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Abstract
The habilitation deals with the numerical analysis of the recurrence properties of geological
and climatic processes. The recurrence of states of dynamical processes can be analysed
with recurrence plots and various recurrence quantification options. In the present work,
the meaning of the structures and information contained in recurrence plots are examined
and described. New developments have led to extensions that can be used to describe the
recurring patterns in both space and time. Other important developments include recurrence
plot-based approaches to identify abrupt changes in the system’s dynamics, to detect and
investigate external influences on the dynamics of a system, the couplings between different
systems, as well as a combination of recurrence plots with the methodology of complex
networks. Typical problems in geoscientific data analysis, such as irregular sampling and
uncertainties, are tackled by specific modifications and additions. The development of a
significance test allows the statistical evaluation of quantitative recurrence analysis, especially
for the identification of dynamical transitions. Finally, an overview of typical pitfalls that can
occur when applying recurrence-based methods is given and guidelines on how to avoid such
pitfalls are discussed. In addition to the methodological aspects, the application potential
especially for geoscientific research questions is discussed, such as the identification and
analysis of transitions in past climates, the study of the influence of external factors to
ecological or climatic systems, or the analysis of landuse dynamics based on remote sensing
data.

Zusammenfassung
Die Habilitation beschäftigt sich mit der Analyse der Wiederkehreigenschaften geologischer
und klimatischer Prozesse. Die Wiederkehr von Zuständen dynamischer Prozesses kann mit
recurrence plots und deren verschiedenen Quantifizierungsmöglichkeiten untersucht werden.
In der Arbeit wird die Bedeutung der Strukturen und Informationen, die in recurrence plots
enthalten sind, untersucht und beschrieben. Neue Entwicklungen führen zu Erweiterungen,
die zur Beschreibung räumlich und raumzeitlich wiederkehrender Muster genutzt werden
können. Weitere wichtige Entwicklungen umfassen Erweiterungen zur Identifizierung von
abrupten Änderungen in der Dynamik, zum Aufspüren und Untersuchen äußerer Einflüsse
auf die Dynamik eines Systems als auch von Kopplungen zwischen verschiedenen Systemen,
sowie eine Kombination mit der Methodik der komplexen Netzwerke. Typische Probleme
geowissenschaftlicher Datenanalyse, wie unregelmäßiges Datensampling und Unsicherheiten
in den Daten, werden durch spezielle Modifikationen und Ergänzungen behandelt. Die Ent-
wicklung eines Signifikanztests erlaubt die statistische Bewertung der quantitativen Analyse
vor allem für die Betrachtung dynamischer Übergänge. Den Abschluß bildet ein Überblick
typischer Fehler, die im Zusammenhang mit dieser Methode auftreten können und wie man
diese vermeidet. Neben den methodischen Aspekten werden Anwendungsmöglichkeiten vor
allem für geowissenschaftliche Fragestellungen vorgestellt, wie die Analyse von Klimaän-
derungen, von externen Einflußfaktoren auf ökologische oder klimatische Systeme, oder der
Landnutzungsdynamik anhand von Fernerkundungsdaten.



Lake Sediments Santa Maria Basin (Argentina)
Photo: N. Marwan

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Recurrence – A fundamental concept in the system Earth 1

1.2 Recurrence analysis 5

1.3 Objectives of this thesis 8

2 Historical Review of Recurrence Plots . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction 12

2.2 The birth of the recurrence plot 13

2.3 Recurrence quantification analysis 13

2.4 Extensions for the recurrence plot and quantification analysis 15

2.5 Theoretical basis and dynamical invariants 15

2.6 The spreading application fields 17

2.7 Outlook 19

3 Optimal Recurrence Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction 21

3.2 Recurrence based detectors 22

3.3 Receiver operating characteristic 23

3.4 Optimal recurrence threshold for a prototypical example 24

3.5 Application on EEG measurements 26

3.6 Discussion 28

3.7 Conclusions 29



ii

4 Automatic Threshold Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Introduction 31

4.2 Recurrence plots, recurrence networks and the adaptive threshold 33

4.3 Applications 34
4.3.1 Logistic map 34
4.3.2 Application to palaeoclimate record 37

4.4 Conclusions 39

5 Line Structures in Recurrence Plots . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Introduction 41

5.2 Recurrence Plots 42

5.3 Line Structures in Recurrence Plots 42

5.4 Slope of the Line Structures 43

5.5 Illustration Line Structures 43

5.6 Cross Recurrence Plots 48

5.7 Conclusion 50

6 The Wiener-Khinchin Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Introduction 53

6.2 Power spectral estimate by recurrences 53

6.3 Example 55

6.4 Discussion and conclusion 56

7 Spatially Extended Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Introduction 61

7.2 The Lorenz96 model 62

7.3 Recurrence plot analysis 63

7.4 Recurrence analysis of spatially extended chaos 65

7.5 Application on satellite time series imagery 66

7.6 Conclusion 68

8 Generalising Recurrence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.1 Introduction 71

8.2 Recurrence Plots 72

8.3 Extension to higher dimensions 74

8.4 Quantification of Higher-Dimensional RPs 75

8.5 Model Examples 75

8.6 Application to pQCT data of proximal tibia 77



iii

8.7 Conclusions 79

9 Driving Forces in Spatial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.1 Introduction 83

9.2 Method 84
9.2.1 Recurrence plot 84
9.2.2 Thresholded meta recurrence plot 85
9.2.3 Local minima of the distance matrix 87

9.3 Application 88
9.3.1 Data 88
9.3.2 Preprocessing 88
9.3.3 Mapogram-based recurrence plot 89
9.3.4 Results 90

9.4 Discussion 92

10 Recurrence based dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.1 Introduction 97

10.2 Data 99

10.3 Lagged dependencies using recurrences 100

10.4 Testing for significance of observed values 102

10.5 Method 102

10.6 Results and discussion 103

10.7 Conclusion and outlook 107

11 Recurrences as Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.1 Introduction 109

11.2 Recurrence plots and complex networks 111

11.3 Application to logistic map 113

11.4 Application to marine dust record 118

11.5 Conclusions 121

12 Complex Network Based Techniques . . . . . . . . . . . . . . . . . . . . . . 123

12.1 Introduction 124

12.2 Complex networks 125

12.3 Recurrence Networks – a time series analysis approach by means of
complex networks 125

12.4 Identification of sudden transitions in paleoclimate 128

12.5 Complex networks for spatio-temporal analysis of continuous systems
131

12.6 Developing a prediction scheme for extreme events 132



iv

12.7 Conclusion and Outlook 134

13 Irregularly Sampled Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13.1 Introduction 137

13.2 Results 139
13.2.1 Transitions of the monsoon activity 139
13.2.2 Cross-hemispheric see-saw dynamics 139
13.2.3 Impact of solar activity on monsoonal see-saw pattern 141

13.3 Discussion 142

13.4 Methods 143
13.4.1 TACTS method 143
13.4.2 Recurrence plot analysis 145
13.4.3 Cross correlation of two irregularly sampled time series 147
13.4.4 Data availability 147

14 Data with Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

14.1 Abstract 155

14.2 Introduction 156

14.3 Results 156

14.4 Methods 163
14.4.1 Datasets 163
14.4.2 Constructing %t(x) from measurements 164
14.4.3 Network of recurrence probabilities 165
14.4.4 Detecting abrupt transitions using recurrence network community structure 166
14.4.5 Coincidence analysis of detected transitions with phase-locking periods of the PDO and

the ENSO 166

15 Gaining Confidence in Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 181

15.1 Abstract 181

15.2 Introduction 181

15.3 Recurrence Quantification Analysis 182

15.4 Variance estimation by bootstrapping 183

15.5 Illustration of the method 184

15.6 Application to real world data 186

15.7 Conclusion 188

16 How to Avoid Potential Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

16.1 Introduction 191

16.2 Recurrence plots and recurrence quantification 192

16.3 Pitfalls 192
16.3.1 Parameter choice for recurrence analysis 192
16.3.2 Recurrence threshold selection 193



v

16.3.3 Indicators of determinism 194
16.3.4 Indicators of periodic systems 195
16.3.5 Indicators of chaos 196
16.3.6 Discrimination analysis and detection of deterministic signals 198
16.3.7 Indicators of nonstationarity and transition analysis 198
16.3.8 Significance of RQA measures 200
16.3.9 Dynamical invariants from short time series 201
16.3.10 Synchronisation and line of synchronisation 202
16.3.11 Macrostructures and sampling 202

16.4 Conclusions 204

17 Avoiding Embedding Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

17.1 Introduction 205

17.2 Methodology 207

17.3 Case study applications 209
17.3.1 Lorenz Series 209
17.3.2 River Runoff Series 210

17.4 Results and Discussion 210
17.4.1 Lorenz Series 211
17.4.2 River Runoff Series 214

17.5 Summary 216

18 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

18.1 Methodological developments 219
18.1.1 Selection of the recurrence threshold 219
18.1.2 Recurrence plot features 220
18.1.3 Extending the recurrence plot approach for spatial data 220
18.1.4 Recurrence plot approach for high-dimensional data 221
18.1.5 Extracting driving forces from recurrence plots 221
18.1.6 New measures for recurrence plot quantification 221
18.1.7 Coping with irregularities 222
18.1.8 Recurrence analysis of data with uncertainties 222
18.1.9 Coupling analysis with recurrences 222
18.1.10 Significance test for recurrence based transition detection 223
18.1.11 Potential problems and pitfalls in recurrence plot analysis 223

18.2 Study of Recurrences in Earth processes 223
18.2.1 Integration of proxy records 223
18.2.2 Spatial recurrence analysis of vegetation variability 224
18.2.3 Identifying palaeoclimate transitions 224
18.2.4 Identifying external forcing from spatio-temporal data 225
18.2.5 Identifying interactions in drivers of global temperature 226

18.3 Outlook 226

19 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231





Dust Pattern at a Cave Wall (“Vermiculations”)Dust Pattern at a Cave Wall (“Vermiculations”)
Photo: N. Marwan

List of Abbreviations and Notations

Abbreviations

AUC area under the curve
BP before present (taken conventionally to be before 1950)
CCS California Current System
CHL chlorophyll concentration
CT computer tomography
CRP cross recurrence plot
DJF December, January and February
EAIASM East Asian-Indonesian-Australian summer monsoon
EASM East Asian summer monsoon
EEG electroencephalography
ENSO El Niño/Southern Oscillation
ERP event-related potential
EVI extended vegetation index
FAN fixed amount of nearest neighbours (neighbourhood criterion)
FT Fourier transform
GMT global mean temperature
IASM Indonesian-Australian summer monsoon
ITCZ Intertropical Convergence Zone
JJA June, July and August
ka thousand years
kyr thousand years
IS interstadial
JRP joint recurrence plot
LOI line of identity (the main diagonal line in an RP)
LOS line of synchronization (the distorted main diagonal line in a CRP)
pQCT peripheral quantitative computer tomography
Ma million years
MCR mean conditional probability of recurrence
RMD recurrence-based measure of dependence
RN recurrence network



viii

RP recurrence plot
ROC receiver operating characteristic
RQA recurrence quantification analysis
SMI Summer monsoon index
SOI Southern Oscillation index
SST sea surface temperature
SSTA sea surface temperature anomaly
TACTS transformation cost time series

Notations
〈 · 〉 average
| · | absolut value
‖ · ‖ norm
{·} set
δ(·) delta function (δ(x) = {1| x = 0; 0| x 6= 0})
δi, j Kronecker delta (δi, j = {1| i = j; 0| i 6= j})
ε small distance in the phase space in general; threshold value

(neighbourhood radius) for the construction of a recurrence plot
λ2 second eigenvalue of the Laplace matrix
ρ complex network measure: averaged degree centrality
σ standard deviation
Θ(·) Heaviside function (Θ(x) = {1| x > 0; 0| x ≤ 0})
τ time delay (index-based units)
ξ random number
A adjacency matrix of a network
BC complex network measure: betweenness centrality
C covariance matrix
C complex network measure: clustering coefficient
CR cross recurrence matrix between two phase space trajectories
D distance matrix
DT complex network measure: transitivity dimension
DET measure for recurrence quantification: determinism
DIV measure for recurrence quantification: divergence
EN TR measure for recurrence quantification: entropy
H(·) histogram or frequency distribution
JR joint recurrence matrix
ki complex network measure: degree centrality
` length of diagonal line in the RP
L Laplace matrix
L measure for recurrence quantification: average line length of

diagonal lines
Lmax measure for recurrence quantification: length of the longest

diagonal line
L complex network measure: average shortest path length
LAM measure for recurrence quantification: laminarity
m embedding dimension
N length of a data series
p(·) probability distribution



ix

pτ probability of recurrence after time τ
P(·) histogram or frequency distribution (same as H(·))
R recurrence matrix
RM D recurrence-based measure of dependence
RR measure for recurrence quantification: recurrence rate
RT measure for recurrence quantification: recurrence time
RT E measure for recurrence quantification: recurrence time entropy
S(τ) joint recurrence based measure of synchronization
T complex network measure: transitivity
TREN D measure for recurrence quantification: trend
T T measure for recurrence quantification: trapping time
Vmax measure for recurrence quantification: length of the longest vertical line





Sylvite Layers Outcropped in the Asse Mine (Germany) Sylvite Layers Outcropped in the Asse Mine (Germany) 
Photo: A. Hörchner

1. Introduction

1.1 Recurrence –
A fundamental concept in the system Earth and geoscience

A key principle in geoscience is the Doctrine of Uniformity, which states that physical laws
do not change throughout time: A (geological) process producing a specific geological phe-
nomenon today which can be directly observed, measured, and investigated now, would most
likely be the same (physical, chemical) process that formed a similar geological phenomenon
in the past. Inherent in this axiom is another fundamental principle, which is often not so
explicitly noticed: recurrence. Without recurrence in the system Earth, we would not be
able to apply and use the Doctrine of Uniformity. Although recurrence is a ubiquitous and
fundamental feature in the system Earth at many scales in time and space, such as the rock
cycle, activity of an active geyser, celestial mechanics, repeating patterns in a landscape, or
alternating sediment layers, this property is used for geoscientific investigations in only a
few specific contexts, such as cycles of glaciation or epochs of geomagnetic polarity – and
even then the term “recurrence” is usually not applied.

Recurring features appear, for example, in lake sediments, where the seasonally changing
environmental conditions can cause differences in the grain size or the colours of the
deposited material. The Swedish geologist De Geer was one of the first who linked the
alternating appearance of the lake sediments with the annual cycle and even the width of
these layers to changing environmental/climatological conditions (Fig. 1.1). In the beginning
of the 20th century, he was able to associate the layers in clay sediments in Sweden with
a seasonal cycle because of the obvious similarity to tree rings [115], which are also well
separated by annual pattern and whose width reflect seasonal weather conditions. For the
annually layered clay deposits he finally introduced the term “varves”, using the Swedish
word varv for “periodically recurring layers” (see footnote 1 at p. 458 of the original paper
[115]), which is now the standard term for such laminated sediments. Before De Geer, a
method to assign an exact chronology to geological samples was more or less non-existent,
the only common approach being that of a relative dating, based, e.g., on index fossils.
With varve based counting, De Geer introduced the discipline of geochronology allowing to
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Figure 1.1: Annually layered clay deposits representing coinciding recurring patterns from
three different sites in Finland (Heinäjoki, Leppäkoski, Vanaja) used 1918 in a study by
Sauramo [337].

assign absolute ages1 to a geological sample. With a real time information along geological
profiles, it is possible to study temporal changes, rate of changes, and return periods of
geological processes [337]. Moreover, De Geer compared different Holocene varve series
from different sites (e.g., Sweden, Denmark, USA, Canada) and found that they showed
similar, recurring patterns [114]. He inferred that this can happen only with a common
external factor, which he supposed to be the sun. The results of De Geer’s investigations offer
two important implications: (1) Recurring features in temporally well-resolved geological
profiles can be used for the comparison or assignment of features in records from different
sites, and (2) recurring features open opportunities for interpretations (such as the climate
as a common influencing factor). With his interpretation that the observed changes in the
varves’ thickness are caused by solar variation (via climate), De Geer was also one of the
first to relate geological data with palaeoclimate variation and to produce a time series
representing past solar variability. Past variation of the solar influence (solar insolation, to be
more precise) was also discovered in sediments of different origin: for instance, in sapropels
of the Mediterranean Sea.

1From a physicist’s point of view the term “absolute age” or “absolute time” is misleading, because the
measured age of a geological sample (measured using layer counting or any radiometric dating) is only an
estimate and can significantly deviate from the true (physical) time when the sample was formed. Actually, only
the true (physical) time is the “absolute time”.



1.1 Recurrence – A fundamental concept in the system Earth 3

Sapropels are dark coloured sediments rich of organic material, formed in the anoxic
zone of the deep sea. In the Mediterranean Sea, the sapropels form recurring layers of
several centimeters up to a meter (Fig. 1.2). Already before their first recovery in 1947 [58],
it was hypothesized that climate variation would have an effect on the organic content of the
deep part of the Mediterranean sea sediments [33]. Enhanced fresh water input as a result
of deglaciation in warming phases of the northern hemispheric climate would cause and
increase the anoxic zone, supporting the sapropel formation. First investigations claim to
have found such a link between warming climate and the occurrence of sapropels [e.g., 359],
supported by the fact that the recurring sapropel layers coincide well with variations in the
solar insolation, in particular with the recurring cycles of precession and eccentricity of the
Earth orbit [123, 141, 326]. Further studies have revealed that the reason for the formation
of sapropels is actually more complex [58]. Sapropel formation is modulated by several
other factors besides solar insolation, e.g., a repositioning of the Intertropical Convergence
Zone or an increased African monsoon. Comparison with other regions of recurring sapropel
formation, e.g., the Japan Sea, could help to better understand the mechanisms leading to
enhanced anoxic deep sea. Because of the found link to precession and eccentricity cycles,
an “astronomical fingerprinting” within the sapropel recurrences might be a way to resolve
the open questions [58].

0 2 4 6 8 10 12 14
Depth (mbsf)

Figure 1.2: Sapropel layers in a mediterranean sediment (core LC21, figure modified after
[123]).

Variations in proxy records are not the only evidence for solar variations. For example,
lake sediments reveal recurring patterns at time scales from a few years to several decades:
cycles of 2 to 8 years or 13 to 16 years have been found in lake sediments in South America
and are related to an impact of the El Niño/ Southern Oscillation [264] or the tropical Atlantic
[394]. Recurring variations in proxies can also be found at other places, such as in the Indian
monsoon realm, and can be related to further climatological phenomena, such as the Asian
summer monsoon [66], droughts [171], glacial cycles [61], permafrost thawing periods
[400], or spatio-temporal seesaw-like patterns [94, 194]. Besides information about the
climate of the past, proxy records can also provide information about past variability of the
environment or the geological conditions, such as vegetation dynamics [140] or the change
of the Earth’s magnetic field (wandering of the magnetic poles) [32, 200]. Furthermore,
mass movements, such as landslides, are of high interest, because of their potential triggering
by enhanced or extreme rainfall, variations in groundwater levels, or deglaciation, as to
be expected due to global warming [154, 393, 430]. Their recurrence properties can be
statistically linked with regional and global climate variation, such as El Niño/ Southern
Oscillation [393]. Typical recurrence patterns occur also in other geoecological processes,
such as river discharge with extreme floods. The recurrence property is then often used to
quantify risks, e.g., in terms of flood frequency (i.e., flood recurring only after 100 or 1000
years) [7].

Turning back to the palaeoclimate, internal and external drivers cause high-frequent,
slow, gradual, or abrupt changes in palaeoclimatic conditions. These variations represent
intrinsic recurrences at different scales. For example, recurring patterns in palaeoclimate
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data are often linked to changes in the solar insolation. Solar insolation varies at different
time-scales [21]:

• seasonal rotation of the Earth around the sun: annual time scale,
• solar activity: decadal time scale, e.g., 11 yrs cycle,
• and orbital variation: time scales of ten to hundred thousands of years, i.e., the slow

rotation of the Earth’ axis itself (precession), a change of the tilt of the Earth axis
(obliquity), and a deformation of the Earth orbit between more circular and more
elliptic shape (eccentricity).

The orbital variations are known as Milankovich cycles and are the main drivers for recurring
dramatic climate changes such as between glaciations and warm periods [22, 267]. Whereas
the palaeoclimate variation as derived from the geoscientific archives are only estimates
and contain a degree of uncertainty, the Milankovich cycles can be determined with high
accuracy, because the equation of motion for the dynamics of the Earth orbit in space can be
solved in good approximation using Hamiltonian mechanics. The planetary motion along
elliptical orbits goes back to Kepler in the early 17th and Newton in the late 17th century.
Classical (Newtonian) mechanics can be used to solve the equations of motion of an object
in a gravitational field of another object, resulting in the three Kepler’s laws of planetary
motion, which is a two-body problem. However, the celestial motion of objects in the solar
system is, in general, a many-body system, where the planets’ gravitational fields mutually
influence their orbits around the sun. Solving such a many-body problem (and even of a
three-body system) is not as simple as for a two-body problem and it was, therefore, at the
forefronts of science for a long time [267]. In this spirit and in honor of the 60th birthday
of the King of Sweden, Oscar II, in 1887, a prize was announced to solve the many-body
problem. The French mathematician Poincaré finally won this prize with his seminal work
on the three-body system and discovering the chaotic nature of the orbits [292]. In this
work, he proved an important theorem which not only affects the recurring orbits of objects
in a celestial system, but which is also a fundamental property of many complex dynamical
systems. The now well-known recurrence theorem states that a (conservative) system recurs
infinitely many times as close as one wishes to its initial state [292]. This theoretical finding
is compellingly confirmed by the real world, where recurrences can be observed in our
daily life and across all scientific disciplines. The investigation of recurrences has, therefore,
attracted attention and several approaches have been developed for this purpose.

Recurrences are not only limited to states of a low-dimensional process. Many processes
happen on multiple scales, levels, locations, and dimensions. The weather system is a good
example, representing dynamics at different scales and with multistable regimes, such as
local convection circulation, more regional advective moisture transport, and global dynamics
represented by jetstreams/ Rossby waves, Inter-Tropical Convergence Zone (ITCZ), and
Walker cells. The interplay, feedbacks, and multiple temporal and spatial scales form a
high-dimensional complex system, difficult to predict on time scales longer than a few days.
Conceptual modelling, e.g., with the famous models by Lorenz [204, 205], has demonstrated
the chaotic nature of the dynamics of such complex systems, but has also confirmed that
recurrence is a fundamental property, even in such high-dimensional systems [205]. High-
dimensional processes can also represent extended spatial variability, probably leading to
spatial recurring patterns (created by dynamical processes). Characterizing spatial or even
spatio-temporal pattern (pattern which changes over time) is not a trivial task. Ideas from
complex systems science have led to new approaches, such as climate networks (complex
networks for analysing spatio-temporal climate data [70]), but also the use of recurring
structures [232].
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Recurring dynamics, in temporal, spatial, or spatio-temporal domain, are often not easily
visible. Changes can occur in more subtle aspects of the dynamics than what is observed in
first and second statistical moments. It is also often not obvious whether cyclical variations
are really periodical; they could also be chaotic or stochastic. Another problem seriously
affects geoscientific data analysis when using sediments as proxy records. During deposition
the sedimentation rate is usually not constant. However, after collecting, they are usually
sampled along a regular length scale (e.g., from top to bottom). This results in a non-
equidistant temporal sampling of the time series and even in larger gaps. Most methods are
not able to analyse such irregularly sampled time series and require interpolation as a data
preprocessing step.

1.2 Recurrence analysis

For the study of recurring processes, several approaches are of interest. The power spectrum
analysis is probably one of the best known and widely used technique for the analysis of
periodicities in time series [344]. It allows us to find the main periods within the measured
signal (Fig. 1.3B). Wavelet analysis reveals similar information, but it additionally allows us
to identify the change of the detected periods over time (Fig. 1.3C). Both approaches are
useful, although they have some limitations, especially in the presence of windowing effect,
harmonics, nonstationarity, trends and noise, non-periodic signals, or generalisations for
analysing spatial or spatio-temporal data.

Another fundamental approach that can be used to investigate recurring features in time
series (and even in spatial data) is the recurrence plot. This approach is not restricted to
periodic variations and has its roots in the theory of dynamical systems (Fig. 1.3D):

Definition 1.2.1 — Recurrence plot. A recurrence plot (RP) is a binary, square matrix
R in which the matrix elements Ri, j correspond to those times j at which a state ~x i of a
dynamical system X recurs (in a Poincaré sense):

Ri, j = Θ(ε − ‖~x i − ~x j‖) (1.1)

with Θ the Heaviside function, ‖ · ‖ a norm, and ε a preselected recurrence threshold.

In the last years, RP has become a powerful tool of nonlinear time series analysis. RPs
were first introduced in 1987 by Eckmann, Oliffson Kamphorst, and Ruelle [86] as tools that
“are rather easily obtained aids for the diagnosis of dynamical systems”. In the following
years, RPs were firstly heuristically extended by several quantification approaches in order
to distinguish the differently appearing RPs derived from different dynamics [224, 444]. In
the last two decades, a lot of research has been performed to further develop this approach
and provide a theoretical foundation, leading to a well developed, theoretically founded,
and “active field, with many ramifications we [Eckmann et al.] had not anticipated” [240].
A historical overview on the developments within the RP field up to the year 2008 will be
presented in chapter 2.

RPs of different dynamics represent different, but characteristic appearances (Fig. 1.3D).
Such differences are quantified with the recurrence quantification analysis (RQA) (Fig. 1.3E).
The first RQA measures introduced were mainly based on the distribution of diagonal lines
(and their lengths) in the RP, expressed by the length distribution H(`) that counts the
number of diagonal lines in the RP that have exact length `. One interesting, frequently used
RQA measure that uses H(`) is the determinism:
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Definition 1.2.2 — Determinism. The determinism is the fraction of recurrence points
forming diagonal lines of at least length ` in the RP:

DET =

∑

`≥`min
`H(`)
∑

i, j Ri, j
. (1.2)

It measures the likelihood that the dynamics of the system sustains to follow a dynam-
ics that had been already occurred at a previous time; it is, therefore, related to the
predictability of the dynamics.

A change of such a measure over time is an indication for a changing dynamics [225, 239, 397].
Studying the variation of a recurrence measure with time is one of the basic and fundamental
applications of RPs in order to detect transitions between different dynamical regimes and
has been applied in many scientific disciplines, in Earth science, e.g., to detect changes in
the dynamics of the palaeoclimate represented by proxy records (e.g., in chapters 11 to 13).

Changes in recurrence measures are often discussed with respect to external drivers,
such as the solar variability or Milankovich cycles. For this purpose it would be interesting
and helpful to compare the recurrence properties of the external forcings with those of the
proxy records. We have suggested several approaches for multivariate recurrence analysis
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Figure 1.3: Exemplary recurrence plot (D) showing the recurrence structure of a sequence
of chaotic, periodic, and stochastic dynamics (A). The power spectrum (B) only reveals
the dominating frequency of the periodic epoch, although the signal consists of further
frequencies; the wavelet diagram (C) represents the different scales within the three segments
of different dynamics. Quantifying the recurrence plot (E) allows further insights into the
dynamics, such as predictable time as derived from the average line length in the recurrence
plot.
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that can be used to study temporal differences [230, 236], different types of synchronisation
[239, 322], and even causal relationships [103, 305].

A first approach, the cross recurrence plot (CRP), checks for the simultaneous occurrence
of a similar state in systems X and Y [228, 236].

Definition 1.2.3 — Cross recurrence plot. A cross recurrence plot is a binary, not
necessarily square, matrix CR in which the matrix elements CRi, j correspond to those
times j at which a state ~x i of one dynamical system X is similar to the state ~y j of a second
dynamical system Y :

CRi, j = Θ(ε − ‖~x i − ~y j‖). (1.3)

The state vectors ~x and ~y must have the same dimensionality, but they can have different
length (thus causing non-square CR).

Besides testing for an interrelationship, this CRP can be used to align the time axis between
two observations as shown in chapter 5.

In contrast to the test for similar states in two dynamical systems, RPs offer additionally
a test for simultaneous occurrence of a recurrence in two different systems by the joint
recurrence plot (JRP) [322]:

Definition 1.2.4 — Joint recurrence plot. A joint recurrence plot is a binary, square
matrix JR in which the matrix elements JRi, j correspond to those times j at which the
state ~x i of one dynamical system X recurs and at which the state ~yi of a second dynamical
system Y recurs as well:

JRi, j = Θ(εx − ‖~x i − ~x j‖) ·Θ(εy − ‖~yi − ~y j‖). (1.4)

The state vectors ~x and ~y can have different dimensionality, but they have to have the
same length (thus causing square JR); moreover, the recurrence threshold can be selected
differently for the both systems.

Joint recurrences are important when looking at generalized synchronizations [239, 322] or
coupling directions [324, 456]. For example, using the fraction of recurrence points in the
RP and the JRP, we can use ideas from information theory and define conditional measures
of dependence (see chapter 10).

The recurrence matrix R is a binary matrix and, when based on a metric, it is symmetric.
There is a striking similarity of this matrix with another mathematical object used in com-
plexity science: complex networks can be described using an adjacency matrix whose entries
represent links between pairs of nodes. For unweighted and undirected complex networks,
such adjacency matrix A is a symmetric and binary square matrix! Therefore, we have simply
identified the RP with the adjacency matrix of a complex network (Fig. 1.4) [78, 241, 368,
431]. The seminal work introducing this concept is presented in chapter 11. The resulting
recurrence network (RN) consists of nodes representing the time points of the phase space
trajectory and links that represent the similarity (recurrence) between a pair of time points.

Definition 1.2.5 — Recurrence network. A recurrence network A is the network repre-
sentation of the recurrence structure of a dynamical system X , represented by its states
~x i in the m-dimensional phase space:

Ai, j = Ri, j −δi, j (1.5)
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with R the recurrence matrix, Eq. (1.1), and δi, j the Kronecker delta (to avoid self-loops).
Network nodes represent the time points of the phase space trajectory and network links
represent their recurrences.

Similar states of a system are highly linked with each other in the RN, whereas diverging
states are far away in the network (Fig. 1.4B). A RN can be analyzed by the known network
measures. We have shown the relationship between specific network properties with the
geometrical properties of the phase space attractor [79, 457]. The network measures can,
thus, be used as additional diagnostic tools for time series analysis that complement the
other measures obtained from RPs [77, 78, 241]. The recurrence network based measures
can also be calculated within sliding windows, analogously to the approach for the RQA
measures. As with the RPs, here too, this procedure allows us to study subtle changes of the
processes encoded by the measured time series [73, 241].
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Figure 1.4: Exemplary complex network representation (B) of a recurrence plot (C) of
reconstructed sea surface temperature variability (A) in the South China Sea for the past
1.5 Ma BP [198]. The network consists of distinguished communities of nodes, representing
the alternating behavior of the SST values.

1.3 Objectives of this thesis
The first applications of the RP approach have already demonstrated the potential of the
method [237, 397, 418, 442], but they have also shown the need for a better understanding
of the RP features and the meanings of the heuristically developed recurrence quantification
measures, and the necessity to link them with theory. By 2007, we summarized the knowledge
with respect to the RPs available at this time by a review report [239]. However, a lot of
methodological questions, which are of particular interest for geoscientific research, remained
open:

1. How can we reliably select the parameters for the RP analysis?
2. What does the shape of the line structures in an RP mean?
3. How are RPs related to power spectra?
4. Are there any further measures of complexity that can describe the recurrence proper-

ties?
5. Does recurrence analysis also work for high-dimensional dynamics?
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6. Can we analyse recurrences in spatio-temporal data?
7. Can we identify external forcing from data?
8. How can we apply the RP to irregularly sampled time series?
9. How can we apply the RP to time series with uncertainties?

10. What is the potential of RPs in comparing the recurring features in different systems?
Can we identify coupling directions?

11. How significant are transitions identified with the RP approach?
12. Which method-related pitfalls occur in RP analysis?

Furthermore, when working within the geosciences, several research questions attracted
my attention, such as

1. How to integrate several proxy records with different sampling times but similar
geoscientific information?

2. How did climate change in the past, for example during the Plio-Pleistocence lake level
high-stands in East Africa or during Holocene enhanced/weaken periods of the Asian
summer monsoon?

3. Can we differentiate between abrupt and gradual changes in the palaeoclimate and
how significant are such changes?

4. Can we unravel interdependencies or even causality when comparing different climate/
palaeoclimate records and potential external forcings?

5. Are there spatial differences in landscape dynamics?
6. Are spatial differences, e.g., in phytoplankton bloom, caused by external drivers?

In this thesis, I summarize selected methodological research performed by me and my
students after the review report in 2007 [239] and focusing on these questions. This research
is published in peer-reviewed and ISI-listed journals.

I start with a historical overview of RP analysis in chapter 2. The selection of the threshold
parameter for creating the RP is a crucial step. For the purpose of signal detection, the
effect of different threshold values is studied and basic rules for such selection will be
suggested in chapter 3. Complex network theory offers another interesting approach for
selecting the threshold. Based on the connectedness of a network, an alternative threshold
selection procedure is explained in chapter 4. In chapters 5 and 6, I try to give the method a
more theoretical justification with respect to the shape of lines that appear in RPs and to
the information on periodicities by applying the Wiener Khinchin theorem. The question,
whether RP analysis also works for high-dimensional and spatially extended dynamics is
investigated in chapter 7. Alternative definitions of recurrences are introduced in chapters 8
and 9. In chapter 8, I extend the RP approach for spatial data, and in chapter 9, the approach
is further modified to even infer external driving forces from spatio-temporal variability. The
combination of RP and complex network analysis has lead to a new set of measures for
analysing recurrence properties and to identify dynamical regime changes, presented here in
the chapters 11 and 12. In the latter, I also briefly present the idea of using complex networks
for spatio-temporal data analysis, however since the focus of this thesis is recurrence, I do
not extend the discussion about this particular approach here. The challenge of irregularly
sampled time series is addressed in chapter 13, introducing the idea of transforming a
time series to a regularly sampled one using a cost function. Another challenge typical for
geoscientific data is addressed in chapter 14 by introducing the novel concept of probability
time series and replacing the standard binary RP with a probability matrix of recurrences.
The potential for analysing coupling directions using RPs is evaluated in chapter 10 and the
important topic of the significance of the recurrence quantification measures is presented in
chapter 15. Here I suggest a novel approach to prepare confidence intervals for RP analysis.
Finally, I discuss possible pitfalls related to RP analysis in chapter 16 and present a suggestion
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how to reduce embedding-related artifacts in chapter 17. It will be demonstrated how a
wrong choice of the embedding parameters can mislead to wrong results, in particular for
stochastic processes. Therefore, a procedure that determines a “safe” parameter space is
suggested in this chapter.

Most of these methodological developments are directly applied to geoscientific research
questions, except two examples involving physiological research questions in chapters 3 and
8. Nevertheless, these approaches can be also applied to geoscientific problems. In chapter 5,
I use recurrence features to temporally align different proxy records from the same lake but
different boreholes, allowing for a potential integration of these different records, e.g., to
prepare a stacked record. Differences in spatiotemporal landscape (vegetation) dynamics
are investigated on the base of satellite images in chapter 7. Phytoplankton bloom is studied
in chapter 9 and the likely forcing of such algae bloom is reconstructed in this study. The
interaction between different drivers of global temperature are investigated in chapter 10.
In chapters 11 to 15, I identify subtle changes in the palaeoclimate and relate them to
Milankovich cycles and solar variability. One of the first applications of recurrence analysis
for river runoff data is exemplified in chapter 17.
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2. Historical Review of Recurrence Plots

Paper 1 N. Marwan: A Historical Review of Recurrence Plots, European Physical Journal
– Special Topics, 164(1), 3–12 (2008). DOI:10.1140/epjst/e2008-00829-1

R Since the publication of this paper in 2008 the method of RPs has been further extended
by new knowledge, novel measures of complexity, and new concepts. This historical
overview is, thus, not complete. The most important developments since 2008 are the
combination of RPs with ideas from complex network theory in 2008/2009 [241, 368,
431] (see also Chapter 11), the introduction of multi-scale RP analysis in 2012 [50]
significance tests for RP quantification 2009 and 2013 [235, 341] (see also Chapter 15),
and of schemes for the analysis of directed, indirect, and hidden couplings 2010 to
2012 [103, 144, 456] (see also Chapter 10).
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Figure 2.1: Publications about RPs and RQA for the last three decades (up-
dated Fig. 2.3 of this paper, January 2019).

Abstract
In the last two decades recurrence plots (RPs) were introduced in many different scientific
disciplines. It turned out how powerful this method is. After introducing approaches
of quantification of RPs and by the study of relationships between RPs and fundamental

https://doi.org/10.1140/epjst/e2008-00829-1
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properties of dynamical systems, this method attracted even more attention. After 20 years
of RPs it is time to summarise this development in a historical context.

2.1 Introduction

The technique known as recurrence plot is 20 years old. However, recurrences were studied
and employed long before. The Maya calender is one example where we can find the principle
of recurrences as the basic idea. We encounter recurrences in different aspects in nature and
social life.

With the birth of the modern mathematics in the 19th century recurrence was discovered
to be a fundamental property of conservative dynamical systems. Poincaré formulated his
thesis in the work about the restricted three-body system, which won him a prize sponsored
by Oscar II of Sweden and Norway. Poincaré found that “In this case, neglecting some
exceptional trajectories, the occurrence of which is infinitely improbable, it can be shown,
that the system recurs infinitely many times as close as one wishes to its initial state.”
(translated from [292]). In the following years, several important mathematical works were
performed (e.g. [161]).

However, more than a half century had to pass for recurrences to be comprehensively
studied on numerical simulations and real measurements. Not until the introduction of
powerful computers such numerically costly studies were possible. As an example, we may
take the Lorenz system, which was one of the first numerical models exhibiting recurrences
and chaotic behaviour [204]. Recurrences were analysed by first return maps [297], space
time separation plots [300], return time and recurrence time statistics [10, 143]

The persistent growth of computer power allowed even more computer intense inves-
tigations, as a pair-wise comparison of all possible combinations of pairs of a data series.
This can be done by the similarity matrix, a graphical representation of the similarity of all
pair-wise combinations in the considered data series. Although strictly speaking, the idea of
a distance metric can be traced back to the Pythagorean Theorem, the modern concept of
this tool dates back to the 1920s in both applicative [387] as well as methodological fields
[207]. The work of Kruskal in the 1960s [182] was one of the most quoted works in statistics
and deeply affected many fields of investigation from ecology to psychology and economics.
All these fields appeared as separate by physical science so that the appreciation of these
works remained limited in physics. However, these authors deeply investigated and exploited
this approach for an analysis of distance spaces allowing for an unbiased representation of
virtually all kind of data without any constraint about their characteristics. In this manner,
they paved the way for the nowadays recognized ability of recurrence based methods to deal
with non-stationary, non-linear and relatively short data series.

With the intense usage of computers, the similarity matrix was re-invented by several
scientific disciplines around the change from the 1970s to 1980s, and therefore different
terms for the same technique, like dot plot [55], contact map [67, 148], similarity matrix [181,
183] or distance matrix [332] emerged. In the field of chaos theory it found its way a few
years later as the recurrence plot [86] (Fig. 2.2A). Now the aim was to compare all possible
states represented by a higher-dimensional phase space trajectory. In case the trajectory runs
through a region in the phase space it passed before, then we consider it as a recurrence.
A recurrence means that the recurrent state is somehow similar to a former state. This
definition of similarity offers leeway to adopt the method to the needs of the investigation,
as we will see later. Thus, the recurrence plot technique was not really new. The intention of
Eckmann et al. was to have another representation of the dynamics of the systems. However,
they immediately noted that further important information, like determinism, divergence
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Figure 2.2: (A) Recurrence plot and (B) “close returns plot” of the x-component of the
Lorenz system [204]. Used RP parameters: m= 5, τ= 5, ε = 7.6, L∞-norm.

and drifting behaviour can be found in such plots. They also stated that the lengths of the
diagonal line structures in the RP are related to the positive Lyapunov exponent.

2.2 The birth of the recurrence plot
By utilisation of the similarity matrix as a tool to visualise recurrences of higher-dimensional
phase space trajectories, Eckmann et al. did not expect to establish a new direction in
nonlinear data analysis. Nevertheless, 1987 is considered to be the birth of recurrence plots
and their quantification as a modern tool of nonlinear data analysis.

Short time later (no later than 1992), different authors independently introduced another
kind of representation of recurrences [258, 446]. They did not compare all possible time
points, but only a given time into the past and future (Fig. 2.2B). Here a further name
appeared: the close returns plot. Such a representation can be more intuitive, in particular
for beginners, because the line structures of the recurrence plot will be parallel to the x-axis.

2.3 Recurrence quantification analysis
These first years were characterised by a rather rare application of this method (Fig. 2.3).
The appearance of recurrence plots in publications was somehow exotic. Moreover, up to this
time, recurrence plots were just a visualisation tool, what yielded to the disadvantage that the
user had to detect and interpret the patterns and structures revealed by the recurrence plot.
Low screen and printer resolutions further worsened this issue. To overcome this subjective
part of the method, starting in the late eighties, Zbilut and Webber tried to quantify the
structures of the RP. At first they just determined the density of recurrence points in the
RP and studied the histogram of the lengths of diagonal lines [418, 442, 444]. In the
following five years, they introduced the known measures of complexity based on diagonal
line structures of recurrence plots and therewith established the recurrence quantification
analysis (RQA):

• percentage recurrences or recurrence rate
• percentage determinism
• maximal line length and divergence
• Shannon entropy of the distribution of the line lengths
• trend.
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Figure 2.3: Publications about RPs and RQA for the last 20 years (May 2008).

For a definition of these measures we refer to [239]. The usefulness of these measures was
shown by an increasing number of applications to real data. However, until 1995, only few
applications of RPs and RQA appeared in publications.

Since the early nineties, Webber provides a freely available software (RQA Software)
which can be used to compute RPs and the RQA measures. In 1996, Kononov started
the Visual Recurrence Analysis (VRA) software. It has a user-friendly graphical interface
and computational enhancements. Therefore, this software is rather popular. The TISEAN
package, provided by Hegger, Kantz and Schreiber, was also one of the first software packages
able to compute RPs (but without quantification, just RPs). For locations of these software
in the WWW we refer to the web site http://www.recurrence-plot.tk.

As a next milestone we find the introduction of the time-dependent RQA. The RQA
measures are calculated from windows moved along the main diagonal of the RP. This allows
for the study of the evolution of the RQA measures over time [397]. It was shown that with
this approach it would be possible to detect transitions in dynamical systems. At this moment,
only transitions between regular and non-regular dynamics (like period-chaos transitions)
could be detected. In the same year, a publication with the promising title “Recurrence
plots revisited” by [45] appeared. It suggested to use RPs to reconstruct the driving force of
dynamical systems and introduced the idea of meta recurrence plots, based on windowing
and correlation sum.

The major methodological work on the RP and RQA during the 1990s was performed
by the group around Zbilut and Webber in Chicago. Since the mid-1990s, the scientific
community became more and more aware of RPs, as the continuously increasing number of
publications between 1996 and 2004 demonstrates (Fig. 2.3).

Towards the end of the 1990s, first theoretical studies on the RP regarding their rela-
tionship with dynamical invariants and the preservation of the topology appeared. McGuire
et al. analytically demonstrated that the distance matrix as the base of the RP preserves all
information to reconstruct the underlying data series [250]. Faure and Korn have shown
that the cumulative distribution of the lengths of the diagonal lines is directly related to the
K2 entropy [101]. The link between the columns of the RP and the information dimension
was discussed by Gao and Cai [110].

http://www.recurrence-plot.tk
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In 1998, Iwanski et al. already discussed the issue whether it is really necessary to embed
in order to derive quantities for the description of the dynamics. The authors based their
discussion on more heuristic numerical work and by using the RQA measure maximal line
length. This issue was further discussed by Gao and Cai [110], who also used the RP in
order to estimate recurrence times. They defined two types of recurrence times based on the
vertical distance between recurrence points in the RP.

In 1999, the perpendicular RP was suggested as a refinement in order to estimate the
divergence of the states [53]. Here a recurrence is defined using the additional condition
that the recurrence points have to lie on a plane which is perpendicular to the phase space
trajectory of the reference point. The iso-directional RP, introduced in 2002, goes in a similar
direction [151]. Its additional recurrence condition requires that the recurrent phase space
trajectories have to evolve in parallel, i.e. in the same direction. Unfortunately, these variants
of an RP are not popular, probably because of their higher computational efforts.

2.4 Extensions for the recurrence plot and quantification analysis
Also around the change to the new millennium, the RP technique was extended to the bivari-
ate cross recurrence plot (CRP) [222, 439]. This bivariate extension tests for simultaneous
occurrences of similar states in two different systems. Consequently, cross recurrence quan-
tification analysis followed. This technique can be used to detect deterministic signals [439]
and to study complex interrelations between different systems [228, 238]. Here delay based
variants of the RQA measures were introduced [228]. Furthermore, CRPs appeared rather
illustrative to study differences or transformations of time scales of similar observations
[236]. This feature was later used to understand changing shapes of line structures in RPs
[230]. The detection of deterministic signals by using RQA was further demonstrated by
Zbilut et al. [440].

With the introduction of CRPs, the freely available CRP Toolbox for MATLAB, written by
Marwan, appeared. This toolbox is platform independent and contains almost all RP related
tools and measures. It is noteworthy that also commercial software started to include at least
the computation of RPs, like Dataplore (ixellence GmbH, Germany). For locations of these
software in the WWW we again refer to the web site http://www.recurrence-plot.tk

With the new millennium, further measures of complexity were added to the RQA.
Marwan et al. introduced measures based on vertical line structures in the RP and are
called laminarity and trapping time [237]. Using these measures it was possible to detect
chaos-chaos transitions.

At the same time, in bio-informatics RPs and RQA were employed to investigate the
spatial structure of biopolymers [118]. This was a deep change in perspective, because here
these methods do not analyse time series but spatial series or even spatial structures (starting
directly from distance matrices without the need of a pre-existing series, [420]) and makes
the technique to come back to its ‘purely statistical’ lineage (as opposite to the dynamical
lineage).

2.5 Theoretical basis and dynamical invariants
Between 2002 and 2006, Romano and Thiel published several pioneering articles related to
different aspects of RPs. They theoretically justified the choice of the recurrence threshold
for data with observational noise and were able to analytically describe an RP for noise
[380, 383]. They explained the link between the line lengths of the diagonal lines and
the dynamical invariants [384]. This work led to further studies about the influence of
embedding [216, 381, 382]

http://www.recurrence-plot.tk
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Figure 2.4: (A) Pattern of gaps (all white areas) in a recurrence plot of a modulated harmonic
oscillation cos(2π1000t+0.5 sin(2π38t)) sampled with 1 kHz. These gaps represent missing
recurrences due to the sampling frequency close to the frequency of the harmonic signal. (B)
Corresponding RP as shown in (A), but for a higher sampling rate of 10 kHz. As expected,
the entire RP now consists of the periodic line structures due to the oscillation. Used RP
parameters: m= 3, τ= 1, ε = 0.05σ, L∞-norm.

In 2004, a real multivariate extension of RPs, the joint recurrence plot (JRP) was introduced
[322]. JRPs test for simultaneous occurrences of recurrences in different systems and are
proper means for the detection of general synchronisation [321]. Romano et al. have
further demonstrated how to use a delay based RQA measure for the detection of phase
synchronisation, even for non-phase coherent oscillators [323]. This technique can be used
to detect the direction of the coupling between systems [324]. During this time, the idea of
twin surrogates appeared, which are dynamics preserving surrogates based on recurrences
[239, 386]. Such surrogates can be used to derive a statistical inference for a synchronisation
analysis. Moreover, a spatial extension of RPs was introduced, resulting in RPs of higher
dimension (like 4D or 6D) [232].

As we can see, a main part of theoretical and methodical work was now done by the group
of Marwan, Romano and Thiel in Potsdam. Consequently, a first international workshop
exclusively dedicated to recurrence plots was organised in 2005 in Potsdam, Germany (33
participants).

Instead of using spatial information of the phase space trajectory for the definition of
recurrence, Groth has suggested to use the local rank order [128]. The local rank order
defines specific order patterns whose recurrences are represented by the order patterns RP.
This definition of an RP can help to overcome problems with changing amplitudes (e.g. drift).

The work of the Potsdam group was continued by Zou, Ngamga, and Schinkel who
worked on a theoretical approach for recurrences of quasiperiodic systems [453, 454], on
different kinds of transitions, as to strange non-chaotic attractors [274], and on order patterns
RPs [339].

The sampling rate of oscillating signals can be of importance for the detection of recur-
rences [96, 97]. Under certain conditions, large gaps can appear in an RP where actually
recurrence points should be (Fig. 2.4). This feigned disadvantage can be indeed rather
helpful for the detection of slight frequency changes in oscillating signals which are not
visible by standard spectral analysis.

A second international workshop on RPs was organised in 2007, this time in Siena, Italy
(44 participants).
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In 2008, Rohde et al. linked statistical properties of the distance matrix to the variance
and covariance (at least for stochastic processes) [320]. Krishnan et al. considered RPs from
a completely different point [179, 180]. They stressed the fact that an RP can be considered
as the adjacency matrix of a complex network, allowing topological analysis of networks or
graphs by means of RQA. This approach is especially interesting in many interdisciplinary
scientific research.

2.6 The spreading application fields
In the last years, RPs again received more attention. Since 2005, more than 50 publications
appear per year (Fig. 2.3). Whereas in the beginning of the applications of RPs, the method
was mainly applied in life sciences (e.g. cardiology, neuro-psychology), the method became
popular in other scientific fields during the years. Starting in 1994, a first application in
earth sciences [185], in 1996 in finance [117], and in 1999 in engineering [90], chemistry
[331] and applied physics [408] appeared. Since 2000 we find numerous applications in
many disciplines, from physiology, to biology, earth sciences, acoustics, engineering and
material sciences, finance and economics, to fundamental research in chemistry and physics
(for examples we refer to [239]).
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Figure 2.5: Usage of the CRP Toolbox for Matlab since 2003.

For the usage of the CRP Toolbox (cf. http://www.recurrence-plot.tk) we have a
statistic of the main purposes of application, which allows us to estimate the distribution of
applications of recurrence plot based techniques in different scientific disciplines since 2003
(Tab. 2.1, Fig. 2.5). Although we found few repetitions of downloads, the main distribution
of application fields is not affected by such repetitions. A further problem in analysing
these data is, that we sometimes got multiple choices of scientific fields, even rather unlike
combinations, like earth science and neuro science. The selection of the scientific fields and
sub-fields may occur rather arbitrary. We do not claim that it is a complete and best selection.
However, it is mainly based on the submitted scientific fields or research interests of the
users. Some noteworthy and interesting fields are hidden within the more general subjects,
like artificial intelligence (in engineering), image processing or telecommunications (in
computer and IT networks) or volcanology (in geophysics). Several users have not provided
information about the intended purpose. We should also mention that we ensure a high data
policy and use the provided data only for a statistical analysis like this.

http://www.recurrence-plot.tk
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Table 2.1: Scientific fields of usage of the CRP Toolbox since 2003 (May 2003 – October
2005, November 2005 – May 2008; descending order of usage in period 2005–2008).

Field Subject 2003–2005 2005–2008

Life sciences Psychology/ cognitive and neuro sciences 54 147 152 275
Medicinal research/ bio-electronics 59 75
Cardiology 24 36
Genomics/ DNA sequencing 2 6
Proteins/ systems biology 8 6

Engineering Engineering 39 56 63 131
Computer and IT networks 7 30
Speech signals/ audio analysis 8 18
Traffic and transportation 2 14
Metal processing and analysis 0 6

Earth sciences Atmosphere and weather/ climatology 10 59 29 89
Solar and astrophysics 9 14
Hydrology 4 12
Ecology 19 11
Geology 5 9
Geophysics 4 5
Seismology 6 4
Geography 2 5

Physics Applied physics 20 31 38 72
Theoretical physics 11 34

Economics Finance and markets 35 41 41 55
Economics 6 14

Education 3 21
Chemistry 2 12
Social sciences 1 2
Others 43 71

For a usage statistics we consider two separate periods: a first period between May 2003
and October 2005 with 383 downloads and a second between November 2005 and May
2008 with 728 downloads, revealing the increasing popularity of RPs and the needs of a
corresponding Matlab toolbox. The distribution of the application fields has only slightly
changed between these two periods; only the increase of applications in engineering (from
15% to 18%) and the slight decrease in earth sciences (from 15% to 12%) is remarkable
(Fig. 2.5). Therefore, in the following we discuss only the second period. The main application
fields are life sciences (275 downloads), where psychology, neuro and cognitive sciences
(EEG measurements) take the largest part (152 downloads) and cardiology only the third
largest part (36 downloads) behind different medical problems (75 downloads). The next
application fields are engineering (131), earth sciences (89), physics (72), economics (55),
education (21), chemistry (12) and even social sciences (2). For 71 downloads we have not
received sufficient information about the purpose of the usage.
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2.7 Outlook
A rather curious sign that RPs are at the final step to really become widely known and
accepted, we conclude with the 2008 April hoax of the Australian office of the internet
company Google. In a press release on April 1st, 2008, Google announced the launch of a
new search technology called gDay, which would be able to accurately predict future internet
content [119]:

“. . .Using Google’s index of historic, cached web content and a mashup of
numerous factors including recurrence plots and fuzzy measure analysis, gDay
creates a sophisticated model of what the internet will look like 24 hours from
now – including share price movements, sports results and news events. . . . ”

As we know, many things Google introduced turned out to be quite popular later.
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Abstract
Over the last years recurrence plots (RPs) and recurrence quantification analysis (RQA) have
become quite popular in various branches of science. One key problem in applying RPs
and RQA is the selection of suitable parameters for the data under investigation. Whereas
various well-established methods for the selection of embedding parameters exists, the
question of choosing an appropriate threshold has not yet been answered satisfactorily. The
recommendations found in the literature are rather rules of thumb than actual guidelines.
In this paper we address the issue of threshold selection in RP/RQA. The core criterion for
choosing a threshold is the power in signal detection that threshold yields. We will validate
our approach by applying it to model as well as real-life data.

3.1 Introduction
As recurrence plots (RPs) and their quantification (recurrence quantification analysis, RQA)
[239] are becoming ever more popular in many disciplines, beginners are often faced with
the problem of finding suitable parameters for embedding and recurrence threshold. For
finding suitable embedding parameters, different approaches were suggested, like auto-
correlation, mutual information, false nearest neighbours etc., and were already discussed
in the literature [42, 109, 165, 398]. Yet the choice of the neighbourhood size is still under
discussion and often causes uncertainties in applying RPs and RQA.

Several rules of thumb for the choice of the threshold have been suggested – a few per
cent of the maximum phase space diameter [258], a value which should not exceed 10%

https://doi.org/10.1140/epjst/e2008-00833-5


22 Chapter 3. Optimal Recurrence Threshold

of the mean or the maximum phase space diameter [172, 442], or a value that ensures a
recurrence point density of approximately 1% [445]. Further suggestions are to choose
ε according to the recurrence point density of the RP by seeking a scaling region in the
recurrence point density [445] or to take into account that a measurement of a process is
a composition of the real signal and some observational noise with standard deviation σ
[383]. In order to get similar results as in noise-free situations, ε has to be about five times
larger than the standard deviation of the observational noise, i. e. ε > 5σ. But this approach
fails for signals of very low signal-to-noise ratio (SNR) or if the amount of noise is unknown.
In any case, the choice of the threshold depends on the aim of the analysis. For example, in
a recurrence based synchronisation analysis or for joint recurrence plots (JRPs) [323], the
threshold should be chosen in a fashion, that the recurrence point density is the same in the
individual RPs.

In the following we will study the impact of recurrence threshold on signal detection
[6, 439, 440]. As a prototypical and analytically well understood example we consider
deterministic signals in a noisy environment (additive noise) and use several recurrence
based measures in order to separate a signal from noise. We evaluate the applicability of
this procedure in signal detection by receiver operating characteristics (ROC) [102, 320, 459].
To assess our findings in the model system we apply it to electroencephalographic (EEG)
data obtained in a classical setup – the oddball paradigm [372].

3.2 Recurrence based detectors
Deterministic signals have a different recurrence structure than purely stochastic ones.
Therefore, it was suggested to apply RQA to distinguish stochastic and deterministic processes
[6, 320, 439, 440]. The base of the RQA is the recurrence plot, which visualises recurrences
in the phase space of a state vector ~x i (i = 1, . . . , N),

Ri, j = Θ(ε − ||~x i − ~x j ||), (3.1)

where Θ is the Heaviside function, || · || is a norm and ε is the recurrence threshold. For
an overview about RPs and related aspects see [239]. RQA provides several measures of
complexity. The recurrence rate RR

RR=
1

N2

∑

i, j

Ri, j , (3.2)

is the density of recurrence points in an RP and can be interpreted as the probability that
any state will recur. A phase space trajectory of a deterministic system is characterised by
epochs where different segments of this trajectory run parallel for some time. This behaviour
is mirrored in the formation of diagonal line structures in the RP.

Denoting the number of lines of exact length l with P(l), the RQA measure determinism
DET is defined by

DET =

∑

l≥lmin
l P(l)
∑

l l P(l)
, (3.3)

where lmin is the minimal length of a diagonal line necessary to be considered as a line; in
the present work we use lmin = 2. DET can be interpreted as the probability that two closely
evolving segments of the phase space trajectory will remain close for the next time step.
Note that determinism does not relate to the mathematical notion of the term as such but
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rather stresses the fact that RPs of stochastic processes usually reveal fewer diagonal lines,
whereas RPs of deterministic processes contain more and longer diagonal line structures.

Instead of considering diagonal lines, we can measure vertical recurrence lines and
estimate histograms P(v) of vertical line lengths v. The measure

LAM =

∑

v≥vmin
l P(v)
∑

v v P(v)
(3.4)

is called laminarity (in the present work we use vmin = 2) and measures the probability that
a state will not change (within the ε error) for the next time step. Such behaviour is typical
for intermittency and laminar states [237].

The last measure considered here is the mean recurrence time RT ,

RT =

∑N
w=1 w P(w)
∑N

w=1 P(w)
. (3.5)

As an estimator of recurrence time, we measure the vertical distance w between recurrence
structures in an RP (corresponding to the length of white vertical lines if Ri, j = 1 is black and
Ri, j = 0 is white). The number of vertical distances of exact length w is denoted by P(w).
Note that this estimator is a lower limit estimator. A definition of an upper limit estimator
can be found in [110].

3.3 Receiver operating characteristic
Signal detection can be considered as a binary classification procedure by using a measure
λ, where for λ ≥ η the signal is detected otherwise not. The receiver operating characteristic
(ROC) is a plot of the probability to detect the signal correctly with λ (true positives, pt)
vs. the probability to classify the measurement as a signal although it is not (false positives,
p f ) [102, 459]. In the theory of statistical testing pt is also referred to as the power of a test.
As the values of pt and p f correspond to the sensitivity and (1− speci f ici t y) respectively,
for an optimal detection, a high value of pt and a low value of p f is desired.

The ROC curve serves as a performance measure of the chosen detector λ. A diagonal
line means that classification of the signal or the noise as signal is equiprobable. Therefore,
a reliable signal detection is only achieved, if the ROC curve evolves above the diagonal
(Fig. 3.3C).

As a summary of the ROC the area under the curve (AUC) is frequently used. The higher
the AUC the better the detector performs. The AUC corresponds to the probability that a
signal will have a higher λ than the “no-signal”. A value of AUC=1 corresponds to a 100%
correct classification, whereas for AUC=0.5 we are not able to distinguish signal from noise.

To calculate the ROC we use 10,000 realisations of Gaussian white noise ξ, where we
consider a signal s to be modified by additive noise resulting in the measurement x = s+ ξ.
For each realisation we compute the measures RR, DET and RT of the measurement x as
well as for the noise ξ, providing the frequency distributions hx(λ) and hξ(λ) of the values
of the detector for the measurement x and the noise ξ (Fig. 3.3A, B). From the probability
distributions h̃x = hx/

∑

hx and h̃ξ = hξ/
∑

hξ we calculate the probabilities of true and
false positives by

pt =

∫ ∞

η

hx(λ)dλ and pf =

∫ ∞

η

hξ(λ)dλ. (3.6)

In order to get the ROC curve, pt and p f are calculated for η ∈ [min(λ) max(λ)].
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3.4 Optimal recurrence threshold for a prototypical example
The main purpose of this work is to find a suitable criterion for the selection of an optimal
recurrence threshold ε capable of detecting a deterministic signal in a noisy environment.
Therefore the threshold with the highest AUC would be optimal for our purpose.

In order to study the AUC for different ε, we use a prototypical example providing a
deterministic chaotic signal. We employ the first component of the quasiperiodically forced
logistic map [403] as the deterministic signal s

si+1 = f cos(2πθi)− asi + s3
i (3.7)

θi+1 = θi +ω mod 1. (3.8)

For parameters a = 1.3 and f = 0.7, the system is in a chaotic regime (Fig. 3.1). For
the analysis we used only 600 values (transients at the beginning were removed). The
measurement x is formed by the composition of the normalised signal s (µ = 0, σ = 0) and
Gaussian white noise ξ (µ = 0, σ = 0), i.e. x = s + aξ, where a is the noise level, µ the
mean and σ the standard deviation. In this example we use a noise level of a = 0.75.
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Figure 3.1: Quasiperiodically forced logistic map.

As the map is 2-dimensional the RP is calculated using an embedding dimension of m = 2
and a delay of τ = 1. The RP of this signal s clearly reveals diagonal line structures indicating
deterministic behaviour (Fig. 3.2A). These structures persist if the signal is slightly corrupted
by noise (Fig. 3.2C).

For a given recurrence threshold (ε = 0.5), the histograms for the RR measure are
presented in Fig. 3.3A and B. The overlap of the histograms of RR for the noise corrupted
signal and the Gaussian white noise is small, providing a good discrimination of the signal.
The corresponding ROC confirms the good performance of this measure (Fig. 3.3C). It should
be noted that the distributions of the measures do not follow a normal distribution (gray
line in Fig. 3.3A, B). This is important for the calculation of the ROC, because it can yield
different results [231].

We calculate the AUC for the measures RR, DET , LAM and RT with varying ε ∈ [0 1.5].
If ε is too small, recurrences mainly appear due to the fluctuations caused by the noise. A
discrimination of the signal is therefore difficult and the AUC is low (Fig. 3.4). For increasing
ε the RP obtains the recurrence structure contained in the signal. The detection of the signal
becomes better and the AUC is high. If ε becomes too large almost every point is in the
neighbourhood of every other point, thus hiding the characteristic recurrence structure. The
signal is again not well detectable and the AUC is decreasing. Such a behaviour can be
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Figure 3.2: Detail of the recurrence plot of (A) the quasiperiodically forced logistic map, (B)
Gaussian white noise and (C) a noise corrupted signal of the quasiperiodically forced logistic
map (noise level 0.1). Embedding parameters m= 2, τ= 1, recurrence threshold ε = 0.5.
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Figure 3.3: Histogram of the RR detector for 10,000 realisations of a measurement containing
(A) a signal from the quasiperiodically forced logistic map and (B) Gaussian white noise. A
fit of a normal distribution is presented as a gray line. Applying a threshold on the detector
RR we will be able to detect the signal in most cases. This is characterised by (C) the ROC
curve, which is based on the probabilities to detect true positives (pt) and false positives
(p f ). If the ROC curve would follow the diagonal line (dotted line), we would not be able to
distinguish the signal from noise.
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observed in RR, DET and RT (Fig. 3.4). The measures RR and DET perform best with a
maximum AUC of about .8 (RR) or even .9 (DET) for ε = 0.4. In contrast, the AUC for RT is
significantly smaller and has its maximum of 0.6 for an ε = 0.15. This suggests that RT is
not an optimal detector for chaotic maps. The measure LAM shows a completely different
behaviour. Its values are below 0.5, indicating that LAM falsely classifies noise as the signal.
That is due to the fact the RP of noise contains more vertical structures than the RP of the
signal (Fig. 3.2) which does not contain any laminar phases. Therefore, the measure LAM is
not appropriate for detecting a deterministic signal as considered here. However, as we will
see later, this measure is a useful detector for signals like EEGs which do contain laminar
phases.
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Figure 3.4: AUCs vs. ε for the measures (A) RR, (B) DET , (C) LAM and (D) RT for the
quasiperiodically forced logistic map. The AUC for RR and DET (A, B) is rather high in a
range of ε ∈ [0.20.78], with the maximum at ε = 0.4 (dotted line). The AUC of RT (D) is
significantly lower, with a maximum at ε = 0.15 (dotted line). The AUC of LAM is lower
than 0.5, indicating that this measure falsely classifies noise as signal. An AUC level of 0.5
(dash-dotted line) means that the detector is not able to find the signal.

3.5 Application on EEG measurements

We apply the suggested procedure to EEG measurements of a study on event-related potentials
(ERPs). The paradigm used was a visual oddball featuring a prominent P300, which is a
centro-parietal positivity peaking at about 300 ms after the presentation of a stimulus. The
P300 has been shown to be senstive to stimulus category (target vs. non-target) of the
eliciting stimulus [372].

The simuli were red and green disks presented in randomized, equiprobable order.
Stimulation duration was 100 ms, the interval between successive stimuli 900 ms. The task
was to count the items of one colour (green or red) thereby constituting the target (A) (items
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Figure 3.5: Distribution of (A) mean and (B) maximal phase space diameter of 10,000
realisations of the noise corrupted quasiperiodically forced logistic map in an embedding
space of m= 2 and τ= 1.

to be counted) and non-target condition (B). This setup is known to elicit a prominent and
reproducible P300 in the target condition (compared to the non-target condition).

The EEG was recorded from 40 Ag/AgCl electrodes (impedances ≤ 5 kΩ) at a sampling
rate of 250 Hz using a BrainAmp DC amplifier (Brain Products GmbH, Munich, Germany).
All electrodes were initially referenced to an electrode on the left mastoid bone (A1) and
converted to average reference off-line. After standard artifact rejection about 250 trials
remained in each condition. For our purpose we selected 200 trials of one subject recorded
at electrode PZ. The data was baseline corrected to 100 ms pre-stimulus. Details of artifact
rejection and pre-processing can be found in [401].

We consider a pre-stimulus interval of 250 ms duration, immediately before the stimulus
(−200–50 ms) and a 250 ms interval during the P300 (200–450 ms). During the pre-stimulus,
the two measurements of condition A and B should not be distinct, resulting in a AUC of
around 0.5. In contrast, if the detectors are able to distinguish the two conditions, their AUC
values should be higher than 0.5. For the computation of the ROC the 200 trials are used as
realisations. The AUCs are calculated for recurrence thresholds ε between 0.1 and 1.0 with
steps of 0.01, and using an embedding of m = 3 and τ = 2. The embedding parameters were
estimated using the commonly accepted methods of false nearest neighbours and mutual
information [165].

As expected, the AUCs for all detectors in the pre-stimulus interval are around 0.5,
indicating that there is no difference between the measurements before the onset of the
stimulus (Fig. 3.6). Only LAM and RT reveal slightly smaller or higher values for ε between
0.1 and 0.2.

During the occurrence of the P300, the AUCs for the detectors RR, DET , and LAM are
higher than 0.5, indicating that these measures are able to discriminate between condition A
and B. However, the highest AUC value is 0.61 for RR and LAM , and 0.63 for DET , what
is not really high. The RT is not a good detector as it again fails in discriminating the
two conditions. As we found in previous works, other RQA measures (like trapping time)
[233] or the application of order pattern recurrence plots [227, 339] reveal better results.
Nevertheless, we find the optimal recurrence threshold as ε = 0.25, for RR and LAM , or as
ε = 0.22, for DET . The mean and maximal phase space diameter for the pre-stimulus and
the P300 epochs of the ERP data of both conditions are 2.40 and 5.55, respectively. Thus,
the optimal ε = 0.25 found corresponds to 10% of the mean and 5% of the maximal phase
space diameter. Regarding the standard deviation σ(x) = 1 of the ERP signal itself, ε is 25%
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of the standard deviation.
In contrast to the prototypical example of the quasiperiodically forced logistic map

discussed above, the ERP signal contains laminar states at the P300. Therefore, LAM now is
a suitable detector for the P300.
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Figure 3.6: AUCs vs. ε for the measures (A) RR, (B) DET , (C) LAM and (D) RT for ERP
data on a pre-stimulus period (dashed line) and during the P300 event (line). AUC maxima
for RR and LAM at ε = 0.25, and for DET at ε = 0.22 (dotted line). An AUC level of
0.5 (dash-dotted line) means that the detector is not able to find the signal. Embedding
parameters are m= 3 and τ= 2.

3.6 Discussion

The search for a recurrence threshold for an optimal discrimination of signals has revealed
different optimal thresholds ε depending on the application and considered type of signal
(Tab. 3.1). Using the recurrence probability alone for the detection may require another
threshold than using diagonal line structures or vertical line structures. However, the
differences in the optimal ε are not big, and of course the optimal threshold also depends on
the amount of noise present in the measurement.

For the quasiperiodically forced logistic map the threshold ε = 0.4 at the maximum of
AUC corresponds to a calculated RR of the system of 4%. This suggests that the threshold
should be chosen in such a way that the RR would be around 5%. Several authors suggested
values of ε relative to the mean and maximal phase space diameter [172, 442]. The mean
phase space diameter of the noise corrupted quasiperiodically forced logistic map (normalised
to standard deviation one) is 2.23 and its maximal diameter is 6.43 (Fig. 3.5). Therefore
ε = 0.4 corresponds to 18% of the mean and 6% of the maximal phase space diameter
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Table 3.1: Optimal recurrence thresholds ε and corresponding percentages of mean and
maximal phase space diameter (mean PSD and max. PSD) as well as signal standard deviation
σ.

ε mean PSD max. PSD σ

quasiperiodically forced logistic map 0.4 18% 6% 40%
ERP data 0.25 10% 5% 25%

respectively. As our aim here is an appropriate classification of signal and noise and not
the detection of the original recurrence structure, choosing ε > 5σ, as suggested for the
case of observational noise [383], is not beneficial here. Considering the noise level of
a = 0.7, 5σ(ξ) would result in a value of 2.5 for ε. Indeed, this value is too high to correctly
classify signal and noise. Compared to the standard deviation of the entire, normalised signal
σ(x) = 1, ε equals 40% of σ(ξ).

For the experimental data, we found that the optimal threshold is 10% of the mean
phase space diameter or 25% of the standard deviation. For the prototypical example, where
the influence of noise is far smaller than in the experimental data, we found a threshold
almost twice as large, given as 18% of the mean phase space diameter and 40% of the
standard deviation. The most consistent choice would be regarding the maximal phase space
diameter, where we found values of around 5–6% of the maximal phase space diameter in
both experiments.

Although only demonstrated using two examples and knowing well that the matter
needs to be investigated more comprehensively, our study confirms the suggested rule of
thumb that the threshold should be around 5% of the maximal phase space diameter. This
suggestion remained valid for two very different kinds of signal of different complexity, a
priori knowledge and noise influence. Hence it seems to be rather robust, at least for the
purpose of signal detection.

3.7 Conclusions
We have proposed a new approach for the choice of an optimal recurrence threshold ε for
the classification of signals. Our method uses the notion of receiver operating characteristics
(ROC), a statistical tool to validate a classification process and investigate its discriminative
power in dependence of a given detector, in the present case the complexity measures as
derived from an RP using the RQA. We could demonstrate the discrimination of (i) signals
from pure noise and (ii) of different experimental conditions given as extremely noisy and
instationary time series typical for EEG measurements. Our results support the proposed rule
of thumb, that the recurrence threshold ε for optimal signal classification/discrimination
should be about 5% of the maximal phase space diameter.
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R The presented work in this chapter is a student’s paper, where my contribution was the
idea to use the second minimum eigenvalue of the Laplace matrix for the recurrence
threshold, which is the main innovation of this paper.

Abstract
Recurrence plot based recurrence networks are an approach to analyze time series using
complex networks theory. In both approaches, recurrence plots and recurrence networks, a
threshold to identify recurrent states is required. The selection of the threshold is important
in order to avoid bias of the recurrence network results. In this paper we propose a novel
method to choose a recurrence threshold adaptively. We show a comparison between
constant threshold and adaptive threshold cases to study period-chaos and even period-
period transitions in the dynamics of a prototypical model system. This novel method is then
used to identify climate transitions from a lake sediment record.

4.1 Introduction
Recurrence based approaches have taken an important place in dynamical systems analysis.
Related approaches have been used for several decades. The basis of this analysis is finding
recurrent points on a trajectory in the phase space of a dynamical system. The first recurrence
based analysis method was introduced by Poincaré as the method of the first recurrence
times [292]. A Poincaré recurrence is the sequence of time intervals between two visits of a
trajectory to the same interval (or volume, depending on the dimension of the trajectories).

Among the different approaches to investigate dynamical properties by recurrence, the
recurrence plot (RP) is a multifaceted and powerful approach to study different aspects
of dynamical systems. RPs were first introduced as a visualization of recurrent states of

https://doi.org/10.5194/npg-21-1085-2014
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phase space trajectories [86], but then enriched by different quantification techniques for
characterizing dynamical properties, regime transitions, synchronization, etc. [239]. In the
study of complex systems, one of the most important issues is finding dynamical transitions or
regime changes. Transitions in the dynamics can be detected by different RP based measures,
which in general are powerful to study complex, real-world systems [73, 237, 397]. Examples
of their successful application in real-world systems can be found in life science [44, 237,
270, 316], Earth science [73, 238, 246], astrophysics [9, 452], and others [224].

The measures defined by the RP framework, called recurrence quantification analysis
(RQA), are based on point density and on the length of diagonal and vertical line structures
visible in the RP, being regarded as alternative measures to quantify the complexity of
physical systems. In order to uncover their time-dependent behaviour, RQA measures are
often computed by applying a sliding window on the time series, which then can be used
to identify dynamical transitions, such as period-chaos transitions [397] or chaos-chaos
transitions [237].

Another popular method to analyse complex systems is the complex network approach
[27, 416]. Complex network measurements are useful to investigate and understand the
complex behaviour of real world systems such as social, computer [273], or brain networks
[352]. The adjacency matrix of a complex network explains the structure of the system,
thus, determines the links between the nodes of a network. For unweighted and undirected
networks, the adjacency matrix is binary and symmetric, hence very similar to an RP. In
our previous work, we have shown that time series can be analysed by complex networks
by identifying the RP by the adjacency matrix of a network [78, 241], forming so-called
recurrence networks (RNs). Complex network measures applied to RNs have been used
to investigate real-world systems such as the climate system [73] or the cardio-respiratory
system [303]. RNs have been shown to be more sensitive for the detection of periodic-chaos
or chaos-periodic regime transitions than some of the standard RQA measures [225, 455].

Although recurrence based methods are powerful tools to study complex systems, they
come with an important, non-trivial issue [225]. To identify recurrences, usually a spatial
distance (or volume, depending on the dimension of the system) in the phase space is
used and a sufficient closeness between the trajectories is determined by applying a so-
called recurrence threshold ε to the distances [76, 239]. Several approaches for selecting
a meaningful threshold value has been suggested [74, 239, 338]. Of particular interest
are such methods that help to overcome the problem of sliding window based analyses of
systems with varying amplitude fluctuations (as coming from different dynamical regimes
or non-stationarities), e.g., based on normalizing time series or fixing recurrence density.
However, in real-world applications, time series are usually not smooth all the time. When
considering the time series by a RN representation, extreme points (very high jumps or falls
in the fluctuation of time series) in the time series could break the connected components
in the network since the distance between an extreme point and other points would be
larger than the threshold value. The normalization method would then result in non-optimal
recurrence thresholds biasing the recurrence analysis.

In this work we will suggest a novel method of an adaptive threshold selection basing on
the network’s spectral properties [27]. We will present a comparison between the constant
and the adaptive threshold approach for detecting certain regime transitions (chaos to
periodic or periodic to chaos). Finally we will demonstrate the novel approach for analyzing
lake sediment based palaeoclimate variation.
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4.2 Recurrence plots, recurrence networks and the adaptive threshold
In the m-dimensional phase space reconstruction of a time series, a state is considered to be
recurrent if its state vector falls into the ε-neighbourhood of another state vector. Formally,
for a given trajectory ~x i (i = 1, . . . , N , ~x i ∈ Rm), the recurrence plot R is defined as

Ri, j(ε) = Θ(ε − ‖~x i − ~x j‖), i, j = 1, . . . , N , (4.1)

where N is the trajectory length, Θ(·) is the Heaviside function, and ‖ · ‖ is the norm of
the adopted phase space [239]. Thus, Ri, j = 1 if states at times i and j are recurrent, and
Ri, j = 0 otherwise. The trajectory in the phase space can be reconstructed via time delay
embedding from a time series {ui}Ni=1 [286]

xi = (ui , ui+τ, ...,ui+τ(m−1)), (4.2)

where m is the embedding dimension and τ is the embedding delay. The embedding
dimension m can be found by false nearest neighbours and the delay τ by mutual information
or auto-correlation [165].

The main diagonal of the RP, Ri,i = 1, represents the line of identity (LOI). As we have
mentioned the RP is a symmetric, binary matrix. The structures formed by line segments,
which are parallel to the LOI in an RP, characterize typical dynamical properties. We observe
homogeneously distributed recurrence points if the dynamics is white noise. If the system
is deterministic, diagonal line segments which are parallel to the LOI will dominate. The
dynamics is related to the length of the diagonal line segments: chaotic dynamics causes
mainly short line segments, but contrary, regular (periodic) dynamics causes long line
segments. The RQA quantifies this relation and can be used to detect transitions in the
system’s dynamics [239, 397].

Recurrence networks are based on the recurrence matrix, Eq. (4.1) which is a N × N
matrix where N is the length of the phase space trajectory (the number of time steps). We
now consider these time steps as nodes of a network; if the nodes are sufficiently close to
each other, in other words, if the space vectors are neighbours, there is a link between them.
In network theory, connections between network nodes can be described with the adjacency
matrix A, with Ai, j = 1 if there is a link between nodes i and j, otherwise Ai, j = 0. To obtain
the adjacency matrix from the recurrence matrix, we discard self-loops in the recurrence
matrix, i.e.,

Ai, j = Ri, j −δi, j , (4.3)

where δi, j is the Kronecker delta (δi, j = 1 if i = j, otherwise δi, j = 0).
The number of links at the ith node (the degree) is given by ki =

∑

j Ai j. In this paper
we use the eigenvalue spectrum of the Laplacian matrix L to find an adaptive threshold εc ,
where Li, j = δi, jki − Ai, j .

The crucial point in the paper is choosing the adaptive threshold for calculating the RN.
A threshold for recurrence based methods should be sufficiently small [74, 76, 239]. Too
small ε cause very sparsely connected RN with many isolated components; too large ε results
in an almost completely connected network. For data sets which are not smooth, choosing
an actually reasonable small threshold could nevertheless result in unconnected recurrence
network components. These unconnected components would cause problems for some
complex network measures, since some of them need a connected network to be computed
for the entire network. For example, even if we have just one node that is not connected
to the network, the average path length will be always infinite for the entire network. An
even more important motivation for avoiding isolated components in the RN is that the
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RN provides a large amount of information about the dynamics of the underlying system
although it contains only binary information. This has been demonstrated by reconstructing
time series from RPs [146, 381]. The condition for reconstructing a time series from an RP is
that all points are connected by their neighborhoods, i.e., there are no isolated components.
By applying recurrence measures we would like to quantify the dynamics encoded by the
RN. This can be ensured by the above mentioned condition.

To find a sufficiently small threshold ε that fulfills the desired condition of connected
neighborhoods, we will use the connectivity properties of the network. In particular, we
choose the value for ε that is the smallest one for the RN to be connected. In order to find
such an adaptive threshold, we start from very small values of the threshold and vary the
ε parameter until we get a connected network. In order to apply this approach efficiently,
we use iterative bisection method in the simulations. The connectivity of a network can
be measured by the second smallest eigenvalue λ2 of the Laplacian matrix. If the network
is connected, λ2 > 0 [27]. We choose the adaptive threshold value as the minimum value
of the sequence of thresholds T= Ti , Ti+1, . . . when the second minimum eigenvalue λ2 is
positive,

εc =min(T) with T= {Ti |∀i : λ2(Ti)> 0}. (4.4)

Values ε below the critical value εc are indicating the existence of unconnected compo-
nents in the RN (Fig. 4.1). After that critical threshold, λ2 becomes positive and if we still
increase the threshold the connectivity of the RN is increasing. By choosing the critical point
εc as the recurrence threshold, we ensure that the RN will be connected by the smallest
threshold possible.

𝛜c

Figure 4.1: Variation of the second smallest eigenvalue of the Laplacian λ2 due to changing
threshold value, using the logistic map as an illustrative example (control parameter a = 4.0).
λ2 = 0 for thresholds below a critical value εc, indicating the existence of unconnected
components in the RN. For ε > εc , there are no unconnected components in the RN anymore.
The adaptive threshold value for this time series is εc ≈ 0.19.

4.3 Applications
4.3.1 Logistic map

As a first application we compare some RN measures for using first the adaptive and then
constant threshold approach by analysing the logistic map,

x i+1 = ax i(1− x i). (4.5)
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It is one of the most popular iterated maps which has different regimes for different control
parameter a. The detection of the transitions of the logistic map between these different
regimes was studied with RP and RN previously[241, 397]. The logistic map shows interesting
dynamics in the range of the control parameter a ∈ [3.5, 4.0], which is studied here with a
step size of ∆a = 0.0005, there occur e.g., periodic and chaotic regimes, bifurcations, inner
and outer crises. We compute a time series of length N = 5000 for each value of a. In order
to discard transients, we delete the first 2000 values, resulting in time series consisting of
3000 values that have been used for all analysis of the logistic map in this paper.

As the constant threshold selection method, we use the recurrence rate method to choose
a threshold value: a threshold is selected in such a way that the recurrence rate RR is constant
even for different time series with different dynamics (e.g., different values of a) [239]. In
this paper, we use RR= 5% arbitrarily for further analysis.

Now we compute the RNs by using the given threshold selection techniques ε and εc for
each control parameter a. We then calculate transitivity T and betweenness centrality BC as
the complex networks measures in order to detect the transitions from periodic to chaotic,
chaotic to periodic states, bifurcations and inner(outer)-crisis. The network transitivity is
given by,

T =

∑

i, j,k Ai, jA j,kAk,i
∑

i, j,k Ak,iAk, j
. (4.6)

The average betweenness centrality of network,

BC =
1
N

∑

v

∑

s 6=v 6=t

σst(v)
σst

, (4.7)

where σst is the total number of shortest paths from node s to node t and σst(v) is number
of those paths that pass through v. As mentioned in the previous chapter, not all complex
network measures can be applied to a disconnected network. However, it would cause
problems for computing the measures on RNs calculated by using the constant threshold
technique, since the network could be disconnected. For instance, to compute the average
shortest path length or assortativity for an entire network, the network must be connected.
Disconnected nodes of the network could be discarded from the calculation, but in this case,
we would lose information. In the adaptive threshold case, we could calculate all these
measurements on the entire network since the selection of the adaptive threshold ensures
that the recurrence network is connected.

Both threshold selection methods could detect transitions between dynamical regimes
(periodic-chaos or chaos-periodic). Transitivity gives large values for the chaotic regime and
small values for periodic. In the betweenness centrality case, it is contrary to transitivity,
large values for periodic and small values for the chaotic regimes. Although the constant
threshold selection detects the periodic windows (chaos-period transitions) more sharply
than the adaptive threshold case, the transitivity and betweenness centrality for the constant
threshold selection case in the constant threshold case, as general, the threshold arbitrarily
chosen by RR= 5%), Tconstant and BCconstant, cannot distinguish between different periodic
dynamics, i.e., cannot detect certain bifurcation points such as for period doublings, e.g.,
at a ≈ 3.544,3.564,3.84. Contrary, in the adaptively chosen threshold case, Tadaptive and
BCadaptive are sensitive to these bifurcations (Figs. 4.2, 4.3). Thus, using the adaptive
threshold allows also the detection of period-period transitions (i.e., the study of bifurcation
points where the maximal Lyapunov exponent keeps non-positive).
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Figure 4.2: (a) Lyapunov exponent and transitivity using (b) adaptive threshold and (c)
constant threshold for the logistic map. Dashed lines show certain bifurcation points before
the chaotic regime.

Figure 4.3: (a) Lyapunov exponent and betweenness centrality using (b) adaptive threshold
and (c) constant threshold for the logistic map. Dashed lines show certain bifurcation points
before the chaotic regime.
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4.3.2 Application to palaeoclimate record
The study of palaeoclimate variation helps in understanding and evaluating possible future
climate change. Lake sediments provide valuable archives of past climate variations.

In the following we will focus on a well dated high resolution climate archive from
palaeolake Lisan located beneath the archaeological site of Massada in the Near East [295,
296]. The sediments from the Upper Member were deposited (26− 18 cal ka BP) when
the lake reached its highest stands [14, 390]. The sedimentary sequence contains varves
comprising seasonally deposited primary (evaporitic) aragonite and silty detritus [296]. The
pure aragonite sublaminae were precipitated from the upper layer of the lake during summer
evaporation. Their formation requires inflow of HCO−3 ions into the lake from the catchment
area during winter floods [360] that also bring in silty detrital material. One detrital and
overlying aragonite sublaminae constitute a varve. Previous studies [296, 390] indicate that
small ice-rafting events (denoted as a, b, c, and d), as well as prominent Heinrich events in
the North Atlantic, are associated with the Eastern Mediterranean arid intervals. The study
of seasonal sublaminae yields evidence of decadal to century scale arid events that correlate
with cooler temperatures at higher latitudes. Analyses in the frequency domain indicate the
presence of periodicities centered at 1500 yr, 500 yr, 192 yr, 139 yr, 90 yr, and 50− 60 yr,
suggesting a solar forcing on climate [296].

We use the yearly sampled pure aragonite proxy (CaCO3) from the palaeolake Lisan
for our RN analysis (Fig. 4.4a). We use a time delay embedding with dimension m = 3
and delay τ= 2 (these parameters have been computed by standard procedure using false
nearest neighbours and mutual information [165, 286]) for reconstructing the phase space.
To detect dynamical transitions in the palaeoclimate data, we adopt a sliding window of W
data points with a step size of ∆W . RNs are computed for each window of the time series
one by one. We have chosen a sampling window size of ∆T = 100 yr with 90% overlap
corresponding to a time window size of W ≈ 100 data points (since there are some gaps in
the data, it is not exactly 100). The time series’ length is N = 7665 and the total number of
the windows analysed is

N −W
∆W

≈ 755.

Transitivity and betweenness centrality is then calculated within these windows (Fig. 4.4b
and c). As we have shown for the logistic map, transitivity and betweenness centrality are
both sensitive to detect transitions. Larger values of transitivity T refer to regular behaviour,
whereas smaller values to more irregular dynamics in the considered window of the time
series.

The grey shaded horizontal band in Fig. 4.4b, c is the confidence interval of the network
measures. We apply a rather simple test in order to see whether the characteristics of the
dynamics at a certain time statistically differs from the general characteristics of the dynamics.
In order to apply this test, we use the following approach. We create surrogate data segments
of length W by drawing data points randomly from the entire time series and we compute
the RN and the network measures from such a surrogate segment. We repeat this 10,000
times and have an empirical test distribution of transitivity T and betweenness centrality
BC . A confidence interval is then estimated from these distributions by their 0.05 and 0.95
quantiles.

Previous studies [296] had identified multiple climate fluctuations in the varved Lisan
record and correlated them with the Greenland oxygen isotope data (indicative of tempera-
ture changes, [369]) and ice rafting events in the north Atlantic [30]. The blue and orange
vertical bars in Fig. 4.4 delineate periods of cooling and warming respectively in the higher
latitudes that resulted in drier and wetter episodes in the eastern Mediterranean.
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Figure 4.4: (a) Aragonite (CaCO3) record from palaeolake Lisan, (b) transitivity, and (c)
betweenness centrality results of RN using the adaptive threshold. Abrupt changes in T and
BC indicate transitions between different climate regimes. Dry events in Lake Lisan (cooling
of the higher latitudes) are marked by blue bars and two interstadial peaks (warming) by
orange bars. The gray shaded band is the 90% confidence interval for the networks measures.

The network measures T and BC both indicate well abrupt transitions (Fig. 4.4b, c).
In particular for T , the values jump between high and low values. T reveals epochs of
significantly low values at around 25.8–25.6, 25.2–25.1, 24.3–24.2, 24.0–23.9, 22.8–22.6,
22.3–22.1, 21.5–21.1, 21.7, 20.6–20.5, 20.1–19.9, 19.8–19.6, and 19.3–18.9 cal ka BP. The
periods 25.8–25.6, 22.3–22.1, 21.5–21.1, and 19.3–18.9 cal ka BP correspond to the known
Bond events d, c, b, and a, and the epoch between 24.3 and 23.9 cal ka BP coincides with
the Heinrich H2 event. During the interstadial peaks IS2 at 23.8–23.7 and 23.3–23.2 cal ka
BP, T shows significant high values, almost reaching the value one. BC exhibits a rather
similar behavior of abrupt transitions like T , but with opposite sign. A general observation
is that low values in T can be found during dry but high values during wet regimes, and that
such regimes change abruptly.

A high transitivity value indicates a more regular deposition of aragonite, and, thus, a
more regular, or even periodic climate variability. This could be an indication for a dominant
role of the (more or less periodic) solar forcing via its influence on the temperature in the
higher latitudes. During phases of a colder North Atlantic, the solar forcing become less
important but regional climate effects more important and dominating, causing a more
complex, irregular climate variability, finally indicated by low values of T .

Combining the maxima of T and minima of BC , we can identify the above mentioned
periods of non-regular climate dynamics. Most of these periods correspond to cold events,
e.g., the Bond events and Heinrich event, and the found Lisan lake events L3 till L13 [296].
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Several regular periods can be identified, some of them coinciding with the warm period
during the interstadial IS2. Few remaining periods of high or low regularity have not yet
been identified in the literature so far and call for further investigation.

The abrupt changes in T are available due to the adaptive threshold. By using a constant
threshold, T varies only slowly and more gradual. Defining the time points of the climate
regime shifts becomes more difficult in this case.

4.4 Conclusions
We have represented a novel method to chose a recurrence threshold adaptively and compared
with the constant threshold selection technique. The selection of recurrence thresholds for
recurrence plots and recurrence networks is a crucial step for these techniques. So far, the
threshold had to be chosen arbitrarily, taking into account different criteria and application
cases as well as requiring some expertise. Here we have proposed a novel technique to
determine such a threshold value automatically depending on the time series. Such adaptive
threshold is directly derived from the topology of the recurrence network. It is selected in
such a way that the recurrence network does not have unconnected components. We have
discussed transitivity and betweenness centrality measures of the complex network approach.
Both measures are related to the regularity of the dynamics.

Moreover, the proposed threshold selection can also be useful for the recurrence quan-
tification analysis. A systematic investigation of the different threshold selections remains
future work.

We have compared the novel adaptive threshold selection with the arbitrarily selected
threshold by applying them to the logistic map. Although both methods distinguish the
dynamical regimes clearly, the adaptively chosen threshold approach detects much more bifur-
cations, in particular such as period doubling. Such bifurcations are important characteristics
of the dynamical systems, since these bifurcations route to chaos from periodicity.

Moreover, we have used our approach to investigate a palaeoclimate proxy record from
the palaeolake Lisan representing the climate variability in the near East between 27 and 18
cal ka BP. Both transitivity and betweenness centrality measures clearly identified transitions
between wet and dry (and vice versa) periods by an abrupt decrease of dynamical regularity,
perhaps due to a reduced solar influence. Our method identified some transitions which
have not been know so far from the literature and require further investigation, e.g., by
analyzing other proxy records from this region. By choosing the adaptive threshold, we
have been able to identify the transitions more clearly than by using the arbitrary selected
threshold approach.
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5. Line Structures in Recurrence Plots

Paper 4 N. Marwan, J. Kurths: Line structures in recurrence plots, Physics Letters A,
336(4–5), 349–357 (2005). DOI:10.1016/j.physleta.2004.12.056

Abstract

Recurrence plots exhibit line structures which represent typical behaviour of the investigated
system. The local slope of these line structures is connected with a specific transformation
of the time scales of different segments of the phase-space trajectory. This provides us
a better understanding of the structures occuring in recurrence plots. The relationship
between the time-scales and line structures are of practical importance in cross recurrence
plots. Using this relationship within cross recurrence plots, the time-scales of differently
sampled or time-transformed measurements can be adjusted. An application to geophysical
measurements illustrates the capability of this method for the adjustment of time-scales in
different measurements.

5.1 Introduction

In the last decade of data analysis an impressive increase of the application of methods
based on recurrence plots (RP) can be observed. Introduced by Eckmann et al. [86], RPs
were firstly only a tool for the visualization of the behaviour of phase-space trajectories.
The following development of a quantification of RPs by Zbilut and Webber [418, 442]
and later by Marwan et al. [237], has consolidated the method as a tool in nonlinear data
analysis. With this quantification the RPs have become more and more popular within a
growing group of scientists who use RPs and their quantification techniques for data analysis.
Last developments have extended the RP to a bivariate and multivariate tool, as the cross
recurrence plot (CRP) or the multivariate joint recurrence plot (JRP) [228, 229, 322]. The
main advantage of methods based on RPs is that they can also be applied to rather short and
even nonstationary data.

The initial purpose of RPs was the visual inspection of higher dimensional phase space
trajectories. The view on RPs gives hints about the time evolution of these trajectories. The
RPs exhibit characteristic large scale and small scale patterns. Large scale patterns can
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be characterized as homogeneous, periodic, drift and disrupted. They obtain the global
behaviour of the system (noisy, periodic, auto-correlated etc.). The quantification of RPs
and CRPs uses the small-scale structures which are contained in these plots. The most
important ones are the diagonal and vertical/horizontal straight lines because they reveal
typical dynamical features of the investigated system, such as range of predictability or
properties of laminarity. However, under a closer view a large amount of bowed, continuous
lines can also be found. The progression of such a line represents a specific relationship
within the data. In this paper we present a theoretical background of this relationship and
discuss a technique to infer the adjustment of time-scales of two different data series. Finally,
an example from earth siences is given.

5.2 Recurrence Plots
A recurrence plot (RP) is a two-dimensional squared matrix with black and white dots and
two time-axes, where each black dot at the coordinates (t1, t2) represents a recurrence of
the system’s state ~x(t1) at time t2:

R(t1, t2) = Θ (ε − ‖~x(t1)− ~x(t2)‖) , ~x(t) ∈ Rm, (5.1)

where m is the dimension of the system (degrees of freedom), ε is a small threshold distance,
‖ · ‖ a norm and Θ(·) the Heaviside function. This definition of an RP is only one of several
possibilities (an overview of recent variations of RPs can be found in [223]).

Since R(t1, t1) = 1 by definition, the RP has a black main diagonal line, the line of identity
(LOI), with an angle of π/4. It has to be noted that a single recurrence point at (t1, t2) in
an RP does not contain any information about the actual states at the times t1 and t2 in
phase space. However, it is possible to reconstruct dynamical properties of the data from the
totality of all recurrence points [381].

5.3 Line Structures in Recurrence Plots
The visual inspection of RPs reveals (among other things) the following typical small scale
structures: single dots, diagonal lines as well as vertical and horizontal lines (the combination
of vertical and horizontal lines plainly forms rectangular clusters of recurrence points).

Single, isolated recurrence points can occur if states are rare, if they do not persist for any
time, or if they fluctuate heavily. However, they are not a clear-cut indication of chance or
noise (for example in maps).

A diagonal line R(t1 +τ, t2 +τ) = 1 (for τ = 1 . . . l, where l is the length of the diagonal
line in time units) occurs when a segment of the trajectory runs parallel to another segment,
i. e. the trajectory visits the same region of the phase space at different times. The length
of this diagonal line is determined by the duration of such a similar local evolution of the
trajectory segments. The direction of these diagonal structures can differ. Diagonal lines
parallel to the LOI (angle π/4) represent the parallel running of trajectories for the same time
evolution. The diagonal structures perpendicular to the LOI represent the parallel running
with contrary times (mirrored segments; this is often a hint of an inappropriate embedding
if an embedding algorithm is used for the reconstruction of the phase-space). Since the
definition of the Lyapunov exponent uses the time of the parallel running of trajectories,
the relationship between the diagonal lines and the Lyapunov exponent is obvious (but this
relationship is more complex than usually mentioned in literature, cf. [384]).

A vertical (horizontal) line R(t1, t2 + τ) = 1 (for τ = 1 . . . v, with v the length of the
vertical line in time units) marks a time length in which a state does not change or changes
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very slowly. It seems, that the state is trapped for some time. This is a typical behaviour of
laminar states [237].

5.4 Slope of the Line Structures
In a more general sense the line structures in recurrence plots exhibit locally the time
relationship between the current trajectory segments. A line structure in an RP of length l
corresponds to the closeness of the segment ~x(T1(t)) to another segment ~x(T2(t)), where
T1(t) and T2(t) are two local time-scales (or transformations of an imaginary absolute
time-scale t) which preserve that ~x(T1(t))≈ ~x(T2(t)) for some time t = 1 . . . l. Under some
assumptions (e. g. piecewise existence of an inverse of the transformation T(t), the two
segments visit the same area in the phase space), a line in the RP can be simply expressed by
the time-transfer function

ϑ(t) = T−1
2 (T1(t)) . (5.2)

Especially, we find that the local slope b(t) of a line in an RP represents the local time
derivative ∂t of the inverse second time-scale T−1

2 (t) applied to the first time-scale T1(t)

b(t) = ∂t T
−1
2 (T1(t)) = ∂tϑ(t). (5.3)

This is the fundamental relation between the local slope b(t) of line structures in an RP and
the time scaling of the corresponding trajectory segments. From the slope b(t) of a line in an
RP we can infere the relation ϑ(t) between two segments of ~x(t) (ϑ(t) =

∫

b(t)d t). Note
that the slope b(t) depends only on the transformation of the time-scale and is independent
from the considered trajectory ~x(t).

This feature is, e. g., used in the application of CRPs as a tool for the adjustment of
time-scales of two data series [229, 236] and will be discussed later. Next, we present the
deforming of line structures in RPs due to different transformations of the time-scale.

5.5 Illustration Line Structures
For illustration we consider some examples of time transformations for different one-
dimensional trajectories f (t) (i. e. functions; no embedding). We study the recurrence
behaviour between two segments f1 and f2 of these trajectories, where we apply different
time transformations to these segments (Tab. 5.1). In order to illustrate that the found
relation (5.3) is independent from the underlying trajectory, we will use at first the func-
tion f (t) = t2 (Figs. 5.1A1, B1, C1 etc.) and then f (t) = sin(π t) (Figs. 5.1A2, B2, C2
etc.) as a trajectory. The local representation of RPs between these segments corresponds
finally to cross recurrence plots (CRP) between two different trajectories/functions as will
be mentioned later.

Assuming that the second segment of a trajectory f2 is twice as fast as the first segment f1
(Figs. 5.1A), i. e., the time transformations are T1(t) = t and T2(t) = 2t, we get a constant
slope b = 0.5 by using Eq. (5.3). A line in an RP which corresponds to these both segements
follows ϑ(t) = 0.5 t (Figs. 5.1A1, A2). This result corresponds with the solution we had
already discussed in [236] using another approach. In [236] we considered a simple case
of two harmonic functions f1(t) = sin(T1(t)) and f2(t) = sin(T2(t)) with different time
transformation functions T1 = ϕ · t +α and T2 =ψ · t +β . Using the inverse T−1

2 = t−β
ψ and

Eq. (5.3), we get the local slope of lines in the RP (or CRP) b = ∂t T
−1
2 (T2(t)) = ϕ/ψ, which

equals the ratio between the frequencies of the considered harmonic functions.
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Figure 5.1: Details of recurrence plots for trajectories f (t) whose sub-sections f1(t) and
f2(t) undergo different transformations in time-scale (Tab. 5.1). Black areas correspond
to times where f1(t) ≈ f2(t). The dash-dotted lines represent the time-transfer functions
ϑ(t). Note that these are not the entire RPs, only a small detail of them (an entire RP cannot
contain only these structures – there are more features, like the line of identity (diagonal line
from lower left to upper right) and a more or less symmetric plot around this line). RPs were
constructed by using the Euclidean norm, ε = 0.1 and without embedding (for embedding
dimensions m> 1, line segments running from upper left to lower right will disappear, but
line segments from lower left to upper right will remain, even if they are bowed).
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Table 5.1: Examplary time transformation functions T1(t) and T2(t), the inverse T−1
2 (t

′),
their corresponding slopes b(t) and time-transfer functions ϑ(t) for lines in RPs shown in
Fig. 5.1.

Fig. T1(t) T2(t) T−1
2 (t

′) b(t) ϑ(t)

A t 2t 0.5 t ′ 0.5 0.5 t

B t 5t2 p
0.2 t ′

q

0.2
t

p
0.2 t

C t 1−
p

1− t2
p

1− (1− t ′)2 1−tp
1−(1−t)2

p

1− (1− t)2

D t2 t3 3pt ′ 1
3 3pt2

3pt2

E sin(π t) t3 3pt ′ π cos(π t)

3 3psin2(π t)
3
p

sin(π t)

In the second example we will transform the time-scale of the second segment with the
square function T2(t) = 5t2. Using Eq. (5.3) we get b(t) =

p

0.2/t and ϑ(t) =
p

0.2 t,
which corresponds with a bowed line in the RP (Figs. 5.1B1, B2). Since sin(π t) has some
periods in the considered intervall, we get some more lines in the RP (Figs. 5.1B2). These
lines underly the same relationship, but we have to take higher periodicities into account:
ϑ(t) =

p
0.2 kπ t (k ∈ Z).

The third example refers to a hyperbolic time transformation T2(t) = 1−
p

1− t2. The
resulting line in the RP has the slope b(t) = (1 − t)/

p

1− (1− t)2 and follows ϑ(t) =
p

1− (1− t)2, which corresponds with a segment of a circle (Figs. 5.1C1, C2). We can use
this information in order to create a full circle in an RP. Let us consider a one-dimensional
system, where the trajectory is simply the function f (T) = T(t), and with a section of
a monotonical, linear increase Tl in = t and another (hyperbolic) section which follows
Thyp = −

p
r2 − t2. After these both sections we append the same but mirrored sections

(Fig. 5.2A). Since the inverse of the hyperbolic section is T−1
hyp = ±

p
r2 − t2, the line in the

corresponding RP follows ϑ(t) = T−1
hyp(Tl in(t)) = ±

p
r2 − t2, which corresponds with a circle

of radius r (Fig. 5.2B).
An examplary data series from earth science reveals that such structures are not only

restricted to artificial models. Let us consider the January solar insolation for the last 100 kyr
on the latitude 44◦N (Fig. 5.3A). The corresponding RP shows a circle (Fig. 5.3B), similar as
in Fig. 5.2B. From this geometric structure we can infer that the insolation data contains a
more-or-less symmetric sequence and that subsequent sequences are equal after a suitable
time transformation which follows the relation T−1

2 (T1) =
p

r2 − t2. For instance, the
subsequent sequences could be a linear increasing and a hyperbolic decreasing followed by
a reverse of this sequence, a hyperbolic increasing and a linear decreasing part. Such bowed
line structures are expected in RPs applied to data from biology, ecology and economics as
well (e.g. [219, 316, 367, 392]). These deformations can obtain hints about the change of
frequencies during the evolution of a process and may be of major interest especially in the
analysis of sound data (an example of an RP of speech data containing pronounced bowed
lines can be found in [137]).



5.5 Illustration Line Structures 47

Ti
m

e 
t

f(t)

A

Ti
m

e 
t

Time t

B

Fi
gu

re
5.

2:
Il

lu
st

ra
ti

ve
ex

am
pl

e
of

th
e

re
la

ti
on

sh
ip

be
tw

ee
n

th
e

sl
op

e
of

lin
es

in
an

R
P

an
d

th
e

lo
ca

l
de

ri
va

ti
ve

s
of

th
e

in
vo

lv
ed

tr
aj

ec
to

ry
se

gm
en

ts
.

Si
nc

e
th

e
lo

ca
ld

er
iv

at
iv

e
of

th
e

tr
an

sf
or

m
at

io
n

of
th

e
ti

m
e-

sc
al

es
of

th
e

lin
ea

r
an

d
th

e
hy

pe
rb

ol
ic

se
ct

io
ns

(A
)

co
rr

es
po

nd
s

to
th

e
de

ri
va

ti
ve

of
a

ci
rc

le
lin

e,
a

ci
rc

le
oc

cu
rs

in
th

e
R

P
(B

).
Th

e
gr

ay
co

lo
ur

ed
re

cu
rr

en
ce

pl
ot

is
de

ri
ve

d
fr

om
th

e
on

e-
di

m
en

si
on

al
ph

as
e-

sp
ac

e
(n

o
em

be
dd

in
g

us
ed

).
Fo

r
hi

gh
er

em
be

dd
in

g
di

m
en

si
on

s
se

gm
en

ts
of

th
e

lin
e

st
ru

ct
ur

es
w

hi
ch

ar
e

m
or

e
or

le
ss

pe
rp

en
di

cu
la

r
to

th
e

lin
e

of
id

en
ti

ty
di

sa
pp

ea
r

(b
la

ck
re

cu
rr

en
ce

pl
ot

,e
m

be
dd

in
g

di
m

en
si

on
m
=

3
an

d
de

la
y
τ
=

0.
2N

,w
he

re
N

is
th

e
da

ta
le

ng
th

).
N

ev
er

th
el

es
s,

th
e

re
m

ai
ni

ng
lin

e
se

gm
en

ts
ha

ve
th

e
sl

op
e

of
th

e
ci

rc
le

.

Ag
e 

(k
yr

)

Insolation (Wm−2)

A

0
20

40
60

80
10

0
14

0

16
0

18
0

Ag
e 

(k
yr

)

Age (kyr)

B

0
20

40
60

80
10

0
02040608010
0

Fi
gu

re
5.

3:
A

co
rr

es
po

nd
in

g
st

ru
ct

ur
e

fo
un

d
in

ex
pe

ri
m

en
ta

ld
at

a:
(A

)
th

e
so

la
r

in
so

la
ti

on
on

th
e

la
ti

tu
de

44
◦ N

fo
r

th
e

la
st

10
0

ky
r

(d
at

a
fr

om
[2

0]
)

an
d

it
s

co
rr

es
po

nd
in

g
re

cu
rr

en
ce

pl
ot

(B
).

T
he

re
cu

rr
en

ce
pl

ot
pa

ra
m

et
er

s
w

er
e

m
=

1
an

d
ε
=

2
(b

la
ck

)
an

d
ε
=

3.
5

(g
ra

y)
.



48 Chapter 5. Line Structures in Recurrence Plots

Whereas in the examples above only the second section of the trajectory undergoes a
time transformation, in the last two examples (Figs. 5.1D and E) the time-scale of the first
section is also transformed. Nevertheless, the time-transfer function can be again determined
with Eq. (5.2) as well.

From these examples we can conclude that the line in a recurrence plot follows Eq. (5.2)
and depends only on the transformations of the time-scale.

Although we considered only examples in a one-dimensional phase-space, these findings
hold also for higher-dimensional phase-space and for discrete systems (see the example in
the section about cross recurrence plots). The line structures in recurrence plots, which are
more or less perpendicular to the LOI, will disappear for higher-dimensional phase-space
(Fig. 5.2B). Nevertheless, the remaining lines reveal the relation between the corresponding
time-scales.

5.6 Cross Recurrence Plots
The relationship between the local slope of line structures in RPs and the corresponding
different segments of the same phase-space trajectory holds also for the structures in CRPs,

CR(t1, t2) = Θ
�

ε − ‖~x(t1)− ~y(t2)‖
�

. (5.4)

which are based on two different phase-space trajectories ~x(t1) and ~y(t2). This relationship
is more important for the line of identity (LOI) which then becomes a line of synchronization
(LOS) in a CRP [229, 236].

We start with two identical trajectories, i. e. the CRP is the same as the RP of one trajectory
and contains an LOI. If we now slightly modify the amplitudes of the second trajectory, the
LOI will become somewhat disrupted. This offers a new approach to use CRPs as a tool to
assess the similarity of two systems [228]. However, if we do not modify the amplitudes but
stretch or compress the second trajectory slightly, the LOI will remain continuous but not
as a straight line with an angle of π/4. The line of identity (LOI) now becomes the line of
synchronization (LOS) and may eventually not have the angle π/4. This line can be rather
bowed. Finally, a time shift between the trajectories causes a dislocation of the LOS, hence,
the LOS may lie rather far from the main diagonal of the CRP.

Now we deal with a situation which is typical in earth sciences and assume that two
trajectories represent the same process but contain some transformations in their time-scales.
The LOS in the CRP between the two trajectories can be described with the found relation
(5.2). The function ϑ(t) is the transfer or rescaling function which allows to readjust the
time-scale of the second trajectory to that of the first one in a non-parametrical way. This
method is useful for all tasks where two time-series have to be adjusted to the same scale, as
in dendrochronology or sedimentology [229].

Next, we apply this technique in order to re-adjust two geological profiles (sediment
cores) from the Italian lake Lago di Mezzano [34]. The profiles cover approximately the same
geological processes but have different time-scales due to variations in the sedimentation
rates. The first profile (LMZC) has a length of about 5 m and the second one (LMZG) of
about 3.5 m (Fig. 5.4). From both profiles a huge number of geophysical and chemical
parameters were measured. Here we focus on the rock-magnetic measurements of the
normalized remanent magnetization intensity (NRM) and the susceptibility κ.

We use the time-series NRM and κ as components for the phase-space vector, resulting in
a two-dimensional system. However, we apply an additional embedding using the time-delay
method [379] (we do not ask about the physical meaning here). A rather small embedding
decreases the amount of line structures representing the progress with negative time [223].
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Figure 5.4: Rock-magnetic measurements of lake sediments with different time-scales.
Corresponding sections are marked with different gray values.
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Figure 5.5: Cross recurrence plot between rock-magnetic data shown in Fig. 5.4. The dash-
dotted line is the resolved LOS which can be used for re-adjustment of the time-scales of
both data sets.
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Figure 5.6: Geological profiles after re-adjustment using the LOS which was found with the
CRP shown in Fig. 5.5. Corresponding sections are marked with different gray values.

Using embedding parameters dimension m = 3 and delay τ = 5 (empirically found
for these time-series), the final dimension of the reconstructed system is six. The corre-
sponding CRP reveals a partly disrupted, swollen and bowed LOS (Fig. 5.5). This LOS can
be automatically resolved, e. g. by using the LOS-tracking algorithm as described in [236].
The application of this LOS as the time-transfer function to the profile LMZG re-adjusts its
time-series to the same time-scale as LMZC (Fig. 5.6). This method offers a helpful tool for
an automatic adjustment of different geological profiles, which offers advantages compared
to the rather subjective method of "wiggle matching" (adjustment by harmonizing maxima
and minima by eye) used so far.

5.7 Conclusion

Line structures in recurrence plots (RPs) and cross recurrence plots (CRPs) contain informa-
tion about epochs of a similar evolution of segments of phase-space trajectories. Moreover
the local slope of such line structures is directly related with the difference in the velocity
the system changes at different times. We have demonstrated that the knowlege about this
relationship allows a better understandig of even bowed structures occuring in RPs. This rela-
tionship can be used to analyse changes in the time domain of data series (e. g. frequencies),
as it is of major interest, e. g., in the analysing of speech data. We have used this feature in
a CRP based method for the adjustment of time-scales between different time-series. The
potential of this technique is finally shown for experimental data from geology.

Although it is obvious that the discussed line structures become more interrupted due to
an increasing amount of noise, the influence of noise still needs a more systematic work.
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6. The Wiener-Khinchin Theorem
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Abstract
The Wiener-Khinchin Theorem states that the power spectrum is the Fourier transform of the
autocovariance function. One form of the autocovariance function can be obtained through
recurrence quantification. We show that the advantage of defining the autocorrelation
function with recurrences can demonstrate higher dimensional dynamics.

6.1 Introduction
Recurrence plots (RP) and techniques related to RPs have become popular in the last two
decades for its unique abilities to discern subtle processes, especially in the case where
the requirements for classical techniques such as the Fourier transform are not met; i.e.,
stationarity, linearity, and/or where the dynamics reside in higher dimensional spaces [239,
419, 443, 444]. What has not been appreciated is that the two techniques can be used
together due to the well-known Wiener-Khinchin theorem. The theorem states that the
power spectral density of a wide-sense-stationary random process is the Fourier transform of
the corresponding autocovariance function [49].

6.2 Power spectral estimate by recurrences
The power spectrum of a deterministic, finite length, discrete-time signal, x(i), is the magni-
tude squared of the signal’s Fourier transform

Sx(ω) =
1
N

�

�

�

�

�

N−1
∑

i=0

x(i)e− jωi

�

�

�

�

�

2

. (6.1)

https://doi.org/10.1016/j.physleta.2008.09.027
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Using the Wiener-Khinchin theorem, the power spectrum of a signal equals the Fourier
transform of the autocovariance function Cx of the signal:

Sx(ω) =
∞
∑

τ=−∞
Cx(τ)e

− jωτ, (6.2)

where the autocovariance function of a stochastic time series x(n) is defined as

Cx(τ) =
1
N

N−1−τ
∑

i=0

x(i) x∗(i +τ). (6.3)

The calculation of an RP from phase space vectors ~x(i) ∈ Rm (i = 1 . . . N and m the
dimension of the system) is based on the distance matrix D of the pair-wise distances between
all data points (state space vectors):

D(i, j) = ‖~x(i)− ~x( j)‖ with ~x ∈ Rm (6.4)

For single dimensional observations x , we may consider embeddings of the time series with
embedding dimension m [286]. [For the following equations until Eq.(6.8), m= 1.]

The average of the distance values d(τ) for a given lag τ defined as

d(τ) =
1
N

∑

i

D(i, i +τ), (6.5)

can be considered as a generalisation of the auto-covariance. In fact, the distance matrix
can be directly related to the auto-covariance Cx(τ) [320]. For this purpose we consider the
squared distance matrix

D2(i, i +τ) = ‖x(i)− x(i +τ)‖2

=
�

x(i)− x(i +τ)
��

x(i)− x(i +τ)
�

= x2(i)− 2x(i)x(i +τ) + x2(i +τ). (6.6)

Next we calculate d(τ) from D2 and get

1
N

∑

i

D2(i, i +τ) =
1
N

�∑

i

x2(i)−
∑

i

2x(i)x(i +τ) +
∑

i

x2(i +τ)
�

= σ2 − Cx(τ) +σ
2

= 2
�

σ2 − Cx(τ)
�

(6.7)

and find as the relation between Cx(τ) and D2

1
2

dτ −σ2 = −Cx(τ), (6.8)

with σ2 as the variance of the data. Obviously, the average distance d(τ) corresponds to
the auto-covariance up to a shift by the variance and the factor 1/2. Note that we have
considered the squared distance matrix. However, the sign flip also remains for the simple
distance matrix, because the distance matrix consists only of positive values, and, therefore,
the quadrature of D has no effect on the sign.



6.3 Example 55

Considering embedding dimensions m > 1 and embedding delay 1, and using the
Euclidean norm, the squared distance matrix D2 is calculated by

D2(i, i +τ) = ‖~x(i)− ~x(i +τ)‖2

=
m
∑

k=1

�

xk(i)− xk(i +τ)
��

xk(i)− xk(i +τ)
�

=
m
∑

k=1

�

x2
k(i)− 2xk(i)xk(i +τ) + x2

k(i +τ)
�

= ‖~x(i)‖2 − 2~x∗(i)~x(i +τ) + ‖~x( j)‖2. (6.9)

The term ~x∗(i)~x(i +τ) corresponds to the auto-covariance of the segment of the time series
for time i, i + 1, . . . i + (m− 1). Moreover, by summarising over index i (and for large N), we
find that
∑

i

~x∗(i)~x(i +τ) = m
∑

i

x(i)x(i +τ), (6.10)

i.e. it corresponds to the auto-covariance up to a factor of mN .
However, here we propose to go one step further and to consider only recurrences,

defined by applying a threshold to the distance matrix D. This limits the matrix to periodic
orbits:

R= Θ(ε −D), (6.11)

i.e., R is then the recurrence matrix. Then we consider the probability that the systems recurs
after time τ (τ recurrence rate) [228, 239]

RR(τ) =
1

N −τ

N−τ
∑

i=1

R(i, i +τ), (6.12)

and replace Cx(τ) in Eq. (6.2) by RR(τ). In other words, we replace the expectation values

E{x(i) x∗(i +τ)} −→ E{Θ(ε − ‖~x(i)− ~x(i +τ)‖)}. (6.13)

The putative advantages of using a recurrence-derived FT includes not only its relaxed
assumptions of stationarity and nonlinearity, but also its use of the embedding theorem to
capture dynamics of higher dimensional spaces. Thus, periodicities are demonstrated not
seen in either the regular FT periodogram, or the (standard) autocovariance-derived Fourier
transform. Additionally, there is the “smoothing” effect inherent in the FT. (Whereas we use
the autocovariance, it should be noted that the autocorrelation can also be used, since it is
simply the normalization of the autocovariance by the total autocovariance.)

6.3 Example
We illustrate the advantage of the proposed recurrence based Fourier spectrum with an
example of high dimensional dynamics. Lathrop and Kostelich previously studied the attractor
of the oscillating Belousov-Zhabotinsky (BZ) chemical reaction [190, 282]. The bromide ion
concentration was recorded, and a phase-space strange attractor was constructed from the
method of time-delays. Their analysis recommended an embedding of 3 and a delay of 124.
Further analysis of 3-dimensional recurrences demonstrated saddle orbits of period-1, -2
and -3 (Fig. 6.1). The fundamental period was approximately 125 time steps.
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(a) (b) (c)

Figure 6.1: (a) The BZ reactor (50,000 points). (b) Trajectory near saddle-1. (c) Trajectory
near saddle-2.
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Figure 6.2: (a) Recurrence plot for 1,000 points of the BZ reactor. (b) Recurrence spectrum
derived from the Plot.

To determine if the recurrence plot (RP)-based FT could capture these periods, a sample
of 1000 points was selected from the original data, and submitted to the technique. We used
the suggested embedding (dimension 3, and delay 124), and a recurrence threshold ε of
0.75. We also calculated a standard FT spectrum (rectangular window, no overlapping) and
the autocovariance-based FT.

The RP of the BZ data reveals periodically occurring structures of different width and
length (Fig. 6.2a), depending on the different periodic orbits. These periodically occurring
structures are measured by the recurrence spectrum (Fig. 6.2b). Note that although the
peaks are relatively sharp, they are not smooth due to the thresholding, ε.

Next we apply the FT on the recurrence spectrum (Fig. 6.3c). The RP-based FT not only
demonstrates the fundamental, but also the period-2 (near 0.5), as well as a period-3 (near
0.2-0.25). These peaks have been smoothed by the application of the FT.

By contrast, the standard FT does not demonstrate any significant peaks (broad band
noise is seen with log scales–not shown). The autocovariance-based FT does show the
fundamental frequency, plus a period-2 (near 0.5), but is not able to find the period-3. Only
the RP-based FT is able to detect all the period-1, -2 and -3 orbits in the dynamics of the BZ
system.

6.4 Discussion and conclusion
We have proposed an alternative technique for the detection of periodicities in dynamical
systems based on recurrences. Applying the FT on the probability that a state recurs after
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Figure 6.3: Power spectra of 1,000 points of BZ reactor with frequency normalized to saddle-
1 and power normalized to total power. (a) FT spectrum with rectangular window. (b)
Autocovariance based spectrum. (c) RP-based spectrum.

certain time, also known as the τ-recurrence rate [239], we link the recurrence quantification
with spectral analysis. In the present study we used 1000 points to limit computational time.
When other 1000 point segments were chosen, the frequencies shifted due to the sampling of
different sections of the attractor (see Fig. 6.1, also Fig. 6.4). Thus it is important to estimate
the extent of the attractor, in order to avoid making the conclusion that the dynamics are
nonstationary as a result of inadequate sampling. (See also [323].)

Another consideration is the choice of embedding dimension. In the present example
the choice was made for m = 3 in keeping with the analysis of Lathrop and Kostelch. A
comprehensive discussion of the subject is beyond the scope of this Letter, and the interested
reader is referred to [239] for a fuller discussion. However, we did perform a brief analysis
with results in Fig. 6.5. For embeddings 1 to 2 the FT and autocovariance-based FT remain
the same, while the RP-based FT reveals new peaks until reaching the putatively correct
embedding of 3. At an embedding of 4, however, the plot begins to diminish and the peaks
are smoothed out. This occurred even with adjusting the value of ε in accordance with the
recognition of the “curse of dimensionality” (results not shown.) This suggests a practical
method of determining an appropriate embedding once a delay via mutual information has
been established: increasing the embedding beyond the optimal embedding simply brings in
more points whose dynamics begin to obscure the true close in points, since the points tend
to be distributed over a more narrow range of the interior of an m-dimensional hypersphere.
And as m →∞, the standard deviation of the inter-point distances approaches 0 [287].
Thus one can increase the embedding until such a result is encountered. Certainly, additional
research is required to confirm this observation.

One drawback of the technique is that the RP-based FT may require extended computa-
tional time with either long or highly embedded dynamics. Nonetheless, when oscillatory
dynamics are suspected which move in higher dimensions, it might be useful to consider the
RP-based FT.

Acknowledgments
JPZ thanks the National Science Foundation for support under grant #BCS-0728967. All
computations were performed in MATLAB with the CRP Toolbox (http://www.agnld.
uni-potsdam.de/~marwan/toolbox/).

http://www.agnld.uni-potsdam.de/~marwan/toolbox/
http://www.agnld.uni-potsdam.de/~marwan/toolbox/


58 Chapter 6. The Wiener-Khinchin Theorem

(a)

(b)

(c)

Figure 6.4: Result of analyzing three sequential series of 1,000 points (a)–(c) of the BZ
attractor. This is due to inadequate sampling of the total extent of the attractor as seen in
Fig. 6.1.
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(a)

(b)

(c)

(d)

Figure 6.5: Results for progressive embedding of the time series from 1 to 4 (a)–(d). The
correct periods are found for an embedding of 3, but are obscured with an embedding of 4.
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Abstract

Recurrence plot based measures of complexity are capable tools for characterizing complex
dynamics. In this letter we show the potential of selected recurrence plot measures for
the investigation of even high-dimensional dynamics. We apply this method on spatially
extended chaos, such as derived from the Lorenz96 model and show that the recurrence plot
based measures can qualitatively characterize typical dynamical properties such as chaotic
or periodic dynamics. Moreover, we demonstrate its power by analyzing satellite image time
series of vegetation cover with contrasting dynamics as a spatially extended and potentially
high-dimensional example from the real world.

7.1 Introduction

The recurrence plot (RP) is a modern and versatile tool for the study of the complex behavior
of dynamical systems [86, 224]. They represent time points of recurring states even of
high-dimensional phase space trajectories. Quantitative extensions, such as recurrence
quantification analysis and recurrence networks, enable the investigation of dynamical
transitions and regime changes, the quantitative characterization of the dynamics, or the
detection of phase synchronization [79, 239, 417]. As proven by several examples, the RP
based quantities work quite well even with short time series (e.g.,[130, 175, 201, 241]). The
practical and powerful use of RP based methods has been demonstrated by their growing
and interdisciplinary application, such as for cardiovascular health diagnosis, behavioral,
cognitive and neurological studies, studying fluid dynamics and plasma, analyzing optical
effects, material health monitoring, palaeoclimate regime change detection, etc. [73, 91, 130,
174, 178, 303, 312, 374]. In general, such studies have so far been restricted to rather low-
dimensional systems. However, when studying the complex behavior of real world systems,
we often end up on extended complex systems, and the question arises whether the RP based

https://doi.org/10.1016/j.physleta.2015.01.013


62 Chapter 7. Spatially Extended Dynamics

tools can be applied to high-dimensional systems, such as exhibiting high-dimensional chaos.
So far, the ability of RP based methods for studying high-dimensional dynamics has not yet
been demonstrated, although it was already used to investigate spatial recurrences [232, 294,
402] and spatio-temporal chaos in turbulence and a reaction-diffusion system [129, 259].
Moreover, the classic characterization of complex dynamics by using, e.g., entropy [87],
correlation dimension [125], and Lyapunov exponents requires very long time-series [88] or
the knowledge of the differential equations of the system which are in practical examples not
known. The study of extended spatio-temporal dynamics is even more challenging because
of the large degrees of freedom.

In this letter we demonstrate the potential of RP based measures of complexity for
identifying hardly accessible extended spatio-temporal dynamics and for characterizing high-
dimensional chaos. We will use the Lorenz96 model [205, 206, 288] which is a paradigmatic
system for extended complex spatio-temporal chaotic dynamics and was systematically
studied by Karimi et al. [168] and apply the method on an example of a satellite time series
imagery.

7.2 The Lorenz96 model

The Lorenz96 model is a conceptual time-continuous linear lattice model that was developed
to demonstrate fundamental aspects of weather predictability [205]:

d xk

d t
= (xk+1 − xk−2)xk−1 − xk + f (7.1)

for k = 1, . . . , N , with a constant external forcing f , and with periodic boundary conditions
xN+1 = x1. Depending on the system size N and the forcing f , the dynamics on the lattice
can be periodic or chaotic and can exhibit a high dimensionality [168]. Therefore, this model
is very appropriate for our study.

For integrating Eq. (7.1) we use a Runge-Kutta integration of 4th order with time step
δt = 1/64. In order to remove transients, we neglect the first 10,000 values from each
xk(t). In the numerical experiments discussed below, we will use 20 slightly varying initial
conditions for each selected setting of N and f .

In our study we consider f = 5 (as used by Karimi et al. [168]). Then, for example, for
N = 38, we find periodic dynamics, but for N = 47, the dynamics is chaotic (Fig. 7.1).
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Figure 7.1: Space-time representation of xk(t) of the Lorenz96 system, Eq. (7.1), for f = 5
and system size of (a) N = 38 and (b) N = 47, showing periodic and chaotic dynamics.
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Figure 7.2: (a) Maximal Lyapunov ex-
ponent λmax for the Lorenz96 system,
Eq. (7.1), with different system size N . The
RP based measures (b) 1/Lmax and (c) RTE
reveal a similar variation with the N as
λmax. Averaged values for 20 different ini-
tial states are presented. The standard devi-
ation of the measures for the different initial
conditions are presented by the error bars.
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Figure 7.3: (a) Kaplan-Yorke dimension DKY
for the Lorenz96 system, Eq. (7.1), with dif-
ferent system size N . The RP based mea-
sures (b) DET and (c) DT reveal a similar
variation with the N as DKY. Averaged val-
ues for 20 different initial states are pre-
sented. The standard deviation of the mea-
sures for the different initial conditions are
presented by the error bars.

The change of the dynamical regimes with systems size N can be measured by the
maximal Lyapunov exponentλmax and the Kaplan-Yorke dimension DKY. Here we compute the
Lyapunov spectrum from the set of N differential equations by linearizing the corresponding
evolution and using a Gram-Schmidt Orthonormalization scheme [54, 302]. For stable
results, we integrate 200,000 iterations. The Kaplan-Yorke dimension DKY can then be
derived from the N (ordered) Lyapunov exponents by the Kaplan-Yorke algorithm

DKY = K +
K
∑

i=1

λi

|λK+1|
, (7.2)

where K is the largest number of the first largest Lyapunov exponents with
∑K

i=1λi ≥ 0 [87].
Increasing the system size from N = 10 to N = 50 reveals a periodic alternation between
periodic and chaotic dynamics by periodic variations of λmax (Fig. 7.2a). The dimension of
the system’s dynamics as measured by DKY is increasing by trend (Fig. 7.3a). The calculation
of λ and DKY is expensive for such systems with large degrees of freedom. Moreover, for
accurate values we need very long time series (here, even for N = 200,000 we find some
spread in the results of λmax and DKY).

7.3 Recurrence plot analysis
RP quantification may be suitable for a simpler estimation of the dynamical properties. an
RP Ri, j = Θ(ε − ‖~x i − ~x j‖) is a binary matrix R representing the time points j when a state
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Figure 7.4: Recurrence plots of the Lorenz96 system xk(t) for f = 5 and system size of (a)
N = 38 and (b) N = 47, showing periodic and chaotic dynamics.

~x i at time i recurs [239] (Fig. 7.4). The recurrence criterion is usually defined as a spatial
distance between two states ~x i and ~x j is falling below a threshold ε. Besides the ability to
discuss the visual aspect of an RP, several quantification approaches are based on this matrix.
The diagonal line structures in an RP correspond to periods of parallel evolution of two
segments of the phase space trajectory. The scaling of the length distribution of such lines is
related to the K2 entropy. A good proxy for this is measuring the inverse of the length of the
longest diagonal line 1/Lmax, with

Lmax = argmax
l

HD(l), (7.3)

and l the length of the diagonal lines, and HD(l) the length distribution of diagonal lines in
R [239].

Based on a heuristic approach, the fraction of recurrence points that form such diagonal
lines is a qualitative measure of predictability, called determinism (DET) [239],

DET =

∑N
l=2 l HD(l)
∑N

i, j=1 Ri, j

. (7.4)

Systems possessing deterministic dynamics are characterized by diagonal lines indicating
repeating recurrences within a state (and, hence, higher DET values).

The vertical empty space between two recurrence points in the RP correspond to Poincaré
recurrence times, i.e., the distance v between recurrence points in a column of R [276].
From the distribution HV(v) we can derive the recurrence time entropy (RTE), also called
recurrence period density entropy [202]

RT E = −
1

ln Vmax

Vmax
∑

v=1

HV(v) ln HV(v). (7.5)

This measure quantifies the extent of recurrences and is related to the Pesin dimension [5].
In the last years, the similarity of the binary, squared matrix R with the adjacency matrix

of an unweighted, undirected complex network was used to apply complex network measures
on recurrence plots in order to quantify the geometrical properties of the system’s attractor
encoded in the RP [241]. For example, the transitivity coefficient (T )

T =

∑N
i, j,k=1 R j,kRi, jRi,k
∑N

i, j,k=1 Ri, jRi,k(1−δ j,k)
. (7.6)
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allows the differentiation of periodic and chaotic dynamics [455]. Moreover, T can be used
to define a novel dimensionality measure, the transitivity dimension (DT )

DT =
log(T )

log(3/4)
, (7.7)

allowing the calculation of the dimension without explicit consideration of scaling behaviors.
Using the RP, the correlation dimension D2 can also be derived [124]. However, the advantage
of DT is that it results directly from the RP without analyzing any scaling behavior depending
on the recurrence threshold ε.

Although still rather novel, such recurrence quantification is meanwhile widely accepted
and applied in different disciplines to study diverse problems. For more details on this
methodology we refer to [225, 239, 243, 417].

7.4 Recurrence analysis of spatially extended chaos
For the application of the RP approach to spatially extended high-dimensional data such
as from the Lorenz96 model, we consider each variable as one component of the phase
space representation: ~x(t) = (x1(t), x2(t), . . . , xN (t)). We remove transients by deleting
the first 10,000 data points and then downsample the time series by considering only every
2nd value. Then, for only 1,500 time points of the vector ~x(t) we calculate the RP and the
above mentioned measures DET, 1/Lmax, RTE, and DT . We calculate this set of measures
for different system size N ∈ {10, . . . , 50} and repeat the calculation for 20 different initial
conditions. For the line based RP measures DET and 1/Lmax we choose a minimal line length
of two. We apply a Theiler window of length 20 (in units of iteration steps) and a recurrence
threshold such that the fraction of recurrences in the RP is 10% (and using the Euclidean
norm). We estimated the size of the Theiler window by the auto-correlation time, which is
in average 20. The choice of the fixed recurrence rate for the threshold selection is justified
by the increase of the state space dimension with growing N that would require a rescaling
of the recurrence threshold. By fixing the recurrence rate we can avoid this rescaling.

The inverse of the longest diagonal line 1/Lmax as well as the RTE reveal a similar
alternating variation with N as λmax (Fig. 7.2b,c). The Pearson correlation between these
two RP based measures and λmax is 0.745 (for 1/Lmax) and 0.750 (for RTE). The strong
correlation even for the used rather short data segment suggests that these RP based measures
are good estimators for studying the divergence behavior of high-dimensional systems.

The DET measure varies between values of 0.94 and 1, indicating the deterministic nature
of the model (Fig. 7.3b). During the periodic regimes, the DET shows maxima, whereas
during the chaotic regime, DET falls to lower values. The transitivity dimension DT varies
rather similar compared to the Kaplan-Yorke dimension DKY. It also shows the upward trend
with increasing N (Fig. 7.3c), but DKY is in average 2.5 times higher than DT . The correlation
of DKY with DET and DT is −0.715 and 0.723, respectively.

The recurrence based measures are able to reveal the dynamics using very short time
series of length 1,500, obtained from 3,000 iterations, in comparison to the classic measures
where 200,000 iterations and the differential equations had been necessary. One explanation
is that an RP compares the states at all time points with those at all other time points (i.e.,
a N2 pair-wise test), and that the measures are of statistical nature. The method will also
work up to a certain level of noise. In the following we investigate the influence of noise
by adding normally distributed random numbers to the time series. The standard deviation
of the noise is chosen relativ to the mean amplitude mA of the time series and is varied
between 0 (no noise) and 0.5 × mA. We find that even for a large portion of noise with
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standard deviation half of the mean amplitude, the RQA measures distinguish clearly between
the different dynamics (Fig. 7.5). In particular, DT shows almost identical results for the
considered noise levels (Fig. 7.5(d)). With increasing noise, DET and RTE decrease, and
1/Lmax increases. However, there are differences in their variations with respect to the noise
level. As the variation of DET and 1/Lmax increases for growing noise (Fig. 7.5(b,d)), the
variation for RTE decreases (Fig. 7.5(c)). It is remarkable that DT is the measure with the
lowest sensitivity on noise, whereas 1/Lmax is less sensitive for low noise levels but becomes
abruptly high sensitive for high noise levels (Fig. 7.5(a)). Nevertheless, these results suggest
that the approach is quite robust even for higher level of observational noise (at least for
differentiating chaotic and periodic dynamics).
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Figure 7.5: Influence of noise on the RQA results. Observational, normally distributed noise
is added to the time series of the Lorenz96 system. The standard deviation of the noise is
relative to the averaged mean amplitude mA of the time series.

7.5 Application on satellite time series imagery

In order to illustrate the applicability of the proposed RP quantitative measures on spatially
extended and potentially high-dimensional real world data, we use MODIS satellite time
series imagery of the extended vegetation index (EVI) of two test sites in NE Spain, centre
coordinate 42.37◦N, 0.51◦E, and NE Brazil, 5.00◦S, 39.50◦W (Fig. 7.6). The test sites are
characterized by differently complex vegetation dynamics both in the temporal (inter-annual
and intra-annual) and spatial domain (Fig. 7.7) as a result of diverse natural processes and
human interactions [12, 142]. Thus, these sites are seen as ideal to study the usefulness
of the proposed RP measures in order to objectively quantify and evaluate this complex
behavior and decipher changes in vegetation cover dynamics related to land extensification/
intensification or climate change and drought. The subhumid Spanish test site shows a
pronounced seasonal variation in precipitation and temperature with cold and dry winters
and hot and stormy summers, whereas the Brazilian test site located in the so-called drought
polygon is characterized by a semiarid climate with distinct dry and wet seasons and rainfall
of high temporal and spatial irregularity. The Spanish test site has undergone severe land
use changes during the last 50 years with the abandoning of former agricultural areas and
subsequent reforestation as well as setting aside of lands from agriculture promoted by
the European Agricultural Policy [189]. The Brazilian test site has been more intensively
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Figure 7.6: Geographical location and MODIS extended vegetation index (EVI) within the
5 × 5 km2 subarea used for the analysis for the regions (a) NE Spain and (b) NE Brazil.

occupied since 1985, when the Federal Government accomplished a land reform leading to
the intensification of agricultural and livestock practices. A dense water surface reservoir
network has been built in the last decades to mitigate water scarcity problems [389].

The MODIS-Terra MOD13Q1 product used for this real world application is a 16-day
composite image of the enhanced vegetation index (EVI) in a sinusoidal projection with
a spatial resolution of 250 m. Global MODIS vegetation indices are designed to provide
consistent spatial and temporal datasets used for global monitoring of vegetation conditions.
The EVI is chosen since it minimizes canopy background variations and maintains sensitivity
over dense vegetation. We obtained 316 MOD13Q1 images for the period February 2000 to
November 2013 for both the MODIS tiles h18v04 (Spain) and h14v09 (Brazil) from the Land
Processes Distributed Active Archive Center (LP DAAC), located at the US Geological Survey
(USGS) Earth Resources Observation and Science (EROS) Center (lpdaac.usgs.gov).

In both regions we consider subareas of 5 × 5 km2 (N = 441 grid points) varying around
the centre point by 0.25◦ and within a range of [−0.5◦ 0.5◦] (resulting in 25 subareas for
both regions). That way, the subareas contain a mixture of land covers representative for the
test sites. For calculating the RP, we create the phase space vector ~x from the pixels of the
satellite image subarea, i.e., ~x has 441 dimensions (not to be confused with the dimension
of the dynamics).

For both regions we visually find periodic patterns in the corresponding RPs, revealing
mainly the seasonal variability (Fig. 7.8). The appearance of the periodic patterns differ for
Spain (more line-like patterns) and Brazil (more block-like patterns), indicating substantial
differences in the spatial dynamics. The RP quantification by the measures DET, 1/Lmax,
and DT clearly reveals quantitative differences: in Brazil we find a more erratic or chaotic
spatio-temporal pattern than in Spain, indicated by lower DET and higher 1/Lmax as well as
DT for Brazil (Fig. 7.9, Tab. 7.1). Although the considered subareas consist of information
that is a mixed signal of several land cover classes, the difference between Spain and Brazil
is consistent for subareas of varying location. These results can be interpreted in such sense
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Figure 7.7: EVI time series of all pixels in the subareas as shown in Fig. 7.6 for (a) NE Spain
and (b) NE Brazil. The vegetation dynamics in NE Brazil appears clearly to be more erratic
in the temporal and spatial domain than in NE Spain.

that the vegetation (or land use) dynamics in Brazil is probably less regulated and less
predictable than in Spain.
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Figure 7.8: Recurrence plot of a 5 × 5 km2 subarea of the EVI of test sites in (a) NE Spain
and (b) NE Brazil. The selected subarea is situated at the centre point of the study region
(see text).

7.6 Conclusion

By using the Lorenz96 model as a prototypical example of spatially extended dynamics with
large degrees of freedom, we have shown that recurrence plot based analysis can be used to
investigate high-dimensional dynamics from rather short time series and provides insights
in the fundamental features of the dynamics, comparable with the Kaplan-Yorke dimension
or the Lyapunov exponent. This study, thus, answers the hitherto open question, whether
recurrence plots and their quantification are suitable to study high-dimensional chaos. The
more systematic study on the limits of the used methods and the necessary length of time
series in dependence on the degrees of freedom of the system is a subject of future work.
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Table 7.1: Median of recurrence quantification measures for the MODIS EVI data (standard
deviation in brackets).

Spain Brazil
DET 0.51 (0.07) 0.33 (0.04)
1/Lmax 0.10 (0.03) 0.13 (0.03)
DT 2.35 (0.45) 3.85 (0.41)

Moreover, by applying the method to MODIS satellite time series data we have demon-
strated its suitability for the investigation of extended spatio-temporal dynamics of real world
processes. The recurrence analysis has indicated a clear difference in the spatio-temporal
vegetation dynamics in a subhumid (Spain) and in a semiarid (Brazil) climate, where the
first shows a more regular pattern, whereas the latter is characterized by a more irregular
and less predictable behavior.
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Abstract
Recurrence plot based methods are highly efficient and widely accepted tools for the investi-
gation of time series or one-dimensional data. We present an extension of the recurrence
plots and their quantifications in order to study recurrent structures in higher-dimensional
spatial data. The capability of this extension is illustrated on prototypical 2D models. Next,
the tested and proved approach is applied to assess the bone structure from CT images of
human proximal tibia. We find that the spatial structures in trabecular bone become more
recurrent during the bone loss in osteoporosis.

8.1 Introduction
Recurrence is a fundamental property of many dynamical systems and, hence, of various
processes in nature. A system may strongly diverge, but after some time it recurs “infinitely
many times as close as one wishes to its initial state” [292]. The investigation of recurrence
reveals typical properties of the system and may help to predict its future behaviour. With
the study of nonlinear chaotic systems several methods for the investigation of recurrences
have been developed. The method of recurrence plots (RPs) was introduced by Eckmann
et al. [86]. Together with different RP quantification approaches [237, 418], this method
has attracted growing interest for both theory and applications [223].

Recurrence plot based methods have been succesfully applied to a wide class of data
from physiology, geology, physics, finances and others. They are especially suitable for the
investigation of rather short and nonstationary data. This approach works with time series or
phase-space reconstructions (trajectories), i. e. with data which are at least one-dimensional.

Recurrences are not restricted to one-dimensional time series or phase-space trajectories.
Spatio-temporal processes can also exhibit typical recurrent structures. However, RPs as
introduced in [86] cannot be directly applied to spatial (higher-dimensional) data. One
possible way to study the recurrences of spatial data is to separate the higher-dimensional

https://doi.org/10.1016/j.physleta.2006.08.058
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objects into a large number of one-dimensional data series, and to analyse them separately
[402]. A more promising approach is to extend the one-dimensional approach of the
recurrence plots to a higher-dimensional one.

In the presented work, we focus on the analysis of snapshots of spatio-temporal processes,
e. g., on static images. An extension of recurrence plots and their quantification to higher-
dimensional data is suggested. This extension allows us to apply this method directly to
spatial higher-dimensional data, and, in particular, to use it for 2D image analysis. We
apply this method to 2D human bone images, derived by peripheral quantitative computer
tomography (pQCT), in order to investigate differences in trabecular bone structures at
different stages of osteoporosis.

8.2 Recurrence Plots
The initial purpose of recurrence plots was the visualisation of recurrences of system’s states
~x i in a phase-space (with dimension m) within a small deviation ε [86]. The RP efficiently
visualises recurrences even for high dimensional systems. A recurrence of a state at time i at
a different time j is marked within a two-dimensional squared matrix with ones and zeros
dots (black and white points in the plot), where both axes represent time. The RP can be
formally expressed by the matrix

Ri, j = Θ
�

ε − ‖~x i − ~x j‖
�

, ~x i ∈ Rm, i, j = 1 . . . N , (8.1)

where N is the number of considered states ~x i , ε is a threshold distance (an arbitrary deviation
range within a recurrence is defined), ‖ · ‖ denotes a norm and Θ(·) is the Heaviside function.

It should be emphasised that this method is a pairwise comparison of system’s states at
different times along a phase space trajectory, which is – although lying in an m-dimensional
space – a one-dimensional curve. The axes of the RP correspond to the time which is given
by pursueing a state on the trajectory. Diagonal lines in an RP represent epochs of similar
dynamical evolution of the analysed system. For i = j we get the line of identity (LOI),
Ri,i ≡ 1 |Ni=1, which is the main diagonal line in the RP (Fig. 8.1).

Figure 8.1: Example of a recurrence plot for the logistic map (x i+1 = ax i(1− x) with control
parameter a = 3.9767). The RP consists of single dots and line structures.

Instead of using the system’s states ~x i which are often unknown, RPs can be created by
only using a single time series or a reconstruction of the phase-space vectors (e. g. by using
time-delay embedding, [375]). Such applications to experimental data have expanded the
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utilisation of RPs from a tool for the investigation of deterministic phase-space dynamics to a
tool for the investigation of similarity and transitions in data series, without the rather strong
requirement that the data must be from a deterministic dynamical process. The idea of such
a similarity plot is not new and can be found in publications earlier than [86], e. g. in [208].
This alternative understanding was (unconsciously) the base of the ever increasing amount
of application of RPs in data analysis. However, in its present state the RP technique could
not be applied to higher-dimensional spatial data.

The initial purpose of RPs was the visual inspection of the behaviour of phase-space
trajectories. The appearance of RPs gives hints about the characteristic time evolution of
these trajectories [223]. A closer inspection of RPs reveals small-scale structures which are
single dots, diagonal lines as well as vertical and horizontal lines (Fig. 8.1).

A diagonal line Ri+k, j+k ≡ 1 |l−1
k=0 (where l is the length of the diagonal line) occurs when

one segment of the trajectory runs parallel to another one, i. e. the trajectory re-visits the
same region of the phase-space at different time intervals. The length of this diagonal line
is determined by the duration of intervals with similar local behaviour of the trajectory
segments. We define a line in the RP as a diagonal line of length l, if it fulfils the condition

�

1−Ri−1, j−1

� �

1−Ri+l, j+l

�

l−1
∏

k=0

Ri+k, j+k ≡ 1. (8.2)

In Eq. (8.2), the condition 1−Ri, j ≡ 1 holds only, if Ri, j is a non-recurrence point. Therefore,
the first two factors in Eq. (8.2) mark the start and the end of the diagonal line, conditioned
by non-recurrence points.

A vertical (horizontal) line Ri, j+k ≡ 1 |v−1
k=0 (where v is the length of the vertical line) marks

a time interval in which a system’s state does not change in time or changes very slowly. It
looks like the state is trapped for some time, which is a typical behaviour of laminar states
[237]. Because RPs are symmetric about the LOI by definition (8.1), each vertical line has a
corresponding horizontal line. Therefore, only the vertical lines are henceforth considered.
Combinations of vertical and horizontal lines form rectangular clusters in an RP. We define a
line as a vertical line of length v, if it fulfils the condition

�

1−Ri, j−1

� �

1−Ri, j+v

�

v+1
∏

k=0

Ri, j+k ≡ 1. (8.3)

These small-scale structures are used for the quantitative analysis of RPs (known as
recurrence quantification analysis, RQA). Using the distributions of the lengths of diagonal
lines P(l) or vertical lines P(v), different measures of complexity have been introduced
(cf. [223] for a comprehensive review of definitions and descriptions of these measures).
Here we generalise the measures recurrence rate RR, determinism DET , averaged diagonal
line length L, laminarity LAM and trapping time T T in order to quantify higher-dimensional
data. (cf. Tab. 8.1).

Several measures need a predefined minimal length lmin or vmin, respectively, for the
definition of a diagonal or vertical line. These minimal lengths should be as minimal as
possible in order to cover as much variation of the lengths of these lines. On the other hand,
lmin and vmin should be large enough to exclude line-like structures which represent only
single, non-recurrent states, which may occur if the threshold ε is chosen too large or if the
data have been smoothed too stronlgy before computing the RP.

RQA was successfully applied for example for the detection of transitions in event related
EEG potentials [233], the study of interrelations between El Niño and climate in the past
[238], the investigation of economic data series [117], of nonlinear processes in electronic
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devices [90] or the study of transitions in chemical reactions [331]. For a number of further
applications see, e. g., [223] or www.recurrence-plot.tk.

8.3 Extension to higher dimensions
Now, we propose an extension of RPs to analyse higher dimensional data. With this step we
leave the RPs as a method for investigating deterministic dynamics and focus on its potential
in determining similar (recurrent) features in spatial data.

For a d-dimensional (Cartesian) system, we define an n-dimensional recurrence plot by

R~ı,~ = Θ
�

ε −




~x~ı − ~x~






�

, ~x~ı ∈ Rm, ~ı, ~ ∈ Nd , (8.4)

where~ı is the d-dimensional coordinate vector and ~x~ı is the phase-space vector at the location
given by the coordinate vector ~ı. This means that we decompose the spatial dimension of ~x~ı
and consider each space direction separately, e. g. ~x i1,i2,...id for i1 = 1, . . . , N but i2, . . . , id =
const. Such vectors are now one-dimensional curves in the m-dimensional space. Each
of these vectors is pairwisely compared with all others. These individual sub-RPs are the
components of the final higher-dimensional RP. The resulting RP has now the dimension
n= 2× d and cannot be visualised anymore. However, its quantification is still possible.

Similarly to the one-dimensional LOI given by Ri, j = 1 ∀ i = j, we can find diagonally
oriented, d-dimensional structures in this n-dimensional recurrence plot (n= 2 d), called
the hyper-surface of identity (HSOI):

R~ı,~ ≡ 1 ∀ ~ı = ~. (8.5)

Table 8.1: Generalised recurrence quantification measures for spatial data of dimension
d and with ~ı,~ ∈ Nd . Note that these measures assess recurrence information in terms of
length while the original RQA measures quantify it in terms of time.

RQA measure equation meaning

recurrence rate RR= 1
N2d

N
∑

~ı,~
R~ı,~ percentage of recurrent

states in the system; prob-
ability of the recurrence of
any state

determinism DETHS =
∑N

l=lmin
l P(l)
∑N
~ı,~ R~ı,~

percentage of recurrence
points which form diagonal
hyper-surfaces; related to
the predictability of the sys-
tem

laminarity LAMHS =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

percentage of recurrence
points which form vertical
hyper-surfaces; related to
the laminarity of the system

averaged diagonal hyper-
surface size

LHS =
∑N

l=lmin
l P(l)

∑N
l=lmin

P(l)
related to the prediction
length of the system

trapping size T THS =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)
related to the size of the area
in which the system does not
change
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In the special case of a two-dimensional image composed by scalar values, we have

Ri1,i2, j1, j2 ≡ Θ
�

ε −




x i1,i2 − x j1, j2







�

, (8.6)

which is in fact a four-dimensional recurrence plot, and its HSOI (Ri1,i2,i1,i2 ≡ 1) is a two-
dimensional plane.

8.4 Quantification of Higher-Dimensional RPs
The known RQA is based on the quantification of the line structures in the two-dimensional
RPs. Thus, the definition of higher-dimensional equivalent structures is crucial for a quantifi-
cation analysis of higher-dimensional RPs.

Based on the definition of diagonal lines, Eq. (8.2), we define a diagonal squared hyper-
surface of size ~l (~l = (l, . . . , l),~l ∈ Nd) as

�

1−R~ı−~1,~−~1

��

1−R~ı+~l,~+~l
�

l−1
∏

k1,k2,...,
kd=0

R~ı+~k,~+~k ≡ 1. (8.7)

In particular, for the two-dimensional case such a diagonal hyper-surface (HS) is thus defined
as

�

1−Ri1−1,i2−1, j1−1, j2−1

� �

1−Ri1+l,i2+l, j1+l, j2+l

�

l−1
∏

k1,k2=0

Ri1+k1,i2+k2, j1+k1, j2+k2
≡ 1. (8.8)

The next characteristic structure, the vertical squared HS of size ~v (~v = (v, . . . , v), ~v ∈ Nd)
is defined as

�

1−R~ı,~−~v
� �

1−R~ı,~+~v
�

v−1
∏

k1,k2,...,
kd=0

R~ı,~+~k ≡ 1. (8.9)

Its 2D equivalent is

�

1−Ri1,i2, j1−1, j2−1

� �

1−Ri1,i2, j1+v, j2+v

�

v−1
∏

k1,k2=0

Ri1,i2, j1+k1, j2+k2
≡ 1. (8.10)

Using these definitions, we can construct the frequency distributions P(l) and P(v) of the
sizes of diagonal and vertical HS in the higher-dimensional RP. This way we get generalised
RQA measures DETHS, LAMHS, LHS and T THS as defined in Tab. 8.1, which are now suitable
for characterising spatial (e. g. two-dimensional) data.

8.5 Model Examples
In order to illustrate the ability of the proposed high-dimensional RP’s extension, we consider
three prototypical model examples from 2D image analysis. The first image (A) is produced
by uniformly distributed white noise, the second one (B) is the result of a two-dimensional
auto-correlated process of 2nd order (2D-AR2; x i, j =

∑2
k,l=1 ak,l x i−k, j−l + ξ, where ak,l is

the 2D matrix of model parameters and ξ is Gaussian white noise) and the third one (C)
represents periodical recurrent structures (Fig. 8.2). All these example images have a size of
200× 200 pixels and are normalised to a mean of zero and a standard deviation of one.
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A CB

Figure 8.2: Two-dimensional prototypical examples: test images representing (A) uniformly
distributed white noise, (B) a two-dimensional auto-correlated process (2D-AR2) and (C)
periodical recurrent structures.

CBA

Figure 8.3: Three-dimensional subsections of four-dimensional RPs of the images shown in
Fig. 8.2. As known from one-dimensional RQA, (A) random data causes homogeneous RPs
consisting of single, dis-connected points, (B) correlations in data cause extended connected
structures and (C) periodic data induce periodically occuring structures in the RPs.

CBA

Figure 8.4: Slices of the subsections of the four-dimensional RPs shown in Fig. 8.3. The
similarity to known recurrence plots is obvious: (A) noise, (B) auto-correlated data and (C)
periodic data.
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Table 8.2: Recurrence quantification measures for the prototypical examples shown in Fig. 8.2.
The measures are explained in Tab. 8.1.

Example RR DETHS LAMHS LHS T THS

(A) noise 0.218 0.007 0.006 3.7 3.0
(B) 2D-AR2 0.221 0.032 0.065 3.1 3.1
(C) periodic 0.219 0.322 0.312 5.8 5.6

The resulting RPs are four-dimensional matrices of size 200×200×200×200 (cp. Eq. (8.6)),
and can hardly be visualised. However, in order to visualise these RPs, we can reduce their
dimension by one by considering only those part of the RPs, where i2 = j2. The resulting
200× 200× 200 cube is a hypersurface of the four-dimensional RP along the LOI. For the
threshold we use ε = 0.2, which gives clear representations of the RPs.

The features occuring in higher-dimensional RPs provide similar information as known
from the classic one-dimensional RPs. Separated single points correspond to strongly fluctu-
ating, uncorrelated data as it is typical for, e. g., white noise (Fig. 8.3A). Auto-correlations
in data cause extended structures, which can be lines, planes or even cuboids (Fig. 8.3B).
Periodical recurrent patterns in data imply periodic line and plane structures in the RP
(Fig. 8.3C). Two-dimensional slices through such RPs contain similar patterns found by
common RPs (Fig. 8.4).

We compute the proposed RQA measures (Tab. 8.1) for the histograms of the sizes of
diagonal and vertical planes (2D HS) in the four-dimensional RPs. For all three examples we
use for the minimal size of the diagonal and vertical HS lmin = 3 pixels and vmin = 4 pixels.
Although the RQA measures depend on the value of ε, its selection is not crucial for our
purpose to discriminate the three different types of structures in the test images. The chosen
values for lmin and vmin are found to be optimal for discriminating the considered images.
By choosing smaller values of lmin and vmin (but larger than one), the measures DETHS and
LAMHS are closer for the 2D-AR2 and the periodic image.

Four of five RQA measures clearly discriminate between the three types of images
(Tab. 8.2). Only the recurrence rate RR is roughly the same for all test objects. This is
because all images were normalised to the same standard deviation. For the random image
(A) the determinism DETHS and laminarity LAMHS tend to zero, what is expected, because
the values in the image heavily fluctuate even between adjecent pixels. For the 2D-AR2
image (B), DETHS and LAMHS are slightly above zero, revealing the correlation between
adjecent pixels. The last example (C) has, as expected, the highest values in DETHS and
LAMHS, because same structures occur many times in this image and the image is rather
smooth. Although the trend in DETHS and LAMHS is similar, there is a significant difference
between both measures. Whereas LAMHS represents the probability that a specific value
will not change over spatial variation (what results in extended same-coloured areas in the
image), DETHS measures the probability that similar changes in the image recur. LAMHS is
twice of DETHS for the 2D-AR2 image, obtaining that there are more areas without changes
in the image than such with typical, recurrent changes.

8.6 Application to pQCT data of proximal tibia

According to the definition of the World Health Organisation, osteoporosis is a disease
characterised by bone loss and changes in the structure of the bone. In the last years, the
focus changed to structural assessment of the trabecular bone, because bone densitometry
alone is very limited to explain all variation in bone strength. Furthermore, the rapid
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progress in the development of new high-resolution computer tomography (CT) scanners
facilitates investigations of the bone micro-architecture. Different approaches using methods
coming from nonlinear dynamics have been recently proposed in order to evaluate structural
changes [19, 82, 122, 333] or even to predict fracture risks or biomechanical properties
[131, 209, 299]. These approaches use, e. g., scaling properties of bone micro-structure or
symbol-encoding of the bone architecture.

Using the RP based method, we will focus here on the recurrent structures found in
images of trabecular bone of proximal tibiae obtained by peripheral quantitative computer
tomography (pQCT). The images were aquired from bone specimens with different stages of
osteoporosis as assessed by bone mineral density (BMD). Being applied to such images, the
RP provides information about recurrences of bone and soft tissue.

The spatial recurrence analysis is applied to high-resolution pQCT axial slices of human
proximal tibia acquired 17 mm below the tibial plateau, with pixel size 200µm and slice
thickness 1 mm (Fig. 8.5). The images were acquired from 25 bone specimens with a pQCT
scanner XCT-2000 (Stratec GmbH, Germany). The trabecular bone mineral density of these
specimens ranges from 30 to 150 mg/cm3. A standardised image pre-processing procedure
was applied to exclude the cortical shell from the analysis [333, 335] (the attenuation
levels were not changed). The RQA was computed by using the parameters ε = 0.04 cm−1,
lmin = vmin = 400µm. These minimal lengths correspond to two pixels and is found to
be appropriate for pQCT images of such resolution (for higher values of lmin and vmin, the
discrimination of the RQA measures for different stages of osteoporosis get a bit worse).

In order to further evaluate the proposed RQA measures, we compare them with some
recently introduced structural measures of complexity (SMCs) [333, 335]. The SMCs are
based on a symbol-encoding of bone elements in the pQCT image. Here we focus on the
following SMCs:

1. Entropy (Sa): quantifies the probability distribution of X-ray attenuation within the
region of interest;

2. Structure Complexity Index (SCI): assesses the complexity and homogeneity of the
structure as a whole;

3. Trabecular Network Index (TNI) evaluates richness, orderliness, and homogeneity of
the trabecular network.

The computation of the SMCs is applied to the same trabecular area like the RQA measures.

Figure 8.5: Typical axial pQCT slice of human proximal tibia acquired 17 mm below the
tibial plateau. The trabecular BMD is 65.5 mg/cm3.

The application of the recurrence plot extension to the pQCT images of proximal tib-
iae reveals a relationship between the recurrences in the trabecular architecture and the
osteoporotic stage (Fig. 8.6 and Tab. 8.3). RR is largest for osteoporotic bone and shows
the strongest relationship with the degree of osteoporosis: it is clearly anti-correlated with
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Table 8.3: Rank correlation coefficients R for recurrence quantification measures, BMD and
structural measures of complexity (only significant values are shown).

2D-RQA BMD Sa SCI TNI

RR −0.94 −0.92 −0.91 0.84
DET −0.65 −0.58 −0.61 0.61
LAM −0.78 −0.73 −0.75 0.72
L – – – –
TT −0.57 −0.51 – 0.49

BMD (Spearman’s rank order correlation coefficient R = −0.94). DETHS and LAMHS are also
maximal for tibiae with high degree of osteoporosis (R= −0.66 and −0.79; Fig. 8.7). We
do not find a strong relation between LHS, T THS and BMD. The comparison with the SMCs
reveals good relationships between the RQA measures and Sa, SCI and TNI (Fig. 8.8 and
Tab. 8.3). Thus, the RQA measures RR, DETHS and LAMHS contain also information about
the complexity and homogeneity of the trabecular network.

Thus, the proposed RP approach reveals that during the development of osteoporosis
the structures in the corresponding pQCT image become more and more recurrent. This
is in a good agreement with a decreasing complexity in the micro-architecture of bone. It
confirms the results of an analysis of pQCT images acquired from human proximal tibia and
lumbar vertebrae based on symbolic dynamics [333, 335]. The direct comparison with the
structural quantities (SMCs) shows that the RQA measures provide information about the
bone architecture. The RQA measures reveal a low rate of change for bone of higher BMD,
but higher rate of changes for specimens with lower BMD (Figs. 8.6 and 8.7). This reflects a
higher sensitivity of these measures for osteoporotic trabecular bone and emphasises the
nonlinear relationship between the bone architecture as assessed by the RQA measures and
bone mass as evaluated by the BMD. As it has been recently shown that the SMCs provide a
better estimation of the mechanical bone strength than BMD alone [334], the proposed RQA
measures could further enhance the evaluation to assess the fracture risk of bone.
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Figure 8.6: Recurrence rate RR obtained from four-dimensional RPs of pQCT images of
trabecular bone in human proximal tibia of different osteoporotic stages.

8.7 Conclusions
A generalisation of the method of recurrence plots (RPs) and recurrence quantification
analysis (RQA) for the application to higher-dimensional spatial data has been proposed here.
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Figure 8.7: Determinism DET (A), laminarity LAM (B), mean line length L (C) and trapping
time T T (D) obtained from four-dimensional RPs constructed from pQCT images of trabecular
bone in human proximal tibiae with different degree of osteoporosis.
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Figure 8.8: Recurrence rate RR (A) and laminarity LAM (B) compared with trabecular
network index TNI and structure complexity index (SCI).
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This new method can be used for 2D image analysis, in particular to reveal and quantify
recurrent structures in 2D images. Applying this method on model images, we have shown
that it is able to distinguish typical spatial structures by means of recurrences. As a first
application, we have used this method for the comparison of CT images of human proximal
tibia with different degree of osteoporosis. We have found a clear relationship between
some of the proposed RQA measures and the complexity and homogeneity of the trabecular
structure. Moreover, this approach can be easily extended to higher dimensions, e. g., for 3D
analysis of micro-CT images of human bone. This approach will be the base for the further
development of methods for the assessment of structural alteration in trabecular bone with
osteoporosis in patients on Earth or in space flying personnel in microgravity conditions.
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Abstract
The increasing availability of highly resolved spatio-temporal data leads to new opportunities
as well as challenges in many scientific disciplines such as climatology, ecology or epidemi-
ology. This allows more detailed insights into the investigated spatially extended systems.
However, this development needs advanced techniques of data analysis which go beyond
standard linear tools since the more precise consideration often reveals nonlinear phenomena,
for example threshold effects. One of these tools is the recurrence plot approach which has
been successfully applied to the description of complex systems. Using this technique’s power
of visualization, we propose the analysis of the local minima of the underlying distance
matrix in order to display driving forces of spatially extended systems. The potential of
this novel idea is demonstrated by the analysis of the chlorophyll concentration and the sea
surface temperature in the Southern California Bight. We are able not only to confirm the
influence of El Niño events on the phytoplankton growth in this region but also to confirm
two discussed regime shifts in the California current system. This new finding underlines
the power of the proposed approach and promises new insights into other complex systems.

9.1 Introduction
In many scientific disciplines, such as climatology, ecology, neuroscience or epidemiology, the
increasing availability of highly resolved spatio-temporal data allows more detailed insights
into the behavior of spatially extended systems of interest. However, this development also
leads to the challenging question for advanced analytical techniques in order to describe

https://10.1140/epjst/e2016-60376-9
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and to quantify the now revealing phenomena which often have a nonlinear character, e.g.
threshold effects. The unabated publishing of new analytical tools for this purpose proves
this methodological progression. In the last decades, the recurrence plot (RP) has emerged
as one successful concept in the description of nonlinear phenomena and complex systems
[86, 239] but their application to spatio-temporal problems is only in the beginning. In
previous studies we have pro- posed the high dimensional RP and the mapogram-based
RP (MRP), respectively, in order to bring the powerful concept to the analysis of spatially
extended systems [226, 314].

The RP framework enables us not only to quantify the dynamics of these systems by
means of the library of recurrence quantification analysis [239] and recurrence network
analysis [78], but also to visualize the underlying high-dimensional state space. An example
of this family of tools is the thresholded metan RP which was proposed by Casdagli [45]
for visualizing driving forces of a system. We extend the thresholded metan RP by using
a kernel estimator instead of a histogram in order to take into account even fast changes
of the force and by focusing on the underlying distance matrix avoiding gaps in the RP
which results from regime shifts. The potential of this novel idea is demonstrated by the
application to remotely sensed data of the Southern California Bight (SCB), one of the most
productive marine ecosystems of the world [411], looking for hidden determinants of the
complex phytoplankton’s growth in this system. In particular, the data are the chlorophyll
concentration (CHL), a proxy of the phytoplankton’s concentration, and the sea surface
temperature (SST), a proxy of the hydrological state of the California Current System (CCS).
Influences at three different time scales are discussed for this system [404]. Influences at
longer time scales are annual determinants which are dominated by the coastal wind-driven
upwelling which typically occurs in Spring. Other influences are short-term interannual
influences, for example the El Niño-Southern Oscillation (ENSO) where El Niño events
decrease the upwelling and increase the SST. A previous study only indicates a weak effect
of the El Niño events on the CHL whereas La Niña periods seem ineffective except the sharp
events after the strong El Niños 1982–83 and 1997–98 [404]. Finally, long-term influences
enclose cycles of 10 years or longer as well as irregular regime shifts, e.g. the major regime
shift 1976–77.

9.2 Method
9.2.1 Recurrence plot

The recurrence plot (RP) visualizes the recurrences of a state of a dynamical system. The
temporal evolution of such dynamical system is given by its trajectory {~x i}Ni=1 in the system’s
phase space. Then, the corresponding RP is based on the recurrence matrix:

Ri, j = Θ(ε − ‖~x i − ~x j‖), (9.1)

i and j are the indexes of the observed states and go from 1 to N , the number of observed
states. ‖ · ‖ denotes a norm and Θ is the Heaviside function. In the RP, the values 1 in the
recurrence matrix are displayed by black dots which show that the trajectory comes close
(defined by the threshold ε) to a previous state [239].

A serious problem when constructing the RP is the contamination of the data by noise
(Fig. 9.1). Comparing the RP of the noisy Lorenz data with the RP of the clean Lorenz data,
we find that the diagonal lines resolve into clouds of points (Fig. 9.1). Further, the patchy
like structure with and without points vanishes, i.e. the points are more homogeneously
distributed over the whole plot. Surprisingly, the last effect reveals the hidden structure of
the underlying distance matrix which allows a qualitative description of the dynamics in the
sparse regions of the undisturbed RP (Fig. 9.1A).
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Figure 9.1: (A) Recurrence plot of the simulated Lorenz-system (cf. Appendix B); (B)
recurrence plot of the same simulation with additive noise (white noise added to each
component; signal-to-noise ratio: 2.5). The recurrence rate is fixed to 5% in both cases.

9.2.2 Thresholded meta recurrence plot
Casdagli [45] proposed the thresholded metan RP in order to remove the noise and to reveal
footprints of the system’s drivers. The thresholded metan RP results from covering of the
noisy RP by means of Nb non-overlapping squares building the bins of a histogram hk,l with
k, l = 1, . . . , Nb, the indexes of the bins. hk,l is the relative frequency of points in the bin. On
the basis of this histogram, the new distance matrix is calculated by means of

Dhist
k,l = (hk,k + hl,l − 2hk,l)/ε

2, (9.2)

which is further thresholded. ε is the threshold of equation 9.1 constructing the starting
RP. The thresholded metan RP of the RP in Figure 9.1B is displayed in Figure 9.2A which
only reflects the global patchy like structure of the undisturbed RP (Fig. 9.1A). Here, the
bin width of 8 time steps is manually selected. The recurrence rate is fixed to 5%. Although
without an external driving force, the example demonstrates the effect of the thresholded
metan RP to reveal long-term dynamics.

However, the application of the thresholded metan RP is limited to slowly varying
dynamics. One cause of this limitation is the use of histograms which does not adapt to the
distribution of the recurrence points and therefore needs larger bin sizes. So, we extend this
approach by applying a kernel estimation of the point distribution instead of the histogram
in order to overcome this problem. We estimate the point distribution of the noisy recurrence
plot by means of a 2D Epanechnikov kernel

di, j =
1

N2

N
∑

i′, j′=1

Kw

�

i − i′

w
j − j′

w

�

Ri, j . (9.3)

This kernel Kw has a bell-like shape as the Gaussian kernel but has a bounded domain
which avoids long-range effects [351]. The 2D Epanechnikov kernel is defined by

Kw(x , y) =

¨

3
�

1−
�

(x/w)2 + (y/w)2
��

/4, if ‖(x/w)2 + (y/w)2‖ ≤ 1

0 otherwise,
(9.4)

w is the bandwidth of the kernel and is determined by the half of the first minimum of the
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Figure 9.2: (A) Black points display the thresholded metan RP of the RP in Figure 9.1B;
(B) probability of recurrence after τ time steps pτ, Eq. (9.5), of the RP in Figure 9.1B. The
remarkable local minimum at 20 determines the bandwidth of the kernel used in C and D.
(C) Black points display the thresholded metan RP using a kernel estimation instead of the
histogram as used in A. (D) The column-wise position of the minima in the kernel smoothed
distance matrix of the RP in Figure 9.2C. For comparison, gray points in A, C, and D show
the undisturbed RP from Figure 9.1A.

probability of recurrence after τ time steps which is defined by:

pτ =
1

N −τ

N−τ
∑

i=1

Ri,i+τ, (9.5)

N is the size of the recurrence matrix {Ri, j}i, j=1,...,N from equation 9.1 [239]. That is, pτ
is the relative frequency of the points in the τ-th diagonal of the RP (e.g., Fig. 9.2B). The
picked minimum of pτ guarantees a high level of smoothing and the resolution of the
diagonal structures in the thresholded metan RP. From the kernel estimated distribution di, j
in equation 9.3, we get the distance matrix

Dkernel
i, j =
�

di,i + d j, j − 2di, j

�

/ε2, (9.6)

as in the case of the histogram based approach, Eq. (9.2). The extended version of the
thresholded metan RP resembles the undisturbed recurrence plot much better than the
original, histogram based approach. Although the same recurrence rate, the number of the
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recurrence points is much higher since the down sampling by means of the histogram is not
necessary anymore.

9.2.3 Local minima of the distance matrix
A second adaptation of the approach by Casdagli [45] is done in order to overcome the sparse
regions of the RP which are caused by instationarities (e.g. Fig. 9.1A). For this purpose,
we consider the local minima in the columns of the underlying distance matrix matrix
(Di−1, j > Di, j < Di+1, j). Figure 9.2D shows the column-wise minima of the distance matrix
for the smoothed distance matrix of the noisy simulation of the Lorenz-system, for example.
We use the same kernel smoothing as in the extended thresholded metan RP where the
band width is 10 time steps, half of the first remarkable minimum of pτ (Fig. 9.2B). Now
horizontal bands are visible containing curves which remember time series of an oscillation
with changing amplitude (Fig. 9.2D). At some time steps these curves are connected by
diagonal lines which actually build the original RP in Figure 9.1A.

For the Lorenz-example, a selected “band” (at j = 500) is presented in Figure 9.3A. This
horizontal structure coincides well with the z-component of the Lorenz system (Appendix B).
These bands of black points represent the stay of the trajectory in one of the two wings of the
attractor for one period. The curves are projections of the stay in the other wing, whereas
the diagonal lines crossing the empty space display the oscillations in the corresponding
wing. Further, one bound of these bands, characterized by the highest number of black dots,
visualizes the closest point of the corresponding wing-internal oscillation to the oscillations
in the other wing which is indicated by its location along the merging zone of the trajectory
(cf. Fig. 9.3B).
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Figure 9.3: (A) Part of Figure 9.2D where the black dots mark the positions of the column-
wise local minima. For comparison, the rescaled third component of the undisturbed Lorenz-
system is displayed by the green solid line. The red dashed lines underline horizontal levels
with an accumulation of black dots. (B) The trajectory of the undisturbed Lorenz-system in
its state space (black line). The red stars represent the time stamps which correspond to red
dashed lines in A.

So, we only find this horizontal band structure in systems where the trajectory stays in
at least two separate regions of the state space for more than one main oscillation. This
is indicated by the counterexamples, the van der Pol oscillator and the Rössler system
(cf. Fig. 9.4), where the bands disappear or partly vanish, respectively. The Lorenz system
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Figure 9.4: Positions of the column-wise local minima of distance matrices for simulations
of: (A) the van der Pol-oscillator (Appendix B); and (B) the Rössler-system.

intrinsically fulfills the condition of separate regions in the phase space with separated
oscillations, i.e. the trajectory stays in separated state space regions for more than one
oscillation, but also multi-stable systems comprise this property. So, this technique of
visualization does not only display a projection of the oscillation in the different parts but
also indicates the switching of the trajectory from one part to another.

9.3 Application

We apply the proposed technique of the local minima of the distance matrix to spatio-temporal
data of an ecological system, and demonstrate the ability of this approach to visualize driving
forces of the system.

9.3.1 Data
The first data set is the estimation of the chlorophyll concentration (CHL, [min, max] =
[0.0107, 62.3735]mg/m3) in the CCS from 1998 to 2016, i.e. 1431 time steps. It results from
the merging of multiple satellite sensor outputs of the ocean color and in situ measurements
of CHL in this region [162, 163]. The spatial resolution of the gridded data is 4 km where
the upper-left and the lower-right corners of the grid are given by (45°N, −140°E) and
(30.03597°N, −115.5454°E), respectively, resulting in 61× 87 data points. The temporal
resolution is 5 days after averaging. Missing data are exchanged by a two times linear
interpolation which is based on the previous and the following time stamp. The second
data set is the satellite based SST ([min, max] = [10.5, 24.45]°C) in the CCS from 1981
to 2016, i.e. 2552 time steps, with the same spatial and temporal resolution as in the CHL
data. In this study, we focus on the Southern Californian Bight (SCB) (upper-left corner:
(34.4245°N, −120.9898°E); lower-right corner: (32.2662°N, −117.0880°E)) schematically
drawn in Figure 9.5A.

9.3.2 Preprocessing
The first step of the preprocessing is the transformation of CHL by means of the decadic
logarithm in order to normalize the data. Next, the logarithmic CHL as well as the SST
data are centralized by subtracting the respective grid point-wise temporal median. This
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Figure 9.5: (A) Schematic draw of the considered geographic region, the Southern California
Bight, with the location of Los Angeles (LA) and the Santa Barbara Channel (SBC). The black
curves mark coastlines. (B) Exemplary centralized logarithmic chlorophyll concentration
(lCHL), for the pixel at the location (33.2734°N, −117.7232°E). The bold line indicates the
estimated annual cycle.

is done in order to reduce local differences in the mean level focusing on the dynamics
of both variables. For example, the shallow water along the coast line and at submarine
plateaus in the canyon structure of the continental shelf has remarkable higher values in the
CHL because of an increased reflectance in the used spectral band by means of suspended
sediments or land and bottom reflections. Finally, we remove the annual cycle from both
data sets. This is performed for each grid point, separately: (i) wrapping the time axis; (ii)
non-parametrically estimation of the annual cycle by means of a robust Loess-regression
with a bandwidth which is determined by 50% of the data points, the quartile range [134];
and (iii) calculating the residuals of the fit (Fig. 9.5B). The residuals of these nonparametric
annual models are called anomalies of CHL (CHLA) and anomalies of SST (SSTA).

9.3.3 Mapogram-based recurrence plot
The data of CHLA and SSTA consist of time series of images, i.e. two dimensional data
fields with 61× 87 pixels. In order to analyze these given spatio-temporal data by means
of the RP framework, we use the mapogram-based recurrence plot (MRP) which is able
to provide additional information on the observed system in comparison to a classical RP
analysis of spatially averaged data [314]. The MRP is based on the similarity measure Sm′

t,t ′

(cf. Eq. (9.12)), quantifying the spatial similarity of two images at time stamps t and t ′. As
the measure of similarity, we choose the weighted Bhattacharyya distance which is premised
on the mapogram (cf. Appendix A). This mapogram is a representation of the image and
is determined by two parameters: (i) the binning of the gray-scale values of the image
which controls the level of simplification of the spatial pattern; and (ii) the blurring which
determines the minimal resolved spatial scale. Hence, the tuning of the spatial scales of
interest allows a multiscale investigation of the image [314]. The resulting similarity is used
to construct the recurrence matrix Rt,t ′ by means of

Rt,t ′ = Θ(St,t ′ − ε), (9.7)

Θ denotes the Heaviside function, ε is the threshold of similarity. Settings of our
analysis are: (i) ε is determined by a fixed recurrence rate of 5%; (ii) there are 4 bins
where the thresholds between the bins are given by the lower quartile, the median, and
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the upper quartile of the data; and (iii) the blurring coefficients of the mapogram were
{0, 2,5, 10, 15, 20, 25, 30,35,
40} pixels, which relate to the minimal resolved spatial scales of about {1, 4, 10, 20, 30, 40, 50,
60, 70, 80} pixels, respectively. All in all, we have 10 recurrence plots for each data set. The
underlying similarity matrix will be analysed as the distance matrix by means of the proposed
approach (Sect. 9.2.3) since the distance is used to encode the similarity of two states, too,
by their closeness in the state space. The only difference in this application is the use of the
local maxima instead of the local minima.
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Figure 9.6: Two mapogram based recurrence plots of the anomaly data of chlorophyl
concentration. They correspond to the smallest resolved spatial scales of 1 pixel (A) and 20
pixels (B).

9.3.4 Results
The recurrence structures within the MRPs of different scales differ significantly (Fig. 9.6),
where the largest differences are between scale 1 (4 km) and 20 (80 km). (Figs. 9.6A and
9.6B, respectively). A further increase of the spatial scale does not lead to qualitative changes.
We further focus on the latter MRP and its underlying similarity matrix taking into account
spatial pattern with scales greater than 80 km.

Based on the probability of recurrence after τ time steps pτ, Eq. (9.5), derived from the
MRP in Figure 9.6B, we select a kernel’s bandwidth of 18 time steps for temporal smoothing
(derived from the minimum at τ = 36, Fig. 9.7A). This band width corresponds to the
smallest resolved temporal scale of 90 days or a quarter of a year. The underlying similarity
matrix of the MRP (Fig. 9.6B) is transformed to the meta-RP by means of the introduced
Epanechnikov-Kernel, Eq. (9.4). After that, the column wise local maxima are selected which
are given by values greater than their upper and lower neighbors. The positions of these
local maxima are shown in Figure 9.7B.

The procedure is then repeated for SSTA. For comparison, we look at the MRP with the
same blurring of 20 pixel (80 km) as in the case of CHLA. Here, the bandwidth of the kernel
for temporal smoothing is 15 time steps corresponding to 75 days (Fig. 9.8A). The positions
of the column-wise local maxima of the smoothed similarity matrix are shown in Figure 9.8B.

In both In the case of CHLA (Fig. 9.9A), we find two global maxima in 1998 and from
2014 to 2016. In between, the baseline swings down until 2008 or 2009 and rises after. This
baseline is overlaid by several peaks. In the case of SSTA (Fig. 9.9B), the baseline is rather a
rectangular curve with higher values in the temporal range of the global maxima of CHLA
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Figure 9.7: (A) Probability of recurrence after τ time steps pτ, Eq. (9.5), based on the MRP
in Figure 9.6B. The arrow marks the local minimum of pτ at 36 which is used to determine
the kernel’s bandwidth of 18 time steps. (B) Positions of the column-wise local maxima of
the smoothed similarity matrix which is the basis of the MRP in Figure 9.6B.
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Figure 9.8: (A) Probability of recurrence after τ time steps pτ, Eq. (9.5), based on the
MRP of the sea surface temperature anomaly data (for spatial scales greater than 20 pixels).
The arrow marks the local minimum of pτ at 29 which is used to determine the kernel’s
bandwidth of 15 for smoothing the similarity matrix. (B) Positions of the column-wise local
maxima of the smoothed similarity matrix of the sea surface temperature anomaly data
SSTA.
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Figure 9.9: (A) Selected band from Figure 9.7B visualizes the effect of a driving force of CHLA.
(B) Selected band from Figure 9.8B visualizes the effect of a driving force of SSTA. (C) The
temporal evolution of the anomaly of NINO3.4, an index of the El Niño-Southern-Oscillation.
The black arrows mark simultaneous local maxima in the different time series.

(Fig. 9.9A). There are also peaks in between these higher areas with values comparable to
the elevated level. Almost all of these peaks coincide with peaks in CHLA (Fig. 9.9A). Next
we compare these variations with the temporal evolution of the anomaly of the NINO3.4
index, representing the ENSO activity [396]. The enhanced ENSO activity in 2002–2003,
2006, 2008, 2009–2010, and 2012–2013 coincides with the identified maxima in CHLA
and SSTA. Further, the two global maxima are in the range of the global maxima of CHLA
(Fig. 9.9A) or the high levels of SSTA (Fig. 9.9B). Finally, the baseline in between these two
global maxima behaves similar to those identified for CHLA (Fig. 9.9A) except for the period
1999 to 2002.

Finally we consider the whole sampled period of SSTA in order to further investigate the
rectangular shape (Fig. 9.10). In the extended temporal range, the rectangular character of
the curve continues indicating two regimes of the hydrological system: (i) an El Niño like
regime occurring from 1997 to 1999, from 1983 to 1985, from 1992 to 1995, and from 2014
to 2016; (ii) an La Niña like regime occurring from 1985 to 1990, from 1995 to 1997, and
from 1999 to 2014.

9.4 Discussion

In this work, we use the RP approach in an advanced way in order to get a new qualitative
view on the trajectory of a spatially extended system which is described by spatio-temporal
data. This new view is given by projections of the trajectories revealing systemic changes
which result from driving forces. It results from the novel extension of the thresholded
metan RP reconstructing the driving forces. We improve this reconstruction by using kernel
estimations instead of histograms and focusing on the underlying distance matrix instead of
the RP. So, we are able not only to show the influence of El Niño events on the phytoplankton’s
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Figure 9.10: A selected band from Figure 9.9B over the whole sampled period. The gray
horizontal bars mark the two different levels of the time series.

growth in the Southern Californian Bight but also the documented regime shift in 1998 and
the discussed regime shift from 2014 to 2015 by means of the abrupt change between two
levels of the constructed curves (Figs. 9.9 and 9.10).

In particular, the analysis of CHLA and SSTA reveals new hints about long-term effects
on the phytoplankton’s growth in the Southern California Bight. So, the coexisting peaks
in the projections of CHLA and SSTA and in the ENSO index (Fig. 9.9) suggest that the El
Niño events, documented for 2002–2003, 2009–2010 and 2014–2016, effect this growth
[404]. The sea surface temperature seems to be a transmitting link. This is indicated by the
peak in 2005 where no El Niño event was observed but an unusual ocean weather event
in the northern California Current leads to responses of the ecosystem similar to that ones
of major El Niño events [291]. Beside the extremes, the curves in Figures 9.9A and 9.9C
show similar long-term behavior, except the period from 1999 to 2002, which has not been
shown before. The difference in the period from 1999 to 2002 underlines previous results
that strong La Niña, observed from 1998 to 2000 and shown by local minima in Figure
9.9C, do hardly effect the chlorophyll concentration (Fig. 9.9A). Only the local minimum in
2003 which breaks through the baseline indicates a La Niña like event (Fig. 9.9A). But this
event results from a large anomalous intrusion of subarctic water into the CCS [405]. A new
result is the indication of sharp transitions in the SSTA (Figs. 9.9A and 9.10). That is, the
system seems to switch between two levels where the higher one corresponds to El Niño
like conditions which is indicated by single peaks coinciding with the events (cf. Figs. 9.9B
and 9.9C). We assume that the lower level represents La Niña like conditions. Three of the
four largest periods of the upper level (cf. Fig. 9.10) coincide well with the strongest El Niño
events, 1982–1983, 1997–1998 and 2014–2016, during the recorded time [196]. But the
most impressive part is the very large period of the lower level from 1999 to 2014 which
highlights the changes in 1998 and 2014. The step from the higher level to the lower one in
1998 (cf. Fig. 9.10) corresponds to a regime shift in the north Pacific ocean [283]. So we
assume that the step in 2014 is a regime shifts, too.

The new findings for this example demonstrate the potential of the proposed method.
The vital condition of this approach is the existence of at least two parts of the state space
where the trajectory stays longer than the period of the main cycle. This condition is given for
the shown example of spatio-temporal as well as a large number of other complex systems,
e.g. the shown Lorenz-system. Therefore, the proposed method promises new insights into
other complex systems, too.
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Appendix A: Mapogram-based similarity
The mapogram [279] is a representation of the pattern in a gray-scale image and is used to
quantify the similarity of two images. Formally, an image is a two dimensional data field
F = { fi j}i=1,...,Ni ; j=1,...,N j

where i and j are the indexes of the pixels and fi j the assigned
gray-scale values. N = NiN j is the total number of pixels. The first step constructing the
mapogram is a simplification of the gray-scale by means of a histogram

nb =
Ni
∑

i=1

N j
∑

j=1

gb( fi j), (9.8)

where the binary matrices gb resulted from

gb( fi j) =

¨

1 fi j ∈ b-th bin

0 otherwise,
(9.9)

b = 1, . . . , B is the index of the histogram’s bins, B disjoint right side closed intervals which
cover a contiguous part of the gray-scale. So nb is the number of elements with values in the
b-th bin. The Ni × N j binary matrices are normalized

mb,i, j =
gb( fi j)

nb
, (9.10)

and convoluted with a kernel function Kγ, the blurring, which leads to the mapogram. This
spatial smoothing is done for each mb,i, j and is controlled by the positive definite non-zero
parameter γ, the band width of the kernel given in units of sample points:

mb,γ,i, j =
Ni
∑

i′=1

N j
∑

j′=1

mb,i′, j′Kγ

�‖(i′, j′)− (i, j)
γ

�

, (9.11)

Kγ is the Epanechnikov kernel, Eq. (9.4), with its bandwidth parameter γ. So, the set of
mb,γ,·,· build the mapogram representing the pattern in one gray-scale image. The similarity
between the two fields is calculated by a weighting of the Bhattacharyya coefficient, here

Sm
f , f ′(γ, B) =

∑B
b=1

q

(nbn′b)
q

�∑

b nb

� �∑

b n′b
�

∑Ni
i=1

∑N j

j=1

q

mb,γ,i, jm
′
b,γ,i, j

Ç
∑

i j mb,γ,i, j
∑

i j m′b,γ,i, j

(9.12)

where the second factor is the weight. The range of the similarity measure is from 0 to 1,
respectively fully dissimilar and equal images. For γ→ 0, the mb,γ,i, j (Eq. (9.11)) tends to
mb,i, j (Eq. (9.10)). In the limes γ= 0, the similarity measure is set to

Sm
f , f ′(0, B) =

∑B
b=1

q

(nbn′b)
q

�∑

b nb

� �∑

b n′b
�

Ni
∑

i=1

N j
∑

j=1

Ç

mb,i, jm
′
b,i, j , (9.13)

which corresponds to the known κ-statistics [261].
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Appendix B: Theoretical models
First, the Lorenz-system is defined by the system of differential equations:

ẋ = s(y − x),

ẏ = r x − y − xz, (9.14)

ż = −bz + x y.

The used model parameters are s = 10, r = 28, and b = 8/3 related to a chaotic regime. It
is integrated in the temporal range of [0, 100] with the initial condition (x , y, z) = (1, 1, 1).

Second, the R/"ossler-system is given by:

ẋ = −y − z,

ẏ = x + a y, (9.15)

ż = b+ z(x − c).

The values of the parameters are: a = 0.432, b = 2, and c = 4. The initial condition is
(x , y, z) = (0.1, 0.1,0.1) and the time span is [0, 1000].

Finally, the van der Pol-oscillator is defined by:

ẋ = a(x − x3)/3− y),

ẏ = x/a. (9.16)

The model parameter is set to a = 5, the initial condition is (x , y) = (0.5,0), and the time
span is [0, 1000].

For numerical integration of all three dynamical systems, we use the Matlab-function
ode45 (DormandPrince method). In order to exclude transient behavior, we only consider
values above the 2000th time step.
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Abstract
We investigate a network of influences connected to global mean temperature. Considering
various climatic factors known to influence global mean temperature, we evaluate not only the
impacts of these factors on temperature but also the directed dependencies among the factors
themselves. Based on an existing recurrence-based connectivity measure, we propose a new
and more general measure that quantifies the level of dependence between two time series
based on joint recurrences at a chosen time delay. The measures estimated in the analysis
are tested for statistical significance using twin surrogates. We find, in accordance with
earlier studies, the major drivers for global mean temperature to be greenhouse gases, ENSO,
volcanic activity, and solar irradiance. We further uncover a feedback between temperature
and ENSO. Our results demonstrate the need to involve multiple, delayed interactions within
the drivers of temperature in order to develop a more thorough picture of global temperature
variations.

10.1 Introduction
Global mean temperature is one of the primary quantities used to characterize Earth’s climate
and modern climate change. It has been, and still is, a central variable of interest in the
research focussed on understanding global climate variability. In their fourth Assessment
Report, the IPCC clarified to a large extent the role of anthropogenic forcings in the warming
trend of the Global Mean Temperature (GMT) of the last century [136]. Although warming by

https://doi.org/10.1140/epjst/e2013-01889-8
https://doi.org/10.1140/epjst/e2013-01889-8
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anthropogenic greenhouse gases dominates the observed rise in temperature, uncertainties
continue to persist in answers to questions such as: how much of the temperature change
is induced by which factors, and how do they change the temperature. These questions
interweave two crucial strands of GMT studies: (i) efforts to understand GMT variations
of the past, and (ii) efforts to foresee how the climate (and not just the temperature) is
going to change in the next decades. For the twentieth century, an increasing number of
observational records of temperature have enabled us to move towards more comprehensive
estimates of global temperature (c.f. Section 3.2 of [395], and [133]). Despite having
been able to narrow down the main suspects behind variations in global temperatures to
anthropogenic influences, the El Niño Southern Oscillation (ENSO), volcanic activity, solar
radiation, and internal climate variability, there still exists significant debate over the nature
of the temperature response to climate change as shown by the diverse explanations put forth
to explain the apparent recent ‘deceleration’ of global warming [18]. In this context, studies
such as that of Lean & Rind [192, 193], and Foster & Rahmstorf [108] shed light on how the
different factors affect global mean temperatures. Based on empirical multivariate regression
models, Lean & Rind estimate the response of GMT to human activity, ENSO, volcanoes and
changes in solar activity, and thereafter apply it to forecast (by various conditions) the global
temperature for the next decade. The latter study of Foster & Rahmstorf presents a robust
analysis to estimate the residual anthropogenic impact on the warming trend of the last
three decades after removing the natural forcings to global temperature.

These studies, however, presuppose two things: (i) independence between the factors that
impact temperature, and (ii) a linear superposition of their effects on temperature variations.
Although it might be the case that both assumptions are valid to a fair (and practical) degree
of approximation, it is critical to assess their validity scientifically.

The primary focus of this study is to address the first of the above assumptions and
examine the manner in which, and if at all, the factors influencing global temperature
interact among themselves. We use an empirical approach based on the recurrences of
dynamical systems for this purpose. Recent developments in the theory of recurrences,
and recurrence plots in particular, have made it an increasingly popular tool for scientific
investigations (c.f. [224] for a historical overview). Recurrence-based analysis has found
application in a wide range of scenarios ranging from analyses of cardiac data [441] to
stock markets [15] to cover song identification [348] to speech comprehension [312]. In
the context of climate analyses, cross recurrence plots (CRPs) have been used to study links
between ENSO and north-western Argentinian precipitation both in modern and ‘paleo’ time
scales [238]; and more recently, joint recurrence plots (JRPs) have been used to investigate
the spatial distribution of links between vegetation and climatic variables such as temperature
and precipitation [199].

We extend the idea behind the measure for lag/generalized synchronization put forth
in [323]. The measure is based on JRPs and is suitable thus for the analysis of structurally
different systems as in our case. We allow for delayed interactions up to delays of around 12
years among all considered datasets and test all estimated values for statistical significance
— choosing only the statistically significant values for interpretations. The results presented
here are an attempt to visualize a network of influences that are relevant to understanding
GMT. They are intended to corroborate some of the existing ideas of links between climatic
variables and GMT, as well as uncover new interactions among several of the impacting
variables themselves.

The paper is organised as follows: In Sect. 10.2 we present the datasets used in this study.
Section10.3 reviews the theory underlying the recurrence-based connectivity measure, and
Sect. 10.4 outlines the manner of significance tests used in the analysis. In Sect. 10.5, we
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detail the various steps involved in the analysis. Section 10.6 presents the results and their
interpretation, and Sect. 10.7 provides a brief summary and outlook. Finally, the appendix
provides the various sources of the datasets.

10.2 Data
Following Lean & Rind [192], we consider four critical contenders that have the potential to
influence global mean temperature: (i) the ENSO, (ii) volcanic activity, (iii) solar irradiance,
and (iv) the concentration of well-mixed greenhouse gases in the atmosphere. To characterise
these phenomena, we choose: a combination of the multivariate El Niño index [426] (which
extends from 1950 till present) and the index of Meyers et al. [255] (for data prior to 1950)
for the ENSO; stratospheric aerosol optical thickness measurements compiled by Sato et al.
[336] for volcanic activity; Wang et al.’s [413] reconstruction of total solar irradiance that
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Figure 10.1: Data used. From top to bottom: global surface temperature from the CRU at
East Anglie (HadCRUT3v, deep red); NASA GISS Land-Ocean Temperature Index (NASA
GISS LOTI, light red); Wang et al.’s reconstruction of total solar irradiance (TSI, deep
yellow) with the Gaussian-kernel (bandwidth of ≈ 11 years) filtered curve (in blue); the
Multivariate ENSO Index (MEI, light blue); Sato et al’s volcanic activity index based on
Optical Aerosol Depth (OAD, brown); monthly changes in the NASA GISS’s modelE global
mean forcing values for Well-Mixed GreenHouse Gases (WMGHG, teal).
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extends to around 300 years back; annual global mean forcing values used for well-mixed
greenhouse gases as used in the NASA GISS modelE [132] which were then interpolated
to a monthly resolution. For the global temperature itself, we use two datasets: the NASA
GISS Land-Ocean Temperature Index (LOTI) [133], and the surface temperature record
HadCRUT3v assimilated by the Climate Research Unit (CRU) at East Anglia University [39].
(The source of the datasets are listed in Appendix 10.7). We consider the 120 year period
from January 1890 to December 2009 in which all the datasets are resolved on a monthly
basis for the purpose of this study. Moreover, for the TSI dataset, we use a low pass filter
using a Gaussian kernel of bandwidth ≈ 11 year, and we consider the first derivative of
WMGHG instead of the almost monotonically increasing raw dataset (figure not shown).
Note that, in contrast to Lean & Rind [192], we do not use the full anthropogenic forcing but
just the well-mixed greenhouse gases. The final time series used in the analysis (normalized
to mean zero and variance one) are shown in Fig. 10.1. For brevity, we henceforth refer to
the datasets using the following labels: CRUTA for the HadCRUT3v data; GISS for NASA GISS
LOTI; TSI for total solar irradiance; VOLC for the optical aerosol depth data; and WMGHG
for the well-mixed greenhouse gas series.

10.3 Lagged dependencies using recurrences

Recurrence is a fundamental characteristic of dynamical systems that provide insight into
their dynamical properties [86]. Defined as the return of the phase space trajectory of the
system to an earlier state (up to a tiny deviation), in practice, recurrences are approximated
as the return of the system to the neighbourhood of a previous state. If we consider a system
X such that X is the set of all possible trajectories of X , a recurrence matrix RX for a given
trajectory ~x = {~x1, ~x2, . . . , ~xN} ∈ X is defined as:

RX
i, j(ε) = Θ(ε− ‖ ~x i − ~x j ‖), i, j = 1, . . . , N . (10.1)

Here, N is the trajectory length, ε the size of the neighbourhood, Θ(·) the Heaviside function
(i.e., Θ(·) = 1 for non-negative values and 0 otherwise) and ‖ · ‖ denotes an appropriate
metric that quantifies ‘distance’. A recurrence plot (RP) is a visual representation of R
typically constructed by putting a black marker for every 1 in R (c.f. [239] for a more
detailed treatment of recurrence plots).

If we take any arbitrary trajectory ~x ′ ∈ X , the probability P( ~x ′ ∼ ~x i) that a point ~x ′i ∈ ~x ′
visits the neighbourhood of ~x i ∈ ~x is equal to the column-sum of the recurrence matrix RX

(from Eq.10.1),

P(~x i) =
1
N

N
∑

j=1

RX
i, j . (10.2)

where P(~x i) denotes P( ~x ′ ∼ ~x i). The average probability of any trajectory of the system to
recur to any given state is the mean 〈P(~x i)〉=

∑N
i=1 P(~x i)/N , and is known as the (global)

recurrence rate (RRX ) of X .
In this study, we compare the recurrence structures of characteristically different systems

in order to infer the influences that they might have on each other. A comparison of
recurrence structures of two different systems can be performed using joint recurrences, and
the corresponding joint recurrence matrix, defined as:

JRX Y
i, j (εx ,εy) = Θ(εx− ‖ ~x i − ~x j ‖)Θ(εy− ‖ ~yi − ~y j ‖) i, j = 1, . . . , N , (10.3)
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where ~x and ~y are two given trajectories of systems X and Y respectively. A non-zero
value JRX Y

i, j thus captures co-occurring recurrences of trajectories ~x ∈ X and ~y ∈ Y in
corresponding neighbourhoods of systems X and Y respectively, i.e., ~x i ∼ ~x j and ~yi ∼ ~y j
at the same time instant i (or j). Using JRX Y , we now consider the joint probability that
two arbitrary trajectories ~x ′ ∈ X and ~y ′ ∈ Y recur in the neighbourhood of ~x i and ~yi
simultaneously,

P(~x i , ~yi) =
1
N

N
∑

j=1

JRX Y
i, j , (10.4)

where P(~x i , ~yi) denotes (as previously) the probability P( ~x ′ ∼ ~x i , ~y ′ ∼ ~yi).
Previously, joint recurrences have been used to detect generalized synchronization (GS) as

well as lag synchronization (LS) [323]. In their approach, the authors use the results that, (i)
a topological reconstruction of the phase space trajectory is possible from a given recurrence
matrix, and (ii) two systems governed by a functional relationship will have similar recurrence
matrices. Furthermore, if two systems X and Y are in GS, their respective global recurrence
rates 〈P(~x i)〉 and 〈P(~yi)〉 are approximately equal to the joint recurrence rate 〈P(~x i , ~yi)〉.
They suggest to use a fixed number of nearest neighbours as a threshold for the computation
for the recurrence matrices such that P(~x i) = n0/N ∀ i where n0 is the predefined number
of nearest neighbours (the same number is used for system Y as well). In this case, the
recurrence rates of X and Y are thus set to be equal, i.e., 〈P(~x i)〉 = 〈P(~yi)〉 = n0/N . The
measure for synchronization is then given by,

J PR=max
τ

S(τ)− R0

1− R0
, (10.5)

where R0 = n0/N and

S(τ) =
〈P(~x i , ~yi)〉

R0
. (10.6)

In this study, we extend this idea to allow for the more general case where the two systems
X and Y may have differing overall recurrent rates as well as the case where P(~x i) 6= P(~yi).
In particular, in order to estimate how ‘non-independent’ X and Y are from each other, we
are interested in the quantity,

RM Di =
P(~x i , ~yi)

P(~x i)P(~yi)
. (10.7)

Here, RM D denotes Recurrence-based Measure of Dependence. (We note that such a prob-
abilistic ratio is already a quantity of interest in medical analysis and is termed as the
“Odds-to-Expected ratio”, or the O/E ratio in short [257].) However, we wish to quantify the
direction of dependency between X and Y as well. RM Di, as defined above, is symmetric
for X and Y and cannot detect the direction of influence. Other recurrence-based methods,
such as that of the Mean Conditional Probability of Recurrence (MCR) [242, 324, 456], help
to infer the direction of coupling between a pair of datasets but it is non-trivial to extend the
notion of MCR for delayed couplings. We argue that, similar to S(τ) (Eq. 10.6), it is natural
to incorporate lagged probabilities in RM Di simply by introducing a relevant lag in one of
the systems. We thus define the log-mean RM D(τ) ∈ R at lag τ as:

RM D(τ) = log2

�

1
N ′

N ′
∑

i=1

RM Di(τ)
�

, (10.8)
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where N ′ = N − τ, and RM Di(τ) = P(~x i , ~yi(τ))/(P(~x i)P(~yi(τ))), if we consider Y to be
shifted by τ units. For two independent systems X and Y (τ), P(~x i , ~yi(τ)) = P(~x i)P(~yi(τ)),
which implies that RM D(τ) = 0. For τ > 0, non-zero RM D implies that Y is dependent on X
and the converse is true for τ < 0. Note that RM D can quantify both uni- and bi-directional
dependencies as well as multiple lags at which the systems might influence each other.

10.4 Testing for significance of observed values
In analyses of connectivity between pairs of experimental datasets, the measures used
to quantify dynamical similarity often yield values that are intermediate, and we then
cannot easily conclude whether the pair of time series are strongly or weakly connected.
Even if we choose to define our measure so that it always lies within a finite interval –
such as between 0 and 1 – experimental datasets can typically give ambiguous results of
intermediate connectivity values such as 0.6. The connectivity measures obtained from such
passive experiments cannot thus provide an unambiguous interpretation due to the lack of a
comparative ‘test case’. This is in contrast to active experiments (made, e.g., from laboratory
experiments or numerical simulations of models) where the obtained values can be used for
a consistent interpretation by its comparison to the uncoupled case. In passive experiments,
the observed values of connectivity have to be statistically tested to ensure that they could
not have been obtained by random chance. The statistical test is carried out using surrogate
data sets generated from the observed time series in conjunction with an appropriate null
hypothesis.

Surrogate time series are different from the original, observed ones, and yet preserve
essential dynamical properties. There are several ways of generating surrogates and each
method has its respective null hypothesis. The test statistic (which is RM D in our case) is
calculated for a sufficiently high number of surrogate pairs and the observed value is tested
for statistical significance using the obtained distribution and the appropriate null hypothesis.

For our analysis, we use a recurrence-based approach to generate twin surrogates (TS)
from the observed time series [385, 386]. Twins are two points ~x i and ~x j of X such that
they share the same neighbourhood upto the limit ε, i.e., for k = 1,2, . . . , N , RX

k,i = RX
k, j.

The TS method requires that we first identify all possible twins given an observed trajectory
~x . To generate the surrogate series ~s, we then choose an arbitrary random point ~xk ∈ ~x
and set it as ~s1. Now, given ~si = ~x l , we append subsequent points to ~s iteratively according
to the following rule: when ~x l has no twins, ~si+1 = ~x l+1; on the other hand when ~x l ∈ T
such that T = {~x l} ∪ {~xm : ~xm and ~x l are twins} and the number of elements in T is n, then
~si+1 = ~xk+1 where ~xk ∈ T with probability 1/n.

The null hypothesis for TS is that each surrogate trajectory is an independent realization
of the system corresponding to a different initial condition. To test whether the observed
value of RM D(τ), between X and Y (τ), is a statistically significant measure of X driving Y
we do the following: (i) generate TS of Y , (ii) obtain a test distribution of RM D(τ) using
the observed time series of X and the surrogates of Y , (iii) construct a 95% confidence band
from the area between the 2.5th and 97.5th percentiles. This interval represents the region
where we fail to reject the null hypothesis.

Observed values of RM D outside the confidence band imply a statistically significant
dependence between X and Y at delay τ.

10.5 Method
The analysis is divided into two parallel components corresponding to the CRUTA and
GISS temperature datasets. For each of these we consider delays of up to 150 months
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and estimate RM D, and test the observed values for significance. Similarly, we analyze
all possible combinations for the forcing datasets as well as between the forcings and the
temperature datasets. All results are grouped according to the ‘driven’ dataset.

We do not embed the time series while constructing the recurrence matrices. Several
recurrence properties are invariant under embedding and it is not essential to embed the
time series. In particular, time delay embedding was not feasible for all of the datasets
considered in this study and was hence avoided. The recurrence threshold was based on
fixed amount of nearest neighbours, which was kept at 5% for all datasets. The qualitative
nature of our results are robust to the choice of this threshold value because small changes in
the threshold do not alter the qualitative features of the recurrence plot (result not shown).

The significance tests were carried out using 500 TS of the ‘driven’ dataset. Significant
values were then considered to construct an approximate network visualization of the
dependencies involving the temperature dataset as well as the various radiative forcings.

10.6 Results and discussion

The results of the analysis for the temperature datasets are shown in Fig. 10.2, from which
several points are initially evident.
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Figure 10.2: Lagged influences on GMT. A. The results for the HadCRUT3v dataset. B.
The results for the NASA GISS LOTI dataset. The 95% confidence band obtained from the
significance test using TS is in light blue. The observed values of RM D(τ) is in dark orange.
Regions where the value of RM D(τ) falls outside the confidence band are shaded in apricot.
The datasets are labelled as mentioned in Sec. 10.2.
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Figure 10.3: Lagged dependencies among the forcing datasets. A. Results for the other
datasets driving TSI. B. Results for the other datasets driving ENSO. C. Results for the VOLC
dataset being driven by the others. D. Results for the WMGHG dataset being driven by the
rest. Legends and keys to the figure are same as in Fig. 10.2. The grey bars highlight the
values of τ for which the observed values of RM D are statistically significant.
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• TSI appears to impact the GISS dataset more than it does the CRUTA data. In fact,
even on short time scales of around a few months, the impact of TSI on CRUTA is
barely significant. In previous studies by Lean & Rind [192, 193] (done with the CRU
data), TSI is found to influence variations in GMT on the scale of a month from their
analysis based on multivariate regression.

• ENSO clearly has a sharp impact on the CRUTA series at a short delay of around 5
months (similar to Lean & Rind.). However, we also find further significant influences
at delays of (approximately) 130 months for the CRU data, and at 90 months and 130
months for the GISS LOTI data. ENSO, however, does not have any impact on GISS
temperatures at shorter time scales.

• Even though volcanic aerosols impact both temperature series on short time scales of
around 1-10 months (Lean & Rind find 6 months), here too, there are further delayed
interactions significant in the 50-75 month period and even as late as 140-150 months.
This is discussed in more detail later.

• The influence of greenhouse gases on GMT is statistically significant for all values of
delay considered and this influence peaks at around a delay of 130 months (approxi-
mately 11 years). This value is close to the previously considered value of 120 months
in the Lean & Rind study.

The results of our analysis for the rest of the data are given in Fig. 10.3, grouped according
to the ‘driven’ dataset. The following points are discernible from Fig. 10.3.

• None of the datasets show a significant result when being tested against the hypothesis
that they drive TSI (Fig. 10.3A). This demonstrates that, provided the datasets are
accurate, our approach is able to rule out physically unreasonable connections.

• Both the temperature datasets seem to drive the ENSO time series at several values of
τ (Fig. 10.3B). However, a noticeable dark band around the period of 25-30 months for
both CRUTA and GISS suggest a strong influence of GMT on ENSO around the quasi-
biennial oscillatory period. The reverse connection from ENSO to temperature has
been discussed in earlier studies (cf. [116] and [263]). However, this feedback from
the temperature to ENSO around the quasi-biennial period has not been considered
in much detail and thus needs more careful investigation. The greenhouse gases too
seem to impact ENSO in around this period. The greenhouse gas series also impacts
ENSO around 55-60 month period which might be linked to a quasi-quadrennial kind
of phenomenon [159]. Similar influence of greenhouse gas emissions on the ENSO
have been discussed elsewhere [363, 364].

• Only TSI and ENSO seem to have an effect on the volcanic activity dataset (Fig. 10.3C)
with the former influencing VOLC at a short time scale of around 1-5 months and
the latter influencing it rather strongly at around 30 months. The idea that climatic
phenomena could influence volcanic activity is controversial and debatable (e.g., [306]
postulates one possible mechanism based on lithospheric stress). However, [318]
challenges the more popular idea that ENSO is influenced by volcanic eruptions and
suggests a converse dependency, with one possible physical mechanism being the
influence of oceanic angular momentum on the earth’s rotation rate at subdecadal
scales (c.f. Marcus et al. [217]) which in turn might influence seismic activity on
the mantle. Alternatively, the transport of volcanic aerosols in the atmosphere could
be influenced as well which might lead to the results observed here (also discussed
below). Our results indicate that it might be worthwhile to study this more closely in
order to gain a better understanding of globally relevant climatic phenomena such as
volcanoes and the ENSO.

• The greenhouse data is influenced by only the TSI and the VOLC datasets (Fig. 10.3D)
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at similar values of τ around 50-55 months. The impact of VOLC on the greenhouse
gases most likely reflects the response of the Earth’s carbon-cycle to volcanic eruptions
(e.g., [160]). The observed influence of TSI on WMGHG could be an example of
indirect influence of TSI on the WMGHG data via the VOLC dataset as the TSI impacts
VOLC at much shorter time scales of a few months.

The above results are summarized as a network of dependencies in Fig. 10.4, where
two different directed networks are visualized: one each for the two temperature datasets –
CRUTA and GISS. Only statistically significant values are used to construct these networks.
However, from Fig. 10.2 and Fig. 10.3, we see that, in many cases, there are multiple values
of τ at which estimated values of RM D are significant for a given pair of datasets. In such
cases, for the sake of visual clarity, a single value of τ is chosen as representative of (nearly)
continuous intervals of τ in which RM D values are significant. In case the interval is too
wide for a single value to be representative, the interval itself is mentioned. Two notable
exceptions to this are the links between WMGHG and CRUTA/GISS, and TSI and GISS. In
these cases, RM D values are significant for almost all values of τ considered – and hence
only the presumably physically relevant values of τ are shown in Fig. 10.4 for clarity. We
choose here τ = 135 months as this is the peak value of RM D(τ) for these pairs and is also
close to the earlier estimated value of τ = 120 months in [192]. We note that the networks

Figure 10.4: Network of dependencies surrounding GMT. A. For the HadCRUT3v temper-
ature series. B. For the NASA GISS LOTI series. The arrows correspond to a statistically
significant influence. The numbers beside the arrows denote the (interval of) delay(s) at
which the statistically significant link is found. In B, the τ values that differ from A are given
in red. The solid black arrows correspond to links that are known and/or are discussed
to some extent in the literature. The gray dotted arrows correspond to links that are not
easily explained. The red dashed arrow is the feedback from temperature to ENSO that is
uncovered by our analysis. The datasets are labelled as given in Sec. 10.2: CRUTA for the
HadCRUT3v data; GISS for NASA GISS LOTI; TSI for total solar irradiance; VOLC for the
optical aerosol depth data; and WMGHG for the well-mixed greenhouse gas series. Note: For
the links between WMGHG and temperature, and TSI and temperature, only a few of the
statistically significant values are shown for visual clarity.
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shown in Fig. 10.4 are not constructed on the basis of a mathematical procedure. They are,
in fact, intended to reveal the qualitative structure of the network of interactions among
global temperature drivers. We can infer the following from Fig. 10.4:

• The results for the CRUTA and GISS temperature datasets are reasonably consistent
for the links with ENSO, WMGHG and VOLC, but differ in the case of their respective
links with TSI.

• TSI seems to drive all the remaining four datasets. However, the delays at which TSI
impacts them are much larger than what is normally assumed in studies involving
TSI and GMT. Our results indicate that it might be possible that the longer time scale
periodicities of solar irradiance might be an important factor influencing global climatic
phenomena.

• The GMT feeds back into only the ENSO series near the quasibiennial period (the
results are slightly different between CRUTA and GISS here). This might be a crucial
point to consider in both (semi-) empirical as well as theoretical modeling of GMT in
terms of natural forcings.

• Apart from having a distinctively significant impact on the GMT, greenhouse gases
influence the ENSO as well at multiple delays. Two distinctive periods in which
WMGHG drives the ENSO are around 1-2 years and 4-6 years.

• Volcanic aerosols seem to impact GMT not only at the evident short time scales of
a few months, but also at other time scales ranging from 45 months to 145 months,
which is relatively hard to justify considering that volcanic aerosols do not last in
the atmosphere up to 145 months. This example demonstrates the limitations of our
approach and is discussed below.

One obvious limitation of our approach is the uncertainty of the statistical test itself.
Thus, even when we find a link to be significant (with respect to the previously stated null
hypothesis) at a 5% level of significance, we could be wrong 5 times out of 100. A second
limitation, and one that might cause, e.g., the suspicious result of VOLC impacting GMT
at 145 months, is that the ‘volcanic activity’ is represented here by the optical depth of
stratospheric aerosols. This quantity, in time periods located away from major volcanic
eruptions, might be influenced by the other climatic factors. However, a third, and more
critical limitation is that our approach cannot distinguish indirect/spurious links from direct
ones. This means that if we have: (i) X drives A and A drives Y , or (ii) A drives both X
and Y , in both cases our method would show a link between X and Y even though there is
no direct connection between them. The direction of this link might then be influenced by
random noise (if any) in the systems. We feel that the impact of volcanic aerosols on the
GMT at delays as large as 145 months might most likely be due to spurious links that are
not removed. There are other methods, e.g., multivariate transfer entropy [328], which can
detect and remove spurious links. It is computationally intensive and difficult to incorporate
such a principle into the current recurrence-based approach and is thus intended as a goal of
future investigations.

10.7 Conclusion and outlook
We present a recurrence-based approach to investigate the network of dependencies among
the various factors that are known to influence global mean temperature. To the best
of our knowledge, this is a first attempt to consider various climatic factors, such as the
ENSO, volcanic activity, greenhouse gas concentration, and solar irradiance, as nodes of
an interacting, directed network. To construct the network, we extend the notion of an
existing recurrence-based connectivity measure and propose a new, general measure that
detects the level of probabilistic dependence between two datasets based on their joint



108 Chapter 10. Recurrence based dependencies

recurrences. The study also illustrates the use of twin surrogates as a suitable tool for
surrogate-based hypothesis testing, crucial for the interpretation of measures estimated from
passive experiments.

Our analysis uncovers an intricate, directed network with multiple edges between the
nodes. We find a feedback from global temperature to ENSO around the quasi-biennial period,
and also significant influences between ENSO and volcanic aerosols – both of which issues
require further understanding and investigations. The results indicate the need to consider
additional interactions (and at different delays) among the climatic factors considered in
order to formulate a more complete picture of global mean temperature variations. This is
crucial for the purpose of foreseeing future variations in the temperature. We intend the
results to serve as indicators for both (semi-) empirical as well as well theoretical models of
global mean temperature.

This study illustrates a new way of investigating climatic phenomena as networks, a
view which can be extended, e.g., by including additional factors (such as stratospheric
water levels, ozone concentrations, snow albedo, etc.) related to global mean temperature.
Investigation of these connections using paleoclimatic datasets can give us further insight on
the evolution of global temperature. The datasets considered here can be further considered
as networks themselves – where the nodes could be geographical grid points, or sub-factors
from which the data were constructed – leading to an interacting network of networks [72]
involving the global mean temperature.
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Appendix
Data sources
The datasets used in this analysis are available (as of December 1, 2012) for download at
the web addresses listed below.

• Multivariate ENSO Index
– From 1950 to present
http://www.esrl.noaa.gov/psd/enso/mei/table.html

– Prior to 1950
ftp://www.coaps.fsu.edu/pub/JMA_SST_Index/

• Stratospheric optical aerosol depth
http://data.giss.nasa.gov/modelforce/strataer/tau_line.txt

• Total Solar Irradiance
http://lasp.colorado.edu/sorce/tsi_data/TSI_TIM_Reconstruction.txt

• WMGHG forcing
http://data.giss.nasa.gov/modelforce/RadF.txt

• NASA GISS LOTI
http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt

• HadCRUT3v global mean temperature
http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3v.zip

http://www.esrl.noaa.gov/psd/enso/mei/table.html
ftp://www.coaps.fsu.edu/pub/JMA_SST_Index/
http://data.giss.nasa.gov/modelforce/strataer/tau_line.txt
http://lasp.colorado.edu/sorce/tsi_data/TSI_TIM_Reconstruction.txt
http://data.giss.nasa.gov/modelforce/RadF.txt
http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt
http://www.cru.uea.ac.uk/cru/data/temperature/hadcrut3v.zip
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11. Recurrences as Networks
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Abstract

We propose a novel approach for analysing time series using complex network theory. We
identify the recurrence matrix (calculated from time series) with the adjacency matrix of a
complex network and apply measures for the characterisation of complex networks to this
recurrence matrix. By using the logistic map, we illustrate the potential of these complex
network measures for the detection of dynamical transitions. Finally, we apply the proposed
approach to a marine palaeo-climate record and identify the subtle changes to the climate
regime.

11.1 Introduction

In many scientific disciplines, such as engineering, astrophysics, life sciences and economics,
modern data analysis techniques are becoming increasingly popular as a means of under-
standing the underlying complex dynamics of the system. Methods for estimating fractal
or correlation dimensions, Lyapunov exponents, and mutual information have been widely
used [165, 184, 213, 425]. However most of these methods require long data series and
in particular their uncritical application, especially to real-world data, may often lead to
pitfalls.

In the last two decades, the method of recurrence plots has been developed as another
approach to describe complex dynamics [239]. A recurrence plot (RP) is the graphical
representation of a binary symmetric square matrix which encodes the times when two
states are in close proximity (i.e. neighbours in phase space). Based on such a recurrence
matrix, a large and diverse amount of information on the dynamics of the system can be
extracted and statistically quantified (using recurrence quantification analysis, dynamical
invariants, etc.). Meanwhile this technique has been the subject of much interest from
various disciplines [224] and it has been successfully applied to a number of areas: the

https://doi.org/10.1016/j.physleta.2009.09.042
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detection of dynamical transitions [274, 397] and synchronisation [323], the study of protein
structures [118, 447] and in cardiac and bone health conditions [232, 237], in ecological
regimes [100, 298], economical dynamics [25, 186], in chemical reactions [46] and to
monitor mechanical behaviour and damages in engineering [278, 345], to name a few. It is
important to emphasise that recurrence plot based techniques are even useful for the analysis
of short and non-stationary data, which often presents a critical issue when studying real
world data. The last few years have witnessed great progress in the development of RP-based
approaches for the analysis of complex systems [230, 239, 317, 324, 381].

During the last decade, complex networks have become rather popular for the analysis
of complex and, in particular, spatially extended systems [8, 27, 366, 416]. Local and global
properties (statistical measures) of complex networks are helpful to understand complex
interrelations and information flow between different components in extended systems, such
as social, computer or neural networks [416], food webs, transportation networks, power
grids [1], or even in the global climate system [69]. The basis of complex network analysis
is the adjacency matrix, representing the links between the nodes of the network. Like the
recurrence matrix, the adjacency matrix is also square, binary, and symmetric (in the case of
an unweighted and undirected network).

In fact, the recurrence matrix and the adjacency matrix exhibit a strong analogy: a
recurrence matrix represents neighbours in phase space and an adjacency matrix represents
links in a network; both matrices embody a pair-wise test of all components (phase space
vectors resp. nodes). Therefore, we might well proceed to explore further analogies even in
the statistical analysis of both the recurrence and the adjacency matrix.

Quantitative descriptors of RPs have been first introduced in a heuristic way in order to
distinguish different appearances of RPs [224]. We may also consider to apply measures of
complex network theory to an RP in order to quantify the RP’s structure and the corresponding
topology of the underlying phase space trajectory. In this (more heuristic) sense, it is actually
not necessary to consider the phase space trajectory as a network.

Recently, the very first steps in the direction of bridging complex network theory and
recurrence analysis have been reported [431, 448]. In these works, the local properties
of phase space trajectories have been studied using complex network measures. Zhang
et al. suggested using cycles of the phase space trajectory as nodes and considering a link
when two cycles are rather similar [448, 449]. The resulting adjacency matrix can be in fact
interpreted as a special recurrence matrix. The recurrence criterion here is the matching of
two cycles. A complementary approach was suggested by Xu et al. who studied the structural
shape of the direct neighbourhood of the phase space trajectory by a motif classification
[431]. The adjacency matrix of the underlying network corresponds to the recurrence matrix,
using the recurrence criterion of a fixed number of neighbours (instead of the more often
used fixed size of the neighbourhood [239]).

Other approaches for the study of time series by a complex network analysis suggested
using linear correlations [438] or another certain condition on the time series amplitudes
(“visibility”) [187].

In this letter, we demonstrate that the recurrence matrix (analogously to [431]) can
be considered as the adjacency matrix of an undirected, unweighted network, allowing us
to study time series using a complex network approach. This ansatz on creating complex
network is more natural and simple than the various suggested approaches [187, 438, 449].
Complex network statistics is helpful to characterise the local and global properties of a
network. We propose using these complex network measures for a quantitative description
of recurrence matrices. By applying these measures, we obtain additional information from
the recurrence plots, which can be used for characterising the dynamics of the underlying
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process. We give an interpretation of this approach in the context of the dynamics of a
phase space trajectory. Nevertheless, many of these measures neither have an analogue
in traditional RQA nor in nonlinear time series analysis in a wider sense, and hence, open
up new perspectives for the quantitative analysis of dynamical systems. We illustrate our
approach with a prototypical model system and a real-world example from the Earth sciences.

11.2 Recurrence plots and complex networks
A recurrence plot is a representation of recurrent states of a dynamical system in its m-
dimensional phase space. It is a pair-wise test of all phase space vectors ~x i (i = 1, . . . , N , ~x ∈
Rm) among each other, whether or not they are close:

Ri, j = Θ
�

ε − d(~x i , ~x j)
�

, (11.1)

with Θ(·) being the Heaviside function and ε a threshold for proximity [239]. The closeness
d(~x i , ~x j) can be measured in different ways, by using, e.g., spatial distance, string metric, or
local rank order [11, 239]. Mostly, a spatial distance is considered in terms of maximum or
Euclidean norm d(~x i , ~x j) = ‖~x i − ~x j‖. The binary recurrence matrix R contains the value
one for all close pairs ‖~x i − ~x j‖< ε. A phase space trajectory can be reconstructed from a
time series {ui}Ni=1 by time delay embedding [286]

~x i = (ui , ui+τ, . . . , ui+τ(m−1)), (11.2)

where m is the embedding dimension and τ is the delay.
The resulting matrix R exhibits the line of identity (the main diagonal) Ri,i = 1. Using

a spatial distance as the recurrence criterion, the RP is symmetric. Small-scale features in
an RP can be observed in terms of diagonal and vertical lines. The presence of such lines
reflects the dynamics of the system and is related to divergence (Lyapunov exponents) or
intermittency [237, 317, 397]. Following a heuristic approach, a quantitative description of
RPs based on these line structures was introduced and is known as recurrence quantification
analysis (RQA) [224]. We use the following two RQA measures (a comparable study using
other measures can be found in [237]).

Similarly evolving epochs of the phase space trajectory cause diagonal structures parallel
to the main diagonal. The length of such diagonal line structures depends on the predictability
and, hence, the dynamics of the system (periodic, chaotic, stochastic). Therefore, the
distribution P(l) of diagonal line lengths l can be used for characterising the system’s
dynamics. Several RQA measures are based on P(l). However, here we focus only on the
maximal diagonal line length,

Lmax =max
�

{li}
Nl
i=1

�

, (11.3)

where Nl =
∑

l≥lmin
P(l) is the total number of diagonal lines. For the definition of a diagonal

line, we use a minimal length lmin [239]. The length of diagonal lines corresponds to the
predictability time. In particular, the cumulative distribution of the line lengths can be used
to estimate the correlation entropy K2, i.e. the lower limit of the sum of the positive Lyapunov
exponents [239]. Hence the inverse of Lmax gives a first rough impression of the divergence
(Lyapunov exponent) of the system.

Slowly changing states, as occurring during laminar phases (intermittency), result in
vertical structures in the RP. Therefore, the distribution P(v) of vertical line lengths v can be
used to quantify laminar phases occurring in a system. A useful measure for quantifying such
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laminar phases is the ratio of recurrence points forming vertical structures to all recurrence
points,

LAM =

∑N
v=vmin

v P(v)
∑N

v=1 v P(v)
, (11.4)

which is called laminarity [239].
Now let us consider the phase space vectors as nodes of a network and identify recurrences

with links. An undirected and unweighted network is represented by the binary adjacency
matrix A, where a connection between nodes i and j is marked as Ai, j = 1. Excluding
self-loops, we obtain A from the RP by removing the identity matrix,

Ai, j = Ri, j −δi, j , (11.5)

where δi, j is the Kronecker delta. Removing the identity is not a problem, as this is also done
in the analysis of RPs (e.g. when considering a Theiler window for RQA) [239]. Henceforth,
we regard the recurrence matrix (with applied Theiler window) to be an adjacency matrix.
Note that this way each state vector in phase space is represented by one distinct node; even
if two time-separated state vectors are identical, they are identified with two different nodes
(which are perfect neighbours and therefore linked independently of the threshold ε; such
nodes are also called twins [325]).

Local and global properties of a network are statistically described by complex network
measures based on the adjacency matrix Ai, j. To illustrate the potential of a recurrence
analysis by means of complex network theory, we consider several global and local network
measures that are well studied in literature [27].

The complex network approach allows to harness the distributions of locally defined
measures for the quantification of recurrence matrices. In this work, we particularly consider
the degree centrality

kv =
N
∑

i=1

Av,i , (11.6)

giving the number of neighbours of node v. The degree centrality is hence locally defined
and depends only on local adjacency information in a topological sense. kv is proportional
to the local recurrence rate, as seen from a RQA point of view. Hence, it may be considered
as a measure for the local phase space density. We refer to its frequency distribution P(k) as
the degree distribution.

Furthermore, a complex network may be globally described by its link density, clustering
coefficient and average path length. While the normalised averaged degree centrality, called
link density,

ρ =
1

N(N − 1)

N
∑

i, j=1

Ai, j (11.7)

corresponds to the global recurrence rate, the latter two measures allow quantifying novel
aspects of recurrence matrices. The clustering coefficient C =

∑

v Cv/N gives the probability
that two neighbours (i.e. recurrences) of any state are also neighbours [416]. It is obtained
as the average of the local clustering coefficient

Cv =

∑N
i, j=1 Av,iAi, jA j,v

kv(kv − 1)
. (11.8)
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The average length of shortest paths between all pairs of nodes is given by the average
path length

L =
1

N(N − 1)

N
∑

i, j=1

di, j , (11.9)

where the length of a shortest path di, j is defined as the minimum number of links that
have to be crossed to travel from node i to node j [27]. Disconnected pairs of nodes are
not included in the average (for a detailed discussion see [271]). Note that it is particularly
interesting to study clustering coefficient and average path length in unison, since both
measures taken together allow to characterise “small-world" behaviour in complex networks
[416]. In a separate study, we link the properties of a complex network with the topology
of a phase space representation of a dynamical system in more detail [77]. In particular,
a complex network based on a recurrence plot usually does not exhibit the small-world
feature, since graph distances are directly related to distances in phase space (i.e. there are
no “shortcuts” between distant nodes).

11.3 Application to logistic map
We illustrate the potential of the proposed approach by an analysis of the logistic map

x i+1 = a x i (1− x i) , (11.10)

especially within the interesting range of the control parameter a ∈ [3.5,4] with a step
size of ∆a = 0.0005. In the analysed range of a, various dynamic regimes and transitions
between them can be found, e. g., accumulation points, periodic and chaotic states, band
merging points, period doublings, inner and outer crises [57, 281, 409]. This system has
been used to illustrate the capabilities of RQA. It was shown that diagonal line based RQA
measures are able to detect chaos-order transitions [397] and vertical line based measures
even detect chaos-chaos transitions [237].

Since Eq. (11.10) is a one-dimensional map, we compute the RP without embedding. For
the study of transitions, it is recommended to use a recurrence threshold ε preserving a fixed
recurrence rate, say 5%. However, in the special case of the logistic map, such approach
leads to problems within the periodic windows. In these windows the states are rapidly
alternating between subsequent time steps, leading to a high recurrence rate (larger than
25%). Therefore, a threshold for preserving 5% recurrence rate does not exist and, hence,
we cannot compute the network measures within the periodic windows. To circumvent this,
we will use a fixed recurrence threshold ε for the example of the logistic map (for the real
world example in Sect. 11.4, we will use the preferred criteria of constant recurrence rate).
The threshold ε is selected to be 5% of the standard deviation σ of the time series [338].

For periodic dynamics, band merging, laminar states (cross points of supertrack functions,
cf. [237]), and outer crisis, we investigate the network measures in more detail (Tab. 11.1).
The band merging corresponds to intermittency, the inner crisis to certain chaos-chaos
transition and the outer crisis to fully chaotic dynamics (all these transitions are chaos-chaos
transitions).

For these four cases, we compute a time series of length N = 10, 000. In order to exclude
transient responses we remove the leading 1, 000 values from the data series in the following
analysis (thus we use 9, 000 values).

The recurrence plots for the four different dynamical regimes exhibit different typical
characteristics of regular, laminar and chaotic dynamics (Fig. 11.1). In the periodic regime,
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Figure 11.1: Recurrence plots for different dynamical regimes of the logistic map: (A)
period-3 dynamics, a = 3.830; (B) band merging, a = 3.679; (C) laminar states, a = 3.791;
and (D) outer crisis, a = 4 (RP parameters: m= 1, ε = 0.05σ).
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Table 11.1: Control parameter, RQA and network measures for different dynamical regimes
of the logistic map (RP parameter: m= 1, ε = 0.05σ).

Regime a Lmax LAM L C ρ

period-3 3.830 8996 0 1 1 0.333
band merging 3.679 49 0.42 22.8 0.83 0.050
laminar 3.791 39 0.12 23.3 0.79 0.040
outer crisis 4.000 23 0.20 23.6 0.82 0.046
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Figure 11.2: Degree centrality distributions P(k) for different dynamical regimes of the
logistic map: (A) period-3 dynamics, a = 3.830; (B) band merging, a = 3.679; (C) laminar
states, a = 3.791; and (D) outer crisis, a = 4 (RP parameters: m= 1, ε = 0.05σ).

a = 3.830, the RP consists only of non-interrupted diagonal lines (Fig. 11.1A). Their distance
is 3, corresponding to the period length of 3 for this periodic regime. At the band merging
point, a = 3.679, the RP reveals extended clusters of recurrence points, corresponding to
many laminar phases (Fig. 11.1B). Moreover, several diagonal lines appear, showing short
epochs of similar evolution of the states. The RP for laminar states, a = 3.791, consists also
of (even though less) extended clusters, but possesses more diagonal lines (Fig. 11.1C). For
the outer crisis, a = 4, diagonal lines appear but are shorter than those appearing for smaller
a (Fig. 11.1D), which is consistent with the Lyapunov exponent being largest for a = 4 (with
respect to smaller a).

The two RQA measures Lmax and LAM confirm these visual observations (Tab. 11.1). For
the period-3 regime, we find the longest diagonal lines (Lmax = 8996, after consideration of
the Theiler window [378]). The maximal length of diagonal lines decreases for increasing
control parameter a. As expected, laminarity takes the highest value at the band merging
point (a = 3.679) with LAM = 0.42, but is lowest for the period-3 regime, LAM = 0. At
intersections of supertrack functions, the laminarity is slightly increased (LAM = 0.12), and
at the outer crisis the intermittency increases apparently (LAM = 0.20).
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The complex network measures also highlight differences in the topological structure of
these dynamical regimes (Tab. 11.1).

In the period-3 regime (a = 3.830), the observed values jump between three distinct
states. These three states are isolated in phase space and are not considered to be neighbours
(in the sense of the recurrence definition). Therefore, in the sense of a complex network,
we have three disconnected components where each component contains a fully connected
network (because all the nodes in each component represent the same state in phase space).
The average shortest path length between nodes (i.e. states) should therefore be one, and
the clustering is perfect. The average path length L derived from the corresponding RP has
indeed the smallest possible value (L = 1), and the clustering coefficient C takes its largest
possible value (C = 1). The degree centrality kv takes only one value: 2999 (Fig. 11.2A).
This value corresponds approximately to a third of the size of the network, due to its partition
by the period-3 cycles, which is confirmed by the link density (ρ = 0.333).

For the band merging (a = 3.679), we find L = 22.8 and C = 0.83. The degree
distribution P(k) has a multimodal shape (Fig. 11.2B), which implies that there are several
states acting like super-nodes (i.e. which exhibit many links). These states lie at the merging
point of the two bands (around x = 0.73) and at the upper and lower border of the state space,
i.e. in regions with high phase-space density (Fig. 11.3A). The link density is ρ = 0.050.

For the laminar state at a = 3.791, we findL = 23.3 andC = 0.79. The degree centrality
kv follows a distribution with slight bimodality (Fig. 11.2C). The resulting link density
approaches its lowest value within the four considered dynamical regimes (ρ = 0.040).

Finally, for the outer crisis (a = 4), we obtain L = 23.6 and C = 0.82. The degree
centrality kv displays similar properties as for the laminar state, but with higher average
values and a resulting link density of ρ = 0.046 (Fig. 11.2D).

From the above results, we conclude that complex network measures applied to a
recurrence matrix are indeed sensitive to changes in the dynamics. The average shortest
path length can be considered as an upper bound for the phase space distance between two
states (in units of the threshold value ε). Hence, its average value L can be interpreted
as a mean distance, which depends on the total diameter and the fragmentation of the
phase space. Therefore, L increases with growing phase space of the logistic map (with
growing control parameter a). The clustering coefficient C is able to detect clustered phase
vectors, as they appear in periodic or laminar dynamics. The degree centrality kv quantifies
the phase-space density in the direct neighbourhood of a state v, while the link density ρ
measures the average phase space density. Moreover, from the kv distribution we can infer
that the considered recurrence matrices are not scale-free in the sense of the network theory.

Now we calculate Lmax, LAM , ρ, L , C , and kv for different values of the control
parameter a within the range [3.5,4]. For each value of a, we compute a time series of
length N = 2,000, and exclude transients by removing the first 1, 000 values.

The RQA measure Lmax reveals periodic dynamics by maxima of its value (Fig. 11.3B).
Laminar phases are clearly detected by LAM (Fig. 11.3C). ρ andC also show maxima during
episodes of periodic dynamics (Figs. 11.3D and F). ρ corresponds to the recurrence rate and
confirms previous studies [397]. Its values also depend on the periodicity during the periodic
windows – the higher the periodicity, the lower ρ. Therefore, period-doublings cause an
abrupt decrease of this measure. In the periodic regime, neighbours of a state are equal
to the state itself, leading to the largest possible clustering coefficient C = 1, and to the
shortest possible path lengths between neighbours giving L = 1. However, L shows a more
interesting behaviour. In our interpretation of a recurrence matrix, L characterises not only
the total phase space diameter, but also its fragmentation. With respect to the logistic map,
each time two bands in phase space merge (e.g. at a = 3.5736 or a = 3.5916), this does not
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Figure 11.3: (A) Bifurcation diagram of the logistic map. Selected RQA measures (B)
maximal diagonal line length Lmax and (C) laminarity LAM , as well as complex network
measures (D) link density ρ, (E) average path length L , and (F) clustering coefficient C .
The dotted lines mark the discussed regimes at period-3 window (a = 3.830), band merging
(a = 3.679), cross points of supertrack functions (a = 3.791), and outer crisis (a = 4).
Parameters as in Fig. 11.2.



118 Chapter 11. Recurrences as Networks

only lead to an increase of the occupied phase space, but also yields a merging of formerly
disjoint network clusters. As the definition of the average path length does not consider
pairs of points in disconnected clusters, the average distance of connected nodes suddenly
increases shortly before the band merging point as soon as the distance between the different
bands falls below ε, since the clusters then become connected. This is clearly expressed by
jumps in L (Fig. 11.3E). The distribution of kv is discrete in the periodic windows, which
are therefore clearly identifiable (Fig. 11.4). Analogous to the link density ρ, the location
of the maxima of the degree distribution in periodic windows is related to the number of
periods, e.g., for period-4 we have N/4− 1= 249, for period-3 N/3− 1= 332 (for a time
series length of N = 1, 000). The degree distribution P(k) before the band merging point is
broad and reveals higher degrees than after the band merging point, which again relates
to the connection of the distinct network clusters. For increased control parameter a, P(k)
becomes more localised around small degrees, disclosing the decrease of recurrences due to
the increasingly chaotic behaviour (increasing Lyapunov exponent).

Control parameter a
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Figure 11.4: Distribution of the degree centrality kv of the logistic map for a range of the
control parameter a. Same parameters as in Figs. 11.2 and 11.3.

11.4 Application to marine dust record

Long-term variations in aeolian dust deposits are related to changes in terrestrial vegetation
and are often used as a proxy for changing climate regimes in the past. For example, marine
terrigenous dust records can be used to infer epochs of arid continental climate. In particular,
a marine record from the Ocean Drilling Programme (ODP) derived from a drilling in the
Atlantic, ODP site 659, was used to infer changes in African climate during the last 4.5 Ma
(Fig. 11.5A) [388]. This time series has a length of N = 1,240 with an average sampling
time of 4.1 ka. Applying spectral analysis to these data, it was claimed that the African
climate has shifted towards arid conditions at 2.8, 1.7 and 1.0 Ma before present (BP)
[62]. These transitions correspond to epochs of different dominant Milankovich cycles
(mid-Pleistocene transition with a “41 ka world” between 2.7 and 1.0 Ma BP and a “100 ka
world” since about 1.0 Ma BP), the end of the Early Pliocene Warm Period at about 2.8 Ma
BP, and the development of the Walker circulation around 1.9–1.7 Ma BP [309]. However, a
recent thorough investigation of several marine dust records demonstrated more complex
relationships between vegetational coverage, aeolian transport processes and the dust flux
record [391]. The analysis revealed transitions between different regimes of variability,
mostly driven by a variation of the solar irradiation due to different dominant Milankovich
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Figure 11.5: (A) Terrigenous dust flux record of ODP site 659, and corresponding network
measures (B) L and (C) C . The dotted lines mark pronounced transitions in the dynamical
regime at 3.5, 3.3, 3, 2.5, 1.9, and 0.4 Ma BP, the dash-dotted line corresponds to the mean
value of the null-model and the shaded area corresponds to the 90% confidence bounds.
Same parameters as in Fig. 11.6, window size 420 ka.

cycles. For example, Trauth et al. found an interval of a dominant 100 ka frequency (related
to orbital eccentricity) between 3.2 and 3.0 Ma BP, and of dominant 19–23 ka frequency
band (precession) between 2.3 and 2.0 Ma BP [391]. The Early Pliocene Warm Period ended
between 3.3 and 2.8 Ma BP with the Pliocene optimum (3.24–3.05 Ma BP) and the onset
of the northern hemisphere glaciation (2.8–2.7 Ma BP) [265, 309], which was intensified
during the mid-Pleistocene climate shift at 1.0–0.7 Ma BP [358]. It has been hypothesised
that the latter transition was connected with a period of strong Walker circulation between
1.5–0.5 Ma BP [248].

We illustrate the capabilities of our recurrence analysis using complex network measures
for the ODP 659 dust flux record in order to find transitions in the dynamics. For this purpose,
we use a time delay embedding with dimension m= 3 and delay τ= 2 (these parameters
have been determined by applying the standard procedure using false nearest neighbours
and mutual information [165]). The threshold is chosen to preserve a constant recurrence
rate of 5% (which means that the link density ρ will be constant) [239, 338]. In order to
study transitions in the dust record, we calculate the recurrence matrix in moving windows
of size 100 time points (corresponding approximately to 410 ka) and with an overlap of 90%.
For the time-scale of the windowed measurements, we use the mid-point of the window.
Note that the time-scale is not equidistant (equidistant time-scale is not necessary for our
network approach). On average, the sampling time is 4.1 ka with a standard deviation
of σ = 2.7 ka. Compared to the long (geological) scale this deviation is still rather small.
However, the application of linear methods often requires equidistant time-scales.
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Figure 11.6: Recurrence plot of the terrigenous dust flux record of ODP site 659. Parameters
are m= 3, τ = 2, ε is chosen such that ρ = 0.05, phase space distances are measured using
maximum norm.

We will apply a simple statistical test in order to test the null-hypothesis to see whether
the network characteristics at a certain time differs from the general network characteristics.
In order to create an appropriate null-model, we use the following approach. In contrast
to the RQA measures, where the time-ordering is important requiring a more advanced
approach for a statistical test [341], for the network measures we can simply randomise the
time series: we randomly draw 100 values (corresponding to the window size of 100 points)
from the time series and then calculate the RP and the network measures from this sample.
By repeating this 10,000 times we get a test distribution for the measures L and C and
estimate its 0.05 and 0.95 quantiles that may be interpreted as the 90% confidence bounds.

The RP of the dust data depicts a rather homogeneous recurrence structure, interrupted
only by rather small bands of sparse recurrence point density (Fig. 11.6). Such sparse areas
mark epochs of more frequently occurring extreme or rare events recorded by the marine dust
data series. On the small-scale we find mostly very short diagonal lines, expressing the high
variability and fast change of the states (with respect to the geological time-scale). Between
4.0 and 3.0 Ma and around 2.0 Ma BP, longer diagonal lines appear. Moreover, between 4.5
and 3.0 Ma BP, we find an increased number of vertical/ horizontal lines, indicating different
dynamics than at other times.

The global network measures L and C also depict a distinct variability (Fig. 11.5B and
C). L reveals epochs of significantly higher values between 3.5 and 3.3, ∼ 2.1, 1.9–1.8, and
after 0.4 Ma BP. Around 3.3, 2.0 and 1.9 Ma BP the RP exhibits sudden drops of L within a
period of, in general, higher values. C discloses epochs of increased values between 3.5 and
3.0 Ma as well as between 2.5 and 2.0 Ma BP. Between 4.5 and 3.5 Ma, 3.0 and 2.5 Ma, and
1.0 and 0.4 Ma BP, the degree centrality possesses mostly small values, whereas between 2.5
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and 1.0 Ma and after 0.4 Ma BP, it has larger values (Fig. 11.7).
With respect to the previously known results, we conclude that C identifies the epochs

of more dominant Milankovich cycles (between 3.2 and 3.0 Ma and 2.3 and 2.0 Ma BP). kv
is increased in these periods, but also exhibits increased values for the period between 2.5
and 1.0 Ma BP. Note that the 3.5-3.0 Ma BP period is related to the intensification of the
Northern hemisphere glaciation [23]. In contrast, L reveals transitions in climate dynamics
on a different time-scale. Maxima of this measure tend to appear at the onset of changes in
C . Whereas C reveals the changed dynamics, L is sensitive to the transition periods, which
is consistent with our results near the band-merging points of the logistic map. The increase
of L at ∼ 3.4, ∼ 3.1, 1.9–1.8, and 0.4 Ma BP may also be related to the intensification of
glaciation. However, the detected transitions are associated with different and more subtle
dynamical changes, and not simply just an intensification of a certain Milankovich cycle.
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Figure 11.7: Degree centrality kv of terrigenous dust flux record of ODP site 659. Same
parameters as in Figs. 11.6 and 11.5.

11.5 Conclusions

We have linked the recurrence matrix with the adjacency matrix of a complex network,
and have proposed the direct application of the corresponding network measures to the
recurrence matrix. We have discussed the link density, degree centrality, average path length
and clustering coefficient in some detail. In particular, the latter two complex network
measures have no direct counterpart in recurrence quantification analysis and give additional
insights into the recurrence structure of dynamical systems. In a further study, we have
outlined the link between the complex network measures and the properties of the phase
space trajectory of dynamical systems [77].

By applying our novel approach to the logistic map, we have illustrated the ability of the
proposed measures to distinguish between the different dynamical regimes and to detect the
corresponding transitions. Moreover, we have used our approach to investigate a marine
climate proxy record representing the climate variability over Africa during the last 4.5 Ma.
The different measures highlighted various transitions in the recurrence structure and, hence,
in the dynamics of the studied climate system. By applying the recurrence approach and
complex network measures, we were able to identify more subtle transitions than those
that were previously reported from using linear approaches, like power spectral analysis
[62], linear trend detection [265], Mann-Whitney or Ansari-Bradley tests [391]. In addition,
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our proposed approach to detect transitions on the basis of time series does not require
equidistant time-scales, as would be necessary for most other known techniques. From
the network point of view, the recurrence plot approach can deliver a potential measure of
information exchange in time series of complex systems [77, 423].

In the future, recurrence plots and their complex network interpretation will allow for
further fruitful and natural transfer of ideas and techniques from complex network theory to
time series analysis (and vice versa).
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Abstract

We present here two promising techniques for the application of the complex network ap-
proach to continuous spatio-temporal systems that have been developed in the last decade
and show large potential for future application and development of complex systems analysis.
First, we discuss the transforming of a time series from such systems to a complex network.
The natural approach is to calculate the recurrence matrix and interpret such as the adja-
cency matrix of an associated complex network, called recurrence network. Using complex
network measures, such as transitivity coefficient, we demonstrate that this approach is very
efficient for identifying qualitative transitions in observational data, e.g., when analyzing
paleoclimate regime transitions. Second, we demonstrate the use of directed spatial networks
constructed from spatio-temporal measurements of such systems that can be derived from
the synchronized-in-time occurrence of extreme events in different spatial regions. Although
there are many possibilities to investigate such spatial networks, we present here the new
measure of network divergence and how it can be used to develop a prediction scheme of
extreme rainfall events.

In the last decades various powerful techniques have been developed in
nonlinear dynamics for the study of continuous spatio-temporal dynamic systems.
Typically they are based on different discretization methods in space and time.
Here, we discuss an unconventional approach based on complex networks for the
investigation of such systems. In contrast to well-known examples of complex
networks, such as social ensembles, neural networks, or power grids, where
the nodes are clearly defined by humans, neurons or power generating stations,
here the first step of the complex network approach can be interpreted as a
very flexible way to discretize a continuous system, or to identify a backbone
underlying the continuous system. This enables us to use in the next steps

https://doi.org/10.1063/1.4916924
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the rich variety of methods from complex network theory even for the analysis
of continuous systems. Based on this approach we treat two basic problems
in high-dimensional nonlinear dynamics: (i) uncovering regime shifts and (ii)
prediction of extreme events. We propose appropriate techniques for both by
combining recurrence with networks resp. synchronization with extreme events.
The potential of this approach is demonstrated here for the Earth system. In
a first example we show that important main regime shifts of the East Asian
Monsoon during the last 3 Million years can be identified from paleoclimate
proxy records. In a second example we analyze recent satellite data from the
tropical rainfall measurement mission (TRMM) and use the network divergence
for developing an efficient prediction scheme for extreme precipitation events in
the eastern Central Andes.

12.1 Introduction

Climate is as the brain a highly complex and high-dimensional system; both systems have
a lot of joint properties, but there are also important distinctions. Understanding the
mechanisms of climatic processes on all temporal and spatial scales is very difficult and
even impossible in near future, but crucial for weather forecasts or assessment of long-term
climate changes. A data-based investigation of the climate system is related with several
challenges, in particular non-stationarity (e.g., abrupt vs. slow changes), high-dimensionality,
non-Gaussian distributed data (e.g., extreme events), natural vs. anthropogenic influences,
etc.

A basic first step in data-based studies of such a complex high-dimensional system is
reducing the dimensionality. The most widely used method for this is a decomposition into a
very finite number of Empirical Orthogonal Functions (EOFs). This approach also allows to
identify main spatial patterns, such as large circulation patterns or teleconnections. However,
the basis of the EOF approach is the covariance matrix, thus, only capturing the first two
statistical moments and demanding for certain strict properties of the data, e.g., Gaussian
distribution and stationarity [260]. Even more obvious are constraints due to event-like
data, as typical for rainfall and extreme events, or limitations by nonlinear interrelations.
Moreover, the found EOFs do not undoubtedly coincide with typical climate phenomena
[68].

Modern measurement techniques has allowed in the last decades to extend our knowledge
into the past, leading to paleoclimatology. However, these data generate further challenges:
Dating uncertainties and irregularly sampled time series are problems that limit the direct
application of standard methods.

An alternative and novel approach for the study of different aspects of the climate system
is related to the progress in complex networks science in the past quarter century. At a first
glance it might appear surprising that the complex network approach can be used to analyse
a continuous system as the climate and in particular to identify spatio-temporal patterns
in climate fields or regime shifts in the paleoclimate. However, the application of complex
networks for climate analysis has become a lively and quickly progressive field in the last
years. Although, this new approach is still in its infancy, first results are very promising and
have already shown its impressive potential.

In the following we will present two techniques based on complex networks, recurrence
networks (Sec. 12.3) and event synchronization (Sec. 12.5), and will show how they can be
used to uncover regime transitions in the paleoclimate by analyzing proxy records (Sec. 12.4)
and to analyze spatiotemporal patterns of extreme rainfall leading to new prediction schemes
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(Sec. 12.5). Finally we summarize the potentials of this non-traditional approach, but discuss
also open problems.

12.2 Complex networks
We give here only a few basics on complex networks which will be used later (see, e.g., [27,
271, 366] for more detailed reviews on complex network analysis). A network is a set of
nodes and links. We define a network as complex when its topology is highly irregular. A
network can be defined by the adjacency matrix A. For undirected and unweighted networks,
A is a binary matrix, just indicating the existence of links between two nodes. In weighted
networks, a link has a weight, i.e., A consists of real numbers; A is symmetric for undirected
and asymmetric for directed networks. A network or its components (links, nodes) can be
characterized by several measures. Here we mention only some selected measures.

The node degree in unweighted networks is simply the total number of links a node i has
and is given by the column sum of the adjacency matrix A:

ki =
N
∑

j

A ji . (12.1)

The distribution of this measure can be used to investigate, e.g., whether a network is scale-
free. On directed networks, we can distinguish between the column-wise and raw-wise sums
in Eq. (12.1) that give us the in- and out-degree, respectively. For weighted networks the
sum Eq. (12.1) becomes the so-called node strength, and for directed and weighted networks,
we can consider the in- and out-strength

S in
i =

N
∑

j=1

Ai j and S out
i =

N
∑

j=1

A ji . (12.2)

Another important measure is the transitivity coefficient

T =

∑N
i, j,k=1 A j,kAi, jAi,k
∑N

i, j,k=1 Ai, jAi,k

. (12.3)

It measures the probability that the neighbors of a node are connected themselves.

12.3 Recurrence Networks – a time series analysis approach by means of
complex networks
Analyzing time series by complex networks is a quite new idea that came up in the last decade.
The generation of a complex network representation of a time series can be done using
different approaches, e.g., by visibility graphs [187] or temporal succession of local rank
orders [356]. A quite natural approach is to use the recurrence matrix [239] of a dynamical
system

Ri, j = Θ(ε − ||~x(i)− ~x( j)||), (12.4)

as the adjacency matrix of a complex network [78]:

A= R− I (12.5)

(with I the identity matrix, Θ the Heaviside function, ~x(i) a state at time i = 1, . . . , N , and
N the number of state vectors). The recurrence matrix itself has become a basic tool of
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nonlinear time series analysis and was first introduced by Eckmann et al. as recurrence plots
that “are rather easily obtained aids for the diagnosis of dynamical systems” [86]. Later this
idea was extended by several quantification approaches [237, 442] leading to “an active field,
with many ramifications we [Eckmann et al. – ] had not anticipated” [240]. Fundamental
works on such methodological developments have been published also in Chaos, e.g., on
embedding issues and dynamical invariants [158, 384], time-delay systems and non-chaotic
strange attractors [275, 347], heterogenous recurrence analysis [437], or twin surrogates
[325].

Because of the striking similarity between the recurrence matrix and the adjacency
matrix (i.e., a binary and square matrix), the idea to identify the recurrence matrix with the
adjacency matrix was so obvious that it came up almost at the same time (around 2008)
within different research groups [241, 368, 431]. Its main advantage is that the resulting
recurrence network can be analyzed by the known network measures, i.e., further diagnostic
tools become available for time series analysis. In particular the transitivity coefficient T is
appropriate because it quantifies the geometry of the phase space trajectory and can be used
to differentiate between different dynamics (e.g., regular and irregular) [241, 455]. It also
allows to define a dimensionality measure [79], the transitivity dimension

DT =
log(T )

log(3/4)
. (12.6)

The quantification of the recurrence matrices can also be performed by the recurrence
quantification analysis (RQA) [239, 417]. In contrast to the network measures which describe
the geometrical properties, the RQA measures characterize dynamical properties of the phase
space trajectory. Therefore, the recurrence network based measures provide complementary
information to the RQA and can, under certain circumstances, give more insights into the
system’s behavior.

As a paradigmatic example, let us consider the Rössler system [327]
�

d x
d t

,
d y
d t

,
dz
d t

�

=
�

−y − z, x + a y, b+ z(x − 35)
�

, (12.7)

where we change the parameter a = b in a range where the system shows chaotic and
periodic dynamics: a = 0.235, . . . , 0.262 (Figs. 12.1 and 12.2). Between a = 0.24 and 0.25,
the system does not have a positive Lyapunov exponent and generates periodic behavior
(Fig. 12.3(a)).

A frequently used RQA measure for differentiating periodic and chaotic dynamics is the
ratio of recurrence points that form diagonal lines in the recurrence plot, called determinism
[239, 397]:

DET =

∑

l≥lmin
l P(l)
∑

i, j Ri, j
, (12.8)

with P(l) the histogram of line lengths in the recurrence plot. The idea of this measure is
that the length of a diagonal line in the recurrence plot corresponds to the time the system
evolves very similar as during another time. Such repeated similar state evolution that is
also related to predictability is typical for deterministic systems. In contrast, systems with
independent subsequent values, like white noise, have mostly single points in the recurrence
plot. DET is sensitive to transitions between chaotic and periodic dynamics in maps [397],
but for continuous systems, such as our Rössler example, this measure fails for this task [225,
455]. For the entire range of the considered a values, it has very high values, close to one
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Figure 12.1: (a) Phase space reconstruction of the x-component of the Rössler system for
a = 0.245 and (b) for a = 0.29. (c) Corresponding recurrence plot for a = 0.245, showing
periodic structures, and (d) for a = 0.29, showing interrupted diagonal lines. The recurrence
plots are calculated from the x-component using time-delay embedding with m = 4 and
τ= 17 (sampling time ∆t = 0.1).

(a) (b)

Figure 12.2: Network representation of the phase space reconstruction of the x-component
of the Rössler system for (a) a = 0.245 and (b) a = 0.29. The network is constructed from
the first 300 nodes of the recurrence matrix shown in Fig. 12.1 by a linear repulsion model.
Node size and color can be used to represent selected node properties, here time (node color,
the darker the larger t) and clustering coefficient (node size).
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(Fig. 12.3(b), Tab. 12.1). However, T shows increased values within the periodic window,
close to a value of 3/4. In general, the network based measures, such as T , can add further
important aspects in recurrence analysis, in particular for the uncovering of sudden changes
of the dynamics.
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Figure 12.3: (a) The two largest Lyapunov exponents and (b) the recurrence measures DET
and T for the x-component of the Rössler system for varying control parameter a. Within
the interval a = [0.24 0.25], the dynamics is periodic. Whereas T indicates the periodic
behavior by increased values, it is difficult to detect the periodic window with DET [225].

Table 12.1: Typical values of DET and T for different dynamical regimes in the Rössler
system.

a DET T dynamics
0.235 0.98 0.66 chaotic
0.245 0.98 0.74 periodic
0.260 0.97 0.63 chaotic

12.4 Identification of sudden transitions in paleoclimate

The recurrence network approach has great potential in different applications in many disci-
plines. Using as a classifier, it can help, e.g., to detect serious diseases, such as preeclampsia
[304], to detect epileptic states [188], or to study multiphase fluid flows [113]. Another
important application is to detect critical transitions in the dynamics [73, 93, 241]. Such
transition detection is of crucial interest in studying variations of the past climate in order to
better understand the climate system in general.
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In the following we discuss a typical example from paleoclimate research. The investiga-
tion of relationships between sea surface temperature (SST) and specific climate responses,
like the Asian monsoon system or the thermohaline circulation in the Atlantic, as well as
their regime changes, represents an important scientific challenge for understanding the
global climate system, its mechanisms, and its related variability. Its better understanding
is of crucial importance as non-linear feedback mechanisms and tipping points cause high
uncertainty and an unpredictable future for humankind[197, 319].

In paleoclimatology, different archives are used to reconstruct and study climate condi-
tions of the past, as lake [238] and marine sediments [139] or speleothemes [171]. Alkenone
remnants in the organic fraction of marine sediments, produced by phytoplankton, can be
used to reconstruct SST of the past (alkenone paleothermometry), allowing to study the
temperature variability of the oceans [138, 198]. Here we will use a SST reconstruction for
the South China Sea and the past 3 Ma derived from alkenone paleothermometry of the
Ocean Drilling Programme (ODP) site 1143[198] (Fig. 12.4 and 12.5(a)). The South China
Sea is strongly linked to the East Asian Monsoon system (EAM) that consists of a winter
part with strong winds and a precipitation related summer part. In general, the East Asian
Monsoon is of crucial importance for China’s socio-economic behavior, e.g., for agriculture or
even for public health by its impact on prevalence of trace elements [26]. The understanding
of the mechanism is, therefore, crucial for learning about the past and the future climate
and its impacts.

Indian Ocean
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South China Sea
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 15°N
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Figure 12.4: Location of the ODP 1143 site in the South China Sea (red star) and main
directions of the East Asian Summer Monsoon (blue arrows).

First we are faced with a typical problem in paleoclimatology because the original time
series of ODP 1143 is not equally sampled. The sampling time ranges from 0.2 to 28 ka,
with a median of 2.1 ka. If applying standard techniques (linear methods or classical RQA)
then we would first need to interpolate the time series to an equidistant time axis. However,
when using the recurrence network approach, the correct timing of the nodes is not so
important (and could even be exchanged without changing the network properties), because
it is characterizing the geometrical structure [71, 73, 103].

We calculate the recurrence networks and the transitivity coefficient T for sliding win-
dows of length 410 ka (thus, with varying number of data points within the windows) and a
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moving step of 20 ka (Fig. 12.5). For the phase space reconstruction[286] we choose an
embedding dimension of m = 6 (as suggested by the false nearest neighbors method[170]).
The selection of the time delay is guided by the auto-correlation function and considered
to be constant for all time windows to be approximately 20 ka (based on median sampling
time within one time window). The threshold is chosen in such a way to preserve a constant
recurrence rate of 7.5% [73, 239].

Moreover, we perform a bootstrapping approach using 1,000 resamplings of the win-
dowed time series for preparing an empirical test distribution for T . In this real world
example, we use a confidence level of 90%. As we do not know which kinds of dynamical
transition are there, we will consider both the upper and the lower confidence level.
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Figure 12.5: (a) Alkenone paleothermometry based SST estimates for the South China Sea
and (b) corresponding transitivity coefficient T . Dashed lines mark major climate shifts
discussed in the text; the gray shading marks the confidence interval of 90%.

In the last 3 Ma several major and many smaller climate changes have appeared on
regional but also global scale. Dramatic climate shifts are related with the Milankovich cycles
[3, 135, 252] and major changes in ocean circulation patterns [167]. Due to a transition
towards an obliquity-driven climate variability with a 41 ka period around 3.0 Ma ago,
a period of warm climate has end and the northern hemisphere glaciation started after
2.8–2.7 Ma [3, 135, 139]. This transition is very well revealed by the significant increase
of T between 2.8 and 2.2 Ma. Based on thorough investigations of loess sediments, it
is known that 1.25 Ma ago the intensity of the winter monsoon of the EAM begun to be
strongly coupled to global ice-volume change [3]. During this time, T increased (although
not reaching significance). This time also marks the beginning of a transition phase towards
glacial-interglacial cycles of 100 ka period (eccentricity dominated period of the Milankovich
cycles). This 100 ka period dominance was well established after 0.6 ka and is clearly visible
by the increased T between 0.6 and 0.2 ka [371]. From loess sediments it is also known
that the summer monsoon has weakened between 2.0 and 1.5 ka and around 0.7 ka. During
these periods, T shows lower values than during the previously discussed periods. The
variation of T confirms the previous findings of a strong link between the EAM and the
Milankovich cycles, in particular of increased and reduced regularity in the climate dynamics
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(as presented by the SST and for the considered time scale) during dominant Milankovich
cycles and periods of major climate transitions from one to another regime.

Similar conclusions based on T have been drawn from dust flux records around the
African continent [73]. There, it was found that enhanced regular climate dynamics coincides
well with lake level high stands in East Africa and, hence, indicating that climate regime
transitions have triggered human evolution.

12.5 Complex networks for spatio-temporal analysis of continuous systems
Another important problem in complex systems analysis is the investigation of spatio-temporal
dynamics. In the last decade, this field has also benefited from the complex network approach.
In particular, its application to climate data in order to uncover climate mechanisms or
characteristic spatial patterns and long-range interrelations has drawn attention to complex
networks for spatio-temporal analysis of continuous systems. Complex networks are an
alternative to EOFs and can shed light on different and complimentary aspects than EOFs.
Beginning with the study of Tsonis et al. in 2004 [399], the climate network approach has
received more and more interest for spatio-temporal data analysis[85, 256, 365]. The idea
is to reconstruct a complex network from spatially embedded time series (in case of climate,
e.g., from a surface air temperature field) by measuring the interrelationship Ci, j between
these time series. The location of the nodes can be arbitrary (e.g., weather stations when
using instrumental data) or grid points (e.g., when using model or reanalysis data). In
unweighted networks, links represent high correlations between the time series belonging to
the nodes, simply considered by applying a threshold T on the interrelation matrix C (that
could be, e.g., Pearson correlation)

Ai, j =

�

Ci, j if Ci, j > T,
0 else.

(12.9)

Such networks can be undirected or unweighted (as in Eq. (12.9)), but also directed or
weighted.

Within the climate context, such network approach has been applied to study, e.g, climate
communities [361, 399], the impact of the El Niño/ Southern Oscillation [433], major heat
transport pathways and spatio-temporal scales [70, 85], external and internal atmospheric
forcing[64], to create early warning indicators of critical regime shifts [256], or even for
model intercomparison [105, 362]. When using Pearson correlation for describing the
interrelationships Ci, j between the nodes, then the node degree is obviously related to the
first EOF [75]. Other network measures, such as betweenness centrality, provide further
information that cannot be captured by the EOF analysis [70].

In general, interrelationships between spatially located time series cannot be considered
to be only linear. In order to examine nonlinear interrelations, information based measures
(e.g., mutual information) were suggested for network reconstruction [13, 65, 69, 147, 329].
In particular when investigating climatological or meteorological phenomena, we often face
event-like data, such as daily (or hourly) rainfall series or extreme events time series. For
such kind of data, Spearman rank correlation could be used [43]. However, an even more
powerful approach for such data is the event synchronization approach [210, 301].

Event synchronization was developed to investigate the synchronous activity of the
neurons in the brain [301]. It simply counts the number of temporally coinciding events in
two event series x1 and x2 by allowing small deviations between the occurrence of the events,
i.e., a dynamical delay between them. Let e1(m) and e2(n) be the time indices when events
appear in x1 and x2 and m, n = 1, . . . , l the number of a specific event (l is the total number
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of events in the event series). The waiting time between an event m in x1 and event n in x2
is d1,2(m, n) = e1(m)− e2(n). If this waiting time d1,2(m, n) is smaller than some dynamical
delay τ(m, n), the two events e1(m) and e2(n) are considered to occur synchronously. The
dynamical delay τ(m, n) is the half of the minimal waiting time of subsequent events in both
time series around event e1(m) and e2(n) and not larger than a given maximal delay τmax,
i.e.,

τ(m, n) =min
{d11(m, m− 1), d11(m, m+ 1), d22(n, n− 1), d22(n, n+ 1), 2τmax}

2
. (12.10)

As soon as |d1,2(m, n)| ≤ τ(m, n) (or 0< d1,2(m, n)≤ τ(m, n)), we count it as undirected (or
directed) synchronization of events e1(m) and e2(n)

S(m, n) =







1 if |d1,2(m, n)| ≤ τ(m, n)
(or 0< d1,2(m, n)≤ τ(m, n) in the directed case),

0 else.
(12.11)

Now we can define the event synchronization E between the two event series as the sum of
S(m, n)

E =
∑

m,n

S(m, n). (12.12)

This measure has the advantage that it can quantify interrelations between event-like time se-
ries and that it allows for a flexible (dynamical) delay between the events. This is particularly
different from the standard approach, where a considered lag (e.g., for cross-correlation) is
constant and fixed at each time point.

Applying the event synchronization approach, Eq. (12.12), for comparing spatially
embedded time series x i and x j at locations (nodes) i and j a network can be reconstructed
in the same way as in Eq. (12.9). For selecting the threshold T several approaches are
possible. One possibility is based on a significance test, where block bootstrapping can
provide an empirical test distribution of the values of E and a preselected confidence level
(e.g., 2% or 5%) provides the threshold T[29]. This procedure ensures that the network
links represent only the strongest interrelations between the nodes.

Event synchronization based complex networks have been successfully used to investigate
spatio-temporal patterns during the Indian Summer monsoon [210, 211, 365] or to study
the origin and propagation of extreme rainfall in South America [28, 29]. Although there
is an obvious dominance of climate applications, this approach is also promising for other
fields, like plasma, turbulence, cardiological, or brain research.

12.6 Developing a prediction scheme for extreme events
To illustrate the potential of the complex network approach in the context of extreme climate
events, we apply the approach on South American extreme rainfall data and use the network
topology for developing a prediction scheme for extreme rainfall [29]. During the Australian
summer season (December, January, February), the differential heating between land and
ocean amplifies the trade winds that enhances transport of moisture from the tropical
Atlantic into the tropical Amazonian Basin and, thus, causes extended rainfall[451]. Due
to evapotranspiration, wind, and the Andean orographic barrier, this water is first further
transported westwards and later, along the Andean mountain ridge, southwards towards the
subtropics (Fig. 12.6). Here, a frontal system converging from the South and related with
Rossby waves is responsible whether the moisture transport moves further eastward into
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the southeastern (SE) Brazil or towards the SE South America (SESA, central Argentinian
plains)[218]. This variability of the exit moisture regions is also called South American
rainfall dipole [280].
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Figure 12.6: Key features of the South American monsoon system. The blue arrows indicate
major moisture transport pathways.

The spatio-temporal rainfall data used in our example is collected from the satellite-based
Tropical Rainfall Measurement Mission (TRMM 3B42 V7, [153]) with 3-hourly temporal
and 0.25◦ × 0.25◦ spatial resolution. In the following we will restrict the analysis to the
Australian summer season and consider extreme rainfall events that are defined locally by
rainfall exceeding the 99th percentile.

Using directed event synchronization, Eqs. (12.11–12.12), of the rainfall extremes we
reconstruct weighted and directed networks and calculate the in-strength S in

i and out-
strength S out

i , Eq. (12.2). Now we define the network divergence as the difference between
in- and out-strength:

∆Si = S in
i −S

out
i . (12.13)

Negative values of∆S indicate the source regions of extreme events whereas positive values
indicate sinks. Surprisingly, we find negative ∆S values within the SESA region (Fig. 12.7).
This means that this region is a source region of extreme rainfall although it is one of the exit
regions of the low-level moisture flow from the Amazon region. Now it would be interesting
to see to which other places the extreme rainfall from the SESA region will propagate. For
this purpose we consider the in-strength of all nodes conditioned by the source region SESA
and call it impact Ii(R) of region R on node i:

Ii(R) :=
1
|R|

∑

j∈R

Ai j . (12.14)

|R| is the number of nodes within the region of interest R (here SESA). Casually speaking,
Ii(R) measures the amount of extremes at site i that have their origin in region R.
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For the SESA region we find high values of Ii(SESA) not only in the direct vicinity of
SESA but also at the eastern slopes of the Central Andes (Fig. 12.8). This result suggests
that extreme rainfall at the Central (in particular Bolivian) Andes will precede after rainfall
events in the SESA region.

The mechanism behind this is an interplay between the orographic barrier, frontal
systems approaching from the South, and the southward moisture flow from the Amazon
basin resulting in the establishment of a wind channel attracting warm and moist air from
the western Amazon region into the SESA region[29]. Here it collides with the cold air of
the frontal system from the South and produces extended rainfall. This rainfall propagates
together with the northern migration of the frontal system and is bounded in the West by
the Andean orography.

This fact can be used for defining a simple but very efficient prediction scheme as
explained in detail by Boers et al.[29] The precondition is a low-pressure anomaly in the
SESA (geopotential height anomaly < −10 m). As long as this condition is fulfilled, during
two days extreme rainfall will appear at the eastern slopes of the Central Andes (in the
range along the band that is marked by high values of Ii(SESA)). This rule allows positive
prediction rates of 60% and during El Niño conditions even of 90%.
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Figure 12.7: Network divergence∆S of ex-
treme rainfall network during Austral win-
ter season. Negative values indicate source
and positive values sink regions of extreme
rainfall.
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Figure 12.8: Impact Ii(R) of a region (here
SESA, marked by the box) in form of con-
tributing propagated extreme rainfall.

12.7 Conclusion and Outlook

In this paper we have presented an overview of a complex network based method for the
analysis of continuous dynamical systems. These methods are mainly basing on two concepts:
(i) recurrence networks and (ii) event synchronization. The first one combines recurrence,
a basic principle in dynamical systems, with complex networks. This way a rich variety of
complex networks characteristics become available for time series analysis. Its potential
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have been demonstrated for the identification of sudden transitions from even short time
series. The second one identifies events occurring almost synchronized in time in different
spatial regions and uses then complex networks for the study of especially spreading and
interactions of extreme events. We have uncovered with this technique a mechanism for the
formation of extreme floods in the Andes which has led to a very efficient framework for
predicting such extreme events. Additionally, this methodology can be used as a new tool
for a critical comparison of different models of in particular natural systems. Such complex
network approaches have a strong potential for various fields, ranging from turbulence, via
neuroscience and medicine to socio-economy.

However, there are several open problems to study in future. One direction is to extend
these concepts to multivariate (spatio-temporal) data, e.g., different climatological or physi-
ological parameters. A further challenge is the study of interacting systems of possible very
different nature, e.g., climate and renewable energy generation or climate and health, from
the network perspective. Another problem is a comprehensive mathematical foundation of
these techniques including an appropriate test statistics. Thus, we expect a pursuing and
lively development and an increasing number of applications of these rather new concepts
in the next future.
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R The presented work in this chapter is a student’s paper, where I developed the basic idea
of adapting and applying the transformation cost method for irregular data analysis.

Abstract
The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth’s hemi-
spheres and provides a heat source that drives global circulation. At seasonal and inter-
seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the
winter monsoon of the opposing hemisphere. Long-term phase relationships between the East
Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM)
are poorly understood, raising questions of long-term adjustments to future greenhouse-
triggered climate change and whether these changes could ‘lock in’ possible IASM and EASM
phase relationships in a region dependent on monsoonal rainfall. Here we show that a
newly-developed non-linear time series analysis technique allows confident identification
of strong vs. weak monsoon phases at millennial to sub-centennial timescales. We find a
see-saw relationship over the last 9000 years – with strong and weak monsoons opposingly
phased and triggered by solar variations. Our results provide insights into centennial- to
millennial-scale relationships within the wider EAIASM regime.

13.1 Introduction
High-resolution speleothem proxy records from cave KNI-51 (15.30◦S, 128.61◦E) in north-
western Australia and Dongge Cave (DA) (25.28◦N, 108.08◦E) from southern China (Fig.13.1)
provide an outline of the summer monsoon states of the last 9000 years [428]. Details of the
U/Th chronology and stable isotope records are given by Denniston et al. [63] and Wang et
al. [414] respectively. Both caves are well placed to capture the summer monsoon regimes

https://doi.org/10.1038/ncomms12929
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located at the end points of the EAIASM system (Fig. 13.1 and Supplementary Figure 13.6
as well as Supplementary Discussion). Stalagmite δ18O time series have prominently been
used to identify and study past changes in summer monsoon strength [51]. The δ18O sig-
nal recorded in Asian stalagmites depends on multiple factors, including moisture source
composition and distance, Rayleigh fractionation during moisture transport, and amount of
precipitation. These factors, and thus stalagmite δ18O, are all directly related to summer
monsoon strength [35, 63, 169, 313, 353, 376]. A more distal moisture source lengthens the
transport pathway to the study site, and Rayleigh distillation during rainout, which in turn
leads to more negative δ18O in monsoonal rainfall and associated infiltrating and drip water,
ultimately resulting in more negative stalagmite δ18O. Thus, speleothem δ18O is a complex
integral of multiple factors, not exclusively reflecting local rainfall amount, but instead
providing a valid proxy for monsoon strength in a more general sense [37, 51]. In some
instances a pronounced amount effect is observed. For example, in the IASM realm, rainfall
δ18O is mainly linked to rainfall amount, as a comparison of rainfall amount and δ18O at
the Global Network of Isotopes in Precipitation (GNIP) station at Darwin (approximately
400 km SW of KNI-51) demonstrates (R2 = 0.8; p < 0.001) [63]. Positive δ18O excursions
in stalagmites coincident with the timing of graffiti on cave walls telling of massive droughts,
exemplify the sensitivity of δ18O to drought in the EASM region [376]. A negative example
was found in NE India, where the amount effect is clearly absent[35], but speleothem δ18O
still records changes in Indian summer monsoon strength linked to ENSO [268]. Thus, we
emphasize again that the δ18O variability acts as a proxy for monsoon strength and not
rainfall amount alone. Moreover, advanced nonlinear time series analysis methods can be
used to analyse the dynamical imprint of the monsoon activity in the δ18O record and by
analysing the time series it is possible to go beyond an interpretation of just the values of
δ18O.

The records of DA and KNI-51 are irregularly sampled, i.e., the time between two
consecutive measurements is not constant and may vary largely along the length of the
record. Most time series analysis methods, however, require regular sampling. Traditionally,
some form of interpolation is used to deal with these irregularities, but this introduces
additional information into the time series with much higher uncertainty than the real
observations [311]. To avoid corrupting the quality of the proxy records, a newly developed
method can be used (see [284, 373]) that is based on techniques used for neurological
data [407]. This Transformation Cost Time Series (TACTS) method produces a detrended
and regularly sampled time series, that can be further analysed with standard time series
analysis methods to identify regime changes.

Here we show that the TACS method is well suited to analyse the records of DA and
KNI-51 and can detect statistical significant dynamical details of the monsoon dynamics by
distinguishing phases of strong/weak monsoon on centennial time scale. This allows us to
substantiate and improve previous more qualitative interpretations of the DA and KNI-51
records [63, 152, 414]. Overall the phase relationship between major regime shifts in the two
records is anti–correlated (see Fig. 13.2 and Fig. 13.3). Phases of strong (weak) monsoon
activity in the northern hemisphere (DA proxy) coincide with phases of weak (strong)
monsoon activity in the southern hemisphere (KNI-51 proxy). Solar activity provides a likely
driver of this see-saw dynamics and our analysis confirms previous conclusions that solar
activity can impact on the overall monsoon dynamics by shifting the position of the the
Intertropical Convergence Zone (ITCZ) [414].
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AA OLR during EASM [JJA] BB OLR during IASM [DJF]

Figure 13.1: Top of atmosphere outgoing long wave radiation during the monsoon
months delimiting its extent a) East Asian summer monsoon (EASM) during June, July
and August (JJA); and b) Indonesian Australian summer monsoon (IASM) during December,
January and February (DJF) [164]; Dongge Cave (dot) and KNI-51 cave (star).

13.2 Results
13.2.1 Transitions of the monsoon activity

Analysis of the DA and KNI-51 records reveals alternating periods of statistically significant
centennial to millennial-scale strong/weak monsoon states (Fig. 13.2). Strong/weak states
are defined as exceeding the confidence bands. Prolonged strong/weak states are identified,
and the comparison given by the coloured bands in Fig. 13.2 highlights that our quantitative
technique is able to reveal new details of the monsoon dynamics.

The strong/weak regimes identified improve upon previous, qualitative interpretations
of the proxy records [63, 152, 414]. Here we provide a detailed discussion of where our
method supports, corrects and improves earlier studies. We particularly focus on regimes
which are newly identified or previously incorrectly interpreted.

Major strong(weak) phases occur in the northwest Australian summer monsoon domain
between 8.5–6.4 ka BP (6.3–5.0 ka BP), 5.0–4.0 ka BP, possibly extending to 3.0 ka BP,
(3.0–1.4 ka BP), 1.3–0.9 ka BP, with a transition at 0.9 ka BP to the present regime.

Embedded within these time intervals are additional events of centennial to sub-centennial
duration. Unfortunately, the details of the Holocene summer monsoon of northwestern Aus-
tralia are largely unknown, precluding any comparison of stratigraphic records. Nevertheless,
a recent pollen-sediment record from Black Springs (northwestern Kimberley)[249] shows
some correspondence to our phase record, but the pollen record is poorly resolved, supported
by only four radiocarbon dates. Our analyses offers improved time resolution and greater
details of the inherent variability within major monsoon phases.

13.2.2 Cross-hemispheric see-saw dynamics
The Dongge Cave record has been discussed by Wang et al. [414], further developed by
Hu et al. [152] and more recently by Zhao et al. [450]. Wang et al. [414] recognised
eight weak monsoon events lasting 100 to 500 years: at 0.5 ka BP, 1.6 ka BP, 2.7 ka BP, 4.4
ka BP, 5.5 ka BP, 6.3 ka BP, 7.2 ka BP and 8.3 ka BP. While adding some details, the Hu et
al. [152] reconstructions essentially concur with those of Wang et al. [414]. Our results
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Figure 13.2: Determinism of the KNI-51 Cave and Dongge Cave records with compar-
ison to previous studies (a) (red) KNI-51 cave and (b) (green) Dongge Cave (DA). The
determinism is calculated from the corresponding transformation costs time series and statis-
tical significance is indicated by the two horizontal bands (see Methods section for details).
High (low) determinism values correspond to wet (dry) monsoon regimes. The coloured
bands (blue indicating wet regimes; brown, dry) provide a comparison of our findings
with those of previous, qualitative studies. In the text we provide a detailed discussion
of previously unidentified or incorrectly identified wet and dry regimes uncovered by our
method. (black) Determinism of the solar activity proxy ∆14 C time series. Cross-correlation
between the determinism of the solar activity proxy ∆14 C time series and KNI-51 time series
is r = −0.32, and DA time series is r = 0.29 (see Methods section for details).

indicate strong/weak regime intervals between (8.2–7.6 ka BP), 7.6–7.2 ka BP, (7.1–6.9 ka
BP), (6.4–5.8 ka BP), 5.8–5.0 ka BP, (5.0–4.0 ka BP), 3.0–2.7 ka BP, (2.2–2.0 ka BP), 1.9–0.8
ka BP and (0.7–0.4 ka BP). A comparative study applying our method on the palaeo Summer
Monsoon Index (SMI) derived from sediments of the Qinghai Lake [2] corroborates our
findings (see Supplementary Discussion and Supplementary Figure 13.8 for details).

Our analysis has revealed details for KNI-51 and DA not previously recognised (Fig.13.2).
In the KNI-51 record two events, absent from Denniston et al. [63], occur at 6.6–6.4 ka BP
(weak monsoon/wet) and 7.0–6.8 ka BP (strong monsoon/dry). Furthermore, our results
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improve upon the findings of Denniston et al. [63] and McGowan et al. [249] by reclassifying
previously misinterpreted regimes. We identify a strong (wet) monsoon regime at 3.2–3.1
ka BP previously interpreted as dry [249] and similarly a weak (dry) regime at 7.6–7.5 ka
BP incorrectly claimed to be wet by Denniston et al. [63].

Similarly, the results of our DA analysis contradict the conclusions of Hu et al. [152] for
the time periods 6.2–6.1 ka BP (weak) and 7.8–7.6 ka BP (weak). In addition, there are three
events identified by Hu et al. that are not statistically significant in our analysis (3.4–3.2 ka
BP, 6.9–6.3 ka BP and 8.8–8.2 ka BP). We assert confidence in these revisions, as they are
based on a rigorous, quantitative analysis, rather than rudimentary visual comparison of
data sets. The detailed comparison of our findings and the literature summary is given in
Supplementary Table 13.1 and 13.2.

Moreover, our results reveal a striking strong/weak, opposing relationship between the
IASM [63] and EASM [414] (Fig. 13.2). The only time when this see-saw relationship is not
observed is during 7.6–7.2 ka BP, when both monsoon records show a ‘weak state’. Over
the entire time scale, the cross-correlation of the DET time series is −0.27, and while this
affirms an antiphased relationship, it does not capture the strong correspondence between
the statistically significant strong/weak monsoon states. In fact the antiphased relationship
is much stronger, if only the statistical significant parts of the time series are used and
the internal variability on sub-centennial to decadal time scales is ignored. This may be
calculated using a step function filter, yielding a cross-correlation of −0.33. This can be
perceived by simultaneous plot of DET values for KNI-51 and DA in one figure (Fig. 13.3).
Comparable results are found in the Qinghai Lake data (SMI) with a cross-correlation of
−0.28 (Supplementary Figure 4). Therefore the variability at sub-centennial to decadal time
scales in both the DA and KNI-51 records is emphasised; such short-term variability is evident
in present day monsoon records from both regions [422].

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Age (Yrs BP)

0.0

0.2

0.4

0.6

0.8

D
ET

KNI-51
Dongge

no anti-phase

Figure 13.3: Determinism of KNI-51 and Dongge Cave highlighting the antiphase rela-
tionship There is a gap in the data of KNI-51 around ∼4000 Yr BP. Contrary to the general
antiphase relation of the two determinism time series of KNI-51 and Dongge Cave proxies,
the region around ∼7000 Yr BP shows a in–phased relationship, highlighted with yellow.

13.2.3 Impact of solar activity on monsoonal see-saw pattern
While the details of the controls and processes determining the function and latitudinal extent
of the respective summer monsoons are more complex [48, 247] than simply relating them to
the position of the ITCZ, still the ITCZ provides a convenient metric of monsoon extent [247,
342, 410]. For the broader EAIASM history, the displacement of the ITCZ is a driver that has
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been advocated in a range of Quaternary paleoclimate studies [126, 127, 251, 330, 436]. The
argument recognises that the ITCZ is displaced towards the warmer hemisphere in response
to differential cooling [38, 52, 80]. This is an attractive and apparently straightforward
explanation, with a caveat that the ITCZ over the region of the West Pacific Warm Pool
(i.e. the Maritime Continent) is much less well defined than over the wider Pacific and Indian
Oceans, with a more complex south-north (north-south) seasonal migration pattern [155,
410, 429].

In explaining the DA δ18O record, Wang et al. [414] appeal to a likely displacement
of the ITCZ driven by solar variability. They use the atmospheric ∆14C record [20] as a
proxy for solar activity with which they obtain a correlation of 0.3 with their speleothem
δ18O record. The inference is followed by Zhao et al. [450] who support the claim of a
concordance of the DA δ18O record with solar variability. We extend this claim further and
ask whether the Holocene antiphase relationship that we have uncovered in the summer
monsoons of the overall EAIASM is driven by solar variability.

To establish this, we compare the determinism-measure of solar activity with that derived
from the EASM and IASM proxy records. The analysis identifies a statistically significant
correlation between solar activity and both records from DA with correlation of 0.29 and
KNI-51 with correlation of −0.32 (SMI: 0.35; see Supplementary Figure 13.8). Thus, when
predictability of solar activity is high (low), the Dongge Cave record indicates a strong
(weak) summer monsoon, while northern Australia experiences a weak (strong) summer
monsoon. Increased predictability of solar activity corresponds to periods of a consistently
high number of solar ‘events’, increasing the solar irradiance received by the Earth. Positive
correlation with the Dongge Cave record therefore indicates a direct control, whereby periods
of increased solar activity enhance the summer monsoon over East Asia. The asymmetric
response in the Australian monsoon record suggests that periods of increased solar irradiance
actually decrease monsoon strength. To explain this, we consider orbital-scale positioning of
the ITCZ. Preferential heating of the Northern Hemisphere during periods of high tilt and
Northern Hemisphere perihelion, as observed from 9-3 ka, provides a background driver
for increased EASM strengthening. At a global scale, there is a northward shift in the ITCZ,
weakening monsoon activity over north west Australia. Coupling this shift with solar activity,
brief periods of increased irradiance would act to shift the ITCZ further north, and we
would therefore expect a stronger EASM and corresponding weak IASM. This mechanism is
supported by our analysis, and compounded by the observation that from c.2.5 ka onwards,
as orbital controls begin to favour the Southern Hemisphere, correspondence between the
determinism-measure of solar activity and EASM and IASM records diminishes. These
findings lead us to conclude that solar activity provides a driver in the see-saw relationship
observed between the EASM and IASM over the past 9000 years, modulated by orbital-scale
ITCZ positioning.

13.3 Discussion
We note that in our interpretation we cannot rule out the likelihood of ENSO events playing
a role. Mann et al. using the Zebiak-Cane model of the tropical Pacific ocean-atmosphere
system demonstrated that changes in solar radiative forcing provokes an El Nino response
[214]. However, the impact of ENSO events on both monsoon regimes is complex and
difficult to disentangle. Summer rainfall records from the NW Australian monsoon region
lack a significant ENSO signature (http://bom.gov.au/climate/enso/ninocomp.shtml). On
the other hand, the Southern Oscillation Index, SOI, has been shown to influence this region
[434], where a likely impact can be claimed only for very strong negative/positive SOI values.
In contrast, the EASM is clearly influenced by ENSO [191, 268, 412, 427, 432], but with
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regional (north-south) differences [427], complex phase-modulation relationships [106,
412] and with specific ENSO events having quite a different regional rainfall expression – for
example the 1997/1998 and 1982/1983 events. The role of ENSO is an open question and
the lack of well-expressed significant variation of the ENSO during the last 7000 years makes
it difficult to answer it [56]. These facts, finally, do not allow to infer a clear ENSO driving
of the antiphase relationship between the IASM and the EASM at the Holocene time-scale.

A significant body of work is now available that highlights the impact of solar variability
on the tropical atmosphere [195, 203, 253, 349]. This work demonstrates that the Hadley
and Walker circulation are affected by solar variability, and through this, trigger an increase
in tropical precipitation during periods of high solar activity and an associated change in
the position of the ITCZ. Thus, solar variability can force the north-south expansion and
contraction of the ITCZ over the region of the East-Asian-Indonesian-Australian-Monsoon
region [435]. We demonstrate that solar variability can impact summer monsoon strength,
and more importantly provides the control of the antiphase relationship between the EASM
and IASM over the last 9000 years. Our results reveal a strong coupling between the
monsoons of the two hemispheres, expressed as a seesaw relationship, and driven by decadal
to centennialscale variations in solar activity. A full understanding of how solar variability
can drive the monsoon response requires focused model studies. From these will emerge the
likelihood of disentangling the overall functioning of the EAIASM regime, forming a further
step in understanding how this regime will respond to present-day Greenhouse forcing,
which may help to secure the future of people living in the region.

13.4 Methods

13.4.1 TACTS method

In essence, the TACTS method determines the ‘cost’ of transforming one segment of a record
into the following segment. For this transformation we allow three possible modifications:
first changing the amplitude of a data point, second shifting a data point in time, and third
creating or deleting a data point. The ‘cost’ for changing the amplitude and shifting a data
point is linearly dependent on the size of the modification. However, creating and deleting
data points should be ‘expensive’ enough to not favour this modification over the other two
points.

Many time series, e.g., palaeoclimate proxy records, show cumulative trends which usually
need to be removed in a preprocessing step before time series analysis. A common procedure
for regularly sampled time series is to apply a difference detrending filter,∆x = x(t)−x(t−1),
simply taking the difference between consecutive points. The TACTS method is a similar
approach for detrending but for irregularly sampled time series. Here the difference between
subsequent sequences is expressed by an associated transformation cost as explained below
(see Supplementary Discussion for details).

To calculate the transformation cost time series we determine the cost for transformation
of one segment into another for two successive segments of a time series. Treating each
observation as an ‘event’, we seek to transform the events in the first segment into those of
the second. For a single transformation, this cost is a generalised distance between these
two segments. Therefore, as a distance, the cost must be a positive number, symmetrical (i.e.
transforming the first into the second is the same as transforming the second into the first),
and must satisfy the triangle inequality.
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The cost associated with each transformation is given by:

p(c) =
∑

(α,β)∈C

{λ0|ta(α)− tb(β)|+

1
m

m
∑

k=1

λk|La,k(α)− Lb,k(β)|}+ (13.1)

λS(|I |+ |J | − 2|C |),

where I and J are a set of indices of the events in starting set Sa and the final set Sb,
respectively. These sets – Sa and Sb – correspond to the events in the two time series
segments. The first summation quantifies the cost associated with shifting events in time.
We sum over the pairs (α,β) ∈ C , where the set C comprises the points that need to be
shifted in time. α and β denote the αth event in Sa and βth event in Sb. The coefficient λ0
is the cost factor for time shifts. The second summation calculates the cost due to changing
the amplitude of events. This involves the difference |La,k(α)− Lb,k(β)|, where La,k(α) is
the amplitude of the αth event in Sa. The parameter λk has the unit of amplitude−1 and
the sum is over the different components of the amplitude. That is, if we are dealing with
one dimensional data m= 1, while for a three dimensional phase space m would be three.
The last terms in the cost function deal with the events not in C which have to be added
or deleted. Note that | · | denotes the size of the set and λS is the cost parameter for this
operation. Suzuki et al. omitted this parameter, since they chose a cost of one for such an
operation [373].

We determine the cost factors λ0, λk based on the time series at hand:

λ0 =
M

total time
(13.2a)

λk =
M − 1
∑M−1

i |x i − x i+1|
, (13.2b)

where x i is the amplitude of ith element and M is the total number of events in the time
series. Note that λ0 is the mean event frequency and λk is the inverse of the average
amplitude difference.

The cost factor λS is an optimisation parameter. We constrain λS ∈ [0,4] and explore
the costs of deleting or adding an event to our time series. If our time series consists of n+ 1
segments of equal length, we can calculate n costs for each individual transformation of
the segments. Assuming that the costs are linearly independent, the central limit theorem
indicates that the distribution of the costs should be a normal distribution. In particular,
when dealing with non-stationary data we find that changing λS such that the distribution
becomes normal greatly improves the skill of our time series analysis method.

In Fig. 13.4 we give an illustration of how to perform this transformation. Recall that the
transformation is done by 3 elementary steps: (i) shifting an event in time; (ii) changing the
amplitude of the event; and (iii) creating or deleting an event. The figure outlines the steps
required to transform the top time series segment into the bottom one. This transformation
consists of 7 elemental steps. Moves 1 and 2 move the first and second event to the right
and, in addition, adjust their magnitude, i.e. a combination of the two elementary steps (i)
and (ii). In move 3 the last event is deleted (that is, elementary step (iii)). As we can see it
takes 4 additional elementary steps (combinations of (i) and (ii)) to transform the starting
time series into the target time series.
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Initial

Final

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 13.4: Illustration of the transformation cost time series method The true time
series from which the two time series are sampled is indicated by the dashed line. The initial
time series segment (top) is transformed into the final time series segment (bottom) in seven
steps. Note that after seven steps the segment is identical to the final target time series.
The steps 1, 2, 4, 5, 6 are combinations of the elementary operations (i) time shift and (ii)
adjusting the amplitude (first two terms of eq. (13.2)) while in step 3 one event is deleted
and therefore the (iii) elementary operation was applied (last term of eq. (13.2)).

13.4.2 Recurrence plot analysis

The resulting regularly sampled cost time series is analysed using recurrence plot analysis to
derive the recurrence quantification measure determinism (DET) [239]. DET is a measure
of predictability well suited to detect regime changes in time series. DET characterises a
specific, recurrence-based dynamical property, independent of the state of the system (i.e.,
the amplitude of the δ18O at a given time). Therefore, DET values are not directly related to
a specific state value such as strong or weak monsoon regime). Nevertheless, it is possible
that certain regime states (e.g., a strong monsoon regimes) are linked to a characteristic
recurrence pattern, e.g., a more regular and periodic dynamics (enhanced monsoon regimes)
or less periodic and less predictable dynamics (weak monsoon or monsoon failure). Such
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relationships between states and recurrence properties seem typical in the climate system,
where, e.g., cooling events have been linked to less predictable (less regular) climate dynamics
[92, 284]. Depending on geographic location and regional climate mechanisms, such
relationships can differ significantly and can even be opposite. Based on information from
literature, we are able to link the characteristic dynamical property of determinism to a
certain climate regime, such as dry or wet, for the considered proxy records.

For each proxy record, the transformation cost time series is divided into segment sizes
of 20 years containing, on average, 4 to 5 points. The final results shown in Fig. 13.2
are relatively insensitive to the choice of segment size. The proportionality parameters
for modifications (i) and (ii) are determined from the proxy records and are related to
the average amplitude and sampling time. The creation and deletion cost factor λ is our
optimisation parameter, chosen relative to the other parameters. Determining the costs of
transformation provides a measure of how close one segment is to the following one and
produces a regularly sampled transformation cost time series with a temporal resolution of
20 years. Using recurrence plot analysis, as described below, we are able to quantify the
predictability of each segment by deriving the determinism [239]. Abrupt transitions into or
out of a ‘wet’ or ‘dry’ state are hard to predict, while behaviour within a regime follows a
somewhat similar pattern throughout. As a result, determinism is particularly effective at
identifying regime changes.

Recurrence plots visualise a fundamental property of dynamical systems – namely, when
a the system ‘repeats’ itself, returning to a previous state. Formally, for a set of observations
~x i for i = 1, . . . , N this is defined as

Ri, j(ε) = Θ(ε − ‖~x i − ~x j‖) i, j = 1, . . . , N (13.3)

where ε is some threshold distance, ‖ · ‖ is some distance measure, and Θ(y) = 1 if y ≥ 0
and 0 otherwise [239]. This method is well suited to capture regime changes, as such an
extreme event would result in a sudden reduction in the number of recurring events. Plotting
this matrix allows visual analysis of the system, and from this quantitative measures can be
derived. Diagonal structures within the plot, running parallel to the main diagonal (bottom
left to top right), indicate sections of the trajectory with locally similar paths. Calculating
the fraction of points in the recurrence plot that form diagonal lines with respect to all
points gives us the measure determinism. This is a measure of the amount of predictability
within the system, as stochastic or chaotic systems result in none or only short diagonals.
For the selected threshold distance ε, a histogram of diagonal lengths, P(ε, l), is derived and
a minimal diagonal length, lmin, is set. Determinism is then given by

DET =
ΣN

l=lmin
l P(ε, l)

ΣN
l=1l P(ε, l)

(13.4)

In this analysis, the recurrence plot is derived using the Euclidean distance norm and
ε-threshold distance is chosen adaptively to ensure a sensible density of ‘ones’ in the RP,
fixed at 10%. In the determinism calculation, we take lmin to be 2. These parameters were
selected to ensure a balance between stability and, particularly in the case of the threshold
distance, the inclusion of enough data points for the recurrence structure of the underlying
system to be captured. For details on the embedding required to transform time series data
into a trajectory in phase space see [165].

The variation of a quantitative recurrence measure, such as DET, has to be tested whether
its change is significant or not. We follow the approach by Marwan et al. and apply a
bootstrapping technique [235]. The basic idea is that the dynamics of the system does
not change over time. Such a change is usually measured by a sliding window approach,
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where DETi means the recurrence measure calculated in the ith window. Within these
windows i, we also have the histograms of diagonal lengths, Pi(ε, l). We now bootstrap the
lengths l from the histograms of all windows and use these lengths to calculate DET of this
bootstrapped histogram, allowing an average picture of the DET measure for the whole time.
Repeating this procedure N times, we get an empirical test distribution for DET. The 5% and
95% quantiles are used to infer confidence (90%) about the variation of DET and allows us
to judge whether the found variability of the measure DET is significantly different from an
unchanged dynamics (i.e., whether a regime transition occurs) [235].

13.4.3 Cross correlation of two irregularly sampled time series
To compare the KNI-51 and Dongge Cave records with solar variability (see Supplemen-
tary Figure 13.5 (a,b)), we correlate these records with the atmospheric ∆14C record com-
piled by Stuiver et al. [370] (see Supplementary Figure 13.5 (c)). This record, spanning
9,700 years, was compiled from radiocarbon tree ring ages and is a widely used proxy for so-
lar irradiance with lower ∆14C values inferring increased solar irradiance [414]. This record
is already sampled at regular time intervals so we do not need to apply the transformation
cost function. However, the time steps of this data set do not align with the determinism
time series generated from the speleothem records. We cannot, therefore, calculate cross
correlation without transforming the data sets again.

Interpolation is commonly used in such a scenario, but this creates artificial, and neces-
sarily uncertain, data points in the time series. A Gaussian kernel based cross correlation
(gXCF) has been demonstrated to reduce such biases relative to linear interpolation, as well
as Lomb-Scargle, rectangular and quasi-sinusoidal kernel based cross correlation estimators
[311]. We therefore use gXCF as our estimator of the similarity between the speleothem and
solar activity data sets.

The benefit of kernel based techniques is that, rather than introducing new data to
the time series, the two data sets are ‘matched’ using a weighting function. Pearson cross–
correlation takes the sum of the product of paired data points in two time series X and Y .
However, using the kernel, each data point in time series X is multiplied by every data point
in Y , but with a weighting function dependent on the distance between the time that these
observations occurred. Kernel based cross correlation is therefore given by

ρ̂x ,y =

∑Nx
i

∑Ny

j x i y j b(t
y
j − t x

i )
∑Nx

i

∑Ny

j b(t y
j − t x

i )
(13.5)

where b(t y
j − t x

i ) is the kernel, determining how much weight to give to the product of two
observations x i and y j , based on the time gap between them.

In the case of gXCF, the kernel is

b =
1
p

2πσ
e−|d|

2/2σ2
(13.6)

where d is the distance between the observation times ∆t x y
i j and σ is the standard deviation

of the kernel distribution, which scales the kernel. As there is no theory detailing the best
choice of scaling parameter σ, we use σ =∆t x y/4 as per Rehfeld et al. [311].

13.4.4 Data availability
The proxies from Dongge cave (δ18O) and solar activity (δ14C) are published/available data
sets. δ18O proxy from KNI-51 cave, Kimberley is available from the authors. Requests for
the TACTS of proxies can be sent to D.E (eroglu@pik-potsdam.de).
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Supplementary Material

Supplementary Figure 13.5: The proxies in the manuscript and their transformation
cost time series. δ18 O records of (a) KNI-51 and (b) Dongge Cave. (c) atmospheric ∆14C
record compiled by Stuiver et al. [370] and the transformation cost time series of (d) KNI-51
and (e) Dongge Cave determined by application of eq. (1) and (2) (equations in the main
text).
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Supplementary Figure 13.6: Location of the different proxies used in this study. Dongge
cave (circle), KNI-51 cave (star), and Qinghai Lake (square).

Supplementary Figure 13.7: Determinism of the Summer Monsoon Index from Qinghai
Lake. Statistical significance is indicated by the horizontal band.
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Supplementary Figure 13.8: The analysis of SMI data from Qinghai Lake and its com-
parison with other proxies in the manuscript. Solar activity, Dongge and KNI51 Caves.
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North Australia

Regimes
Denniston et al. (2013) McGowan et al. (2012) Our Findings

KNI-51 Pollen Data - 
Kimberley

KNI-51

Strong Monsoon

9.0-7.0 ka BP 

5.0-4.0 ka BP 

1.2-0.9 ka BP

4.6-4.3 ka BP 

1.3-1.0 ka BP

8.5-7.8 ka BP 
7.4-7.1 ka BP 
6.8-6.4 ka BP 
4.9-4.6 ka BP 
3.2-3.0 ka BP 
1.3-1.1 ka BP

Weak Monsoon 6.3-4.5 ka BP 

2.4-1.3 ka BP 
1.0-0.7 ka BP

5.75-4.6 ka BP 
3.20-2.8 ka BP 
2.75-1.3 kaBP

7.6-7.5 ka BP 
7.0-6.8 ka BP 
6.2-5.0 ka BP 
3.0-1.4 ka BP 

0.8-0.6 ka BP

South China

Regimes
Hu et al. (2008) Our Findings

Heshang and Dongge 
Caves

Dongge Cave Qinghai Lake

Strong Monsoon

7.8-7.2 ka BP 
6.2-6.1 ka BP 
5.9-4.9 ka BP 
4.0-3.9 ka BP 
3.1-2.3 ka BP 
2.1-1.3 ka BP 
1.0-0.7 ka BP

5.6-5.2 ka BP 
4.0-3.8 ka BP 
3.0-2.6 ka BP 
2.8-1.2 ka BP 
1.0-0.7 ka BP

7.5-7.2 ka BP 

5.35-5.0 ka BP 

2.9-2.2 ka BP 
1.4-1.3 ka BP 

0.84-0.83 ka BP

Weak Monsoon

9.0-7.8 ka BP 
7.2-6.2 ka BP 
6.1-5.9 ka BP 
4.9-4.0 ka BP 
3.8-3.1 ka BP 
2.3-2.1 ka BP 
1.3-1.0 ka BP 
0.7-0.0 ka BP

8.2-7.6 ka BP 
7.2-6.8 ka BP 
6.3-5.9 ka BP 
4.6-4.1 ka BP 

2.2-2.1 ka BP 
1.2-1.0 ka BP 
0.7-0.4 ka BP

8.1-7.6 ka BP 
6.8-6.6 ka BP 
6.2-5.9 ka BP 

3.6-3.5 ka BP 
1.15-1.0 ka BP

Supplementary Table 13.1: Comparison of our and previous results. Results for Southern
China
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North Australia

Regimes
Denniston et al. (2013) McGowan et al. (2012) Our Findings

KNI-51 Pollen Data - 
Kimberley

KNI-51

Strong Monsoon

9.0-7.0 ka BP 

5.0-4.0 ka BP 

1.2-0.9 ka BP

4.6-4.3 ka BP 

1.3-1.0 ka BP

8.5-7.8 ka BP 
7.4-7.1 ka BP 
6.8-6.4 ka BP 
4.9-4.6 ka BP 
3.2-3.0 ka BP 
1.3-1.1 ka BP

Weak Monsoon 6.3-4.5 ka BP 

2.4-1.3 ka BP 
1.0-0.7 ka BP

5.75-4.6 ka BP 
3.20-2.8 ka BP 
2.75-1.3 kaBP

7.6-7.5 ka BP 
7.0-6.8 ka BP 
6.2-5.0 ka BP 
3.0-1.4 ka BP 

0.8-0.6 ka BP

South China

Regimes
Hu et al. (2008) Our Findings

Heshang and Dongge 
Caves

Dongge Cave Qinghai Lake

Strong Monsoon

7.8-7.2 ka BP 
6.2-6.1 ka BP 
5.9-4.9 ka BP 
4.0-3.9 ka BP 
3.1-2.3 ka BP 
2.1-1.3 ka BP 
1.0-0.7 ka BP

5.6-5.2 ka BP 
4.0-3.8 ka BP 
3.0-2.6 ka BP 
2.8-1.2 ka BP 
1.0-0.7 ka BP

7.5-7.2 ka BP 

5.35-5.0 ka BP 

2.9-2.2 ka BP 
1.4-1.3 ka BP 

0.84-0.83 ka BP

Weak Monsoon

9.0-7.8 ka BP 
7.2-6.2 ka BP 
6.1-5.9 ka BP 
4.9-4.0 ka BP 
3.8-3.1 ka BP 
2.3-2.1 ka BP 
1.3-1.0 ka BP 
0.7-0.0 ka BP

8.2-7.6 ka BP 
7.2-6.8 ka BP 
6.3-5.9 ka BP 
4.6-4.1 ka BP 

2.2-2.1 ka BP 
1.2-1.0 ka BP 
0.7-0.4 ka BP

8.1-7.6 ka BP 
6.8-6.6 ka BP 
6.2-5.9 ka BP 

3.6-3.5 ka BP 
1.15-1.0 ka BP

Supplementary Table 13.2: Comparison of our and previous results. Results for North
Australia
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Supplementary Discussion
Pre-processing paleoclimate proxy data
Paleoclimate proxy records commonly display long-term trends, such as in the Dongge Cave
record [413]. Taking the difference between neighbouring data points in the sequence
detrends the time series, and simultaneously transforms it such that it describes a different
property of the underlying system. If we think of the original data set as corresponding to
spatial ‘positions’ then this difference time series would give us the velocities. Such a method
is common in time series analysis. In the paleoclimate context we are often faced with data
sets with irregularly spaced time intervals between observations. We therefore employ the
transformation cost function as our ‘difference’ metric. This not only detrends the data set,
but produces a regularly spaced time series. We are now able to employ a number of well
known techniques without having to account for unequal time steps.

Regional climate of Australian and Chinese proxy records
We use the high resolution speleothem paleoproxy records from cave KNI-51 (15.30◦S,
128.61◦E) in northwestern Australia and from Dongge Cave (DA) (25.28◦N, 108.08◦E) from
southern China to outline the summer monsoon states of the last c. 9 ka. The details of
the U/Th chronology and associated stable isotope records are provided by Denniston et al.
[63] and Wang et al. [413] respectively. KNI-51 is located at the northern limits of Western
Australia. Nearby Carlton Hill (15.49◦S, 128.53◦E) has a precipitation record extending back
to 1897, with a mean annual rainfall over this period of 830mm (highest 1500mm/lowest
378mm) and an average 690 mm (83%) received during the monsoon season of December
through to March [254]. Mean annual precipitation near Dongge Cave is 1753 mm with
80% of the rainfall falling during the monsoon season – May to October [84]. Both locations
are well placed to capture the respective summer monsoon regimes located at the end points
of the broader EAIASM system.

Summer Monsoon Index
In order to evaluate our findings we compare them with another proxy record from China,
the summer monsoon index (SMI) (Supplementary Fig. 13.6). This index was derived from
a 14C-dated sediment record from Qinghai Lake (37◦N, 100◦E) [2]. The SMI time series is
regularly sampled, therefore it is not necessary to apply TACTS, and the usual difference
filter has been applied directly. As the two datasets in the manuscript, KNI-51 and DA, SMI is
well placed to capture the respective summer monsoon regime. Quinghai lake is located at
the northern end point of the broader EAIASM system and sensitive to EASM dynamics [2].

Our analysis of the lacustrine SMI strongly corroborates our results strongly and reveals
alternating periods of statistically significant strong/weak monsoon activity states of centen-
nial to millennial duration as in other proxies (see Supplementary Fig. 13.7 and Fig. 2 in main
text). The shaded band in the figure depict the 90% confidence interval, with strong/weak
monsoon states defined as exceeding these bands (see Recurrence plots, determinism and
significance test section). Prolonged strong/weak states are clearly identified (Supplemen-
tary Tabs. 13.1 and 13.2). The direct comparison of SMI with DA, KNI-51, as well as with
solar variation confirm our findings (Supplementary Fig.13.8).
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J. Kurths: Abrupt transitions in time series with uncertainties, Nature Communications, 9,
48 (2018). DOI:10.1038/s41467-017-02456-6

R The presented work in this chapter is postdoc research, where I suggested and developed
the basic idea of using a real time axis and transform the age uncertainties into
uncertainties of the proxy values.

14.1 Abstract
The identification of abrupt transitions is a key question in various disciplines such as
(paleo)climate [220, 310], ecology [4], and finance [150]. Existing transition detection
methods, however, do not rigorously account for time series uncertainties, often assuming
them to be independently and identically distributed. Here, we introduce a new approach
suited to handle uncertainties by representing the time series as a time-ordered sequence of
probability densities. We show how abrupt transitions can be detected in such a probability
density series using the community structure [272] of networks representing probabilities
of recurrence. Using a synthetic example, we demonstrate that our approach allows more
reliable detection of abrupt transitions. We then consider three real-world cases: financial
stock indices, sea surface temperature (SST) anomalies from the Niño 3.4 region, and
paleoclimatic proxies. The identified transitions in the stock indices relate to well-known
periods of politico-economic volatility. In the SST example, the detected transitions coincide
significantly to periods of ‘phase-locking’ between the Pacific Decadal Oscillation (PDO) and
the El Niño Southern Oscillation (ENSO), uncovering a new aspect in the modulation of ENSO
by PDO. For the paleoclimate proxies, we provide for the first time a clear, ‘uncertainty-aware’
framework that validates the hypothesis that ice rafting events in the North Atlantic [31],
known as Bond Events (BEs), are synchronous with a weakening of the Asian summer
monsoon [414] (ASM). Our approach also reveals previously unreported ASM transitions
unrelated to BEs. We further establish unambiguously that time series uncertainties prevent
the detection of the ‘4.2k event’ in the Qunf cave speleothem record.

https://doi.org/10.1038/s41467-017-02456-6
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14.2 Introduction

Time series analysis is an indispensible framework that helps us to understand dynamical
systems based on temporally ordered observations [165]; and uncertainties should, in
principle, form a crucial part of our inferences made from time series. An important question
addressed in time series analysis is the identification of abrupt transitions—time points when
the observable suddenly shifts from one type of behaviour to another. However, current
time series approaches tend to simplify the nature of uncertainties in the data in exchange
for analytical tractability, thereby influencing whether or not a transition is detected in the
dataset. In this letter, we contend that the lack of thorough uncertainty propagation stems
from the way time series are represented. We thus put forth a new representation of time
series that naturally includes its uncertainties and show how it can be used to detect abrupt
transitions more reliably.

14.3 Results

A ‘time series’ is typically constructed as an ordered sequence of point-like measurements
{x t}, t = 1,2, . . . , n of an observable X . Quantitative methods are thereafter employed to
analyse {x t} and the propagation of uncertainties (if provided) is carried out as a separate
excercise. This makes the error analysis highly non-trivial, and also allows investigators to
ignore or postpone it, perceived often merely as an addition to the core analysis and results.
Even if an error analysis is performed, the errors are often assumed to be independent and
(qualitatively) identical, which is inaccurate for most real-world observables and may lead
to substantial pitfalls (cf. supplementary information, SI). Here, we introduce a framework
that merges the analysis of the measurements with that of their errors, and shifts the focus
from knowing the value of an observable at a given time to knowing how likely it is that
the observable had a chosen value at that time. We propose to consider the observable
as a random variable X , non-independently and non-identically distributed at each time
point unless known to be otherwise. Formally, in lieu of {x t}, we use a time series of
probability density functions {%(x |t)} := {%t(x)}, t = 1,2, . . . , n (Fig. 14.1a). This offers
several advantages: It explicitly shows how observables might be non-identically, and often
non-normally distributed (e.g., SST anomalies within the Niño 3.4 region during the 1997–98
El Niño, shown in Fig. 14.1b). It also brings to light implicit assumptions. For example,
the classic Pearson’s correlation coefficient between two observables is estimable only if we
can estimate their joint distributions at each time point, or if they are independent when
conditioned on a given T = t (SI, Sec. Correlation between two observables).

To detect abrupt transitions, we use and extend the framework of recurrence analysis [239],
a valuable tool to investigate features such as memory, disorder, and synchronization, from
patterns encoded in the return characteristics of the observable. Traditionally, the first step is
to estimate a binary recurrence matrix whose elements indicate (with a 1 or a 0) if a chosen
time point recurred to an earlier state or not. Various estimates derived from the recurrence
matrix quantify the processes underlying the observable [239]. Here, we use the {%t(x)}
series to estimate the probability of recurrence for all pairs of time points in a way such
that it does not require us to assume independence or to quantify the dependence between the
probability distributions at two different time instances (cf. Methods). We construct an
estimator Â of the recurrence probabilities (Methods, Eq. 14.6), interpreted as the adjacency
matrix of a network whose nodes are the observation time points and whose edge weights
are the recurrence probabilities. Such a network obtained from a single time series is referred
to as a recurrence network [241] (RN) and has been used to study many instances of complex
systems [73, 112, 277, 303]. Next, we use the community structure of the RN as an indicator
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of abrupt transitions: Communities [272] in a RN are time intervals with a higher similarity
within themselves than to the rest of the time series, indicating a shift in the dynamics near
the borders between different communities. We demonstrate this with a synthetic example
where three different transitions are imposed on a noisy sinusoidal signal (Fig. 14.2). If we
consider only the mean time series, we fail to detect the transition at T = 675 and can date
the other two only much coarser, further highlighting why we should represent time series
as {%t(x)} rather than {x t}.

We take three real-world examples with three different sources of uncertainty (noted in
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Figure 14.1: Series of probability density functions. The time series of probability densities
%t(x) is shown here for monthly SST anomalies from the Niño 3.4 region, from late 1870
to 2012. The densities are estimated using a kernel density estimation procedure (see
Methods) which gives a probability density of SST anomalies for each month given the
spatially distributed measurements. Each vertical column in a is a density %t(x) color-coded
according to its value. Darker (lighter) colors in each column thus represent higher (lower)
chances of observing the corresponding SST anomalies for that month in the Ninño 3.4
region. We propose to consider such a series of %t(x) instead of representing them as point
esimates. Each monthly %t(x) is shown in detail using a 3D representation in b for the SST
anomalies during the ’97-’98 El Niño (black box in a). The color of each density in b denotes
the average SST anomaly for that month, clearly indicating the Niño-like conditions during
the winter of ’97-’98, but we also see the non-Gaussian nature of the probability densities
throughout the period, calling into doubt the efficacy of representative point estimates such
as the mean.
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Figure 14.2: Detecting abrupt transitions: Synthetic example. The time series of prob-
ability densities %t(x) for a synthetically generated noisy sinusoid (color map in a) and
its mean (d). Three transitions are imposed: (1) a sudden jump at T = 200, (2) a linear
decrease between T = 400 and T = 450, and (3) a change in the distribution at T = 675.
The probability of recurrence matrix Â (in b) estimated from the densities in a shows the
modular structure resulting from the imposed transitions. The recurrence matrix R estimated
from the mean time series (e) only captures the first two transitions. We detect the timing
of the transitions by moving a sliding window (white box in b) of 100 time points and
estimating the p-value (c, f) for a 2-community structure under the null hypothesis of a
random network. Statistically significant p-values (‘+’ markers in c) are determined at a
level α = 0.05, and after accounting for multiple comparisons using Holm’s method with the
Dunn-Šidák correction factor (cf. Methods). In f, the third transition is not detected and the
first two are much more coarsely dated than in c.

parentheses): (i) daily financial stock index data from 2004 to 2016 (intra-day temporal
variability), (ii) monthly SST anomalies from 1881 to 2012 for the Niño 3.4 region (spatial
variability), and (iii) paleoclimatic proxy records from Asia covering important intervals
of the Holocene (imprecision in determining proxy ages). A {%t(x)} series is constructed
from the data and used to detect abrupt transitions (see Methods, and SI Figs. 14.6–14.8).
In each case, we repeat the analysis using only the mean time series, and find that using
the probability density series gives more reliable and robust detection of abrupt transitions
(cf. SI, Figs. 14.9–14.10).

First, as a proof-of-concept of the proposed approach, we consider three stock market
indices: DAX (Frankfurt), NASDAQ-100 (New York), and BSE SENSEX (Mumbai). We
identify three clusters of abrupt transitions (Fig. 14.3a–c) centered around the “mortgage
crisis”, the “Eurozone crisis”, and the “Brexit”/“Grexit” crises, as indicated by corresponding
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Figure 14.3: Abrupt transitions in financial stock indices. Applying our approach to
three stock index datasets DAX (a), NASDAQ-100 (b), and S&P BSE SENSEX (c), we iden-
tify three major epochs centered around the “mortgage crisis”, “Eurozone crisis”, and the
“Grexit”/“Brexit” crises, as seen from the normalized Google trends data in d. In each epoch
we see a high number of statistically significant dynamical shifts at α = 0.05 and these
periods are interspersed with quiescent periods with far fewer of such shifts. Additional pink
squares in d correspond to: (1) BSE SENSEX crash of 22 May 2006, (2) bankruptcy claim by
Lehman Brothers on 15 September 2009, (3) Indian parliamentary elections from 7 April
to 12 May 2014, and (4) SENSEX crash (1600 points) of 24 August 2015. The horizontal
dashed lines in a–c indicates the confidence level α= 0.05 of the statistical test. However,
when multiple comparisons are taken into account (see Methods), only a subset of p-values
below 0.05 are found to be significant (shown here with ‘+’ markers).
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peaks in the Google trends data (Fig. 14.3d). The end of 2009 marks a common period
of abrupt transitions and instabilities for all three indices during the worst part of the US
mortgage crisis, symbolised here by the bankruptcy claim of Lehmann Brothers. Of the two
queries “Grexit” and “Brexit”, we note that the transitions show a better correspondence
with the former. Additional events in the BSE SENSEX in 2006 and 2015 coincide with large
intra-day falls in the Mumbai-based stock index on 22 May 2006 and 24 August 2015. Abrupt
shifts detected in the BSE in May 2014 roughly coincide with the national parliamentary
elections held in India that year, and the shift from a decade-old rule by the centre-left United
Progressive Alliance to the center-right National Democratic Alliance, suggesting a volatile
period for the Mumbai-based stock exchange.

Our second real-world example involves recent climate data: The Niño 3.4 index is a
standard index for estimating SST anomalies in the central-equatorial Pacific, calculated
as the spatial averages of monthly gridded SST values in that region. Five consecutive
3-month (i.e. temporal) running averages of the index found above (below) a threshold of
+0.5K (–0.5K) indicate El Niño (La Niña) conditions (Fig. 14.4b,d), two distinct phases of
the ENSO which impact the climate worldwide. The transitions identified by our analysis
(Fig. 14.4) show a relatively active period upto ca. 1906, after which the frequency of such
shifts decreases, indicating a complex interdecadal variability of the transitions themselves,
most likely modulated by the PDO [268]. Based on a statistical coincidence analysis between
the detected transitions and ‘phase-locked’ periods of the PDO and the ENSO (cf. Methods,
SI Fig. 14.13), we reveal that the detected transitions are coincident with periods of phase-
locking (green markers in Figs. 14.4b, d) between the PDO and the ENSO. This implicates
the similarity of phases of the PDO and the ENSO as a potential factor that modulates ENSO
dynamics, in addition to the phase of the PDO itself, which has been reported earlier [406] to
increase the propensity for El Niño (La Niña) events when the PDO is in its positive (negative)
phase. The representation of observables as a series of probability density functions is
particularly valuable in paleoclimate time series analysis because of the inherent chronological
uncertainties that hamper the determination of the timings of short-lived events [377]. Here,
we provide, for the first time, a transparent ‘uncertainty-aware’ framework to detect abrupt
decadal-scale transitions in paleoclimate proxy records while taking into account dating
uncertainties. We compare the transition detection results from speleothem datasets from the
Dongge and Tianmen caves in China, and Qunf Cave in Oman with the timings of well-known
climatic events [31, 308, 415]. We detect significant shifts scattered through the Holocene
(Fig. 14.5a–c) which likely correspond to weak ASM events reported in an earlier study [414]
(blue squares in Fig. 14.5d). The weak ASM events are postulated to be synchronous with
North Atlantic BEs (green squares in Fig. 14.5d) [414]. Our analysis confirms this hypothesis,
allowing for the fact that the timings of the Bond events themselves are still relatively
poorly determined [415]. The BE at 1.4 kyr BP potentially has a corresponding event in
the Dongge cave record. However, this is not statistically significant when accounting for
multiple comparisons. Although all the BEs have a potential corresponding event in the ASM
records, the opposite is not true. We detect events of weakened ASM events (ca. 6.4–6.8
kyr BP) which do not have a corresponding BE, suggesting additional influencing factors on
ASM strength.

Our results further indicate a nontrivial spatial pattern in the hemispherical propagation
of the events: the event at 8.2 kyr BP, for example, is experienced first at Qunf, followed
by Dongge, and then at Tianmen. We note, from Fig. 14.5, that the weak ASM event at 4.2
kyr BP, well-known as the ‘4.2k event’ [24], is not detected at Qunf, primarily because the
Qunf cave {%t(x)} time series has large uncertainties in the period between 3 and 5 kyr BP
(SI, Fig. 14.8c) leading to large probabilities of recurrence for all pairs of time points (within
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Figure 14.4: Abrupt transitions in the equatorial central Pacific. In a and c, ‘+’ and ‘×’
markers, and the horizontal dashed lines denote the same as in Fig. 14.3. We detect most of
the transitions between El Niño (La Niña) phases, shown here as red (blue) shaded regions
in a, c) during the past 150 years. Panels a and b cover the period from 1870 up to 1940,
and panels c and d cover the period from around 1940 to 2012. From around 1906, the
transitions show an intermittent burst-like behaviour, indicating a complex inter-decadal
variability of the transitions themselves. A statistical coincidence analysis further reveals
that the timing of the detected transitions are significantly coincident to the timings of
phase-locked periods (shown here as green markers in b and d) between the PDO and the
ENSO. This reveals a further potential aspect of the modulation of the ENSO by the PDO.
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Figure 14.5: Abrupt transitions in paleoclimatic datasets. We apply our method to three
paleoclimatic δ18O proxy records from Dongge (a), Tianmen (b), and Qunf (c) caves in
Asia. Statistically significant events (‘+’ markers) show a scatter of events throughout the
Holocene, corresponding to periods of weakened ASM (blue squares in d). The weak ASM
events are postulated to be synchronous with BEs in the North Atlantic (green squares in
d), a hypothesis that we are able to confirm with the results from our transition detection
analysis. Barring the BE at 1.4 kyBP, all other BEs have a corresponding weak ASM that has
been detected. At 1.4 kyBP, the Dongge cave record shows a potential dip in the p-value, but
which is not statistically significant after accounting for multiple comparisons. Note: In a–c,
‘+’ and ‘×’ markers, and the horizontal dashed lines denote the same as in Fig. 14.3.
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this period), such that there are no well-defined community structures indicative of abrupt
transitions (SI, Fig. 14.14). This is not to say that the Qunf cave did not experience the 4.2
kyr event, but rather to emphasise that, given the time series uncertainties, it is not possible
to say with statistical confidence whether or not there was an ASM event at Qunf around 3–5
kyr BP. We can thus unambiguously link the detection of an abrupt ASM transition to the time
series uncertainties of the speleothem proxy record. Time series uncertainties can therefore,
by determining whether or not events ‘show up’ in a transition detection scheme, crucially
influence subsequent inferences regarding the spatio-temporal propagation patterns of the
Holocene cold events—an as yet unanswered question in Holocene paleoclimatology. Our
analysis takes a first step towards solving this issue, by showing not only how to incorporate
uncertainties in detecting abrupt ASM transitions, but by also helping us to clearly understand
the importance of doing so.

14.4 Methods
14.4.1 Datasets

Synthetic example
The synthetic dataset is generated by imposing transitions on a noisy sinusoid,

x0(t) = sin(2πt/50) + 0.125εt , (14.1)

where t = 1,2, . . . , 1000 denotes time, and ε ∈ (0,1) is uniformly distributed noise. In
our proposed framework of probability density time series, x0 serves as the mean of a
Gaussian distribution whose standard deviation is equal to the error of estimation (see below,
“Constructing %t(x) from measurements”). We impose three transitions, of which the first
two, at T = 200 and between T = 400 and T = 450, change the baseline value of this mean,
and the third at T = 675 changes the distribution itself to create a bimodal distribution
centered around two means. The mean(s) xs(t) are given by,

xs(t) =



























x0(t), 0≤ t < 200

x0(t) + 5, 200≤ t < 400

x0(t) + 45− 0.1t, 400≤ t < 450

x0(t), 450≤ t < 675

10x0(t) or − 10x0(t) with equal probability, 675≤ t ≤ 1000

. (14.2)

Daily stock index values
The daily stock index data for the DAX (code: DAX, 30 companies from the Frankfurt
Stock Exchange), NASDAQ-100 (code: NDX, 100 companies listed on the NASDAQ), and
S&P BSE SENSEX (code: BSESN, 30 companies from the Bombay Stock Exchange) stock
indices are obtained from http://finance.yahoo.com/ with their appropriate codes
under the section ‘Historical Prices’. Google trends data (Fig. 14.3d) were obtained from
https://www.google.com/trends/ for the search queries: “mortgage crisis”, “Eurozone
crisis”, “Brexit”, and “Grexit” on 2 June 2016. The data were then normalized using a
min-max transform such that they fall in the interval [0, 1].

Niño 3.4 SST anomalies
The monthly SST anomalies were obtained from the gridded SST data product Merged
Hadley-NOAA/OI Sea Surface Temperature & Sea-Ice Concentration released by National
Centers for Environmental Prediction [156], and available for free download at: http:
//www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

http://finance.yahoo.com/
https://www.google.com/trends/
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
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The Niño 3.4 region was extracted from the global data as those grid points falling
within 5°N–5°S and 120°W–120°W. Anomalies were calculated with reference to the average
climatology of the period: 1 January, 1950 to 31 December, 1979. The Niño 3.4 index data
(Fig. 14.4b, d) was obtained from http://www.cpc.ncep.noaa.gov/data/indices/.
The NCEI PDO index series (SI, Figs. 14.10, 14.12, 14.13) was obtained from https://www.
ncdc.noaa.gov/teleconnections/pdo/.

Paleoclimate proxy records

The paleoclimate datasets for the Dongge [414], Tianmen [41], and Qunf [107] cave are
obtained from the NOAA National Centers for Environmental Information (formerly the
National Climatic Data Center) and they are available for free download at: https://www.
ncdc.noaa.gov/data-access/paleoclimatology-data.

14.4.2 Constructing %t(x) from measurements

Synthetic example

The synthetic signal x(t) is sampled at every second time instant with a Gaussian sampling
noise with a standard deviation σs = 1.25 (assumed here to be representative of instrumental
errors) so that we have on our hands a sampled time series xs(t) for t = 0,2,4, . . . , 1000
with the same error σs for all the 501 measurements. The probability distribution series is
then constructed as a normal distribution N centered at the observed value xs(t) and with
a standard deviation of σs. We can then estimate the cumulative distribution Pt(x) using
the corresponding relation for a normally distributed variable, i.e., %t(x)∼N (xs(t),σs).

Daily stock index values

Using the reported intra-day high xhi(t) and intra-day low x lo(t) values of the stock indices on
a given day, we postulate that, without any further information about the intra-day variations
of the stock indices, the stock index values fluctuate randomly according to a uniform random
distributionU bounded from below and above by x lo(t) and xhi(t), respectively. This results
in the probability distribution series %t(x)∼U (x lo(t), xhi(t)).

Niño 3.4 SST anomalies

For a given month in the SST data for the Niño 3.4 region, we take the spatially distributed
SST anomaly values for that month and apply a kernel density estimation using an optimal
bandwidth for Gaussian kernels with the Python toolkit Scikit-learn [290]. This results in an
empirically estimated probability density %t(x) constructed from the spatial distribution of
SST values in a given month.

Paleoclimate proxy records

Using the obtained proxy-depth and age-depth data, we estimate the posterior probability
of the paleoclimatic proxy at a chosen time instant of the past using a Bayesian approach
reported in an earlier study [121].To summarize it briefly, consider the proxy, radiometric
age, calendar age, and depth as the random variables X , R, T and Z respectively. In these
terms, our quantity of interest is the probability %(x |t), which for a speleothem dated with
U/Th radiometric dates, can be shown to be approximated by the Riemann sum

%(x |t)≈

∑M
j=1 b jwt(z x

j )%(x |z
x
j )

∑M
j=1 b jwt(z x

j )
(14.3)

http://www.cpc.ncep.noaa.gov/data/indices/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
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where z x
j , j = 1,2, . . . , M denote the M depth values at which the proxy measurements are

made, and where b j is the width of the depth interval represented by z x
j :

b j =
1
2











z x
2 − z x

1 j = 1

z x
j+1 − z x

j−1 1< j < 1

z x
M − z x

M−1 j = M

. (14.4)

The probability that the proxy X = x at a chosen time T = t is thus expressed in terms of
estimable or measured quantities. In applying this to the chosen datasets, we take a regular
time grid at 5 year intervals starting (ending) at the minimum (maximum) age measurement.

14.4.3 Network of recurrence probabilities
We use the framework of recurrence analysis to analyse the chosen datasets. Typically,
this is based on the construction of recurrence matrix R whose elements Ri j are either 1 if
the observable recurred (within an ε vicinity) at times i and j, or 0 otherwise [239]. The
recurrence matrix R can then be used to classify and investigate various classes of complex
dynamics. More recently, R has been shown to be interpretable as the adjacency matrix
A = R−1 of a complex network where the nodes are the time points of the observations and
edges are placed between those pairs of time points which recur within an ε neighbourhood.
Here, 1 is the identity matrix of the same size as R, which is subtracted from R to give us an
adjacency matrix A without self-loops.

However, when we are given a time series with uncertainties represented as %t(x) in
our proposed framework, we are unable to estimate precisely whether time points i and j
recurred. In this case, we aim to estimate instead the probability that i and j recurred in
a chosen ε neighbourhood. In order to do so, the first step in estimating the recurrence
probabilities is to estimate the cumulative distribution functions Pt(x) corresponding to
the probability densities %t(x) estimated from the various datasets (see above). Using the
results of an earlier study [424], we first estimate the upper and lower bounds mi j and Mi j
for the distribution PZi j

of the difference Zi j = X i − X j as: mi j(z) =max{supu fi j(u, zi j), 0}
and Mi j(z) =min{infu fi j(u, zi j), 0}+1, where fi j(u, zi j) = Pi(u)− Pj(u− zi j). These bounds
ensure that PZi j

∈ [mi j , Mi j] ⊆ [0,1]. Next, we determine upper and lower bounds ql
i j(ε)

and qu
i j(ε) on the probability of recurrence Q i j(ε) := Prob (|Zi j | < ε) given a recurrence

threshold ε such that Q i j(ε) ∈ [ql
i j(ε), qu

i j(ε)] ⊆ [0,1]. These bounds are obtained as:

ql
i j(ε) =max{mi j(ε)−Mi j(−ε), 0}, and qu

i j(ε) =min{Mi j(ε)−mi j(−ε), 1}. We drop ε in the
following for notational clarity and with the understanding that ε is fixed.

We assume the probability Q i j itself to be distributed in the obtained interval [ql
i j , qu

i j],
but in a way unknown to us. However, assuming A as the true adjacency matrix of the
system’s recurrence network, we can write down,

Prob (Ai j = 1) =

∫ qu
i j

ql
i j

%(Ai j = 1|qi j)%Q i j
(qi j)dqi j =

∫ qu
i j

ql
i j

qi j %Q i j
(qi j)dqi j = E%Qi j

[Q i j],(14.5)

i.e., the total probability that Ai j equals 1 is simply the expectation of Q i j . Here, %Q i j
(qi j) is

the (unknown) probability density function for the random variable Q i j .
Assuming that Q i j(ε) is itself distributed symmetrically around the mean in the interval

[ql
i j(ε), qu

i j(ε)], the total probability that the observable at i and j recurred upto a threshold ε

is (ql
i j(ε)+qu

i j(ε))/2. This allows us to define an estimator Â of the probabilities of recurrence
of the observable X and interpret it as the adjacency matrix of a network whose nodes are
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the time points of observation and whose edge weights are given by

Âi j(ε) :=

¨

1
2(q

l
i j(ε) + qu

i j(ε)) i 6= j,

0 i = j
(14.6)

where we put Âii = 0 to avoid self-loops in the network. The elements of Âi j encode the total
probability that time points i and j have recurred within an ε vicinity, given the uncertainties
in the dataset.

While applying the above to estimate the networks of recurrence probabilities for the
applications, we use a bisection routine to arrive at a suitable ε threshold which results in a
pre-specified link density of the RN. The link densities chosen are: (i) synthetic example,
30%, (ii) financial datasets, 24%, (iii) SST dataset, 25%, and (iv) paleoclimatic datasets,
30%.

14.4.4 Detecting abrupt transitions using recurrence network community structure
We define communities in the sense of Newman [272] as those parts of a network which
have a higher link density within themselves than to the rest of the network. In the context
of the networks based on probabilities of recurrence used in this study, such a subnetwork
would correspond to a time period in which the states of the system are closer to each other
than to the rest. The identified communities would correspond to stable regimes of dynamics
and their borders would be the time points at which the system transited between regimes.
Similar to Newman [272], we use the within-community link fraction S as an indicator of
community structure. However, to determine the extent to which a value S = sobs obtained
from the data is determined by a dynamical shift and not by randomness, we propose to use
the p-value (:= psobs ) of a statistical test with the null hypothesis H0: S is determined by the
degree-sequence of the given network. If we define %s|H0

(s) as the probability density of the
within-community link fraction obtained from the null model,

psobs =
∫ 1

sobs
%s|H0

(s)ds, (14.7)

which requires to specify the communities before we measure S. Note that this is in contrast
to Newman’s method, where the quantity of interest (modularity) is the difference between
sobs and the expectation value of S as obtained from the null model H0. Next, in order to
apply the above definition, we move a sliding window over the dataset (Fig. 14.2b), and
after extracting the portion of Â which falls within that window, we partition it into two
communities divided at the midpoint, and estimate psobs . Those windows with a high value
of S unexplained by a random network having the same degree sequence will have very low
p-values (cf. Figs. 14.2–14.4). Finally, to determine the statistically significant windows at a
given confidence level α, we apply the Holm’s method for multiple testing [149] along with
the Dunn-Šidák correction factor [350]. The distribution %s|H0

(s) of S given H0 is obtained
from 1000 random realizations of the degree-configuration model.

The sizes of the sliding window were different for the different applications: (i) synthetic
example, 90 time points, (ii) financial datasets, 60 time points (approx.2 months), (iii) SST
data, 30 time points (2.5 years), and (iv) paleoclimatic datasets, 100 time points (500 years).

14.4.5 Coincidence analysis of detected transitions with phase-locking periods of
the PDO and the ENSO
For this analysis, we define phases for the Niño 3.4 index and the PDO index (cf. Methods:
Datasets) in the sense of Maraun & Kurths [215]. As a first step, the index time series were
filtered using a low-pass forward-backward Butterworth filter that dampens all frequencies
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higher than 1/12 months−1. Then, we obtained the Hilbert transform of the time derivative
of the filtered time series, an the ratio of the Hilbert transform to the input of the Hilbert
transform (i.e., the time derivative of the index time series) is defined as the tangent of
the instantaneous phase φt (SI, Fig. 14.12). This is used to define the phase difference
between the PDO and the ENSO as ∆φt = φPDO

t −φENSO
t , the time derivative of which is

used to identify plateaus in ∆φt i.e., when ∆φt ≈ 0 (SI, Fig. 14.13a), defined here as those
time points when ∆φt falls between the 25-th and 75-th percentile of all obtained ∆φt
values (SI, Fig. 14.13b). These time points are identified as the time points of ‘phase-locking’
between the PDO and the ENSO and used to check for significant coincidences with the
abrupt transitions detected using our current method on the probability density series from
the SST anomalies in the Niño 3.4 region.

We define a coincident transition as a transition that occurs within an interval of 31
days to a time point of phase-locking as defined above. In total, 216 such coincidences are
identified. To test whether such a high number of coincidences could be possible by pure
random chance, we randomize the timings of the detected transitions 50000 times (so that
the number of coincidences stays at 216) and compute the number of coincidences each
time, resulting in a null distribution of coincidences occuring purely by random chance (SI,
Fig. 14.13c). At a significance level of 5%, we find that the observed number of coincidences
is significantly higher than that possible by pure random chance. This validates the hypothesis
that the detected abrupt transitions in the Niño 3.4 region are significantly coincident to
periods of phase-locking between the PDO and the ENSO. For more details, please refer to
the SI.
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Supplementary Material
Correlation between two observables
Consider the classic Pearson’s cross-correlation coefficient Cor(X , Y ) between two normalized
observables X and Y (i.e., with mean zero and standard deviation one). In the typical time
series framework, this is the averaged pairwise product of the measurements x t and yt ,

Cor(X , Y ) =
1
n

n
∑

t=1

x t yt . (14.8)

In our proposed framework based on the density series %t(x) and %t(y), we first note that
the correlation of normalized variables is the expectation value,

Cor(X , Y ) = E[X , Y ] =
∫∫

x y %(x , y)dx dy, (14.9)

where the joint density %(x , y) is expressed in terms of marginals %(x , y|t) := %t(x , y)
as %(x , y) = (
∑n

0 %t(x , y)dt)/n. If we now assume X and Y to be independent when
conditioned on t, i.e.,

∫

%t(x , y)dt =
∫

%t(x)%t(y)dt, the correlation coefficient is given
by

Cor(X , Y ) =

∑n
t=1 x̄ t ȳt

n
, (14.10)

where ·̄t denotes the expected value of the observable at time T = t as obtained from %t(·).
Pearson’s correlation is thus properly estimable only if we know the joint density %t(x , y) or
if X and Y are conditionally independent given T .
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Probability density time series %t(x)
The probability density series for the three real-world examples dealt with in our study are
shown in Figs. 14.6–14.8. In each case, the uncertainties arise from different sources. In the
case of the financial stock indices(Fig. 14.6), the uncertainties arise due to intra-day variations
which fall below the daily sampling frequency of the dataset, and are hence approximated
using a uniform random distribution of the stock index values between the reported daily
minimum and maximum values. Even though the uncertainties appear to be negligibly
small when compared to the drift in the index values over the span of the entire dataset,
we note that intra-day fluctuations can be sufficiently high at times of financial crashes and
volatile periods. This is an important feature that is missed in typical point-like time series
representations. For the Niño 3.4 SST anomalies (Fig. 14.7), the uncertainties arise due
to the spatial heterogeneity of the SST values over the geographical grid demarcating the
Niño 3.4 region in the equatorial Pacific. The distributions are thus estimated by pooling the
monthly averaged SST values from all grid points for a given month into one sample and
estimating their distribution using a kernel density estimate. In the case of the paleoclimate
datasets, the uncertainties arise out of the imprecision in determining the age of the climate
proxies. In most cases, it is important to note that the estimated distributions (Fig. 14.8) are
rather non-Gaussian, often skewed, and exhibit non-negligible variance.
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Figure 14.6: Probability density time series: Stock indices. The probability density time
series for the three stock indices shown as a colormap: (a) BSE SENSEX (Mumbai, India), (b)
DAX (Frankfurt, Germany), and (c) NASDAQ (New York, USA). The densities are obtained
by assuming a uniform random distribution of the index values bounded by the reported
daily maximum and minimum values.

Figure 14.7: Probability density time series: SST anomalies. The probability density time
series obtained by applying kernel density estimates on the monthly SST values for all grid
points in the Niño 3.4 region at each time point of observation.
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Figure 14.8: Probability density time series: Paleoclimate proxies. The probability den-
sity time series estimated from the age–depth and proxy–depth measurements for the δ18O
isotope datasets obtained from three caves in the Asian monsoon domain: (a) Dongge cave in
south China, (b) Tianmen cave in south China, and (c) Qunf cave in Oman. The uncertainty
in these datasetes arise primarily from the imprecision in assigning ages to the δ18O values
measured along the depth of the stalagmites.
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Abrupt transitions detected by using the mean time series
The primary focus of our study is to emphasise the advantages of considering the probability
density time series in lieu of a typical point-like time series. As done for the synthetic
example (Fig. 2 of main text), we compare the results of the detection of abrupt transitions
from our proposed approach on the density series to transitions detected when we use the
mean value time series instead (Figs. 14.9–14.11). In the case of the financial datasets
(Fig. 14.9), we see that the numbers of detected transitions are much higher when we use
the mean time series, which we interpret as a lack of specificity, noting in particular that for
the BSE SENSEX data, the entire period from mid-2007 to mid-2012 is filled with numerous
‘transitions’. Even in the Niño 3.4 example (Fig. 14.10.), employing the mean time series
to the transition detection method results in an almost contiguous series of ‘transitions’
throughout the entire timespan of the data. However, when we look at the results for the
Dongge cave in the paleoclimate example (Fig. 14.11), we see that the results from the mean
time series fail to detect the previously reported events at 4200 years BP and 8200 years
BP (the famous ‘4.2k’ and ‘8.2k’ events). Thus, the impact of considering the mean time
series on the final results of the abrupt transition detection may vary on the type, nature
and magnitude of the uncertainties of the datasetes. While in some cases, (possibly random)
fluctuations are detected as transitions, in others, large uncertainties (or a change in the
underlying distribution) may wash out the transition signal in the expectation value. This
further underscores the necessity for the proper representation and analysis of ucnertainties
in time series. Otherwise, without proper care of the uncertainties, significant events might
be missed out, but also non-significant events might be overemphasised.

Figure 14.9: Abrupt transitions in financial stock indices detected using the probability
density time series (‘+’ markers) and the mean time series (‘x’ markers). The bottom panel
shows the normalized Google trends results for several relevant search terms. Additional
pink squares correspond to: (1) BSE SENSEX crash of 22 May 2006, (2) bankruptcy claim
by Lehman Brothers on 15 September 2009, and (3) Indian parliamentary elections from 7
April to 12 May 2014.
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Figure 14.10: Abrupt transitions in Niño 3.4 SST anomalies detected using the probability
density time series (‘+’ markers) and the mean time series (‘x’ markers). The top panel covers
the period from 1870 up to 1940, while the bottom panel covers the period from around
1940 to 2012. Our results are compared to the Niño 3.4 index with red shaded regions
denoting El Niño years and blue shaded regions denoting La Niña years. Extreme PDO states
based on the NCEI PDO index are shown as little red (blue) squares corresponding to the
positive (negative) phase of the PDO.
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Figure 14.11: Abrupt transitions in δ18O isotopes detected using the probability density
time series (‘+’ markers) and the mean time series (‘x’ markers) for three caves in the Asian
monsoon domain: (a) Dongge cave, (b) Tianmen cave, and (c) Qunf cave. The detected
transitions are compared to previously reported events (squares) related to the weakening
of the Asian monsoon during the Holocene.
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Impact of uncertainties on abrupt transition detection
In the main text, we use the example of paleoclimate datasets to illustrate how uncertainties,
when properly incorporated into the analysis, can impact the results of an abrupt transition
detection scheme. We note how, in the case of the 4.2k event, we detect an abrupt transition
around this time in the Dongge adn Tianmen speleothem records, but not in the Qunf cave
record. The reason for not detecting this abrupt transition in the Qunf cave becomes clear
from the estimated network of recurrence probabilities, whose adjacency matrix is visualised
in Fig. 14.14a. In Fig. 14.14b and c, we magnify the probabitliies of recurrence around
the 8.2k event and around the 4.2k event respectively. All pairs of time points around
4.2 kyrs BP have almost uniformly large probabilities of recurrence, such that there is not
clear community (modular) strucure in the portion of the adjacency matrix represented in
Fig. 14.14c. Contrast this to the situation around 8.2 kyrs BP, shown in Fig. 14.14b, where
a clearer community structure is visibile which increases the statistical confidence with
which we can infer abrupt transitions in this period. This is not possible in the time period
around 4.2 kyrs BP. Furthermore, the primary reason for the uniformly large probabilities of
recurrence around 4.2 kyrs BP is that the Qunf cave time series has large uncertainties in the
period around 3–5 kyrs BP (Fig. 14.8c). During this period, when we choose a pair of time
points and ask the question: “Did the observable recur at these time points?” we almost
always come up with a non-negilible probability that they might have recurred. To put it in
other words, it takes higher precision (i.e., less uncertainty) to say confidently that two time
points have not recurred. As a result, we get almost equally high probabilities of recurrence
for all pairs of time points in the priod ca. 3–5 kyrs BP for the Qunf cave time series.

This example illustrates how uncertainties can influence the transition detection results,
and consequently influence all downstream analyses or inferences which are based on the
list of transitions obtained. Proper representation of time series uncertainties and a thorough
analysis which keeps the uncertainties in mind at each step along the way is thus an absolute
necessity to avoid pitfalls in understanding abrupt transitions and their spatio-temporal
characteristics.
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Figure 14.12: Estimating the phase of PDO and Niño 3.4 indices using the filtered time
series for each of the two indices (shown in a and b). The filtered time series were obtained
using a low-pass forward-backward Butterworth filter that dampens all frequencies higher
than 1/12 month−1. The filtered time series are then differentiated with respect to time to
obtain the time derivative, which is used for the Hilbert transform (shown in c and d). The
ratio of the Hilbert transform of the time derivative to the the time derivative is defined as
the tangent of the instantaneous phase. The time derivative helps to ensure that the signal is
phase coherent, i.e., it rotates (approximately) about a single center, as seen in c and d.
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Figure 14.13: Coincidence analysis between the detected transitions and the periods of
phase locking between the PDO and the ENSO (shown as turquoise shaded regions in a) using
the probability density time series (blue +’s in a) and the mean time series (golden x’s in a).
The periods of phase-locking are identified by first defining the phase difference between the
individual phases φt PDO and φENSO

t as ∆φt = φPDO
t −φENSO

t . The phase-locking periods
are defined as plateaus in ∆φt where ∆φt ≈ 0. In practice this is determined by identifying
those time points where the time derivative of the difference d∆φt

dt fall between the 25-th

and 75-th percentile of all obtained d∆φt
dt values (shown as a histogram in b). The interval

between the 25-th and 75-th percentile is shaded in turquoise in b, validating that this
criterion satisfies the need that the values ∆φt are close to zero. The number of random
coincidences obtained by 50000 randomisations of the timings of the detected transitions
using the probability density series and the mean time series are shown as histograms in
c. At a statistical confidence of 5%, the threshold number of coincidences for significance
is Nsi g = 191 for the probability density series approach and Nsi g = 582 for the mean time
series approach. The corresponding observed number of coincidences Nobs equals 216 (581)
for the probability density series (mean time series) approaches indicate that the probability
density series approach offers a more robust and meaningful transition detection that allows
us to validate the coincidence of hte transitions with phase-locking periods of the PDO and
the ENSO.
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Figure 14.14: Probabilty of recurrence matrix for Qunf cave, for the entire time series in
a, for the 8.2k event (for 7–9 kyrs BP) in b, and for the 4.2k event (for 3–5 kyrs BP) in c.
In contrast to the modular structure of the recurrence matrix in b, the recurrence plot in c
is almost structureless, as all pairs of time points in this period have high probabilities of
recurrence. The ubiquity of the high probabilities of recurrence in c can be traced back to
the large uncertainties in the proxy record in the corresponding period during 3–5 kyrs BP
(see Fig. 14.8c).



Laminated Gypsum Deposits Capo Bianco (Sicily) Laminated Gypsum Deposits Capo Bianco (Sicily) 
Courtesy: Kalima/Wikipedia 

15. Gaining Confidence in Transitions

Paper 14 N. Marwan, S. Schinkel, J. Kurths: Recurrence plots 25 years later – Gaining
confidence in dynamical transitions, Europhysics Letters, 101, 20007 (2013).
DOI:10.1209/0295-5075/101/20007

15.1 Abstract

Recurrence plot based time series analysis is widely used to study changes and transitions
in the dynamics of a system or temporal deviations from its overall dynamical regime.
However, most studies do not discuss the significance of the detected variations in the
recurrence quantification measures. In this letter we propose a novel method to add a
confidence measure to the recurrence quantification analysis. We show how this approach
can be used to study significant changes in dynamical systems due to a change in control
parameters, chaos-order as well as chaos-chaos transitions. Finally we study and discuss
climate transitions by analysing a marine proxy record for past sea surface temperature.

This paper is dedicated to the 25th anniversary of the introduction of recurrence plots.

15.2 Introduction

In the November issue of EPL in 1987, Eckmann et al. proposed the recurrence plot as a tool
to get easily insights into even high-dimensional dynamical systems [86, 224]. Over the last
25 years, their paper has “led to an active field, with many ramifications [these authors]
certainly had not anticipated” [240]. Starting from the visual concept of recurrence plots
(RPs), different statistical and quantification approaches have been added, like recurrence
quantification (RQA), dynamical invariants from RPs, and recurrence networks [77, 224, 239,
418]. 25 years after Eckmann’s seminal paper, RPs and related methods are widely accepted
tools for data analysis in various disciplines, as in physics [408] and chemistry [331], but also
for real world systems as in life science [237, 447], engineering [262, 278], earth science
[241], or finance and economy [17, 59, 120]. This interdisciplinary success is not only caused
by the attractive appearance of RPs but also by the simplicity of the method [421]. Based on
RPs, we can study the dynamics, transitions, or synchronisation of complex systems [86, 224,
239]. In particular, such transitions can be uncovered from a changing recurrence structure.

https://doi.org/10.1209/0295-5075/101/20007
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The different aspects of recurrences can be inferred by measures of complexity, also known
as recurrence quantification analysis (RQA). Although these measures are often applied to
real data and interpreted as indicators of a change of the system’s dynamics, a statistical
evaluation of the results was not yet satisfiably addressed. An early attempt has suggested to
use a specific model class (e.g., auto-correlated noise) corresponding to the null-hypothesis
and then testing the RQA results against such models [238]. For a general test of how
significant the value of certain RQA measures (in particular determinism DET and laminarity
LAM) is, a test distribution was derived using binomial distributions [145]. In order to
compare time-dependent RQA measures of different observations, a bootstrap approach
was introduced [341]. However, we still miss a method which can derive the important
significance level of dynamical transitions within one dynamical system as indicated by RQA.
Without providing some statement on the confidence of RQA results, any conclusions drawn
from RQA might remain questionable [225].

In this letter we propose a method which calculates the confidence level for the most
important, line-based RQA measures. We pick up the idea of bootstrapping [341] and
develop a new algorithm allowing for gaining confidence in RQA based dynamical transition
analysis. Using this approach we for the first time are able to provide a significance statement
for detected transitions of not only qualitatively different systems dynamics based on RQA
but using only a single observation. This will enable us to interpret the results of RQA in a
more reliable way in the future research and, hence, will further increase the potentials and
acceptance of RQA.

15.3 Recurrence Quantification Analysis

A RP tests for the pair-wise closeness of all possible pairs of states (~x i , ~x j) in an m-dimensional
phase space, Ri, j = Θ

�

ε − d(~x i , ~x j)
�

, with Θ as the Heaviside function, ε as a threshold for
closeness [239, 338], and i, j = 1, . . . , N where N is the number of observed states. The
closeness d(~x i , ~x j) can be measured in different ways, using, e.g., spatial distance, string
metric or local rank order [239]. Most often, the spatial distance using maximum or Euclidean
norm d(~x i , ~x j) = ‖~x i − ~x j‖ is used. Then, the binary recurrence matrix R contains the value
one for all close pairs ‖~x i − ~x j‖< ε. A phase space trajectory can be reconstructed from a
time series by time delay embedding [286].

Similar evolving epochs of the phase space trajectory cause diagonal structures parallel
to the main diagonal in the RP [239]. The length of such diagonal line structures depends
on the dynamics of the system (periodic, chaotic, stochastic) and can be directly related with
dynamically invariant properties, like K2 entropy [239]. Therefore, the distribution P(l) of
line lengths l is used by several RQA measures in order to characterise the system’s dynamics
[239]. Here we focus on the measure determinism (DET), which is the fraction of recurrence
points forming diagonal structures, DET =

∑N
l=lmin

l P(l)/
∑N

l=1 l P(l). A minimal length lmin
defines a diagonal line [239].

Slowly changing states, as occuring during laminar phases (intermittency), cause vertical
structures in the RP. Therefore, the distribution P(v) of line lengths v is used to quantify
the laminar phases occuring in a system. Similar to DET, the measure laminarity (LAM)
is defined as the fraction of the recurrence points forming vertical structures, LAM =
∑N

v=vmin
v P(v)/
∑N

v=1 v P(v) [237].
The later discussed approach will not only be applicable to these two measures DET and

LAM, but to all line based RQA measures, including recurrence time based measures [276].
In order to study time dependent behaviour of a system or data series, we compute these

RQA measures using a moving window, applied on the time series. The window has size
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w and is moved with a step size s over the data in such a way that succeeding windows
overlap with w− s. This technique was successfully applied to detect chaos-period transitions
[397], but also more subtle ones such as chaos-chaos transitions [237], or different kinds of
transitions between strange non-chaotic behaviour and period or chaos [274]. It is applicable
to real world data, as demonstrated for the study of, e.g., cardiac variability [441], brain
activity [340], changes in finance markets [367] or thermodynamic transitions in corrosion
processes [262]. However, all these applications miss a clear significance statement.

With respect to our goal of a transition detection in the dynamical system, we formulate
the following null-hypothesisH0: The dynamics of a system X does not change over time,
thus, the recurrence structure does not change and the RQA measure M of such a system
will therefore be distributed around an unknown, but non-zero mean µ(M) with unknown
variance σ(M).

For completely random systems the expected distribution of some RQA measures can be
modeled [145]. However, for complex real systems it cannot be assumed that the underlying
recurrence structure is completely random but rather features a certain recurrence structure
at all times. A dynamical transition in the system changes the recurrence structure and,
hence, the RQA measures. If the impact of the transition is large enough, it will push
the RQA measure M out of its normal range. The deviation from this normal range can
be considered as significant if the observed value of M(t) at time point t is outside of a
predefined interquantile range such as [α/2, 1−α/2].

15.4 Variance estimation by bootstrapping

In order to test for significant deviations from the unknown mean of the data, we first have
to estimate the variance of the RQA measures in question. To do so, we introduce a bootstrap
approach in the calculation of the RQA measures [89]. Bootstrapping is a conceptually
simple yet powerful statistical tool to estimate the variance of statistical parameters, such
as the mean, even if the underlying distribution is unknown. Since we cannot assume that
the distributions of line lengths P(l) and P(w) follow a known probability distribution, we
use this advantage of the bootstrap approach to estimate the confidence bounds of the RQA
measures M which rely on these distributions. We will use bootstrap resampling to create a
test distribution of the RQA measures from which we can then estimate the overall mean and
variance of those measures and, finally, to formulate the important significance statement.

The time dependent RQA analysis is based on moving windows, shifted over the time
series, and calculating the RP within these windows. For each of the Nw time steps of the
moving window t (t = w/2, 3w/2, 5w/2, . . . , N −w/2), i.e., for different time points, we get
the local RPs with n(t) diagonal lines and then calculate the corresponding local histograms
of diagonal lines Pt(l). The time dependent RQA measures M(t) (e.g., M(t) = DET (t) are
calculated from Pt(l).

In order to estimate a general distribution of the RQA measures following our null-
hypothesisH0, we suggest the following procedure. All local histograms Pt(l) are merged
together in order to get an overall histogram and thus a statistical average of the recurrence
structure of the system, i.e., we bootstrap from the unification

P̂(l) =
∑

t

Pt(l) (15.1)

of the local histograms. We draw n̄ recurrence structures (i.e. diagonal lines) from P̂(l). The
number n̄ of drawings is the mean number of recurrence structures n(t) contained in the
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Figure 15.1: (Colour online) (A) Autocorrelated process with slight transitions of the pa-
rameters between time 1,300 and 1,800 (shaded region). Corresponding RQA measures (B)
determinism DET and (C) laminarity LAM, indicating the epoch of changed dynamics in the
autocorrelated process between 1,300 and 1,800 (shaded area) by an increasing of their
values. This increase exceeds the 99% confidence interval (dashed line) as derived by the
proposed bootstrapping approach.
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Pt(l). (15.2)

From the resulting empirical distribution P(l)∗, we compute the corresponding RQA measure,
say in our case DET. By repeating this procedure B times (e.g. B = 1,000), we get the
test distribution for DET, say F(DET ). By calculation of the α-quantiles of the distribution
F(DET ), we derive the confidence intervals of DET which can be used to statistically infer
the significance of the changes of DET (t), and thus the observed transitions.

15.5 Illustration of the method

We illustrate the proposed statistical test on two model systems: (1) a linear autocorrelated
process and (2) a nonlinear process, both for changing parameters.

(1) Our first example is an autocorrelated stochastic signal with changing properties, i.e.,
an autoregressive process of order 2

x i = a1 x(i − 1) + a2 x(i − 2) + bξ(i) (15.3)

with a1 = 1.80, a2 = −0.972 and b = 0.64. After time step 1,300, the AR coefficients
slightly change to a1 = 1.85, a2 = −0.917 and b = 0.76 for 500 time steps. Afterwards these
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Figure 15.2: (A) Logistic map with chaos-period and chaos-chaos transitions for control
parameter a = [3.9200 3.9335] and corresponding RQA measures (B) DET and (C) LAM. For
a = [3.92221 3.92227] we have a period-7 window, for a = [3.93047 3.93050] a period-8
window and at a broad range around a = 3.928 intermittency (marked with shaded area).
(B) and (C) 99% significance levels are shown as dash-dotted lines.

coefficients are changed back to the initial values. With this procedure the signal contains a
short epoch of slightly changed dynamics (Fig. 15.1A).

Next we compute the RQA measures DET and LAM from this data series (no embedding)
using windows of size w= 200 and with a step size of s = 25. The threshold ε is chosen for
each window separately to preserve a constant recurrence rate of 7.5% [338]. The bootstrap
resampling is then applied using 1,000 resamplings. As we expect in the window of increased
auto-correlation a larger number of diagonal and vertical lines, we will only consider the
upper confidence level.

The DET measure reveals a high number of diagonal lines in the RP. Before time 1,300 and
after time 1,800, DET values vary between 0.25 and 0.3. This coincides with the moderate
auto-correlation of the process. Between the time 1,300 and 1,800, DET shows an increase
and exceeds the confidence interval of 0.31, corresponding to a 99% confidence level. Similar,
LAM varies before and after the inset of changed dynamics at a lower level (LAM ≈ 0.3)
and increases within the period between time 1,300 and 1,800 up to LAM ≈ 0.55 due to its
increased persistence. This increase of DET and LAM confirms the further increase of the
auto-correlation of the considered process within this epoch.

(2) To test whether the proposed method is also capable of providing a quanatitative
statement of more subtle changes in dynamics, like chaos-order and chaos-chaos transitions,
we use a modified logistic map with mutual transitions [397]

x i+1 = a(i)x(i)(1− x(i)) (15.4)

with the control parameter a in the range [3.9200 3.9335] with increments of ∆a =
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2.5 10−7. Using this intervall we find for a = [3.92221 3.92227] a period-7 window,
for a = [3.93047 3.93050] a period-8 window and at a broad range around a = 3.928 . . .
intermittency (Fig. 15.2). Again, for these kind of dynamical transitions we can expect
increased values of DET and LAM, hence, we only need to consider the upper confidence
level.

Next we compute the RQA measures DET and LAM from this data series (no embedding)
using windows of size w= 250 and with a step size of s = 250. The threshold ε is chosen
for each window separately in order to preserve a constant recurrence rate of 5%. As a line
structure we consider each line with a length of at least two points, i.e. lmin = vmin = 2.

The measure DET shows for the periodic windows at a = [3.92221 3.92227] and
a = [3.93047 3.93050] maxima [237]. The periodic behaviour of the system causes only
long diagonal lines, resulting in high values of DET. In contrast, LAM shows high values only
for the region of intermittency around a = 3.928 . . . . In this region, the system has slowly
changing, laminar states [237]. For the proposed bootstrapping approach, we use 1,000
resamplings in order to construct the test statistics. As the 99%-quantile we find for DET
q0.99 = 0.74 and for LAM q0.99 = 0.04. These values provide the 99% confidence level for
DET and LAM. Thus, the two maxima of DET in the periodic windows are significant on a
99% level ( p < 0.01). For LAM we find several significant high values of 99% significance in
the region of intermittency around a = 3.928. This is due to the longer range of intermittent
behaviour in this region of the control parameter a.

15.6 Application to real world data
The climate system is a highly complex one which has undergone various transitions in
the past. The investigation of relationships between sea surface temperature (SST) and
specific climate responses, like the Asian monsoon system or the thermohaline circulation
in the Atlantic, represents an important scientific challenge for understanding the global
climate system, its mechanisms, and its related variability. In palaeoclimatology, different
archives are used to reconstruct and study climate conditions of the past, as lake [238] and
marine sediments [139] or speleothemes [171]. Alkenone remnants in the organic fraction
of marine sediments, produced by phytoplankton, can be used to reconstruct SST of the past,
allowing to study the temperature variability of the oceans [138]. Here we will use a marine
record from the Ocean Drilling Programme (ODP) derived from a drilling in the Arabian see,
ODP site 722. This record provides alkenone based reconstructed SST in the realm of the
Asian monsoon system for the past 3.3 Ma (Fig. 15.3A) [139]. During this epoch, a dramatic
climate change happened by two steps of global cooling [139]. The first step between 3.0
and 2.5 Ma coincides with the high-latitude Northern Hemisphere glaciation. The second
step of cooling occurred between 2.0 and 1.5 Ma and is related with a continuous cooling of
the subtropical oceans but a stationary high-latitude climate. Some mechanisms of these
global-scale climate changes are known and coincide with a transition to an obliquity-driven
climate variability with a 41 ka period after 2.8–2.7 Ma [139], a shift from that climate
variability (with high-latitude glaciation) to glacial-interglacial cycles with a 100 ka period
after a transition period between 1.25 and 0.7 Ma [266], and the development of the Walker
circulation at 1.9–1.5 Ma [309]. The RQA and the proposed significance test are promising
tools to analyze the alkenone SST record of the ODP site 722.

The original time series of ODP 722 is not equally sampled. Therefore, we interpolate it
to a time series with sampling period of 2 ka. For performing the RQA we use a time delay
embedding with dimension m= 3 and delay τ= 2. The threshold is chosen to preserve a
constant recurrence rate of 7.5%. The bootstrapping is performed using 1,000 resamplings.
In this real world example, we use a reduced confidence level of 95%. As we do not know
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which kinds of dynamical transition are there, we will consider both the upper and the lower
confidence level.

The RQA measures DET and LAM reveal various significantly high and low values as
summarised in Fig. 15.3 and Tab. 15.1.
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Figure 15.3: (A) Alkone SST record of ODP site 722, and corresponding (B) DET and (C) LAM
measures (95% confidence bounds are shown with blue dash-dotted lines). The transition to
(1) the Northern Hemisphere glaciation, the (2) intensification of the Walker circulation, and
(3) the transition phase from glaciation to glacial-interglacial cycles are marked by shaded
areas.

Around 3.0 Ma ago, a long-lasting period of warm climate with a permanent El Niño
came to an end. This general change from a warm climate towards a more variable and
cooler one is clearly indicated by a change from low to high DET and LAM values.

The first cooling phase between 3.0 and 2.5 Ma is well indicated by high values of the
measure DET which can be considered to reflect an increase in regularity and auto-correlation
of the system. The rapid onset of the Northern Hemisphere glaciation between 2.8 and
2.7 Ma is marked by an increase of LAM, corresponding to an intermittent behaviour. The
fact that DET and, thus, the auto-correlation increased before the intermittent behaviour
can be understood as a critical slowing down of the dynamics as it is typical for tipping
points [60]. The increase of DET might, therefore, be an indication that the climate system
reached a tipping point at 3.0–2.9 Ma, leading to the regime change of Northern Hemisphere
glaciation.

Between 2.4 and 2.3 Ma, DET and LAM decreased, revealing a short period of more
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irregular and stochastic variability. This might be an indication for a transition between
two different regimes. This transition was not yet found in palaeoclimate literature, but is
confirmed by another study also using a nonlinear measure for transition detection [212].

The period of the development of the Walker circulation between 1.9 and 1.5 Ma is
marked by an increase in both, DET and LAM.

The transition period from the glaciation regime with dominant 41 ka cycle to the glacial-
interglacial regime with 100 ka cycle is marked by a significant decrease of the measures
DET and LAM. This corresponds to a phase of less regularity or more stochastic variability of
the SST.

Further high values in DET and LAM occur at around 2.0 Ma and between 0.75 and
0.5 Ma. At 2.0 Ma, a reorganization of subtropical and tropical ocean circulation begun which
was triggered by high-latitude cooling and its impact on deepwater formation. Between 0.75
and 0.5 Ma, the sensitivity of the high-latitude climate response to solar forcing reached its
maximum [309]. This is consistent with recent findings of a coherence between solar forcing
and climate variability in this region during this period [212].

The transitions found correspond to dynamical transitions caused by different changes in
climate. The recurrence based analysis can not only detect these transitions but also provide
additional information about the climate transitions, whose onsets are, at least partly, known
[73, 212].

Table 15.1: Major regime changes in alkenone SST record from ODP site 722 as indicated by
significant high values of determinism (DET+) and laminarity (LAM+) as well as significant
low values (DET− and LAM−).

Period DET+ DET− LAM+ LAM−
Northern Hemisphere glaciation 2.9–2.5 2.75–2.65
Interregime transition 2.4–2.3 2.4–2.3
(Sub-)Tropical reorganisation 2.0 2.05–1.95
Development Walker circulation 1.7–1.4 1.7–1.5
Transition 41 ka to 100 ka 1.25–0.8 1.2–0.8
Maximal climate sensitivity 0.65-0.55 0.75–0.5

15.7 Conclusion
We have introduced a bootstrap based approach for providing confidence levels for line-
based recurrence quantification measures, which are related to dynamical properties (like
Lyapunov exponent or K2 entropy). Using this technique, we are able to investigate changing
dynamics by RQA and can, for the first time, provide confidence levels for the variation of
the RQA measures and, thus, the changed dynamics. We have shown the potential of the
approach by studying dynamical changes in an auto-correlated process and for chaos-order
and chaos-chaos transitions. These examples have also demonstrated the importance of
considering confidence intervals, as fluctuations in the RQA measures can be misinterpreted
if the overall variance of these measures is not taken into consideration.

The application of our approach on sea surface temperature variability of the past has
demonstrated that recurrence based analysis provides new insights in known palaeo-climate
changes. Recurrence properties can be help for a better understanding of the mechanisms of
the transitions between different climate regimes.
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25 years after the introduction of recurrence plots by Eckmann et al. [86], the develop-
ment of this technique still continues. With our paper we would like to honor the seminal
work by these authors, but would also like to emphasize that the calculation of confidence
levels for the RQA measures is an important requirement for the method to get widely ac-
cepted. It is highly desirable that future research using RQA comes along with corresponding
confidence levels.
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Abstract

Recurrence plots and recurrence quantification analysis have become popular in the last
two decades. Recurrence based methods have on the one hand a deep foundation in the
theory of dynamical systems and are on the other hand powerful tools for the investigation
of a variety of problems. The increasing interest encompasses the growing risk of misuse
and uncritical application of these methods. Therefore, we point out potential problems
and pitfalls related to different aspects of the application of recurrence plots and recurrence
quantification analysis.

16.1 Introduction

Since its introduction in 1987 by Eckmann, Oliffson Kamphorst, and Ruelle [86], and the
development of different quantification approaches, recurrence plots (RPs) have been widely
used for the investigation of complex systems in a variety of different disciplines, as physiology,
ecology, finance or earth sciences [e.g., 16, 47, 100, 224, 289, 339, 392, 447]. RPs may
attract attention because of their ability to produce beautiful or fancy pictures, as in the
case of the colourful representations of fractal sets [213]. The recent remarkable increase
of applications can be traced down in part to several free software packages available for
calculating recurrence plots and the corresponding recurrence quantification analysis (RQA).
Since these methods are also claimed to be very powerful even for short and non-stationary
data, we should be careful not to consider them as a kind of a magic tool, which works on all
kinds of data. Owing to the fact that these methods are indeed in some sense powerful and
rather adaptable to various problems, it is really important that the user knows how these
methods work and has understood the ideas behind the RP and the measures of complexity
derived from it. Any uncritical application will lead to serious pitfalls and mis-interpretations.
As the number of applicants increases, the risk of careless application of RPs and RQA grows.

https://doi.org/10.1142/S0218127411029008
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In this article we try to highlight some of the pitfalls which can occur during the application
of RPs and RQA and present future directions of research for a deep theoretical understanding
of the method.

16.2 Recurrence plots and recurrence quantification
Although similar methods already existed before, the RP, Ri, j = Θ(ε − ||~x i − ~x j ||), for the
analysis of the dynamics of a dynamical system by using its phase space trajectory was
introduced by Eckmann, Oliffson Kamphorst, and Ruelle [86]. This method can be used
in order to visualise the recurrence of a state, i.e., all the times when this state will recur.
In the 1990’s, a heuristic approach of quantification RPs by its line structures has led to
the recurrence quantification analysis (RQA) [237, 418]. In this approach, the density of
recurrence points as well as the histograms P(l) of the lengths l of the diagonal and vertical
lines in the RP are quantified. The density of recurrence points (recurrence rate) coincides
with the definition of the correlation dimension [124]. Moreover, RPs contain much more
information about the dynamics of the systems: dynamical invariants like Rényi entropy or
correlation dimensions can be derived from the structures in RPs [101, 384], RPs can be
used to study synchronisation [323, 346] or to construct surrogate time series [386] and
long time series from ensemble measurements [173]. For a comprehensive introduction we
point to [239].

16.3 Pitfalls
16.3.1 Parameter choice for recurrence analysis

RP and RQA depend on some parameters which should be properly chosen. For the actual
recurrence analysis, a recurrence threshold is necessary. This measure is probably the most
crucial one and is discussed in the next subsection.

As already mentioned, the quantification of recurrence structures depends on lines in
the RP; by defining a minimal length of such lines, it is possible to adjust the sensitivity of
line based recurrence measures. In Subsect. 16.3.3 and 16.3.4 we will come back to this
parameter.

If we start our recurrence analysis from a time series, we have first to reconstruct a
phase space by using a proper embedding, e.g., time-delay embedding [286]. This involves
the proper setting of two additional parameters: the embedding dimension m and the
time-delay τ. Although the estimation of dynamical invariants does not depend on the
embedding [384], the RQA measures depend on the embedding. Standard approaches
for finding optimal embedding parameters, like false nearest neighbours for embedding
dimension and auto-correlation or mutual information for time-delay, can be widely found in
the literature [e.g., 165]. However, it is recommended to visually cross-check the embedding
parameters by looking at the resulting RP. Non-optimal embedding parameters can cause
many interruptions of diagonal lines, small blocks, or even diagonal lines perpendicular to
the LOI (this corresponds to parallel trajectory segments running in opposite time direction;
Fig. 16.1). The experience has shown that the delay is sometimes overestimated by auto-
correlation and mutual information. The embedding dimension has also to be considered
with care, as it artificially increases diagonal lines (will be discussed in Subsect. 16.3.3)
[239].

In general, it is recommended to study the sensitivity (or robustness) of the results of
the recurrence analysis on the parameters (recurrence threshold, embedding parameters).

Although not really a parameter, it is worth to briefly discuss the different recurrence
definitions. The most frequently used definition is the to consider neighbours in the phase
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space which are smaller than a threshold value (the recurrence threshold). Distances can
be calculated using different norms, like Maximum or Euclidean norm [239]. Maximum
norm is sometimes preferred because of its better computational efficiency (only minor dif-
ferences in the results when compared to Euclidean norm). Another definition of recurrence
considers a fixed amount nearest neighbours. This recurrence criterion is used when the
number of neighbours is important. Pitfalls related to these recurrence criteria are also
discussed in Subsect. 16.3.7. More interesting are combinations of the above criteria with
dynamical properties of the phase space trajectory, e.g., perpendicular RPs (Subsect. 16.3.3),
or recurrence based on order patterns [128]. Order patterns are representations of the local
rank order of a given number d of values of the time series (order pattern dimension). As
the number of order patterns is equal to d!, the dimension should not be chosen too large,
because many order patterns will appear rather seldom and the RP will be sparse. Even
d = 4 is often already not appropriate, therefore, d = 3 is the best choice in most cases
(depending on the problem of interest, d = 2 may also be appropriate).
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Figure 16.1: Recurrence plots of the Rössler oscillator with parameters a = b = 0.25 and
c = 40 using different embedding: (A) m = 1, τ = 1, (B) m = 3, τ = 12, (C) m = 3,
τ = 6 (adaptive recurrence threshold to ensure (A) RR = 0.1, (B, C) RR = 0.05). Non-
optimal embedding can cause line structures perpendicular to the main diagonal, wobbly or
interrupted lines (A, B).

16.3.2 Recurrence threshold selection
The recurrence threshold ε is a crucial parameter in the RP analysis. Although several works
have contributed to this discussion [e.g., 239, 245, 338, 383], a general and systematic study
on the recurrence threshold selection remains an open task for future work. Nevertheless,
recurrence threshold selection is a trade-off of to have a small threshold as possible but at
the same time a sufficient number of recurrences and recurrence structures.

However, the diversity of applicability of RP based methods causes a number of different
criteria for the selection of the threshold: studying dynamical properties (dynamical invari-
ants, synchronisation) requires a very small threshold [76, 239]; twin surrogates or trajectory
reconstruction methods may require larger thresholds [146]; noise corrupted observation
data requires even larger thresholds [383]; for studying dynamical transitions, the threshold
selection can be even without much importance, because the relative change of the RQA
measures does not depend too much on it in a certain range; for the detection of certain
signals a specific fraction of the phase space diameter (or standard deviation of the time
series) can be required [338].

Several “rules of thumb” for the choice of ε have been advocated in the literature, e.g., a
few per cent of the maximum phase space diameter [258], a value that should not exceed
10% of the mean or the maximum phase space diameter [172, 442], or that the recurrence
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rate RR=
∑

i, j Ri, j/N
2 is approximately 1% [445]. A recently proposed criterion employing

the relationship between recurrence rate and ε defines an optimal value by using the position
of the maximum of the first derivative of the recurrence rate dRR

dε [111]. Such approach
can produce ambiguous and highly unstable results, as slight variations in ε (as possible by
minor errors in finding this value or by nonstationary time series) cause high variation in
the recurrence structure. Next, the position of the maximum of dRR

dε depends strongly on
the chosen norm and embedding, and may lead to an overestimation of an optimal ε. And,
finally, there are systems which can have more than one maximum [76].

Another criterion for the choice of ε takes into account that a measurement of a process
is a composition of the real signal and some observational noise with standard deviation σ
[383]. In order to get similar results as for the noise-free situation, ε has to be chosen such
that it is five times larger than the standard deviation of the observational noise, i.e., ε > 5σ.
Although this criterion holds for a wide class of processes, it is difficult to estimate the
amount of observational noise in the signal.

For (quasi-)periodic processes, it has been suggested to use the diagonal structures within
the RP in order to find the optimal ε [245]. In this approach, the density distribution of
recurrence points along the diagonals parallel to the LOI is investigated on dependence of ε
in order to minimise the fragmentation and thickness of the diagonal lines with respect to
the threshold. However, this choice of ε may not preserve the important distribution of the
diagonal lines in the RP if observational noise is present (the estimated threshold can be
underestimated).

The selection of an optimal recurrence threshold ε is not straightforward and depends
on the particular problem and question.

16.3.3 Indicators of determinism
The length of a diagonal line in the RP corresponds to the time the system evolves very similar
as during another time, i.e., a segment of the phase space trajectory runs parallel and within
an ε-tube of another segment of the phase space trajectory. Deterministic systems are often
characterised by repeated similar state evolution (corresponding to a local predictability),
yielding in a large number of diagonal lines in the RP. In contrast, systems with independent
subsequent values, like white noise, have RPs with mostly single points. Therefore, the
fraction of recurrence points forming such diagonal lines (of length l ≥ lmin)

DET =

∑

l≥lmin
l P(l)
∑

i, j Ri, j
(16.1)

can be calculated and is, therefore, called determinism in the RQA. Somehow this measure
can be interpreted as an indication of determinism in the data. But we should be careful
in using the term determinism in a more general or mathematical sense. In a deterministic
system we can calculate the same exact state by using given initial conditions, i.e., there
is no stochastic process involved. Different methods can be used to test for determinism
in time series, e.g., a combined modelling-surrogate approach [355] or an analysis of the
directionality of the phase space trajectory [166].

High values of DET might be an indication of determinism in the studied system, but it
is just a necessary condition, not a sufficient one. Even for non-deterministic processes we
can find longer diagonal lines in the RP, resulting in increased DET values. For example, the
following (non-deterministic) auto-regressive process x i = 0.8x i−1+0.3x i−2−0.25x i−3+0.9ξ
(where ξ is white Gaussian noise) has a DET value of 0.6 (embedding dimension m = 4,
delay τ = 4, and fixed recurrence rate of 0.1). As it was shown in [380], stochastic processes
can have RPs containing longer diagonal lines just by chance (although very rare). Moreover,
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due to embedding we introduce correlations in the RP and, therefore, also uncorrelated
data (e.g. from white noise process) have spurious diagonal lines [239, 382] (Fig. 16.2).
Moreover, data pre-processing like low-passfiltering (smoothing) is frequently used. Such
pre-processing can also introduce spurious line structures in the RP. Therefore, from just
a high value of the RQA measure DET we have to be careful in infering that the studied
system would be deterministic. For such conclusion we need at least one further criterion
included in the RP: the directionality of the trajectory [166]. One possible solution is to use
iso-directional RPs [151] or perpendicular RPs [53]; if then the measure reaches DET ≈ 1 for
a very small recurrence density (i.e. RR< 0.05), the underlying system will be a deterministic
one (like a periodic or chaotic system).
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Figure 16.2: (A) Recurrence plot of one realisation of Gaussian white noise, calculated using
embeddeding dimension m = 6, delay τ = 1, and a recurrence threshold of ε = 0.2. The
embedding causes a number of long lines. (B) Correlation between a single recurrence point
at (15, 30) and other recurrence points in the RP of white noise demonstrating the effect of
embedding for a bogusly creation of long diagonal lines (estimated from 1,000 realisations).
(C) The histogram of line lengths found in the RP shown in (A). The maximum length is
Lmax = 17, a value, which would not be uncommon for a deterministic process.

16.3.4 Indicators of periodic systems
As explained in the previous section, deterministic systems cause a high value in the RQA
measure DET . This measure has been successfully used to detect transitions in the dynamics
of complex systems [397]. A frequently used example in order to present this ability is the
study of the different dynamical regimes of the logistic map, where DET is able to detect
the periodic windows (by values DET = 1). Therefore, it is often claimed that this measure
is able to detect chaos-period transitions.

However, we can also find such high DET values for non-periodic, but chaotic systems.
For example, the Rössler system [327],
�

d x
d t

,
d y
d t

,
dz
d t

�

=
�

−y − z, x + 0.25y, 0.25+ z(x − c)
�

, (16.2)

exhibits in the parameter interval c ∈ [35, 45] a transition from periodic to chaotic states
(Fig. 16.3A). But due to the smooth phase space trajectory and high sampling frequency
(sampling time ∆t = 0.1), the RP for the chaotic trajectory consists almost exclusively
on diagonal line structures (Fig. 16.4), resulting in a high value of DET , i.e., DET ≈ 1
(Fig. 16.3B).

A very high value of DET is not a clear or even sufficient indication of a periodic system.
High values can be caused by very smooth phase space trajectories. This should also be
considered when looking for indications of unstable periodic orbits (UPOs), where DET
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Figure 16.3: (A) 1st and 2nd positive Lyapunov exponents of the Rössler oscillator with
parameters a = b = 0.25 and c ∈ [35, 45]. A periodic window occurs between c = 36.56
and c = 37.25. However, the DET measures reveals an almost constant very high value of
approximately DET = 0.94. Used RP parameters: dimension m= 3, delay τ= 6, adaptive
recurrence threshold to ensure a RR= 0.05.

or mean and maximal line lengths L and Lmax may not be sufficient. A solution could be
to increase the minimal length lmin of a diagonal recurrence structure which is considered
to be a line. However, a better solution is to look at the cumulative distribution of the
diagonal line lengths and estimate the K2 entropy (but this requires much longer time series,
cf. Subsect. 16.3.9). Recent work has shown that measures coming from complex network
theory, like clustering coefficient, applied to recurrence matrices are more powerful and
reliable for the detection of periodic dynamics [78, 241, 455].

16.3.5 Indicators of chaos

The RP visualises the recurrence structure of the considered system (based on the phase
space trajectory). The basic idea behind RPs comes, in general, from the study of chaos.
Therefore it can be considered as a nonlinear tool for data analysis. But this cannot be a
criterion to understand complex structures in the RP or high values of RQA measures as
indicators of chaos or nonlinearity in the dynamical system.

As mentioned above, uncorrelated stochastic systems have mostly short or almost no
diagonal line structures in their RPs, whereas deterministic and regular systems, like periodic
processes, have mostly long and continuous diagonal line structures. Chaotic processes have
also diagonal, but shorter lines, and can have single recurrence points. Nevertheless, only by
looking at the appearance of an RP it is difficult (almost impossible) to infer about the type
of dynamics; only periodic and white noise processes can be identified with some certainty.

The alternative is to look at the RQA measures quantifying the structures in an RP which
are related to some dynamical characteristics of the system. As diagonal lines in the RP
correspond to parallel running trajectory segments, it is clear that the length of these lines is
somehow related to the divergence behaviour of the dynamical system. Divergence rate of
phase space trajectories is measured by the Lyapunov exponent. In fact, the lengths of the
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Figure 16.4: Recurrence plot of the Rössler oscillator with parameters a = b = 0.25 and
c = 40. For this parameters, the Rössler system is in a chaotic regime (λ1 = 0.14), but the
RP consists almost only on diagonal lines. Used RP parameters: dimension m = 3, delay
τ= 6, adaptive recurrence threshold to ensure a RR= 0.05.

diagonal lines are directly related to dynamical invariants as K2 entropy or D2 correlation
dimension [101, 384]. The K2 entropy is the lower limit of the sum of the positive Lyapunov
exponents.

For example, RQA measures based on the length of the diagonal lines, like determinism
DET and mean line length L, also depend on the type of the dynamics of the systems (rather
low values for uncorrelated stochastic (white noise) systems, higher values for more regular,
correlated and also chaotic systems). It has been suggested to measure the length of the
longest diagonal line Lmax and interpret its inverse DIV = 1/Lmax as an estimator of the
maximal Lyapunov exponent [397]. However, this interpretation incorporates high potential
of erroneous conclusions derived from RQA.

First, the main diagonal in the RP (i.e., the line of identity, LOI) is naturally the longest
diagonal line, wherefore it is usually excluded from the analysis. However, due to the
tangential motion of the phase space trajectory1, subsequent phase space vectors are often
also considered as recurrence points (known as sojourn points) [239]. These recurrence
points lead to further continuous diagonal lines directly close to the LOI. Without excluding
an appropriate corridor along the LOI (the Theiler window), Lmax will be artificially large
(≈ N) and DIV too small.

Second, as explained above, even white noise can have long diagonal lines [380], leading
to a small DIV value just by chance (Fig. 16.2). Although the probability for the occurrence
of such long lines is rather small, the probability that lines of length two occur in RPs of
stochastic processes is, on the contrary, rather high. Only one line of length two is enough to
get a finite value of DIV which might be mis-interpreted as a finite Lyapunov exponent and
that the system would be chaotic instead stochastic.

Therefore, we have to be careful in interpreting the RQA measures themselves as indica-
tors of chaos. Moreover, such conclusion cannot be drawn by applying a simple surrogate
test where the data points are simply shuffled (such a test would only destroy the correlation
structure within the data, and, thus, the frequency information).

1Tangential motion becomes even more crucial and influential for highly sampled or smooth systems.
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RP or RQA alone cannot be used to infer nonlinearity from a time series. For this purpose,
advanced surrogate techniques are more appropriate [307, 343].

16.3.6 Discrimination analysis and detection of deterministic signals
RQA is also a powerful tool in order to distinguish between different types of signals, different
groups of dynamical regimes etc. [e.g., 100, 201, 237, 439]. However, the selection of
applicable RQA measures is a crucial task. Not all measures will be useful for all questions.
Their application needs justification in terms of the purpose of the intended analysis. For
example, for processes which does not contain laminar regimes, or if we are not interested in
the detection of such laminar regimes, it would not make sense to use RQA measures basing
on vertical recurrence structures (like laminarity or trapping time) [231].

16.3.7 Indicators of nonstationarity and transition analysis
RQA is powerful for the analysis of slight changes and transitions in the dynamics of a
complex system. For this purpose we need a time-dependend RQA (a RQA series) what can
be realised in two ways (Fig. 16.5):

(1) The RP is covered with small overlapping windows of size w spreading along the LOI
and in which the RQA will be calculated, Ri, j |k+w−1

i, j=k .
(2) The time series (or phase space trajectory) is divided into overlapping segments

x i |k+w−1
i=k from which RPs and subsequent RQA will be calculated separately.
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Figure 16.5: Two possibilities of windowed RQA: (A) Windowing of time series and (B)
windowing of RP. The example is an auto-regressive process: x i = 0.95x i−1+0.05x i−2+0.9ξ
(where ξ is white Gaussian noise), the RP is calculated using a constant number of neighbours
(10% of all points) and without embedding. The sub-RPs at the bottom clearly demonstrate
the differences between the two approaches.

Such time dependent approach can also be used to analyse the stationarity of the dynam-
ical system.

Here we should note the following important points. The time scale of the RQA values
depends on the choice which point in the window should be considered as the corresponding
time point. Selecting the first point k of the window as the time point of the RQA measures
allows to directly transfer the time scale of the time series to the RQA series. However, the
window reaches into the future of the current time point and, thus, the RQA measures repre-
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sent a state which lies in the future. Variations in the RQA measures can be misinterpreted as
early signs of later state transitions (like a prediction). A better choice is therefore to select
the centre of the window as the current time point of the RQA. Then the RQA considers
states in the past and in the future. If strict causality is required (crucial when attempting
to detect subtle changes in the dynamics just prior the onset of dramatic state changes), it
might be even useful to select the end point of the window as the current time point of the
RQA (using embedding we have to add (m−1)τ−1). For most applications the centre point
should be appropriate.

Another important issue can rise from the different windowing methods (1) or (2),
which are only equivalent when we do not normalise the time series (or its pieces) from
which the RP is calculated and when we chose a fixed threshold recurrence criterion. If
we normalise the time series just before the RP calculation, we get differently normalised
segments resulting in different sub-RPs (and thus different RQA results) than such derived
directly by moving windows from the RP of the entire time series (Fig. 16.5 and Tab. 16.1).
A similar problem arises when we use a fixed number of nearest neighbours for the definition
of recurrence, because it is a big difference considering the entire time series in order to find
the k nearest neighbours or just a small piece of it. Nevertheless, both approaches (1) and
(2) can be useful and depend on the given question. If we know that the time series shows
some nonstationarities or trends which are not of interest, then approach (2) can help to find
transitions neglecting these nonstationarities. But, if we are interested in the detection of the
overall changes (e.g., to test for nonstationarity), we should keep the numerical conditions
for the entire available time constant and chose approach (1). Anyway, for each RQA we
should explicitly state how the windowing procedure has been performed.

Table 16.1: Selected RQA measures derived from windowing of time series (top) and
windowing of RP (bottom) of an auto-regressive process and windowing as shown in Fig. 16.5.

Window 1–250 251–500 501–750 751–1000
RR 0.10 0.10 0.10 0.10
DET 0.62 0.74 0.48 0.79
L 3.13 3.69 2.75 3.75

Window 1–250 251–500 501–750 751–1000
RR 0.18 0.12 0.20 0.19
DET 0.81 0.81 0.69 0.95
L 3.78 4.27 2.90 9.50

The choice of the window size itself needs the same attention. Because the RQA measures
are statistical measures derived from histograms, the window should be large enough to
cover a sufficient number of recurrence lines or orbits. A too small window can pretend
strong fluctuations in the RQA measures just by weak statistical significance (the RQA
measure TREN D is very sensitive to the window size and can reveal even contrary results,
cp. Fig. 16.7B). Therefore, conclusions about nonstationarity of the system should be drawn
with much care. Moreover, statements on stationarity of the system itself are questionable at
all (if not enough knowledge about the system is available), because detected nonstationarity
in an observed finite time series does not mean automatically nonstationarity in the underlying
system. For example, an auto-regressive process is stationary by definition, but its RP and
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RQA can reveal a nonstationary signal (Figs. 16.6 and 16.7).
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Figure 16.6: RP of the same auto-regressive process as presented in Fig. 16.5, which is
by definition stationary. The RP is calculated using maximum norm, ε = 2 and without
embedding.
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Figure 16.7: Two exemplary RQA measures, (A) recurrence rate RR and (B) paling trend
(TREN D), of the auto-regressive process as presented in Fig. 16.5 for three different window
sizes w (w = 75,150,250). (A) The strong variation in RR pretends a nonstationarity
in the signal. (B) TREN D depends rather strongly on w, resulting in contrary outcomes,
e.g., revealing high values for w = 250, but small values for w = 75 at the same time
period t = 700 . . . 800. The RQA is calculated using maximum norm, ε = 0.3 and without
embedding (the windows are moved by w/2, i.e., 50% overlap; the RQA time point is set to
the centre of the RQA window).

16.3.8 Significance of RQA measures
Related to the preceding issue on windowed RQA is the question on the significance of the
RQA variation. A sub-optimal scaling of the variation of the RQA measures can mislead to
conclusions that the studied system has changed its regime or that it would be nonstationary
(Fig. 16.8A, B). Therefore, it is strongly recommended to cross-check the scaling of the
presentation and to present confidence intervals (Fig. 16.8C, D). Confidence intervals can
be calculated in various ways, but we should avoid to derive them by simply shuffling the
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Figure 16.8: Two exemplary RQA measures, (A, C) determinism DET and (B, D) laminarity
(LAM), of the auto-regressive process as presented in Fig. 16.5. (A, B) The scaling of the
y-axis is affecting a strong variation in the RQA measures – a potential of wrong conclusions.
(C, D) Considering a 5% confidence interval of the RQA measures (details can be found in
[234]) and a better value range for the y-axis, we cannot infer that the values of the RQA
measures as shown in (A) and (B) significantly vary. The RQA is calculated using a window
size of w= 250 and a window step of ws = 20, using maximum norm, ε = 0.3 and without
embedding (the RQA time point is set to the centre of the RQA window). LAM is the fraction
of recurrence points forming vertical lines in an RP (analogously as DET for the diagonal
lines).

original data. One approach could be a bootstrap resampling of the line structures in the RP
[234, 341]. Another approach fits the probability of serial dependences (diagonal lines) to a
binomial distribution [145]. Whatever approach we chose, the estimation of the confidence
intervals is not a trivial task, but in the future the standard software for RQA should include
such tests.

A common statement on recurrence analysis is that it is useful to analyse short data
series. But we have to ask, how short is short? The required length for the estimation of
dynamical invariants will be discussed in the following Subsect. Applying RQA analysis we
should be aware that the RQA measures are statistical measures (like an average) and need
some minimal length that a variation can be considered to be significant.

16.3.9 Dynamical invariants from short time series
An RP analysis is appropriate for analysing short and nonstationary time series, as it is often
stated in many reports [95, 339, 439]. However, this statement holds actually only for the
heuristic measures of complexity as introduced for the RQA or for the detection of differences
or transitions in data series. If we are interested in the dynamical invariants derived from
RPs, the length N of the time series becomes a more crucial part like it is for the standard
methods of nonlinear data analysis.

The derivations of dimensions (D1, D2) and dynamical invariants (like K2) from the RPs
hold only in the limit N →∞ and small ε (ε→ 0). Nevertheless, an estimation of dynamical
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invariants from shorter time series can be feasible. We have to regard the following factors if
discussing the time series length: the number of orbits representing stretching, the number
of recurrences filling out a sufficient part of the attractor, and the number of data points
necessary for an acceptable phase space reconstruction [425]. Since these factors may
require different minimal lengths, the largest of these lengths should be considered.

For example, numerical considerations for the estimation of the attractor (correlation)
dimension D2 using the Grassberger-Procaccia algorithm [124] lead to the requirement
log N >

D2
2 log( 1

% ) (where % = S
ε is the fraction the recurrence neighbourhood of size ε

covers on the entire phase space of diameter S) [88]. Considering a % = 0.1 and a decimal
logarithm, for finding a D2 = 10 we need at least N = 100, 000 data points. Furthermore, a
% = 0.1 is actually too large and we need much smaller ε, which consequently provokes that
again a larger N is required.

For Lyapunov exponents (and analogously for K2), a rough estimate based on the men-
tioned requirements suggests minimal time series lengths of 10D2 to 30D2 (with attractor
dimension D2) [425]. Accordingly, a system with D2 = 3 requires 1000–30,000 data points
(a more strict consideration even requires log N > D2 log( 1

% ) [88]).
Therefore, too guarantee useful results we need long time series. If we calculate dimen-

sions or K2 from short time series the results are probably worthless.

16.3.10 Synchronisation and line of synchronisation
Cross recurrence plots (CRPs) can be used for the investigation of the simultaneous evolution
of two different phase space trajectories [157, 228, 236, 452]. The line of identity (LOI) in
the RP becomes a line of synchronisation (LOS) in the CRP. Two more-or-less identical systems
but with differences on the time-scale will reveal a bowed LOS [230, 236]. An off-set of the
LOS away from the main diagonal is an indication of a phase shift or a delay between the
two considered systems.

However, because this method tests if the two trajectories visit the same region in the
phase space, it can be used only to study complete synchronisation (CS) or a kind of a
generalised correlation (although with possible delays), or to get the relation between the
transformations between their time-scales. Moreover, the data under consideration should
be from the same (or a very comparable) process and, actually, should represent the same
observable. Therefore, the reconstructed phase space should be the same.

For the study of the LOS the distance matrix may be more appropriate because it contains
more information, especially if the data series show nonstationarities. Then, the LOS can
be found by using efficient algorithms like dynamic time warping [332]. Nevertheless, it is
always very important to check if the found LOS makes sense; for instance, it is possible to
find several LOS (cp. Application in magneto-stratigraphy in [239]).

16.3.11 Macrostructures and sampling
For the visual interpretation of an RP and also for a reliable RQA we should remember that
our data are discretised time or data series. The sampling of the signal has an importance
which should not be underestimated. If the sampling frequency is just one magnitude higher
than the system’s main frequencies, and their ratio is not a multiple of an integer (i.e., we
have an intrinsic phase error), an interference triggered by the sampling of the continuous
signal can produce large empty regions in the recurrence matrix, although they should be
there [96, 97]. Nonstationarities or modulations in frequency or phase cause non-trivial gaps
or macrostructures in the recurrence matrix (Fig. 16.9). We should be aware that such gaps
can occur in particular when we use a low sampling frequency. The recurrence structure
of interest can appear rather different; diagonal lines can vanish or can be reduced to just
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Figure 16.9: RP of a modulated harmonic oscillation sin(2π1000(π+ t) + 2π sin(2π44t)t).
(A) Non-trivial macrostructures (gaps) in the RP due to the interference of the sampling
frequency of 1 kHz and the frequency of the modulated harmonic signal. (B) Corresponding
RP as shown in (A), but for a higher sampling frequency of 10 kHz. As expected, the entire
RP now consists of the periodic line structures due to the oscillation. Used RP parameters:
dimension m= 3, delay τ= 1, recurrence threshold ε = 0.05σ, L∞-norm.
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Figure 16.10: RP of the x-component of the Rössler oscillator, Eq. (16.2), with parameters
a = b = 0.2, c = 5.7. The sampling time is (A) ∆t = 0.05 and (B) ∆t = 1. The embedding
was chosen in both settings to be equivalent: dimension in (A) and (B) is m= 3, the delay
in (A) τ = 20, but in (B) τ = 1; recurrence threshold ε = 1.5 (maximum norm). Due to the
low sampling in (B), many diagonal lines vanish.

single points yielding in biased RQA measures (Fig. 16.10).
Nevertheless, tiny modulations in frequency or phase in oscillating signals can be detected

by RPs, which are non-detectable by standard methods (spectral or wavelet analysis). This
turns RPs to a powerful tool for the analysis of slight modulations in oscillatory signals like
audio signals.

Please note that macrostructures are also an apparent problem when displaying large RPs
on a computer screen (and up to a certain amount on print outs). The resolution of modern
computer screens is around 72 ppi (points per inch, 72 ppi corresponds to around 28 points
per centimetre). The presentation of RPs in a window of, e.g., 6 inch allows only the display
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Figure 16.11: Screenshot of the RP as shown in Fig. 16.9B for two different window sizes of
display on a computer screen (using MATLAB®). Although the RP consists only on continuous
diagonal lines as represented in Fig. 16.9B, its size (N = 5511) exceeds the screen resolution
and requires downsampling, leading to artifical macrostructures.

of around 430 points. Larger RPs will be rendered using downsampling or interpolation,
resulting in similar interference effects and artificial secondary macrostructures as described
above; such macrostructures will even change for different window sizes (Fig. 16.11).
Therefore, we should take care in visual interpretation of patterns found in large RPs which
are represented on computer screens.

16.4 Conclusions
We have illustrated several problems regarding the application of recurrence plots (RPs)
and recurrence quantification analysis (RQA) which need our attention in order to avoid
wrong results. The uncritical application of these methods can yield to serious pitfalls.
Therefore, it is important to understand the basic principles and ideas behind the measures of
complexity forming the RQA and the different techniques to study the numerous phenomena
of complex systems, like transitions, synchronisation, etc. Nevertheless, the recurrence plot
based techniques are still a rather young field in nonlinear time series analysis, and many
open questions remain. For example, systematic research is necessary to define reliable
criteria for the selection of the recurrence threshold, and the estimation of the confidence of
the RQA measures will be a hot topic in the near future.
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17. Avoiding Embedding Artifacts

Paper 16 D. Wendi, N. Marwan, B. Merz: In search of determinism-sensitive region to
avoid artefacts in recurrence plots, International Journal of Bifurcation and Chaos, 28(1),
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R The presented work in this chapter is a student’s paper, where the approach was mainly
my idea.

Abstract
As an effort to reduce parameter uncertainties in constructing recurrence plots, and in
particular to avoid potential artifacts, this paper presents a technique to derive artifact-safe
region of parameter sets. This technique exploits both deterministic (incl. chaos) and
stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is
useful when the evaluated signal is known to be deterministic. This study focuses on the
recurrence plot generated from the reconstructed phase space in order to represent many
real application scenarios when not all variables to describe a system are available (data
scarcity). The technique involves random shuffling of the original signal to destroy its original
deterministic characteristics. Its purpose is to evaluate whether the determinism values of
the original and the shuffled signal remain closely together, and therefore suggesting that
the recurrence plot might comprise artifacts. The use of such determinism-sensitive region
shall be accompanied by standard embedding optimization approaches, e.g. using indices
like false nearest neighbor and mutual information, to result in a more reliable recurrence
plot parameterization.

17.1 Introduction
Recurrence is a fundamental property of many dynamical systems, which can be exploited
to characterize the system’s behavior in phase space, while a recurrence plot (RP) is the
visualization tool for the analysis of this property. In this study, the phase space reconstruction
method of time delay embedding [286, 375] is used (Eq. 17.1). Such a reconstruction is

https://doi.org/10.1142/S0218127418500074
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particularly useful when not all variables required to describe the system are available (i.e.
data scarcity or limited set of observation variables), and where the topology of the system
dynamics ~̂x i can still be created using only a single variable or observation ui .

~̂x i =
m
∑

i=1

ui+( j−i)τ~e j . (17.1)

where m is the embedding dimension and τ is the time delay. The vectors (~e j) are unit vectors
and span an orthogonal coordinate system (~ei · ~e j) = δi, j. The calculation of recurrence as
elements of the RP is based on Eq. 17.2:

Ri, j(ε) = Θ(ε − ‖~x i − ~x j‖), i, j = 1, ..., N . (17.2)

where N is the number of measured points ~x i ,ε is a threshold distance, ‖ · ‖ is a norm and
Θ(·) the Heaviside function.

The RP is basically the visual representation of the square matrix, in which the matrix
elements correspond to those times at which a state of a dynamical system recurs (columns
and rows correspond then to a certain pair of times). RPs are especially useful for non-
stationary pattern in time series [86, 239]. Besides using RPs for the visual analysis of
time series, RPs can also quantify structures hidden within the series through recurrence
quantification analysis (RQA)[239, 442]. In RQA, important elements are the diagonal
and vertical/horizontal straight lines because they reveal typical dynamical features of the
investigated system, such as range of predictability, chaos-order, and chaos-chaos transitions
[397]. One of the prominent diagonal line measures is called determinism (DET, Eq. 17.3),
from which the system predictability can be inferred.

DET =

∑N
l=lmin l P(l)
∑N

i, j Ri, j

(17.3)

where P(l) = {li; i = 1, ..., Nl} is the histogram of the lengths l of diagonal structures, and
Nl is the absolute number of those diagonal lines.

For a deterministic signal (including chaos), many diagonal lines in the RP are typical,
leading to high value of DET [225]. However, single, isolated recurrence points can occur if
states are rare, if they do not persist, or if they fluctuate heavily. For instance, stochastic or
random signals would comprise such single points and result in a very low DET.

Since the use of RPs relies on the reconstructed phase space, its parameters uncertainty
includes those of the phase space reconstruction method, such as embedding dimension
(m) and time delay (τ), in addition to the recurrence threshold (ε). Standard approaches
for finding optimal embedding parameters are false nearest neighbours (FNN) for m, and
auto-correlation or mutual information (MI) for τ [109, 165, 170]. Other methods include
wavering-products, fill-factor or integral local deformation [40]. Moreover, Marwan [225]
concludes that τ is sometimes overestimated by auto-correlation and mutual information,
and that the choice of the embedding dimension has to be considered with care, as a wrong
choice artificially increases diagonal lines, and hence DET, and leads to artifacts. For instance,
an RP resulting from a random series should exhibit scattered or non-deterministic patterns
(i.e. single points). However, when m increases to 2 and beyond with τ = 1, the number
and the length of diagonal lines start to increase and dominate the plot as artifacts. This
may be misinterpreted as if the series was highly deterministic (Fig. 17.1).

In this study, we focus on the artifacts related to these embedding parameters. The
impact of the recurrence threshold (ε) is not elaborated, since the selection of the optimal
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Figure 17.1: Misleading DET values of random series (a); sub-figure (b) shows the artificial
increase of DET when embedding dimension (m) increases, while (c) to (e) show the
corresponding RP with the increase of diagonal line structures at high embedding dimension
(m= 7).

values of the recurrence threshold has been discussed earlier [111, 172, 258, 338, 383, 442,
445]. Hence, the recurrence threshold is fixed to a 10% recurrence rate (recurrence points
density). Supplementary information on the impact of changing this threshold is enclosed
in the appendix. The appendix also includes the evaluation of DET values of a correlated
random series, using an AR1 series as example, to showcase that high DET values are indeed
associated with deterministic systems instead of its auto-correlation structures, although
there are also cases at certain parameter values where the number/ length of diagonal lines
artificially increase. It is important to note that the proposed technique is not intended to
be used as a new, independent method, but rather as an additional consideration during
parameterization, when the dynamical system is known to be deterministic.

17.2 Methodology

Artificially biased line length distributions due to the embedding can overlay the true line
length distributions and lead to wrong conclusions. Hence, it would be desirable to separate
the contribution of the embedding induced line length distributions from the real underlying
dynamics. However, separating both contributions is not possible without additional knowl-
edge about the system (such as precise model or amount of observational noise). Therefore,
we propose an approach that minimizes the contribution of the embedding. This approach is
based on comparing the fraction of recurrence points that form diagonal lines in the RPs of
the original time series (which includes both the real underlying dynamics as well as the
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embedding effect) with that of a random time series (which consists of the embedding effect
only). As random time series we use simply shuffled versions of the original time series,
because this preserves its value distribution and, thus, allows to use the same recurrence
threshold and allows to compare the resulting RPs. As mentioned above, RPs of random time
series should consist mainly of single points, but embedding artifacts would increase the
fraction of recurrence points that form diagonal lines in the RP. Thus, this fraction measure
is well suited for our purpose. Moreover, this measure is equal to the DET measure. Other
measures that use the line length distribution (e.g., average and longest line length, entropy
of the length distribution) would be possible but are less intuitive and interpretable. The
advantage of the DET measure is that it considers the influence of scattered points that
appears within the RP as well in addition to just the diagonal lines. While the index of
average and longest line length could easily suffer from large statistical uncertainty and are
easily influenced by a few extreme values.

In order to compare the line length distributions of the original and the shuffled time
series, we define DETo for the original time series and DETi for the shuffled version. For a
number of shuffling iterations (i.e. n times), the resulting difference (called determinism
distance, see Eq. 17.4) is calculated for each shuffle (Fig. 17.2).

Figure 17.2: Scheme of the proposed artifact avoidance method.

For non-optimal embedding, we expect a rather high contribution of the embedding
in the line length distributions in both, the original time series and in the shuffled version.
Therefore, DET should have high values in both cases and should not differ so much from
each other. For optimal embedding, and if there are deterministic structures in the RP of
the original time series, the DETi of the shuffled time series should be very low whereas
DETo of the original time series has still larger values. The distinctive high and low values of
DET in deterministic and stochastic systems are exemplified in this paper using Lorenz and
Gaussian random series. In this example, both the original and embedded Lorenz systems
show DET values of around 0.8 to 0.9 with τ fixed at 3 following the first minimum of its
auto-mutual information, with m varying from 1 to 10. In contrast, for the Gaussian random
series, the DET values are shown to be between 0 to 0.2 (Fig. 17.3).

The resulting difference (determinism distance) between DETi and DETo would therefore
be high. The undesired effect by the embedding should be minimal for the difference between
DETi and DETo. Both median (Md) and standard deviation (Sd) of these distances are used
for identifying this determinism-sensitive region (Eqs. 17.4 and 17.5). The further (larger)
the Md of each parameter combination, the safer it is in terms of avoiding the mentioned
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Figure 17.3: Examples for high and low DET values from deterministic (Lorenz) and stochastic
(Gaussian random) signals.

artifacts, under the condition that Sd should be reasonably small (e.g. within 0.1).

Md = Mediani=1...n(|DETo − DETi |). (17.4)
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where DETo and DETi are the recurrence determinism values of the original series and each
shuffled iteration (i), and n is the total number of shuffling iteration.

17.3 Case study applications

This paper presents 2 application examples using Lorenz series derived from a mathematical
model, and daily runoff observations from the station Burghausen at the Salzach River
in south Germany. These signals are chosen for its non-linear characteristics with known
presence of determinism [221, 354]. The resulting region of artifact-safe parameter set
will be presented and discussed in section 4. Caution should be taken when τ= 1 because
artificially high DET values can lead to misinterpretations (Figs. 17.1b, d, and e), and hence
should be excluded. In addition to the resulting artifact-safe region as the boundary of the
parameter sets, the final choice of the parameter set is still necessary to be optimal, i.e.
being able to reconstruct the topology of system dynamics and minimal in the sense not to
over-reduce data points in the signal. There are many approaches to find optimal embedding
parameters, such as the standard approaches mentioned in section 17.1.

17.3.1 Lorenz Series
The Lorenz system with known non-linear, non-periodic, 3-dimensional and deterministic
chaos behaviour (i.e. with parameters α = 10, ρ = 28, β = 8/3 and sampling time
∆t = 0.05) is chosen as the first application example, following Eq. 17.6) [204, 357]. Its RP
and characteristics have also been studied by Marwan et al. [239]

d x
d t
= α(y − x);

d y
d t
= x(ρ − z)− y;

dz
d t
= x y − βz. (17.6)
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This Lorenz system is described by 3 variables and integrated using the Euler scheme,
and hence, we know the 3-dimensional phase space that describes the topology of the system
dynamics. In this study, the x variable is used as our Lorenz series test set (Fig. 17.4a) with
its phase space reconstructed using the time delay embedding method. Thereafter, its DET
is calculated. The reliability of these DET values is checked by using median and standard
deviation of their determinism distance values (Md and Sd) to qualitatively evaluate how
much the constructed RP of a certain parameter set is influenced by artifacts.

This Lorenz series is derived from a mathematical model with well-known phase space
topology and recurrence characteristics, whereas real world observations are most likely
contaminated by noise. Therefore, we also investigate the impact of noise on the method, i.e.
in respect to the values of determinism and determinism distance. Gaussian white noise with
a magnitude range corresponding to the standard deviation of the Lorenz signal is applied,
i.e. added to the signal (Eq. 17.7),

x̃(t) = x(t) + kβ(t). (17.7)

where, x̃(t) is the resulting new series with the addition of noise and x(t) is the original
series (Lorenz); k is the noise level, while β(t) is the Gaussian white noise with magnitude
range corresponding to the standard deviation of x(t). The noise levels used are 5%, 10%,
30% and 50%. For each of the noise-added signal, its determinism and determinism distance
are calculated.

17.3.2 River Runoff Series
The second test application uses daily river runoff observations extracted from station
Burghausen in south Germany for the year 1961. This station measures the streamflow of
the Salzach River with a catchment area of 6,600 km2. The time series (Fig. 17.4b) is used as
a test set representing real world data, i.e.it is potentially non-stationary and contaminated
by noise and observation error.

Figure 17.4: Test applications of (a) Lorenz – x variable and (b) Burghausen daily runoff
series (1961).

17.4 Results and Discussion
This section presents the results of our proposed method for selecting an artifact-safe param-
eter region with the assumption of recurrence rate fixed at 10%. The range of embedding
parameters bounds embedding dimension (m) from 1 to 10 and time delay (τ) from 1 to 20.
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17.4.1 Lorenz Series
The Lorenz series is known for its deterministic feature, i.e.high determinism value, yet
certain parameter combinations can give incorrect, low determinism values, e.g.when m = 1
or m = 10,τ = 6 (Figs.17.5a, b, and c). Increasing the time delay at high embedding
dimension is also seen to thicken the line structures of the RP (Fig. 17.5i). Low determinism
values reflect non-optimal parameterization, and hence, misleading RP structures (Figs.17.5d
and g) with diagonal lines structures as wobbly and perpendicular to the main diagonal [239].
In order to assess the reliability of the resulting RP corresponding to the m and τ parameter
combinations, the proposed shuffling techniques is applied to find the determinism-sensitive
region.

Figure 17.5: Recurrence characteristics of the chaotic, deterministic Lorenz signal: (a)
determinism corresponding to m and τ; (b) change in determinism corresponding to an
increase of the embedding dimension (m) from the RP, with τ = 1, 3, and 10; (c) change in
determinism corresponding to an increase of the time delay (τ), with m = 1, 3, and 10; (d)
to (f) RP of different embedding dimension with fixed τ = 1; and (g) to (i) RP of different
embedding dimension with fixed τ=3. All RPs and recurrence measures are calculated based
on fixed 10% recurrence rate.
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Figure 17.6: Determinism distance of the Lorenz series: (a) median (Md) and (b) standard
deviation (Sd) of determinism distance between the RP of shuffled and original Lorenz series.
(c) and (d) show the median determinism distance corresponding to τ = 1, 3, 10 and m = 1,
3, 10.

Figure 17.7: Embedding parameters for the Lorenz series resulting from standard approaches:
(a) false nearest neighbor (FNN) with median and bounds derived from parameter set
1≤ τ≤ 10, and (b) mutual information (MI).
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Figure 17.8: Impact of noise levels of the Lorenz series on (a) false nearest neighbor, (b)
mutual information, (c) determinism, and (d) median determinism distance extracted at
m=1, 3, 5 with τ=1. (e) and (f) present the extracted values with parameter bounds of
3≤ m≤ 5 , τ=3 and 10, and 10% recurrence rate (ε). Noise added is Gaussian white noise
with noise levels derived from the percentage of the signal standard deviation.
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Using the proposed technique (n= 100 shuffles), Md is low for the case without embed-
ding (m = 1) as well as for τ = 1, when m> 1 (Fig. 17.6). The latter suggests artifacts due
to embedding. Those parameter values where Md is high, e.g. for τ≥ 2, when m> 1, can
be considered to be less influenced by embedding artifacts. It can be noticed that when τ
and m are higher, Md starts to decrease and to fluctuate, as indicated by Sd . In this case, the
use of the median is quite reliable due to the low Sd value (i.e. below 6%).

The identified determinism-sensitive region is suggested to be referenced with the stan-
dard approaches, such as FNN and MI, to find the optimal parameter set. This also serves to
prevent the use of unnecessarily high parameter values that result in the reduction of data
points (i.e. by (m−1)τ). For instance, in the case of the Lorenz series, the optimal parameter
set found by the standard approach is m = 3 and τ = 3 (Fig. 17.7) which coincides well
with the domain of high Md values.

To investigate the impact of noise as in a real world scenario, Gaussian white noise with
different noise levels is added to the signal as described in section 17.4.1. Figs. 17.8a and b
show both false nearest neighbor and mutual information characteristics for the added-noise
signal. The false nearest neighbor approach slightly increases at the optimal dimension of 3
causing a shift to the next dimension value, i.e. m = 4). When the noise level reaches 30 and
50%, the mutual information characteristics start to differ from the original, whereas the
noise levels of 5 and 10% still preserve the original signal characteristics. Noise needs to be
handled with care, as high level noise contamination potentially alters the determinism of the
signal. It decreases in this case when Gaussian white noise is added, hence the determinism
distance between the original and the shuffled series gets smaller.

17.4.2 River Runoff Series
A river runoff series is used to represent an example for field observations which are usually
contaminated with noise. River runoff is typically a non-linear deterministic series and
exhibits chaos properties [221, 293, 354], hence, its DET is expected to be high. However,
its recurrence determinism is low when parameter m = 1 and when both m and τ reach
high values, e.g. m> 8 and τ > 9 (Fig. 17.9a). For instance, for τ = 10 the DET value starts
to decrease when m> 7 (Fig. 17.9b), while for m= 10 the increase of τ (i.e. above 4) also
starts to reduce DET values (Fig. 17.9c).

Figure 17.9: Recurrence characteristics of daily river runoff series: (a) determinism corre-
sponding to m and τ, (b), change in determinism corresponding to increasing embedding
dimension (m) from the RP, with τ=1, 3, 7; and (c) change in determinism corresponding
to increasing time delay (τ), with m=1, 3, 7.
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When evaluated through 100 shuffles, the parameter set of τ = 1, m > 1 should not
be used due to the clear artifact potential suggested by its low determinism distance (see

Figure 17.10: Determinism distance of runoff series: (a) median and (b) standard deviation
of the determinism distance between the RP of shuffled and original runoff series. (c) and
(d) show the median determinism distance corresponding to τ= 1, 3, 10 and m= 1, 3, 10.

Figure 17.11: Embedding parameter selection for daily river runoff using the standard
approach: (a) false nearest neighbor with median and bounds derived from parameter set
1≤ τ≤ 10 and (b) mutual information with first minimum found at τ= 10
.
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Fig. 17.10a: first column and Fig. 17.10c: black line). The artifact-safe region could then be
deduced from the high determinism distance domain corresponding to different combination
parameter sets. For example when median determinism distance values above 0.8 imply
high dissimilarity between the recurrence of the original signal and the shuffled ones (see
Fig. 17.10a). The Sd values in this case are also low to safely use the median values (see
Fig. 17.10b).

As cross-checked with the standard approach of parameter identification (Fig. 17.11a),
the suggested optimal embedding parameters in this case would be τ = 10 days and m= 5.

17.5 Summary
We propose a method to identify a determinism-sensitive parameter region with minimal
impact of artifacts due to embedding when constructing a Recurrence Plot (RP). The method
utilizes both deterministic (incl. chaos) and stochastic characteristics of recurrence quantifi-
cation, i.e. diagonal structures, as indicated by their determinism values. It is useful when
the evaluated signal is known to be deterministic. The method involves randomly shuffling
the time series for an abundant number of times in order to destroy its original characteristics
and its determinism. Thereafter, determinism values are calculated for each shuffle iteration
and compared with the determinism of the original signal at a range of parameters, resulting
in a measure called determinism distance.

The matrix of the median values of this measure is plotted to depict the determinism-
sensitive parameter region. The larger the determinism distance, i.e. the closer to 1, the safer
the parameter set is to avoid potential artifacts. The optimal parameter set can be selected
from the consideration of this artifact-safe region together with the standard approach of
using false nearest neighbors and mutual information and auto correlation.

Noise needs to be handled with care, since it affects the determinism structures of the
signal or decreases the determinism values, therefore reducing the determinism distance
between original and shuffled series. One could apply this method as an artifact-precautionary
measure especially when intending to choose high values of embedding parameters.
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Appendix A
The following figure describes the impact of recurrence threshold (i.e. recurrence rate) on
the determinism distance between the original and all shuffled Lorenz time series. It can be
seen that large recurrence threshold would lead the recurrence plot into artefact as implied
by its low determinism distance (Fig. 17.12 b, c, e and f). Similarly when τ = 1, m> 1, the
increase of recurrence rate further decrease the determinism distance (Fig. 17.12 d). This
confirms us to ignore the use of such parameter value regardless of the choice of recurrence
threshold. However when m= 1, there is an increase of determinism distance i.e peaking
at 20% recurrence rate and decreases thereafter (Fig. 17.12 d). Despite the increase, the
determinism distance is still regarded low (i.e. below 0.5).

Figure 17.12: Impact of recurrence threshold (i.e. recurrence rate) on determinism distances
(100x shuffles) corresponding to different embedding parameters. Note: on sub-figure a,
red and blue band lines are overlapped by green bands, hence not visible
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Both original and shuffled time series experience increase of their determinism values
when recurrence rate is increased (Fig. 17.13 a, b, c). However, unlike when m > 1 the
increase of determinism values is rather sharp, changing significantly from low to high.
While the shuffled series recurrence plots at m= 1, with recurrence rate of 20% (i.e. at the
peak of DET distance) still do not present any noteworthy deterministic features (Fig. 17.13
d, e, f). In this case, users should avoid using large threshold values and special attention
should be made on using such shuffling technique (i.e. when choosing m= 1).

Figure 17.13: Impact of recurrence threshold (i.e. recurrence rate) on determinism (black
line is resulted from original Lorenz time series, while the each coloured ones are resulted
from 100 shuffled series, while the color corresponds to different selection of τ) with m=1,
3 and 10 respectively for sub-figures a, b and c .Sub-figures d to e present an extracted
sample of the shuffled recurrence plot with fixed m= 1 and τ= 1, 3, and 10 respectively.
Note: on sub-figure a, red and blue band lines are overlapped by green bands, hence not
visible
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18. Summary and Outlook

Recurrence is a fundamental and general property of many systems studied in the geosciences.
However, using recurrence features for numerical investigations is mostly limited to classical
methods, such as power spectra or wavelet analysis. In my research I have developed and
extended the numerical method of recurrence plots (RPs) in order to apply it to specific
research questions in the geosciences. I have shown that RP based methods can be modified
and adopted to study different aspects such as classification, characterization, transitions,
couplings, external forcings, spatial patterns, etc. and that such analyses substantially enrich
quantitative geoscience by revealing successfully further insights to important and challenging
research questions.

18.1 Methodological developments

The main methodological contributions of this thesis are summarized in the following.

18.1.1 Selection of the recurrence threshold
For the selection of the recurrence threshold several rules of thumb have been suggested in
the literature, but no systematic study has considered the power of the RP approach with
respect to the threshold when detecting signals. In chapter 3, we have used the receiver-
operator characteristic (ROC) as a meaningful test statistic for a systematic study of the
performance of the RQA for detecting deterministic and stochastic signals and compared it
to the available rules of thumb. For the purpose of signal detection, we found that 5 to 6% of
the maximal phase space diameter would be the optimal value for the recurrence threshold.
The selection of the threshold with respect to other statistical properties like mean phase
space diameter or standard deviation (as often suggested in the literature) would not allow
a consistent selection criterion. This finding was confirmed recently by one of my students,
who finally suggested to use the quantiles of the distance distribution for the selection of the
threshold [177]. However, this selection schema still comes with an arbitrary number (the
5 to 6%) and even with a range where the threshold could be considered to be optimal. It
would be preferable, to have a selection scheme where the threshold is a fixed value and can
be directly calculated from some desired features in the RP.

In chapter 4, we developed the idea to use the network property of connectedness as a
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criterion for threshold selection. Such a threshold would be unique and directly computable.
For a network, the second largest eigenvalue of the Laplace matrix represents whether the
network has isolated nodes or whether everything is connected (for the latter the value
is larger zero). Using this relationship, we suggested to transform the RP matrix into the
Laplace matrix and check at which value for the recurrence threshold the second largest
eigenvalue becomes larger zero. The resulting recurrence threshold is unique and ensures
that all states are connected by recurrences (see also chapter 11 on recurrence networks).

18.1.2 Recurrence plot features
The visual appearance of an RP already allows for a first impression of the dynamics [239].
We can distinguish large-scale impressions (typology), such as homogeneous, periodic, drift,
and disrupted ones, important, e.g., for the study of stationarity. Even more important
and used for the recurrence quantification are the small-scale structures that can be found
in the RP (texture; Fig. 1.3D). These structures can be typically classified in single dots,
diagonal lines as well as vertical and horizontal lines [239]. In addition, even bowed lines
may occur, i.e., lines with a non-constant slope. The shape of a bowed line depends on the
local time relationship between the corresponding close trajectory segments and have been
studied systematically in chapter 5. By knowing the meaning of the the local slope of the
lines in the RP, the method can be used for specific tasks in geoscientific data analysis: the
detection of changes in the temporal development of geological processes (e.g., changing
sedimentation rates) or the alignment of the time axes of two proxy measurements (see also
subsection 18.2.1).

The variation of the density of recurrence points along diagonals apart of the main diag-
onal corresponds to the probability of recurrence after a certain delay. This recurrence rate
distribution contains information about the time scales of the variability, such as the period
lengths of cycles and was considered in chapter 6. The application of the Wiener Khinchin
theorem allows to derive a specific power spectrum based on the recurrences, providing
information about the frequency components of the signal. In contrast to the standard power
spectrum estimation, the recurrence based power spectrum revealed all periods a nonlinear
signal was composed of (the standard approach found only two frequencies). Moreover, the
novel approach would allow us to analyse high-dimensional systems.

18.1.3 Extending the recurrence plot approach for spatial data
Recurrences are not only a property of states that change with time. We can also find spatial
recurrences, i.e., spatial structures that recur in the spatial domain. The investigation of
spatial recurrences can be of interest for the evaluation of the complexity of spatial patterns.
The extension of the RP concept to 2-dimensional or 3-dimensional spatial objects is not trivial
because the additional spatial dimensions require additional pair-wise tests of similarity
resulting in higher-dimensional RPs. In fact, an RP for a 2-dimensional spatial pattern will
have four dimensions, for a 3-dimensional object, the RP will be of six dimensions. In chapter
8, I have introduced a generalization of RPs and corresponding quantification for the study
of recurrences in higher dimensional objects and illustrated the potential by an analysis of
complex 3-dimensional medical images. Simplified versions of this generalized RP approach
have been used in other studies to analyse spatial complex patterns such as Turing structures
derived from reaction-diffusion systems [81, 98, 99, 259, 294, 315, 402].

Another purpose of RP analysis of spatial data is the investigation of recurring spatial
patterns over time. In chapter 9, we have used the mapogram as a metric to measure
differences between spatial information, such as differences between satellite images. By
thresholding the image differences of a series of images, we can produce an RP which
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represents recurring patterns over time and which can be further analysed, e.g., using
RQA or to derive the external forcing (as finally done in this chapter and summarized in
subsection 18.1.5).

18.1.4 Recurrence plot approach for high-dimensional data

In general, RP based studies have so far been restricted to rather low-dimensional systems.
However, when studying the complex behavior of real world systems, we often end up
with extended complex systems, and the question arises whether RP based tools can be
applied to high-dimensional systems, such as exhibiting high-dimensional chaos. Classic
characterization of complex dynamics by using, e.g., entropy [87], correlation dimension
[125], and Lyapunov exponents requires very long time-series [88] or the knowledge of the
differential equations of the system which are in real world examples not known. The study of
extended spatio-temporal dynamics is even more challenging because of the large degrees of
freedom. In chapter 7, I have investigated the performance of the recurrence based measures
of complexity for the detection of different dynamical regimes in the Lorenz96 model as an
example of a high-dimensional and extended dynamical system [168, 205]. This model is a
conceptual time-continuous linear lattice model and demonstrates fundamental aspects of
weather predictability. The surprising finding is that the recurrence measures (the classical
as well as the network based measures) can distinguish between the different dynamical
regimes even for quite short time series of such a high-dimensional system. The applicability
on extended dynamical systems suggests new application fields, such as analyzing satellite
time series imagery, as illustrated in chapter 7 (and summarized in subsection 18.2.2).

18.1.5 Extracting driving forces from recurrence plots

The potential of RPs to extract an external driving force from a measured time series was
demonstrated already in 1997 by Casdagli [45]. We have further improved this approach and
extended it to spatio-temporal data. By combining the mapogram approach for measuring
the pair-wise distance within a series of images with a kernel estimator the systemic changes
that result from an external forcing become visible (and extractable) in the RP. The variation
of the external forcing is visible in the RP along horizontal bands. However, this approach
requires the existence of at least two parts of the state space where the trajectory stays longer
than the period of the main cycle, such as present in the Lorenz system, but also in many
real world examples. Testing this approach at an ecological phenomenon has demonstrated
its potential (see subsection 18.2.4).

18.1.6 New measures for recurrence plot quantification

In chapters 11 and 12, I have introduced and discussed the concept of complex network
analysis of RPs. The RP was identified as the adjacency matrix of a complex network, allowing
the complex network measures to be used to quantify the recurrence properties of the phase
space trajectory. In contrast to the classical recurrence measures basing on the line structures
in RPs and, thus, characterizing the dynamical properties of the system, these network based
measures capture the geometric properties associated to a trajectory in phase space. Such
complementary information is useful when studying regime changes (subsection 18.2.3),
characterizing different dynamics [112, 455], or even for the detection of coupling directions
[103, 104]. In particular the transitivity coefficient T is appropriate because it quantifies
specific aspects of the geometry of the phase space trajectory and can be used to differentiate
between different dynamics (e.g., regular and irregular) [79, 241, 455].
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18.1.7 Coping with irregularities
Irregularly sampled time series are a frequent complication in Earth sciences (and also in
other disciplines, such as astrophysics). Regular spatial sampling of a palaeoclimate archive
(e.g., lacustrine sediment, stalagmite) translates into irregularly spaced sampling intervals
in the time domain due to varying deposition rates. For the representation of an RP, this
irregular sampling is not a problem, because we can simply use the available time points for
plotting the pair-wise recurrences. Quantifying the recurrence network structure by network
measures is also not a problem (as long as phase space reconstruction using time delay
embedding is not applied). However, for quantifying the line structures in an RP using RQA,
an equidistant time axis is required. One possible solution, often commonly used, could be
to interpolate the time series to an equidistant time axis.

As an alternative approach, in chapter 13 we have demonstrated the TACTS (Transfor-
mation costs time series) method that combines a difference filter with a specific resampling
procedure in order to get a time series with regular sampling. A difference filter is a simple
high-pass filter, where the resulting series is the difference of subsequent data points in
the original time series. By this procedure, trends and slow variations can be removed
from data. The novel TACTS approach compares two short subsequent sequences in an
irregularly sampled time series by measuring the effort (the cost) that is needed to transform
the first segment to the second one when we have only a limited set of operations for this
transformation. The operations are assigned with a cost: The minimal cost necessary for
such transformation can be used as the difference value, leading to the resulting, regularly
sampled difference time series. Such time series can then be further analysed with RPs and
RQA, e.g., in order to detect regime transitions or identify coupling regimes [244, 284]
(subsection 18.2.3).

18.1.8 Recurrence analysis of data with uncertainties
Dating uncertainties are a challenging problem in palaeoclimate research, because time
series analysis tools expect a fixed and true time information without uncertainties. In
chapter 14, we have introduced a concept that provides such a fixed and true time axis,
but, at the same time, incorporates the uncertainties. The uncertainties within the time
domain are transferred to the state domain (i.e., the proxies), resulting in a sequence of
probability distributions. Such a representation allows subsequent analyses to be carried
out with respect to the uncertainties, e.g., to reconstruct ensembles of chronologies [36]
or to perform an ensemble based correlation analysis [176]. Additionally, representing the
evolution of the system’s states using probability distributions requires also a redefinition of
the recurrence property. Instead of the exact (binary) statement that a selected state recurs,
the new approach provides the probability that this state might recur. The binary RP is, thus,
replaced by a probability matrix. Another problem is that the standard RQA measures are
not applicable to such a recurrence representation. Therefore, for a detection of regime
transitions, in chapter 14 an alternative approach based on the idea of network community
was proposed. This novel method can be used to indicate abrupt transitions in numerous
applications where uncertainties are important to be considered (three different examples
are described in this chapter).

18.1.9 Coupling analysis with recurrences
Based on the joint RP, a method for studying the interrelationship between dynamical systems
had been suggested [324, 456]. The idea is using the fraction of joint recurrences in the
joint RP (derived from two time series ~x i and ~yi), the joint recurrence rate JRR. This is the
joint probability of recurrences in both systems ~x i and ~yi and is then used to define a lagged
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recurrence-based measure of dependence. By considering a lag in this measure, we can infer
which system depends on the other one. In chapter 10, we introduce the procedure for the
detection of couplings in a complex system and apply it to study the complex interrelations
between the drivers of global temperature (see subsection 18.2.5).

18.1.10 Significance test for recurrence based transition detection
Transitions or regime changes in the dynamics of a dynamical system leave their marks in
the recurrence properties that can be identified using RPs and RQA. Several measures of
complexity have been introduced, representing different aspects of the dynamics. However,
the fundamental issue when drawing conclusions about the variation of these RP based
measures is whether the variation over time is significant or not (see also discussion in
subsection 16.3.8). In order to get an impression about the significance of the results, I have
developed and introduced a statistical approach that provides a confidence interval for these
RP measures in chapter 15. The proposed test uses the distribution of line lengths within all
sliding windows together and applies a bootstrap test on this merged line length distribution.
The performance of this test was demonstrated by a study of marine palaeoclimate proxy
data.

18.1.11 Potential problems and pitfalls in recurrence plot analysis
RPs and their quantification have a deep foundation in the theory of dynamical systems and
are easy to use but powerful tools for the investigation of a variety of scientific problems. The
striking visual characteristics of RPs as well as freely available software packages contribute to
the spread of RP based methods to various scientific disciplines (see chapter 2). Nevertheless,
users should be careful not to consider the approach as a magic black box that works on all
kinds of data [225, 231]. Given that the methods are indeed in some sense powerful and
adaptable to various problems, it is important that users know how these methods work and
have understood the ideas behind the RP and the measures of complexity derived from it.
An uncritical application can lead to serious pitfalls and mis-interpretations.

In chapter 16, I provide an overview on potential pitfalls related to the most common
aspects of RP based analysis. For example, I discuss the interpretation of the RQA measures
as indicators of non stationary, periodic, deterministic, or chaotic processes. The interference
between signal frequency with sampling frequency or even screen resolution can also produce
artificial macrostructures that disturb visual and quantitative analysis. The choice of the
embedding parameters (embedding dimensions and delay) is important in order to unfold
the dynamics. However, any higher embedding dimension causes spurious correlations
and artificially long line structures in the RP, affecting any quantification based on RPs. In
chapter 17, we suggest a procedure to evaluate exactly this effect by simply shuffling the
data and applying different embedding parameters. This allows us to estimate a range of
values for the embedding delay and dimension that would reduce this artifact.

18.2 Study of Recurrences in Earth processes
The developed methods for analysing the recurrence properties in geoscientific data have
demonstrated their potential by confirming previous findings of and revealed new insights
into specific Earth processes.

18.2.1 Integration of proxy records
The cross recurrence plot has been used to compare the temporal differences of two proxy
records and to derive the corresponding temporal alignment function (chapter 5). Rock-
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magnetic measurements (normalized remanent magnetization intensity and susceptibility)
from two cores sampled in an Italian lake represent similar variability but cannot be directly
integrated due to different sedimentation rates. The CRP provides a time transfer function
that has been used to align one of the two records with the other one. As a result, both
records finally share the same temporal sequence and can be integrated to create a stacked
record or further analysed using time series analysis.

18.2.2 Spatial recurrence analysis of vegetation variability
In the application of analysing spatially extended satellite image time series of vegetation
cover, I have investigated the contrasting dynamics which occur due to different landuse
and climate (chapter 7). I considered regions in Brazil and Spain, where the recurrence
analysis revealed mainly the seasonal variability, but with differences in the appearance of
the periodic patterns: for Spain the recurring patterns are more line-like, whereas for Brazil
they are more block-like, indicating substantial differences in the spatial dynamics. The RQA
measures allow the interpretation of these differences regarding the dynamics, with a more
erratic or chaotic variability in Brazil than in Spain. The vegetation (or land use) dynamics
in Brazil is probably less regulated and less predictable than in Spain. The example shows
the potential of recurrence based spatio-temporal analysis, for example, to study land use
changes, vulnerability, and vegetation dynamics [458].

18.2.3 Identifying palaeoclimate transitions
The main focus of the recurrence analysis in my research was the identification of changes and
transitions in palaeoclimate. For this task, I have used the regular RP approach, (chapter 15),
the recurrence network approach (chapters 4 and 11), and the TACTS approach for irregularly
sampled time series (chapter 13). Additionally I have strengthened this analysis with the
significance test developed in chapter 15.

Different marine Plio-Pleistocene palaeoclimate proxies were considered, such as the
terrigenuous dust flux record from the Atlantic (ODP site 659) and Alkenone palaeother-
mometry based SST estimates from the South China Sea (ODP site 1143) and from the
Arabian sea (ODP site 722). Although these proxies differ in nature, location, and how they
archive the climate signals, the recurrence analyses of these palaeoclimate time series have
unveiled global climatic transitions due to the Milankovich cycles, such as the transition to
the Northern Hemisphere glaciation, the intensification of the Walker circulation, and the
transition phase from glaciation to glacial-interglacial cycles. Moreover, temporal changes
of the recurrence measures can be used to understand the type of change. For example,
during the epochs of northern hemisphere glaciation, 3 to 2.5 Ma BP, elevated values of
RQA measure determinism and of network measure clustering coefficient (in Arabian and
South China sea) suggest that the climate dynamics was more regular, more predictable
than immediately before or after. This coincides with the known transition from the Early
Pliocene Warm Period towards an epoch of glaciation at around 3 Ma ago, because of the
beginning of a dominance of obliquity-driven climate variability (with a 41 ka period). A
similar result has been found for the Atlantic with elevated climate regularity between 3.2
and 3.0 Ma and between 2.3 and 2.0 Ma BP. The dominating Milankovich regime with 41 ka
cycles has changed between 1.3 Ma and 0.7 Ma BP to a regime with 100 ka cycles. This was
related to a transition from glaciation to a regime with glacial-interglacial cycles. Referring
to the alternating variation of the network measure transitivity for the South China Sea and
the low determinism value for the Arabian sea, this transition phase was probably neither an
abrupt nor a gradual one, but with alternating dominance of the mentioned Milankovich
cycles. The SST estimates are from the Asian monsoon realm, the dust flux record from the
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Atlantic; the mechanisms how the climate signal is archived into these proxies differ; and
furthermore, the temporal resolution differs for these records (with average sampling time
of 2000 and 2500 years for the SST estimates and of 120 years for the dust flux record) – all
these issues cause smaller and larger deviations in the timing and the type of the identified
transitions and would require a further, more comprehensive analysis including further proxy
records from different places.

A similar study (chapter 4) considered an aragonite proxy for the younger Pleistocene
measured in lake sediments from the Lake Lisan in the Near East. The RN analysis revealed
abrupt transitions between alternating episodes of highly regular and relatively less regular
dynamics. The periods of low regularity coincide with the known Bond and Heinrich events,
whereas during the interstadials, we found high regular dynamics. This indicated a dominant
role of the (more or less periodic) solar forcing via its influence on the temperature in the
higher latitudes. During phases of a colder North Atlantic (Bond and Heinrich events), the
solar forcing became less important for the local climate, but regional effects more important
and dominating, causing a more complex, irregular local climate variability. Cold events
(Bond events) have also been found in other Holocene palaeoclimate records based on
stalagmites collected in the Dongge, Tianmen, and Qunf cave in China (chapter 14). Here
the achievement was the detection of the abrupt transitions to weak Asian summer monsoon
states during the Bond events with explicit consideration of the age uncertainties.

In a further example, terrestrial, Holocene palaeoclimate records (based on speleothems)
from China and Australia have been analysed (chapter 13), where the irregular sampling
of the original time series was challenging to identify and compare the transitions. The
considered palaeoclimate proxy data represent the northern and the southern extent of the
complex East Asian-Indonesian-Australian summer monsoon, where the East Asian summer
monsoon and the Indonesian-Australian summer monsoon mutually influence each other.
The combination of the TACTS approach with recurrence analysis has identified periods
of alternating, see-saw like weaker and stronger regular dynamics for those palaeoclimate
records. The variation in regularity in the dynamics can be understood in terms of strong
and weak monsoons opposingly phased between Asia and Australia. A comparison with solar
variability suggested that the change from weak to strong monsoon in the East Asian summer
monsoon and, vice versa, in the Indonesian-Australian summer monsoon, was probably
triggered by solar variations via shifting the position of the the Intertropical Convergence
Zone (ITCZ) [414].

In general, recurrence analysis provides information about subtle changes and changes
in the type of the dynamics – complementing the information obtainable with the more
simpler statistics like time series mean and variance. This helps in better understanding the
mechanisms behind the palaeoclimate transitions.

18.2.4 Identifying external forcing from spatio-temporal data

By using the novel idea of combining mapogram with RPs, we have studied spatio-temporal
recurrences of phytoplankton growth in the Southern Californian Bight from 1998 to 2016
(chapter 9), where variation of chlorophyll concentration was derived from satellite and
in situ measurements in this region. The RP method has been used to derive the potential
external forcing that influences the phytoplankton growth. This analysis was repeated for
the sea surface temperature (SST) in the Southern Californian Bight and the results were
compared with the El Niño-Southern Oscillation index NINO3.4 in order to better understand
the mechanism of phytoplankton growth. We found remarkable coincidence between the
detected driving forces derived from the chlorophyll and SST data with the NINO3.4. This
indicates the impact of the El Niño-Southern Oscillation on the phytoplankton growth via
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SST. Moreover, we found significant regime shifts after 1998 and between 2014 to 2015 by
means of an abrupt change between two levels of the reconstructed forcing.

18.2.5 Identifying interactions in drivers of global temperature
In a student’s study we investigated the drivers of global temperature, such as the ENSO,
volcanic activity (represented by aerosols), greenhouse gas concentration, and solar irradi-
ance (chapter 10). We applied a recurrence based measure of conditional dependence to
two different time series representing global mean temperature (which extends from 1950
till present).

We found interactions and feedbacks at different time scales. For example, greenhouse
gases have the strongest impact on the global mean temperature on all time scales. ENSO
influences the global temperature at short time scales (half a year) but also on longer, decadal
time scales. Volcanic aerosols also affect the global temperature at different time scales, such
as immediate response (within few months) but also, because aerosols would have some
lifetime in the atmosphere, up to 5 and even 10 years. This reveals the important time scales
of the volcanic activity on the atmospheric processes.

Even more interesting are the interactions between the different drivers of global temper-
ature. We identified a feedback loop from the global temperature to the ENSO around the
quasi-biennial period. Greenhouse gases are influenced by both solar and volcanic activity
on time scales of 4 to 5 years, representing their influence on the Earth’s carbon cycle. At a
first glance, the detected influence of ENSO and solar activity on the volcanic activity might
be surprising. But the volcanic activity is represented in this study by aerosols and their
distribution in the atmosphere is strongly affected by solar activity and ENSO.

For a more visual representation of the findings, the complex interactions between and
within the global temperature and their different forcings were finally represented in form
of a network.

18.3 Outlook

The last decade has witnessed diverse methodological progress on recurrence plot based
methods and brought forward this method with respect to the challenging problems in
geoscientific data analysis. Nevertheless, many open questions remain and give potential for
future research. Some of them are summarised below.

An important question is whether a detected regime transition or change is abrupt or
gradual and how this can be separated by RPs. Questions, such as whether RPs and RQA
could identify the type of a shift [83] and whether they allow to create RP based precursor
indicators, are going in a similar direction. Such abilities are much desired, because they
would be helpful in investigating and predicting climate and ecological tipping points with
respect to the ongoing climate change.

From a palaeoclimate perspective, where uncertainties are a major confounding factor, it
is important to develop a quantification for probabilistic RPs. The key would be to find a
definition for line lengths in the probability matrices. Another important matter are changes
in the sampling time within one proxy record. Small changes are manageable, e.g., using
the TACTS approach [285]. But drastic sampling time differences, such as of factor 5 or
even 10, are possible and can, if interpolation is used, mimic changes in the dynamics
although changes are absent. The limits of the RP method with respect to such changes need
to be systematically investigated in order to avoid misleading result or to find alternative
recurrence definitions for this special case. A change in the sampling time can also require a
change in the embedding parameters, making a windowed analysis more complicated. On
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the other hand, a change in the embedding could also be a sign of a drastic change in the
system’s dynamics. In a first study we used such a change of the embedding parameters as
an indicator of a transition [269], but the effect on the RP was not investigated up to now.

As a final example, event-like data should be mentioned. First ideas suggest to use
the cost of transforming short sequences of events for the RP creation [373]. However,
time series with only few events are still difficult to characterise with RPs and to quantify
with RQA. The limits have not been worked out yet and alternative approaches, such as
event synchronisation [301] for the definition of recurrences have not been considered yet,
although they seem to be promising.

Apart from these methodological questions, some new lines of research are of further
geoscientific interest. For example, using further climate proxy records from different places
would allow to study the mechanisms of transitions in the Plio-Pleistocene climate. Further
research on how solar variability has influenced the monsoon regimes would also be necessary.
The question, whether certain climate regime transitions, such as the African humid period,
started and terminated gradually or abruptly, or whether they could even be considered as
tipping points, is also still open and requires interdisciplinary research.





Varves Comparison by DeGeer 1926 Varves Comparison by DeGeer 1926 
Geografiska Annaler, Vol. 8 (1926)

19. Acknowledgements

I am strongly thankful to my teacher, mentor, and friend Jürgen Kurths, who continually
supported and encouraged me to finish this step of my carreer, and who was always open to
my ideas which have finally been condensed in the presented thesis. Without his strong and
continuous support I would not have been able to perform this research.

Many young and senior scientists have more and less intensively collaborated with me
during the last years. Some of the methodological developments and results emerged from
fruitful discussions and close collaborations with them. I am in particular grateful to Sebastian
Breitenbach and Yoshito Hirata; to our former students Chandrasekaran Komalapriya, Kira
Rehfeld, Niklas Boers, Jonathan Donges, Deniz Eroglu, Jan Feldhoff†, Bedartha Goswami,
Nishant Malik, Ibrahim Ozken, Aljoscha Rheinwalt, Jakob Runge, Stefan Schinkel, and
Dadiyorto Wendi, to which I had the great opportunity to (co-)supervise them; to our
postdocs and senior scientists, including Reik Donner, Jobst Heitzig, Georg Feulner, Eulalie
Ngamga, Maik Riedl, Thomas Stemler, Niels Wessel, Yong Zou; and to numerous external
collaborators including all co-authors of my publications, in particular Bodo Bookhagen,
Bruno Merz, Michael Small, Martin Trauth, Charles Webber Jr., and Joseph Zbilut†. I
also thank all members of our group and external collaborators, which were not explicitly
mentioned, for fruitful discussions and support.

Last but not least, I thank my family for their strong support and understanding.

Parts of this work were supported by DFG, ESA, Leibniz, and BMBF. The details of the
funding are provided at the end of each chapter.





Mawmluh Cave (India) Mawmluh Cave (India) 
Photo: N. Marwan

Bibliography

[1] R. Albert, I. Albert, and G. L. Nakarado. “Structural vulnerability of the North American
power grid”. In: Physical Review E 69 (2004), page 025103. DOI: 10.1103/PhysRevE.69.
025103.

[2] Z. An et al. “Interplay between the Westerlies and Asian monsoon recorded in Lake Qing-
hai sediments since 32 ka”. In: Scientific Reports 2 (2012), pages 1–7. DOI: 10.1038/
srep00619.

[3] Z. An et al. “Chinese Loess and the East Asian Monsoon”. In: Late Cenozoic Climate Change in
Asia. Edited by Z. An. Volume 16. Developments in Paleoenvironmental Research. Dordrecht:
Springer Netherlands, 2014. ISBN: 978-94-007-7816-0. DOI: 10.1007/978-94-007-
7817-7_2.

[4] T. Andersen et al. “Ecological thresholds and regime shifts: Approaches to identification”. In:
Trends in Ecology & Evolution 24.1 (2009), pages 49–57. DOI: 10.1016/j.tree.2008.07.
014.

[5] V. S. Anishchenko and S. V. Astakhov. “Poincaré recurrence theory and its applications to
nonlinear physics”. In: Physics-Uspekhi 56.10 (2013), pages 955–972. DOI: 10.3367/UFNe.
0183.201310a.1009.

[6] T. Aparicio, E. F. Pozo, and D. Saura. “Detecting determinism using recurrence quantification
analysis: Three test procedures”. In: Journal of Economic Behavior & Organization 65.3–4
(2008), pages 768–787. DOI: 10.1016/j.jebo.2006.03.005.

[7] H. Apel et al. “Flood risk assessment and associated uncertainty”. In: Natural Hazards and
Earth System Science 4.2 (2004), pages 295–308. DOI: 10.5194/nhess-4-295-2004.

[8] A. Arenas et al. “Synchronization in complex networks”. In: Physics Reports 469.3 (2008),
pages 93–153. DOI: 10.1016/j.physrep.2008.09.002.

[9] N. Asghari et al. “Stability of terrestrial planets in the habitable zone of Gl 777 A, HD 72659,
Gl 614, 47 Uma and HD 4208”. In: Astronomy & Astrophysics 426 (2004), pages 353–365.
DOI: 10.1051/0004-6361:20040390.

[10] V. Balakrishnan, G. Nicolis, and C. Nicolis. “Recurrence time statistics in deterministic and
stochastic dynamical systems in continuous time: A comparison”. In: Physical Review E 61.3
(2000), pages 2490–2499. DOI: 10.1103/PhysRevE.61.2490.

[11] C. Bandt et al. “Analysis of Bivariate Coupling by Means of Recurrence”. In: Mathematical
Methods in Time Series Analysis and Digital Image Processing. Edited by R. Dahlhaus et al.
Understanding Complex Systems. Berlin, Heidelberg: Springer, 2008, pages 153–182. ISBN:
978-3-540-75631-6. DOI: 10.1007/978-3-540-75632-3_5.

https://doi.org/10.1103/PhysRevE.69.025103
https://doi.org/10.1103/PhysRevE.69.025103
https://doi.org/10.1038/srep00619
https://doi.org/10.1038/srep00619
https://doi.org/10.1007/978-94-007-7817-7_2
https://doi.org/10.1007/978-94-007-7817-7_2
https://doi.org/10.1016/j.tree.2008.07.014
https://doi.org/10.1016/j.tree.2008.07.014
https://doi.org/10.3367/UFNe.0183.201310a.1009
https://doi.org/10.3367/UFNe.0183.201310a.1009
https://doi.org/10.1016/j.jebo.2006.03.005
https://doi.org/10.5194/nhess-4-295-2004
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1051/0004-6361:20040390
https://doi.org/10.1103/PhysRevE.61.2490
https://doi.org/10.1007/978-3-540-75632-3_5


230 Bibliography

[12] H. A. Barbosa, A. R. Huete, and W. E. Baethgen. “A 20-year study of NDVI variability over
the Northeast Region of Brazil”. In: Journal of Arid Environments 67 (2006), pages 288–307.
DOI: 10.1016/j.jaridenv.2006.02.022.

[13] M. Barreiro, A. C. Marti, and C. Masoller. “Inferring long memory processes in the climate
network via ordinal pattern analysis.” In: Chaos 21.1 (2011), page 013101. DOI: 10.1063/
1.3545273.

[14] Y. Bartov et al. “Catastrophic arid episodes in the Eastern Mediterranean climate linked with
the North Atlantic Heinrich events”. In: Geology 31.5 (2003), pages 439–442.

[15] J. A. Bastos and J. Caiado. “Recurrence quantification analysis of global stock markets”. In:
Physica A 390.7 (2011), pages 1315–1325. DOI: 10.1016/j.physa.2010.12.008.

[16] J. Belaire-Franch. “Testing for non-linearity in an artificial financial market: a recurrence
quantification approach”. In: Journal of Economic Behavior & Organization 54.4 (2004),
pages 483–494. DOI: 10.1016/j.jebo.2003.05.001.

[17] J. Belaire-Franch, D. Contreras, and L. Tordera-Lledó. “Assessing nonlinear structures in real
exchange rates using recurrence plot strategies”. In: Physica D 171.4 (2002), pages 249–264.
DOI: 10.1016/S0167-2789(02)00625-5.

[18] R. E. Benestad. “Reconciliation of global temperatures”. In: Environmental Research Letters
7.1 (2012), page 011002. DOI: 10.1088/1748-9326/7/1/011002.

[19] C. L. Benhamou et al. “Fractal Organization of Trabecular Bone Images on Calcaneus Radio-
graphs”. In: Journal of Bone and Mineral Research 9.12 (1994), pages 1909–1918.

[20] A. Berger and M. Loutre. “Insolation values for the climate of the last 10 million years”. In:
Quaternary Science Reviews 10.4 (1991), pages 297–317. DOI: 10.1016/0277-3791(91)
90033-Q.

[21] A. Berger. “The Milankovitch astronomical theory of paleoclimates: A modern review”. In:
Vistas in Astronomy 24 (1980), pages 103–122. DOI: 10.1016/0083-6656(80)90026-4.

[22] A. L. Berger. “Long-Term Variations of Caloric Insolation Resulting from the Earth’s Orbital
Elements”. In: Quaternary Research 9.02 (1978), pages 139–167. DOI: 10.1016/0033-
5894(78)90064-9.

[23] W. H. Berger and E. Jansen. “Mid-Pleistocene climate shift – the Nansen connection”. In:
The Polar Oceans and Their Role in Shaping the Global Environment. Edited by O. M. Johan-
nessen, R. D. Muench, and J. E. Overland. Volume 85. Geophysical Monograph. Washington:
American Geophysical Union, 1994, pages 295–311.

[24] M. Berkelhammer et al. “An Abrupt Shift in the Indian Monsoon 4000 Years Ago”. In:
Geophysical Monograph Series. Edited by L. Giosan et al. 2013, pages 75–88. ISBN: 978-1-
118-70432-5. DOI: 10.1029/2012GM001207.

[25] N. Bigdeli and K. Afshar. “Characterization of Iran electricity market indices with pay-as-bid
payment mechanism”. In: Physica A 388.8 (2009), pages 1577–1592. DOI: 10.1016/j.
physa.2009.01.003.

[26] T. Blazina et al. “Terrestrial selenium distribution in China is potentially linked to monsoonal
climate.” In: Nature communications 5 (2014), page 4717. DOI: 10.1038/ncomms5717.

[27] S. Boccaletti et al. “Complex networks: structure and dynamics”. In: Physics Reports 424.4–5
(2006), pages 175–308. DOI: 10.1016/j.physrep.2005.10.009.

[28] N. Boers et al. “Complex networks identify spatial patterns of extreme rainfall events of the
South American Monsoon System”. In: Geophysical Research Letters 40.16 (2013), pages 4386–
4392. DOI: 10.1002/grl.50681.

[29] N. Boers et al. “Prediction of extreme floods in the eastern Central Andes based on a complex
networks approach”. In: Nature Communications 5 (2014), page 5199. DOI: 10.1038/
ncomms6199.

https://doi.org/10.1016/j.jaridenv.2006.02.022
https://doi.org/10.1063/1.3545273
https://doi.org/10.1063/1.3545273
https://doi.org/10.1016/j.physa.2010.12.008
https://doi.org/10.1016/j.jebo.2003.05.001
https://doi.org/10.1016/S0167-2789(02)00625-5
https://doi.org/10.1088/1748-9326/7/1/011002
https://doi.org/10.1016/0277-3791(91)90033-Q
https://doi.org/10.1016/0277-3791(91)90033-Q
https://doi.org/10.1016/0083-6656(80)90026-4
https://doi.org/10.1016/0033-5894(78)90064-9
https://doi.org/10.1016/0033-5894(78)90064-9
https://doi.org/10.1029/2012GM001207
https://doi.org/10.1016/j.physa.2009.01.003
https://doi.org/10.1016/j.physa.2009.01.003
https://doi.org/10.1038/ncomms5717
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1002/grl.50681
https://doi.org/10.1038/ncomms6199
https://doi.org/10.1038/ncomms6199


231

[30] G. Bond et al. “A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial
Climates”. In: Science 278.5341 (1997), pages 1257–1266. DOI: 10.1126/science.278.
5341.1257.

[31] G. Bond et al. “Persistent solar influence on North Atlantic climate during the Holocene.” In:
Science 294.5549 (2001), pages 2130–2136. DOI: 10.1126/science.1065680.

[32] P. Bosák et al. “Magnetostratigraphy and unconformities in cave sediments: case study from
the Classical Karst, SW Slovenia”. In: Geologos 5 (2000), pages 13–30.

[33] W. H. Bradley. “Mediterranean Sediments and Pleistocene Sea Levels”. In: Science 88.2286
(1938), pages 376–379. DOI: 10.1126/science.88.2286.376.

[34] U. Brandt et al. “Palaeomagnetism of Holocene and late Pleistocene sediments from Lago
di Mezzano and Lago Grande di Monticchio (Italy): Initial Results”. In: Quaternary Science
Reviews 18.7 (1999), pages 961–976. DOI: 10.1016/S0277-3791(99)00008-6.

[35] S. F. M. Breitenbach et al. “Strong Influence of Water Vapor Source Dynamics on Stable
Isotopes in Precipitation Observed in Southern Meghalaya, NE India”. In: Earth and Planetary
Science Letters 292.1–2 (2010), pages 212–220. DOI: 10.1016/j.epsl.2010.01.038.

[36] S. F. M. Breitenbach et al. “COnstructing Proxy-Record Age models (COPRA)”. In: Climate of
the Past 8 (2012), pages 1765–1779. DOI: 10.5194/cp-8-1765-2012.

[37] S. F. M. Breitenbach et al. “Cave ventilation and rainfall signals in dripwater in a monsoonal
setting – a monitoring study from NE India”. In: Chemical Geology 402 (2015), pages 111–
124. DOI: 10.1016/j.chemgeo.2015.03.011.

[38] A. J. Broccoli, K. a. Dahl, and R. J. Stouffer. “Response of the ITCZ to Northern Hemi-
sphere cooling”. In: Geophysical Research Letters 33 (2006), pages 1–4. DOI: 10.1029/
2005GL024546.

[39] P. Brohan et al. “Uncertainty estimates in regional and global observed temperature changes:
A new data set from 1850”. In: Journal of Geophysical Research 111.D12 (2006), page D12106.
DOI: 10.1029/2005JD006548.

[40] T. Buzug and G. Pfister. “Comparison of algorithms calculating optimal embedding parameters
for delay time coordinates”. In: Physica D: Nonlinear Phenomena 58.1-4 (1992), pages 127–
137. DOI: 10.1016/0167-2789(92)90104-U.

[41] Y. Cai et al. “The Holocene Indian monsoon variability over the southern Tibetan Plateau and
its teleconnections”. In: Earth and Planetary Science Letters 335-336 (2012), pages 135–144.
DOI: 10.1016/j.epsl.2012.04.035.

[42] L. Cao. “Practical method for determining the minimum embedding dimension of a scalar
time series”. In: Physica D 110.1–2 (1997), pages 43–50. DOI: 10.1016/S0167-2789(97)
00118-8.

[43] L. Carpi et al. “Structural evolution of the Tropical Pacific climate network”. In: The European
Physical Journal B 85.11 (2012), page 389. DOI: 10.1140/epjb/e2012-30413-7.

[44] S. Carrubba et al. “Increased determinism in brain electrical activity occurs in association
with multiple sclerosis”. In: Neurological Research 34.3 (2012), pages 286–290. DOI: 10.
1179/1743132812Y.0000000010.

[45] M. C. Casdagli. “Recurrence plots revisited”. In: Physica D 108.1–2 (1997), pages 12–44.
DOI: 10.1016/S0167-2789(97)82003-9.

[46] H. Castellini and L. Romanelli. “Applications of recurrence quantified analysis to study the
dynamics of chaotic chemical reaction”. In: Physica A 342.1–2 (2004), pages 301–307. DOI:
10.1016/j.physa.2004.06.028.
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