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Abstract

With rising complexity of today’s software and hardware systems and the hypothesized increase
in autonomous, intelligent, and self-* systems, developing correct systems remains an important
challenge. Testing, although an important part of the development and maintainance process,
cannot usually establish the definite correctness of a software or hardware system – especially
when systems have arbitrarily large or infinite state spaces or an infinite number of initial
states. This is where formal verification comes in: given a representation of the system in
question in a formal framework, verification approaches and tools can be used to establish the
system’s adherence to its similarly formalized specification, and to complement testing.

One such formal framework is the field of graphs and graph transformation systems. Both are
powerful formalisms with well-established foundations and ongoing research that can be used
to describe complex hardware or software systems with varying degrees of abstraction. Since
their inception in the 1970s, graph transformation systems have continuously evolved; related
research spans extensions of expressive power, graph algorithms, and their implementation,
application scenarios, or verification approaches, to name just a few topics.

This thesis focuses on a verification approach for graph transformation systems called k-
inductive invariant checking, which is an extension of previous work on 1-inductive invariant
checking. Instead of exhaustively computing a system’s state space, which is a common ap-
proach in model checking, 1-inductive invariant checking symbolically analyzes graph transfor-
mation rules – i.e. system behavior – in order to draw conclusions with respect to the validity of
graph constraints in the system’s state space. The approach is based on an inductive argument:
if a system’s initial state satisfies a graph constraint and if all rules preserve that constraint’s
validity, we can conclude the constraint’s validity in the system’s entire state space – without
having to compute it.

However, inductive invariant checking also comes with a specific drawback: the locality of
graph transformation rules leads to a lack of context information during the symbolic analysis of
potential rule applications. This thesis argues that this lack of context can be partly addressed
by using k-induction instead of 1-induction. A k-inductive invariant is a graph constraint
whose validity in a path of k−1 rule applications implies its validity after any subsequent rule
application – as opposed to a 1-inductive invariant where only one rule application is taken
into account. Considering a path of transformations then accumulates more context of the
graph rules’ applications.

As such, this thesis extends existing research and implementation on 1-inductive invariant
checking for graph transformation systems to k-induction. In addition, it proposes a technique
to perform the base case of the inductive argument in a symbolic fashion, which allows ver-
ification of systems with an infinite set of initial states. Both k-inductive invariant checking
and its base case are described in formal terms. Based on that, this thesis formulates theorems
and constructions to apply this general verification approach for typed graph transformation
systems and nested graph constraints – and to formally prove the approach’s correctness.

Since unrestricted graph constraints may lead to non-termination or impracticably high
execution times given a hypothetical implementation, this thesis also presents a restricted
verification approach, which limits the form of graph transformation systems and graph con-
straints. It is formalized, proven correct, and its procedures terminate by construction. This
restricted approach has been implemented in an automated tool and has been evaluated with
respect to its applicability to test cases, its performance, and its degree of completeness.
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Zusammenfassung

Durch die Komplexität heutiger Software- und Hardwaresysteme und den vermuteten Anstieg
der Zahl autonomer und intelligenter Systeme bleibt die Entwicklung korrekter Systeme eine
wichtige Herausforderung. Obwohl Testen ein wichtiger Teil des Entwicklungszyklusses ist und
bleibt, reichen Tests üblicherweise nicht aus, um die Korrektkeit eines Systems sicherzustellen
– insbsondere wenn Systeme beliebig große oder unendliche Zustandsräume oder unendlich
viele mögliche initiale Zustände aufweisen. Formale Verifikation nimmt sich dieses Problems
an: Nach Darstellung des Systems in einem formalen Modell können Verifikationsansätze und
Werkzeuge angewendet werden, um zu analysieren, ob das System seine Spezifikation erfüllt.

Ein verbreiteter Formalismus für derartige Modelle sind Graphen und Graphtransforma-
tionssysteme. Diese Konzepte basieren auf etablierten mathematischen Grundlagen und sind
ausdrucksstark genug, um komplexe Software- oder Hardwaresysteme auf verschiedenen Ab-
straktionsstufen zu beschreiben. Seit ihrer Einführung in den 70er-Jahren wurden Graphtrans-
formationssysteme stetig weiterentwickelt; entsprechende Forschung thematisiert beispielsweise
Ausdrucksstärke, Graphalgorithmen, Anwendungsbeispiele oder Verifikationsansätze.

Diese Arbeit beschäftigt sich mit der Verifikation k-induktiver Invarianten für Graphtrans-
formationssysteme – einem Ansatz, der eine existierende Technik zur Verifikation 1-induktiver
Invarianten erweitert. Anstatt den Zustandsraum eines Systems zu berechnen, überprüft Ve-
rifikation mit 1-Induktion Verhalten (Graphtransformationsregeln) symbolisch, um Schlussfol-
gerungen zur Gültigkeit von Graphbedingungen zu ziehen. Die Idee basiert auf dem Prinzip
eines Induktionsbeweises: Falls der initiale Zustand eines Systems eine Bedingung erfüllt und
falls alle Regeln die Erfüllung der Bedingung bewahren, kann auf die Gültigkeit der Bedingung
im gesamten Zustandsraum geschlossen werden, ohne diesen tatsächlich zu berechnen.

Allerdings bringt dieser Ansatz auch spezifische Nachteile mit sich: Die lokale Natur der
Anwendung von Graphregeln führt zu einem Mangel an Kontext während der symbolischen
Analyse möglicher Regelanwendungen. Diese Arbeit führt aus, dass dieser Mangel an Kontext
teilweise behoben werden kann, indem k-Induktion statt 1-Induktion verwendet wird. Eine
k-induktive Invariante ist eine Graphbedingung, deren Gültigkeit in einem Pfad von k − 1
Regelanwendungen die Gültigkeit nach jeder etwaigen weiteren Regelanwendung zur Folge hat.
Durch die Berücksichtigung solcher Pfade von Transformationen steht mehr Kontext während
der Analyse zur Verfügung als bei der Analyse nur einer Regelanwendung bei 1-Induktion.

Daher erweitert diese Arbeit bestehende Forschungsergebnisse und eine Implementierung zur
Verifikation 1-induktiver Invarianten um k-Induktion. Zusätzlich wird eine Technik vorgestellt,
die auch die Analyse der Induktionsbasis symbolisch ausführt. Dies erlaubt die Verifikation von
Systemen mit einer unendlichen Zahl an möglichen initialen Zuständen. Sowohl k-induktive
Invarianten als auch deren Induktionsbasis werden – für Graphtransformationssysteme – formal
beschrieben. Basierend darauf stellt diese Arbeit Theoreme und Kontruktionen vor, die diesen
Verifikationsansatz mathemathisch umsetzen und seine Korrektheit beweisen.

Da jedoch uneingeschränkte Graphbedingungen in einer möglichen Implementierung zu
Nichtterminierung oder langen Ausführungszeiten führen, stellt diese Arbeit auch einen einge-
schränkten Verifikationsansatz vor, der die Form der zugelassenen Graphtransformationssyste-
me und Graphbedingungen in Spezifikationen einschränkt. Auch dieser Ansatz wird formal-
isiert, bewiesen – und das Verfahren terminiert per Konstruktion. Der Ansatz wurde in Form
eines automatisch ausführbaren Verifikationswerkzeugs implementiert und wurde in Bezug auf
seine Anwendbarkeit, Performanz und des Grades der Vollständigkeit evaluiert.
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1. Introduction

Given the ever rising complexity of modern software and hardware systems, developing and
maintaining correct software remains an important challenge in software development and, on a
more conceptual level, computer science. This applies to a variety of different types of systems:
cyber-physical systems, which often overlap with safety-critical systems, automated processes
in model-driven engineering, such as model transformations, or protocol specifications, to name
just a few.

While testing is and will remain important for a variety of types of software and hardware
systems, it cannot usually guarantee that a system in question is free of errors. Formal ver-
ification, on the other hand, can establish these guarantees, but faces other challenges: the
necessity of a formal framework systems have to conform to or be mapped to, the undecid-
ability of important problems, and the computational complexity of automated verification
approaches.

We consider the following elements as essential parts of systems and system specifications:

System metamodel: describes the entities and associations that may appear in system states.
System states describe situations that may occur in the system. A system has an initial state

and, during execution, a current state describing its current situation, which may change
by execution of system behavior.

System behavior describes change between system states.
Properties can be satisfied or violated by system states.
System: consists of a metamodel, an initial state, and a specification of system behavior.
System state space: consists of all system states that are reachable from the system’s initial

state by execution of system behavior.

Here, the term metamodel refers to a means of describing entities appearing in system states.
Examples include UML class diagrams and type graphs. Then, all system states are instances
of – or typed over – the respective system’s metamodel. Properties in the sense used here mean
state properties – as opposed to, for example, temporal properties specified in computational
tree logic or linear temporal logic. State properties appear in a number of types in this thesis,
most importantly as safety properties whose verification is the central problem we want to
solve:

Verification Problem 1.1. Given a system that is defined by a metamodel, an initial system
state, and specification of system behavior and given a set of safety properties, does every state
in the system’s state space satisfy the safety properties?

An important example and entire class of formal verification approaches is model check-
ing [BK08]. Model checking approaches focus on analyzing a system’s state space, which is
the set of all states the system can assume, and establishing or disproving the validity of de-
sirable properties with respect to individual states, sets of states, or traces of states. Model
checking, like other formal verification approaches, requires a mathematical formalization of
system states, system behavior, and properties that can be satisfied by the system, individual
system states, or traces of states [BK08]. In general, model checkers explore the system’s state
space, either exhaustively or symbolically, such as by abstraction, then verify the specified
properties and produce a corresponding result. As such, model checking can be applied to
solve Verification Problem 1.1.

– 1 –



1. Introduction

In order to apply a verification approach to specific systems, we have to use a formal model
that provides formalizations for the system elements listed above. In the literature, a number of
formalizations for system behavior have been suggested and tooling – such as model checkers –
has been built around them. Of the formal frameworks employed in model checking and formal
verification approaches in general, each has their own unique advantages and disadvantages,
often depending on the problem domain and specific verification scenario at hand. This thesis
and the approach discussed herein focus on graph transformation systems, graphs, and graph
constraints as one well-established formal model [EEPT06, Roz97, EEKR99, HP09, EGH+14]
with existing and ongoing research.

Graphs are capable of representing complex structures consisting of nodes, which represent
entities, and edges, which represent relationships and connections between entities. Intuitively,
a graph describes the specific state of a system. Changes between states – in other words,
system behavior – is then described by graph transformation rules in a graph transformation
system. Graph constraints can be used to specify properties; their validity can then be verified
in specific graphs.

Graphs and graph transformation systems have been the subject of research in computer
science since the 1970s [EEPT06]. This research has spanned a large spectrum and multiple
dimensions. Notions of graph transformation systems have been extended in complexity and
expressive power [EH86, HHT96, HP09] and analyzed with respect to their relevance and appli-
cability in practice [NSM03], and verification tools specifically tailored to graph transformation
systems have been introduced [Tae00, Ren04, ABJ+10].

One reason why graphs are well suited for formal verification of complex systems is their
connection to modeling – of both software and specifications – and model-driven engineer-
ing [EEPT06]. Models typically contain a graph structure; for instance, a UML object diagram
has objects as nodes and associations as edges. Similarly, a class diagram has classes as nodes
and associations or inheritance relationships as edges. Objects (nodes of the object diagram)
can be mapped to their respective classes (nodes in the class diagram); the same holds for
edges. In the world of graphs, the class diagram would be a type graph with classes as node
types and connections as edge types. Then, object diagrams would be typed graphs, which are
typed over a type graph – the class diagram.

While models may well be used independently from each other throughout different stages of
the software (or hardware) development process, model-driven engineering relies on interlinked
models [Ken02] as artifacts of the development process. Often, models start out as a rather ab-
stract view of the system to be developed and may then be gradually refined – sometimes with
the goal to generate executable code from suitably refined models, other times with the aim of
feeding models to an interpreter or engine capable of executing the models themselves. Refine-
ment of models – and more generally, any changes to models – may be performed by model
transformations [Ken02], often automatically. With models interpreted as graphs, model trans-
formations can be specified by (and seen as) graph transformation rules and their execution as
graph transformations. Then, tooling for formal verification of graph transformations can be
applied, provided it supports graph transformations and their properties to the extent required
by the scenario in question. Even without the context of a model-driven engineering process,
model transformations have their use: we might want to collectively migrate a set of models to
a newer version of the corresponding metamodel, convert a model specified in a domain-specific
language (DSL) to a more general format, or present a system of communicating automata as
a more illustrative sequence diagram while preserving its semantics [GL12].

As we will see later, the latter example – communicating automata, sequence diagrams, and
semantics preservation – already hints at one of this thesis’s examples – and, more importantly,
at a key aspect to be considered when applying model transformations: correctness. This is
particularly important for model transformations in the context of model-driven engineering,
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where many transformations, including code generation, may happen in an automated fashion.
Depending on the number, size, and complexity of the models, model transformations, and
notion of correctness, manual inspection may be infeasible, prompting the need for appropriate
automated formal verification approaches.

Although it is a typical example, the use of graphs and graph transformations is not restricted
to model transformations and applications in model-driven engineering. In theory, any system
whose states conform to the basic structure of graphs – nodes and edges – can be represented by
a graph. Where system behavior can be described by structural changes in those states, it can
be modeled by graph transformation rules. In the literature, graphs and graph transformations
have been used to represent systems from a range of different domains, and different static
verification approaches have been suggested and applied. Examples include:

Car platooning system: cars (nodes) can create connections (edges) between each other to
form platoons. The rules governing the creation, dissolution, and behavior of platoons
are described by graph transformation rules, which are verified to guarantee certain
properties [Pen09].

Leader election protocol: processes (nodes) will create, send, and receive messages (nodes)
in order to determine a leader. Processes and messages are connected by edges; creating,
sending, and handling messages is governed by graph transformation rules. Correspond-
ing state spaces can be analyzed for liveness and safety [GdMR+12].

Java refactorings: graphs are used to represent the structure of a Java program (at design
time). Elements like classes, methods, or fields are represented by nodes; their (con-
tainment) associations are represented by edges. Graph transformation rules describe
refactoring rules, which can be verified for consistency preservation [BLD+11].

Model transformations: among many examples, graphs have been used to describe models
of sequence diagrams and systems of communicating automata, with nodes represent-
ing lifelines, events, automata, states, transitions, and message, and edges representing
their connections. Graph transformation rules are used to describe model transforma-
tions between both types of models and to describe model semantics. Formal verifica-
tion can be applied to show that the model transformation in question is semantics-
preserving [GL12].

Task scheduling system: tasks, a scheduler, and a processing unit are represented by nodes,
with their connections described by edges. Graph transformation rules describe how tasks
are created, scheduled for execution, and executed. The goal of the verification is to show
that a processing unit executes at most two tasks at any given time [Ste15].

Whether or not graphs and graph transformations can be used to describe system states and
system behavior is often a question of the system’s complexity and whether is is matched by
the expressive power of the underlying formalism (of graphs). Fortunately, since the inception
of graphs and graph transformations as a formal notion, many extensions in the direction of
expressive power have been suggested, formalized, and discussed, such as:

Application conditions: a generalization of (negative) application conditions [EH86, HHT96],
application conditions allow, intuitively speaking, the specification of boolean condi-
tions over the existence, absence, and connections of graphs and graph elements [HP09,
EGH+14] and can be used to impose fine-grained restrictions on the applicability of graph
transformation rules.

Graph constraints: a special type of application conditions applicable to (and satisfiable by)
graphs [HP09]. They can, for example, be used to describe desirable or undesirable system
properties.

– 3 –



1. Introduction

HR* conditions: an extension of application conditions beyond the boundaries of first-order
logic [Rad13].

Control conditions, which allow for fine-grained control of execution of system behavior by
describing control flow – e.g. order and logical sequence – of rule applications [GdMR+12,
Pen09].

Attributed graphs, which extend the purely structural concept of a graph by attributes of
different types and values [EPT04, EEPT06, OL10b].

Timing: clocks can be seen as attributes of a distinguished type, allowing a more realistic
specification of, for instance, cyber-physical systems [BG08b, HSE11, MGK17].

Probability, where non-deterministic choices between the application of applicable graph rules
are made according to specified probabilities [KG12, MGK17].

However, having a formalism with the expressive power to properly describe a system is
just the first step towards formal verification: the implementation of the approaches and tools
for formal verification have to support the formalism to the extent required as well. This
may result in possibly conflicting requirements: using a highly expressive formal model in
automated verification generally increases the likelihood of undecidable verification problems
and high computational effort. Formal models of lower expressive power may not be sufficient
to accurately reflect the system and its properties.

1.1. Motivation and Characteristics of Symbolic Verification Approaches

Regardless of the expressive power of graph transformation systems, application conditions,
and other extensions, some verification approaches may not be applicable to certain scenarios –
or may be applicable, but ill suited – for two reasons: infinite state spaces and changing system
parameters. To understand the first problem, consider model checking: one possible approach
is to start at a system’s initial state (graph), then consider all possible executable behavior
(graph transformation rules) to compute all subsequent states, and repeat that process until
all reachable system states have been found. As long as the number of system states is finite,
systems can be explored and analyzed in this fashion. However, systems with an infinite number
of possible states – i.e. an infinite state space – cannot be verified by this approach. And even for
finite state spaces, the exponential complexity of the state space, often referred to as the state
space explosion problem [BK08], may render explicit-state model checking [CHVB18, Ren08]
approaches infeasible.

Given the approach outlined above, verification results are specific to the combination of
an initial system state and the specification of system behavior – which in our case are a
start graph and graph transformation rules. Changing the system’s start graph or its behavior
invalidates the previous verification result and requires executing the procedure again. With
large state spaces and the resulting computational effort, iterative development of complex
systems quickly becomes tedious and time-consuming. Furthermore, if we want to verify system
behavior for an arbitrarily large (or infinite) set of possible initial states, the approach cannot
be applied at all.

To better understand both problems, we will discuss a number of examples. The first example
will also serve as this thesis’s running example and illustrates the problem of changing system
parameters.

Example 1.1 (shuttle protocol). The core idea of our first example is very roughly based on
the RailCab project1, which has been used as an example in research before [BBG+06, BG08b,
SW11]. Intuitively, a shuttle moves in different speed modes around a topology of connected

1https://www.hni.uni-paderborn.de/en/business-computing-especially-cim/projects/railcab/
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1.1 Motivation and Characteristics of Symbolic Verification Approaches

0..1 

next 

Track 
Shuttle 

 mode: SpeedMode 

isAt 

* 

* 

* 

<<enumeration>> 
SpeedMode 

 
 fast 
 brake 
 slow 
 acc 

Figure 1.1. – UML class diagram for shuttle protocol example

tracks and, with respect to its speed modes, follows a certain protocol [3]. Figure 1.1 shows a
UML class diagram of the system. We have:

tracks, which are unidirectionally connected by the next association,
shuttles, with each shuttle located on (at most) one track and having a
speed mode, which may be one of the four values fast, brake, slow, and acc(elerating).

There will be additional constraints restricting, for example, track topology, but those con-
straints cannot be represented as part of the class diagram and would have to be implemented
as OCL constraints instead. We will reintroduce this example using type graphs and graph
transformation systems after these concepts have been formally introduced in Chapter 2. How-
ever, as mentioned before, the type graph will strongly resemble the class diagram; typed graphs
will then mimic object diagrams.

For a shuttle, switching between speed modes will always happen as part of shuttle move-
ment. Intuitively, a shuttle can move from its current location to a subsequent (i.e. connected
by next) track and, while doing so, may keep or change its speed mode as specified. In par-
ticular, shuttle behavior consists of the following actions, which will later be implemented as
graph transformation rules:

s2s (slow2slow), where a shuttle in mode slow moves ahead without changing its speed mode,
f2f (fast2fast), where a shuttle in mode fast moves ahead without changing its speed mode,
s2a (slow2acc), where a shuttle in mode slow moves ahead and changes its speed mode to

acc(elerating),
a2f (acc2fast), where a shuttle in mode acc moves ahead and changes its speed mode to fast,
f2b (fast2brake), where a shuttle in mode fast moves ahead and changes its speed mode to

brake,
a2b (acc2brake), where a shuttle in mode acc moves ahead and changes its speed mode to

brake, and
b2s (brake2slow), where a shuttle in mode brake moves ahead and changes its speed mode to

slow.

Note that the protocol exhibits certain symmetries with the exception of a2b. There is no
symmetric rule b2a: after starting to brake, the process needs to be completed before the
shuttle may accelerate again.

If, in the track topology, two tracks have the same track as its successor, that latter track
is a switch. We want to prevent shuttles from driving fast on a switch because, under certain
circumstances, this may lead to the shuttle’s derailment. In particular, we want to apply formal
verification to prove the non-occurrence of this situation for our shuttle protocol.
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Given an initial system state, we can apply behavioral rules to find a violation of the property
sketched above. If behavioral rules involving high speed modes do not have some sort of
safeguard, we will likely encounter the forbidden situation at some point, making our system
unsafe. However, this insight is specific to said initial state and the specified behavior; changing
one or both will lead to a different result. Thus, our aim cannot be to establish safety of the
system with respect to specific initial states, which always include a specific track topology.
Every change in track topology would require repeating the verification. Instead, we would
like to prove safety of system behavior for all possible initial configurations. This is beyond
the capabilities of the model checking approach outlined above. In particular, the infinite
number of possible initial states requires establishing safety properties independent of initial
configurations – in other words, we need a symbolic approach. Then, changes in track topology
(offline) do not invalidate the verification result. Changes in system behavior, however, still
do.

Note that this protocol is only an abstraction of an actual system with realistic shuttle move-
ment. Here, timing and velocity as a continuous function of time is not considered. However,
the non-discrete nature of changes in velocity are represented in an implicit fashion: a shuttle
cannot switch its speed mode from slow to fast or vice versa. Instead, there are intermediate
modes acc and brake. Thus, accelerating from slow to fast via acc requires at least two consec-
utive behavioral actions. Similarly, slowing down from fast via brake to slow takes time – in
the sense of the execution of two behavioral rules. △

This example has illustrated the problem of changing initial configurations, up to the point
of allowing an arbitrary large or infinite number of initial states. Our next example comes from
the domain of model transformations and demonstrates the problem of infinite state spaces.

Example 1.2 (model transformation). This example has been taken from existing work on the
verification of behavior preservation for relational model transformations [6, 5]. Type graphs
and graph constraints are used to define source and target modeling languages for sequence
charts and systems of communicating automata. A relational model transformation between
instances of the modeling languages is specified by a triple graph grammar [Sch94, SK08], which
consists of an axiom (i.e. initial state) and a number of (triple) graph transformation rules.
Then, the approach aims to verify behavior preservation of this transformation by showing that
all its instances – pairs of corresponding source and target models – are equivalent in their
behavior. This requires establishing certain formal properties of the triple graph grammar’s
graph transformation rules and the semantics of source and target models.

The number of possible sequence charts and systems of communicating automata will be
infinite. Hence, the model transformation – specified by a triple graph grammar – needs to
be applicable to an infinite number of source and target models. A triple graph grammar, by
execution of its transformation rules, simultaneously creates the source and target models and
their correspondences (traceability information) alongside each other. Intuitively speaking, the
grammar thusly creates all pairs of source and target models that can be transformed into each
other, i.e. that are instances of the model transformation. Hence, the triple graph grammar’s
state space will be infinite – and any verification approach applicable to this particular problem
needs to handle infinite state spaces.

There are significant differences to the shuttle protocol in Example 1.1 (p. 4). For the shuttle
protocol, state spaces are finite for each start graph – unless, for example, system behavior
includes the addition of tracks or shuttles. Conversely, the state space of a triple graph grammar
specifying the example model transformation will be infinite. On the other hand, the triple
graph grammar will only have one initial state – its axiom. For the shuttle protocol, changes in
track topology (offline, i.e. while the system is not running) are to be expected at some point.
△
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Table 1.1. – Overview and comparison of examples

Shuttle protocol
(Example 1.1)

Model transformation
(Example 1.2)

Model semantics
(Example 1.3)

Initial system
state

Track topology
and shuttle location

Axiom of triple graph
grammar

Specific source or
target model

System behavior
Shuttle movement
and speed modes

Model transforma-
tion rules

Model semantics

Cardinality of
initial states

Infinite set One Infinite set

Cardinality of
state space

Finite Infinite Finite

Example 1.3 (model semantics). The approach to verifying behavior preservation for model
transformations sketched in Example 1.2 (p. 6) requires establishing certain properties of the
model transformation and of source and target model semantics. Model semantics are specified
by graph transformation rules that can then be applied to source and target models. Then,
each source (or target) is the initial state of its own state space created by application of
source (or target) semantics. In order to verify the semantic properties required, we need to
investigate all source and target models – initial states – and their state spaces. With an infinite
number of such initial states, we have another example where explicit state space exploration
is impossible.

Again, there are differences to the previous examples, which are illustrated in Table 1.1. In
Example 1.2 (p. 6), there is only one initial state – the axiom of the triple graph grammar. In
Example 1.1 (p. 4), we have a set of initial states – different track topologies – but successful
verification for only one initial state or a finite set of initial states may be useful in certain
cases. In Example 1.3, the set of initial states is infinite. Results that consider only a finite
subset are usually insufficient to derive meaningful properties of the model transformation
with respect to behavior preservation.

With respect to the cardinality of state spaces, we have a finite state space (per initial graph)
in Example 1.1 (p. 4) and an infinite state space in Example 1.2 (p. 6). In this example, due
to restrictions on source and target models, we have finite state spaces per initial graph, too.
△

We could further distinguish between the existence and absence of cycles in state spaces.
In a cyclic state space, we can have infinite traces of behavioral steps in a finite state space.
However, analyzing infinite state spaces is harder than analyzing finite and cyclic state spaces
with possible infinite traces – at least when state properties are concerned. Hence, we do not
require this distinction here.

These examples illustrate the need for symbolic and static verification approaches capable
of handling infinite state spaces and systems with an arbitrary or infinite number of initial
states. However, with all their advantages, symbolic and static verification approaches also
face problem-inherent challenges that are related to three important properties: termination,
soundness, and completeness.

Definition 1.4 (termination). Termination refers to the assurance that a verification approach
will always terminate and yield a result for any system.

Definition 1.5 (soundness). We say that a verification approach is sound with respect to the
verification of safety properties, if every unsafe system is correctly classified as unsafe.
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Definition 1.6 (completeness). We say that a verification approach is complete with respect
to the verification of safety properties, if every safe system is correctly classified as safe.

These three properties are linked and, in many cases, cannot all be guaranteed at the same
time. For example, if the underlying problem or formalism is undecidable in general, an ap-
proach is necessarily unsound, incomplete, or not terminating. With respect to the verification
of safety properties, especially in the domain of safety-critical systems, soundness is often more
important than completeness: If an unsafe system is classified as safe (unsound approach) and,
as a result, it is allowed to operate, it may have disastrous consequences. If a safe system is
classified as unsafe (incomplete approach) and shut down as a result, this is more inconvenient
than catastrophic. The importance of termination depends on its manifestation and the spe-
cific case: if the approach does not yield any result, this is problematic; if the approach yields
partial results, then continues execution indefinitely, these results may already be sufficient.
On the other hand, termination may sometimes not be enough: if an approach is guaranteed
to terminate, but requires an unreasonably high amount of computation time (say, a year), its
application is infeasible for most practical purposes.

We can also define soundness and completeness by analyzing verification results. With re-
spect to the verification of safety properties in the context of this thesis, systems are either
classified as safe or declared unsafe by virtue of a number of counterexamples. Then, results
fall into four categories: true positives, true negatives, false positives, and false negatives:

Definition 1.7 (categories of results). A true positive is a result that classifies a safe system
as safe.

A true negative is a counterexample for an unsafe system that can occur during system
behavior.

A false positive is a result that classifies an unsafe system as safe.
A false negative is a counterexample for an unsafe system that cannot occur during system

behavior.

Of those cases, the first two are, by definition, valid results – a sound and complete approach
will only yield true positives and true negatives. An unsound approach will have false positives,
which are the most dangerous of the four categories, for reasons explained above. An incomplete
approach will have false negatives, also called spurious counterexamples. The risk of unsound,
incomplete, or non-terminating approaches may be traced back to two main problem-inherent
challenges of symbolic verification approaches:

Lack of context information. State spaces are not explicitly computed, but treated symbol-
ically. This process abstracts from some information otherwise available in individual
states. Also, reachability cannot be taken into account outside a small local context. As
a result, symbolic approaches can be incomplete or unsound.

Computational effort. Since we need to handle infinite systems, certain subproblems may be
undecidable – or, where implementation and execution is concerned, infeasible to solve.
As a result, approaches may not guarantee termination – and even with termination
assured, approaches may require unreasonably high computational effort.

The problem of high computational effort is also connected to the degree of expressive power
supported by the approach: the more expressive the formalism, the higher the risk a problem
is undecidable or requires infeasibly expensive computations. There is also a connection be-
tween the size of certain system elements and computational effort. Hence, support for a high
degree of expressive power and complexity is not always desirable – instead, a balance between
computational effort and expressiveness may be preferable.
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There is a number of approaches (with implementations) capable of performing static and
symbolic analysis of graph transformation systems and graph grammars with respect to ver-
ifying the validity of state properties in state spaces. They will be considered in more detail
in Chapter 8. All such approaches need to find a balance between allowing expressive spec-
ifications and and termination, soundness, completeness, and performance. Some approaches
or their implementations consider only one initial state or one error graph; most have limita-
tions with respect to the specification of behavior and safety properties [KK08, Stü16, Ste15].
More expressive approaches [Pen09, Pos13], on the other hand, may struggle with performance
because their general nature makes optimizations for specific problems challenging.

In the following, related approaches are listed in roughly chronological order:

– Between 2006 and 2009, Pennemann, Habel, and Rensink [HPR06, Pen08a, Pen08b,
HP09, Pen09] have described an approach for the verification of graph programs with
respect to their postconditions and preconditions. The approach is implemented in a tool
named Enforce, which relies on a satisfiability solver SeekSat and theorem prover ProCon.
Both the formalization and implementation support a class of properties equivalent to
first-order logic. However, that level of expressive power may lead to high execution times
or high amounts of required memory in certain cases [1].

– Between 2010 and 2014, Poskitt and Plump [PP10, PP12, PP13, Pos13, PP14] have also
addressed verification of graph programs with respect to postconditions and precondi-
tions. In contrast to the approach by Pennemann and Habel, the approach considers
more expressive conditions. In addition, verification is meant to be partly based on hu-
man interaction, not fully automated execution.

– Between 2011 and 2015, Steenken, Wonisch, and Wehrheim [SW11, SWW11, Ste15]
introduced an approach and implementation addressing verification of graph grammars
by shape abstraction, which is applicable to infinite-state systems. While not necessarily
a restriction of the underlying approach, the implementation requires singular initial
states and does not support negative application conditions.

– Between 2012 and 2017, Stückrath and König [KS12, KS14, Stü16, KS17] have proposed
a static verification approach based on the idea of well-structured graph transformation
systems: if the systems fulfill certain properties, reachability of an error state from an
initial state (singular) can be checked for systems with an infinite state space.

– More recently, in 2018, Rabbi, Kristensen, and Lamo [RKL18] have described a static
verification approach that verifies conformance preservation of graph transformation rules
with a focus on model transformations and well-formedness constraints of metamodels;
an implementation is intended for the future.

Outside the world of symbolic approaches, there are well-known (explicit) model checkers
GROOVE2 [Ren04, Ren08, GdMR+12] and Henshin3 [ABJ+10], both of which address graph
transformation systems and graph constraints.

1.2. 1-Inductive Invariant Checking and Open Problems

This thesis focuses on the verification approach of inductive invariant checking for graph trans-
formation systems and its extension. Inductive invariant checking is closely related to the prin-
ciples of mathematical and structural induction. The basic structure of an inductive argument
consists of

2http://groove.cs.utwente.nl/
3https://www.eclipse.org/henshin/
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1. a base case, where a property is shown for one element or structure and
2. an inductive step, where it is shown that validity of the property for one element or

structure implies its validity in a derived element or structure.

Then, we can argue that the property’s validity in the base case and its extendability via
the inductive step implies the property’s validity in all elements subsequentially derived from
the base case. Using an inductive argument requires some sort of ordering between elements
or a specification how structures are derived from each other – otherwise, is is unclear how
the inductive step should reason from one element to the property’s validity in another. For
example, induction can be performed over the set of natural numbers: the inductive step reasons
about the implications of a property’s validity in one number for the property’s validity in that
number’s successor.

In the following, we will remain on the abstract level of systems and system state spaces as
in Verification Problem 1.1 (p. 1). A formalization with respect to graphs and graph transfor-
mation systems will appear after we have introduced the formal foundations. That leaves us
with the following generic definition of an inductive invariant:

Definition 1.8 (inductive invariant). An inductive invariant is a property whose validity in a
system state implies its validity in the next step after a single execution step of system behavior.

By this definition, an inductive invariant is a property whose validity is preserved by system
behavior. This works as a contraposition, too: an inductive invariant is a property whose
violation after a behavioral action implies violation of the property before execution of the
action. Similar to before, we require a notion of how elements – states – are derived from each
other. Here, this happens by considering how states change by execution of system behavior.
As a result, an inductive invariant is specific to the system’s behavior, but not to the base
case of an inductive argument. Since the definition of inductive invariants only considers a
single system state and a single step of system behavior, we also refer to this type of inductive
invariant as a 1-inductive invariant – and to a possible verification approach as 1-inductive
invariant checking.

A 1-inductive invariant represents the inductive step of an inductive argument. In particular,
with respect to our generic notions of systems, state spaces, and system behavior, an inductive
argument consists of:

1. the base case, where a property is shown for a system’s initial state and
2. the inductive step, where it is shown that the property is an inductive invariant.

In other words, if an inductive invariant also holds in a system’s initial state (base case),
it will hold in all states of the system’s state space. Then, the property is an operational
invariant :

Definition 1.9 (operational invariant). An operational invariant of a system is a property
that is valid in the system’s entire state space.

A formal approach and tooling for 1-inductive invariant checking for graph transformation
systems has been introduced [BBG+06], applied [BG08b, BLD+11, GL12], and extended [Dyc12]
in earlier work. Relevant publications are listed below in chronological order; Table 1.2 shows
them in a more compact fashion.

– In 2006, Becker et al. [BBG+06] introduced the original approach and its application in
the mechatronic domain, with examples based on the RailCab project of autonomously
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Table 1.2. – Overview of previous work

Authors (year) Extensions of formal model Application examples

Becker et al., 2006
[BBG+06]

Limited form of application conditions,
rules with priorities

RailCab

Becker and Giese,
2008 [BG08b]

Continuous attributes, clocks, urgent rules RailCab

Becker and Giese,
2008 [BG08a]

– RailCab

Becker et al., 2011
[BLD+11]

– Java refactorings

Dyck, 2012 [Dyc12]
Extended form of application conditions,
no support for attributes

–

Giese and Lam-
bers, 2012 [GL12]

– Behavior preservation of
model transformations

driving shuttles. The approach’s formal model supported a limited form of graph con-
straints and negative application conditions. Application of transformation rules could
be steered with rule priorities. The original implementation also supported a symbolic al-
gorithm that encoded graphs and graph constraints using binary decision diagrams. Back
then, this algorithm was more efficient than using the graph data structures directly.

– In 2008, Becker and Giese [BG08b, BG08a] described an extended formal model with con-
tinuous attributes, clocks, and timing. Transformation rules could be denoted as urgent;
urgent rules require immediate application as soon as the rule is applicable.

– In 2011, Becker et al. [BLD+11] applied the approach in a multi-layered scheme to verify
consistency preservation of Java refactorings.

– In 2012, the author of this thesis [Dyc12] extended the formal model and implementation
towards support for more complex negative application conditions in rules and graph
constraints. Since there are still restrictions in expressiveness, the model is referred to as
the restricted formal model ; furthermore, attributes are not supported in the extension.

– Also in 2012, Giese and Lambers [GL12] applied the approach in a two-layered scheme
to verify behavior preservation of model transformations.

Intuitively, the basic idea of the approach is as follows: symbolic encodings for the violation
of a property and the result of the application of a graph transformation rule are combined
to form a potential counterexample. Then, the rule is applied in reverse direction to find the
symbolic representation of the system state before rule application. If the property was already
violated there, this sequence of one step is not a counterexample; otherwise, the property is
not an invariant. While there usually is an infinite amount of these situations, their symbolic
representation allows us to analyze them in a finite fashion.

Note that the verification of 1-inductive invariants as described above is indeed independent
of specific state spaces and initial states. The validity of inductive invariants in a system’s
entire state space, however, is not: we need to verify the property’s validity in the initial state,
too. Hence, inductive invariant checking is a solution for the problem of infinite state spaces,
but it addresses the question of an arbitrarily large number of initial states only partially. From
a perspective of computational effort, it is very inexpensive to verify a property in one specific
initial state – much less expensive than verifying the property in the entire state space. This
makes the approach preferable to model checking for certain scenarions with a finite, but large
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amount of initial states. It is even applicable if there is a potentially infinite number of initial
states – such as track topologies in Example 1.1 (p. 4) – if it is feasible to repeatedly verify
changed initial states whenever necessary. However, analyzing infinitely many initial states in
a finite fashion is not yet supported by this approach [BBG+06, Dyc12].

The decoupling of base case and inductive step can have adverse effects, too. In particular, it
can lead to a lack of context information during the verification procedure as explained earlier.
For example, the initial states – together with system behavior – directly influence the state
space: elements not modified by any rule will remain the same in each state of the state space.
If all allowed initial states have common properties with respect to unchanged elements, this
information could be used during the inductive step. However, the approach and its verification
of 1-inductive invariants cannot take this into account.

Regarding the three properties of verification approaches outlined in Definitions 1.4-1.6
(p. 7), we should note that the approach is sound and terminates [Dyc12]. Termination and
reasonable performance is ensured by limiting the degree of expressive power – and by using
symbolic representation. However, the approach is not complete: verification may result in
false negatives.

Example 1.10. Consider the shuttle protocol from Example 1.1 (p. 4). We want to establish
the safety property specifying the absence of a shuttle on a switch in speed mode fast. We need
to show:

Base case: in the initial state, there is no fast shuttle located on a switch.
Inductive step: no rule application results in a fast shuttle positioned on a switch unless that

situation was already present.

If both statements can be shown – i.e. if the safety property is a 1-inductive invariant and
valid in the initial state – we can conclude that the safety property is an operational invariant
for the specific system defined by its initial state and its specification of system behavior.

We have discussed in Example 1.1 (p. 4) that the system will likely violate the safety
property: if the rules a2f and f2f do not have additional safeguards, nothing prevents a shuttle
from switching to or remaining in speed mode fast just before arriving at a switch. With such
safeguards in place, a shuttle would always need to brake when arriving at high velocity in the
vicinity of a switch. Then, inductive invariant checking could prove preservation of the safety
property by system behavior: a2f and f2f are not applicable when they would be leading to a
violation and the other rules do not result in a fast shuttle anyway.

As explained on a general level above, the current approach to 1-inductive invariant checking
does not allow verification of an arbitrarily large set of initial states – i.e. different track
topologies with shuttle placement – in one pass. Similarly, its inductive step does not take
invariant information derived from common properties of these initial states into account. Here,
depending on the scenario, this information may include non-existing topology variations or
an upper (or lower) bound on the number of shuttles. △

From the examples presented earlier and above (Example 1.10) and from considerations in
earlier work [BLD+11, GL12, Dyc12], we can identify three key points that can be improved
in comparison to the state of the approach and its formalization [Dyc12]:

State space restrictions. There may be implicit knowledge that should be considered by the
verification approach. Reasons may be rooted in external assumptions that are not part of
the system’s specification, in properties established by previous verification procedures, or
in physical properties that should be accurately reflected in the state space. Alternatively,
we may want to deliberately restrict the state space of a system and have the restrictions
reflected during symbolic verification.
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Infinite number of inital states. In order to support systems with a possibly infinite set of
initial states, we need to extend the verification approach to analyze infinitely many
initial states in a finite fashion.

Completeness and false negatives. While the approach should remain terminating and sound,
we would like to find ways to reduce the number of false negatives and hence, improve
the degree of completeness.

Example 1.11. Given the three points above, here are some exemplary occurrences in the
three main examples presented earlier:

Regarding the restriction of state spaces and additional information to be taken into account,
Example 1.10 (p. 12) has already mentioned an upper or lower bound on the number of shuttles
or restrictions on track topology, which are otherwise only reflected in the set of initial states.
Depending on the formal model, absence of physical impossibilities – e.g. a shuttle existing on
multiple tracks – may also have to be modeled in this fashion. For the model transformation
examples, well-formedness of source (or target) models is a typical example: we may expect to
have only well-formed input models (which could also be verified separately).

The cardinality of initial states has already been discussed and summarized in Table 1.1
(p. 7). We would like to allow an arbitrarily large set of track topologies for the shuttle
protocol. Regarding behavior preservation of model transformations, all source and target
models connected by the transformation should be considered (Example 1.3 (p. 7)).

The case of incompleteness and false negatives is difficult to discuss without delving into
the formal and technical details of the approach. For the shuttle protocol, one reason for the
occurrence of false negatives lies in the locality of the analysis. If we analyze only singular
behavioral steps, we can only observe changes in a shuttle’s speed mode between two values,
not consider the evolution of its speed mode over more than one step. However, depending
on the system’s behavioral specification, speed mode evolution over a series of steps may be
crucial when employing safeguards intended to prevent violations of the safety property. Thus,
1-inductive invariant checking may not be sufficient. △

1.3. Contribution: Extending 1-Induction and k-Induction

In order to implement the three points listed above, we first extend our basic and generic
Verification Problem 1.1 (p. 1). For the first point, we need to take restrictions on state spaces
into account:

Verification Problem 1.2. Given a system defined by a system metamodel, an initial system
state, specification of system behavior, and restrictions on the state space and given a set of
safety properties, does every state in the restricted state space of the system satisfy the safety
properties?

Then, we can allow for the specification of a set of initial states instead of just one such
state:

Verification Problem 1.3. Given a set of systems defined by a system metamodel, a set of
initial states, specification of system behavior, and restrictions on the state space and given a
set of safety properties, does every state in the restricted state spaces of all systems satisfy the
safety properties?

That leaves the requirement of reducing the number of false negatives and improving com-
pleteness of the approach. As has become apparent in Example 1.11, one reason for the incom-
pleteness is the local character of the analysis: only one step of system behavior is considered,
leaving the larger evolution and context of a potential safety violation aside.
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This thesis’s approach of choice to extend the capabilities of inductive invariant checking
with respect to context information is k-induction. Instead of 1-inductive invariants – properties
whose validity in one state imply their validity in a subsequent state – we verify k-inductive
invariants:

Definition 1.12 (k-inductive invariant). A k-inductive invariant is a property whose validity
in a path of k − 1 system states implies its validity in any subsequent state after the execution
of a single step of system behavior.

As such, k-inductive invariants are a generalization of 1-inductive invariants and the latter
are a special case of the former.: Given k = 1, a k-inductive invariant is a property whose
validity in a path of length 0 – i.e. in a single state – implies its validity in subsequent states.
This is equivalent to the definition of 1-inductive invariants.

The key idea behind k-induction, or k-inductive invariants, is to accumulate additional in-
formation by taking into account a path of rule applications instead of just one behavioral
step. The approach to inductive invariant checking sketched in the previous section uses a
symbolic encoding that represents all minimal contexts leading to a potential violation. Con-
sidering more than one step that leads to a violation extends this context and the chance that
its additional information allows us to discard potential counterexamples. We may also find
out that the violation in question is not reachable given our specification of system behavior.

Replacing 1-induction by k-induction does not only change the notion of inductive invariants
used in the inductive step, it requires adjusting the base case to. Applying a k-inductive
invariant as the inductive step of an inductive argument requires validity of the property in a
path of k − 1 states in the first place as the base case. Hence, with respect to our notions of
systems, state spaces, and behavioral steps, an inductive invariant using k-induction consists
of the following parts:

1. the base case, where a property is shown for all paths of length k − 1 from a system’s
initial states and

2. the inductive step, where it is shown that the property is a k-inductive invariant.

In particular, if we want to take a set of initial states into account, the base case has to show
validity of the property in all paths of the respective lengths from all possible initial states.
Restrictions of the state spaces to be analyzed, on the other hand, might enable us to omit
analyzing certain paths of behavioral steps that do not conform to the restrictions.

Similar to 1-induction, k-induction is not specific to graph transformation systems. It has
been used in verification of finite state machines [SSS00] and in software verification [DHKR11].
The aim of this thesis is to formalize and implement verification with k-inductive invariants
for graph transformation systems by extending the existing approach for 1-inductive invari-
ants [BBG+06, Dyc12].

With respect to the shuttle protocol from Examples 1.1 (p. 4) and 1.10 (p. 12) and the
application of 1-induction or k-induction, consider the following example:

Example 1.13. In Example 1.10 (p. 12), 1-inductive invariant checking only yields a positive
result if shuttles can somehow detect that the subsequent track is a switch directly before
moving to it. However, it can only decrease its speed mode by one step before reaching the
switch. If we require an even lower speed mode on switches (i.e. slow), shuttles should be
notified of an upcoming switch earlier – for example, two tracks ahead.

However, 1-inductive invariant checking only considers the last step before a violation occurs
– and only considers its local context. We would find a counterexample where the shuttle moves
from one track to the subsequent track – the switch. Since the analysis does not consider what
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happened before, the fact that the shuttle is notified of the upcoming switch is not considered:
our system may actually be safe even if 1-inductive invariant checking claims otherwise. Taking
into account a second behavioral step will reveal that.

In other words, verification with a 2-inductive invariant would have succeeded. The inductive
argument behind this reasoning requires the following base case and inductive step:

Base case: in the initial states and all subsequent states – i.e., all paths of length 1 – there is
no shuttle located on a switch in a speed mode other than slow.

Inductive step: no sequence of two behavioral steps results in a fast, braking, or accelerating
shuttle positioned on a switch – unless that situation was already present before the first
or the second rule application.

Then, by inductive argument, we can successfully verify the safety property as an operational
invariant – i.e. for the entire state space – of systems consisting of the specified behavior and
the set of initial states. If there is just one initial state, we need only to analyze all relevant
paths from that initial state in the base case. Taking restrictions of the state space into account
(our third requirement) might involve discarding certain behavioral steps or paths from initial
states during the analysis. △

Even if we had just one initial state, the example above reveals another argument for the
symbolic verification of the base case. If the initial state changes, it is no longer sufficient to
verify the safety property in the new initial state. Instead, we have to check the initial state
and all paths of the appropriate lengths originating from it. In other words, we have to perform
explicit-state model checking with a bounded state space of one k − 1 behavioral steps. While
this will still be feasible in reasonable time for many systems, increasing the value of k for
the induction will further increase the model checking effort. In the worst case, the number
of bounded paths from the initial state rises exponentially with their length. Allowing our
verification approach to show the base case of its inductive argument in a symbolic fashion
addresses this problem – and allows for the specification of sets of initial states instead of just
one initial state at a time.

Lastly, we need to consider the problem of computational effort. With a highly expressive
formalism, we may encouter undecidable problems. Even with restrictions, termination may
not be guaranteed – and if it is, computational effort may well be beyond a reasonable scope,
depending on the size and complexity of the systems in question. Without delving into details,
consider the combinatorial complexity of increasing the value of k from n to n + 1: each
rule needs to be combined with each path of length n already created – and there may be
exponentially many possible combinations per pair of rule and path. As a result, we need to
implement our approach to k-inductive invariant checking in reasonably efficient algorithms.
This may require imposing restrictions on the formalism of graphs and graph transformation
systems used to specify systems and system behavior, similar to the restricted formal model
described in earlier work [Dyc12].

In summary, this thesis builds on a formalization, implementation, and application of 1-
inductive invariant checking for graph transformation systems using a restricted formal model.
It focuses on extending the approach on all three levels towards supporting restrictions on
state spaces and infinite sets of initial states, both reflected in Verification Problem 1.3 (p. 13),
and improvements in completeness by using k-induction instead of 1-induction. As such, its
contribution consists of the following elements:

Formal-general – the description and justification of a formal and symbolic approach solving
Verification Problem 1.3 (p. 13) by verification of graph transformation systems with k-
induction, called the general approach,
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1. Introduction

Formal-restricted – the description and justification of a formal and symbolic approach
solving Verification Problem 1.3 (p. 13) by verification of graph transformation systems
with k-induction for the restricted formal model, called the restricted approach,

Impl.-restricted – the implementation of the approach described by Formal-restricted as
an automated procedure,

where the formal approach (Formal-restricted) and implementation (Impl.-restricted)
are applicable to meaningful scenarios, and, in their application, provide a positive result or
meaningful symbolic counterexamples and have the following properties:

Appl.-soundness – soundness,
Appl.-termination – termination,
Appl.-deg.completeness – a reasonable degree of completeness,
Appl.-performance – reasonable performance.

In order to avoid confusion of 1-inductive and k-inductive invariants (and 1-induction and k-
induction), in the following, all instances to the former will be explicitly labeled as 1-inductive
invariants. References to the latter will be labeled as k-inductive invariants or simply inductive
invariants. Note that a 1-inductive invariant is also a k-inductive invariant for the special case
of k = 1.

This thesis refers to and relies on a number of publications that have appeared in the context
of author’s work on inductive invariant checking for graph transformation systems. They are
listed here in chronological order:

– In 2015, the author of this thesis and Giese [1, 2] used partial negative application
conditions in order to improve performance of the (1-inductive) approach by reducing
combinatorial complexity for certain elements of the algorithm. The formalization also
allowed restricting systems’ state spaces.

– Also in 2015, the author of this thesis et al. [7] modified an earlier approach for verification
of behavior preservation for relational model transformations via (1-inductive) invariant
checking [GL12] to also support operational model transformations.

– In 2017, the author of this thesis and Giese [3, 4] described an approach, formalization,
and implementation for k-inductive invariant checking for graph transformation systems
based on the restricted formal model used in earlier work [Dyc12].

– In 2018, the author of this thesis, Giese, and Lambers [6, 5] extended earlier results
for verification of behavior preservation of model transformations [GL12] to cover more
complex cases and to improve the degree of automation. Verification was performed by
1-inductive invariant checking.

All publications by the author of this thesis that have appeared in the context of this thesis
will be referred to in numerical style and in italics. All other publications, including older
publications by the author, will be cited following alphanumerical style.

1.4. Outline

The remainder of this thesis is structured as follows:
In Chapter 2, we will reintroduce the formal framework of graphs and graph transformation

systems. The formal model used in this thesis to describe systems and their specifications is
based on core concepts of these formalizations. Chapter 2 will also revisit important constru-
tions, which will later be used in the algorithmic implementation of this thesis’s verification
approach.
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Given a formal view on system specification based on graphs and graph transformation
systems, Chapter 3 will outline the basic principles and proof obligations of verification with
1-inductive invariants described in earlier work [BBG+06, Dyc12].

Chapter 4 will make the first step towards this thesis’s contribution: it will provide the formal
basis of extending the existing appoach with respect to restrictions on state spaces, sets of initial
states, and k-inductive invariant checking. Similar to Chapter 3, it will formally reason about
the basic principles and proof obligations of the inductive argument, i.e. the base case and the
inductive step. While it will not discuss the algorithmic perspective or implementation of the
approach, this chapter is the basis for all elements of this thesis’s contribution (cf. Section 1.3).

Chapter 5 will take up the proof obligations established in Chapter 4 and describe the
general approach to k-inductive invariant checking, thusly realizing Formal-general. It intro-
duces a symbolic encoding capable of representing a possibly infinite number of transformation
sequences in a finite fashion and describes a way to construct these representations. It also
describes how representations are analyzed symbolically in order to establish the base case and
inductive step of the inductive argument described in Chapter 4.

Chapter 6 will mimic Chapter 5 for the restricted approach to k-inductive invariant checking.
After reiterating the restricted formal model used in earlier work, it will revisit and refine the
definitions, constructions, and theorems of the general approach discussed in Chapter 5, thusly
realizing Formal-restricted. Given the mathematical realization of the restricted approach,
we will prove its soundness (Appl.-soundness) and argue that the constructions involved
are finite (Appl.-termination). Furthermore, this chapter will describe the implementation
– Impl.-restricted – of the restricted approach from an algorithmic perpective using pseu-
docode.

In Chapter 7, a number of extensions to the restricted approach will address some of its lim-
itations. The extensions will mostly focus on the properties Appl.-performance and Appl.-
deg.completeness of the contribution.

Chapter 8 will focus on related approaches for symbolic verification of graph transformation
systems that are comparable to inductive invariant checking. Approaches will be discussed and
compared on a theoretical basis.

Chapter 9 will discuss and evaluate the restricted approach and its implementation (Chap-
ters 6 and 7), particularly with respect to Appl.-performance, Appl.-deg.completeness,
and the applicability of the approach. It will also offer a more practical perspective on some
of the results of Chapter 8.

Finally, Chapter 10 will summarize the findings of this thesis and its results and contribution
with respect to its formal approach, implementation, and evaluation, and will provide an
outlook to future work related to the verification of graph transformation systems with k-
induction.
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2. Prerequisites: Formal Foundations

Formal verification of complex systems requires a formalism systems can be mapped to. In
the context of this thesis, this formalism will be typed graphs and typed graph transformation
systems. In this chapter, we reiterate well-established formalisms from the literature [EEPT06,
EGH+14, HP09, Pen09]. In summary, we employ typed graph transformation systems with
nested application conditions and (nested) graph constraints – with the special restriction
that subconditions in application conditions and constraints may consist of injective morphisms
only. With respect to graph rules, we follow the double-pushout approach with injective rule
matching and use graph grammars to describe specific systems.

This leads to a basic formal model, where elements of systems and their specifications (Chap-
ter 1) are mapped to their formal equivalents as follows:

Formal Model (basic). Systems and system specifications consist of the following elements:

System metamodels are specified by type graphs.
System states – including initial states – are described by typed graphs.
System behavior is described by a typed graph transformation system, which consists of typed

graph transformation rules.
Properties are modeled as graph constraints.
Systems are specified by typed graph grammars, which consist of an initial state – a start graph

– and a typed graph transformation system.
System state spaces are described by the state spaces – the set of all reachable graphs – of

the corresponding graph grammars.

All concepts and their prerequisites will be introduced in Section 2.1.
While this thesis focuses nearly exclusively on typed graphs, there is extensive research on

the classification of graphs and graph morphisms in the general framework of category theory
[EEPT06, EGH+14, HP09]. The category of typed graphs with the class of typed injective
graph morphisms belongs to the group of M-adhesive categories, which conveys a number of
properties useful in proofs and constructions [EGH+14]. While some of this thesis’s results
may be generalizable beyond the category of typed graphs, such generalizations are beyond
the scope of this thesis. Where possible, the formalisms used herein will stay clear of category
theory and remain within the boundaries of typed graphs and typed graph morphisms.

Outline. This chapter is structured as follows: In Section 2.1, we will introduce the formal
foundations of graphs and graph transformation systems, following well-established definitions
[EEPT06, EGH+14, HP09, Pen09]. Section 2.2 contains lemmas and constructions for nested
application conditions and graph constraints. These constructions will be important elements
of our verification algorithms. With respect to this thesis’s contribution, Sections 2.1 and 2.2
introduce the formal foundations our general approach and elements of our restricted approach
to k-inductive invariant checking will be based on.

2.1. General Foundations of Graph Transformation Systems

Graphs as the most fundamental concept of graph transformation systems consist of nodes and
edges, with nodes representing specific entities and edges representing connections and asso-
ciations between those entities. A common definition of a graph as a mathematical structure
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𝑒3 

Figure 2.1. – An example graph A

uses sets that contain the graph’s nodes and edges, and two functions describing how nodes
are connected by edges.

Definition 2.1 (graph [EEPT06]). A graph G = (V,E, s, t) consists of a set of vertices V , a
set of edges E, and the source and target functions s, t ∶ E → V , which map source and target
nodes to edges.

This definition allows multiple parallel edges between two nodes. It also requires edges to
have a specific direction via the source and target functions. However, bidirectional edges can
be represented by two edges with complementing source and target nodes. Furthermore, the
definition allows loops – edges with identical source and target nodes.

Example 2.2 (graphs). Consider the example graph A shown in Figure 2.1, where, following
the formalism in Definition 2.1, we have A = (VA,EA, sA, tA) with the set of vertices VA =
{n1, n2, n3}, the set of edges EA = {e1, e2, e3}, and source and target functions sA, tA ∶ E → V .
In particular, as can be inferred from the figure, sA(e1) = n1, sA(e2) = n1, and sA(e3) = n2;
furthermore, tA(e1) = n1, tA(e2) = n2, and tA(e3) = n3. △

In order to describe how graphs and their elements relate to each other, we use the notion
of graph morphisms.

Definition 2.3 (graph morphism [EEPT06]). A graph morphism g = (gV , gE) between two
graphs G1 = (V1,E1, s1, t1) and G2 = (V2,E2, s2, t2), denoted as g ∶ G1 → G2, consists of two
functions gV ∶ V1 → V2 and gE ∶ E1 → E2, which map nodes and edges, respectively, and preserve
the source and target functions, i.e. s2 ○fE = fV ○ s1 and t2 ○fE = fV ○ t1. G1 and G2 are called
the domain and codomain of g, respectively.

Since functions (here: gV , gE) are required to map all elements from their domain, this
definition requires graph morphisms to be total in the sense that all nodes and edges of the
domain (graph) are mapped to elements in the codomain. For certain applications, it makes
sense to drop this requirement and allow partial morphisms [Pen09], which use partial functions
in order to map nodes and edges. Partial morphisms and their application will be introduced
and explained in Section 7.3 of Chapter 7. While beneficial – in the context of this thesis – for
reasons of performance and implementation, they are not required for the basic concept and
theory of inductive invariant checking. Hence, unless noted otherwise, this thesis will assume
graph morphisms to be total – i.e, based on the definition above.

Definition 2.4 (injective, surjective, and bijective graph morphisms [EEPT06]). A graph
morphism g = (gV , gE) is injective, surjective, or isomorphic, if both gV and gE are in-
jective, surjective, or bijective, respectively. Because of their foundation in category theory,
injective (surjective, isomorphic) graph morphisms are also referred to as monomorphisms
( epimorphisms, isomorphisms). An injective graph morphism g between two graphs G1,G2 is
denoted as g ∶ G1 ↪ G2.
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Figure 2.2. – Graph morphism f ∶ A→ B

Example 2.5 (graph morphisms). Figure 2.2 shows two example graphs A = (VA,EA, sA, tA)
and B = (VB,EB, sB, tB) with VB = {v1, v2, v3, v4, v5} and EB = {d1, d2, d3, d4, d′4}. Note that
the edge between v4 and v5 is an undirected edge represented by two edges d4, d

′
4 with sB(d4) =

v4, tB(d4) = v5, sB(d′4) = v5, and tB(d′4) = v4.
A and B are connected by a graph morphism f = (fV , fE) ∶ A → B. In particular, fV maps

all nodes from A to nodes from B as follows: fV (n1) = v1, fV (n2) = v3, and fV (n3) = v4.
Likewise, fE maps edges from A to edges from B: fE(e1) = d1, fE(e2) = d2, and fE(e3) = d3.
Since no two nodes or edges from A are mapped to the same element in B, f is injective and
can therefore be denoted as f ∶ A↪ B. However, since there are nodes and edges in B that do
not have a preimage in A, f is neither surjective nor bijective. △

Usually, specific mappings between nodes and edges by morphisms will be omitted in fig-
ures, as they can be unambiguously inferred by the elements’ positioning or their identifiers.
Similarly, we will usually not specifically designate injective morphisms (through special ar-
rows) in concrete examples; unless otherwise noted, all morphisms in concrete examples will
be injective.

For every graph, there is an (injective) morphism with the graph as its codomain and the
empty graph as its domain:

Fact 2.6 (empty graph and morphisms [EEPT06]). For each graph G, there is an injective
morphism iG ∶ ∅↪ G.

We can compose graph morphisms to create a new graph morphisms:

Fact 2.7 (composition of graph morphisms [EEPT06]). Given two graph morphisms g1 ∶ G1 →
G2 and g2 ∶ G2 → G3 with g1 = (gV1 , gE1) and g2 = (gV2 , gE2), the composition g2 ○ g1 =
(gV2 ○ gV1 , gE2 ○ gE1) is a graph morphism g2 ○ g1 ∶ G1 → G3.

Injective (surjective, isomorphic) graph morphisms are closed under composition.

Finally, we can use a distinguished graph and graph morphisms to introduce typed graphs.

Definition 2.8 (type graphs, typed graphs, and typed graph morphisms [EEPT06]). A type
graph is a distinguished graph TG = (VTG ,ETG , sTG , tTG). A typed graph (G, type) is a graph
G with a typing morphism type ∶ G→ TG.

A typed graph morphism between typed graphs (G1, type1) and (G2, type2) is a graph mor-
phism g ∶ G1 → G2 that preserves the typing morphisms, i.e. type2 ○ g = type1.

Example 2.9 (type graphs, typing morphisms). Consider the example type graph TG =
(VTG ,ETG , sTG , tTG) shown in Figure 2.3. TG consists of the node types VTG = {Shuttle,Track},
the edge types ETG = {next, isAt, slow, acc, fast,brake}, and source and target functions as shown
in Figure 2.3. It is a representation of the metamodel of the shuttle protocol from Example
1.1 (p. 4). However, note that the type graph does not contain the metamodel’s cardinalities.
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Figure 2.3. – Example type graph TG
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Figure 2.4. – Type graph TG, typed graph G, and typing morphism type

The intent behind this particular type graph is to formalize the shuttle protocol – our
running example – using graphs and graph rules. Graphs typed over that type graph then
represent states of our example systems. As before, tracks can be connected by directed edges
of type next; the entirety of tracks and their connections can also be referred to as the track
topology. Shuttles are positioned on tracks, which is denoted by edges of type isAt. Although
actual shuttle movement is not decribed by a graph, system states have shuttles existing in
different speed modes slow, acc, fast, and brake. Those speed modes are specified by loop edges
of the respective type attached to the shuttles.

Figure 2.4 shows a graph G that is typed over TG by a (non-injective) typing morphism
(depicted) type ∶ G → TG . In particular, G describes a shuttle in speed mode slow that is
positioned on the first track of a topology of two (unidirectionally connected) tracks. △

Note that the types of nodes and edges in the example above can also be inferred by their
names. Further example graphs will usually omit the type graph and typing morphism and
denote node types as in this example, i.e. as ⟨identifier⟩ ∶ ⟨type⟩. In some cases, especially for
edges, the identifier will be omitted. Also, unless otherwise noted, all graphs, graph morphisms,
and related notions appearing in this thesis will be typed.

Next, we introduce a core concept of graph transformation systems and an important con-
tribution to their ability to represent complex systems: application conditions. Application
conditions, as a generalization of negative [HHT96] and positive application conditions [EH86],
are used to specify properties satisfiable by graph morphisms and, when appearing in a special
form, by graphs.

Definition 2.10 (application conditions [EGH+14]). Application conditions, or nested appli-
cation conditions are inductively defined as follows:

1. For every morphism a ∶ P → C, true is an application condition over P .
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2. For every morphism a ∶ P → C and every application condition ac over C, ∃(a,ac) is an
application condition over P .

3. For application conditions ac,aci over P (with i ∈ I), ¬ac and ⋀i∈I aci are application
conditions over P .

P
=

a
��

g // G

C
/

q ⊧ ac

??

◁ac

Satisfiability of application conditions is inductively defined as follows:

1. Every morphism satisfies true.
2. Given a morphism a ∶ P → C and an application condition ac over C, a morhpism

g ∶ P → G satisfies ∃(a,ac) if there exists an injective morphism q ∶ C ↪ G such that
q ⊧ ac.

3. A morphism satisfies ¬ac if it does not satisfy ac. A morphism satisfies ⋀i∈I aci if it
satisfies all aci.

Two application conditions ac,ac′ are equivalent, denoted ac ≡ ac′, if for all morphisms g,
we have g ⊧ ac⇔ g ⊧ ac′.
∃a appreviates ∃(a, true). ∀(a,ac) abbreviates ¬∃(a,¬ac).

More informally, this definition of satisfiability can be explained as follows: satisfiability of
a simple existential condition (such as ∃a, see below on the left side) requires satisfying mor-
phisms (g) and its image in the codomain (G) to be injectively extended (q) by the additional
context supplied in the application condition’s morphism’s (a) codomain (C) while preserving
the satisfying morphism’s mapping, i.e. g = q○a. Conversely, a morphism satisfying a condition
¬∃a must not be extendable in this fashion.

P
=

a
��

g // G

C
/

q

?? P
=

a
��

g // G

C
/

q ⊧ ac

??

◁ac

For more complex nested conditions (such as ∃(a,ac), see above on the right side), the
extending morphism (q) also needs to satisfy the nested condtion, i.e. q ⊧ ac. For ¬∃(a,ac), a
morphism satisfies the condition if all possible extensions do not satisfy ac.

Application conditions offer a means to establish context and complex logical conditions
beyond a graph or graph morphism. A typical use case for application conditions is to further
restrict the applicability of graph rules. Also, by means of satisfiability, application conditions
implicitly represent the sets of morphisms satisfying them. When taking arbitrary graphs
as codomains of such morphisms into account, those sets will, in general, be infinite. This
cabability of symbolically encoding graph morphisms or graphs by application conditions will
be an important part of the verification approach and algorithms at the core of this thesis.

Example 2.11 (application conditions). Figure 2.5 shows two graphs P,C and a morphism
a ∶ P → C in an example application condition ∃(a ∶ P → C) – or ∃a for short. The node
and edge mappings of a can be inferred by the positioning of the elements and by their
identifiers. Informally, satisfying morphisms from P to another graph (say, G) are required
to be extendable by mapping the additional elements in C to elements in G. Here, those
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Figure 2.5. – Application condition ∃(a ∶ P → C) with a graph morphism a ∶ P → C
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(a) Morphism m ∶ P → G with m ⊧ ∃(a ∶ P → C)
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(b) Morphism n ∶ P → G with n /⊧ ∃(a ∶ P → C)

Figure 2.6. – Example application condition and satisfiability
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additional elements are two tracks (and their connections) which extend the tracks in P by a
switch structure.

Figure 2.6(a) presents an example graph G and morphism m ∶ P → G that satisfies ∃a.
Consider the image of P under m in G: nodes t1, t2, s and their connecting edges. It is
possible to find an injective morphism q ∶ C ↪ G that a) matches the image of P under a in
C – t1, t2, s and connecting edges – to the aforementioned elements in G, i.e. q ○ a = m; and
b) extends the image in G by the additional elements in C: the switch structure around the
tracks t3 and t4.

Conversely, consider the morphism n ∶ P → G shown in Figure 2.6(b). Here, n maps t1, t2,
and s1 to a part of the switch structure. Because t2 does not have a subsequent track, there
does not exist an injective (or any) morphism x ∶ C ↪ G that could map the additional tracks
and their connecting edges to G while preserving n (i.e. while guaranteeing x ○ a = n). Hence,
we have n /⊧ ∃a. By definition of satisfiability, that also implies n ⊧ ¬∃a – and, for the first
case, m /⊧ ¬∃a.

We have seen in Example 1.1 (p. 4) that knowing and specifying not only a shuttle’s position
on a track and its subsequent track (as described in P ), but also the existence of a switch
beyond that makes sense from a safety perspective. Application conditions over us a way to
do that.

Finally, consider the capability of application conditions to represent satisfying morphisms:
the set of morphisms encoded by ∃a contains m; similarly, ¬∃a represents n. While we will not
find any more morphisms between P and G, there is an infinite number of other morphisms
with P as their domain. Those morphisms, depending on whether or not they satisfy ∃a, would
then also be represented by ∃a or ¬∃a. △

Whereas application conditions can be satisfied by graph morphisms, graph constraints
describe properties satisfied by graphs. Formally, Graph constraints are a special type of ap-
plication conditions:

Definition 2.12 (graph constraints [EGH+14]). A graph constraint, or nested graph con-
straint is an application condition over the empty graph ∅. A graph G satisfies a graph con-
straint C, if the initial morhpism iG ∶ ∅↪ G satisfies C.

Given a graph G, the definition of satisfiability requires the initial morphism iG from the
empty graph to G to satisfy the condition. Since every morphism, when composed with any
initial morphism is isomorphic to any other initial morphism given matching domains and
codomains, the question of satisfiability for any simple existential condition (such as ∃iC , see
below on the left) is reduced to the question of G containing C. In particular, any such inclusion
will imply the existence of a morphism q ∶ C ↪ G that trivially satisfies q ○ iC = iG. Conversely,
a condition ¬∃iC is satisfied by a graph whenever it does not contain C as a subgraph.

∅
=
�

iC
��

� iG // G

C
/

q

?? ∅
=
�

iC
��

� iG // G

C
/

q ⊧ ac

??

◁ac

Given a graph constraint with more complex nesting (such as ∃(iC ,ac), above on the right
side), the inclusion of C by q must also satisfy the nested condition, i.e. q ⊧ ac. For ¬∃(iC ,ac),
a graph G satisfies the constraint if all possible inclusions do not satisfy ac.

While application conditions can further restrict (and represent) graph morphisms, graph
constraints apply this idea to graphs. Hence, a graph constraint is also a symbolic encoding for
the set of graphs satisfying it. A common application of graph constraints is to specify modeling
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Figure 2.7. – Example graph constraint F = ∃(iP ∶ ∅↪ P )
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(a) Graph constraint F = ∃(iP ∶ ∅↪ P ) with G ⊧ F
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(b) Graph constraint F = ∃(iP ∶ ∅↪ P ) with H ⊧ ¬F

Figure 2.8. – Example graph constraint and satisfiability

languages by combining a type graph with a graph constraint [GL12]. Then, the language is
not only defined over typed graphs typed over the type graph, but is limited to those graphs
also satisfying the additional graph constraint. In the context of this thesis, graph constraints
are mostly used to a) model safety properties as forbidden subgraphs and b) specify additional
constraints relevant to the system in question. The latter includes, for example, cardinality
restrictions not modeled in type graphs.

Example 2.13 (graph constraints). Figure 2.7 shows a graph constraint F = ∃iP (with iP
being the initial morphism iP ∶ ∅↪ P ). It specifies the existence of three tracks, two of which
(t1 and t2) have the third (ts) as their subsequent track, which makes ts a switch. It also
requires the existence of shuttle in speed mode fast and positioned on the switch track. As
explained above, any graph containing P as a subgraph satisfies ∃iP .

Figure 2.8(a) shows such a graph G that contains P as a subgraph. As depicted, there
exists an injective morphism q including P into G by mapping t1, t2, ts and the shuttle to the
respective elements in G. (Edges are mapped similarly.) Since q ○ iP = iG holds trivially, iG
satisfies ∃iP and hence, by definition of satisfiability, G satisfies ∃iP .

Note that there exists a second possible inclusion: t1 and t2 could be switched around while
the mappings of ts and the shuttle remain the same.

Conversely, Figure 2.8(b) shows a different graph H where no such inclusion of P exists.
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Figure 2.9. – Example graph constraints

While the tracks, shuttle, and next and isAt edges can be mapped as before, there is no
matching edge for the shuttle’s fast edge. The second shuttle lacks the positioning on a switch
track required by P . Hence, H does not satisfy ∃iP (i.e. H /⊧ ∃iP ), which also implies H ⊧ ¬∃iP
(or H ⊧ ¬F ), if we formulate the graph constraint as a negative.

A shuttle driving fast over a switch is a violation of the safety property introduced in Example
1.1 (p. 4); it might, for example, lead to the derailment of the shuttle. Then, ¬F = ¬∃iP is the
specifiaction of the property as a graph constraint, which should be satisfied by all graphs in
the system’s state space. Also, the constraint ¬F represents all satisfying graphs, i.e. all safe
states; conversely, F , i.e. ∃iP , represents the (infinite) set of graphs where the safety property
is violated.

Figure 2.9 also shows graph constraints; however, those constraints do not specify safety
properties. Instead, Figure 2.9(a) models a cardinality constraint of the shuttle metamodel
(Example 1.1, Figure 1.1 (p. 5)). The constraint in Figure 2.9(b) implements another restric-
tion, although its equivalent in the metamodel would have to be specified as an OCL constraint.
The same holds for ¬H2 in Figure 2.9(c): here, tracks are required to be connected unidirec-
tionally only – shuttles may not change directions. We will discuss the integration of these
cardinality constraints and similar properties into system specifications and our verification
approach in Chapter 4. △

With respect to application conditions (and graph constraints), there is one important re-
striction in our formalization: we require morphisms in subconditions to be injective. This has
been described in the literature as M-normal form [HP09, Pen09]. Since, in the category of
(typed) graphs, M denotes the class of (typed) injective graph morphisms, we will introduce
the notion as injective normal form below. For graph constraints, there is no difference in ex-
pressive power: every graph constraint not inM-normal form can be equivalently transformed
toM-normal form [HP09]. For application conditions, this holds when satisfaction by injective
morphisms only is concerned.

Definition 2.14 (injective normal form). An application condition ac is said to be in injective
normal form if all morphisms in subconditions of ac are injective.

In order to finally introduce graph rules and graph transformations, we first need to reiterate
the concept of pushouts, which serve as a gluing construction. In particular, pushouts are a
formalization for gluing two graphs together along a common subgraph [EEPT06].

Definition 2.15 (pushout [EEPT06]). Given graphs and morphisms f ∶ A→ B and g ∶ A→ C,
a pushout (D,f ′, g′) over f and g consists of a graph D and morphisms f ′ ∶ C → D and
g′ ∶ B → D such that f ′ ○ g = g′ ○ f and the following universal property is fulfilled: for all
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graphs H and morphisms c ∶ C → H, b ∶ B → H with c ○ g = c ○ f , there is a unique morphism
q ∶D →H such that c = q ○ f ′ and b = q ○ g′.

A
f
//

g

��
=

B

g′
�� b

��

=C

c ..

=

f ′ // D
q

  
H

There is a construction to this declarative definition that allows creating pushouts for typed
graphs by considering node and edge sets separately, then unambiguously determining source
and target functions by the pushout property. In fact, pushout constructions for the category
of (typed) graphs rely on the notion of pushouts in the category of sets [EEPT06].

Fact 2.16 (construction of pushouts [EEPT06]). Given graphs Ai = (Vi,Ei, si, ti) for i = 1..3
and morphisms f ∶ A1 → A2 and g ∶ A1 → A3, we construct the pushout (D,f ′, g′) over f and
g as follows.

A1
f
//

g

��
=

A2

g′
��

A3
f ′ // D

Construction. We will construct node and edge sets of D separately:

1. We define the vertex set V ′
D as V ′

D = V2 ∪ V3 and the relation ∼V as ∼V = {(x, y) ∣ x, y ∈
V ′
D ∧ ∃v(f(v) = x ∧ g(v) = y)}.

2. We define ≡V as the smallest equivalence relation containing ∼V .
3. We define VD = {[v] ∣ v ∈ V ′

D}, where [v] is the equivalence class associated with v with
respect to ≡V .

1. We define the edge set E′
D as E′

D = E2 ∪ E3 and the relation ∼E as ∼E= {(x, y) ∣ x, y ∈
E′

D ∧ ∃e(f(e) = x ∧ g(e) = y)}.
2. We define ≡E as the smallest equivalence relation containing ∼E.
3. We define ED = {[e] ∣ e ∈ E′

D}, where [e] is the equivalence class associated with e with
respect to ≡E.

We then define f ′ = (f ′V , f ′E) and g′ = (g′V , g′E) as follows:

1. f ′V (v) = [v] for all v ∈ V3.
2. f ′E(e) = [e] for all e ∈ E3.
3. g′V (v) = [v] for all v ∈ V2.
4. g′E(v) = [e] for all e ∈ E2.

Finally, we need to define the source and target function sD and tD:

1. sD(e) =
⎧⎪⎪⎨⎪⎪⎩

g′(v2) if there exists e′ ∈ E2 such that s2(e′) = v2 and g′(e′) = e
f ′(v3) if there exists e′ ∈ E3 such that s3(e′) = v3 and f ′(e′) = e

2. tD(e) =
⎧⎪⎪⎨⎪⎪⎩

g′(v2) if there exists e′ ∈ E2 such that t2(e′) = v2 and g′(e′) = e
f ′(v3) if there exists e′ ∈ E3 such that t3(e′) = v3 and f ′(e′) = e
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Then, (D,f ′, g′) with D = (VD,ED, sD, tD) is the pushout over f and g.

For the application of graph rules, we sometimes need the inverse construction to a pushout;
i.e. given morphisms and a potential pushout graph, we need to find the pushout. This is
described as a pushout complement :

Definition 2.17 (pushout complement [EEPT06]). Given morphisms f ∶ A→ B and g′ ∶ B →
D, the pushout complement of f and g′ is A → C → D with g ∶ A → C and f ′ ∶ C → D if
(D,f ′, g′) – denoted as (1) – is a pushout over f and g.

A
f
//

g

��
(1)

B

g′
��

C
f ′ // D

For typed graphs, pushouts have a number of useful properties that will later be required
for certain proofs and constructions.

Fact 2.18 (properties of pushouts [EEPT06]). Pushouts have the following properties:

A
f
//

g

��
(1)

B

g′
��

C
f ′ // D

A //

��
(1)

B

��

//

(2)

E

��
C // D // F

1. If f (above on the left) is injective (surjective), f ′ is also injective (surjective).
2. The pushout object D is unique (up to isomorphism).
3. If (1) and (2) (above on the right) are pushouts, (1) + (2) is a pushout.
4. If (1) and (1) + (2) are pushouts, (2) is a pushout.

Example 2.19 (pushout complement, pushout). Consider Figure 2.10(a) where, given mor-
phisms l ∶ K ↪ L and m ∶ L ↪ G, we are looking for the pushout complement of l and m. (1)
in Figure 2.10(b) is a pushout (G, l′,m) over l and k and hence, K ↪ D ↪ G is the pushout
complement of l and m.

Intuitively, D needs to supply the nodes and edges contained in G, but not in L: tracks t3,
t4, t5, and the three next edges. D also needs to contain elements in G that have preimages in
K under m ○ l: tracks t1 and t2, the shuttle s and one next edge. However, it must not contain
the edges isAt and slow because those edges do not have preimages in K.

Given k ∶ K ↪ D as above and r ∶ K ↪ R (Figure 2.11(a)), we can construct the pushout
over r and k, which is then depicted in Figure 2.11(b) as (H,r′,m′).

Here, as explained before, the intuition is that H is the result of gluing D and R together
along the common subgraph K, where the subgraph relationships are specified by the mor-
phisms r and k. Then, H needs to contain K – tracks t1 and t2, shuttle s and a next edge – and
is extended by all elements in R and D that do not have preimages under r or k, respectively:
tracks t3, t4, t5, next edges from D, and edges acc and isAt from R. The edges are attached
to their source and target nodes via the graph’s source and target functions according to their
sources and targets in their original graphs and the nodes’ images under m′ or r′, respectively.
△

With all the prerequisites established, we are now ready to introduce graph transformation
rules, or simply graph rules, as means of specifying behavior. Graph rules describe how graphs
can be changed; the application of a graph rule (also called a graph transformation) to a graph
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s:Shuttle 

t1:Track :next 

:isAt 

:slow 

𝐿 

𝐺 

t2:Track 

𝑚 

s:Shuttle 

t1:Track :next t2:Track 𝑙 

𝐾 

s:Shuttle 

t1:Track t2:Track :next 

:isAt 

:slow 

t3:Track :next 

t4:Track 
:next 

t5:Track :next 

(a) Graphs and morphisms l ∶K ↪ L, m ∶ L↪ G

s:Shuttle 

t1:Track t2:Track :next t3:Track :next 

t4:Track 
:next 

t5:Track :next 

𝑙′ 

𝐷 

(1) 

𝑘 

s:Shuttle 

t1:Track :next 

:isAt 

:slow 

𝐿 

𝐺 

t2:Track 

𝑚 

s:Shuttle 

t1:Track :next t2:Track 𝑙 

𝐾 

s:Shuttle 

t1:Track t2:Track :next 

:isAt 

:slow 

t3:Track :next 

t4:Track 
:next 

t5:Track :next 

(b) Pushout complement K ↪D ↪ G of l and m

Figure 2.10. – Example pushout complement
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(b) Pushout (H,r′,m′) over r and k

Figure 2.11. – Example pushout
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then results in a new graph. More complex graph rules may contain application conditions,
which allow more fine-grained control over the applicability of graph rules.

There are two well-established approaches for algebaric graph transformation: single-pushout
(SPO) and double-pushout (DPO) [EEPT06]. This thesis focuses on the latter. The name
double-pushout stems from the two pushout constructions required for the application of a
graph rule as explained in the following definition.

Definition 2.20 (graph rule [EGH+14]). A plain graph rule p = (L ↩K ↪ R) consists of two
injective morphisms l ∶ K ↪ L and r ∶ K ↪ R. L and R are called the left and right hand side
of p, respectively. A graph rule b = ⟨(L ↩K ↪ R),acL ,acR⟩ consists of a plain rule and a left
and right application condition acL and acR.

L

(1) (2)

acL▷ �

m
��

K � r
//?

l
oo

��

R ◁acR�

m′
��

G D �
r′ //?l′oo H

The application of a graph rule, also called a graph transformation, consists of two pushouts
(1) and (2) (shown above) such that m ⊧ acL and m′ ⊧ acR. The transformation is denoted
as G⇒b,m,m′ H. the morphisms m ∶ L↪ and m′ ∶ R ↪H are called the match and comatch of
b in G and H, respectively. We often write G⇒b H or G⇒ H to express that there exist m,
m′ (or b, m, and m′) such that G⇒b,m′,m′ H.

Given a set of rules R, G⇒R H expresses that there exists a rule b ∈R such that G⇒b H.

Note that this definition requires injective matches and comatches. This is not necessarily the
case for common definitions of the concept; in particular, non-injective matches and comatches
are often allowed, too [EEPT06, EGH+14, HP09]. For typed graph transformation systems,
however, there is no difference in expressive power between both approaches [HP09]. This
thesis focuses on injective rule matching.

While graph rules are commonly allowed to have both a left and right application condi-
tion, both concepts are equivalent in terms of expressive power [HP09]. Specifically, any right
application condition can be transformed into an equivalent left application condition [HP09].
It can be argued that the specification of a left application condition, which is checked before
rule application, is more intuitive than equipping rules with right application conditions, which
have to be checked after rule application, possible invalidating the transformation. Hence, we
will usually use application conditions in rules as left application conditions and will only use
the trivial (and default) right application condition true.

Similar to the symbolic nature of application conditions and graph constraints, a rule can
also be seen as a symbolic encoding for a number of graph transformations. Then, a rule b
serves as a representation for a possibly infinite number of graph transformations G⇒b H.

Fact 2.21 (application of graph rules [EGH+14]). The successful application of a graph rule
b = ⟨(L ↩K ↪ R),acL , true⟩ to a graph G consists of the following conditions and steps:

Find an injective match m ∶ L↪ G such that

1. m satisfies acL
2. m satisfies the dangling condition: no edge in m(L) is adjacent to a node in m(L∖l(K)).

Then,

1. Remove from G all items in m(L ∖ l(K)), resulting in a graph D.
2. Add to D all items in R ∖ r(K), resulting in a graph H and the comatch m′ ∶ R ↪H.
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Figure 2.12. – Example graph rule s2a′ = ⟨(L ↩K ↪ R), true, true⟩
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Figure 2.13. – Example transformation G⇒s2a′,m,m′ H
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Figure 2.14. – Example graph rule s2a = ⟨(L ↩K ↪ R),¬∃x1 ∧ ¬∃x2, true⟩
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Note that the identification condition [EGH+14] is not needed here because we require
injective rule matching.

Example 2.22 (graph rule). Figure 2.12 shows a graph rule s2a′ = ⟨(L ↩K ↪ R), true, true⟩
that models one aspect of our shuttle system’s behavior. As expected, the rule describes a
shuttle driving in speed mode slow moving to a subsequent track and changing its speed mode
to acc(elerating). The injective morphisms l and r can be inferred by the elements’ positioning
and by their identifiers. The rule’s left and right application conditions are simply true. Since
any morphism satisfies true (Definition 2.10 (p. 22)), there are no further conditions on matches
and comatches for the rule to be applicable.

Figure 2.13 shows a rule application G⇒s2a′,m,m′ H of rule s2a′ via a match m ∶ L↪ G to a
graph G. With the pushouts (1) and (2), this results in a graph H and comatch m′ ∶ R ↪ H.
In particular, the shuttle s moves from track t1 to track t2 and changes its speed mode from
slow to acc. Note that (1) and (2) correspond to the pushouts in Example 2.19 (p. 29).

Furthermore, Figure 2.14 shows the rule (L↩K ↪ R) extended by an application condition
¬∃x1 ∧¬∃x2, which prevents the rule from being applied if there is a switch one or two tracks
ahead of the moving shuttle. Since m (Figure 2.13) satisfies ∃x2 and thus does not satisfy
¬∃x2, the rule ⟨(L↩K ↪ R),¬∃x1 ∧ ¬∃x2, true⟩ is not applicable to G via m. Moreover, since
there does not exist another possible match of L in G, it is not applicable to G at all. This is
an example of implementing safeguards in system behavior that may prevent the violation of
safety properties; this idea has been mentioned in Example 1.10 (p. 12). △

Graph transformations are invertible by applying the inverse rule, which can be constructed
as follows:

Fact 2.23 (inverse graph rule [EGH+14]). Given a graph rule b = ⟨(L ↩K ↪ R),acL ,acR⟩, its
inverse graph rule is b−1 = ⟨(R ↩K ↪ L),acR,acL⟩. For every transformation G ⇒b,m,m′ H,
we also have a transformation H ⇒b−1,m′,m G.

Since the inversion of an inverse rule results in the original rule, the existence of a transfor-
mation H ⇒b−1,m′,m G also implies the existence of the transformation G⇒b,m′,m′ H.

Multiple graph rules can be combined as a set of graph rules in a graph transformation
system. A graph transformation system then specifies system behavior. Specific manifestations
of said behavior occur in the form of rule applications to system states, i.e. to graphs. Since
our focus in this thesis lies on typed graphs, we also have typed graph transformation systems:

Definition 2.24 (typed graph transformation system [EEPT06]). A typed graph transfor-
mation system GTS = (TG ,R) consists of a type graph TG and a set of typed graph rules
R.

Note that such a transformation system only supplies a specification of system behavior
without specifying system states or, in particular, an initial state. Consequently, we cannot
yet derive actual system execution paths or a state space for a particular system from such a
specification.

Example 2.25 (graph transformation system). Figure 2.15 shows an example graph trans-
formation system GTS = (TG ,R) modeling the behavior of our running example – the shuttle
protocol (Example 1.1 (p. 4)). As before, shuttles move along connected tracks in different
speed modes. The system’s type graph is shown in Figure 2.15(a). Figure 2.15(b) reiterates
the protocol with respect to shuttles’ speed mode changes; however, this is just a visualization
and not an explicit element of the system.

All graph rules follow one of two basic structures: s2s (short for slow2slow) and f2f (short
for fast2fast) do not change a shuttle’s speed mode; s2a, a2b, a2f, f2b, and b2s do. Rules that
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Figure 2.16. – Example transformation sequence trans

increase the shuttle’s velocity or have the shuttle remain at high velocity (s2a, a2f, f2f) have
additional safeguards in the form of application conditions. All rules include a shuttle moving
from its current location to a subsequent track – speed mode transitions only occur in concert
with shuttle movement. Note that even though the graph rules may have different left and
right sides, we will reuse the identifiers L and R (and others) in examples. △

Next, we will introduce transformation sequences as a means to describe the subsequent
application of graph rules to a graph via matches and comatches. Transformation sequences
have intermediate result graphs and a final result graph. They can be used to describe traces
in a system. For instance, it might be desirable to describe possible transformation sequences
from a system’s initial state or transformation sequences to violations of a safety property.

Definition 2.26 (transformation sequence [3]). Given a set of graph transformation rules
R and k ≥ 1, a transformation sequence to R trans = G0 ⇒R G1 ⇒R ... ⇒R Gk denotes
subsequent graph transformations G0 ⇒R G1, G1 ⇒R G2, ..., Gk−1⇒R Gk with rules from R.
We say that trans has length k and also denote it by trans = G0 ⇒k

R Gk.

When specific rules, matches, or comatches are of interest, we also write trans = G0 ⇒b1,m1,m′1
G1 ⇒b2,m2,m′2 ...⇒bk,mk,m

′
k
Gk, with bi ∈R and mi and m′

i being matches and comatches of the
respective rules.

Example 2.27 (transformation sequence). Consider the transformation sequence trans =
G0 ⇒f2b,m1,m′1 G1 ⇒b2s,m2,m′2 G2 depicted in Figure 2.16. Note that the exact constructions
(pushouts) of the two transformations have been omitted, but can be inferred. △

In contrast to the depiction in Figure 2.16, we will usually show transformation sequences
in a more compact manner by leaving out left and right rule sides, matches, and comatches,
unless they are of specific importance. Usually, those elements can be inferred from the graphs
in the sequence and the names of the rules.

Note that a transformation sequence only describes one specific path of transformations and
the situations involved. In any state space of a given system, there will usually be a large or
infinite number of possible transformation sequences.

As explained before, graph transformation rules define system behavior in general terms,
but do not describe actual transformations. For example, a graph transformation system does
not have an initial state of a state space. Those concepts are included in the notion of graph
grammars; in particular, a graph grammar can be seen as an instantiation of a graph trans-
formation system by supplying an initial state. The entirety of possible system behavior in a
graph grammar is then described by its state space.
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Figure 2.17. – Example initial graph G0

Definition 2.28 (typed graph grammar [EEPT06], state space [4]). A typed graph grammar
GG = (G0,GTS) consists of an initial graph or start graph G0 and a typed graph transforma-
tion system GTS.

The state space of a graph grammar GG = ((R,TG),G0) is defined as REACH(GG) =
{G ∣ ∃n(G0 ⇒n

R G)}, i.e. as the set of graphs reachable by graph transformations from the
initial graph.

Example 2.29 (graph grammar). Figure 2.17 shows a fragment of a possible (finite) start
graph of a graph grammar GG = (G0,GTS) with GTS as in Example 2.25 (p. 34). Beyond the
part depicted, additional tracks – represented by the dots – exist, but the graph contains only
one shuttle. The only graph rule applicable to the shuttle and the surrounding tracks is s2s.
Since there are cycles (not depicted) in the track topology of G0, there could be arbirtrarily
long transformation sequences. However, because the track topology cannot be changed, the
state space will be finite (up to isomorphism). In general, this is not necessarily the case. With
rules adding tracks or shuttles to the system, infinite state spaces are very likely. △

Notation. For some of the concepts introduced above, Table 2.1 provides a quick reference
over some notational guidelines. Most elements appearing in theorems, lemmas, constructions,
and their proofs will follow the naming scheme shown in the table.

This concludes the discussion of formal foundations of graph transformation systems. Next,
we will consider constructions and transformations applicable to graph constraints and appli-
cation conditions.

2.2. Application Conditions and Constructions

As we have seen, application conditions and graph constraints are central elements of system
specification in our approach. In particular, we employ graph constraints to specify safety prop-
erties and cardinality constraints; application conditions are used to restrict the applicability
of graph rules.

However, application conditions can also be used to describe the applicability of a graph
rule for a match of its left side with respect to the requirements for graph rule application
(Definition 2.20 (p. 32) and Fact 2.21 (p. 32)). A potential match has to satisfy the rule’s left
application condition; in addition, the dangling condition has to be fulfilled. For the general
case of weak adhesive HLR categories and non-injective matching, there is a theorem and
construction to describe the creation of the required condition; the construction is called Appl
[HP09]. Here, we use an adaption for typed graphs and graph rules with injective matching:
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Table 2.1. – Overview of notation guidelines

Elements Notation

Graphs A,B,D,E,G,H,L,P,Q,R,S, T,X

Graph morphisms a, b, c, d, e, f, g, l, p, q, r, s, t, x, y

Graph rules b, c, ρ

Matches (comatches) m (m′)

Application conditions ac

graph constraints C,F,H,SC ,F ,H,S

indices i, j, k, n, o, u, v,w, z

index sets I, J,K,N,O,U,V,W,Z

Lemma 2.30 (rule applicability condition). For every rule b = ⟨(L ↩K ↪ R),acL , true⟩, there
is a construction Appl such that for every injective morphism m ∶ L ↪ G, m ⊧ Appl(b) ∧ acL
if and only if there is a transformation G⇒b,m G′.

For specifics of the construction, we refer to the original source [HP09]. Intuitively, the
procedure is as follows:

For each node v in L without a preimage in K under l – i.e. for each v in the set of nodes
to be deleted by application of b – and for each edge type adjacent to the node type of v, i.e.
for each edge type eTG of edges possible adjacent to v, create the application conditions ¬∃d
with injective morphisms d ∶ L↪D, each extending the graph L by one of the following cases,
where applicable:

1. by an edge of type eTG from v to v if the source and target of eTG are identical,
2. by an edge of type eTG from v to a new and appropriately typed node v′,
3. by an edge of type eTG from a new and appropriately typed node v′ to v;

furthermore, for each node v∗ in L that may be connected to v via an edge of type eTG ,
create an application condition forbidding the existence of such an edge. Then, Appl(b) is the
conjunction of those application conditions.

Example 2.31 (rule applicability condition). Figure 2.18(a) shows a hpyothetical rule b =
⟨(L ↩K ↪ R), true, true⟩ that can be applied to two subsequent tracks and deletes the first
track. The resulting rule applicability condition of b is Appl(b) = ⋀1≤i≤6 ¬∃ai. It forbids the
existence of any additional edge adjacent to the deleted track t1. Here, these may be of type
next, connecting t1 with other tracks (or, theoretically, itself) or of type isAt, if there is a
shuttle located on t1. Note that the application condition do not only need to consider the
existence of other nodes with connections to t1, as in ¬∃a3, ¬∃a5, and ¬∃a6, but also potential
further connections to nodes in L (¬∃a1, ¬∃a2, and ¬∃a4). △
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Figure 2.18. – Example rule rule b and rule applicability condition Appl(b)

We also need a mechanism to transfer application conditions to new context while keeping a
condition’s meaning intact. In particular, we can equivalently transfer application conditions
over morphisms by the Shift-construction [EGH+14]. To focus on the requirements of our
approach, we slightly adapt the construction: it concerns application conditions consisting only
of injective morphisms in subconditions (i.e. conditions in injective normal form), conditions
are transferred over injective morphisms only, and only satisfiability by injective morphisms
is taken into account. In the literature, the A-transformation [Pen09] is a special case of the
Shift-construction [EGH+14] and focuses on the application scenario described; however, we
use a modified form of the Shift-construction:

Lemma 2.32 (Shift-lemma, modified [EGH+14]). There is a construction Shift such that, for
every injective morphism b ∶ P ↪ P ′ and every application condition ac over P in injective
normal form, Shift(b,ac) transfers ac over b into an application condition over P ′ in injective
normal form such that for every injective morphim g ∶ P ′ ↪ G we have g ○ b ⊧ ac ⇔ g ⊧
Shift(b,ac).

P �

g ○ b ⊧ ac ��

� b //ac▷

=

P ′
n

g ⊧ Shift(b,ac)~~

◁Shift(b,ac)

G

Construction (Shift-construction, modified [EGH+14]). The Shift-construction is inductively
defined as follows:

P

=

�

b
//

�

a
��

P ′
�

a′
��

C �
b′ //ac▷ C ′
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Figure 2.19. – Example application of Shift-construction with Shift(iR,∃iP ) = ⋁i∈I ∃ti

1. Shift(b, true) = true,
2. Shift(b,∃(a,ac)) = ⋁(a′,b′)∈F ∃(a′,Shift(b′,ac)) with F the set of injective and jointly

surjective morphism pairs (a′, b′) such that b′ ○ a = a′ ○ b,
3. Shift(b,¬ac) = ¬Shift(b,ac), and
4. Shift(b,⋀i∈I aci) = ⋀i∈I Shift(b,aci).

Proof. The proof for the Shift-construction [EGH+14] can be modified to fit the modifications
noted above [Dyc12].

The construction handles boolean operators in the usual fashion; the only part more in-
volved is the transformation of conditions of the form ∃(a,ac). Given a morphism g′ ∶ P ↪ G,
satisfaction of ∃(a,ac) over P describes a possible extension of P (in G) to C (such that
ac is satisfied). However, when the condition is transferred to the context of P ′ via b, P ′

may already have the extension to C – or parts of it – present. Hence, there may now be
multiple possibilities to complete the extension. These options are described by the disjunc-
tion ⋁(a′,b′)∈F ∃(a′,Shift(b′,ac)). Intuitively, we build overlappings of C and P ′, then, in each
overlapping, look for the parts still missing to have the extension to C.

Example 2.33 (Shift-lemma). In our approach we will frequently apply the Shift-construction
to transfer graph constraints to the context of the (symbolic) result of a rule application, i.e.
the right side of a graph rule. Since graph constraints are application conditions over the empty
graph, they can be transferred similar to regular application conditions. In particular, consider
Figure 2.19: we shift the violation of our safety property – the existence of a fast shuttle on a
switch – to the right rule side R of f2f via iR. The result is a disjunction of conditions ∃ti over
R describing situations containing the right rule side and the violation specified by P . Then,
by the Shift-lemma, any graph G with a morphism g ∶ R ↪ G and g ⊧ ⋁i∈I ∃ti will also satisfy
∃iP , i.e. violate the safety property. Conversely, G ⊧ ∃iP implies g ⊧ ⋁i∈I ∃ti. △

Application conditions can also be transferred over graph rules. Given an application con-
dition ac over the right side of a graph rule, we can compute an application condition ac′ over
the left rule side such that, for each application of the rule, satisfiability of ac′ by the match
is equivalent to satisfiability of ac by the comatch. This construction is the reason why graph
rules with left application conditions only are equally expressive to graph rules with both
left and right application conditions [HP09]. As with the Shift-construction, we will include a
minor modification and require condition in injective normal form.
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Figure 2.20. – Example application of L-construction with L(f2f,⋁i∈I ∃ti) = ⋁i∈I ∃si

Lemma 2.34 (L-lemma [HP09, EGH+14]). There is a construction L such that for every rule
b = (L ↩ K ↪ R) and every application condition ac over R and in injective normal form, L
transforms ac via b into an application condition over L in injective normal form such that
for every transformation G⇒b,m,m′ H, we have m ⊧ L(b,ac)⇔m′ ⊧ ac.

Construction (L-construction, modified [HP09, EGH+14]). The L-construction is inductively
defined:

L

(2)

�

a′
��

K

(1)

�
r
//?

l
oo

�

��

R�

a
��

L′L(b′,ac)▷ K ′ � r′ //?l′oo R′ ◁ac

1. L(b, true) = true,
2. L(b,∃(a,ac)) = ∃(a′,L(b′,ac)) if b′ = ⟨L′ ↩K ′ ↪ R′⟩ constructed via the pushouts (1)

and (2) exists and false, otherwise,
3. L(b,¬ac) = ¬L(b,ac), and
4. L(b,⋀i∈I aci) = ⋀i∈I L(b,aci).

Proof. We refer to the respective source [HP09]; injectivity of a′ in ∃a′ = L(b,∃a) in case (2)
follows from the properties of the pushouts (1) and (2) (Fact 2.18 (p. 29)).

Example 2.35 (L-lemma). In our algorithms, we will frequently transform application condi-
tions defined over a rule’s right side to the rule’s left side to compute the symbolic state before
application of the rule in question. Consider ac = ⋁i∈I ∃ti from Example 2.33 (p. 40). Figure
2.20 shows its transformation over the f2f rule; in particular, ac′ = L(f2f,⋁i∈I ∃ti) = ⋁i∈I ∃si.
Intuitively, each situation described by the disjunction’s operands ∃ti has had the rule reversely
applied to it. The result is a disjunction of situations that, after rule application, will lead to the
corresponding situations described by the condition(s) over R. Then, for each transformation
G⇒f2f,m,m′ H, we have the equivalence m ⊧ ac′⇔m′ ⊧ ac. △

We then need mechanisms by which graph constraints can be compared. One obvious as-
pect is the equivalence of graph constraints, which is based on the equivalence of application
conditions. A second aspect is implication of graph constraints. A graph constraint C1 implies
a second graph constraint C2, if all graphs satisfying C1 also satisfy C2. Intuitively, the set
of graphs represented by the implying constraint C1 is a subset of the graphs encoded by the
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Figure 2.21. – Graph constraints C1 = ∃iP1 and C2 = ∃iP2 with C1 ⊧ C2

implied graph constraint C2. The concept and problem of implication has been formalized and
thoroughly discussed on a categorical level [Pen09]; here, we focus on its interpretation for the
category of typed graphs.

Definition 2.36 (implication of graph constraints [Pen09]). Given two graph constraints C1
and C2, we say that C1 implies C2, denoted as C1 ⊧ C2, if, for all graphs G, it holds that G ⊧ C1
implies G ⊧ C2.

Example 2.37 (implication of graph constraints). Consider the graph constraints C1 = ∃iP1

and C2 = ∃iP2 shown in Figures 2.21(a) and 2.21(b), respectively. C1 is satisfied by all graphs
containing the subgraph P1 – a shuttle, located on a switch, driving fast. C2 is satisfied by
graphs containing P2 – a shuttle that is located on a switch. It is easy to see that all graphs
satisfying C1 will always satisfy C2: P2 is a subgraph of P1 and hence, a graph that contains
P1 (i.e. fulfills C1) will always contain P2 – and hence, fulfill C2.

The reverse, however, is obviously not true: the graph P2 trivially satisfies C2 but does not
satisfy C1 because it is missing the fast edge. Thus, C2 does not imply C1. Besides P2, we can
think of other graphs satisfying C2 while not satisfying C1 – we can just extend P2 by nodes
and edges that do not lead to an occurrence of P1.

If we consider constraints ¬C1 = ¬∃iP1 and ¬C2 = ¬∃iP2 , we can see that the latter implies
the former. Both constraints are satisfied by graphs where the respective subgraph is absent.
Then, any graph that does not have P2 as a subgraph (i.e. satisfies C2) cannot have that graph
plus the fast edge – P1 – as a subgraph. The reverse, ¬C1 ⊧ ¬C2, is not true. △

Note that the constraints in the example above are rather simple in their structure: they
are singular (negated) existential conditions without further levels of nesting. In general, given
complex constraints in addition to an infinite number of graphs satisfying a given graph con-
straint, we cannot perform analysis of implication by hand. Furthermore, Definition 2.36 does
not provide a constructive approach to answering the question of implication. The problem can
be reduced to satisfiability of graph constraints: if and only if C1 implies C2, ¬C1 ∨C2 (equiv-
alent to the direct implication C1 ⇒ C2) can be satisfied by at least one graph [HP09, Pen09].
We know that satisfiability of graph constraints is undecidable in general [HP09]; then, so
is the question of implication of graph constraints. Approaches and algorithms to solve the
question of implication of graph constraints have been established for the general case in the
literature [Pen09, SLO17, SLO18].

Finally, we can establish a connection between graph constraints and application conditions
that are not graph constraints. In particular, we want to transform application conditions into
graph constraints in order to compare the result to other graph constraints. As with the Shift-
and L-constructions, this procedure has been described for more general categories [HP09];
here, we will use a version applicable to the category of typed graphs:
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Lemma 2.38 (reduction to a graph constraint). There is a construction such that for each
application condition ac over a graph A in injective normal form, the reduction of ac to a
graph constraint, denoted ac ∣∅, is a graph constraint in injective normal form and we have:
for each graph G, there is an injective morphism g ∶ A↪ G with g ⊧ ac if and only if G ⊧ ac ∣∅.

Construction. Reduction to a graph constraint is inductively defined as follow:

A�

a
��

∅
o

iB��
Bac▷

1. true∣∅ = ∃iA (where true is an application condition over A),
2. (∃(a ∶ A↪ B,ac))∣∅ = ∃(iB,ac),
3. (¬ac)∣∅ = ¬ac ∣∅, and
4. (⋀i∈I aci)∣∅ = ⋀i∈I aci∣∅.

Proof. We will prove the equivalence for cases (1) and (2); these can then be extended over
the boolean combinations in (3) and (4).

1. Consider ac = true as an application condition over A. Then, ac ∣∅ = ∃iA and G ⊧ ∃iA is
equivalent to the existence of an injective morphism g ∶ A↪ G.

2. Consider ac = ∃(a,acB) and ac ∣∅ = ∃(iB,acB) as shown below. We will prove both
directions separately.

A�

a
��

t

g

��

∅
o

iB��

~

iG

||

BacB▷ �

q

��
G

If. Consider a graph G with G ⊧ ac ∣∅. Then, there exists an injective morphism q ∶ B ↪ G
such that q ○ iB = iG and q ⊧ acB. Thus, there is an injective morphism g ∶ A ↪ G with
g = q ○ a and hence, g ⊧ ∃(a,acB).
Only if. Consider a graph G with an injective morphism g ∶ A ↪ G such that g ⊧ ac.
Then, there is an injective morphism q ∶ B ↪ G such that q ○ a = g and q ⊧ acB. With
q ○ iB = iG, we have G ⊧ ∃(iB,acB).

Example 2.39 (reduction to a graph constraint). Consider ac = ⋁i∈I ∃si from Example 2.35
(p. 41), shown again in Figure 2.22. The reduction to a constraint ac ∣∅ = ⋁i∈I ∃iSi of ac is also
shown in Figure 2.22. Then, any graph G with an injective morphism g ∶ L ↪ G and G ⊧ ac
implies G ⊧ ac ∣∅; conversely, satisfaction of ac ∣∅ by a graph G implies the existence of an
injective morphism g ∶ L↪ G such that g ⊧ ac. △

This concludes the set of constructions and transformations for application conditions and
graph constraints relevant for our approach to inductive invariant checking.
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Figure 2.22. – Reduction ac ∣∅ = ⋁i∈I ∃iSi of ac = ⋁i∈I ∃si
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Given the formal foundations (re-)introduced in Chapter 2, we can now focus on formalizing
our verification approach. This chapter will transfer the informal description of 1-inductive
invariant checking in Section 1.2 to the formal level and, in doing so, reiterate the current
situation of 1-inductive invariant checking for graph transformation systems described in earlier
work [BBG+06, Dyc12]. Extending this formalization in different directions, with k-inductive
invariant checking one of those directions, will then be the focus of Chapter 4.

While we will discuss inductive invariant checking as a concrete verification approach in this
chapter and the next, the formalization will remain abstract in the sense that the approaches
cannot be directly implemented yet. They will provide a number of proof obligations that
solve the corresponding verification problems. However, they will not contain constructions or
algorithms that can be implemented as executable code – this will be addressed in Chapter 5
for the general approach (Formal-general) and in Chapter 6 for the restricted approach
(Formal-restricted and Impl.-restricted) to k-inductive invariant checking. As a result, this
chapter will only discuss 1-invariant checking at the level of the basic formal model introduced
in Chapter 2. Since 1-inductive invariant checking for graph transformation systems has been
established, implemented, and applied for a limited version of this basic formal model in
earlier work [BBG+06, BG08b, BG08a, Dyc12], we will not reiterate its implementation and
algorithmic perspective here or elsewhere in this thesis. Likewise, the basic formal model used
in this chapter will not reflect restrictions of those earlier implementations – they will be
compared with the results of this thesis in the evaluation (Chapter 9) instead.

Outline. Figure 3.1 attempts to provide an overview of this chapter’s structure in terms of
formal elements. We focus on Verification Problem 3.1, which is concerned with establishing
a graph constraint’s (safety property’s) validity in a singular graph grammar’s state space.
Lemma 3.4 will describe proof obligations of the existing verification approach [BBG+06,
Dyc12] of 1-inductive invariant checking: if the graph constraint is an 1-inductive invariant
(Definition 3.3) of the graph grammar’s graph transformation system – i.e. is preserved by
all rule applications – and if this inductive step is combined with the constraint’s validity in
the grammar’s start graph as the base case, the constraint is satisfied in all graphs of the
grammar’s state space.

As our starting point, we recall the generic verification problem established in Chapter 1:

Verification Problem 1.1. Given a system that is defined by a metamodel, an initial system
state, and specification of system behavior and given a set of safety properties, does every state
in the system’s state space satisfy the safety properties?

In general terms, we want to establish a system’s correctness by proving that the system
in question cannot provoke a violation of a safety property. We recall the mapping of system
elements to formal concepts by the basic formal model (cf. Chapter 2):

Formal Model (basic, implicitly used in earlier work [BBG+06, Dyc12]). Systems and system
specifications consist of the following elements:

System metamodels are specified by type graphs (Definition 2.8 (p. 21)).
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Figure 3.1. – Overview and dependencies of definitions, verification problems, and lemmas

System states – including initial states – are described by typed graphs (Definitions 2.1 (p. 20)
and 2.8 (p. 21)).

System behavior is described by a typed graph transformation system (Definition 2.24 (p. 34)),
which consists of typed graph transformation rules (Definition 2.20 (p. 32)).

Properties are modeled as graph constraints (Definition 2.12 (p. 25)).
Systems are specified by typed graph grammars (Definition 2.28 (p. 36)), which consist of an

initial state – a start graph – and a typed graph transformation system.
System state spaces are described by the state spaces (Definition 2.28 (p. 36)) – the set of

all reachable graphs – of the corresponding graph grammars.

Given these system elements, we formalize the validity of a graph constraint in a graph
grammar’s state space – the notion of operational invariants (Definition 1.9 (p. 10)) – as
follows:

Definition 3.1 (operational invariant). Given a graph grammar GG and a graph constraint
F , we say that F is an operational invariant of GG, if, for all graphs G ∈ REACH(GG), we
have G ⊧ F .

With that, we can rephrase our verification question in formal terms as follows:

Verification Problem 3.1. Given a graph grammar of the form GG = (GTS ,G0) with a
start graph G0 and a graph transformation system GTS and given a graph constraint F , is F
an operational invariant of GG?

This verification problem is concerned with a graph constraint instead of a set of properties
(as in Verification Problem 1.1). However, since a graph constraint can contain subconditions
in boolean combinations, we can express a set of properties by using a graph constraint that
conjunctively joins the graph constraints corresponding to the properties.
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Example 3.2 (shuttle system). We will use the shuttle system introduced in Chapters 1 and
2 as our running example. The system is modeled as:

– a graph grammar GG = (GTS ,G0) with
– a start graph G0 (Figure 3.2(i)), which specifies the system’s initial state and
– a graph transformation system GTS = (TG ,R), which describes system behavior and

consists of
– a type graph TG (Figure 3.2(a)), which specifies the system metamodel and
– a set of graph rules R (Figures 3.2(b)–3.2(h)).
– Furthermore, a graph constraint F (Figure 3.3) specifies the safety property, which, as

formalized by Verification Problem 3.1, should be satisfied
– in the graph grammar’s state space REACH(GG).

As before, the system’s behavior describes the protocol governing a single shuttle’s speed
mode changes. A shuttle may always choose to slow down or stay in speed mode slow; increasing
its velocity towards acc or fast, on the other hand, is bound to the absence of switches ahead
of the shuttle.

Note that G0 is not depicted in its entirety: a number of tracks to the right have been left
out. However, the part not depicted does not contain any additional shuttles. We could have
used a smaller start graph, but that does not properly illustrate the problems to be addressed
in our verification approach.

We want to prevent a shuttle from reaching a switch while in speed modes fast, acc, or brake
– whenever a shuttle drives on a switch, it should do so in speed mode slow. △

A positive answer to Verification Problem 3.1 (p. 46) above means that every system state
satisfies the safety properties in F and that the system is considered safe. As has been dis-
cussed in Chapter 1, a common and well-researched approach to solve this and similar verifi-
cation problems is model checking [BK08, CHVB18]. In particular, model checking has seen
widespread application in the verification of graph transformation systems [Ren04, GdMR+12,
ABJ+10]. In Algorithm 3.1, we sketch a simple explicit-state model checking algorithm appli-
cable to a graph grammar to demonstrate the general idea.

Algorithm 3.1: Simple model checking algorithm

input : a graph grammar GG = ((TG ,R),G0) and a graph constraint F
output: a graph G ∈ REACH(GG) such that G /⊧ F or null if no such graph exists

1 states ← {G0}
2 while states. isNotEmpty() do
3 state ← states. removeFirst()
4 foreach b ∈R do
5 foreach match of b in state do
6 G← applyRule(state, b,match)
7 if G /⊧ F then
8 return G

9 state.add(G)

10 return null

As argued in Section 1.1, we can see that infinite systems pose a serious problem for ap-
proaches following this scheme. Infinite applicability of graph rules may still lead to a finite
state space if there are cycles in the state space and if newly created states are checked for
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Figure 3.2. – Graph grammar GG = (GTS ,G0) with GTS = (TG ,R)
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Figure 3.3. – Safefy property F = ¬F1 ∧ ¬F2 ∧ ¬F3

isomorphisms to states already considered. However, state spaces with an infinite number of
distinct graphs will lead to a non-terminating algorithm.

Furthermore, a verification result gained from application of the above scheme applies only
to the graph grammar in question, which consists of a specific start graph and graph transfor-
mation system. Changes to the start graph and the graph transformation system will invalidate
the verification result and require costly repetitions of the verification scheme.

Even with a fixed graph transformation system, explicit-state model checking of graph gram-
mars with a set of possible initial states creates challenges: all state spaces for all initial states
would have to be calculated and analyzed for the respective constraint’s validity. If the number
of allowed initial states is infinite, this is not possible without considering symbolic approaches
or under-approximation. Even when the number of initial states is finite, the increase in com-
putational effort seems at odds with the fact that the abstract system behavior – described by
graph transformation rules – does not change at all. For both reasons, it can be desirable to
split the verification scheme into two distinct tasks: reasoning about a graph grammar’s initial
state and reasoning about system behavior (in the form of graph rules). In order to achieve the
latter, i.e. to analyze system behavior without considering initial states, we have to abstract
from a concrete state space; in other words, we have to apply a symbolic approach.

We have discussed 1-inductive invariant checking [BBG+06, BG08b, Dyc12] as one such ap-
proach in Section 1.2. Although previous work has used the term inductive invariant checking,
we will refer to it here as 1-inductive invariant checking in order to avoid confusion with k-
inductive invariant checking. By Definition 1.8 (p. 10), a 1-inductive invariant is a property
(here: a graph constraint) whose validity is preserved by execution of a single step of system
behavior (here: the application of a graph rule). In terms of our basic formal model, we define:

Definition 3.3 (1-inductive invariant). Given a graph transformation system GTS = (TG ,R)
and a graph constraint F , F is an 1-inductive invariant of GTS, if, for all rules b ∈ R, the
following condition holds:

∀G,G′((G⇒b G
′)⇒ (G ⊧ F ⇒ G′ ⊧ F))

We also say that GTS preserves F .

In other words, a 1-inductive invariant is a graph constraint whose validity in a graph
(here: G ⊧ F) before the application of a graph rule (G ⇒b G

′) implies its validity after rule
application (G′ ⊧ F). Since all transformations G⇒b G

′ are considered, this property relates
to the nature of the graph transformation rules in question, not to specific graphs before or
after rule application. Thus, the definition is independent from a graph grammar’s state space
or initial state. Then, 1-inductive invariants can be used as part of an inductive argument: if
the graph constraint in question is always preserved by all possible graph rule applications,
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Figure 3.4. – Example transformation G⇒a2f G
′ with G ⊧ F and G′ /⊧ F

and if it is satisfied in a graph grammar’s initial state, it holds in all states of the state space
– it is an operational invariant:

Lemma 3.4 (operational invariants of graph grammars). Let GG = (GTS ,G0) be a graph
grammar with a graph transformation system GTS = (TG ,R) and let F be a graph constraint.
F is an operational invariant of GG, if the following conditions hold:

1. G0 ⊧ F .
2. F is a 1-inductive invariant of GTS.

Proof. Consider a graph G in the graph grammar’s state space, i.e. G ∈ REACH(GG). Hence,
there exists a transformation sequence G0 ⇒n

R G. We will prove G ⊧ F by induction over n:

Base case. For n = 0, we have G = G0 and, by precondition, G ⊧ F .

Inductive step. Consider the sequence G0 ⇒n+1
R G with n + 1 > 0. Then, there is a transfor-

mation sequence G0 ⇒n
R G

′ and a transformation G′ ⇒R G. By inductive hypothesis, we have
G′ ⊧ F . By definition of 1-inductive invariants (Definition 3.3), the existence of the transforma-
tion G′ ⇒R G, and G′ ⊧ F and since F is a 1-inductive invariant, we have G ⊧ F , concluding
the inductive proof.

Lemma 3.4 describes a verification technique that solves Verification Problem 3.1 (p. 46).
Furthermore, as required, it introduces separately verifiable conditions for the graph grammar’s
start graph and its graph transformation system. By formulating the verification question
independent of a specific start graph, we decouple the initial system state and system behavior.
As a consequence, our verification approach requires safety issues to be addressed and ensured
at the behavioral level (i.e., at the level of graph rules) and not at the level of individual (initial)
system states. This is especially useful when the same system behavior is used in multiple and
slightly differing instances. For example, once successfully verified, the behavioral part of the
shuttle protocol can be safely used in different topologies and start graphs.

While Lemma 3.4 does not explicitly compute the graph grammar’s state space as part of
the verification process, the definition of 1-inductive invariants still reasons about all possible
transformations between graphs (cf. ∀G,G′(G⇒R G′...)). Explicit analysis of all those trans-
formations, however, is similarly infeasible to the exhaustive computation and analysis of the
system’s state space. Hence, we require a symbolic technique to establish a graph constraint as
a 1-inductive invariant. Earlier work [BBG+06, Dyc12] describes our solution for a restricted
formal model. In this thesis, Chapters 5 and 6 will do so for k-inductive invariant checking
with respect to a general (Chapter 5) and restricted formal model (Chapter 6).

Example 3.5. Recall the graph grammar and safety property F = ¬F1 ∧ ¬F2 ∧ ¬F3 from
Example 3.2, Figure 3.3 (p. 49). When applying Lemma 3.4 to this example, it is quite easy
to verify the first condition G0 ⊧ F : since G0 does not contain a fast, accelerating, or braking
shuttle (on a switch or elsewhere) as a subgraph, the initial state satisfies the safety property. If
the absence of this situation is preserved by application of graph rules, i.e. if F is a 1-inductive
invariant of GTS , all graphs reachable via application of graph rules from G0 will satisfy F .
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In this case, however, we have already discussed in Example 1.13 (p. 14) that F will not be
a 1-inductive invariant of our graph transformation system. Figure 3.4 shows a graph trans-
formation G⇒a2f G

′ where the origin of the transformation satisfies F while the result graph
G′ does not – it violates ¬F1. Note that neither G nor G′ actually appear in REACH(GG):
the analysis of graph rules is independent from the initial graph and state space. However,
since F is not a 1-inductive invariant, we cannot use the inductive argument of Lemma 3.4 to
establish that the system is safe.

In order to have F as a 1-inductive invariant, we may attempt to further modify our graph
transformation rules, i.e. system behavior, by adding more application conditions that prevent
a shuttle from accelerating before arriving at a switch. However, proving that F is a 1-inductive
invariant is non-trivial even for this small example – which is why previous work has formalized
and implemented a symbolic verification algorithm [BBG+06, Dyc12].

Since G0 and the state space are finite, we could also employ explicit-state model checking
for both examples. However, we would have to repeat the verification whenever the track
topology changes – and, for a very large start graph G0, 1-inductive invariant checking may
be more efficient. Furthermore, if we allowed rules adding tracks to our system, we would have
an infinite state space. △

Conclusion. This chapter has reiterated the existing formal approach to 1-inductive invariant
checking for graph transformation systems [BBG+06, Dyc12]. With respect to Verification
Problem 1.3 (p. 13) and the challenges of symbolic approaches in general and 1-inductive
invariant checking in particular, this chapter leaves us with three important issues:

State space restrictions. In some cases, we want to impose restrictions on state spaces of
systems to be verified. In particular, we may want to consider only states that are reach-
able via paths whose graphs fulfill a graph constraint. There are several reasons for
this approach: the constraint may reflect assumptions about the systems out of scope of
the verification. The constraint may also reflect proven guarantees about the systems,
which can be used to support the verification. Restrictions of state spaces are included
in Verification Problem 1.2 (p. 13) and its successor, Verification Problem 1.3 (p. 13).

Infinite number of start graphs. Lemma 3.4 (p. 50) and Verification Problem 1.1 (p. 1) refer
to one graph grammar with a specific start graph. While the verification of G0 ⊧ F for a
start graph G0 and graph constraint F is not computationally challenging, it needs to be
repeated with every change in the start graph. In order to solve Verification Problem 1.3
(p. 13) and truly achieve independence from specific start graphs, we would have to
consider all possible start graphs. Given the current formalism, that is either infeasible
– because the number of start graphs might be infinite – or unnecessarily restrictive –
because we would need to explicitly supply a finite set of possible start graphs.

Completeness and false negatives. The technique’s inductive step in Lemma 3.4 (p. 50) is
one of the main strengths of the approach: it only refers to a (fixed) set of graph trans-
formation rules, not (initial) system states. However, that strength comes with a specific
flaw: locality and lack of context information. While our approach and implementation
of 1-inductive invariant checking is sound in the sense that it will never erroneously
report graph constraints to be 1-inductive invariants, counterexamples can be false nega-
tives [Dyc12]. We wish to reduce that number of false negatives (and, in doing so, address
Appl.-deg.completeness). Therefore, this thesis and its preceding work [3, 4] extend
1-inductive invariants to k-inductive invariants. Taking not only singular transforma-
tions but a path of transformations into account accumulates more information about
the situation and system in question and reduces the number of false negatives.
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4. From 1-Induction to k-Induction

In order to address some of the problems and limitations of 1-inductive invariant checking, this
thesis aims at extending the approach in several directions, most notably towards k-induction.
This chapter will formalize the informal approach to k-inductive invariant checking described
in Section 1.3, similar to Chapter 3 and the corresponding Section 1.2 for 1-inductive invariant
checking. As such, this chapter is the first step towards Formal-general, Formal-restricted,
and Impl.-restricted, which make up the main contribution of this thesis. However, we will
still remain on an abstract level in this chapter. Similar to Chapter 3, which discussed 1-
inductive invariant checking on the basis of a basic formal model, this chapter will address its
extension on the basis of what will be called the general formal model. Constructions and an
algorithmic view will then appear in Chapters 5 for said general formal model – and, alongside
the implementation, in Chapter 6 for a restricted formal model.

Outline. Figure 4.1 provides an overview of this chapter’s structure. In Chapter 3, we recalled
the definition for 1-inductive invariants. Inductive invariants were used in Lemma 3.4 in order
to solve Verification Problem 3.1, which is concerned with establishing a safety property’s
validity in a graph grammar’s state space. In this chapter, we address the issues brought up
in Chapter 1 and revisited in Chapter 3, namely restricting systems’ state spaces (Verification
Problem 1.2) and reasoning about a set of systems (Verification Problem 1.3).

In Section 4.1, we introduce a way to restrict a graph grammar’s state space by an additional
graph constraint, which we call a guaranteed constraint. A guaranteed constraint forbids the
occurence of states violating it (in the state space). This notion is formalized in Definition 4.1,
which defines a graph grammar’s state space under a (guaranteed) constraint. The idea and
justification behind this extension will be explained in detail; in short, it allows for a more
direct inclusion of additional information and potential characteristica of systems that would
otherwise be difficult to formalize.

Using guaranteed constraints, we then formalize Verification Problem 1.2 in Verification
Problem 4.1, which is also an extension of Verification Problem 3.1. In Lemma 4.5, we pro-
vide a verification approach that solves this new verificaction problem using the notion of
1-inductive invariants under a guaranteed constraint (Definition 4.4). This lemma is an exten-
sion of Lemma 3.4, which did not use a guaranteed constraint.

We also extend our approach to reason not only about a singular graph grammar, but,
by taking sets of start graphs into account, about a (possibly infinite) set of induced graph
grammars. Induced graph grammars (Definition 4.7) are sets of grammars defined by a graph
transformation system and a start configuration constraint that describes possible start graphs.

Verification Problem VP.1g then uses induced graph grammars to formalize Verification
Problems 1.3 and extend Verification Problem 4.1. It is solved by the verification approach
described in Lemma 4.9. Like Lemma 4.5, it uses an inductive argument with 1-inductive
invariant checking. However, it also requires implication of the safety property by the start
configuration constraint to establish the base case of its inductive argument.

In Section 4.2, we extend the notion of 1-inductive invariants to k-inductive invariants, which
are defined in Definition D.1: validity of the respective constraint in a path of transformations of
length k−1 implies its validity for the resulting state after any subsequent transformation. This
notion will first be used by Lemma 4.12 to reason about singular graph grammars (Verification
Problem 4.1) with an adjustment to the base of induction: the k-inductive invariant has to be
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valid in all paths of length k −1 from the graph grammar’s start graph (as opposed to validity
in just the start graph). The corresponding formal concept is introduced as k-bounded state
space in Definition 4.11.

Our central verification approach, which is formalized in Lemma L.1, will then solve Veri-
fication Problem VP.1g. It employs k-inductive invariants (under a guaranteed constraint) to
reason about induced graph grammars. As before, the k-inductive invariant will be used as
the inductive step of an inductive argument. However, we have to adjust the base of induction
again as well: not one k−1-bounded state space given a singular start graph has to be consid-
ered, but all k−1-bounded state spaces from all possible start graphs described by the start
configuration constraint.

Lastly, Lemma L.2 describes a verification approach that combines Lemma L.1 with an
additional verification step for the guaranteed constraint. In some cases, explicit verification
of the guaranteed constraint can be required.

Note the orthogonality of two dimensions here: both 1-induction and k-induction can be used
to solve Verification Problem 4.1, which addresses a singular graph grammar, and Verification
Problem VP.1g, which addresses a set of induced graph grammars.

4.1. Extending 1-Induction

First, we will address the point of imposing limitations on a system’s state space, i.e. limit the
states the system can assume (by rule application). We recall the corresponding verification
problem from Chapter 1:

Verification Problem 1.2. Given a system defined by a system metamodel, an initial system
state, specification of system behavior, and restrictions on the state space and given a set of
safety properties, does every state in the restricted state space of the system satisfy the safety
properties?
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While we can specify most abstract elements of this verification elements in the same fashion
as Verification Problem 3.1 (p. 46), we have to formalize the restriction of a system’s state
space. We use a graph constraint to achieve this; this type of constraint is called guaranteed
constraint.

Definition 4.1 (state space under constraint [4]). Given a graph grammar GG = (GTS ,G0)
with GTS = (R,TG) and a graph constraint H, we define the grammar’s state space under H
as REACH(GG ,H) = {G ∣ ∃n(G0 ⇒n

R G) such that all traversed graphs satisfy H}.

In essence, the state space under a guaranteed constraint consists of exactly those states that
are reachable via paths of transformations where all graphs involved satisfy the guaranteed
constraint (hence the name). While undesired or dangerous system states in safety-critical
systems should be modeled and verified as safety properties there are three classes of cases
where an a priori exclusion of states via a guaranteed constraint is justified:

Type graph constraints. Type graphs as defined in Definition 2.8 (p. 21) do not take car-
dinality constraints or other restrictions into account, even though those will play an
important role in most systems. Particularly where physical systems are concerned, car-
dinality constraints can be used to exclude physical impossibilities: there is no sense in
checking safety issues for physically impossible states.

External assumptions. If a system is to be developed under given assumptions, states violating
both safety properties and the assumptions should not be considered possible violations
of the specification. Hence, system verification should discard possible safety violations
where the assumptions are not satisfied.

Controlled execution. Graph rules specify behavior and can include fine-grained conditions
for their application; however, some systems may additionally be equipped with a higher-
level controlling unit. For example, an interpreter used to execute graph transformation
rules may include a preprocessing step that rejects the application of graph rules leading
to states with certain properties.

Example 4.2 (guaranteed constraint). Figure 4.2(a) shows a typical example of a type graph
constraint. More specifically, ¬H1 is a cardinality constraint resulting from the physical im-
possibility of a shuttle being located on two tracks at the same time. We may want to have
our systems’ state spaces exclude states including such impossibilities.

Figure 4.2(b) is a special case of a type graph constraint and requires some explanation.
The example system is supposed to specify a protocol for behavior of individual shuttles with
respect to their speed modes – interaction of shuttles is not considered in this example. Hence,
in order to avoid conflicts through concurrent behavior, the graph constraint ¬H5 = ¬∃iPH

5

guarantees that we anaylze behavior of shuttles only with respect to one individual shuttle at
a time. The problem of concurrent behavior and its effect on inductive invariant checking is
discussed in Chapter 9, Section 9.5.

Figure 4.2(c) is another example for a type graph restriction, although it is not a cardinality
constraint. A shuttle can be in only one speed mode at a time; simultaneously driving fast and
slow is not possible and is hence excluded by the graph constraint ¬H6 = ¬∃iC6 .

The constraint ¬H16 in Figure 4.2(d) is an example for an external assumption; specifically,
a single fault assumption. In this example, we expect that it is possible to detect and count
operational faults of shuttles. Those faults might include measurement errors, e.g. with respect
to distance coordination, shuttle velocity, or failure to detect a switch ahead. If the probability
of a shuttle encountering two such faults has been shown to fall beneath a certain threshold,
the specification may include this single fault assumption as an external assumption governing
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Figure 4.2. – Fragments of a guaranteed constraint H = ¬H1 ∧ ... ∧ ¬H5 ∧ ¬H6 ∧ ... ∧ ¬H16

the implementation of the system. Hence, the system will be implemented to ensure safety
properties only under that assumption – and verification should likewise take the assumption
into account.1 In particular, assuming an extended type graph (by an additional edge type
fault), we can model operational faults in shuttles by adding a fault edge per fault to the
respective shuttle. The graph constraint ¬H16 then forbids the existence of a shuttle with two
fault edges – i.e., two failures – therey implementing the single fault assumption.

In our example system, the constraints ¬H1, ¬H5, ¬H6, and other constraints not shown here
are conjunctively combined as H = ¬H1∧¬H2∧¬H3∧...∧¬H15. While graph constraints can be
arbitrarily complex with respect to nesting and boolean combinations, guaranteed constraints
in our example systems are usually combinations of less complex existential conditions.

It is difficult to find an example for controlled execution in this example system, or in any
physical system modeled as a graph transformation system. A preprocessing step requires
computation of a transformation’s result graph before its actual application, which is not
feasible in terms of cost and performance in most physical or real-time systems. Transformation
engines specifically tailored towards model transformations may take such preprocessing steps.
A typical use case would be to ensure certain cardinality constraints or to remove temporary
elements – markers, traceability information – after completing the model transformation. △

Even for cases outside of these classes, using a guaranteed constraint may make sense:
sometimes, validity of properties in a system’s state space has already been proven separately.
Then, we can make use of this information during the verification of the remaining properties
by using the established properties as a guaranteed constraint.

Note that the guaranteed constraint H has direct implications for the validity of F in state
spaces. If, for example, H implies F , F will obviously hold in all states of state spaces under
H – independent of the behavior specified by the graph transformation system.

Given guaranteed constraints and their effect on state spaces as established by Definition 4.1
(p. 55), we will also extend the definition of operational invariants to reflect the effect of a
guaranteed constraint:

1There are more than a few legal and ethical considerations involved in such an approach, especially where
safety-critical systems are concerned, but their discussion is beyond the scope of this thesis.
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Definition 4.3 (operational invariant). Given a graph grammar GG and graph constraints
F and H, we say that F is an operational invariant of GG under H, if, for all graphs G ∈
REACH(GG ,H), we have G ⊧ F .

With that, we can refine Verification Problem 1.2 (p. 13) with appropriate formal elements:

Verification Problem 4.1. Given a graph transformation system GTS = (TG ,R), a graph
grammar GG = (GTS ,G0), and graph constraints F and H, is F an operational invariant of
GG under H?

This verification problem is an extension of Verification Problem 3.1 (p. 46); conversely, the
latter is a special case of the former: if we choose H = true, the two problems are identical.

While the use of guaranteed constraints to restrict state spaces of graph grammars makes
sense in a number of situations, this approach raises certain challenges for system verification:
it is desirable to have the graph transformation system or graph grammar under verification
match the actual system as close as possible. Hence, the validity of guaranteed constraints
should ideally be enforced by system behavior, i.e. the graph rules; then, it can be verified
similar to the safety properties in question. This applies to both type graph constraints and
constraints enforced by controlled execution, but not usually to external assumptions. In the
approaches to follow, we will focus on the verification of safety properties under a guaranteed
constraint. To also take explicit verification of the guaranteed constraint under consideration,
we will introduce a verification approach for guaranteed properties at the end of this chapter.
Its combination with the solutions to the verification problems above will then reason about
the validity of safety properties without unverified assumptions about guaranteed constraints.

Furthermore, we need to modify our Definition of 1-inductive invariants to take the guaran-
teed constraint into account. Since a guaranteed constraint restricts the state space relevant
for verification of the system, inductive invariants should similarly focus on transformations
between graphs satisfying the guaranteed constraint.

Definition 4.4 (1-inductive invariant under constraint [1]). Given a graph transformation
system GTS = (TG ,R) and graph constraints F and H, F is an inductive invariant of GTS
under H, if, for all rules b ∈R, the following condition holds:

∀G,G′((G⇒b G
′ ∧G ⊧H ∧G′ ⊧H)⇒ (G ⊧ F ⇒ G′ ⊧ F)

We also say that GTS preserves F under H.

This definition follows the idea explained earlier: violations of the guaranteed constraint can
be excluded from our analysis. Here, F is only required to be preserved upon rule application
if no violations of H are encountered before or after the transformation.

Similarly, Lemma 3.4 (p. 50), which reasons about the validity of F in the graph grammar’s
state space, has to be updated. We need to take the guaranteed constraint H into account:
the approach now attempts to establish the validity of the safety property F as an operational
invariant under H (i.e. in REACH(GG ,H)).

Lemma 4.5 (operational invariants of graph grammars under a constraint). Let GG = (GTS ,G0)
be a graph grammar with a graph transformation system GTS = (TG ,R) and let F and H be
two graph constraints. F is an operational invariant of GG under H, if the following conditions
hold:

1. G0 ⊧ F .
2. F is a 1-inductive invariant of GTS under H.

– 57 –



4. From 1-Induction to k-Induction

𝐺 

s:Shuttle 

t1:Track t2:Track :next 

:isAt 

:acc 

t3:Track :next 

t4:Track 

:next 

t5:Track :next 
𝐺′ 

s:Shuttle 

t1:Track t2:Track :next 

:isAt 

:fast 

t3:Track :next 

t4:Track 

:next 

t5:Track :next 

⇒𝑎2𝑓 

(a) Example transformation G⇒a2f G
′ with G ⊧ F and G′ /⊧ F ; furthermore, G ⊧H and G′ ⊧H

𝐴 

s:Shuttle 

t1:Track t2:Track :next 

:isAt 

:acc 

t3:Track :next 

t4:Track 

:next 

t5:Track :next 
𝐴′ 

s:Shuttle 

t1:Track t2:Track :next 

:isAt 

:fast 

t3:Track :next 

t4:Track 

:next 

t5:Track :next 

⇒𝑎2𝑓 
:slow :slow 

(b) Example transformation A⇒a2f A
′ with G ⊧ F and G′ /⊧ F ; however, A′ /⊧H

Figure 4.3. – Example graph transformations as potential counterexamples for F being a
1-inductive invariant under H

Proof. Consider a graph G in the grammar’s state space under H, i.e. G ∈ REACH(GG ,H).
Hence, there exists a transformation sequence G0 ⇒n

R G such that all traversed graphs satisfy
H. We will prove G ⊧ F by induction over n:

Base case. For n = 0, we have G = G0 and, by precondition, G ⊧ F .

Inductive step. Consider the sequence G0 ⇒n+1
R G with n + 1 > 0. Then, there is a trans-

formation sequence G0 ⇒n
R G

′ and a transformation G′ ⇒R G such that all traversed graphs
satisfy H. By inductive hypothesis, we have G′ ⊧ F . By Definition 4.4 and the existence of the
transformation G′ ⇒R G and since all traversed graphs satisfy H and G′ ⊧ F , and since F is
an 1-inductive invariant under H, we have G ⊧ F , concluding the inductive proof.

Example 4.6 (1-inductive invariant under constraint). We recall the counterexample for F be-
ing a 1-indcutive invariant for GTS (Example 3.5, p. 50), which is shown again in Figure 4.3(a).
Since both G and G′ satisfy the guaranteed constraint H, it is also a valid counterexample
for F being a 1-inductive invariant under H. On the other hand, consider the counterexample
A⇒a2f A

′ shown in Figure 4.3(b): since A′ has a shuttle in speed modes slow and fast at the
same time, it violates ¬H6 (Figure 4.2(c)) and hence, violates the guaranteed constraint H.
Likewise, A violates a similar constraint. As a result, A⇒a2f A

′ is not a valid counterexample
when the guaranteed constraint is taken into account. G⇒a2f G

′, however, still is.

With respect to Lemma 4.5, discarding counterexamples with violations of the guaranteed
constraint H makes sense: we are interested in establishing the validity of the safety property
in the state space REACH(GG ,H), which does not include graphs violating H. However,
because of the counterexample G⇒a2f G

′, F is not a 1-inductive invariant for GTS under H
– we cannot use Lemma 4.5 to show validity of F in the graph grammar’s state space. △

Lemma 4.5 solves Verification Problem 4.1 (p. 57). Like Verification Problem 3.1 (p. 46),
it still addresses a singular graph grammar, but already considers the restricted state space
unter a guaranteed constraint.

This brings us to the second issue highlighted at the end of Chapter 3: dealing with more
than one initial state, i.e. start graph. We recall Verification Problem 1.3 (p. 13), which is an
extension of Verification Problem 1.2 (p. 13):

Verification Problem 1.3. Given a set of systems defined by a system metamodel, a set of
initial states, specification of system behavior, and restrictions on the state space and given a
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set of safety properties, does every state in the restricted state spaces of all systems satisfy the
safety properties?

With guaranteed constraints, we have a formalization for restrictions imposed on state
spaces. To formalize Verification Problem 1.3 (p. 13), we also need to supply a set of ini-
tial states for the systems in question. Considering all possible start graphs conforming to the
type graph is neither feasible nor (usually) useful. For example, all start graphs violating a
safety property will necessarily lead to an unsafe system (graph grammar). Thus, it makes
sense to further restrict the set of possible start graphs. One the one hand, we would like to
allow a large or possibly infinite number of start graphs; on the other hand, we need a sym-
bolic representation of those start graphs such that their analysis (G0 ⊧ F , the first condition
of Lemma 3.4 (p. 50)) is still feasible. Our solution is the concept of induced graph gram-
mars: a graph constraint, called a start configuration constraint, restricts the set of allowed
start graphs. In combination with a graph transformation system, it induces a set of graph
grammars.

Definition 4.7 (induced graph grammars). Given a graph transformation system GTS and
a graph constraint S, we define the set of graph grammars induced by GTS and S as the set
IND(GTS ,S) = {(GTS ,G0) ∣ G0 ⊧ S}.

Here, S is not specified further, apart from the fact that it is a graph constraint. Note that
similar to the relationship between a safety property F and a guaranteed constraint H, the
choice of the start configuration constraint S has implications for the validity of F and the
state spaces.

In general, we will require the start configuration constraint S to imply the constraint F
to be verified, i.e. S ⊧ F . In other words, all possible start graphs need to be error-free.
This can always be achieved: given a desired start configuration constraint S ′, we can choose
the actual start configuration constraint as S = S ′ ∧ F . This requirement will ease the proof
obligations of our verification approach for the base of induction and shifts a part of that
burden to system specification. For instance, if someone were to choose S ′ and F such that
they contradict each other, S = S ′ ∧ F would not have any satisfying graphs and the set of
induced graph grammars would be empty. However, finding such occurrences is not the focus
of our verification approach: we want to verify that our systems are safe, not find out whether
or not they fulfill the designer’s intent outside of safety concerns. To give an extreme example,
a designer also has the freedom to choose F = true or H = false – for the former case, all
systems are safe by default, for the latter case, all state spaces are empty (which also makes all
systems safe). Validating systems with respect to their specifications is not the focus here – we
need to assume that constraints and parameters are suitably chosen. This, then, also applies
to the choice of S.

We do not usually have a similar requirement for S and H. If S does not imply H, there
will be graph grammars in IND(GTS ,S) with empty state spaces under H: in particular, for
graph grammars GG with start graphs G0 that satisfy S but violate H, the state space of GG
under H – i.e. {G ∣ ∃n(G0 ⇒n

R G) such that all traversed graphs satisfy H} – will evaluate to
the empty set. Following the idea of a guaranteed constraint, these graph grammars are to be
disregarded. This does not affect the verification result: by definition, these graph grammars
will indeed have F as an operational invariant under H, which is our verification goal. Hence,
where verification of operational invariants under H is concerned, S ⊧H is not required.

Example 4.8 (running example and start configuration constraint). We recall Example 3.2
(p. 47) with Figures 3.2 and 3.3 (p. 49) where the shuttle example is modeled as a graph
grammar with a type graph, a set of graph rules, and a start graph and where we have
specified a safety property F = ¬F1 ∧ ¬F2.
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Figure 4.4. – Example start graph constraint S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3

For this example system, Figure 4.4 shows a graph constraint that could reasonably be chosen
to describe start configurations. S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3 is a conjunction of three negated
existential constraints. In particular, ¬SC 1 = ¬∃iPSC

1
(Figure 4.4(a)) and ¬SC 2 = ¬∃iPSC

2

(Figure 4.4(b)) specify that no shuttles in the system’s initial state should be in speed modes
fast or acc. In addition, ¬SC 3 = ¬∃iPSC

3
(Figure 4.4(c)) forbids start graphs where a shuttle

(regardless of its speed mode) is located on a switch. In summary, possible start graphs of the
system are all graphs (typed over the type graph) that do not contain a shuttle on a switch
and a shuttle driving in speed mode fast or acc.

Note that ¬SC 3 already implies the safety property F = ¬F1 ∧¬F2 ∧¬F3 from Example 3.2,
Figure 3.3 (p. 49): if shuttles on a switch are forbidden (as part of the start graph), shuttles
on a switch in mode fast, acc, or brake are necessarily forbidden as well. Furthermore, ¬SC 1

implies ¬F1 and ¬SC 2 implies ¬F2, for similar reasons.

Given the graph transformation system GTS = (TG ,R) and the graph G0 specified in Exam-
ple 3.2 (p. 47), we have (GTS ,G0) ∈ IND(GTS ,S): G0 indeed satisfies the start configuration
constraint S. △

With induced graph grammars and a start configuration constraint (and, as before, a guar-
anteed constraint), we can formalize Verification Problem 1.3 (p. 13) as follows:

Verification Problem VP.1g. Given a graph transformation system GTS = (TG ,R) and
graph constraints F , S, and H with S ⊧ F , does every graph grammar GG ∈ IND(GTS ,S)
have F as an operational invariant under H?

In more detail, we ask whether the property (F) holds in all states (G) of the state
spaces under a guaranteed constraint (REACH(GG ,H)) for all graph grammars induced
(GG ∈ IND(GTS ,S)) by the behavioral specification (GTS ) and the restrictions on the start
graphs (S). The difference to Verification Problem 4.1 (p. 57) is the use of induced graph
grammars and a start configuration constraint. We reason about REACH(GG ,H) for graph
grammars GG ∈ IND(GTS ,S) as opposed to the state space (under H) REACH(GG ,H) of
a singular graph grammar GG = (GTS ,G0). The first formalized Verification Problem 3.1
(p. 46) in Chapter 3 considered neither induced graph grammars nor a guaranteed constraint.

As before, we introduce a solution to this verification problem:

Lemma 4.9 (operational invariants of induced graph grammars under a constraint). Let
GTS = (TG ,R) be a graph transformation system and let F , H, and S be graph constraints
with S ⊧ F . F is an operational invariant of GG under H for all graph grammars GG ∈
IND(GTS ,S), if the following condition holds:

2. F is a 1-inductive invariant of GTS under H.
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Proof. Consider an arbitrary graph grammar GG ∈ IND(GTS ,S) and a graph G in the graph
grammar’s state space under H, i.e. G ∈ REACH(GG ,H). Hence, there exists a transformation
sequence G0 ⇒n

R G such that all traversed graphs satisfy H and that G0 ⊧ S. We will prove
G ⊧ F by induction over n:

Base case. For n = 0, we have G = G0. By precondition, we have S ⊧ F and, with G0 ⊧ S
and by Definition 2.36 (p. 42), G0 ⊧ F .

Inductive step. Consider the sequence G0 ⇒n+1
R G with n + 1 > 0. Then, there is a trans-

formation sequence G0 ⇒n
R G

′ and a transformation G′ ⇒R G such that all traversed graphs
satisfy H. By inductive hypothesis, we have G′ ⊧ F . Since all traversed graphs satisfy H and
by Definition 4.4, the existence of the transformation G′ ⇒R G, and G′ ⊧ F and since F is an
1-inductive invariant under H, we have G ⊧ F , concluding the inductive proof.

Lemma 4.9 then solves Verification Problem VP.1g by extending Lemma 4.5 (p. 57). Note
that, similar to the definitions of inductive invariants with and without a guaranteed constraint,
there is no need to change the proof’s inductive step in comparison to Lemma 4.5 (p. 57) – it
is unaffected by the notion of induced graph grammars and the start configuration constraint.
Our argument for the inductive step is based on 1-inductive invariants, which refer only to
the graph transformation rules, not to initial states of graph grammars. The base of induction
follows from our requirement that start configuration constraints always imply the constraint
that will be verified (S ⊧ F). As a result, an explicit condition (1) for the base case of the
inductive argument is missing in this lemma.

Example 4.10 (operational invariants of induced graph grammars under a constraint). Since
the inductive step has not changed in comparison to Lemma 4.5 (p. 57) and since we have not
modified any graph rules in our graph transformation system, F will still not be a 1-inductive
invariant under H – and Lemma 4.9 cannot be applied to the example. However, we can
reiterate that the start configuration constraint S = ¬SC 1 ∧¬SC 2 ∧¬SC 3 indeed implies F as
required – we have established this connection in Example 4.8 (p. 59). △

Verification Problem VP.1g and Lemma 4.9 have addressed the first and second issue brought
up in Sections 1.2 and 1.3 and reiterated at the end of Chapter 3: taking additional information
and restrictions of the state space into account and supporting multiple – possibly infinitely
many – initial states. We are left with issues concerning the quality of the verification results:
locality and lack of context information in our inductive argument. This is a side effect of using
a symbolic approach; however, a symbolic approach is necessary to reason about infinitely many
cases in finite time. In order to keep its positive and alleviate its negative effects, we will extend
the notion of 1-inductive invariant to k-inductive invariants [3].

The introduction of guaranteed constraints and induced graph grammars with start config-
uration constraints also leads to an extension of the original formal model (from Chapter 2)
to what will be called the general formal model:

Formal Model (general). Systems and system specifications consist of the following elements:

System metamodels are specified by type graphs (Definition 2.8 (p. 21)).
System states – including initial states – are described by typed graphs (Definitions 2.1 (p. 20)

and 2.8 (p. 21)).
System behavior is described by a typed graph transformation system (Definition 2.24 (p. 34)),

which consists of typed graph transformation rules (Definition 2.20 (p. 32)).
Properties are modeled as graph constraints (Definition 2.12 (p. 25)) – this includes the con-

straint F to be verified, the guaranted constraint H, and the start configuration constraint
S. As an additional requirement, S needs to imply F , i.e. S ⊧ F .
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Table 4.1. – Earlier and general formal model

Element
Formal Model
(basic, earlier work)

Formal Model
(general)

System metamodels Type graphs Type graphs

System states Typed graphs Typed graphs

System behavior
Graph rules with left applica-
tion conditions

Graph rules with left applica-
tion conditions

Safety properties Graph constraint Graph constraint

Guaranteed properties – Graph constraint

Set of initial states
No explicit concept; implicitly,
same as the safety properties

Graph constraint

Systems Typed graph grammars Typed graph grammars

System state spaces Graph grammars’ state spaces
Graph grammars’ state spaces
a under guaranteed constraint

System sets – Induced graph grammars

Systems are specified by typed graph grammars (Definition 2.28 (p. 36)), which consist of an
initial state – a start graph – and a typed graph transformation system.

System state spaces are described by the state spaces (Definitions 2.28 (p. 36) and 4.1, p. 55)
– the set of all reachable graphs – of the corresponding graph grammars (under the guar-
anteed constraint).

System sets are described by graph grammars induced (Definition 4.7 (p. 59)) by a graph
transformation system and a start configuration constraint.

The differences to the formal model used in earlier work (without considering restrictions in
implementation) are highlighted in Table 4.1.

4.2. k-Induction

Intuitively, k-inductive invariant checking takes paths of transformations rather than singular
transformations into account in order to accumulate more information about the situation and
system in question and reduce the number of false negatives.

Definition D.1 (k-inductive invariant [3]). Given a typed graph transformation system GTS =
(TG ,R) and graph constraints F and H, F is a k-inductive invariant of GTS under H, if,
for all sequences of transformations to R trans = G0 ⇒R ...⇒R Gk−1⇒R Gk it holds that:

(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F)) ⇒ (Gk ⊧ F)

This definition formalizes the general notion of k-inductive invariants introduced in Defini-
tion 1.12 (p. 14). Intuitively, a graph constraint F is a k-inductive invariant if its validity in a
path of transformations of length k − 1 (G0 ⇒R G1 ⇒R ...⇒R Gk−1) and ∀z(0 ≤ z ≤ k − 1⇒
Gz ⊧ F) implies its validity after another singular transformation (Gk−1⇒R Gk and Gk ⊧ F).
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As before, only transformations where graphs satisfy the guaranteed constraint are considered
(∀z(0 ≤ z ≤ k⇒ Gz ⊧H)).

Similar to the basic definition of 1-inductive invariants, the concept of k-inductive invariants
can also be defined without a guaranteed constraint. We can, however, achieve the same effect
using a guaranteed constraint H = true; hence, we will not establish a separate definition.

Note that 1-inductive invariants are a special case of k-inductive invariants [3]; conversely,
k-inductive invariants are a generalization of 1-inductive invariants. For k = 1, the notion of
k-inductive invariants is equivalent to the concept of 1-inductive invariants. Therefore, and to
avoid confusion of the two terms, we use the term inductive invariant to refer to k-inductive
invariants, including cases with k = 1; the earlier concept of inductive invariants [1] as in
Definition 4.4 (p. 57) will be referred to as 1-inductive invariants.

Since we replace 1-inductive invariants with k-inductive invariants as the inductive step of
an inductive proof, we also have to change the base case. For example, a 2-inductive invariant
does not only require validity in a single state to conclude validity in subsequent steps, but
requires validity in a path of length 1 (i.e., in two states). In more general terms, a k-indcutive
invariant requires a base of induction of length k − 1. In order to express this condition in
formal terms, we will first establish a state space that only encompasses states reachable
from a graph grammar’s initial state in a limited amount of steps, similar to bounded model
checking [BCC+03].

Definition 4.11 (k-bounded state space under constraint [4]). Given a graph grammar GG =
((TG ,R),G0) and a number k ∈ N with k ≥ 1, we define the graph grammar’s state space
bounded by k, or k-bounded state space, as REACHk(GG) = {G ∣ ∃n(0 ≤ n ≤ k ∧ G0 ⇒n

R G)}.
We define the state space bounded by k under a graph constraint H as REACHk(GG ,H) =
{G ∣ ∃n(0 ≤ n ≤ k ∧ G0 ⇒n

R G) such that all traversed graphs satisfy H}.
Furthermore, we define REACH0(GG) = {G0} and REACH0(GG ,H) = {G0} if G0 ⊧H and

REACH0(GG ,H) = ∅ otherwise.

Note that the replacement of 1-induction by k-induction is orthogonal to the extension from
singular graph grammars to induced graph grammars. First, with the concept of bounded state
spaces, we will extend the base case of Lemma 4.5 (p. 57), which reasons about a single graph
grammar’s state space (under a guaranteed constraint). Following that, we will combine both
k-induction and induced graph grammars.

Lemma 4.12 (operational invariants of graph grammars under a constraint [4]). Let GG =
(GTS ,G0) be a graph grammar with a graph transformation system GTS = (TG ,R) and let F
and H be two graph constraints. F is an operational invariant of GG under H, if there exists
a k ∈N with k ≥ 1 such that the following conditions hold:

1. ∀G(G ∈ REACHk−1(GG ,H)⇒ G ⊧ F).
2. F is a k-inductive invariant for GTS under H.

Proof. Consider a graph G in the graph grammar’s state space under the constraint, i.e.
G ∈ REACH(GG ,H). Hence, there exists a transformation sequence G0 ⇒n

R G such that all
traversed graphs satisfy H. If n ≤ k − 1, we have G ⊧ F by precondition.

We will prove the case n > k − 1 by induction:
Base case. For n = k, there exist a transformation sequence G0 ⇒k−1

R G′ and a transformation
G′ ⇒R G. Also, all graphs in the sequence satisfy H and there exist transformation sequences
(whose length is smaller than k) from G0 to all graphs in the sequence such that all traversed
graphs satisfy H. Hence, by precondition (1), G′ ⊧ F and all graphs in the sequence satisfy F .
Then, since F is a k-inductive invariant under H (2) and holds in all graphs of the sequence
G0 ⇒k−1

R G′ and since we have G0 ⇒k−1
R G′ and G′ ⇒R G, we get G ⊧ F .

– 63 –



4. From 1-Induction to k-Induction
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Figure 4.5. – Erroneous transformation sequence trans = G∗ ⇒s2a G⇒a2f G
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Figure 4.6. – Graph transformation G0 ⇒s2s G1

Inductive step. Consider a sequence G0 ⇒n
R G with n > k. Then, there is a transformation

sequence G0 ⇒n−1
R G′ and a transformation G′ ⇒R G. By inductive hypothesis, F holds in all

graphs of the sequence G0 ⇒n−1
R G′. Since F is a k-inductive invariant under H (2) and n > k,

we have G ⊧ F , concluding the inductive proof.

Example 4.13 (2-inductive invariant and 1-bounded state space). Given our example shuttle
system (Example 3.2, Figures 3.2 and 3.3 (p. 49)), we already know that F = ¬F1 ∧¬F2 ∧¬F3

is not a 1-inductive invariant under H – and, as a result, we cannot apply Lemmas 4.5 (p. 57)
and 4.9 (p. 60). With the extension towards k-inductive invariants, however, we can attempt
to verify F as a 2-inductive invariant – or, if that fails, as a k-inductive invariant for even
higher values of k.

Consider the transformation G ⇒a2f G
′ used as a counterexample in Figure 4.3 (p. 58). In

order to find out whether a similar counterexample exists for F as a 2-inductive invariant, we
search for a transformation G∗ ⇒R G. Then, trans = G∗ ⇒R G ⇒a2f G

′ is a transformation
sequence of length 2. By definition of k-inductive invariants, if we find that G∗ satisfies both
H and F , trans is a counterexample since G′ still violates F .

Figure 4.5 shows such a sequence trans = G∗ ⇒s2a G⇒a2f G
′. However, given a closer look,

we notice that trans is not a valid transformation sequence: because of the negative application
condition in s2a (Figure 3.2(h), p. 48), the rule is not applicable to G∗. Furthermore, there is
no other possibility to reach G. Only the rule s2a can lead to a shuttle driving in speed mode
acc; hence, G⇒ G′ cannot be part of a proper counterexample.

Of course, this does not prove that F is a 2-inductive invariant for GTS under H. It merely
shows that we may have to consider other transformation sequences. Even without considering
human error as a factor, it is usually difficult enough to find a counterexample by hand,
assuming one exists. Manually proving the absence of counterexamples for infinitely many
cases is impractible at least and usually impossible. This, then, is why we need an automated
and symbolic algorithm.

Assuming that F is a 2-inductive invariant – which, as we will see later, it is – we still have
to show the validity of F in the 1-bounded state space of GG under the guaranteed constraint
H, i.e. in REACH1(GG ,H). Given the start graph G0 (Figure 3.2(i), p. 48), there is only
one rule applicable – s2s. This results in the transformation G0 ⇒s2s G1, which is depicted in
Figure 4.6 (with some parts of G0 and G1 left out). Since both G0 and G1 satisfy H, we have
REACH1(GG ,H) = {G0,G1}. Then, since both G0 and G1 satisfy F , we have successfully
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established the induction base for Lemma 4.12. If F is a 2-inductive invariant for GTS under
H, we can conclude that F is satisfied in all graphs in the graph grammar’s state space under
H. In other words, F is an operational invariant of GG under H. △

Lemma 4.5 (p. 57), which reasons about the validity of a graph constraint in a singular
graph grammar’s state space (under a guaranteed constraint) using 1-inductive invariants, can
now be considered a special case of Lemma 4.12 (p. 63): if we only consider the case k = 1,
both lemmas are equivalent. The set REACHk−1(GG ,H) = REACH0(GG ,H) (for k = 1) in
condition 1 contains only the graph grammar’s start graph G0, which reduces the condition to
G0 ⊧ F – unless G0 /⊧H, in which case the graph grammar’s state space under the constraint
is empty anyway.

Similar to verification via 1-inductive invariant checking (Lemmas 4.5 (p. 57) and 4.9 (p. 60)),
we can extend Lemma 4.12 (p. 63) in order to reason about the set of induced graph grammars
rather than about individual graph grammars. This results in Lemma L.1, which describes the
main proof obligations our approach and implementation described in Chapters 5 and 6 will
fulfill.

Lemma L.1 (operational invariants of induced graph grammars under a constraint). Let
GTS = (TG ,R) be a graph transformation system and let F , H, and S be graph constraints
with S ⊧ F . F is an operational invariant of GG under H for all graph grammars GG ∈
IND(GTS ,S), if there exists a k ∈N with k ≥ 1 such that the following conditions hold:

1. ∀GG(GG ∈ IND(GTS ,S)⇒ ∀G(G ∈ REACHk−1(GG ,H)⇒ G ⊧ F)).
2. F is a k-inductive invariant for GTS under H.

Proof. Consider an arbitrary graph grammar GG = (GTS ,G0) with GG ∈ IND(GTS ,S) and
a graph G in the graph grammar’s state space under H, i.e. G ∈ REACH(GG ,H). Hence, there
exists a transformation sequence G0 ⇒n

R G such that all traversed graphs satisfy H and that
G0 ⊧ S. If n ≤ k − 1, we have G ⊧ F by precondition.

We will prove G ⊧ F for the case n > k − 1 by induction:
Base case. For n = k, there exist a transformation sequence G0 ⇒k−1

R G′ and a transformation
G′ ⇒R G. Also, all graphs in the sequence satisfy H and there exist transformation sequences
(whose length is smaller than k) from G0 to all graphs in the sequence such that all traversed
graphs satisfy H. Hence, by precondition (1), G′ ⊧ F and all graphs in the sequence satisfy F .
Then, since F is a k-inductive invariant under H (2) and holds in all graphs of the sequence
G0 ⇒k−1

R G′ and since we have G0 ⇒k−1
R G′ and G′ ⇒R G, we get G ⊧ F .

Inductive step. Consider a sequence G0 ⇒n
R G with n > k. Then, there is a transformation

sequence G0 ⇒n−1
R G′ and a transformation G′ ⇒R G. By inductive hypothesis, F holds in all

graphs of the sequence G0 ⇒n−1
R G′. Since F is a k-inductive invariant under H (2) and n > k,

we have G ⊧ F , concluding the inductive proof.

As with Lemma 4.5 (p. 57) and Lemma 4.12 (p. 63), where the former is a special case of
the latter, Lemma 4.9 (p. 60) can now be considered a special case of Lemma L.1: considering
only the case k = 1 will reduce the first condition to S ⊧ F , making the lemmas equivalent.

While the inductive step has changed between 1-induction to k-induction, it is unaffected by
the notion of induced graph grammars, as seen in Lemmas 4.12 (p. 63) and L.1. In all cases,
it remains independent from state spaces and a start configuration constraint. However, the
base case of our inductive argument has changed with both k-induction and induced graph
grammars. Here (for k ≥ 2), it needs to cover paths of transformation starting from the initial
graph – the guarantee S ⊧ F is not enough. Even worse, the base case is no longer independent
from the induced graph grammars’ graph transformation system. Establishing the validity of
F in the k−1-bounded state space from a specific start graph G0, as required by Lemma 4.12
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(p. 63), may be performed by bounded model checking – for small k, the computational effort
may remain reasonable [4]. However, this is not possible for an infinite number of start graphs
specified by the start configuration constraint. Here, similar to the verification of k-inductive
invariants, we require a symbolic algorithm.

Both Lemma 4.12 (p. 63) and Lemma L.1 only consider operational invariants under the
guaranteed constraint H – they reason about REACH(GG ,H). As mentioned before, this
approach is valid if a) the guaranteed constraint models external assumptions that are part of
the system’s specification or b) if additional measures are in place ensuring the validity of H,
such as postprocessing for the case of controlled execution. In the absence of such measures
for the latter case, the validity of H has to be established separately. This can be included in
our verification scheme:

Lemma L.2 (operational invariants of induced graph grammars [4]). Let GG = (GTS ,G0) be
a graph grammar with a graph transformation system GTS = (TG ,R) and let F , H, and S be
graph constraints with S ⊧ F and S ⊧ H. F is an operational invariant of REACH(GG) for
all graph grammars GG ∈ IND(GTS ,S), if the following conditions hold:

0. H is a 1-inductive invariant for GTS.
1/2. F is an operational invariant of GG under H for all graph grammars GG ∈ IND(GTS ,S).

Proof. Consider an arbitrary graph grammar GG = (GTS ,G0) with GG ∈ IND(GTS ,S).
Since, by implication of graph constraints, G0 ⊧ H and since H is a 1-inductive invariant for
GTS (1), we have REACH (GG) = REACH (GG ,H). Then, with (2), we have G ⊧ F for all
graphs G ∈ REACH(GG).

The odd numbering comes from aligning this lemma to earlier lemmas: condition (1/2) can
be established by Lemma L.1 (p. 65), which has two conditions (1) and (2).

Note that we require S ⊧H here, similar to S ⊧ F earlier. In general, this can be achieved by
choosing a desired start configuration constraint S ′ and defining the final start configuration
constraint as S = S ′ ∧H. As before, we argue our focus is verification of system safety, not
validation of sensible – e.g. non-contradictory – choices in system specifications. Given S ⊧
H, all possible start graphs satisfy the guaranteed constraint. If the guaranteed constraint
is preserved by rule applications (as a 1-inductive invariant, condition (0)), we then have
REACH(GG ,H) = REACH(GG) for all induced graph grammars GG .

The main ideas behind the application of this slightly different scheme are a) that there may
be, depending on the case, a necessity to separately verify the guaranteed constraint and b)
that the verification effort for the guaranteed constraint H is expected to be lower than that
for F . Recall, for instance, the constraint in Example 4.2, Figure 4.2(a), p. 56, which prevents
a shuttle from being located on two tracks at the same time. If we want our modeled (graph
transformation) system to resemble the actual shuttle protocol as close as reasonably possible,
we will want to establish the validity of cardinality constraints. Hence, graph rules should
preserve type graph and cardinality constraints, i.e. they should be 1-inductive invariants of
the graph transformation system. Of course, they should also be fulfilled in possible start
graphs.

This lemma decouples verification of F underH and verification of the guaranteed constraint
H itself. In theory, we could extend this separation even beyond the notion of one safety
property and one guaranteed constraint: a constraint could be split into multiple fragments
that are verified iteratively (using k-induction), with each step having the conjunction of
established fragments as a guaranteed constraint. While this extension is outside the scope of
this thesis in terms of implementation and precise formal description, it can be performed by
repeated manual execution of said iterations.

– 66 –



4.3 Conclusion

4.3. Conclusion

This concludes the extension of our inductive verification approach and the formalization
of k-inductive invariant checking for graph transformation systems. Lemma L.1 (p. 65) (or
Lemma L.2 (p. 66), depending on the scenario) describes the main proof obligations neces-
sary to establish safety of a set of induced graph grammars by k-inductive invariant checking.
Both lemmas solve Verification Problem VP.1g (p. 60), which is a formalization of the generic
Verification Problem 1.3 (p. 13) for graphs and graphs transformation systems. As such, both
lemmas address state space restrictions. Both lemmas also support verification of sets of in-
duced graph grammars, i.e. graph grammars defined by graph transformation systems and sets
of initial states – start graphs – described by a graph constraint. When only a singular graph
grammar with one start graph is concerned, Lemma 4.5 (p. 57) can be applied, although this
application scenario is not the main focus of this thesis.

Chapter 5 will explain how those proof obligations can be verified by a symbolic algorithm.
Chapter 6 will then do the same for a restricted formal model, which allows for optimizations
regarding computational effort and performance. To reiterate, our symbolic algorithms need
to solve the following questions: given a graph transformation system GTS , a value k ≥ 1, and
graph constraints F , H, and S with S ⊧ F :

k−1-bounded model checking: for all graph grammars GG ∈ IND(GTS ,S) and all graphs
G ∈ REACHk−1(GG ,H), does G ⊧ F hold?

k-inductive invariant: is F a k-inductive invariant for GTS under H?
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Based on the formal foundations introduced in Chapter 2 and the verification approach of k-
inductive invariant checking established in Chapter 4, we now define the required constructions
and theorems to implement a corresponding verification algorithm and to prove its correctness.

We recall the general formal model established in Chapter 4:

Formal Model (general). Systems and system specifications consist of the following elements:

System metamodels are specified by type graphs (Definition 2.8 (p. 21)).
System states – including initial states – are described by typed graphs (Definitions 2.1 (p. 20)

and 2.8 (p. 21)).
System behavior is described by a typed graph transformation system (Definition 2.24 (p. 34)),

which consists of typed graph transformation rules (Definition 2.20 (p. 32)).
Properties are modeled as graph constraints (Definition 2.12 (p. 25)) – this includes the con-

straint F to be verified, the guaranted constraint H, and the start configuration constraint
S. As an additional requirement, S needs to imply F , i.e. S ⊧ F .

Systems are specified by typed graph grammars (Definition 2.28 (p. 36)), which consist of an
initial state – a start graph – and a typed graph transformation system.

System state spaces are described by the state spaces (Definitions 2.28 (p. 36) and 4.1 (p. 55))
– the set of all reachable graphs – of the corresponding graph grammars (under the guar-
anteed constraint).

System sets are described by graph grammars induced (Definition 4.7 (p. 59)) by a graph
transformation system and a start configuration constraint.

For the general approach discussed in this chapter, we do not impose additional restrictions
on graph transformation systems or graph constraints. However, we will see that certain limi-
tations to the formal model make sense in some scenarios and will discuss an approach for a
restricted formal model in Chapter 6.

Given system specifications as listed above, we reiterate our central verification question
from Chapter 4:

Verification Problem VP.1g. Given a graph transformation system GTS = (TG ,R) and
graph constraints F , S, and H with S ⊧ F , does every graph grammar GG ∈ IND(GTS ,S)
have F as an operational invariant under H?

Example 5.1 (running example). For convenience, Figure 5.1 relists the type graph TG
(Figure 5.1(a)), the speed mode transition protocol (Figure 5.1(b)), and the set of graph rules
R = {s2s, f2b,b2s, a2b, f2f, a2f, s2a} (Figures 5.1(c)-5.1(i)) of our running example. All elements
of the example are also listed in Sections C.1.2 and C.1.1 of Appendix C.

In Figure 5.2, we show three alternative rules for f2f, a2f, and s2a – f2f′, a2f′, and s2a′. These
rules will lead to an unsafe system; we will use them occasionally in examples to demonstrate
our verification approach. We will denote the associated graph transformation system and set
of graph rules as GTS ′ = (TG ,R′) and R′ = {s2s, f2b,b2s, a2b, f2f′, a2f′, s2a′}.

Figure 5.3 shows safety properties, the guaranteed constraint, and the start configuration
constraint. We want to verify the permanent absence of shuttles driving on a switch in speed
modes fast, acc, or brake (Figures 5.3(a)– 5.3(c)), i.e. our property to verify is F = ¬F1 ∧¬F2 ∧
¬F3. Figures 5.3(d)-5.3(f) reiterate three fragments of the system’s guaranteed constraint H =
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Figure 5.1. – Graph transformation system GTS = (TG ,R)
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(c) Graph rule s2a′

Figure 5.2. – Alternative rules f2f′, a2f′, and s2a′ without application conditions
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Figure 5.3. – Safety property F = ¬F1 ∧ ¬F2 ∧ ¬F3, fragments of guaranteed constraint
H = ¬H1 ∧ ... ∧ ¬H15, and parts of start configuration constraint S
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¬H1∧ ...∧¬H15. Finally, Figures 5.3(g), 5.3(h), and 5.3(i) show parts of the start configuration
constraint S. Depending on whether or not we limit verification to system states (and state
spaces) under the guaranteed constraint H, we can choose S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3 or S =
¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3 ∧H. In the latter case, we have S ⊧ H by construction. We can easily
see that ¬SC 1 ⊧ ¬F1, ¬SC 2 ⊧ ¬F2, and ¬SC 3 ⊧ ¬F3; then, S ⊧ F as required. If it were not
obvious, we could join F conjuntively to S to form a new start configuration constraint.

With respect to the central verification question, we wonder whether all graphs in the state
spaces of all graph grammars induced by the graph transformation system GTS = (TG ,R)
(or GTS ′ = (TG ,R′)) and the start configuration constraint S fulfill the safety property. In
other words, starting from a state satisfying our start configuration constraint and following
the behavior specified by the graph rules, can the system reach a state where a shuttle reaches
a switch while driving in mode fast, accelerating, or braking? △

We have already established that the size and potential infinity of the systems involved
require a symbolic approach. Instead of exhaustively and explicitly analyzing systems’ state
spaces, we have chosen k-inductive invariant checking as our verification approach of choice. In
Chapter 4, we have formalized k-inductive invariant checking for graph transformation systems
and established proof obligations for its application in the form of Lemma L.1, reiterated here:

Lemma L.1 (validity of constraints in graph grammars). Let GTS = (TG ,R) be a graph
transformation system and let F , H, and S be graph constraints with S ⊧ F . F is an operational
invariant of GG under H for all graph grammars GG ∈ IND(GTS ,S), if there exists a k ∈ N
with k ≥ 1 such that the following conditions hold:

1. ∀GG(GG ∈ IND(GTS ,S)⇒ ∀G(G ∈ REACHk−1(GG ,H)⇒ G ⊧ F)).
2. F is a k-inductive invariant for GTS under H.

Note that Verification Problem VP.1g (p. 60) and Lemma L.1 focus on operational invariants
(and state spaces) under the restriction of a guaranteed constraint H without showing that
constraint’s validity. For the most part, the constructions and theorems for their formulaic
implementation will follow the same idea. Similar to Chapter 4 and Lemma L.2 (p. 66), we will
introduce an approach that combines results for restricted state spaces with explicit verification
of H at the end of this chapter.

Outline. This chapter will introduce the formal notions and algorithmic constructions re-
quired to verify the lemma’s two conditions in a finite fashion given the respective input
elements GTS , F , H, and S. As such, this chapter focuses on contribution Formal-general –
the formalization of our general approach to verification with k-inductive invariants. Figure 5.4
provides a rough overview of this chapter’s sections and the formal elements introduced.

In Section 5.1, we will first rearrange the condition for the inductive step of Lemma L.1 as
the new Lemma 5.2. Likewise, Lemma 5.3 will rearrange the condition for the base of induction
such that the condition is more intuitive from an algorithmic perspective. In particular, both
lemmas will provide conditions that can be falsified by finding an appropriate transformation
sequence as a counterexample.

However, falsifying or verifying the rearranged conditions will still require a symbolic encod-
ing for a possibly infinite number of transformation sequences. Here, transformation sequences
will be encoded in k-sequences of source/target patterns (Definition D.2), or s/t-pattern se-
quences. S/t-pattern sequences consist of a source pattern, a target pattern, and between 0
and k − 1 target/source patterns (Definitions 5.7, 5.8, and 5.10) where k is the length of the
sequence. All three types of patterns consist of application conditions over rule sides: thus, a
source pattern encodes a match of a rule and its potential application, a target pattern en-
codes a comatch, and a target/source pattern encodes the combination of both. An s/t-pattern
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Figure 5.4. – Overview and dependencies of definitions, theorems, and lemmas
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sequence then combines elements of the three types and can be satisfied by transformation se-
quences. Similar to a graph constraint encoding graphs or an application condition encoding its
satisfying morphisms, an s/t-pattern sequence encodes transformation sequences of the same
length that satisfy it.

Section 5.2 will explain how s/t-pattern sequences representing transformation sequences
with certain properties can be created. Theorem T.1g introduces the Seq-construction, which
takes a set of graph rules and two graph constraints as parameters. This construction is tai-
lored to create s/t-pattern sequences (of a specified length) whose satisfying transformation
sequences use rules from the given set of graph rules and fulfill certain properties: First, the
transformation sequences lead to the first graph constraint passed to the construction, meaning
that all rightmost graphs of the transformation sequences fulfill the graph constraint. Second,
all intermediate and leftmost graphs fulfill the second constraint. With the right parameters,
we can use the Seq-construction to create s/t-pattern sequences that (symbolically) repre-
sent all (and only those) transformation sequences that may serve as counterexamples for the
conditions in Lemma 5.2 and Lemma 5.3.

However, s/t-pattern sequences, similar to application conditions and morphisms, may turn
out to have no satisfying transformation sequences, i.e. to encode an empty set of transforma-
tion sequences. We will establish a lemma that provides a means of determining a s/t-pattern
sequence’s satisfiability: roughly speaking, if an interpretation of the leftmost source pattern
as a graph constraint can be fulfilled by a graph, there exists a satisfying transformation se-
quence. That said, the satisfiability of a graph constraint (by any graph) is computationally
challenging – and potentially undecidable [HP09]. Since the problem has been addressed in
existing work [HP09, Pen09, SLO17, SLO18], its algorithmic perspective will not be discussed
here.

In Section 5.3, Theorem T.2g then applies the Seq-construction (Theorem T.1g) and Lemma
5.14 to reason about the validity of a k-inductive invariant by verifying the condition estab-
lished by Lemma 5.2. Likewise, Section 5.4 introduces Theorem T.3g, which reasons about the
base case of our inductive invariant – the proposed invariant’s validity in the induced graph
grammars’ k-bounded state space. Both theorems create a number of s/t-pattern sequences
and then attempt to prove or disprove the existence of a satisfying graph for leftmost source
patterns (by Lemma 5.14). The result expresses whether or not the constraint is a k-inductive
invariant or is satisfied in the k-bounded state space of induced graph grammars, respectively.

Section 5.5 then combines k-inductive invariant checking and the invariant’s validity in the
k-bounded state space, i.e. the inductive step base case of our inductive verification approach.
Theorem T.4g does not bring any new considerations, but uses the conditions and constructions
of Theorem T.2g and Theorem T.3g. It establishes formal justification for our approach to
verifying the conditions of Lemma L.1.

Finally, Section 5.6 discusses the results of this chapter and raises open issues.

5.1. Symbolic Encoding

As established, our verification idea follows an inductive approach: a graph constraint is estab-
lished as a k-inductive invariant (inductive step) and checked for validity in the k−1-bounded
state space from the graph grammars’ start graphs (base case). Concerning the inductive step,
we recall Definition D.1 for k-inductive invariants under a constraint:

Definition D.1 (k-inductive invariant [3]). Given a typed graph transformation system GTS =
(R, TG) and graph constraints F and H, F is a k-inductive invariant of GTS under H, if,
for all sequences of transformations to R trans = G0 ⇒R G1 ⇒R ...⇒R Gk it holds that:

(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F)) ⇒ (Gk ⊧ F)
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Thus, verification of a graph constraint as a k-inductive invariant relies on establishing the
condition for all possible transformation sequences (Definition 2.26 (p. 36)) given all possible
rules of the graph transformation system. In order to put the definition into a condition more
directly verifiable by an algorithm, we will rearrange it in the form of the following lemma:

Lemma 5.2 (k-inductive invariant and transformation sequences as counterexamples). Given
a graph transformation system GTS = (TG ,R) and graph constraints F and H, F is a k-
inductive invariant of GTS under H, if and only if there does not exist a transformation
sequence to R trans = G0 ⇒R G1 ⇒R ...⇒R Gk such that:

Gk /⊧ F ∧Gk ⊧H ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H)

Proof. We can rearrange the formula from Definition D.1 (p. 62) (for all sequences of trans-
formations to R trans = G0 ⇒R G1 ⇒R ...⇒R Gk):

(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F))⇒ (Gk ⊧ F)
⇐⇒¬(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F)) ∨Gk ⊧ F
⇐⇒¬(Gk ⊧H ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H)) ∨Gk ⊧ F
⇐⇒Gk ⊧ F ∨ ¬(Gk ⊧H ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H))
⇐⇒¬(Gk /⊧ F ∧Gk ⊧H ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H))

This last statement holding for all such transformation sequences is then equivalent to the
absence of a sequence with Gk /⊧ F ∧Gk ⊧H ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H).

Similarly, we can rearrange the base case – i.e., the question about the validity of the
invariant in the bounded state space from the graph grammars’ start graphs – such that we
gain a direct condition to be checked:

Lemma 5.3 (state spaces and transformation sequences as counterexamples). Let GTS =
(TG ,R) be a graph transformation system and F , H, and S be graph constraints with S ⊧ F .
For all graphs G ∈ REACHk−1(GG ,H) with graph grammars GG ∈ IND(GTS ,S), we have
G ⊧ F if and only if there does not exist a transformation sequence to R trans = G0 ⇒b1,m1,m′1
...⇒bn,mn,m′n Gn with 1 ≤ n ≤ k such that

Gn /⊧ F ∧ ∀i(1 ≤ i ≤ n⇒ Gi ⊧H) ∧G0 ⊧ S

Proof. Given a graph grammar GG = (GTS ,G0) with GG ∈ IND(GTS ,S), by definition of k-
bounded state spaces (Definition 4.11 (p. 63)), the existence of a graph G ∈ REACHk−1(GG ,H)
withG /⊧ F is equivalent to the existence of a transformation sequence toR trans = G0 ⇒b1,m1,m′1
...⇒bn,mn,m′n Gn with 1 ≤ n ≤ k − 1 and Gn /⊧ F where G0 ⊧ S and where all traversed graphs
satisfy H, i.e. ∀i(1 ≤ i ≤ n⇒ Gi ⊧ H). The absence of such a sequence with Gn /⊧ F ∧ ∀i(1 ≤
i ≤ n⇒ Gi ⊧ H) ∧G0 ⊧ S is then equivalent to validity of F in all k−1-bounded state spaces
of the graph grammars induced by GTS and S.

Given Lemma 5.2, disproving a graph constraint as a k-inductive invariant requires a sin-
gle transformation sequence fulfilling the respective condition as a counterexample. Likewise,
Lemma 5.3 requires a counterexample to disprove validity of the constraint in question in the
bounded state spaces. Conversely, the absence of such transformation sequences establishes
the graph constraint F as a k-inductive invariant or as valid in the k−1-bounded state spaces,
respectively. Note that if it were not for the requirement S ⊧ F , we would have to add this
condition in Lemma 5.3.

In both lemmas’ conditions, the validity or violation of F in the transformation sequence’s
last (rightmost) graph has a prominent position. In order to capture that notion of validity in
a formal manner, we define the notion of leading to a graph constraint.
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t4:Track 
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t5:Track 
:next 𝐺1 

s:Shuttle 

t1:Track t2:Track 
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t3:Track 
:next 

t4:Track 
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t5:Track 
:next 𝐺2 

s:Shuttle 

t1:Track t2:Track 
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t3:Track 
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t4:Track 

:next 

t5:Track 
:next 

⇒𝑠2𝑎′  ⇒𝑎2𝑓′  

Figure 5.5. – Example transformation sequence trans leading to F1 (and ¬F) under H

Definition 5.4 (leading [3]). A transformation sequence trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m
′
k
Gk

leads to a graph constraint C, if Gk ⊧ C.

Hence, both types of counterexamples are transformation sequences that lead to ¬F . How-
ever, for transformation sequences to serve as counterexamples, we also require the validity of
the guaraneed constraint H in all graphs of the sequence. Similar to the integration of guran-
teed constraints in state spaces and inductive invariants, we combine the notion of leading and
guaranteed constraints in the following definition:

Definition 5.5 (leading under constraint). Given graph constraints C and H and a transfor-
mation sequence trans = G0 ⇒b1 ... ⇒bk Gk, we say that trans leads to C under H if Gk ⊧ C
and for all i with 0 ≤ i ≤ k, we have Gi ⊧H.

Example 5.6 (leading, leading under constraint). Figure 5.5 shows a transformation sequence
trans = G0 ⇒s2a′ G1 ⇒a2f′ G2. Given F = ¬F1 ∧¬F2 ∧¬F3 (Example 5.1, Figures 5.3(a)–5.3(c),
p. 71) and since we can find a fast shuttle on a switch as a subgraph of G2, we have G2 /⊧ ¬F1,
meaning that trans leads to F1 and hence, to ¬F .

Furthermore, G0, G1, and G2 satisfy H (Example 5.1, Figures 5.3(d)–5.3(f), p. 71). In
particular, we cannot find the situations forbidden by H in G0, G1, or G2. Thus, trans leads
to ¬F under H.

As such, trans is already a counterexample for F being a 2-inductive invariant for GTS ′ =
(TG ,R′) under H. This would not work with GTS = (TG ,R) – the application conditions
in s2a and a2f would not allow a transformation sequence G0 ⇒s2a G1 ⇒s2a G2. Furthermore,
trans is also a counterexample for the validity of F in all 2-bounded state spaces of induced
graph grammars IND(GTS ′,S): since G0 ⊧ S, it is a valid start graph, and F1 can be reached
after two rule applications. △

With the definition of leading under a constraint, we can say that verification of k-inductive
invariants in the sense of Lemma 5.2 amounts to finding transformation sequences to R leading
to ¬F under H.

In order to verify this condition in a symbolic fashion, we require a symbolic encoding for
transformation sequences. In principle, each graph rule is already a symbolic encoding for a
number of graph transformations applying that rule. By extension, an ordered set of trans-
formation rules symbolically encodes all possible applications of graph rules in the respective
order. However, due to its genericity, such an encoding would encode only a minimum of in-
formation; our analysis requires more context to yield a sufficiently precise result: First, we
do not want to consider all transformation sequences, but only those leading to a violation of
F , i.e. leading to ¬F . Second, since a transformation sequence serving as a counterexample
requires the validity of H in all traversed graphs, we are also interested in all intermediate
graphs occurring in the sequence. Third, interactions between subsequent rule applications –
in the form of possible overlappings between left and right rule sides – have a significant impact
on the resulting graphs in the transformation sequence and need to be considered.

Therefore, we use source and target patterns as a means to encode context beyond left and
right sides of a rule in the form of nested application conditions. In particular, a source pattern
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s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿1 

𝑆1 

t2:Track 

∃𝑠1 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:slow 

t3:Track 
:next 

t4:Track 

:next 

(a) Source pattern src = ∃s1 ∶ L1 ↪ S1

𝑇1 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑡1 

(b) Target pattern tar = ∃t1 ∶ R1 ↪ T1

Figure 5.6. – Example source pattern src = ∃s1 and target pattern tar = ∃t1 over rule sides
of s2a

describes context in which the left side of a rule – and hence, a match for the rule’s application
– can occur.

Definition 5.7 (source pattern). Given a graph rule b = ⟨(L↩K ↪ R),acL,acR⟩, a source
pattern over b is an application condition over the left side L.

Formally, a source pattern src over a rule b serves as a symbolic representative for all
morphisms and potential matches m ∶ L↪ G where the morphism satisfies the source pattern,
i.e. where m ⊧ src. This is a direct application of the notion of application conditions encoding
(satisfying) morphisms; here, we specifically target rule matches and rule applications. Given
a source pattern over b, we will sometimes refer to it as a source pattern over L instead – in
particular, if the left rule side is of particular importance.

Similar to source patterns, target patterns encode situations in which the right side of a rule
– a comatch for the rule’s application – occurs. A target pattern tar (over a rule b or a right
rule side R) serves as a representative for all morphisms and potential comatches m′ ∶ R ↪ T
where m′ satisfies tar .

Definition 5.8 (target pattern). Given a graph rule b = ⟨(L↩K ↪ R),acL,acR⟩, a target
pattern over b is an application condition over the right side R.

Together, a source and target pattern over the left and right side of the same rule can encode
a potential application of the rule – including additional context specified by the source and
target pattern, i.e. the application conditions over L and R. Note that we did not place any
restrictions on source and target patterns. Thus, it is possible to create unsatisfiable source or
target patterns; for instance, src = false would be a legitimate source pattern.

Example 5.9 (source and target patterns). Consider the source pattern src = ∃s1 and target
pattern tar = ∃t1 shown in Figures 5.6(a) and 5.6(b), respectively, with L1 and R1 being the
left and right rule sides of the graph rule s2a′ (and also s2a). src embeds the left side L1 into a
context more specific than the left side itself; likewise, tar provides additional context beyond
the rule’s right side. In particular, the additional context consists of two additional tracks, one
of which is a switch ahead of the shuttle.

The upper and lower thirds of Figure 5.7 show a transformation G0 ⇒s2a′,m1,m′1 G1. Fur-
thermore, the source and target pattern src = ∃s1 and tar = ∃t1 are depicted again in the
Figure’s upper and middle parts. Since there exists an injective morphism y1 ∶ S1 ↪ G0 with
y1 ⊧ s1 = m1, the match m1 satisfies src. Likewise, the existence of y′1 ∶ T1 ↪ G0 such that
y′1 ○ t1 =m′

1 implies m′
1 ⊧ tar .
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Figure 5.7. – Example transformation G0 ⇒s2a′,m1,m′1 G1 matching source and target pat-
tern
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Figure 5.8. – Example source pattern src′ = ∃(s1,¬∃s′1) ∨ ∃s2

In particular, src and tar together describe potential applications of s2a′ in the context of
a switch two tracks ahead of the respective shuttle’s current position. G0 ⇒s2a′,m1,m′1 G1, as
depicted, is one of infinitely many concrete rule applications encoded by src and tar .

Since source and target patterns are defined as application conditions, they can be as complex
as nested application conditions. Consider, for example, the source pattern src′ = ∃(s1,¬∃s′1)∨
∃s2 depicted in Figure 5.8. It describes the occurrence of the left rule side in the context of a
switch (t3) two tracks ahead (∃(s1, ...)) without a third track leading to the switch (¬∃s′1) –
or the context of the shuttle’s subsequent track (t2) being a switch (... ∨ ∃s2). △

The concept of source and target patterns has been applied in a more restricted fashion in
previous work [1] concerned with the verification of 1-inductive invariants. In order to apply
the idea and the symbolic encoding it entails to k-inductive invariant checking and bounded
state spaces, we require not only singular source and target patterns (for singular transfor-
mations) but a sequence of source and target patterns (for a sequence of transformations) –
compare the notions of 1-inductive invariants (Definition 4.4 (p. 57)) and k-inductive invariants
(Definition D.1 (p. 62)).

However, it is not sufficient to combine sequences of pairs of source and target patterns. By
doing so, we would disregard the fact that a comatch of one rule application can overlap the
match of a subsequent rule application – or that their contexts (in the source and target pat-
tern) can. Those combinations of target and source patterns are represented by target/source
patterns.
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Definition 5.10 (target/source pattern). Given rules b1 = ⟨(L1 ↩K1 ↪ R1),acL1 ,acR1⟩ and
b2 = ⟨(L2 ↩K2 ↪ R2),acL2 ,acR2⟩ and a graph E with a pair of injective and jointly surjective
morphisms (eR ∶ R1 ↪ E, eL ∶ L2 ↪ E), a target/source pattern over (b1, b2) is a pair of
application conditions over R1 and L2 of the form (∃(eR,acE),∃(eL,acE)) with acE being an
application condition over E.

A pair of morphisms with the same codomain (m′
1 ∶ R1 ↪ G,m2 ∶ L2 ↪ G) satisfies a

target/source pattern (tar , src), denoted (m′
1,m2) ⊧ (tar , src), if m′

1 and m2 satisfy tar and
src via a common injective morphism, i.e. if there exists y ∶ E ↪ G with y ⊧ acE, y ○ eR =m′

1,
and y ○ eL =m2.

R1 �
eR

##

�

m′1=y○eR

  

L2
meL

{{

}

m2=y○eL

~~

E ◁acE�

y
⊧

��
G

The specific overlapping of the right and left rule sides and their contexts in a target/source
pattern is encoded in the graph E and the morphisms eR and eL. While a simple pairing of
a target and a source pattern would represent all such overlappings, specifically representing
one at a time in a target/source pattern allows for a more precise analysis, which is one of the
main goals of extending verification with 1-inductive invariants to k-inductive invariants.

Example 5.11 (target/source patterns). Figure 5.9(a) shows a target/source pattern ts =
(∃(eR ∶ R1 ↪ E),∃(eL ∶ L2 ↪ E)) that describes context beyond the interaction of a potential
comatch of a right rule side R1 and a potential match of a left rule side L2, which belong to
graph rules s2a′ and a2f′, respectively.

Furthermore, Figure 5.9(b) shows a comatch/match pair (m′
1,m2) where there exists an

injective morphism y ∶ E ↪ G1 such that y ○ eR = m′
1 and y ○ eL = m2 and hence, (m′

1,m2)
satisfies the target/source pattern ts. Note that G1, m

′
1, and m2 could be part of a transfor-

mation sequence G0 ⇒s2a′,m1,m′1 G1 ⇒a2f′,m2,m′2
G2 when including the transparent parts of

Figure 5.9(b).
With respect to the example, the target/source pattern ts symbolically describes a number

of situations where the right side of rule s2a and the context it appears in relates to the left side
of rule a2f and its context in a certain way: specifically, the potential subsequent application
of both rules relate to the same shuttle, which – after the first rule application and before the
second – is positioned one track ahead of a switch.

While symbolically representing a comatch/match pair and graph that is not significantly
larger or more complex than the target/source pattern might not seem particularly impressive,
note that the pair (m′

1,m2), the graph G1, and the transformation sequence are just one exam-
ple. There is – in this case – an infinite number of comatch/match pairs (and transformation
sequences) such that the pair satisfies the target/source pattern ts – including significantly
larger graphs not depicted here.

In order to better understand the difference between a target/source pattern and a pair
of a target and a source pattern, consider Figures 5.10(a) and 5.10(b). The former depicts
a pair of a target pattern tar∗ = ∃t1 (over the right side of rule s2a) and a source pattern
src∗ = ∃s2 (over the left side of rule a2f) without specifying potential overlappings described
by a target/source pattern. The latter figure shows a comatch/match pair (m′∗

1 ,m
∗
2) such that

the comatch m′∗
1 satisfies tar∗ (via y∗) and the match m∗

2 satisfies src∗ (via y′∗). Likewise,
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𝐸 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑒𝑅 

s:Shuttle 

t2:Track 
:next 

:isAt 

:acc 

t3:Track 𝐿2 

∃𝑒𝐿 

(a) Example target/source pattern ts = (tar , src) with tar = ∃eR and src = ∃eL

s:Shuttle 

t2:Track :next 
:isAt 

:fast 

t3:Track 𝑅2 

𝐺0 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:slow t4:Track 

:next 

t5:Track 
:next 

t3:Track 
:next 

𝐺2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

:next 

t5:Track 

t3:Track 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿1 t2:Track 

𝑚1 

𝐺1 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:acc t4:Track 

:next 

t5:Track 
:next 

𝑚2
′  

𝑚1
′  

t3:Track 
:next 

𝑦 

𝐸 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑒𝑅 

s:Shuttle 

t2:Track 
:next 

:isAt 

:acc 

t3:Track 𝐿2 

∃𝑒𝐿 

𝑚2 

t2:Track 

t4:Track 
:next 

:next 

(b) Example comatch/match pair (m′1,m2) with (m′1,m2) ⊧ ts

Figure 5.9. – Example target/source pattern and satisfying comatch/match pair
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s‘:Shuttle 

tB:Track 
:next 

:isAt 

:acc 

𝐿2 

𝑆2 

tC:Track 

∃𝑠2 

s‘:Shuttle 

tA:Track tB:Track 
:next :isAt 

:acc 

tC:Track 
:next 

tD:Track 

:next 

𝑇1 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑡1 

(a) Example target (tar∗ = ∃t1) and source pattern (src∗ = ∃s2) pair

s‘:Shuttle 

tB:Track 
:next 

:isAt 

:fast 

𝑅2 tC:Track 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

t2:Track 𝐿1 

𝐺0
∗ 𝐺2

∗ 

𝑦∗ 

𝐺1
∗ 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 
:acc 

:next 

t4D:Track 

:next 

tA:Track tB:Track 
:next 

tC:Track 
:next 

:next 

s‘:Shuttle 

:isAt 
:acc 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt :slow 

t3:Track 
:next 

t4D:Track 

:next 

tA:Track tB:Track 
:next 

tC:Track 
:next 

:next 

s‘:Shuttle 

:isAt 
:acc 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt :acc 

t3:Track 
:next 

t4D:Track 

:next 

tA:Track tB:Track 
:next 

tC:Track 
:next 

:next 
s‘:Shuttle 

:isAt 
:fast 

𝑚1
∗  𝑚2

′∗ 

t3:Track 

𝑚1
′∗ 

𝑦′∗ 

𝑚2
∗  

⇒𝑎2𝑓′,𝑚2
∗𝑚2

′∗  

s‘:Shuttle 

tB:Track 
:next 

:isAt 

:acc 

𝐿2 

𝑆2 

tC:Track 

∃𝑠2 

s‘:Shuttle 

tA:Track tB:Track 
:next :isAt 

:acc 

tC:Track 
:next 

tD:Track 

:next 

𝑇1 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑡1 

⇒𝑠2𝑎′,𝑚1
∗ ,𝑚1

′∗  

(b) Example comatch/match pair (m′∗1 ,m∗2) with m′∗1 ⊧ tar∗ and m∗2 ⊧ src∗

Figure 5.10. – Example pair of target and source pattern and satisfying comatch/match
pair
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given the comatch/match pair (m′
1,m2) and graph G1 from Figure 5.9(b), we could also find

injective morphisms x ∶ T1 ↪ G1 and x′ ∶ S2 ↪ G1 such that x ○ t1 = m′
1 and x′ ○ s2 = m2 and

hence, m′
1 ⊧ tar∗ and m1 ⊧ src∗. However, the reverse is not true: the morphism pair (m′∗

1 ,m
∗
2)

clearly does not satisfy the target/source pattern ts (see Figure 5.9(a)) because m′∗
1 and m∗

2

relate to different shuttles while ts requires the shuttles in the right and left rule sides to refer
to the same shuttle. △

The difference between a target/source pattern and a pair of a target and a source pattern
makes sense because a pair of a target and a source pattern does not place any restrictions on
potential overlappings of the rule sides or their context – conversely, a target/source pattern
explicitly specifies such an overlapping by the morphism pair’s ((eR, eL)) common codomain
E. As such, a target/source pattern is more restrictive. Given a pair of a target and a source
pattern (tar∗, src∗) and a set of morphism pairs (m′∗

1 ,m
∗
2) such that m′∗

1 ⊧ tar∗ and m∗
2 ⊧ src∗,

considering all overlappings of tar∗ and src∗ would create a number of target/source patterns
such that each of the aforementioned morphism pairs (m′∗

1 ,m
∗
2) would satisfy one of those

target/source patterns.
While the above figures and examples already showed a target/source pattern and comatch/-

match pairs appearing in the context of a transformation sequence, we still have not established
an encoding for actual transformation sequences. In order to do so, we combine source patterns,
target patterns, and target/source patterns to create k-sequences of source/target patterns –
or s/t-pattern sequences for short.

Definition D.2 (k-sequence of source/target patterns [3]). Given a k ≥ 1, a source pattern
src1 over a rule b1, a target pattern tark over a rule bk and a number of target/source patterns
(tar i, srci+1) over a number of rules bi (1 ≤ i ≤ k−1), seq = src1 ⇒b1 (tar1, src2)⇒b2 ...⇒bk tark

is a k-sequence of s/t-patterns.

L1src1▷ K1
� //?oo R1 

eR1 ��

L2q

eL2��

⋯ Rk ◁tark

E1 ◁acE1 ⋯

Satisfiability of k-sequences of s/t-patterns is defined as follows:
Given a sequence of transformations (of length k) trans = G0 ⇒c1,m1,m′1 ... ⇒ck,mk,m

′
k
Gk

and a k-sequence of s/t-patterns seq = src1 ⇒b1 (tar1, src2) ⇒b2 ... ⇒bk tark, trans satisfies
seq, denoted as trans ⊧ seq, if, for all i with 1 ≤ i ≤ k, ci = bi, mi ⊧ srci, m

′
i ⊧ tar i and, in

particular, for all i with 1 ≤ i ≤ k − 1, (m′
i,mi+1) ⊧ (tar i, srci+1).

L1src1▷ �

m1⊧src1

��

K1
� //?oo
�

��

R1 

eR1 ��

y

m′1

##

L2q

eL2��

�

m2

{{

⋯ Rk ◁tark�

m′k⊧tark

��

E1
= =

◁acE1�

y1⊧acE1

��

⋯

G0 D1_
oo � // G1 ⋯ Gk

Two k-sequences of s/t-patterns seq , seq ′ are equivalent (seq ≡ seq ′), if for all transformation
sequences trans, it holds that trans ⊧ seq ⇔ trans ⊧ seq ′.

Example 5.12 (s/t-pattern sequence). Figure 5.11(a) depicts an example s/t-pattern sequence
of length 2 and of the form seq = src1 ⇒s2a′ (tar1, src2)⇒a2f′ tar2 with src1 = ∃s1, tar1 = ∃eR,
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s:Shuttle 

t2:Track :next 
:isAt 

:fast 

t3:Track 𝑅2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿1 t2:Track 

𝐸1 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑒𝑅 

s:Shuttle 

t2:Track 
:next 

:isAt 

:acc 

t3:Track 𝐿2 

∃𝑒𝐿 

𝑆1 

s:Shuttle 
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∃𝑠1 ∃𝑡2 

(a) 2-sequence of source/target patterns seq = ∃s1 ⇒s2a′ (∃eR,∃eL)⇒a2f′ ∃t2

s:Shuttle 

t2:Track :next 
:isAt 

:fast 

t3:Track 𝑅2 

𝐺0 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:slow t4:Track 

:next 

t5:Track 
:next 

t3:Track 
:next 

𝐺2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

:next 

t5:Track 

t3:Track 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿1 t2:Track 

𝑚1 

𝐺1 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:acc t4:Track 

:next 

t5:Track 
:next 

𝑚2
′  

𝑚1
′  

t3:Track 
:next 

𝑦 

𝐸1 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑒𝑅 

s:Shuttle 

t2:Track 
:next 

:isAt 

:acc 

t3:Track 𝐿2 

∃𝑒𝐿 

𝑚2 

t2:Track 

t4:Track 
:next 

:next 

𝑆1 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:slow t4:Track 

:next 

t3:Track 
:next 

𝑇2 

s:Shuttle 

t2:Track 
:isAt 

:fast 

t3:Track 
:next 

t4:Track 

:next 

𝑥1 𝑥2 

∃𝑠1 ∃𝑡2 

(b) Transformation sequence trans = G0 ⇒s2a′,m1,m
′

1
G1 ⇒a2f′,m2,m

′

2
G2 with trans ⊧ seq

Figure 5.11. – Example s/t-pattern sequence and satisfying transformation sequence
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src2 = ∃eL, and tar2 = ∃t2. In particular, the sequence describes subsequent application of s2a
and a2f in the context of a switch (t3) ahead of the moving (and accelerating) shuttle (s).

Figure 5.11(b) then shows a transformation sequence trans = G0 ⇒s2a′,m1,m′1 G1 ⇒a2f′,m2,m′2
G1. As depicted, there exist injective morphisms x1 ∶ S1 ↪ G0, x2 ∶ T2 ↪ G2, and y ∶ E1 ↪ G1

such that

– m1 = x1 ○ s1, implying m1 ⊧ src1,
– m′

2 = x2 ○ t2, implying m′
2 ⊧ tar2, and

– m′
1 = y ○ eR and m2 = y ○ eL, implying (m′

1,m2) ⊧ (tar1, src2).

Thus, trans satisfies seq and is one example of infinitely many transformation sequences
represented by (i.e. satisfying) seq .

Note that there is a subtle difference between S1 and E1 on the one hand and T2 on the
other hand: T2 misses the track t1. This is immaterial for any specific transformation sequence
satisfying seq . Since the track is present in S1 and E1 and cannot be deleted by either s2a′ or
a2f′, it will also be present in the transformation sequence’s last graph (here: G2). However, it
is relevant for the s/t-pattern sequence (the symbolic encoding) because tar = ∃t2 carries less
information than src1, tar1, and src2. While the definition of s/t-pattern sequences (Defini-
tion D.2 (p. 82)) does not require all patterns in a sequence to carry equivalent information –
or even to be free of contradictions – this is a desirable property in sequences constructed for
our verification and will be discussed later in more detail.

Furthermore, note that seq1 = ∃s1 ⇒s2a′ ∃eR and seq2 = ∃eL ⇒a2f′ ∃t2 are also valid 1-
sequences of s/t-patterns. Also, trans1 = G0 ⇒s2a′,m1,m′1 G1 and trans2 = G1 ⇒a2f′,m2,m′2

G2

satisfy seq1 and seq2, respectively.

Finally, considering our verification question and the definition of k-inductive invariants, we
want to represent and analyze sequences possibly violating the intended k-inductive invariant.
Following Lemma 5.2, we will want to construct s/t-pattern sequences representing transfor-
mation sequences that lead to a violation of our safety property – i.e. to a shuttle driving on
a switch in speed mode fast, which is the case in G2 of the above transformation sequence.
Hence, as mentioned before, trans is already a counterexample for our safety property being a
2-inductive invariant for GTS ′ under H, with seq its symbolic representation. △

This concludes the introduction of our symbolic encoding to represent and analyze trans-
formation sequences (of possibly infinite number) in a finite fashion. The following section will
focus on the construction of specific s/t-pattern sequences for our verification approach.

5.2. Construction of Pattern Sequences

In order to use s/t-pattern sequences to verify k-inductive invaiants and investigate k−1-
bounded state spaces, we recall Lemmas 5.2 (p. 75) and 5.3 (p. 75) established earlier.

For Lemma 5.2 (p. 75), we attempt to prove the absence of transformation sequences
G0 ⇒R ... ⇒R Gk where Gk violates F (Gk /⊧ F , or Gk ⊧ ¬F) and satisfies H while all
other graphs satisfy F and H. We will apply this lemma without explicitly investigating all
transformation sequences by finding a finite set of s/t-pattern sequences representing (being
satisfied by) all transformation sequences fulfilling the condition above. If that set is empty or
if all remaining s/t-pattern sequences are contradictory or will be discarded for other reasons,
the safety property F is a k-inductive invariant.

A similar condition is required for proof of validity of a graph constraint F in the k−1-
bounded state spaces of induced graph grammars (Lemma 5.3 (p. 75)). For the verification
k-inductive invariants, we search for counterexamples where the rightmost graph of encoded
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transformation sequences satisfies one constraint (¬F ∧H) and all other graphs satisfy another
(F∧H). For the analysis of k−1-bounded state spaces, the rightmost graph of encoded sequences
should similarly satisfy ¬F ∧ H while all other graphs should satisfy H. Furthermore, the
leftmost graph G0 needs to satisfy the start configuration constraint S.

To create the required s/t-pattern sequences, we introduce a generic construction applicable
in both cases. In particular, we create s/t-pattern sequences for transformation sequences
where the rightmost graph satisfies one generic graph constraint (C1) and all other graphs
satisfy another (C2). Then, by applying the construction with the parameters C1 = ¬F ∧H
and C2 = F ∧ H, we encode counterexamples for k-inductive invariants. For the analysis of
k−1-bounded state spaces, we set C1 = ¬F ∧H and C2 = H – and take S into consideration
when analyzing the resulting s/t-pattern sequences. Both cases will be explained in detail in
Sections 5.3 and 5.4.

Theorem T.1g (construction of s/t-pattern sequences). There is a construction Seqg
k such

that for graph constraints C1 and C2, sets of graph rules R, and k ≥ 1, Seqg
k(R,C1,C2) is a set

of k-sequences of s/t-patterns such that:

1. For all transformation sequences trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m
′
k
Gk to R and of

length k leading to C1 such that Gi ⊧ C2 for 0 ≤ i ≤ k−1, there exists a seq ∈ Seqg
k(R,C1,C2)

such that trans ⊧ seq.
2. Given a seq ∈ Seqg

k(R,C1,C2), for every transformation sequence trans = G0 ⇒b1,m1,m′1
...⇒bk,mk,m

′
k
Gk with trans ⊧ seq, trans leads to C1 and we have Gi ⊧ C2 for 0 ≤ i ≤ k − 1.

Construction. Seqg
k is inductively constructed as follows, starting with Seqg

1 (left figure),
which consists of five steps SC1-1 to SC1-5:

SC1-1: For each rule b = ⟨(L ↩K ↪ R),acL , true⟩ ∈R, tar b = Shift(iR,C1) is a target pattern
over R.

SC1-2: For each such target pattern tar b, src′b = L(b, tar b) is a source pattern over L.
SC1-3: For each such source pattern src′b, srcb = src′b ∧acL ∧Appl(b)∧Shift(iL,C2) is a source

pattern over L.
SC1-4: For each such pair srcb and tar b of a source and a target pattern, srcb ⇒b tar b is a

1-sequence of s/t-patterns.
SC1-5: Finally, we define Seqg

1(R,C1,C2) = {srcb ⇒b tar b ∣ b ∈R} as the set of these sequences.

LacL▷

sr
c b
▷

K �
r //?loo R

ta
r b
▷

∅?iRoo
2

iL
zz

C1▷

C 2
▷

LacL▷

sr
c b

,E
▷

K �
r //?loo R �

eR ��

∅C2▷
2

iL
zz

L1
n

eL~~

src1▷

Eacb,E▷

Given Seqg
k(R,C1,C2), we construct Seqg

k+1(R,C1,C2) as follows (right figure) by six steps SCk-
1 to SCk-5.

SCk-1: For each sequence seq = src1 ⇒b1 ...⇒bk tark ∈ Seqg
k(R,C1,C2) with src1 being a source

pattern over a left rule side L1, each b = ⟨(L ↩K ↪ R),acL , true⟩ ∈ R, and each graph
E and pair of injective and jointly surjective morphisms (eR ∶ R ↪ E, eL ∶ L1 ↪ E),
tarb,E = ∃(eR,acb,E) with acb,E = Shift(eL, src1)) is a target pattern over R.

SCk-1
+: For each such target pattern tarb,E , src+1,E = ∃(eL,acb,E) is a source pattern over L1

and (tar b,E , src+1,E) is a target/source pattern over (b, b1).
SCk-2: For each such target pattern tar b,E, src′b,E = L(b, tar b,E) is a source pattern over L.
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SCk-3: For each such source pattern src′b,E, srcb,E = src′b,E ∧ acL ∧Appl(b) ∧ Shift(iL,C2) is a
source pattern over Lu.

SCk-4: For each such pair srcb,E and tar b,E of a source and a target pattern, srcb,E ⇒b

(tar b,E , src+1,E)⇒b1 ...⇒bk tark is a k+1-sequence of s/t-patterns.
SCk-5: Finally, we define Seqg

k+1(R,C1,C2) = {srcb,E ⇒b (tar b,E , src+1,E)⇒b1 ...⇒bk tark ∣ b ∈
R ∧ seq ∈ Seqg

k(R,C1,C2) and E as above} as the set of these sequences.

Furthermore, we define SEQg
k(R,C1,C2) = ⋃1≤i≤k Seqg

i (R,C1,C2).

Proof. 1. First, we will prove (1) by induction:
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Base case. Consider an arbitrary transformation sequence trans = G0 ⇒b1,m1,m′1 G1 to R
with b1 = ⟨(L1 ↩K1 ↪ R1),acL1 , true⟩ ∈ R such that G1 ⊧ C1 and G0 ⊧ C2. Then, we have to
show the existence of a s/t-pattern sequence seq ∈ Seqg

1(R,C1,C2) such that trans ⊧ seq .

By construction, there is an s/t-pattern sequence seq ∈ Seqg
1(R,C1,C2) with seq = src1 ⇒b1

tar1 and tar1 = Shift(iR1 ,C1), src1 = src′1∧acL1∧Appl(b1)∧Shift(iL1 ,C2), and src′1 = L(b1, tar1).
By precondition, we have an injective morphism iG1 ∶ ∅ ↪ G1 such that iG1 ⊧ C1. With

G0 ⇒b1,m1,m′1 G1 and the comatch m′
1 ∶ R1 ↪ G1 in particular, we have iG1 = m′

1 ○ iR1 . Given
tar1 = Shift(iR1 ,C1) and by the Shift-construction, we have m′

1 ⊧ tar1.

Considering the source pattern src′1 = L(b1, tar1), G0 ⇒b1,m1,m′1 G1, and the L-construction,
we get m1 ⊧ src′1. For the source pattern src1 = src′1∧acL1 ∧Appl(b1)∧Shift(iL1 ,C2) and given
the transformation G0 ⇒b1,m1,m′1 G1, we have m1 ⊧ acL1 and m1 ⊧ Appl(b1). Since iG0 ⊧ C2 (by
precondition), with iG0 =m1 ○ iL1 , and by the Shift-construction, we have m1 ⊧ Shift(iL1 ,C2).
Hence, we have m1 ⊧ src1.

Finally, m1 ⊧ src1 and m′
1 ⊧ tar1 imply trans ⊧ seq .
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Inductive step. Let Seqg
k(R,C1,C2) be a set of s/t-pattern sequences of length k such that

for each transformation sequence trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m
′
k
Gk that leads to C1 and

with Gi ⊧ C2 for 0 ≤ i ≤ k − 1, there exists a seq ∈ Seqg
k(R,C1,C2) such that trans ⊧ seq .

Consider a transformation sequence to R (of length k + 1) trans ′ = G⇒b,m,m′ G0 ⇒b1,m1,m′1
...⇒bk,mk,m

′
k
Gk with b = ⟨(L ↩K ↪ R),acL , true⟩ ∈ R and such that trans ′ leads to C1 and
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that G ⊧ C2 and Gi ⊧ C2 for 0 ≤ i ≤ k − 1. Then, trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m
′
k
Gk is

a transformation sequence leading to C1 and with Gi ⊧ C2 for 0 ≤ i ≤ k − 1. By inductive
hypothesis, there is an s/t-pattern sequence seq ∈ Seqg

k(R,C1,C2) with seq = src1 ⇒b1 ... ⇒bk

tark such that trans ⊧ seq .

Since trans ⊧ seq (and with G0 ⇒b1,m1,m′1 G1), we have a match m1 ∶ L1 ↪ G0 with m1 ⊧ src1.
Since there is a transformation G ⇒b,m,m′ G0, there is a comatch m′ ∶ R ↪ G0. Then, given
comatch and match m′ ∶ R ↪ G0 and m1 ∶ L1 ↪ G0 and by E ′-M-pair factorization [EGH+14],
there is a graph E with a pair of jointly surjective morphisms (eR ∶ R ↪ E, eL ∶ L1 ↪ E) such
that there exists an injective morphism y ∶ E ↪ G0 such that y ○ eR =m′ and y ○ eL =m1. (By
decomposition, eR and eL are injective.)

By construction, for that particular graph E and pair of injective and jointly surjective mor-
phisms (eR ∶ R ↪ E, eL ∶ L1 ↪ E), there is an s/t-pattern sequence seq ′E ∈ Seqg

k+1(R,C1,C2)
with seq ′ = src ⇒b (tar , src+1)⇒b1 ...⇒bk tark such that (tar , src+1) = (∃(eR,acE),∃(eL,acE))
is a target/source pattern with acE = Shift(eL, src1) and srcE = src′E ∧ acL ∧ Appl(b) ∧
Shift(iL,C2) with src′E = L(b, tar). We need to show that trans ′ satisfies seq ′.

Given y ∶ E ↪ G0 and y ○ eL = m1, m1 ⊧ src1 (by precondition) and acE = Shift(eL, src1)
imply y ⊧ acE . With y○eR =m′, the morphism pair (m′,m1) satisfies the target/source pattern
(tar , src+1) – with (tar , src+1) = (∃(eR,acE),∃(eL,acE)).

Considering the source pattern src′ = L(b, tar), G ⇒b,m,m′ G0, and the L-construction,
we get m ⊧ src′. For the source pattern src = src′ ∧ acL ∧ Appl(b) ∧ Shift(iL,C2) and given
the transformation G ⇒b,m,m′ G0, we have m ⊧ acL and m ⊧ Appl(b). Since iG ⊧ C2 (by
precondition), with iG = m ○ iL, and by the Shift-construction, we have m ⊧ Shift(iL,C2).
Hence, we have m ⊧ src.

Finally, m ⊧ src, (m′,m1) ⊧ (tar , src+1), and trans ⊧ seq imply trans ′ ⊧ seq ′, concluding the
inductive proof.

2. Second, we will prove (2) by induction:
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Base case. Consider an arbitrary s/t-pattern sequence seq ∈ Seqg
1(R,C1,C2) with seq =

src1 ⇒b1 tar1 and an arbitrary transformation sequence G0 ⇒b1,m1,m′1 G1 such that trans ⊧ seq ,
implying m′

1 ⊧ tar1 and m1 ⊧ src1. We need to show G1 ⊧ C1 and G0 ⊧ C2.

By construction, we have tar1 = Shift(iR1 ,C1) and by precondition,m′
1 ⊧ tar1. Withm′○iR1 =

iG1 , m′
1 ⊧ Shift(iR1 ,C1) and by the Shift-construction, we have iG1 ⊧ C1, implying G1 ⊧ C1.

Given src1 = L(b1, tar1)∧acL1∧Appl(b1)∧Shift(iL1 ,C2) and m1 ⊧ src1, we have, in particular,
m1 ⊧ Shift(iL1 ,C2). With m1 ○ iL1 = iG0 and by the Shift-construction, we have iG0 ⊧ C2,
implying G0 ⊧ C2.
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Inductive step. Let Seqg
k(R,C1,C2) be a set of s/t-pattern sequences of length k such that

for each s/t-pattern sequence seq ∈ Seqg
k(R,C1,C2) and for each transformation sequence trans

to R of length k and with trans ⊧ seq , trans leads to C1 and Gi ⊧ C2 for 0 ≤ i ≤ k − 1.

Consider an arbitrary s/t-pattern sequence seq ′ ∈ Seqg
k+1(R,C1,C2) with seq ′ = src ⇒b

(tar , src+1) ⇒b1 ... ⇒bk tark and an arbitrary transformation sequence trans ′ = G ⇒b,m,m′

G0 ⇒b1,m1,m′1 ... ⇒bK ,mk,m
′
k
Gk such that trans ′ ⊧ seq ′. We need to show that trans ′ leads to

C1 and that G and all Gi (0 ≤ i ≤ k − 1) satisfy C2.
By construction, there is an s/t-pattern sequence seq ∈ Seqg

k(R,C1,C2) with seq = src1 ⇒b1

...⇒bk tark such that src+1 = ∃(eL,acE) and tar = ∃(eR,acE) with acE = Shift(eL, src1) for a
graph E and a pair of injective and jointly surjective morphisms (eL ∶ L ↪ E, eR ∶ R1 ↪ E).
Since trans ′ ⊧ seq ′, we have (m′,m1) ⊧ (tar , src1), implying the existence of an injective
morphism y ∶ E ↪ G0 such that y ○ eR =m′, y ○ eL =m1, and y ⊧ Shift(eL, src1). Then, by the
Shift-construction, we have m1 ⊧ src1. Furthermore, considering the transformation sequence
trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m

′
k
Gk, we get trans ⊧ seq . By inductive hypothesis, trans leads

to C1, i.e. Gk ⊧ C1. Then, trans ′ also leads to C1. Furthermore (by inductive hypothesis), all
Gi with 0 ≤ i ≤ k − 1 satisfy C2.

We still need to show G ⊧ C2. Since src = L(b, tar) ∧ acL ∧Appl(b) ∧ Shift(iL,C2) and with
m ⊧ src by precondition, we have, in particular, m ⊧ Shift(iL,C2). With m○ iL = iG and by the
Shift-construction, we have iG ⊧ C2, implying G ⊧ C2, which concludes the inductive proof.

The construction of s/t-pattern sequences comes with two important properties with respect
to the constraints C1 and C2. One, all potential candidates of transformation sequences following
the requirements on satisfying the constraints will be represented by one of the constructed
sequences. Two, every specific transformation sequence satisfying one of the constructed s/t-
pattern sequences will follow said requirements. Furthermore, since all constructions involved in
the Seq-construction yield finite results, the Seq-construction has a finite result for all possible
input values and a fixed k as well.

With that in mind, finding the finite set of s/t-pattern sequences representing all viola-
tions of a k-inductive invariant F can be reduced to constructing Seqg

k(R,¬F ,F). The s/t-
pattern sequences representing violations of F under a constraint H can be constructed by
Seqg

k(R,¬F ∧H,F ∧H). In particular, this will lead to s/t-pattern sequences whose satisfying
transformation sequences will lead to ¬F ∧H while both F and H will be satisfied in earlier
graphs in the sequence.

We can express the Seq-construction in a declarative fashion rather than stepwise:

Seqg
1(R,C1,C2) = {srcb ⇒b tar b ∣ b ∈R} (SC1-4/5)
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where, given b = ⟨(L ↩K ↪ R),acL , true⟩,

srcb = src′b ∧ acL ∧Appl(b) ∧ Shift(iL,C2), (SC1-3)

src′b = L(b, tar b), and (SC1-2)

tar b = Shift(iR,C1). (SC1-1)

For the computation of Seqg
k+1(R,C1,C2), given Seqgk(R,C1,C2), we have:

Seqg
k+1(R,C1,C2) = {srcb,E ⇒b (tar b,E , src+1,E)⇒b1 ...⇒bk tark ∣ (SCk-4/5)

b ∈R ∧ seq ∈ Seqg
k(R,C1,C2) ∧E ∈ E}

where, given b = ⟨(L ↩K ↪ R),acL , true⟩, seq = src1 ⇒b1 ... ⇒bk tark, and E as the set of
graphs with pairs of injective and jointly surjective morphisms eR ∶ R ↪ E and eL ∶ L1 ↪ E,

srcb,E = src′b,E ∧ acL ∧Appl(b) ∧ Shift(iL,C2), (SCk-3)

src′b,E = L(b, tar b,E), (SCk-2)

src+1,E = ∃(eL,acb,E), (SCk-1+)

tar b,E = ∃(eR,acb,E), and (SCk-1)

acb,E = Shift(eL, src1).

Regardless of length, the construction will be executed from right to left, starting with the
case for length 1 (steps SC1-1 to SC1-5) and then iteratively applying the steps for prolonging
the k-sequences to k + 1 (steps SCk-1 to SCk-5). In short, the steps of the Seq-construction
have the following effect:

SC1-1 creates combinations of the graph constraint C1 with right rule sides for all rules in R,
thereby spawning one target pattern for each rule.

SC1-2 creates source patterns by shifting all target patterns to the respective left rule side.
Intuitively, rules are applied in reverse direction.

SC1-3 adds the rules’ left application condition and applicability condition to the source pat-
tern to ensure correct rule applciation in satisfying transformation sequences. In addition,
since intermediate graphs of satisfying transformation sequences have to satisfy C2, it is
shifted to the source pattern, too.

SC1-4/5 combines the pairs of source and target patterns into a number of s/t-pattern se-
quences of length 1.

SCk-1 creates combinations of the leftmost source pattern and the right rule sides for all s/t-
pattern sequences in Seqg

k(R,C1,C2) and rules in R, thereby spawning a number of target
patterns for each pair of a rule and a sequence.

SCk-1+ makes sure there is equivalent information in the newly created target patterns and
the (leftmost) source patterns used in their creation and combines them in target/source
patterns.

SCk-2 creates source patterns by shifting all target patterns to the respective left rule side.
Intuitively, rules are applied in reverse direction.

SCk-3 adds the rules’ left application condition and applicability condition to the source pat-
tern to ensure correct rule applciation in satisfying transformation sequences. In addition,
since intermediate graphs of satisfying transformation sequences have to satisfy C2, it is
shifted to the source pattern, too.

SCk-4/5 combines the constructed source patterns and target/source patterns with their cor-
responding sequences in Seqg

k(R,C1,C2) to form a number of s/t-pattern sequences of
length k + 1.
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Figure 5.12. – Graph rule f2f′ and graph constraint F = ¬F1 = ¬∃iPF
1

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

𝑅1 

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

𝐿1 

s:Shuttle 

tb:Track 
:next 

:isAt 

tc:Track ta:Track 
:next 

𝐸 

∃𝑒𝑅  

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸′ 

∃𝑒𝑅
′  

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 

𝑅2 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 

𝐿2 

:Shuttle 

:Track 

:isAt 

:fast 

:Track 
:next 

:Track :next 

… 

𝑃1
𝐹  

… 

∃𝑡2
𝑖  

𝑇2
𝑖  

∃𝑖𝑃1𝐹 

𝑖𝑅2  

… 

∃𝑒𝐿 

𝑎𝑐𝐸′  𝑎𝑐𝐸  

𝑎𝑐ℱ1  

:fast 

∅ 

Figure 5.13. – The s/t-pattern sequence seq2 = src1 ⇒f2f (tar1, src+2) ⇒f2f tar2 with seq2 ∈
Seqg

2(R,¬F ,F)

Example 5.13 (Seq-construction, example system). In order to keep this example short, we
will use a graph transformation system GTS = (TG ,R), where the set of rules consists only
of the graph rule f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩ (hence, R = {f2f′}). In addition, we have a
safety property F = ¬F1 = ¬∃iPF

1
. The rule and the graph constraint ¬F1 are shown in Figures

5.12(a) and 5.12(b), respectively; they are the same as in Example 5.1 (p. 69).

With respect to the graph rule, we will distinguish between f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩
and f2f′ = ⟨(L1 ↩K1 ↪ R1), true, true⟩. The former will refer to the appearance of rule f2f′ in
the context of steps SC1-1 to SC1-5 and the latter to its appearance in the context of steps
SCk-1 to SCk-5, although the rules’ contents are identical (i.e. L1 = L2 and so on).

We will compute Seqg
2(R,¬F ,F), which would be appropriate in order to determine whether

F is a 2-inductive invariant for GTS under a guaranteed constraint with the trivial value true.
Here, we will not consider the guaranteed constraint H introduced in Example 5.1 for reasons
of (visual) complexity.

Figure 5.13 shows one s/t-pattern sequence (of length 2) seq2 that is contained in Seqg
2(R,¬F ,F).

The construction and origin of its individual parts are explained in Examples A.2-A.10 in Ap-
pendix A; here, we will only provide a short overview.

In particular,

seq2 = src1 ⇒f2f′ (tar1, src+2) ⇒f2f′ tar2

=∃(e′R,ac′E) ∧ acF1 ⇒f2f′ (∃(eR,acE),∃(eL,acE)) ⇒f2f′ ⋁
i∈I
∃ti2,

where the steps, their computations, and the corresponding examples and figures for this
particular s/t-pattern sequence are listed in Table 5.1. Roughly and intuitively, the end result
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Table 5.1. – Computation steps of seq2 ∈ Seqg
2(R,¬F ,F)

Step Computation Figure Example

SC1-1 tar2 = ⋁i∈I ∃ti2 = Shift(iR2 , F1) A.3 A.2
SC1-2 src′2 = ⋁i∈I ∃si2 = L(f2f′, tar2) A.4 A.3
SC1-3 src2 = ⋁i∈I ∃si2 ∧ acF2 with acF2 = Shift(iL2 ,F) A.5 A.4
SC1-4/5 seq1 = src2 ⇒f2f′ tar2 A.6 A.5

SCk-1 tar1 = ∃(eR,acE) with acE = Shift(eL, src2) A.8 A.6
SCk-1+ src+2 = ∃(eL,acE) – A.7
SCk-2 src′1 = ∃(e′R,acE′) = L(f2f′, tar1) A.9 A.8
SCk-3 src1 = ∃(e′R,acE′) ∧ acF1 with acF1 = Shift(iL1 ,F) A.10 A.9
SCk-4/5 seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2 5.14, A.11 A.10

is this: the disjunction over the existential conditions ∃ti2 describes all possibilities where the
application of rule f2f′ has led to a shuttle driving fast on a switch; then, reverse applications
of the rule via the L-construction determine the situation before those rule applications. The
sequences in Seqg

2(R,¬F ,F) differ by their overlappings of the first and second rule (which
are both f2f′). In seq2, that overlapping is represented by the morphism pair (eR, eL) and the
graph E.

In full detail, we have:

seq2 = ∃(e′R, ⋁
j∈J
⋁
a∈Aj

∃sia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃sjd1∗) ∧ ⋀
j∈J

¬∃cj1

⇒f2f′(∃(eR,⋁
j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗),

∃(eL,⋁
j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗))

⇒f2f′ ⋁
i∈I
∃ti2,

with some of the elements and connections depicted in Figure 5.14. As a counterexample for
human inspection, this is not very helpful: at some point during the construction, the amount of
conditions and graphs exceed what can be seen and understood in reasonable time and effort
by a human viewer. Still, the graph E (and its alternatives given other possible morphism
pairs (eR, eL)) provides an indication of the interaction of subsequently applied rules in the
s/t-pattern sequence at hand. △

In the following paragraphs, we will delve deeper into the details of the Seq-construction on
a general level. Detailed examples are listed in Appendix A.

Step SC1-1: For each rule b = ⟨(L ↩K ↪ R),acL , true⟩ ∈ R, tar b = Shift(iR,C1) is a target
pattern over R.

Given a rule b = ⟨(L ↩K ↪ R),acL , true⟩, Shift(iR,C1) transfers the constraint C1 to the
context of the right rule side R in order to create the sequences’ rightmost target pattern.
Since the construction of s/t-pattern sequences (and hence, the propagation of information) is
inductively executed from right to left, the resulting target pattern tar = Shift(iR,C1) will not
be changed later in the construction, regardless of the sequences’ length. The result is encoding
satisfiability of C1 in the context of the result of a rule application (i.e. occurrence of the right
rule side).
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Figure 5.14. – Steps SCk-4/5: seq2 = src1 ⇒f2f′ (tar1, src+2) ⇒f2f′ tar2 with seq2 ∈
Seqg

2(R,¬F ,F)

The Shift-construction guarantees that, given any rule application’s comatch m′ ∶ R ↪ G
for any graph G, m′ will satisfy tar if and only if G satisfies the constraint C1. This is the
basis for fulfilling the C1 part of the Seq-construction’s properties. By definition, a satisfying
transformation sequence means m′ ⊧ tar , which implies satisfaction of C1 by G (the sequence’s
rightmost graph); conversely, G ⊧ C1 and the existence of the respective comatch will imply
m′ ⊧ tar , guaranteeing that there is a representation for the respective transformation se-
quence. Since the construction needs to take all rules in a rule set into account, Shift(iR,C1)
has to be computed for all rules (and right rule sides R, respectively); there will be one target
pattern per rule.

Since we employ s/t-pattern sequences in order to represent possibly infinitely many cases
in a finite fashion, it is important to highlight that Shift always yields a finite result by
construction – specifically, an application condition, which are finite by definition.

Step SC1-2: For each such target pattern tar b, src′b = L(b, tar b) is a source pattern over L.

After having established target patterns of the form tar = Shift(iR,C1) in the previous step,
src′ = L(b, tar) will transform each target pattern into a source pattern over the respective
rule’s left side. Intuitively speaking, given a target pattern, the rule will be applied in reverse
direction to determine the (symbolic) state before rule application. In particular, by the L-
construction, any rule application G′ ⇒b,m,m′ G will imply the equivalence of m ⊧ src′ and
m′ ⊧ tar : if the source pattern is satisfied before rule application, the target pattern will be
satisfied after rule application and the resulting graph will satisfy C1 (see step SC1-1).

Again, the result of this construction is finite. Given a number of target patterns equal to the
number of graph rules considered, the result of this step is an equal number of corresponding
source patterns.

Step SC1-3: For each such source pattern src′b, srcb = src′b ∧ acL ∧Appl(b) ∧ Shift(iL,C2) is a
source pattern over L.

This step ensures the applicability of the rule in question for any transformation sequence
satisfying the s/t-pattern sequence under construction and implements the requirement that
intermediate graphs of a satisfying transformation sequence satisfy C2. Conjunctively join-
ing the respective left application condition acL and rule applicability condition Appl(b) to
each source pattern achieves the former: any potential match m ∶ L ↪ G′ to any graph G′

that satisfies acL and Appl(b) will imply the existence of a transformation G′ ⇒b,m,m′ G (by
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Lemma 2.30 (p. 37)). Shift(iL,C2), on the other hand, makes sure that any graph (except the
last) appearing in a satisfying transformation sequence also satisfies C2 as required.

Step SC1-4: For each such pair srcb and tar b of a source and a target pattern, srcb ⇒b tar b is
a 1-sequence of s/t-patterns.

Step SC1-5: Finally, we define Seqg
1(R,C1,C2) = {srcb ⇒b tar b ∣ b ∈ R} as the set of these

sequences.

These steps put the computed target patterns and corresponding source patterns together
to form a number of 1-sequences of source/target patterns. By construction, that number is
equal to the number of rules in the set of graph rules.

By Theorem T.1g (p. 85), any transformation sequence trans = G1 ⇒R G2 with G2 ⊧ C1
and G1 ⊧ C2 has a representing s/t-pattern sequence seq in Seq1(R,C1,C2), i.e. trans ⊧ seq .
Also, given a transformation sequence trans = G1 ⇒R G2 that satisfies an s/t-pattern sequence
seq ∈ Seq1(R,C1,C2), we know that G2 ⊧ C1 and G1 ⊧ C2.

Step SCk-1: For each sequence seq = src1 ⇒b1 ...⇒bk tark ∈ Seqg
k(R,C1,C2) with src1 being a

source pattern over a left rule side L1, each b = ⟨(L ↩K ↪ R),acL , true⟩ ∈ R, and each
graph E and pair of injective and jointly surjective morphisms (eR ∶ R ↪ E, eL ∶ L1 ↪ E),
tarb,E = ∃(eR,acb,E) with acb,E = Shift(eL, src1)) is a target pattern over R.

The following steps take all constructed s/t-pattern sequences of length k and prolongs them
to create the required sequences of length k + 1. Intuitively, this step applies the same idea
as step SC1-1, but considers the leftmost source patterns of the sequences of length k instead
of the constraint C1. In other words, the target pattern resulting from this step encode all
situations where a rule application leads to the start of a s/t-pattern sequence of length k that
fulfills the required properties with respect to the constraints C1 and C2.

Given a source pattern src1 and a rule, a disjunction of the resulting target patterns for all
possible morphisms eR would be the result of shifting said source pattern to the respective
right rule side R: ⋁eR,E∈⋯ ∃(eR,acE) = Shift(iR, src1). Here, we have chosen to create a new
target pattern and, in step SCk-4/5, a new s/t-pattern sequence from each such existential
condition ∃(eR,acE). As before, all rules need to be considered. Also, there is a finite number
of graphs E and injective and jointly surjective morphism pairs and hence, there is a finite
number of resulting target patterns.

Step SCk-1+: For each such target pattern tarb,E , src+1,E = ∃(eL,acb,E) is a source pattern
over L1 and (tar b,E , src+1,E) is a target/source pattern over (b, b1).

By the definition of s/t-pattern sequences (Definition D.2 (p. 82)), a s/t-pattern sequence of
length 2 (or longer) is not merely a list of two (or more) 1-sequences. Rather, they have to be
glued together by combining a target and a subsequent source pattern to form a target/source
pattern. In particular, the target patterns created in the previous steps need to be connected to
the s/t-pattern sequence used in their construction by creating target/source patterns. Since
target/source patterns consist of two existential conditions with the same codomain and a
nested condition and since the created target patterns have the form tar = ∃(eR,acE), we have
to shift the corresponding source patterns, which are application conditions over a left rule side
L1, over the morphism eL to E: src+b,E = ∃(eL,acE), where, in particular, acE = Shift(eL, src1).
Then, the target/source pattern is of the form (tar b,E , src+1,E) = (∃(eR,acE),∃(eL,acE)).

With respect to notation, note that src+ usually denotes the extension of a source pattern src
to a source pattern src+ that is used as part of a target/source pattern. Conversely, src− refers
to an ‘underlying’ source pattern that has been extended to a source pattern src appearing in
a target/source pattern.
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Step SCk-2: For each such target pattern tar b,E , src′b,E = L(b, tar b,E) is a source pattern over
L.

As before (step SC1-2), this step transfers all newly constructed target patterns over the
rule in reverse direction to create corresponding source pattern over the respective rules’ left
sides.

Step SCk-3: For each such source pattern src′b,E , srcb,E = src′b,E ∧acL ∧Appl(b)∧Shift(iL,C2)
is a source pattern over Lu.

Similar to step SC1-3, we add the rule’s left application condition, the rule applicability
condition, and the constraint C2 transferred to the context of the left rule side to the source
pattern.

Step SCk-4: For each such pair srcb,E and tar b,E of a source and a target pattern, srcb,E ⇒b

(tar b,E , src+1,E)⇒b1 ...⇒bk tark is a k+1-sequence of s/t-patterns.
Step SCk-5: Finally, we define Seqg

k+1(R,C1,C2) = {srcb,E ⇒b (tar b,E , src+1,E) ⇒b1 ... ⇒bk

tark ∣ b ∈R ∧ seq ∈ Seqg
k(R,C1,C2) and E as above} as the set of these sequences.

In these steps, we combine the newly created and corresponding target/source patterns and
source patterns in order to create all s/t-pattern sequence of length k + 1. The target/source
patterns (step SCk-1+) connect the created target patterns (step SCk-1) to the leftmost source
patterns computed in the previous iteration (i.e. for length k) of the Seq-construction. The
result is a finite set of s/t-pattern sequences of length k+1. From here on, steps SCk-1 to SCk-5
can be repeated until the desired length of the s/t-pattern sequences is reached.

By Theorem T.1g (p. 85), any transformation sequence trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m
′
k

Gk that leads to C1 with intermediate graphs satisfying C2 has a representing s/t-pattern
sequence seq in Seqg

k(R,C1,C2), i.e. trans ⊧ seq . Also, given a transformation sequence trans
that satisfies an s/t-pattern sequence seq ∈ Seqk(R,C1,C2), we know that trans leads to C1,
while earlier graphs in the sequence satisfy C2.

Seq-construction and Satisfiability. While it establishes symbolic representations, the Seq-
construction does not describe how to obtain concrete transformation sequences satisfying
the constructed s/t-pattern sequences. Furthermore, it does not even guarantee the existence
of such a transformation sequence. For instance, the results of a Seq-construction for k = 2
could be equivalent to false⇒b1 false⇒b2 false, which cannot have a satisfying transformation
sequence. For the purpose of analysis, it is desirable to establish the existence or absence of
satisfying transformation sequences. For purposes of human inspection of counterexamples to
a k-inductive invariant, it is desirable to create specific transformation sequences even if their
existence has already been established. The following lemma considers this aspect.

Lemma 5.14 (existence of satisfying transformation sequences). Given an s/t-pattern se-
quence seq = (src1 ⇒b1 ... ⇒bk tark) ∈ Seqg

k(R,C1,C2) and a graph G0 such that G0 ⊧ src1∣∅,
there is a transformation sequence trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m

′
k
Gk such that trans ⊧ seq.

∅src1∣∅▷
,

iL1
&&

�

iG0
⊧src1∣∅ ""

L1src1▷ �

m1⊧src1
��

⋯?oo ⋯ � // Rk ◁tark�

m′k⊧tark
��

G0 ⋯?oo ⋯ � // Gk
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Proof. We will show the required statement by structural induction.

Induction base. By definition of satisfiability and Lemma 2.38, G0 ⊧ src1∣∅ implies the
existence of an injective morphism m1 ∶ L1 ↪ G0 such that m1 ⊧ src1. By construction of
Seqg

k, there is a source pattern src′1 such that src1 = src′1 ∧ acL1 ∧ Appl(b1) ∧ Shift(iL1 ,C2)
and src′1 = L(b1, tar1). Since m1 ⊧ src1, we have m1 ⊧ acL1 ∧ Appl(b1) and by Lemma 2.30,
there is a graph G1 and transformation G0 ⇒b1,m1,m′1 G1. Furthermore, m1 ⊧ src′1 and, by the
L-Lemma, we have m′

1 ⊧ tar1.

∅src1∣∅▷
,

iL1
&&

�

iG0
⊧src1∣∅ ��

L1src1▷ �

m1⊧src1
��

K1
?oo � // R1 ◁tar1�

m′1⊧tar1
��

⋯

G0 K ′
1

?oo � // G1 ⋯

Inductive step. By inductive hypothesis, given m′
i ∶ Ri ↪ Gi with m′

i ⊧ tar i for an i with
1 ≤ i < k, we also have, by the Seq-construction, tar i = ∃(eR,acE) and srci+1 = ∃(eL,acE) as
shown below. By construction, there is an underlying source pattern src−i+1 such that acE =
Shift(eL, src−i+1) and that seq ′ = src−i+1 ⇒bi+1 ... ⇒bk tark is a (k−i)-sequence of source/target
patterns such that seq ′ ∈ Seqg

k−i(R,C1,C2).

... Ri�

eR
��

r

m′i

��

E
=

�

y

��
ac

E
▷

Li+1_eL
oo

n

mi+1⊧src−i+1}}

src −
i+1 ▷

Ki+1_oo � // Ri+1◁tar i+1�

m′i+1⊧tar i+1
��

...

... Gi K ′
i+1_oo � // Gi+1 ...

Furthermore, m′
i ⊧ tar i implies the existence of an injective morphism y ∶ E ↪ Gi such that

y ⊧ acE . Then, there is an injective morphism mi+1 = y ○ eL (i.e. mi+1 ∶ Li+1 ↪ Gi), implying
mi+1 ⊧ srci+1 (via y) and hence, (m′

i,mi+1) ⊧ (tar i, srci+1). With acE = Shift(eL, src−i+1) and
the Shift-lemma, y ⊧ acE implies y ○ eL ⊧ src−i+1 and, consequently, mi+1 ⊧ src−i+1.

Since seq ′ ∈ Seqg
k−i(R,C1,C2), we know that src−i+1 = src′i+1∧acli+1∧Appl(bi+1)∧Shift(iLi+1 ,C2)

and src′i+1 = L(bi+1, tar i+1). Consequently, mi+1 ⊧ src−i+1 implies mi+1 ⊧ acLi+1 ∧ Appl(bi+1),
which in turn implies the existence of a transformation Gi ⇒bi+1,mi+1,m′i+1 Gi+1. By the L-
lemma, we have m′

i+1 ⊧ tar i+1, concluding the inductive proof.

The intuitive idea behind the proof is to use the s/t-pattern sequence’s leftmost source
pattern to instantiate a graph satisfying its reduction to a graph constraint. Given that graph,
the sequence’s rules can be applied subsequently in forward direction to create a transformation
sequence that satisfies the s/t-pattern sequence. Applicability of the rules and existence of the
individual transformations are guaranteed because of the Seq-construction’s step SCk-3 (and
SC1-3): there, the rules’ left application condition and the rule applicability condition are
conjunctively joined to the respective source pattern.

Example 5.15. Consider seq2 ∈ Seqg
2(R,¬F ,F) as given in Example 5.13 (p. 90). Its left-

most source pattern is src1 = ∃(e′R,acE′) ∧ acF1 and its reduction to a constraint is src1∣∅ =
∃(iE′ ,acE′) ∧ acF1∣∅. Figure 5.15 shows a transformation sequence trans = G0 ⇒f2f′,m1,m′1
G1 ⇒f2f′,m2,m′2

G2. In particular, G0 ⊧ src1∣∅. By Lemma 5.14, there exists a transformation
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s:Shuttle 

tb:Track 

:next 

:isAt 

:fast 

t3:Track ta:Track 

:next 

𝐺2 

t4:Track :next 

s:Shuttle 

tb:Track 

:next 
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:fast 

t3:Track ta:Track 

:next 

𝐺1 

t4:Track 
:next 

s:Shuttle 
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:next 
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t3:Track ta:Track 
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𝐺0 

t4:Track 
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⇒𝑓2𝑓′  ⇒𝑓2𝑓′  

Figure 5.15. – Transformation sequence trans = G0 ⇒f2f′,m1,m′1
G1 ⇒f2f′,m2,m′2

G2 with
trans ⊧ seq2

sequence that satisfies seq2 starting from G0 – and indeed, trans in Figure 5.15 is such a se-
quence. A more detailed version of this example is shown in Example A.11 in Appendix A.
△

Note that this lemma and its proof does not provide a procedure to find a satisfying graph
G0 ⊧ src1∣∅ nor does it construct an actual satisfying transformation sequence. Indeed, al-
though the proof explains a possible idea to construct a transformation sequence, the lemma is
only concerned with proving the existence of such a sequence. Constructions to find satisfying
graphs and transformation sequences have been discussed in the literature [HP09, SLO17].
Unfortunately, the general problem of finding satisfying graphs for a graph constraint is unde-
cidable [HP09].

Only the leftmost source pattern of an s/t-pattern sequence created by the Seq-construction
contains all accumulated information: all conditions are appropriately shifted or transferred
by the Shift- and L-constructions. Since Lemma 5.14 (p. 94) only requires the leftmost source
pattern, the incomplete information in other source and target patterns is not a problem
when it comes to finding satisfying transformation sequences. However, if we were to analyze
properties of the other source or target patterns (individually) without taking accumulated
information into account, we may get a different result. We will consider the implications of this
aspect when explaining the restricted approach to k-inductive invariant checking (Chapter 6).

With both the construction of s/t-pattern sequences and the question of satisfying transfor-
mation sequences addressed, we can move on to the core idea and main motivation: verifying
a graph constraint as a k-inductive invariant for a graph transformation system under a con-
straint.

5.3. k-inductive Invariant Checking

Finding counterexamples to a k-inductive invariant under a guaranteed constraint amounts to
finding transformation sequences of length k that lead to a violation of the desired invariant
while all earlier graphs fulfill the invariant and all graphs in the sequence satisfy the guaranteed
constraint. By Theorem T.1g (p. 85), such transformation sequences are represented by s/t-
pattern sequences in Seqg

k(R,¬F ∧H,F ∧H). Formally, we establish this connection in our
central verification theorem for the general approach to k-inductive invariant checking:

Theorem T.2g (k-inductive invariant checking). Let GTS = (R,TG) be a typed graph trans-
formation system and F and H be graph constraints.
F is a k-inductive invariant for GTS under H if and only if, for all sequences seq = src1 ⇒b1

... ⇒bk tark with seq ∈ Seqg
k(R,¬F ∧ H,F ∧ H), there does not exist a graph G such that

G ⊧ src1∣∅.

Proof. According to Lemma 5.2 (p. 75), we need to prove that there does not exist a trans-
formation sequence trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m

′
k
Gk leading to ¬F ∧H with Gi ⊧ F ∧H

for 0 ≤ i ≤ k − 1 if and only if the above condition holds.
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(b) F = ¬F1 = ¬∃iPF
1

Figure 5.16. – Graph rule and intended 2-inductive invariant

If. Assume that F is not a k-inductive invariant for GTS under H. Then, there exists a
transformation sequence trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m

′
k
Gk that leads to ¬F ∧ H with

Gi ⊧ F ∧H for 0 ≤ i ≤ k − 1. By Theorem T.1g (p. 85), there exists a s/t-pattern sequence of
length k seq = (src1 ⇒b1 ...⇒bk tark) ∈ Seqg

k(R,¬F ∧H,F ∧H) such that trans ⊧ seq . Then,
we have m1 ⊧ src1. By Lemma 2.38 (p. 43), we get G0 ⊧ src1∣∅, which is a contradiction; hence,
trans cannot exist and F is a k-inductive invariant for GTS under H.

Only if. We will show this statement by contraposition. Assume the existence of an s/t-
pattern sequence seq = (src1 ⇒b1 ...⇒bk tark) ∈ Seqg

k(R,¬F ∧H,F ∧H) such that there exists
a graph G0 with G0 ⊧ src1∣∅. By Lemma 5.14 (p. 94), there exists a transformation sequence
trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m

′
k
Gk such that trans ⊧ seq . By Theorem T.1g (p. 85), trans

then leads to ¬F ∧H and all its graphs G0, ...,Gk−1 satisfy F ∧H. Hence, F is not a k-inductive
invariant for GTS under H.

Intuitively, the proof combines the properties established in Theorem T.1g (p. 85) with
the possibility of finding satisfying transformation sequences for an s/t-pattern sequences de-
scribed by Lemma 5.14 (p. 94). After encoding all possible counterexamples (transformation
sequences) in s/t-pattern sequences (Seqg

k(R,¬F ∧H,F ∧H)), we have to find out whether
there are actual transformation sequences capable of satisfying the s/t-pattern sequences and
establishing counterexamples (Lemma 5.14 (p. 94)). Note that, as established by the theorem,
we only have to find (or disprove the existence of) a satisfying graph G0 ⊧ src1∣∅; further
analysis of the corresponding transformation sequence or s/t-pattern sequence is not required.

The theorem describes an equivalence: there are no false negatives or false positives. This
also shows that the information accumulated in the leftmost source pattern of an s/t-pattern
sequence constructed by the Seq-construction is complete with respect to the question of
finding of rejecting counterexamples. However, the problem of finding satisfying graphs for
nested graph constraints is, in general, undecidable. Hence, an implementation of the procedure
described by Theorem T.1g (p. 85), Lemma 5.14 (p. 94), and Theorem T.2g (p. 96) cannot be
sound, complete, and terminating at once.

Example 5.16 (2-inductive invariant checking for an unsafe system). This example follows
and is based on Examples 5.13 (p. 90) and 5.15 (p. 95) and their detailed variants in Ex-
amples A.1-A.11. Again, we have a rule set R = {f2f′} (Figure 5.16(a)) and a corresponding
graph transformation system GTS = (TG ,R). Likewise, our safety property will again be the
absence of a shuttle driving on a switch in speed mode fast (Figure 5.16(b)) and we intend
for the constraint F = ¬F1 = ¬∃iPF

1
to be a 2-inductive invariant of GTS without further

restrictions, i.e. under the trivial constraint H = true.
Then, seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2 (Example 5.13, Figure 5.14 (p. 92)) is an s/t-

pattern sequence in Seqg
2(R,¬F ,F). Furthermore, G0 (Example 5.15 (p. 95)) satisfies src1∣∅;

hence, F is not a 2-inductive invariant of GTS . The transformation sequence trans = G0 ⇒f2f′

G1 ⇒f2f′ G2 (Example 5.15, Figure 5.15 (p. 96)) is a counterexample.
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Since the safety property is not even a 2-inductive invariant for a single graph rule, verifying
it for the complete rule set of our running example – R′ = {f2f′, f2b,b2s, s2s, s2a′, a2b, a2f′}
– will yield a similar result. It is no surprise that the safety property is not a 2-inductive
invariant – or, in fact, an invariant for any possible value of k: The graph rules do not contain
any mechanism to prevent acceleration and high speed modes when approaching a track. Even
the non-trivial guaranteed constraint H of our running example (Example 5.1 (p. 69)) will not
change this result. Although it will necessarily reduce the amount of counterexamples, some
will remain, including the transformation sequence trans. △

Example 5.17 (2-inductive invariant checking for a safe system). Now, consider a graph
transformation system GTS = (TG ,R) with R = {f2f, f2b,b2s, s2s, s2a, a2b, a2f} (Example 5.1
(p. 69)) and (again) the safety property F = ¬F1 = ¬∃iPF

1
. The rules f2f, a2f, and s2a are shown

again in Figures 5.17(a), 5.17(b), and 5.17(c), respectively; F1 is shown again in Figure 5.17(d).
The rules shown have non-trivial application conditions in comparison to their (unsafe) coun-
terparts a2f′, s2a′, and f2f′. Intuitively, they prevent acceleration or high speed modes – or
rather, the application of the respective rules – when a switch is two tracks ahead (or, for
s2a, one or two tracks ahead). We will also consider the non-trivial guaranteed constraint
H = ⋀1≤i≤16 ¬Hi (Example 5.1 (p. 69)); H1, H5, and H6 are depicted again in Figures 5.17(e),
5.17(f), and 5.17(g).

In order to apply Theorem T.2g (p. 96) and to determine whether F is a 2-inductive invariant
of GTS underH, we have to compute Seqg

2(R,¬F∧H,F∧H). Due to the higher number of rules
and constraints involved, the number and complexity of the resulting s/t-pattern sequences is
significantly higher than in Examples 5.13 (p. 90) and 5.16 (p. 97). The main point, however,
is that the negative application conditions of f2f, a2f, and s2a are taken into account in steps
SC1-3 and SC2-3 of the Seq-construction. In particular, for all sequences

seq = src1 ⇒b1 (tar1, src+2)⇒b2 tar2 with seq ∈ Seqg
2(R,¬F ∧H,F ∧H)

and b1, b2 ∈ R, we know that the respective left application conditions acLi have been added
as a conjunctive operand to the source patterns src1 and src2 (with the latter being shifted
src+2 as part of the target/source pattern). The left application conditions of s2s, a2b, f2b,
and b2s are trivially true and do not have any effect on the construction. For s2a, f2f, and
a2f, however, the left application conditions restrict the rules’ applicability and hence, possible
instantiations of the source patterns and s/t-pattern sequences.

Consider Figure 5.17(h), which depicts an s/t-pattern sequence src1 ⇒f2f tar1. That sequence
is a fragment of a 2-sequence of s/t-patterns seq = src1 ⇒f2f (tar1, src+2) ⇒f2f tar2 with seq ∈
Seqg

2(R,¬F ∧H,F ∧H). This case is similar, if not equivalent, to the sequence discussed in
Examples 5.13 (p. 90) and 5.15 (p. 95) and shown in Figure 5.14 (p. 92). There are two
differences here: rule f2f has an additional negative application condition and there is a non-
trivial guaranteed constraint H. For clarity, the figure leaves out most nested conditions of
the source and target pattern and only depicts them as src1 = ∃(e′R, . . . ) ∧ ¬∃x1 and tar1 =
∃(eR, . . . ). Then, because ¬∃x1 contradicts existential conditions in acE′ , the reduced source
pattern src1∣∅ cannot be satisfied by any graph.

In particular, consider graph G0 from Example 5.15 (p. 95), depicted again in Figure 5.17(i).
Recall that G0 was a candidate to satisfy the leftmost source pattern’s reduction to a constraint
in the previous example and hence, the first graph of a transformation sequence that is a
counterexample for F being a 2-inductive invariant. Here, we cannot find a match for the left
side of the graph rule f2f such that it satisfies ∃(e′R, . . . ) ∧ ¬∃x1: the shuttle is not allowed to
stay in speed mode fast when there is a switch two tracks ahead. Intuitively, this is also the
reason for the absense of satisfying graphs for other leftmost source patterns of s/t-pattern
sequences in Seqg

2(R,¬F ∧H,F ∧H): we would have to find a situation where two subsequent
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(b) Graph rule a2f = ⟨(L↩K ↪ R),¬∃x1, true⟩
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(h) src1 ⇒f2f tar1, fragment of seq = src1 ⇒f2f (tar1, src+2)⇒f2f tar2 with seq ∈ Seqg2(R,¬F ∧H,F ∧H)
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(i) Graph G0 (cf. Example 5.15) with G0 /⊧ src1∣∅

Figure 5.17. – Fragments of an example system with a 2-inductive invariant F = ¬F1
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Figure 5.18. – Extended safety property F = ¬F1 ∧ ¬F2 ∧ ¬F3

rule applications result in a (fast) shuttle on a switch; however, the first of those rules cannot
be applied because of the negative application conditions in f2f, a2f, or s2a. In summary, F is
a 2-inductive invariant for GTS under H.

We can even extend our safety property to also forbid an accelerating or braking shuttle
on a switch. The corresponding graph constraints ¬F2 and ¬F3 from Example 5.1 (p. 69) are
shown again in Figure 5.18. Then, our new safety property is F = ¬F1 ∧ ¬F2 ∧ ¬F3 – and F is
a 2-inductive invariant for GTS under H.

In this case, F being a 2-inductive invariant – as opposed to a larger value of k – is indirectly
encoded in the rules’ negative application conditions and the speed mode protocol. If the rules
were to look ahead only one instead of two tracks and if speed modes could directly change
to slow, the safety property might be a 1-inductive invariant. If we were to look ahead three
or more tracks, we might have to check F as a 3-inductive invariant or use higher values for
k. In practice, those ‘numerical properties’ of behavioral rules cannot usually be freely chosen.
For example, having to look two tracks ahead instead of one might be rooted in a shuttle’s
braking distance: if a shuttle only registers switches that are only one track ahead, braking in
time might not be possible. △

An important question is the choice of k for a given system. While it is possible to verify a
graph constraint as a k-inductive invariant for iteratively increasing values of k, that approach
only terminates when a k-inductive invariant is found or an upper bound for k is reached.
Proper values for k, whether as start values or upper bounds, depend on the systems and
application scenarios.

Theorem T.2g (p. 96) provide a means of verifying k-inductive invariants, which is the
inductive step of Lemma L.1 (p. 65). Alone, a k-inductive invariant cannot be used to reason
about the validity of the invariant in the state space of a graph grammar. Therefore, the
following section will address the application of the Seq-construction to establish the base case
of our inductive verification approach.

5.4. k−1-Bounded Backward Model Checking

In order to infer from a k-inductive invariant its validity for the state spaces of all graph
grammars induced by a graph transformation system and a start configuration constraint, we
need to establish the base case of the inductive argument described in Lemma L.1 (p. 65).
This means showing the absence of a violation of F in the k−1-bounded state spaces of such
graph grammars.

In particular, we recall the verifiable condition establishd by Lemma 5.3 (p. 75): we are
looking for a transformation sequence trans = G0 ⇒R ... ⇒R Gn such that 1 ≤ n ≤ k − 1,
G0 ⊧ S, Gn /⊧ F , and Gi ⊧ H with 1 ≤ i ≤ n. In other words – and similar to the verification
of k-inductive invariants – we are looking for a transformation sequence that leads to ¬F
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under H. However, in contrast to Theorem T.2g (p. 96), we cannot only compute and consider
Seqg

k−1(R,¬F ∧H,H). Rather, since any transformation sequence with a length between 1 and
k − 1 is a possible counterexample, we need to consider SEQg

k(R,¬F ∧H,H), which contains
all sequences in Seqg

i (R,¬F ∧H,H) for 1 ≤ i ≤ k − 1. Note that satisfaction of S by the first
graph of a satisfying transformation sequence is not encoded as part of the Seq-construction,
but will be included directly in the theorem.

Theorem T.3g (bounded backward model checking). Let GTS = (TG ,R) be a typed graph
transformation system and F , H, and S be graph constraints with S ⊧ F .

For all graphs G ∈ REACHk−1(GG ,H) and graph grammars GG = (GTS ,G0) with GG ∈
IND(GTS ,S), we have G ⊧ F , if and only if for all sequences seq = (src1 ⇒b1 ...⇒bn tarn) ∈
SEQg

k−1(R,¬F ∧H,H), there does not exist a graph G0 with G0 ⊧ src1∣∅ ∧ S.

Proof. We will show both directions separately.

If. We will show this direction by contraposition. Given an arbitrary graph grammar GG =
(GTS ,G0) with GG ∈ IND(GTS ,S), we assume the existence of a graphG ∈ REACHk−1(GG ,H)
such that G /⊧ F . By Lemma 5.3 (p. 75), there exists a transformation sequence trans =
G0 ⇒b1,m1,m′1 ...⇒bn,mn,m′n Gn (with bi ∈R) that leads to ¬F (i.e. Gn /⊧ F) under H such that
G0 ⊧ S and 1 ≤ n ≤ k − 1.

By Theorem T.1g (p. 85) (construction of s/t-pattern sequences), there is a s/t-pattern
sequence seq = src1 ⇒b1 ... ⇒bn tarn with seq ∈ Seqg

n(R,¬F ∧ H,H) (and hence, seq ∈
SEQg

k−1(R,¬F ∧H,H)) such that trans ⊧ seq . Then, m1 ⊧ src1 and, by Lemma 2.38 (p. 43),
we have G0 ⊧ src1∣∅. Since G0 ⊧ S by assumption, we get G0 ⊧ src1∣∅ ∧ S.

Only if. We will show this direction by contraposition. Assume the existence of an s/t-
pattern sequence seq = (src1 ⇒b1 ...⇒bn tarn) ∈ SEQg

k−1(R,¬F ∧H,H) such that there exists
a graph G0 with G0 ⊧ src1∣∅ ∧ S. By Lemma 5.14 (p. 94), there is a transformation sequence
trans = G0 ⇒b1,m1,m′1 ...⇒bn,mn,m′n Gn such that trans ⊧ seq . By Theorem T.1g (p. 85), trans
leads to ¬F ∧H under H. Since, in particular, G0 ⊧ S and by Lemma 5.3 (p. 75), we have a
graph Gn violating F with Gn ∈ REACHk−1(GG ,H) and GG ∈ IND(GTS ,S).

The theorem describes an equivalence: false negatives and false positives cannot occur. How-
ever, similar to Theorem T.2g (p. 96), the underlying condition – whether there is a satisfying
graph G0 ⊧ src1∣∅ ∧ S – is (in general) an undecidable problem.

While we have mainly introduced the process of bounded backward model checking as a
means to verify the base case for an established k-inductive invariant, this is not the only
application scenario. In general, bounded backward model checking allows us to find symbolic
transformation sequences from a possible start graph to an erroneous state. Regardless of
inductive invariant checking, these symbolic counterexamples or their concrete instantiations
can be useful for analysis and debugging.

Example 5.18 (1-bounded backward model checking for an unsafe system). Consider the
constraint F = ¬F1 = ¬∃iPF

1
(Figure 5.17(d), p. 99) and rules R = {s2s, a2b, f2b,b2s, f2f, s2f, a2f}

as before, and the guaranteed constraint H = ⋀1≤i≤16 ¬Hi (Examples 5.1 (p. 69) and 5.17
(p. 98)).

Furthermore, we choose a start configuration constraint S = ¬SC 1 = ¬∃iPSC
1

(Figure 5.19)
that allows all start configurations that do not contain a shuttle driving in speed mode fast.
Note that S ⊧ F . The general idea behind this start configuration constraint is that system
initialization with shuttles already driving fast is not plausible.

Given this system and start configuration constraint, we can find a single rule application
from a possible start graph leading to a violation. Consider the s/t-pattern sequence seq =
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:Shuttle 
:fast 

𝑃1
𝐻  

¬∃𝑖𝑃1𝑆𝐶
  

∅ 

Figure 5.19. – Constraint ¬SC 1 = ¬∃iPSC
1

src1 ⇒a2f tar1 – with seq ∈ Seqg
1(R,¬F ∧ H,H) – which is depicted in Figure 5.20(a). In

particular, the Seq-construction yields a target pattern

tar1 =⋁
i∈I
∃ti1 ∧ Shift(iR1 ,H)

and a source pattern

src1 =⋁
i∈I
∃si1 ∧ ¬∃x1 ∧ L(a2f,Shift(iR1 ,H)) ∧ Shift(iL1 ,H).

The disjunction in the target pattern is the result of shifting the safety violation, i.e. a (fast)
shuttle located on a switch, to the right rule side; in the source pattern, it has been transferred
over the rule a2f. The guaranteed constraint H has also been shifted to the right rule side
– Shift(iR1 ,H) – because we specifically calculate Seqg

1(. . . ,¬F ∧H, . . . ); however, it is not
depicted in the figure. Shift(iR1 ,H) is then transferred to the source pattern over the left
rule side by the L-construction. Since we require H to be fulfilled in all intermediate graphs
in satisfying sequences (Seqg

1(. . . , . . . ,H)), src1 is extended by Shift(iL1 ,H) (not depicted).
Finally, since a2f has a non-trivial application condition, ¬∃x1 is conjunctively joined to the
source pattern.

The graph Sn
1 and the corresponding morphism sn1 ∶ L1 ↪ Sn

1 is part of the source pattern as
an existential condition ∃sn1 . As part of a disjunction, it shows one possibility for a situation
leading to the violation after rule application, which is encoded as ∃tn1 in the target pattern.
In particular, we have a shuttle located directly before a switch and driving in speed mode
acc. Since the negative application condition only prevents acceleration if there is a switch two
tracks ahead, the shuttle can drive forward, increase its speed mode to fast, and hence, cause
a violation of the safety property.

Formally, by Theorem T.3g (p. 101), we are looking for a graph G0 such that G0 ⊧ src1∣∅∧S,
i.e. G0 ⊧ src1∣∅ ∧ ¬SC 1. Figure 5.20(b) depicts such a graph G0 that isomorphic to Sn

1 . In
particular, we have G0 ⊧ src1∣∅. Furthermore, since the shuttle in G0 is not located on a switch,
we also have G0 ⊧ ¬SC 1 and hence, G0 ⊧ src1∣∅ ∧S. By Theorem T.3g (p. 101), we know that
there is a graph G ∈ REACH1(GG ,H) with G /⊧ F for a graph grammar GG ∈ IND(GTS ,S).
In fact, GG = (GTS ,G0) is such a graph grammar: the transformation sequence trans =
G0 ⇒a2f,m1,m′1 G1 (Figure 5.20(b)) leads to a violation of F under the guaranteed constraint
H. Since G0 is a possible start configuration (G0 ⊧ S), we have G1 ∈ REACH1(GG ,H).

In summary, this is an example of a system where a violation of the safety property might
occur directly after a rule application from a possible start graph. Although some graph gram-
mars in the set of induced graph grammars might be safe, we cannot establish the validity of
the safety property for all graphs in the 1-bounded state spaces of all induced graph grammars.
In particular, we have constructed a symbolic encoding of possible error traces: transformation
sequences leading to a violation within the bounded state space. Since we can find a violation
for F = ¬F1, we will also find violations for the extended safety property F = ¬F1 ∧¬F2 ∧¬F3,
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(a) Fragment of s/t-pattern sequence seq = src1 ⇒a2f tar1
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1
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Figure 5.20. – Fragment of s/t-pattern sequence seq ∈ Seqg
1(R,¬F ∧ H,H) and example

transformation sequence trans ⊧ seq

with F2 and F3 as in Example 5.1 (p. 69) and Example 5.17 (p. 98), Figures 5.18(a) and
5.18(b).

This is also an example for a system where, although a 2-inductive invariant has been verified
(Example 5.17), the base case of the inductive argument could not be established. F is a 2-
inductive invariant of GTS under H: any transformation sequence of length 1 that is free of
violations of the safety proptery and the guaranteeed constraint implies validity of the safety
property in all possible subsequent states (provided they satisfy H). However, as shown above,
not all transformation sequences of length 1 from possible start graphs are free of violations.△

Example 5.19 (1-bounded backward model checking for a safe system). Now, we extend the
safety property with F = ¬F1 ∧ ¬F2 ∧ ¬F3; all rules and the guaranteed constraint remain
unchanged. Figures 5.21(b) and 5.21(c) depict additional constraints SC 2 = ∃iPSC

2
and SC 3 =

∃iPSC
3

; then, we choose the start configuration constraint as S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3. In the
previous example, we found a symbolic error trace of length 1 from a start graph where a shuttle
was driving in speed mode acc. With ¬SC 2, this situation cannot occur in valid start graphs.
Indeed, although G0 in Figure 5.20(b) still satisfies the (unchanged) reduced source pattern
src1∣∅, it does not satisfy ¬SC 2 because G0 contains P SC

2 and hence, G0 /⊧ ¬SC 2. Furthermore,
there is no graph G0 satisfying both the reduced leftmost source pattern and the (extended)
start configuration constraint for any of the s/t-pattern sequences in Seqg

1(R,¬F ∧ H,H).
Hence, we have G ⊧ F for all graphs G in the bounded state spaces REACH1(GG ,H) for all
graph grammars in IND(GTS ,S).

Intuitively, this makes sense: since shuttle speed modes follow the protocol shown in Exam-
ple 5.1 (p. 69), Figure 5.1(b), a shuttle in speed mode slow requires at least application of s2a
and a2f to switch to speed mode fast – and more if it starts in speed mode brake. Hence, when
possible start graphs only allow speed modes slow and brake, we cannot reach a graph with a
fast shuttle after one transformation, let alone a fast shuttle on a switch. For an accelerating
shuttle (F2) on a switch, the application condition of s2a prevents reachability within one
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(c) Constraint ¬SC 3 = ¬∃iPSC
3

Figure 5.21. – Fragments of start configuration constraints

transformation step of a possible start graph. For a braking shuttle (F3), the combination of
all three start configuration constraint fragments prevents a violation.

Note that there are other ways of fixing the erroneous system from Example 5.18 (p. 101).
For example, we could prohibit start graphs where shuttles are located on a switch or within
one track of a switch. This modification of the start configuration constraint would also lead
to the validity of F in the 1-bounded state spaces of all induced graph grammars. △

Although bounded backward model checking can be applied independently from k-inductive
invariant checking, its main objective in this thesis is to provide the base case of our inductive
verification approach. The combination of both steps will be discussed in the next section.

5.5. Operational Invariant Checking

Our verification approach is based on an inductive argument: in order to establish the validity
of a graph constraint in all state spaces under a guaranteed constraint of all graph grammars
induced by a graph transformation system and a start configuration constraint, the graph
constraint has to be a k-inductive invariant and has to be valid in all k−1-bounded state
spaces of all induced graph grammars. Symbolic verification of both preconditions is described
in Theorem T.2g (p. 96) and Theorem T.3g (p. 101), respectively. Now, we combine both
theorems as follows:

Theorem T.4g (operational invariant checking). Let GTS = (R,TG) be a typed graph trans-
formation system and F , H, and S be graph constraints with S ⊧ F .

For all graph grammars GG = (GTS ,G0) with GG ∈ IND(GTS ,S), F is an operational
invariant of GG under H if there is a k ≥ 1 such that the following conditions hold:

1. For all sequences seq = (src1 ⇒b1 ... ⇒bn tarn) ∈ SEQg
k−1(R,¬F ∧H,H), there does not

exist a graph G with G ⊧ src1∣∅ ∧ S.
2. For all sequences seq = (src1 ⇒b1 ...⇒bk tark) ∈ Seqg

k(R,¬F ∧H,F ∧H), there does not
exist a graph G such that G ⊧ src1∣∅.

Proof. By precondition (1) and Theorem T.3g (p. 101), we have G ⊧ F for all graphs G ∈
REACHk−1(GG ,H) and all graph grammars GG ∈ IND(GTS ,S). By precondition (2) and
Theorem T.2g (p. 96), F is a k-inductive invariant under H for GTS (2). Then, by Lemma L.1
(p. 65), all graphs G ∈ REACH(GG ,H) for all graph grammars GG ∈ IND(GTS ,S) satisfy F ,
concluding the proof.

Condition 1 – the base case of our inductive argument – follows Theorem T.3g (p. 101);
condition 2, which is the inductive step, follows Theorem T.2g (p. 96). Formally, this theorem
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is just a different formalization of Lemma L.1 (p. 65). However, the inclusion of the Seq-
constructions shows a constructive approach towards a possible implementation.

Contrary to both earlier theorems, the conjunction of their respective conditions is a suffi-
cient condition only – this theorem does not describe an equivalence. In particular, we cannot
conlcude from the failure to establish a k-inductive invariant its violation in a specific graph
in a graph grammar’s state space.

Example 5.20 (operational invariant checking for an unsafe system). Examples for systems
where the safety property F = ¬F1∧¬F2∧¬F3 cannot be established as an operational invariant
via Theorem T.4g (p. 104) are Example 5.16 (p. 97) and Example 5.18 (p. 101).

In the former example, F is not a 2-inductive invariant or, although not shown there, an
invariant for any value of k. However, without further analysis, we cannot be sure F is not an
operational invariant; i.e. that there exists a graph in a graph grammar’s state space violat-
ing F . As mentioned before, Theorem T.4g does not provide a necessary condition to verify
operational invariants.

In the latter example, there is a transformation sequence (Figure 5.20(b), p. 103) leading to a
violation of F after a rule application to a possible start graph. Hence, F is not an operational
invariant for the system described in that example. △

Example 5.21 (operational invariant checking for a safe system). In Examples 5.17 (p. 98)
and 5.19 (p. 103), we have used a system with the rule set R = {f2f, a2f, s2a, s2s, f2b, a2b,b2s},
the safety property F = ¬F1 ∧¬F2 ∧¬F3, a guaranteed constraint H = ⋀1≤i≤15 ¬Hi, and a start
configuration constraint S = ¬SC 1 ∧¬SC 2 ∧¬SC 3. We have shown via Theorems T.2g (p. 96)
and T.3g (p. 101) that F is a 2-inductive invariant for GTS = (TG ,R) under H and that F is
valid in all 1-bounded state spaces of graph grammars in IND(GTS ,S). In combination and
by Theorem T.4g, F is satisfied in all graphs of all state spaces of the induced graph grammars
under the constraint H. △

Theorem T.4g is a constructive approach to implementing Lemma L.1 (p. 65), which requires
a k-inductive invariant under a guaranteed constraint H and the invariant’s validity in k−1-
bounded state spaces under H. However, validity of H is not explicitly proven. If validity is
not assumed by the problem description – for example, because it is an external assumption
not part of the problem domain – explicit verification may be required. Lemma L.2 offered a
technique to do that:

Lemma L.2 (validity of constraints in induced graph grammars under a constraint [4]). Let
GG = (GTS ,G0) be a graph grammar with a graph transformation system GTS = (TG ,R)
and let F , H, and S be graph constraints with S ⊧ F and S ⊧H. F is an operational invariant
of REACH(GG) for all graph grammars GG ∈ IND(GTS ,S), if the following conditions hold:

0. H is a 1-inductive invariant for GTS.
1/2. F is an operational invariant of GG under H for all graph grammars GG ∈ IND(GTS ,S).

Under Lemma L.2, the state spaces under H are equivalent to the state spaces without that
restriction. This approach uses 1-inductive invariant checking to establish the validity of H. As
explained before, the idea is that the guaranteed constraint is easier to prove as an invariant;
in particular, H is supposed to be a 1-inductive invariant and, as a precondition, it should be
implied by the start configuration constraint S. Similar to S and F , this can be achieved by
choosing a desired start configuration constraint S ′ and defining the final start configuration
constraint as S = S ′ ∧H.

Then, the following theorem describes a constructive approach to Lemma L.2:
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Theorem T.5g. Let GTS = (TG ,R) be a graph transformation system and F , H, and S be
graph constraints with S ⊧ F and S ⊧H.

For all graph grammars GG = (GTS ,G0) with GG ∈ IND(GTS ,S), F is an operational
invariant of GG if the following conditions hold:

0. For all sequences seq = (src1 ⇒b1 tar1) ∈ Seqg
1(R,¬H,H), there does not exist a graph G

such that G ⊧ src1∣∅.
1. For all sequences seq = (src1 ⇒b1 ... ⇒bk tark) ∈ SEQg

k−1(R,¬F ∧H,H), there does not
exist a graph G with G ⊧ src1∣∅ ∧ S.

2. For all sequences seq = (src1 ⇒b1 ...⇒bk tark) ∈ Seqg
k(R,¬F ∧H,F ∧H), there does not

exist a graph G such that G ⊧ src1∣∅.

Proof. By Theorem T.2g (p. 96) – and appropriate subsitutions – H is a 1-inductive invariant
for GTS . Also by Theorem T.2g (p. 96), F is a k-inductive invariant for GTS under H.
By Theorem T.3g (p. 101), F is valid in all k−1-bounded state spaces of graph grammars
in IND(GTS ,S) under H. By Lemma L.2 (p. 66), we get G ⊧ F for all graphs G with
G ∈ REACH(GG) and GG ∈ IND(GTS ,S).

Condition (0) establishes H as an operational invariant for all graph grammars induced by
the graph transformation system and the start configuration constraint S. Since S implies H,
all possible start configurations as the base case of the inductive argument will satisfy the
guaranteed constraint. If H is a 1-inductive invariant – the inductive step of the argument –
H will hence be valid in all graphs of all state spaces.

Similar to Theorem T.4g, conditions (1) and (2) are required to verify F as an operational
invariant under H. However, since H is an operational invariant for the unrestricted state
spaces, REACH(GG) and REACH(GG ,H) are identical per induced graph grammar GG ∈
IND(GTS ,S).

It may seem counterintuitive to have both Theorem T.4g (p. 104) and Theorem T.5g. How-
ever, there are situations where verification of the guaranteed constraint is not possible and,
indeed, not necessary. As explained in Chapter 4, we consider three types of guaranteed con-
straints: type graph constraints, external assumptions, and controlled execution. While it is
desirable to have a type graph constraint verified as an operational invariant, it is also possible
to prevent its violation by controlled execution, such as with an interpreter controlling the
application of graph rules. In the latter case, direct verification is not possible and, as long as
we trust the controlloing unit, not necessary.

Likewise, external assumptions often cannot be verified because they are, by definition, not
part of the system. Consider a system that has a single fault assumption – not because two or
more faults cannot happen, but because the probability of their occurence is under a certain
threshold. System analysis disregards events (s/t-pattern sequences) with more than one fault,
but their absence – i.e. their validity as an operational invariant – cannot be proven. Hence,
depending on the system and type of guaranteed constraint, both Theorem T.4g (p. 104) and
Theorem T.5g have their application scenarios.

Example 5.22 (operational invariant checking and guaranteed constraint). Consider Exam-
ple 5.21 (p. 105) with an extended start configuration constraint S = ¬SC 1∧¬SC 2∧¬SC 3∧H.
Then, S ⊧ H as required by Theorem T.5g. The results with respect to conditions (1) and
(2) of Theorem T.4g (p. 104) and condition (1/2) of Lemma L.2 (p. 66) still hold: F is a
k-inductive invariant for GTS under H and F is valid in every graph in REACHk−1(GG ,H)
for graph grammars GG ∈ IND(GTS ,S) – for both the former and extended start configura-
tion constraint. Furthermore, although not shown here, H is a 1-inductive invariant of GTS .
Then, by Theorem T.5g, F is an operational invariant of GG for all induced graph grammars
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GG ∈ IND(GTS ,S). This example is one case where verification of H is, indeed, possible: H
specifies only type graph constraints that are preserved by the graph rules and can be verified.
Here, no external assumptions or controlled execution play into the choice of H. △

5.6. Discussion and Conclusion

This concludes the general approach to inductive invariant checking and the formulaic imple-
mentation of our verification approach motivated and explained in Chapter 4. The examples
have illustrated three limitations and issues of our approach (which overlap with each other):

Computational effort. As Example 5.13 has demonstrated, the s/t-pattern sequences and
their individual source patterns, target patterns, and target/source patterns quickly become
unmanageable for humans even for systems with small to average numbers of constraints and
graph rules. This is detrimental to both performance (of an implementation) and clarity of
results, i.e. counterexamples. While s/t-pattern sequences can be instantiated (by Lemma 5.14
(p. 94)), this process is computationally challenging as well. Furthermore, having a symbolic
representation of counterexamples for a k-inductive invariant or a symbolic error trace from
potential start graphs to an error state is useful. Then, the result could be inspected by a
human actor in order to adjust system behavior such that the verification succeeds. Besides
the exponential growth of potential rule applications with increasing value of k, a main problem
is the transfer of the graph constraint H or even F ∧H to all intermediate patterns in the
construction. In particular, this may lead to redundancy in the patterns, which results in
unnecessary complexity that further accumulates with increasing values of k. Algorithms to
eliminate redundancy are costly to execute; it is usually preferable to avoid redundancy in the
first place.

Satisfiability. Lemma 5.14 (p. 94) provides a means of finding satisfying transformation se-
quences to an s/t-pattern sequence – however, it relies on a similar procedure that finds a
satisfying graph to a graph constraint. We have not provided a means of implementing the
latter in algorithmic terms, i.e. have not provided a construction that produces a satisfying
graph. There is existing work [Pen08a, SLO17] concerning that process, but the problem is
both undecidable in general and, depending on the complexity of the graph constraint, com-
putationally challenging. Still, we require satisfiability in Theorems T.2g-T.5g. For example,
in Theorem T.2g (p. 96), unsatisfiable s/t-pattern sequences resulting from a Seq-construction
are false negatives, indicating that the supposed violation of a k-inductive invariant cannot
occur in an actual transformation sequence.

Termination. By construction, the Shift-construction and L-construction always provide fi-
nite results; since the Seq-construction only uses those two constructions (and logical con-
junctions), it yields finite results for fixed values of k as well. However, finding a satisfying
graph to a graph constraint (see above) is an undecidable problem; hence, the same holds for
finding a satisfying transformation sequence to an s/t-pattern sequence. In that situation, an
implementation has to make a decision between risking non-termination and incompleteness.

All three issues will be addressed in the next chapter, where we will discuss a restricted
formal model [Dyc12] intended to alleviate the effects of the problems above.

Although the properties Appl.-soundness, Appl.-termination, etc. are primarily meant
for the restricted approach and its implementation (Chapter 6), we will also apply them here for
the sake of comparison. Note that Appl.-deg.completeness and Appl.-performance are
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Table 5.2. – Properties of the general approach from a formal perspective

Property
Appl.-

soundness
Appl.-

termination

Appl.-deg.-
completeness

Appl.-
performance

G
en

er
al

ap
p

ro
a
ch k-inductive invariant

checking
(✓) × ?/(✓) ?

k−1-bounded back-
ward model checking

(✓) × ?/(✓) ?

Operational invari-
ant checking

(✓) × ?/× ?

Table 5.3. – Properties of the general approach for a hypothetical implementation

Property
Appl.-

soundness
Appl.-

termination

Appl.-deg.-
completeness

Appl.-
performance

G
en

er
al

ap
p

ro
ac

h k-inductive invariant
checking

✓ (✓) ?/× ?

k−1-bounded back-
ward model checking

✓ (✓) ?/× ?

Operational invari-
ant checking

✓ (✓) ?/× ?

not intended to be binary properties: the former is concerned with the degree of completeness
– the number of false negatives – not whether the approach is or is not complete. This degree
cannot be determined for the general approach without an implementation and evaluation.
Thus, we will denote it with a question mark in the respective tables, with an answer to the
related binary question after the slash. Performance cannot be considered here; however, as
dicussed above, computational effort is expected to be unreasonably high.

Judging soundness, termination, and completeness is difficult because of the implications of
the underlying undecidable problem. We will consider two perspectives here: the formalization
of the approach and a hypothetical implementation.

The former (formal) perspective is shown in Table 5.2. Arguably, when considering its for-
malization, the general approach is sound and complete with respect to k-inductive invariant
checking and k−1-bounded backward model checking: Theorems T.2g (p. 96), T.3g (p. 101),
and related theorems and lemmas describe necessary and sufficient criteria to find exactly the
set of valid counterexamples. However, those criteria are not decidable in general and hence,
the procedure may not terminate. For operational invariant checking, the approach is also
incomplete (cf. Theorem T.4g (p. 104)).

In practice and implementation, failure to terminate may cause the approach to be unsound
and incomplete in general: without a result, systems cannot be classified as either safe or
unsafe. Hence, Table 5.3 shows the perspective of a hypothetical implementation: by enforcing
termination (e.g. with a threshold on runtime) and classifying s/t-pattern sequences without a
definitive answer as counterexamples and the respective system as unsafe, the general approach
is sound, terminates, and is incomplete. This applies to k-inductive invariant checking, k−1-
bounded backward model checking, and operational invariant checking.

Having the option to enforce termination and ensure soundness in exchange for completeness
is partly a result of the counterexample-driven nature of the general approach. The construction
of s/t-pattern sequences (Theorem T.1g (p. 85)) always terminates, yields a finite result, and is
sound in the sense that it provides all possible counterexamples. Only their analysis (by finding
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satisfying transformation sequences, Lemma 5.14 (p. 94)) results in an undecidable problem.
Hence, returning all s/t-pattern sequences built by the Seq-construction as counterexamples
always ensures soundness and termination.

For systems where the respective satisfiability problems turn out to be decidable, both k-
inductive invariant checking and k−1-bounded backward model checking are sound, complete,
and terminate with respect to both their formalization and a hypothetical implementation.
Operational invariant checking, however, remains incomplete: Theorem T.4g (p. 104) contains
a sufficient condition, not a necessary one.
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In Chapter 5, we have seen that even for a system with a small number of elements, visual and
computational complexity of the Seq-construction and subsequent analysis quickly becomes
unmanageable. However, specification of example systems does not necessarily require support
for application conditions and graph constraints of arbitrary nesting and complexity. In this
chapter, we will reintroduce a restricted formal model established and extended in earlier
work [BBG+06, Dyc12]. It has been shown to be sufficient to model systems with reasonable
depth [1, 3, 6]. Following the introduction of the restricted formal model, we will discuss the
formalizations and algorithms required for Formal-restricted and Impl.-restricted.

Before introducing the restricted formal model, we will reiterate the general formal model
used in the general approach (Chapter 5):

Formal Model (general). Systems and system specifications consist of the following elements:

System metamodels are specified by type graphs (Definition 2.8 (p. 21)).
System states – including initial states – are described by typed graphs (Definitions 2.1 (p. 20)

and 2.8 (p. 21)).
System behavior is described by a typed graph transformation system (Definition 2.24 (p. 34)),

which consists of typed graph transformation rules (Definition 2.20 (p. 32)).
Properties are modeled as graph constraints (Definition 2.12 (p. 25)) – this includes the con-

straint F to be verified, the guaranted constraint H, and the start configuration constraint
S. As an additional requirement, S needs to imply F , i.e. S ⊧ F .

Systems are specified by typed graph grammars (Definition 2.28 (p. 36)), which consist of an
initial state – a start graph – and a typed graph transformation system.

System state spaces are described by the state spaces (Definitions 2.28 (p. 36) and 4.1 (p. 55))
– the set of all reachable graphs – of the corresponding graph grammars (under the guar-
anteed constraint).

System sets are described by graph grammars induced (Definition 4.7 (p. 59)) by a graph
transformation system and a start configuration constraint.

Similarly, we recall the central verification question from Chapter 4:

Verification Problem VP.1g. Given a graph transformation system GTS = (TG ,R) and
graph constraints F , S, and H with S ⊧ F , does every graph grammar GG ∈ IND(GTS ,S)
have F as an operational invariant under H?

Example 6.1 (running example). We will reuse the running example from Chapter 5, Exam-
ple 5.1 (p. 69). Figure 6.1 relists the type graph TG (Figure 6.1(a)), the speed mode transition
protocol (Figure 6.1(b)), and the set of graph rules R = {s2s, f2b,b2s, a2b, f2f, a2f, s2a} (Figures
6.1(c)-6.1(i)).

Again, we also occasionally use three alternative rules for f2f, a2f, and s2a – f2f′, a2f′,
and s2a′ (Figure 6.2). These rules will again lead to an unsafe system. We will denote the
associated graph transformation system and set of graph rules as GTS ′ = (TG ,R′) and R′ =
{s2s, f2b,b2s, a2b, f2f′, a2f′, s2a′}.

Figure 6.3 shows the graph constraint F to verify, a guaranteed constraint H, and three
fragments of a start configuration constraint. We want to verify the permanent absence of
shuttles driving on a switch in speed modes fast, acc, or brake (Figures 6.3(a)–6.3(c)), i.e.
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Figure 6.1. – Graph transformation system GTS = (TG ,R)
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Figure 6.2. – Alternative rules f2f′, a2f′, and s2a′ without application conditions
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Figure 6.3. – Safety property F = ¬F1 ∧ ¬F2 ∧ ¬F3, fragments of guaranteed constraint
H = ¬H1 ∧ ... ∧ ¬H15, and parts of start configuration constraint S
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F = ¬F1∧¬F2∧¬F3. Figures 6.3(d)-6.3(f) reiterate three fragments of the system’s guaranteed
constraint H = ¬H1 ∧ ... ∧ ¬H15. Finally, Figures 6.3(g), 6.3(h), and 6.3(i) show fragments
of the start configuration constraint S. Depending on whether or not we limit verification
to system states (and state spaces) under the guaranteed constraint H, we can choose S =
¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3 or S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3 ∧H. In the latter case, we have S ⊧ H by
construction. We can easily see that ¬SC 1 ⊧ ¬F1 and ¬SC 2 ⊧ ¬F2; then, S ⊧ F as required. If
it were not obvious – which, in general, is to be expected – we could join F conjunctively to
S to form a new start configuration constraint.

All elements of the example are also listed in Sections C.1.2 and C.1.1 of Appendix C.

With respect to Verification Problem VP.1g (p. 60), we wonder whether all graphs in the
state spaces of all graph grammars induced by the graph transformation system GTS =
(TG ,R) (or GTS ′ = (TG ,R′)) and the start configuration constraint S fulfill the safety
property. In other words, starting from a state satisfying our start configuration constraint
and following the behavior specified by the graph rules, can the system reach a state where a
shuttle reaches a switch while driving in mode fast, accelerating, or braking? △

As before, we will use k-inductive invariant checking and its proof obligations formalized in
Chapter 4:

Lemma L.1 (validity of constraints in graph grammars). Let GTS = (TG ,R) be a graph
transformation system and let F , H, and S be graph constraints with S ⊧ F . F is an operational
invariant of GG under H for all graph grammars GG ∈ IND(GTS ,S), if there exists a k ∈ N
with k ≥ 1 such that the following conditions hold:

1. ∀GG(GG ∈ IND(GTS ,S)⇒ ∀G(G ∈ REACHk−1(GG ,H)⇒ G ⊧ F)).
2. F is a k-inductive invariant for GTS under H.

Again, we will focus on verifying state spaces under a guaranteed constraint. Similar to the
general approach, we will introduce an approach that combines the results for restricted state
spaces with verification of H at the end of this chapter.

Outline. This chapter focuses on a restricted verification approach following a restricted
formal model that was established in earlier work and is reiterated in Section 6.1. In short,
graph rules will only be allowed to have so-called composed negative application conditions: a
conjunctive combination of negated existential conditions without further nesting. Likewise, we
will use composed graph patterns to describe a safety property, guaranteed constraint, and start
configuration constraint. A composed graph pattern is a conjunctive combination of negated
graph patterns, which consist of an existential condition with a nested composed negative
application condition.

Based on this restricted formal model, this chapter refines definitions, theorems, and algo-
rithmic constructions established in Chapter 5. As such, it focuses on contribution Formal-
restricted – the formalization of our restricted approach to verification with k-inductive
invariants. Furthermore, as a part of Impl.-restricted, we present an idea of the approach’s
implementation in pseudocode. Figure 6.4 provides a rough overview of this chapter’s sections
and the formal elements introduced.

In Section 6.2, we will first rearrange the condition for the inductive step of Lemma L.1 as
the new Lemma 6.10. Likewise, Lemma 6.11 will rearrange the condition for the base case such
that the condition is more intuitive from an algorithmic perspective. In particular, both lemmas
will provide conditions that can be falsified by finding an appropriate transformation sequence
as a counterexample. Also, both lemmas are special cases of the corresponding Lemmas 5.2
and 5.3 from the general approach, respectively.
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Section 6.4: k-Inductive Invariant Checking 
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refined 

by 
uses uses 

Lemma  6.11 

Figure 6.4. – Overview and dependencies of definitions, theorems, and lemmas
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Furthermore, the elements of the symbolic encoding established in Section 5.1 will be refined
in Section 6.2. Again, transformation sequences will be encoded in s/t-pattern sequences (Def-
inition D.2), which can represent an infinite number of transformation sequences. S/t-pattern
sequences (of length k) for the restricted formal model still consist of a source pattern, a target
pattern, and between 0 and k−1 target/source patterns. However, given the restrictions for ap-
plication conditions and graph constraints, source patterns, target patterns, and target/source
patterns can be restricted to a special form of application conditions (Definitions 6.12, 6.13,
and 6.14). The basic idea remains unchanged: a source pattern encodes a match of a rule and
its potential application, a target pattern encodes a comatch, and a target/source pattern en-
codes the combination of both. An s/t-pattern sequence then combines elements of the three
types and can be satisfied by transformation sequences.

Section 6.3 will refine the construction of s/t-pattern sequences introduced in Section 5.2. In
particular, Theorem T.1r defines a specialized version of the Seq-construction, which takes a
set of graph rules and a graph pattern as parameters. This construction is tailored to create s/t-
pattern sequences (of a specified length) whose satisfying transformation sequences use rules
from the given set of graph rules and lead to the graph pattern passed to the construction.
In contrast to the general Seq-construction, we do not supply a second graph constraint to
be fulfilled by intermediate graphs of a satisfying transformation sequence. We will still use
the refined Seq-construction to create s/t-pattern sequences that (symbolically) represent all
transformation sequences that may serve as counterexamples for the conditions in Lemma 6.10
and Lemma 6.11. However, since satisfiability of constraints by intermediate graphs is not
taken into account by the construction, this aspect needs to be considered in the analysis of
the s/t-pattern sequences (counterexamples).

In Section 6.4, Theorem T.2r then applies the Seq-construction (Theorem T.1r) to rea-
son about the validity of a k-inductive invariant by verifying the condition established by
Lemma 6.10. Likewise, Section 6.5 introduces Theorem T.3r, which reasons about the base
case – the proposed invariant’s validity in the induced graph grammars’ k-bounded state
space. Both Theorems create a number of s/t-pattern sequences as counterexamples and then
attempt to discard them using the conditions in Lemma 6.10 or Lemma 6.11, respectively.

Note the difference to the general approach: in the Seq-construction for the restricted formal
model, we only use the information of which graph pattern the represented transformation se-
quences should lead to. Satisfiability of graph constraint – the composed guaranteed pattern,
for example – by intermediate graphs is analyzed in a restricted fashion in Theorems T.2r
and T.3r. Furthermore, we do not attempt to find a satisfying transformation sequence for
s/t-pattern sequences (cf. Lemma 5.14). Both steps reduce computational effort and improve
performance. Even more important, they allow us to guarantee termination in our implemen-
tation. However, that comes at a cost: since the problem is, in general, still undecidable and
since our approach also guarantees soundness, it may be incomplete – s/t-pattern sequences
as counterexamples may be false negatives, i.e. may erroneously classify a system as unsafe.

Section 6.6 then combines k-inductive invariant checking and the invariant’s validity in
the k-bounded state space, i.e. the inductive step and base case of our inductive verification
approach. Theorem T.4r does not bring any new considerations, but uses the conditions and
constructions of Theorem T.2r and Theorem T.3r. It establishes formal justification for our
approach to verifying the conditions of Lemma L.1.

In Section 6.7, we will sketch the implementation of the formal constructions and theorems
in the restricted approach from an algorithmic perspective.

Finally, Section 6.8 discusses the results of this chapter and raises open issues.
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6.1. Restricted Formal Model

In Chapter 5, we have encountered the problem of exponential complexity in typical compu-
tations involving graphs and application conditions. In particular, the Seq-construction of the
general approach quickly becomes unamanagable in terms of both readability and computa-
tional effort. The driving factor of complexity is the Shift-construction: intuitively, we find
all overlappings between two graphs, which requires finding all possible common subgraphs.
Since the number of subgraphs rises exponentially with the number of nodes alone, so does
the complexity of the Shift-construction.

This situations worsens if we allow nesting of application conditions to an arbitrary depth
– which is possible by the definition of nested application conditions. However, this degree of
arbitrary complexity does not necessarily bring a benefit in many application scenarios. Where
behavior is specified (as graph rules) by human designers, we are unlikely to encounter nested
conditions exceeding a certain depth.

For these reasons, previous work on inductive invariang checking for graph transformation
systems has introduced a restricted formal model [BBG+06, BG08b], which has been gradually
extended [Dyc12]. The goal of imposing restrictions with respect to our formal model of system
specifications is to strike a balance between expressive specifications and computational effort
for the algorithms involved in our verification process. While a high degree of freedom in
specifications allows the applicability of our approach in a larger number of scenarios, the
resulting computational effort is detrimental to performance (of an implementation). As a
result, the approach may be impractical to verify to certain scenarios even if requirements on
expressive power are met. A more specialized and restricted structure of graph rules, graph
constraints, and application conditions will later allow us to optimize our implementation
with respect to those restrictions. With respect to the content and contribution of this thesis,
the restricted formal model is the basis of Formal-restricted and Impl.-restricted – the
formal approach and justification, and later implementation, of k-inductive invariant checking.
Therefore, in the following, we will reiterate said restricted formal model [Dyc12] and take at
look at the motivation behind the restrictions.

We can identify several important characterstics of system elements in our running example:

Example 6.2 (form of graph rules and graph constraints in running example). Four rules
of our running example conform to the basic form of s2s = ⟨(L ↩K ↪ R), true, true⟩ or
f2b = ⟨(L ↩K ↪ R), true, true⟩ with a trivial left application condition true. Even where we
use non-trivial application conditions – such as in s2a = ⟨(L↩K ↪ R),¬∃x1 ∧ ¬∃x2, true⟩ (Fig-
ure 6.1(i)) – the condition consists of only two negated existential conditions without nested
subconditions.

A similar observation can be made for graph constraints. Until now, we have only discussed
constraints consisting of a negated existential condition consisting of only one morphism such
as in Figures 6.3(a) and 6.3(d). More intuitively, our graph constraints have only described
forbidden subgraphs.

However, thusly limiting graph constraints may be too restrictive. We might want to have a
safety property with a conditional character: when certain safeguard mechanisms are in place,
a property that would otherwise constitute a safety violation could be considered safe. For
example, a shuttle driving fast on a track might be allowed if it is equipped with an additional
safety feature. Such a construct would require a negated existential condition nested within the
first condition: a certain subgraph may not exist unless another subgraph (or a combination
of subgraphs) exists. △

The restricted formal model [Dyc12] is based on these ideas in more general terms:
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1. Application conditions in rules must have the trivial form true or consist of conjunctively
joined negated existential conditions without nested subconditions.

2. Graph constraints must consist of only one negated existential condition with a nested
application condition similar to those allowed in rules.

This idea of restricting application conditions has been formalized as a composed negative
application condition:

Definition 6.3 (composed negative application condition [Dyc12]). A composed negative
application condition over a graph A is an application condition over A of the form ac = false,
ac = true, or ac = ⋀i∈I ¬∃ai for morphisms ai ∶ A ↪ Ai. An individual application condition
¬∃ai is called a negative application condition.

One or more negated existential conditions may be conjunctively joined, but are not allowed
to have further nested application conditions. In comparison to unrestricted nested application
conditions (Definition 2.10 (p. 22)), this is a limitation, although not as restrictive as the formal
model of earlier work on inductive invariant checking [BBG+06].

For the general notion of graph rules introduced in Definition 2.20 (p. 32) – and in our general
approach – graph rules may have (left) nested application conditions of arbitrary depth and ar-
bitrary logical combinations. Here, rules may only have a (left) composed negative application
condition. Note that composed negative application conditions cannot contain disjunctions of
conditions or non-negated existential conditions (positive application conditions).

Also, as explained above, it makes sense to use safety properties that consist of a single
negated existential condition with a second (nested) composed negative application condition.
Then, a violation can be described as an existential condition with a nested composed negative
application condition. This structure is called a graph pattern, or simply pattern:

Definition 6.4 (graph pattern [Dyc12]). A graph pattern, or pattern, is a graph constraint
of the form C = true, C = false, or C = ∃(iA,ac) with iA an injective morphism iA ∶ ∅↪ A and
ac a composed negative application condition over A.

Note that the term graph pattern may be confused with source pattern or target pattern
(Definitions 5.7 (p. 77) and 5.8 (p. 77)), which are part of the symbolic encoding for both
the general and restricted formal model. While source and target patterns are application
conditions over a rule side, graph patterns are graph constraints. Sometimes, if the context is
clear, we will just refer to graph patterns as patterns.

If a graph pattern’s application condition ac is trivially true, it simply describes the existence
of the graph that is the morphism’s codomain. We will sometimes refer to this graph as the
pattern’s (positive) context. Otherwise, we require conditional existence: the graph should be
present unless it can be extended to one of the codomains in the composed negative application
condition.

As before, graph patterns and composed negative application conditions are required to
be in injective normal form: morphisms in subconditions must be injective. Since the initial
morphism iA ∶ ∅↪ A from the empty graph ∅ to an arbitrary graph A will always be injective,
this is not an issue for graph patterns without nested application conditions. For composed
negative application conditions in graph rules and patterns, on the other hand, this is, indeed,
a restriction. However, given graph rules with injective matching, we will only need to consider
satisfiability of application conditions by injective morphisms. Since injective morphisms are
closed under composition and decomposition, a limitation to conditions in injective normal
form does not affect expressive power in our case: subconditions with non-injective morphisms
cannot be satisfied by injective morphisms; thus, they will be equivalent to false for the purpose
of satisfiability by injective morphisms.
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Finally – where application conditions and graph constraints are concerned – we specify
how graph patterns appear as properties to be verified for the systems under verification. In
particular, we combine negated graph patterns in conjunctions as composed forbidden patterns:

Definition 6.5 (composed graph pattern [Dyc12]). A composed graph pattern, or composed
pattern, is a conjunctive combination of negated graph patterns, i.e. a graph constraint of the
form C = ⋀i∈I ¬Ci for graph patterns Ci.

If we use a composed graph pattern as a safety property to be verified, we say it is a composed
forbidden (graph) pattern and say that its individual graph patterns are forbidden (graph)
patterns.

If we use a composed graph pattern as a guaranteed constraint, we say it is a composed
guaranteed (graph) pattern and say that its individual graph patterns are guaranteed (graph)
patterns.

If we use a composed graph pattern as a start configuration cosntraint, we say it is a com-
posed start configuration (graph) pattern and say that its individual graph patterns are start
configuration (graph) patterns.

Note that patterns are negated (and conjunctively joined) in a composed pattern. While the
term pattern alone usually refers to the non-negated existential condition, the terms forbidden
pattern or guaranteed pattern usually imply that a pattern appears in negated form. As such,
a forbidden pattern forbids the occurrence of the non-negated pattern; a guaranteed pattern
guarantees or assumes the absence of the non-negated pattern.

The restriction of application conditions and graph constraints to composed negative appli-
cation conditions and graph patterns will allow us to implement certain optimizations in our
verification approach. However, their application requires the preservation of the structures
in the restricted formal model under certain transformations. In earlier work [Dyc12], these
properties have been shown for the Shift- and L-constructions.

Fact 6.6 (Shift-construction and composed negative application conditions [Dyc12]). Given
a composed negative application condition acN = ⋀i∈I ¬∃(xi ∶ N ↪ Xi) with graphs N,Xi,
injective morphisms xi and an index set I, for each graph N ′ and each injective morphism
n ∶ N ↪ N ′, the application condition ac′N = Shift(n,acN) is a composed negative application
condition.

Fact 6.7 (L-construction and composed negative application conditions [Dyc12]). Given a
composed negative application condition ac = ⋀i∈I ¬∃(xi ∶ R ↪ Xi), for each graph rule b =
⟨(L↩K ↪ R)acL, true⟩, L(b,ac) is a composed negative application condition.

Our restricted verification approach will frequently require comparisons of graph patterns
with respect to implication (Definition 2.36 (p. 42)). However, as explained in Chapter 2, the
definition does not supply a constructive approach. Due to the inherent undecidability of the
problem, algorithms for the general case are either unsound, incomplete, or may not terminate.

Nevertheless, taking into account our restricted formal model, we can make a reasonable
effort to checking implication of graph patterns. In Example 2.37 (p. 42) in Chapter 2, we
have reduced the question of implication of graph constraints – graph patterns, in fact – to
subgraph relationships. For patterns without a nested composed negative application condi-
tion, the existence of that relationship is equivalent to a pattern implying another pattern;
then, that problem is decidable [Pen09]. However, since we allow our patterns to be equipped
with composed negative application conditions, we have to consider a more general case. The
following theorem established this general and constructive perspective for the verification of
graph pattern implication in earlier work:

– 119 –



6. Restricted Approach to k-Inductive Invariant Checking

Theorem 6.8 (implication of patterns [Dyc12]). Let C = ∃(iP ∶ ∅ ↪ P,ac) and C ′ = ∃(iP ′ ∶
∅ ↪ P ′, ac′) be two patterns, with composed negative application conditions ac = ⋀i∈I ¬∃(xi ∶
P ↪ Xi) and ac′ = ⋀j∈J ¬∃(x′j ∶ P ′ ↪ X ′

j) for index sets I, J . Then C ′ ⊧ C, if the following
condition is fulfilled:

1’. There exists a j ∈ J such that x′j is bijective or
1. There exists an injective morphism m ∶ P ↪ P ′ such that:
2. With Shift(m,¬∃xi) = ⋀k∈Ki

¬∃(x′′ik ∶ P ′ ↪ X ′′
ik) for a num-

ber of corresponding index sets Ki, for each xi it holds that
∀k(k ∈Ki ⇒ ∃j∃y(y ∶X ′

j ↪X ′′
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Proof. Assuming condition (1’) holds, consider an arbitrary graph G′ with g′ ∶ P ′ ↪ G′ and
thus, G′ ⊧ ∃iP ′ . Since x′j (for the specific j) is bijective, there is a q′ ∶X ′

j ↪ G′ with q′ ○x′j = g′.
Hence, we have g′ /⊧ ∃x′j and, more importantly, G′ /⊧ C ′. Thus, there does not exist a graph
G′ with G′ ⊧ C ′ and consequently, ∀G(G ⊧ C ′ ⇒ G ⊧ C) is trivially true.

Assuming condition (1’) does not hold, (1) and (2) hold by precondition; for the proof, we
refer to the respective source [Dyc12].

Note that the theorem describes an implication, not an equivalence: not being able to meet
the conditions does not guarantee that C ′ does not imply C. This will play into the implemen-
tation as well: not attempting to get a definite answer to the question of implication will be the
cost of having a sound and terminating algorithm. Since the problem is undecidable [Pen09],
the algorithm cannot be complete. Again, the problem is decidable (both in theory and by
the above theorem) if the implied pattern has the trivial composed application conditions
true. More generally, the problem of implication of constraints is decidable for the non-nested
fragment of constraints – i.e. boolean combinations of constraints ∃(a, true) [Pen09].

The implementation of Theorem 6.8 (used in previous work [Dyc12]) is shown in Algorithm
6.1. Intuitively, the comparison is still mainly based on subgraph relationships. First, we make
sure that the (potentially) implying pattern is satisfiable (condition (1’), lines 1-3). If one of
its negative application conditions ¬∃x′j (which make up the composed negative application
condition) is described by an isomorphism x′j , C

′ cannot be satisfied: any satisfying graph G′

that contains P ′ will then also contain the isomorphic X ′
j . Then, because the graph pattern

is equivalent to false and cannot be satisfied by any graph, by definition, it implies all other
graph patterns (and even all unrestricted graph constraints).

Second, the implying pattern’s existential condition’s graph (P ′ in ∃i′P ) should have the
implied pattern’s existential condition’s graph (P in ∃iP ) as a subgraph (condition (1), line 4).
This is related to the argument explained in Example 2.37 (p. 42). If there is no such subgraph
relationship, we have the case that the graph P ′ satisfies C ′ = ∃(i′P ,ac′), but does not satisfy
C = ∃(P,ac) (if it did, P ′ would need to contain P as a subgraph). Hence, C ′ does not imply
C.

Lastly, condition(2), lines 5-13 take care of the pattern’s composed negative application
conditions. Even with a subgraph relationship described by the injective morphism m ∶ P ↪ P ′,
it is still possible for C ′ to not imply C because of the patterns’ composed negative application
conditions. Specifically, there might exist a graph G that contains P ′ – and hence P – as a
subgraph such that P ′ cannot be extended to violate any of the negative application conditions
¬∃x′j but that P can be extended to violate at least one of the negative application conditions
¬∃xi. Then, G satisfies C ′, but not C and hence, C ′ does not imply C.

Thus, assuming satisfaction of C ′ and hence, of the composed negative application condition
ac′, (2) attempts to verify satisfaction of the composed negative application condition ac. In
order to compare ac and ac′, the individual negative application conditions in ac – ¬∃xi
– are transferred via m ∶ P ↪ P ′ to the context of ac′, which is the implying pattern’s
existential condition’s graph P ′. This is achieved by computation of Shift(m,¬∃xi). If, for all
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Algorithm 6.1: implies(C′,C)
desc. : implementation of Theorem 6.8
input : a pattern C = ∃(iP ,acP ) and a pattern C ′ = ∃(i′P , ac′P )
output: whether C ′ was found to imply C according to Theorem 6.8

1 foreach condition ¬∃x′ in ac′P do
2 if x′ is bijective then /* case (1’) */

3 return true

4 foreach injective morphism m ∶ P ↪ P ′ do /* case (1/2) */

5 matchedAllConditions ← true
6 foreach condition ¬∃x′′ in Shift(m,acP ) do
7 matchedCondition ← false
8 foreach condition ¬∃x′ in acP ′ do
9 if there is a y ∶X ′

j ↪X ′′ such that x′′ = y ○ x′ then

10 matchedCondition ← true
11 break

12 if not matchedCondition then
13 macthedAllConditions ← false
14 break

15 if macthedAllConditions then
16 return true

17 return false

of the transferred negative application conditions ¬∃x′′ik (the result of the Shift-operation),
ac′ contains a stronger or equally strong negative application condition, C ′ implies C. Such a
stronger or equally strong condition can again be expressed by using subgraph relationships
(cf. y ∶ X ′

j ↪ X ′′
ik). Intuitively and informally, a negative application condition is stronger in

the sense that it excludes more graphs if it has fewer elements (nodes and edges); then, a
graph containing another graph as a subgraph is less strict than its subgraph when used in a
negative application condition.

Note that there may be several injective morphisms m ∶ P ↪ P ′. Hence, conditions (1) and
(2) must be checked for all those morphisms. If one m can be found such that condition (2)
holds, C ′ implies C. Since there are finite numbers of potential morphisms m ∶ P ↪ P ′ and
negative application conditions in ac and ac′ and since the Shift-construction always yields
finite results, Theorem 6.8 can be implemented as an algorithm that always terminates. How-
ever, the computation may still be costly, particularly because of the Shift-construction and
subgraph computation involved. Furthermore, since pattern implication in general is undecid-
able, the algorithm, which is sound, cannot be complete – and hence, the theorem does not
describe an equivalence: even if no suitable morphism m can be found, C ′ may still imply C.

An example for the application of Theorem 6.8 to two patterns is given in Example B.1 in
Appendix B.

This concludes the explanation of concepts required by our restricted formal model, which
is introduced as follows:

Formal Model (restricted). Systems and system specifications consist of the following ele-
ments:

System metamodels are specified by type graphs.
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Table 6.1. – Comparison of general and restricted formal model

Element/
model

Meta-
models

System
states

Systems System sets System state spaces

General for-
mal model

Type
graphs

Typed
graphs

Typed
graph
grammars

Induced
(typed) graph
grammars

Graph grammars’
state spaces under
guaranteed constraint

Restricted for-
mal model

Type
graphs

Typed
graphs

Typed
graph
grammars

Induced
(typed) graph
grammars

Graph grammars’
state spaces under
guaranteed constraint

Element/
model

System behavior
Safety proper-
ties

Guaranteed
properties

Initial states

General for-
mal model

Graph rules with left
nested application
conditions

Nested graph
constraint(s)

Nested graph
constraint(s)

Nested graph
constraint(s)

Restricted for-
mal model

Graph rules with left
composed negative ap-
plication conditions

Composed
graph pattern

Composed
graph pattern

Composed
graph pattern

System states – including initial states – are described by typed graphs.
System behavior is described by a typed graph transformation system, which consists of typed

graph transformation rules. Rules may only have a left application condition in the form
of a composed negative application condition (Definition 6.3 (p. 118)).

Properties are modeled as composed graph patterns (Definitions 6.5 (p. 119) and 6.4). More
specifically, we specify a composed forbidden pattern F to be verified under a composed
guaranteed pattern H; in addition, start graphs are described by a composed start config-
uration pattern S. Similar to the general approach, we require S ⊧ F .

Systems are specified by typed graph grammars, which consist of an initial state – a start graph
– and a typed graph transformation system.

System state spaces are described by the state spaces – the set of all reachable graphs – of
the corresponding graph grammars (under the composed guaranteed pattern).

System sets are described by graph grammars induced by a graph transformation system and
a composed start configuration pattern.

The differences between the general and restricted formal model are shown in Table 6.1.

Example 6.9 (running example, composed negative application conditions, graph patterns).
Our running example conforms to the restricted formal model. In particular,

– rules s2s, f2b, b2s, a2b (Figures 6.1(c)-6.1(f), p. 112) have the trivial composed negative
application condition true,

– rules f2f, a2f, s2a (Figures 6.1(g)-6.1(i), p. 112) have (non-trivial) composed negative
application conditions of the form ¬∃x1 or ¬∃x1 ∧ ¬∃x2, respectively,

– the alternative rules f2f, a2f, s2a (Figures 6.2(a)-6.2(c), p. 113) have the trivial composed
negative application condition true,

– the safety property is a composed forbidden pattern F = ¬F1∧¬F2∧¬F3 (Figures 6.3(a)-
6.3(c), p. 113),
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– the guaranteed constraint is a composed guaranteed pattern H = ⋀1≤i≤16 ¬Hi (with frag-
ments shown in Figures 6.3(d)-6.3(f), p. 113,

– and the start configuration constraint is a composed start configuration pattern S =
¬SC 1 ∧¬SC 2 ∧¬SC 3 (or S = ¬SC 1 ∧¬SC 2 ∧¬SC 3 ∧H) (Figures 6.3(g)-6.3(i), p. 113).△

Using this restricted formal model requires modifying Verification Problem VP.1g as follows:

Verification Problem VP.1r. Given a graph transformation system GTS = (R,TG) with
rules of the form bi = ⟨(Li ↩Ki ↪ Ri),acLi , true⟩ for composed negative application conditions
acLi and composed graph patterns F , S, and H with S ⊧ F , does every graph grammar GG ∈
IND(GTS ,S) have F as an operational invariant under H?

In the following section, we will discuss how the symbolic encoding for the general approach
can be refined to take the characteristics of the restricted formal model into account.

6.2. Symbolic Encoding

As mentioned earlier, we aim to apply Lemma L.1 (p. 65), which relies on an inductive argument
with k-inductive invariants as the inductive step and their validitiy in k−1-bounded state
spaces of the respective induced graph grammars as the base case. We recall the definition of
k-indcutive invariants:

Definition D.1 (k-inductive invariant [3]). Given a typed graph transformation system GTS =
(R, TG) and graph constraints F and H, F is a k-inductive invariant of GTS under H, if,
for all sequences of transformations to R trans = G0 ⇒R G1 ⇒R ...⇒R Gk it holds that:

(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F)) ⇒ (Gk ⊧ F)

However, given our the restriction of safety properties and the guaranteed constraint to
composed graph patterns, we know that F and H are composed graph patterns and follow a
specific structure. In particular, F = ⋀i∈I ¬Fi and H = ⋀j∈J ¬Hj for graph patterns Fi and Hi.
This allows us to introduce a variant of Lemma 5.2 (p. 75) – similar to the general approach, we
can establish a more constructive form of our proof obligation for the verification of k-inductive
invariants.

Lemma 6.10 (k-inductive invariant and transformation sequences as counterexamples [3]).
Given a typed graph transformation system GTS = (TG ,R), a composed forbidden pattern
F = ⋀i∈I ¬Fi, and a composed guaranteed pattern H = ⋀j∈J ¬Hj, F is a k-inductive invariant
for GTS under H, if and only if the following holds for each k-sequence of transformations to
R trans = G0 ⇒R ...⇒R Gk:

∃u(Gk ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv))

Proof. We can rearrange the formula from Definition D.1 (for all sequences of transformations
to R trans = G0 ⇒R G1 ⇒R ...⇒R Gk):

(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F))⇒ (Gk ⊧ F)
⇐⇒(Gk /⊧ F)⇒ ¬(∀z(0 ≤ z ≤ k⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F))
⇐⇒(Gk /⊧ F)⇒ (∃z(0 ≤ z ≤ k ∧Gz /⊧H) ∨ ∃z(0 ≤ z ≤ k − 1 ∧Gz /⊧ F))
⇐⇒∃u(Gk ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv))
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The idea is to reduce complexity by splitting up a composed forbidden pattern into its
individual forbidden patterns. Since those patterns are conjunctively combined, a potential
violation occurs when a transformation sequence leads to one of the patterns Fi, which is
described by the implication’s precondition (∃u(Gk ⊧ Fu)). Then, to discard that transforma-
tion sequence as a counterexample, violations of an individual forbidden pattern earlier in the
sequence (∃z, v(0 ≤ z ≤ k − 1 ∧ Gz ⊧ Fv)) or violations of an individual guaranteed pattern
(∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv)) have to be found.

Note that this lemma is different from its counterpart (Lemma 5.2 (p. 75)) when seen from
an algorithmic perspective. Here, we look for transformation sequences as potential counterex-
amples (i.e. leading to a pattern Fn), which may then be discarded after further analysis
(finding violations elsewhere in the sequence). In contrast to that, Lemma 5.2 (p. 75) states
that certain sequences should not exist, without rearranging it into the implicative condition
used in Lemma 6.10.

The structure already hints at the algorithm we will use in our verification procedure. Here,
we will construct s/t-pattern sequences leading to ¬F – or rather, the individual patterns
Fi. Then, in contrast to the general approach, the s/t-pattern sequences will be analyzed for
occurences of forbidden or guaranteed patterns. In our general approach (Sections 5.2 and 5.3),
those checks were integrated into the construction of the s/t-pattern sequences by transferring
the respective constraints to the source and target patterns. The final analysis (Theorem T.2g
(p. 96)) was only concerned with finding satisfying transformation sequences. Here, we aim to
reduce computational effort by not integrating the other forbidden patterns and guaranteed
patterns into the s/t-pattern sequences. Instead, their effects are considered in a a less costly
analysis step.

Besides that, the desired effect of splitting the composed forbidden pattern is twofold: first,
if we construct s/t-pattern sequences whose satisfying transformation sequences lead to an in-
dividual forbidden pattern as opposed to a composed forbidden pattern, the resulting sequence
and its computation will be less complex; instead, however, there will be more s/t-pattern se-
quences. This plays into the second point: multiple s/t-sequences could, in theory, be subject
to analysis in parallel.

Lemma 6.10 refines Lemma 5.2 (p. 75); both reason about k-inductive invariants. Similarly,
we refine Lemma 5.3 (p. 75), which reasoned about k−1-bounded state spaces and transfor-
mation sequences as counterexamples.

Lemma 6.11 (k-bounded state spaces and transformation sequences as counterexamples).
Let GTS = (R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi, H = ⋀j∈J ¬Hj, and
S = ⋀o∈O ¬SC o be composed graph patterns with S ⊧ F . For all graphs G ∈ REACHk−1(GG ,H)
with graph grammars GG ∈ IND(GTS ,S), we have G ⊧ F if and only if the following holds for
each sequence of transformations to R trans = G0 ⇒b1,m1,m′1 ...⇒bn,mn,m′n Gn with 0 ≤ n ≤ k−1:

∃u(Gn ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ n ∧Gz ⊧Hv) ∨ ∃v(G0 ⊧ SC v))

Proof. Given a graph grammar GG = (GTS ,G0) with GG ∈ IND(GTS ,S), by definition of k-
bounded state spaces (Definition 4.11 (p. 63)), the existence of a graph G ∈ REACHk−1(GG ,H)
withG /⊧ F is equivalent to the existence of a transformation sequence toR trans = G0 ⇒b1,m1,m′1
...⇒bn,mn,m′n Gn with 1 ≤ n ≤ k − 1 and Gn /⊧ F where G0 ⊧ S and where all traversed graphs
satisfy H, i.e. ∀i(1 ≤ i ≤ n ⇒ Gi ⊧ H). Gn /⊧ F is equivalent to ∃u(Gn ⊧ Fu). Then, the
absence of such a sequence with ∃u(Gn ⊧ Fu) ∧ ∀i(1 ≤ i ≤ n ⇒ Gi ⊧ H) ∧G0 ⊧ S is equiva-
lent to validity of F in all k−1-bounded state spaces of the graph grammars induced by GTS
and S – and we can express the absence by requiring for all transformation sequences to R
trans = G0 ⇒b1,m1,m′1 ...⇒bn,mn,m′n Gn:
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¬(∃u(Gn ⊧ Fu) ∧ ∀i(1 ≤ i ≤ n⇒ Gi ⊧H) ∧G0 ⊧ S)
⇐⇒ ¬(∃u(Gn ⊧ Fu)) ∨ ¬(∀i(1 ≤ i ≤ n⇒ Gi ⊧H) ∧G0 ⊧ S)
⇐⇒ ∃u(Gn ⊧ Fu)⇒ ¬(∀i(1 ≤ i ≤ n⇒ Gi ⊧H) ∧G0 ⊧ S)
⇐⇒ ∃u(Gn ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ n ∧Gz ⊧Hv) ∨G0 /⊧ S)
⇐⇒ ∃u(Gn ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ n ∧Gz ⊧Hv) ∨ ∃v(G0 ⊧ SC v))

The idea is similar to the refinement of Lemma 5.2 (p. 75) by Lemma 6.10 (p. 123) – we
establish a criterion for possible counterexamples (Gn ⊧ Fu), then try to discard the counterex-
ample because there is a violation of the composed guaranteed pattern (Gz ⊧ Hv) or because
the first graph of the transformation sequence is not allowed as a start graph (G0 ⊧ SC v). Keep
in mind that a composed start configuration pattern is defined as ⋀o∈O ¬SC o; hence Gz ⊧Hv or
G0 ⊧ SC v is indeed a violation of the composed start configuration pattern. Similarly, Gz ⊧Hv

is a violation of the composed guaranteed constraint.
However, in our symbolic approach, we will not verify specific graphs for the satisfaction

or violation of (guaranteed or start configuration) graph patterns. Instead, we will use source
patterns, target patterns, and target/source patterns – that is, their reduction to a graph
pattern (Lemma 2.38 (p. 43)) – which represent the potentially infinite number of graphs that
may occur in relevant transformation sequences. These graph patterns can then be compared
to guaranteed patterns and start configuration patterns with respect to pattern implication: in
particular, we can apply the theorem and algorithm used in earlier work [Dyc12] and reiterated
in Theorem 6.8 and Algorithm 6.1. The result will allow us to reason about satisfiability of
guaranteed and start configuration patterns by the graphs represented by the reduced source
and target patterns.

Source pattern, target patterns, target/source patterns, and sequences of source/target pat-
terns were established in Chapter 5 for the general approach. Originally, we introduced source
and target patterns as unrestricted nested application conditions over a left or right rule side.
Here, since our symbolic encoding (s/t-pattern sequences) needs to represent transformation
sequences that lead to graph constraints of limited complexity – namely, graph patterns –
we can restrict the expressive power of source patterns and target patterns – and hence, of
s/t-pattern sequences – as well.

To determine appropriate restrictions on source patterns and target patterns, we analyze
possible counterexamples and their symbolic encoding. As before (Chapter 5, Section 5.2,
construction of s/t-pattern sequences), we will use an adjusted Seq-construction. Here, we
will need to encode transformation sequences that lead to a singular pattern: in Lemmas 6.10
(p. 123) and 6.11 (p. 124), the transformation sequences’ rightmost graph needs to violate a
forbidden graph pattern; e.g. Gk ⊧ Fu. By definition, Fu = ∃(iA ∶ ∅ ↪ A,acA) for a graph A
and a composed negative application condition acA. For ease of reading, we will use F = Fu for
such an arbitrary pattern Fu. Of course, our algorithm would need to consider all individual
patterns Fi.

Since Theorem T.1g (p. 85) of the general approach does not impose any restrictions on the
type of graph constraints, we can simply consider computing Seqg

k(R, F, . . . ) (note: the forbid-
den pattern F , not the composed forbidden pattern F) to encode all transformation sequences
leading to F , i.e. all transformation sequences that need to be considered as counterexamples.
Then, by step SC1-1 of the construction, we will need to compute Shift(iR, F ) for each right
side R of rules in R. Furthermore, since the idea is to leave out transfers of guaranteed patterns
and the remaining forbidden patterns to the s/t-pattern sequences (instead taking them into
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account in an analysis step later on) all additional complexity in the s/t-pattern sequence can
only come from the rules (including their application conditions).

We get

Shift(iR, F )
=Shift(iR,∃(iA,acA))
=⋁
j∈J

∃(tj ,Shift(t′j ,acA))

as in the diagram below. The result is a disjunction of existential conditions over a right rule
side; each existential condition has a nested application condition that is the result of shifting
a composed negative application condition (acA) over a morphism.

L ◁
ac

L

K � //?oo R�

tj

��

∅?iRoo
�

iA

��

=

Tj

ac
T
j ▷

A?
t′joo

ac
A▷

Note that this result would be a valid target pattern by Definition 5.8 of our general ap-
proach. However, it is still more complex than desirable and, indeed, necessary. Given the
result’s structure, we can do better: since we have a disjunction of existential conditions, each
existential condition encodes one potential rule application (result) where F can be found,
and hence, F is violated. Thus, we will (in Section 6.3) adjust the Seq-construction to split
the disjunction into several target patterns, with each target pattern an existential condi-
tion over a right rule side and an appropriate nested application condition (Shift(t′j ,acA)).
Fortunately, the structure of composed negative application conditions is preserved by the
Shift-construction: the result will again be a composed negative application condition. This
has been established in Fact 6.6 (p. 119).

A generalized version of splitting graph constraints in the fashion described above (and
in Lemmas 6.10 (p. 123) and 6.11 (p. 124)) could also be applied for the general approach,
given suitable structure of the graph constraint in question. In particular, the nesting depth
of a constraint, which is not restricted in the general approach, does not prevent a graph
constraint from being split. However, arbitrary logical combinations on the first level of the
constraint would cause the resulting fragments to be more complex in the general approach
than in the restricted approach.

As before, target patterns will be converted to source patterns by the L-construction. Here,
we have (with ac being a composed negative application condition and b the graph rule in
question):

L(b,∃(tj ,acTj))
=∃(sj ,L(b′,acTj)) – or false .

L�

sj

��

◁
ac

L

K�

��

� //?oo R�

tj

��

∅?iRoo
�

iA

��

=

S
◁a

c
′
S j

Dj
� //?oo Tj

ac
T
j ▷

A?
t′joo

ac
A▷
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Then, the resulting source patterns are existential conditions with a nested application condi-
tion. Again, using the L-construction on a composed negative application condition (L(b′,ac))
results in a composed negative application condition, which was established in Fact 6.7 (p. 119).

That leaves us with existential conditions with nested composed negative application condi-
tions as source patterns and target patterns. Hence, for the restricted formal model, we refine
Definitions 5.7 (p. 77) and 5.8 (p. 77) as follows:

Definition 6.12 (source pattern [3]). Given a graph rule b = ⟨(L↩K ↪ R),acL,acR⟩, a
source pattern over b is an application condition over the left side L of the form src = ∃(s,acS)
with acS being a composed negative application condition.

Definition 6.13 (target pattern [3]). Given a graph rule b = ⟨(L↩K ↪ R),acL,acR⟩, a target
pattern over b is an application condition over the right side R of the form tar = ∃(t,acT )
with acT being a composed negative application condition.

Instead of referring to a source pattern over a rule b, we will sometimes refer to source
patterns over a left side L; the same will apply for target patterns.

As before, source and target patterns specify additional context – and, via negative applica-
tion conditions, its absence – in which a rule application occur. A source pattern src represents
all matches m ∶ L ↪ G where m satisfies src. Likewise, a target pattern tar represents all co-
matches m′ ∶ R ↪ G′ that satisfy it. Together, a source and a target pattern over the same rule
can encode potential rule applications via specific matches and comatches.

However, given our restricted formal model, we can be more specific: a source or target
pattern’s existential condition describes the (minimal) graph – called its (positive) context
– in which the rule application (via match or comatch) may occur. It directly embeds the
(co-)match in another graph – as opposed to a complex application condition whose operands
and nesting structures may be difficult to grasp for a human viewer. In addition, unless the
composed negative application condition is contradictory to the existential condition, it is easy
to find a satisfying (co-)match by choosing the existential condition’s morphism. Contradictory
composed negative application are easy to spot: they contain a negative application condition
whose morphism is bijective (i.e. an isomorphism).

As argued above, given our formal model, this format is sufficient to describe the context
required to analyze our systems for violations of safety properties describes as composed for-
bidden graph patterns.

The structure for the refined target/source patterns then follows a logic similar to the defini-
tions of source and target patterns. A target/source pattern needs to describe an overlapping
of a right and a left side of two rules. As before, this can be done by using a pair of injective
and jointly surjective morphisms to induce a pair of existential conditions with a common
nested condition. Given the structure of source and target patterns, that nested condition will
be a composed negative application condition.

Definition 6.14 (target/source pattern [3]). Given rules b1 = ⟨(L1 ↩K1 ↪ R1),acL1 ,acR1⟩
and b2 = ⟨(L2 ↩K2 ↪ R2),acL2 ,acR2⟩ and a graph E with a pair of injective and jointly
surjective morphisms (eR ∶ R1 ↪ E, eL ∶ L2 ↪ E), a target/source pattern over (b1, b2) is a
pair of application conditions over R1 and L2 of the form (∃(eR,acE),∃(eL,acE)) with acE
being a composed negative application condition over E.

A pair of morphisms with the same codomain (m′
1 ∶ R1 ↪ G,m2 ∶ L2 ↪ G) satisfies a

target/source pattern (tar , src), denoted (m′
1,m2) ⊧ (tar , src), if m′

1 and m2 satisfy tar and
src via a common injective morphism, i.e. if there exists y ∶ E ↪ G with y ⊧ acE, y ○ eR =m′

1,
and y ○ eL =m2.
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:next 
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𝐿1 
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t2:Track 

∃𝑠1 

s:Shuttle 
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t3:Track 
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(a) Source pattern src = ∃s1 ∶ L1 ↪ S1

𝑇1 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

t2:Track 𝑅1 

∃𝑡1 

(b) Target pattern tar = ∃t1 ∶ R1 ↪ T1

𝐸 

s:Shuttle 

t1:Track t2:Track 
:next :isAt 

:acc 

t3:Track 
:next 

t4:Track 

:next 

s:Shuttle 
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s:Shuttle 

t2:Track 
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:isAt 

:acc 

t3:Track 𝐿2 

∃𝑒𝐿 

(c) Target/source pattern ts = (∃eR,∃eL)

Figure 6.5. – Example source pattern src = ∃s1, target pattern tar = ∃t1, and target/source
pattern (∃eR,∃eL)

R1 �
eR

##

�

m′1=y○eR

  

L2
meL

{{

}

m2=y○eL

~~

E ◁acE�

y
⊧

��
G

Example 6.15 (source, target, and target/source patterns). The example source, target, and
target/source patterns used in Example 5.9 (p. 77) for our general approach are also valid
source, target, and target/source patterns under our restricted formal model. They are shown
again in Figure 6.5. △

However, the definition of s/t-pattern sequences (Definition D.2) does not need to be refined.
Since it is based on source patterns, target patterns, and target/source patterns, the changes to
those concepts directly affect the structure of an s/t-pattern sequence in our restricted formal
model. We reiterate that definition here:

Definition D.2 (k-sequence of source/target patterns [3]). Given a k ≥ 1, a source pattern
src1 over a rule b1, a target pattern tark over a rule bk and a number of target/source patterns
(tar i, srci+1) over a number of rules bi (1 ≤ i ≤ k−1), seq = src1 ⇒b1 (tar1, src2)⇒b2 ...⇒bk tark

is a k-sequence of s/t-patterns.
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𝑆1 
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∃𝑠1 ∃𝑡2 

Figure 6.6. – 2-sequence of source/target patterns seq = ∃s1 ⇒s2a′ (∃eR,∃eL)⇒a2f′ ∃t2

L1src1▷ K1
� //?oo R1 

eR1 ��

L2q

eL2��

⋯ Rk ◁tark

E1 ◁acE1 ⋯

Satisfiability of k-sequences of s/t-patterns is defined as follows:
Given a sequence of transformations (of length k) trans = G0 ⇒c1,m1,m′1 ... ⇒ck,mk,m

′
k
Gk

and a k-sequence of s/t-patterns seq = src1 ⇒b1 (tar1, src2) ⇒b2 ... ⇒bk tark, trans satisfies
seq, denoted as trans ⊧ seq, if, for all i with 1 ≤ i ≤ k, ci = bi, mi ⊧ srci, m

′
i ⊧ tar i and, in

particular, for all i with 1 ≤ i ≤ k − 1, (m′
i,mi+1) ⊧ (tar i, srci+1).

L1src1▷ �

m1⊧src1

��

K1
� //?oo
�

��

R1 

eR1 ��

y

m′1

##

L2q

eL2��

�

m2

{{

⋯ Rk ◁tark�

m′k⊧tark

��

E1
= =

◁acE1�

y1⊧acE1

��

⋯

G0 D1_
oo � // G1 ⋯ Gk

Two k-sequences of s/t-patterns seq , seq ′ are equivalent (seq ≡ seq ′), if for all transformation
sequences trans it holds that trans ⊧ seq ⇔ trans ⊧ seq ′.

Example 6.16 (s/t-pattern sequence). The s/t-pattern sequence ∃s1 ⇒s2a′ (∃eR,∃eL) ⇒a2f′

∃t2 shown in Example 5.12 (p. 82) also conforms to our restricted formal model; it is shown
again in Figure 6.6. △

This concludes the introduction of our symbolic encoding to represent transformation se-
quences following the requirements of our restricted formal model. The following section will
focus on the construction of specific s/t-pattern sequences required in our verification approach.

6.3. Construction of Pattern Sequences

Given our restricted formal model and the refinements to source patterns, target patterns, tar-
get/source patterns, and, implicitly, s/t-pattern sequences, we now refine the Seq-construction
(Theorem T.1g (p. 85)) of our general approach. In the restricted approach, we defer the ques-
tion of constraint satisfaction by intermediate graphs of satisfying transformation sequences;
this is an attempt to reduce complexity and improve performance. Thus, the construction only
takes a set of graph rules (R) and a (forbidden) graph pattern (C) as a parameter. It then
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creates s/t-pattern sequences whose satisfying transformation sequences use rules in R and
lead to C.

In Lemmas 6.10 (p. 123) and 6.11 (p. 124), we have established the structure of transfor-
mation sequences that serve as counterexamples for k-inductive invariants and validity of a
composed forbidden pattern in k−1-bounded state spaces (under a composed pattern H). In
both cases, sequences lead to a forbidden pattern F , which is part of a composed forbidden pat-
tern F . Hence, for both cases, we will apply the refined Seq-construction with the parameters
R and F – for each forbidden pattern F contained in F . Both cases, including the subsequent
analysis step that also takes H and S into account, will be explained in Sections 6.4 and 6.5.

Theorem T.1r (construction of s/t-pattern sequences [3]). There is a construction Seqr
k such

that for each graph pattern C = ∃(iP ,acP), rule set R, and k ≥ 1, Seqr
k(R,C) is a set of

k-sequences of s/t-patterns such that:

1. For each transformation sequence trans to R and of length k leading to C, there exists
a seq ∈ Seqr

k(R,C) such that trans ⊧ seq.
2. Given a seq ∈ Seqr

k(R,C), for every transformation sequence trans with trans ⊧ seq,
trans leads to C.

Construction. Seqr
k is inductively constructed as follows (with appropriate indexes and index

sets), starting with Seqr
1 (left figure), which consists of five steps SC1-1 to SC1-5:

SC1-1: For each rule b = ⟨(L↩K ↪ R),acL, true⟩ ∈R, Shift(iR,C) = ⋁j∈Jb tar b,j is a disjunc-
tion of target patterns over R of the form tar b,j = ∃(tj ,acTj).

SC1-2: For each such target pattern tar b,j, src′b,j = L(b, tar b,j) is a source pattern over L of
the form src′b,j = false or src′b,j = ∃(sj ,ac′Sj

).
SC1-3: For the latter case, srcb,j = ∃(sj ,acSj) with acSj = ac′Sj

∧ Shift(sj ,acL ∧Appl(b)) is a
source pattern.

SC1-4: For each such pair of source and target pattern srcb,j and tar b,j, srcb,j ⇒b tar b,j is a
1-sequence of s/t-patterns.

SC1-5: Finally, we define Seqr
1(R,C) = {srcb,j ⇒b tar b,j ∣ b ∈ R ∧ j ∈ Jb} as the set of these

sequences.
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1 ▷

Given Seqr
k(R, F ), we construct Seqr

k+1(R, F ) as follows (right figure).

SCk-1: For each sequence seq = src1 ⇒b1 ... ⇒bk tark ∈ Seqr
k(R,C) with src1 = ∃(s1 ∶ L1 ↪

S1,acS1), each b = ⟨(L↩K ↪ R),acL, true⟩ ∈R, and each graph Tj and pair of injective
and jointly surjective morphisms (tj ∶ R ↪ Tj , s

′
j ∶ S1 ↪ Tj), tar b,j = ∃(tj ,acTj) with

acTj = Shift(s′j ,acS1) is a target pattern over R.
SCk-1

+: For each such target pattern tarb,j , src+1,j = ∃(s′j ○ s1,acTj ) is a source pattern over
L1 and (tar b,j , src+1,j) is a target/source pattern over (b, b1).

SCk-2: For each such target pattern tar b,j, src′b,j = L(b, tar b,j) is a source pattern over L of
the form src′b,j = false or src′b,j = ∃(sj ,ac′Sj

).
SCk-3: For the latter case, srcb,j = ∃(sj ,acSj) with acSj = ac′Sj

∧ Shift(sj ,acL ∧Appl(b)) is a
source pattern over L.
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SCk-4: For each such pair of source and target pattern srcb,j and tar b,j, srcb,j ⇒b tar b,j , src+1 ⇒b1

...⇒bk tark is a k+1-sequence of s/t-patterns.
SCk-5: Finally, we define Seqr

k+1(R,C) = {srcb,j ⇒b tar b,j , src+1,j ⇒ ... ⇒ tark ∣ b ∈ R ∧ j ∈
Jb ∧ seq ∈ Seqr

k(R,C)} as the set of these sequences.

Also, given a set of rules R and a composed graph pattern C = ⋀i∈I ¬Ci with graph patterns
Ci, we define Seqr

k(R,¬C) = ⋃i∈I Seqr
k(R,Ci) and SEQr

k(R,¬C) = ⋃1≤j≤k Seqr
j(R,¬C).

Proof. 1. First, we will prove (1) by induction.
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Base case. Let trans = G0 ⇒b1,m1,m′1 G1 be a transformation sequence leading to C = ∃(iP ∶
∅↪ P,acP ), i.e. G1 ⊧ C. Hence, iG1 ⊧ C and with m′

1 ○ iR1 = iG1 , we get m′
1 ○ iR1 ⊧ C. By the

Shift-lemma, we have m′
1 ⊧ Shift(iR1 ,C) and, considering the Seq-construction, m′

1 ⊧ tar b1,j

for a specific j ∈ Jb1 (and tar b1,j = ∃(tj ,acTj)).
G0 ⇒b1,m1,m′1 G1 implies m1 ∶ L1 ↪ G0 with m1 ⊧ acL1 ∧ Appl(b1). With m′

1 ⊧ tar b1,j

and the L-construction, we have m1 ⊧ L(b1, tar1,j) and, considering the construction above,
m1 ⊧ src′b1,j (where src′b1,j = ∃(sj ,ac′Sj

)). More specifically, there exists a monomorphism

q ∶ Sj ↪ G0 such that q ○ sj = m1 and q ⊧ ac′Sj
. Because of m1 ⊧ acL1 ∧ Appl(b1) and the

Shift-construction, q ○sj ⊧ acL1 ∧Appl(b1) yields q ⊧ Shift(sj ,acL1 ∧Appl(b1)), which leads to
q ⊧ ac′Sj

∧ Shift(sj ,acL1 ∧Appl(b1)) and m1 ⊧ srcb1,j with srcb1,j = ∃(sj ,ac′Sj
∧ Shift(sj ,acL1 ∧

Appl(b1))). Then, seq = srcb1,j ⇒b1 tar b1,j ∈ Seqr
1(R, F ) and with m′

1 ⊧ tar b1,j and m1 ⊧ srcb1,j ,
we have trans ⊧ seq .
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Inductive step. Let Seqr
k(R,C) be a set of sequences such that for each k-sequence of trans-

formations trans that leads to F , there is a k-sequence of s/t-patterns seq ∈ Seqr
k(R,C) such

that trans ⊧ seq .
Consider a k+1-sequence of transformations trans ′ = G ⇒b,m,m′ G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m

′
k

Gk that leads to C. Then, trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m
′
k
Gk is a k-sequence of transfor-

mations that leads to C. By assumption, there is a k-sequence of s/t-patterns seq = src1 ⇒b1

...⇒bk tark ∈ Seqr
k(R,C) such that trans ⊧ seq and src1 = ∃(s1,acS1).

Since trans ⊧ seq (and with G0 ⇒b1,m1,m′1 G1), we have a match m1 ∶ L1 ↪ G0 with m1 ⊧ src1,
implying the existence of an injective morphism y ∶ S1 ↪ G0 such that y○s1 =m1 and y ⊧ acS1 .
Since there is a transformation G ⇒b,m,m′ G0, there is a comatch m′ ∶ R ↪ G0. Then, given

– 131 –



6. Restricted Approach to k-Inductive Invariant Checking

m′ ∶ R ↪ G0 and y ∶ S1 ↪ G0 and by E ′-M-pair factorization [EGH+14], there is a graph T
with a pair of jointly surjective morphisms (t ∶ R ↪ T, s′ ∶ S1 ↪ T ) such that there exists an
injective morphism y′ ∶ T ↪ G0 with y′ ○ t =m′ and y′ ○ s′ = y. (By decomposition, t and s′ are
injective.)

By construction of Seqr
k+1(R,C), for that particular graph T and pair of injective and

jointly surjective morphisms (t ∶ R ↪ T, s′ ∶ S1 ↪ T ), there is an s/t-pattern sequence
seq ′ ∈ Seqr

k+1(R,C) with seq ′ = src ⇒b (tar , src+1) ⇒b1 ... ⇒bk tark where (tar , src+1) =
(∃(t,acT ),∃(s′○s1,acT )) is a target/source pattern with acT = Shift(s′,acS1). Furthermore, by
construction, src = ∃(s,acS) where acS = ac′S ∧Shift(s,acL)∧Shift(s,Appl(b)) and ∃(s,ac′S) =
L(b, tar) = L(b,∃(t,acT )). We will show that trans ′ satisfies seq ′.

Since acT = Shift(s′,acS1) and y′ ○ s′ = y, we have y′ ⊧ acT . With y′ ○ t =m′ and y′ ○ s′ ○ s1 =
y ○ s1 =m1, we have m′ ⊧ tar and m1 ⊧ src+1 via the common injective morphism y′ and hence,
(m′,m1) satisfies the target/source pattern (tar , src+1).

Furthermore, src′ = L(b, tar) and, by the L-construction and with G ⇒b,m,m′ G0, we have
m ⊧ src′. In particular, src′ = L(b,∃(t,acT )) = ∃(s,ac′S); since m ⊧ src′, src′ cannot be false.
Then, there is an injective morphism q ∶ S ↪ G such that q ○ s =m and q ⊧ ac′S . G⇒b,m,m′ G0

implies m ⊧ acL ∧ Appl(b) and with q ○ s = m, we have q ⊧ Shift(s,acL ∧ Appl(b)). Thus,
q ⊧ ac′S ∧ Shift(s,acL ∧Appl(b)), which gives us q ⊧ acS and hence, m ⊧ src.

Finally, m ⊧ src, (m′,m1) ⊧ (tar , src+1), and trans ⊧ seq imply trans ′ ⊧ seq ′, concluding the
inductive proof.

2. Second, we will prove (2) by induction:
Base case. Let seq = src1 ⇒b1 tar1 be an arbitrary 1-sequence of s/t-patterns such that seq ∈

Seqr
1(R,C) with b1 ∈ R and C = ∃(iP ,acP ). Consider an arbitrary transformation sequence

trans = G0 ⇒b1,m1,m′1 G1 such that trans ⊧ seq . Hence, we have m′
1 ⊧ tar1 and, by construction,

m′
1 ⊧ Shift(iR1 ,C). Then, m′

1 ○ iR1 ⊧ C and with iG1 ∶ ∅ ↪ G1 and iG1 = m′
1 ○ iR1 , we gain

iG1 ⊧ C, implying G1 ⊧ C and thus, trans leads to C. Consequently, for every s/t-pattern
sequence seq in Seq1(R,C), every transformation sequence trans with trans ⊧ seq leads to C.
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Inductive step. Let Seqr
k(R,C) be a set of s/t-pattern sequences such that for every s/t-

pattern sequence in Seqr
k(R,C), each transformation sequence trans with trans ⊧ seq leads to

C.
Consider Seqr

k+1(R,C) and seq ′ = src0 ⇒b0 tar0, src+1 ⇒b1 ... ⇒bk tark as an arbitrary
k+1-sequence of s/t-patterns with seq ′ ∈ Seqr

k+1(R,C). Consider an arbitrary transformation
sequence trans ′ = G′

0 ⇒b0,m0,m′0 G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m
′
k
Gk such that trans ′ ⊧ seq ′. By

construction, there is a k-sequence of s/t-patterns seq = src1 ⇒b1 ... ⇒bk tark with seq ∈
Seqr

k(R,C) and for trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m
′
k
Gk, we have trans ⊧ seq . By assumption,

trans leads to C and hence, Gk ⊧ C. Consequently, trans ′ leads to C, which concludes the
inductive proof.

Again, the Seq-construction comes with two properties: One, all transformation sequences
leading to the pattern C will be represented by one of the constructed s/t-pattern sequences.
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Two, every transformation sequence satisfying an s/t-pattern sequence created by the con-
struction will lead to the pattern C. Similar to the general version of the Seq-construction, we
get a finite set of s/t-pattern sequences from this construction.

Verifying a composed forbidden pattern F = ⋀i∈I ¬Fi as k-inductive invariant then involves
computing Seqr

k(R,¬F) = ⋃i∈I Seqr
k(R, Fi). Verifiying the validity of F in k−1-bounded state

spaces involves computation of SEQr
k−1(R,¬F). In both cases, the s/t-pattern sequences have

to be analyzed in subsequent steps.
As before, we can also express the Seq-construction in a declarative fashion rather than

stepwise:

Seqr
1(R,C) = {srcb,j ⇒b tar b,j ∣ b ∈R ∧ j ∈ Jb} (SC1-4/5)

where, given b = ⟨(L ↩K ↪ R),acL , true⟩,

srcb,j = ∃(sj ,acSj) with acSj = ac′Sj
∧ Shift(sj ,acL ∧Appl(b)), (SC1-3)

∃(sj ,ac′Sj
) = src′b,j = L(b, tar b,j), and (SC1-2)

tar b,j = ∃(tj ,acTj) where ⋁
j∈Jb

tar b,j = Shift(iR,C). (SC1-1)

For the computation of Seqr
k+1(R,C), given Seqrk(R,C), we have:

Seqr
k+1(R,C) = {srcb,j ⇒b tar b,j , src+1,j ⇒b1 ...⇒bk tark ∣ (SCk-4/5)

b ∈R ∧ j ∈ Jb ∧ seq ∈ Seqr
k(R,C)}

where, given b = ⟨(L ↩K ↪ R),acL , true⟩, seq = src1 ⇒b1 ...⇒bk tark with src1 = ∃(s1,acS1),
and considering all pairs of injective and jointly surjective morphism pairs (tj ∶ R ↪ Tj , s

′
j ∶

S1 ↪ Tj),

srcb,j = ∃(sj ,acSj) with acSj = ac′Sj
∧ Shift(sj ,acL ∧Appl(b)), (SC1-3)

∃(sj ,ac′Sj
) = src′b,j = L(b, tar b,j), (SC1-2)

src+1,j = ∃(s′j ○ s1, acTj), and (SCk-1+)

tar b,j = ∃(tj ,acTj) with acTj = Shift(s′j ,acS1). (SC1-1)

The construction will be executed from right to left, starting with the case for length 1
(steps SC1-1 to SC1-5) and then iteratively applying the steps for prolonging the k-sequences
to k + 1 (steps SCk-1 to SCk-5). In short, the steps of the Seq-construction have the following
effect:

SC1-1 creates combinations of the graph pattern C with right rule sides for all rules in R,
thereby spawning a number of target patterns for each rule.

SC1-2 creates source patterns by shifting all target patterns to the respective left rule side.
Intuitively, rules are applied in reverse direction.

SC1-3 adds the rules’ left application condition and applicability condition to the source pat-
tern to ensure correct rule application in satisfying transformation sequences.

SC1-4/5 combines the pairs of source and target patterns into a number of s/t-pattern se-
quences of length 1.

SCk-1 creates combinations of the leftmost source pattern and the right rule sides for all s/t-
pattern sequences in Seqr

k(R,C) and rules in R, thereby spawning a number of target
patterns for each pair of a rule and a sequence.
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SCk-1+ makes sure there is equivalent information in the newly created target patterns and
the (leftmost) source patterns used in their creation and combines them in target/source
patterns.

SCk-2 creates source patterns by shifting all target patterns to the respective left rule side.
Intuitively, rules are applied in reverse direction.

SCk-3 adds the rules’ left application condition and applicability condition to the source pat-
tern to ensure correct rule application in satisfying transformation sequences.

SCk-4/5 combines the constructed source patterns and target/source patterns with their cor-
responding sequences in Seqr

k(R,C) to form a number of s/t-pattern sequences of length
k + 1.

Note that there are several important differences to the Seq-construction used in the general
approach (Theorem T.1g). We will explain those differences before delving into the details of
the construction steps:

– Seqr
k(R,C) takes a set of graph rules and a graph pattern as parameters, as opposed to a

set of two graph rules and two graph constraints of arbitrary complexity (Seqg
k(R,C1,C2)).

– There is no graph constraint to be satisfied by intermediate graphs of satisfying trans-
formation sequences; hence, steps SC1-3 and SCk-3 only transfer the left application
condition to the context of the source pattern.

– The construction Shift(iR,C) (step SC1-1) and its equivalent in step SCk-1 are not used
to produce one target pattern over the respective right rule side, but a number of target
patterns, each of which spawns its own s/t-pattern sequence.

– In steps SC1-2 and SCk-2, L-constructions with the direct result false are identified and
discarded.

The first (and second) difference is owed to our goal of reducing the complexity of the
construction and its results. Since we aim to shift the consideration of guaranteed constraints
from the construction of s/t-pattern sequences to the analysis of said sequences, a constraint
that should be satisfied by intermediate graphs in satisfying transformation sequences is not
part of the construction here. Thus, the two properties ensured by the construction only refer
to the notion of leading to a constraint, which is passed as the parameter C. The operation
of shifting constraints is costly not only in itself, but also spawns subsequent computations
when its results are again transferred to the context of right rule sides or over reverse rule
applications.

While systems following our restricted formal model are equipped with a composed forbidden
pattern, the construction’s parameter C may only be a graph pattern. This follows the notion
introduced in Lemmas 6.10 (p. 123) and 6.11 (p. 124): due to the specific structure of a
composed forbidden pattern, it is sufficient for a counterexample (transformation sequence)
to lead to one of the forbidden patterns Fi. Hence, our construction focuses on individual
patterns; analyzing all forbidden patterns via the Seq-construction and subsequent analysis
steps in their entirety then amounts to analyzing the composed forbidden pattern. Formally,
this is described by the definition Seqr

k(R,¬F) = ⋃i∈I Seqr
k(R, Fi). Furthermore, note that

given a pattern F , Seqg
k(R, F, true) and Seqr

k(R, F ) are equivalent in the sense that its sets
of satisfying transformation sequences are equal. Given a composed forbidden pattern F , the
same holds for Seqg

k(R,¬F , true) and Seqr
k(R,¬F).

The third point makes s/t-pattern sequences more specific with respect to the transformation
sequences represented. Since C is a graph pattern, the result of Shift(iR,C) will always be a
disjunction of existential conditions with nested composed negative application conditions –

⋁j∈Jb ∃(tj ,acTj). Creating a new target pattern – and, potentially, a new s/t-pattern sequence –
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(a) Graph rule f2f′
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t1:Track 
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:fast 

ts:Track 
:next 
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𝑃1
𝐹  
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¬∃𝑖𝑃1𝐹  

(b) F = ¬F1 = ¬∃iPF
1

Figure 6.7. – Graph rule f2f′ and composed forbidden pattern F = ¬F = ¬∃iPF
1

for each existential condition in the disjunction reduces the number of transformation sequences
satisfying each s/t-pattern sequence, although it will often still be infinite. The desired effect
is threefold: First, such an s/t-pattern sequence will provide a more specific and concise view
of the system’s behavior leading to C. Second, it is easier to analyze and potentially discard
individual sequences. Finally, splitting sequences may allow for parallelization of the analysis.
Since all target patterns appear as part of a disjunction in the result, any one of the newly
created target patterns and s/t-pattern sequences fulfill the properties defined in the theorem
and have to be considered. Also, recall that our definition of target patterns (Definition 6.13
(p. 127)) was chosen with the specific intention of splitting such disjunctions: a target pattern
in the restricted formal model can only be an existential condition with a nested composed
negative application condition, not a disjunction of such conditions.

The last point is also rooted in the desire to simplify the contructions and their results.
In the general approach, the L-construction may have complex conditions as input; then, the
result’s equivalence to false can be costly to determine. Here, calculating L(b, tar) for a rule
b and a target pattern tar is not nearly as challenging with respect to computational effort.
Since a target pattern is an existential condition with a nested composed negative application
condition (∃(tj ,acTj)), L(b, tar) only has the direct result false if the pushout complement to
K ↪ R ↪ Tj does not exist. Then, continuing the calculation for that s/t-pattern sequence is
unnecessary – since false cannot be satisfied by any morphism, the final s/t-pattern sequence
cannot be satisfied by any transformation sequence.

If said pushout complement does exist, the result may still be unsatisfiable: if one of the trans-
ferred negative application conditions consists of an isomorphism in its (negated) existential
condition, the source pattern is again unsatisfiable by any morphism. Since this consideration
is more involved from a formal perspective, this aspect is not included in the Seq-construction’s
definition. However, both aspects are part of the implementation: discarding unsatisfiable s/t-
pattern sequences earlier reduces the computational effort of both the construction of sequences
and their analysis.

Example 6.17 (Seq-construction, example system). In order to keep this example short, we
will again use a minimal system, consisting of the graph rule f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩
(hence,R = {f2f′}) and a composed forbidden pattern F = ¬F1 = ¬∃iPF

1
. The rule and the graph

pattern are shown in Figures 6.7(a) and 6.7(b), respectively; they are unchanged in comparison
to Example 6.1 (p. 111). We will compute Seqr

2(R, F1), which would be appropriate in order
to determine whether F is a 2-inductive invariant for GTS = (TG ,R).

As in the corresponding example for the general approach, we will distinguish between
f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩ and f2f′ = ⟨(L1 ↩K1 ↪ R1), true, true⟩. The former will
refer to the appearance of rule f2f′ in the context of steps SC1-1 to SC1-5 and the latter
to its appearance in the context of steps SCk-1 to SCk-5, although the rules’ contents are
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Figure 6.8. – S/t-pattern sequence seq2 = src1 ⇒f2f′ (tar1, src+2) ⇒f2f′ tar2 with seq2 ∈
Seqr

2(R, F1)

⇒𝑓2𝑓′  ⇒𝑓2𝑓′  
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:fast 

tc:Track 
:next 

td:Track 
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s:Shuttle 
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:fast 
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Figure 6.9. – Transformation sequence trans = G0 ⇒f2f′,m1,m′1
G1 ⇒f2f′,m2,m′2

G2; trans ⊧
seq2

identical. Since the rule does not delete any nodes, it has a trivial applicability condition
Appl(f2f′) = true.

Figure 6.8 shows one s/t-pattern sequence (of length 2) seq2 that is contained in Seqr
2(R, F1).

The construction and origin of its individual parts are explained in Examples B.2-B.11 in
Appendix B; here, we will only provide a short overview.

In particular,

seq2 =src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2

= ∃s1 ⇒f2f′ (∃t1,∃s+2) ⇒f2f′ ∃t2,

where the steps, their computations, and the corresponding examples and figures for this
particular s/t-pattern sequence are listed in Table 6.2. Intuitively, the result can be explained
as follows: the existential condition ∃t2 describes one possibility where the application of rule
f2f′ has lead to a shuttle driving fast on a switch; then, reverse application of the rule via the
L-construction determines the situation before that rule application. The resulting situation
is described by an existential condition whose context is again combined with the right side
of rule f2f′. One such overlapping results in the target pattern ∃t1 – and reverse application of
the rule gives us ∃s1, all of which are part of seq2.

We can see already that the sequence is more specific than its counterpart in Example 5.13
(p. 90) for the general case: the source, target/source, and target patterns ∃s1, (∃t1,∃s+2),
and ∃t2, are simple existential conditions. Of course, Seqr

2(R, F ) will contain more than
just that one s/t-pattern sequence seq2 – and will necessarily contain more sequences than
Seqg

2(R, F1, true).
Note that the Seq-construction does not provide a means to find a satisfying transformation

sequence or even to establish its existence. For the sake of this example, such a satisfying
transformation sequence is shown in Figure 6.9. By Theorem T.1r (p. 130), we know that
given trans = G0 ⇒f2f′,m1,m′1

G1 ⇒f2f′,m2,m′2
G2 with trans ⊧ seq2 and seq2 ∈ Seqr

2(R, F1), we
have G2 ⊧ F1. Indeed, G2 contains a violation of this forbidden pattern – a shuttle in speed
mode fast on a switch. △
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Table 6.2. – Computation steps of Seqr
2(R, F1)

step computation Figure Example

SC1-1 tar2 = ∃t2 (and ⋁j∈J tar j
2 = Shift(iR2 , F1)) B.5 B.3

SC1-2 src′2 = ∃s2 = L(f2f′, tar2) B.6 B.4
SC1-3 src2 = src′2 = ∃s2 – B.5
SC1-4/5 seq1 = src2 ⇒f2f′ tar2 B.7 B.6

SCk-1 tar1 = ∃t1 B.9 B.7
SCk-1+ src+2 = ∃(s′1 ○ s2) – B.8
SCk-2 src′1 = ∃s1 = L(f2f′, tar1) B.10 B.9
SCk-3 src1 = src′1 = ∃s1 – B.10
SCk-4/5 seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f tar2 B.11 B.11

¬∃𝑥1 
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Figure 6.10. – Graph rule f2f = ⟨(L2 ↪K2 ↪ R2),¬∃x1, true⟩

Example 6.18 (Seq-construction, example system with a non-trivial negative application
condition). In order to illustrate the consequences of a non-trivial left application condition in
rules, consider the graph rule f2f = ⟨(L2 ↩K2 ↪ R2),acL2 , true⟩ with acL2 = ¬∃x1 introduced
in Example 6.1 (p. 111) and depicted again in Figure 6.10. With the additional negative
application condition, the rule is only applicable if the track the shuttle is supposed to move
to does not have a switch as a subsequent track. However, the target track itself may be a
switch: rules check for switches two tracks ahead, not one. The composed forbidden pattern
F = ¬F1 remains unchanged.

This case is explained in more detail in Examples B.12 and B.13 in Appendix B; here, we
will only provide a short overview, with Table 6.3 listing the computation steps.

Table 6.3. – Computation steps of Seqr
2(R, F1)

step computation Figure Example

SC1-1 tar2 = ∃t2 (and ⋁j∈J tar j
2 = Shift(iR2 , F1)) B.5 B.3

SC1-2 src′2 = ∃s2 = L(f2f, tar2) B.6 B.4
SC1-3 src2 = ∃(s2,acS2) = ∃(s2,Shift(s2,acL2)) B.14 B.12
SC1-4/5 seq1 = src2 ⇒f2f tar2 – B.12

SCk-1 tar1 = ∃(t1,acT1) = ∃(t1,Shift(s′1,acS2)) – B.13
SCk-1+ src+2 = ∃(s′1 ○ s2,acT1) – B.13
SCk-2 src′1 = ∃(s1,ac′S1

) = L(f2f, tar1) – B.13

SCk-3 src1 = ∃(s1,acS1) = ∃(s1,ac′S1
∧ Shift(s1,acL1)) B.15 B.13

SCk-4/5 seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f tar2 6.11 B.13
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Figure 6.11. – S/t-pattern sequence seq2 = ∃(s1,acS1) ⇒f2f (∃(t1,acT1),∃(s+2 ,acT1)) ⇒f2f

∃t2 with seq2 ∈ Seqr
2(R, F1)

Figure 6.11 depicts an s/t-pattern sequence seq2 with seq2 ∈ Seqr
2(R, F1). The non-trivial

negative application conditions in f2f lead to composed negative application conditions acT1

and acS1 over T1 and S1, respectively. In particular, src1 = ∃(s1,¬∃x01 ∧ . . . ). We have singled
out the condition fragment ¬∃x01 because x01 is an isomorphism – and hence, no morphism
can satisfy ∃(s1,¬∃s01 ∧ . . . ), which makes src1 equivalent to false. As a result, no satisfying
transformation sequence can exist for seq2.

In particular, trans from Example 6.17, Figure 6.9 (p. 136) (after substituting f2f′ by f2f) is
not a valid transformation sequence because of the rule’s negative application conditition. The
interaction of two rules f2f in the fashion described by seq2 cannot lead to the combination
of right rule side and forbidden pattern used to create the rightmost target pattern in step
SC1-1. If this were true for all s/t-pattern sequences in Seqr

2(R, F1) (using f2f), there would be
no transformation sequences that could lead to a violation of the safety property. This result
would not be unexpected: the rule’s negative application condition was added with the intent
of preventing violations of our safety property after rule application. △

In the following paragraphs, we will delve deeper into the details of the Seq-construction on
a general level. Detailed examples are listed in Appendix B.

SC1-1: For each rule b = ⟨(L↩K ↪ R),acL, true⟩ ∈R, Shift(iR,C) = ⋁j∈Jb tar b,j is a disjunc-
tion of target patterns over R of the form tar b,j = ∃(tj ,acTj).

LacL▷ K �
r //?loo R�

tj
��

∅�
iP
��

?
iRoo

TjacTj▷ P ◁acP?⋯oo

Given a rule b = ⟨(L ↩K ↪ R),acL , true⟩, Shift(iR,C) transfers the constraint C (here:
C = ∃(iP ,acP )) to the context of the right rule side R in order to create the sequences’
rightmost target patterns. The result encodes satisfiability of C in the context of the result of
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a rule application (i.e. occurrence of the right rule side). In particular, due to the structure
of graph patterns (such as C), the result will always be a disjunction of target patterns, i.e.
of existential conditions over the right rule side with a nested composed negative application
condition. In other words, Shift(iR,C) = ⋁j∈Jb ∃(tj ,acTj) for morphisms tj ∶ R ↪ Tj . Also, note
that this result will always be finite (as is any result of a Shift-construction).

The Shift-construction guarantees that, given any rule application’s comatch m′ ∶ R ↪ G
for any graph G, m′ will satisfy Shift(iR,C) if and only if G satisfies the constraint C. Given
the result of Shift(iR,C) as explained above, we can be more specific: m′ will satisfy one of
the target patterns tar j = ∃(tj ,acTj) if and only if G ⊧ C. Hence, any of the target patterns
is a candidate for representing the result of a rule application that leads to satisfaction of C.
Therefore, we separate the target patterns; each target pattern then spawns a new s/t-pattern
sequence. While we increase the number of sequences, we reduce the complexity of individual
sequences. This is different to our general approach: there, the disjunction of target patterns
would just be considered one target pattern and hence, each combination of right rule side and
constraints would only spawn one rather complex target pattern.

Consider the role of the construction with respect to the properties to be fulfilled by the
Seq-construction: any satisfying transformation sequence implies m′ ⊧ tar j for the respective
target pattern, which implies satisfaction of C by G. Conversely, G ⊧ C and the existence
of the respective comatch will imply m′ ⊧ tar j for a specific j guaranteeing that there is a
representation for the respective transformation sequence. Since the construction needs to take
all rules in a rule set into account, Shift(iR,C) and the splitting of the target patterns have
to be computed for all rules (and right rule sides R, respectively).

Given the specific nature of graph patterns and our construction in the restricted formal
model, we can provide a more intuitive view of target patterns: each target pattern is a possible
overlapping of the right rule side and the graph pattern (that is, its context). In their entirety,
all target patterns thusly constructed then describe all possible overlappings.

Note that a target pattern tar j thusly created may be contradictory: if one of the negative
application condition in the composed negative application condition acTj may contain an
isomorphism, making the negative application condition and the target pattern unsatisfiable.
Our implementation takes care of those cases and automatically discards such target patterns.
However, in our formal description, this aspect is only considered in a subsequent analysis
step, not in the construction of s/t-pattern sequences.

SC1-2: For each such target pattern tar b,j , src′b,j = L(b, tar b,j) is a source pattern over L of
the form src′b,j = false or src′b,j = ∃(sj ,ac′Sj

).

LacL▷ �

sj

��

K�

��

� r //?loo R�

tj
��

∅�
iP
��

?
iRoo

Sjac′Sj
▷ Dj

?oo � // Tj

ac
T
j ▷

P ◁acP?⋯oo

After having established one or (usually) more target patterns Shift(iR,C) = ⋁j∈Jb tar j in
the previous step, src′j = L(b, tar j) will transform each target pattern into a source pattern
over the respective rule’s left side. Intuitively speaking, given a target pattern, the rule will
be applied in reverse direction to determine the (symbolic) state before rule application. In
particular, by the L-construction, any rule application G′ ⇒b,m,m′ G will imply the equivalence
of m ⊧ src′ and m′ ⊧ tar : if the source pattern is satisfied before rule application, the target
pattern will be satisfied after rule application and the resulting graph will satisfy C (see step
SC1-1).
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Again, the result of this construction is finite. Given a number of target patterns procuded by
the previous step, the result of this step is an equal number of corresponding source patterns.

SC1-3: For the latter case, srcb,j = ∃(sj ,acSj) with acSj = ac′Sj
∧ Shift(sj ,acL ∧Appl(b)) is a

source pattern.

This step is concerned with the applicability of the rule in question for any transformation
sequence satisfying the s/t-pattern sequence under construction. Given a source pattern src′ =
∃(s,ac′S) with s ∶ L ↪ S, the respective left application condition acL and the applicability
condition Appl(b) is transferred to the context of the source pattern’s graph – S – by shifting
it over the morphism s. Then, it is conjunctively joined to the nested composed negative
application condition ac′S , thusly creating the new source pattern src = ∃(s,acS) with acS =
ac′S ∧ Shift(s, acL ∧Appl(b)). Any potential match m ∶ L ↪ G′ to any graph G′ that satisfies
src will then imply satisfaction of acL ∧Appl(b) by m, which is required for the existence of a
transformation G′ ⇒b,m,m′ G (by Lemma 2.30 (p. 37)).

Note that this step is slightly more involved than its counterpart in the general approach,
where the left application condition and applicability condition are conjunctively joined to the
existing source pattern. Here, that procedure would result in an application condition that
does not fit our restricted formal model because it does not conform to our definition of source
patterns. Hence, it is necessary to shift the condition over the source pattern’s existential
condition’s morphism and conjunctively combine it with the existing condition ac′S .

Often, this step will leave the source pattern effectively unchanged: shifting a trivial left
application conditions acL = true does not change the source pattern. Furthermore, rules that
do not delete nodes have a trivial applicability condition Appl(b) = true. If both cases apply,
this step will result in srcb,j = src′b,j (from the previous step).

It is important to highlight that the left application condition and applicability condition is
only transferred to the context of the source pattern; the target pattern remains unchanged.
While the information about the shifted application condition will be considered in further
computation steps that prolong the sequence to the left, is is not propagated to the right (in
this case, the target pattern). For the general approach, this was not an issue because the
analysis of s/t-pattern sequences only needed to consider the leftmost source pattern, where
all accumulated information is available. This will not be the case for our restricted formal
model. In Chapter 7, Section 7.1, we will discuss the notion of forward propagation, which
addresses this issue.

SC1-4: For each such pair of source and target pattern srcb,j and tar b,j , srcb,j ⇒b tar b,j is a
1-sequence of s/t-patterns.

SC1-5: Finally, we define Seqr
1(R,C) = {srcb,j ⇒b tar b,j ∣ b ∈ R ∧ j ∈ Jb} as the set of these

sequences.

These steps put the computed target patterns and corresponding source patterns together
to form a number of 1-sequences of source/target patterns. Per rule, that number is equal to
the number of operands in the disjunction that is the result of Shift(iR,C) in step SC1-1 –
minus the number of cases where a source pattern has been computed as src = L(b, tar) = false
in step SC1-2.

By Theorem T.1r (p. 130), any transformation sequence trans = G0 ⇒R G1 that leads to
C has a representing s/t-pattern sequence seq in Seqr

1(R,C), i.e. trans ⊧ seq . Also, given a
transformation sequence trans that satisfies an s/t-pattern sequence seq ∈ Seqr

1(R,C), we know
that trans leads to C.
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SCk-1: For each sequence seq = src1 ⇒b1 ... ⇒bk tark ∈ Seqr
k(R,C) with src1 = ∃(s1 ∶ L1 ↪

S1,acS1), each b = ⟨(L↩K ↪ R),acL, true⟩ ∈R, and each graph Tj and pair of injective
and jointly surjective morphisms (tj ∶ R ↪ Tj , s

′
j ∶ S1 ↪ Tj), tar b,j = ∃(tj ,acTj) with

acTj = Shift(s′j ,acS1) is a target pattern over R.

LacL▷ K �
r //?loo R�

tj
��

L1�

s1
��

∅U
iR

vv
_

iL1

oo
o

iS1��
TjacTj▷ S1 ◁acS1

?
s′joo

The following steps SCk-1 to SCk-5 take all constructed s/t-pattern sequences of length
k and prolongs them to create the required sequences of length k + 1. Intuitively, step SCk-1
applies the same idea as step SC1-1, but considers the leftmost source patterns of the sequences
of length k instead of the constraint C. In other words, the target patterns resulting from this
step encode all situations where a rule application leads to the start of a s/t-pattern sequence
of length k that fulfills the required properties with respect to the constraint C – i.e., its
satisfying transformation sequences lead to C.

Finding all injective and jointly surjective morphism pairs (tj , s′j) corresponds to comput-
ing Shift(iR, src1∣∅) = Shift(iR,∃(s1 ○ iL1 ,acS1). In fact, Shift(iR,∃(s1 ○ iL1 ,acS1)) equals the
disjunction ⋁j∈J ∃(tj ,Shift(s′j ,acS1)). We create a new target pattern (and, in step SCk-
4/5, a new s/t-pattern sequence) for each morphism pair (tj , s′) – in particular, tar j =
∃(tj ,Shift(s′j ,acS1)). This is similar to step SC1-1, where we split the disjunction of target
patterns into several individual target patterns.

This procedure is different to its counterpart in the general approach: there, we considered
morphism pairs with the right and the left rule sides as domains. Here, we use the right rule
side and the source pattern’s context graph S1. Since a source pattern in our restricted formal
model embeds a left side into the additional context provided by the codomain of the source
pattern’s existential condition’s morphism, it makes sense to use that context. In other words,
the resulting target patterns each describe specific combinations – overlappings – between the
right rule side and the source pattern’s context, similar to target patterns from step SC1-1
describing all overlappings between the right rule side and the graph pattern C.

SCk-1+: For each such target pattern tarb,j , src+1,j = ∃(s′j ○ s1,acTj ) is a source pattern over
L1 and (tar b,j , src+1,j) is a target/source pattern over (b, b1).

By the definition of s/t-pattern sequences (Definition D.2 (p. 82)), a s/t-pattern sequence of
length 2 (or longer) is not merely a list of two (or more) 1-sequences. Rather, they have to be
glued together by combining a target and a subsequent source pattern to form a target/source
pattern. In particular, the target patterns created in the previous steps need to be connected
to the s/t-pattern sequence used in its creation by creating target/source patterns. Without
this connection, it would not be clear how the result of the previous rule application and the
match of the subsequent rule application interact.

By construction, each newly created target pattern has the form tar b,j = ∃(tj ,acTj), where
tj ∶ R ↪ Tj and s′j ∶ S1 ↪ Tj form an injective and jointly surjective morphism pair; furthermore,
we have a source pattern src1 = ∃(s1,acS1). By construction, we have acTj = Shift(s′j ,acS1).
Since Tj – for the respective target pattern – describes the context more precisely than S1 in
the source pattern src1, we can extend src1 to include the additional context provided (via the
right rule side R) in Tj . Then, for the target pattern tar b,j , we have an extended source pattern
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src+j,1 = ∃(s′j ○s1,acT ). For each target pattern tar b,j created in step SCk-1, this step will create
a different source pattern src+1,j because the morphism s′j will differ between morphism pairs.

With respect to notation, note that src+ usually denotes the extension of a source pattern src
to a source pattern src+ that is used as part of a target/source pattern. Reversely, src− refers
to an ‘underlying’ source pattern, that has been extended to a source pattern src appearing
in a target/source pattern.

SCk-2: For each such target pattern tar b,j , src′b,j = L(b, tar b,j) is a source pattern over L of
the form src′b,j = false or src′b,j = ∃(sj ,ac′Sj

).

LacL▷ �

sj

��

K�

��

� r //?loo R�

tj
��

L1�

s1
��

Sjac′Sj
▷ Dj

?oo � // Tj

ac
T
j ▷

S1◁acS1
?

s′joo

As in step SC1-2, this step transfers all newly constructed target patterns over the rule in
reverse direction to create corresponding source pattern over the respective rules’ left sides.

SCk-3: For the latter case, srcb,j = ∃(sj ,acSj) with acSj = ac′Sj
∧ Shift(sj ,acL ∧Appl(b)) is a

source pattern over L.

Similar to step SC1-3, we shift the rule’s left application condition and applicabiliy condition
to the context of the source pattern, unless that source pattern – computed in the previous
step – has the logical value false. Again, the purpose is to have a satisfying match also satisfy
the rule’s left application condition and applicability condition so that the rule can be applied.

SCk-4: For each such pair of source and target pattern srcb,j and tar b,j , srcb,j ⇒b tar b,j , src+1 ⇒b1

...⇒bk tark is a k+1-sequence of s/t-patterns.
SCk-5: Finally, we define Seqr

k+1(R,C) = {srcb,j ⇒b tar b,j , src+1,j ⇒ ... ⇒ tark ∣ b ∈ R ∧ j ∈
Jb ∧ seq ∈ Seqr

k(R,C)} as the set of these sequences.

In these steps, we combine the newly created and corresponding target/source patterns and
source patterns in order to create all s/t-pattern sequences of length k + 1. The target/source
patterns (step SCk-1+) connect the created target patterns (step SCk-1) to the leftmost source
patterns computed in the previous iteration (i.e. for length k) of the Seq-contruction. The
result is a finite set of s/t-pattern sequences of length k + 1. From here on, steps SCk-1 to
SCk-5 can be repeated until the desired length of the s/t-pattern sequences is reached.

By Theorem T.1r, any transformation sequence trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m
′
k
Gk that

leads to C has a representing s/t-pattern sequence seq in Seqr
k(R,C), i.e. trans ⊧ seq . Also,

given a transformation sequence trans that satisfies an s/t-pattern sequence seq ∈ Seqr
k(R,C),

we know that trans leads to C.

With the Seq-construction established, we can move on to the analysis, with different ap-
proaches depending on whether we want to verify a k-inductive invariant, perform k−1-bounded
backward model checking, or verify an operational invariant by combining the former and the
latter case.
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6.4. k-Inductive Invariant Checking

As established, verifying a k-inductive invariant under a guaranteed constraint amounts to
finding all transformation sequences of length k that lead to a violation of the invariant and
analyzing the graphs in the sequence for violations of the invariant or the guaranteed constraint.
For our restricted formal model, Lemma 6.10 (p. 123) further refines that process: given a
composed forbidden pattern F = ⋀i∈I ¬Fi, we consider all transformation sequences of length
k leading to violations of F by satisfying one of the individual forbidden patterns Fi. Then,
we analyze those sequences for violations of the composed guaranteed pattern H = ⋀j∈J ¬Hj ,
i.e. for occurences of Hj , and for violations of the composed forbidden pattern earlier in the
sequence, i.e. for occurences of Fi in all graphs except the last one. Of course, we do not
analyze the actual transformation sequences, but their symbolic representations – the s/t-
pattern sequences constructed by Seqr

k(R,¬F) = ⋃i∈I Seqr
k(R, Fi). This process is described

by our central theorem for verifying k-inductive invariants in the restricted formal model:

Theorem T.2r (k-inductive invariant checking [3]). Let GTS = (R,TG) be a graph trans-
formation system and F = ⋀i∈I ¬Fi and H = ⋀j∈J ¬Hj be a composed forbidden pattern and
composed guaranteed pattern, respectively.
F is a k-inductive invariant for GTS under H if, for all sequences seq = src1 ⇒b1 ...⇒bk tark

with seq ∈ Seqr
k(R,¬F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ k ∧ (srcz∣∅ ⊧Hv ∨ srcz∣∅ ⊧ Fv)).
2. ∃v(tark∣∅ ⊧Hv).

Proof. According to Lemma 6.10 (p. 123), we need to show that for all k-sequences of trans-
formations G0 ⇒R ...⇒R Gk, it holds that:

∃u(Gk ⊧ Fu)⇒ ∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv)

Consider an arbitrary k-sequence of transformations to R (with corresponding graphs)
trans = G0 ⇒R ... ⇒R Gk such that ∃u(Gk ⊧ Fu) with, for ease of reading, Fu = F . More
specifically, trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m

′
k
Gk for rules bi ∈ R and matches (comatches)

mi (m′
i) and trans leads to F . We want to show that Gz ⊧ Hv for 0 ≤ z ≤ k and v ∈ J or that

Gz ⊧ Fv for 0 ≤ z ≤ k − 1 and v ∈ I.
By Theorem T.1r (p. 130), there is a k-sequence of s/t-patterns seq ∈ Seqr

k(R, F ) (and hence,
seq ∈ Seqr

k(R,¬F)) with trans ⊧ seq . By precondition, one of the following is true:

1. There exist z, v with 1 ≤ z ≤ k such that srcz∣∅ ⊧Hv or srcz∣∅ ⊧ Fv. Because of trans ⊧ seq ,
we have mz ⊧ srcz and, with mz ∶ Lz ↪ Gz−1 and Lemma 2.38 (p. 43), we gain Gz−1 ⊧
srcz∣∅ and, by implication of graph constraints (Definition 2.36 (p. 42)), Gz−1 ⊧ Hv or
Gz−1 ⊧ Fv.

2. There exists v such that tark∣∅ ⊧ Hv. Because of trans ⊧ seq , we have m′
k ⊧ tark and,

with m′
k ∶ Rk ↪ Gk and Lemma 2.38 (p. 43), we gain Gk ⊧ tark∣∅ and, by implication of

graph constraints (Definition 2.36 (p. 42)), Gk ⊧Hv.

Hence, F is a k-inductive invariant for GTS under H.

Note that, for an s/t-pattern sequence’s intermediate target/source patterns, it does not
make a difference whether we reduce the source or target pattern to a regular pattern – the
result will always be identical. However, the situation is different for the leftmost source pattern
and rightmost target pattern because they do not appear as part of a target/source pattern.
This is the reason for analyzing only (reduced) source patterns in the theorem’s first condition
and only the rightmost target pattern in the second condition.
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By Lemma 6.10 (p. 123), we need to check all reduced patterns for implication of a guar-
anteed pattern (conditions (1) and (2)). For forbidden patterns (condition (1)), we do not
consider the rightmost target pattern; obviously, it will always imply the pattern used in the
Seq-construction to create the s/t-pattern sequence. Hence, the second condition only compares
tark∣∅ with guaranteed patterns.

The main differences to the counterpart of Theorem T.2r in the general approach – Theo-
rem T.2g (p. 96) – are

– the splitting of a composed forbidden pattern into individual forbidden patterns: the set
Seqr

k(R,¬F) is not computed directly, but is the union of applications of Seqr
k(R, Fi) for

each forbidden pattern Fi,
– the analysis of intermediate source patterns and the rightmost target pattern instead of

finding a satisfying transformation sequence by analyzing the leftmost source pattern,
and

– the fact that Theorem T.2r (p. 143) specifies a sufficient condition and establishes an
implication, not an equivalence – if the condition is not satisfied, the result is inconclusive.

Investigating violations of individual forbidden patterns separately has the aim of creating
more specific counterexamples and reducing their complexity. As a result, however, the number
of (symbolic) counterexamples may be higher than with our general approach.

The analysis of intermediate source patterns is necessary because the intention of our
restricted approach was to avoid the explosion of computational effort when accumulating
all information in the Seq-construction. In a way, we replace the expensive computation of
Shift(iL,H) and Shift(iL,F) for left rule sides in the Seq-construction of our general approach
by comparing reduced source (target) patterns with individual forbidden and guaranteed pat-
terns. In particular, that comparison is implemented in the conditions ∃z, v(1 ≤ z ≤ k∧(srcz∣∅ ⊧
Hv ∨ srcz∣∅ ⊧ Fv)) and ∃v(tark∣∅ ⊧Hv), respectively.

However, an unvoidable consequence is the third difference mentioned above: Theorem T.2r
establishes a sufficient condition only. Failure to discard s/t-pattern sequences as counterex-
amples by the analysis described in that theorem does not guarantee the invalidity of the
composed forbidden pattern as a k-inductive invariant. In other words, we may have spuri-
ous counterexamples (false negatives): s/t-pattern sequences without satisfying transformation
sequences that fulfil the criterion of violating the k-inductive invariant in the sense of Defini-
tion D.1 (p. 62). We will discuss their implications in Section 6.8.

This last point also means that equivalence of results between the general and restricted
approach as seen in the previous examples is not always guaranteed. The restricted approach
will necessarily concur with any result by the general approach. However, false negatives es-
tablished by the restricted approach could be properly discarded by the general approach.

Example 6.19 (2-inductive invariant checking for an unsafe sytem). This example follows
and is based on Example 6.17 (p. 135) (Seq-construction) and its detailed variants in Exam-
ples B.2–B.11. It uses elements of Example 6.1 (p. 111). It is similar to Example 5.16 (p. 97)
in our general approach. Again, we have a rule set R = {f2f′} (Figure 6.12(a)) in a graph
transformation system GTS = (TG ,R) and a composed forbidden pattern F = ¬F1 = ¬∃iPF

1

(Figure 6.12(b)). For simplicity, we will only consider a trivial guaranteed constraint H = true.
Consider the s/t-pattern sequence seq ∈ Seqr

2(R, F1), which was also shown as seq2 in the
earlier examples and is depicted again in Figure 6.13. By Theorem T.1r (p. 130), seq represents
an infinite number of transformation sequences leading to F1, i.e. a violation of the intended
2-inductive invariant. By Theorem T.2r (p. 143), we have to find source patterns that, when
reduced to a pattern, imply F ; then, seq would not be a counterexample to F = ¬F1 being an
2-inductive invariant for GTS .
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s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

:fast 

𝑟 
:isAt 

(a) Graph rule f2f′

:Shuttle 

t1:Track 

:isAt 

:fast 

ts:Track 
:next 

t2:Track :next 

𝑃1
𝐹  

∅ 

¬∃𝑖𝑃1𝐹  

(b) F = ¬F1 = ¬∃iPF
1

Figure 6.12. – Graph rule and intended 2-inductive invariant

⇒𝑓2𝑓′  ⇒𝑓2𝑓′  

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝑅1 

∃𝑡1 

s:Shuttle 

tb:Track 
:next :isAt 

:fast 

tc:Track 
𝐿2 

∃𝑠2
+ 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 𝑅2 

𝑆1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

Figure 6.13. – s/t-pattern sequence seq ∈ Seqr
2(R, F1)

∃𝑖𝑆1  

:next 
ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝑆1 

∅ 

(a) src1∣∅ = ∃iS1

∃𝑖𝑇1  

:next 
ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝑇1 

∅ 

(b) src2∣∅ = ∃iT1

∃𝑖𝑇2  

:next 
ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝑇2 

∅ 

(c) tar2∣∅ = ∃iT2

Figure 6.14. – Reduced source and target patterns src1∣∅, src2∣∅, and tar2∣∅
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⇒𝑓2𝑓′  ⇒𝑓2𝑓′  

𝐺1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝐺0 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝐺2 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

Figure 6.15. – Transformation sequence trans = G0 ⇒f2f′,m1,m′1
G1 ⇒f2f′,m2,m′2

G2; trans ⊧
seq

In order to find out whether src1∣∅ or src2∣∅ imply F1, we can apply Theorem 6.8 (p. 120).
Here, its application is not computationally challenging; in fact, we can guess the result by
looking at the patterns. The reduced source patterns src1∣∅ and src2∣∅ are depicted in Figures

6.14(a) and 6.14(b). There does not exist an injective morphism from PF
1 to S1, T1, or T2.

Informally, we cannot find a fast shuttle on a switch in one of the situations described by the
(reduced) patterns. Hence, we cannot conclude that src1∣∅ or src2∣∅ imply F1. In general we
cannot be sure that src1∣∅ or src2∣∅ do not imply F1: Theorem 6.8 (p. 120) establishes a suffi-
cient, not a necessary condition. This is one reason why Theorem T.2r (p. 143) only describes a
sufficient condition, too. In this case, however, the absence of non-trivial nested composed neg-
ative application conditions allows the conclusion that neither of the reduced source patterns
imply F1. For the verification approach to be sound, we need to keep counterexamples even if
we cannot draw this conclusion: as long as we cannot safely discard all counterexamples, we
have to assume that the composed forbidden patterns is not an inductive invariant.

By Theorem T.2r (p. 143), seq is a symbolic counterexample for F = ¬F1 being a 2-inductive
invariant. Fortunately, seq already hints at the problem: a shuttle is allowed to continue its
movement in speed mode fast even when approaching a switch. That inevitably leads to a
violation of our safety property. This insight is an important difference to the result of our
general approach (Example 5.16 (p. 97)); there, it is much more difficult to discern the problem
by looking at a (symbolic) counterexample.

From Example 6.17 (p. 135), we also know that there is indeed a satisfying transformation
sequence trans, which is depicted again in Figure 6.15. However, finding a satisfying transfor-
mation sequence is not usually covered in our analysis – not only is it an undecidable problem
in general, but also computationally expensive. Risking the occurrence of unsatisfiable s/t-
pattern sequences as counterexamples (false negatives) is part of the compromise between
expressive power, termination, and computational effort.

Note that there are other s/t-pattern sequences besides seq in Seqr
2(R, F1). Some can be

discarded by the analysis, others will be retained as counterexamples. Since F is not a 2-
inductive invariant even for a single graph rule, verifying it for the complete rule set of our
running example – R′ = {f2f′, f2b,b2s, s2s, s2a′, a2b, a2f′} – will yield a similar result. Even
when taking the running example’s non-trivial guaranteed constraint H = ⋀1≤j≤15 ¬Hj into
account for either case, several counterexamples (including seq) will remain. Analysis of seq
with respect to H would require considering tar2∣∅ (Figure 6.14(c)) in addition to src1∣∅ and
src2∣∅.

These results are expected: we have established in Example 5.16 (p. 97) with the general
approach that F is not a 2-inductive invariant of GTS ′ under H. Necessarily, our restricted
approach will come to the same conclusion. △

Example 6.20 (2-inductive invariant checking for a safe system). Now, consider a graph
transformation system GTS = (TG ,R) with R = {f2f, f2b,b2s, s2s, s2a, a2b, a2f} (Example 6.1
(p. 111)) and (again) the composed forbidden pattern F = ¬F1 = ¬∃iPF

1
. The rules f2f, a2f, and

s2a are shown again in Figures 6.16(b), 6.16(a), and 6.16(c), respectively; F1 is shown again in
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Figure 6.16(d). The rules shown have non-trivial composed negative application conditions in
comparison to their (unsafe) counterparts a2f′, s2a′, and f2f′. Intuitively, they prevent acceler-
ation or high speed modes – or rather, the application of the respective rules – when a switch is
two tracks ahead (or, for s2a, one track ahead). We will also consider the non-trivial composed
guaranteed pattern H = ⋀1≤i≤15 ¬Hi (Example 6.1 (p. 111)); H1, H5, and H6 are depicted again
in Figures 6.16(e), 6.16(f), and 6.16(g). This example is equivalent to Example 5.17 (p. 98)
discussed in the general approach.

With respect to the rule f2f only, this example follows the (Seq-)constructions explained in
Example 6.18 (p. 136) and, in more detail, in Examples B.12 and B.13. For the complete rule
set R, we also get a set of s/t-pattern sequences Seqr

2(R, F1). This set includes

seq = ∃(s1,¬∃x01 ∧ ⋀
u∈U

¬∃xu1 ∧ ac′S1
)⇒f2f (∃(t1,acT1),∃(s+2 ,acT1))⇒f2f ∃t2,

which is depicted in Figure 6.16(h). However, seq can be discarded by application of The-
orem T.2r (p. 143). In particular, the source pattern ∃(s1,¬∃x01 ∧ ⋀u∈U ¬∃xu1 ∧ ac′S1

) has a

composed negative application condition that contains a negative application condition ¬∃x01
with an isomorphism; then, src1 is logically equivalent to false. As a result, so is src1∣∅, which
then implies all possible graph constraints – in particular, it implies F1. Hence, seq can be
discarded as a counterexample. This is expected: the condition ¬∃x01 in the source pattern was
the result of taking the composed negative application conditions of f2f into account (during
step SCk-3 of the Seq-construction). Indeed, in this case, the conditions prevent a violation of
the intended inductive invariant.

There are other s/t-pattern sequences in Seqr
2(R, F1); for instance, consider tar ′2 = ∃t2 de-

picted in Figure 6.17. This target pattern is one of the results of step SC1−1 in the Seq-
construction Seqr

2(R, F ) for the rule f2f and will, with subsequent application of the remaining
steps, spawn a number of s/t-pattern sequences to be analyzed. However, all of those s/t-pattern
sequences will be discarded: T ′2 contains both PH

1 (of the guaranteed pattern H1 = ∃iPH
1

, Fig-

ure 6.16(e)) and PH
5 (of the guaranteed pattern H5 = ∃iPH

1
, Figure 6.16(f)) as a subgraph.

Hence, by Theorem 6.8 (p. 120), tar ′2∣∅ implies H1 and H5 and, by Theorem T.2r (p. 143),

all sequences containing tar ′2 are discarded – any satisfying transformation sequences would
violate both guaranteed patterns. Note that this particular target pattern will also have been
created during the verification of Example 6.19 (p. 144), although it is not explicitly mentioned
there.

Formally, the respective s/t-pattern sequences will only be discarded after all sequences have
been computed and Theorem T.2r is applied to all sequences. In implementation, however,
it makes sense to stop continuing the computation of s/t-pattern sequences with tar ′2 as the
rightmost target pattern right after that target pattern has been created. Since T ′2 can not ‘lose’
any elements during the subsequent computation steps, PH

1 and PH
5 will always be contained in

the target pattern’s context and the corresponding guaranteed patterns will always be violated.
Similar to Example 5.17 (p. 98), we can extend our composed forbidden pattern such it also

forbids accelerating or braking shuttles on a switch. The corresponding graph constraints ¬F2

and ¬F3 from Example 6.1 (p. 111) are shown again in Figure 6.18. Then, our new composed
forbidden pattern is F = ¬F1 ∧¬F2 ∧¬F3 – and F is a 2-inductive invariant for GTS under H.

As discussed before, the value for 2 is indirectly encoded in the rules’ negative application
conditions and the speed mode protocol. Furthermore, with respect to F being a 2-inductive
invariant under H, we get the same results as in the general approach. △

This concludes the restricted approach to k-inductive invariant checking. With inductive
invariant checking as the inductive step of our inductive verification approach, we will discuss
its base case next: k−1-bounded backward model checking (for the restricted formal model).
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¬∃𝑥1 
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t1:Track 
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:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 
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t1:Track 
:next 
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t2:Track 
𝑙 

𝐾 𝑅 

:fast 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝑋1 

t2:Track t3:Track 

t4:Track 

:next 

:next 

(a) Graph rule f2f = ⟨(L↩K ↪ R),¬∃x1, true⟩

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝑋1 

t2:Track t3:Track 

t4:Track 

:next 

:next 

(b) Graph rule a2f = ⟨(L↩K ↪ R),¬∃x1, true⟩

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:acc 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
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t2:Track t3:Track 

t4:Track 
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¬∃𝑥2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝑋1 

t2:Track 

t4:Track 
:next 

(c) Graph rule s2a = ⟨(L↩K ↪ R),¬∃x1 ∧ ¬∃x2, true⟩
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ts:Track 
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𝐹  

∅ 

¬∃𝑖𝑃1𝐹  

(d) F = ¬F1 = ¬∃iPF
1
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𝑃1
𝐻  

¬∃𝑖𝑃1𝐻   

∅ 

(e) Constraint ¬H1 = ¬∃iPH
1

:Shuttle :Shuttle 

𝑃5
𝐻 

¬∃𝑖𝑃5𝐻
  

∅ 

(f) Constraint ¬H5 = ¬∃iPH
5

:Shuttle 
:fast :slow 

𝑃6
𝐻 

¬∃𝑖𝑃6𝐻   

∅ 

(g) Constraint ¬H6 = ¬∃iPH
6

⇒𝑓2𝑓 ⇒𝑓2𝑓 

… 

… 
𝑋1
𝑢  

¬∃𝑥1
𝑢 

¬∃𝑥1
0 𝑎𝑐𝑆1

′  𝑎𝑐𝑇1  

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝑅1 

∃𝑡1 

s:Shuttle 

tb:Track 
:next :isAt 

:fast 

tc:Track 
𝐿2 

∃𝑠2
+ 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 𝑅2 

𝑆1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝑋1
0 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

(h) seq = src1 ⇒f2f (tar1, src+2)⇒f2f tar2 with seq ∈ Seqr2(R, F1)

Figure 6.16. – Fragments of an example system with a 2-inductive invariant F = ¬F1
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s:Shuttle 

t2:Track 
:next 

:isAt 

:fast 

t3:Track 
𝑅2 

∅ 

∃𝑖𝑃 

∃𝑡2
′  

𝑖𝑅2  

sh:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track :next 

tc:Track :next 

𝑃 

sh:Shuttle 

t2b:Track 

:isAt 

:fast 

t3a:Track :next 

tc:Track :next 

𝑇2
′ :next 

:isAt 

Figure 6.17. – Target pattern tar ′2 = ∃t′2, created in step SC1-1 of Seqr
2(R, F1) for rule f2f

:Shuttle 

t1:Track 

:isAt 

:acc 

ts:Track 
:next 

t2:Track :next 

𝑃2
𝐹  

∅ 

¬∃𝑖𝑃2𝐹  

(a) ¬F2 = ¬∃iPF
2

:Shuttle 

t1:Track 

:isAt 

:brake 

ts:Track 
:next 

t2:Track :next 

𝑃3
𝐹  

∅ 

¬∃𝑖𝑃3𝐹  

(b) ¬F3 = ¬∃iPF
3

Figure 6.18. – Extended safety property F = ¬F1 ∧ ¬F2 ∧ ¬F3

6.5. k−1-Bounded Backward Model Checking

By Lemma 6.11 (p. 124), verifying the validity of a composed forbidden pattern F = ⋀i∈I ¬Fi in
the k−1-bounded state space under a composed guaranteed pattern H = ⋀j∈J ¬Hj for induced
graph grammars IND(GTS ,S) amounts to the following steps: finding all transformation se-
quences of length smaller than k that lead to one of the forbidden patterns Fi; then, analyzing
each sequence for violations of guaranteed patterns in one graph or violations of start configu-
ration patterns in the leftmost graph. The former case allows us to discard sequences because
of the restriction of the state space by the guaranteed constraint H (cf. Definition 4.1 (p. 55));
the latter case means that the sequence, while leading to a violation of F , does not originate
in a possible start configuration.

For our approach, we use s/t-pattern sequences as the symbolic representation of trans-
formation sequences leading to ¬F . We compute SEQr

k−1(R,¬F) = ⋃1≤i≤k−1 Seqr
i (R,¬F) and

perform analysis of s/t-pattern sequences with respect to guaranteed constraints and start con-
figuration constraints similar to Theorem T.2r (p. 143). A proper symbolic counterexample is
an s/t-pattern sequence of length smaller than k that has satisfying transformation sequences
leading to F under H and originating in a graph that also satisfies the composed start config-
uration pattern S. On the other hand, we can discard s/t-pattern sequences whose satisfying
transformation sequences violate H at some point or do not start with a graph satisfying S.

Theorem T.3r (k−1-bounded backward model checking). Let GTS = (R,TG) be a graph
transformation system and F = ⋀i∈I ¬Fi, H = ⋀j∈J ¬Hj, and S = ⋀o∈O ¬SC o be a composed
forbidden pattern, composed guaranteed pattern, and composed start configuration pattern, re-
spectively, with S ⊧ F .

For all graphs G ∈ REACHk−1(GG ,H) and graph grammars GG = (GTS ,G0) with GG ∈
IND(GTS ,S), we have G ⊧ F , if for all sequences seq = src1 ⇒b1 ... ⇒bn tarn with seq ∈
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SEQr
k−1(R,¬F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ n ∧ (srcz∣∅ ⊧Hv)).
2. ∃v(tark∣∅ ⊧Hv).
3. ∃v(src1∣∅ ⊧ SC v).

Proof. According to Lemma 6.11 (p. 124), we need to show that for all sequences of trans-
formations G0 ⇒R ...⇒R Gn with 0 ≤ n ≤ k, it holds that

∃u(Gn ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ n ∧Gz ⊧Hv) ∨ ∃v(G0 ⊧ SC v))

Consider an arbitrary n-sequence of transformations to R (with corresponding graphs)
trans = G0 ⇒R ... ⇒R Gn such that 0 ≤ n ≤ k and ∃u(Gn ⊧ Fu) with, for ease of reading,
Fu = F . More specifically, trans = G0 ⇒b1,m1,m′1 ...⇒bn,mn,m′n Gn for rules bi ∈ R and matches
(comatches) mi (m′

i) and trans leads to F . We want to show that there exists a z with 0 ≤ z ≤ n
such that Gz ⊧Hv for v ∈ J or that Gk ⊧ SC v for v ∈ O.

By Theorem T.1r, there is an n-sequence of s/t-patterns seq ∈ Seqr
n(R, F ) with trans ⊧ seq .

Then, seq ∈ SEQr
k−1(R,¬F) and by precondition, one of the following is true:

1. There exist z, v with 1 ≤ z ≤ n such that srcz∣∅ ⊧ Hv. Because of trans ⊧ seq , we have
mz ⊧ srcz and, with mz ∶ Lz ↪ Gz−1 and Lemma 2.38 (p. 43), we gain Gz−1 ⊧ srcz∣∅ and,
by implication of graph constraints (Definition 2.36 (p. 42)), Gz−1 ⊧Hv.

2. There exists v such that tarn∣∅ ⊧ Hv. Because of trans ⊧ seq , we have m′
n ⊧ tarn and,

with m′
n ∶ Rn ↪ Gn and Lemma 2.38 (p. 43), we gain Gn ⊧ tarn∣∅ and, by implication of

graph constraints (Definition 2.36 (p. 42)), Gn ⊧Hv.
3. There exists v such that src1∣∅ ⊧ Sv. Because of trans ⊧ seq , we have m1 ⊧ src1 and, with
m1 ∶ L1 ↪ G0 and Lemma 2.38 (p. 43), we gain G0 ⊧ src0∣∅ and, by implication of graph
constraints (Definition 2.36 (p. 42)), G0 ⊧ SC v.

Hence, all transformation sequences of length between 0 and k leading to F have violations
of H in any graph or S in the leftmost graph. Then, F is satisfied by all graphs in the k−1-
bounded state spaces of graph grammars induced by GTS and S.

The differences between k−1-bounded backward model checking in the general approach
(Theorem T.3g (p. 101)) and the restricted approach (here) are similar to the differences for
k-inductive invariant checking mentioned in Section 6.4. Again, a composed forbidden pattern
is split into individual forbidden patterns and intermediate source and target patterns are
analyzed instead of a leftmost source pattern. Theorem T.3r establishes a sufficient condition,
not an equivalence, for the validity of the composed forbidden pattern in bounded state spaces.
Any result from the general approach implies the same result with the restricted approach,
but false negatives in the restricted approach would have been discarded (if the procedure
terminates) by the general approach.

As before, we require S ⊧ F . We have discussed that this can be achieved by choosing the
respective composed patterns appropriately. Given an implementation of the implication check
described by Theorem 6.8 (p. 120), we can also verify this property.

In comparison to the verification of k-inductive invariants (Theorem T.2r (p. 143)) for the
restricted approach, the following differences and similarities stand out:

First, k−1-bounded backward model checking requires computation of SEQr
k−1(R,¬F) rather

than Seqr
k(R,¬F). By definition of k-bounded state spaces under a constraint, any graph reach-

able by transformation sequences of length k − 1 or less without violations of the composed
guaranteed pattern belongs to the state space. Thus, we have to analyze shorter sequences,
too.
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:Shuttle 
:fast 

𝑃1
𝐻  

¬∃𝑖𝑃1𝑆𝐶
  

∅ 

Figure 6.19. – Constraint ¬SC 1 = ¬∃iPSC
1

Second, conditions (1) and (2) are very similar to Theorem T.2r (p. 143). In both cases, the
violation of guaranteed constraints allows us to discard the s/t-pattern sequences as a potential
counterexample because we analyze both inductive invariants (Definition D.1 (p. 62)) and
bounded state spaces (Definition 4.1 (p. 55)) under the assumption of a guaranteed constraint.
However, as opposed to inductive invariant checking, we do not check the reduced source
pattern for implication of forbidden patterns (condition (1)); encountering a forbidden pattern
in an intermediate pattern in the s/t-pattern sequence does not invalidate the sequence as a
counterexample.

Finally, condition (3) ensures that s/t-pattern sequences are only considered as counterexam-
ples if their satisfying transformation sequences originate in valid start graphs – i.e. in graphs
satisfying the composed start configuration pattern S. If the leftmost (reduced) pattern in
an s/t-pattern sequence violates at least one of the start configuration patterns, no satisfying
transformation starts from a valid start graph. If the leftmost (reduced) source pattern does
not imply any of the start configuration patterns, graphs satisfying that reduced pattern may
be valid start graphs starting a transformation sequence leading to a violation of F – within
the bounded state space.

The word ‘may’ in the previous sequence deserves additional attention: as with Theorem T.2r
(p. 143), Theorem T.3r may have false negatives as its results. Here – similar to before – those
will be s/t-pattern sequences whose satisfying transformation sequences will not fulfill the
criterion of violating F in the bounded state space (under the composed guaranteed pattern).
In particular, an s/t-pattern sequence may have only satisfying transformation sequences that,
while indeed leading to ¬F , will have violations of H at some point or will not have S satisfied
in its leftmost graph. We will discuss the problem of false negatives in Section 6.8.

Example 6.21 (1-bounded backward model checking for an unsafe system). Consider the
composed forbidden pattern F = ¬F1 = ¬∃iPF

1
(Figure 6.16(d), p. 148), the set of graph rules

R = {s2s, a2b, f2b,b2s, f2f, s2f, a2f} as before (Examples 6.1 (p. 111) and 6.20 (p. 146)), and the
composed guaranteed pattern H = ⋀1≤i≤15 ¬Hi (Examples 6.1 (p. 111) and 6.20 (p. 146)).

Also, we choose a start configuration constraint S = ¬SC 1 = ¬∃iPSC
1

(Figure 6.19) that allows
all start configurations that do not contain a shuttle driving in speed mode fast. Note that
S ⊧ F . The general idea behind this start configuration constraint is that system initialization
with shuttles already driving fast is not plausible. This example is equivalent to Example 5.19
(p. 103) in our general approach.

Given this system and composed start configuration pattern, we can find a single rule ap-
plication from a possible start graph leading to a violation. Consider the s/t-pattern sequence
seq ∈ Seqr

1(R, F1) (here, SEQr
k−1(R,¬F) = Seqr

1(R, F1)), which is depicted in Figure 6.20. We
have:

seq = src1 ⇒a2f tar1 = ∃(s1,¬∃x11 ∧ ¬∃x21 ∧ ¬∃x31)⇒a2f tar1,

where ¬∃x11 ∧ ¬∃x21 ∧ ¬∃x31 is the result of shifting the rule’s negative application condition to
the context of the source pattern (cf. step SC1-3 of the Seq-construction).
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Figure 6.20. – S/t-pattern sequence seq = src1 ⇒a2f tar1
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Figure 6.21. – Transformation sequence trans = G0 ⇒a2f,m1,m′1 G1

Neither src1∣∅ nor tar1∣∅ imply any of the guaranteed patterns Hj , so the potential coun-
terexample cannot be discarded on the basis of the conditions in Theorem T.3r (p. 149). In
other words, we have a valid s/t-pattern sequence representing transformation sequences of
length leading to a violation of the composed forbidden pattern F . Furthermore, we cannot
determine implication of SC 1 by src1∣∅: the first graph of a satisfying transformation sequence
may not violate the start configuration pattern S and, as a result, may be a valid start graph.
Then, we must assume the existence of a satisfying transformation sequence trans = G0 ⇒a2f G1

such that G0 ⊧ S, implying that GG = (GTS ,G0) is a graph grammar in IND(GTS ,S) – and
that G1 is contained in the 1-bounded state space under H (REACH(GG ,H)) and violates
F . Figure 6.21 depicts such a transformation sequence trans with trans ⊧ seq , although the
construction of explicit transformation sequence is not usually part of the verification process.

Note that in contrast to 2-inductive invariant checking (Example 6.20 (p. 146)), the rule’s
negative application condition does not help to prevent the violation here. Intuitively, the
negative application condition is only able to prevent a violation if the shuttle has sufficient
time – in the sense of rule applications – before it arrives at a switch: application of a2f is only
forbidden if there is a switch two tracks ahead. However, if the system is initialized with a
shuttle positioned directly in front of a switch and in speed mode acc, the negative application
is not sufficient.

Since we can find a violation for F = ¬F1, we will also find violations for the extended safety
property F = ¬F1 ∧ ¬F2 ∧ ¬F3 with F2 and F3 as in Example 6.1 (p. 111) and Example 6.20
(p. 146), Figures 6.18(a) and 6.18(b). These results are expected: we have established in Ex-
ample 5.18 (p. 101) (general approach) that F is not valid in the k−1-bounded state space
(under H) of all graph grammars induced by GTS and S = ¬SC 1. Necessarily, the restricted
approach will come to the same conclusion. △
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Figure 6.22. – Fragments of start configuration constraints

Example 6.22 (1-bounded backward model checking for a safe system). Now, we extend the
composed forbidden pattern with F = ¬F1 ∧¬F2 ∧¬F3; all rules and the composed guaranteed
pattern remain unchanged. Figures 6.22(b) and 6.22(c) depict additional start configuration
patterns SC 2 = ∃iPSC

2
and SC 3 = ∃iPSC

3
; then, we choose the composed start configuration

pattern as S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3.
In Example 6.21 above, we have found a symbolic error trace seq (Figure 6.20) from possible

start graphs to a violation of F in the 1-bounded state space (under H) of a graph grammar in
IND(GTS ,S). In particular, trans (Figure 6.21) is a concrete transformation sequence where
such a violation occurs. However, with our new composed start configuration pattern, we will
find that src1∣∅ implies SC 2: the reduced source pattern’s context contains a shuttle in speed
mode acc. Hence, any satisfying transformation sequence (including trans = G0 ⇒a2f,m1,m′1 G1)
will not originate in a valid start graph. In particular, G0 ⊧ SC 2. Also, although not shown
here, we can discard any of the remaining s/t-pattern sequence in SEQr

1(R,¬F) for similar
reasons. Hence, we have G ⊧ F for all graphs G in the 1-bounded state spaces REACH1(GG)
of all graph grammars in IND(GTS ,S).

Intuitively, this makes sense: the interplay between the speed mode protocol (Example 6.1,
Figure 6.1(b), p. 112), the rules’ composed negative application conditions, and the composed
start configuration pattern prevent an early violation of the composed forbidden pattern. This
has been discussed in Example 5.19 (p. 103) for the general approach. Here, our restricted
approach comes to the same conclusion. △

This concludes our consideration of k-bounded backwards model checking. As with our
general approach, k-bounded backwards model checking is – in the context of this thesis –
applied to establish the base case for our inductive step, with both elements part of the
inductive argument in Lemma L.1 (p. 65). Their combination will be discussed in the following
section.

6.6. Operational Invariant Checking

With the verification of k-inductive invariants (Theorem T.2r (p. 143) in Section 6.4) and
k−1-bounded state spaces of induced graph grammars (Theorem T.3r (p. 149) in Section 6.5),
we can combine both into a single theorem verifying the validity of operational invariants.
In other words, we verify the validity of a composed forbidden pattern under a composed
guaranteed pattern in all graphs of the state spaces of all graph grammars induced by a
graph transformation system and a composed start configuration pattern. As with our general
approach (Section 5.5), this combination of Theorem T.2r (p. 143) and Theorem T.3r (p. 149)
will result in a new theorem:

Theorem T.4r (operational invariant checking). Let GTS = (TG ,R) be a graph transfor-
mation system and F = ⋀i∈I ¬Fi, H = ⋀j∈J ¬Hj, and S = ⋀o∈O ¬So be a composed forbidden

– 153 –



6. Restricted Approach to k-Inductive Invariant Checking

pattern, composed guaranteed pattern, and composed start configuration pattern, respectively,
with S ⊧ F .

For all graph grammars GG = (GTS ,G0) with GG ∈ IND(GTS ,S), F is an operational
invariant of GG under H if there is a k ≥ 1 such that the following conditions hold:

1. For all sequences seq = (src1 ⇒b1 ... ⇒bn tarn) with seq ∈ SEQr
k(R,¬F), one of the

following conditions holds:

1.1. ∃z, v(1 ≤ z ≤ n ∧ (srcz∣∅ ⊧Hv)).
1.2. ∃v(tark∣∅ ⊧Hv).
1.3. ∃v(src1∣∅ ⊧ SC v).

2. For all sequences prop(seq) = (src1 ⇒b1 ...⇒bn tarn) with seq ∈ Seqr
k(R,¬F), one of the

following conditions holds:

2.1. ∃z, v(1 ≤ z ≤ k ∧ (srcz∣∅ ⊧Hv ∨ srcz∣∅ ⊧ Fv)).
2.2. ∃v(tark∣∅ ⊧Hv).

Proof. By precondition and Theorem T.3r (p. 149), we have G ⊧ F for all graphs G ∈
REACHk−1(GG ,H) and all graph grammars GG ∈ IND(GTS ,S). By precondition and The-
orem T.2r (p. 143), F is a k-inductive invariant under H for GTS . Then, by Lemma 4.12
(p. 63), all graphs G ∈ REACH(GG ,H) for all graph grammars GG ∈ IND(GTS ,S) satisfy F ,
concluding the proof.

This theorem is a combination of Theorems T.2r (p. 143) and T.3r (p. 149); as such, the
differences between the general and restricted approaches for inductive invariant checking and
bounded backward model checking apply here, too. In particular, the problem of false negatives
in the base case and the inductive step is still relevant. However, there is an additional reason
why the theorem only establishes a sufficient condition: even if there are s/t-pattern sequences
representing potential violations of F as a k-inductive invariant, we cannot be sure that these
particular violations occur in the graph grammars’ state spaces. It is entirely possible that the
start of a transformation sequence violating the k-inductive invariant is not reachable from
the allowed start graphs. However, our verification technique would not be able to detect this
inherent problem. The approach, by design, only considers reachability to a limited degree.

On the other hand, for a violation of F in the k−1-bounded state space, if established by
condition (1) – Theorem T.3r (p. 149) – the situation is clearer: if it is indeed a true negative,
then the violation will actually occur.

Example 6.23 (operational invariant checking for an unsafe system). Examples for systems
where the composed forbidden pattern F = ¬F1 ∧ ¬F2 ∧ ¬F3 cannot be established as an
operational invariant via Theorem T.4r are Example 6.19 (p. 144) and Example 6.21 (p. 151).

In the former example, F is not a 2-inductive invariant or, although not shown there, an
invariant for any value of k. However, without further analysis, we cannot be sure F is not an
operational invariant; i.e. that there exists a graph in a graph grammar’s state space violat-
ing F . As mentioned before, Theorem T.4g does not provide a necessary condition to verify
operational invariants.

In the latter example, there is a transformation sequence (Figure 6.21) leading to a violation
of F after a rule application to a possible start graph. Hence, F is not an operational invariant
for the system described in that example.

This example is identical to Example 5.20 (p. 105) in our general approach. △

Example 6.24 (operational invariant checking for a safe system). In Examples 6.20 (p. 146)
and 6.22 (p. 152), we have used a system with the rule set R = {f2f, a2f, s2a, s2s, f2b, a2b,b2s},
the composed forbidden pattern F = ¬F1 ∧ ¬F2 ∧ ¬F3, a composed guaranteed pattern H =
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⋀1≤i≤15 ¬Hi, and a composed start configuration pattern S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3. We have
shown via Theorems T.2r (p. 143) and T.3r (p. 149) that F is a 2-inductive invariant for
GTS = (TG ,R) under H and that F is valid in all 1-bounded state spaces of graph grammars
in IND(GTS ,S). In combination and by Theorem T.4r (p. 153), F is satisfied in all graphs
of all state spaces of the induced graph grammars under the constraint H. This example is
identical to Example 5.21 (p. 105) in the general approach. △

Similar to our general approach, Theorem T.4r (p. 153) provides a constructive approach
to verifying Lemma L.1 (p. 65). However, the theorem only considers state spaces under a
composed guaranteed patternH. In other words, we assume the composed guaranteed pattern’s
validity in the systems at hand. To consider explicit verification of H, we recall the respective
lemma from Chapter 4:

Lemma L.2 (validity of constraints in induced graph grammars under a constraint [4]). Let
GG = (GTS ,G0) be a graph grammar with a graph transformation system GTS = (TG ,R)
and let F , H, and S be graph constraints with S ⊧ F and S ⊧H. F is an operational invariant
of REACH(GG) for all graph grammars GG ∈ IND(GTS ,S), if the following conditions hold:

0. H is a 1-inductive invariant for GTS.
1/2. F is an operational invariant of GG under H for all graph grammars GG ∈ IND(GTS ,S).

By verifying the validity of H as a 1-inductive invariant and in all possible start graphs (by
S ⊧ H), we can show the equivalence of state spaces under H and state spaces without that
restriction. The additional requirement of S ⊧ H can be achieved as discussed before: we can
choose a desired composed start configuration pattern S ′ and define S = S ′ ∧H. We can also
check implication via Theorem 6.8 (p. 120).

The following theorem uses the results of this chapter to extend Theorem T.4r (p. 153) to
include verification of H:

Theorem T.5r. Let GTS = (TG ,R) be a graph transformation system and F = ⋀i∈I ¬Fi,
H = ⋀j∈J ¬Hj, and S = ⋀o∈O ¬SC o be a composed forbidden pattern, composed guaranteed
pattern, and composed start configuration pattern, respectively, with S ⊧ F and S ⊧H.

For all graph grammars GG = (GTS ,G0) ∈ IND(GTS ,S), F is an operational invariant of
GG if the following conditions hold:

0. For all sequences seq = (src1 ⇒b1 tar1) with seq ∈ Seqr
1(R,¬H) the following condition

holds:

0.1. ∃z, v(1 ≤ z ≤ n ∧ (src1∣∅ ⊧Hv)).
1. For all sequences seq = (src1 ⇒b1 ... ⇒bn tarn) with seq ∈ SEQr

k(R,¬F), one of the
following conditions holds:

1.1. ∃z, v(1 ≤ z ≤ n ∧ (srcz∣∅ ⊧Hv)).
1.2. ∃v(tark∣∅ ⊧Hv).
1.3. ∃v(src1∣∅ ⊧ SC v).

2. For all sequences prop(seq) = (src1 ⇒b1 ...⇒bn tarn) with seq ∈ Seqr
k(R,¬F), one of the

following conditions holds:

2.1. ∃z, v(1 ≤ z ≤ k ∧ (srcz∣∅ ⊧Hv ∨ srcz∣∅ ⊧ Fv)).
2.2. ∃v(tark∣∅ ⊧Hv).

Proof. With (0) and by Theorem T.2r (p. 143) – and appropriate subsitutions – H is a 1-
inductive invariant for GTS . By Theorem T.2g (p. 96) and (2), F is a k-inductive invariant for
GTS under H. By Theorem T.3g (p. 101) and (1), F is valid in all k−1-bounded state spaces
of graph grammars in IND(GTS ,S) under H. By Lemma L.2, we get G ⊧ F for all graphs G
with G ∈ REACH(GG) and GG ∈ IND(GTS ,S).

– 155 –



6. Restricted Approach to k-Inductive Invariant Checking

Conditions (1) are (2) are merely repeated from Theorem T.4r (p. 153) and establish F as
an oeprational invariant under H. Condition (0) verifies H as a 1-inductive invariant for GTS
and, given S ⊧H, as an operational invariant. Then, REACH(GG) and REACH(GG ,H) are
identical per induced graph grammar GG ∈ IND(GTS ,S). As a result, F is an operational
invariant even without restricting the state space by H.

As in our general approach, we can decouple verification of F under H and verification of H.
Depending on the type of composed guaranteed pattern, this may or may not be applicable in
the application scenario at hand. External assumptions, for example, are not usually verifiable
as inductive or operational invariants. Again, a typical example is a single fault assumption.

Example 6.25 (operational invariant checking and composed guaranteed pattern). Analo-
gously to Example 5.22 (p. 106) in the general approach, we consider Example 6.24 (p. 154)
with an extended composed start configuration pattern S = ¬SC 1 ∧ ¬SC 2 ∧ ¬SC 3 ∧H. Then,
S ⊧ H as required by Theorem T.5r. The results with respect to conditions (1) and (2) of
Theorem T.4r (p. 153) and condition (1/2) of Lemma L.2 still hold: F is a k-inductive in-
variant for GTS under H and F is valid in every graph in REACHk−1(GG ,H) for graph
grammars GG ∈ IND(GTS ,S) – for both the former and extended composed start configura-
tion pattern. Also, although not shown here, H is a 1-inductive invariant of GTS . Then, by
Theorem T.5r (p. 155), F is an operational invariant of REACH(GG) for all induced graph
grammars GG ∈ IND(GTS ,S). △

6.7. Implementation

Implementation of the constructions and theorems described in the previous sections is roughly
separated with respect to whether they relate to k-inductive invariant checking (as in Sec-
tion 6.4), k−1-bounded backward model checking (as in Section 6.5), or their combination (as
in Section 6.6).

6.7.1. k-inductive Invariant Checking

First, we will discuss the implementation of k-inductive invariant checking.

Algorithm 6.2: k-invcheck

desc. : basic verification scheme for k-inductive invariant checking (Theorem T.2r)
input : an integer k with k ≥ 1, a set R of graph rules, a set F of forbidden

patterns, a set H of guaranteed patterns
output: a set of k-sequences of s/t-patterns as counterexamples

1 results ← ∅
2 sequences ← ∅
3 foreach F ∈ F do /* Seqr

1(R,F) */

4 sequences ← sequences ∪ createSequences(R, F )
5 for i← 2 to k do /* Seqr

k(R,F) */

6 sequences ← extendSequences(R, sequences)
7 foreach seq ∈ sequences do /* analysis */

8 if not discardSequence(seq ,F ,H) then
9 results ← results ∪ {seq}

10 return results
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Algorithm 6.3: createSequences(R,F)
desc. : implements Seqr

1(R, F )
input : a set R of graph rules, a forbidden pattern F = ∃(iP ,acP )
output: Seqr

1(R, F )
1 results ← ∅
2 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ do
3 foreach tar in ⋁j∈J tar j = Shift(iR, F ) do /* SC1-1 */

4 src′ ← L(b, tar) /* SC1-2 */

5 if src′ has the form ∃(s,ac′) then /* SC1-3 */

6 src ← ∃(s,ac′ ∧ Shift(s,acL ∧Appl(b))) /* SC1-3 */

7 results ← results ∪ {src ⇒b tar} /* SC1-4 */

8 return results /* SC1-5 */

Algorithm 6.4: extendSequences(R, sequences)
desc. : implements Seqr

k+1(R,¬F), based on the result of Seqr
k(R,¬F))

input : Seqr
k(R, F ), i.e. a set of sequences sequences of the form

seq = src1 ⇒b1 ...⇒bk tark with src1 = ∃(s1,acS1), a set R of graph rules
output: Seqr

k+1(R, F )
1 results ← ∅
2 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bk tark do
3 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ do
4 foreach tar in ⋁j∈J tar j = Shift(iR, src1∣∅)

with tar = ∃(t,acT ) do /* SCk-1 */

5 src+1 ← ∃(s′ ○ s1,acT ) /* SCk-1
+ */

6 src′ ← L(b, tar) /* SCk-2 */

7 if src′ has the form ∃(s,ac′) then /* SCk-3 */

8 src ← ∃(s,ac′ ∧ Shift(s,acL ∧Appl(b))) /* SCk-3 */

9 results ← results ∪ {src ⇒b (tar , src+1)⇒b1 ...⇒ tark} /* SCk-4 */

10 return results /* SCk-5 */

Algorithm 6.5: discardSequence(seq ,F ,H)
desc. : implements conditions (1) and (2) of Theorem T.2r (p. 143)
input : a k-sequence of s/t-patterns seq = src1 ⇒b1 ...⇒bk tark, a set F of forbidden

patterns, a set H of guaranteed patterns
output: whether seq contains (reduced) patterns that imply patterns in F or H

1 if discardPattern(tark∣∅,H) then /* condition (2) */

2 return true

3 for i← 1 to k do /* condition (1) */

4 if discardPattern(srci∣∅,F ∪H) then

5 return true

6 return false
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Algorithm 6.6: discardPattern(C,C)
desc. : applies implication check of Theorem 6.8 (p. 120)
input : a graph pattern C, a set C of forbidden/guaranteed patterns
output: whether C implies any pattern in F or H

1 foreach C ′ ∈ C do
2 if implies(C,C′) then /* Theorem 6.8, Algorithm 6.1 */

3 return true

4 return false

A basic scheme implementing Theorem T.2r (p. 143) is shown in Algorithm 6.2. The func-
tions createSequences and extendSequences refer to the implementation of the Seq-construction
and are described in Algorithms 6.3 and 6.4.

The function discardSequence (Algorithm 6.5) is an implementation of conditions (1) and
(2) in Theorem T.2r (p. 143); its task is to discard invalid counterexamples. Its prerequisite
discardPattern is shown in Algorithm 6.6. It is based on implication of graph patterns described
by Theorem 6.8 (p. 120) and Algorithm 6.1 (p. 121).

However, this naive implementation is rather inefficient: it will first create all s/t-pattern
sequences of length k, then discard sequences with violations. Instead, it is possible to inter-
weave the creation and extension of sequences with the analysis for violations of forbidden or
guaranteed patterns. To achieve this, we can refine the implementation of createSequences and
extendSequences as described in Algorithms 6.8 and 6.9. There, code lines performing interme-
diate analysis of source or target patterns are annotated accordingly. Then, separate analysis
is not required; the overall algorithm is shown in Algorithm 6.7.

Algorithm 6.7: k-invcheck

desc. : verification scheme for k-inductive invariant checking (Theorem T.2r)
input : an integer k with k ≥ 1, a set R of graph rules, a set F of forbidden

patterns, a set H of guaranteed patterns
output: a set of k-sequences of s/t-patterns as counterexamples

1 results ← ∅
2 foreach F ∈ F do /* Seqr

1(R,F) */

3 results ← results ∪ createSequences(R, F,H,F ∪H)
4 for i← 2 to k do /* Seqr

k(R,F) */

5 results ← extendSequences(R, results,F ∪H)
6 return results

Intermediate anaylsis in createSequences (Algorithm 6.8, which implements Seqr
1(R, F )) hap-

pens in three places:

First, after the existential condition ∃iP of a forbidden pattern F = ∃(iP ,acP ) has been
shifted to the right rule side, the resulting context of new target patterns ∃(t ∶ R ↪ T ) is
checked for implication of guaranteed patterns. The idea here is that some target patterns
can be discarded without taking their nested composed negative application condition into
account: if T contains a graph P ′ that occurs in a guaranteed pattern ∃iP ′ with a trivial
composed negative application condition (true), the target pattern can be discarded. In the
context of Theorem T.2r (p. 143), this implements a part of condition (2).

Second, after transferring the forbidden pattern’s composed negative application condition
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Algorithm 6.8: createSequences(R,F,C1,C2)
desc. : implements Seqr

1(R, F ) with optimizations
input : a set R of graph rules, a forbidden pattern F = ∃(iP ,acP ), sets C1 and C2 of

patterns
output: Seqr

1(R, F ) minus sequences discarded for violations of C1 or C2
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1 results ← ∅
2 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ do
3 foreach tar in ⋁j∈J tar j = Shift(iR,∃iP ) with tar = ∃t do /* SC1-1 */

4 if not discardPattern(tar ∣∅,C1) then /* analysis */

5 tar ← ∃(t,Shift(p,acP )) /* SC1-1 */

6 if not discardPattern(tar ∣∅,C1) then /* analysis */

7 src′ ← L(b, tar) /* SC1-2 */

8 if src′ has the form ∃(s,ac′) then /* SC1-3 */

9 src ← ∃(s,ac′ ∧ Shift(s,acL ∧Appl(b))) /* SC1-3 */

10 if not discardPattern(src ∣∅,C2) then /* analysis */

11 results ← results ∪ {src ⇒b tar} /* SC1-4 */

12 return results /* SC1-5 */
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acP to the context of the target pattern – tar = ∃(t,Shift(p,acP )) – tar ∣∅ is checked again.
Now, it may imply guaranteed patterns with non-trivial composed negative application condi-
tions. Deferring the transfer of a forbidden pattern’s composed negative application condition
to the target pattern in question is not considered in the Seq-construction described in Theo-
rem T.1r (p. 130) – it is an optimization specific to the implementation. Note that tar ∣∅ ⊧H for
guaranteed patterns H with a trivial composed negative application condition (true) does not
have to be checked again; the result will be the same as in the first intermediate check above.
In the context of Theorem T.2r (p. 143), this implements the remaining part of condition (2).

Third, the resulting (reduced) source pattern is analyzed for implication of guaranteed or
forbidden patterns. In the context of Theorem T.2r (p. 143), this implements the part of
condition (1) where srck is concerned.

Algorithm 6.9: extendSequences(R, sequences,C)
desc. : implements Seqr

k+1(R,¬F) (based on Seqr
k(R,¬F)) with optimizations

input : Seqr
k(R, F ), i.e. a set of sequences sequences of the form

seq = src1 ⇒b1 ...⇒bk tark with src1 = ∃(s1,acS1), a set R of graph rules, a
set C of patterns

output: Seqr
k+1(R, F ) minus sequences discarded for violations of C
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1 results ← ∅
2 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bk tark do
3 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ do
4 foreach tar in ⋁j∈J tar j = Shift(iR,∃iS1) with tar = ∃t do /* SCk-1 */

5 if not discardPattern(tar ∣∅,C) then /* analysis */

6 acT ← Shift(s′,acS1) /* SCk-1 */

7 tar ← ∃(t,acT ) /* SCk-1 */

8 if not discardPattern(tar ∣∅,C) then /* analysis */

9 src+1 ← ∃(s′ ○ s1,acT ) /* SCk-1
+ */

10 src′ ← L(b, tar) /* SCk-2 */

11 if src′ has the form ∃(s,ac′) then /* SCk-3 */

12 src ← ∃(s,ac′ ∧ Shift(s,acL ∧Appl(b))) /* SCk-3 */

13 if not discardPattern(src ∣∅,C) then /* analysis */

14 results ← results ∪
{src ⇒b (tar , src+1)⇒b1 ...⇒ tark} /* SCk-4 */

15 return results /* SCk-5 */

In extendSequences (Algorithm 6.9), which implements Seqr
k+1(R,¬F), intermediate analysis

happens in a similar fashion. The main difference is that the created target patterns have to be
analyzed for implication of both guaranteed or forbidden patterns. The three steps implement
different parts of condition (1) of Theorem T.2r. Note that for each target/source pattern
(tar i, src+i+1), we have tar i∣∅ = src+i+1∣∅ – hence the ostensible difference in pattern analysis

between Theorem T.2r (p. 143) and its implementation.
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In practice, the separation between the positive part of a newly created target pattern and
its composed negative application condition may have a significant impact on performance.
Shifting a forbidden pattern’s or a source pattern’s composed negative application condition
to the new target pattern is costly. Target patterns that can be discarded without this compu-
tation step reduce the effort of both completing the target pattern in question and of further
computations that would involve that target pattern.

These optimized algorithms have similarities to the general version of the Seq-construction
(Theorem T.1g (p. 85)). There, both the safety and guaranteed constraint were included in
the construction of s/t-pattern sequences. However, both constraints were shifted to all source
and target patterns of the sequence, resulting in an explosion in complexity. Here, source
and target patterns are analyzed for their implication of individual forbidden or guaranteed
patterns, which requires far less computational effort. Furthermore, the s/t-pattern itself is not
enhanced – it is either discarded or kept.

6.7.2. k−1-bounded Backward Model Checking

For the implementation of k−1-bounded backward model checking (Theorem T.3r (p. 149)),
we can use an adjusted version of Algorithm 6.7, which is shown in Algorithm 6.10. In contrast
to Theorem T.2r (p. 143), we have to consider all s/t-pattern sequences from lengths 1 to k−1,
not just those of length k. We can still discard all s/t-pattern sequences whose (reduced) source
or target patterns violate any guaranteed patterns. However, we cannot discard sequences that
have violations of the composed start configuration pattern S because those sequences might
still be extended to form a violating sequence.

Therefore, after iteration of each value of i (from 1 to k − 1), we analyze the leftmost
source pattern of the resulting s/t-pattern sequences. If its reduction does not imply any start
configuration pattern, i.e. violate the composed start configuration pattern, it represents a
potential start configuration and the corresponding s/t-pattern sequence is added to the result
of symbolic counterexamples.

Algorithm 6.10: k−1-modelcheck

desc. : verification scheme for k−1-bounded backward model checking
(Theorem T.3r)

input : an integer k with k ≥ 2, a set R of graph rules, a set F of forbidden patterns,
a set H of guaranteed patterns, a set S of start configuration patterns

output: a set of s/t-pattern sequences as counterexamples

1 sequences ← ∅
2 foreach F ∈ F do /* Seqr

1(R,F) */

3 sequences ← sequences ∪ createSequences(R, F,H,H)
4 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bn tarn do /* analysis */

5 if not discardPattern(src1∣∅,S) then

6 results ← results ∪ {seq}

7 for i← 2 to k − 1 do /* Seqr
k−1(R,F) */

8 sequences ← extendSequences(R, sequences,H)
9 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bi tar i do /* analysis */

10 if not discardPattern(src1∣∅,S) then

11 results ← results ∪ {seq}

12 return results
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6.7.3. Operational Invariant Checking

Because of the different requirements of k-inductive invariant checking and k−1-bounded back-
ward model checking, a combination of both in the sense of Theorem T.4r (p. 153) involves
separate execution of Algorithms 6.7 (p. 158) and 6.10 (p. 161), although a combination is, in
theory, possible. Furthermore, implementation of Theorem T.5r (p. 155) involves execution of
Algorithms 6.7 (p. 158) and 6.10 to establish F as an operational invariant under H. Then,
H has to be verified as a 1-inductive invariant, which can be achieved by execution of Algo-
rithm 6.7 (p. 158) where the parameter F is set to H, the parameter H is set to the empty
set of graph patterns ∅, and k is set to 1. In other words, instead of verifying F under H as
a k-inductive invariant, we need to verify H under the trivial guaranteed constraint true as a
1-inductive invariant (cf. condition (0) of Theorem T.5r (p. 155)).

6.8. Discussion and Conclusion

The implementation of Theorems T.2r-T.4r – and hence, of the underlying verification ap-
proach outlined by Lemma L.1 (p. 65) – uses a fixed value for k. A stronger requirement would
be to leave k unspecified and simply ask whether there exists a k such that the respective con-
ditions are fulfilled. However, there are graph constraints that are not k-inductive invariants
for any value of k. Then, an algorithm attempting to find such a k might not terminate, unless
it could prove its absence. Given an approach solving the questions above for a specific value
of k, however, we can increase that value, if required, and simulate searching for a k while still
having the option of terminating the search at a certain threshold.

Table 6.4. – Comparison of general and restricted formal model

Element/
model

Meta-
models

System
states

Systems System sets System state spaces

General for-
mal model

Type
graphs

Typed
graphs

Typed
graph
grammars

Induced
(typed) graph
grammars

Graph grammars’
state spaces under
guaranteed constraint

Restricted for-
mal model

Type
graphs

Typed
graphs

Typed
graph
grammars

Induced
(typed) graph
grammars

Graph grammars’
state spaces under
guaranteed constraint

Element/
model

System behavior
Safety proper-
ties

Guaranteed
properties

Initial states

General for-
mal model

Graph rules with left
nested application
conditions

Nested graph
constraint(s)

Nested graph
constraint(s)

Nested graph
constraint(s)

Restricted for-
mal model

Graph rules with left
composed negative ap-
plication conditions

Composed
graph pattern

Composed
graph pattern

Composed
graph pattern

The restricted approach is based on the restricted formal model reintroduced earlier. Ta-
ble 6.4 shows (again) a comparison of the general and restricted formal models. In essence,
constraints are to be specified as composed graph patterns instead of nested graph constraints.
Graph rules may only have (left) composed negative application conditions, not application
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Table 6.5. – Properties of the general and restricted approaches

Property
Appl.-

soundness
Appl.-

termination

Appl.-deg.-
completeness

Appl.-
performance

G
en

er
al

ap
p

ro
a
ch k-inductive invariant

checking
✓ (✓) ?/× ?

k−1-bounded back-
ward model checking

✓ (✓) ?/× ?

Operational invari-
ant checking

✓ (✓) ?/× ?

R
es

tr
ic

te
d

ap
p

ro
ac

h k-inductive invariant
checking

✓ ✓ -/× +

k−1-bounded back-
ward model checking

✓ ✓ -/× +

Operational invari-
ant checking

✓ ✓ -/× +

conditions of arbitrary nesting and boolean combinations. These restrictions are part of striking
a balance between expressiveness, computational effort, and the impact that the requirement
of termination and its implementation have on completeness.

Table 6.5 shows the properties of the restricted approach with respect to the four re-
quirements Appl.-soundness, Appl.-termination, Appl.-deg.completeness, and Appl.-
performance. It also highlights differences to the general approach. Here, we compare the
restricted approach and its implementation to the hypothetical implementation of the general
approach mentioned in Section 5.6 and Table 5.3 (p. 108).

By its formalization and implementation, the restricted approach is sound: Theorems T.2r
(p. 143), T.3r (p. 149), and T.4r (p. 153) describe sufficient conditions to establish the respec-
tive proof goals or find symbolic representations of all counterexamples. The approach always
terminates (given a fixed k). Both termination and soundness apply to k-inductive invariant
checking, k−1-bounded backward model checking, and operational invariant checking.

There is a subtle difference to the general approach with respect to termination: in the
general approach, we included an undecidable problem in the analysis of s/t-pattern sequences
– specifically, finding a satisfying transformation sequence. An implementation would have to
take additional measures to ensure termination, such as enforcing a threshold on runtime and
aborting without a definitive result. For the restricted approach, the analysis of s/t-pattern
sequences consists of decidable questions, provided implication of graph patterns is checked via
the sufficient condition described by Theorem 6.8 (p. 120). In other words, we get a definitive
answer – but the result may be incomplete in the sense of overlooking false negatives, which
is discussed in more detail below.

Even without evaluation of case studies, we expect the restricted approach to fare worse then
the general approach (if implemented) in terms of completeness (as indicated in Table 6.5).
However, we can expect far better performance for two reasons: First, the restrictions on graph
constraints and application conditions of the restricted formal model reduce the components’
complexity and the computational effort of the Shift-construction in the construction of s/t-
pattern sequences. Second, intermediate violations of guaranteed or forbidden patterns in a
sequence are not checked by shifting those constraints to the sequences. Instead, they are
directly compared to source and target patterns in an s/t-pattern sequence on an individual
basis. This is both the reason for an expected improvement in performance – and the main
cause of incompleteness.
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Table 6.6. – True negatives and true positives in the context of Theorems T.2r or T.3r

Term Description Occurrence

True negatives
Counterexamples (s/t-pattern sequences) that do have
satisfying transformation sequences as counterexam-
ples in the sense of Lemma 6.10 or Lemma 6.11

Yes, if system
is unsafe

True positives
Composed forbidden patterns correctly declared a k-
inductive invariant or valid in the bounded state space
in the sense of Lemma 6.10 or Lemma 6.11

Yes, if system
is safe

Table 6.7. – False negatives and false positives in the context of Theorems T.2r or T.3r

Term Description Occurrence

False negatives
Counterexamples (s/t-pattern sequences) that do not
have satisfying transformation sequences as counterex-
amples in the sense of Lemma 6.10 or Lemma 6.11

Possibly (ap-
proach is
incomplete)

False positives
Composed forbidden patterns incorrectly declared a k-
inductive invariant or valid in the bounded state space
in the sense of Lemma 6.10 or Lemma 6.11

No (approach
is sound)

While specific results on the degree of completeness require detailed evaluation, any lack in
completeness is detrimental to Appl.-deg.completeness of the intended contribution. Ar-
guably, this is the main drawback of the restricted approach. Incompleteness manifests itself
in the occurrence of false negatives (cf. Definition 1.7 (p. 8)). As explained before, false nega-
tives can occur during the verification of k-inductive invariants, during k−1-bounded backward
model checking, and, as a result, during their combination in operational invariant checking.
False negatives are s/t-pattern sequences whose satisfying transformation sequences are not
counterexamples in the sense of Lemma 6.10 (p. 123) – or Lemma 6.11 (p. 124), respectively.

Besides these, we may also have true negatives – s/t-pattern sequences that do have sat-
isfying transformation sequences describing a violation. A true positive describes a system
correctly classified as safe. False positives, however, must not occur: erroneously discarding
counterexamples and possibly classifying an unsafe system as safe may have disastrous conse-
quences. Fortunately, we have established that the approach is sound: all counterexamples will
indeed be found. Conversely, if the approach cannot safely establish an s/t-pattern sequence’s
invalidity as a counterexample, it has to be part of the verification result as a counterexample
– but may later turn out to be a false negative (after manual inspection, for example). In order
to clarify the meaning of the respective terms, Tables 6.6 and 6.7 summarize the interpreta-
tions of true negatives, true positives, false negatives, and false positives in the context of our
verification approach. Note that there is a difference in cardinality: when succesfully verifying
a composed forbidden pattern, the true positive would just be the composed forbidden pattern
itself; if the composed forbidden pattern is not a k-inductive invariant, there may be multiple
s/t-pattern sequences as counterexamples, i.e. more than one true negative. There may also
be multiple false negatives.

False negatives may appear in a number of different forms as results of the following phe-
nomena related to implication of graph patterns (with details to follow below):
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Undecided implication of patterns – since the general problem of graph constraint implica-
tion is undecidable, Theorem 6.8 (p. 120) describes a sound, but incomplete approach to
checking pattern implication. It uses a sufficient, but not necessary condition; in other
words, failure to establish implication may not imply its absence.

Unconsidered interactions of patterns – Theorems T.2r (p. 143) and T.3r (p. 149) and The-
orem 6.8 (p. 120) only compare two patterns; however, interactions between patterns can
result in implication relations not found by comparing individual patterns only.

Insufficient information in patterns – although graphs in a transformation sequence satisfy-
ing an s/t-pattern sequence will have violations of guaranteed or forbidden patterns,
implication of the respective patterns cannot be confirmed by Theorem 6.8 if the respec-
tive source or target pattern is lacking information.

We will consider each class in the following paragraphs.

Undecided implication of patterns. Given patterns C and C ′, Theorem 6.8 (p. 120) does not
allow to conclude C /⊧ C ′ from its failure to establish C ⊧ C ′. Hence, we cannot be sure whether
C ⊧ C ′ or C /⊧ C ′, but, in order to ensoure soundness, have to assume C /⊧′ C. If C ⊧ C ′ does
hold, this decision results in false negatives. This class is the rarest of the three; the other two
will amount to the majority of cases of false negatives. Cases where neither implication nor its
absence can be established by the implementation of Theorem 6.8 (p. 120) will always involve
patterns with non-trivial composed negative application conditions (see explanation of the
theorem). Even then, failure to establish implication will often imply absence of implication;
then, the counterexample is not a spurious one.

Unconsidered interactions of patterns. Both Theorems T.2r (p. 143) and T.3r (p. 149) and
Theorem 6.8 (p. 120) only consider implication between two patterns. However, patterns can
interact with each other, which affects the result of the analysis.

Consider the following abstract case (with a specific example discussed later in Section 7.4,
Example 7.32 (p. 214)): we wonder whether an s/t-pattern sequence seq = src ⇒b tar with
seq ∈ Seqr

1(R,F) should be discarded as a counterexample for a 1-indcutive invariant F = ¬F
under H = ¬H. By Theorem T.2r, we need to find out whether the reduced source pattern
src ∣∅ implies F or H. If we cannot establish src ∣∅ ⊧ F (via Theorem 6.8 (p. 120)), we have to
assume (to ensure soundness) src ∣∅ /⊧ F : there exists (at least) one graph G with G ⊧ src ∣∅ and
G ⊧ ¬F . If we cannot show src ∣∅ ⊧ H either, we also need to assume the existence of a graph
G′ with G′ ⊧ src ∣∅ and G′ ⊧ ¬H. If we stop the analysis there – which is what Theorems T.2r
(p. 143) and 6.8 (p. 120) do – we cannot discard seq = src ⇒b tar (assuming similar results for
the target pattern tar , which we skipped here). However, by focusing on individual patterns,
we have overlooked that, in general,

∃G(G ⊧ src ∣∅ ∧G ⊧ ¬F ) (1)

together with
∃G(G ⊧ src ∣∅ ∧G ⊧ ¬H) (2)

does not imply
∃G(G ⊧ src ∣∅ ∧G ⊧ ¬F ∧G ⊧ ¬H). (3)

In fact, it is still possible that any graph G with G ⊧ src ∣∅ violates either ¬F or ¬H and hence,
F ∧H. In other words, we may still have src ∣∅ ⊧ ¬(F ∧H) (equivalent to F ∧H ⊧ ¬src ∣∅): the
composed patterns contradict our counterexample in question, which makes it a false negative.

This case can only occur when non-trivial composed negative application conditions are
involved; otherwise, (1) and (2) do indeed imply (3). With higher numbers of guaranteed and
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forbidden patterns with such non-trivial conditions, the occurrence of false negatives of this
class becomes more likely. In order to eliminate these false negatives, we would require to check
conditions of the form src ∣∅ ⊧ ¬(F ∧H) (or equivalently F ∧H ⊧ ¬src ∣∅) instead of inferring its
result by considering individual patterns (src ∣∅ ⊧ F , src ∣∅ ⊧H) only. There are approaches able
to answer these questions [Pen09, SLO18]. Unfortunately, this general problem is undecidable
and computationally expensive to solve.

In Chapter 7, Section 7.4, we explain an extension attempting to solve implication with
composed graph patterns (such as F∧H ⊧ ¬src ∣∅). As a side effect, it also addresses the first class
of false negatives. However, it cannot guarantee termination unless forced to terminate when
reaching a threshold, e.g. on runtime. As a result, while the number of false negatives will be
reduced, some may still occur. In general, the questions of non-termination and incompleteness
– false negatives – are inherent to the problem and not specific to our approach. All symbolic
approaches allowing a similar degree of expressive power will face the same challenge.

Insufficient information in patterns. False negatives of this class occur when Theorem 6.8
(p. 120) cannot confirm implication of a pattern by a reduced source or target pattern because
the implying pattern is missing information.

To illustrate the most common case, consider an s/t-pattern sequence seq = src1 ⇒b1

(tar1, src2)⇒b2 tar2 created by the Seq-construction. Since the construction propagates infor-
mation in backward direction only, src1 and tar1 (and, by step SCk-1+, (tar1, src2)) contain
information about the application of b1 – tar2, however, does not. Thus, nodes and edges re-
quired for the application of b1 are not included in the context of tar2, although they are not
necessarily deleted by the rule. Every satisfying transformation sequence G0 ⇒b1 G1 ⇒b2 G2

will have G2 contain these nodes and edges (unless they are deleted) – and, by definition,
G2 ⊧ tar2∣∅. Still, checking the implication tar2∣∅ ⊧ H for a guaranteed pattern H may yield
a negative result because of the nodes and edges missing in tar2∣∅, even if all graphs G2 in
satisfying transformation sequences satisfy H.

In short, analysis of (reduced) source and target patterns to the right may lack information
that would be available elsewhere (to the left) in the s/t-pattern sequence. This type of false
negatives can be avoided altogether by also propagating information in forward direction.
This process of forward propagation is described as an extension to our restricted approach in
Chapter 7, Section 7.1.

The extension also takes a second (rarer) case of missing information into account. When
a rule creates a node, it cannot be connected to other nodes unless the respective edges are
created along with it. This is the reverse case of rules deleting nodes: all edges adjacent to
deleted nodes have to be explicitly deleted by the rule. While the latter case is encoded in
s/t-pattern sequences by shifting Appl(b) to the respective source pattern in steps SC1-3 and
SCk-3, the former case (for target patterns) was not included in the restricted approach because
of its complexity in comparison to its low impact.

Often, it makes sense to analyze a set of s/t-pattern sequences constructed by the Seq-
construction without considering forward propagation. Forward propagation may come with
significant computational effort; sometimes, that effort may not be necessary because coun-
terexamples can be discarded without it. Furthermore, forward propagation is not needed if the
purpose of verification is to first find a potential candidate for a k-inductive invariant. Then,
verification results are intended to guide the development of an invariant and the process
of adjusting system behavior (where appropriate). Even without forward propagation, coun-
terexamples may reveal problems that need to be fixed. If, however, the intention is to verify a
k-inductive invariant and if verification without forward propagation results in counterexam-
ples, application of forward propagation may reveal the counterexamples to be spurious.
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Accepting the possiblity of false negatives is part of striking a balance between expres-
sive power (in system specifications), termination, and reasonable degrees of performance and
completeness. In the evaluation in Chapter 9, we will see that the approach is still capable
of verifying meaningful system specifications and application scenarios. In the following chap-
ter, several extensions will allow us to shift the balance of this compromise depending on the
requirements of the application scenarios at hand.

This concludes the restricted approach to k-inductive invariant checking. In summary, the
restricted formal model, symbolic encoding, and the constructions and theorems in this chapter
provide a formalization (Formal-restricted) and let us derive an implementation (Impl.-
restricted) for our verification problem; together, they are the central part of this thesis’s
contribution.
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The intended advantage of the restricted approach (Chapter 6) in comparison to the general ap-
proach (Chapter 5) is its efficiency with respect to computational effort (Appl.-performance),
which includes guaranteeing termination (Appl.-termination). Its biggest drawback is that
the approach is not complete (Appl.-deg.completeness).

However, this is not a binary choice: in comparison to a hypothetical implementation of the
general approach, there are a couple of options for the formalization and implementation of
the restricted approach that can improve the approach with respect to completeness – while
making concessions in terms of performance. In this chapter, we will discuss these options as
extensions to the restricted approach and elaborate on their formalization and implementation.

Outline. This chapter will be structured as follows:

In Section 7.1, we will discuss forward propagation. Since the Seq-construction only accu-
mulates context in backward direction (to the left) during its construction, the analysis of
target/source patterns to the right of an s/t-pattern sequence may lack information helpful
in discarding sequences as false negatives. While this lack of information does not make the
approach unsound, it is one factor leading to imcompleteness. Forward propagation then prop-
agates context in an s/t-pattern sequence from the left to the right and will be shown (in
Chapter 9) to reduce the number of false negatives. As such, it will contribute towards Appl.-
deg.completeness. Forward propagation is implemented as an additional computation step
between the construction of sequences and their analysis.

Section 7.2 will focus on rule priorities as a form of more fine-grained control over the
application of transformation rules. In essence, rules can be equipped with integers as priorities,
with applicability of higher-priority rules preventing the application of rules of lower priority.
Taking rule priorities into account requires extending the analysis of s/t-pattern sequences so
that sequences with rule applications that violate the priorities are discarded.

Section 7.3 reintroduces partial negative application condition as a means of improving
the performance of the approach. In particular, partial negative application condition allow
a more efficient handling and evaluation of composed negative application conditions, whose
transformation over morphisms is the most costly factor in the approach’s implementation.
Using partial negative application conditions changes the Seq-construction and the analysis of
s/t-pattern sequences.

Section 7.4 addresses a drawback in the restricted approach’s analysis of s/t-pattern se-
quences. Theorems T.2r and T.3r compare a sequence’s source and target patterns separately
with individual forbidden and guaranteed patterns (in terms of implication), without taking
potential interactions between all forbidden or guaranteed patterns into account. This section
describes means to consider such interactions by extending the concept of implication of graph
patterns introduced earlier. As such, it contributes to Appl.-deg.completeness – however,
this may come at the cost of higher computational effort or, depending on the approach chosen,
non-termination. Including more complex notions of pattern implication requires extending the
analysis of s/t-pattern sequencees.

All these sections will follow the same basic structure: after an explanation of the problem,
we will address the solution and required changes to the formal model, symbolic encoding, the
construction of s/t-pattern sequences (as in Theorem T.1r), and the analysis of s/t-pattern se-
quences (as in Theorems T.2r, T.3r, T.4r, and T.5r) in separate subsections. Depending on the
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specific extension, some elements do not require modifications and the respective subsections
will be omitted. All sections will close with a subsection dedicated to implementation.

Section 7.5 will offer a formal perspective on applying and combining the extensions in-
troduced in this chapter. Finally, in Section 7.6, we will summarize and discuss the expected
effects of the extensions in comparison to the restricted approach.

7.1. Forward Propagation

In the general and restricted approaches, the Seq-construction accumulates context in back-
ward direction by transferring application conditions over reverse rule applications via the
L-construction. That or other information is not propagated in forward direction to other
target/source and target patterns to the right. That does not make those source and target
patterns incorrect, but it means that they describe an over-approximation of the graphs in a
satisfying transformation sequence and could be refined.

In the general approach, this did not affect the verification result: the target of analysis is
always the leftmost source pattern. In the restricted approach, this is not the case: for instance,
guaranteed patterns are not shifted to elements in the sequence and hence, not propagated
further to the left by the Seq-construction. Instead, we check all patterns in sequences, in-
cluding intermediate target/source patterns and the rightmost target pattern for implication
of guaranteed (and forbidden) patterns during the analysis (Theorems T.2r (p. 143) and T.3r
(p. 149)).

Hence, intermediate target/source patterns should ideally have the same information as the
leftmost source pattern – otherwise, there may be cases of false negatives due to insufficient
information in patterns, as explained in Section 6.8. For example, information about prior rule
applications is added to a sequence in each execution of step SCk-1 of the Seq-construction,
which may include nodes and edges that are never deleted – and hence, should be reflected
in target/source patterns to the right. While possibly detrimental to performance (Appl.-
performance), we gain some degree of completeness (Appl.-deg.completeness). Depending
on the scenario, we may prefer one over the other – and the notion of forward propagation
described in this section enables us to make a choice.

In order to better explain the problem, we consider the following example system:

Example 7.1 (running example). We extend the shuttle protocol example used in Chapters 5
and 6 by allowing rules to fail the check for switches ahead. Rules s2s, f2b, b2s, and a2b
(Figures 7.1(c)-7.1(f)) remain unchanged. Rules f2f, a2f, and s2a (Figures 7.1(g)-7.1(i)) are
similar to before; however, they check both the target track and its subsequent track for
switches. In addition, rules f2f′, a2f′, and s2a′ are also part of the set of rules R in our graph
transformation system GTS = (TG ,R). These three rules do not have any negative application
conditions – they are meant to model sensor faults resulting in potential illegal applications of
accelerating rules when there is a switch ahead. We keep track of these sensor faults by adding
a fault edge to the shuttle on each application. Note that the edge type fault has also been
added to the type graph (Figure 7.1(a)).

In this example, we use a composed forbidden pattern F = ¬F1 that only prohibits a shuttle
driving on a switch in speed mode fast (Figure 7.2(a)). The composed guaranteed pattern
H = ¬H1 ∧ ... ∧ ¬H16 includes all individual guaranteed patterns used before (Example 6.1
(p. 111)) and has another guaranteed pattern H16 added to it (Figure 7.2(b)). The (negated)
pattern expresses the absence of two sensor faults; in other words, it describes a single fault
assumption. This is an example for a guaranteed pattern used to model an external assumption.
Obviously, we cannot exclude the occurrence of two sensor faults, but its absence is considered
part of the system’s specification: safety issues due to two sensor faults are not to be covered by
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next 

Track Shuttle 
isAt 

fast brake 

slow acc 

𝑇𝐺 

fault 

(a) Type graph TG

slow acc 

fast brake 

s2a 
s2a‘ 

a2f 
a2f‘ 

f2f 
f2f‘ 

f2b 

a2b b2s 
s2s 

(b) Shuttle protocol

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:slow 

t2:Track 
𝑙 

𝐾 𝑅 

:slow 

𝑟 
:isAt 

(c) Graph rule s2s

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:brake 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(d) Graph rule f2b

s:Shuttle 

t1:Track 
:next 

:isAt 

:brake 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:slow 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(e) Graph rule b2s

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:brake 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(f) Graph rule a2b

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝑋2 

t2:Track t3:Track 

t4:Track 

:next 

:next 

¬∃𝑥2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝑋1 

t2:Track 

t4:Track 
:next 

:fast 

(g) Graph rule f2f

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝑋2 

t2:Track t3:Track 

t4:Track 

:next 

:next 

¬∃𝑥2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝑋1 

t2:Track 

t4:Track 
:next 

(h) Graph rule a2f

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:acc 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝑋2 

t2:Track t3:Track 

t4:Track 

:next 

:next 

¬∃𝑥2 

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝑋1 

t2:Track 

t4:Track 
:next 

(i) Graph rule s2a

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

:fault 
:fast 

(j) Graph rule f2f’

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

:fault 

(k) Graph rule a2f’

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:acc 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

:fault 

(l) Graph rule s2a’

Figure 7.1. – Graph transformation system GTS = (TG ,R)
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:Shuttle 

t1:Track 

:isAt 

:fast 

ts:Track 
:next 

t2:Track :next 

𝑃1
𝐹  

∅ 

¬∃𝑖𝑃1𝐹  

(a) Constraint ¬F1 = ¬∃iPF
1

:Shuttle 
:fault :fault 

𝑃16
𝐻  

¬∃𝑖𝑃16𝐻   

∅ 

(b) Constraint ¬H16 = ¬∃iPH
16

Figure 7.2. – Safety property F = ¬F1 and fragment ¬H16 of guaranteed constraint H =
¬H1 ∧ ... ∧ ¬H16

system verification. One reason for this assumption may be that the probability of two sensor
faults occurring is beneath a certain threshold. As before, this approach to system verification
may raise ethical and legal questions; however, those are beyond the scope of this thesis.

All elements of this example are also shown in Section C.1.4 of Appendix C.

For the sake of brevity, we focus on the inductive step of our verification approach here,
which leaves us with the following verification problem: is F = ¬F1 a 2-inductive invariant
of GTS under H, which includes the assumption of at most one rule application occurring
without the appropriate checks for switches? △

Example 7.2 (insufficient information and incompleteness). In order to verify ¬F1 as a 2-
inductive invariant, we will apply Theorems T.1r (p. 130) and T.2r (p. 143), starting with
the computation of Seqr

2(R, F1). Without showing all counterexamples here, the result will
be negative: F cannot be delcared a 2-inductive invariant under H. Consider the s/t-pattern
sequence seq2 ∈ Seqr

2(R, F1) shown in Figure 7.3(a) as one counterexample. It shows a sequence
of two rule applications a2f′ and f2f′. Its rightmost target pattern ∃t2 has the forbidden pattern
F1 in its context (T2) and hence, satisfying transformation sequences will lead to a violation
of ¬F1. Furthermore, we cannot detect violations of guaranteed or forbidden patterns earlier
in the sequence; in particular, neither reductions of ∃s1 nor of ∃t1 will imply F1 or H1 to H16.

However, when we consider satisfying transformation sequences, we will necessarily find a
shuttle with two fault edges in the rightmost graphs of all such sequences; Figure 7.3(b) shows
an example. This makes sense: two faulty rules (a2f′ and f2f′) have been applied and hence, two
fault edges must have been created. The s/t-pattern sequence seq2 is a false negative, as are all
other remaining counterexamples in Seqr

2(R, F1). However, there is insufficient information in
the target pattern ∃t2 in order to discard the s/t-pattern sequence during the analysis described
by Theorem T.2r (p. 143). In particular, the creation of the fault edge by application of a2f′

(seen in T1) is not propagated to the right. Thus, T2 only includes the fault edge created by
application of f2f′. △

Addressing this issue requires modification of the construction and anaylsis of s/t-pattern
sequences.

7.1.1. Construction of Pattern Sequences

In order to solve the problem sketched above, we apply forward propgation to s/t-pattern
sequences created by the Seq-construction (Theorem T.1r (p. 130)). By recursive application
of the L-construction to the leftmost source pattern and the inverse rules of the sequence,
we transfer context to the next target/source pattern and, subsequently, to all target/source
patterns and the rightmost target pattern. Lemma 7.3 justifies that process by establishing that
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⇒𝑎2𝑓′  ⇒𝑓2𝑓′  

s:Shuttle 

ta:Track 
:next :isAt 

:acc 

tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝑅1 

∃𝑡1 

s:Shuttle 

tb:Track 
:next :isAt 

:fast 

tc:Track 
𝐿2 

∃𝑠2 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 𝑅2 

𝑆1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:acc 

tc:Track 
:next 

td:Track 

:next 

:fault :fault 

:fault :fault 

(a) S/t-pattern sequence seq2 = ∃s1 ⇒a2f′ (∃t1,∃s2)⇒f2f′ ∃t2 with seq2 ∈ Seqr2(R, F1)

⇒𝑎2𝑓′  ⇒𝑓2𝑓′  

𝐺1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝐺0 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:acc 

tc:Track 
:next 

td:Track 

:next 

:fault 𝐺2 

s:Shuttle 

ta:Track tb:Track 
:next :isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

:fault 

:fault 

(b) Transformation sequence trans = G0 ⇒a2f′,m1,m
′

1
G1 ⇒f2f′,m2,m

′

2
G2 with trans ⊧ seq

Figure 7.3. – S/t-pattern sequence with incomplete information and satisfying transforma-
tion sequence

the set of represented transformation sequences remains unchanged. What does change is the
amount of information available in target and source patterns to the right of the leftmost source
and target pattern. The source and target patterns of an s/t-pattern sequence are enriched in
order to discard false negatives in the subsequent analysis step (i.e. by Theorem T.2r (p. 143)
or Theorem T.3r (p. 149)).

Lemma 7.3 (forward propagation over sequences, modified from the original source [3]).
Given a set of graph rules R, a pattern F , and the set of sequences constructed by Seqr

k(R,C),
we describe forward propagation as a function prop such that for all seq ∈ Seqr

k(R,C), we have
seq ≡ prop(seq).

Construction. We construct prop recursively as follows:

prop(src1 ⇒b1 tar1) = src1 ⇒b1 tar ′1
prop(src1 ⇒b1 tar1, src2 ⇒b2 tar2, ..., srck ⇒bk tark)
=src1 ⇒b1 tar ′1,prop(comb(tar ′1, src2)⇒b2 tar2, ..., srck ⇒bk tark),

where, given tar1 = ∃(t1 ∶ R1 ↪ T1,acT1),

tar ′1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

false if L(b−11 , src1) = false

∃( t1,acT ′1) if L(b−11 , src1) has the form ∃( t1,ac′T1
)

∃(t′1 ○ t1,acT ′1) if L(b−11 , src1) has the form ∃(t′1 ○ t1,ac′T ′1
)

with

acT ′1 =
⎧⎪⎪⎨⎪⎪⎩

ac′T1
∧ Shift( t1,Appl(b−11 )) if L(b−11 , src1) has the form ∃( t1,ac′T1

)
ac′T ′1

∧ Shift(t′1 ○ t1,Appl(b−11 )) if L(b−11 , src1) has the form ∃(t′1 ○ t1,ac′T ′1
)
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and, given src2 = ∃(s′2 ○ s2 ∶ L2 ↪ T1,acS2), comb is defined as follows:

comb(tar ′1, src2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

false if tar ′1 = false or src2 = false

∃( s′2 ○ s2,acT ′1) if tar ′1 = ∃( t1,acT ′1)
∃(t′1 ○ s′2 ○ s2,acT ′1) if tar ′1 = ∃(t′1 ○ t1,acT ′1)

L1acL1
▷
�

s1

��

K1�

��

� //?oo R1�

t1

��

∅?oo
�

��
L2acL2

▷
�

s2
��

S1acS1
▷ D1

� //?oo T1

ac
T
1 ▷

ac T
′
1

▷
S2_

s′2oo

ac
S 2
▷

L1acL1
▷
�

s1

��

K1�

��

� //?oo R1�

t1

��

∅?oo
�

��
L2acL2

▷
�

s2
��

S1�
t′0 ��

acS1
▷ D1

� //?oo T1

ac
T
1 ▷

�

t′1 ��

S2_
s′2oo

ac
S 2
▷

T ′0
acT ′

0
▷ T ′1

acT ′
1
▷

with the second and third case of tar ′1 and comb illustrated in the left and right diagram
above, respectively. The third cases applies to source patterns (depicted on the right) src1 =
∃(t′0 ○ s1,acT ′0) with ∃s1 = L(b1,∃t1); then, L(b−11 , src1) = ∃(t′1 ○ t1,acT ′1).

Proof. We will show the required statement by structural induction. We will consider the
second case of comb and third case of tar ′1 only; the other cases work analogously.

Base case. Let seq = src1 ⇒b1 tar1 be an s/t-pattern sequence constructed as part of a
Seqk- and prop-construction with src1 = ∃(s1,acS1) and tar1 = ∃(t1,acT1). Then, prop(seq) =
src1 ⇒b1 tar ′1. Furthermore, let trans = G0 ⇒b1,m1,m′1 G1 be a transformation sequence. We
need to show trans ⊧ seq ⇔ trans ⊧ prop(seq).

Only if. Assume trans ⊧ seq . Then, m1 ⊧ src1 and with the L-construction we have m′
1 ⊧

L(b−11 , src1). Assuming L(b−11 , src1) = ∃(t′1 ○ t1,ac′T ′1
) (third case), we get an injective morphism

x′ ∶ T ′1 ↪ G1 with m′
1 = x′ ○ t′1 ○ t1 and x′ ⊧ ac′T ′1

. With m′
1 ⊧ Appl(b−11 ), we get x′ ⊧ Shift(t′1 ○

t1,Appl(b−11 )), implying q ⊧ tar ′1. Then, m′
1 ⊧ tar ′1. m1 ⊧ src1 and m′

1 ⊧ tar ′1 imply trans ⊧
prop(seq).

If. Assume trans ⊧ prop(seq). Then, m′
1 ⊧ tar ′1 with tar ′1 = ∃(t′1 ○ t1,acT ′1), i.e. m′

1 ⊧
L(b−11 , src1) and with the L-construction we have m1 ⊧ src1. By construction of Seqr

k(R,C),
there is an underlying pattern src−1 = L(b1, tar1) (with src−1 = ∃(s1, acS1) as in the diagram
above) such that m1 ⊧ src−1 and hence, m′

1 ⊧ tar1, implying trans ⊧ seq .

L1acL1
▷

(1)

�

s1

��
=

n

m1⊧acL1





◁
ac
L
1

K1

(2)

�

��

� //?oo
�





R1�
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��



m′1

��

∅?
iR1oo

�

iL2 ��
L2�

s2
��



m2⊧∃(s2,acS2
)=src2

��

T0 �

""

S1

(3)

?oo ◁a
cS1

D1

(4)

�

r+1
//?oo

�

d′1 ��

T1�
t′1 ��

�

y′

!!

ac
T
1 ▷

S2?
s′2oo

�

y

��

ac
S
2 ▷

T ′0
acT ′

0
▷

(5)
h

uu

D′
1
� r′1 //
�

k′1 ��

_oo T ′1 �

x′ ((
(6)ac T

′

1

▷

G0 K ′
1
� r∗1 //?oo G1

Inductive step. Let seq ′ = src1 ⇒b1 tar1, src2 ⇒b2 ... ⇒bk+1 tark+1 be a k+1-sequence of s/t-
patterns constructed as part of a Seqk-construction. Given a transformation sequence trans ′ =
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G0 ⇒b1,m1,m′1 G1 ⇒b2,m2,m′2 ...⇒bk+1,mk+1,m′k+1 Gk+1, we need to show trans ′ ⊧ seq ′⇔ trans ′ ⊧
prop(seq ′).

Only if. Assume trans ′ ⊧ seq ′. Then, we have m1 ⊧ src1, which implies m′
1 ⊧ L(b−11 , src1)

and m′
1 ⊧ tar ′1 with tar ′1 = ∃(t′1 ○ t1,acT ′1) and pushouts (3) and (4).

Furthermore, trans ′ ⊧ seq ′ implies (m′
1,m2) ⊧ (tar1, src2) (where tar1 = ∃(t1,acT1) and

src2 = ∃(s′2 ○ s2,acT1)). Thus, there exists an injective morphism y′ ∶ T1 ↪ G1 such that
y′ ○ t1 =m′

1, y
′ ○ s′2 ○ s2 =m2, and y′ ⊧ acT1 .

By pushout decomposition, (G1, r
∗
1 , y

′) is a pushout and hence, y′ ○ r+1 = r∗1 ○ k′1 ○ d′1. Since
(4) is also a pushout, there is an injective morphism x′ ∶ T ′1 ↪ G1 such that x′ ○ r′1 = r∗1 ○ k′1
and x′ ○ t′1 = y′. Then, by pushout decomposition, (G1, r

∗
1 , x

′) is a pushout (6) over r′1 and
k′1, implying x′ ⊧ acT ′1 . Furthermore, we have x′ ○ t′1 ○ s′2 ○ s2 = y′ ○ s′2 ○ s2 = m2, i.e. m2 ⊧
comb(tar ′1, src2). With x′ ○ t′1 ○ t1 = m′

1, we get (m′
1,m2) ⊧ (tar ′1, comb(tar ′1, src2)) and, by

inductive hypothesis, trans ′ ⊧ prop(seq ′).
If. Assume trans ′ ⊧ prop(seq ′). Then, we havem1 ⊧ src1 and, for the respective target/source

pattern, (m′
1,m2) ⊧ (tar ′1, comb(tar ′1, src2)), i.e. there exists an injective morphism x′ ∶ T ′1 ↪

G1 such that x′ ⊧ acT ′1 , x′ ○ t′1 ○ t1 = m′
1, x

′ ○ t′1 ○ s′2 ○ s2 = m2, and (3) and (4) are pushouts.
There also exists an injective morphism y′ ∶ T1 ↪ G1 with y′ = x′ ○ t′1 such that y′ ○ t1 = m′

1

and y′ ○ s′2 ○ s2 =m2. Since m1 ⊧ src1 and by construction of Seqr
k(R,C), there is an injective

morphism q ∶ S1 ↪ G0 such that q ⊧ acS1 . Since (4) + (6) and (3) + (5) are pushouts and by
the L-construction, we get y′ ⊧ acT1 and hence, (m′

1,m2) ⊧ (tar1, src2). With the inductive
hypothesis, we have trans ′ ⊧ seq ′.

Informally, the complex prop-construction can be reduced to the following explanation: first,
context is propagated from a source to the next target pattern via the L-construction and the
inverse rule. Then, the applicability condition of the inverse version of the subsequent rule it
added to the target pattern. If we have not reached the rightmost target pattern, it will be
part of a target/source pattern. Since the existential condition of target/source patterns has
to have the same codomain, the source pattern has to be extended by applying comb. Then,
application of prop uses the extended source pattern to continue the recursion. The extension
by comb is the most complex part of the construction and relies on the results of the previous
Seq-construction in order to propertly extend and connect the target/source patterns. Still,
prop always terminates and yields a finite result by construction.

The distinction between the second and third case of computing tar1 and comb is necessary
because an s/t-pattern sequence’s leftmost source pattern is different from source patterns in
a target/source pattern of the sequence (if the sequence was created by the Seq-construction).
The positive context s ∶ L1 → S1 of such a source pattern src1 = ∃(s1, . . . ) was created from
a corresponding target pattern tar1 = ∃(t1, . . . ) by L(b1,∃(t1, . . . )) = ∃(s1, . . . ). Hence, ap-
plication of L(b−11 ,∃(s1, . . . )) will again result in ∃(t1, . . . ) (although the composed negative
application condition may have changed). This is covered by the second case.

If, however, L is applied to an intermediate source pattern srci+1, the situation is different.
Firstly, srci+1 is part of a target/source pattern. Because of the combination of target and
source patterns in step SCk-1+, srci+1 will have the structure ∃(s′i○si+1, . . . ) with ∃(si+1, . . . ) =
L(bi+1, tar i+1) the result of the previous step SCk-2 of the Seq-construction (and tar i+1 =
∃(ti+1, . . . )). As a result, we have L(b−1i+1,∃(s′i ○ si+1, . . . )) = ∃(t′i+1 ○ ti+1, . . . ). Secondly, srci+1
may already have had context propagated from earlier patterns in the sequence. This leads to
srci+1 = ∃(t′i ○ s′i ○ si+1, . . . ), with similar results for application of L. Both cases are combined
as srci+1 = ∃t′i ○si+1 in the third case of prop and comb. For instance, in the respective diagram
on the right, we have src1 = ∃(t′0 ○ s1, . . . ).
Example 7.4 (forward propagation). Consider Figure 7.4, which depicts the s/t-pattern se-
quence from Example 7.2 (p. 172), Figure 7.3(a): seq2 = ∃src1 ⇒a2f′ (tar1, src2)⇒f2f′ tar2 or,
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𝑡2
′  

⇒𝑎2𝑓′  ⇒𝑓2𝑓′  

s:Shuttle 

ta:Track 
:next :isAt 

:acc 

tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 

s:Shuttle 

ta:Track tb:Track 
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Figure 7.4. – S/t-pattern sequence seq ′2 = prop(seq2) = ∃s1 ⇒a2f′ (∃t1,∃s2) ⇒f2f′ ∃(t′2 ○ t2)
with seq2 ∈ Seqr

2(R, F1)

in more detail, seq2 = ∃s1 ⇒a2f′ (∃t1, s2)⇒f2f′ tar2. As mentioned before, ∃t2 does not contain
the information about the second sensor fault; furthermore, it does not show the existence of a
fourth track ta, although any satisfying transformation sequences will contain both the sensor
faults and the track.

Since ∃s1 is the direct result of L(a2f′,∃t1) and does not have a non-trivial nested application
condition, there is nothing to propagate from ∃s1 to ∃t1 in this example. Formally, we have
L(a2f′−1,∃s1) = ∃t1, which triggers the second case of prop: tar ′1 = ∃t1. Consequently, the tar-
get/source pattern (tar ′1, src2) = (tar1, src2) = (∃t1,∃s2) is also left unchanged. In particular,
we have:

prop(seq2) = prop(src1 ⇒a2f′ tar1, src2 ⇒f2f′ tar2)
= src1 ⇒a2f′ tar ′1,prop(comb(tar ′1, src2)⇒a2f′ tar2) (where tar ′1 = L(f2f′−1, src1))
= src1 ⇒a2f′ tar1,prop(src2 ⇒f2f′ tar2)

Then, prop(src2 ⇒ tar2) requires transfer of ∃s2 over the inverse rule of f2f′ to the new
target pattern tar ′2. Here, we have L(f2f′−1,∃s2) = ∃(t′2 ○ t2) (see Figure 7.4). This is the third
case of prop. In particular,

prop(src2 ⇒f2f′ tar2) = src2 ⇒f2f′ tar ′2 (where tar ′2 = L(f2f′−1, src2))
= src2 ⇒f2f′ ∃(t′2 ○ t2).

Formally, tar ′2 is indeed a new target pattern. In practice and the implementation, however,
we can simply add new elements to the context graph T2 – here, those are the track ta, its
connection to tb, and the second fault edge.

Since both rules do not create any elements, their inverse rules do not delete any elements.
Thus, both have a trivial applicability condition (i.e. true) – and their transfer (see construction
of prop) does not change the respective patterns.

After applying forward propagation, the reduction of ∃(t′2○t2) to the pattern ∃(iT ′2 ∶ ∅↪ T ′2)
will indeed imply the guaranteed patternH16 because T ′2 contains a shuttle with two fault edges.
We would not have found this implication in ∃(iT2 ∶ ∅↪ T2). △
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7.1.2. Analysis of Pattern Sequences

In general, with longer sequences and with more complex composed negative application con-
ditions in particular, forward propagation can affect the analysis of sequences in the following
ways:

– Additional (propagated) nodes and edges may reveal a violation of a different forbidden
pattern or a guaranteed pattern in an intermediate target/source pattern or the rightmost
target pattern.

– Propagated composed negative application conditions may cause a previously failed im-
plication check to succeed because the propagated condition corresponds to a forbidden
or guaranteed pattern’s composed negative application condition.

Note that these effects and forward propagation in itself does not change violation or satis-
faction of forbidden or guaranteed patterns by graphs of a satisfying transformation sequence.
Lemma 7.3 (p. 173) states that for any s/t-pattern sequence constructed by a Seq-construction,
its set of represented – i.e., satisfying – transformation sequences is equal to the set of satisfy-
ing transformation sequences for the s/t-pattern sequence after forward propagation. Forward
propagation does not change satisfiability and satisfying transformation sequences – it simply
reveals information that, for the purpose of analyzing individual and intermediate source and
target patterns, is hidden in other source or target patterns.

Including forward propagation during the analysis requires changing Theorem T.2r as fol-
lows: instead of all sequences seq ∈ Seqr

k(R,F), we have to consider all sequences prop(seq)
for sequences seq ∈ Seqr

k(R,F). Conditions (1) and (2) remain the same.

Theorem T.2e-fp (k-inductive invariant checking with forward propagation [3]). Let GTS =
(R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi and H = ⋀j∈J ¬Hj be a composed
forbidden pattern and composed guaranteed pattern, respectively.
F is a k-inductive invariant for GTS under H if, for all sequences prop(seq) with prop(seq) =

src1 ⇒b1 ...⇒bk tark and seq ∈ Seqr
k(R,¬F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ k ∧ (srcz∣∅ ⊧Hv ∨ srcz∣∅ ⊧ Fv)).
2. ∃v(tark∣∅ ⊧Hv).

Proof. This follows from the proof of Theorem T.2r (p. 143) and the equivalence prop(seq) ≡
seq given seq ∈ Seqr

k(R,¬F) (Lemma 7.3 (p. 173)).

Example 7.5 (forward propagation and 2-inductive invariant checking). Given seq = ∃s1 ⇒a2f′

(∃t1,∃s2)⇒f2f′ ∃t2 as in Example 7.2 (p. 172), Figure 7.3(a), analysis by Theorem T.2r (p. 143)
fails to show that seq is a false negative. When we consider Theorem T.2e-fp, we investigate
seq ′ = prop(seq) = ∃s1 ⇒a2f′ (∃t1,∃s2) ⇒f2f′ ∃t′2 (Example 7.4, Figure 7.4 (p. 176)) instead.
Then, as mentioned in Example 7.4 (p. 175), we have ∃iT ′2 ⊧H16, which is covered by condition
(2) of the updated theorem. The s/t-pattern sequence – and, indeed, all other remaining
sequences – can be discarded as a counterexample: F is a 2-inductive invariant of GTS under
H. △

Theorem T.3r (p. 149) (and Theorems T.4r (p. 153) and T.5r (p. 155)) can be updated in
a similar fashion:

Theorem T.3e-fp (k−1-bounded backward model checking). Let GTS = (R,TG) be a graph
transformation system and F = ⋀i∈I ¬Fi, H = ⋀j∈J ¬Hj, and S = ⋀o∈O ¬So be a composed
forbidden pattern, composed guaranteed pattern, and composed start configuration pattern, re-
spectively, with S ⊧ F .
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For all graphs G ∈ REACHk−1(GG ,H) and graph grammars GG = (GTS ,G0) with GG ∈
IND(GTS ,S), we have G ⊧ F , if for all sequences prop(seq) with prop(seq) = src1 ⇒b1 ...⇒bn

tarn and seq ∈ SEQr
k−1(R,¬F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ n ∧ (srcz∣∅ ⊧Hv)).
2. ∃v(tark∣∅ ⊧Hv).
3. ∃v(src1∣∅ ⊧ SC v).

Proof. Similar to the proof of Theorem T.2e-fp (p. 177), this theorem can be shown by
combining the proof of Theorem T.3r (p. 149) with prop(seq) ≡ seq given seq ∈ Seqr

k(R,¬F)
(Lemma 7.3 (p. 173)).

7.1.3. Implementation

Implementing forward propagation does not require any changes to the functions createSe-
quences or extendSequences. However, we need to add forward propagation after constructing
s/t-pattern sequences and make sure that propagated sequences are properly analyzed. Algo-
rithm 7.1 shows an updated version of Algorithm 6.7 (p. 158): after applying extendSequences,
all s/t-pattern sequences seq have forward propagation (prop(seq), described in Algorithm 7.2)
applied to them. Each sequence is also the target of another analysis step: although analysis is
interwoven in extendSequences (see Algorithm 6.9 (p. 160)), it has to be repeated after applying
forward propagation.

Algorithm 7.1: k-invcheck-prop.

desc. : verification scheme for k-inductive invariant checking with forward
propagation (Theorem T.2e-fp)

input : an integer k with k ≥ 1, a set R of graph rules, a set F of forbidden
patterns, a set H of guaranteed patterns

output: a set of k-sequences of s/t-patterns as counterexamples

1 results ← ∅
2 foreach F ∈ F do /* Seqr

1(R,F) */

3 results ← results ∪ createSequences(R, F,H,F ∪H)
4 for i← 2 to k do
5 temp ← extendSequences(R, results,F ∪H) /* Seqr

k(R,F) */

6 results ← ∅
7 for seq ∈ temp do
8 seq ′ ← prop(seq) /* prop(seq) */

9 if not discardSequence(seq ′,F ,H) then /* analysis */

10 results ← results ∪ {seq ′}

11 return results

Algorithm 7.3 shows a similarly modified variant of Algorithm 6.10 (p. 161) for k−1-bounded
backward model checking. As before, s/t-pattern sequences have to be analyzed again after
forward propagation has been applied. Here, this means comparing the sequence’s reduced
patterns with the guaranteed patterns.
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Algorithm 7.2: prop(seq)
desc. : forward propagation for s/t-pattern sequences (Lemma 7.3 (p. 173))
input : an s/t-pattern sequence seq = src1 ⇒b1 ...⇒bk tark created by the

Seq-construction
output: the s/t-pattern sequence after application of forward propagation

L1acL1
▷
�

s1

��

K1�

��

� //?oo R1�
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��

∅?oo
�

��
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▷
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acS1
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ac
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t′1 ��

S2_
s′2oo

ac
S 2
▷

T ′0
acT ′

0
▷ T ′1

acT ′
1
▷

1 if seq has the form src1 ⇒b1 tar1 then /* prop, case 1, end of recursion */

2 if L(b−11 , src1) = false then
3 tar ′1 ← false

4 else if L(b−11 , src1) = ∃(t1,ac′T1
) then /* left diagram */

5 tar ′1 ← ∃(t1,acT ′1 ∧ Shift(t1,Appl(b−11 )))
6 else if L(b−11 , src1) = ∃(t′1 ○ t1,ac′T ′1

) then /* right diagram */

7 tar ′1 ← ∃(t′1 ○ t1,acT ′1 ∧ Shift(t′1 ○ t1,Appl(b−11 )))
8 seq ← src1 ⇒b1 tar ′1
9 return seq

10 else /* prop, case 2, with src2 = ∃(s′2 ○ s2) */

11 if L(b−11 , src1) = false then
12 tar ′1 ← false
13 src2 ← false /* comb, case 1 */

14 else if L(b−11 , src1) = ∃(t1,ac′T1
) then /* left diagram */

15 tar ′1 ← ∃(t1,acT ′1 ∧ Shift(t1,Appl(b−11 )))
16 src2 ← ∃(s′2 ○ s2,acT ′1 ∧ Shift(t1,Appl(b−11 ))) ( /* comb, case 2 */)

17 else if L(b−11 , src1) = ∃(t′1 ○ t1,ac′T ′1
) then /* right diagram */

18 tar ′1 ← ∃(t′1 ○ t1,acT ′1 ∧ Shift(t′1 ○ t1,Appl(b−11 )))
19 src2 ← ∃(t′1 ○ s′2 ○ s2,acT ′1 ∧ Shift(t′1 ○ t1,Appl(b−11 ))) ( /* comb, case 3 */)

20 seq ← src1 ⇒b1 tar ′1,prop(src′2 ⇒b2 ...⇒bk tark) /* recursion */

21 return seq
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Algorithm 7.3: k−1-modelcheck-prop.

desc. : verification scheme for k−1-bounded backward model checking using forward
propagation (Theorem T.3e-fp (p. 177))

input : an integer k with k ≥ 2, a set R of graph rules, a set F of forbidden patterns,
a set H of guaranteed patterns, a set S of start configuration patterns

output: a set of k-sequences of s/t-patterns as counterexamples

1 sequences ← ∅
2 foreach F ∈ F do /* Seqr

1(R,F) */

3 sequences ← sequences ∪ createSequences(R, F,H,H)
4 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bn tarn do /* analysis */

5 if not discardPattern(src1∣∅,S) then

6 results ← results ∪ {seq}

7 for i← 2 to k − 1 do
8 temp ← extendSequences(R, sequences,H) /* Seqr

k−1(R, F ) */

9 sequences ← ∅
10 for seq ∈ temp do
11 seq ′ ← prop(seq) /* prop(seq) */

12 if not discardSequence(seq ′,∅,H) then /* analysis */

13 sequences ← sequences ∪ {seq ′}

14 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bn tarn do /* analysis */

15 if not discardPattern(src1∣∅,S) then

16 results ← results ∪ {seq}

17 return results
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7.2. Rule Priorities

One extension of the restricted formal model has been described and discussed in earlier
work [BBG+06, Dyc12] for 1-inductive invariant checking: rule priorities. Rule priorities are a
lesser form of control programs, which are an established concept [Pen09, GdMR+12] to steer
rule applicability and application beyond nested application conditions.

Rule priorities work as follows: when matches for multiple rules can be found in a specific
graph – and those matches also satisfy the respective application conditions – only those
(applicable) rules with the highest priority may be applied. In this section, we discuss an
extension that modifies the restricted approach to take rule priorities into account. In terms
of this thesis’s contribution, it contributes mainly to the approach’s applicability to different
classes of examples. Supporting rule priorities requires reiterating the respective definitions in
the context of the restricted formal model. While the construction of sequences does not need
to be changed, the theorem for their analysis will be updated.

7.2.1. Formal Model

Priorities are formalized by a function mapping rules to natural numbers [BBG+06, BG08b]
as defined in the following definition, which refines Definition 2.20 (p. 32).

Definition 7.6 (graph rules with priorities, graph transformation (sequences) with priorities).
Given a set of graph rules R, rule priorities are defined as a function prio ∶ R → N. The
application of a graph rule with priorities b = ⟨(L ↩K ↪ R),acL ,acR⟩ with b ∈ R consists of
two pushouts (1) and (2) such that G0 ⇒b,m,m′ G1 is a graph transformation and there does
not exist a rule b′ ∈R such that prio(b′) > prio(b) and there is a transformation G0 ⇒b′,n,n′ G

′
1.

L

(1) (2)

acL▷ �

m
��

K � r
//?

l
oo

��

R ◁acR�

m′
��

G0 D � //?oo G1

We denote the transformation with priorities as G0 ⇒prio
b,m,m′ G1. We write G0 ⇒prio

b G1

or G0 ⇒prio G1 to express that there exist m, m′ (or b, m, and m′, respectively) such that
G0 ⇒prio

b,m′,m′ G1. We also write G0 ⇒prio
R G1 to express that there exists a rule b ∈ R such that

G0 ⇒prio
b G1.

Similarly, for transformation sequences, G0 ⇒prio
R G1 ⇒prio

R ...⇒prio
R Gk expresses subsequent

graph transformations G0 ⇒prio
R G1, ..., Gk−1⇒prio

R Gk and is also denoted by G0 ⇒k,prio
R Gk or,

where specific rules, matches or comatches are of interest, by G0 ⇒prio
b1,m1,m′1

...⇒prio
bk,mk,m

′
k
Gk.

Intuitively, graph rules with priorities may only be applied if there is no rule of higher
priority (prio(b′) > prio(b)) applicable. Note that, since the existence of other applicable rules
of higher priority needs to be considered, the concept of graph transformations with priorities
always relates to a set of rules over which priorities are defined.

Similar to Definitions 2.20 and 7.6 (p. 181), we refine Definition 2.24 (p. 34) as follows:

Definition 7.7 (typed graph transformation system with priorities). A typed graph transfor-
mation system with priorities GTS = (TG ,R,prio) consists of a type graph TG, a set of typed
graph rules R, and a priority function prio ∶R→N.

Since the addition of rule priorities changes the notion of rule applicability, we also need to
refine the concepts of graph grammars and their state spaces:
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Figure 7.5. – Graph rules from running examples without priorities

Definition 7.8 (typed graph grammar with priorities, state space). A typed graph grammar
with priorities GG = (G0,GTS) consists of an initial graph G0 and a typed graph transforma-
tion system with priorities GTS = (TG ,R,prio).

The state space of a graph grammar GG = ((TG ,R,prio),G0) is defined as REACH(GG) =
{G ∣ ∃n(G0 ⇒n,prio

R G)}, i.e. as the set of graphs reachable by graph transformations from the
initial graph, taking priorities into account.

A common application of rules with priorities is to make sure that the application of certain
rules can be preempted by higher-priority rules, where necessary – for instance, to prevent
erroneous behavior or to repair an erroneous or dangerous situation as soon as it occurs.

Example 7.9 (graph rules with priorities, running example). Figure 7.5(a) shows the graph
rule s2a (seen, for example, in Example 6.1 (p. 111)) with a composed negative application
condition: the shuttle is only allowed to accelerate if there does not exist a switch one or two
tracks ahead. Thus, whenever the system finds a match of the left rule side L as a subgraph
of the situation described by X1 or X2, only the rule s2s (Figure 7.5(b)) will be applicable,
keeping the speed mode unchanged.

This is a precaution aiming at preventing a violation of the safety property – a fast shuttle
on a switch. Using priorities, we can achieve a similar effect without the composed negative
application condition ¬∃x1 ∧ ¬∃x2. Figure 7.6(a) shows a graph rule s2s∗1 with a priority of 1,
i.e. prio(s2s∗1) = 1. Its left side and the context of the negative application condition ¬∃x2 in
rule s2a above are isomorphic. Hence, whenever ¬∃x2 would prevent the application of s2a to
a specific shuttle, application of s2s∗1 would be prioritized over the application (to the specific
shuttle) of a rule s2a∗ (Figure 7.6(c)) with prio(s2a∗) = 0 and with only a trivial composed
negative application condition true. Likewise, rule s2s∗2 in Figure 7.6(b) emulates the negative
application condition ¬∃x1. Similar considerations are applicable to rules f2f and a2f. Of course,
we will sill require a regular s2s rule (with prio(s2s) = 0); a shuttle may also choose to stay in
speed mode slow without a switch ahead.

In a similar fashion, we can replace the rules f2f and a2f by two rules f2f∗ and a2f∗ (with
trivial application conditions true) and add rules a2b∗1 and f2b∗1 , which are similar to s2s∗1 and
have a priority of 1. Since the original rules f2f and a2f only have a single negative application
condition each, we do not need another rule in either case. The remaining rules a2b, f2b, b2s
remain unchanged; hence, R = {s2s, s2s∗1 , s2s∗2 , s2a∗, f2f∗, a2f∗, a2b, a2b∗1 , f2b, f2b∗1 ,b2s}.

Note that this strategy may lead to unintended consequences if we analyze behavior of
more than one shuttle. The notion of rule applicability with priorities used here is not specific
to certain entities or matches. For example, applicability of s2s∗1 with prio(s2s∗1) = 1 will be
prioritized over all potential rule applications of lower priority (such as s2a), even when those
rule applications concern other shuttles in different situations. This is a concern in systems
where concurrency needs to be taken into account.
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Figure 7.6. – Updated graph rules with priorities

In this example, we want to verify a composed forbidden pattern F = ¬F1 (Figure 7.2(a),
p. 172) that only forbids a shuttle on a switch in speed mode fast. We also use the same
composed guaranteed pattern H = ¬H1 ∧ ... ∧ ¬H15 as in Example 6.1 (p. 111) – or as in
Example 7.1 (p. 170), but without the single fault assumption. △

This example has shown the potential of rule priorities to replace certain types of application
conditions. Conversely, rule priorities may be replaced by suitable application conditions: in
order to encode rules with priorities without using priorities, suitable (composed) negative
application conditions for each rule of higher priority can be added to a rule of lower priority.
In essence, the application conditions should prohibit the existence of any elements leading to
the applicability of a rule of higher priority; then, the rule (of lower priority) can be applied.
However, depending on the size of the rules and their common subgraphs – i.e. potential
overlappings – those application conditions may grow to be rather large and unintuitive.

Considering graph rules with priorities requires an extension of our definition of k-inductive
invariants based on the original Definition D.1 (p. 62). Basically, we replace the notion of rule
application (previously denoted ⇒R) with rule application via priorities (denoted ⇒prio

R ):

Definition 7.10 (k-inductive invariant and rule priorities). Given a typed graph transfor-
mation system with priorities GTS = (TG ,R,prio) and graph constraints F and H, F is a
k-inductive invariant of GTS under H, if, for all sequences of transformations to R trans =
G0 ⇒prio

R G1 ⇒prio
R ...⇒prio

R Gk it holds that:

∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H)⇒ (Gk ⊧ F ∨Gk /⊧H)

In the restricted approach to k-inductive invariant checking, Lemma 6.10 (p. 123) rearranged
Definition D.1 (p. 62) to a condition that is more directly verifiable. Likewise, we can rearrange
Definition 7.10, again replacing the notion of rule applications:

Lemma 7.11 (k-inductive invariant and transformation sequences as counterexamples with
priorities). Given a typed graph transformation system with priorities GTS = (TG ,R,prio),
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a composed forbidden pattern F = ⋀i∈I ¬Fi, and a composed guaranteed pattern H = ⋀j∈J ¬Hj,
F is a k-inductive invariant for GTS under H, if and only if the following holds for each
k-sequence of transformations to R trans = G0 ⇒prio

R ...⇒prio
R Gk:

∃u(Gk ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv))

Proof. This follows analogously to the proof of Lemma 6.10 (p. 123) based on Definition D.1
(p. 62).

Taking priorities in k−1-bounded backward model checking into account requires updating
the definition for bounded states spaces:

Definition 7.12 (bounded state space with priorities under constraint). Given a number
k ∈N, we define the graph grammar’s state space with priorities bounded by k (or k-bounded
state space) as REACHk(GG) = {G ∣ ∃n(0 ≤ n ≤ k ∧ G0 ⇒n,prio

R G)}. Likewise, we define the
state space with priorities bounded by k under a graph constraint H as REACHk(GG ,H) =
{G ∣ ∃n(0 ≤ n ≤ k ∧ G0 ⇒n,prio

R G) such that all traversed graphs satisfy H}.
This definition can then be rearranged, too:

Lemma 7.13 (k-bounded state spaces and transformation sequences as counterexamples).
Let GTS = (R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi, H = ⋀j∈J ¬Hj, and
S = ⋀o∈O ¬So be graph constraints. For all graphs G ∈ REACHk(GG ,H) with graph grammars
GG ∈ IND(GTS ,S), we have G ⊧ F if and only if S ⊧ F and the following holds for each
sequence of transformations to R trans = G0 ⇒prio

b1,m1,m′1
...⇒prio

bn,mn,m′n
Gn with 0 ≤ n ≤ k:

∃u(Gn ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ n ∧Gz ⊧Hv) ∨ ∀z(0 ≤ z ≤ n⇒ ∃v(Gz ⊧ Sv)))

Proof. This follows analogously to the proof of Lemma 6.11 (p. 124) based on Definition 2.28
(p. 36).

In order to take rule priorities into account when verifying k-inductive invariants or per-
forming k−1-bounded backward model checking, we leave the process of creating s/t-pattern
sequences with the Seq-construction unchanged. Instead, we update the analysis of sequences,
as described in the following section.

7.2.2. Analysis of Pattern Sequences

With respect to the verification of k-inductive invariants – or k-bounded backwards model
checking – counterexamples are only valid if they follow the respective notion of rule appli-
cability. Here, this includes priorities of graph rules. Priorities offer another opportunity to
discard s/t-pattern sequences as counterexamples. In order to consider priorities in a symbolic
fasion, we analyze (reductions of) source patterns in s/t-pattern sequences for implication of
rule applicability constraints of rules of higher priority (than the rule connecting the source
and subsequent target pattern). Successful implication means that a rule of higher priority
would have been applicable in all satisfying transformation sequences. As such, the s/t-pattern
sequence does not represent valid transformation sequences with respect to a notion of rule
application including priorities.

Hence, we update Theorem T.2r by adding a third condition to discard s/t-pattern sequences:

Theorem T.2e-rp (k-inductive invariant checking with priorities). Let GTS = (TG , (R,prio))
be a graph transformation system with priorities and F = ⋀i∈I ¬Fi and H = ⋀j∈J ¬Hj be a com-
posed forbidden pattern and composed guaranteed pattern, respectively.
F is a k-inductive invariant for GTS under H if, for all sequences seq = src1 ⇒b1 ...⇒bk tark

with seq ∈ Seqk(R,F), one of the following conditions holds:
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1. ∃n, o(1 ≤ n ≤ k ∧ (srcn∣∅ ⊧Ho ∨ srcz∣∅ ⊧ Fv)).
2. ∃o(tark∣∅ ⊧Ho).
3. ∃n, b′(1 ≤ n ≤ k ∧ b′ = ⟨(L′ ↩K ′ ↪ R′),acL′ , true⟩ ∈R ∧ prio(b′) > prio(bn) ∧ srcn∣∅ ⊧

∃(iL′ ,acL′ ∧Appl(b′)).

Proof. According to Lemma 7.11 (p. 183), we need to show that for all k-sequences of trans-
formations G0 ⇒prio

R ...⇒prio
R Gk, it holds that:

∃u(Gk ⊧ Fu)⇒ ∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv)

Consider an arbitrary k-sequence of transformations to R (with corresponding graphs)
trans = G0 ⇒R ...⇒R Gk such that ∃u(Gk ⊧ Fu) with, for ease of reading, Fu = F . More specif-
ically, trans = G0 ⇒b1,m1,m′1 ...⇒bk,mk,m

′
k
Gk for rules bi ∈R and matches (comatches) mi (m′

i)
and trans leads to F . By Theorem T.1r, there is a k-sequence of s/t-patterns seq ∈ Seqk(R, F )
with trans ⊧ seq .

By precondition, one of the following is true:

1. There exist n, o with 1 ≤ n ≤ k such that srcn∣∅ ⊧ Ho or srcn∣∅ ⊧ Fo. Because of trans ⊧
seq ′, we havemn ⊧ srcn and, withmn ∶ Ln ↪ Gn−1 and Lemma 2.38, we gainGn−1 ⊧ srcn∣∅
and, by implication of graph constraints (Definition 2.36), Gn−1 ⊧Ho or Gn−1 ⊧ Fo.

2. There exists o such that tark∣∅ ⊧ Ho. Because of trans ⊧ seq ′, we have m′
k ⊧ tark and,

with m′
k ∶ Rk ↪ Gk and Lemma 2.38, we gain Gk ⊧ tark∣∅ and, by implication of graph

constraints (Definition 2.36), Gk ⊧Ho.
3. There exist n, b′ with 1 ≤ n ≤ k, b′ ∈ R with b′ = ⟨(L′ ↩K ′ ↪ R′),acL′ , true⟩, and

prio(b′) > prio(bn) such that srcn∣∅ ⊧ ∃(iL′ ,acL′ ∧ Appl(b′)). Then, by Lemmas 2.38
(p. 43) and 2.30 (p. 37), there is a transformtion Gn−1⇒b′ G

′
n. By Definition 7.6 (p. 181),

this implies the absence of a transformation Gn−1⇒prio
bn,mn,m′n

Gn and, consequently, of a

transformation sequence G0 ⇒prio
b1,m1,m′1

...⇒prio
bk,mk,m

′
k
Gk.

Thus, for all transformation sequences G0 ⇒R ... ⇒R Gk with ∃u(Gk ⊧ Fu), there are n,
o with q ≤ n ≤ k such that Gn−1 ⊧ Ho or Gn−1 ⊧ Fo, there is an o such that Gk ⊧ Ho, or
G0 ⇒prio

R ...⇒prio
R Gk is not a transformation sequence (with respect to rule priorities). Then,

by Lemma 7.11 (p. 183), F is a k-inductive invariant for GTS under H.

Note that rule priorities are not encoded into s/t-pattern sequences – they are only considered
during the analysis by the theorem’s third condition. Hence, s/t-pattern sequences are still of
the form src1 ⇒b1 ...⇒bk tark, not src1 ⇒prio

b1
...⇒prio

bk
tark.

Example 7.14 (verification of 2-inductive invariants and rule priorities). Consider the system
described in Example 7.9 (p. 182). In order to apply Theorem T.2e-rp and verify ¬F1 as
a 2-inductive invariant, we need to compute Seqr

2(R, F1). An s/t-pattern sequence seq2 ∈
Seqr

2(R, F1) is shown in Figure 7.7, with seq2 = ∃s1 ⇒s2a∗ (∃t1,∃s2)⇒a2f∗ ∃t2.
By the third condition of Theorem T.3e-rp, we need to consider whether src1∣∅ or src2∣∅

imply the rule applicability constraint of a rule of higher priority than s2a∗ or a2f∗, respec-
tively, i.e. of s2s∗1 , s2s∗2 , a2b∗1 , or f2b∗1 . ∃(iLs2s∗

1
,acLs2s∗

1
∧Appl(s2s∗1)) is depicted in Figure 7.8 –

and indeed, src1∣∅ implies ∃(iLs2s∗
1
,acLs2s∗

1
∧Appl(s2s∗1)) and we can discard seq2 as a potential

counterexample. By the argument in the proof of Theorem T.2e-rp, any transformation se-
quence trans = G0 ⇒s2a∗,m1,m′1 G1 ⇒a2f∗,m2,m′2

G2 satisfying seq2 would also allow application

of s2s∗1 to G0. As a result, trans ′ = G0 ⇒prio
s2a∗,m1,m′1

G1 ⇒prio
a2f∗,m2,m′2

G2 (trans with priorities) is

not a valid transformation sequence.
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⇒𝑠2𝑎∗  ⇒𝑎2𝑓∗  
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ta:Track 
:next :isAt 
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tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 
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tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 
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:next 
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:acc 

tc:Track 
:next 

td:Track 

:next 

s:Shuttle 

ta:Track 
:next :isAt 

:acc 

tb:Track 
𝑅1 

∃𝑡1 

s:Shuttle 

tb:Track 
:next :isAt 

:acc 

tc:Track 
𝐿2 

∃𝑠2 

s:Shuttle 

tb:Track 
:next 

:isAt 
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tc:Track 𝑅2 

𝑆1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:slow 

tc:Track 
:next 

td:Track 

:next 

Figure 7.7. – S/t-pattern sequence seq2 = ∃s1 ⇒s2a∗ (∃t1,∃s2) ⇒a2f∗ ∃t′2 with seq2 ∈
Seqr

2(R, F1)

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

:slow 

t3:Track :next 

t4:Track :next 

∅ 

𝐿𝑠2𝑠1∗  

∃𝑖𝐿𝑠2𝑠1∗
  

Figure 7.8. – Rule applicability constraint ∃(iLs2s∗
1
,acLs2s∗

1
∧Appl(s2s∗1)) of s2s∗1

Other s/t-pattern sequences in Seqr
2(R, F1) will also be discarded by one of the condition in

Theorem T.3e-rp: F = ¬F1 is indeed a 2-inductive invariant for GTS = (TG , (R,prio)) under
H = ¬H1 ∧ ... ∧ ¬H15. △

Similarly, we can perform bounded backward model checking for graph transformation sys-
tems with priorities by adding a fourth condition to Theorem T.3r (p. 149).

Theorem T.3e-rp (k−1-bounded backward model checking with priorities). Let GTS =
(TG , (R,prio)) be a graph transformation system with priorities and F = ⋀i∈I ¬Fi, H =
⋀j∈J ¬Hj, and S = ⋀o∈O ¬So be a composed forbidden pattern, composed guaranteed pattern,
and composed start configuration pattern, respectively, with S ⊧ F .

For all graphs G ∈ REACHk−1(GG ,H) and graph grammars GG = (GTS ,G0) with GG ∈
IND(GTS ,S), we have G ⊧ F , if, for all sequences seq = src1 ⇒b1 ... ⇒bn tarn with seq ∈
SEQrk−1(R,F), one of the following conditions holds:

1. ∃w, j(1 ≤ w ≤ n ∧ (srcw∣∅ ⊧Hj)).
2. ∃j(tark∣∅ ⊧Hj).
3. ∀w(1 ≤ w ≤ n⇒ ∃o(srcn∣∅ ⊧ So)) ∧ ∃o(tarn ⊧ So).
4. ∃w, b′(1 ≤ w ≤ k ∧ b′ = ⟨(L′ ↩K ′ ↪ R),acL′ , true⟩ ∈R ∧ prio(b′) > prio(bw) ∧ srcw∣∅ ⊧

∃(iL′ ,acL′ ∧Appl(b′))).

Proof. According to Lemma 6.11 (p. 124), we need to show that for all sequences of trans-
formations G0 ⇒prio

R ...⇒prio
R Gn with 0 ≤ n ≤ k, it holds that

∃u(Gn ⊧ Fu)⇒ (∃z, v(0 ≤ z ≤ n ∧Gz ⊧Hv) ∨ ∀z(0 ≤ z ≤ n⇒ ∃v(Gz ⊧ Sv)))

Consider an arbitrary n-sequence of transformations to R (with corresponding graphs)
trans = G0 ⇒R ... ⇒R Gn such that 0 ≤ n ≤ k and ∃u(Gn ⊧ Fu) with, for ease of reading,
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Fu = F . More specifically, trans = G0 ⇒b1,m1,m′1 ...⇒bn,mn,m′n Gn for rules bi ∈ R and matches
(comatches) mi (m′

i) and trans leads to F .
By Theorem T.1r (p. 130), there is an n-sequence of s/t-patterns seq ∈ Seqr

n(R, F ) with
trans ⊧ seq . Since seq ∈ SEQr

n(R,F), by precondition, one of the following is true:

1. There exist w, j with 1 ≤ w ≤ n such that srcw∣∅ ⊧ Hj . Because of trans ⊧ seq ′, we have
mw ⊧ srcw and, with mw ∶ Lw ↪ Gw−1 and Lemma 2.38, we gain Gw−1 ⊧ srcw∣∅ and, by
implication of graph constraints (Definition 2.36), Gw−1 ⊧Hj .

2. There exists j such that tarn∣∅ ⊧ Hj . Because of trans ⊧ seq ′, we have m′
n ⊧ tarn and,

with m′
n ∶ Rn ↪ Gn and Lemma 2.38, we gain Gn ⊧ tarn∣∅ and, by implication of graph

constraints (Definition 2.36), Gn ⊧Hj .
3. For every reduced source pattern srcw∣∅ (1 ≤ w ≤ n) we have srcw∣∅ ⊧ So (tarn∣∅ ⊧ So) for

some o ∈ O. Because of trans ⊧ seq ′, we have mw ⊧ srcw and, with mw ∶ Lw ↪ Gw−1 and
Lemma 2.38, we gain Gw−1 ⊧ srcw∣∅ and, by implication of graph constraints (Definition
2.36), Gw−1 ⊧ So for the respective w and o. The same reasoning applies to tarn∣∅,
implying Gn ⊧ So for an o ∈ O.

4. There exist w, b′ with 1 ≤ w ≤ n, b′ ∈ R with b′ = ⟨(L′ ↩K ′ ↪ R),acL′ , true⟩, and
prio(b′) > prio(bw) such that srcw∣∅ ⊧ ∃(iL′ ,acL′ ∧ Appl(b′)). Then, by Lemmas 2.38
(p. 43) and 2.30 (p. 37), there is a transformtion Gw−1⇒b′ G

′
w. By Definition 7.6 (p. 181),

this implies the absence of a transformation Gw−1 ⇒prio
bw,mw,m′w

Gn and, consequently, of

a transformation sequence G0 ⇒prio
b1,m1,m′1

...⇒prio
bn,mn,m′n

Gn.

Hence, all transformation sequences of length between 0 and k leading to F have violations
of H, do not contain graphs satisfying S, or are invalid transformation sequences with respect
to priorities. Then, by Lema 7.13 (p. 184), F is satisfied by all graphs in the k−1-bounded
state spaces of graph grammars with priorities induced by GTS and S.

Theorems T.4r (p. 153) and T.5r (p. 155) can be modified in a similar fashion.

7.2.3. Implementation

Taking priorities and hence, the additional conditions of Theorems T.2e-rp (p. 184) and T.3e-
rp (p. 186), into account requires extending the analysis of source patterns. In the functions
createSequences (Algorithm 6.8 (p. 159)) and extendSequences (Algorithm 6.9 (p. 160)), the call
to discardPattern(src ∣∅,C) is changed to discardPattern(src ∣∅,C ∪ applConstraints((R,prio), b)).
The function applConstraints is described in Algorithm 7.4. The updated functions are shown
in Algorithms 7.5 and Algorithms 7.6, with the changes in lines 10 and 13, respectively.

Algorithm 7.4: applConstraints((R,prio), b)
desc. : creates rule applicability constraints for all rules of higher priority
input : a set R of graph rules, their priority function prio, and a graph rule b
output: a set of rule applicability constraints of rules in R with a higher priority

than b

1 results ← ∅
2 foreach b′ ∈R with b′ = ⟨(L′ ↩K ′ ↪ R′),acL′ , true⟩ do
3 if prio(b′) > prio(b) then
4 results ← results ∪ {∃(iL′ ,Appl(b′) ∧ acL′)}

5 return results
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Algorithm 7.5: createSequences(R,F,C1,C2)
desc. : implements Seqr

1(R, F ) with optimizations and rule priorities
input : a set R of graph rules with priorities prio, a forbidden pattern

F = ∃(iP ,acP ), sets C1 and C2 of patterns
output: Seqr

1(R, F ) minus sequences discarded for violations of C1 or C2
1 results ← ∅
2 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ do
3 foreach tar in ⋁j∈J tar j = Shift(iR,∃iP ) with tar = ∃t do /* SC1-1 */

4 if not discardPattern(tar ∣∅,C1) then /* analysis */

5 tar ← ∃(t,Shift(p,acP )) /* SC1-1 */

6 if not discardPattern(tar ∣∅,C1) then /* analysis */

7 src′ ← L(b, tar) /* SC1-2 */

8 if src′ has the form ∃(s,ac′) then /* SC1-3 */

9 src ← ∃(s,ac′ ∧ Shift(s,acL ∧Appl(b))) /* SC1-3 */

10 if not discardPattern(src ∣∅,

C2 ∪ applConstraints((R,prio), b)) then /* analysis */

11 results ← results ∪ {src ⇒b tar} /* SC1-4 */

12 return results /* SC1-5 */

Algorithm 7.6: extendSequences(R, sequences,C)
desc. : implements Seqr

k+1(R,¬F) (based on the result of Seqr
k(R,¬F)) with

optimizations and rule priorities
input : Seqr

k(R, F ), i.e. a set of sequences sequences of the form
seq = src1 ⇒b1 ...⇒bk tark with src1 = ∃(s1,acS1), a set R of graph rules
with priorities prio, a set C of patterns

output: Seqr
k+1(R, F ) minus sequences discarded for violations of C

1 results ← ∅
2 foreach seq ∈ sequences with seq = src1 ⇒b1 ...⇒bk tark do
3 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ do
4 foreach tar in ⋁j∈J tar j = Shift(iR,∃iS1) with tar = ∃t do /* SCk-1 */

5 if not discardPattern(tar ∣∅,C) then /* analysis */

6 acT ← Shift(s′,acS1) /* SCk-1 */

7 tar ← ∃(t,acT ) /* SCk-1 */

8 if not discardPattern(tar ∣∅,C) then /* analysis */

9 src+1 ← ∃(s′ ○ s1,acT ) /* SCk-1
+ */

10 src′ ← L(b, tar) /* SCk-2 */

11 if src′ has the form ∃(s,ac′) then /* SCk-3 */

12 src ← ∃(s,ac′ ∧ Shift(s,acL ∧Appl(b))) /* SCk-3 */

13 if not discardPattern(src ∣∅,

C2 ∪ applConstraints((R,prio), b)) then /* analysis */

14 results ← results ∪
{src ⇒b (tar , src+1)⇒b1 ...⇒ tark} /* SCk-4 */

15 return results /* SCk-5 */
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Figure 7.9. – Type graph
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t3:Track 
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t4:Track 
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:brake :regular 

Figure 7.10. – Graph rule brake

7.3. Partial Negative Application Conditions

One of the most costly factors of the approach and algorithms is the transformation of appli-
cation conditions over morphisms via the Shift-construction. Given an application condition
ac = ∃(a ∶ A ↪ P ) and a morphism b ∶ A ↪ B, computing Shift(b,ac) amounts to finding all
occurrences of all subgraphs of B in P (or of P in B). Since the number of subgraphs of a
graph grows exponentially with the number of its nodes and edges, it is desirable to avoid or
optimize this computation where possible. To achieve this, this section presents partial negative
application conditions, which contribute to Appl.-performance.

The Shift-construction is used in the following steps of the restricted approach:

– in step SC1-1 of the Seq-construction when computing Shift(iR,C),
– in step SCk-1 of the Seq-construction when computing Shift(s′j ,acS1) and – implicitly –

when finding injective and jointly surjective morphism pairs (tj , s′j),
– in steps SC1-3 and SCk-3 of the Seq-construction when computing Shift(sj ,acL∧Appl(b)),

and
– when determining implication of graph patterns by application of Theorem 6.8 (p. 120)

and, as a result, in the application of Theorems T.2r (p. 143) and T.3r (p. 149).

Example 7.15 (running example). In order to demonstrate the problem of Shift with respect
to computational effort, we consider a fragment of a slightly different example. Figure 7.9
shows a type graph where shuttles can drive in one of two modes: braking and regular, both
denoted by an edge of type brake or regular, respectively.

Figure 7.10 then shows a graph rule brake that requires shuttles to brake when approaching
a switch three tracks ahead. The property we want to verify for this small example system is
depicted in Figure 7.11: a shuttle should not brake (¬∃(iPF

1
, . . . )) unless it is positioned on a

switch (¬∃x1) or a switch is directly ahead (¬∃x2). While unnecessary braking is not usually as
much of a safety concern as a dangerously high velocity, it is inefficient – hence the verification.
An extended form of this example is shown in Section C.1.5 of Appendix C and will be a focus
of the evaluation later. △

Example 7.16 (composed negative application conditions and Shift-construction). If we want
to verify F = ¬F1 (Figure 7.11) as a 1-inductive invariant of GTS = (TG ,R) with R = {brake},
we will have to compute Seqr

1(R, F1). In step SC1-1 of the Seq-construction, this requires
computing Shift(iR, F1). Intuitively, this means finding overlappings of PF

1 and the rule’s right
rule side R – and then, to find overlappings between X1 and the remainder of R and X2 and
the remainder of R, respectively.
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:isAt 

:brake 

𝑃1
𝐹  

𝑋2 
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Figure 7.11. – Composed forbidden pattern F = ¬F1 = ¬∃(iPF
1
,¬∃x1 ∧ ¬∃x2)
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Figure 7.12. – Fragments of an example target pattern tar = ∃(t,Shift(t′,¬∃x1 ∧ ¬∃x2))
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Figure 7.12 shows fragments of one possible target pattern resulting from the comutation
of Shift(iR,∃(iPF

1
, . . . )): T describes one possible overlapping of PF

1 and R. It corresponds to

a target pattern ∃(t,Shift(t′,¬∃x1 ∧ ¬∃x2)), where the forbidden patterns composed negative
application condition still has to be shifted to the context of the graph T . Formally, shifting
¬∃x2 requires finding all graphs T ′i and injective morphism pairs (x′2i ∶ X2 ↪ T ′i , t

′
2i ∶ T ↪ T ′i )

such that t′2i ○ t′ = x′2i ○ x2. Intuitively, we look for overlappings (possibly including the empty
overlapping) between X2 and R while preserving the overlapping of PF

1 and R in T . The same
holds for ¬∃x1 and X1, respectively. In this example, shifting ¬∃x2 to the context of T means
to look for possibilities to extend T such that the braking shuttle s appears in the situation
described by X2: one track ahead of a switch.

This means that we have to consider all possibilities to map all subgraphs of X2 ∖ x2(PF
1 )

(injectively) to subgraphs of T ∖ t′(PF
1 ). For reasons of simplicity, we will leave edges aside

here for purposes of demonstrating the problem’s complexity. Even without considering edges,
we get

(4
0
) ⋅ 0! + (4

1
) ⋅ 1! + (4

1
) ⋅ 1! + (4

2
) ⋅ 2! = 4!

4!
+ 2 ⋅ 4!

3!
+ 4!

2!
= 21

graphs and corresponding injective morphism pairs already, with the same number for shifting
¬x1.

Now, let us consider a modified brake rule that looks for switches four tracks ahead instead
of just three – and, to match the rule, a forbidden pattern that only allows a shuttle to brake if
there is a switch one or two tracks ahead. Given ∃x2 as a negative application condition with
three additional tracks in X2, there is a total of

(5
0
) ⋅0!+(5

1
) ⋅1!+(5

1
) ⋅1!+(5

1
) ⋅1!+(5

2
) ⋅2!+(5

2
) ⋅2!+(5

2
) ⋅2!+(5

3
) ⋅3! = 5!

5!
+3 ⋅ 5!

4!
+3 ⋅ 5!

3!
+ 5!

2!
= 136

graphs and inejctive morphism pairs – and again, we have not even considered edges yet. △

In general, given two graphs consistsing of n and m nodes (with n > m) of the same type,
respectively, the number of overlappings is

ol(n,m) =
m

∑
i=0
(m
i
) n!

(n − i)! =
m

∑
i=0
(m
i
)(n
i
)i!.

As a result, the number of negative application conditions in composed negative applications
of target patterns can grow rather large for cases with unfortunate combinations of right rule
sides and composed negative application conditions of forbidden patterns. While some of the
fragments may be meaningless for the purpose of verification, the algorithms shown in the
restricted approach cannot filter conditions out before computing them – and even if such
filtering were possible, it may not be more efficient.

Of course, this problem is not limited to composed negative application conditions in target
patterns: given forbidden patterns with large positive contexts that are similar – in terms of
node and edge types – to right rule sides, similar problems arise for the positive context of
target patterns. However, the extension described in this section focuses on addressing the
problem of large composed negative application conditions rather than target patterns, for
reasons explained below.

In this example above and generally in steps SC1-1 and SCk-1 of the Seq-construction, Shift
is used twice: first, to create the target patterns’ existential conditions – i.e. their positive con-
text – then, to transform the composed negative application conditions to the target patterns’
contexts. Both steps play a different role with respect to the interpretation of the verification
results. The first execution of Shift is required to determine the interaction of rules and for-
bidden patterns and creates a symbolic encoding of which elements are present in potential
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counterexamples. The second Shift further restricts these symbolic encodings by composed
negative application conditions, which determine the elements and structures required to be
absent. Often, counterexamples can be discarded because of the information contained in the
positive contexts of source or target patterns already. Likewise, positive context is usually more
helpful in order to understand why a forbidden pattern is not a k-inductive invariant.

For example, let us consider a reduced target pattern tar ∣∅ = ∃(iT ∶ ∅ ↪ T,acT ) and,
for purposes of demonstrating the analysis of pattern implication, a guaranteed pattern H =
∃(iP ,acP ) where both acT and acP are composed negative application conditions. Then, by
implication of patterns (Theorem 6.8 (p. 120)), if acP = true, we have tar ∣∅ ⊧H if there is an
injective morphism p ∶ H ↪ T . We do not need to consider acT , no matter how complex the
condition is. If acT is not trivially true, we have to consider both the positive contexts and
the composed negative application conditions acT and acP .

This leads to the following goals when dealing with the Shift-construction and composed
negative application conditions:

1. When creating the target patterns in steps SC1-1 and SCk-1 with the Shift-construction,
defer shifting composed negative application conditions for each target pattern tar =
∃(tj , . . . ) until its existential part ∃tj has been compared to guaranteed and forbidden
patterns with trivial composed negative application conditions (i.e. true).

2. Only shift composed negative application conditions (by the Shift-construction) to the
extent necessary for verification.

To defer computation of shifted composed negative application conditions (1), we require a
formalization of conditions not yet shifted to their new context. To shift the conditions at a
later point (2), we require a construction for this formalization.

In order to get an intuitive view for the solution, consider a typical Shift-construction (in the
restricted approach) depicted below – a pattern ∃(iP ,¬∃x) to be shifted over the morphism
iR.

∅�
iP
��

� iR // R

P�

x
��
X

∅�
iP
��

� iR // R�

tj
��

P�

x

��

�
t′j // Tj

X

The left diagram shows the premise, the right diagram presents the construction’s re-
sult: Shift(iR,∃(iP ,¬∃x)) = ⋁j∈J ∃(tj ,Shift(t′j ,¬∃x)) for injective and jointly surjective mor-
phism pairs (tj , t′j). Now, to defer computing the second shift, we need a representation of
Shift(t′j ,¬∃x) as an application over Tj that, unless it is fully transformed via Shift, only refers
to a subgraph of Tj – in particular, to the image of P under t′j . In order to express applica-
tion conditions that only refer to a part of the context they are defined over, we use partial
application conditions, which are based on injective partial morphisms.

Definition 7.17 (injective partial morphism [1], originally partial monomorphism [Pen09]).
An injective partial morphism p ∶ A B is a 2-tuple p = ⟨a, b⟩ of injective morphisms a, b
with dom(a) = dom(b), dom(p) = codom(a), and codom(p) = codom(b). The interface of p
refers to the common domain of a and b, i.e., iface(p) = dom(a) = dom(b). An injective partial
morphism p = ⟨a, b⟩ is said to be an injective total morphism b, if a is bijective.
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A′ �
a
//

�

b
��

A
o

p=⟨a,b⟩~
B

An injective partial morphism p ∶ A B describes a mapping of the subgraph A′ of A to
B. Note that any injective total morphism b ∶ A ↪ B can be written as an injective partial
morphism p = ⟨idA, b⟩. Regarding the situation described above, we can use injective partial
morphisms p = ⟨t′j , x⟩ to describe an application condition over Tj that only has P as its
context. In particular, ∃p would be such a partial application condition. More generally, they
are defined as follows:

Definition 7.18 (partial application conditions [1], based on application conditions [EGH+14])).
A partial application condition is inductively defined as follows:

1. For every graph A, true is a partial application condition over A.

2. For every injective partial morphism p ∶ A B with p = ⟨a, b⟩ and injective morphisms
a ∶ A′ ↪ A and b ∶ A′ ↪ B and every partial application condition ac over B, ∃(p,ac) is
an application condition over A.

3. For partial application conditions ac, aci over A with i ∈ I (for all index sets I), ¬ac and

⋀i∈I aci are partial application conditions over A.

A′ �
a
//

�

b
��

A
o

p=⟨a,b⟩~
Bac▷

A′ �
a
//

�

b
��

A
o

p=⟨a,b⟩~

g

��
B �

q ⊧ ac
//ac▷ G

Satisfiability of partial application conditions is inductively defined as follows:

1. Every morphism satisfies true.

2. A morphism g ∶ A → G satisfies ∃(p,ac) over A with p ∶ A B and p = ⟨a, b⟩ if there
exists an injective q ∶ B ↪ G such that q ○ b = g ○ a and q satisfies ac.

3. A morphism g ∶ A→ G satisfies ¬ac over A if g does not satisfy ac and g satisfies ⋀i∈I aci
over A if g satisfies each aci (i ∈ I).

We write g ⊧ ac to denote that the morphism g satisfies ac.
Two partial application conditions ac and ac′ are equivalent, denoted by ac ≡ ac′, if for all

morphisms g ∶ A→ G, g ⊧ ac if and only if g ⊧ ac′.
If all morphisms involved in a partial application condition are total morphisms, we say that

it is a total application condition, or simply application condition.
∃p abbreviates ∃(p, true). ∀(p,ac) abbreviates ¬∃(p,¬ac).

In order to use partial application conditions in the restricted approach, we have to ex-
tend several concepts of its restricted formal model and symbolic encoding. First, we extend
composed negative application conditions to composed partial negative application conditions.

Definition 7.19 ((composed) partial negative application condition [1]). A partial negative
application condition is a partial application condition of the form ac = ¬∃p for an injective
partial morphism p. A composed partial negative application condition is a partial application
condition of the form ac = ⋀i∈I ¬pi for injective partial morphisms pi. A (composed) partial
negative application condition with only total graph morphisms is a (composed) negative appli-
cation condition or (composed) total negative application condition.
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With these definitions, partial application conditions and composed partial negative appli-
cation conditions are more general notions of application conditions and composed negative
application conditions, respectively. Conversely, any composed (total) negative application
conditions is a composed partial negative application condition and any (total) application
condition is a partial application condition. Furthermore, a composed partial negative applica-
tion condition may consist of partial and total negative application conditions. This also holds
for partial application conditions in general: since partial application conditions may contain
total morphisms, a partial application condition may contain total application conditions in
its nesting or operands.

Definitions 7.18 and 7.19 allow us to define partial application conditions, but do not specify
the relation between partial application conditions and (total) application conditions or how
partial application conditions can be used to equivalently describe application conditions to
be shifted over a morphism. However, the connection is implicitly encoded in the definition of
satisfiability of partial application conditions. Consider the respective diagram: a morphism
g ∶ A→ G satisfies ∃(p,ac) if there is an injective morphism q ∶ B ↪ G such that q○b = g○a. This
is equivalent to g ○ a satisfying ∃(b,ac) – and, by the Shift-lemma, to g satisfying Shift(a,ac).
This connection is formalized in the following lemma and construction.

Lemma 7.20 (PShift-lemma [1]). There is a construction PShift such that, for every injective
morphism p′ ∶ P ′ ↪ P and every partial application condition ac over P ′, PShift(p′,ac) trans-
forms ac via p′ into a partial application condition over P such that, for each injective mor-
phism n ∶ P ↪H, it holds that n○p′ ⊧ ac⇔ n ⊧ PShift(p′,ac) and PShift(p′,ac) ≡ Shift(p′,ac).

P ′ac▷ � p′ //�

n○b ""
=

P ◁PShift(p′,ac)
n

n||
H

P ′ac▷ �

n○p′ ""

� p′ //

=
P ◁Shift(p′,ac)
n

n||
H

Construction (PShift-construction [1]). The PShift-construction is defined as follows:

P ′
�

a
��

� p′ // P
n

c=⟨p′,a′⟩~
Cac▷

1. PShift(p′, true) = true.
2. PShift(p′,∃(a,ac)) = ∃(c,ac) with c = ⟨p′, a⟩.
3. PShift(p′,¬ac) = ¬PShift(p′,ac).
4. PShift(p′,⋀i∈I aci) = ⋀i∈I PShift(p′,aci).

Proof. (Taken (with minor modifications) from the proof of Lemma 2.32 [EGH+14].)
We will prove n ○ p′ ⊧ ac⇔ n ⊧ PShift(p′,ac) by structural induction:
Base case. For ac = true, the statement holds.
Inductive step. For an application condition ac = ∃(a,ac′), we have to show n ○ p′ ⊧ ac ⇔

n ⊧ PShift(p′,∃(a,ac′)).
Only if. Let n ○ p′ ⊧ ∃(a,ac′). Consequently, there exists an injective morphism q ∶ C ↪ H

such that n ○ p′ = q ○ a and q ⊧ ac. Thus, by satisfiability of partial application conditions, we
have n ⊧ ∃(c,ac) with c = ⟨p′, a⟩ and by construction we get n ⊧ PShift(p′,∃(a,ac′)).

If. Let n ⊧ PShift(p′,∃(a,ac′)). By construction, we have n ⊧ ∃(c,ac) with c = ⟨p′, a⟩.
By satisfiability of partial application conditions, we conclude the existence of an injective
morphisms q ∶ C ↪H such that n○p′ = q ○a and q ⊧ ac. Thus, we have p′ ⊧ ac, which concludes
the inductive proof.
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s:Shuttle 

t2:Track 
:isAt 

:brake 

𝑃1
𝐹  

𝑋2 
s:Shuttle 

t2:Track tA:Track 
:next 

:isAt 

:brake 

tB:Track 

¬∃𝑥1 

:next 

𝑇 

s:Shuttle 

t1:Track t2:Track 

:next 
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t3:Track 
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t5:Track 
:next 
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𝑡′ 
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𝑋1 
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:next :isAt 
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t4:Track 
:next 

:brake 

tB:Track 
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𝑚′ 

¬∃𝑥2 

Figure 7.13. – Composed partial negative application condition ¬∃x′1 ∧ ¬∃x′2 with x′1 =
⟨t′, x1⟩ and x′2 = ⟨t′, x2⟩

By the Shift-lemma, we have n ○ p′ ⊧ ac ⇔ n ⊧ Shift(p′,ac), implying n ⊧ Shift(p′,ac)⇔
n ⊧ PShift(p′,ac) and, consequently, PShift(p′,ac) ≡ Shift(p′,ac).

The equivalence n ○ p′ ⊧ ac ⇔ n ⊧ PShift(p′,ac) ⇔ n ⊧ Shift(p′,ac) has two important
results. First, we can use partial application conditions as a symbolic encoding for application
conditions to be shifted over a morphism without actually executing Shift. Second, we can still
execute the construction at a later point, if necessary.

Example 7.21 (partial application condition). Consider Example 7.16 (p. 189): we described
a target pattern ∃(t,Shift(t′,¬∃x1 ∧ ¬∃x2)) (Figure 7.12 (p. 190)), where execution of the
Shift-construction would lead to more than 42 conjunctively joined negative application condi-
tions in the resulting composed negative application condition. Instead, we apply the PShift-
construction, shown in Figure 7.13:

PShift(t′,¬∃x1 ∧ ¬∃x2) = ¬∃x′1 ∧ ¬∃x′2 with x′1 = ⟨t′, x1⟩ and x′2 = ⟨t′, x2⟩

where ¬∃x′1 ∧ ¬∃x′2 is a composed partial negative application condition. In addition, by
Lemma 7.20 (p. 194), ¬∃x′1 ∧ ¬∃x′2 is equivalent to Shift(t′,¬∃x1 ∧ ¬∃x2), which also implies
equivalence of ∃(t,Shift(t′,¬∃x1 ∧¬∃x2)) and ∃(t,¬∃x′1 ∧¬∃x′2). Essentially, we have replaced
Shift(¬∃x1∧¬∃x2) by an equivalent composed partial negative application condition. If neces-
sary, we can still compute the Shift-construction to get its explicit result. Admittedly, partial
application conditions are not ideal for manual inspection – their primary purpose here is to
reduce computational effort and the size of conditions.

Figure 7.13 also shows a morphism m′ ∶ T ↪ G. By definition of satisfiability, we have
m′ /⊧ ¬∃x′2: we can find an injective morphism q ∶X2 ↪ G such that q ○x2 =m′ ○ t′ (by mapping
s to s, t2 to t2, tA to t3A, tB to tB, and mapping the edges accordingly). (If tB in G′ were
attached to t5 or t1, for example, we would get m′ ⊧ ¬∃x′1 ∧ ¬∃x′2.)

Then, by Lemma 7.20 (p. 194), we know that m′ does not satisfy Shift(t′,¬∃x1 ∧ ¬∃x2). In
particular, ¬∃m′ would be one of the negative application conditions in the composed negative
application condition Shift(t′,¬∃x2). △
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Of course, using composed partial negative application conditions and the PShift-construction
in this fashion is only useful if we can still perform the steps of the restricted approach – at
least to some extent. This concerns other steps of the Seq-construction and the analysis of
reduced source and target patterns for implication of forbidden or guaranteed patterns.

In Example 7.21, we have created a target pattern with a nested composed partial negative
application condition. Since target patterns were originally required to have (total) composed
negative application conditions (Definition 6.13 (p. 127)), we need to extend their definition.
The same applies to the other elements of our symbolic encoding: source pattern and target/-
source patterns.

7.3.1. Symbolic Encoding

In source and target patterns, composed negative application conditions are now allowed to
be composed partial negative application conditions. As a result, source and target patterns
themselves are partial application conditions instead of (total) application conditions.

Definition 7.22 (source pattern with composed partial negative application condition [3]).
Given a graph rule b = ⟨(L↩K ↪ R),acL,acR⟩, a source pattern over b is a partial application
condition over the left side L of the form src = ∃(s,acS) with s being a total injective morphism
and acS a composed partial negative application condition.

Definition 7.23 (target pattern with composed partial negative application condition [3]).
Given a graph rule b = ⟨(L↩K ↪ R),acL,acR⟩, a target pattern over b is a partial applica-
tion condition over the right side R of the form tar = ∃(t,acT ) with t being a total injective
morphism and acT a composed partial negative application condition.

Note that these definitions follow the idea of combining right rule sides and forbidden pat-
terns in step SC1-1 (or leftmost source patterns in step SCk-1) with respect to their existen-
tial conditions, but deferring the transformation of composed negative application conditions.
Thus, morphisms s in source patterns ∃(s,acS) are still required to be total morphisms and,
consequently, ∃s would be a total application condition. The same holds for morphisms t in
target patterns ∃(t,acT ).

We will further modify the definition of target/source patterns accordingly:

Definition 7.24 (target/source pattern with composed partial negative application condi-
tion). Given rules b1 = ⟨(L1 ↩K1 ↪ R1),acL1 ,acR1⟩ and b2 = ⟨(L2 ↩K2 ↪ R2),acL2 ,acR2⟩
and a graph E with a pair of total, injective, and jointly surjective morphisms (eR ∶ R1 ↪
E, eL ∶ L2 ↪ E), a target/source pattern over (b1, b2) is a pair of partial application condi-
tions over R1 and L2 of the form (∃(eR,acE),∃(eL,acE)) with acE being a composed partial
negative application condition over E.

A pair of morphisms with the same codomain (m′
1 ∶ R1 ↪ G,m2 ∶ L2 ↪ G) satisfies a

target/source pattern (tar , src), denoted (m′
1,m2) ⊧ (tar , src), if m′

1 and m2 satisfy tar and
src via a common injective morphism, i.e. if there exists y ∶ E ↪ G with y ⊧ acE, y ○ eR =m′

1,
and y ○ eL =m2.

Again, the existential conditions’ morphisms eR and eL are required to be total while acE
is a composed partial negative application condition. Since, by Definition D.2, an s/t-pattern
sequence is defined based on source patterns, target patterns, and target/source patterns, we
do not need to adjust that definition.

Unfortunately, the transfer of a target pattern tar = ∃(t,acT ) over a rule b into a source pat-
tern src = L(b, tar) via the L-construction (as in steps SC1-3 and SCk-3 of the Seq-construction)
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does not work for target patterns with composed partial negative application conditions. Ele-
ments created by the rule – whose images are deleted upon application of the L-construction
– affect the result of the Shift-construction. Simply transferring a composed partial negative
application condition from a target to a source pattern fails to take this effect into account.
Therefore, we require at least a partial expansion – i.e. execution of Shift – that transfers the
composed negative application condition to a reduced context of the rule; more specifically,
to a context that contains all nodes and edges modified by the rule and all nodes adjacent to
modified edges.

To determine this context, we use the notion of reduced rules. Reduced rules are graph rules
that contain at least the elements (and adjacent nodes) modified by the graph rules they are
derived from. A reduced rule provides sufficient information to correctly apply the original
rule once its applicability via a match has been ensured. In itself, a reduced rule carries less
information than the original rule because most elements not modified by the orignial rule can
be omitted.

Definition 7.25 (reduced rule [1]). Given a plain rule b = (L ↩ K ↪ R), a reduced rule of
b is any rule b∗ = (L∗ ↩ K∗ ↪ R∗) with injective morphisms r+ ∶ R∗ ↪ R, l+ ∶ L∗ ↪ L and
k+ ∶K∗ ↪K such that for all graphs G,H and injective morphisms m ∶ L↪ G and m′ ∶ R ↪H
we have G⇒b,m,m′ H⇔ G⇒b∗,m○l+,m′○r+ H.

Ls

m

��

K �
r //?loo �

��

R �

m′

��

L∗
?
l+
OO

K∗?
k+
OO

�

r∗
//?

l∗
oo R∗?

r+
OO

G D?oo � // H

The equivalence G⇒b,m,m′ H⇔ G⇒b∗,m○l+,m′○r+ H describes that a reduced rule carries all
the information necessary to correctly apply the rule for a given match once its applicability
has been guaranteed. Given the knowledge that a rule application of b to a graph G via a
match m is possible, actually applying the rule only requires information about elements to be
deleted and created by the rule. Elements preserved by the rule application (i.e. elements in K)
are mostly required to determine applicability, which, by definition, was already established.
They are also required if their image under r connects to created elements, in which case they
have to be included in the reduced rule. Hence, a reduced rule may omit a number of elements
in K and their images under l and r from its specification.

The construction of reduced rules implements this idea as follows:

Construction 7.26 (construction of reduced rules [2]). Given a plain rule b = (L↩K ↪ R),
a reduced rule b∗ = (L∗ ↩K∗ ↪ R∗) of b can be constructed as follows:

1. Create an injective morphism k+ ∶ K∗ ↪ K with K∗ a subgraph of K that contains at
least all nodes n that fulfill at least one of the following two conditions:

a) The image of n under r is adjacent to an edge in R ∖ r(K).
b) The image of n under l is adjacent to an edge in L ∖ l(K).

2. Create K∗ r∗↪ R∗ r+↪ R as the pushout complement of k+ and r.

3. Create K∗ l∗↪ L∗
r+↪ L as the pushout complement of k+ and l.

Proof. We have to show that for all graphs G,H and injective morphisms m ∶ L ↪ G and
m′ ∶ R ↪H, it holds that G⇒b,m,m′ H⇔ G⇒b∗,m○l+,m′○r+ H. Both pushout complements (1)
and (2) exist by construction of K∗.
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L

(1)

m

m

��

K

(2)

� r //?loo
�

k

��

R �

m′

��

L∗
?

l+
OO

K∗?
k+
OO

�

r∗
//?

l∗
oo R∗?

r+
OO

G D?
goo � h // H

Only if. Since (1) is a pushout by construction and (G,g,m) is a pushout by precondition,
(1)+(G,g,m) is a pushout by pushout composition. Since (2) is a pushout by construction and
(H,h,m′) is a pushout by precondition, (2)+ (H,h,m′) is a pushout by pushout composition.
Then, we have G⇒b∗,m○l+,m′○r+ H.

If. Since (G,g,m○l+) – i.e. (1)+(G,g,m) – is a pushout by precondition and (1) is a pushout
by construction, (G,g,m) is a pushout by pushout decomposition. Since (H,h,m′ ○ r+) – i.e.
(2)+(H,h,m′) – is a pushout by precondition and (2) is a pushout by construction, (H,h,m′)
is a pushout by pushout decomposition. Then, we have G⇒b,m,m′ H, concluding the proof.

Note that this construction does not usually construct a unique reduced rule. In general,
a rule may have a number of different reduced rules since the construction allows a choice
between possible graphs K∗ and morphisms k+. In most cases, it makes sense to choose K∗ as
small as possible because the size of K∗ determines the computational effort of the next step:
converting composed negative application conditions into composed partial negative applica-
tion conditions via a combination of Shift and PShift. The intent is to create a target pattern
with a composed partial negative application condition where the condition covers at least the
context of the reduced rule, but does not extend to the complete right rule side.

Example 7.27 (reduced rule). Figure 7.14 shows the plain part (L ↩ K ↪ R) of brake =
⟨(L↩K ↪ R), true, true⟩ and a corresponding reduced rule brake∗ = (L∗ ↩ K∗ ↪ R∗). Since
the rule’s application conditions are trivial, we will also denote the rule’s plain part as brake.
K∗ contains t1 and s1, whose images under l ○ k+ are adjacent to a deleted edge (i.e. an edge
in L∖ l(K)) of type isAt. It also contains t2, whose image under r ○k+ is adjacent to a created
edge (i.e. an edge in R∖ r(K)) of type isAt. Here, K+ only contains these elements, which are
required of the construction. In general, K∗ may contain other elements from K, although the
intention usually is to keep K∗ as small as possible.
R∗ and L∗ are then created as the respective pushout complements to (1) and (2). Note

that R∗ indeed contains exactly those elements whose images under r+ are modified by the rule
(one edge of types isAt and brake each) or connected to an edge modified by the rule (nodes
t1, t2, and s). The same applies for L∗.

The figure also shows a rule application G ⇒brake,m,m′ G
′. By Definition 7.25 (p. 197),

we know that given the rule’s applicability via m ∶ L ↪ G and m′ ∶ R ↪ G′ application of
G⇒brake∗,m○l+,m′○r+ G

′ yields the same result. Informally, we ensure applicability of brake via
m to G; then, for the actual application, we only need to know which elements are subject
to change. That information is contained in the reduced rule: we delete an edge of type isAt
between t1 and s, create an edge of the same type between t2 and s, and add an edge of type
brake to the shuttle s. Elements without modifications – all remaining tracks and next edges –
are not relevant for the rule’s application once their existence has been established. △

7.3.2. Construction of Pattern Sequences

With reduced rules, we can properly transfer composed partial negative application conditions
from target to source patterns via a combination of Shift, PShift, and L. We integrate the
respective steps into a refined Seq-construction:
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t3:Track 
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t4:Track 
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t1:Track t2:Track 
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t3:Track 
:next 

t5:Track 
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t4:Track 
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t6:Track 
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t6:Track 

t7:Track :next 

t6:Track 

t7:Track :next 

𝑚′ 𝑚 

t2:Track t2:Track t2:Track 

:regular 

:regular 

𝐿 

𝑙 𝑟 

𝐾 𝑅 

s:Shuttle 

t1:Track t2:Track 
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:isAt 

t3:Track 
:next 

t5:Track 
:next 

t4:Track 
:next 

s:Shuttle 

t1:Track t2:Track 
:next 

t3:Track 
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t4:Track 
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t1:Track t2:Track 
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t3:Track 
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t5:Track 
:next 

t4:Track 
:next 

:brake :regular 

:next :next :next 

Figure 7.14. – Reduced rule brake∗ = (L∗ ↩ K∗ ↪ R∗) of rule brake = (L ↩ K ↪ R) and
rule applications G⇒brake,m,m′ G

′ and G⇒brake∗,m○l+,m′○r+ G
′

Theorem 7.28 (construction of s/t-pattern sequences). There is a construction Seqr,p
k such

that for every graph pattern C = ∃(iP ,acP), rule set R, and k ≥ 1, Seqr,p
k (R,C) is a set of

k-sequences of s/t-patterns such that:

1. For each transformation sequence trans to R and of length k leading to C, there exists
a seq ∈ Seqr,p

k (R,C) such that trans ⊧ seq.
2. Given a seq ∈ Seqr,p

k (R,C), for every transformation sequence trans = G0 ⇒b1,m1,m′1
...⇒bk,mk,m

′
k
Gk with trans ⊧ seq, trans leads to C.

Construction. Seqr,p
k is inductively constructed as follows (with appropriate indexes and index

sets), starting with Seqr,p
1 , which consists of five steps SC1-1 to SC1-5:

SC1-1: For each rule b = ⟨(L↩K ↪ R),acL, true⟩ ∈ R and a correspondingly chosen reduced
rule b∗ = (L∗ ↩ K∗ ↪ R∗) with, in particular, a morphism r+ ∶ R∗ ↪ R, we have
Shift(iR∗ ,∃iP ) = ⋁i∈I ∃t∗i and Shift(r+,Shift(iR∗ ,∃iP )) = ⋁j∈J ∃tj as shown below. Then,

⋁j∈Jb tarp
b,j with tarp

b,j = ∃(tj ,PShift(t′j ,Shift(t′∗i ,acP ))) is a disjunction of target pat-

terns. We denote its fragments as acT ∗i = Shift(t′∗i ,acP ) and acpTj
= PShift(t′j ,acT ∗i ).

∅�
iR∗
��

� iP // P◁acP�

t′∗i
��

L∗�

l+
��

K∗
�

k∗
��

?l∗oo � r∗ // R∗
�

r+
��

�

r+
��

�

t∗i
// T ∗i ◁acT∗

i
=Shift(t′∗i ,acP )

�

t′j
��

L K?
loo � r // R �

tj
// Tj ◁acpTj

=PShift(t′j ,acT∗
i
)

SC1-2: For each such target pattern tarp
b,j = ∃(tj ,PShift(t′j ,acT ∗i )) thusly constructed and the

corresponding reduced rule b∗, we have L(b,∃tj) = false or L(b,∃tj) = ∃sj. For the
latter case shown below, src′pb,j = ∃(sj ,ac′pSj

) is a source pattern over L where ac′pSj
=

PShift(s+j ,L(b′,acT ∗i )), with b′ = (S∗i ↩ K ′ ↪ T ∗i ) the rule constructed via L(b∗,∃(t′j ○
t∗i )) = ∃(s+j ○ s∗i ) (leading to the pushouts (1) and (2)).
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LM

sj

��

acL▷ K �
r //?loo R �

tj

��

L∗

(2) (1)

?

l+
OO

�

s∗i
��

K∗?
k+
OO

� r∗ //?l∗oo
�

k′
��

R∗?
r+
OO

�

t∗i
��

S∗i
O

s+j��

acS∗
i
=L(b′,acT∗

i
)▷ K ′ �

r′
//?

l′
oo T ∗i �

t′j ��

◁acT∗
i

Sjac′pSj
=PShift(s+j ,acS∗

j
)▷ K ′′ �

r′′
//?

l′′
oo Tj◁acpTj

=PShift(t′j ,acT∗
i
)

SC1-3: For the case src′pb,j = ∃(sj ,ac′pSj
) illustrated above, srcpb,j = ∃(sj ,acpSj

) with acpSj
= ac′pSj

∧
Shift(sj ,acL ∧Appl(b)) is a source pattern.

SC1-4: For each such pair of source and target pattern srcpb,j and tarp
b,j, srcpb,j ⇒b tarp

b,j is a

1-sequence of s/t-patterns.
SC1-5: Finally, we define Seqr,p

1 (R,C) = {srcpb,j ⇒b tarp
b,j ∣ b ∈ R ∧ j ∈ Jb} as the set of these

sequences.

Given Seqr,p
k (R,C), we construct Seqr,p

k+1(R,C) as follows.

SCk-1: For each sequence seq = src1 ⇒b1 ... ⇒bk tark ∈ Seqr,p
k (R,C) with srcp1 = ∃(s1 ∶ L1 ↪

S1,acpS1
) and acpS1

= PShift(s+1 ,acS∗1 )∧Shift(s1,acL1), rule b = ⟨(L↩K ↪ R),acL, true⟩ ∈
R and a correspondingly chosen reduced rule b∗ = (L∗ ↩ K∗ ↪ R∗) with, in particular,
a morphism r+ ∶ R∗ ↪ R, we have Shift(r+,Shift(iR∗ ,∃iS1)) = ⋁j∈J ∃tj as shown below.
Then, ⋁j∈J tarp

j with tarp
j = ∃(tj ,PShift(t′j ,Shift(s′∗i ,Shift(s+1 ,acS∗1 ) ∧ Shift(s1,acL1))))

is a disjunction of target patterns over R. We denote its application conditions as acT ∗i =
Shift(s′∗i ,Shift(s+1 ,acS∗1 ) ∧ Shift(s1,acL1)) and acpTj

= PShift(t′j ,acT ∗i ); then, tar b,j =
∃(tj ,acpTj

).

∅
N

iR∗

~~

�

iL1

// L1◁acL1	

s1

��

L∗�

l+
��

K∗
�

k∗
��

?l∗oo � r∗ // R∗
�

t∗i

  

�

r+
��

S∗1
◁acS∗

1�

s+1
��

L K?
loo � r // R �

tj   

T ∗i�

t′j
��

S1?
s′∗ioo ◁acS1

=PShift(s+1 ,acS∗
1
)∧Shift(s1,acL1

)
o

s′j

~~
Tj ◁acpTj

=PShift(t′j ,acT∗
i
)

SCk-1
+: For each such target pattern tarp

b,j, srcp+1,j = ∃(s′j ○ s1,acpTj
) is a source pattern over

L1 and (tarp
b,j , srcp+1,j) is a target/source pattern over (b, b1).

SC1-2: For each such target pattern tarp
b,j = ∃(tj ,PShift(t′j ,acT ∗i )) thusly constructed and the

corresponding reduced rule b∗, we have L(b,∃tj) = false or L(b,∃tj) = ∃sj. For the
latter case shown below, src′pb,j = ∃(sj ,ac′pSj

) is a source pattern over L where ac′pSj
=

PShift(s+j ,L(b′,acT ∗i )), with b′ = (S∗i ↩K ′ ↪ T ∗i ) being the rule constructed via L(b∗,∃(t′j○
t∗i )) = ∃(s+j ○ s∗i ) (leading to the pushouts (1) and (2)).
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LM

sj

��

acL▷ K �
r //?loo R �

tj

��

L∗

(2) (1)

?

l+
OO

�

s∗i
��

K∗?
k+
OO

� r∗ //?l∗oo
�

k′
��

R∗?
r+
OO

�

t∗i
��

S∗i
O

s+j��

acS∗
i
=L(b′,acT∗

i
)▷ K ′ �

r′
//?

l′
oo T ∗i �

t′j ��

◁acT∗
i

Sjac′pSj
=PShift(s+j ,acS∗

j
)▷ K ′′ �

r′′
//?

l′′
oo Tj◁acpTj

=PShift(t′j ,acT∗
i
)

SC1-3: For the case src′pb,j = ∃(sj ,ac′pSj
) illustrated above, srcpb,j = ∃(sj ,acpSj

) with acpSj
= ac′pSj

∧
Shift(sj ,acL ∧Appl(b)) is a source pattern.

SCk-4: For each such pair of source and target pattern srcpb,j and tarp
b,j, srcpb,j ⇒b tarp

b,j , srcp+1 ⇒b1

...⇒bk tarp
k is a k+1-sequence of s/t-patterns.

SCk-5: Finally, we define Seqr,p
k+1(R,C) = {srcpb,j ⇒b tarp

b,j , srcp+1,j ⇒ ... ⇒ tarp
k ∣ b ∈ R ∧ j ∈

Jb ∧ seq ∈ Seqr,p
k (R,C)} as the set of these sequences.

Also, given a set of rules R and a composed graph pattern C = ⋀i∈I ¬Ci with graph patterns Ci,
we define Seqr,p

k (R,¬C) = ⋃i∈I Seqk(R,Ci) and SEQr,p
k (R,C) = ⋃1≤j≤k Seqr,p

j (R,C).

Proof. In order to prove the correctness of the construction, we will show its equivalence to the
Seq-construction established in Theorem T.1r (p. 130). In particular, given an arbitrary rule set
R, k ≥ 1, and a pattern C, we will show that for each s/t-pattern sequence seq∗ ∈ Seqr

k(R,C),
there is an s/t-pattern sequence seq ∈ Seqr,p

k (R,C) such that seq ≡ seq∗ and vice versa. We will
prove this by showing the equivalence of the construction steps for an arbitrary rule b:

SC1-1: Given ⋁j∈J tar b,j = Shift(iR,C) and ⋁j∈J tarp
b,j as above, for all j ∈ J , we have tar b,j ≡

tarp
b,j .

SC1-2: Given target patterns tar b,j and tarp
b,j as above and src′b,j and src′pb,j as constructed by

step SC1-2 of the respective constructions, we have src′b,j ≡ src′pb,j .

SC1-3: Given source patterns src′b,j and src′pb,j as above and srcb,j and srcpb,j as constructed by

step SC1-3 of the respective constructions, we have srcb,j ≡ srcpb,j .

SC1-1. Since, in general, Shift(a ○ b,ac) = Shift(a,Shift(b,ac)) [GHE14], we have

tar b,j = ∃(tj ,acTj) = ∃(tj ,Shift(t′j ○ t′∗i ,acP )) = ∃(tj ,Shift(t′j ,Shift(t′∗i ,acP )))
= ∃(tj ,Shift(t′j ,acT ∗i ))

as depicted below. By Lemma 7.20 (p. 194), we have tar b,j ≡ ∃(tj ,PShift(t′j ,ac∗Ti
)), which is

equal to tarp
b,j .

∅�
iR∗
��

� iP // P◁acP�

t′∗i
��

L∗�

l+
��

K∗
�

k∗
��

?l∗oo � r∗ // R∗
�

r+
��

�

r+
��

�

t∗i
// T ∗i ◁acT∗

i
=Shift(t′∗i ,acP )

�

t′j
��

L K?
loo � r // R �

tj
// Tj◁acpTj

=PShift(t′j ,acT∗
i
)
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SC1-2. Given tar b,j = ∃(tj ,acTj) and the corresponding source pattern src′b,j = ∃(sj ,ac′Sj
)

with ac′Sj
= L(b′′,acTj) with b′′ = (Sj ↩ K ′′ ↪ Tj) as depicted below and b′′ created via

L(b,∃tj) = ∃sj . Furthermore, we have tarp
b,j = ∃(tj ,PShift(t′j ,acT ∗i )) and the corresponding

source pattern src′pb,j = ∃(sj ,ac′pSj
) with ac′pSj

= PShift(s+j ,L(b′,acT ∗i ))) and b′ = (S∗j ↩K ′ ↪ T ∗i )
– and with b′ created via L(b,∃(t′j ○ t∗i )) = ∃(s+j ○s∗i ), leading to the pushouts (1), (2), (3), and
(4).

We need to show ac′Sj
≡ ac′pSj

, i.e. L(b′′,acTj) ≡ PShift(s+j ,L(b′,acp
T ∗i
)). We have

PShift(s+j ,L(b′,acT ∗i )) ≡ Shift(s+j ,L(b′,acT ∗i )) (by Lemma 7.20 (p. 194))

≡ L(b′′,Shift(t′j ,acT ∗i )) (since (3) and (4) are pushouts [GHE14])

= L(b′′,acTj). (see above, SC1-1)

LM

sj

��

acL▷ K �
r //?loo R �

tj

��

L∗

(2) (1)

?

l+
OO

�

s∗j
��

K∗?
k+
OO

� r∗ //?l∗oo
�

k′
��

R∗?
r+
OO

�

t∗i
��

S∗i
O

s+j��

acS∗
j
=L(b′,acT∗

i
)▷ K ′

(3)(4)

�

r′
//?

l′
oo

�

k′′
��

T ∗i �

t′j ��

◁acT∗
i

Sjac′pSj
=PShift(s+j ,acS∗

j
)▷ K ′′ �

r′′
//?

l′′
oo Tj ◁acpTj

SC1-3. Since, as shown above, ac′Sj
≡ ac′pSj

, and furthermore, srcb,j = ∃(sj ,ac′Sj
∧Shift(sj ,acL∧

Appl(b))) and srcpb,j = ∃(sj ,ac′pSj
∧ Shift(sj ,acL ∧Appl(b))), we have srcj ≡ srcpj .

The required equivalences hold analogously for steps SCk-1, SCk-1+, SCk-2, and SCk-3.

As explained above, the main idea of this version of the Seq-construction is to avoid com-
putational effort in transferring composed negative application conditions via Shift, while we
still transfer the (positive) existential condition of a pattern – or, in step SCk-1, a sequence’s
leftmost source pattern. However, integrating left application conditions and applicability con-
ditions of rules into the s/t-pattern sequences as partial application conditions would be sig-
nificantly more involved. Hence, these are regularly transferred to composed total application
conditions by Shift(sj ,acL ∧Appl(b)) in steps SC1-3 and SCk-3, respectively.

Example 7.29 (Seq-construction with composed partial negative application conditions).
Figure 7.15(a) shows the rule brake already discussed earlier; Figure 7.15(b) shows the com-
posed forbidden pattern F = ¬F1 again. Here, we shortly discuss the result of Seqr,p

1 (R,¬F) =
Seqr,p

1 (R, F1) with R = {brake}.
Figure 7.16 shows the details and construction of a target pattern tar = ∃(t,acpT ) by step SC1-

1; tar is only one of several target patterns created by this step. It depicts only the right sides of
brake = ⟨(L ↩K ↪ R), true, true⟩ and a corresponding reduced rule brake∗ = (L∗ ↩K∗ ↪ R∗).

Then, T is one possible overlapping of R and PF
1 via t and t′○t′∗. T ∗ is one of the overlappings

of R∗ and PF
1 via t∗ and t′∗. The composed (total) application condition ¬∃x21∧¬∃x22∧¬∃x23

is the result of Shift(t′∗,¬∃x2) – i.e. of shifting the first of the pattern’s negative application
conditions to the context of T ∗. We get a similar result for ¬∃x2. Then,

acT ∗ = Shift(t′∗,¬∃x1 ∧ ¬∃x2) = ⋀
1≤i≤3

¬∃x1i ∧ ⋀
1≤i≤3

¬∃x2i
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𝐿 

𝑙 𝑟 

𝐾 𝑅 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

t3:Track 
:next 

t5:Track 
:next 

t4:Track 
:next 

s:Shuttle 

t1:Track t2:Track 
:next 

t3:Track 
:next 

t5:Track 
:next 

t4:Track 
:next 

s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

t3:Track 
:next 

t5:Track 
:next 

t4:Track 
:next 

:brake :regular 

(a) Graph rule brake

s:Shuttle 

t1:Track 
:isAt 

:brake 

𝑃1
𝐹  

𝑋2 

¬∃𝑥1 

s:Shuttle 

t1:Track :Track :next 

:isAt 

:brake 

:Track 
¬∃𝑥2 

𝑋1 

s:Shuttle 

t1:Track 

:next :isAt 

:brake 

:Track 

:Track 
:next 

:next 

¬∃𝑖𝑃1𝐹  
∅ 

(b) Composed forbidden pattern F = ¬F1 = ¬∃(iPF
1
,¬∃x1 ∧ ¬∃x2)

Figure 7.15. – Graph rule brake and forbidden pattern F1

results in a composed negative application condition consisting of only six individual negative
application conditions. From that, acpT = PShift(t′,acT ∗) (not depicted) creates a composed
partial negative application condition. In particular,

acpT = PShift(t′,acT ∗) = ⋀
1≤i≤3

¬∃ ⟨t′, x1i⟩ ∧ ⋀
1≤i≤3

¬∃ ⟨t′, x2i⟩ .

Finally, tar = ∃(t,acpT ) is our target pattern. It describes situations where, after application of
brake, a switch is two tracks ahead (∃t) while neither the current track (⋀1≤i≤3 ¬∃ ⟨t′, x1i⟩) nor
its successor (⋀1≤i≤3 ¬∃ ⟨t′, x2i⟩) are switches. If we had not used partial application conditions,
we would have needed to compute Shift(t′ ○ t′∗,acP ), which would result in a significantly
greater number of negative application conditions (cf. Example 7.16 (p. 189)).

Figure 7.17 shows the s/t-pattern sequence seq created from tar by the remaining steps. We
have seq ∈ Seqr,p

1 (R, F1) and

seq = ∃(s,acpS)⇒brake ∃(t,acpT ).

The composed (total) application condition acS∗ = L(b′,acT ∗) (with b′ = (S∗ ↩ K ′ ↪ T ∗)) is
not shown in detail. Similar to acT ∗ in step SC1-1, PShift(s+,acS∗) creates a composed partial
negative application condition acpS ; then, src = ∃(s,acpS∗). △

Note that step SCk-1 expands composed partial negative application conditions in source
patterns to composed total negative application conditions: the total fragment of acpS1

=
PShift(s+1 ,acS∗i ) is subjected to the Shift-construction in Shift(s+1 ,acS∗i ). The goal is to have
both this condition and Shift(s1,acL1) – the transferred left application condition of the se-
quence’s leftmost rule (b1) – defined as total application conditions over the same graph. Then,
both are shifted to the context of overlappings T ∗i of the reduced rule in question (R∗, part
of b∗) and the leftmost source pattern S1: acT ∗i = Shift(s′∗i , . . . ). From there, acT ∗i is again

transformed to a composed partial negative application condition acpTj
= PShift(t′j ,acT ∗i ) in

the new target pattern tarp
b,j = ∃(tj ,acpTj

).
Alternatively, we could have shifted acS∗i to overlappings of R∗ and S∗1 (instead of S1).

Since S∗1 is a subgraph of S1, execution would be faster. Then, however, we might not be able
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𝑃1
𝐹  

𝑋2 

s:Shuttle 

t2:Track tA:Track 
:next 

:isAt 

:brake 

tB:Track 
:next 

𝑡′ 

¬∃𝑥2 

𝑅 
s:Shuttle 

t1:Track t2:Track 
:next 

:isAt 

t3:Track 
:next 

t5:Track 
:next 

t4:Track 
:next 

:brake 

∃𝑡 

𝑅∗ 

s:Shuttle 

t1:Track 
:isAt 

𝑟+ 

:brake 

t2:Track 

𝑇∗ 

s:Shuttle 

t1:Track 
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t2:Track 
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:next 
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t5:Track 
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𝑡′ 

∅ 

𝑋21 

s:Shuttle 

t1:Track t2:Track 

:isAt 

:brake 

tB:Track 

:next 

tA:Track 
:next 

… 

𝑋22 

… 

𝑋23 

𝑋1 
… … 

… 

… 

𝑥21 

𝑖𝑃1𝐹 

¬∃𝑥1 

… 

… 

𝑖𝑅 

𝑖𝑅∗  

𝑡′∗ 

Figure 7.16. – Target pattern tar = ∃(t,PShift(t′,Shift(t′∗,acP ))) created by step SC1-1,
with acP = ¬∃x1 ∧ ¬∃x2
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Figure 7.17. – S/t-pattern sequence seq = ∃(s,acpS)⇒brake ∃(t,acpT )

to transfer Shift(s1,acL1) such that both application conditions are defined over the same
context. As a result, subsequent construction steps would become more involved. Exploring
this alternative may be desirable if composed negative application conditions in patterns have
a greater impact than left application conditions in rules. The approach here, however, follows
the first idea.

7.3.3. Analysis of Pattern Sequences

Of course, using partial application conditions only to expand them later only makes sense
if s/t-pattern sequences can be discarded as potential counterexamples in between – or if we
perform verification for k = 1. The implementation (Section 6.7) of the restricted approach’s
version of the Seq-construction (Theorem T.1r (p. 130)) interweaves the analysis of sequences
(Theorems T.2r (p. 143) and T.3r (p. 149)) with their construction: until length k is reached,
sequences are analyzed after each iteration. In particular, the approach checks whether reduced
source and target patterns imply individual guaranteed patterns, forbidden patterns, or start
configuration patterns, depending on whether we perform k-inductive invariant checking or
k−1-bounded backwards model checking. If we choose k = 1, we also need to perform these
checks.

However, we cannot apply Theorem 6.8 (p. 120) to check implication of patterns – it requires
composeed (total) negative application conditions. We have to extend the theorem to allow
patterns with composed partial negative application conditions. The extension shown here is
based on a previous incarnation of the theorem [1].

Theorem 7.30 (implication of patterns). Let C = ∃(iP ∶ ∅ ↪ P,ac) be a pattern with a
composed total negative application condition ac = ⋀i∈I ¬∃(xi ∶ P ↪ Xi). Furthermore, let
C ′ = ∃(iP ′ ∶ ∅ ↪ P ′,ac′p ∧ ac∗) be a pattern with a composed partial negative application
condition ac′p = ⋀j∈J ¬∃(x′j ∶ P ′ X ′

j) (where x′j = ⟨q′, qj⟩, q ∶ Q↪ P ′, and qj ∶ Qj ↪X ′
j) and

a composed total negative application condition ac∗ = ⋀u∈U ¬∃(x∗u ∶ P ′ ↪X∗
u).
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P�

xi

��

∅?iPoo � iP ′ // P ′
n

x∗u

~~

�

x′j
�

Q_
q′oo

o
qj

��
Xi X∗

u X ′
j

We have C ′ ⊧ C, if one of the following conditions is fulfilled:

1’-A. There is a u in U such that x∗u is bijective.

1’-B. There is a j in J such that there are injective and jointly surjective morphisms a ∶ P ′ ↪ A
and b ∶X ′

j ↪ A with a ○ q′ = b ○ qj and a is bijective (see diagram below).

P ′
o

a

��

�

x′j
�

Q?
q′
oo

O

qj��
A X ′

j
?

b
oo

1. There exists an injective morphism m ∶ P ↪ P ′ such that, for each i in I, one of the
following conditions is fulfilled:

1. There exists a j ∈ J with q′(Q) ⊆m(P ) and an injective morphism y ∶X ′
j ↪Xi such

that y ○ qj = xi ○m′, with m′ =m−1 ○ q′.

P �
m

//�

xi

��

P ′?m−1oo
�

⟨q′,qj⟩=x′j
�

Q
4

m′

ww
?

q′
oo

O

qj��
Xi X ′

j
?

y
oo

2. With (Q′, a, b) the pullback over m and q′ and (P ′′, a′, b′) the pushout over a and
b, and with Shift(b′,¬∃xi) = ⋀k∈K ¬∃x′′k , for each k in K, there is a j in J and an
injective morphism y ∶X ′

j ↪X ′′
k such that y ○ qj = x′′k ○ a′.

Q′
o

a

~~

�

b

��
P �

m
&&

�

xi

��

� b′ // P ′′
U
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Q
4
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ww
_
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q′}}

_

qj
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�
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Xi
�

nk

// X ′′
k X ′

j
?

y
oo

3. With Shift(m,¬∃xi) = ⋀k∈K ¬∃x′′k , for each k in K, there is a u in U and an injective
morphism y ∶X∗

u ↪X ′′
k such that y ○ x∗u = x′′k (diagram below).
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P � m
//

�

xi

��

P ′

=

�

x∗u
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�

x′′k

��
Xi
�

nk

// X ′′
k X∗

u
?

y
oo

Proof. We have to show ∀G(G ⊧ C ′ ⇒ G ⊧ C).
By precondition, case (1’-A), there is a u in U such that x∗u is bijective. Consider an arbitrary

graph G with iG ⊧ ∃iP ′ , i.e. there is an injective morphism g′ ∶ P ′ ↪ G and g○iP ′ = iG. Since x∗u
(for the specific u) is bijective, there is an injective morphism y ∶X∗

u ↪ G such that y ○x∗u = g′.
Hence, we have g′ /⊧ ¬∃x∗u, C ′ is equivalent to false, and C ′ ⊧ C holds trivially.

By precondition, case (1’-B), there is a j in J such that there are injective and jointly
surjective morphisms a ∶ P ′ ↪ A and b ∶ X ′

j ↪ A with a ○ q′ = b ○ qj and a bijective. Consider
an arbitrary graph G with iG ⊧ ∃iP ′ , i.e. there is an injective morphism g′ ∶ P ′ ↪ G and
g ○ iP ′ = iG. Then, we have g ○a−1 ○ b ∶X ′

j ↪ G and, with g′ ○a−1 ○ b ○ qj = g′ ○a−1 ○a ○ q′ = g′ ○ q′,
we have g′ /⊧ acP ′ . Hence, C ′ is equivalent to false and C ′ ⊧ C holds trivially.

P ′
o
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i

g′

��

_

x′j
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oo
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A
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??
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?
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oo

G

For case (1), consider an arbitrary graph G with G ⊧ C ′. By definition of satisfaction, we
have iG ⊧ C ′, implying the existence of an injective morphism g′ ∶ P ′ ↪ G with g′ ⊧ ac′∧ac∗. By
precondition (B), there is an injective morphism m ∶ P ↪ P ′ and hence, we have an injective
morphism g ∶ P → G with g = g′ ○m.

We will show g ⊧ ac by contradiction. Suppose g /⊧ ac, implying the existence of a x = xi for
some i ∈ I and a corresponding injective morphism c ∶ X ↪ G with g = c ○ x, i.e. g /⊧ ¬∃x. By
assumption, one of the following is true:

1. There is an injective morphism y ∶ X ′ ↪ X with X ′ = X ′
j and x′ = x′j = ⟨q′, q⟩ for some

j ∈ J such that q′(Q) ⊆m(P ) and y ○ q = x ○m′ with m′ =m−1 ○ q′. Consequently, there
is an injective morphism y′ ∶X ′ ↪ G with y′ = c ○ y. In addition, we have:

P �
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oo
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y ○ q = x ○m′

Ô⇒ c ○ y ○ q = c ○ x ○m′

Ô⇒ y′ ○ q = g ○m′ (y′ = c ○ y and c ○ x = g)
Ô⇒ y′ ○ q = g′ ○m ○m′ (g = g′ ○m)
Ô⇒ y′ ○ q = g′ ○m ○m−1 ○ q′ (m′ =m−1 ○ q′)
Ô⇒ y′ ○ q = g′ ○ q′ (q′(Q) ⊆m(P ))

This implies g′ /⊧ ¬∃x′ and therefore g′ /⊧ ac′, which is a contradiction. Thus, this case
leads to g ⊧ ac and, with g ∶ P ↪ G, to G ⊧ C.

2. Given (Q′, a, b) as the pullback over m and q′ and (P ′′, a′, b′) as the pushout over a and
b, we have Shift(b′,¬∃x) = ⋀k∈K ¬∃x′′k and, by assumption, for each k in K, there is a j
in J and an injective morphism y ∶X ′

j ↪X ′′
k such that y ○ qj = x′′k ○ a′.
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o

a
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m
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oo
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Furthermore, by construction and the pushout property, there is an injective morphism
p ∶ P ′′ ↪ P ′ such that p ○ a′ = q′, p ○ b′ = m, and hence, g′ ○ p ○ b′ = g. Then, by the
Shift-lemma, g /⊧ ∃x implies g′ ○ p /⊧ ⋀k∈K ¬∃x′′k and, as a result, there is a k in K such
that there is an injective morphism c′ ∶ X ′′

k ↪ G and c′ ○ x′′k = g′ ○ p. Then, there is an
injective morphism y′ ∶X ′

j ↪ G with y′ = c′ ○ y.

In addition, we have:

y′ ○ qj = c′ ○ y ○ qj
= c′ ○ x′′k ○ a′

= g′ ○ p ○ a′

= g′ ○ q′

This implies g′ /⊧ ¬∃x′j and therefore g′ /⊧ ac′, which is a contradiction. Thus, this case
leads to g ⊧ ac and, with g ∶ P ↪ G, to G ⊧ C.

3. With Shift(m,¬∃x) = ⋀k∈K ¬∃x′′k , there is a u in U and an injective morphism y ∶ X∗
u ↪

X ′′
k such that y ○ x∗u = x′′k .
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Since g′○g =m and with the Shift-lemma, we have g′ /⊧ ⋀k∈K ¬∃x′′k , implying the existence
of an injective morphism c′ ∶ X ′′

k ↪ G with c′ ○ x′′k = g′ for some k in K. Then, by
assumption, there is an injective morphism y ∶ X∗

u ↪ X ′′
k with y ○ x∗u = x′′k for some u in

U , implying the existence of an injective morphism y′ ∶X∗
u ↪ G with y′ = c′ ○ y. Also, we

have y′ ○ x∗u = c′ ○ y ○ x∗u = c′ ○ x′′k = g′.
This implies g′ /⊧ ¬∃x∗u and therefore g′ /⊧ ac′, which is a contradiction. Thus, this case
leads to g ⊧ ac and, with g ∶ P ↪ G, to G ⊧ C.

This approach to implication of patterns relates to the original Theorem 6.8 (p. 120) as
follows:

Case (1’-A) is similar to case 1’ of Theorem 6.8 (p. 120): with a bijective morphism in a
negated existential condition, the pattern is equivalent to false and implication holds trivially.

Case (1’-B) similarly checks equivalence to false for the partial part of the implying pat-
tern’s application condition. Here, we cannot simply check the morphisms for bijectivity. In-
stead, looking for morphism pairs with the specified properties amounts to checking whether
the equivalent composed total negative application condition containts a bijective morphism.
However, finding relevant morphism pairs or showing their absence does not require complete
expansion of the composed partial negative application conditions to its total equivalent (via
Shift).

Case (1) and its subcase work are similar to cases (1) and (2) of Theorem 6.8 (p. 120). If the
implying pattern’s existential condition’s context (P ′) contains the other pattern’s context P
as a subgraph, C ′ implies C if the implied pattern’s negative application conditions (ac) can
be matched by the implying pattern’s composed negative application conditions. In order to
match an individual (total) negative application condition, there are three possibilities:

1. The implying pattern’s composed partial negative application condition ac′p is defined
(totally) over a graph Q (and partially over P ′). If the image of Q in P ′ is a subgraph
of the mapping m ∶ P ↪ P ′ of the implied pattern’s context, we can attempt to directly
map negative application conditions in ac′p to negative application conditions in ac.
If successful, this is a significant advantage over the alternatives below and the original
approach in case (2) of Theorem 6.8 (p. 120): we do not have to transfer ac to the context
of P ′ by computing Shift(m,ac).

2. If the image of Q in P ′ is not a subgraph of m(P ), we cannot compare conditions in
ac to partial negative application conditions in ac′p. The default procedure would be
to transfer ac to the context of P ′ (via Shift(m,ac)). However, there is a more efficient
option: the pullback and pushout construction described in the theorem allows us to
transfer ac to a graph P ′′ via b′ such that b′(P ) does contain the image of Q as a
subgraph. Then, negative application conditions in Shift(b′,ac) can be compared to
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Figure 7.18. – Reduced source pattern src ∣∅ = ∃(iS ,acpS) with acpS = ¬∃ ⟨s+, x′12⟩ ∧ ⋅ ⋅ ⋅ ∧
¬∃ ⟨s+, x′21⟩ ∧ . . . and implied pattern C = ∃(iP ,¬∃x1 ∧ ¬∃x2)

partial negative application conditions in ac′p. Usually, computing Shift(b′,ac) requires
less effort than executing Shift(m,ac) because P ′′ is a subgraph of P ′. Likewise, we do
not have to expand the composed partial negative application condition ac′p to its total
equivalent over P ′.

3. Lastly, if both options above fail, we can attempt to map negative application conditions
in ac to the total part of the implying pattern’s composed negative application condition
(ac∗). This part exists because the Seq-construction transfers left application condition’s
of graph rules to the source pattern as total composed negative application conditions,
not in a partial fashion. Hence, this case applies the same principle as case (2) of the
original Theorem 6.8 (p. 120).

Example 7.31 (implication of patterns). Consider the patterns shown in Figure 7.18. On the
right side, we have the reduced source pattern (cf. Example 7.29 (p. 202))

src ∣∅ = ∃(iS ,acpS) with acpS = ¬∃x
′p
12 ∧ ⋅ ⋅ ⋅ ∧ ¬∃x

′p
21 ∧ ⋅ ⋅ ⋅ = ¬∃ ⟨s

+, x′12⟩ ∧ ⋅ ⋅ ⋅ ∧ ¬∃ ⟨s+, x′21⟩ ∧ . . . .

In particular, ¬∃x′12 is the result of L((S∗ ↩ K ′ ↪ T ∗),¬∃x12) as per step SC1-2 of the Seq-
construction (again, see Example 7.29 (p. 202)) – and ¬∃x′21 is the result of L((S∗ ↩ K ′ ↪
T ∗),¬∃x21). The existential part ∃(iS , . . . ) of the pattern describes a situation where a chain
of four tracks has a switch (t4) at its end and a shuttle in speed mode regular on the first track.
Its partial composed negative application condition (acpS , only fragments depicted) specifies
that neither t2 nor any of its successors is a switch. Note that the latter condition applies to
any successor, not just to t3: ¬∃x′p21 is a partial negative application condition over S and its
interface S∗ does not specify a determined successor for t2.

Now, suppose we have the pattern C = ∃(iP ,¬∃x1 ∧ ¬∃x2) depicted on the left side of
Figure 7.18. With rule priorities (Section 7.2), this could be the rule applicability constraint of
a higher-priority rule meant to preempt the execution of the brake rule – unless a switch is one
(¬∃x1) or two tracks (¬∃x2) ahead. Then, if src ∣∅ implies C, src ⇒brake tar could be discarded
as a counterexample.
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Since src ∣∅ is not equivalent to false, we first need to find an injective morphism m ∶ P ↪ S.
There is exactly one such morphism, which is also depicted in Figure 7.18. Checking pattern
implication via Theorem 6.8 (p. 120) requires composed total negative application conditions in
patterns – we would have to compute Shift(m,¬∃x1 ∧¬∃x2) and Shift(s+,¬∃x′12 ∧ ⋅ ⋅ ⋅ ∧¬∃x′21 ∧
. . . ). Theorem 7.30 (p. 205) offers a more efficient alternative: we can easily find injective
morphisms y12 ∶X ′

12 ↪X1 and y21 ∶X ′
21 ↪X2 fulfilling the conditions of case (1.1). Note that

s+(S∗) ⊆m(P ) – we do not even need to apply the partial expansion of case (1.2). The result:
src ∣∅ indeed implies C. All graphs satisfying the reduced source pattern also satisfy C.

A more intuitive view is that both ¬∃x1 ∧¬∃x2 and ¬∃x′12 ∧ ⋅ ⋅ ⋅ ∧¬∃x′21 ∧ . . . are defined over
the same graph – or rather, they are defined over graphs P and S∗ whose images under m and
s+ in S are identical. The condition ¬∃x1∧¬∃x2 expresses that, given two subsequent tracks t1
and t2 (and a shuttle), neither t2 nor its successor are switches. The condition ¬∃x′12 ∧ ¬∃x′21
in the context of S∗ expresses a nearly identical situation. Then, it makes sense that the
respective conditions also correspond to each other when considered in the context of S. In
S, the tracks t1 and t2 (and the shuttle) are part of a longer chain of tracks with a switch
at the end. Note that the switch is not close enough to the shuttle to be a contradiction to
¬∃x′p12 ∧ ¬∃x

′p
21, which would make src ∣∅ equivalent to false and trivially imply C. △

Now that we have a means to compare patterns where the implying patterns has a composed
partial negative application condition, we can apply Theorem T.2r (p. 143) with little change.
Given a set of rules R and a composed pattern F and H as usual, we replace Seqr

k(R,¬F) by
Seqr,p

k (R,¬F) – and use Theorem 7.30 instead of Theorem 6.8 (p. 120) to check implication of
patterns. Likewise, an updated version of Theorem T.3r (p. 149) uses SEQr,p

k−1(R,¬F) instead
of SEQr

k−1(R,¬F).
Theorem T.2e-pn (k-inductive invariant checking with partial negative application condi-
tions). Let GTS = (R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi and H =
⋀j∈J ¬Hj be a composed forbidden pattern and composed guaranteed pattern, respectively.
F is a k-inductive invariant for GTS under H if, for all sequences seq = src1 ⇒b1 ...⇒bk tark

with seq ∈ Seqr,p
k (R,¬F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ k ∧ (srcz∣∅ ⊧Hv ∨ srcz∣∅ ⊧ Fv)).
2. ∃v(tark∣∅ ⊧Hv).

Proof. This follows from the proof of Theorem T.2r (p. 143), the equivalence of Seqr
k(R,C)

and Seqr,p
k (R,C) shown in Theorem 7.28 (p. 199), and Theorem 7.30 (p. 205).

Theorem T.3e-pn (k−1-bounded backward model checking with partial negative application
conditions). Let GTS = (R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi, H =
⋀j∈J ¬Hj, and S = ⋀o∈O ¬So be a composed forbidden pattern, composed guaranteed pattern,
and composed start configuration pattern, respectively, with S ⊧ F .

For all graphs G ∈ REACHk−1(GG ,H) and graph grammars GG = (GTS ,G0) with GG ∈
IND(GTS ,S), we have G ⊧ F , if for all sequences seq = src1 ⇒b1 ... ⇒bn tarn with seq ∈
SEQr,p

k−1(R,¬F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ n ∧ (srcz∣∅ ⊧Hv)).
2. ∃v(tark∣∅ ⊧Hv).
3. ∃v(src1∣∅ ⊧ SC v).

Proof. This follows from the proof of Theorem T.3r (p. 149), the equivalence of Seqr
k(R,C)

and Seqr,p
k (R,C) shown in Theorem 7.28 (p. 199), and Theorem 7.30 (p. 205).

The effect of partial negative application conditions on performance is discussed in more
detail in Chapter 9.
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7.3.4. Implementation

Algorithms 7.7 and 7.8 show the implementation of the Seq-construction with composed partial
negative application conditions; it follows Theorem 7.28 very closely. As before, the analysis
of constructed s/t-pattern sequences for violations of forbidden and guaranteed patterns is
interwoven in the construction. The implementation of Theorem 7.30 (p. 205) – checking
implication of patterns – is significantly more involved in comparison to Theorem 6.8 (p. 120).
However, this mostly concerns the number of cases to consider, not the type of constructions
used; hence, we omit its details here.

Algorithm 7.7: createSequences(R,F)
desc. : implements Seqr,p

1 (R, F ) with optimizations and partial application
conditions

input : a set R of graph rules, a forbidden pattern F = ∃(iP ,acP )
output: the result of Seq1(R, F ) minus sequences discarded for violations of H or F

1 results ← ∅
2 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ and the

corresponding reduced rule b∗ = (L∗ ↩K∗ ↪ R∗) do
3 foreach tar in ⋁j∈J tar j = Shift(r+,Shift(iR∗ ,∃iP ))

with tar = ∃t do /* SC1-1 */

4 if not discardPattern(tar ∣∅,H) then /* analysis */

5 acT ∗ = Shift(t′,acP ) /* SC1-1 */

6 tar ← ∃(t,PShift(t′,acT ∗)) /* SC1-1 */

7 src′ ← L(b,∃t) /* SC1-2 */

8 if src′ has the form ∃s then
9 b′ ← (S∗ ↩K ′ ↪ T ∗)

10 ac′S ← PShift(s+,L(b′,acT ∗))
11 src′ = ∃(s,ac′S) /* SC1-2 */

12 src = ∃(s,ac′S ∧ Shift(s,acL ∧Appl(b))) /* SC1-3 */

13 if not discardPattern(src ∣∅,F ∪H) then /* analysis */

14 results ← results ∪ {src ⇒b tar} /* SC1-4 */

15 return results /* SC1-5 */
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Algorithm 7.8: extendSequences(R, sequences)
desc. : implements Seqr,p

i+1(R, F ) (based on the result of Seqi(R, F )) with
optimizations and using partial application conditions

input : a set of sequences results of the form seq = src1 ⇒b1 ...⇒bk tark with
src1 = ∃(s1,acS1) that is the result of Seqi(R, F ), a set R of graph rules and
correspondingly chosen reduced rules, a set F of forbidden patterns, a set H
of guaranteed patterns

output: Seqi+1(R, F ) minus sequences discarded for violations of H or F

1 results ← ∅
2 foreach seq ∈ results with seq = src1 ⇒b1 ...⇒bk tark do
3 foreach b ∈R with b = ⟨(L ↩K ↪ R),acL , true⟩ and the

corresponding reduced rule b∗ = (L∗ ↩K∗ ↪ R∗) do
4 foreach tar in ⋁j∈J tar j = Shift(iR+ ,Shift(iR∗∃iS1))

with tar = ∃t do /* SCk-1 */

5 if not discardPattern(tar ∣∅,∅,H) then /* analysis */

6 acT ∗ = Shift(s′∗ Shift(s1, acL1) ∧ Shift(s+1 ,acS∗1 )) /* SC1-1 */

7 acT = PShift(t′,acT ∗) /* SC1-1 */

8 tar ← ∃(t,acT ) /* SC1-1 */

9 src+1 ← ∃(s′ ○ s1,acT ) /* SCk-1
+ */

10 src′ ← L(b,∃t) /* SC1-2 */

11 if src′ has the form ∃s then
12 b′ ← (S∗ ↩K ′ ↪ T ∗) /* SC1-2 */

13 ac′S ← PShift(s+,L(b′,acT ∗)) /* SC1-2 */

14 src′ = ∃(s,ac′S) /* SC1-2 */

15 src′ = ∃(s,ac′S ∧ Shift(s,acL ∧Appl(b))) /* SC1-3 */

16 if not discardPattern(src ∣∅,F ,H) then /* analysis */

17 results ← results ∪
{src ⇒b (tar , src+1)⇒b1 ...⇒bk tark} /* SC1-4 */

18 return results /* SCk-5 */
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7.4. Composed Graph Patterns and Implication

In Section 6.8, we have discussed interactions of graph patterns as one possible factor leading
to false negatives. Theorems T.2r (p. 143), T.3r (p. 149), and its extended variants only
compare reduced source and target patterns with patterns in a composed pattern F = ⋀i∈I ¬Fi

or H = ⋀j∈J ¬Hj on an individual basis. They do not take into account how graph patterns
interact – even when a pattern src ∣∅ does not imply any Fi and Hi individually, it could still
imply ¬(F ∧H). This makes sense from a formal perspective, too: ∃i∀G(G ⊧ src ∣∅ ⇒ (G ⊧
Fi ∨G ⊧Hi)) is not equivalent to ∀G(G ⊧ src ∣∅⇒ ∃i(G ⊧ Fi ∨G ⊧Hi)).

We can address this problem by extending our approach for the analysis of reduced source
and target patterns. This requires extending implication of individual patterns to comparisons
of graph patterns with composed graph patterns. Existing work [Pen08a, Pen08b, Pen09] has
solved this questions in its most general form: implication of unrestricted graph constraints.
However, the problem is undecidable in general [HP09]; only the fragment of combinations of
simple existential (possibly negated) conditions without nesting has been shown to be decid-
able [Pen09].

Here, we will not discuss a calculus solving the problem of implication of graph constraints;
however, since we can focus on the fragment of graph patterns and composed graph patterns,
we will describe the formal basis for an algorithm attempting to show whether a reduced
source or target patterns indeed implies a violation of the corresponding composed forbidden
and guaranteed patterns. Attempting is the key word here – the algorithm may not termi-
nate, possible violating Appl.-termination unless forced to terminate by thresholds on (e.g.)
runtime. If a system is considered unsafe unless the procedure terminates, Appl.-soundness
can still be maintained. In some cases [1], using this extension will reduce the number of false
negatives and work towards Appl.-deg.completeness, which usually is the prime incentive.
The effects on performance (Appl.-performance) vary depending on the scenario.

This extension does not require any extension of the formal model or the Seq-construction;
it focuses on the analysis of source and target patterns. Before we delve deeper into that part,
we will discuss an example highlighting the need for an extended notion of pattern implication.

Example 7.32 (implication of composed graph patterns). Consider the fragments of an exam-
ple system shown in Figure 7.19. There is an extended type graph (Figure 7.19(a)): a Control
unit can connect some shuttles with tracks – specifically, switches, although this is not visible
in the type graph – and shuttles can be annotated with ctrl, marking them as shuttles able
to connect to a control unit. The intent of a control unit is to secure passage over a switch.
Figure 7.19(b) shows an updated version of our safety property F = ¬F1 = ¬∃(iPF

1
,¬∃x1): a

shuttle should not drive fast on a track (¬∃(iPF
1
, . . . )) unless connected to the switch via a

control unit (¬∃x1).
Given this additional precaution, we can add new rules f2f-control, a2f-control, s2a-control,

with the latter depicted in Figure 7.19(c): if a shuttle is marked with a ctrl edge, it does not
have to slow down (or remain in speed mode slow) when approaching a switch, meaning the
respective rules do not need any negative application conditions. Rules s2s, s2a, a2f, f2f, a2b,
f2b, b2s from our standard example (Example 6.1 (p. 111)) remain mostly the same; only s2a,
a2f, and f2f are extended by a negative application condition requiring the absence of a ctrl
edge on the shuttle. In summary, we have a graph transformation system GTS = (TG ,R) with
R = {s2s, s2a, a2f, f2f, a2b, f2b,b2s, f2f-control, a2f-control, s2a-control}).

Using a control unit leads to additional requirements for the system’s track and shuttle
topology, which are implemented as guaranteed patterns. The negation of graph pattern H16

in Figure 7.19(d) forbids the existence of more than one control element. The negation of
H17 (Figure 7.19(e)) requires every shuttle with a ctrl edge to have a connection to a control
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Figure 7.19. – Composed forbidden pattern F = ¬F1, graph rule s2a-control and fragments
of composed guaranteed pattern H = ⋅ ⋅ ⋅ ∧ ¬H16 ∧ ¬H17 ∧ ¬H18
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Figure 7.21. – Graphs G1
0, G

2
0, and G3

0 as candidates for satisfaction of src ∣∅

unit; note that ¬(∃iPH
17
,¬∃x17) is equivalent to ∀(iPH

17
,∃x17). Likewise, the negated of form of

pattern H18 (Figure 7.19(f)) ensures that every switch is connected to a control unit. Together
with the guaranteed patterns from Example 6.1 (p. 111), the guaranteed pattern’s negations
are part of a composed guaranteed pattern H = ⋀1≤j≤18 ¬Hj .

Applying our usual procedure results in several counterexamples, with one reduced source
pattern src1∣∅ = ∃(iS1 ,¬∃xS1) depicted in Figure 7.20. Its source pattern is part of an s/t-
pattern sequence seq = src1 ⇒s2a-control (tar1, src2)⇒a2f-control tar2 with seq ∈ Seqr

2(R, F1). The
sequence represents a violation of ¬F1 after application of s2a-control and a2f-control to graphs
represented by src1∣∅: a controlled shuttle in speed mode slow with a switch two tracks ahead
(∃(iS1 , . . . )) and without a proper connection to the switch via the control unit (¬∃xS1). None
of the examples forbidden of guaranteed patterns are implied by the reduced source pattern.

However, attempting to find a satisfying graph that also satisfies F ∧H, which is required for
the counterexample to be valid, will fail. An obvious candidate is G1

0 in Figure 7.21(a) because
it contains S1, but not XS1 and hence, G1

0 ⊧ src1∣∅. However, it violates ¬H18: the switch t3
is not connected to a control unit. G2

0 (Figure 7.21(b)) does have a control unit c connected
to the switch (and hence, G2

0 ⊧ ¬H18), but the shuttle lacks one despite its ctrl edge, which
violates ¬H17. Two separate control units are also forbidden (¬H16), which leaves us with G3

0

in Figure 7.21(c) – here, we do have G3
0 satisfies H, but G3

0 also contains XS1 , meaning it does
not satisfy src1∣∅. In fact, all possible graphs will satisfy either F ∧H or src1∣∅, but not both.
Put differently, satisfaction of src1∣∅ implies a violation of F ∧H and conversely, F ∧H implies
¬src1∣∅, i.e. a violation of src1∣∅. As a result, seq does not have any satisfying transformation
sequences qualifying as counterexamples.

Indeed, all other remaining counterexamples in Seq2(R, F1), although not shown here, are
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false negatives – the system is safe. The extension discussed in this section is intended to
discard spurious counterexamples in cases like this. △

7.4.1. Analysis of Pattern Sequences

In the examples above, we have inspected a counterexample by hand and can be reasonably sure
we have found it to be a false negative; in general, we want this to be performed automatically.
The proposed algorithm attempts to show implication of the negated reduced source or target
pattern by the composed graph pattern F ∧H. This is equivalent to showing implication of a
violation of F ∧H by the reduced source (or target) pattern. Then, no graph can satisfy both
the reduced source or target pattern and the composed forbidden and composed guaranteed
graph patterns F and H – and the sequence of the pattern in question can be discarded.
Similar to the approach in the example, the algorithm uses conditional forbidden patterns to
generate context necessary to satisfy the composed graph patterns F and H. This procedure
is repeated until it has created elements forbidden by the reduced source (or target) pattern,
which leads to the required contradiction of F ∧H and the reduced pattern.

More specifically, the algorithm starts with the existential part ∃(iP ∶ ∅ ↪ P ) of a reduced
source or target pattern src ∣∅ = ∃(iP ,acP ). In order to show F ∧H ⊧ ¬src ∣∅ and discard it
as a counterexample, the procedure applies context generation and context reduction in an
alternating sequence. For this purpose, F ∧H are separated into two composed graph patterns
C1 and C2: C1 combines (negated) patterns with non-trivial composed negative application
conditions while C2 collects (negated) patterns describing a simple existential condition without
further nesting, i.e. with true as their composed negative application condition. Since composed
graph patterns are conjunctions of negated patterns, such a separation will always lead to the
equality F ∧H = C1 ∧ C2.

For context generation, the procedure uses graph patterns C ′ = ∃(iP ′ ,acP ′) in a composed
graph pattern (C1) to extend a pattern C = ∃(iP ,acP ) or, in the first step, C = ∃iP . C ′ appears
in its negated form ¬∃(iP ′ ,acP ′) in the composed graph pattern. Existence of P ′ implies
violation of acP ′ , meaning that one of the negative application conditions’ contexts has to be
present. Hence, if P ′ can be found in S via a morphism p ∶ P ′ ↪ P , we can extend ∃iP to
C∗ = ∃(iP ,Shift(p,acP ′)) in order to have its negation ¬C∗ implied by ¬C′.

After this first step, i.e. when extending a pattern C = ∃(iP ,acP ), the same idea is applicable
if P ′ can be found in the context of a negative application condition ∃(x ∶ P ↪ X) in acP
via an injective morphism p ∶ P ′ ↪X. Then, ¬C ∧ ¬C′ imply the negated result ¬C∗. In both
cases, we required the connection via implication to establish a chain of implication relations
that should eventually lead to C1∧C2 ⊧ ¬src ∣∅. Context generation is described by Lemma 7.33
below.

Context reduction, on the other hand, removes negative application conditions from a pat-
tern’s composed negative application condition. We consider a pattern C = ∃(iP ,acP ) and a
composed graph pattern (C2) whose patterns are simple existential conditions with the trivial
composed negative application condition true. Then, the result C∗ of applying context reduc-
tion via C2 to C is a pattern ∃(iP ,ac∗P ). The composed negative application condition ac∗P is
created by removing all negative application conditions ¬∃x ∶ P ↪ X with X /⊧ C from acP .
Lemma 7.35 describes this procedure and establishes equivalence of C2∧¬C and C2∧¬C∗. The
forward direction of the equivalence is required to preserve the desired chain of implication
relationships.

While context reduction is not always necessary for the algorithm to reach its goal, it reduces
the number of negative application conditions (in an equivalent fashion, i.e. without losing
information). This in turn reduces the number of potential applications of context generation,
speeding up the algorithm.
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We formalize context generation as follows:

Lemma 7.33 (context generation). We describe context generation as a function cg such
that:

1. Given two patterns C = ∃(iP ∶ ∅ ↪ P ) and C ′ = ∃(iP ′ ∶ ∅ ↪ P ′,acP ′) with a composed
negative application condition acP ′ and given an injective morphism p ∶ P ′ ↪ P , C∗ =
cg(C,C′, p) is a graph pattern and we have ¬C′ ⊧ ¬C∗.

2. Given two patterns C = ∃(iP ∶ ∅ ↪ P,acP ) and C ′ = ∃(iP ′ ∶ ∅ ↪ P ′,acP ′) with composed
negative application conditions acP = ac′P ∧ ∃(x ∶ P ↪ X), ac′P , and acP ′ and given
an injective morphism p ∶ P ′ ↪ X, C∗ = cg(C,C′, p) is a graph pattern and we have
¬C ∧ ¬C′ ⊧ ¬C∗.

We write C ⇒cg,C′,p C
∗ to express C∗ = cg(C,C′, p). Given a composed graph pattern C =

⋀u∈U ¬Cu, we write C ⇒cg,C C
∗ to express that there exist u ∈ U and an appropriate injective

morphism p such that C ⇒cg,Cu,p C
∗.

Construction. With Shift(p,ac′) = ⋀i∈I ¬∃x′i, we construct cg as follows:

cg(C,C′, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∃(iP ,acP ∧⋀i∈I ¬∃x′i) case 1 (left figure) and no bijective x′i
∃(iP ,ac′P ∧⋀i∈I ¬∃(x′i ○ x)) case 2 (right figure) and no bijective x′i
C otherwise, i.e. if there is a bijective x′i

P ′ ◁acP ′�

p

��
∅ �

iP
//+

iP ′
88

P �
x′i
//◁ac

P

X ′
i
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��
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iP
//*

iP ′
77

P ◁ac
′
P

�
x
// X �

x′i
// X ′

i

Proof. By Definition 2.36, we need to show that, for all graphs G, G ⊧ ¬C ∧ ¬C′ implies
G ⊧ ¬C∗, where ¬C∗ = cg(C,C′, p). We will focus on the case cg(C,C′, p) = ∃(iP ,ac′P ∧
⋀i∈I ¬∃(x′i ○ x)) (see above, right figure) first.

Consider an arbitrary graph G with G ⊧ ¬C ∧¬C′, implying G /⊧ C and G /⊧ C ′. We need to
show G /⊧ C∗ and will start from G /⊧ C where we will have to consider two cases:

P ′ ◁acP ′	

q′

��

�

p

��
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iP
//*

iP ′
77

�

iG ..

P ◁ac
′
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�

q ��

�
x
// X�

y
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�

x′i
// X ′

i
n

y′~~
G

1. There does not exist an injective morphism q ∶ P ↪ G. This implies G /⊧ C∗, concluding
this case.

2. There exists an injective morphism q ∶ P ↪ G (and q○iP = iG). By definition of satisfiabil-
ity and by precondition – G /⊧ C – we have q /⊧ ac′P ∧¬∃x, which gives us q /⊧ ac′P ∨q /⊧ ¬∃x.
We will again distinguish both cases:

a) We have q /⊧ ac′P . This would lead to G /⊧ C∗, concluding this case.
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b) We have q /⊧ ¬∃x, i.e. q ⊧ ∃x, which implies the existence of an injective morphism
y ∶ X ↪ G such that y ○ x = q. Then, q′ = y ○ p is an injective morphism q′ ∶ P ′ ↪ G
and q′ ○ iP ′ = iG. By precondition – G /⊧ C ′ – we have q′ /⊧ acP ′ . By the Shift-lemma,
we have y /⊧ Shift(p,acP ′) with Shift(p,acP ′) = ⋀i∈I ¬∃x′i.
Consequently, we have y ⊧ ∃xi for some i in I. Then, there exists an injective
morphism y′ ∶ X ′

i ↪ G such that y′ ○ x′i = y (see diagram above) for that specific i.
Furthermore, we have y′ ○x′i ○x = y ○x = q and thus, q /⊧ ⋀i∈I ¬∃(x′i ○x), i.e. G /⊧ C∗,
concluding this case.

Hence, G ⊧ ¬C∧¬C′ implies G ⊧ ¬C∗ for all graphs G and we have ¬C∧¬C′ ⊧ ¬ cg(C,C′, p).
This proof works analogously for the case of morphisms p ∶ P ′ ↪ P and cg(C,C′, p) =
∃(iP ,acP ∧⋀i∈I ¬∃x′i). If one of the x′i is bijective, we have cg(C,C′, p) = C and ¬C ∧ ¬C′ ⊧
¬ cg(C,C′, p) holds trivially.

When applying the context generation function cg, we need to consider three cases:

As explained above, the first case applies to the first application of cg to the existential
condition ∃iP of a pattern. The graph P contains the positive context graph P ′ of a pattern
C ′ as a subgraph; then, in order to get to ¬C′ ⊧ ¬C∗ (equivalent to C∗ ⊧ C′), we have to
extend iP by the shifted composed negative application condition Shift(p,acP ′).

The second case is applicable to a pattern with a non-trivial composed negative application
condition acP : we match P ′ via p ∶ P ′ ↪ X to a fitting graph appearing in acP . Then, in
order to fulfill the required implication, we again shift acP ′ via p. Note that P is a subgraph of
all potential graphs X appearing in negative application conditions of acP ; hence, morphisms
p ∶ P ′ ↪ P are also covered by this case.

The third case prevents generation of redundant context: if a shifted composed negative
application contains a bijective morphism in a negative application condition, the result
cg(C,C′, p) for the cases above would be equivalent to false and, as such, useless for fur-
ther context generation steps. To prevent that, cg returns the input pattern as its result. Of
course, the implementation has to take care of avoiding subsequent attempts to generate con-
text via morphisms leading to that result – for example, by keeping track of morphisms used
by cg.

Example 7.34 (context generation). We consider again Example 7.32 (p. 214) and, in par-
ticular, the reduced source pattern src1∣∅ = ∃(iS1 ,¬∃x′1) in Figure 7.20 (p. 216). We start the
process of context generation and reduction with ∃iS1 . Then, Figure 7.22 shows a morphism
p ∶ PH

18 ↪ S1. The corresponding pattern H18 = ∃(iPH
18
,¬∃x18) with its non-trivial composed

negative application condition ¬∃x18 can be used to generate context. The result

C∗ = cg(∃iS1 , P
H
18 , p) = ∃(iS1 ,¬x′1)

describes the existence of a controlled shuttle in speed mode slow with a switch two tracks
ahead – and the absence of a control unit (c) attached to that switch (t3).

By Lemma 7.33 (p. 218), we have ¬H18 ⊧ ¬C∗. This makes sense: ¬H18, which is equivalent
to ¬∃(iPH

18
,¬∃x18) and ∀(iPH

18
,∃x18) requires all switches to have a control unit attached.

Then, since S1 contains a switch, a corresponding control unit must exist: ∀(iS1 ,∃x′1) must
hold, which is equivalent to ¬C∗.

Usually, the algorithm would apply one context reduction step (explained below) after gen-
erating context. In this example, we skip this step; however, it would not change C∗ anyway.

Figure 7.23 describes the second case of context generation. We use the pattern H17 =
∃(iPH

17
,¬∃x17) to generate context for the pattern C ′ = C∗ = ∃(iS1 ,¬x′1) created above. There
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s:Shuttle 
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:ctrl 

d:Control 

:ctrlS 

:ctrlS 

¬∃𝑥17 

:next 
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t3:Track 
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:ctrl c:Control 
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Figure 7.23. – Pattern C ′ = ∃(iS1 ,¬∃x1) and result of context generation ∃(iS1 ,¬∃(x′1○x1)∧
¬∃(x′2 ○ x1)) = cg(C′,H17, p ∶ PH

17 ↪X1)

is an injective morphism p ∶ PH
17 ↪X1; then

C ′′ = cg(C′,H17, p) = ∃(iS1 ,¬∃(x′1 ○ x1) ∧ ¬∃(x′2 ○ x1))

describes the existence of a controlled shuttle in speed mode slow with a switch (t3) two tracks
ahead. Its composed negative application condition specifies the absence of a control unit (cd)
attached to the shuttle and the switch (¬∃(x′1 ○ x1)) and the absence of two control units (c
and d) attached to the shuttle and the switch, respectively (¬∃(x′2 ○ x1)).

By Lemma 7.33 (p. 218), we have ¬C′ ∧ ¬H17 ⊧ ¬C′′. Again, this was to be expected: ¬H17

requires the existence of an attached control unit for every controlled shuttle. The negated
pattern ¬C′ specifies the absence of the situation in S1 unless the switch has an attached
control unit (as seen in X1). Since X1 contains a controlled shuttle, the resulting (negated)
pattern ¬C′′ also needs to take ¬H17 into account: it describes the absence of S1 unless both
the shuttle (because of H17) and the track (because of C ′ and ¬H18, see above) have a control
unit attached. The two latter conditions can be fulfilled by a single control unit (as in X ′

1) and
by two separate control units (as in X ′

2), hence the two negative application conditions. △
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Only applying context generation steps may lead to a growing number of negative application
conditions. Context reduction, which is described in the following, offers a way to reduce that
number without losing information.

Lemma 7.35 (context reduction). Let C = ∃(iP ∶ ∅ ↪ P,ac) be a graph pattern with ac =
⋀j∈J ¬∃(xj ∶ P ↪ Xj) and let C = ⋀i∈I ¬∃(iPi ∶ ∅ ↪ Pi) be a composed graph pattern. We
describe context reduction as a function cr such that C∗ = cr(C,C) is a graph pattern and we
have (C ∧ ¬C) ≡ (C ∧ ¬C∗). We write C ⇒cr,C C

∗ to express C∗ = cr(C,C).

Construction. With J ′ the largest subset of J such that for each j′ ∈ J ′ we have Xj′ ⊧ C, we
construct cr as follows:

cr(C,C) = ∃(iP , ⋀
j′∈J ′

¬∃xj′)

Pi

∅ � iP //
+

iPi

88

�

iXj

44�

iXj′ ..

P
◁a

c

� xj //�

xj′

  

Xj

Xj′

Proof. By definition of equivalence of graph constraints, we have to show that, for all graphs
G, G ⊧ C ∧ ¬C if and only if G ⊧ C ∧ ¬C∗ with ¬C∗ = ¬∃(iP ,⋀j′∈J ′ ¬∃xj′).

Pi �

y
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&&
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Xj
n
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Only if. Consider an arbitrary graph G with G ⊧ C ∧ ¬C and hence, G /⊧ C. We have to
consider two cases:

1. There does not exist an injective morphism q ∶ P ↪ G. This implies G ⊧ C∗, concluding
this case.

2. There exists an injective morphism q ∶ P ↪ G (and q○iP = iG). By definition of satisfiabil-
ity and by precondition – G /⊧ C – we have q /⊧ ac. Given ac = ⋀j′∈J ′ ¬∃xj′ ∧⋀j∈J∖J ′ ¬∃xj ,
we have q /⊧ ⋀j′∈J ′ ¬∃xj′ (case 1) or q /⊧ ⋀j∈J∖J ′ ¬∃xj (case 2).
We assume q /⊧ ⋀j∈J∖J ′ ¬∃xj (case 2), implying the existence of an injective morphism
q′ ∶Xj ↪ G such that q′ ○xj = q for some j ∈ J ∖J ′. Since, by precondition, Xj /⊧ C, there
is an i in I such that Xj /⊧ ¬∃iPi (for the specific i and j), implying the existence of an
injective morphism y ∶ Pi ↪ Xj . Then, q′ ○ y is an injective morphism (q′ ○ y) ∶ Pi ↪ G
and q′ ○ y ○ iPi = iG, implying G /⊧ ¬∃iPi and leading to G /⊧ C, which is a contradiction.
Hence, we have q ⊧ ⋀j′∈J∖J ′ ¬∃xj′ , which leads to q /⊧ ⋀j′∈J ′ ¬∃xj′ (case 1), implying
G /⊧ C∗ and hence, G ⊧ C ∧ ¬C∗.

If. Consider an arbitrary graph G with G ⊧ C∧¬C∗ and hence, G /⊧ C∗. We have to consider
two cases:

– 221 –



7. Extensions for the Restricted Approach

∃𝑖𝑆1  

:next 

t1:Track 

s:Shuttle 

t2:Track 

:isAt 

:slow 

t3:Track 
:next 

t4:Track 

:next 

𝑆1 
:ctrl 

∅ 
∃𝑖𝑃16𝐻   

:next 

t1:Track 

s:Shuttle 

t2:Track 

:isAt 

:slow 

t3:Track 
:next 

t4:Track 

:next 

𝑋1
′  

:ctrl cd:Control 

:ctrlT 
:ctrlS 

:next 

t1:Track 

s:Shuttle 

t2:Track 

:isAt 

:slow 

t3:Track 
:next 

t4:Track 

:next 

𝑋2
′  

:ctrl c:Control 

:ctrlT 

d:Control 

:ctrlS 

¬∃𝑥1
∗ 

¬∃𝑥2
∗ 

d:Control c:Control 

𝑃16
𝐻  

𝑦 

Figure 7.24. – Pattern C ′′ = ∃(iS1 ,¬∃x′1 ∧ ¬∃x′2) and pattern H16 = ∃iPH
16

with ∃iX′2 ⊧H16

1. There does not exist an injective morphism q ∶ P ↪ G. This implies G /⊧ C, concluding
this case.

2. There exists an injective morphism q ∶ P ↪ G (and q ○ iP = iG). By definition of
satisfiability and by precondition – G /⊧ C∗ – we have q /⊧ ⋀j′∈J ′ ¬∃xj′ . Since ac =
⋀j′∈J ′ ¬∃xj′ ∧⋀j∈J∖J ′ ¬∃xj , we have q /⊧ ac, implying G /⊧ C and G ⊧ C ∧ ¬C.

Thus, G ⊧ C ∧ ¬C implies G ⊧ C ∧ ¬C∗ for all graphs G and vice versa. In summary, we get
C ∧ ¬C ≡ C ∧ ¬C∗.

In theory, it is possible for a context reduction step to create a pattern with an empty
conjcuntion for its composed negative application condition, which then defaults to the trivial
condition true. A subsequent context generation step would have to apply the first case of cg
to continue the process. Again, the implementation has to take this into account in order to
avoid infinite loops in the algorithm’s execution.

Example 7.36 (context reduction). Figure 7.24 shows the application of context reduction
to the pattern C ′′ = ∃(iS1 ,¬∃x∗1 ∧¬∃x∗2), which was created in the previous context generation
step described in Example 7.34 (p. 219) (with x∗1 = x′1 ○ x1 and x∗2 = x′2 ○ x1). We consider the
pattern H16 = ∃iPH

16
, which is part of a composed graph pattern C2 = ¬H16 ∧ ¬H1 ∧ ... ∧ ¬H15

of (negated) forbidden and guaranteed patterns with a trivial composed negative application
condition. X ′

2 contains PH
16 , which implies X ′

2 /⊧ ¬H16 and X ′
2 /⊧ C2. Since X ′

1 does not contain
PH
16 and, indeed, satisfies C2, we get

C∗ = cr(C′′,C2) = ∃(iS1 ,¬∃x∗1).

This pattern describes the existence of a controlled shuttle in speed slow with a switch (t3)
two tracks ahead – and the absence of a control unit connected to both the shuttle and the
switch (t3).

By Lemma 7.35 (p. 221), we have (C2 ∧¬C′′) ≡ (C2 ∧¬C∗). The negation of C ′′ requires the
existence of a connected control unit for both the shuttle and the switch. Since C2 = ¬H16∧ . . .
forbids the existence of two control units (among other situations irrelevant here), X ′

1 is the
only way to fulfill both ¬C′′ and C2; thus, we can discard ¬x∗2 without losing information.

After this step of context reduction, further context generation steps can be applied. How-
ever, as we will see in the theorem and example below, C∗ is already the result we need to
discard the original source pattern as a counterexample. △
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From an algorithmic perspective, Lemmas 7.33 (p. 218) and 7.35 (p. 221) describe execution
steps without specifying a termination criterion. The idea is to generate (and reduce) context
from the existential part of a reduced source or target pattern until the resulting pattern is
implied by the original reduced source or target pattern. This requires to check implication of
two patterns as described in Theorem 6.8 (p. 120) and Algorithm 6.1 (p. 121). If successful,
the chain of implication relationships established by context generation and reduction via
Lemmas 7.33 (p. 218) and 7.35 (p. 221) lets us conclude F ∧H ⊧ ¬src ∣∅.

Theorem 7.37 (implication of composed graph patterns). Let C = ∃(iP ,acP ) be a graph
pattern and let C1 = ⋀i∈I ¬C1,i with C1,i = ¬∃(iP1,i ∶ ∅ ↪ P1,i,acP1,i) and C2 = ⋀j∈J ¬C2,j with
C2,j = ¬∃(iP2,j ∶ ∅↪ P2,j) be two composed graph patterns.

C1 ∧ C2 implies ¬C if there is a sequence of alternating applications of context generation
(via C1) and context reduction (via C2) ∃iP ⇒cg,C1 C

′ ⇒cr,C2 ⋅ ⋅ ⋅⇒cr,C2 C
∗ such that C ⊧ C∗.

Proof. Consider an arbitrary sequence ∃iP ⇒cg,C1 C
′ ⇒cr,C2 ⋅ ⋅ ⋅⇒cr,C2 C

∗ with C ⊧ C∗. C ⊧ C∗

implies ¬C∗ ⊧ ¬C; then, if C1∧C2 ⊧ ¬C∗, we would get C1∧C2 ⊧ ¬C. We will show C1∧C2 ⊧ ¬C∗

by induction.

Base case. Consider ∃iP ⇒cg,C1 C
′ ⇒cr,C2 C

′′. This implies the existence of an i ∈ I and an
appropriate morphism p such that C ⇒cg,C1,i,p C

′, i.e. C ′ = cg(∃iP ,C1,i, p). By Lemma 7.33
(p. 218) (context generation), we have ¬C1,i ⊧ ¬C′ and hence, C1 ∧ C2 ⊧ ¬C′.

Furthermore, C ′ ⇒cr,C2 C
′′ implies C2 ∧ ¬C′ ⊧ ¬C′′, which, together with C1 ∧ C2 ⊧ ¬C′,

implies C1 ∧ C2 ⊧ ¬C′′.
Inductive step. Consider applications of context generation (via C1) and context reduction

(via C2) D⇒cg,C1 D
′ ⇒cr,C2 D

′′ with graph patterns D, D′, and D′′ and, by inductive hypoth-
esis, C1∧C2 ⊧ ¬D. D⇒cg,C1 D

′ implies the existence of an i ∈ I and an appropriate morphism p
such that D⇒cg,C1,i,p D

′, i.e. D′ = cg(D,C1,i, p). By Lemma 7.33 (p. 218) (context generation),
we have ¬C1,i ∧ ¬D ⊧ ¬D′. With C1 ∧ C2 ⊧ ¬D, we get C1 ∧ C2 ⊧ ¬D′.

Furthermore, D′ ⇒cr,C2 D
′′ implies C2 ∧ ¬D′ ⊧ ¬D′′, which, together with C1 ∧ C2 ⊧ ¬D′,

implies C1 ∧ C2 ⊧ ¬D′′, concluding the inductive proof.

Note that, as mentioned earlier in this section, an implementation of this approach will not
necessarily terminate. This problem is partly a result of the undecidability of the underly-
ing general problem; however, it is also a question of the order of execution when generating
context. If context generation can be applied for multiple morphisms and constraints, some
parameters may yield a solution while others allow an arbitrarily large number of subsequent
generation steps, effectively preventing termination. Still, as discussed in this section’s exam-
ples and in the evaluation (Chapter 9), using context generation can yield positive results (in
finite time) where our previous approach to implication results in false negatives.

Example 7.38 (implication of composed graph patterns). Consider C∗ = ∃(iS1 ,¬∃x∗1) in
Example 7.36, Figure 7.24 (p. 222). We have created C∗ by applying context generation and
context reduction, starting from ∃iS1 , which was part of a reduced source pattern src1∣∅ =
∃(iS1 ,¬∃xS1) (Figure 7.20). Given separation of F ∧H in composed graph patterns C1 and C2
as required by Theorem 7.37 (p. 223), we have (from Examples 7.34 (p. 219) and 7.36 (p. 222)):

∃iS1 ⇒cg,C1 C
′ ⇒cr,C2 C

′ ⇒cg,C1 C
′′⇒cr,C2 C

∗.

By Theorem 6.8 (p. 120), src1∣∅ implies ⊧ C∗; in fact, all their components are isomorphic.
By Theorem 7.37 (p. 223), we have C1 ∧ C2 ⊧ ¬src1∣∅ and, with C1 ∧ C2 = F ∧ H, we get
F ∧H ⊧ ¬src1∣∅. △
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In order to establish a connection between checking implication involving composed graph
patterns and discarding counterexamples, we refine Theorem T.2r (p. 143). The difference
lies in the conditions sufficient to discard a counterexample: instead of showing src ∣∅ ⊧ Fi or
src ∣∅ ⊧ Hj for a source pattern in an s/t-pattern sequences and i ∈ I and j ∈ J , we attempt
to prove F ∧H ⊧ ¬src ∣∅ for any source pattern. The analysis of the rightmost target pattern
tark∣∅ has been changed similarly: instead of tark∣∅ ⊧Hj , the approach checks H ⊧ ¬tark∣∅.

Theorem T.2e-ai (k-inductive invariant checking and implication of composed patterns).
Let GTS = (R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi and H = ⋀j∈J ¬Hj be
a composed forbidden pattern and composed guaranteed pattern, respectively.
F is a k-inductive invariant for GTS under H if, for all sequences seq = src1 ⇒b1 ...⇒bk tark

with seq ∈ Seqr
k(R,¬F), one of the following conditions holds:

1. ∃z(1 ≤ z ≤ k ∧ (F ∧H ⊧ ¬srcz∣∅)).
2. H ⊧ ¬tark∣∅.

Proof. According to Lemma 6.10, we need to show that for all k-sequences of transformations
G0 ⇒R ...⇒R Gk, it holds that:

∃u(Gk ⊧ Fu)⇒ ∃z, v(0 ≤ z ≤ k ∧Gz ⊧Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1 ∧Gz ⊧ Fv)

Consider an arbitrary k-sequence of transformations to R (with corresponding graphs)
trans = G0 ⇒R ... ⇒R Gk such that ∃u(Gk ⊧ Fu) with, for ease of reading, Fu = F . More
specifically, trans = G0 ⇒b1,m1,m′1 ... ⇒bk,mk,m

′
k
Gk for rules bi ∈ R and matches (comatches)

mi (m′
i) and trans leads to F . We want to show that Gz ⊧ Hv for 0 ≤ z ≤ k and v ∈ J or that

Gz ⊧ Fv for 0 ≤ z ≤ k − 1 and v ∈ I.
By Theorem T.1r, there is a k-sequence of s/t-patterns seq ∈ Seqk(R, F ) with trans ⊧ seq .

Then, seq ′ = src1 ⇒b1 ...⇒bk tark and trans ⊧ seq ′ (Lemma 7.3). By precondition, one of the
following is true:

1. There exists a z with 1 ≤ z ≤ k such that F ∧H ⊧ ¬srcz∣∅. Because of trans ⊧ seq , we
have mz ⊧ srcz and, with mz ∶ Lz ↪ Gz−1 and Lemma 2.38, we gain Gz−1 ⊧ srcz∣∅. By
contraposition and by implication of graph constraints (Definition 2.36 (p. 42)) we get
Gz−1 /⊧ F ∧H, implying the existence of a v such that Gz−1 ⊧ Fv or Gz−1 ⊧Hv.

2. We have H ⊧ tark∣∅. Because of trans ⊧ seq , we have m′
k ⊧ tark and, with m′

k ∶ Rk ↪ Gk

and Lemma 2.38, we gain Gk ⊧ tark∣∅. By contraposition and by implication of graph
constraints (Definition 2.36 (p. 42)), we get Gk /⊧ H, implying the existence of a v such
that Gk ⊧Hv.

Hence, F is a k-inductive invariant for GTS under H.

From an algorithmic perspective, it is advisable to perform the implication check described
by Theorem 6.8 (p. 120) and Algorithm 6.1 (p. 121) before using context generation (and
context reduction) to show implication of a negated reduced source or target pattern by a
composed graph pattern. It is much more efficient to discard a reduced source pattern by
implication of an individual forbidden or guaranteed pattern. In the worst case, the algorithm
to check implication by context generation might not terminate (unless forced to) while check-
ing implication by individual patterns would yield a positive result (in finite time, because
Algorithm 6.1 (p. 121) always terminates).

Example 7.39 (2-inductive invariant checking and implication of composed patterns for a
safe system). In Example 7.38 (p. 223), we have shown F ∧H ⊧ ¬src1∣∅. By Theorem T.2e-
ai, this disqualifies the corresponding sequence (cf. Example 7.32 (p. 214)) as a potential
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counterexample. All s/t-pattern sequences in Seqr
2(R, F1) that could not be discarded using

implication of patterns (Theorem 6.8 (p. 120) and Algorithm 6.1 (p. 121)) can be discarded by
showing implication of a (negated) reduced source pattern by F ∧H via context generation.△

We can also refine Theorem T.3r (p. 149) (k−1-bounded backward model checking) to take
implication of composed patterns into account. Again, only the three conditions to discard
s/t-pattern sequences are modified. Theorems T.4r (p. 153) and T.5r (p. 155) can then be
adjusted in the same fashion.

Theorem T.3e-ai (k−1-bounded backward model checking and implication of composed pat-
terns). Let GTS = (R,TG) be a graph transformation system and F = ⋀i∈I ¬Fi, H = ⋀j∈J ¬Hj,
and S = ⋀o∈O ¬So be a composed forbidden pattern, composed guaranteed pattern, and composed
start configuration pattern, respectively, with S ⊧ F .

For all graphs G ∈ REACHk−1(GG ,H) and graph grammars GG = (GTS ,G0) with GG ∈
IND(GTS ,S), we have G ⊧ F , if for all sequences seq = src1 ⇒b1 ... ⇒bn tarn with seq ∈
SEQr

k−1(R,¬F), one of the following conditions holds:

1. ∃z(1 ≤ z ≤ n ∧ (H ⊧ ¬srcz∣∅)).
2. H ⊧ ¬tark∣∅.
3. S ∧H ⊧ ¬src1∣∅.

Proof. This follows by adjusting the proof to Theorem T.3r (p. 149) in a fashion similar to
the above adjustments to the proof of Theorem T.2r (p. 143).

Implication of composed patterns has another possible application beneficial to performance
and possibly, to completeness. If a composed forbidden graph pattern F can be split into F1∧F2

such that F1 ∧H implies all individual negated patterns in F2, we only need to verify F1 as a
k-inductive invariant under H to conclude that F is a k-inductive invariant under H:

Theorem 7.40 (eliminating forbidden patterns). Given a composed forbidden pattern F such
that F = F1 ∧F2 with F2 = ⋀i∈I ¬Fi, a composed guaranteed pattern H, and a graph transfor-
mation system GTS. F is a k-inductive invariant of GTS under H if the following conditions
are fulfilled:

1. F1 is a k-inductive invariant of GTS under H.
2. ∀i((i ∈ I)⇒ (F1 ∧H ⊧ ¬Fi)).

Proof. Consider an arbitrary transformation sequence to R trans = G0 ⇒R ... ⇒R Gk with
Gz ⊧ F for 1 ≤ z ≤ k − 1 and Gz ⊧ H for 1 ≤ z ≤ k. By Definition D.1 (p. 62), we have to show
Gk ⊧ F .

Since F1 is a k-inductive invariant under H (1), we have Gk ⊧ F1. Given Gk ⊧ F1, Gk ⊧ H,
and ∀i((i ∈ I) ⇒ (F1 ∧H¬ ⊧ Fi)) (2), we get Gk ⊧ ¬Fi for all i ∈ I. Thus, we have Gk ⊧ F2,
implying Gk ⊧ F1 ∧F2 and hence, F = F1 ∧F2 is a k-inductive invariant of GTS under H.

If large graph patterns – or patterns with large negative application conditions – are implied
by smaller forbidden and guaranteed patterns, this variant can siginificantly improve perfor-
mance. The same principle can be applied to k−1-bounded backward model checking. In both
cases, an implementation has to find an appropriate way to split of F , which is not trivial: if
the algorithm ends up with a set F2 that contains fewer patterns than could be implied by
F1 ∧H, the positive effect is reduced; if the algorithm attempts to show implication for too
many patterns, the failed attempts’ negative impact on performance may exceed the benefit.
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An analysis of possible heuristics is beyond the scope of this thesis; when applying this tech-
nique in existing work [6], implication was attempted for patterns whose composed negative
application conditions exceeded a fixed size of nodes.

A similar technique can be applied to reduce the computational effort of k−1-bounded back-
ward model checking. Given S, H, and F = F1 ∧F2 with F2 = ⋀i∈I ¬Fi and S ⊧ H such that
F1 holds in REACHk−1(GG ,H) for all GG ∈ IND(GTS ,S), then F holds in those state spaces
too, if ∀i((i ∈ I)⇒ (F1 ∧H ⊧ ¬Fi)).

Finally, implication with composed patterns can be used to show S ⊧ F by showing S∧H ⊧ Fi

for all pattern Fi in F . This is required for properly establishing the base case of our inductive
argument. The same applies for verification of S ⊧H, if required.

7.4.2. Implementation

In order to implement k-inductive invariant checking and k−1-bounded backward model check-
ing with respect to implication for composed graph patterns, we can reuse most of the algo-
rithms for the restricted approach (Section 6.7). We only need to refine discardPattern (Algo-
rithm 6.6 (p. 158)), which was used to discard source or target patterns and, as a result, their
s/t-pattern sequences. Here, we extend this function by the implication check described in
Theorem 7.37 (p. 223). This is shown in Algorithms 7.9. The implication check for individual
patterns (Theorem 6.8 (p. 120), Algorithm 6.1 (p. 121)) is still executed: if source or target
patterns can be discarded by comparing them to individual patterns, we do not need to use
the implication check with context generation and reduction described in Algorithm 7.10.

Algorithm 7.9: discardPattern(C,C)
description: checks implication for graph patterns and for composed graph patterns
input : a graph pattern C, a set C of forbidden/guaranteed patterns
output : whether C implies any pattern in F or H or F ∧H imply ¬C

1 foreach C ′ ∈ C do
2 if implies(C,C′) then /* Theorem 6.8 (p. 120), Algorithm 6.1 (p. 121)

*/

3 return true

4 return implies(C,C) /* Algorithm 7.10 */

Algorithm 7.10 first (lines 1–7) splits the composed graph pattern C (equal to F ∧H for k-
inductive invariant checking) into two sets of patterns C1 and C2. As required by Theorem 7.37
(p. 223), C1 contains only patterns with a non-trivial composed negative application condition
while C2 contains patterns with the trivial composed negative application condition true. The
former are used for context generation (line 18), the latter for context reduction (line 23). Note
that the algorithm keeps track of morphisms used to generate context in order to not gener-
ate redundant context, which could possibly lead to infinite loops. As soon as the algorithm
fails to generate context with any combination of patterns and morphisms, it reports failure
to conclude C1 ∧ C2 ⊧ ¬Cpg . This algorithm can also be applied in the fashion described in
Theorem 7.40 (p. 225), not only as part of the analysis of s/t-pattern sequences.

The possibility of non-termination lies in the iterative generation of context: an application
of cg could generate new context, which in turn triggers generation of new context in the next
iteration, and so on. In practice, this is prevented by the loop condition in line 12: if the number
of used morphisms (and hence, generation steps) reaches a certain threshold, the algorithm
terminates with a return value of false. Runtime or the size of nodes in negative application
conditions could be used as thresholds as well.
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Algorithm 7.10: implies(Cpg ,C)
description: implication check with composed graph patterns in the sense of

Theorem 7.37 (p. 223).
input : a graph pattern Cpg = ∃(iP ∶ ∅↪ P,acpg), a set of graph patterns C,

and a configuration parameter threshold to enforce termination
output : whether or not C ⊧ ¬Cpg can be shown

1 C1 ← ∅
2 C2 ← ∅
3 foreach pattern C ′ in C do /* separating patterns by their structure */

4 if C ′ has the form ∃iP ′ then /* trivial nested ac true */

5 C2 ← C2 ∪ {C′}
6 else /* non-trivial nested ac */

7 C1 ← C1 ∪ {C′}

8 acP ← ¬∃(idP ∶ P ↪ P ) /* dummy condition for first iteration only */

9 C ← ∃iP
10 usedMorphisms ← ∅
11 generated ← true
12 while generated and ∣usedMorphisms ∣ < threshold do
13 generated ← false
14 foreach C ′ ∈ C1 with C ′ = ∃(iP ′ ∶ ∅↪ P ′,acP ′) and not generated do
15 foreach condition ¬∃(x ∶ P ↪X) in acP and not generated do
16 foreach morphism p ∶ P ′ ↪X

with p /∈ usedMorphisms and not generated do /* or p ∶ P ′ ↪ P */

17 usedMorphisms ← usedMorphisms ∪ {p}
18 tmpPattern ← cg(C,C′, p) /* Lemma 7.33 */

19 if tmpPattern = C then
20 continue

21 else
22 generated ← true
23 C ← cr(tmpPattern,C2) /* Lemma 7.35 */

24 if implies(Cpg ,C) then
25 return true

26 return false /* if an iteration failed to generate further context */
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7.5. Combining Extensions

The nature of the implementation partially described in Sections 6.7, 7.1.3, 7.2.3, 7.3.4, and
7.4.2 also allows the combination of the restricted approach with multiple extensions. In par-
ticular, extensions can be freely combined – with one caveat: in the current implementation,
forward propagation (Section 7.1) and implication with composed graph patterns (Section 7.4)
do not support patterns with partial negative application conditions (Section 7.3). Hence, com-
posed partial negative application conditions have to be expanded (to composed total nega-
tive application conditions) before forward propagation can be applied. Since partial negative
application conditions are expanded as part of the Seq-construction anyway (Theorem 7.28
(p. 199)), this may not make a huge difference in most cases, but some of the gain in per-
formance may be lost. Similarly, partial negative application conditions have to be expanded
before implication with composed graph patterns via context generation can be applied.

Theorem T.2e combines the restricted approach to k-inductive invariant checking and all
the extensions discussed in this chapter. The differences to Theorem T.2r (p. 143) include

– the use of partial negative application conditions (Seqr,p
k (R,¬F)) and the subsequent

expansion to composed total application conditions (expand and SQ(R,¬F)),
– the application of forward propagation (prop(seq)),
– the inclusion of conjunctions of negated rule applicability constraints for rules of higher

priority (A(bz)), and
– the analysis of reduced source and target patterns for implication by composed graph

patterns (F ∧H ∧A(bz) ⊧ ¬srcz∣∅) instead of (individual) graph patterns.

Theorem T.2e (k-inductive invariant checking with extensions). Let GTS = (TG , (R,prio))
be a graph transformation system with priorities and F = ⋀i∈I ¬Fi and H = ⋀j∈J ¬Hj be a
composed forbidden pattern and composed guaranteed pattern, respectively.

Let A(b) be the conjunction of negated rule applicability constraints for rules of higher pri-
ority: A(b) = ⋀u∈U ¬∃(iLu ,acLu ∧Appl(bu)) with U = {u ∣ bu ∈R ∧ prio(bu) > prio(b)}.

Given a source or target pattern pat = ∃(c,PShift(c+,acC)∧ac) with a composed partial nega-
tive application condition PShift(c+,acC) and a composed (total) negative application condition
ac, we define expand(pat) = ∃(c,Shift(c+,acC) ∧ ac).

Furthermore, we define Seqr,ep
k (R,¬F) = {expand(src′1)⇒b1 (expand(tar ′1), expand(src′2))⇒b2

..⇒bk tark ∣ (src′1 ⇒b1 (tar ′1, src′2)⇒b2 ...⇒bk tark) ∈ Seqr,p
k (R,¬F)}.

F is a k-inductive invariant for GTS under H if, for all sequences prop(seq) with prop(seq) =
src1 ⇒b1 ...⇒bk tark and seq ∈ Seqr,ep

k (R,¬F), one of the following conditions holds:

1. ∃z(1 ≤ z ≤ k ∧ (F ∧H ∧A(bz) ⊧ ¬srcz∣∅)).
2. H ⊧ ¬tark∣∅.

Proof. This follows from the proofs of various incarnations of Theorem T.2r (p. 143) (re-
stricted approach) – Theorem T.2e-fp (forward propagation), Theorem T.2e-rp (rules with
priorities), and Theorem T.2e-ai (implication with composed graph patterns). We also need
Theorem 7.28 (construction of s/t-pattern sequences and equivalence of Seqr

k(R,¬F) and
Seqr,p

k (R,¬F)) and Lemma 7.20 (equivalence of PShift(c,acC) and Shift(c,acC)).

Note that the effect of partial negative application conditions on performance is not dis-
cernible in this theorem. Instead, the benefit comes from the potential of discarding patterns
and s/t-pattern sequences by intermediate analysis during the construction of sequences. This
has been discussed as part of the implementation of k-inductive invariant checking for the re-
stricted approach (Section 6.7) and with partial negative application conditions (Section 7.3.4).

Theorem T.3r (p. 149) (k−1-bounded backward model checking) could be combined with
these extensions in a similar fashion.
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Table 7.1. – Properties of the general and restricted approaches and effects of extensions

Approach/extension
Appl.-

soundness
Appl.-

termination

Appl.-deg.-
completeness

Appl.-
performance

General approach ✓ (✓) ?/× ?

Restricted approach ... ✓ ✓ ?/× ?

..
.

w
it

h

forward propagation ✓ ✓ +/× + and -

rule priorities ✓ ✓ n.a./× (n.a.)

partial negative ap-
plication conditions

✓ ✓ n.a./× +

implication with
composed patterns

✓ (✓) +/× + and -

7.6. Discussion and Conclusion

Each of the four extensions introduced above serves a specific purpose or addresses a drawback
of the restricted approach. In this section, we will shortly discuss the role of the extensions
and their effects.

In comparison to the restricted approach, the formal model used in the extensions has only
one additional aspect: if rule priorities (Section 7.2) are used, system behavior is specified by
graph rules with priorities (and left composed negative application conditions). Other than
that, the extensions do not modify the formal model.

Table 7.1 shows the impact and expected effect of the extensions in comparison to the
restricted approach with respect to the properties Appl.-soundness, Appl.-termination,
Appl.-deg.completeness, and Appl.-performance. Again, this is a prognosis based on this
chapter’s results, with an evaluation to follow in Chapter 9.

With the exception of implication with composed patterns, all extensions have been shown to
be sound and terminate by construction and implementation. For implication with composed
patterns, the same argument used for the general approach applies: by introducing a threshold
on runtime or context generation steps, termination can be enforced – and if inconclusive
results are treated as counterexamples, the approach remains sound.

Forward propagation was introduced specifically to reduce the number of false negatives
caused by insufficient information in patterns (cf. Section 6.8). As such, the intention and ex-
pectation is an improvement of the degree of completeness. The same holds for implication with
composed patterns: this extension is meant to address false negatives caused by interactions
of forbidden and guaranteed patterns not considered by the implication check of Theorem 6.8
(p. 120). However, both extensions will still not result in completeness in the general case
given the underlying undecidable problem. Using rule priorities and partial negative appli-
cation conditions will not affect completeness in comparison to the restricted approach. The
former extension is meant to allow more natural specification of systems with prioritized be-
havior; the latter extension should generally improve performance of the approach and reduce
computational effort.

Given the non-binary nature of Appl.-performance, the extensions’ effects are more dif-
ficult to predict. As mentioned before, partial negative application conditions should have a
positive effect on performance. Rule priorities only affect performance in the sense that simula-
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tion of priorities by application conditions would lead to more expensive computations during
execution of the Seq-construction. Forward propagation, on the other hand, can have both
positive and negative effects on performance: by improving the degree of completeness, false
counterexamples are discarded and do not have to be considered in further iterations of the
Seq-construction for higher values of k. However, forward propagation requires iteration over
all source and target patterns of all s/t-pattern sequences – sometimes without the desired
result (of discarding a sequence). Similarly, implication with composed patterns can eliminate
false negatives, which improves performance, while its execution can be costly. Implication
with composed patterns can have a particularly strong impact on performance if forbidden
patterns are discarded by other forbidden and guaranteed patterns (Theorem 7.40 (p. 225))
before executing the Seq-construction. For each forbidden pattern F (from the composed for-
bidden pattern F) discarded in this fashion, we do not have to compute Seqr

k(R, F ). The larger
the forbidden pattern in question, the higher the benefit.

This concludes the formalization and implementation of several extensions to the restricted
approach. More detailed results with respect to the degree of completeness and performance
will be discussed in Chapter 9.
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There is a number of other approaches focused on formal verification of graph transformation
systems, supporting varying formalisms and varying levels of automation and implementation.
In general, explicit-state model checking such as in GROOVE [GdMR+12], Henshin [ABJ+10], or
CheckVML [SV03] can only be applied for finite state spaces and a single start graph. Iterative
application of explicit-state model checking may be an option for a finite set (of reasonable
size) of start graphs. However, they also bring advantages: computing explicit state spaces
allows verification of temporal properties instead of properties relating to states – i.e. graphs –
only. Also, with all the information of the (finite) state space available, false negatives or false
positives in the sense discussed here cannot occur.

If state spaces are represented and analyzed by abstraction, approaches may be applicable
to systems with infinite state spaces, but often come with limitations with respect to specifying
behavior and properties. The list of such approaches includes the tool Augur (and its second
version) [KK08, BCK08]; it analyzes graph transformation systems by representing them as
so-called Petri graphs. While the approach can address infinite state spaces, several restrictions
with respect to specifications apply: rules may not delete nodes, but must at least delete one
edge; application conditions are not supported. Analysis is limited to one initial graph at a
time.

An approach by Stückrath and König [KS12, KS14, Stü16, KS17], which is implemented
in the tool UNCOVER, also addresses infinite-state systems. By establishing that the graph
transformation system in question is well-structured, the approach draws conclusions about the
state space. The implementation supports sets of error graphs and initial graphs and backward
analysis to reason about the existence of paths to error graphs. However, the approach faces
restrictions with respect to transformation systems and, in particular, to negative application
conditions, which interfere with the requirements on well-structuredness – or lead to an over-
approximation during verification.

Steenken, Wehrheim, and Wonisch have proposed to verify infinite-state graph grammars by
abstraction [Ste15, SWW11, SW11]; we will discuss this approach in more detail in Section 8.3.

Symbolic approaches, which do not explicitly or implicitly compute and analyze state spaces,
are usually capable of addressing infinite state spaces and potentially infinite sets of start
graphs, but may struggle with undecidability, the resulting risk of non-termination of an auto-
mated procedure, and perfomance. The list of symbolic approaches includes the approach and
implementation by Pennemann and Habel [Pen09, Pen08a, Pen08b, HP09], which addresses
verification of graph programs with postconditions and preconditions; it will be discussed in
Section 8.2.

A closely related approach by Poskitt and Plump [PP10, PP12, PP13, PP14, Pos13] focuses
on Hoare-style verification of graph programs with respect to postconditions and preconditions.
It supports more expressive properties than the approach by Pennemann and Habel; however,
it is less focused on fully automated execution. Instead, the approach suggests that difficult
parts of a proof could be solved with the help of human interaction. The idea is to have parts of
the approach implemented in an interactive proof assisstant [Pos13] such as Isabelle [NPW02].

Outline. This chapter is structured as follows:

In Section 8.1, we will discuss the relation between 1-induction and k-induction and whether
the latter can be performed by the former. The question is whether tools capable of performing
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1-inductive invariant checking, most notably Enforce [Pen09] and the earlier incarnation and
implementation [BBG+06, Dyc12] of the approach proposed by this thesis can also be used
to execute k-inductive invariant checking. As a representative for fully symbolic techniques,
said approach by Pennemann and Habel [Pen09] will be discussed in Section 8.2; we will
also elaborate how it may or may not be applied to perform k-induction. As an example for
verification by abstraction, Section 8.3 will discuss the approach by Steenken, Wehrheim, and
Wonisch [Ste15].

8.1. 1-Induction and k-Induction

This thesis’s main focus is the extension of an approach for 1-inductive invariant check-
ing [BBG+06, Dyc12], most notably to k-induction. As discussd in Chapters 5 and 6, this
extension via the general and restricted approach is based on constructing s/t-pattern se-
quences, which are symbolic representations of transformation sequences. However, even with-
out a specific approach, we can attempt to establish a relationship between 1-induction and
k-induction. This is relevant because it may suggest that verification approaches capable of
performing 1-inductive invariant checking may be employed to perform (a limited form of)
k-induction under certain circumstances.

First, any n1-inductive invariant for a specific value of n1 is a n2-inductive invariant for any
(integer) value of n2 larger than n1:

Lemma 8.1. Given a graph transformation system GTS = (TG ,R) and two graph constraints
F and H. If F is a n1-inductive invariant of GTS under H, then, for any n2 with n2 > n1, F
is a n2-inductive invariant for GTS under H.

Proof. By Definition D.1, for all transformation sequences G0 ⇒R ...⇒R Gn1 we have:

(∀z(0 ≤ z ≤ n1 ⇒ Gz ⊧H) ∧ ∀z(0 ≤ z ≤ n1 − 1⇒ Gz ⊧ F)) ⇒ (Gn1 ⊧ F).

Now, we consider all transformation sequences G0 ⇒R ...⇒R Gn2 with Gi ⊧ H for 0 ≤ i ≤ n2
and Gi ⊧ F for 0 ≤ i ≤ n2 − 1. We need to show Gn2 ⊧ F . Since n2 > n1, we can split all such
sequences into G0 ⇒R ... ⇒R Gn1 ⇒R ... ⇒R Gn2 . By the statement above we can conclude
Gn1 ⊧ F and by inductive argument, we can extend this conclusion to Gi ⊧ F for n1+1 ≤ i ≤ n2,
concluding the proof.

More specifically, this also applies to 1-induction: any 1-inductive invariant is a k-inductive
invariant for any value of k (with k ≥ 1). A similar (if rather obvious) result can be ob-
tained for k−1-bounded backward model checking: given n2 > n1, if G ⊧ F for all graphs
G ∈ REACHn2(GG ,H) and for any graph grammar GG and constraints F and H, then G ⊧ F
for all graphs G ∈ REACHn1(GG ,H) – since REACHn1(GG ,H) ⊆ REACHn2(GG ,H).

However, the other direction is much more interesting: we wonder whether iterative execution
of 1-induction may allow conclusions regarding a k-inductive invariant. The general idea is to
use counterexamples for a 1-inductive invariant and continue from there. Consider the violation
of a 1-inductive invariant F1 under H: a graph transformation G⇒R G′ with G ⊧H, G′ ⊧H,
G ⊧ F1, and G′ /⊧ F1. Note that this is the level of specific graphs and graph transformations,
not symbolic counterexamples (i.e. s/t-pattern sequences).

One idea to address these counterexamples is to include them in the targeted 1-inductive
invariant. If we can find a graph constraint F2 such that all graphs G satisfying the above
criteria do not satisfy F2, we can attempt to show that F1 ∧F2 is a 1-inductive invariant. All
previous counterexamples G⇒R G′ will be discarded (since G /⊧ F2). However, we may have
new counterexamples G ⇒R G′ with G ⊧ F1 ∧H, G′ ⊧ F1 ∧H, G ⊧ F2, and G′ ⊧ F2. We
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can continue this iteration by finding another constraint F3 not satisfied by all these graphs
G that are part of a counterexamples and so on. If the procedure terminates, we will have a
1-inductive invariant ⋀1≤i≤nFi under H for some value n.

However, this result is not always desirable: the technique changes the safety property and
requires its verification in possible start graphs. Although the original property F1 will be a
part of the new property, the result will be more complex and possibly less intuitive. Also,
if a constraint ¬Fi does not exactly match the graphs in counterexamples – i.e. if there is a
graph G with G /⊧ Fi that is not part of a counterexample G ⇒R G′ – the new 1-inductive
invariant may be too broad. Consider an extreme case: Fi = false is indeed violated by all
relevant counterexamples G and its conjcuntion with other constraints is necessarily always a
1-inductive invaraint – but since no graph will satisfy it, it is useless as a safety property.

When implementing such a procedure, we also have to consider the problems of incom-
pleteness and undecidability. This is particularly important because we need to construct the
additional constraints Fi. Given symbolic counterexamples in each iteration, we can use those
to derive the respective constraint Fi; however, if the approach is incomplete, ¬Fi may also
describe non-counterexamples, which may lead to the problem sketched above. Finally, the pro-
cedure may not terminate for two reasons: the underlying problem of undecidability (even for
the restricted formal model) or because there does not exist a 1-indcutive invariant ⋀1≤i≤nFi

under H.
That said, we actually do apply a (different) type of iteration in the Seq-construction for

the general and restricted approaches. Hence, there is a relation between analyzing singular
transformations G⇒R G′ and k-induction:

Lemma 8.2 (iterative approach to k-induction). Let GTS = (TG ,R) be a graph transforma-
tion system and let H and Fi with 1 ≤ i ≤ k be graph constraints such that:

1. For all i with 1 ≤ i ≤ k − 1 and all transformations G⇒R G′ with G ⊧H and G′ ⊧H, we
have G′ /⊧ Fi ⇒ G /⊧ F1 ∨G /⊧ Fi+1.

2. For all transformations G⇒R G′ with G ⊧H and G′ ⊧H, we have G′ /⊧ Fk ⇒ G /⊧ F1.

Then, F1 is a k-inductive invariant of GTS under H.

Proof. Consider a transformation sequence G0 ⇒R ...⇒R Gk with Gi ⊧ H for i = 1, .., k and
Gi ⊧ F1 for i = 1, .., k − 1. We need to show Gk ⊧ F1.

We assume Gk /⊧ F1 and will first show Gk+1−i /⊧ Fi for i = 1, .., k by induction over i.
Base case. For i = 1, Gk /⊧ F1 holds by assumption.
Inductive step. Consider Gk+1−(i+1) ⇒R Gk+1−i. By inductive hypothesis, we have Gk+1−i /⊧
Fi. By precondition (1), we get Gk+1−(i+1) /⊧ F1 ∨Gk+1−(i+1) /⊧ Fi+1. Since, with 1 ≤ i ≤ k − 1,
we have Gk+1−(i+1) ⊧ F1, we get Gk+1−(i+1) /⊧ Fi+1, concluding the inductive proof.

In particular, we have G1 /⊧ Fk and by precondition (2), we get G0 /⊧ F1, which is a contra-
diction. Hence, we have Gk ⊧ F1.

Again, we investigate counterexamples for a 1-inductive invaraint F1 under H: transforma-
tions G⇒R G′ with G ⊧H, G′ ⊧H, G ⊧ F1, and G′ /⊧ F1. All such graphs G are described by
a constraint F2; then, we check whether all transformations G⇒R G′ with G ⊧H and G′ ⊧H
imply G′ /⊧ F2 ⇒ G /⊧ F1. If not, we represent the respective graphs G in counterexamples by
another constraint F3. We continue this iterative process until we reach a constraint Fk such
that G′ /⊧ Fk ⇒ G /⊧ F1 in all transformations G⇒R G′ with G ⊧H and G′ ⊧H.

Unlike the iterative approach that accumulates constraints and shows their invariance, the
constraints Fi here (except for F1) are not verified as 1-inductive invariants. Given transfor-
mations G⇒R G′ with G ⊧ H and G′ ⊧ H, instead of G′ /⊧ Fi ⇒ G′ /⊧ Fi (Fi as a 1-inductive
invariant under H), we verify G′ /⊧ Fi ⇒ G /⊧ F1, meaning that violations of Fi are only
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reachable from violations of F1. As explained above, counterexamples are gathered in a con-
straint Fi+1, which leads to G′ /⊧ Fi ⇒ G /⊧ F1 ∨G /⊧ Fi+1 (under H) as in condition (1) and
G′ /⊧ Fk ⇒ G /⊧ F1 (2) as the termination criterion.

The condition G′ /⊧ Fi ⇒ G /⊧ F1 is equivalent to G ⊧ F1 ⇒ G′ ⊧ Fi. Its verification requires
support for preconditions and postconditions: we need to be able to show that validity of a
graph constraint Fi before rule application implies validity of another constraint Fi after rule
application – provided H is satisfied both before and after rule application. This could be
performed after lesser modifications to the existing approach for 1-inductive invariant check-
ing [BBG+06, Dyc12] and its later incarnations [1]. Without a guaranteed constraintH (or with
H = true), it can also be performed by techniques supporting verification with preconditions
and postconditions, most notably the approach described and and implemented by Pennemann
and Habel [HP09, Pen09]. With a non-trivial guaranteed constraint, the procedure becomes
more involved. We will consider this in more detail in Section 8.2.

Intuitively, the idea of an implementation of Lemma 8.2 is to iteratively build symbolic
transformation sequences leading to a violation and analyzing the sequence for earlier viola-
tions (of F1). Unsurprisingly, this is also the idea of the general (and restricted, see below) ap-
proach, which implements an iterative (but automated) procedure similar to the one sketched in
Lemma 8.2. Given an s/t-pattern sequence seq = src1 ⇒b tar1 with seq ∈ Seqg

1(R,¬F∧H,F∧H),
the constraint src1∣∅ describes exactly the graphs G such that there is a transformation G⇒ G′

with G ⊧H, G′ ⊧H, G ⊧ F , and G′ /⊧ F – i.e. a counterexample. This constraint src1∣∅, along
with the respective constraints from other s/t-pattern sequences in Seqg

1(R,¬F ∧H,F ∧H)
is then paired with the right side of another rule in step SCk-1 – and so on in further it-
erations for higher values of k. Analysis for violations of F (or F1 in the lemma above) is
performed by transferring F to each intermediate source pattern and, by Lemma 5.14 (p. 94)
and Theorem T.2g (p. 96), by checking the sequence’s satisfiability.

The situation is slightly different for the restricted approach. Given an s/t-pattern sequence
seq = src1 ⇒b tar1 with seq ∈ Seqr

1(R, F ) for a singular forbidden pattern F of F , src1∣∅
describes the set of graphs G such that there is a transformation G ⇒b G

′ with G′ ⊧ F
(which implies G′ /⊧ F). As before, src1∣∅ is used to construct Seqk(R, F ) for subsequent
values of k – unless src1∣∅ is discarded. This may happen because it implies a forbidden or
guaranteed pattern (by Theorem T.2r (p. 143)) or, if implication with composed patterns
(Section 7.4) is used, because it implies ¬F ∧H (by Theorem T.2e-ai (p. 224)). However, since
the approach is incomplete, the construction and theorem may fail to discard a number of
false negatives, whose corresponding source patterns will then be used in the next iteration.
In the restricted approach, this is partly addressed by forward propagation (Section 7.1). In a
hypothetical implementation of Lemma 8.2 that would be based on previous implementations of
1-inductive invariant checking [BBG+06, Dyc12], this cannot be addressed without significant
changes concerning the inclusion and analysis of forbidden and guaranteed patterns in source
and target patterns. Thus, applying these techniques for 1-inductive invariant checking to
perform k-induction – without optimizations specific to k-induction – risks higher numbers of
false negatives or higher computational effort.

8.2. Verification of Graph Programs via Weakest Preconditions

Between 2006 and 2009, Pennemann, Habel, and Rensink [HPR06, Pen08a, Pen08b, HP09,
Pen09] described an approach for the verification of graph programs with respect to a specifica-
tion that consists of the program and its postcondition and precondition [Pen09]. Starting with
the postcondition, the approach computes the weakest precondition such that after program
execution, the postcondition is satisfied. If the specified precondition implies the computed
precondition – which is verified – the program specification is correct: whenever the specified
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precondition is satisfied, program execution results in satisfaction of the postcondition [Pen09].
The approach has been implemented under the name Enforce.

Conditions are specified by graph constraints. There is work concerning the computation
of weakest preconditions for HR* conditions [Rad13], which are more expressive than nested
graph constraints, but the current implementation focuses on the latter. Graph programs
consist mainly of graph rules (with left nested application conditions) with control structures
such as sequential execution, non-deterministic choice between rules, loops, and conditional
execution [Pen09]. As such, conditions by themselves are equivalent to properties as described
in our general formal model, but more expressive than (composed) graph patterns in the
restricted formal model. While graph transformation systems without control structures (as in
the general and restricted formal models) are already turing-complete [HP01], graph programs
allow the use of constructs typical for imperative programming and, as such, allow a much
more direct specification of the respective system’s behavior.

The approach contains two main components: the computation of the weakest precondition
and the implication check. The former is performed by constructions identical or similar to
the Shift- and L-constructions. The latter is essentially the probem of implication of graph
constraints, which is undecidable for nested graph constraints in general. Still, the approach
and implementation attempt to provide an answer with a timeout ensuring termination at
the cost of potentially indecisive results. It is based on the satisfiability solver SeekSat and the
theorem prover ProCon [Pen09]: SeekSat [Pen08a] is able to find satisfying graphs for satisfiable
graph constraints in finite time [Pen09], ProCon implements a calculus using deduction rules
on graph constraints [Pen08b].

Given a graph program P and pre- and postconditions C and C′, the respective specification
is denoted as {C}P{C′} [Pen09]. If the program (specification) is correct and given graphs G
and G′ where G′ is the result of executing P on G, G ⊧ C implies G ⊧ C′. We can apply this
approach to verify a 1-inductive invariant F for a graph transformation system GTS = (TG ,R)
under a trivial guaranteed constraint H = true: if {F}R{F} is correct, then F is a 1-inductive
invariant of GTS . Here, R is a graph program that applies a non-deterministically chosen
rule from the set R; then, for all graph transformations G ⇒R G′, G ⊧ F implies G′ ⊧ F as
required. In fact, several case studies used to evaluate Enforce have programs specified with
1-inductive invariants [Pen09]. If a non-trivial guaranteed constraint is involved, the approach
can also be applied [1]:

Lemma 8.3 (1-induction with weakest preconditions). Let GTS = (TG ,R) be a graph trans-
formation system and F and H be graph constraints. F is a 1-inductive invariant of GTS
under H, if the program specification {F ∧H}R{F ∨ ¬H} is correct.

Proof. Correctness of {F ∧H}R{F ∨ ¬H} implies that for each rule b ∈R, we have

∀G,G′((G⇒b G
′)⇒ (G ⊧ F ∧H⇒ G′ ⊧ F ∨ ¬H)),

which is equivalent to

∀G,G′((G⇒b G
′ ∧G ⊧H ∧G′ ⊧H)⇒ (G ⊧ F ⇒ G′ ⊧ F)),

which is the definition of a 1-inductive invariant F under a constraint H (Definition 4.4).

While applicable, the approach and implementation may run into problems for larger condi-
tions: in contrast to the restricted approach described in this thesis, the general nature of the
Enforce implementation puts less emphasis on optimizations for a restricted fragment of con-
straints and application conditions. As a result, Enforce is impractical for certain scenarios [1].
On the other hand, it can be applied to systems whose specifications require graph constraints
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beyond the restricted formal model described in this thesis. We will reexamine differences in
performance and specifications in Chapter 9, Section 9.2.

The situation becomes more involved if we attempt to perform k-inductive invariant check-
ing. Since we can apply Enforce to verify singular applications of graph rules, we can use the
technique sketched in Section 8.1 (Lemma 8.2 (p. 233)): iterative analysis of singular applica-
tions of transformation rules to reason about k-inductive invariants. Part of this scheme was
to verify that for a set of rules R and all graphs G ⇒R G′ with G ⊧ H and G′ ⊧ H, G ⊧ F
implies G′ ⊧ F ′ for graph constraints F and F ′. This is equivalent to showing correctness of
{F ∧H}R{F ′ ∨ ¬H}. We would again need symbolic counterexamples from each iteration as
input for the next iteration. Those are not currently provided by Enforce; however, the nec-
essary algorithms are already part of the tool and could be reused. The same applies if we
were to accumulate counterexamples in new constraints Fi until the conjunction ⋀1≤i≤nFi is
a 1-inductive invariant under H. In both cases, Enforce could be modified to allow automa-
tion of this iterative approach – or an automated algorithm could repeatedly and iteratively
call Enforce with each iteration’s parameters. As with 1-inductive invariant checking, however,
performance will be a limiting factor.

Unfortunately, performing general k-induction with Enforce directly is not possible without
changing the graph program in question. In particular, correctness of the graph program {F ∧
H}Rk{F ∨¬H} – with Rk a graph program of k subsequent applications of rules chosen non-
deterministically from R – does not mean that F is a k-inductive invariant under H. Instead,
it proves that for all graphs G,G′ with G ⇒k

R G′, G ⊧ F ∧ H implies G′ ⊧ F ∨ G′ /⊧ H.
Verification of a k-inductive invariant would also require checking intermediate graphs in the
transformation sequence G⇒k

R G
′.

That said, the inclusion of the analysis of intermediate graphs is possible by inserting special
graph rules into the graph program. Consider a graph rule addC = ⟨(∅↩ ∅↪ ∅),F ∧H, true⟩.
This rule is applicable to all graphs that satisfy F ∧H and has no effect on the graph. If we
then change the graph program to {F ∧H}{R; addC}k−1R{F ∨¬H}, the required application
of addC after each regular rule application (from R) incorporates satisfiability of F ∧ H in
intermediate steps, allowing us to perform k-inductive invariant checking. Again, performance
will be a limiting factor – in particular, because shifting the entire constraint F ∧H to each
intermediate condition is costly. This is investigated further in Chapter 9, Section 9.3.3.

The situation is different for k−1-bounded backward model checking with a graph transfor-
mation system GTS = (TG ,R), a start configuration constraint S, a safety property F , and
a trivial guaranteed constraint H = true. Correctness of all programs

{S}R1 {F},
{S}R2 {F},
. . . . . . . . . ,

{S}Rk−1{F}

is equivalent to the validity of F in the k−1-bounded state space of all induced graph gram-
mars in IND(GTS ,S). Here, we do not need to transfer additional constraint to intermediate
conditions: F does not need to be considered (cf. Theorems T.2g and T.2r) and H is trivial.
If a non-trivial guaranteed constraint is involved, we need to apply a variant of the addC rule
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introduced above: given addH = ⟨(∅↩ ∅↪ ∅),H, true⟩, we have to verify all programs

{S ∧H} R {F ∨ ¬H},
{S ∧H}{R,{addH,R}1} {F ∨ ¬H},
. . . . . . . . . ,

{S ∧H}{R,{addH,R}k−2}{F ∨ ¬H}.

Of course, Enforce’s primary purpose of verifying graph programs does not rely on induction
(or bounded backward model checking). It is meant to analyze graph programs with respect
to preconditions and postconditions, not necessarily with respect to inductive invariants. In
some scenarios, the former perspective is more important. For instance, Enforce can verify a
graph program’s (system’s) capability to recover from a safety violation in a certain number
of steps or by a certain sequence of rule applications. Given a safety property F , this means
verifying {¬F}P{F}: starting in a graph G with G /⊧ F , application of P always results in
a graph G with G ⊧ F . Similarly, given a set of rules R, correctness of {¬F}Rk{F} means
that after k applications of rules in R, safety is restored. These are system properties that
cannot be shown with either the general or restricted approach (without significant changes)
described in this thesis.

8.3. Verification of Infinite-State Graph Transformation Systems via Abstraction

Between 2011 and 2015, Steenken, Wehrheim, and Wonisch [SW11, SWW11, Ste15] presented
an approach and implementation focused on verification of graph transformation systems with
infinite state spaces1 via finite-state abstraction, shape analysis, and model checking for state
properties. The general idea is to abstract from a graph transformation system and its state
space by a shape transformation system whose rules operate on shapes instead of specific
graphs [Ste15]; this notion has previously been described in and is based on a number of
publications by several authors, including Boneva, Distefano, Kreiker, Kurbán, Rensink, and
Zambon [BBKR08, BKK+12, RD06]. A shape may encode an infinite number of graphs; it may
contain summary nodes, which represent any positive number of nodes and 1/2-edges, which
specify that the respective edge may or may not exist [Ste15]. Additional shape constraints
– first-order logic formulas over node and edge predicates – may be used to further restrict
shapes. When rules of a shape transformation system are applied, shapes are materialized :
summary nodes and 1/2-edges matched by the respective rule are required to be present,
meaning that the materialized shape contains them as regular nodes and edges in addition
to the summary nodes and 1/2-edges [Ste15, SWW11, SW11]. To preserve a uniform level
of abstraction (to the extent possible), abstraction schemes may be applied to shapes after
materialization [Ste15].

This form of abstraction may significantly reduce the size of a transformation system’s
state space’s representation and, for infinite state spaces, may provide a finite encoding. Dur-
ing (lazy) construction of this representation, the approach and implementation searches for
traces from a transformation system’s initial graph to a forbidden pattern. Such a pattern is
described by a subgraph that should not occur in any safe system state. The approach and
abstraction is sound: if no occurrene of the forbidden pattern can be found in the state space
of the shape transformation system, the pattern will not occur in the (non-abstracted) graph
transformation system’s state space either. The reverse, however, does not necessarily hold.

1Note that the approach defines a graph transformation system as a pair of a rule set and an initial state; then,
a graph transformation system has a state space. This thesis uses a different formalism: a graph grammar,
not a graph transformation system, contains an initial state and hence, has a state space.
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Given the expressive power of formulas in shape constraints, the approach also inherits the
underlying undecidability of first-order logic [Ste15]. This manifests in incompleteness; specif-
ically, the possibility of spurious counterexamples. To alleviate this, abstract error traces are
analyzed for their feasibility, i.e. validated with respect to the existence of a corresponding
concrete error trace from the initial state to the forbidden pattern.

The approach is implemented as an automated tool and has been evaluated for several case
studies [Ste15]: operations on linear lists, computer networks protected by a firewall and its
protocol [KK06, ZR12], and process scheduling [Won10].

Because of its design, the approach cannot be used (and is not intended) to verify 1-inductive
invariants or k-inductive invariants. However, it is capable of verifying operational invariants,
which usually is the ultimate purpose of applying 1-induction or k-induction (cf. Lemma L.1
(p. 65)). Since it applies model checking on the (abstracted) state space, lack of context
information is expected to be less of a problem, and reachability is considered by the analysis.
On the other hand, the approach relies on state spaces that can be represented in a finite
fashion and feasible size. While applicable to a number of meaningful examples, the current
implementation only supports verification for a singular initial state, a singular forbidden
pattern, and rules without application conditions [Ste15]. These appear to be restrictions of the
implementation and less of the underlying theory [Ste15]; in particular, extension by negative
application conditions is claimed to require litte additional effort [Ste15]. Similarly, a system’s
initial graph could be changed to allow an initial shape, which would support verification of
an infinite number of initial graphs in one verification run. Using forbidden shapes instead of
forbidden patterns (or error patterns) could also be achieved, although it would require more
effort [Ste15].

A error pattern or forbidden pattern in the form of a graph P in this approach corresponds
to an existential condition ∃(iP ∶ ∅↪ P ) in the formalism used in this thesis, i.e. to a forbidden
pattern with a trivial composed negative application condition true. Hence, we can attempt
to mimic the verification result by the approach by Steenken, Wehrheim, and Wonisch to
some degree: using the restricted approach and implementation proposed in this thesis, we can
attempt to verify a forbidden pattern as a k-inductive invariant and establish its validity in
a singular graph grammar’s k−1-bounded state space (Lemmas L.1 (p. 65) and L.2 (p. 66)).
If successful, the property can be confirmed as an operational invariant without having to
compute the state space (or its abstraction). If verification as a k-inductive invariant fails,
however, we do not usually get an error trace from the graph grammar’s initial state – in
contrast to the approach by Steenken, Wehrheim, and Wonisch (and to k−1-bounded backward
model checking). Also, even if the pattern is not a k-inductive invariant, it may still be an
operational invariant if the initial state(s) is suitably chosen. This, too, is not considered by
the approach discussed in this thesis.

In summary, both approaches follow different ideas; each will be better suited than the other
in specific application scenarios. While the approach by Steenken, Wehrheim, and Wonisch is
likely to offer more intuitive and meaningful counterexamples and provides a higher degree of
completeness, the restriced approach discussed in this thesis offers support for more expressive
specifications; furthermore, feasibility of verification may be less dependent on the size of state
spaces. Given system specifications supported by both approaches, there is the possibility of
combining them: if verification with k-inductive invariants fails, abstraction and model checking
may still prove operational invariance – or provide a meaningful error trace. In Section 9.4,
we will discuss a case study used to evaluate verification by abstraction and how it relates to
inductive invariant checking.
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In this chapter, we will apply the restricted approach to verification with k-inductive invariants
to a number of case studies and compare the case studies and results to examples and tools
described in related work.

The restricted approach was implemented as a tool prototype in a series of plugins for the
Eclipse1 development environment. The tool first appeared [BBG+06] as part of the Fujaba
tool suite [NNZ00]. A later version was decoupled from Fujaba and migrated to a new version
based on the Eclipse Modeling Framework2. At first, its formal model supported only negative
application conditions containing (at most) a node and an edge; later, the tool supported
1-inductive invariant checking with respect to most of the restricted formal model [Dyc12].
However, support for guaranteed patterns was limited and had no formal description. Of
the extensions described in Chapter 7, only rule priorities [BBG+06, Dyc12] were already
implemented (for 1-induction).

In the context of this thesis, the implementation was extended to support k-inductive in-
variant checking (for the restricted formal model, including guaranteed patterns). Rule appli-
cability conditions (steps SC1-3 and SCk-3 of the Seq-constructions) were also added. Forward
propagation (Section 7.1), partial negative application conditions (Section 7.3), and implica-
tion of composed graph patterns (Section 7.4) were implemented; handling of rule priorities
(Section 7.2) was extended to k-inductive invariant checking. These four extensions can be
combined with one exception: currently, rule priorities are not taken into account for context
generation and context reduction.

The procedure of k−1-bounded backward model checking was also implemented. Its main
purpose is to verify the base case of our inductive argument, with k-inductive invariant checking
as the inductive step. The implementation includes support for the four extensions listed above.
Previously, the base case was not explicitly verified. Establishing a 1-inductive invariant F for
a graph transformation system GTS meant that graph grammars with an error-free initial
state were safe: for all graph grammars GG = (GTS ,G0) with G0 ⊧ F , all graphs in their
state spaces would satisfy F (by Lemma 3.4 (p. 50)). Now, as discussed in Chapter 4, we may
specify a start configuration constraint S, which, in the restricted approach, is required to be
a composed (start configuration) pattern. Thus, verification of the base case (as in Lemma L.1
(p. 65)) requires either validity of F in the k−1-bounded state space (if k > 1) or S ⊧ F (if
k = 1). The first case can be verified by k−1-bounded backward model checking. The second
case can be checked by implication with composed graph patterns, but will not be the focus
here.

Outline. This chapter is structured as follows:
Section 9.1 explains the architecture and implementation of the tool and approach. It also

describes configuration options and explains how experiments were conducted and how their
results should be interpreted.

Section 9.2 discusses the case study about behavior preservation for relational model trans-
formations, which was introduced in earlier work [GL12] and extended in more recent publi-
cations [6, 5]. Experiments for this case study were performed with both 1-inductive invariant
checking and Enforce (SeekSat/ProCon).

1https://www.eclipse.org
2https://www.eclipse.org/modeling/emf/
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Section 9.3 picks up the running example of this thesis: the protocol for behavior of au-
tonomous shuttles on switches. For this example, we consider k-induction with k ranging from
1 to 5. Variations and fragments of this case study will also be used to demonstrate the effect
of partial negative application conditions and to investigate to what extend k-induction can
be performed by either 1-induction or application of Enforce.

Section 9.4 discusses the example of a list with rules to add and remove elements [Ste15].
It demonstrates a limitation of inductive invariant checking and how this limitation can be
partly addressed.

Section 9.5 explains why the existence of multiple behavioral entities with concurrent be-
havior in graph grammars may lead to problems for k ≥ 2 and how we may attempt to address
the issue.

Finally, Section 9.6 summarizes the results of this chapter.

9.1. Architecture and Configuration

The tool follows a pipe-and-filter architecture. Computations are performed by filters, which
are arranged sequentially and are connected by pipes. A task, such as verification of a k-
inductive invariant, is performed by a filter chain, which contains (in sequence)

– optional Preprocessors, which may perform preparing tasks on the data (sequentially),
– a Producer, which partitions the data as required and passes the pieces to the first filter,
– a sequence of Filters, which perform computations on the pieces of data, and
– finally, a Consumer, which is responsible for processing the pieces of data received from

the last filter and displaying the results.

The composition and configuration of a filter chain determines its task and which extensions,
if any, should be used. For instance, the tool has predefined filter chains for k-inductive invariant
checking with or without forward propagation for values of k ranging from 1 to 6. The same
applies to k−1-bounded backward model checking with k ranging from 2 to 6. New filter chains
– i.e. new combinations of a producer, consumer, filters, and their configuration parameters
– can be put together by a user through the UI. New filters (or producers, consumers, or
preoprocessing components) for tasks or algorithms not required by the tool in its current
state would have to be implemented first.

The filters currently available cover the implementation of the algorithms required for
the restricted approach and its extensions. For example, steps SC1-2 and SCk-2 of the Seq-
construction are implemented by the so-called RuleApplicationFilter. Its configuration options
determine which version of the Seq-construction is used: Theorem T.1r (p. 130) – the restricted
approach – or Theorem 7.28 (p. 199) – the restricted approach with partial negative applica-
tion conditions. Similarly, forward propagation is implemented in the ContextPropagationFilter.
For k-inductive invariant checking and k−1-bounded backward model checking, each filter typ-
ically operates on one s/t-pattern sequences at a time. Any s/t-pattern sequence reaching the
consumer is saved in a file as a counterexample. Such a counterexample can be viewed in a
tree editor and contains the sequence’s (reduced) source and target patterns and the rules
connecting them.

The input of a filter chain comes from a model file where system elements can be specified in a
tree editor that conforms to a predefined EMF metamodel for type graphs, graphs, graph rules,
application conditions, and graph constraints. The following elements need to be specified:

– the type graph TG ,
– the graph rules R (with priorities, if required),
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– a composed forbidden pattern F ,
– a composed guaranteed pattern, if required H, and
– a composed start configuration pattern, if required S.

Through appropriately combined filter chains and configuration options, the current im-
plementation allows to perfom k-inductive invariant checking (k-invcheck) and k−1-bounded
backward model checking (k−1-modelcheck) in the sense of the restricted approach (Theo-
rems T.2r (p. 143) and T.3r (p. 149)). With respect to extensions, both techniques can be
executed

– with or without forward propagation (prop.) in the sense of Theorem T.2e-fp (p. 177),
– with or without rule priorities (prio.) in the sense of Theorem T.2e-rp (p. 184),
– with or without implication with composed patterns (impl.) in the sense of Theorem T.2e-

ai (p. 224), and
– with or without partial negative application conditions (partial) in the sense of Theo-

rem T.2e-pn (p. 211),

and with or without preprocessing (prepr.) to reduce composed forbidden patterns in the
sense of Theorem 7.40 (p. 225): if the conjunction of the composed guaranteed pattern and a
subset of forbidden patterns implies all remaining forbidden pattern, this remaining set does
not have to be verified. For purposes of bounded backward model checking, there is also a
preprocessor available to compute whether a composed start configuration pattern S implies
all individual forbidden patterns Fi; if this is not the case, the required forbidden patterns
can be added to the composed start configuration pattern. Combinations of extensions follow
Theorem T.2e (p. 228).

Available configuration options include the following, which are mostly aimed at improving
performance by skipping computations not required for the respective system:

– Rule applicability conditions usually created by steps SC1-3 and SCk-3 will be omitted
from an s/t-pattern sequences, unless the option (appl.) is chosen.

– Forward propagation (prop.), if used, will skip propagation of composed negative applica-
tion conditions by default, instead propagating only positive context in forward direction,
unless the option prop.+NACs is chosen.

– Filter chains can be configured to abort computation as soon as one counterexample is
found (stop).

– Output of counterexamples to files can be skipped (nf).
– The threshold value for context generation (which enforces termination for implication

with composed patterns) can be changed.

For each experiment, the corresponding list of results contains

– the time, given in seconds,
– the number of counterexamples # ce,
– and the result of the verification, which is one of the following:

T – if the property was successfully shown (a true positive),
F – if there are only valid counterexamples (true negatives),
FN – if there are only spurious counterexamples (false negatives),
F+FN – if there are both valid and spurious counterexamples,
F/FN – if the counterexamples may contain both valid and spurious counterexamples

(but can also contain just one type),
TmOut – if verification exceeded a time limit of one hour, or
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MErr – if verification encountered an OutOfMemoryError, such as when exceeding Java
heap space.

In general, any counterexample given by the tool may either be a false negative or a true
negative (i.e. F or FN). If a counterexample disappears once certain extensions (forward prop-
agation or implication with composed patterns) are used, it is a false negative. We use this
insight to classify counterexamples as false negatives (FN) in the verification results docu-
mented and discussed in this chapter. We can also classify some counterexamples as true
negatives (F) because of the form of the respective systems: for instance, if all guaranteed and
forbidden patterns only have trivial composed negative application conditions, only one class
of false negatives can occur – and this class can be eliminated by using forward propagation.
However, this is not part of an automatic classification by the tool; strictly speaking, it only
classifies results as T or F/FN.

All experiments were executed on a laptop computer with an Intel Core i7-2640M processor
with two cores at 2,8 GHz and running Windows 7 Professional (Service Pack 1, 64 bit), Eclipse
4.5.1 (Mars.1), and Java 8. While the computer had 8 GB of main memory, the limit on Java
heap space was set to 4 GB. All times are specified in seconds unless otherwise noted. Values
under a second were not distinguished, values over five minutes were rounded down to the next
minute. As mentioned above, verification tasks taking longer than one hour were aborted.

In order to provide a rough classification of verification tasks with respect to complexity,
we will use a metric adapted from earlier work [1]: for each pair of a rule and a forbidden
pattern, we will determine the number of overlappings of nodes in the pattern – including its
composed negative application condition – and the right rule side. As established in Chapter 7,
Section 7.3, that number is

ol(n,m) =
m

∑
i=0
(m
i
)(n
i
)i!

for two graphs consisting of n and m nodes of the same type. Now, we consider a rule set R
with right rule sides R, a type graph TG with a node type set VTG , and a composed forbidden
pattern F = ⋀i∈I ¬Fi with Fi = ∃(iPF
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is the sum of such overlappings (of nodes) for all pairs of forbidden patterns and right rule
sides. More specifically, it is the minimum number of target patterns created by step SC1-1 in
Seqr

1(R,¬F) = ⋃i∈I Seqr
1(R, Fi). If the pattern and right rule side do not contain any edges,

it is the exact amount of target patterns created in these steps. Each target pattern thusly
created may spawn an s/t-pattern sequence (of length 1) that needs to be analyzed – and that
may then spawn additional s/t-pattern sequences for values k > 1.

Furthermore, let Fi = ∃(iPF
i
,aci) (as above) and aci = ⋀j∈Ji ¬∃(xij ∶ PF

i ↪Xij). Then, given

tijv as the number of nodes of type v in Xij ,
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is the sum (over all pairs of rules and forbidden patterns) of the maxima of negative application
conditions (considering nodes only) in a target pattern created from the respective pair. Edges
are disregarded because computation of overlappings is more complex for nodes than for edges
– often, overlappings of edges can be inferred by nodes. Negative application conditions are
costly to compute (by the Shift-construction), have to be propagated along rule applications,
and play an important role in discarding counterexamples via implication of patterns. As such,
while cy+ provides an estimate of the number of target pattern initially created (i.e. for k = 1),
cy− roughly describes the effort of creating and handling the target patterns with the highest
number of negative application conditions. Of course, many target patterns will have a much
lower number of such conditions. Furthermore, cy+ and cy− do not provide information about
the size of patterns or negative application conditions in terms of the number of nodes and
edges.

Note that both values only provide some indication as to the system’s potential complexity,
which may not correspond to the complexity and required runtime of the verification. For
example, a combination of large patterns with large right rule sides will lead to a high value of
cy+ – but if all potential counterexamples are quickly discarded because of a small guaranteed
pattern, verification will not require much computational effort. Likewise, certain optimizations
– such as partial negative application conditions or preprocessing forbidden patterns in the
sense of Theorem 7.40 (p. 225) – may lead to fewer and faster computations than expected.
Also, the size of k in k-inductive invariant checking will not factor into the complexity. Still,
the values provides some idea of the scope of the specified system and may highlight the effects
of optimizations and extensions in the implementation of the restricted approach.

9.2. Case Study: Behavior Preservation of Model Transformations

This case study consists of six example systems, two of which were briefly sketched in Chapter 1,
Examples 1.2 (p. 6) and 1.3 (p. 7). The systems were used to describe and verify behavior
preservation for relational model transformations (specifically, triple graph grammars). The
goal of the approach, originally introduced in 2012 [GL12], was to verify behavioral equivalence
(and later, refinement [6, 5]) for all possible source and target models – an infinite amount.
Hence, verification needed to be performed symbolically on the transformation level – for all
pairs of source and target models – instead of the instance level, where only individual pairs
of a source and a target model can be analyzed.

Details of the approach can be found in the original source [GL12] and subsequent publica-
tions [6, 5]. In short, there are two phases: model transformation and model semantics. A model
transformation is specified by a triple graph grammar (TGG) [Sch94]; a triple graph grammar
contains an axiom and a set of triple graph rules, which essentially are (typed) graph transfor-
mation rules. It is also equipped with a constraint restricting its state space. The triple graph
grammar creates source and target models along each other and thusly generates all pairs of
source and target models, i.e. all model transformation instances. Of course, the grammar may
only create source and target models conforming to the source and target modeling languages,
which are specified by type graphs and graph constraints.

Model semantics are also specified by graph transformation rules and further restricted
by graph constraints. They are typed over the runtime source and target modeling languages,
which allow for the occurrence of additional runtime elements not present (and not relevant) for
the model transformation phase (above). In order to specify and verify behavioral equivalence
between the semantics of two models, rules in source semantics have equivalent rules in the
target semantics (and, since they are equivalent, vice versa). Behavioral equivalence – in the
sense of the approach [6] – then requires bisimilarity [Mil89]: if every rule application in the
source model can be followed by an equivalent rule application in the target model, and vice
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versa, the two models are behaviorally equivalent. If this holds for each pair of source and
target models, the model transformation as such is behavior preserving.

In order to verify bisimilarity, the approach describes the construction of a bisimulation
constraint – a graph constraint. Given the constraint’s validity in the triple graph grammar’s
axiom, the approach applies 1-inductive invariant checking: it is shown [5, 6] that the invariance
of the bisimulation constraint for the triple graph grammar and the combined model semantics
implies the existence of a bisimulation relation for the labeled transition systems induced by
the model semantics. In its first version [GL12], the approach imposed limitations on the nature
of model semantics; in particular, no non-determinism was allowed when rules were applied. In
the extended version [6, 5], this restriction was dropped; furthermore, verification of behavioral
refinement via a simulation relation was introduced.

All examples used in the original [GL12] and follow-up publications [6, 5, 7] describe trans-
formations and semantics of sequence charts and communicating automata. Each example
consists of two phases: model transformation and combined model semantics. Both require
verification of the invariance of a composed forbidden pattern under a composed guaranteed
pattern. For the combined model semantics, that composed forbidden pattern is the bisimu-
lation or simulation constraint; for the model transformation, it is a conjunction of the bisim-
ulation (or simulation) constraint and an additional model transformation constraint derived
from the former. There are three examples:

equiv-s: This first example [GL12] allows only source and target models with one lifeline and
one automata, respectively; it is shown that the model transformation is indeed behavior
preserving in an equivalent manner. Its two phases are equiv-s-trans and equiv-s-sem. All
system elements are listed in Section C.2.1 of Appendix C.

equiv: This second, more permissive example [6, 5] allows an arbitrary number of lifelines in
sequence charts and an arbitrary number of automata in systems of communicating au-
tomata. The model transformation was also shown to preserve behavior equivalently. The
two phases are equiv-trans and equiv-sem. All system elements are listed in Section C.2.2
of Appendix C.

refine: Finally, the third example is similar to the second, but systems with communicating
automata may have additional internal behavior. Then, the transformation from com-
municating automata to sequence charts is behavior preserving in a refining manner: any
behavior in sequence charts is reflected in the automata – but, given the internal behav-
ior in automata, the reverse does not hold. Again, two phases refine-trans and refine-sem
are involved. All system elements are listed in Section C.2.3 of Appendix C.

In all cases, we apply 1-inductive invariant checking for a graph transformation system
under a composed guaranteed pattern. These composed guaranteed patterns contain mostly
type graph restrictions, which, in the checking tool, cannot (yet) be encoded directly in the
type graph. They also contain some assurances that follow from the two different phases of the
approach and the nature of model semantics rules and model transformation rules. For instance,
model semantics are only allowed to delete or create elements designated as runtime elements.
Hence, invariants defined over the source and target modeling languages – as opposed to the
runtime source and target modeling languages – and established for the model transformation
rules will also be invariant for model semantics.

In general, constraints and rules in the approach do not necessarily conform to the restricted
formal model. In the examples used here, most do. For some rules and constraints, a simplifi-
cation scheme for negative application conditions had to be used [5] to equivalently fit them
to the restricted formal model.

We do not apply bounded backward model checking for these examples. The base case for
the model semantics phase is established by the model transformation phase; the base case
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Table 9.1. – Verification problems and results for behavior preservation

Example (      /       /        ) cy
+

cy
-

time (s) result time (s) # ce result time (s) # ce result time (s) # ce result

equiv-s-trans-init/init-mt (2/2/32) 12 36 1 T < 1 0 T < 1 0 T < 1 0 T

equiv-s-trans-msg/ts-mt (2/4/32) 84 980 266 T < 1 0 T < 1 0 T < 1 0 T

equiv-s-trans-dyn (2/18/32) 184 132 79 T < 1 4 FN < 1 0 T < 1 0 T

equiv-s-trans (2/24/32) 280 1148 5 min T < 1 4 FN < 1 0 T < 1 0 T

equiv-s-sem-rt (3/2/48) 16 16 50 T < 1 6 FN < 1 0 T < 1 0 T

equiv-s-sem-init/init (3/2/48) 16 16 23 min T < 1 0 T < 1 0 T < 1 0 T

equiv-s-sem-msg/ts (3/4/48) 96 96 > 1 h TmOut < 1 20 FN 3 0 T < 1 0 T

equiv-s-sem (3/8/48) 128 128 > 1 h TmOut < 1 26 FN 3 0 T < 1 0 T

equiv-trans-init/init-mt (2/2/28) 38 38 MErr < 1 0 T < 1 0 T < 1 0 T

equiv-trans-msg-mt (2/1/28) 2941 20497 MErr 91 0 T 90 0 T 89 0 T

equiv-trans-com-mt (2/1/28) 20497 2941 MErr 31 0 T 32 0 T 31 0 T

equiv-trans-dyn (2/16/28) 23822 23490 MErr 139 2 FN 124 0 T < 1 0 T

equiv-trans (2/22/28) 47298 46966 MErr 5 min 2 FN 5 min 0 T 124 0 T

equiv-sem-rt (2/2/44) 14 14 MErr < 1 2 FN < 1 0 T < 1 0 T

equiv-sem-init/init (2/2/44) 38 38 MErr < 1 2 FN < 1 0 T < 1 0 T

equiv-sem-send (2/1/44) 2941 20497 MErr 16 min 19 MErr 26 min 0 T < 1 0 T

equiv-sem-fire (2/1/44) 20497 2941 MErr 199 36 FN 5 min 0 T < 1 0 T

equiv-sem (2/6/44) 23490 23490 MErr 18 min 59 MErr 29 min 0 T < 1 0 T

refine-trans-init-mt (2/1/26) 25 49 MErr < 1 0 T < 1 0 T < 1 0 T

refine-trans-msg-mt (2/1/26) 2955 61461 MErr 16 min 0 T 17 min 0 T 16 min 0 T

refine-trans-dyn (2/15/26) 3633 61527 MErr 18 min 1 FN 17 min 0 T < 1 0 T

refine-trans (2/17/26) 6613 123037 MErr 34 min 1 FN 34 min 0 T 17 min 0 T

refine-sem-rt (2/1/40) 7 7 MErr < 1 1 FN < 1 0 T < 1 0 T

refine-sem-init (2/1/40) 19 19 MErr < 1 1 FN < 1 0 T < 1 0 T

refine-sem-send (2/1/40) 2941 20497 MErr 20 min 19 MErr 28 min 0 T < 1 0 T

refine-sem (2/3/40) 2967 20523 MErr 20 min 21 MErr 28 min 0 T < 1 0 T

Enforce

SeekSat/Procon  - Impl. Impl., prepr.

1-invcheck

ℛ  ℱ  ℋ  

for that phase requires validity of the bisimulation constraint in the triple graph grammar’s
axiom. While this could also be proven via implication with composed patterns with the
invariant checking tool, the constraints’ validity in the three examples is trivially obvious.

For each problem, the following verification approaches and configurations where applied:

1. Enforce with SeekSat and ProCon[Pen09], by recoding the problems as specifications
{F ∧H}R{F ∨ ¬H} (cf. Section 8.2),

2. 1-invcheck without extensions,
3. 1-invcheck with impl. – implication for composed graph patterns (Section 7.4) – and
4. 1-invcheck with impl. and including preprocessing (prepr.) to remove some forbidden

patterns from the original composed forbidden pattern, because the remaining composed
forbidden pattern implies the removed patterns (Theorem 7.40).

Experiments were conducted on the system described in Section 9.1. All counterexamples were
written to the disk – runtime for invariant checking includes input and output.

Table 9.1 shows the results. For all six phases of the three examples, both the entire prob-
lem (marked in gray) and subproblems were verified, to get more fine-grained results. Given
the problem’s composed forbidden pattern as F = ⋀i∈I ¬Fi, subproblems were created by par-
titioning I into several sets Iu (for an appropriate index set U), thus splitting the analysis
of Seq1(R,¬F) into ∣U ∣ problems Seq1(R,¬⋀i∈Iu Fi). For SeekSat and ProCon, this meant
verifying ∣U ∣ specifications {F ∧H}R{⋀i∈Iu ¬Fi ∨ ¬H}.

Parts of this comparison between invariant checking and SeekSat/ProCon were already shown
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and discussed in earlier work [1, 2]. Here, however, a newer version of the invariant checker is
used; furthermore, the example refine (with phases refine-trans and refine-sem) has been added.

With respect to these examples, we can draw several conclusions:

Interpretation of results. As shown in earlier work [6] and reiterated in the table, all required
invariants can be verified for all six phases – if implication with composed patterns (impl.) is
used. Since the invariants also hold trivially in the triple graph grammars’ axioms, all three
model transformations preserve behavior in an equivalent or refining manner, respectively.

Applicability of invariant checking. For all three examples (and six phases), the invariant
checker is able to prove the expected result – again, if the extension of implication for com-
posed forbidden patterns is used. Verification terminates within reasonable time, especially if
preprocessing is used. In particular, a time of 17 minutes (refine-trans) is still acceptable be-
cause each phase only needs to be verified once in order to prove behavior preservation for all
(infinitely many) instances of the respective model transformation. Note that the OutOfMemo-
ryError came from attempting to write large – and spurious – counterexamples with more than
twenty thousand negative application conditions to disk after verification had finished. In gen-
eral, this can be avoided by configuring the tool to skip the output of counterexamples to files.
In this case, it could also have been avoided by eliminating false negatives with implication for
composed patterns (see below).

Comparison to Enforce. For all phases in their entirety (and for most subproblems), ver-
ification with Enforce (SeekSat/ProCon) is infeasible or, at least, requires significantly more
time and memory. Of course, the nature of the problems fits very well to the approach of
the invariant checker. Enforce’s approach of computing weakest liberal preconditions and their
comparison with the specified precondition is costly because of the high number of guaranteed
(and forbidden) patterns (and the size of the rules and patterns). Conversely, the restricted
approach benefits from a high number of small guaranteed patterns, because many potential
counterexamples can be discarded quickly. Furthermore, preprocessing of composed forbid-
den patterns, which provides an important speed-up (see below), was originally developped
particularly because of its application in these examples. Given the existence of the required
algorithms in Enforce, implementation of a similar feature may be feasible for Enforce, too.

Finally, it should be noted that the (equivalent) simplification of some negative application
conditions for the equiv and refine examples [6] would not have been necessary for Enforce
because of its support for graph constraints of arbitrary nesting depth. This also applies for
several examples where Enforce is well-suited to solve relevant verification problems [Pen09].
One of these examples is a car platooning system [Pen09], which requires additional constraints
and modeling effort to create an equivalent specification conforming to the restricted formal
model [1].

Other tools and approaches. An earlier version of the invariant checking tool [Dyc12] lacked
certain algorithmic optimizations and was therefore unable to verify the systems in acceptable
time; an earlier comparison [1] noted that a verification attempt was aborted after three days
without a result. Even earlier incarnations [BBG+06, BG08b] lacked support for the type of
graph constraints and negative application conditions required. Besides Enforce and inductive
invariant checking, other verification approaches discussed in Chapter 8 could not be applied in
an automated fashion: they either lack an automated implementation, do not support negative
application conditions or the type of rules required, or require an initial state or a finite set
of initial states. That said, GROOVE could be applied to test singular model transformation
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instances (but not the transformation as a whole) for bisimilarity. Also, explicit-state model
checking approaches in general could be used to generate model transformation instances, e.g.
for testing purposes, via the triple graph grammar.

Impact of implication. As explained in Section 6.8 and later in Sections 7.4 and 7.6, the
restricted approach to invariant checking is incomplete: it can produce false negatives, par-
ticularly because the restricted approach only compares individual patterns by implication.
Implication with composed patterns as described in Section 7.4 may reduce this number of
false negatives at the cost of performance. In all six problems – and hence, in several subprob-
lems – invariant checking without this extension does indeed lead to false negatives. In some
cases (equiv-s-trans), manual inspection may be viable. For equiv-sem, where 59 counterexam-
ples may have thousands of negative application conditions, this does not seem realistic. Using
implication with composed patterns (without preprocessing) may require more time, such as
the additional ten minutes in equiv-sem. However, all false negatives can be discarded.

Impact of preprocessing. Application of preprocessing – attempting to show implication of
each forbidden pattern by the remaining forbidden patterns and the composed guaranteed
pattern (Theorem 7.40 (p. 225)) – about halves the time for phases equiv-trans and refine-
trans and reduces verification time from nearly half an hour to under a second for equiv-sem
and refine-sem. Here, the approach benefits from the structure of the constraints: the largest
fragments of the bisimulation constraint are implied by the composed guaranteed pattern and
the remaining fragments of the bisimulation constraint – and it takes less than a second to
show implication. Then, we can skip the verification (i.e. creation and analysis of s/t-pattern
sequences) for those implied constraint fragments, reducing the overall computation time. From
the examples discussed here, it appears that there is no reason not to apply preprocessing (in
the sense used here). However, given differently structured systems, it may lead to costly and
ultimately unsuccessful attempts at proving implication, resulting in an overall performance
loss.

Impact of cy+ and cy−. It is difficult to judge the exact effect of cy+ and cy− if preprocessing
is used as this may discard the patterns primarily responsible for large values in both metrics.
Without preprocessing, it appears that the number of potential negative application conditions
to be created is more important for determining computational effort than the potential number
of s/t-pattern sequences – for these examples, at least. This can be seen by directly comparing
equiv-trans-msg-mt and equiv-trans-com-mt: the former has a high value of cy+, a lower value
of cy−, and verification requires 91 seconds; the latter has reverse values of cy+ and cy− and
requires only 31 seconds. A similar observation can be made for equiv-sem-send and equiv-sem-
fire (again, without preprocessing). For Enforce, equiv-s-trans and its subproblems hint at a
similar interpretation; in general, the differences in approach of invariant checking and Enforce
make it impractical to judge the relationship between computational effort in Enforce and cy+

or cy−.

Impact of partial negative application conditions. For the examples used here, partial neg-
ative application conditions are not required to improve performance. Rules in the model
transformation phases (equiv-trans and refine-trans) create a lot of nodes and connections to
existing nodes. Hence, the corresponding reduced rules are isomorphic (or, at least, nearly as
large) to the original rules, eliminating the advantage of partial negative application condi-
tions. For the phases concerned with model semantics (equiv-sem and refine-sem), verification
is already fast enough, provided preprocessing is used.
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Table 9.2. – Behavior preservation and partial negative application conditions

Example (      /       /        ) cy
+

cy
-

time (s) # ce result time (s) # ce result time (s) # ce result time (s) # ce result

equiv-sem-rt (2/2/44) 14 14 < 1 2 FN < 1 2 FN < 1 0 T < 1 0 T

equiv-sem-init/init (2/2/44) 38 38 < 1 2 FN < 1 2 FN < 1 0 T < 1 0 T

equiv-sem-send (2/1/44) 2941 20497 16 min 19 MErr 8 19 FN 26 min 0 T 18 min 0 T

equiv-sem-fire (2/1/44) 20497 2941 199 36 FN 58 36 FN 5 min 0 T 265 0 T

equiv-sem (2/6/44) 23490 23490 18 min 59 MErr 66 59 FN 29 min 0 T 25 min 0 T

refine-sem-rt (2/1/40) 7 7 < 1 1 FN < 1 1 FN < 1 0 T < 1 0 T

refine-sem-init (2/1/40) 19 19 < 1 1 FN < 1 1 FN < 1 0 T < 1 0 T

refine-sem-send (2/1/40) 2941 20497 20 min 19 MErr 8 19 FN 28 min 0 T 20 min 0 T

refine-sem (2/3/40) 2967 20523 20 min 21 MErr 8 21 FN 28 min 0 T 20 min 0 T

1-invcheck

 - Partial Impl., Impl., partial

ℛ  ℱ  ℋ  

Without preprocessing, however, we can observe interesting effects. In this case, the ver-
ification combines semantics rules where only two edges are deleted and created in a large,
otherwise unchanging graph with forbidden patterns that contain very similar elements. Ta-
ble 9.2 shows the application of invcheck with and without implication with composed patterns
(impl.) and with and without partial negative application conditions (partial) for equiv-sem and
refine-sem. For equiv-sem, the required time for invariant checking without other extensions can
be reduced from about twenty minutes to just one minute. Furthermore, since one partial neg-
ative application conditions may represent multiple (total) negative application conditions,
counterexamples require much less disk space, thusly avoiding the OutOfMemoryError. If im-
plication with composed patterns is used, the effect is not as pronounced: before applying
implication, partial negative application conditions are expanded. Still, we save about four
minutes. For refine-sem, this value rises to eight minutes.

Although preprocessing makes the use of partial negative application conditions in these
examples unnecessary, the comparison in Table 9.2 shows that we can think of systems where
they have an important effect on performance.

9.3. Case Study: Shuttle Protocol for Switches

In this section, we will discuss the application of the restricted approach and its extensions to
a shuttle protocol focused on handling speed modes when passing over switches. The idea of
a protocol for autonomous shuttle is borrowed from the Railcab project, which has served as
an example in different versions in the literature before [BBG+06, BG08b, SW11].

With the help of the shuttle example, we will discuss the following four aspects: application
of k-inductive invariant checking and k−1-bounded backward model checking to this thesis’s
running example (Section 9.3.1), a comparison of 1-induction, k-induction, and verification
with preconditions and postconditions (Sections 9.3.2 and 9.3.3), the effect of partial negative
application conditions for a different version of the shuttle protocol (Section 9.3.4), and ve-
rification of systems with attribute constraints and symbolic attributed graph transformation
rules (Section 9.3.5).

9.3.1. Verification of Running Example

First, we apply k-inductive invariant checking and k−1-bounded backward model checking to
the running example of this thesis. The protocol for shuttles on switches was used as part of
an evaluation of k-inductive invariant checking in earlier work [3, 4]. Here, we have extended
the safey properties to also prevent shuttles from driving in speed modes acc or brake on a
switch, which only leaves slow.
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We will discuss the following examples:

shuttle-unsafe: This is our running example (Example 6.1 (p. 111)) with rules s2s, b2s, a2b,
and f2b and the alternative rules s2a′, a2f′, and f2f′ (instead of s2a, a2f, and f2f). These
rules do not have safeguards in the form of negative application conditions. The com-
posed forbidden pattern forbids shuttles driving in speed modes fast, acc, or brake on a
switch. The composed start configuration pattern forbids start graphs with shuttles on
switches or in speed modes acc or fast. All system elements are listed in Section C.1.1 of
Appendix C.

shuttle-safe: This is our running example (Example 6.1, p. 111) with the regular rules s2s, b2s,
a2b, f2b, s2a, a2f, and f2f. The last three rules do have negative application conditions.
As before, the composed forbidden pattern forbids shuttles driving in speed modes fast,
acc, or brake on a switch. Similarly, the composed start configuration pattern forbids
start graphs with shuttles on switches or in speed modes acc or fast. All system elements
are listed in Section C.1.2 of Appendix C.

shuttle-single-fault-unsafe: This is the single fault example introduced to demonstrate the effect
of forward propagation in Section 7.1, Example 7.1 (p. 170). Sensor faults may lead to a
shuttle failing to check for switches ahead; however, we assume that only one sensor fault
can occur. The composed forbidden pattern only prevents shuttles from driving fast on a
switch. Here, one of the regular rules (applied in the absence of a sensor fault) is missing
a negative application condition, leading to an unsafe system. All system elements are
listed in Section C.1.3 of Appendix C.

shuttle-single-fault-safe: This is the single fault example introduced to demonstrate the effect
of forward propagation in Section 7.1, Example 7.1 (p. 170). As before, sensor faults
may lead to a shuttle failing to check for switches ahead; however, we assume that only
one sensor fault can occur. The composed forbidden pattern only prevents shuttles from
driving fast on a switch. All system elements are listed in Section C.1.4 of Appendix C.

Of course, we usually do not know beforehand whether systems are safe or unsafe – here,
we have already seen results in examples in earlier chapters. Also, the unsafe systems were
intentionally designed flawed in order to demonstrate verification results for safe and unsafe
systems.

First, we will apply k-inductive invariant checking with k−1-bounded backward model check-
ing to follow later. For the former, the following configurations were used, all except for the
last without output of counterexamples to files (nf.):

– k-invcheck for k = 1..6 without extensions,
– k-invcheck for k = 1..6 with forward propagation (prop.) for non-negative elements only,
– k-invcheck for k = 1..6 with forward propagation including negative application conditions

(prop.+NACs), and
– k-invcheck for k = 1..6 with forward propagation including negative application conditions

and the stop option, i.e. aborting after encountering a counterexample and failing to
discard it.

The results are shown in Table 9.3. Here, output of results is not contained in the time
values. Again, we can make a number of observations:

Interpretation of results. As expected, the respective composed forbidden patterns are 2-
inductive invariants under the corresponding composed guaranteed patterns for shuttle-safe
and shuttle-single-fault-safe. Necessarily, they are also k-inductive invariant for any value of
k ≥ 2. The systems shuttle-unsafe and shuttle-single-fault-unsafe do not have the properties as
k-inductive invariants for any value of k between 1 and 6.
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Table 9.3. – Verification problems and results for shuttle protocol

cy
+

cy
-

k time (s) # ce result time (s) # ce result time (s) # ce result time (s) # ce result

1 < 1 15 F < 1 15 F < 1 15 F < 1 > 0 F

2 < 1 24 F < 1 24 F < 1 24 F < 1 > 0 F

3 1 113 F 1 113 F 1 113 F < 1 > 0 F

4 6 474 F 6 474 F 6 474 F < 1 > 0 F

5 32 2348 F+FN 32 2288 F 32 2288 F < 1 > 0 F

6 199 11478 F+FN 196 10384 F 195 10384 F < 1 > 0 F

1 < 1 12 F < 1 12 F < 1 12 F < 1 > 0 F

2 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

3 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

4 1 0 T 1 0 T 1 0 T 1 0 T

5 1 0 T 1 0 T 1 0 T 1 0 T

6 2 0 T 2 0 T 2 0 T 2 0 T

1 < 1 6 F < 1 6 F < 1 6 F < 1 > 0 F

2 < 1 12 F+FN < 1 3 F < 1 3 F < 1 > 0 F

3 1 108 F+FN 1 17 F 1 17 F < 1 > 0 F

4 9 605 F+FN 2 40 F 2 40 F < 1 > 0 F

5 67 3919 F+FN 6 162 F 6 162 F < 1 > 0 F

6 10 min 25536 F+FN 28 701 F 30 701 F 1 > 0 F

1 < 1 6 F < 1 6 F < 1 6 F < 1 > 0 F

2 < 1 9 FN < 1 0 T < 1 0 T < 1 0 T

3 1 6 FN < 1 0 T < 1 0 T < 1 0 T

4 6 401 FN 1 0 T 1 0 T 1 0 T

5 44 2373 FN 1 0 T 1 0 T 1 0 T

6 6 min 15005 FN 2 0 T 2 0 T 2 0 T

k -invcheck

Nf. Nf., prop. Nf., prop.+NACs Prop.+NACs, stopExample

(      /      /       )

0260

shuttle-single-

fault-safe

(10/1/16)

shuttle-single-

fault-unsafe

(10/1/16)

260 0

0546
shuttle-safe

(7/3/15)

shuttle-unsafe

(7/3/15)
546 0

ℛ  ℱ  ℋ  
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Applicability of k-inductive invariant checking. By k-inductive invariant checking with at
least k = 2, we can verify the composed forbidden pattern as a 2-inductive invariant for shuttle-
safe. For shuttle-single-fault-safe, we additionally require forward propagation. For the unsafe
systems, we receive a number of counterexamples in acceptable time. In particular, we can
receive counterexamples (if present) for all configurations with the stop option in less than a
second for most examples, with two seconds the maximum time required. This is useful if we
want to iterate on an unsafely desgined system and repair it to find a k-inductive invariant.

Other approaches and tools. Since the composed forbidden pattern is not a 1-inductive
invariant, earlier versions of the tool without k-induction could not have been applied without
modifications. In Section 9.3.2, we will discuss to what extent iterative 1-induction could have
been applied. Section 9.3.3 will consider whether the problem can be solved by Enforce.

We require negative application conditions for two of the four systems and do not have a
singular initial state, which again excludes most other approaches for the problem as specified
here. However, given that the state space is finite per initial state, explicit-state model checking
could be applied to test the property for singular initial states. Also, we can imagine a graph
grammar generating initial states. Then, we could devise a control program that alternates
between iterative generation of potential initial states and verification of the safety property
with respect to the current initial state (which produces a finite state space).

Still, the number of initial states is infinite; every change of the track topology may lead
to an initial state not covered (yet) by the graph grammar. Also, verification per initial state
can become rather costly. In a small test topology for shuttle-safe with one shuttle, about 500
tracks connected in a large cycle and two switches in the system, state space exploration with
GROOVE took about 15 seconds and created 2006 states with 3506 transitions. It also showed
that the system was safe with respect to the specific initial graph.

Impact of k. For systems shuttle-safe and shuttle-single-fault-safe (with prop.) with a 2-
inductive invariant, increasing k beyond 2 has little effect; the slight decline in performance
for k ≥ 4 is probably due to additional – and, for these examples, spurious – pipes and filters
waiting for input before their termination. However, as mentioned above, a minimum value of
k = 2 is indeed required to successfully verify the composed forbidden patterns; they are not
1-inductive invariants.

For both unsafe systems, there is a steep increase in the number of counterexample with
increasing k – and a similar increase in required time. Unfortunately, due to faults in the
systems’ designs, increasing k beyond a value of 6 will never lead to successful verification of
the desired property as a k-inductive invariant for shuttle-unsafe and shuttle-single-fault-unsafe.
Even if we did not know or suspect this, the time required for k = 6 (three and ten minutes,
respectively) does not raise hopes for verifying k ≥ 7. Specific values for k will heavily depend
on the system in question. Here, it makes the most sense to check individual counterexamples
for values of k from 1 to 3, fix potential errors, and rerun the verification.

Impact of forward propagation. Without forward propagation, we cannot successfully (and
automatically) verify shuttle-single-fault-safe (for k ≥ 2). Even for unsafe systems, applying
forward propagation will remove a number of false negatives. For shuttle-single-fault-unsafe, this
leads to significantly faster verification for k ≥ 4: while forward propagation requires additional
computations, the reduction of false negatives in one step has an impact on the number of
potential counterexamples that are created in the next step. Forward propagation of negative
application conditions, however, does not have a noticeable effect in these four systems: the
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Table 9.4. – Verification problems and results for model checking of shuttle protocol

cy
+

cy
-

k time (s) # ce result time (s) # ce result time (s) # ce result time (s) # ce result

2 < 1 3 F < 1 3 F < 1 3 F < 1 > 0 F

3 < 1 15 F < 1 15 F < 1 15 F < 1 > 0 F

4 1 71 F 1 71 F 1 71 F < 1 > 0 F

5 6 383 F 7 383 F 7 383 F < 1 > 0 F

6 37 1945 F 40 1945 F 41 1945 F < 1 > 0 F

7 259 10915 F 266 10915 F 274 10915 F < 1 > 0 F

2 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

3 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

4 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

5 1 0 T 1 0 T 1 0 T 1 0 T

6 1 0 T 1 0 T 1 0 T 2 0 T

7 1 0 T 1 0 T 2 0 T 2 0 T

2 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

3 < 1 3 FN < 1 0 T < 1 0 T < 1 0 T

4 1 31 FN < 1 0 T 1 0 T < 1 0 T

5 9 311 F+FN 2 10 F 2 10 F < 1 > 0 F

6 75 2207 F+FN 6 91 F 6 91 F < 1 > 0 F

7 11 min 14620 F+FN 28 406 F 30 406 F < 1 > 0 F

2 < 1 0 T < 1 0 T < 1 0 T < 1 0 T

3 < 1 3 T < 1 0 T < 1 0 T < 1 0 T

4 1 31 FN 1 0 T < 1 0 T < 1 0 T

5 6 243 FN 1 0 T 1 0 T 1 0 T

6 47 1456 FN 1 0 T 1 0 T 1 0 T

7 6 min 8914 FN 1 0 T 2 0 T 2 0 T

Example

(      /      /       /     )

0260

shuttle-single-

fault-safe

(10/1/16/3)

shuttle-single-

fault-unsafe

(10/1/16/3)

260 0

0546
shuttle-safe

(7/3/15/3)

shuttle-unsafe

(7/3/15/3)
546 0

k -1-modelcheck

Nf. Nf., prop. Nf., prop.+NACs Prop.+NACs, stop

ℛ  ℱ  ℋ  𝒮  

impact on performance is negligible and, at least here, there are no false negatives to discard
because of propagated negative application conditions.

If we want to verify a composed forbidden pattern as an operational invariant, we also
need to establish its validity in the k−1-bounded state spaces of all induced graph grammars.
In order to do that, we apply Theorem T.3r (p. 149) (or its variants with extensions) and
its implementation. In particular, the following configurations were used for shuttle-unsafe,
shuttle-safe, shuttle-single-fault-unsafe, and shuttle-single-fault-safe:

– k−1-modelcheck for k = 2..7 without extensions,
– k−1-modelcheck for k = 2..7 with forward propagation (prop.) for non-negative elements

only,
– k−1-modelcheck for k = 2..7 with forward propagation including negative application

conditions (prop.+NACs), and
– k−1-modelcheck for k = 2..7 with forward propagation including negative application

conditions and the stop option, i.e. aborting after encountering a counterexample and
failing to discard it.

Except for the last, each configuration was used without output of counterexamples to files
(nf.). Results are shown in Table 9.4 and lead to the following observations:

Interpretation of results. For shuttle-unsafe, the composed forbidden pattern is not valid
even in the 1-bounded state spaces of induced graph grammars. Even if it were a k-inductive
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invariant, it would not be an operational invariant: there are graph grammars where we can find
a violation within one step of the start graph. Results for k ≥ 2 serve to illustrate performance
and the existence of other violations in state spaces with larger bounds. Since violations in a 1-
bounded state space are also violations in a 2-bounded state space, each set of counterexamples
contains all counterexamples for lower values of k, too.

In the case of shuttle-safe, we can fortunately establish validity of F – which has been shown
to be a 2-inductive invariant – in all 1-bounded state spaces (under the composed guaranteed
pattern). Thus, it is an operational invariant. As a result, F is satisfied in all state spaces
(under H) of induced graph grammars. This makes bounded backward model checking for
k ≥ 2 unnecessary; it is shown here for the sake of completeness only.

The system shuttle-single-fault-unsafe exhibits an interesting property: F is valid in the k-
bounded state spaces for k ≤ 3. However, since it is not a k-inductive invariant, we cannot
assume it is an operational invariant. Indeed, bounded backward model checking for k ≥ 4
yields s/t-pattern sequences that represent transformation sequences from possible start graphs
to a violation. Also note that verification without forward propagation leads to a number of
false negatives.

Finally, we can also establish the corresponding composed forbidden pattern’s validity in
the 1-bounded state spaces for shuttle-single-fault-safe; hence, it is an operational invariant by
inductive argument. Because of this, any counterexamples for k ≥ 2 necessarily need to be false
negatives, which is confirmed by application of k−1-modelcheck with forward propagation.

Applicability of k−1-bounded backward model checking. Given the results just discussed,
we can successfully apply k−1-bounded backward model checking (possibly with extensions)
to verify the base case of our inductive argument. We also get symbolic counterexamples for
unsafe systems. For lower values of k, we get results with less than a second, implying the
approach’s feasibility for the examples shown here.

Leaving aside verification via inductive invariants, the approach can also be used to create
symbolic traces from possible start graphs of induced graph grammars to violations of F .
Those traces then represent both a number (potentially infinite) of transformation sequences
and a number (again, possibly infinite) of concrete graph grammars (i.e. graph grammars
with a distinguished start graph instead of a symbolic representation by the composed start
configuration pattern). However, computational effort increases quickly with higher values of
k. Hence, if we require counterexamples for all possible error traces, the approach is likely
impracticable for higher values of k. If a single counterexample suffices, the stop option can be
used; here, it reduces verification time to under a second.

Other approaches and tools. K−1-bounded backward model checking as described and im-
plemented in this thesis is primarily focused on establishing the base case of our inductive
argument. For this purpose and with respect to the shuttle protocol, Enforce might also be
applicable (cf. Section 8.2); we discuss this (but with respect to k-inductive invariant checking
only) in Section 9.3.3.

K−1-bounded backward model checking as described here is not specifically tailored towards
efficiency for other purposes. Suppose we already know about the existence of errors in induced
graph grammars’ state spaces or suspect it because inductive invariant checking failed to
establish a k-kinductive invariant. If we would like to generate and explore concrete error
traces from a start graph, explicit model checkers (GROOVE, Henshin) may be better suited.
This is particularly true if it is reasonable to assume that most arbitrary start graphs will have
violations in their state spaces – and if length of the trace should exceed a certain value (here,
for example, k ≥ 7).
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Table 9.5. – Shuttle protocol and iterative 1-induction

Example (      /      /        ) cy
+

cy
-

i k time (s) # ce result time (s) result time (s) # ce result

shuttle-safe (7/3/15) 546 0 1 1 < 1 12 F 1 F

shuttle-safe-it-2 (7/15/15) 3178 658 2 1 < 1 0 T 4 T

shuttle-safe (7/3/15) 546 0 2 < 1 0 T

shuttle-single-fault-safe (10/1/16) 260 0 1 1 < 1 6 F 1 F

shuttle-single-fault-safe-it-2 (10/7/16) 2140 0 2 1 < 1 9 F 3 F

shuttle-single-fault-safe-it-3 (10/16/16) 6520 0 3 1 1 58 F 7 F

shuttle-single-fault-safe (10/1/16) 260 0 2 < 1 0 T

k -invcheck

Prop.

Enforce

(SeekSat/ProCon) -

1-invcheck

ℛ  ℱ  ℋ  

Impact of forward propagation. Here, forward propagation does not have to be applied: for
both shuttle-safe and shuttle-single-fault-safe, F is shown to be valid in the 1-bounded state
spaces even without forward propagation. Still, it serves to reduce a number of false negatives
if we are interested in specific error traces for the unsafe systems. For shuttle-single-fault-safe,
forward propagation confirms that counterexamples for k ≥ 2 are indeed false negatives. We
knew that because the composed forbidden property was established as an operational invariant
by its nature as a 2-inductive invariant (inductive step) and its validity in the 1-bounded state
space (base case).

9.3.2. Iterative 1-Induction

In the following, we will iteratively apply 1-inductive invariant checking to gain a result similar
to k-inductive invariant checking. Two possible strategies have been described in Section 8.1.
Here, we will consider the first strategy and apply it to systems shuttle-safe and shuttle-single-
fault-safe from before. We know already that the respective composed forbidden patterns are
2-inductive invariants (under the composed guaranteed pattern).

We will attempt to iteratively enhance the inductive invariant with the goal of establishing a
conjunction of the composed forbidden pattern and additional patterns as a 1-inductive invari-
ants. Specifically, we perform 1-inductive invariant checking (1-invcheck), then add any source
patterns (their reductions to a graph pattern, that is) in counterexamples to the composed
forbidden pattern F , creating a composed forbidden pattern F1 for the next iteration. This
procedure is repeated until verification succeeds – or until we abort the procedure; in general,
this approach does not necessarily terminate. Note that the extension of the composed forbid-
den pattern and the iteration have not been automated, although this is certainly possible.
All individual verification tasks in the iteration were also converted to and verified by Enforce;
however, each iteration step was created based on counterexamples from the invariant checking
tool.

The results are shown in Table 9.5 with the value of i denoting the number of the iteration.
For comparison purposes, the results for k-inductive invariant checking with k = 2 are shown
again.

We have already found out that the respective composed forbidden patterns are not 1-
inductive invariant for any system. In the case of shuttle-safe, we can extend the original
composed forbidden pattern F by the twelve counterexamples in the first iteration (i = 1). The
result – F1 – can be verified as a 1-inductive invariant, both by invcheck and Enforce. Besides
the original forbidden patterns, it contains the four (negated) patterns shown in Figure 9.1,
which lead to violations after application of a2b and 2fb, respectively. Four more patterns (not
depicted) are the (reduced) source patterns before application of a2f and f2f; as such, they
are isomorphic to the former four except for their non-trivial composed negative application
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Figure 9.1. – Additional forbidden patterns in F1 = F ∧⋀4≤i≤15 ¬Fi

conditions. Those conditions also lead to a non-zero value of cy− for the second iteration (i = 2).
The remaining four counterexamples from the first iteration result in patterns isomorphic to
patterns already added; in an automated version, checking isomorphisms would be useful to
reduce computational effort.

Fortunately, in this case, the additional forbidden patterns are meaningful: as a potential
predecessor of a violation, forbidding shuttles in speed mode fast or acc one trask ahead
of a switch makes sense. Furthermore, all individual forbidden patterns are still implied by
the composed start configuration pattern, which forbids shuttles in speed modes acc or fast
(and shuttles on switches). For this system, with respect to the operational invariance of the
targeted composed forbidden pattern, we could get similar results for both 2-induction and
iterative 1-induction (altough the latter would require automation of the iteration to be truly
comparable).

The situation is different for shuttle-single-fault-safe. As documented in Table 9.5, the accu-
mulated composed forbidden patterns cannot be verified as 1-inductive invariants for i = 1..3 –
and, although not shown for here, not for any further value of i. The restricted approach does
not include guaranteed patterns in the sequences it creates – it relies on analyzing the resulting
source and target patterns to take earlier violations of forbidden or guaranteed patterns into
account. It requires forward propagation to eliminate potential false negatives that are caused
by this strategy. In the iterative application of 1-inductive invariant checking, this aspect is
missing: information accessible by forward propagation is not available here.

Of course, we could change the creation of s/t-pattern sequences to incorporate guaranteed
patterns and other forbidden patterns in source and target patterns, which would then appear
in the forbidden pattern accumulated by each iteration. In essence, this is what the general
approach (Chapter 5) does – and iteration of the general approach for k = 1 could indeed lead
to the desired result here and allow verification of an extended composed forbidden pattern
as a 1-inductive invariant. However, we have had good reason to choose the restricted and not
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Table 9.6. – Comparison of k-invcheck and Enforce for shuttle protocol

Example (       /       /        ) cy
+

cy
-

k time (s) # ce result time (s) result

1 < 1 15 F 1 F

2 < 1 24 F 15 F

3 1 113 F 82 F

4 6 474 F 7 min F

1 < 1 12 F 1 F

2 < 1 0 T 24 T

3 < 1 0 T 289 T

4 1 0 T 39 min T

1 < 1 6 F 1 F

2 < 1 3 F 17 F

3 1 17 F 228 F

4 2 40 F 43 min F

1 < 1 6 F 1 F

2 < 1 0 T 18 T

3 < 1 0 T 242 T

4 1 0 T 35 min T

0546
shuttle-safe (7/3/15)

(Enforce: 8/3/15)

0260
shuttle-single-fault-safe (10/1/16)

(Enforce: 11/1/16)

shuttle-single-fault-unsafe (10/1/16)

(Enforce: 11/1/16)
260 0

shuttle-unsafe (7/3/15)

(Enforce: 8/3/15)
546 0

Nf., prop.+NACs

k -invcheck Enforce

(SeekSat/ProCon)

ℛ  ℱ  ℋ  

general approach for implementation – mainly its computational effort and visual complexity.

There is another detrimental effect of lacking forward propagation in iteration of 1-induction
with the restricted approach (for shuttle-single-fault-safe). For i = 3, we get forbidden patterns
describing a shuttle in speed mode slow two tracks ahead of a switch. Obviously, this describes
perfectly legitimate states that should not be forbidden just because two applications of rules
with sensor faults (s2a′ and a2f′) lead to a violation.

In summary, iterative application of the restricted approach to 1-inductive invariant checking
cannot, in general, simulate k-induction, although it may work for some systems.

9.3.3. Enforce and k-Induction

In Sections 8.1 and 8.2, we have discussed two techniques to employ Enforce and recode the
respective system specification to approximate or emulate k-inductive invariant checking. Here,
we will discuss the second technique (Section 8.2), because (with the exception of adapting the
specifications) it can be executed automatically with the tool and implementation available.

Enforce is able to compute weakest liberal preconditions for rules and graph programs
but does not usually analyze intermediate results. Hence, verification of a specification {F ∧
H}{R;R}{F ∨ ¬H} investigates all sequences of applications of two rules from R and checks
preconditions and postconditions – but it does not check the result in between for forbidden
or guaranteed patterns. We have seen that this analysis can be taken care of by adding a
rule addC that requires validity of F and H to be applicable. By changing the program to
{F ∧H}{R; addC;R}{F ∨¬H}, we get the required result for 2-induction. This procedure can
be extended for arbitrary values of k.

Table 9.6 shows the results for the application of this procedure to shuttle-unsafe, shuttle-
safe, shuttle-single-fault-unsafe, and shuttle-single-fault-safe. Results for k-invcheck with forward
propagation are listed here again for comparison purposes. The procedure yields the same gen-
eral results (with the exception of specific counterexamples) for all systems, although Enforce
requires more time and, for three of the four systems, will likely exceed the time limit of one
hour for k = 5. Also, Enforce requires more time for increasing values of k even if the property is
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a k-inductive invariant for a lower value. This means that when applying Enforce in this fashion
to find a k-inductive invariant without an idea of the value of k, one should always start with
a low value of k and gradually increase it until verification succeeds (or until we decide to
abort the process). This is not required for the invariant checker if the respective property can
be shown as a k-inductive invariant for some realistic value of k. As soon as the combination
of the Seq-construction and the analysis of s/t-pattern sequences reaches that value of k, all
counterexamples are discarded and are not extended for higher values of k specified in the
configuration.

In conclusion, performing k-induction with Enforce is possible, but, for the problems dis-
cussed here, seems impractical by comparison, especially given values of k above 2. This is
reinforced by the results of Section 9.2 for systems with a high number of forbidden and guar-
anteed properties. It seems likely that this is due to the necessity of shifting all forbidden
and all guaranteed patterns over the graph program (here: application of graph rules). Here,
this problem gets worse because the addC rule also needs to do this in between regular rule
applications. Again, Enforce was not designed to perform these tasks, let alone optimized for
it. Its strengths lie elsewhere, such as in its support for graph programs and application condi-
tions and graph constraints of arbitrary nesting depth, which do not conform to the restricted
formal model discussed in this thesis. Successful application of Enforce to meaningful program
specification has been discussed in the literature [Pen08a, Pen08b, Pen09].

9.3.4. Partial Negative Application Conditions

The following example picks up the running example used in Section 7.3, Example 7.15 (p. 189).
It demonstrates the impact of partial negative application conditions in a scenario constructed
specifically for this purposes. The example is only a fragment of a potential system; as such,
it is both minimal and synthetic. However, this fragment or fragments with similar features
could arguably be found as part of a complete system, too.

Example 9.1 (system fragments shuttle-brake-late-n). In these system fragments, we have a
graph rule braken that causes a shuttle to switch from a regular driving mode to mode brake if
there is a switch n tracks ahead. The rule is depicted in Figure 9.2(a) with an abbreviated no-
tation for the respective number of tracks between the shuttle’s current track and a switch. We
analyze values for j from 2 to 8; each value induces a new system fragment shuttle-brake-late-n
with the respective single rule R = {braken}.

For each system fragment, we have a composed forbidden pattern Fn = ¬Fn = ¬∃(iPF ,acn),
whose composed negative application condition acn = ¬∃x ∧ ⋀0≤u≤n−3 ¬∃xu depends on the
value of n. The pattern is shown in Figure 9.2(b). It expresses that a shuttle should not be
in braking mode unless its current track is a switch or there is a switch between 1 and n − 2
tracks ahead. As such, the rule braken likely causes a shuttle to brake unnecessarily early. By
verifying Fn, we can detect this behavior. We also consider a composed guaranteed pattern
H; it consists of seven guaranteed patterns that model cardinality constraints and forbid the
existence of more than one shuttle.

We also investigate systems shuttle-brake-late-prio-n, which have an additional aspect: a rule
moveRegularlyn of higher priority than braken may prevent braking when the shuttle is not
too close to a switch. Here, too close means that a switch is at most n − 1 tracks ahead. For
purposes of analyzing counterexamples for rules with priorities (cf. Section 7.2, particularly
Theorem T.2e-rp), we compare source patterns of an s/t-pattern sequence with the rule’s ap-
plicability condition. Here, we only show the applicability condition (that is, its reduction to a
pattern) of modeRegularlyn (Figure 9.2(c)): Cn = ∃(iL,acCn) with the composed negative ap-
plication condition acCn = ⋀0≤u≤n−2 ¬∃x′u dependent on n. All elements of the system fragment
are listed in Section C.1.5 of Appendix C.
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Table 9.7. – Fragment of shuttle protocol and partial negative application conditions

Example (      /      /        ) n cy
+

cy
-

time (s) # ce result time (s) # ce result time (s) # ce result

shuttle-brake-late-2 (1/1/7) 2 10 21 < 1 1 F < 1 1 F < 1 1 F

shuttle-brake-late-3 (1/1/7) 3 12 62 < 1 1 F < 1 1 F < 1 1 F

shuttle-brake-late-4 (1/1/7) 4 14 315 < 1 1 F < 1 1 F < 1 1 F

shuttle-brake-late-5 (1/1/7) 5 16 2433 < 1 1 F < 1 1 F < 1 1 F

shuttle-brake-late-6 (1/1/7) 6 18 23149 5 1 F 1 1 F < 1 1 F

shuttle-brake-late-7 (1/1/7) 7 20 250260 144 1 MErr 11 1 F < 1 1 F

shuttle-brake-late-8 (1/1/7) 8 22 2999187 MErr MErr < 1 1 F

shuttle-brake-late-prio-2 (2/1/7) 2 16 28 < 1 0 T < 1 0 T < 1 0 T

shuttle-brake-late-prio-3 (2/1/7) 3 18 76 < 1 0 T < 1 0 T < 1 0 T

shuttle-brake-late-prio-4 (2/1/7) 4 20 342 < 1 0 T < 1 0 T < 1 0 T

shuttle-brake-late-prio-5 (2/1/7) 5 22 2481 7 0 T 7 0 T < 1 0 T

shuttle-brake-late-prio-6 (2/1/7) 6 24 23228 29 min 0 T 29 min 0 T < 1 0 T

shuttle-brake-late-prio-7 (2/1/7) 7 26 250381 TmOut TmOut < 1 0 T

shuttle-brake-late-prio-8 (2/1/7) 8 28 2999366 MErr MErr < 1 0 T

1-invcheck

Prio. Prio., partialPrio., nf.

ℛ  ℱ  ℋ  

We applied 1-invcheck with and without partial negative application conditions (partial) to
the system fragments shuttle-brake-late-n and shuttle-brake-late-prio-n with n ranging from 2
to 7. The results are shown in Table 9.7. We can draw the following conclusions:

Interpretation of results. For system fragments shuttle-brake-late-n, the shuttle starts brak-
ing too early, as expected, and we get a corresponding counterexample. In system fragments
shuttle-brake-late-n, the rules moveRegularlyn have a higher priority than braken. They are only
applicable if a switch is not too close. Here, they prevent the shuttle from braking too early.
Hence, the composed forbidden pattern, which forbids a shuttle in mode braking without a
switch closer than n − 1 tracks ahead, is indeed a 1-inductive invariant for braken.

Impact of partial negative application conditions. In this example, the benefit of partial
negative application conditions is obvious: we are able to verify all systems in less than a second
– and, where the composed forbidden pattern ist not a 1-inductive invariant, we get a coun-
terexample. Without partial negative application conditions, verification cannot be performed
for n = 8 with the given parameters – and for shuttle-brake-late-7, saving the counterexample
to disk causes an OutOfMemoryError. In the case of shuttle-brake-late-prio-n, the additional
comparison (by implication) of the counterexample and Cn (Figure 9.2(c)) leads to an even
steeper increase of verification times: for n = 5, we need only 7 seconds while n = 6 requires
about 29 minutes. Verifying n = 7 would need more than an hour – and n = 8 requires more
memory.

Of course, the situation was deliberately created to show the effect of partial negative ap-
plication conditions in an extreme case. The reduced rule of braken is significantly smaller
than the rules themselves – in particular, the smallest reduced rule of brake2 is also a reduced
rule for rules with larger values of n. Thus, even for large values of n, the effort of shifting
negative application conditions from the forbidden pattern remains negligible if partial ap-
plication conditions are used. Likewise, the nature of the pattern Cn (created from the rule
moveRegularly) allows a comparison (by implication) with source patterns in counterexam-
ples without expanding partial negative application conditions to the complete context of the
source pattern.

It is difficult to generalize the impact of partial negative application conditions from this
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small example. While the effect is noticeable here, further experiments with complete systems
are required to draw any conclusion as to their importance in practice. Furthermore, while
the experiments could also be part of a Seq-construction for values of k ≥ 2, we have not
experimented with partial negative application conditions in that context, i.e. for k-inductive
invariant checking with k ≥ 2. The current procedure requires expansion of partial negative
application conditions after analyzing the counterexamples (by implication) and before incre-
menting k; this could diminish the expected effect.

Impact of cy−. The value of cy− determines the maximum number of negative application
conditions (when only considering nodes) in a target pattern. As such – and given the form
of the system fragments – cy− gives a very clear indication about the computational effort
required if all such conditions are considered. A partial negative application condition, on the
other hand, may encode a much larger number of (total) negative application conditions, which
explains the connection between cy− and the required time and effort with and without partial
negative application conditions.

9.3.5. Attribute Constraints and Symbolic Attributed Rules

The restricted approach to k-inductive invariant checking and k−1-bounded backward model
checking requires systems and specifications formalized as typed graph transformation systems
and typed graph constraints conforming to the restricted formal model. One obvious idea of
extending this approach is to allow the use of attributes and attribute constraints in graph
rules and graph constraints. This requires using an adequate formalism for attributes and
extending the symbolic encoding, construction of s/t-pattern sequences, and analysis of s/t-
pattern sequences to said formalism – and finally, implementing those extensions.

There exists earlier work [Nic16] describing the implementation of support for attributes
and attribute constraints for 1-inductive invariant checking. In the context of this thesis, this
implementation has been extended in a prototypical fashion to also cover support for attributes
and attribute constraints in k-inductive invariant checking. However, contrary to the restricted
approach to k-inductive invariant checking discussed in this thesis (i.e. without attributes), it
has not been formally described and proven. Thus, we cannot place the same faith in the
implementation and verification results. Instead, the primary purpose of this example is to
demonstrate the usefulness of support for attributes in k-inductive invariant checking and
outline the general idea and feasibility of its implementation.

The use of attributes and attribute constraints in this example follows the notions of at-
tributed graphs [OL10b], symbolic (typed) attributed graphs [OL10b, SLO18] and symbolic
(typed) attributed graph transformations [OL10b, OL10a] as described by Schneider, Lam-
bers, and Orejas. Attributed graphs are graphs that include node and edge attributes; each
attribute is mapped to its node or edge on one end and an attribute value (of the correspond-
ing sort) on the other end [OL10b].3 In symbolic attributed graphs, however, this attribution
maps each attribute to a node or edge (as before) – and to an attribute variable instead of an
attribute value [SLO18, OL10b]. These attribute variables of the symbolic attributed graph
are constrained by a term that evaluates to a Boolean value and that is defined over attribute
variables and operations (including constants) of the respective sorts [SLO18]. Evaluation of
terms and sets of sorts and operations are described by an algebraic specification that is also
part of the symbolic attributed graph [SLO18].

As such, a symbolic attributed graph specifies a number of attributed graphs [OL10b]. In-
tuitively speaking, a symbolic attributed graph represents all attributed graphs that are iden-

3Formally, attributed graphs are so-called E-graphs [OL10b, EEPT06].
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tical with respect to nodes, edges, and attributes, and whose attribute assignments satisfy the
symbolic attributed graph’s (attribute) constraint [OL10b]. A grounded symbolic attributed
graph describes exactly one attributed graph by constraining attribute variables appropri-
ately [OL10b, SLO18]. Symbolic attributed graphs can also be typed over a type graph [SLO18].

Nested application conditions and nested graph constraints can be extended over symbolic
(typed) attributed graphs [SLO18] (called graph conditions and graph properties in the orig-
inal source). As for non-attributed application conditions, satisfiability is defined by graph
morphisms; in particular, by symbolic attributed (typed) graph morphisms [SLO18].

A symbolic graph transformation rule is defined as a pair of a graph rule over graphs with at-
tributions (see above) and a constraint [OL10a]. If successfully applied to a grounded symbolic
attributed graph, the result is again grounded [OL10b].

In the current implementation and the example below, we use the concepts sketched above
as follows: node types (but not edge types) in type graphs may specify attribute types of
various sorts; nodes of (symbolic) attributed graphs may then have attributes with attribute
values (attribute variables) of the corresponding sorts. However, such there may only be one
attribute variable or value per node and attribute type.

Graph patterns are extended to use symbolic attributed graphs – but only attributes in
a pattern’s existential condition may be constrained, not attributes in composed negative
application conditions. Similarly, graph rules may be constrained (with respect to attributes),
but composed negative application conditions may not. For now, these restrictions simply
follow the state of the implementation.

Example 9.2 (shuttle protocol with attributes). Figure 9.3(a) shows the extended type graph
for systems shuttle-attributes-n. As before, we have connected tracks with shuttles positioned
on tracks. In addition, tracks may contain signals and warnings. The idea is that warnings
announce a signal a certain number of tracks ahead – and shuttles should not pass a signal
above a certain velocity. Tracks can also be marked with const, which indicates that a track
should be passed at constant velocity – for safety purposes or reasons of passenger comfort.

Shuttles have a new braking mode. Speed settings, which were modeled as flags (reflexive
edges) before, are now specified in two real-valued attributes that denote acceleration (a) and
velocity (v). There is an additional node type System that stores system parameters: track
length (s), which is fixed for all tracks, minimum and maximum velocity of shuttles (vmin and
vmax ), and the velocity that should not be exceeded when passing signals (vsafe). There may
only be one global system node; this is enforced by a guaranteed constraint (see below).

All rules and patterns of the example are shown in Section C.1.6 of Appendix C; here, we
will only discuss the most important elements. Figures 9.3(b) and 9.3(c) show two forbidden
patterns. First, shuttles should not pass signals above the specified safe velocity vsafe . Sec-
ond, shuttles may not accelerate or decelerate when on tracks that require constant velocity.
Formally, both patterns are graph constraints over symbolic attributed graphs: they have an
attribute constraints v > vsafe and a ≠ 0, respectively. Hence, an attributed graph with the
system element and with a shuttle on a track violates ¬F1 only if the shuttle’s velocity exceeds
vsafe . Formally, v and vsafe are attributes with attribute variables attached; then, the constraint
is defined over the attribute variables, not the attributes themselves. To improve readability,
however, we do not make this distinction in the figures.

We specify (vsafe) and the other system parameters in a guaranteed constraint ¬H22 (Fig-
ure 9.4(a)): minimum and maximum velocity are 2 m/s and 50 m/s, respectively, and the
threshold on velocity for passing signals is 20 m/s. Tracks have a uniform length of 500 m.
Furthermore, as shown in Figure 9.4(b), shuttles can only accelerate with 1 m/s2, decelerate
with −2 m/s2 or keep their velocity with an acceleration of 0 m/s2. If system parameters change
– because, for instance, changed regulations require lowering vsafe or shuttles should be able
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Figure 9.4. – Guaranteed patterns modeling system parameters

to accelerate faster – we need to update these patterns’ attribute constraints.

We also exclude situations (Figure 9.4(c)) where shuttles fall below the minimum velocity
or exceed their maximum velocity. Usually, we may want to formulate appropriate rules to
ensure this last property and verify it – here, we leave this part out and may, for example,
assume that shuttles are built such that the thresholds on velocity cannot be violated.

There are several cardinality constraints, some of which are shown in Figure 9.5. Again, a
shuttle cannot be on two tracks at the same time and we verify only one shuttle at a time.
Also, there is only a single (global) system element.

We also specify certain properties of the system’s track topology (Figure 9.6): a track that
requires constant velocity cannot follow directly after a signal (Figure 9.6(a)) and tracks that
require constant velocity cannot follow directly after each other (Figure 9.6(b)). Pattern ¬H26,u

(Figure 9.6(c)) is actually a set of patterns that depend on a parameter n (with 1 ≤ u ≤ n− 2):
together, they express that there are no cycles of n or fewer tracks. Similarly, patterns ¬H26,u

specify that signals have at least n−2 tracks between them. Finally, ¬H28,n requires that each
signal has a corresponding warning on each track n tracks ahead of the signal.

The idea of the parameter n is that warnings are placed a certain number of tracks ahead of
a signal (¬H28,n). The question then is whether a shuttle can decelerate in time for a certain
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Figure 9.5. – Guaranteed patterns modeling cardinality constraints
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Figure 9.6. – Guaranteed patterns modeling track topology constraints

value of n.

There are nine symbolic graph rules, two of which are depicted in Figure 9.7. Rule toSteady-
const-warning (Figure 9.7(a)) is applicable if a shuttle is on a track with a warning and without
a signal (¬∃x1) and there is a track directly ahead that requires constant velocity. Application
of the rule causes the shuttle to enter braking mode and set its acceleration to zero (a′ = 0).
Since the subsequent track requires constant velocity, the shuttle cannot yet decelerate.

The rule toAcc-remBrake (Figure 9.7(b)) is applicable if a shuttle is in braking mode, has
arrived on a track with a signal but without a warning (¬∃x2), and does not have a second
brake flag set (¬∃x1). Then, the shuttle leaves braking mode and sets its acceleration to 1 m/s2.

In both rules, attributes v and a refer to the attributes on the left side of the rule. Attributes
v′ and a′ refer to the right rule side; s does not change. Formally, the attributes have attribute
variables attached and the constraint refers to the variables. As before, we have omitted this
part to improve readability.

The constraint 2as = v′2 − v2 is a result of the laws governing movement with uniform
acceleration: given acceleration a and a starting velocity of v, velocity v′ after time (t) has
passed can be computed as v′ = at + v. Likewise, distance passed is s = 1

2at
2 + vt. Combining

both and eliminating t gives us 2as = v′2−v2. Note that shuttles only change their acceleration
after arriving on a track. Thus, in order to calculate the time (and change in velocity) for
passing a track, we still use the value a on the left rule side (as opposed to 2a′s = v′2 − v2).

There are several other rules not shown here. All follow similar patterns: acceleration can
be set to 0, 1, or −2 and – depending on warnings and signals – shuttles will enter or leave
braking mode. All elements are depicted in Section C.1.6 of Appendix C. △

Inductive invariant checking for systems with symbolic graph rules and graph constraints
over symbolic attributed graphs is performed in two steps: first, we consider only the plain
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graphs of the elements involved; secondly, we integrate the attributes and attribute constraints.
More specifically, we first create s/t-pattern sequences from forbidden patterns as usual

(Seq-construction, Theorem T.1r (p. 130)) and ignore the attribute-related elements in graph
constraints and graph rules. We also analyze sequences for violations of other forbidden pat-
terns or guaranteed patterns (Theorem T.2r (p. 143)). This involves checking implication (by
Theorem 6.8 (p. 120)) between reduced source and target patterns and forbidden and guar-
anteed patterns. If patterns in a sequence imply a forbidden or guaranteed pattern without
attribute constraints, the sequence can be discarded – otherwise, all morphisms showing im-
plication as described by Theorem 6.8 (p. 120) are saved for later analysis.

The second step analyzes each s/t-pattern sequence by combining all attribute constraints
relevant for the sequence into a constraint system. In particular, this involves attribute con-
straints of the forbidden pattern and graph rules used to create the sequence. It also involves
attribute constraints from other forbidden and guaranteed patterns, who could be implied by
reduced source and target patterns in the sequence via morphisms. When transferring attribute
constraints over graph, variables need to be substituted accordingly.

Finally, the constraint solver Z3 is used to find a solution – an attribute valuation – such that
the constraint system is satisfied. Then, a transformation sequence (with plain graphs) that
satisfies the s/t-pattern sequence (disregarding attribute constraints), can be combined with
the solution to the constraint system to form a sequence of attributed graph transformations
such that:

– the rightmost graph violates the forbidden pattern ¬F used to create the s/t-pattern
sequence (i.e. satisfies its non-negated form F )

– all symbolic graph rules in the sequence are indeed applicable,
– no graph in the sequence violates a guaranteed pattern, and
– no graph except the rightmost graph violates a forbidden pattern.

In other words, the transformation sequence with the attribute valuation found by the
constraint solver is a counterexample for the (composed) forbidden pattern being a k-inductive
invariant with respect to sequences of symbolic graph transformations applied to attributed
graphs (or grounded graphs).

For now, inductive invariant checking with attributes does not support most of the exten-
sions available for the restricted approach. While rule priorities could be supported without
much additional effort, adding forward propagation would be more involved. Implication with
composed graph patterns would be the most challenging of the four extensions.

Example 9.3. Verification was performed with n ranging from 2 to 5, i.e. with shuttles being
notified about upcoming signals two, three, four, or five tracks ahead (¬H28,n, Figure 9.6(e),
p. 263) – and with a corresponding minimum distance between signals (¬H27,u, Figure 9.6(d),
p. 263). System parameters were set to the values used in pattern ¬H22 (Figure 9.4(a), p. 262).
Since shuttles had to pass n tracks between a warning and the corresponding signal (including
both the warning and the signal), it made sense to apply k-inductive invariant checking with
k = n.

The constraint ¬F2 (Figure 9.3(b), p. 262) is a 1-inductive invariant for all systems; composed
negative application conditions in graph rules make sure that only rules toSteady... with a′ = 0
can be applied when a shuttle is about to move to a track that requires constant velocity. The
situation is different for ¬F1 (Figure 9.3(b), p. 262). While it is a 5-inductive invariant for n = 5
(i.e. shuttle-attributes-5), there are counterexamples for n ranging from 2 to 4. They are shown
and discussed below in the form of transformation sequences using attributed graphs. The
invariant checker actually provides s/t-pattern sequences with specific attribute valuations,
i.e. s/t-pattern sequences with patterns defined over grounded (symbolic attributed) graphs.
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Figure 9.8. – Counterexamples for n = k = 2

However, to improve readability, the counterexamples shown here are (minimal) transformation
sequences using attributed graphs, which were manually instantiated from the s/t-pattern
sequences.

Figure 9.8 shows two representative counterexamples for n = k = 2. In Figure 9.8(a), we
can see that there is not nearly enough time to decrease the shuttle’s velocity: it passes the
warning with a velocity close to the target velocity of 20 m/s, but cannot decelerate because
the following track t2 requires constant velocity. After passing that track, acceleration is set
to −2 m/s – but only after the shuttle has already reached the signal.

Even if there is no track annotated with const, there is not enough time: Figure 9.8(b) shows
that even if the shuttle sets its accelearion to −2 m/s, the one remaining track before the signal
is not enough if the shuttle’s velocity when reaching t1 is too high.

There is a similar transformation sequence G0 ⇒toSteady-const-warning G1 ⇒toDec G2 ⇒toDec G3

for n = k = 3, which is not shown here. Figure 9.9 depicts a counterexample for n = k = 4:
here, two tracks with a const flag prevent the shuttle from decelerating enough. Increasing the
minimum distance between tracks that require constant velocity (here: at least one track in
between) would help to establish the forbidden pattern as a 4-inductive invariant for n = 4.
However, we will also find that it is a 5-inductive invariant for n = 5. △

In contrast to the other experiments, the examples discussed above were verified on a server
system running Linux with 32 GB of main memory (although Java heap space was limited to
1 GB) and an Intel E5-2640 processor with six cores at 2.5 GHz. The server was also running
Java 8 and Eclipse 4.5.2 (Mars.2). The verification results are shown in Table 9.8. Leaving aside
the uncertainty that comes with the lack of formal proof for the soundness of the attribute-
related parts of the procedure, we can apparently verify k-inductive invariants for attributed
transformation sequences using symbolic graph rules – at least for the current example. The
verification time required rises more steeply in comparison to non-attributed cases, but, at
least up to shuttle-attributes-5, is still acceptable.

We have left out the base case for lack of support in the implementation; for now, we can
require a start configuration constraint that forbids a shuttle on a const track and requires a
starting position for a shuttle of at least 6 tracks away from a signal.

Allowing attributes and attribute constraints in (symbolic) graph rules and graph con-
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Table 9.8. – Systems shuttle-attributes-n and k-inductive invariant checking with attributes

Example (      /      /        ) n k cy
+

cy
-

time (s) # ce result

shuttle-attributes-2 (9/2/15) 2 2 10 21 < 1 6 F

shuttle-attributes-3 (9/2/15) 3 3 12 62 2 12 F

shuttle-attributes-4 (9/2/15) 4 4 14 315 12 8 F

shuttle-attributes-5 (9/2/15) 5 5 16 2433 63 0 T

 - 

k -invcheck with attributes

ℛ  ℱ  ℋ  
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straints, even if certain restrictions apply, opens up new application scenarios for the restricted
approach. However, as long as soundness for the separate consideration of attribute-related ele-
ments has not been shown, we cannot be sure about verification results. While counterexamples
can be validated by hand, absence of counterexamples cannot be confirmed without signifi-
cant effort – effort that, if invested, might make automated execution redundant. Still, this
example serves as a demonstration of the significance of attributes and attribute constraints
in verification with k-inductive invariants. It also shows that, in principle, their support is
feasible.

9.4. Case Study: List

In this section, we will discuss the list case study, which was used by Steenken to demonstrate
verification of infinite-state graph transformation systems by abstraction [Ste15].

Example 9.4 (system list). Originally, the example was used with labeled graphs; here, it
has been converted to graphs typed over a type graph TG (Figure 9.10(a)). The composed
forbidden pattern F = ¬F1 consists of one forbidden pattern F1 = ∃iPF

1
(Figure 9.10(b)). Graph

rules in R can start (Figure 9.10(c)) an empty list by adding a cell and end (Figure 9.10(d))
a list by removing its last cell. Cells can also be added (Figure 9.10(e)) to the end of the
list and removed (Figure 9.10(f)) from the top of the list. The list points to its top and
end by edges head and tail. In the original example, both head and tail could point from
an empty list to itself or from a non-empty list to cells; here, because we use typed graphs,
we have to separate both as different edge types. Since we only have a single list and need
certain other cardinality constraints for the type graph, we also have a composed guaranteed
pattern H = ¬H1∧¬H2∧¬H3 (Figures 9.10(g)-9.10(i)). While there are other valid type graph
constraints, they will not be required here.

In the original example [Ste15], there is also a start graph G0 that contains the left side
of start: an empty list with both lhead and ltail pointing to itself. Here, we do not usually
specify start graphs. We could use start configuration patterns to describe this start graph by
requiring the absence of a cell and requiring every list to have either a cell or ltail and lhead
edges pointing to itself. However, this will not be the focus here.

Using abstraction and the approach by Steenken, Wehrheim, and Wonisch [Ste15, SWW11,
SW11], it can be established [Ste15] that the state space of GG = (GTS ,G0) does not contain
a violation of F . Here, we attempt to show that F is a 1-inductive invariant of R under H.
Verification with 1-invcheck and rule applicability (appl.) takes less than a second. Unfortu-
nately, we get a negative result. The only counterexample is shown in Figure 9.11; for the sake
of brevity, negative application conditions requiring the absence of edges adjacent to cell c (so
that it can be deleted) are not depicted.

This counterexample is not a false negative: ¬F1 is simply not a 1-inductive invariant for
GTS under H. It is an operational invariant of GG = (GTS ,G0) – we will never encounter
the situation represented in S1 because a cell can never be isolated: it is created only in
conjunction with a tail edge and, if it is not the first cell, a next edge. A cell will only lose
all of its connecting edges if it is deleted, including next edges. Using shape abstraction, the
knowledge about the creation of cells in the state space can be taken into account – with 1-
inductive invariant checking, we would have to somehow encode it into additional constraints to
be verified. Unfortunately, this would include following the (transitive) next edges to the head
or tail of the list; since the list may have an arbitrary length, we cannot do that (by inductive
invariant checking). Here, lack of information about the state space and the reachability of
states become apparent as one of the drawbacks of verification with inductive invariants in
certain situations. Applying k-induction for a value larger than 1 will not help either – a
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Figure 9.10. – Type graph TG , forbidden pattern F1, rules R, and composed guaranteed
pattern H = ¬H1 ∧ ¬H2 ∧ ¬H3 for list
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Figure 9.12. – Forbidden patterns F2 and F3

counterexample might simply be the one shown before, but with an additional application of
start before it.

That said, we can verify other interesting properties with inductive invariant checking (and
the restricted approach). Two examples are shown in Figure 9.12: every cell is either a list’s
head or has a predecessor (Figure 9.12(a)) and every cell is either a list’s tail or has a successor
(Figure 9.12(b)). These properties are 1-inductive invariants, they are obviously valid in the
start graph and we can even show that an equivalent formulation of the start graph as a
composed sart configuration pattern implies both properties.

We may be tempted to add the original forbidden pattern (conjunctively) to those two
forbidden patterns as part of a new composed forbidden pattern F ′ = ¬F1 ∧ ¬F2 ∧ ¬F3 and
apply 1-induction again. We will still get src1 ⇒end tar1 as a counterexample. However, we can
see that certain satisfying transformation sequences G0 ⇒end G1 will have G0 violate ¬F2 and
¬F3. Take, for instance, the graph S1 directly from the source pattern: since it contains L and its
embedding in S1, it satisfies src1∣∅; however, it has a cell without a successor, a predecessor, and
head and tail edges. In general, this looks like a typical case where implication with composed
graph patterns can be applied: we can use, for instance, F2 to conclude the existence of a
preceding cell to ci (a second head edge should be prohibited by a type graph constraint in the
composed guaranteed pattern). However, this will only transfer the problem to the new cell,
which does not have a predecessor or a head edge either. Repetition of this procedure will not
lead to termination: the counterexample is indeed a false negative (given F ′ = ¬F1∧¬F2∧¬F3,
not the original F = ¬F1) because we cannot find a (finite) graph satisfying src1∣∅, and F ′ at
the same time. However, we cannot prove it by using the restricted (or general) approach to
1-inductive invariant checking; again, this would require symbolically following the next edges
to the list’s head or tail.

There is a way out of this: we can require cells to be connected to their containing list
and create and delete such contains edges along with the creation and deletion of cells. If we
change the end rule such that it is applicable only if the list does not contain more than one
cell, we can verify two (conjunctively joined) forbidden patterns F = ¬F1∧¬F4 as a 1-inductive
invariant via 1-invcheck with appl. and impl. (in less than a second). We need both forbidden
patterns: every cell is contained in the list (Figure 9.13(c)) and the original forbidden pattern
¬F1 (Figure 9.13(b)). (We can also verify F ′ from before.) The adapted type graph, rules,
and forbidden patterns of the new system list-containment are depicted in Figure 9.13. The
composed guaranteed pattern remains the same; while we could add cardinality constraints
for contains, those are not necessary for verification. △

Verifying this example required significantly more specification and verification effort than
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Figure 9.13. – Type graph TG , forbidden pattern F1, and rules R for list-containment
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expected: we have slightly changed one rule and added an edge type and a new forbidden
pattern. While the behavior of the list arguably remains the same and we get the same result,
this approach may not always be applicable or feasible for more complex systems. In summary,
the benefit of inductive invariant checking of disregarding state spaces and reachability (beyond
the bounds of k-induction) comes with disadvantages: sometimes, we cannot show properties
that rely on the state space or its larger history (here: the transitive closure of next) – or we
can only show them by experimenting and encoding additional information into the system
and the composed patterns relevant for verification.

9.5. Concurrent Behavior

In the shuttle case study, we have used a guaranteed pattern that forbids the existence of two
shuttles. If we drop this restriction, applying 2-inductive invariant checking becomes challeng-
ing. Here, we will get valid counterexamples with two shuttles in the following sequence: first,
one shuttle (legally) moves somewhere else, second, another shuttles moves in speed mode fast
to a switch. Of course, that second shuttle would not have been able to arrive in speed mode
fast on its current track (with a switch directly ahead). Usually, we can detect this by extending
k – however, given concurrent behavior happending somewhere else, we do not learn about the
violating shuttle’s actions leading to the violation. In essence, although movement of multiple
shuttles is meant to happen concurrently, this is not reflected in the counterexamples.

This problem is partly inherent in the nature of graph transformation systems and transfor-
mation sequences: without further considerations, they describe sequential application of graph
rules, not concurrent behavior. This aspect is not relevant for k-inductive invariant checking
with k = 1 because it only considers one rule application as opposed to a longer sequence.

When it occurs, there are several possible solutions to the problem:

One behavioral entity. We can restrict the number of behavioral entities to exactly one –
as we have done for the shuttle case study before. Then, the execution of rules in s/t-pattern
sequences will indeed happen in a sequential fashion. We can still argue that the system is
safe even for mutliple behavioral entities (shuttles) if they are independent of each other. Here,
this is the case because the application of behavioral rules and the compoesd patterns do not
depend on connections or relations between shuttles. In general, this means arguing that a
behavioral entity’s individual behavior is safe. In other words, by restricting the number of
behavioral entitites to one, we anaylze an individual state space (or, given an infinite number
of start graphs, individual state spaces) for each behavioral entity. Non-behavioral entities
(e.g. the track topology) remain stable and isomorphic in all states of all state spaces. If the
composed forbidden pattern was established as an operational invariant for the system with
only one behavioral entity, this holds for all such state spaces. Then, given independence of
behavioral entities, operational invariance still holds for the cross product of all state spaces.
This, then, is equivalent to the state space without restrictions on behavioral entity. We can
apply this argument to our shuttle protocol.

Upper bound on behavioral entities. This idea is based on the first; there may be more
than one, but a finite limited number of behavioral entities. This will still lead to the problem
sketched above; however, after reaching the limit of behavioral entities, increasing the value of
k in k-indudctive invariant checking will only consider rule applications for these entities, not
create new counterexamples with a rising number of entities. However, this approach usually
needs to be combined with one of the ideas following below.
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Locality of behavioral entities. This is somehow similar to the argument of independence
between behavioral entities. If k-indcutive invariant checking produces counterexamples where
each behavioral entity operates on a graph component that is (within the local context of the
counterexample) not connected to the other entities’ components, we may not need to consider
them. If we are also able to exclude behavioral entities in close proximity, we can again rely on
the individual analysis of entities. For example, we can argue that shuttles in different and (in
a local context) unconnected parts of the topology should not influence each other’s behavior.
Furthermore, we may be able to separately verify that shuttles are never within a certain
distance of each other, given appropriate rules. For some systems, this minimum distance may
also be an external assumption of the specification. Then, counterexamples with entitites on
locally unconnected components can be discarded; also, entities on connected parts within the
minimum distance do not need to be considered.

Enforcing round-robin execution in sequences. If behavior of all behavioral entities is sup-
posed to happen concurrently, we can discard all counterexamples where the same entity per-
forms two actions without all other entities (that appear in the counterexample) having acted
in between. Of course, this only works if entities are forced to take an action. For example, if
shuttles may simply stand still indefinitely, this idea is not applicable – unless we argue that
inactive entities should not be considered in counterexamples (because they do not influence
other entities’ behavior, see above).

Combining rules and rule applications. We can combine the application of two behavioral
rules (to the same or different entities) by using E-concurrent rules [EGH+14]. An E-concurrent
depends on how the rules overlap (i.e. influence and depend on) each other (in a graph E);
examining all possibilities requires investigating all possible E-concurrent rules. Then, we can
apply k-inductive invariant checking with this newly created set of rules. Thus, execution of
behavior within an E-concurrent rule is truly concurrent. If there are more than two behavioral
entities, further combinations of rules may be required, possibly up to the upper bound on the
number of entities.

E-concurrent rules were used for the verification of behavior preservation (cf. Section 9.2) for
the phase of model semantics. (However, the goal was to express the alternating execution of
behavior in source and target models to verify bisimilarity, not to apply k-inductive invariant
checking for k ≥ 2.)

A more detailed discussion of the impact of concurrent behavior and an automated im-
plementation of possible solutions is beyond the scope of this thesis. Implementation of the
solutions as part of the invariant checker would also require their formalization, formal proof,
and evaluation. Note that the possible existence of multiple behavioral entities rarely causes
problems for k = 1 and does not always lead to the problem sketched here even for k ≥ 2. For
now, where it does, we need to handle it on a case-by-case basis.

9.6. Discussion and Conclusion

In summary, the approach can be successfully and meaningfully applied for the behavior preser-
vation and shuttle protocol case studies. With some restrictions and interaction, we can also
apply it for the list case study. We have seen in Chapters 6 and 7 that the approach and
its extensions are sound (Appl.-soundness) and terminate (Appl.-termination) by design;
both has been confirmed for the case studies. Furthermore, we have the following observations
with respect to the initial verification problem:
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State space restrictions. Composed guaranteed patterns have turned out to be useful to for-
mulate type graph constraints not otherwise accessible in the approach and implementa-
tion. In particular, they were required for the behavior preservation case study to exploit
the results of verification of the model transformation phase (e.g. equiv-mt) in the phase
concerned with model semantics (equiv-sem). Without this structure, verification would
not have succeeded; or would have required iteration over the composed forbidden pat-
tern and user interaction.

Furthermore, they were used to model a single fault assumption in shuttle-single-fault-
unsafe and shuttle-single-fault-safe.

Infinite number of start graphs. We have shown that, for the shuttle protocol, k−1-bounded
backward model checking is applicable to show validity of the composed forbidden pattern
(under the composed guaranteed pattern) in the (here) 1-bounded state space of all graph
grammars induced by the graph transformation system and a composed start configu-
ration pattern. In combination with the 2-inductive invariant established for shuttle-safe
and shuttle-single-fault-safe, our inductive argument lets us conclude operational invari-
ance of the safety property for all (infinite) induced graph grammars. For the systems
shuttle-unsafe and shuttle-single-fault-unsafe, we can use k−1-bounded backward model
checking to find symbolic counterexamples for error traces from possible start graphs to
a violation.

Reduction of false negatives. For shuttle-single-fault-safe, we needed a 2-inductive invariant in
the inductive step of our inductive argument; the required property was not a 1-inductive
invariant. We have also seen that simulation of k-induction with the restricted approach
to 1-inductive invariant checking is not feasible (Section 9.3.2). Furthermore, performing
k-induction with tools like Enforce requires changing the program specification and ap-
pears impractical for performance reasons. Finally, we have seen the relevance of forward
propagation and implication with composed patterns with respect to the reduction of
false negatives (Sections 9.2 and 9.3.1).

In all cases, we could eliminate potential false negatives if forward propagation and impli-
cation with composed pattern were used. Thus, we have a reasonable degree of completeness
(Appl.-deg.completeness) for the given examples. Likewise, performance is not an issue for
the shuttle protocol and the list case study. For refine-trans it is still within reasonable bounds.
Thus, we can argue for satisfaction of Appl.-performance.

Of course, it is difficult to generalize from these case studies. Given the structure of the ap-
proach and its implementation, it can be expected to be applicable to systems with similarly-
sized rules and patterns, similar types of negative application conditions, and similar values of
k. Issues with performance may possibly be addressed by using appropriate configurations and
extensions, most importantly preprocessing, partial negative application conditions, skipping
file output of counterexamples, and terminating after returning the first counterexample. Pos-
sible issues with false negatives can be solved with forward propagation or implication with
composed patterns.

While the 17 minutes required for verification of refine-trans are still acceptable, addition of
any further nodes to rules and the negative application condition in this example’s patterns
may increase verification time beyond reasonable bounds. In Section 9.3.4, we have seen that
just one or two nodes can make a drastic difference in complexity – and in cases like refine-trans,
partial negative application conditions will not offset this increase. This is a risk no matter
the approach used; invariant checking is particularly suspectible for large negative application
conditions. If all else fails, we may attempt to (equivalently) modify the system specification:
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connecting nodes may be represented by edges; multiple nodes could be summed up in a single
node. However, we would always need to argue that this modifications indeed preserve the
original system’s behavior, which is often non-trivial.

An important question remains the choice of k when we want to verify a system. For the
shuttle case study, we can guess the expected value of k = 2 for shuttle-safe and shuttle-
single-fault-safe because negative application conditions in rules check for switches two tracks
ahead. In other cases, this may not be so obvious; also, if a k-inductive invariant cannot be
established, we would need to decide when to terminate. If we are not sure about a certain
value for k, we can always start with k = 1 and iteratively increase its value, possibly examining
counterexamples along the way. (We have seen in Section 9.3.2 that this is different from using
1-induction to simulate k-inductive invariang checking.)

For k−1-bounded backward model checking, we have seen a steeper increase in required
runtime than for k-induction – at least for the examples used here (Section 9.3.1). Bounded
backward model checking as used here is primarily meant to verify validity of a composed
forbidden pattern in a bound state spaces for lower values of k. While we can use it to cre-
ate symbolic error traces from possible start graphs to violations (e.g. to gain insight into a
system), its application is impractical once the paths reach a certain length (such as k = 6 for
shuttle-unsafe). Hence, the current implementation of k−1-bounded backward model checking
is not meant to compete with state-of-the-art model checkers (such as GROOVE [GdMR+12],
Henshin [ABJ+10]) capable of exploring finite state spaces for a given start graph or a low
number of start graphs. Likewise, k−1-bounded model checking cannot, by itself, explore infi-
nite state spaces (such as by abstraction [Ste15]) – our capability of arguing for systems with
infinite state spaces comes from the combined indcutive argument of k−1-bounded backward
model checking (base case) and k-inductive invariant checking (inductive step).

We have also seen limitations of the approach’s applicability: sometimes, desired safety prop-
erties are – by themselves – not k-inductive invariants although they are operational invariants.
This may happen, for instance, if properties of nodes and edges stay relevant beyond a local
context and throughout the whole state space. For example, in the list case study, cells are
always created with connecting edges – if we encounter a cell in a counterexample, this infor-
mation about its original creation is not easily available. Sometimes, this knowledge may be
available because of type graph constraints (i.e. as guaranteed patterns); in other cases, we
might be able to guess such properties, explicitly verify them, and then succeed to verify the
original composed forbidden pattern. If not or if this is too much effort, we can try verifica-
tion approaches and tools focusing on state spaces and reachability – GROOVE [GdMR+12],
Henshin [ABJ+10], abstraction and shape analysis [Ste15].

As mentioned before (and reiterating results from Chapter 8), the restricted formal model
may also require changing systems to establish conformity; other systems may be out of bounds
because of the limitations on, e.g., nested graph constraints. The same applies to graph pro-
grams with a control program beyond sets of graph rules with composed negative application
conditions and priorities; here, we might need Enforce. Sometimes, we may wish to verify tem-
poral properties or formulas in monadic second-order logic; both are beyond the capabilities of
even the general approach (and Enforce). Finally, systems with concurrent behavior and mul-
tiple units with behavioral capabilites (such as shuttles) may lead to problems for the tool’s
application (cf. Section 9.5).

That said and in conclusion, verification with k-inductive invariant checking and k−1-
bounded backward model checking has successfully been applied to relevant examples and
will likely be applicable to systems of similar characteristics and expected values of k.

– 275 –





10. Conclusion and Outlook

This chapter will first summarize the results of this thesis, particularly with respect to its
contribution. Second, we will discuss possibilities for further extension of the approach and
tool and outline future work.

10.1. Conclusion and Contribution

In order to summarize this thesis’s contribution, we recall the generic verification problem
brought up in Chapter 1:

Verification Problem 1.3. Given a set of systems defined by a system metamodel, a set of
initial states, specification of system behavior, and restrictions on the state space and given a
set of safety properties, does every state in the restricted state spaces of all systems satisfy the
safety properties?

With respect to this verification problem, this thesis pursued the following contribution:

Formal-general – the description and justification of a formal and symbolic approach solv-
ing Verification Problem 1.3 by verification of graph transformation systems with k-
induction, called the general approach,

Formal-restricted – the description and justification of a formal and symbolic approach
solving Verification Problem 1.3 by verification of graph transformation systems with
k-induction for the restricted formal model, called the restricted approach,

Impl.-restricted – the implementation of the approach described by Formal-restricted as
an automated procedure,

where the formal approach (Formal-restricted) and implementation (Impl.-restricted)
should be applicable to meaningful scenarios, and, in their application, provide a positive result
or meaningful symbolic counterexamples and have the following properties:

Appl.-soundness – soundness,
Appl.-termination – termination,
Appl.-deg.completeness – a reasonable degree of completeness,
Appl.-performance – reasonable performance.

Based on the foundations in Chapters 2 and 3 and the extensions of Chapter 4, we were able
to map Verification Problem 1.3 to the world of graph transformation systems:

Verification Problem VP.1g. Given a graph transformation system GTS = (TG ,R) and
graph constraints F , S, and H with S ⊧ F , does every graph grammar GG ∈ IND(GTS ,S)
have F as an operational invariant under H?

This, then, was the problem solved in Chapter 5. Theorems T.1g (p. 85), T.2g (p. 96), T.3g
(p. 101), T.4g (p. 104), and related constructions, theorems, and lemmas made up the general
approach – or Formal-general.

Given the challenges coming with the general approach with respect to computational effort
and complexity, we refined the general approach, starting with the verification problem:
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Verification Problem VP.1r. Given a graph transformation system GTS = (R,TG) with
rules of the form bi = ⟨(Li ↩Ki ↪ Ri),acLi , true⟩ for composed negative application conditions
acLi and composed graph patterns F , S, and H with S ⊧ F , does every graph grammar GG ∈
IND(GTS ,S) have F as an operational invariant under H?

Based on that, we refined the formal model, symbolic encoding, and constructions of the
general approach in Chapter 6. The result, mainly in the form of Theorems T.1r (p. 130),
T.2r (p. 143), T.3r (p. 149), and T.4r (p. 153), is the restricted approach to k-inductive invari-
ant checking and k−1-bounded backward model checking: Formal-restricted. By inductive
argument (Lemma L.1 (p. 65)), it solves Verification Problem VP.1r. The approach satisfies
Appl.-soundness and Appl.-termination by construction and design.

While the general approach considered Verification Problem VP.1g on a formulaic level only,
the restricted approach also comes with an implementation (Impl.-restricted) of automated
k-inductive invariant checking and k−1-bounded backward model checking. Its drawbacks,
most importantly incompleteness, have been addressed in a number of extensions (Chapter 7):
forward propagation and implication with composed patterns aims to address incompleteness
(and partly, performance), partial negative application conditions target computational effort.

The restricted approach was shown to be applicable to a number of examples and case
studies in Chapter 9 – including cases where application of other approaches was problematic.
We could successfully verify the invariance of safety properties as state properties in states of
state spaces of induced graph grammars. For systems with violations of these safety properties,
meaningful counterexamples could be used to attempt to repair the system. The evaluation
has shown a sufficient degree of completeness (Appl.-deg.completeness) of the approach
for the examples used – and has demonstrated the effectiveness and impact of the extensions,
particularly forward propagation and implication with composed graph patterns. We can also
suspect a similarly reasonable degree of completeness for similar systems. We have also seen
that we can work around limitations of the approach (cf. Section 9.4) in some cases. As a static
and symbolic verification approach that can yield results for infinite sets of graph grammars
with infinite state spaces given a fixed graph transformation system, performance (Appl.-
performance) was also reasonable for the examples used.

The existence of numerous complementary (and somtimes competing) approaches to verifi-
cation of graph transformation systems leaves little doubt about the complex and challenging
nature of the problem. Approaches based on explicit state space construction often exhibit
impressive results even for large state spaces and offer verification of temporal properties in
addition to state properties. However, they are limited with respect to the size of state spaces
and are not applicable for infinite state spaces. Using abstraction to represent infinite state
spaces requires striking a balance between a meaningful concept of abstraction that preserves
important information and a sufficient reduction of said infinite or large state spaces. Finally,
symbolic approaches (such as k-inductive invariant checking) that abstain from exploring state
spaces explicitly or by abstraction maneuver between efficient verification of relevant systems
with infinite state spaces and the risk of high computational effort, false negatives, undecidable
problems, and limitations on what can and cannot be specified.

All approaches in these classes may or may not address a second degree of complexity or
infinity regarding the number of initial states and graph grammars analyzed in one application.
They also need to decide on the level of expressive power allowed in specifications (and hence,
verification). Finally, each class comes with its own challenges with respect to performance
and efficiency: exploration of explicit state spaces may lead to exponential growth with the
number of rules; algorithms that reason with and about graph constraints may have exponential
complexity with the number of nodes and edges, i.e. the size of graphs.

Given the different characeteristics of graph transformation systems and graph grammars
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with respect to start configurations, behavior, and state spaces, there is, as of yet, no single
approach or tool that has been established as a default choice – which is probably fortunate for
the variety and diversity of research on graph transformation systems and their verification.
Thus, the approach and implementation discussed in this thesis is not meant to replace any
existing tool (except for its previous incarnations), but to fit in the landscape of verification
approaches for graph transformation systems. In summary, the approach and tool is, in theory,
applicable for systems (graph grammars) where

– start graphs can be characterized by a limited form (composed pattern) of graph con-
straint (or there is a finite amount of start graphs),

– safety properties to be verified can be specified by a composed pattern,
– we may or may not require additional restrictions of the state space or external assump-

tions or information encoded by another composed pattern,
– graph rules may or not have (left) composed negative application conditions,
– where graphs in state spaces may or may not be large,
– and where the resulting state spaces may be infinite.

Application is particularly promising with respect to feasibility and completeness if

– rules are small (such as less than seven nodes per side),
– forbidden patterns – and, more importantly, their negative application conditions – are

small (such as less than seven nodes per condition and pattern),
– there are few common elements between rules and forbidden patterns,
– there are established system properties with a global character (such as a limit of the

numner of nodes or edges of certain types),
– there are few non-trivial negative application conditions (although their effects may vary

widely),
– and if system behavior has a sequentially dependent character in the sense that rule

applications affect each other (such as a shuttle changing speed modes).

Leaving aside the reversal of the points above, the approach may encounter problems if the
specification does not conform and cannot be adjusted to conform to the restricted formal
model and if

– patterns describe transitive properties (such as requiring a node to always have a suc-
cessor),

– properties of the state space are relevant beyond their local context (when, for example,
characteristics of nodes depend on how they were created);

– similarly, if behavior or forbidden patterns are detached from local context (such as
isolated nodes or separate graph components),

– and if there is concurrent behavior, especially if there is an arbitrary number of elements
actively exhibiting behavior (such as shuttles).

Some of this problems prevent successful application of the approach; others can be ad-
dressed if they occur. For example, earlier work [BLD+11] described verification of consistency-
preserving Java refactorings with 1-inductive invariant checking. Some refactorings require
comparing signatures of Java methods, which may include lists of parameters of arbitrary
length. Equality of such lists, however, cannot be expressed by nested graph constraints. The
solution was to introduce a number of helper rules that computed these and similar properties
and rely on their information during verification of the refactoring rules. Then, if the execution

– 279 –



10. Conclusion and Outlook

of such refactorings has a similar preprocessing phase, the verification result also applies to
the actual execution.

The availability of a number of extensions and configuration options for the approach’s im-
plementation enables an experienced user to cope with certain problems and avoid others. For
example, preprocessing with implication for composed graph patterns (Theorem 7.40 (p. 225))
has been shown to greatly improve performance on occasion. Partial negative application con-
ditions may have a similar effect. If verification of a system takes too long, the stop option
can be used to inspect the first counterexample (if any) in order to gain some insight into the
system. Modifying a system specification in meaningful ways and extending composed forbid-
den patterns may help k-inductive invariant checking to succeed; this was shortly sketched in
Section 9.4. Since software and system development usually happens in an iterative fashion, it
is no surprise that verification may sometimes benefit from following a similar path.

Often, the restricted approach and its implementation can be combined with other tools.
Subproblems that do not conform to the restricted formal model might be outsourced to
tools like Autograph [SLO17, SLO18] or Enforce [Pen09]. This also applies to the analysis
of counterexamples with respect to whether or not they may be false negatives. Given s/t-
pattern sequences, we might apply model checking to create specific transformation sequences
represented by the counterexamples. Similarly, if verification is expected to take a long time,
we can use explicit-state model checking to explore state spaces and eliminate counterexamples
by fixing specification errors before applying k-inductive invariant checking.

10.2. Open Issues and Future Work

As is common for finding solutions for research questions – and here, verification problems
– this thesis has also opened up new questions, issues, and challenges. Here, we will briefly
discuss some aspects that are worthy of further discussion in future work.

Heuristics for verification problems. In the restricted approach and its implementation, there
are a number of configuration options users can choose from, such as the value of k and which
extensions to use. While it is possible to experiment with configurations, it would be nice to
determine possibly fitting configurations by analyzing the system in question and comparing
it to known heuristics. Future work might research useful metrics and their effect on config-
urations. Other metrics could be concerned with determining the likelihood of encountering
false negatives depending on the class or nature of a system.

General approach and expressive power. With appropriate optimizations, it seems possible
that an implementation of the general approach and its application are feasible for some
systems. A combination of the restricted and general approaches is also an idea: if a system’s
specification conforms to the restricted approach, we can use that; otherwise, the system is
verified with the general approach. Extensions of the restricted approach with respect to what
we allow in specifications are also among obvious ideas for future work. For example, we can
think of limited support for graph programs realized by analyzing s/t-pattern sequences and
discarding those not conforming to the graph program. Other extensions might focus on the
general approach and move from nested graph conditions to more expressive concepts.

Attributes and symbolic attributed graph transformation systems. While there is an imple-
mentation available that supports attribute constraints in graph rules and graph constraints
(with respect to k-inductive invariant checking), it has not been established with the formal
rigorousness employed for the general and restricted approach. Formally describing k-inductive
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invariant checking for restricted forms of symbolic attributed graph constraints and symbolic
attributed graph transformation systems and proving its soundness is an open point.

Concurrent behavior. Finally, Section 9.5 has brought up a number of questions and ideas
to solve the challenge of applying k-induction for systems with multiple behavioral entities.
This, too, is an open issue that deserves to be investigated further.

This overview of open issues and future work concludes this thesis. It has addressed aspects
of the greater underlying problem of formal verification for complex systems. It has provided
a formal description, implementation, and evaluation of verification of graph transformation
systems in a symbolic fashion – namely with induction and k-inductive invariants. Given the
history and current state of software and hardware systems and their development, formal
verification will remain relevant. And, given the history and current state of research on and
application of graphs and graph transformation systems, formal verification of the latter will
presumably remain relevant as well.
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Software Verification Using k-Induction. In Eran Yahav, editor, Static Analysis,
volume 6887 of LNCS, pages 351–368, Berlin/Heidelberg, 2011. Springer.

[Dyc12] Johannes Dyck. Increasing expressive power of graph rules and conditions and
automatic verification with inductive invariants. Master’s thesis, Hasso Plattner
Institute, University of Potsdam, 2012.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation,
vol. 2: Applications, Languages, and Tools. World Scientific, River Edge, 1999.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of Algebraic Graph Transformation. Springer, Secaucus, 2006.

[EGH+14] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando Ore-
jas. M-adhesive transformation systems with nested application conditions. part
1: Parallelism, concurrency and amalgamation. Mathematical Structures in Com-
puter Science, 24(4), 2014.

[EH86] Hartmut Ehrig and Annegret Habel. Graph Grammars with Application Condi-
tions. In Grzegorz Rozenberg and Arto Salomaa, editors, The Book of L, pages
87–100. Springer, Berlin/Heidelberg, 1986.

[EPT04] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental Theory for
Typed Attributed Graph Transformation. In Hartmut Ehrig, Gregor Engels,
Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, Graph Transforma-
tions, volume 3256 of LNCS, pages 161–177, Berlin/Heidelberg, 2004. Springer.

[GdMR+12] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon,
and Maria Zimakova. Modelling and analysis using groove. International Journal
on Software Tools for Technology Transfer, 14(1):15–40, 2012.

[GHE14] Ulrike Golas, Annegret Habel, and Hartmut Ehrig. Multi-amalgamation of rules
with application conditions in M-adhesive categories. Mathematical Structures
in Computer Science, 24(4), 2014.

[GL12] Holger Giese and Leen Lambers. Towards Automatic Verification of Behavior
Preservation for Model Transformation via Invariant Checking. In Hartmut Ehrig,
Gregor Engels, Hans Kreowski, and Grzegorz Rozenberg, editors, Graph Transfor-
mations, volume 7562 of LNCS, pages 249–263, Berlin/Heidelberg, 2012. Springer.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with
Negative Application Conditions. Fundamenta Informaticae, 26(3/4):287–313,
1996.

[HP01] Annegret Habel and Detlef Plump. Computational completeness of programming
languages based on graph transformation. In Furio Honsell and Marino Miculan,
editors, Foundations of Software Science and Computation Structures, volume
2030 of LNCS, pages 230–245, Berlin/Heidelberg, 2001. Springer.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transfor-
mation systems relative to nested conditions. Mathematical Structures in Com-
puter Science, 19(2):245–296, 2009.

– 286 –



Bibliography

[HPR06] Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink. Weakest Precondi-
tions for High-Level Programs. In Andrea Corradini, Hartmut Ehrig, Ugo Mon-
tanari, Leila Ribeiro, and Grzegorz Rozenberg, editors, Graph Transformations,
volume 4178 of LNCS, pages 445–460, Berlin/Heidelberg, 2006. Springer.

[HSE11] Christian Heinzemann, Julian Suck, and Tobias Eckardt. Reachability analysis on
timed graph transformation systems. Electronic Communications of the EASST,
32, 2011.

[Ken02] Stuart Kent. Model Driven Engineering. In Michael Butler, Luigia Petre, and
Kaisa Sere, editors, Integrated Formal Methods, volume 2335 of LNCS, pages 286–
298, Berlin/Heidelberg, 2002. Springer.

[KG12] Christian Krause and Holger Giese. Probabilistic Graph Transformation Sys-
tems. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors, Graph Transformations, volume 7562 of LNCS, pages 311–
325, Berlin/Heidelberg, 2012. Springer.

[KK06] Barbara König and Vitali Kozioura. Counterexample-guided abstraction refine-
ment for the analysis of graph transformation systems. In Holger Hermanns and
Jens Palsberg, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 3920 of LNCS, pages 197–211, Berlin/Heidelberg, 2006. Springer.

[KK08] Barbara König and Vitali Kozioura. Augur 2 – A New Version of a Tool for
the Analysis of Graph Transformation Systems. Electronic Notes in Theoretical
Computer Science, 211:201–210, 2008.

[KS12] Barbara König and Jan Stückrath. Well-structured graph transformation systems
with negative application conditions. In Hartmut Ehrig, Gregor Engels, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, Graph Transformations, volume 7562
of LNCS, pages 81–95, Berlin/Heidelberg, 2012. Springer.

[KS14] Barbara König and Jan Stückrath. A General Framework for Well-Structured
Graph Transformation Systems. In Paolo Baldan and Daniele Gorla, editors,
CONCUR 2014 – Concurrency Theory, volume 8704 of LNCS, pages 467–481,
Berlin/Heidelberg, 2014. Springer.

[KS17] Barbara König and Jan Stückrath. Well-structured graph transformation systems.
Information and Computation, 252:71–94, 2017.

[MGK17] Maria Maximova, Holger Giese, and Christian Krause. Probabilistic Timed Graph
Transformation Systems. In Juan de Lara and Detlef Plump, editors, Graph
Transformation, volume 10373 of LNCS, pages 159–175, Cham, 2017. Springer.

[Mil89] Robin Milner. Communication and concurrency. Prentice Hall, New York, 1989.

[Nic16] Christian Nicolai. Using exchangeable constraint solvers for invariant checking on
attributed graph transformation systems. Master’s thesis, Hasso Plattner Insti-
tute, University of Potsdam, 2016.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA Environment. In
Carlo Ghezzi, Mehdi Jazayeri, and Alexander L. Wolf, editors, Proceedings of
the 22nd International Conference on Software Engineering, pages 742–745, New
York, 2000. ACM.

– 287 –



Bibliography

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283 of LNCS. Springer, Berlin/Heidel-
berg, 2002.
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[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Hartmut
Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors, Graph
Transformations, pages 411–425, Berlin/Heidelberg, 2008. Springer.

[SLO17] Sven Schneider, Leen Lambers, and Fernando Orejas. Symbolic Model Generation
for Graph Properties. In Marieke Huisman and Julia Rubin, editors, Fundamen-
tal Approaches to Software Engineering, volume 10202 of LNCS, pages 226–243,
Berlin/Heidelberg, 2017. Springer.

[SLO18] Sven Schneider, Leen Lambers, and Fernando Orejas. Automated reasoning for
attributed graph properties. International Journal on Software Tools for Tech-
nology Transfer, 20(6):705–737, 2018.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking Safety Properties
Using Induction and a SAT-Solver. In Warren A. Hunt and Steven D. Johnson,
editors, Formal Methods in Computer-Aided Design, pages 127–144, Berlin/Hei-
delberg, 2000. Springer.

[Ste15] Dominik Steenken. Verification of lnfinite-State Graph Transformation Systems
via Abstraction. PhD thesis, University of Paderborn, 2015.
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Appendix A.

Additional Examples for Chapter 5: General Approach

This chapter of the appendix contains a number of additional and more detailed examples
relating to the general approach described in Chapter 5. Table A.1 provides a short overview.

Example A.1 (Seq-construction, example system). This example is a repetition of Exam-
ple 5.13 (p. 90) and its computation of Seqg

2(R,¬F ,F), with more detailed examples for the
construction’s individual steps. In particular, we have a graph transformation system GTS =
(TG ,R), where the set of rules consists only of the graph rule f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩
(hence, R = {f2f′}). In addition, we have a safety property F = ¬F1 = ¬∃iPF

1
. The rule and the

graph constraint ¬F1 are shown in Figures A.1(a) and A.1(b), respectively; they are the same
as in Example 5.1 (p. 69).

With respect to the graph rule, we will distinguish between f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩
and f2f′ = ⟨(L1 ↩K1 ↪ R1), true, true⟩. The former will refer to the appearance of rule f2f′ in
the context of steps SC1-1 to SC1-5 and the latter to its appearance in the context of steps
SCk-1 to SCk-5, although the rules’ contents are identical (i.e. L1 = L2 and so on).

As explained, we will compute Seqg
2(R,¬F ,F), which would be appropriate in order to

determine whether F is a 2-inductive invariant for GTS under a guaranteed constraint with
the trivial value true. Here, we will not consider the guaranteed constraint H introduced in
Example 5.1 (p. 69) for reasons of (visual) complexity.

Figure A.2 shows one s/t-pattern sequence (of length 2) seq2 that is contained in the set
Seqg

2(R,¬F ,F). The construction and origin of its individual parts are explained in Exam-
ples A.2-A.10 below.

In particular,

seq2 = src1 ⇒f2f′ (tar1, src+2) ⇒f2f′ tar2

=∃(e′R,ac′E) ∧ acF1 ⇒f2f′ (∃(eR,acE),∃(eL,acE)) ⇒f2f′ ⋁
i∈I
∃ti2,

where the steps, their computations, and the corresponding examples and figures for this
particular s/t-pattern sequence are listed in Table A.2. Note that some intermediate steps are

Table A.1. – List of examples in Appendix A

Element Description

Example A.1 Running example and fragments of result of Seqg
2(R, F1)

Example A.2 Step SC1-1 of Seqg
2(R, F1)

Example A.3 Step SC1-2 of Seqg
2(R, F1)

Example A.4 Step SC1-3 of Seqg
2(R, F1)

Example A.5 Steps SC1-4 and SC1-5 of Seqg
2(R, F1)

Example A.6 Step SCk-1 of Seqg
2(R, F1)

Example A.7 Step SCk-1+of Seqg
2(R, F1)

Example A.8 Step SCk-2 of Seqg
2(R, F1)

Example A.9 Step SCk-3 of Seqg
2(R, F1)

Example A.10 Steps SCk-4 and SCk-5 of Seqg
2(R, F1)

Example A.1 Existence of satisfying transformation sequences (Lemma 5.14)
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s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

:fast 

𝑟 
:isAt 

(a) Graph rule f2f′

:Shuttle 

t1:Track 

:isAt 

:fast 

ts:Track 
:next 

t2:Track :next 

𝑃1
𝐹  

∅ 

¬∃𝑖𝑃1𝐹  

(b) Safety property F = ¬F1 = ¬∃iPF
1

Figure A.1. – Graph rule f2f′ and graph constraint F = ¬F1 = ¬∃iPF
1

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

𝑅1 

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

𝐿1 

s:Shuttle 

tb:Track 
:next 

:isAt 

tc:Track ta:Track 
:next 

𝐸 

∃𝑒𝑅  

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸′ 

∃𝑒𝑅
′  

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 

𝑅2 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 

𝐿2 

:Shuttle 

:Track 

:isAt 

:fast 

:Track 
:next 

:Track :next 

… 

𝑃1
𝐹  

… 

∃𝑡2
𝑖  

𝑇2
𝑖  

∃𝑖𝑃1𝐹 

𝑖𝑅2  

… 

∃𝑒𝐿 

𝑎𝑐𝐸′  𝑎𝑐𝐸  

𝑎𝑐ℱ1  

:fast 

∅ 

Figure A.2. – The s/t-pattern sequence seq2 = src1 ⇒f2f (tar1, src+2) ⇒f2f tar2 with seq2 ∈
Seqg

2(R,¬F ,F)

not depicted in the figure. For example, src2 is not shown because it is part of src+2 = ∃(eL,acE)
with acE = Shift(eL, src2)) in the final sequence. Roughly and intuitively, the end result is
this: the disjunction over the existential conditions ∃ti2 describes all possibilities where the
application of rule f2f′ has led to a shuttle driving fast on a switch; then, reverse applications
of the rule via the L-construction determine the situation before those rule applciations. The
sequences in Seqg

2(R,¬F ,F) differ by their overlappings of the first and second rule (which
are both f2f′). In seq2, that overlapping is represented by the morphism pair (eR, eL) and the
graph E. △

Example A.2 (step SC1-1). To construct Seqg
2(R,¬F ,F), we first construct Seqg

1(R,¬F ,F).

Table A.2. – Computation steps of seq2 ∈ Seqg
2(R,¬F ,F)

Step Computation Figure Example

SC1-1 tar2 = ⋁i∈I ∃ti2 = Shift(iR2 , F1) A.3 A.2
SC1-2 src′2 = ⋁i∈I ∃si2 = L(f2f′, tar2) A.4 A.3
SC1-3 src2 = ⋁i∈I ∃si2 ∧ acF2 with acF2 = Shift(iL2 ,F) A.5 A.4
SC1-4/5 seq1 = src2 ⇒f2f′ tar2 A.6 A.5

SCk-1 tar1 = ∃(eR,acE) with acE = Shift(eL, src2) A.8 A.6
SCk-1+ src+2 = ∃(eL,acE) – A.7
SCk-2 src′1 = ∃(e′R,acE′) = L(f2f′, tar1) A.9 A.8
SCk-3 src1 = ∃(e′R,acE′) ∧ acF1 with acF1 = Shift(iL1 ,F) A.10 A.9
SCk-4/5 seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2 A.11 A.10
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s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 

𝑅2 

h:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track :next 

tc:Track :next 

∅ 

∃𝑖𝑃1𝐹 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑇2
1 

… 
s:Shuttle 

t2:Track 

:next 

:isAt 

:fast 

t3:Track 

h:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track 
:next 

tc:Track 
:next 

𝑇2
𝑛 

… 

… 

∃𝑡2
1 

∃𝑡2
𝑛  ∃𝑡2

𝑖  

𝑇2
𝑖  

𝑖𝑅2  

𝑃1
𝐹  

Figure A.3. – Step SC1-1: tar2 = Shift(iR2 ,∃iPF
1
) = ⋁i∈I ∃ti2

Consider the diagram below for the graphs involved in the construction and Figure A.3 for
contents of some of the graphs. Given R = {f2f′} and with f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩
and ¬F = F = ∃iPF

1
, our first step is the computation of tar2 = Shift(iR2 ,∃iPF

1
). The result

tar2 = Shift(iR2 ,∃iPF
1
) =⋁

i∈I
∃ti2

is a target pattern over (the right side of) f2f′ and symbolically describes all (disjunctively
joined) possibilities of a rule application resulting in the violation of our safety property F –
i.e., in a shuttle driving on a switch in mode fast. In particular (as per the Shift-construction),
all those possbilities are possible overlappings between the right side R2 and the (forbidden)
graph C. Since, in this example, we only have one graph rule, there is only one target pattern
created in step SC1-1.

L2acL2
▷ K2

� r2 //?
l2oo R2I

t12

��

�

⋯ti2 ⋯
��

�

tn2
��

∅�
i
PF
1��

?
iR2oo

T 1
2 T i

2⋯ Tn
2 PF

1Kff H

⋯
ii

?oo

Note that besides the two example graphs T 1
2 and Tn

2 shown in Figure A.3, there are many
more, including some graphs that would be nonsensical given our example system and, par-
ticularly, the guaranteed constraint H: Graphs with a shuttle simultaneously being in two
different speed modes, graphs with a shuttle positioned at two tracks, and others. Since, for
the sake of simplicity, this example only calulates Seqg

2(R,¬F ,F) – as opposed to, for in-
stance, Seqg

2(R,¬F ∧H,F ∧H) – there is no basis for exlusion of these cases in this example
construction.

While the target pattern tar2 is a symbolic representation for a possibly infinite number of
situations leading to ¬F after a rule application, we can also imagine specific graphs: any of the
graphs T i

2 could be the result of an application of f2f′ via a comatch m′
2 = ti2 for the respective

i; then, we obviously have m′
2 ⊧ ∃ti2 and hence, m′

2 ⊧ tar2. Since ⋁i∈I ∃ti2 only requires the
existence (as opposed to absence) of specific elements, any graph extending one of the graphs
T i
2 by arbitrary elements (within the typing restrictions) would also be represented by the

target pattern. △
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s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 
𝐿2 

s:Shuttle 

t2:Track :next t3:Track 

… 

∃𝑡2
1 

∃𝑡2
𝑛  ∃𝑡2

𝑖  

… 

… 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑆2
1 

… 
s:Shuttle 

t2:Track 
:next 

:isAt 

:fast 

t3:Track 

h:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track :next 

tc:Track :next 

𝑆2
𝑛 

𝑆2
𝑖  

… 

∃𝑠2
1 

∃𝑠2
𝑛 ∃𝑠2

𝑖  

𝐾2 

:fast 

… 

… 

s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 

𝑅2 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 
… 

𝑇2
𝑛 

𝑇2
𝑖  

𝑇2
1 

s:Shuttle 

t2:Track 

:next 

:isAt 

:fast 

t3:Track 

h:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track 
:next 

tc:Track 
:next 

Figure A.4. – Step SC1-2: src′2 = L(f2f′, tar2) = ⋁i∈I ∃si2

Example A.3 (step SC1-2). Given tar2 (and f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩), our next
step is the computation of src′2 = L(f2f′, tar2) as shown in the diagram below and in Figure
A.4. As per the L-construction, every condition of the form ∃ti2 over R2 is transferred to the
left rule side L2 and results in a condition ∃si2. In particular, we have

src′2 = L(f2f′, tar2) =⋁
i∈I
∃si2.

L2acL2
▷I

s12

��

�

⋯si2 ⋯
��

�

sn2
��

K2
� r2 //?

l2oo
�

⋯

��

R2I

t12

��

�

⋯ti2 ⋯
��

�

tn2
��

S1
2 Si

2⋯ Sn
2 ⋯?oo � //F

⋯
kk �

⋯
33Hii � 55T 1

2 T i
2⋯ Tn

2

In general, the L-construction can also transform existential conditions to false; however, this
can only occur if the rule in question creates at least one node, which is not the case here.

The resulting source pattern src′2 is again a disjunction of existential conditions over the
left side of the rule. Figure A.4 shows two example graphs and morphisms s12 ∶ L2 ↪ S1

2 and
sn2 ∶ L2 ↪ Sn

2 , with ∃si2 = L(f2f,∃ti2) being the results of the application of L to the indi-
vidual existential conditions. Intuitively, the source pattern’s individual existential conditions
describe situations that lead, after rule application, to the corresponding situations described
by the target pattern’s individual existential conditions and hence, to a violation of our safety
property. △

Example A.4 (step SC1-3). While src′2 describes possible situations before rule application,
the construction does not yet consider whether the rule is actually applicable. Therefore, the
Seq-construction conjunctively joins the source pattern src′2 with the rule’s left application
condition acL2 and the rule applicability condition Appl(f2f′). Here, both conditions are true;
since they occur in a conjunction, the source pattern remains unchanged.

Furthermore, this step also takes the additional requirement of the construction of Seqg
1(R,¬F ,F)

into account: all traversed graphs before the last should satisfy F . Hence, the source pattern
is conjunctively combined with the result of the transfer of F = ¬F1 = ¬∃iPF

1
over the mor-

phism iL2 ∶ ∅ ↪ L2, i.e. with Shift(iL2 ,¬∃iPF
1
). This is depicted in the diagram below and in

Figure A.5.
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… ¬∃𝑐2
𝑗
 

u:Shuttle 

td:Track 

:isAt 

:fast 

te:Track :next 

tf:Track :next 

∅ 

¬∃𝑖𝑃1𝐹  

𝑖𝐿2  

su:Shuttle 

t2d:Track 

:isAt 

:fast 

t3e:Track :next 

tf:Track :next 
:isAt 

𝑃1
𝐹  𝐶2

1 

… 

¬∃𝑐2
1 

¬∃𝑐2
𝑧 

… 
∃𝑠2

𝑖  

… 
𝑆2
𝑖  

s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 
𝐿2 

𝐶2
𝑧 

s:Shuttle 

t2:Track 
:next 

:isAt 

:fast 

t3:Track 

u:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track :next 

tc:Track :next 

… 
𝐶2
𝑗
 

Figure A.5. – Step SC1-3: src2 = src′2 ∧ Shift(iL2 ,¬F1)

∅�
i
PF
1 ��

( iL2
))
L2acL2

▷ I

c12

��

�

⋯cj2
⋯
��

�

cz2
��

�

si2⋯

$$

K2
� r2 //?

l2oo
�

⋯

��

R2�

⋯ti2 ⋯
��

PF
1 � 88�

⋯
55

� // C1
2 Cj

2⋯ Cz
2 Si

2⋯ ⋯ � ⋯ //?⋯oo T i
2⋯

Intuitively, Shift(iL2 ,¬∃iPF
1
) = ⋀j∈J ¬∃cj2 forbids all occurences of PF

1 in the context of L2

(hence the negated existential conditions). Note that there are again nonsensical graphs (in the
context of our example) among the conditions: for example, C1

2 (Figure A.5) and the respective
condition ¬∃c12 forbids a situation involving a shuttle simultaneously existing on two different
tracks. As before, the construction does not explicitly exclude such graphs. Furthermore, since
all existential conditions ¬∃cj2 are conjunctively joined to the source pattern src′2 = ⋁i∈I ∃si2,
some of the latter conditions may not be satisfiable at the same time. Although it does not
occur in this example, it is possible that a source pattern thusly created and extended is
contradictory and equivalent to false.

In summary, this step results in:

src2 = src′2 ∧ Shift(iL2 ,¬∃iPF
1
) ∧ acL2 ∧Appl(f2f′)

= src′2 ∧ ⋀
j∈J

¬∃cj2 ∧ true ∧ true

=⋁
i∈I
∃si2 ∧ ⋀

j∈J
¬∃cj2.

△

Example A.5 (steps SC1-4 and SC1-5). Given the results of the previous steps,

seq1 = src2 ⇒f2f′ tar2

=⋁
i∈I
∃si2 ∧ ⋀

j∈J
¬∃cj2 ⇒f2f′ ⋁

i∈I
∃ti2

is a 1-sequence of source/target patterns (Figure A.6) and, in particular, seq1 ∈ Seqg
1(R,¬F ,F).

Since our example rule set R = {f2f′} has only one rule, seq1 is the only s/t-pattern sequence
in Seqg

1(R,¬F ,F).
By Theorem T.1g (p. 85), any transformation sequence trans = G1 ⇒f2f′ G2 satisfying seq1

will lead to F1, i.e. G2 ⊧ F1. We can also see that in the target pattern tar2: any comatch

– A-295 –



Appendix A. Additional Examples for Chapter 5: General Approach

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝑅2 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝐿2 

s:Shuttle 

tb:Track :next tc:Track 

u:Shuttle 

t1:Track 

:isAt 

:fast 

t2:Track :next 

t3:Track :next 
… 

𝑃1
𝐹  

… 
∃𝑡2

𝑖  

𝑇2
𝑖  … 

… 

… 
𝑆2
𝑖  

… 
∃𝑠2

𝑖  

𝐾2 

:fast 

… 

∅ 

∃𝑖𝑃1𝐹 

𝑖𝑅2  

… 
… … 

𝐶2
𝑗
 

… 
¬∃𝑐2

𝑗
 

… 

𝑖𝐿2   

Figure A.6. – Steps SC1-4/5: seq1 = src2 ⇒f2f′ tar2 and Seqg
1(R,¬F ,F) = {seq1}

m′
2 ∶ R2 ↪ G2 with m′

2 ⊧ tar2 must satisfy the disjunction ⋁i∈I ∃ti2, which, by construction,
describes all possible combinations of R2 and the forbidden graph PF

1 . △

Example A.6 (step SCk-1). Given the result of Seqg
1(R,¬F ,F), we continue the computation

of Seqg
2(R,¬F ,F) by applying steps SCk-1 to SCk-5 of the Seq-construction. Note that we

could also relabel the steps as SC2-1 to SC2-5 here.
We consider as input all sequences in Seqg

1(R,¬F ,F) and all rules. In particular, we build
all combinations of right rule sides of rules in R and leftmost source patterns – with the
respective left rule sides – of s/t-pattern sequences in Seqg

1(R,¬F ,F). Here, there is only
one rule in R and only one sequence with one source pattern in Seqg

1(R,¬F ,F). In or-
der to better align with the general procedure of Seq, we will denote the rule f2f′ as f2f′ =
⟨(L2 ↩K2 ↪ R2), true, true⟩ when appearing in the context of src2 ⇒f2f′ tar2 (as constructed
above) and as f2f′ = ⟨(L1 ↩K1 ↪ R1), true, true⟩ for the current computation. However, L1

and L2 are identical in this example, as are the rules’ other components.
We need to consider all pairs of injective and jointly surjective morphisms (eR, eL) with

eR ∶ R1 ↪ E and eL ∶ L2 ↪ E. From each of those pairs, a new s/t-pattern sequence (of length 2)
will be constructed. Here, we will focus on only one of these pairs and corresponding sequence,
as shown in the diagram below and in Figure A.7(a). There, we see that the respective rule sides
partly overlap: the first rule application has moved the shuttle to track t2b, the second will then
move it to track t3. Figure A.7(b) depicts another possible morphism pair and corresponding
graph E2.

L1acL1
▷ K1

� r2 //?
l2oo R1 �

eR
!!

L2
m

eL

{{

�

si2 ⋯
��

�

cj2

⋯
""

E
_

⋯tia1
��

q

⋯
tjd1∗

""

Si
2⋯
M
⋯

||

Cj
2⋯
N

⋯
||

T ia
1 ⋯ T jd

1∗⋯

Given the morphisms eR ∶ R1 ↪ E and eL ∶ L2 ↪ E and the graph E, the Seq-construction
computes the new target pattern tar1 over the right rule side R1. Intuitively, this should create
a condition encoding situations where, after one application of f2f′ (because tar1 is a target
pattern over R1), another application of f2f′ leads to a violation of the safety property (see the
previous computation of Seqg

1(R,¬F ,F)). Formally, as defined in the first step of the Seqg
2-

construction, tar1 = ∃(eR,acE) with acE = Shift(eL, src2). In particular, we first establish the
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su:Shuttle 

t2b:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

… 
𝑆2
𝑖  

… 
∃𝑠2

𝑖  

𝐸 

𝑒𝑅  𝑒𝐿  

… 
𝐶2
𝑗
 

… 
¬∃𝑐2

𝑗
 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝐿2 

u:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝑅1 

(a) Possible morphism pair (eR, eL)

su:Shuttle 

t2a:Track 
:next 

:isAt 

:fast 

t3b:Track 

… 
𝑆2
𝑖  

… 
∃𝑠2

𝑖  

𝐸′ 

𝑒𝑅
′  𝑒𝐿

′  

… 
𝐶2
𝑗
 

… 
¬∃𝑐2

𝑗
 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝐿2 

u:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝑅1 

:isAt 

(b) Possible morphism pair (e′R, e′L)

Figure A.7. – Two possible injective and jointly surjective morphism pairs for step SCk-1
of example Seqg

2-construction

… 

… … 
𝑇1
𝑖𝑎 𝑇1∗

𝑗𝑑
 

… 
… ∃𝑡1

𝑖𝑎 
… 

¬∃𝑡1∗
𝑗𝑑

 

su:Shuttle 

t2b:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

… 
𝑆2
𝑖  

… 
∃𝑠2

𝑖  

𝐸 

∃𝑒𝑅 ∃𝑒𝐿 

… 
𝐶2
𝑗
 

… 
¬∃𝑐2

𝑗
 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝐿2 

u:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track 

𝑅1 

Figure A.8. – Step SCk-1: tar1 = ∃(eR,Shift(eL, src2))

context of subsequent rule applications by combining R1 and L2 in E via (eR, eL) and then
shift the source pattern src2 via eL to that new context E by computing acE = Shift(eL, src2).

Figure A.8 shows the morphism pair and graph E involved in constructing tar1 but, because
of its complexity, does not show specific results of Shift(eL, src2). By the Shift-construction’s
inductive definition, each existential condition (i.e. each ∃cj2 and ∃si2) again results in a dis-
junction of several exisential conditions after transformation. Specifically:

tar1 = ∃(eR,acE)
= ∃(eR,Shift(eL, src2))
= ∃(eR,Shift(eL,⋁

j∈J
∃si2 ∧ ⋀

j∈J
¬∃cj2))

= ∃(eR,⋁
j∈J

Shift(eL,∃si2) ∧ ⋀
j∈J

¬Shift(eL,∃cj2))

= ∃(eR,⋁
j∈J

⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J

⋀
d∈Dj

¬∃tjd1∗)

At this point (if not before), the amount of individual existential conditions and their graphs
exceeds what can be seen and understood in reasonable time and effort by a human viewer.
Still, the graph E (and its alternatives given other possible morphism pairs (eR, eL)) provides
an indication of the interaction of subsequently applied rules in the s/t-pattern sequence at
hand. △
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Example A.7 (step SCk-1+). Consider tar1 computed in the previous step and depicted in
Figure A.7(a) as one result of combining the source pattern src1 over L2 with the right rule
side R1. We extend src2 to

src+2 = ∃(eL,acE) with acE = Shift(eL, src2) as before.

Then, (∃(eR,acE),∃(eL,acE)) is a target/source pattern over (f2f′, f2f′) (and the rule’s right
and left sides, respectively). It specifies how the first and second rule application are connected.
In particular, the shuttles u (right rule side) and s (left rule side) should be mapped to the
same shuttle in a satisfying transformation sequence; the same holds for tracks tb (right rule
side) and t2 (left rule side) and the respective edges. △

Example A.8 (step SCk-2). We apply the L-construction to compute the source pattern
corresponding to the target pattern tar1 and application of f2f′ as depicted in the diagram
below and in Figure A.9. In particular,

src′1 = L(f2f′, tar1)
= L(f2f′,∃(eR,⋁

j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗))

= ∃(e′, ⋁
j∈J
⋁
a∈Aj

L(f2f′∗,∃tia1 ) ∧ ⋀
j∈J
⋀

d∈Dj

¬L(f2f′∗,∃tjd1∗)) with f2f′∗ = (E′ ↩K ′
1 ↪ E)

= ∃(e′, ⋁
j∈J
⋁
a∈Aj

∃sia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃sjd1∗).

L1acL1
▷
�

e′
��

K1�

��

� r1 //?
l1oo R1 �

eR
""

E′
�

sjd1∗⋯
��

m

sia1
⋯

||

K ′
1

?oo � //
�

⋯

��

E
_

⋯tia1
��

q

⋯
tjd1∗

""

Sia
1 ⋯ Sjd

1∗⋯ ⋯?⋯oo H
⋯jj

� ⋯ //�

⋯

33T ia
1 ⋯ T jd

1∗⋯

While the graphs Sia
1 and Sjd

1∗, which correspond to the graphs T ia
1 and T jd

1∗ , are not depicted,
we can see the effect of the L-construction on the graph E and the condition ∃(eR, . . . ):
applying the rule moves the shuttle from track ta to track t2b (see Figure A.9). Its speed mode
is unchanged. △

Example A.9 (step SCk-3). Since an s/t-pattern sequence in Seqg
2(R,¬F ,F) needs to guar-

antee satisfiability of F in each but the last graph of a satisfying transformation sequence,
the construction again transfers the constraint F to the context of the left rule side. This is
shown in the diagram below and in Figure A.10. Applicability of the rule must also be ensured;
however, Appl(f2f′) and its left application condition acL1 again have the trivial value true.
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𝐾1
′ 

∃𝑒𝑅 ∃𝑒𝑅
′  

… 
… 

… … 

… 

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 
𝐿1 

s:Shuttle 

ta:Track :next tb:Track 
𝐾1 

:fast 

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 

𝑅1 

… 

… … 
𝑇1
𝑖𝑎 𝑇1∗

𝑗𝑑
 

∃𝑡1
𝑖𝑎 

… 
¬∃𝑡1∗

𝑗𝑑
 

su:Shuttle 

t2b:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸 

… 

… … 
𝑆1
𝑖𝑎 𝑆1∗

𝑗𝑑
 

∃𝑠1
𝑖𝑎 

… 
¬∃𝑠1∗

𝑗𝑑
 

su:Shuttle 

t2b:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸′ 

Figure A.9. – Step SCk-2: src′1 = L(f2f′, tar1)

∃𝑒′
′
 

… 

… … 
𝑆1
𝑖𝑎 𝑆1∗

𝑗𝑑
 

∃𝑠1
𝑖𝑎 

… 
¬∃𝑠1∗

𝑗𝑑
 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸′ 

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 
𝐿1 

… ¬∃𝑐1
𝑗
 

u:Shuttle 

td:Track 

:isAt 

:fast 

te:Track :next 

tf:Track :next 

∅ 

¬∃𝑖𝑃1𝐹  

𝑖𝐿1  

su:Shuttle 

tad:Track 

:isAt 

:fast 

tbe:Track :next 

tf:Track :next 
:isAt 

𝑃1
𝐹  𝐶1

1 

… 

¬∃𝑐1
1 

¬∃𝑐1
𝑧 

𝐶2
𝑧 

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

u:Shuttle 

td:Track 

:isAt 

:fast 

te:Track :next 

tf:Track :next 

… 
𝐶1
𝑗
 

Figure A.10. – Step SCk-3: src1 = src′1 ∧ Shift(iL1 ,¬F1)

∅�
i
PF
1��

'

iL1

))
L1 �

e′

##

acL1
▷
h

c11

vv

m

cj1

⋯
||

�

cz1
��

PF
1
� //�

⋯
22� 55C1

1 Cj
1⋯ Cz

1 E′
�

sjd1∗⋯
��

m

sia1
⋯

||
Sia
1 ⋯ Sjd

1∗⋯

Thus, we have:

src1 = Shift(iL1 ,¬∃iPF
1
) ∧ src′1 ∧Appl(f2f′) ∧ acL1

= ⋀
j∈J

¬∃cj1 ∧ src′1 ∧ true ∧ true

= ⋀
j∈J

¬∃cj1 ∧ src′1

= ⋀
j∈J

¬∃cj1 ∧ ∃(e′,⋁
j∈J
⋁
a∈Aj

∃sia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃sjd1∗)
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Since L1 and L2 as left sides of the same rule f2f′ are identical, the morphisms iL1 and
iL2 are identical as well. Consequently, Shift(iL1 ,¬∃iC) (as computed here) is equivalent to
Shift(iL2 ,¬∃iC) and the graphs Cj

1 and Cj
2 are isomorphic per index j. (This is also the reason

for the duplicate occurence of the index j and index set J). However, note that the original
graphs Cj

2 and the respective negated existential conditions ¬∃cj2 have been transferred multiple

times as part of the construction. In src1, they appear as ¬∃sjd1∗ in the context of E′. While

the conditions ¬∃cj1 (added in the current step) could also be transferred via e′ to the context

of E′, the result would usually not be equivalent to the conjunctively joined conditions ¬∃sjd1∗.
In more general terms, this is the reason for the Seq-construction to transfer C2 (here: F) to
each source pattern of the s/t-pattern sequence. △

Example A.10 (steps SCk-4 and SCk-5). In our running example, we get (among others) a
2-sequence of source/target patterns

seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2,

which is depicted in the diagram below and in Figure A.11. In order to highlight the connections
between components and their computational dependencies, we will reiterate that

– src1 = L(f2f, tar1) ∧ Shift(iL1 ,¬F1) (steps SCk-2 and SCk-3),
– (tar1, src+2) is a result of transferring src2 to an overlapping of R1 and L2 (steps SCk-1

and SCk-1+),
– src2 = L(f2f, tar2)∧Shift(iL2 ,¬F1) is the underlying source pattern to src+2 (step SC1-2),
– and tar2 = Shift(iR2 , F1) ensures that satisfying transformation sequences will lead to
¬F = F1 (step SC1-1).

In full detail, we have:

seq2 = ∃(e′, ⋁
j∈J
⋁
a∈Aj

∃sia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃sjd1∗) ∧ ⋀
j∈J

¬∃cj1

⇒f2f′(∃(eR,⋁
j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗),

∃(eL,⋁
j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗))

⇒f2f′ ⋁
i∈I
∃ti2.

∅ �
iL1 //

�

i
PF
1��

L1�

e′
��

o
cj1

⋯��

K1�

��

� r1 //?
l1oo R1 �

eR

��

L2
o

eL

��

�

⋯cj2 ��

�

⋯
si2

��

K2
� r2 //?

l2oo
�

⋯

��

R2�

ti2 ⋯
��

∅�
i
PF
1 ��

4

iL2
ww

?
iR2

oo

PF
1
� ⋯ // Cj

1⋯ E′
�

sjd1∗⋯
��

p

sia1
⋯

��

K ′
1⋯?oo � //
�

k

��

E�

⋯tia1
��

�

⋯
tjd1∗

��

Cj
2⋯�

⋯

��

Si
2⋯k

⋯
xx

⋯ � ⋯ //?⋯oo T i
2⋯ PF

1
?⋯oo
J

⋯

gg

Sia
1 ⋯ Sjd

1∗⋯ ⋯?⋯oo
I

⋯ii
� ⋯ //�

⋯
44T ia

1 ⋯ T jd
1∗⋯

Note that, as opposed to Seqg
1(R,¬F ,F), seq2 is only one of several s/t-pattern sequences

in Seqg
2(R,¬F ,F). The number of sequences in Seqg

2(R,¬F ,F) is equal to the number of
injective and jointly surjective morphism pairs (eR, eL) and graphs E found in (step SCk-1).
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… … 

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

𝑅1 

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 

𝐿1 

s:Shuttle 

ta:Track 
:next 

tb:Track 

𝐾1
′ 

𝐾1 

… 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

tc:Track ta:Track :next 

𝐸 

∃𝑒𝑅 

… 
𝑇1
𝑖𝑎 𝑇1∗

𝑗𝑑
 

… 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

t3:Track ta:Track :next 

𝐸′ 

∃𝑒𝑅
′  

… 
𝑆1
𝑖𝑎 𝑆1∗

𝑗𝑑
 

:fast 

… 
… 

… … 

… … 

∃𝑡1
𝑖𝑎 

… ¬∃𝑡1∗
𝑗𝑑

 
∃𝑠1

𝑖𝑎 ¬∃𝑠1∗
𝑗𝑑

 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 

𝑅2 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 

𝐿2 

s:Shuttle 

tb:Track 
:next 

tc:Track 

u:Shuttle 

t1:Track 

:isAt 

:fast 

t2:Track 
:next 

t3:Track :next … 

𝑃1
𝐹  

… 
∃𝑡2

𝑖  

𝑇2
𝑖  … 

… 

… 
𝑆2
𝑖  

… 
∃𝑠2

𝑖  

𝐾2 

:fast 

… 

∅ 

∃𝑖𝑃1𝐹 

𝑖𝑅2  

… … 

∃𝑒𝐿 … 

… 
𝐶1
𝑗
 

¬∃𝑐1
𝑗
 

… 
𝐶2
𝑗
 

… 
¬∃𝑐2

𝑗
 

… 

… 

𝑖𝐿2   
𝑖𝐿1   

Figure A.11. – Steps SCk-4/5: seq2 = src1 ⇒f2f′ (tar1, src+2) ⇒f2f′ tar2 with seq2 ∈
Seqg

2(R,¬F ,F)

The first property established by Theorem T.1g (p. 85) guarantees that for any transforma-
tion sequence sequence trans = G0 ⇒b1,m1,m′1 G1 ⇒b2,m2,m′2 G2 that leads to ¬F = F1 = ∃iPF

1
,

i.e. to a violation of the safety property, and where that violation does not occur in G0 or G1,
there is a sequence seq ∈ Seqg

2(R,¬F ,F) such that trans ⊧ seq . This property ensures that
all such transformation sequences are represented in Seqg

2(R,¬F ,F). Consequently, we can
analyze the constructed s/t-pattern sequences to draw conclusions about all error traces of
length 2 that lead to a violation of the safety property.

In particular, seq2 describes an infinite set of transformation sequences where subsequent
shuttle movement in speed mode fast over three subsequently connected tracks leads to the
shuttle driving fast on a switch – without this situation occurring earlier in the sequence. Given
the second property of Theorem T.1g (p. 85), this is not surprising: given a transformation
sequence trans = G0 ⇒f2f′,m1,m′1

G1 ⇒f2f′,m2,m′2
G2 with trans ⊧ seq2, we know that trans leads

to a violation of F = ¬F1 – with G0 ⊧ F and G1 ⊧ F .
If we were to compute Seqg

3(R,¬F ,F), we would continue the computation by applying
steps SCk-1 to SCk-5 (or, specifically, SC3-1 to SC3-5) again, starting with all s/t-pattern
sequences of length 2 in Seq2(R,¬F ,F), including seq2. △

This concludes the list of detailed examples for the Seq-construction of the general approach.
Following is an example that demonstrates the capability of Lemma 5.14 to deduce from
satisfiability of a reduced leftmost source pattern of an s/t-pattern sequence created by the
Seq-construction the sequence’s satisfiability by a transformation sequence.

Example A.11 (existence of satisfying transformation sequences). Consider the s/t-pattern
sequence of length 2 shown in Figure A.11. That sequence is the result of Examples A.1–A.10
for a graph transformation system GTS = (TG ,{f2f′}) (Figure A.1(a)) and safety property
F = ¬F1 = ¬∃iPF

1
(Figure A.1(b)). In order to find a satisfying transformation sequence for

seq2, we attempt to find a graph G0 that satisfies src1∣∅ – which is the reduction of src1 to a
graph constraint. In particular, given

src1 = ∃(e′, ⋁
j∈J
⋁
a∈Aj

∃sia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃sjd1∗) ∧ ⋀
j∈J

¬∃cj1,

we have
src1∣∅ = ∃(iE′ , ⋁

j∈J
⋁
a∈Aj

∃sia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃sjd1∗) ∧ ⋀
j∈J

¬∃i
Cj

1
.

An example graph G0 satisfying src1∣∅ is depicted in Figure A.12, with Figures A.12(a) and
A.12(b) showing concrete and abstract views of the graphs involved. In particular, we have
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three subsequent tracks, the last of which is a switch with an additional incoming track. A
shuttle, driving in mode fast, is located on the first track.

We can see already why this particular graph (G0) is a candidate for a first graph of a
transformation sequence that leads to the violation of our safety property ¬F1 (Figure 5.12(b)).
Two subsequent applications of f2f′ will move the shuttle via track tb to the switch (t3) without
changing the speed mode, resulting in a violation. Also, neither G0 nor the intermediate graph
after the first rule application contain the forbidden situation as a subgraph.

When formally considering whether G0 satisfies src1∣∅, we can find an injective morphism

y ∶ E′ ↪ G0 such that y ○ iE′ ○ iG0 . Given that the graphs Sia
1 are part of a disjunction, y needs

to satisfy ∃sia1 for specific values of i and a; in other words, we have to find one of the graphs
as a subgraph of G0. Here, such a graph exists and is denoted as S1 (and also happens to be
isomorphic to G0). The corresponding condition is ∃s1 with the morphism s1 ∶ E′ ↪ S1. Then,
there exists an injective (and bijective) morphism q ∶ S1 ↪ G0 such that q ○ s1 = y. Hence,
y ⊧ ∃s1, which implies y ⊧ ⋁j∈J ⋁a∈Aj

∃sia1 . Similar to the reasoning about G0, we can see why
S1 or, more precisely, ∃s1 is a part of the source pattern: it describes one (of several) situations
that will lead to a violation of the safety property.

Furthermore, there do not exist specific values for j and d such that there is an injective
morphism x ∶ Sjd

1∗ ↪ G0 with x ○ sjd1∗ = y, which then implies y ⊧ ⋀j∈J ⋀d∈Dj
¬∃sjd1∗. Finally, a

similar argument holds for iG0 ⊧ ⋀j∈J ¬∃iCj
1
. Note that even without seeing the specific graphs

for Cj
1 and Sjd

1∗, this makes sense: the second set of graphs and corresponding conditions (Cj
1)

come from a transformation of ¬F1 = ¬∃iPF
1

, which is our safety property, to the context of E′.

Since G0 satisfies the property – while there is a switch (t3), the shuttle is not located on it –
it satisfies the corresponding condition fragment in the reduced source pattern. Likewise, Sjd

1∗
comes from a similar transformation of the safety property to the context of the intermediate
source pattern src2 (and later src+2 ). Since there is no rule application that can transform G0

into a graph violating the safety property, such a violation cannot occur in G0 either.
In summary, we have iG0 ⊧ src1∣∅, implying G0 ⊧ src1∣∅. Figure A.13(a) shows an alternative

graph (G′
0) that satisfies src1∣∅. Figure A.13(b), on the other hand, shows a graph G∗

0 that
does not satisfy src1∣∅. While it contains the graph S1 – three subsequent tracks, the last being
a switch with an additional incoming track, and a shuttle (fast) on the leftmost track – we can
see that a single application of f2f′ already leads to a violation of the safety property. Hence,
a corresponding transformation sequence cannot satisfy our 2-sequence of s/t-patterns seq2,
which was constructed with the requirement that such a violation only happens after two rule
applications. In fact, we can find a condition fragment in the conjunction ⋀j∈J ⋀d∈Dj

¬∃sjd1∗ that
prevents G0 from satisfying src1∣∅; that fragment, here denoted as ¬∃s1∗ with s1∗ ∶ E′ ↪ S1∗
is shown in Figure A.13(c).

L1acL1
▷
�

e′
��

s

m1

��

K1w

��

�

��

� r1 //?
l1oo R1 �

eR
##

c

m′1

��

E′
�

sjd1∗
⋯ ""

�

sia1⋯
��

n

s1

}}

s

y

��

K ′
1

?oo � //
�

⋯

��

E
_

⋯
tia1
��

p

t1

!!

S

y′

��

M

⋯
tjd1∗

||

S1 �

q
!!

Sia
1 ⋯ Sjd

1∗⋯ ⋯?⋯oo
Jff I

⋯ii
� ⋯ //�

⋯ 44� 66T jd
1∗⋯ T ia

1 ⋯ T1
N

q′}}
G0 D1

?oo � // G1

Moving back to G0, we can find a match m1 ∶ L1 ↪ G0 such that m1 ⊧ src1 and that we can
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… 
… 

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 𝐿1 

… 

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

t3:Track ta:Track :next 

𝐸′ 

∃𝑒𝑅
′  

… 
𝑆1
𝑖𝑎 𝑆1∗

𝑗𝑑
 

∃𝑠1
𝑖𝑎 ¬∃𝑠1∗

𝑗𝑑
 

… 

… 
𝐶1
𝑗
 

¬∃𝑐1
𝑗
 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐺0 

t4:Track :next 

∅ 

… 
¬∃𝑖

𝐶1
𝑗  

∃𝑖𝐸′  

𝑦 

𝑞 

s:Shuttle 

tb:Track 

:next 
:isAt 

:fast 

t3:Track ta:Track 
:next 

𝑆1 

t4:Track 
:next 

∃𝑠1 

(a) Concrete view

∅ �
iL1 //

�

iC
��

L1�

e′
��

o
cj1

⋯��

C �
⋯// Cj

1⋯ E′
c

s1

��

t

y

��

�

sjd1∗⋯
��

p

sia1
⋯
��

S1 �

q
&&

Sia
1 ⋯ Sjd

1∗⋯

G0

(b) Abstract view

Figure A.12. – Example graph G0 with G0 ⊧ src1∣∅

:Shuttle 

:Track :next 

:isAt 

:fast 

:Track :Track :next 

𝐺0
′  

:Track 
:next 

:Track 
:next 

:Track 
:next 

(a) G′0 with G′0 ⊧ src1∣∅

:Shuttle 

:Track :next 

:isAt 

:fast 

:Track :Track :next 

𝐺0
∗ 

:Track 
:next 

:Track 
:next 

(b) G∗0 with G∗0 /⊧ src1∣∅

:Shuttle 

:Track :next 

:isAt 

:fast 

:Track :Track :next 

𝐸′ 

¬∃𝑠1∗ 

:Shuttle 

:Track :next 

:isAt 

:fast 

:Track :Track :next 

𝑆1∗ 

:Track 
:next 

(c) s1∗ ∶ E′ ↪ S1∗ as in ¬∃s1∗

Figure A.13. – Example graphs and their relation to src1∣∅
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s:Shuttle 

tb:Track 

:next 

:isAt 

:fast 

t3:Track ta:Track 

:next 

𝐺1 

t4:Track :next 

s:Shuttle 

tb:Track 

:next 

:fast 

t3:Track ta:Track 

:next 

𝐷1 

t4:Track :next 

… 

… 
𝐶1
𝑗
 

¬∃𝑐1
𝑗
 

s:Shuttle 

tb:Track 

:next 

:isAt 

:fast 

t3:Track ta:Track 

:next 

𝐺0 

t4:Track :next 

𝑦 𝑞 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝑆1 

t4:Track :next 

𝑚1 𝑚1
′  

s:Shuttle 

tb:Track :next 

:isAt 

:fast 

t3:Track ta:Track :next 

𝑇1 

t4:Track 
:next 

𝑞′ 

𝑦′ 

∃𝑠1 ∃𝑡1 

𝐾1
′ 

∃𝑒𝑅 ∃𝑒𝑅
′  

… … 

… … 

… 

s:Shuttle 

ta:Track :next 
:isAt 

:fast 

tb:Track 

𝐿1 

s:Shuttle 

ta:Track :next tb:Track 

𝐾1 

:fast 

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 

𝑅1 

… 

… … 
𝑇1
𝑖𝑎 𝑇1∗

𝑗𝑑
 

∃𝑡1
𝑖𝑎 

… 
¬∃𝑡1∗

𝑗𝑑
 

su:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸 

… 

… … 
𝑆1
𝑖𝑎 𝑆1∗

𝑗𝑑
 

∃𝑠1
𝑖𝑎 

… 
¬∃𝑠1∗

𝑗𝑑
 

su:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸′ 

𝑅1 𝐿1 

Figure A.14. – Transformation G0 ⇒f2f′,m1,m′1
G1 with m1 ⊧ src1 and m′

1 ⊧ tar1

execute a transformation G0 ⇒f2f′,m1,m′1
G1 (Figure A.14 and the diagram above).

By the L-construction and L-lemma, we have m′
1 ⊧ tar1. Recall that the target pattern tar1

in our s/t-pattern sequence seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2 was computed as

tar1 = ∃(eR, acE) and acE = ⋁
j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗.

For the purposes of finding a satisfying transformation sequence, the details of the matches
and comatches satisfying the source and target patterns are not necessarily relevant. We can
compute the graph G1 by applying the rule f2f′ via m1 and the two pushouts. However, for
the sake of completeness, we will delve deeper into m′

1 ⊧ tar1 and the involved conditions and
graphs.

In particular, we know that m′
1 ⊧ tar1 implies the existence of an injective morphism y′ ∶

E ↪ G1 such that y′ ○ eR =m′
1 and that y′ ⊧ ⋁j∈J ⋁a∈Aj

∃tia1 ∧⋀j∈J ⋀d∈Dj
¬∃tjd1∗ (i.e. y′ ⊧ acE).

Concerning the first part of the conjunction, we know that ∃s1 in the source pattern was the
result of a computation L(f2f′,∃t1), with t1 = tia1 and T1 = T ia

1 for some specific values of i and
a. Then, y ⊧ ∃s1 is equivalent to y′ ⊧ ∃t1 and, as expected, y′ ⊧ ⋁j∈J ⋁a∈Aj

∃tia1 . While not

shown in the diagram, there do not exist specific values for j and d such that any of the ∃tjd1∗
could be satisfied by y′.

As explained in the proof and depicted in Figure A.15, we can construct an injective mor-
phism m2 ∶ L2 ↪ G1 as m2 = y′ ○ eL; then, m2 ⊧ src+2 given that

src+2 = ∃(eL,acE) with acE = ⋁
j∈J
⋁
a∈Aj

∃tia1 ∧ ⋀
j∈J
⋀

d∈Dj

¬∃tjd1∗

as before, because we already know that y′ ⊧ acE . Since (tar1, src+2) is a target/source pattern
and m′

1 and m2 satisfy tar1 and src+2 via the morphism y′, we have (m′
1,m2) ⊧ (tar1, src+2) (as

expected and shown in the proof above).
Furthermore, by construction, we know that

acE = Shift(eL, src2) and src2 = src′2 ∧Appl(f2f′) ∧ Shift(iL2 ,¬∃iC),
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∃𝑒𝑅 
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:next 

𝐺1 

t4:Track :next 

𝑞′ 

𝑦′ 

𝑚1
′  
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𝐶2
𝑗
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s:Shuttle 

tb:Track :next 
:isAt 
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… 

… … 
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𝑗𝑑
 

¬∃𝑡1∗
𝑗𝑑

 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

t3:Track ta:Track 
:next 

𝐸 

∃𝑡1
𝑖𝑎 

… 

Figure A.15. – Target/source pattern (tar1, src+2) with (m′
1,m2) ⊧ (tar1, src+2)

implying m2 ⊧ src2, applicability of f2f′ via the match m2, and the existence of a transformation
G1 ⇒f2f′,m2,m′2

G2. The transformation and the source and target patterns src+2 , src2, and tar2

are depicted in Figure A.16. In particular, note that the existential condition ∃t1 was the
result of shifting a corresponding condition ∃s2 over the morphism eL as part of computing
acE = Shift(eL, src2). Hence, we can find an occurrence of S2 in G1: formally, m2 ⊧ ∃s2 and
thus, m2 ⊧ src2 given that there is no occurrence of any of the negated existential conditions.

Likewise, ∃s2 is the result of transferring ∃t2 over the f2f rule by the L-construction. Finally,
∃t2 is part of the disjunction ⋁i∈I t

i
2. Recall that

⋁
i∈I
∃ti2 = Shift(iR2 ,∃iPF

1
) = tar2

is the rightmost target pattern of the s/t-pattern sequence seq2 under consideration and that
m′

2 ⊧ tar2, seen in the morphism q′′ ∶ T2 ↪ G2 with q′′ ○ t2 =m′
2. Given

src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2

and with
trans = G0 ⇒f2f′,m1,m′1

G1 ⇒f2f′,m2,m′2
G2,

we have trans ⊧ seq2, as expceted. The entire transformation sequence trans is depicted in
Figure A.17 in compact notation. As shown before, G2 indeed leads to a violation of our safety
property – i.e. G2 ⊧ ¬F – while no violation ocurrs in G0 or G1 – i.e. G0 ⊧ F and G1 ⊧ F .

Besides showing a satisfying transformation sequence for our example s/t-pattern sequence
and suggesting an approach to constructing such transformation sequences, this example serves
another purpose: the condition fragments ∃t2, ∃s2, ∃t1 and ∃s1 show how situations exhibiting
the desired result (here: a violation of F) are encoded and transformed during the computa-
tion of Seqg

2(R,¬F ,F) and how additional information is accumulated. The graph T2 is one
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Figure A.16. – Transformation G1 ⇒f2f′,m2,m′2
G2 with m2 ⊧ src+2 and m′

2 ⊧ tar2

s:Shuttle 

tb:Track 

:next 

:isAt 

:fast 

t3:Track ta:Track 

:next 

𝐺2 

t4:Track :next 

s:Shuttle 

tb:Track 

:next 
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:fast 

t3:Track ta:Track 

:next 
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t4:Track 
:next 

s:Shuttle 

tb:Track 

:next 

:isAt 

:fast 

t3:Track ta:Track 

:next 

𝐺0 

t4:Track 
:next 

⇒𝑓2𝑓′  ⇒𝑓2𝑓′  

Figure A.17. – Transformation sequence trans = G0 ⇒f2f′,m1,m′1
G1 ⇒f2f′,m2,m′2

G2 with
trans ⊧ seq2
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of several situations where a rule application has lead to a violation; S2 then describes the
situation before rule application. In the graph T1 and the corresponding condition ∃t1, that
situation has been transferred to the context of the result of a previous application. S1 then
describes the initial situation before the first rule application. Because of that, T1 encodes more
information than T2; in particular, the graph shows another track (ta) required for a possible
previous application of the graph rule f2f′. We have not propagated accumulated information
in forward direction. △
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Appendix B.

Additional Examples for Chapter 6: Restricted Approach

This chapter of the appendix contains a number of additional and more detailed examples
relating to the restricted approach described in Chapter 6. Table B.1 provides a short overview.

Example B.1 (checking implication of graph patterns). Consider two graph patterns C =
∃(iP ,¬∃x1) and C ′ = ∃(iP ′ ,¬∃x′1) in Figures B.1(a) and B.1(b), respectively. The former
expresses the existence of a shuttle in speed mode fast, which is located on a track with a
subsequent track (∃i′P ) – with the added requirement that that subsequent track t2 is not
a switch, i.e. there is no second track (tA) leading to t2. The latter only describes a shuttle
located on a track such that there is no switch (tB) directly ahead.

We can find one and only one injective morphism m ∶ P ↪ P ′ (denoted by nodes with the
same names). If the question were whether ∃i′P implied ∃iP , we would have our answer: all
graphs satisfying ∃i′P (i.e. containing P ′) will satisfy ∃iP , because they will necessarily contain
P .

However, both patterns have a (composed) negative application condition each, so that
condition (2) of Theorem 6.8 (p. 120) needs to be considered. In particular, we need to compute
Shift(m,¬∃x1), thus shifting the first pattern’s negative application condition to the context
of the implying pattern (P ′). This is partly depicted in Figure B.2. The result, by the Shift-
construction, is a composed negative application condition ⋀k∈K ¬∃x′1k over P ′; note that only
two of the respective graphs X ′′

1k are depicted. Then, we have to find out whether ¬∃x′1 – the
implying pattern’s (composed) negative application condition – is strong enough to exclude all
of the conditions ¬∃x′′1k. This is not the case: while there is an injective morphism y1 ∶X ′

1 ↪X ′′
11

such that y′ ○ x′1 = x′′11, there is no injective morphism y8 ∶ X ′
1 ↪ X ′′

18. Hence (and since there
is no other option for a morphism from P to P ′), we cannot conclude that C ′ implies C.

In general, we cannot be sure that C ′ does not imply C. However, in this particular case,
C ′ does, indeed, not imply C. Knowing that there is no suitable morphism from X ′

1 to X ′′
18

(and no other negative application condition in C ′ that we could use) helps us to construct a
graph that satisfies C ′ and does not satisfy C. In particular, X ′′

18 is such a graph: it contains
P ′ via x′′18 and, as we have found, there is no injective morphism y8 ∶ X ′

1 ↪ X ′′
18 such that

y8 ○ x′1 = x′′18. Intuitively, we cannot extend x′′18 such that X ′′
18 also contains X ′

1. In particular,
there are no matching node and edge in X ′′

18 for t and its connecting edge because t2 such
that x′′18 is preserved. Thus, X ′′

18 satisfies C ′. However, while we can find P in X ′′
18 (via the

morphism x′′18 ○m), we can also extend that match to X1 and hence, X ′′
18 does not satisfy C.

Consider, on the other hand, C∗ (Figure B.1(c)) and C (Figure B.1(a), as before). Since
P ∗ and P are isomorphic, there is a morphism m ∶ P ↪ P ∗ as before; the construction
Shift(m,¬∃x1) also has the same result (⋀k∈K ¬∃x′′ik) as before. However, with the additional
negative application condition ¬∃x∗2 in the composed negative application condition of P ∗, we
can now find a morphism y8 ∶ X∗

2 ↪ X ′′
18 such that y8 ○ x∗2 = x′′18. Indeed, we can find such a

morphism (from X∗
1 or X∗

2 ) for all of the graphs X ′′
1k. Hence, C∗ ⊧ C.

Intuitively, both results make sense. C describes a situation (a shuttle on a track) that forbids
the existence of a switch directly ahead of the track. C ′ describes a more specific situation
– an additional track and speed mode fast – which may, at first, suggest implication of C.
However, C ′ only requires t2 not to be a switch (via tA) and does not prohibit the existence of
an additional track after t1 that is a switch. That – the absence of any switch directly ahead
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Table B.1. – List of examples in Appendix B

Element Description

Example B.1 Implication check for patterns (Theorem 6.8 (p. 120), Algorithm 6.1)
Example B.2 Running example and fragments of result of Seqr

2(R, F1)
Example B.3 Step SC1-1 of Seqr

2(R, F1)
Example B.4 Step SC1-2 of Seqr

2(R, F1)
Example B.5 Step SC1-3 of Seqr

2(R, F1)
Example B.6 Steps SC1-4 and SC1-5 of Seqr

2(R, F1)
Example B.7 Step SCk-1 of Seqr

2(R, F1)
Example B.8 Step SCk-1+of Seqr

2(R, F1)
Example B.9 Step SCk-2 of Seqr

2(R, F1)
Example B.10 Step SCk-3 of Seqr

2(R, F1)
Example B.11 Steps SC1-4 and SC1-5 of Seqr

2(R, F1)
Example B.12 Steps SC1-3, SC1-4, and SC1-5 with non-trivial left application condition
Example B.13 Other steps with non-trivial left application condition

𝑃 

∃𝑖𝑃 

∅ 

s:Shuttle 

tB:Track 

:isAt 

t1:Track :next 

tA:Track 

:next 

𝑋1 

¬∃𝑥1 

s:Shuttle 
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t1:Track 

(a) C = ∃(iP ,¬∃x1)
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∃𝑖𝑃′  
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s:Shuttle 
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t1:Track :next 

tA:Track 
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𝑋1
′  

¬∃𝑥1
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t2:Track 
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(b) C′ = ∃(iP ′ ,¬∃x′1)
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∗ 
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(c) C∗ = ∃(iP∗ ,¬∃x∗1 ∧ ¬∃x∗2)

Figure B.1. – Graph patterns C, C ′, and C∗ with C ′ /⊧ C and C∗ ⊧ C
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Figure B.2. – Application of Theorem 6.8: injective morphism m ∶ P ↪ P ′ and
Shift(m,¬∃x1) = ⋀k∈K ¬∃x′′1k
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t1:Track 
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𝑟 
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(a) Graph rule f2f′

:Shuttle 

t1:Track 

:isAt 

:fast 

ts:Track 
:next 

t2:Track :next 

𝑃1
𝐹  

∅ 

¬∃𝑖𝑃1𝐹  

(b) Comp. pattern F = ¬F1 = ¬∃iPF
1

Figure B.3. – Graph rule f2f and graph pattern F = ∃iP

– is, however, required by C. C∗ then not only forbids t2 to be a switch, but – via ¬∃x∗2 –
prohibits said existence of any switch directly after t1. △

The following examples will serve to illustrate execution of the Seq-construction in more
detail.

Example B.2 (Seq-construction, example system). This example is a repetition of Exam-
ple 6.17 (p. 135) and its computation of Seqr

2(R, F1), with more detailed examples for the
construction’s individual steps to follow. We have a graph transformation system with a graph
rule f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩ (hence, R = {f2f′}) and a composed forbidden pattern
F = ¬F1 = ¬∃iPF

1
. The rule and the graph pattern are shown in Figures B.3(a) and B.3(b),

respectively; they are unchanged in comparison to Example 6.1 (p. 111). We will compute
Seqr

2(R, F1), which would be appropriate in order to determine whether F is a 2-inductive
invariant for GTS = (TG ,R).

As in the corresponding example for the general approach, we will distinguish between
f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩ and f2f′ = ⟨(L1 ↩K1 ↪ R1), true, true⟩. The former will
refer to the appearance of rule f2f in the context of steps SC1-1 to SC1-5 and the latter
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s:Shuttle 

ta:Track 
:next :isAt 
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𝑅1 

∃𝑡1 
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∃𝑠2
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:isAt 

:fast 

tc:Track 
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Figure B.4. – An s/t-pattern sequence seq2 = src1 ⇒f2f (tar1, src+2) ⇒f2f tar2 with seq2 ∈
Seqr

2(R, F1)

Table B.2. – Computation steps of Seqr
2(R, F )

step computation Figure Example

SC1-1 tar2 = ∃t2 (and ⋁j∈J tar j
2 = Shift(iR2 , F1)) B.5 B.3

SC1-2 src′2 = ∃s2 = L(f2f′, tar2) B.6 B.4
SC1-3 src2 = src′2 = ∃s2 – B.5
SC1-4/5 seq1 = src2 ⇒f2f′ tar2 B.7 B.6

SCk-1 tar1 = ∃t1 B.9 B.7
SCk-1+ src+2 = ∃(s′1 ○ s2) – B.8
SCk-2 src′1 = ∃s1 = L(f2f′, tar1) B.10 B.9
SCk-3 src1 = src′1 = ∃s1 – B.10
SCk-4/5 seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f tar2 B.11 B.11

to its appearance in the context of steps SCk-1 to SCk-5, although the rules’ contents are
identical. Since the rule does not delete any nodes, it has a trivial applicability condition
Appl(f2f′) = true.

Figure B.4 shows one s/t-pattern sequence (of length 2) seq2 that is contained in Seqr
2(R, F1).

The construction and origin of its individual parts are explained in Examples B.3-B.11 below.
In particular,

seq2 =src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2

= ∃s1 ⇒f2f′ (∃t1,∃s+2) ⇒f2f′ ∃t2,

where the steps, their computations, and the corresponding examples and figures for this
particular s/t-pattern sequence are listed in Table B.2. Intuitively, the result can be explained
as follows: the existential condition ∃t2 describes one possibility where the application of rule
f2f′ has led to a shuttle driving fast on a switch; then, reverse application of the rule via the
L-construction determines the situation before that rule application. The resulting situation
is described by an existential condition whose context is again combined with the right side
of rule f2f′. One such overlapping results in the target pattern ∃t2 – and reverse application of
the rule gives us ∃s1, all of which are part of seq2.

We can see already that the sequence is more specific than its counterpart in Example A.1
(p. A-291) for the general case: the source, target/source, and target patterns ∃s1, (∃t1,∃s+2),
and ∃t2, are simple existential conditions. Of course, Seqr

2(R, F ) will contain more than
just that one s/t-pattern sequence seq2 – and will necessarily contain more sequences than
Seqg

2(R, F1, true). △

Example B.3 (step SC1-1). To construct Seqr
2(R, F1), we must first construct Seqr

1(R, F1).
Given R = {f2f′} and with f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩ and F1 = ∃iPF

1
, our first step is
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s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 

𝑅2 

h:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track :next 

tc:Track :next 

∅ 

∃𝑖𝑃1𝐹 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑇2
1 

… 
s:Shuttle 

t2:Track 

:next 

:isAt 

:fast 

t3:Track 

h:Shuttle 

ta:Track 

:isAt 

:fast 

tb:Track 
:next 

tc:Track 
:next 

𝑇2
𝑛 

… 

… 

∃𝑡2
1 

∃𝑡2
𝑛  ∃𝑡2

𝑖  

𝑇2
𝑖  

𝑖𝑅2  

𝑃1
𝐹  

Figure B.5. – Step SC1-1: Shift(iR,∃iPF
1
) = ⋁j∈J ∃tj2

the computation of Shift(iR2 , F1) = Shift(iR2 ,∃iPF
1
), shown in Figure B.5. The result

Shift(iR2 ,∃iPF
1
) = ⋁

j∈J
∃tj2

is a disjunction of target patterns over (the right side of) f2f′ and symbolically describes all
(disjunctively joined) possibilities of a rule application resulting in the violation of our safety
property F – i.e., in a shuttle driving on a switch in mode fast. In particular (as per the
Shift-construction), all those possibilities are possible overlappings between the right side R2

and the (forbidden) graph PF
1 .

Note that besides the two example graphs T 1
2 and Tn

2 shown in Figure B.5, there exist
several more, including some graphs that would be nonsensical given our example system and,
particularly, the guaranteed constraint H: graphs with a shuttle simultaneously being in two
different speed modes, graphs with a shuttle positioned at two tracks, and others. In contrast to
our general approach, the Seq-construction in our restricted formal model does not consider an
additional constraint – such as a composed guaranteed pattern – to be satisfied by intermediate
graphs. While this consideration is integrated into our algorithm, its formal description is only
considered as part of the analysis step.

Each of the target patterns tar j
2 is handled individually by the subsequent steps of the Seq-

construction and may spawn a new s/t-pattern sequence. In this example, we will focus on
only one – the target pattern tarn

2 = ∃tn2 , which we will denote as tar = ∃t2 with t2 ∶ R2 ↪ T2
from here on. This target pattern tar2 is a symbolic representation for a possibly infinite
number of situations leading to F after a rule application (as are the other target patterns not
considered here in detail). In particular, tar2 describes the result of a rule application that has
the shuttle moving from one track to another while keeping the speed mode fast and where
the target track is a switch. As for specific graphs, consider T2 itself: it could be the result
of an application of f2f′ via a comatch m′

2 = t2 for the respective; then, we obviously have
m′

2 ⊧ ∃t2 and hence, m′
2 ⊧ tar2. Any graph extending T2 by arbitrary elements (within the

typing restrictions) would also be represented by the target pattern. △

Example B.4 (step SC1-2). Given tar2 = ∃t2 (and f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩),
our next step is the computation of src′2 = L(f2f′, tar2) as shown in Figure B.6. Per the L-
construction, the condition ∃t2 over R2 is transferred to the left rule side L2 and results in a
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s:Shuttle 

t2:Track :next t3:Track 

𝐾2 

:fast 

sh:Shuttle 

t2a:Track 

:fast 

t3b:Track :next 

tc:Track :next 
sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑇2 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑆2 

s:Shuttle 

t2:Track 
:next 

:isAt 

:fast 

t3:Track 
𝑅2 

s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 
𝐿2 

∃𝑡2 ∃𝑠2 

Figure B.6. – Step SC1-2: src′2 = L(f2f′,∃t2) = ∃s2

s:Shuttle 

t2:Track 
:next 

:isAt 

:fast 

t3:Track 
𝑅2 

s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 
𝐿2 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑇2 

∃𝑡2 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑆2 

∃𝑠2 ⇒𝑓2𝑓′  

Figure B.7. – Steps SC1-4/5: seq1 = src2 ⇒f2f′ tar2 = ∃s2 ⇒f2f’ ∃t2 with seq1 ∈ Seqr
1(R, F1)

condition ∃s2:
src′2 = L(f2f′,∃t2) = ∃s2.

In general, the L-construction can also transform existential conditions to false; however,
this would only occur when the pushout complement to K2 ↪ R2 ↪ T2 would not exist. Since
the rule in question does not delete any nodes, this cannot occur in this example, even for
other target patterns created in step SC1-1.

Here, the resulting source pattern src′2 = ∃s2 symbolically describes all situations that, after
rule application, lead to any of the situations described by tar2. Specifically, it describes a
shuttle located on a track in speed mode fast to be moved to a subsequent switch, leading to
the occurence of our forbidden pattern F . Consider graph S2: if we choose s2 ∶ L2 ↪ S2 as a
match for a rule application, s2 satisfies src′2. If we extend S2 by any number of elements within
the typing restrictions – additional tracks, for example – the resulting graphs – or rather, the
resulting matches – would also satisfy src′2. △

Example B.5 (step SC1-3). Since f2f′ only has the trivial left application condition true
and a trivial applicability condition, this step leaves the source pattern src′2 unchanged: given
acL2 = true and Appl(f2f′) = true, we have Shift(s2,acL2) = true and the conjunction of true
with any application condition is equivalent to the application condition itself. Hence, in this
example, we have the special case src2 = src′2. △
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:next 

ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 

:next 

td:Track 

:next 

𝐺1 

⇒𝑓2𝑓′  

:next 

ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 

:next 

td:Track 

:next 

𝐺2 

Figure B.8. – Transformation sequence trans = G1 ⇒f2f′,m2,m′2
G2 with trans ⊧ seq1

Example B.6 (steps SC1-4 and SC1-5). Given the results of the previous steps,

seq1 = src2 ⇒f2f′ tar2

= ∃s2 ⇒f2f′ ∃t2
is a 1-sequence of source/target patterns (Figure B.7) and, in particular, seq1 ∈ Seqr

1(R, F1). By
construction and because of the structure of f2f′, Seqr

1(R, F ) contains a number of sequences
equal to the number of operands in the disjunction Shift(iR2 , F1).

By Theorem T.1r (p. 130), any transformation sequence trans = G1 ⇒f2f′ G2 satisfying seq1

will lead to F1, i.e. G2 ⊧ F1. We can also see that in the target pattern tar2: any comatch
m′

2 ∶ R2 ↪ G2 in a satisfying transformation sequence must satisfy tar2. Then, G2 must contain
T2 as a subgraph, which exactly describes the forbidden situation (and an embedded right rule
side). An example for a satisfying transformation sequence is shown in Figure B.8. △
Example B.7 (step SCk-1). Given the result of Seqr

1(R, F1), we continue the computation
of Seqr

2(R, F1) by applying steps SCk-1 to SCk-2 of the Seq-construction. (Note that we could
also relabel the steps as SC2-1 to SC2-5 here).

We consider as input all sequences in Seqr
1(R, F1) and all rules in R. In particular, we build

all overlappings of the right rule side and context graphs of leftmost source patterns of s/t-
pattern sequences in Seqr

1(R, F1). Here, we have only one rule inR, but a couple of 1-sequences
of s/t-patterns Seqr

1(R, F1). In order to better align with the general procedure of the Seq-
construction, we will, in this example, denote the rule f2f′ as f2f′ = ⟨(L2 ↩K2 ↪ R2), true, true⟩
in the context of src2 ⇒f2f′ tar2 (as constructed above) and as f2f′ = ⟨(L1 ↩K1 ↪ R1), true, true⟩
for the current computation. However, L1 and L2 are identical in this example, as are the rules’
other components, respectively.

In this example, we will only consider the s/t-pattern sequence seq1 = src2 ⇒f2f′ tar2 =
∃s2 ⇒f2f′ ∃t2 shown in Example B.6. Then, given s2 ∶ L2 ↪ S2, we need to consider all pairs
of injective and jointly surjective morphisms (tj , s′j) with tj ∶ R1 ↪ Tj and s′j ∶ S2 ↪ Tj . From
each of those pairs, a new target pattern ∃tj and, subsequently, a new s/t-pattern sequence
(of length 2) will be constructed. For the sake of brevity, we will focus on only one of these
morphism pairs and corresponding target pattern in this example. That target pattern, denoted
as tar1 = ∃t1, is shown in Figure B.9.

Intuitively, T1 encodes a situation where the shuttle, driving in speed mode fast has just
moved from track ta to t2b via the rule f2f′. Furthermore, as described by the sequence seq2 =
∃s2 ⇒f2f′ ∃t2, the shuttle is about to move to t3. Since t3 is a switch, this will lead to a violation
of our safety property – in particular, it will lead to F1. Note that the context described in T1 is
more specific when compared to step SCk-1 in our general approach (Example A.6 (p. A-296)):
there, E describes a combination of right and left rule side; here, T1 is a combination of the
right rule side R1 and the larger context (S2) the left rule side L2 appears in. Since neither F1

nor f2f′ have any non-trivial composed negative application conditions beyond their existential
conditions, src2 and ∃t1 do not have those either.

In the general version of the Seq-construction, this step was (probably) the point where
conditions became too complex to understand. In this example, we can still describe and
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h:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 
𝑅1 

s:Shuttle 

t2:Track 
:next 

:isAt 

:fast 

t3:Track 
𝐿2 

:next ta:Track 

∃𝑠2 ∃𝑡1 

s:Shuttle 

t2:Track 

:isAt 

:fast 

t3:Track :next 

tc:Track :next 

𝑆2 
sh:Shuttle 

t2b:Track 

:isAt 

:fast 

t3:Track :next 

tc:Track 

:next 

𝑠1
′  

𝑇1 

Figure B.9. – Steps SCk-1/1+: morphism pair (t1, s′1) (of several such pairs), target pattern
tar1 = ∃t1, source pattern src+2 = ∃s′1 ○ s2, and target/source pattern (tar1, src+2)

understand the context of the rule applications fairly well. This is owed to the lack of a
constraint to be fulfilled by a satisfying sequence’s intermediate graphs and to the splitting of
disjunctions into several target patterns consisting only of singular existential conditions. While
the total number of s/t-pattern sequences is actually higher than in the general approach, their
complexity has been significantly reduced – and in order to understand the system’s behavior
and potential violation of our safety property, only one sequence may suffice. △

Example B.8 (step SCk-1+). Consider tar1 = ∃t1 computed in the previous step and depicted
in Figure B.9. This target pattern was created as one of several overlappings between the right
rule side R1 and the source pattern’s context S2. In particular, T1 extends S2 by the track ta
and its connection to t2b. We therefore extend the source pattern src2 = ∃s2 to

src+2 = ∃s′1 ○ s2

and will denote the composition’s result as s+2 = s′1 ○ s2. For different target patterns (not
depicted here), the extended source pattern may look different, even if the underlying source
pattern used to create the target pattern is the same.

The extension creates a target/source pattern (tar1, src+2) = (∃t1,∃s′1 ○s2) that specifies how
the context of the first rule application is connected to the second rule application and source
pattern. In particular, (tar1, src+2) shows that the shuttles h (right rule side) and s (left rule
side and source pattern) should be mapped to the same shuttle in a satisfying transformation
sequence; the same holds for tracks tb (right rule side) and t2 (left rule side and source pattern)
and the respective edges. △

Example B.9 (step SCk-2). We apply the L-construction to compute the source pattern
corresponding to the target pattern tar1 = ∃t1 and the application of f2f′ as depicted in Figure
B.10. In particular,

src′1 = L(f2f′, tar1) = L(f2f′,∃t1) = ∃s1,

which is depicted in Figure B.10.

The result is what we expected: there is a (fast) shuttle located on track ta, which is about
to move to track tb, whose subsequent track t3 is a switch. Since tar = ∃t1 was the result of
combining a right rule side and the source pattern of a 1-sequence of s/t-patterns, we know
that for the resulting sequence of length 2, the shuttle will be moving to track t3, triggering a
violation of our safety property. △
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∃𝑡1 ∃𝑠1 

:next 
ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

t3:Track 
:next 

tc:Track 

:next 

𝑇1 

:next 
ta:Track 

s:Shuttle 

tb:Track 

:fast 

t3:Track 
:next 

tc:Track 

:next 
:next 

ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

t3:Track 
:next 

tc:Track 

:next 

𝑆1 

s:Shuttle 

ta:Track :next tb:Track 

𝐾2 

:fast 

s:Shuttle 

ta:Track 
:next 

:isAt 

:fast 

tb:Track 
𝑅2 

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 
𝐿2 

Figure B.10. – Step SCk-2: L(f2f′,∃t1) = ∃s1

⇒𝑓2𝑓′  ⇒𝑓2𝑓′  

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝑅1 

∃𝑡1 

s:Shuttle 

tb:Track 
:next :isAt 

:fast 

tc:Track 
𝐿2 

∃𝑠2
+ 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 𝑅2 

𝑆1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

Figure B.11. – Steps SCk-4/5: seq2 = ∃s1 ⇒f2f′ (∃t1,∃s+2)⇒f2f′ ∃t2 with seq2 ∈ Seqr
2(R, F1)

Example B.10 (step SCk-3). As before (step SC1-3, Example B.5), there is no computation
involved in this step for our example: since f2f′ has the trivial left application condition true
and a trivial applicability condition, we have src1 = src′1 = ∃s1. △

Example B.11 (steps SCk-4 and SCk-5). In our running example, we get (among others) a
2-sequence of source/target patterns

seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f′ tar2

= ∃s1 ⇒f2f′ (∃t1,∃s+2) ⇒f2f′ ∃t2,

which is depicted in Figure B.11. In order to highlight the connections between components
and their computational dependencies, we will reiterate that

– src1 = L(f2f′, tar1) (step SCk-2),
– tar1 is a result of combining src2 and R1 (step SCk-1),
– src2 is the underlying source pattern to src+2 and s+2 = s′1 ○ s2 (step SCk-1+),
– src2 = L(f2f′, tar2) (step SC1-2),
– and tar2 is one of the target patterns in the disjunction Shift(iR2 ,∃iPF

1
) = ⋁j∈J ∃tj (step

SC1-1).

The first property established by Theorem T.1r (p. 130) guarantees that for any transforma-
tion sequence sequence trans = G0 ⇒f2f′,m1,m′1

G1 ⇒f2f′,m2,m′2
G2 that leads to F1 = ∃iPF

1
, i.e.

a violation of the safety property, there is a sequence seq ∈ Seqr
2(R, F ) such that trans ⊧ seq .

This property ensures that all such transformation sequences (to R = {f2f}) ending in a shuttle
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⇒𝑓2𝑓′  ⇒𝑓2𝑓′  

𝐺1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝐺0 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝐺2 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

Figure B.12. – Transformation sequence trans = G0 ⇒f2f′,m1,m′1
G1 ⇒f2f′,m2,m′2

G2; trans ⊧
seq2

in speed mode fast on a switch are represented in Seqr
2(R, F ). Consequently, we can analyze

the constructed s/t-pattern sequences to draw conclusions about all error traces of length 2
leading to a violation of the safety property.

In particular, seq2 describes an infinite set of transformation sequences describing the fol-
lowing scenario. A (fast) shuttle is located on a track with a track directly ahead that is
followed by a switch. The shuttle moves to the subsequent track twice without changing its
speed mode. At the end of the transformation sequence, the shuttle is positioned on a switch
in speed mode fast. Given the second property of Theorem T.1r (p. 130), this is not surprising:
given a transformation sequence trans = G0 ⇒f2f′,m1,m′1

G1 ⇒f2f′,m2,m′2
G2 that satisfies seq2

(i.e., trans ⊧ seq2), we know that trans leads to F1 = ∃iPF
1

. Figure B.12 shows a satisfying
transformation sequence in compact notation.

Note the difference in information carried by the rightmost target pattern tar2 = ∃t2 and the
graph G2 in the transformation sequence. Graphs in transformation sequences are intended to
be more precise in describing a situation than target (or source) patterns in s/t-pattern se-
quences – after all, target patterns are supposed to describe only the minimal context graphs
(or matches/comatches, to be precise) have to fulfill. However, the discrepancy here is, techni-
cally, not necessary: in fact, the difference lies in the existence of the track td, whose existence
is described and required by the target/source pattern (tar1, src+2) and the source pattern src1.
The reason for this lack of information in the rightmost target pattern is our strategy of accu-
mulating information only in backwards direction. This was sufficient in our general approach
– the analysis of sequences focused on the leftmost source patterns only. The approach for
our restricted formal model, however, analyzes intermediate source and target patterns also.
Hence, it is beneficial to also propagate information in forward direction, which is discussed
as an extension in Section 7.1. This lack of information does not only concern the patterns’
existential conditions, but also their composed negative application conditions, if non-trivial:
information about such conditions in src1 is not available in tar2.

If we were to compute Seqr
3(R, F1), we would continue the computation by applying steps

SCk-1 to SCk-5 (or, specifically, SC3-1 to SC3-5) again, starting with all s/t-pattern sequences
of length 2 in Seq2(R, F1), including seq2. △

Example B.12 (steps SC1-3, SC1-4, and SC1-5 with a non-trivial left application condition).
In order to illustrate the consequences of a non-trivial left application condition in rules,
consider the graph rule f2f = ⟨(L2 ↩K2 ↪ R2),acL2 , true⟩ with acL2 = ¬∃x1 introduced in Ex-
ample 6.1 (p. 111) and depicted again in Figure B.13. With the additional negative application
condition, the rule is only applicable if the track the shuttle is supposed to move to does not
have a switch on its subsequent track. However, the target track itself may be a switch: rules
check for switches two tracks ahead, not one.

Table B.3 shows the individual computation steps. Since the rest of the rule and the pattern
F1 remain unchanged, some steps of the construction are exeucted as before. After step SC1-2,
we have src′2 = ∃s2 = ∃(s2, true) as in Example B.4 (p. B-313). Then, given f2f, we get a source
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¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

:fast 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝑋1 

t2:Track t3:Track 

t4:Track 

:next 

:next 

Figure B.13. – Graph rule f2f = ⟨(L2 ↪K2 ↪ R2),¬∃x1, true⟩

Table B.3. – Computation steps of Seqr
2(R, F1)

step computation Figure Example

SC1-1 tar2 = ∃t2 (and ⋁j∈J tar j
2 = Shift(iR2 , F1)) B.5 B.3

SC1-2 src′2 = ∃s2 = L(f2f, tar2) B.6 B.4
SC1-3 src2 = ∃(s2,acS2) = ∃(s2,Shift(s2,acL2)) B.14 B.12
SC1-4/5 seq1 = src2 ⇒f2f tar2 – B.12

SCk-1 tar1 = ∃(t1,acT1) = ∃(t1,Shift(s′1,acS2)) – B.13
SCk-1+ src+2 = ∃(s′1 ○ s2,acT1) – B.13
SCk-2 src′1 = ∃(s1,ac′S1

) = L(f2f, tar1) – B.13

SCk-3 src1 = ∃(s1,acS1) = ∃(s1,ac′S1
∧ Shift(s1,acL1)) B.15 B.13

SCk-4/5 seq2 = src1 ⇒f2f′ (tar1, src+2)⇒f2f tar2 B.16 B.13

pattern

src2 = ∃(s2, true∧Shift(s2,acL2))
= ∃(s2,Shift(s2,¬∃x1))
= ∃(s2,¬∃x12 ∧ ¬∃x22 ∧ ¬∃x32),

which is depicted in Figure B.14. Specifically, the source pattern’s existential condition de-
scribes the situation as before: a (fast) shuttle is about to move to a switch. The rule’s appli-
cability condition is trivially true and does not affect the source pattern. However, the rule’s
non-trivial negative application condition states that the rule may only be applied if the tar-
get track’s subsequent track is not a switch. In the context of the left rule side, this can be
expressed by only one negated existential condition. After transfer to the context of the source
pattern, the condition is more involved, because the source pattern specifies additional ele-
ments (here: the track tc and its connection) beyond the right rule side. There a three negative
application conditions, joined conjunctively to a composed negative application condition:

¬∃x12: if t3b has tc as both its previous and subsequent track (although our guaranteed patterns
would not allow that) and if there is an additional track prior to tc, then tc would be a
switch one track ahead of t3b, which would prevent application of the rule.

¬∃x22: if t3b has a subsequent track that has both t3b and tc as its previous tracks (again,
this would be forbidden), the unnamed track would be a switch one track ahead of t3b,
which would prevent application of the rule.

¬∃x32: if there is one track ahead of t3b and if that track has an additional track before it –
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s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 
𝐿2 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑆2 

∃𝑠2 

s:Shuttle 

t2:Track :next 

:isAt 

:fast 

t3:Track 

𝑋1 

:Track :next 

:Track 

:next 

¬∃𝑥1 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑋2
1 

:Track 
:next 

:Track 
:next 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track :next 

tc:Track :next 

𝑋2
2 

:Track 
:next 

:next 

sh:Shuttle 

t2a:Track 

:isAt 

:fast 

t3b:Track 
:next 

tc:Track :next 

𝑋2
3 

:Track 
:next 

:next 

¬∃𝑥2
1 

¬∃𝑥2
2 

¬∃𝑥2
3 

Figure B.14. – Step SC1-3: src2 = ∃(s2,Shift(s2,acL2)) = ∃(s2,¬∃x12 ∧ ¬∃x22 ∧ ¬∃x32)

i.e., if it is a switch – the former track would be a switch one track ahead of t3b, which
would prevent application of the rule.

While shifting the left application condition to the context of the source pattern adds com-
plexity to the computation and result, it also provides more information that can be used in
the analysis later on. Further, it could even simplify the result: if one of the morphisms xi2
were an isomorphism, we could discard the source pattern as unsatisfiable. However, that is
not the case here.

In steps SC1-4 and SC1-5, we get

seq1 = src2 ⇒f2f tar2

= ∃(s2,¬∃x12 ∧ ¬∃x22 ∧ ¬∃x32)⇒f2f ∃t2.

The number of s/t-pattern sequences in Seqr
1(R, F1) is equal to the number in Example B.6

(p. B-314). △

Example B.13 (other steps with a non-trivial negative application condition). Since src2 has
a non-trivial composed negative application condition, steps SCk-1–SCk-5 and their results are
different from the previous examples. In particular, acS2 = ¬∃x12 ∧ ¬∃x22 ∧ ¬∃x32 will be part
of all new target patterns created in step SCk-1: for each morphism pair (tj ∶ R1 ↪ Tj , s

′
j ∶

S2 ↪ Tj), we get a target pattern ∃(tj Shift(s′j ,acS2)). Given the morphism pair (t1, s′1) used
in Example B.7 (p. B-315), we have

tar1 = ∃(t1, acT1)
= ∃(t1,Shift(s′1, acS2))
= ∃(t1,Shift(s′1,¬∃x12∧ ¬∃x22∧ ¬∃x32)
= ∃(t1, Shift(s′1,¬∃x12)∧Shift(s′1,¬∃x22)∧Shift(s′1,¬∃x32)).

Unfortunately, even with concrete graphs for the transferred negative application conditions,
their meaning may not be clear at first glance due to their number – which is why we leave
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out details here. However, the (positive) context of a target pattern (T1 or ∃t1) is usually
more important and gives a clear indication about the situations described by the s/t-pattern
sequence. Also, unless the composed negative applicadtion condition is contradictory, we can
always imagine a satisfying comatch: t1 ∶ R1 ↪ T1 is both a potential comatch and satisfies
tar1; hence, T1 describes a situation represented by the target pattern.

Then, for step SCk-1+, we get

src+2 = ∃(s′1 ○ s2,acT1) and (tar1, src+2) = (∃(t1,acT1),∃(s′1 ○ s2,acT1)),

followed by

src′1 = L(f2f,tar1)
= L(f2f,∃(t1,acT1))
= L(f2f,∃(s1,ac′S1

))

in step SCk-2. The source pattern’s existential condition remains unchanged in comparison to
Example B.9 (p. B-316) – only its composed negative appliction condition changes.

In step SCk-3, we again need to shift the rule’s negative application condition to the source
pattern’s context, similar to step SC1-3. We get

src1 = ∃(s1,Shift(s1,acL1) ∧ ac′S1
)

= ∃(s1,Shift(s1,¬∃x1) ∧ ac′S1
)

= ∃(s1,¬∃x1 ∧ ⋀
u∈U

¬∃xu1 ∧ ac′S1
)

= ∃(s1,acS1),

which is depicted in Figure B.15. Note that we have singled out the negative application
condition ¬∃x01 because x01 is an isomorphism. Hence, no morphism can satisfy ∃(s1,¬∃s01),
which makes src1 equivalent to false. As before, the rule has a trivial applicability condition.

The resulting s/t-pattern sequence

seq2 = src1 ⇒f2f (tar1, src+2) ⇒f2f tar2

= ∃(s1,acS1) ⇒f2f (∃(t1,acT1),∃(s+2 ,acT1))⇒f2f ∃t2 where

acS1 = ¬∃x01 ∧ ⋀
u∈U

¬∃xu1 ∧ ac′S1

is depicted in Figure B.16. However, given src1 ≡ false, no satisfying transformation se-
quence can exist. In particular, consider trans = G0 ⇒f2f′,m1,m′1

G1 ⇒f2f′,m2,m′2
G2 used in

Example B.11, Figure B.12 (p. B-318). Because of the negative application condition of f2f,
trans is not a valid transformation sequence when we replace f2f′ by f2f. In other words, the
interaction of two rules f2f in the manner described by seq2 cannot lead to the combination
of right rule side and forbidden pattern used to create the rightmost target pattern in step
SC1-1. If this were true for all s/t-pattern sequences in Seqr2(R, F1) (using f2f), there would
be no transformation sequences that could lead to a violation of the safety property. △
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Appendix B. Additional Examples for Chapter 6: Restricted Approach

s:Shuttle 

ta:Track :next 

:isAt 

:fast 

tb:Track 

𝑋1 

:Track :next 

:Track 

:next 

¬∃𝑥1 

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝐿1 

∃𝑠1 

:next 

ta:Track 

s:Shuttle 

tb:Track 

:isAt 

:fast 

t3:Track 

:next 

tc:Track 

:next 

𝑆1 

… 

… 
𝑋1
𝑢  

¬∃𝑥1
𝑢 … 

s:Shuttle 

ta:Track :next 
:isAt 

:fast 

tb:Track t3:Track :next 

tc:Track 

:next 

¬∃𝑥1
0 

𝑋1
0 

𝑎𝑐𝑆1
′  

Figure B.15. – Step SCk-3: src1 = ∃(s1,Shift(s1,acL1) ∧ ac′S1
)

⇒𝑓2𝑓 ⇒𝑓2𝑓 

… 

… 
𝑋1
𝑢  

¬∃𝑥1
𝑢 

¬∃𝑥1
0 𝑎𝑐𝑆1

′  𝑎𝑐𝑇1  

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝐿1 

∃𝑠1 ∃𝑡2 

s:Shuttle 

tb:Track 

:isAt 

:fast 

tc:Track 
:next 

td:Track :next 

𝑇2 

𝑇1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

s:Shuttle 

ta:Track 
:next :isAt 

:fast 

tb:Track 
𝑅1 

∃𝑡1 

s:Shuttle 

tb:Track 
:next :isAt 

:fast 

tc:Track 
𝐿2 

∃𝑠2
+ 

s:Shuttle 

tb:Track 
:next 

:isAt 

:fast 

tc:Track 𝑅2 

𝑆1 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

𝑋1
0 

s:Shuttle 

ta:Track tb:Track 
:next 

:isAt 

:fast 

tc:Track 
:next 

td:Track 

:next 

Figure B.16. – Steps SCk-4/5: seq2 = ∃(s1,acS1)⇒f2f (∃(t1,acT1),∃(s+2 ,acT1))⇒f2f ∃t2 with
seq2 ∈ Seqr

2(R, F1)
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Appendix C.

Models and Example Systems

This chapter contains all type graphs, graph rules, and graph constraints used in the running
example and case studies in this thesis.

Table C.1. – Systems and their elements

System(s) Section TG R F H S

shuttle-unsafe
C.1.1,

p. C-324
C.1(a) C.1 C.2 C.3 C.4

shuttle-safe
C.1.2,

p. C-328
C.5(a) C.5 C.2 C.3 C.4

shuttle-single-
fault-unsafe

C.1.3,
p. C-330

C.6(a) C.6 C.2(a) C.3, C.6(m) C.4

shuttle-single-
fault-safe

C.1.4,
p. C-332

C.7(a) C.7 C.2(a) C.3, C.7(m) C.4

shuttle-brake-
late-n

C.1.5,
p. C-334

C.8(a) C.8(c) C.8(b) C.8(e)–C.8(k) –

shuttle-brake-
late-prio-n

C.1.5,
p. C-334

C.8(a) C.8(c)-C.8(d) C.8(b) C.8(e)–C.8(k) –

shuttle-
attributes-n

C.1.6,
p. C-336

C.9(a) C.9-C.12 C.9(b) C.13-C.15 –

equiv-s-trans
C.2.1,

p. C-344
C.16(a) C.16 C.21-C.24 C.18-C.20 –

equiv-s-sem
C.2.1,

p. C-344
C.16(a) C.17 C.24 C.18-C.23 –

equiv-trans
C.2.2,

p. C-352
C.25(a) C.25 C.30-C.33 C.27-C.29 –

equiv-sem
C.2.2,

p. C-352
C.25(a) C.26 C.33 C.27-C.32 –

refine-trans
C.2.3,

p. C-360
C.25(a) C.34

C.30, C.31,
C.32(a), C.32(c),
C.33(a), C.33(c),

C.33(e)

C.27,
C.28(c)-C.28(h),

C.29

–

refine-sem
C.2.3,

p. C-360
C.25(a) C.26

C.33(a),
C.33(c),
C.33(e)

C.27,
C.28(c)-C.28(h),

C.29-C.31,
C.32(a), C.32(c)

–
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Appendix C. Models and Example Systems

C.1. Shuttle Protocol

C.1.1. Shuttle Protocol shuttle-unsafe

Table C.2. – Type graph, graph rules, and graph constraints of shuttle-unsafe

Element Fig. Description

TG C.1(a) Connected tracks, shuttles on tracks in different speed modes

R

s2s C.1(c) A shuttle moves to a subsequent track in speed mode slow.

f2b C.1(d) A shuttle moves to a subsequent track; mode changes from fast to brake.

b2s C.1(e) A shuttle moves to a subsequent track; mode changes from brake to slow.

a2b C.1(f) A shuttle moves to a subsequent track; mode changes from acc to brake.

f2f′ C.1(g) A shuttle moves to a subsequent track in speed mode fast.

a2f′ C.1(h) A shuttle moves to a subsequent track; mode changes from acc to fast.

s2a′ C.1(i) A shuttle moves to a subsequent track; mode changes from slow to acc.

Element Fig. Description

F = ⋀1≤i≤3 ¬Fi

¬F1 C.2(a) There must not exist a fast shuttle on a switch

¬F2 C.2(b) There must not exist an acc. shuttle on a switch

¬F3 C.2(c) There must not exist a brak(ing) shuttle on a switch

H = ⋀1≤j≤15 ¬Hj

¬H1 C.3(a) A shuttle cannot be at two tracks at the same time.

¬H2 C.3(b) Two tracks cannot be connected in both directions.

¬H3 C.3(c) Direct predecessors of switches are not connected.

¬H4 C.3(d) Two tracks cannot be connected by parallel next edges.

¬H5 C.3(e) There exists at most one shuttle.

¬H6 C.3(f) A shuttle cannot be in modes fast and slow at once.

¬H7 C.3(g) A shuttle cannot be in modes fast and brake at once.

¬H8 C.3(h) A shuttle cannot be in modes fast and acc at once.

¬H9 C.3(i) A shuttle cannot be in mode fast twice at once.

¬H10 C.3(j) A shuttle cannot be in modes brake and slow at once.

¬H11 C.3(k) A shuttle cannot be in modes brake and acc at once.

¬H12 C.3(l) A shuttle cannot be in mode brake twice at once.

¬H13 C.3(m) A shuttle cannot be in modes slow and acc at once.

¬H14 C.3(n) A shuttle cannot be in mode slow twice at once.

¬H15 C.3(o) A shuttle cannot be in mode acc twice at once.

S = ⋀1≤o≤3 ¬SC o

¬SC 1 C.4(a) There is no shuttle in mode fast.

¬SC 2 C.4(b) There is no shuttle in mode acc.

¬SC 3 C.4(c) There is no shuttle on a switch.
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C.1 Shuttle Protocol

next 

Track Shuttle 
isAt 

fast brake 

slow acc 

𝑇𝐺 

(a) Type graph TG

slow acc 

fast brake 

s2a’ 

a2f’ 

f2f’ 

f2b 

a2b b2s 
s2s 

(b) Shuttle protocol

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:slow 

t2:Track 
𝑙 

𝐾 𝑅 

:slow 

𝑟 
:isAt 

(c) Graph rule s2s

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:brake 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(d) Graph rule f2b

s:Shuttle 

t1:Track 
:next 

:isAt 

:brake 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:slow 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(e) Graph rule b2s

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:brake 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(f) Graph rule a2b

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

:fast 

𝑟 
:isAt 

(g) Graph rule f2f′

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(h) Graph rule a2f′

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:acc 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(i) Graph rule s2a′

Figure C.1. – Graph transformation system GTS = (TG ,R)

:Shuttle 

t1:Track 

:isAt 

:fast 

ts:Track 
:next 

t2:Track :next 

𝑃1
𝐹  

∅ 

¬∃𝑖𝑃1𝐹  

(a) Constraint ¬F1 = ¬∃iPF
1

:Shuttle 

t1:Track 

:isAt 

:acc 

ts:Track 
:next 

t2:Track :next 

𝑃2
𝐹  

∅ 

¬∃𝑖𝑃2𝐹  

(b) Constraint ¬F2 = ¬∃iPF
2

:Shuttle 

t1:Track 

:isAt 

:brake 

ts:Track 
:next 

t2:Track :next 

𝑃3
𝐹  

∅ 

¬∃𝑖𝑃3𝐹  

(c) Constraint ¬F3 = ¬∃iPF
3

Figure C.2. – Safety property (composed forbidden pattern) F = ¬F1 ∧ ¬F2 ∧ ¬F3
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Appendix C. Models and Example Systems

:Shuttle 

:Track 

:isAt 

:Track 

:isAt 

𝑃1
𝐻  

¬∃𝑖𝑃1𝐻   

∅ 

(a) Constraint ¬H1 = ¬∃iPH
1

t1:Track 
:next 

t2:Track 

∅ 

:next 

𝑃2
𝐻  

¬∃𝑖𝑃2𝐻   

(b) Constraint ¬H2 = ¬∃iPH
2

t1:Track 
:next 

t2:Track 

:next 
t2:Track 

:next 

𝑃3
𝐻  

¬∃𝑖𝑃3𝐻   

∅ 

(c) Constraint ¬H3 = ¬∃iPH
3

t1:Track 
:next 

t2:Track 
:next 

𝑃4
𝐻  

¬∃𝑖𝑃4𝐻   

∅ 

(d) Constraint ¬H4 = ¬∃iPH
4

:Shuttle :Shuttle 

𝑃5
𝐻 

¬∃𝑖𝑃5𝐻
  

∅ 

(e) Constraint ¬H5 = ¬∃iPH
5

:Shuttle 
:fast :slow 

𝑃6
𝐻 

¬∃𝑖𝑃6𝐻   

∅ 

(f) Constraint ¬H6 = ¬∃iPH
6

:Shuttle 
:brake :fast 

𝑃7
𝐻 

¬∃𝑖𝑃7𝐻   

∅ 

(g) Constraint ¬H7 = ¬∃iPH
7

:Shuttle 
:fast :acc 

𝑃8
𝐻 

¬∃𝑖𝑃8𝐻   

∅ 

(h) Constraint ¬H8 = ¬∃iPH
8

:Shuttle 
:fast :fast 

𝑃9
𝐻 

¬∃𝑖𝑃9𝐻
  

∅ 

(i) Constraint ¬H9 = ¬∃iPH
9

:Shuttle 
:brake :slow 

𝑃10
𝐻  

¬∃𝑖𝑃10𝐻   

∅ 

(j) Constraint ¬H10 = ¬∃iPH
10

:Shuttle 
:brake :acc 

𝑃11
𝐻  

¬∃𝑖𝑃11𝐻   

∅ 

(k) Constraint ¬H11 = ¬∃iPH
11

:Shuttle 
:brake :brake 

𝑃12
𝐻  

¬∃𝑖𝑃12𝐻   

∅ 

(l) Constraint ¬H12 = ¬∃iPH
12

:Shuttle 
:slow :acc 

𝑃9
𝐻 

¬∃𝑖𝑃9𝐻
  

∅ 

(m) Constraint ¬H13 = ¬∃iPH
13

:Shuttle 
:slow :slow 

𝑃14
𝐻  

¬∃𝑖𝑃14𝐻   

∅ 

(n) Constraint ¬H14 = ¬∃iPH
14

:Shuttle 
:acc :acc 

𝑃15
𝐻  

¬∃𝑖𝑃15𝐻
  

∅ 

(o) Constraint ¬H15 = ¬∃iPH
15

Figure C.3. – Guaranteed constraint (composed guaranteed pattern) H = ⋀1≤j≤15 ¬Hj
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C.1 Shuttle Protocol

:Shuttle 
:fast 

𝑃1
𝐻  

¬∃𝑖𝑃1𝑆𝐶
  

∅ 

(a) Constraint ¬SC 1 = ¬∃iPSC
1

:Shuttle 
:acc 

𝑃2
𝐻  

¬∃𝑖𝑃2𝑆𝐶
  

∅ 

(b) Constraint ¬SC 2 = ¬∃iPSC
2

:Shuttle 

t1:Track 
:isAt 

ts:Track :next 

t2:Track :next 

𝑃3
𝐻  

¬∃𝑖𝑃3𝑆𝐶
  

∅ 

(c) Constraint ¬SC 3 = ¬∃iPSC
3

Figure C.4. – Start configuration constraint (composed start configuration pattern)
S = ⋀1≤o≤3 ¬SC o (or S =H ∧⋀1≤o≤3 ¬SC o)
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C.1.2. Shuttle Protocol shuttle-safe

Table C.3. – Type graph, graph rules, and graph constraints of shuttle-safe

Element Fig. Description

TG C.5(a) Connected tracks, shuttles on tracks in different speed modes.

R

s2s C.5(c) A shuttle moves to a subsequent track in speed mode slow.

f2b C.5(d) A shuttle moves to a subsequent track; mode changes from fast to brake.

b2s C.5(e) A shuttle moves to a subsequent track; mode changes from brake to slow.

a2b C.5(f) A shuttle moves to a subsequent track; mode changes from acc to brake.

f2f C.5(g)
A shuttle moves to a subsequent track in speed mode fast – unless there
is a switch two tracks ahead.

a2f C.5(h)
A shuttle moves to a subsequent track; mode changes from acc to fast –
unless there is a switch two tracks ahead.

s2a C.5(i)
A shuttle moves to a subsequent track; mode changes from slow to acc
– unless there is a switch one or two tracks ahead.

Element Fig. Description

F = ⋀1≤i≤3 ¬Fi

¬F1 C.2(a) There must not exist a fast shuttle on a switch

¬F2 C.2(b) There must not exist an acc. shuttle on a switch

¬F3 C.2(c) There must not exist a brak(ing) shuttle on a switch

H = ⋀1≤j≤15 ¬Hj

¬H1 C.3(a) A shuttle cannot be at two tracks at the same time.

¬H2 C.3(b) Two tracks cannot be connected in both directions.

¬H3 C.3(c) Direct predecessors of switches are not connected.

¬H4 C.3(d) Two tracks cannot be connected by parallel next edges.

¬H5 C.3(e) There exists at most one shuttle.

¬H6 C.3(f) A shuttle cannot be in modes fast and slow at once.

¬H7 C.3(g) A shuttle cannot be in modes fast and brake at once.

¬H8 C.3(h) A shuttle cannot be in modes fast and acc at once.

¬H9 C.3(i) A shuttle cannot be in mode fast twice at once.

¬H10 C.3(j) A shuttle cannot be in modes brake and slow at once.

¬H11 C.3(k) A shuttle cannot be in modes brake and acc at once.

¬H12 C.3(l) A shuttle cannot be in mode brake twice at once.

¬H13 C.3(m) A shuttle cannot be in modes slow and acc at once.

¬H14 C.3(n) A shuttle cannot be in mode slow twice at once.

¬H15 C.3(o) A shuttle cannot be in mode acc twice at once.

S = ⋀1≤o≤3 ¬SC o

¬SC 1 C.4(a) There is no shuttle in mode fast.

¬SC 2 C.4(b) There is no shuttle in mode acc.

¬SC 3 C.4(c) There is no shuttle on a switch.
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C.1 Shuttle Protocol

next 

Track Shuttle 
isAt 

fast brake 

slow acc 

𝑇𝐺 

(a) Type graph TG

slow acc 

fast brake 

s2a 

a2f 

f2f f2b 

a2b b2s 
s2s 

(b) Shuttle protocol

s:Shuttle 

t1:Track 
:next 

:isAt 

:slow 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:slow 

t2:Track 
𝑙 

𝐾 𝑅 

:slow 

𝑟 
:isAt 

(c) Graph rule s2s

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:brake 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(d) Graph rule f2b

s:Shuttle 

t1:Track 
:next 

:isAt 

:brake 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:slow 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(e) Graph rule b2s

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:brake 

t2:Track 
𝑙 

𝐾 𝑅 

𝑟 
:isAt 

(f) Graph rule a2b

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 

s:Shuttle 

t1:Track 
:next 

:fast 

t2:Track 
𝑙 

𝐾 𝑅 

:fast 

𝑟 
:isAt 

s:Shuttle 

t1:Track 
:next 

:isAt 

:fast 

𝑋1 

t2:Track t3:Track 

t4:Track 

:next 

:next 

(g) Graph rule f2f

¬∃𝑥1 

s:Shuttle 

t1:Track 
:next 

:isAt 

:acc 

𝐿 

t2:Track 

s:Shuttle 

t1:Track 
:next 

t2:Track 
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C.1.3. Shuttle Protocol shuttle-single-fault-unsafe

Table C.4. – Type graph, graph rules, and graph constraints of shuttle-single-fault-unsafe

Element Fig. Description

TG C.6(a) Connected tracks, shuttles on tracks in different speed modes.

R

s2s C.6(c) A shuttle moves to a subsequent track in speed mode slow.

f2b C.6(d) A shuttle moves to a subsequent track; mode changes from fast to brake.

b2s C.6(e) A shuttle moves to a subsequent track; mode changes from brake to slow.

a2b C.6(f) A shuttle moves to a subsequent track; mode changes from acc to brake.

f2f C.6(g)
A shuttle moves to a subsequent track in speed mode fast – unless there
is a switch one track ahead.

a2f C.6(h)
A shuttle moves to a subsequent track; mode changes from acc to fast –
unless there is a switch one or two tracks ahead.

s2a C.6(i)
A shuttle moves to a subsequent track; mode changes from slow to acc
– unless there is a switch one or two tracks ahead.

f2f C.6(j) A shuttle moves to a subsequent track in speed mode fast; sensor fault.

a2f C.6(k) A shuttle moves to a subsequent track; speed mode changes; sensor fault.

s2a C.6(l) A shuttle moves to a subsequent track; speed mode changes; sensor fault.

Element Fig. Description

F = ¬F1 ¬F1 C.2(a) There must not exist a fast shuttle on a switch.

H = ⋀1≤j≤16 ¬Hj

¬H1 C.3(a) A shuttle cannot be at two tracks at the same time.

¬H2 C.3(b) Two tracks cannot be connected in both directions.

¬H3 C.3(c) Direct predecessors of switches are not connected.

¬H4 C.3(d) Two tracks cannot be connected by parallel next edges.

¬H5 C.3(e) There exists at most one shuttle.

¬H6 C.3(f) A shuttle cannot be in modes fast and slow at once.

¬H7 C.3(g) A shuttle cannot be in modes fast and brake at once.

¬H8 C.3(h) A shuttle cannot be in modes fast and acc at once.

¬H9 C.3(i) A shuttle cannot be in mode fast twice at once.

¬H10 C.3(j) A shuttle cannot be in modes brake and slow at once.

¬H11 C.3(k) A shuttle cannot be in modes brake and acc at once.

¬H12 C.3(l) A shuttle cannot be in mode brake twice at once.

¬H13 C.3(m) A shuttle cannot be in modes slow and acc at once.

¬H14 C.3(n) A shuttle cannot be in mode slow twice at once.

¬H15 C.3(o) A shuttle cannot be in mode acc twice at once.

¬H16 C.6(m) There cannot be more than one sensor fault.

S = ⋀1≤o≤3 ¬SC o

¬SC 1 C.4(a) There is no shuttle in mode fast.

¬SC 2 C.4(b) There is no shuttle in mode acc.

¬SC 3 C.4(c) There is no shuttle on a switch
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Figure C.6. – Graph transformation system GTS = (TG ,R) and guaranteed pattern ¬H16
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C.1.4. Shuttle Protocol shuttle-single-fault-safe

Table C.5. – Type graph, graph rules, and graph constraints of shuttle-single-fault-unsafe

Element Fig. Description

TG C.7(a) Connected tracks, shuttles on tracks in different speed modes

R

s2s C.7(c) A shuttle moves to a subsequent track in speed mode slow

f2b C.7(d) A shuttle moves to a subsequent track; mode changes from fast to brake

b2s C.7(e) A shuttle moves to a subsequent track; mode changes from brake to slow

a2b C.7(f) A shuttle moves to a subsequent track; mode changes from acc to brake

f2f C.7(g)
A shuttle moves to a subsequent track in speed mode fast – unless there
is a switch one track ahead

a2f C.7(h)
A shuttle moves to a subsequent track; mode changes from acc to fast –
unless there is a switch one or two tracks ahead

s2a C.7(i)
A shuttle moves to a subsequent track; mode changes from slow to acc
– unless there is a switch one or two tracks ahead

f2f C.7(j) A shuttle moves to a subsequent track in speed mode fast; sensor fault

a2f C.7(k) A shuttle moves to a subsequent track; speed mode changes; sensor fault

s2a C.7(l) A shuttle moves to a subsequent track; speed mode changes; sensor fault

Element Fig. Description

F = ¬F1 ¬F1 C.2(a) There must not exist a fast shuttle on a switch

H = ⋀1≤j≤16 ¬Hj

¬H1 C.3(a) A shuttle cannot be at two tracks at the same time

¬H2 C.3(b) Two tracks cannot be connected in both directions

¬H3 C.3(c) Direct predecessors of switches are not connected

¬H4 C.3(d) Two tracks cannot be connected by parallel next edges

¬H5 C.3(e) There exists at most one shuttle

¬H6 C.3(f) A shuttle cannot be in modes fast and slow at once

¬H7 C.3(g) A shuttle cannot be in modes fast and brake at once

¬H8 C.3(h) A shuttle cannot be in modes fast and acc at once

¬H9 C.3(i) A shuttle cannot be in mode fast twice at once

¬H10 C.3(j) A shuttle cannot be in modes brake and slow at once

¬H11 C.3(k) A shuttle cannot be in modes brake and acc at once

¬H12 C.3(l) A shuttle cannot be in mode brake twice at once

¬H13 C.3(m) A shuttle cannot be in modes slow and acc at once

¬H14 C.3(n) A shuttle cannot be in mode slow twice at once

¬H15 C.3(o) A shuttle cannot be in mode acc twice at once

¬H16 C.7(m) There cannot be more than one sensor fault

S = ⋀1≤o≤3 ¬SC o

¬SC 1 C.4(a) There is no shuttle in mode fast

¬SC 2 C.4(b) There is no shuttle in mode acc

¬SC 3 C.4(c) There is no shuttle on a switch
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C.1.5. Shuttle Protocol Fragments shuttle-brake-late-n and shuttle-brake-late-prio-n

Table C.6. – Type graph, rules, and constraints of shuttle-brake-late-n fragment

Element Fig. Description

TG C.8(a) Connected tracks, shuttles on tracks in modes regular or brake.

R braken C.8(c)
A shuttle moves to a subsequent track with a switch n tracks ahead;
mode changes from regular to brake; priority 0.

Element Fig. Description

F = ¬Fn ¬Fn C.8(b)
A shuttle must not brake unless there is a switch at most
n − 2 tracks ahead.

H = ⋀j∈J ¬Hj

¬H1 C.8(e) A shuttle cannot be at two tracks at the same time.

¬H2 C.8(f) Two tracks cannot be connected in both directions.

¬H4 C.8(g) Two tracks cannot be connected by parallel next edges.

¬H5 C.8(h) There exists at most one shuttle.

¬H12 C.8(i) A shuttle cannot be in mode brake twice at once.

¬H17 C.8(j) A shuttle cannot be in modes brake and regular at once.

¬H18 C.8(j) A shuttle cannot be in mode regular twice at once.

Table C.7. – Type graph, rules, and constraints of shuttle-brake-late-prio-n fragment

Element Fig. Description

TG C.8(a) Connected tracks, shuttles on tracks in modes regular or brake.

R
braken C.8(c)

A shuttle moves to a subsequent track with a switch n tracks
ahead; mode changes from regular to brake; priority 0.

moveRegularlyn C.8(d)
A shuttle moves to a subsequent track in speed mode regular
– unless a switch is at most n − 1 track ahead; priority 1.

Element Fig. Description

F = ¬Fn ¬Fn C.8(b)
A shuttle must not brake unless there is a switch at most
n − 2 tracks ahead.

H = ⋀j∈J ¬Hj

¬H1 C.8(e) A shuttle cannot be at two tracks at the same time.

¬H2 C.8(f) Two tracks cannot be connected in both directions.

¬H4 C.8(g) Two tracks cannot be connected by parallel next edges..

¬H5 C.8(h) There exists at most one shuttle.

¬H12 C.8(i) A shuttle cannot be in mode brake twice at once.

¬H17 C.8(j) A shuttle cannot be in modes brake and regular at once.

¬H18 C.8(k) A shuttle cannot be in mode regular twice at once.
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C.1.6. Shuttle Protocol with Attributes (shuttle-attributesn)

Table C.8. – Type graph and rules of shuttle-attributesn
Element Fig. Description

TG C.9(a)

There are connected tracks of a fixed length, some of which are
signals, warnings (for signals ahead), or require constant veloc-
ity. Shuttles have a velocity (v), acceleration (a), and a braking
mode. A system singleton stores maximum (vmax ) and mini-
mum velocity (vmin), maximum velocity to pass a signal safely
(vsafe), and track length (s).

R

toAcc C.9(d)
A shuttle moves to a subsequent track and accelerates – unless
it is in mode brake, its current track is a signal or warning, or
the subsequent track requires constant velocity.

toAcc-
remBrake

C.9(e)
A shuttle moves from a track with a signal to a subsequent
track, accelerates, and leaves braking mode – unless another
brake flag is set or its current track is a warning.

toDec C.10(a)
A shuttle moves to a subsequent track and decelerates – unless
its current track is a signal or warning or the subsequent track
requires constant velocity.

toDec-
warning

C.10(b)
A shuttle moves to a subsequent track, decelerates, and enters
braking mode – unless its current track is a signal or the subse-
quent track requires constant velocity.

toDec-
remBrake

C.10(c)
A shuttle moves from a track with a signal to a subsequent
track, decelerates, and leaves braking mode – unless its current
track is a warning.

toSteady C.11(a)
A shuttle moves to a subsequent track and holds its velocity –
unless its current track is a signal or warning or it is in braking
mode.

toSteady-
const-warning

C.11(b)
A shuttle moves to a subsequent track that requires constant
velocity, holds its velocity, and enters braking mode – unless its
current track is a signal.

toSteady-
const

C.12(a)
A shuttle moves to a subsequent track that requires constant
velocity and holds its velocity – unless its current track is a
warning.

toSteady-
remBrake

C.12(b)
A shuttle moves from a track with a signal to a subsequent
track, holds its velocity, and leaves braking mode – unless its
current track is a warning or a another brake flag is set.
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Table C.9. – Patterns of shuttle-attributesn

Element Fig. Description

F = ¬F1

¬F1 C.9(b)
A shuttle must not pass a signal with a velocity greater
that the designated safe velocity (vsafe).

¬F2 C.9(c)
A shuttle must not pass a track that requires constant
velocity (const) with non-constant velocity.

H = ⋀j∈J ¬Hj

¬H1 C.13(a) A shuttle cannot be at two tracks at the same time.

¬H2 C.13(b) Two tracks cannot be connected in both directions.

¬H4 C.13(c) Two tracks cannot be connected by parallel next edges.

¬H5 C.13(d) There exists at most one shuttle.

¬H19 C.13(e) There exists at most one (global) system node.

¬H20 C.14(a)
Shuttles have fixed acceleration values when accelerating
(1), decelerating (−2), or holding their velocity (0)

.

¬H21 C.14(b)
Shuttles cannot exceed a fixed maximum velocity (vmax )
or fall below a fixed minimum velocity (vmin)

.

¬H22 C.14(c)

Tracks have a fixed length (s) of 500, minimum (vmin) and
maximum velocity (vmax ) of shuttles is 2 and 50, respec-
tively, and the maximum velocity to safely pass a signal
(vsafe) is 20. This pattern’s attribute constraint can be
modified to change system parameters, if, for instance,
track length or requirements/restrictions on shuttle ve-
locities change.

¬H3 C.15(a) Direct predecessors of switches cannot be connected.

¬H23 C.15(b)
A signal cannot be followed by a track that requires con-
stant velocity.

¬H24 C.15(c)
A track that requires constant velocity cannot be followed
by a track that also requires constant velocity.

¬H25 C.15(d) A track cannot have both a signal and a warning.

¬H26,u C.15(e)
These are n−2 patterns; together, they express that there
are are no cycles of length n or less.

¬H27,u C.15(f)
These are n− 1 patterns; together, they express that two
signals cannot be n − 2 or fewer tracks apart.

¬H28,n C.15(g)

All sequences of tracks of length n + 1 that end with a
signal have a warning on their first track. In other words,
each signal requires a warning on each track that is n
tracks ahead of the signal.
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next 

Track 
Shuttle 

 
 

isAt 

brake 

𝑇𝐺 

warning 

signal 

const 

System 
 
 
 
 

𝑠:         𝑅𝑒𝑎𝑙 
𝑣𝑚𝑖𝑛:  𝑅𝑒𝑎𝑙 
𝑣𝑚𝑎𝑥: 𝑅𝑒𝑎𝑙 
𝑣𝑠𝑎𝑓𝑒: 𝑅𝑒𝑎𝑙 

 

𝑣: 𝑅𝑒𝑎𝑙 
𝑎: 𝑅𝑒𝑎𝑙 

(a) Type graph TG

:isAt 

ts:Track 
:signal 𝑃1

𝐹  

¬∃𝑖𝑃1𝐹  

∅ s: Shuttle 
  

sys: System 
 

𝑣 > 𝑣𝑠𝑎𝑓𝑒  

𝑣 𝑣𝑠𝑎𝑓𝑒  

(b) Forbidden pattern ¬F1

:isAt 

tc:Track 
:const 𝑃2

𝐹  

¬∃𝑖𝑃2𝐹  

∅ s: Shuttle 
  

𝑎 ≠ 0 

𝑎 

(c) Forbidden pattern ¬F2

:next 𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:next 

t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:isAt 

𝑎′ = 1 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:next 

𝑋2 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:signal :warning 

:next 

𝑋3 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:next 𝑋4 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:const 

:brake 

¬∃𝑥1 ¬∃𝑥3 ¬∃𝑥4 ¬∃𝑥2 

𝑠 𝑠 𝑣′, 𝑎′ 𝑣, 𝑎 

(d) Graph rule toAcc

:next 

𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
  

:next 

t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:isAt 

𝑎′ = 1 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle  sys: System  

:next 

𝑋2 

t2:Track 
:isAt 

t1:Track 

s: Shuttle  sys: System 

:signal 

¬∃𝑥1 ¬∃𝑥2 

:brake 

:signal 

:signal :signal 

:brake :brake 

:warning 

𝑣′, 𝑎′ 𝑣, 𝑎 𝑠 𝑠 

:signal 

:brake 

(e) Graph rule toAcc-remBrake

Figure C.9. – Type graph, forbidden pattern, and rules toAcc and toAcc-remBrake
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:next 𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:next 

t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:isAt 

𝑎′ = −2 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:next 

𝑋2 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:signal :warning 

:next 

𝑋3 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:const 

¬∃𝑥1 ¬∃𝑥3 ¬∃𝑥2 

𝑠 𝑠 𝑣′, 𝑎′ 𝑣, 𝑎 

(a) Graph rule toDec

:next 

𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
  

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:isAt 

𝑎′ = −2 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle  sys: System  

:next 

𝑋2 

t2:Track 
:isAt 

t1:Track 

s: Shuttle  sys: System 

:const 

¬∃𝑥1 ¬∃𝑥2 
:brake 

:warning 

:warning :warning 

𝑣′, 𝑎′ 𝑣, 𝑎 𝑠 𝑠 

:warning 

:signal 

:warning 

(b) Graph rule toDec-warning

:next 

𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
  

:next 

t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:isAt 

𝑎′ = −2 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle  sys: System 

:signal 

¬∃𝑥1 
:brake 

:signal :signal 

:warning 

𝑣′, 𝑎′ 𝑣, 𝑎 𝑠 𝑠 

:signal 

:brake 

(c) Graph rule toDec-remBrake

Figure C.10. – Graph rules toDec, toDec-warning, and toDec-remBrake
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:next 𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:next 

t2:Track t1:Track 

s: Shuttle 
  

sys: System 
  

:isAt 

𝑎′ = 0 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:next 

𝑋2 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:signal :warning 

:next 

𝑋3 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

¬∃𝑥1 ¬∃𝑥3 ¬∃𝑥2 

𝑠 𝑠 𝑣′, 𝑎′ 𝑣, 𝑎 

:brake 

(a) Graph rule toSteady

:next 

𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

𝑎′ = 0 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:const 

¬∃𝑥1 

𝑠 𝑣, 𝑎 

:warning 

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
 

:const :warning 

:next 
t2:Track 
:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

:const 

𝑠 𝑣′, 𝑎′ 

:warning 

:warning :const 

:brake 

:signal 

(b) Graph rule toSteady-const-warning

Figure C.11. – Graph rules toSteady and toSteady-const-warning
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:next 

𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

𝑎′ = 0 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 

t2:Track 
:isAt 

t1:Track 

s: Shuttle sys: System 

:const 

¬∃𝑥1 

𝑠 𝑣, 𝑎 

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
 

:const :next 

t2:Track 
:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

:const 

𝑠 𝑣′, 𝑎′ 

:warning 

:const 

(a) Graph rule toSteady-const

:next 

𝐿 

t2:Track 
𝑙 𝑟 

𝐾 𝑅 

:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

𝑎′ = 0 ∧ 2𝑎𝑠 = 𝑣′2 − 𝑣2 

:next 

𝑋1 
t2:Track 

:isAt 

t1:Track 

s: Shuttle sys: System 

:signal 

¬∃𝑥1 

𝑠 𝑣, 𝑎 

:next 
t2:Track t1:Track 

s: Shuttle 
  

sys: System 
 

:signal 

:next 
t2:Track 
:isAt 

t1:Track 

s: Shuttle 
  

sys: System 
 

:signal 

𝑠 𝑣′, 𝑎′ 

:signal :const 

:brake 

:warning 

:next 

𝑋2 
t2:Track 

:isAt 

t1:Track 

s: Shuttle sys: System 

:signal 

¬∃𝑥2 

:brake :brake :brake 

(b) Graph rule toSteady-remBrake

Figure C.12. – Graph rules toSteady-const and toSteady-remBrake
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:Shuttle 

:Track 

:isAt 

:Track 

:isAt 

𝑃1
𝐻  

¬∃𝑖𝑃1𝐻   

∅ 

(a) Pattern ¬H1 = ¬∃iPH
1

t1:Track 
:next 

t2:Track 

∅ 

:next 

𝑃2
𝐻  

¬∃𝑖𝑃2𝐻   

(b) Pattern ¬H2 = ¬∃iPH
2

t1:Track 
:next 

t2:Track 
:next 

𝑃4
𝐻  

¬∃𝑖𝑃4𝐻   

∅ 

(c) Pattern ¬H4 = ¬∃iPH
4

:Shuttle :Shuttle 

𝑃5
𝐻 

¬∃𝑖𝑃5𝐻
  

∅ 

(d) Pattern ¬H5 = ¬∃iPH
5

𝑃19
𝐻  

¬∃𝑖𝑃19𝐻   

∅ 

sys1: System 

sys2: System 

(e) Pattern ¬H19 = ¬∃iPH
19

Figure C.13. – Guaranteed patterns addressing cardinality constraints

𝑃20
𝐻  

¬∃𝑖𝑃20
𝐻   

∅ 

s: Shuttle 
  

    𝑎 ≠    1 
∧ 𝑎 ≠       0 
∧ 𝑎 ≠ −2 

𝑎 

(a) Pattern ¬H20 = ¬∃iPH
20

𝑃21
𝐻  

¬∃𝑖𝑃21𝐻   

∅ 

s: Shuttle 
  

sys: System 
 
 

𝑣 > 𝑣𝑚𝑎𝑥 ∨ 𝑣 < 𝑣𝑚𝑖𝑛 

𝑣 𝑣𝑚𝑖𝑛 
𝑣𝑚𝑎𝑥 

(b) Pattern ¬H21 = ¬∃iPH
21

𝑃22
𝐻  

¬∃𝑖𝑃22
𝐻   

∅ 

sys: System 
 
 
 
 

    𝑠         ≠ 500 
∨ 𝑣𝑚𝑖𝑛   ≠      2 
∨ 𝑣𝑚𝑎𝑥  ≠    50 
∨  𝑣𝑠𝑎𝑓𝑒 ≠    20 

𝑠:         𝑅𝑒𝑎𝑙 
𝑣𝑚𝑖𝑛:  𝑅𝑒𝑎𝑙 
𝑣𝑚𝑎𝑥: 𝑅𝑒𝑎𝑙 
𝑣𝑠𝑎𝑓𝑒: 𝑅𝑒𝑎𝑙 

 

(c) Pattern ¬H22 = ¬∃iPH
22

Figure C.14. – Guaranteed patterns addressing attribute values and system parameters
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t1:Track 
:next 

t2:Track 

:next 
t2:Track 

:next 

𝑃3
𝐻  ¬∃𝑖𝑃3𝐻   

∅ 

(a) Pattern ¬H3 = ¬∃iPH
3

t2:Track 

:signal 

𝑃23
𝐻  

¬∃𝑖𝑃23𝐻   

∅ t1:Track 
:next 

:const 

(b) Pattern ¬H23 = ¬∃iPH
23

t2:Track 

:const 

𝑃24
𝐻  

¬∃𝑖𝑃24𝐻   

∅ t1:Track 
:next 

:const 

(c) Pattern ¬H24 = ¬∃iPH
24

:signal 

𝑃25
𝐻  

¬∃𝑖𝑃25𝐻   

∅ ts:Track 

:warning 

(d) Pattern ¬H25 = ¬∃iPH
25

ts:Track 

𝑃26,𝑢
𝐻  

¬∃𝑖𝑃26,𝑢𝐻   

∅ t1:Track 
:next 

:next :next … 

𝑢 = 1, . . , 𝑛 − 2 

(e) Patterns ¬H26,u = ¬∃iPH
26,u

ts:Track 

:signal 

𝑃27,𝑢
𝐻  

¬∃𝑖𝑃27,𝑢𝐻   

∅ t1:Track 

:next 
… 

𝑢 = 0, . . , 𝑛 − 2 

:signal 

(f) Patterns ¬H27,u = ¬∃iPH
27,u

ts:Track 

𝑃28,𝑛
𝐻  

¬∃𝑖𝑃28,𝑛𝐻   

∅ t1:Track 

:next 
… 

𝑛 − 1 
:signal 

:next 

ts:Track 

𝑋28,𝑛 

t1:Track 

:next 
… 

𝑛 − 1 
:signal 

:next ¬∃𝑥28,𝑛 

:warning 

(g) Pattern ¬H28,n = ¬∃(iPH
28,n

,¬∃x28,n)

Figure C.15. – Guaranteed patterns addressing track topology

– C-343 –



Appendix C. Models and Example Systems

C.2. Behavior Preservation of Model Transformations

C.2.1. Equivalence – equiv-s-trans and equiv-s-sem

Table C.10. – Elements of equiv-s-trans

Element Fig. Description

TG C.16(a)

There are events (in a sequence chart), connected by Send and
Rcv elements. Similarly, states (in an automaton) are connected
by transitions. Correspondence elements connect corresponding
elements of the source and target modeling languages.

R

createSendTS C.16(b)
Creates a message that is sent when an event is triggered and its
subsequent event and a corresponding transition with a target
state.

createRcvTR C.16(c)
Creates a message that is received when an event is triggered
and its subsequent event and a corresponding transition with
a target state.

Element Fig. Description

F = ⋀C ¬C ...
...

CGTS
S C.21 Runtime restrictions for semantics of source models.

CGTS
T C.22 Runtime restrictions for semantics of target models.

CMT C.23
Model transformation constraint, which establishes corre-
spondence properties about the static structure of source
and target models.

CPair ∧ CRT C.24
Pair constraint and runtime constraint required to show
the existence of a bimiulation relation.

H = ⋀C ¬C ...
...

CS C.18
Cardinality and type graph constraints for the source
modeling language (source component of the type graph).

CT C.19
Cardinality and type graph constraints for the target
modeling language (target component of the type graph).

CTGG C.20

Cardinality and type graph constraints for correspon-
dence elements (correspondence component of the type
graph).
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Table C.11. – Elements of equiv-s-sem

Element Fig. Description

TG C.16(a)

There are events (in a sequence chart), connected by Send and
Rcv elements. Similarly, states (in an automaton) are connected
by transitions. Correspondence elements connect corresponding
elements of the source and target modeling languages.

R

initE-initS C.17(a)
Initializes the sequence chart’s first event and the automaton’s
inital state.

send-fireTS C.17(b)
Sends a message, fires a sending transition, and marks the sub-
sequent event and state as active.

rcv-fireTR C.17(c)
Receives a message, fires a receiving transition, and marks the
subsequent event and state as active.

Element Fig. Description

F = ⋀C ¬C ...
... CPair ∧ CRT C.24

Pair constraint and runtime constraint required to show
the existence of a bimiulation relation.

H = ⋀C ¬C ...
...

CS C.18
Cardinality and type graph constraints for the source
modeling language (source component of the type graph).

CT C.19
Cardinality and type graph constraints for the target
modeling language (target component of the type graph).

CTGG C.20

Cardinality and type graph constraints for correspon-
dence elements (correspondence component of the type
graph).

CGTS
S C.21 Runtime restrictions for semantics of source models.

CGTS
T C.22 Runtime restrictions for semantics of target models.

CMT C.23
Model transformation constraint, which establishes corre-
spondence properties about the static structure of source
and target models.
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Event 

Send 

pre 

activated_e 

𝑇𝐺 

E2S 

active_e 

Rcv 

post 
first 

pre post 

S2T 

R2T 

TS 

TR 

not_ac-
tivated_e 

State 

activated_s 
active_s 

init 
not_ac-
tivated_s 

tgt src 

tgt src 

(a) Type graph TG

e:Event 

:Send 

:pre 

e2s:E2S s:State 

:S2T :TS 

:src 

:Event 

:post 

:E2S :State 

:tgt 

𝑅 e:Event e2s:E2S s:State 𝐾 e:Event e2s:E2S s:State 𝐿 

𝑙 𝑟 

(b) TGG rule createSendTS

e:Event 

:Rcv 

:pre 

e2s:E2S s:State 

:R2T :TR 

:src 

:Event 

:post 

:E2S :State 

:tgt 

𝑅 e:Event e2s:E2S s:State 𝐾 e:Event e2s:E2S s:State 𝐿 

𝑙 𝑟 

(c) TGG rule createRcvTR

Figure C.16. – Type graph and TGG rules R = {createSendTS, createRcvTR}

e:Event s:State 

𝐿 

𝑙 𝑟 

first :not_ac-
tivated_s 

𝐾 𝑅 

not_ac-
tivated_e 

init 

e:Event s:State 

first 

e:Event s:State 

first :activated_s activated_e init init 

active_s active_e 

(a) Semantics rule initE-initS

e1:Event 

se:Send 

:pre 

s1:State 

ts:TS 

:src 

e2:Event 

:post 

s2:State 

:tgt 

𝐿 

𝑙 𝑟 
:active_e :active_s 

e1:Event 

se:Send 

:pre 

s1:State 

ts:TS 

:src 

e2:Event 

:post 

s2:State 

:tgt 

𝐾 e1:Event 

se:Send 

:pre 

s1:State 

ts:TS 

:src 

e2:Event 

:post 

s2:State 

:tgt 

𝑅 

:active_e :active_s 

(b) Semantics rule send-fireTS

e1:Event 

r:Rcv 

:pre 

s1:State 

tr:TR 

:src 

e2:Event 

:post 

s2:State 

:tgt 

𝐿 

𝑙 𝑟 
:active_e :active_s 

e1:Event 

r:Rcv 

:pre 

s1:State 

tr:TR 

:src 

e2:Event 

:post 

s2:State 

:tgt 

𝐾 e1:Event 

r:Rcv 

:pre 

s1:State 

tr:TR 

:src 

e2:Event 

:post 

s2:State 

:tgt 

𝑅 

:active_e :active_s 

(c) Semantics rule rcv-fireTR

Figure C.17. – Pair rules P(ls, lt) = {initE-initS, send-fireTS, rcv-fireTR}
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:Event 

:Send :Send 

:post 

∅ 

:post 

𝑃1
𝑆 

¬∃𝑖𝑃1𝑆
 

(a) Pattern ¬CS
1 = ¬∃iPS

1

:Event 

:Send :Send 

:pre 

∅ 

:pre 

𝑃2
𝑆 

¬∃𝑖𝑃2𝑆
 

(b) Pattern ¬CS
2 = ¬∃iPS

2

:Event 

:Rcv :Rcv 

:post 

∅ 

:post 

𝑃3
𝑆 

¬∃𝑖𝑃3𝑆
 

(c) Pattern ¬CS
3 = ¬∃iPS

3

:Event 

:Rcv :Rcv 

:pre 

∅ 

:pre 

𝑃4
𝑆 

¬∃𝑖𝑃4𝑆
 

(d) Pattern ¬CS
4 = ¬∃iPS

4

:Send 

:Event :Event 

:post 

∅ 

:post 

𝑃5
𝑆 

¬∃𝑖𝑃5𝑆
 

(e) Pattern ¬CS
5 = ¬∃iPS

5

:Send 

:Event :Event 

:pre 

∅ 

:pre 

𝑃6
𝑆 

¬∃𝑖𝑃6𝑆
 

(f) Pattern ¬CS
6 = ¬∃iPS

6

:Rcv 

:Event :Event 

:post 

∅ 

:post 

𝑃7
𝑆 

¬∃𝑖𝑃7𝑆
 

(g) Pattern ¬CS
7 = ¬∃iPS

7

:Rcv 

:Event :Event 

:pre 

∅ 

:pre 

𝑃8
𝑆 

¬∃𝑖𝑃8𝑆
 

(h) Pattern ¬CS
8 = ¬∃iPS

8

:Event 

∅ 

:first 

:Event 
:first 𝑃9

𝑆 

¬∃𝑖𝑃9𝑆
 

(i) Pattern ¬CS
9 = ¬∃iPS

9

:Event 

𝑃10
𝑆  

∅ 

¬∃𝑖𝑃10𝑆
 

:first :first 

(j) Pattern ¬CS
10 = ¬∃iPS

10

Figure C.18. – Composed guaranteed pattern CS
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:TS :TS 

:tgt 

𝑃1
𝑇 

∅ 

¬∃𝑖𝑃1𝑇  

:tgt 

(a) Pattern ¬CT
1 = ¬∃iPT

1

:State 

:TS :TS 

:src 

𝑃2
𝑇 

∅ 

¬∃𝑖𝑃2𝑇  

:src 

(b) Pattern ¬CT
2 = ¬∃iPT

2

:State 

:TR :TR 

:tgt 

∅ 

:tgt 

𝑃3
𝑇 

¬∃𝑖𝑃3𝑇  

(c) Pattern ¬CT
3 = ¬∃iPT

3

:State 

:TR :TR 

:src 

∅ 

:src 

𝑃4
𝑇 

¬∃𝑖𝑃4𝑇  

(d) Pattern ¬CT
4 = ¬∃iPT

4

:TS 

:State :State 

:tgt 

∅ 

:tgt 

𝑃5
𝑇 

¬∃𝑖𝑃5𝑇
 

(e) Pattern ¬CT
5 = ¬∃iPT

5

:TS 

:State :State 

:src 

∅ 

:src 

𝑃6
𝑇 

¬∃𝑖𝑃6𝑇  

(f) Pattern ¬CT
6 = ¬∃iPT

6

:TR 

:State :State 

:tgt 

∅ 

:tgt 

𝑃7
𝑇 

¬∃𝑖𝑃7𝑇  

(g) Pattern ¬CT
7 = ¬∃iPT

7

:TR 

:State :State 

:src 

∅ 

:src 

𝑃8
𝑇 

¬∃𝑖𝑃8𝑇  

(h) Pattern ¬CT
8 = ¬∃iPT

8

:State 

∅ 

:init 

:State 
:init 𝑃9

𝑇 

¬∃𝑖𝑃9𝑇
 

(i) Pattern ¬CT
9 = ¬∃iPT

9

:State 

∅ 

:init :init 

𝑃10
𝑇  

¬∃𝑖𝑃10𝑇  

(j) Pattern ¬CT
10 = ¬∃iPT

10

Figure C.19. – Composed guaranteed pattern CT
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:S2T 
:Send 

:Send 

∅ 

𝑃1
𝐶  

¬∃𝑖𝑃1𝐶
 

(a) Pattern ¬CC
1 = ¬∃iPC

1

:S2T 
:TS 

:TS 

∅ 

𝑃2
𝐶  

¬∃𝑖𝑃2𝐶
 

(b) Pattern ¬CC
2 = ¬∃iPC

2

:S2T 
:Send 

∅ 

𝑃3
𝐶  

¬∃𝑖𝑃3𝐶
 

:S2T 

(c) Pattern ¬CC
3 = ¬∃iPC

3

:S2T 
:TS 

∅ 

𝑃4
𝐶  

¬∃𝑖𝑃4𝐶
 

:S2T 

(d) Pattern ¬CC
4 = ¬∃iPC

4

:R2T 
:Rcv 

:Rcv 

∅ 

𝑃5
𝐶  

¬∃𝑖𝑃5𝐶
 

(e) Pattern ¬CC
5 = ¬∃iPC

5

:R2T 
:TR 

:TR 

∅ 

𝑃6
𝐶  

¬∃𝑖𝑃6𝐶
 

(f) Pattern ¬CC
6 = ¬∃iPC

6

:R2T 
:Rcv 

∅ 

𝑃7
𝐶  

¬∃𝑖𝑃7𝐶
 

:R2T 

(g) Pattern ¬CC
7 = ¬∃iPC

7

:R2T 
:TR 

∅ 

𝑃8
𝐶  

¬∃𝑖𝑃8𝐶
 

:R2T 

(h) Pattern ¬CC
8 = ¬∃iPC

8

:E2S 
:Event 

:Event 

∅ 

𝑃9
𝐶  

¬∃𝑖𝑃9𝐶
 

(i) Pattern ¬CC
9 = ¬∃iPC

9

:E2S 
:State 

:State 

∅ 

𝑃10
𝐶  

¬∃𝑖𝑃10𝐶
 

(j) Pattern ¬CC
10 = ¬∃iPC

10

:R2T 
:Event 

∅ 

𝑃11
𝐶  

¬∃𝑖𝑃11𝐶
 

:R2T 

(k) Pattern ¬CC
11 = ¬∃iPC

11

:E2S 
:State 

∅ 

𝑃12
𝐶  

¬∃𝑖𝑃12𝐶
 

:E2S 

(l) Pattern ¬CC
12 = ¬∃iPC

12

Figure C.20. – Fragments of composed guaranteed pattern CTGG
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:Event 

∅ 
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:Event :active_e 

𝑃1
𝑆𝑔𝑡𝑠

 

¬∃𝑖
𝑃1
𝑆𝑔𝑡𝑠  

(a) Pattern ¬CSGTS
1 = ¬∃i

P
SGTS
1

:Event 

∅ 

:active_e :active_e 

¬∃𝑖
𝑃2
𝑆𝑔𝑡𝑠  

𝑃2
𝑆𝑔𝑡𝑠

 

(b) Pattern ¬CSGTS
2 = ¬∃i

P
SGTS
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:Event 

∅ 

:activeated_e :activated_e 

¬∃𝑖
𝑃3
𝑆𝑔𝑡𝑠  

𝑃3
𝑆𝑔𝑡𝑠

 

(c) Pattern ¬CSGTS
3 = ¬∃i

P
SGTS
3

:Event 

∅ 

:not_ac-
tivated_e 

:activated_e 

¬∃𝑖
𝑃4
𝑆𝑔𝑡𝑠  

𝑃4
𝑆𝑔𝑡𝑠

 

(d) Pattern ¬CSGTS
4 = ¬∃i

P
SGTS
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:Event 

∅ 

:not_ac-
tivated_e 

:not_ac-
tivated_e 

¬∃𝑖
𝑃5
𝑆𝑔𝑡𝑠  

𝑃5
𝑆𝑔𝑡𝑠

 

(e) Pattern ¬CSGTS
5 = ¬∃i

P
SGTS
5

Figure C.21. – Composed pattern CGTS
S
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𝑇𝑔𝑡𝑠  

(a) Pattern ¬CTGTS
1 = ¬∃i

P
TGTS
1

:State 

∅ 

:active_s :active_s 

¬∃𝑖
𝑃2
𝑇𝑔𝑡𝑠  

𝑃2
𝑇𝑔𝑡𝑠

 

(b) Pattern ¬CTGTS
2 = ¬∃i

P
TGTS
2

:State 

∅ 

:activeated_s :activated_s 

¬∃𝑖
𝑃3
𝑇𝑔𝑡𝑠  

𝑃3
𝑇𝑔𝑡𝑠

 

(c) Pattern ¬CTGTS
3 = ¬∃i

P
TGTS
3

:State 

∅ 

:not_ac-
tivated_s 

:activated_s 

¬∃𝑖
𝑃4
𝑇𝑔𝑡𝑠  

𝑃4
𝑇𝑔𝑡𝑠

 

(d) Pattern ¬CTGTS
4 = ¬∃i

P
TGTS
4

:State 

∅ 

:not_ac-
tivated_s 

:not_ac-
tivated_s 

¬∃𝑖
𝑃5
𝑇𝑔𝑡𝑠  

𝑃5
𝑇𝑔𝑡𝑠

 

(e) Pattern ¬CTGTS
5 = ¬∃i

P
TGTS
5

Figure C.22. – Composed pattern CGTS
T
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e1:Event 

se:Send 

:pre 

:E2S :State 

:S2T :TS 

:src 

e2:Event 

:post 

:E2S :State 

:tgt 

𝑋1
𝑚𝑡 

∅ 

¬∃𝑖𝑃1𝑚𝑡  

e1:Event 

se:Send 

:pre 

e2:Event 

:post 

𝑃1
𝑚𝑡 

¬∃𝑥1
𝑚𝑡 

(a) Pattern ¬Cmt
1 = ¬∃(iPmt

1
,¬∃xmt

1 )

e1:Event 

r:Rcv 

:pre 

:E2S :State 

:R2T :TR 

:src 

e2:Event 

:post 

:E2S :State 

:tgt 

𝑋2
𝑚𝑡 

∅ 

¬∃𝑖𝑃2𝑚𝑡  

e1:Event 

r:Rcv 

:pre 

e2:Event 

:post 

𝑃2
𝑚𝑡 

¬∃𝑥2
𝑚𝑡 

(b) Pattern ¬Cmt
2 = ¬∃(iPmt

2
,¬∃xmt

2 )

:Event 

:Send 

:pre 

:E2S s1:State 

:S2T ts:TS 

:src 

:Event 

:post 

:E2S s2:State 

:tgt 

𝑋4
𝑚𝑡 

∅ 

¬∃𝑖𝑃4𝑚𝑡  

𝑃4
𝑚𝑡 

¬∃𝑥4
𝑚𝑡 

s1:State 

ts:TS 

:src 

s2:State 

:tgt 

(c) Pattern ¬Cmt
3 = ¬∃(iPmt

3
,¬∃xmt

3 )

:Event 

:Rcv 

:pre 

:E2S s1:State 

:R2T tr:TR 

:src 

:Event 

:post 

:E2S s2:State 

:tgt 

𝑋3
𝑚𝑡 

∅ 

¬∃𝑖𝑃3𝑚𝑡  

𝑃3
𝑚𝑡 

¬∃𝑥3
𝑚𝑡 

s1:State 

tr:TR 

:src 

s2:State 

:tgt 

(d) Pattern ¬Cmt
4 = ¬∃(iPmt

4
,¬∃xmt

4 )

𝑋5
𝑚𝑡 

∅ 

¬∃𝑖𝑃5𝑚𝑡  

𝑃5
𝑚𝑡 

¬∃𝑥5
𝑚𝑡 

e:Event :E2S :State 

first init 

e:Event 

first 

(e) Pattern ¬Cmt
5 = ¬∃(iPmt

5
,¬∃x5mt)

𝑋6
𝑚𝑡 

∅ 

¬∃𝑖𝑃6𝑚𝑡  

𝑃6
𝑚𝑡 

¬∃𝑥6
𝑚𝑡 

:Event :E2S s:State 

first init 

s:State 

init 

(f) Pattern ¬Cmt
6 = ¬∃(iPmt

6
,¬∃xmt

6 )

Figure C.23. – Composed pattern CMT
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e1:Event 

se:Send 

:pre 

:State 

:TS 

:src 

e2:Event 

:post 

:State 

:tgt 

𝑋1
𝑠𝑒𝑚 

:active_e :active_s 

∅ 

¬∃𝑖𝑃1𝑠𝑒𝑚 

e1:Event 

se:Send 

:pre 

e2:Event 

:post 

𝑃1
𝑠𝑒𝑚 

:active_e 

¬∃𝑥1
𝑠𝑒𝑚 

(a) Pattern ¬Csem
1 = ¬∃(iP sem

1
,¬∃xsem

1 )

e1:Event 

r:Rcv 

:pre 

:State 

:TR 

:src 

e2:Event 

:post 

:State 

:tgt 

𝑋2
𝑠𝑒𝑚 

:active_e :active_s 

∅ 

¬∃𝑖𝑃2𝑠𝑒𝑚 

e1:Event 

r:Rcv 

:pre 

e2:Event 

:post 

𝑃2
𝑠𝑒𝑚 

:active_e 

¬∃𝑥2
𝑠𝑒𝑚 

(b) Pattern ¬Csem
2 = ¬∃(iP sem

2
,¬∃xsem

2 )

:Event 

:Send 

:pre 

s1:State 

ts:TS 

:src 

:Event 

:post 

s2:State 

:tgt 

𝑋4
𝑠𝑒𝑚 

:active_e :active_s 

∅ 

¬∃𝑖𝑃4𝑠𝑒𝑚 

𝑃4
𝑠𝑒𝑚 

¬∃𝑥4
𝑠𝑒𝑚 

s1:State 

ts:TS 

:src 

s2:State 

:tgt 

:active_s 

(c) Pattern ¬Csem
3 = ¬∃(iP sem

3
,¬∃xsem

3 )

:Event 

:Rcv 

:pre 

s1:State 

tr:TR 

:src 

:Event 

:post 

s2:State 

:tgt 

𝑋3
𝑠𝑒𝑚 

:active_e :active_s 

∅ 

¬∃𝑖𝑃3𝑠𝑒𝑚 

𝑃3
𝑠𝑒𝑚 

¬∃𝑥3
𝑠𝑒𝑚 

s1:State 

tr:TR 

:src 

s2:State 

:tgt 

:active_s 

(d) Pattern ¬Csem
4 = ¬∃(iP sem

4
,¬∃xsem

4 )

𝑋5
𝑠𝑒𝑚 

∅ 

¬∃𝑖𝑃5𝑠𝑒𝑚 

𝑃5
𝑠𝑒𝑚 

¬∃𝑥5
𝑠𝑒𝑚 

e:Event :State 

first :not_ac-
tivated_s 

not_ac-
tivated_e 

init 

e:Event 

first not_ac-
tivated_e 

(e) Pattern ¬Csem
5 = ¬∃(iP sem

5
,¬∃x5sem)

𝑋6
𝑠𝑒𝑚 

∅ 

¬∃𝑖𝑃6𝑠𝑒𝑚 

𝑃6
𝑠𝑒𝑚 

¬∃𝑥6
𝑠𝑒𝑚 

:Event s:State 

first :not_ac-
tivated_s 

not_ac-
tivated_e 

init 

s:State 

:not_ac-
tivated_s 

init 

(f) Pattern ¬Csem
6 = ¬∃(iP sem

6
,¬∃xsem

6 )

𝑋7
𝑠𝑒𝑚 

∅ 

¬∃𝑖𝑃7𝑠𝑒𝑚 

𝑃7
𝑠𝑒𝑚 

¬∃𝑥7
𝑠𝑒𝑚 

e:Event :E2S :State 

:active_s :active_e 

e:Event 

:active_e 

(g) Pattern ¬Csem
7 = ¬∃(iP sem

7
,¬∃x7sem)

𝑋8
𝑠𝑒𝑚 

∅ 

¬∃𝑖𝑃8𝑠𝑒𝑚 

𝑃8
𝑠𝑒𝑚 

¬∃𝑥8
𝑠𝑒𝑚 

:Event :E2S s:State 

:active_s :active_e 

s:State 

:active_s 

(h) Pattern ¬Csem
8 = ¬∃(iP sem

8
,¬∃xsem

8 )

Figure C.24. – Composed pattern CPair ∧ CRT
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C.2.2. Equivalence – equiv-trans and equiv-sem

Table C.12. – Elements of equiv-trans

Element Fig. Description

TG C.25(a)

There are events on lifelines, connected by messages that can be
received and sent. Similarly, states in a system of communicat-
ing automata are connected by communicating transitions. Cor-
respondence elements connect corresponding elements of the
source and target modeling languages.

R

createInit C.25(b)
Creates a lifeline and corresponding automata with an initial
event and state, respectively.

createMsgCom C.25(c)
Creates a message that can be received and sent by events and
creates two corresponding communicating transitions. The rule
also creates subsequent events and states.

Element Fig. Description

F = ⋀C ¬C ...
...

CGTS
S C.30 Runtime restrictions for semantics of source models.

CGTS
T C.31 Runtime restrictions for semantics of target models.

CCor
MT C.32

Model transformation constraint, which establishes corre-
spondence properties about the static structure of source
and target models.

CCor
Pair ∧ CRT C.33

Pair constraint and runtime constraint required to show
the existence of a bimiulation relation.

H = ⋀C ¬C ...
...

CS C.27
Cardinality and type graph constraints for the source
modeling language (source component of the type graph).

CT C.28
Cardinality and type graph constraints for the target
modeling language (target component of the type graph).

CTGG C.29

Cardinality and type graph constraints for correspon-
dence elements (correspondence component of the type
graph).
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Table C.13. – Elements of equiv-sem

Element Fig. Description

TG C.25(a)

There are events on lifelines, connected by messages that can be
received and sent. Similarly, states in a system of communicat-
ing automata are connected by communicating transitions. Cor-
respondence elements connect corresponding elements of the
source and target modeling languages.

R
initE-initS C.26(a)

Initializes a sequence chart’s first event and the corresponding
automaton’s inital state.

send-fire C.26(b)
Sends a message and fires the corresponding communicating
transitions; also marks subsequent events and states as active.

Element Fig. Description

F = ⋀C ¬C ...
... CCor

Pair ∧ CRT C.33
Pair constraint and runtime constraint required to show
the existence of a bimiulation relation.

H = ⋀C ¬C ...
...

CS C.27
Cardinality and type graph constraints for the source
modeling language (source component of the type graph).

CT C.28
Cardinality and type graph constraints for the target
modeling language (target component of the type graph).

CTGG C.29

Cardinality and type graph constraints for correspon-
dence elements (correspondence component of the type
graph).

CGTS
S C.30 Runtime restrictions for semantics of source models.

CGTS
T C.31 Runtime restrictions for semantics of target models.

CCor
MT C.32

Model transformation constraint, which establishes corre-
spondence properties about the static structure of source
and target models.
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(a) Type graph TG
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:State 
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:e2s 
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:not_ac-
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∅ ∅ 

(b) TGG rule createInit

𝑅 

𝑙 𝑟 

e2:Event 

:Message 

:send_m 

l2:Lifeline 

:rcv_m 

:next 

:Transition 

a2:Automaton 

:State 

:in 

:tgt 
:src 
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:l2a 

:e2s 

:m2c 
:rcv_c :send_c 

e1:Event 
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:in 

s2:State 

:Event 
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:Transition :in 
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𝐾 
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(c) TGG rule createMsgCom

Figure C.25. – Type graph and TGG rules R = {createInit, createMsgCom}

𝑙 𝑟 

e:Event 

𝑅 l:Lifeline 

:first :on 

a:Automaton 

s:State 
:init 

:in 

:l2a 

:e2s 

:activated_s :activated_e :active_e :active_s 

e:Event 

𝐾 
l:Lifeline 

:first :on 

a:Automaton 

s:State 
:init 

:in 

:l2a 

:e2s 
e:Event 

𝐿 l:Lifeline 

:first :on 

a:Automaton 

s:State 
:init 

:in 

:l2a 

:e2s 

:not_activated_s :not_activated_e 

(a) Semantics rule initE-initS

𝑅 

𝑙 𝑟 

e2:Event 

m:Message 

:send_m 

l2:Lifeline 

:rcv_m 

:next 

t2:Transition 

a2:Automaton 

s4:State 

:in 

:tgt 
:src 

c:Com 

:l2a 

:e2s 

:m2c 
:rcv_c :send_c 

e1:Event 

l1:Lifeline 
:on 

a1:Automaton 

s1:State 
:in 

s2:State 

e3:Event 

:on 

e4:Event 

:on :on 

:next 

t1:Transition :in 

s3:State 

:in 

:tgt 
:src 

:l2a 

:e2s 

:e2s 

:e2s 

𝐾 

𝐿 

:active_e :active_s 

:active_e :active_s 

𝐿 

e2:Event 

m:Message 

:send_m 

l2:Lifeline 

:rcv_m 

t2:Transition 

a2:Automaton 

s4:State 

:in 

:tgt :src 

c:Com 

:l2a 

:e2s 

:m2c 
:rcv_c :send_c 

e1:Event 

l1:Lifeline 
:on 

a1:Automaton 

s1:State 
:in 

s2:State 

e3:Event 

:on 

e4:Event 

:on :on 

:next 

t1:Transition :in 

s3:State 

:in 

:tgt :src 

:l2a 

:e2s 

:e2s 

:e2s 

active_s 

:active_s 

… 

:active_e 
:next 

:active_e 

(b) Semantics rule send-fire
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Figure C.27. – Composed guaranteed pattern CS
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Figure C.28. – Composed guaranteed pattern CT
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Figure C.29. – Fragments of composed guaranteed pattern CTGG
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Figure C.30. – Composed pattern CGTS
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Figure C.31. – Composed pattern CGTS
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Figure C.32. – Composed pattern CCor
MT
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Figure C.33. – Composed pattern CCor
Pair ∧ CRT
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C.2.3. Refinement – refine-trans and refine-sem

Table C.14. – Elements of refine-trans

Element Fig. Description

TG C.25(a)

There are events on lifelines, connected by messages that can be
received and sent. Similarly, states in a system of communicat-
ing automata are connected by communicating transitions. Cor-
respondence elements connect corresponding elements of the
source and target modeling languages.

R

createInit C.34(a)
Creates a lifeline and corresponding automata with an initial
event and state, respectively.

createMsgCom C.34(b)
Creates a message that can be received and sent by events and
creates two corresponding communicating transitions. The rule
also creates subsequent events and states.

createInternal-
Transition-1

C.34(c)
Creates internal transitions in the system of comunicating au-
tomata without an equivalence in the sequence chart.

createInternal-
Transition-2

C.34(d)
Creates internal transitions in the system of comunicating au-
tomata without an equivalence in the sequence chart.

Element Fig. Description

F

CGTS
S C.30 Runtime restrictions for semantics of source models.

CGTS
T C.31 Runtime restrictions for semantics of target models.

CCor ,f
MT

C.32(a),
C.32(c)

Model transformation constraint, which establishes corre-
spondence properties about the static structure of source
and target models.

CCor ,f
Pair ∧ CfRT

C.33(a),
C.33(c),
C.33(e)

Pair constraint and runtime constraint required to show
the existence of a bimiulation relation.

H

CS C.27
Cardinality and type graph constraints for the source
modeling language (source component of the type graph).

CT
C.28(c)-
C.28(h)

Cardinality and type graph constraints for the target
modeling language (target component of the type graph).

CTGG C.29

Cardinality and type graph constraints for correspon-
dence elements (correspondence component of the type
graph).
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Table C.15. – Elements of refine-sem

Element Fig. Description

TG C.25(a)

There are events on lifelines, connected by messages that can be
received and sent. Similarly, states in a system of communicat-
ing automata are connected by communicating transitions. Cor-
respondence elements connect corresponding elements of the
source and target modeling languages.

R
initE-initS C.26(a)

Initializes a sequence chart’s first event and the corresponding
automaton’s initial state.

send-fire C.26(b)
Sends a message and fires the corresponding communicating
transitions; also marks subsequent events and states as active.

Element Fig. Description

F CCor ,f
Pair ∧ CfRT

C.33(a),
C.33(c),
C.33(e)

Pair constraint and runtime constraint required to show
the existence of a bimiulation relation.

H

CS C.27
Cardinality and type graph constraints for the source
modeling language (source component of the type graph).

CT
C.28(c)-
C.28(h)

Cardinality and type graph constraints for the target
modeling language (target component of the type graph).

CTGG C.29

Cardinality and type graph constraints for correspon-
dence elements (correspondence component of the type
graph).

CGTS
S C.30 Runtime restrictions for semantics of source models.

CGTS
T C.31 Runtime restrictions for semantics of target models.

CCor ,f
MT

C.32(a),
C.32(c)

Model transformation constraint, which establishes corre-
spondence properties about the static structure of source
and target models.
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Appendix C. Models and Example Systems

𝑙 𝑟 

:Event 

𝑅 :Lifeline 

:first :on 

:Automaton 

:State 
:init 

:in 

:l2a 

:e2s 

:not_ac-
tivated_s 

:not_ac-
tivated_e 

∅ ∅ 

(a) TGG rule createInit

𝑅 

𝑙 𝑟 

e2:Event 

:Message 

:send_m 

l2:Lifeline 

:rcv_m 

:next 

:Transition 

a2:Automaton 

:State 

:in 

:tgt 
:src 

:Com 

:l2a 

:e2s 

:m2c 
:rcv_c :send_c 

e1:Event 

l1:Lifeline 
:on 

a1:Automaton 

s1:State 

:in 

s2:State 

:Event 

:on 

:Event 

:on :on 

:next 

:Transition :in 

:State 

:in 

:tgt :src 

:l2a 

:e2s 

:e2s 

:e2s 

𝐾 

e2:Event 

l2:Lifeline a2:Automaton 
:l2a 

:e2s 
e1:Event 

l1:Lifeline 
:on 

a1:Automaton 

s1:State 

:in 

s2:State 

:on :in 

:l2a 

:e2s 

𝐿 

e2:Event 

l2:Lifeline a2:Automaton 
:l2a 

:e2s 
e1:Event 

l1:Lifeline 
:on 

a1:Automaton 

s1:State 

:in 

s2:State 

:on :in 

:l2a 

:e2s 

(b) TGG rule createMsgCom

𝑅 

𝑙 𝑟 l2:Lifeline 

:Transition 

a2:Automaton 

:State 

:in 

:tgt 
:src 

:Com 

:l2a 

:rcv_c :send_c 

l1:Lifeline a1:Automaton 

s1:State 

:in 

s2:State 

:Transition :in 

:State 

:in 

:tgt :src 

:l2a 

𝐾 

l2:Lifeline a2:Automaton 
:l2a 

l1:Lifeline a1:Automaton 

s1:State 

:in 

s2:State 

:in 

:l2a 

𝐿 

l2:Lifeline a2:Automaton 
:l2a 

l1:Lifeline a1:Automaton 

s1:State 

:in 

s2:State 

:in 

:l2a 

(c) TGG rule createInternalTransition-1

𝑅 

𝑙 𝑟 l2:Lifeline 

:Transition 

a2:Automaton 

:State 

:in 

:tgt 
:src 

:Com 

:l2a 

:rcv_c :send_c 

l1:Lifeline a1:Automaton 

s1:State 

:in 

s2:State 

:Transition :in 

:State 

:in 

:tgt :src 

:l2a 

𝐾 

l2:Lifeline a2:Automaton 
:l2a 

l1:Lifeline a1:Automaton 

s1:State 

:in 

s2:State 

:in 

:l2a 

𝐿 

l2:Lifeline a2:Automaton 
:l2a 

l1:Lifeline a1:Automaton 

s1:State 

:in 

s2:State 

:in 

:l2a 

(d) TGG rule createInternalTransition-2

Figure C.34. – TGG rules
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