L CD90 CD86 S2
20 20 T.bet.CD44.MHC-II.absRange.S3 119 0.015 0.2286 T.bet CD44 MHC-II S3
21 21 CD44.PD.L1.CD86.absRange.S3 98 0.013 0.2201 CD44 PD.L1 CD86 S3
22 22 CD44.PDCA.1.PD.L1.absRange.S2 93 0.012 -0.349 CD44 PDCA.1 PD.L1 S2
23 23 CD62L.CD90.CD86.absRange.S3 92 0.012 0.1385 CD62L CD90 CD86 S3
24 24 CD44.CD138.CD27.absRange.S2 89 0.012 0.3081 CD44 CD138 CD27 S2
25 25 CD90.CD138.PD.L1.absRange.S2 80 0.01 -0.8485 CD90 CD138 PD.L1 S2
26 26 CD90.CD138.CD45.absRange.S3 73 0.009 0.6699 CD90 CD138 CD45 S3
27 27 CD86.CD44.PD.L1.absRange.S2 70 0.009 -0.2526 CD86 CD44 PD.L1 S2
28 28 CD44.CD103.Ly6C.absRange.S4 63 0.008 0.2523 CD44 CD103 Ly6C S4
29 29 CD90.CD16.32.CD86.absRange.S4 59 0.008 0.05 CD90 CD16.32 CD86 S4
30 30 Ki67.KLRG1.CD86.absRange.S4 57 0.007 0.5668 Ki67 KLRG1 CD86 S4
31 31 CD90.CD138.CD86.absRange.S4 56 0.007 0.1564 CD90 CD138 CD86 S4
32 32 CD69.CD90.T.bet.absRange.S4 55 0.007 0.2697 CD69 CD90 T.bet S4
33 32 CD90.CD103.CD86.absRange.S3 55 0.007 0.335 CD90 CD103 CD86 S3
34 34 CD90.PDCA.1.Foxp3.absRange.S2 52 0.007 0.0755 CD90 PDCA.1 Foxp3 S2
35 35 CD90.KLRG1.CD62L.absRange.S4 48 0.006 0.3057 CD90 KLRG1 CD62L S4
36 36 CD44.PDCA.1.CD86.absRange.S4 39 0.005 0.1064 CD44 PDCA.1 CD86 S4
37 36 CD44.PD.L1.CD90.absRange.S3 39 0.005 0.1133 CD44 PD.L1 CD90 S3
38 38 CD44.PDCA.1.CD27.absRange.S2 35 0.005 0.1872 CD44 PDCA.1 CD27 S2
39 39 CD44.CD90.CD27.absRange.S3 34 0.004 0.09 CD44 CD90 CD27 S3
40 39 T.bet.CD90.CD86.absRange.S3 34 0.004 0.0637 T.bet CD90 CD86 S3
41 41 CD44.CD90.PD.L1.absRange.S2 33 0.004 -0.239 CD44 CD90 PD.L1 S2
42 42 CD90.PD.L1.CD11b.absRange.S4 31 0.004 -0.0316 CD90 PD.L1 CD11b S4
43 43 T.bet.CD90.CD86.absRange.S4 30 0.004 0.2273 T.bet CD90 CD86 S4
44 44 CD90.PDCA.1.CD44.absRange.S2 28 0.004 0.09 CD90 PDCA.1 CD44 S2
45 45 Ki67.KLRG1.T.bet.absRange.S2 26 0.003 -0.0461 Ki67 KLRG1 T.bet S2
46 46 CD44.Ki67.Foxp3.absRange.S4 25 0.003 0.0885 CD44 Ki67 Foxp3 S4
47 47 CD86.CD138.CD44.absRange.S3 23 0.003 0.2187 CD86 CD138 CD44 S3
48 47 CD90.PD.L1.Ki67.absRange.S3 23 0.003 0.1801 CD90 PD.L1 Ki67 S3
49 49 CD90.CD103.KLRG1.absRange.S2 22 0.003 0.0159 CD90 CD103 KLRG1 S2
50 50 CD90.PDCA.1.Ly6C.absRange.S3 21 0.003 0.0812 CD90 PDCA.1 Ly6C S3

x



Table T5: Variable ranking table from selected section values (part2) showing the positions 51-97.
Pos Rank Variables Counts % Counts Coefficient A B C S
51 50 CD90.PD.L1.Ly6C.absRange.S3 21 0.003 0.0815 CD90 PD.L1 Ly6C S3
52 52 CD90.CD16.32.CD86.absRange.S3 20 0.003 0.1001 CD90 CD16.32 CD86 S3
53 53 CD86.CD44.CD45.absRange.S3 19 0.002 1.0978 CD86 CD44 CD45 S3
54 53 T.bet.CD44.CD86.absRange.S3 19 0.002 0.1895 T.bet CD44 CD86 S3
55 55 CD44.CD103.CD86.absRange.S4 18 0.002 0.2616 CD44 CD103 CD86 S4
56 55 Ki67.KLRG1.CD44.absRange.S4 18 0.002 0.0321 Ki67 KLRG1 CD44 S4
57 57 CD138.Ki67.KLRG1.absRange.S3 17 0.002 0.1441 CD138 Ki67 KLRG1 S3
58 57 CD62L.CD86.Ly6C.absRange.S2 17 0.002 0.1395 CD62L CD86 Ly6C S2
59 57 CD86.Ki67.MHC-II.absRange.S3 17 0.002 0.026 CD86 Ki67 MHC-II S3
60 57 CD90.CD138.CD27.absRange.S2 17 0.002 0.9323 CD90 CD138 CD27 S2
61 57 PD.L1.Ki67.CD86.absRange.S3 17 0.002 0.0469 PD.L1 Ki67 CD86 S3
62 57 T.bet.CD44.MHC-II.absRange.S2 17 0.002 0.5219 T.bet CD44 MHC-II S2
63 63 CD44.PD.L1.KLRG1.absRange.S4 16 0.002 0.0185 CD44 PD.L1 KLRG1 S4
64 63 CD62L.CD86.CD44.absRange.S3 16 0.002 0.127 CD62L CD86 CD44 S3
65 65 CD86.CD138.MHC-II.absRange.S3 15 0.002 0.5879 CD86 CD138 MHC-II S3
66 65 CD86.CD44.KLRG1.absRange.S3 15 0.002 0.2922 CD86 CD44 KLRG1 S3
67 65 Ki67.KLRG1.T.bet.absRange.S4 15 0.002 0.0169 Ki67 KLRG1 T.bet S4
68 68 CD44.PDCA.1.CD45.absRange.S3 14 0.002 1.5084 CD44 PDCA.1 CD45 S3
69 68 T.bet.CD90.Ly6C.absRange.S3 14 0.002 0.3324 T.bet CD90 Ly6C S3
70 70 CD90.CD103.RORgt.absRange.S3 13 0.002 0.1861 CD90 CD103 RORgt S3
71 71 CD44.CD138.KLRG1.absRange.S3 12 0.002 0.0185 CD44 CD138 KLRG1 S3
72 71 CD69.CD90.CD86.absRange.S3 12 0.002 0.0175 CD69 CD90 CD86 S3
73 71 T.bet.CD90.PD.L1.absRange.S4 12 0.002 -0.1449 T.bet CD90 PD.L1 S4
74 74 CD90.KLRG1.CD138.absRange.S4 11 0.001 0.1075 CD90 KLRG1 CD138 S4
75 74 CD90.KLRG1.PD.L1.absRange.S2 11 0.001 -0.3587 CD90 KLRG1 PD.L1 S2
76 76 CD86.CD138.CD27.absRange.S4 10 0.001 0.1397 CD86 CD138 CD27 S4
77 76 CD86.CD90.T.bet.absRange.S2 10 0.001 -0.0139 CD86 CD90 T.bet S2
78 78 CD90.KLRG1.SiglecF.absRange.S4 9 0.001 0.0238 CD90 KLRG1 SiglecF S4
79 79 CD44.CD138.CD86.absRange.S4 8 0.001 0.029 CD44 CD138 CD86 S4
80 79 CD44.Ki67.CD27.absRange.S2 8 0.001 0.5716 CD44 Ki67 CD27 S2
81 79 T.bet.CD90.CD16.32.absRange.S3 8 0.001 0.2764 T.bet CD90 CD16.32 S3
82 82 CD90.KLRG1.Ly6C.absRange.S4 7 0.001 0.047 CD90 KLRG1 Ly6C S4
83 83 CD44.CD103.CD90.absRange.S3 6 0.001 0.0466 CD44 CD103 CD90 S3
84 83 CD86.CD138.CD64.absRange.S4 6 0.001 0.0383 CD86 CD138 CD64 S4
85 85 CD69.CD90.MHC-II.absRange.S2 3 <0.001 0.046 CD69 CD90 MHC-II S2
86 85 CD86.CD90.Ly6C.absRange.S3 3 <0.001 0.0156 CD86 CD90 Ly6C S3
87 87 CD90.Ki67.CD103.absRange.S2 2 <0.001 0.0793 CD90 Ki67 CD103 S2
88 87 CD90.Ki67.PD.L1.absRange.S4 2 <0.001 -0.0018 CD90 Ki67 PD.L1 S4
89 87 Ki67.KLRG1.CD11c.absRange.S2 2 <0.001 -0.0486 Ki67 KLRG1 CD11c S2
90 87 Ki67.KLRG1.PDCA.1.absRange.S3 2 <0.001 0.1476 Ki67 KLRG1 PDCA.1 S3
91 91 CD138.Ki67.PD.L1.absRange.S4 1 <0.001 -0.0101 CD138 Ki67 PD.L1 S4
92 91 CD62L.Ki67.PD.L1.absRange.S4 1 <0.001 -0.081 CD62L Ki67 PD.L1 S4
93 91 CD90.CD16.32.KLRG1.absRange.S3 1 <0.001 0.017 CD90 CD16.32 KLRG1 S3
94 91 CD90.KLRG1.CD11c.absRange.S4 1 <0.001 0.0085 CD90 KLRG1 CD11c S4
95 91 CD90.PDCA.1.CD27.absRange.S2 1 <0.001 0.0082 CD90 PDCA.1 CD27 S2
96 91 CD90.PDCA.1.T.bet.absRange.S2 1 <0.001 0.0181 CD90 PDCA.1 T.bet S2
97 91 PD.L1.Ki67.Foxp3.absRange.S2 1 <0.001 0.1973 PD.L1 Ki67 Foxp3 S2
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Overview of CD90-PD.L1-MSI(CD86)
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Figure S11: Overview of CD90-PD.L1-MSI(CD86) from all samples. High variation in density and
frequencies, but a concentrated area in eff treatment due to the expression pattern in triploTs is still tangible.
(a) Density plots from all blood samples without zero SI entries, dashed line indicate sample untr_d3_Bl3. (b)
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p > 0.05 (ns).
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TriploT Overview of CD90-CD86-MSI from sample B6_d3_Bl2
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Figure S12: TriploT Overview of CD90-CD86-MSI(all biological markers) from sample B6_d3_Bl2
with dynamic ranges showing highest MSIs of the respective marker in red in lowest in blue. Grey continuous lines
indicate cutoffs of CD90high (vertical at 8.7) and CD86+ (horizontal at 4.5), respectively. Created with PRI-ana.
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Figure S13: TriploT Overview of CD90-CD86-MSI(all biological markers) from sample
untr_d3_Bl1 with dynamic ranges showing highest MSIs of the respective marker in red in lowest in blue.
Grey continuous lines indicate cutoffs of CD90high (vertical at 8.7) and CD86+ (horizontal at 4.5), respectively.
Created with PRI-ana.
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Box plots of triploT section values
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Figure S14: Comparison of triploT section values from different basis marker combinations. Box
plots of CD44-CD90 (left), and CD44-CD138 and CD90-CD138 (right) with unpaired two-sided t-test (labeled
with asterisks: p-values≤0.0001(****),p ≤ 0.01(**)), and with the range distance of the medians between eff and
ineff treatment.
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Figure S15: Bar plot of frequencies after manual gating to CD90+PD-L1+. Significance test with
unpaired two-sided t-test on frequencies, and data is presented as the mean+s.e.m.

TriploTs with different bin sizes
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Effects of different arcsinh cofactors
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Figure S17: Effects of different arcsinh cofactors. (a) TriploTs of CD90-CD44-MSI(CD27) and CD90-
CD86-MSI(CD44) are displayed with arcsinh co-factor 5.0 (commonly used [10, 14, 54, 62]), 1.0 (no cofactor)
and 0.1 (herein applied). (b) Density plots with different co-factors are displayed for CD90, CD86 and CD44 are
displayed with co-factor 0.1 (top), 1.0 (middle), and 5.0 (bottom). Sample B6_d3_Bl2 is presented.
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C Appendices: Results from state-of-the-art analysis tools

FlowJo’s Color Maps
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Figure S18: FlowJo’s Color Maps of CD90-CD44-MSI(CD27) (left) and of CD90-CD86-MSI(CD44) (right)
from sample B6_d3_Bl2 in eff treatment and sample untr_d3_Bl1 in ineff treatment, respectively. Colormaps
uses also fixed-width bins (of unknown size) to display a third marker in a color-coded manner with global scale
between both treatments.

viSNE maps from two different runs
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Figure S19: viSNE maps from two different runs using all blood samples except of sample
untr_d3_Bl3 , showing the SIs of marker CD90 with global scale between the samples of eff and ineff treat-
ment. Default settings: total events=100,000, proportional sampling; iterations=1,000; perplexity=30; theta=0.5;
random seed.
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Citrus’ feature tree
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Figure S20: Cluster tree. Cell clusters colored in dark red are selected from Citrus’ algorithm that ex-
plain differences between eff and ineff treatment, using cross-validation error rate within 1 standard error of the
minimum model. Default options: Compensation=File-internal; Cluster characterization= abundance; Event
sampling=5,000; Event sampling method=equal; Minimum cluster size=5%; CV folds=5; FDR=1%; Normalize
scales=false; Transform cofactor=0.1; Association models=glmnet.

This run took 1,406 seconds on 1 cluster. With increase on cluster size, the processing
time could be reduced by half (with 3 nodes) or by five (with 5 nodes). A comparable
example run with configuration ’Event sampling=50,000’ (almost all cells in the samples)
results to a process time of 23,210 seconds with 5 nodes. Different runs (with different
nodes) result in different outcomes in cluster count, size and characteristics of the clusters.
The first run is used for further inspecting.
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Overlapped densities of Citrus’ cluster ID 59965
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Figure S21: Overlapped densities of Citrus’ cluster ID 59965 and residual down-sampled data.
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D Appendices: R code and pseudo code

Code availability

The R code is available on https://github.com/yhoang/dissertation.

R packages

MDS plot was created with the function plotMDS from the R package limma (v3.38.3)
(Fig. 3.1a) [96]. Bar and box plots are created with R package ggplot2 (v3.1.0) (Fig. 3.1b+c)
[97]. R package ggpubr (v0.2.999) was used for plotting the density overview (Fig. S2) [98].
Several single channel normalization methods were herein tested from the R package
cydar (v1.6.1) [99].

The R packages RSQlite (v2.2.1), tcltk2 (v1.2.11) and R.devices (v2.16.0) are used within
PRI-ana [100, 101, 102]. The first one is to connect and interact with the databases and
the second one enables tcl commands and Tk widgets to work in R. tcl is a dynamic
programming language and Tk is a cross-platform graphical user interface (GUI) for tcl.
The last package facilitates the creation of PDF files.

Running time of implemented R scripts on the example data set

A powerful computer with Intel Xeon(R) CPU E5-2667 v3 @3.20GHz x 32 and 16GB
RAM was used for this study, on operation system Ubuntu 64-Bit 16.04.5 LTS.

Calculation of triploT matrices

The sample CD1_d3_Bl1 has 23,081 cells and 41 marker proteins. To creates 31,980
matrices is processed in 4,202 seconds (∼ 70 minutes) with lapply(). The outcoming
object list has the size of 1.1 GB. Saving this object as an RDS file7 leads to a drastic
size reduction to 17.3 MB. The respective meta data is 17,141,328 bytes (RDS.file ∼ 137

KB) big. To speed up this process, R packages doParallel (v1.0.14) and foreach (v1.4.4)
are used in combination with R lists [103, 104]. The script is modified in compliance with
these packages, resulting to a decrease to 3,165 seconds and 2,482 seconds, when using
3 and 5 cores, respectively. R packages reshape2 (v1.4.3) and dplyr (v0.7.8) are applied
for data manipulation [105, 106].

Calculation of triploT sections

434 seconds are required to create the section values for sample B6_d3_Bl2. The
implementation allows for using multiple CPUs with R packages doParallel (v1.0.14) and
foreach (v1.4.4). Processing time is reduced by half when using 3 cores.

7saveRDS() serializes the object and then saves it with gzip compression.
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Cross-validation

The first CV is processed in approximately 130 seconds. The second process needs roughly
100 seconds. No parallelization is deployed. R package glmnet (v2.0-16) is used for using
erLR and for CV [107].

Top 0.05% quantile outlier removal

1 trim.size <- 0.0005
2 ncells.trimmed <- 0
3 for (t in ungated.columns) {
4 trim.idx <- which(data[,t] > quantile(data[,t],c(1 - trim.size)))
5 data <- data[-trim.idx ,]
6 ncells.trimmed <- ncells.trimmed + length(trim.idx)
7 }

Listing 1: OutlierRemoval.R

Check for marker names and order

1 for ( i in 1: length(metadata.d3$original_file_name) ) {
2 db_index = which(this$current.filenames == metadata.d3$original_file_name[i])
3

4 ### get marker names in database
5 this$selected.vars = this$getVariables(index=db_index)
6

7 if ( i==1 ) {
8 vars.order = this$selected.vars
9 } else {

10 if ( !all(vars.order==this$selected.vars) ) {
11 print("Wrong order. Check vars list!")
12 print(vars.order)
13 print(this$selected.vars)
14 }
15 }
16 }

Listing 2: CheckMarkerOrders.R
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Calculating triploT matrices in one sample

1 find: global(min(x),min(y),max(x),max(y))
2 find: marker , len.marker
3

4 ### parallelize:
5 for sample in Samples:
6 for m1 in 1 to (len.marker -1):
7 for m2 in (m1+1) to len.marker:
8 it = it +1
9

10 tmp.marker = marker[-c(m1,m2)]
11

12 for each m3 in tmp.marker do:
13 sampl.data = data[sample , c(m1, m2 , m3)]
14 meta = c(sample , condition , calc_meth , markers , range)
15 sampl_mat = calc_triplot_matrix(sampl.data)
16

17 triplot_mat = append(triplot_mat ,meta ,sampl_mat)
18 }
19 }
20 }
21 }

Listing 3: Pseudocode for calculating triplot matrices.

Calculation of triploT sections

1 find(marker); len.marker = length(marker)
2

3 ### look at batch size calculation
4 init_df(quadrant.dataframe , columns =(len.marker -2)(len.marker -3)(len.marker -4)*2,

rows = length(Samples) )
5

6 ### parallelize:
7 for ( sample in Samples) {
8 init_vector(triplot_quads)
9

10 for (m1 in 1:( len.marker -1) ) {
11 for ( m2 in (m1+1):len.marker ) {
12

13 tmp.marker = marker[-c(m1,m2)]
14 for each ( m3 in tmp.marker ) do {
15 sampl.data = data[sample , c(m1, m2 , m3)]
16 ### calculate triplot quadrants
17 triplot_quads = calc_triplot_quadrants(sampl.data)
18 }
19 combine_columns(triplot_quads ,triplot_quads)
20 }
21 combine_columns(triplot_quads ,triplot_quads)
22 }
23 combine_rows(quadrant.dataframe ,triplot_quads)
24 }
25 save(quadrant.dataframe)

Listing 4: Pseudocode for calculating triplot sections (modified for parallele use).
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Code chunk of erGLM-CV to find α

1 alphalist <- seq(0,1,by =0.1)
2 it.total = it.run = 0
3

4 while (it.run < 100) {
5 # use a certain seed in whole run for resampling
6 set.seed(seed.vec[it.total ]);
7 set.foldid = sample(rep(seq((1/3)*nrow(data)),length=nrow(data)))
8

9 if (
10 all(df.total[which(set.foldid ==1),typeColNum ]==0) |
11 all(df.total[which(set.foldid ==2),typeColNum ]==0) |
12 all(df.total[which(set.foldid ==3),typeColNum ]==0) |
13 all(df.total[which(set.foldid ==1),typeColNum ]==1) |
14 all(df.total[which(set.foldid ==2),typeColNum ]==1) |
15 all(df.total[which(set.foldid ==3),typeColNum ]==1)
16 ) next;
17 it.run = it.run + 1
18

19 elasticnet <- lapply(alphalist , function(a) {
20 cv.glmnet( x=as.matrix(data[,-condition ]), y=data$condition ,
21 alpha=a, family="binomial",lambda.min.ratio =.0005 ,
22 type.measure="deviance",foldid = set.foldid
23 )
24 })
25

26 min.err = vector ()
27 for (i in 1:11) {
28 min.err = c(min.err ,min(elasticnet [[i]]$cvm))
29 }
30 min.err.idx = which(min.err==min(min.err)) # index for best performing alpha
31 alpha.collect = c(alpha.collect , alphalist[min.err.idx])
32 }

Listing 5: erGLM-CV.R

Warning message using cv.glmnet()

1 In lognet(x, is.sparse , ix, jx, y, weights , offset , alpha , nobs , :
2 one multinomial or binomial class has fewer than 8 observations; dangerous

ground

Listing 6: Warning message using cv.glmnet()
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Approximation function to set cutoffs automatically

1 ### call density and get x and y values
2 d=density(tdata)
3 x=d$x
4 y=d$y
5

6 ### initialize
7 stepsize = 3
8 incline.x = incline.diff = vector ()
9 idx.minima = idx.maxima = idx.shoulder = idx.remove = vector ()

10

11 ### first: save ranges from each position
12 for (range in (1+ stepsize):( length(y)-stepsize)) {
13 # save x-value and difference in range (x[range -stepsize],x[range+step])
14 incline.x[range] = x[range]
15 incline.diff[range] = diff(c(y[range -stepsize],y[range+stepsize ]))
16 }
17

18 ### second: check for minima , maxima and shoulders
19 for (inc in 1:( length(incline_list) -1)) {
20

21 ### check if there is at least one minima: -/+ change
22 if (incline.diff[inc]<0 & incline.diff[inc +1]>0) {
23 idx.minima=c(idx.minima ,inc)
24 }
25

26 ### check if there is at least one maxima: +/- change
27 if (incline.diff[inc]>0 & incline.diff[inc +1]<0) {
28 idx.maxima=c(idx.maxima ,inc)
29 }
30

31 ### check if there is a shoulders left and right of a peack
32 if (abs(incline.diff[inc]) <0.01) {
33 idx.shoulder=c(idx.shoulder ,inc)
34 }
35 }
36

37 ### third: substract maxima indices from minima and shoulder indices
38 # remove minima indices near maxmia
39 minus.minima=intersect(idx.maxima ,idx.minima)
40 if (length(minus.minima) >0) {
41 for (j in (minus.minima -3):(minus.minima +3)) {
42 idx.remove = c(idx.remove ,which(idx.minima ==j))
43 }
44 idx.minima = idx.minima[-idx.remove]
45 }
46 # remove shoulder indices near minima x+-0.3
47 minus.shoulder=intersect(idx.maxima ,idx.shoulder)
48 if (length(minus.shoulder) > 0) {
49 x.shoulder=incline.x[minus.shoulder]
50 for (k in idx.shoulder) {
51 if (abs(x.shoulder -incline.x[k]) <=0.3) idx.remove=c(idx.remove ,which(idx.

shoulder ==k))
52 }
53 idx.shoulder = idx.shoulder[-idx.remove]
54 }
55

56 if (length(idx.minima) >0) { # if there is a minima
57 cutoff = incline.x[idx.minima [1]]
58 } else if (length(idx.shoulder)>0 ) { # if there is a shoulder
59 cutoff = incline.x[idx.shoulder [1]]
60 } else { # if there is no minima nor shoulder found , than set cutoff at 20%

quantile
61 cutoff = quantile(tdata ,0.8)
62 }

Listing 7: AutomatedCutoff.R
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R sessionInfo()

1 > sessionInfo ()
2 R version 3.5.1 (2018 -07 -02)
3 Platform: x86_64-pc -linux -gnu (64-bit)
4 Running under: Ubuntu 16.04.5 LTS
5

6 Matrix products: default
7 BLAS: /usr/lib/libblas/libblas.so .3.6.0
8 LAPACK: /usr/lib/lapack/liblapack.so .3.6.0
9

10 locale:
11 [1] LC_CTYPE=de_DE.UTF -8 LC_NUMERIC=C
12 [3] LC_TIME=de_DE.UTF -8 LC_COLLATE=de_DE.UTF -8
13 [5] LC_MONETARY=de_DE.UTF -8 LC_MESSAGES=de_DE.UTF -8
14 [7] LC_PAPER=de_DE.UTF -8 LC_NAME=C
15 [9] LC_ADDRESS=C LC_TELEPHONE=C
16 [11] LC_MEASUREMENT=de_DE.UTF -8 LC_IDENTIFICATION=C
17

18 attached base packages:
19 [1] stats4 parallel tcltk stats graphics grDevices datasets
20 [8] utils methods base
21

22 other attached packages:
23 [1] glmnet_2.0 -16 Matrix_1.2-15
24 [3] limma_3.38.3 cydar_1.6.1
25 [5] SingleCellExperiment_1.4.1 SummarizedExperiment_1.12.0
26 [7] DelayedArray_0.8.0 matrixStats_0.54.0
27 [9] Biobase_2.42.0 GenomicRanges_1.34.0
28 [11] GenomeInfoDb_1.18.1 IRanges_2.16.0
29 [13] S4Vectors_0.20.1 BiocGenerics_0.28.0
30 [15] BiocParallel_1.16.6 doParallel_1.0.14
31 [17] iterators_1.0.10 foreach_1.4.4
32 [19] R.devices_2.16.0 tcltk2_1.2 -11
33 [21] RSQLite_2.1.1 ggpubr_0.2.999
34 [23] reshape2_1.4.3 limma_3.38.3
35

36 loaded via a namespace (and not attached):
37 [1] viridis_0.5.1 viridisLite_0.3.0 bit64_0.9-7
38 [4] R.utils_2.7.0 shiny_1.2.0 assertthat_0.2.0
39 [7] blob_1.1.1 GenomeInfoDbData_1.2.0 robustbase_0.93-3
40 [10] pillar_1.3.1 lattice_0.20 -38 glue_1.3.0
41 [13] digest_0.6.18 promises_1.0.1 XVector_0.22.0
42 [16] colorspace_1.4-0 htmltools_0.3.6 httpuv_1.4.5.1
43 [19] R.oo_1.22.0 plyr_1.8.4 pcaPP_1.9-73
44 [22] pkgconfig_2.0.2 zlibbioc_1.28.0 purrr_0.3.0
45 [25] flowCore_1.48.1 xtable_1.8-3 corpcor_1.6.9
46 [28] mvtnorm_1.0-8 scales_1.0.0 later_0.8.0
47 [31] tibble_2.0.1 ggplot2_3.1.0 lazyeval_0.2.1
48 [34] magrittr_1.5 crayon_1.3.4 mime_0.6
49 [37] memoise_1.1.0 R.methodsS3_1.7.1 MASS_7.3 -51.1
50 [40] graph_1.60.0 tools_3.5.1 munsell_0.5.0
51 [43] cluster_2.0.7 -1 bindrcpp_0.2.2 compiler_3.5.1
52 [46] rlang_0.3.1 grid_3.5.1 RCurl_1.95 -4.11
53 [49] BiocNeighbors_1.0.0 bitops_1.0-6 base64enc_0.1-3
54 [52] gtable_0.2.0 codetools_0.2-16 DBI_1.0.0
55 [55] rrcov_1.4-7 R6_2.3.0 gridExtra_2.3
56 [58] dplyr_0.7.8 bit_1.1 -14 bindr_0.1.1
57 [61] Rcpp_1.0.0 DEoptimR_1.0-8 tidyselect_0.2.5

Listing 8: sessionInfo()
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