
Technische Berichte Nr. 37

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Toward Bridging

the Gap Between

Formal Semantics and

Implementation of

Triple Graph Grammars

Holger Giese, Stephan Hildebrandt, Leen Lambers

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 37

Holger Giese | Stephan Hildebrandt | Leen Lambers

Toward Bridging the Gap Between
Formal Semantics and Implementation

of Triple Graph Grammars

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.d-nb.de abrufbar.

Universitätsverlag Potsdam 2010
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2010/4521/
URN urn:nbn:de:kobv:517-opus-45219
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-45219

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-078-6

mailto:verlag@uni-potsdam.de�

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph

Grammars?

Holger Giese, Stephan Hildebrandt, and Leen Lambers

Hasso Plattner Institute at the University of Potsdam,
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany

{holger.giese,stephan.hildebrandt,leen.lambers}@hpi.uni-potsdam.de

Abstract. The correctness of model transformations is a crucial element
for the model-driven engineering of high quality software. A prerequisite
to verify model transformations at the level of the model transformation
specification is that an unambiguous formal semantics exists and that the
employed implementation of the model transformation language adheres
to this semantics. However, for existing relational model transformation
approaches it is usually not really clear under which constraints partic-
ular implementations are really conform to the formal semantics. In this
paper, we will bridge this gap for the formal semantics of triple graph
grammars (TGG) and an existing efficient implementation. Whereas the
formal semantics assumes backtracking and ignores non-determinism,
practical implementations do not support backtracking, require rule sets
that ensure determinism, and include further optimizations. Therefore,
we capture how the considered TGG implementation realizes the trans-
formation by means of operational rules, define required criteria and
show conformance to the formal semantics if these criteria are fulfilled.
We further outline how static analysis can be employed to guarantee
these criteria.

1 Introduction

Model transformations are a crucial element of Model-Driven Engineering (MDE)
[24] and allow to automate several aspects of software development. Therefore,
it is crucial that model transformations are correct and repeatable to support in-
cremental development and maintenance of high quality software. Consequently,
model transformation languages, like programming languages, require an unam-
biguous semantics as a reference to enable to verify the outcome considering
the model transformation specification (cf. [9]) and to ensure that different im-
plementations result in the same outcome. In addition, an unambiguous formal

? This work was developed in the course of the project - Correct Model
Transformations - Hasso Plattner Institut, Universität Potsdam and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft. See
http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1.

2 H. Giese et al.

semantics and clear understanding how the relational specification is operational-
ized can help to identify which optimizations are really the most appropriate
ones. However, for existing relational model transformation approaches, it is
usually not really clear under which constraints particular implementations are
really conform to the formal semantics, or even more, how to statically check
these constraints [25].

We will consider this challenge for the specific case of triple graph grammars
(TGG) [23], which have a well understood formal semantics and are quite similar
to other relational approaches such as QVT Relational (c.f. [13]). For TGGs,
there are different tools, which realize slightly different dialects, such as Fujaba
TGG Engine [3], MOFLON [1], or ATOM3 [19]. Furthermore, even for a single
tool holds that different tool versions with different optimizations exist. For
the Fujaba TGG Engine, there further exists a batch version with support for
incremental synchronization [12], a version optimized for synchronizing multiple
updates [10], and a version that further improves the runtime for synchronization
[11] and can also be employed, for example, for runtime monitoring [27].

In this paper, we bridge the gap between the formal semantics of triple graph
grammars [22] and our related efficient implementation [11]. The formal seman-
tics assumes backtracking and ignores non-determinism and, thus, cannot be
used to build an efficient implementation. Practical implementations for TGGs
in contrast do not support backtracking, require rule sets that ensure determin-
ism, and include further optimizations in order to ensure an efficient solution.
Closing this gap for this example is of general interest, as also for other TGG
implementations (e.g., [16], [1]) as well as other relational model transformation
techniques (e.g., ATL[15], QVT[20]) a similar gap exists and no result that closes
any of these gaps exists yet. Therefore, the outlined approach could serve as a
scheme to also close this gap for these other cases.

To close the gap, we characterize exactly the subset of TGGs that the im-
plementation assumes, demonstrate that the operationalization for the practical
implementation and the semantics are conform for the identified subset, that it
ensures determinism, and outline how static analysis can be employed to check
these criteria defining the subset.

Therefore, we provide a first operationalization and then step by step elimi-
nate assumptions such as backtracking while adding constraints that the TGG
rules have to fulfill to permit their proper and efficient operationalization:

– As a starting point we explain and formally define the formal semantics of
TGGs and the related forward and backward transformations named rela-
tional scheme.

– At first, we derive a naive operationalization for TGGs in form of the conform
scheme that employs backtracking and bookkeeping for which we can show
conformance to the formal semantics by demonstrating consistency – each
transformation result of the implementation must fit to the semantics – and
completeness – all possible transformations for the semantics are also covered
by the operationalization.

Bridging the Gap between Formal Semantics and Implementation of TGGs 3

– Then, we define a deterministic scheme via suitable criteria for determinism
and show that for these criteria the operational rules can guarantee a deter-
ministic result of the transformation. We thus can exclude non-determinism,
which is not ruled out by the original TGG semantics but necessary as in
practice a model transformation must be a function. Furthermore, we can
still show conformance to the formal semantics via the beforehand introduced
operationalization.

– Finally, there is the limitation that the considered TGG implementation
only employs a bookkeeping approach for nodes but not edges. Again we
can define a related implementation scheme via adjusting the rules and cri-
teria that if fulfilled guarantee that also this scheme conforms to the formal
semantics referring to the beforehand introduced operationalization.

It is to be noted that we stop the mapping at the level of the standard graph
transformation semantics and omit several additional optimization tricks em-
ployed in the implementation that go beyond this abstraction. The implemen-
tation in particular avoids searching for matches in the whole source graph and
makes use of control flow constructs of the employed underlying graph transfor-
mation language Story Diagrams [8].

The remaining paper is structured as follows: We first introduce TGGs as
a relational specification scheme for model transformations in Section 2. Then,
we outline an operational computation scheme and operational rules, and prove
conformance to the formal semantics (Section 3). This scheme is further refined
toward a deterministic computation scheme in Section 4, where proper restric-
tions for the rules are introduced that ensure determinism. Then, we introduce
minor derivations in the computation scheme in Section 5 that hold for the
implementation, show how the corresponding restrictions for the rules can be
checked statically, and prove that conformance and determinism also hold for
the implementation. Finally, we discuss related work (Section 6) and close the
paper with our conclusions and an outlook on planned future work.

2 Relational Scheme

Triple graph grammars relate three different models: A source model, a target
model, and a correspondence model that stores correspondence relationships
between model fragments built from source and target elements. We use the
meta models shown in Fig. 1 to illustrate the following explanations. It shows
the meta model of simple block1 and class diagrams. The elements of both models
can be connected to nodes of the correspondence model.

Formally, the models can be interpreted as typed attributed graphs accord-
ing to attributed type graphs. In case of TGGs, the type graph adheres to a
particular structure reflecting its three components. A triple graph SCT2 is a
graph typed over

1 This is a very simplified version of SDL [14] block diagrams.
2 We use a triple of variables SCT to denote one triple graph.

4 H. Giese et al.

Fig. 1. Meta models of block diagrams, class diagrams, and correspondence models

TRIPLE:
s c tectecs

ls lt

Therefore, a triple graph SCT consists of a source component S, containing all
elements of type s and ls; a correspondence component C, containing all elements
of type s, t, ecs,ect, and c; and a target component T, containing all elements
of type t and lt. A triple type graph STCTTT is a special triple graph defining
node and edge types for the source component, correspondence component, and
target component of triple graphs. The meta models of Fig. 1 can be interpreted
as a triple type graph. A typed triple graph is a triple graph typed over STCTTT ,
e.g. concrete block and class diagrams connected by a correspondence model like
shown in Fig. 3. We say that a finite graph S (T or C) typed over ST (TT or
CT) is a source graph (target graph or correspondence graph, respectively) and
belongs to the language L(ST) (L(TT) or L(CT), respectively).

A triple graph grammar consists of an axiom (the grammar’s start graph)
and several TGG rules. An example TGG for the transformation of block and
class diagrams is shown in Fig. 23. Here, we use a short notation that combines
the left-hand (LHS) and right-hand sides (RHS) of the graph transformation
rule. Elements that belong to the LHS and RHS are drawn black, elements that
belong only to the RHS (i.e. which are created by the rule) are drawn green
and marked with ”++”. TGG rules are divided into three domains: The source
model domain (left), target model domain (right), and the correspondence model
domain (middle). The axiom in Fig. 2 creates the root elements of the three
models and relates them to each other. Rule 1 creates a SystemBlock and a
corresponding Class. The BlockDiagram and ClassDiagram must already exist.
Rule 2 creates a Block in the block diagram domain and connects it to the
SystemBlock. In the class diagram domain, a class is created and connected to
the SystemBlock ’s Class with an Association.

3 Note, that the types defined in Fig. 1 are abbreviated in Fig. 2.

Bridging the Gap between Formal Semantics and Implementation of TGGs 5

Fig. 2. Example TGG for the transformation of block and class diagrams

Formally, a triple graph grammar TGG = (SACATA,R) consists of an axiom
SACATA and a set of non-deleting rules R for triple graphs. Each rule consists
of an inclusion from the LHS SLCLTL to the RHS SRCRTR of the rule. Each
element in SLCLTL corresponds to an element in SRCRTR and is preserved by
the rule. Attribute values of preserved elements are not changed. All elements in
SRCRTR \SLCLTL are created when the rule is applied. A rule r can be applied
to a triple graph SGCGTG if a match m of its LHS SLCLTL into SGCGTG can

be found. The result SHCHTH of the rule application SGCGTG
m,r→ SHCHTH

consists of the gluing of SGCGTG with elements in SRCRTR\SLCLTL via m. This
means that all elements created by r are added to SGCGTG. We say that L(TGG)
is the set of all triple graphs that can be derived from SACATA using rule
applications via rules in R. Thereby, →∗TGG denotes the reflexive and transitive
closure of a rule application via some rule in TGG. Note, that the standard
results on graph transformation such as the Concurrency Theorem, Local-Church

6 H. Giese et al.

Fig. 3. Example block and class diagrams connected by a correspondence model

Rosser Theorem, and Critical Pair Lemma[4, 18] hold for typed triple graph
transformations4.

In general, three kinds of transformations can be performed with TGGs:
Forward, backward, and correspondence transformations. A forward (backward)
transformation takes a source (target) model as input and creates the corre-
spondence and target (source) model. A correspondence transformation requires
a source and target model and creates only the correspondence model. Subse-
quently, we focus on forward transformations. Analogous results can be derived
for the backward and correspondence case straightforwardly. The formal defini-
tion of a relational forward transformation is as follows:

Definition 1 (relational scheme: FTTGG). FTTGG : L(ST) → P(L(TGG))
is defined as follows: FTTGG(S) := {SCiTi|SACATA →∗TGG SCiTi}.

Fig. 3 shows a block diagram S with a corresponding class diagram Ti. Both
models are connected by a correspondence model Ci. Assuming that we want to
transform S, this is a valid forward transformation result in FTTGG(S) because
there is a corresponding transformation producing a triple graph SCiTi according
to the TGG in Fig. 2. The annotations in Fig. 3 indicate which rules create the
corresponding elements. Because of the characteristics of the TGG FTTGG(S)
contains only one element. However, this does not need to be the case in general,
as we will demonstrate later on.

Bridging the Gap between Formal Semantics and Implementation of TGGs 7

Fig. 4. Operational forward rule rBF
1 derived from rule r1

3 Conform Scheme

We can derive operational transformation rules from the relational TGG rules.
For the forward transformation, all elements belonging to the source domain
are added to the LHS of the rule. More formally, given a triple graph rule r :
SLCLTL → SRCRTR a forward rule rF : SRCLTL → SRCRTR is derived.

Furthermore, we use an operational transformation that keeps track of the
elements that are not yet transformed. For this purpose, we introduce a book-
keeping node b, which holds bookkeeping edges to all source model nodes and
edges that are not yet transformed5. This implies that the bookkeeping edges
have to be created once before the transformation. Fig. 4 shows the operational
bookkeeping forward rule derived from rule 1 in Fig. 2. When the operational
rule is applied, the bookkeeping edges are deleted. This is indicated by the ”- -”
annotation and the red color of these edges. The model elements of SL must
have been transformed already. This is ensured by negative application condi-
tions, which prohibit bookkeeping edges to these elements.

Formally, rF is extended6 to rBF : BSR\SL
SRCLTL ← bSRCLTL → bSRCRTR,

a span of inclusions with NACBF defined as follows: We add a special book-
keeping node b, which is preserved. For each node and edge x ∈ SR \ SL we add
a bookkeeping edge from b to x, which is deleted by the rule. The set BSR\SL

consists of these bookkeeping edges and the bookkeeping node b. NACBF is a
set of negative application conditions, which forbid for each element x ∈ SL an
incoming bookkeeping edge from b. In the example in Fig. 4, BSR\SL

contains
b, the bookkeeping edges to sb2, and the link between bd1 and sb2. NACBF

forbids the edge from b to bd1. We can interpret the axiom SACATA of a TGG
as a triple graph rule, called axiom rule, a : ∅ → SACATA. The bookkeeping
forward rule aBF of a is built analogously to regular TGG rules. However, the
bookkeeping is not sufficient to exclude, that it is applied multiple times. Thus,

4 As explained in more detail in Appendix A, we can define the category
ATripleGraphsSTCT TT , having typed attributed triple graphs as objects and typed
attributed triple graph morphisms as arrows, such that ATripleGraphsSTCT TT

with the set M of injective morphisms is an adhesive HLR category [4, 18].
5 Note, that we use a graph model, where edges from nodes to edges are allowed, as

explained more in detail in Appendix B.
6 We therefore extend also the graph TRIPLE and STCTTT with corresponding

bookkeeping node and edge types as presented in Appendix B.

8 H. Giese et al.

Fig. 5. Forward transformation of a block diagram.

this axiom rule must be controlled separately at the beginning of each forward
transformation.

We can apply a bookkeeping forward rule rBF to a triple graph with book-
keeping BGSGCGTG if there exists a match m : BSR\SL

SRCLTL → BGSGCGTG,
fulfilling NACBF , meaning that each node and edge in m(SL) has no incom-
ing edge from b (translated already), and each node and edge in m(SR \ SL)
has an incoming edge from b (to be translated). The application of rule rBF

to BGSGCGTG via m deletes all bookkeeping edges in m(BSR\SL
) and adds

the translation SRCRTR \ SRCLTL. Fig. 5 shows the forward transformation
of the example block diagram. Initially, there is a link from the bookkeeping
node b to each source model node and edge. The bookkeeping forward axiom
rule transforms bd1 and produces cn1 and cd1. The bookkeeping edge to bd1 is
deleted. Next, bookkeeping forward rule rBF

1 is applied to create cn2 and cl2. It
also deletes the bookkeeping edges to sb2 and to the link between bd1 and sb2.
Finally, bookkeeping forward rule rBF

2 is applied, analogously.

In order to formally define an operational scheme FTCON , we define CON =
OPFT (TGG) as the rule set consisting of a bookkeeping forward rule rBF for
each rule r of the TGG. Moreover, we have a mapping TransF computing for
each triple graph with bookkeeping BSCT: TransF (BSCT) the part of S that
has already been translated by some bookkeeping forward rule. In particular, it
consists of all nodes and edges with no incoming bookkeeping edges. Finally, we
define BinitS as the initial source graph consisting of S and b equipped with one
bookkeeping edge for each graph element in S.

Definition 2 (conform scheme: FTCON). Given a TGG and its operational-
ization CON , then FTCON : L(ST) → P(L(TGG)) of a source graph S is

Bridging the Gap between Formal Semantics and Implementation of TGGs 9

defined as follows, FTCON (S) :=
{SCiTi|BinitS →aBF BASCATA →∗CON BiSCiTi ∧ S = TransF (BiSCiTi)}.

This implies that all elements in S have been transformed exactly once. We
call this a valid transformation. In the following, we show that FTTGG(S) and
FTCON (S) deliver the same set of valid transformation results (consistency and
completeness). In particular, we show that for each forward transformation via
bookkeeping rules a corresponding forward transformation according to the TGG
exists (consistency) and the other way round (completeness).

In [22, 5], it is argued already in detail that a TGG rule application can
be decomposed into a sequence of transformations via the corresponding source
rule7 followed by a transformation via the corresponding forward rule and the
other way round (composition), where the correspondence and target compo-
nent of the rule are empty. Since our forward and source rules are constructed
analogously to [22, 5], in the following proof ideas we assume these results and
concentrate on arguing that the bookkeeping mechanism as added in this paper
to the forward rules leads to consistency and completeness as described above.
Complete proofs can be found in Appendix C.

As an auxiliary result, we show that each application of bookkeeping forward
rules is backed up by a corresponding TGG rule application.

Lemma 1 (partial consistency). For a TGG and its operationalization
CON = OPFT (TGG) holds that BinitS →aBF BASCATA →∗CON BiSCiTi ∧
TransF (BiSCiTi) = Si implies SACATA →∗TGG SiCiTi via the related TGG
rules.

Proof. (Proof idea) The bookkeeping forward axiom rule aBF is applied to BinitS
via some match mA conform to SACATA only once. The set of translated ele-
ments after this first step TransF (BASCATA) = mA(SA). Furthermore, book-
keeping of the rules in CON implies that during the transformation of BASCATA

each node and edge of S\mA(SA) is translated at most once conform to the corre-
sponding TGG rules. Each rule application of CON via some rule rBF enlarges
the set of translated elements in S with the matched elements of SR \ SL. Ac-
cordingly, when a series of rule applications via CON starting with BASCATA

delivers BiSCiTi such that TransF (BiSCiTi) = Si, then applying the related
TGG rules generates SiCiTi from SACATA. �

Theorem 1 (conformance). For a TGG and its operationalization CON =
OPFT (TGG), it holds that FTTGG(S) = FTCON (S). In particular, BinitS →aBF

BASCATA →∗CON BiSCiTi and TransF (BiSCiTi) = S if and only if
SACATA →∗TGG SCiTi via the related TGG rules.

Proof. (Proof idea) FTCON (S) ⊆ FTTGG(S) (consistency) follows from Lemma
1 for the special case that TransF (BiSCiTi) = S.

7 Given a TGG rule r : SLCLTL → SRCRTR, then we have the following corresponding
source rule rS : SL → SR.

10 H. Giese et al.

FTCON (S) ⊇ FTTGG(S) (completeness) holds because of the following ar-
gumentation: The forward axiom rule aBF can be applied to BinitS such that
BinitS →aBF BASCATA since the source axiom SA is contained in S. More-
over, for each TGG rule application via r generating the graph elements SR \SL

in S, the related bookkeeping forward rule rBF of CON can be applied, translat-
ing exactly those elements in S conform to r. Since each element in S, except
the axiom elements, is generated by such a TGG rule application, we have that
BinitS →aBF BASCATA →∗CON BiSCiTi such that TransF (BiSCiTi) = S. �

4 Deterministic Scheme

It is not guaranteed that whenever a valid transformation result exists, it can
be found without backtracking. Valid means that the complete source graph has
been covered by the transformation. The determinism criteria studied in this
section restrict the TGGs to those ones where backtracking can be safely avoided.
These criteria ensure, on one hand, that whenever a valid transformation result
exists, it can be found without backtracking. On the other hand, if no valid
transformation result exists, then we can find this out without backtracking, as
well.

In order to avoid backtracking, we need to show that applying bookkeeping
forward rules as long as possible always terminates with a unique result. To this
extent, we use the theory of critical pairs guaranteeing that under specific condi-
tions a set of bookkeeping forward rules is locally confluent [4, 17, 18]. A critical
pair describes a conflict in a minimal context. Conflicts arise for bookkeeping
forward rules if one rule deletes a bookkeeping edge marked for deletion also
by the other rule8. This is because after applying the first rule and deleting the
bookkeeping edge which is marked for deletion also by the other rule, this rule
cannot be applied anymore. Note that we ignore critical pairs with same rules
and same matches, since they represent a confluent situation in a trivial way.
Moreover, we introduce a termination criterion ensuring that each application of
a bookkeeping forward rule diminishes the number of translated elements indeed.

Definition 3 (determinism criteria). The forward determinism criteria for
a TGG and its operationalization CON = OPFT (TGG) are defined as follows:

– each TGG rule creates at least one graph element on the source part (termi-
nation criterion)

– for the rules in CON = OPFT (TGG) there exist no critical pairs, ignoring
pairs with same rules and same matches (conflict-freeness criterion)

The following Theorem guarantees that we can define a scheme without back-
tracking for TGGs fulfilling the above determinism criteria. Thereby, we only

8 Note that neither produce-forbid conflicts can occur, since no bookkeeping edges are
produced, nor attribute conflicts can occur, since attributes are only written if the
corresponding node is created.

Bridging the Gap between Formal Semantics and Implementation of TGGs 11

translate source graphs belonging to L(SA
T) ⊆ L(ST), containing the source

component of the TGG axiom only once (domain restriction criterion). This is
because in order to obtain a unique transformation result, the elements from
which the translation should be started should be fixed upfront uniquely.

Theorem 2 (FTCON forward deterministic). For a TGG and its opera-
tionalization CON = OPFT (TGG) fulfilling the forward determinism criteria
of Definition 3, it holds that for each S ∈ L(SA

T) either some SCT exists such
that FTCON (S) = {SCT} or FTCON (S) = ∅. We say that FTCON is forward
deterministic.

Proof. In case that no transformation of S exists such that all elements can be
translated, FTCON (S) is empty.

Suppose that FTCON (S) is not empty and that SCT belongs to FTCON (S).
Then, we have that BinitS →aBF BASCATA →∗CON BSCT such that
TransF (BSCT) = S. It follows that SCT is the only element belonging to
FTCON (S) because of the following argumentation: Since S ∈ L(SA

T), the match
of the forward axiom rule aBF is uniquely fixed. Because of the termination
criterion in Definition 3, it holds that each bookkeeping forward rule deletes at
least one bookkeeping edge to a source element in S. Because bookkeeping for-
ward rules are not producing any source elements and S is finite, this means
that applying bookkeeping forward rules as long as possible always terminates.
Moreover, it follows from the Critical Pair Lemma in [4, 17, 18] and the conflict-
freeness criterion in Definition 3 that CON is locally confluent. In particular,
if there are no critical pairs, ignoring pairs with same rules and same matches,

then we can conclude that for each pair of transformations H1
r1,m1⇐ G

r2,m2⇒ H2

either H1
∼= H2 or there exist transformations H1

r2,m
′
1⇒ X

r1,m
′
2⇐ H2.

Together with termination this means that →∗CON is confluent and thus, the
application of rules in→∗CON as long as possible terminates with a unique result.
If all elements in S have been translated, no rule in CON is applicable anymore,
since the application of any other bookkeeping rule would need at least one non-
translated element (see termination criterion in Def. 3). Therefore, the result
BSCT is a terminal state, which is unique such that FTCON (S) = {SCT}. �

Note that the conflict-freeness criterion could be relaxed by allowing for crit-
ical pairs that are strictly NAC-confluent [17, 18]. Since we want to provide
feasible practical tool support for our approach, we have opted however for the
more severe conflict-freeness criterion. Currently, there is no tool support for
computing if critical pairs are strictly NAC-confluent. Implementing such an al-
gorithm would involve exponential complexity with respect to the depth of the
search tree. Therefore, we rather plan to allow for adding priorities to rules in
case of conflicts, leading to determinism in an alternative way, which seems at
the same time also practically feasible.

Because of Theorem 2 it is now possible to define a deterministic scheme
FTDET . Since uniqueness of the transformation result is guaranteed, this scheme
works without backtracking.

12 H. Giese et al.

Definition 4 (deterministic scheme: FTDET). Given a TGG and its op-
erationalization CON = OPFT (TGG) fulfilling the forward determinism crite-
ria of Definition 3, then the deterministic bookkeeping forward transformation
FTDET : L(SA

T) → L(TGG) is a partial mapping such that FTDET (S) := SCT
if FTCON (S) = {SCT}, else FTDET (S) is undefined.

Note that for the subset of TGGs fulfilling the forward determinism criteria
of Definition 3 and the deterministic scheme FTDET , conformance with the TGG
still holds, since it is based on the operational rules in CON .

5 Implementation Scheme

Our implementation [12] is based on the Eclipse Modeling Framework9 (EMF).
Currently, this implementation only provides bookkeeping on nodes and does
not provide bookkeeping for edges, because edges do not have an identity in
EMF-based models10. In the following, we define specific criteria for our imple-
mentation with node bookkeeping only, such that conformance with the TGG
and determinism is still ensured.

The operational rules for the implementation, IMP , are analogous to the
bookkeeping forward rules in CON , apart from the fact that the bookkeeping
for edges is omitted. Given a TGG rule r, we therefore define a node bookkeep-
ing rule rIF . First, let us assume that SRN

and SLN
denotes the set of nodes in

SR and SL, respectively. Given a TGG rule r, then a node bookkeeping forward
rule rIF : BN

SRN
\SLN

SRCLTL ← bSRCLTL → bSRCRTR is a span of inclusions,

deleting for each node in SRN
\ SLN

the corresponding bookkeeping edges, to-
gether with NACIF a set of NACs forbidding for each node n in SL an incoming
bookkeeping edge from b, expressing that the node has been translated already.
For example, rIF1 is equal to rBF

1 (see Fig. 4) apart from the bookkeeping edge
to the edge between bd1 and sb2. Given a TGG, then IMP = OP IMP

FT (TGG) is
the rule set consisting of a node bookkeeping forward rule rIF for each rule r of
the TGG. For the axiom rule a, we have the node bookkeeping forward axiom
rule aIF . Because we now do only bookkeeping on nodes but not on edges, we
adapt the forward determinism criteria as given in Section 4.

Definition 5 (forward implementation criteria). The forward implemen-
tation criteria for a TGG and its operationalization IMP = OP IMP

FT (TGG) are
defined as follows:

– each TGG rule creates at least one graph node on the source part (refined
termination criterion)

– for the rules in IMP there exist no critical pairs, ignoring pairs with same
rules and same matches (conflict-freeness criterion)

9 http://www.eclipse.org/modeling/emf/
10 To provide edge bookkeeping, some kind of helper structure would be required.

Bridging the Gap between Formal Semantics and Implementation of TGGs 13

The mapping TransFN computes for each triple graph with node bookkeep-
ing BNSCT the nodes that have been translated by some bookkeeping forward
rule already: TransFN (BNSCT) is a subgraph of S, consisting of all nodes with
no incoming bookkeeping edge. We define BN

initS as the initial source graph, con-
sisting of S and b equipped with one bookkeeping edge for each graph node in
S. Given a TGG and its operationalization IMP = OP IMP

FT (TGG) fulfilling the
implementation criteria of Definition 5, then we can define FTIMP : L(ST) →
P(L(TGG)) as follows: FTIMP (S) := {SCiTi|BN

initS →aIF BN
A SCATA →∗IMP

BN
i SCiTi ∧ SN = TransFN (BN

i SCiTi)}, where SN is the set of all nodes in
S. We prove that FTIMP is forward deterministic if it fulfills the forward im-
plementation criteria and domain restriction criterion. Then, we can define the
implementation scheme FTIMPD that works without backtracking.

Theorem 3 (FTIMP forward deterministic). For a TGG and its opera-
tionalization IMP = OP IMP

FT (TGG) fulfilling the forward implementation cri-
teria of Definition 5, it holds that for each S ∈ L(SA

T) either some SCT exists
such that FTIMP (S) = {SCT} or FTIMP (S) = ∅. We say that FTIMP is for-
ward deterministic.

Proof. In case that no transformation via node bookkeeping rules exists such that
all nodes of S can be translated, FTIMP (S) is empty.

Suppose that FTIMP (S) is not empty and that SCT belongs to FTIMP (S).
Then, we have that BN

initS →aIF BN
A SCATA →∗IMP BNSCT such that

SN = TransFN (BNSCT). It follows that SCT is the only element belonging to
FTIMP (S) because of the following argumentation. Recall that since S ∈ L(SA

T),
the way to match the forward axiom rule aIF is uniquely fixed. Moreover, analo-
gous to the proof of Theorem 2, it follows that the application of node bookkeeping
forward rules, fulfilling the forward implementation criteria, as long as possible
terminates with a unique result. Thereby note that rules in IMP only delete
bookkeeping edges to nodes (not to edges) and therefore, we need the refined ter-
mination criterion of Def. 5. If all nodes in S have been translated, no rule in
IMP is applicable anymore, since the application of any other node bookkeeping
rule would need at least one non-translated node (again because of the refined
termination criterion in Def. 5). Therefore, the result BNSCT is a terminal
state, which is unique such that FTIMP (S) = {SCT}. �

Definition 6 (implementation scheme: FTIMPD). Given a TGG and its
operationalization IMP = OP IMP

FT (TGG) fulfilling the forward implementation
criteria of Definition 5, then FTIMPD : L(SA

T)→ L(TGG) is a partial mapping
such that FTIMPD(S) := SCT if FTIMP (S) = {SCT}, else FTIMPD(S) is
undefined.

For valid source models, we can prove conformance of FTIMPD with the
TGG. A source model S ∈ L(SA

T) is valid if a triple graph SCT ∈ L(TGG) with
source component S exists.

Theorem 4 (FTIMPD conform with FTTGG). Given a TGG with opera-
tionalization IMP = OP IMP

FT (TGG) fulfilling the forward implementation cri-

14 H. Giese et al.

teria and some valid S ∈ L(SA
T), it holds that {FTIMPD(S)} = FTIMP (S) =

FTTGG(S).

Proof. Because each rule application via rBF doing bookkeeping on nodes and
edges implies a rule application via rIF , where bookkeeping on edges is disre-
garded, we can conclude that FTCON (S) ⊆ FTIMP (S).

Moreover, we can prove that FTCON (S) ⊇ FTIMP (S). Suppose that SCT be-
longs to FTIMP (S) and therefore, BNSCT exists such that SN =
TransFN (BNSCT). We know by assumption that S is valid and therefore, it fol-
lows that there exists SC∗T∗ ∈ L(TGG) and consequently, SC∗T∗ ∈ FTTGG(S).
Then, it follows from completeness of FTCON that SC∗T∗ ∈ FTCON (S). There-
fore, there exists B∗SC∗T∗ such that TransF (B∗SC∗T∗) = S. Since FTCON (S) ⊆
FTIMP (S), it follows that SC∗T∗ ∈ FTIMP (S) with TransFN (BN

∗ SC∗T∗) =
SN . Because of determinism of IMP , it follows that SCT = SC∗T∗. Therefore, it
follows that there exists B∗SC∗T∗ = B∗SCT such that S = TransF (B∗SC∗T∗) =
TransF (B∗SCT). Consequently, SCT belongs to FTCON (S).

Concluding, FTIMP (S) = FTCON (S) and because of conformance of FTCON

with FTTGG also FTIMP (S) = FTTGG(S). Since S is valid, FTTGG(S) is not
empty and therefore FTIMP (S) = {FTIMPD(S)}. �

Note that only with the restriction that S is valid, we can conclude confor-
mance of FTIMPD with the TGG. It would be better to have an implementation,
which checks this while transforming S. The scheme FTDET , with bookkeeping
also for edges, provides such a solution. Therefore, it is currently used to realize
an implementation providing this feature.

When we analyze the forward transformation of our example TGG, we see
that the forward axiom rule in Fig. 2 can only be matched in a unique way
to S, so there is no need to fix it uniquely (initialization criterion). Moreover,
it is obvious that each TGG rule in Fig. 2 creates at least one source node
(refined termination criterion). For the conflict-freeness criterion, we need to
compute critical pairs for the node bookkeeping forward rules rIF1 and rIF2 . We
use AGG11 [26] to check that the node bookkeeping forward rules IMP of our
example are conflict-free. In particular, AGG computes in 0.8s12 that indeed
there exist no critical pairs.

Analyzing the backward transformation, it is easy to see that the refined
termination criterion is fulfilled for the target components of the TGG rules.
The conflict-freeness criterion is not fulfilled, since AGG computes a critical
pair (8.4s) for the node bookkeeping backward rules rIB1 and rIB2 . Both rules
compete to translate the same class, being target of an association. In particular,
rIB1 schedules it for translation into a system block and rIB2 for translation into
a block. Therefore, we have two cases: (a) if the encoding of the target cannot
be changed, the backward transformation cannot be used. We can conclude that

11 AGG does not provide the possibility to specify edges from nodes to edges. However,
since we do critical pair analysis on rules in IMP , doing only bookkeeping on nodes,
we do not need this possibility.

12 Pentium Dual Core E5300 @ 2.60 GHz 2.60GHz, 4.00 GB RAM

Bridging the Gap between Formal Semantics and Implementation of TGGs 15

Fig. 6. Corrected TGG rule 1 with a stereotype

the criteria implicitly allow us to check thus whether the rule set is bidirectional
or not. (b) We correct the encoding of the target if necessary and also the TGG
rules in order to obtain backward determinism. In our example, this can be
achieved by adding a stereotype in r1 to classes corresponding to system blocks
and another stereotype to classes being target of an association as in rule r2.
The text attribute of the stereotype is set to ”system” and ”block”, respectively.
Fig. 6 shows the corrected TGG rule r1. For these corrected backward rules,
AGG computes in 10.5s that indeed there exist no critical pairs13.

Concluding, suppose that in our implementation we would not be able to
rely on determinism of the model transformation result. In this case, we would
need to apply backtracking in order to find all possible transformation results.
The complexity of such a backtracking algorithm would be exponential with
respect to the depth of the search tree. On the contrary, if determinism can be
assumed because it has been computed statically beforehand, then performing a
model transformation becomes linear with respect to the depth of the search tree
(abstracting from the complexity of matching rules, which would be comparable
in both algorithms).

6 Related Work

In [22, 5] consistency and completeness of TGG forward rules is shown. How-
ever, checking consistency of a forward transformation may become very ineffi-
cient, because parsing is involved. Note that in [22, 5] triple graphs are defined
as spans of injective morphisms14, which does not allow to connect one cor-
respondence node with more than one source or target element, respectively.

13 Note that for computing critical pairs in AGG we interpret stereotypes with different
text attributes as distinct types and use maximal multiplicities in the type graph
ruling out critical pairs, describing conflicts that would never occur anyway. In [18],
it is proven that ruling out critical pairs by maximal multiplicities does not affect
completeness of critical pairs.

14 On the contrary, we have chosen a formalization based on plain graphs typed over
a suitable type triple graph, which suits better to our implementation. Moreover,
we do not need a flattening construction (as in [5]) in order to be able to transfer
theoretical concepts to the implementation level.

16 H. Giese et al.

In [23] a bookkeeping mechanism for the operationalization of TGGs was pro-
posed for which consistency could be shown, but completeness is not warranted.
Based on the same idea, an approach is presented in [6], which checks consis-
tency of a forward transformation on-the-fly, maintains completeness, but still
involves parsing. In [7], from consistent forward transformations so-called termi-
nating NAC-consistent forward ones are derived and checked for determinism. In
this paper, conversely we argue that having a deterministic set of forward rules
with integrated bookkeeping, then consistency follows. From a practical point of
view, this implication direction is more interesting, because backtracking can be
avoided. Summarizing, as far as we know, there is no other approach guarantee-
ing consistency, completeness, and determinism all at once for a specific subset
of TGGs on a formal as well as implementation level.

Another approach to relational, bidirectional transformations with a formal
basis is [21], where a terminating, correct, and complete operationalization for so-
called patterns, some kind of graph constraints for triple graphs, is derived. Large
sets of valid transformation results may occur, leading to efficiency problems
concerning implementation.

QVT[20] is an OMG standard for bidirectional model transformations. The
standard itself does not explicitly forbid non-deterministic rule sets. Stevens[25]
reports about semantic issues of the QVT standard concerning bijectivity of
bidirectional model transformations. The author also argues that the behavior
of transformations needs to be deterministic. However, there are several possi-
bilities to achieve deterministic transformations, for example rule priorities. The
rules are executed in a specific order and the first rule that matches is applied.
MediniQVT15 uses another approach. It transforms an element multiple times if
there is more than one rule that matches. The ATLAS Transformation Language
[15] (ATL) is a widely used language for unidirectional model transformations.
ATL does not allow conflicts among transformation rules. The ATL engine re-
ports an error in that case, which can be considered a serious drawback, since
the problem of conflict resolution is shifted from the designer to the user of the
model transformation. We in contrast ensure determinism, independently of the
order in which operational rules are applied, by restricting the set of valid TGG
rules. This can be checked statically, which was pointed out as one of the open
issues in [25].

7 Conclusion & Future Work

In this paper we have closed the gap between the formal semantics of TGG
and our implementation. However, this does not only ensure that a valid rule
set results in a unique and semantically correct outcome, it also permits to
decide whether a TGG can be applied in both directions. It also links a prac-
tical implementation with a suitable formal semantics such that based on this
sound foundation and former work [9, 2, 18] we can now study the verification

15 http://projects.ikv.de/qvt/

Bridging the Gap between Formal Semantics and Implementation of TGGs 17

of model transformations exploiting the identified criteria. The provided bridge
only closes the gap between the formal semantics of TGGs and the implemen-
tation at the level of abstraction related to the standard graph transformation
system semantics. In an additional step we plan to also cover several omitted ad-
ditional optimization tricks employed in the implementation that go beyond this
abstraction. These are in particular the strategy to avoid searching for matches
in the whole source graph and the way control flow constructs are used in the
implementation to realize the transformation on top of the graph transformation
language Story Diagrams [8]. Finally, it is planned to also cover the sophisticated
model synchronization schemes that have been developed [12, 10, 11] in the same
manner to prove their correctness, define required constraints, and maybe also
identify further potential for optimization.

References

1. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-Based
Tool Integration with MOFLON. In: ICSE ’08: Proceedings of the 30th ICSE. pp.
807–810. ACM, New York, NY, USA (2008)

2. Becker, B., Giese, H.: Incremental Verification of Inductive Invariants for the
Run-Time Evolution of Self-Adaptive Software-Intensive Systems. In: Proc. 23rd
IEEE/ACM International Conference on Automated Software Engineering - Work-
shops. pp. 33–40. IEEE Computer Society Press (2008)

3. Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wen-
dehals, L., Zündorf, A.: Tool Integration at the Meta-Model Level within the FU-
JABA Tool Suite. International Journal on Software Tools for Technology Transfer
(STTT) 6(3), 203–218 (August 2004)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science, Springer
(2006)

5. Ehrig, H., Ermel, C., Hermann, F.: On the Relationship of Model Transformations
based on Triple and Plain Graph Grammars. In: GRaMoT ’08: Proceedings of
the third International Workshop on Graph and Model Transformations. pp. 9–16.
ACM, New York, NY, USA (2008)

6. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correct-
ness and Completeness of Model Transformations Based on Triple Graph Gram-
mars. In: Proc. Models 2009 Model Driven Engineering Languages and Systems.
LNCS, vol. 5795/2009, pp. 241–255. Springer Berlin / Heidelberg (2009)

7. Ehrig, H., Prange, U.: Formal Analysis of Model Transformations Based on Triple
Graph Rules with Kernels. In: ICGT ’08: Proceedings of the 4th International Con-
ference on Graph Transformation. pp. 178–193. Springer-Verlag, Berlin, Heidelberg
(2008)

8. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In:
TAGT’98: Selected papers from the 6th International Workshop on Theory and Ap-
plication of Graph Transformations. Lecture Notes in Computer Science (LNCS),
vol. 1764/2000, pp. 296–309. Springer-Verlag, London, UK (16-20 November 2000)

9. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards Verified Model
Transformations. In: Hearnden, D., Süß, J.G., Baudry, B., Rapin, N. (eds.) Proc.

18 H. Giese et al.

of the 3rd International Workshop on Model Development, Validation and Verifi-
cation (MoDeVa), Genova, Italy. pp. 78–93. Le Commissariat à l’Energie Atomique
- CEA (October 2006)

10. Giese, H., Hildebrandt, S.: Incremental Model Synchronization for Multiple Up-
dates. In: Proceedings of the 3rd International Workshop on Graph and Model
Transformations, May 12, 2008, Leipzig, Germany. pp. 1–8. ACM Press (2008)

11. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models.
Tech. Rep. 28, Hasso Plattner Institute at the University of Potsdam (2009)

12. Giese, H., Wagner, R.: From Model Transformation to Incremental Bidirectional
Model Synchronization. Software and Systems Modeling (SoSyM) 8(1) (28 March
2009)

13. Greenyer, J., Kindler, E.: Comparing Relational Model Transformation Technolo-
gies: Implementing Query/View/Transformation with Triple Graph Grammars.
Software and Systems Modeling 9(1), 21–46 (2010)

14. International Telecommunication Union, I.: ITU-T Recommendation Z.100: Spec-
ification and Description Language (SDL) (2002)

15. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at the
MoDELS 2005 Conference. LNCS, vol. 3844, pp. 128–138. Springer Verlag, Berlin
(2006)

16. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory
Model Transformation. In: Schürr, A., Zündorf, A. (eds.) Proc. of the 2nd Interna-
tional Fujaba Days 2004, Darmstadt, Germany. Technical Report, vol. tr-ri-04-253,
pp. 35–38. University of Paderborn (2004)

17. Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Embedding and Confluence of
Graph Transformations with Negative Application Conditions. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) Proc. International Conference on
Graph Transformation (ICGT’08). LNCS, vol. 5214, pp. 162–177. Springer, Hei-
delberg (2008)

18. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universität Berlin (2010)

19. de Lara, J., Vangheluwe, H.: AToM3 as a Meta-CASE Environment (DFD to SC).
In: Proceedings of the 4th International Conference on Enterprise Information
Systems (2002)

20. Object Management Group: MOF 2.0 QVT 1.0 Specification (2008)

21. Orejas, F., Guerra, E., de Lara, J., Ehrig, H.: Correctness, Completeness and Ter-
mination of Pattern-Based Model-to-Model Transformation. In: Kurz, A., Lenisa,
M., Tarlecki, A. (eds.) CALCO. LNCS, vol. 5728, pp. 383–397. Springer (2009)

22. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Proc. of the 20th International Work-
shop on Graph-Theoretic Concepts in Computer Science. LNCS, vol. 903, pp. 151–
163. Spinger Verlag, Herrsching, Germany (June 1994)

23. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars : Research Challenges,
New Contributions, Open Problems. In: 4th International Conference of Graph
Transformation, ICGT 2008, Leicester, United Kingdom, September 7-13, 2008.
LNCS, vol. 5214, pp. 411–425. Springer, Berlin / Heidelberg (2008)

24. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software pp. 42–45 (2003)

25. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. Software and Systems Modeling 9(1), 7–20 (2010)

Bridging the Gap between Formal Semantics and Implementation of TGGs 19

26. Taentzer, G., Ermel, C., Rudolf, M.: The AGG-Approach: Language and Tool En-
vironment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Hand-
book of Graph Grammars and Computing by Graph Transformation, volume 2:
Applications, Languages and Tools. pp. 551–603. World Scientific (1999)

27. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) Models in
Software Engineering, Workshops and Symposia at MODELS 2009, Denver, CO,
USA, October 4-9, 2009, Reports and Revised Selected Papers, LNCS, vol. 6002,
pp. 124–139. Springer-Verlag (April 2010)

A Triple Graphs and TGGs

We reintroduce the definition of graphs and graph morphisms.

Definition 7 (graph and graph morphism). A graph G = (GN , GE , src, tgt)
consists of a set GN of nodes, a set GE of edges and two mappings src, tgt :
GE → GN , assigning to each edge e ∈ GE a source src(e) ∈ GN and tar-
get tgt(e) ∈ GN . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,N , Gi,E , srci, tgti), (i = 1, 2) is a pair f = (fN : G1,N → G2,N , fE : G1,E →
G2,E) of mappings, such that fN ◦ src1 = src2 ◦ fE and fN ◦ tgt1 = tgt2 ◦ fE.

The category having graphs as objects and graph morphisms as arrows is
called Graphs.

Triple graphs are graphs typed over a distinguished graph, called TRIPLE.

Definition 8 (triple graph and morphism). The graph TRIPLE is a graph
with three nodes s, c, t and four edges ls, ecs, ect and lt such that src(ls) = s,
tgt(ls) = s, src(ecs) = s, tgt(ecs) = c, src(ect) = c, tgt(ect) = t and src(lt) = t,
tgt(lt) = t:

TRIPLE:
s c tectecs

ls lt

A triple graph (G, triple) is a graph G equipped with a morphism triple : G →
TRIPLE. Consider triple graphs (G1, triple1) and (G2, triple2), a triple graph
morphism f : (G1, triple1) → (G2, triple2) is a graph morphism f : G1 → G2

such that triple1 = triple2 ◦ f .

The category having triple graphs as objects and triple graph morphisms as
arrows is called TripleGraphs. Note that the category TripleGraphs is equal
to the slice category Graphs/TRIPLE.

We say that TRIPLES , the graph consisting of node s and loop ls, TRIPLEC ,
the graph consisting of nodes s, t, c, edge ecs and edge ect, TRIPLET , the graph
consisting of node T and loop lT , are the source component, correspondence com-
ponent, and target component of TRIPLE, respectively.

We say that (GS , triple|GS
), the restriction of (G, triple) to TRIPLES , is the

source component, (GC , triple|GC
), the restriction of (G, triple) to TRIPLEC , is

the correspondence component, and (GT , triple|GT
), the restriction of (G, triple)

20 H. Giese et al.

to TRIPLET , is the target component of (G, triple). Given a triple graph mor-
phism f : (G1, triple1) → (G2, triple2), we say that fS = f|G1,S

is the source
component, fC = f|G1,C

is the correspondence component, and fT = f|G1,T
is

the target component of f .
We may denote a triple graph (G, triple) as a combination of three capitals

(with index), as for example SGCGTG, where the first capital, here SG, denotes
the source, the second capital, here CG, denotes the correspondence, and the
third capital, here TG denotes the target component of (G, triple).

We introduce typed triple graphs as triple graphs typed over a distinguished
triple graph, called type triple graph.

Definition 9 (typed triple graph and morphism). A type triple graph
(T, tripleT) is a distinguished triple graph.

A typed triple graph ((G, tripleG), type) is a triple graph (G, tripleG) equipped
with a triple graph morphism type : (G, tripleG)→ (T, tripleT).

Consider typed triple graphs ((G1, triple1), type1) and ((G2, triple2), type2),
a typed triple graph morphism f : ((G1, triple1), type1)→ ((G2, triple2), type2)
is a triple graph morphism f : (G1, triple1)→ (G2, triple2) such that type2 ◦f =
type1.

Note that each typed graph (G1, type1) and typed graph morphism f :
(G1, type1)→ (G2, type2) typed via type1 : G1 → T and type2 : G2 → T over T
such that type1 = type2◦f , where (T, tripleT) is a type triple graph, corresponds
uniquely to a typed triple graph ((G1, tripleT ◦ type1), type1) and typed triple
graph morphism f : ((G1, tripleT ◦type1), type1)→ ((G2, tripleT ◦type2), type2),
respectively.

We denote the type triple graph (T, tripleT) also as STCTTT , where ST is
its source component, CT its correspondence component and TT its target com-
ponent. For the rest of this appendix every triple graph SCT is typed, although
not explicitly mentioned. Analogously, a morphism between typed triple graphs
is typed, although not explicitly mentioned. In particular, this means that S is
typed over ST , C is typed over CT , and T is typed over TT .

The category having typed triple graphs as objects and typed triple graph
morphisms as arrows is called TripleGraphsSTCTTT

. Note that
TripleGraphsSTCTTT

is the slice category TripleGraphs/STCTTT of the slice
category Graphs/TRIPLE. Consequently, it follows from [4] that the cate-
gory TripleGraphsSTCTTT

of typed triple graphs together with the set M of
monomorphisms forms an adhesive HLR category [4].

For simplicity reasons, we do not reintroduce attributed graphs as given in [4].
However, it follows from [4] that, analogous to the case without attribution, we
can define the category ATripleGraphsSTCTTT

, having typed attributed triple
graphs as objects and typed attributed triple graph morphisms as arrows such
that with the set M of injective morphisms with isomorphism on the data part
it is an adhesive HLR category [4].

Given the adhesive HLR category TripleGraphsSTCTTT

(ATripleGraphsSTCTTT
), a triple graph grammar (TGG) as introduced in Sec-

tion 2 is an adhesive HLR grammar with non-deleting rules. Forward, backward

Bridging the Gap between Formal Semantics and Implementation of TGGs 21

and correspondence rules and transformations corresponding to a given TGG
are distinguished rules (as introduced for the forward case in Section 3 analogous
to [22]) and transformations in the adhesive HLR category TripleGraphsSTCTTT

(ATripleGraphsSTCTTT
).

B Triple Graph Transformation extended with
Bookkeeping

In Section 3, we extend triple graphs and forward rules with a bookkeeping
mechanism allowing us to formulate in Section 4 sufficient criteria (determinism
criteria) that ensure uniqueness of the transformation result.

In order to be able to apply critical pair analysis as described in [4], we
need to show that triple graphs and forward rules extended with bookkeeping
can be defined as objects and adhesive HLR rules for a suitable adhesive HLR
category. To this extent, we slightly adapt the category TripleGraphsSTCTTT

(ATripleGraphsSTCTTT
) to TripleGraphsBSTCTTT

(ATripleGraphsBSTCTTT
)

by extending TRIPLE to BTRIPLE and accordingly STCTTT to BSTCTTT .
First, since for the bookkeeping of edge translation we use bookkeeping edges

from the bookkeeping node b to edges in the source or target graph, we introduce
a graph notion where edges from nodes to edges are allowed.

Definition 10 (extended graph and graph morphism). An extended graph
G = (GN , GE , GE′ , src, tgt, src

′, tgt′) consists of a set GN of nodes, a set GE

of edges, two mappings src, tgt : GE → GN , assigning to each edge e ∈ GE a
source src(e) ∈ GN and target tgt(e) ∈ GN , and two mappings src′ : GE′ → GN

and tgt′ : GE′ → GE assigning to each edge e′ ∈ GE′ a source src(e′) ∈ GN

and target tgt(e′) ∈ GE. A extended graph morphism f : G1 → G2 between two
extended graphs Gi = (Gi,N , Gi,E , Gi,E′ , srci, tgti, src

′
i, tgt

′
i), (i = 1, 2) is a triple

f = (fN : G1,N → G2,N , fE : G1,E → G2,E , fE′ : G1,E′ → G2,E′) of mappings
such that fN ◦ src1 = src2 ◦ fE, fN ◦ tgt1 = tgt2 ◦ fE, fN ◦ src′1 = src′2 ◦ fE′ ,
and fE ◦ tgt′1 = tgt′2 ◦ fE′ .

As explained in [4], the category Graphs is isomorphic to the functor cate-
gory [S,Sets], where the schema category S is given by the schema: • //// • .
Analogously, the category ExtGraphs of extended graphs and extended graph
morphisms is isomorphic to the functor category [ES,Sets], where the schema
category ES is given by the schema: •

tt **• //// •
.

Therefore, it follows that not only the category Graphs, but also the category
ExtGraphs with M, the set of extended graph monomorphisms is adhesive
HLR.

Definition 11 (triple graph and morphism with bookkeeping). The graph
BTRIPLE is an extended graph and can be constructed from the graph TRIPLE
as follows: we add a node b, edges ebs with src(ebs) = b and tgt(ebs) = s, ebt
with src(ebt) = b and tgt(ebt) = t, and special edges, e′bs with src(e′bs) = b and
tgt(e′bs) = ls, e′bt with src′(e′bt) = b and tgt′(e′bt) = lt.

22 H. Giese et al.

BTRIPLE:
s c t

b

ect

ebs ebt
lt

e’bs e’bt
ls

We define TripleGraphsB as the slice category ExtGraphs/BTRIPLE. It
consists of so-called triple graphs and morphisms with bookkeeping.

Consequently, triple graphs with bookkeeping may have incoming edges from
the bookkeeping node b16 to its source or target nodes or edges, expressing which
nodes and edges have not been translated yet.

Definition 12 (typed triple graph and morphism with bookkeeping).
Given a triple type graph STCTTT , then we can construct its corresponding triple
type graph BSTCTTT with bookkeeping types from STCTTT as follows: add the
node b of type b in BTRIPLE to the node set of STCTTT , add for each node n
in ST (TT) an edge from b to n of type ebs (resp. ebt), and finally, add for each
edge e in ST (TT) an edge from b to e of type e′bs (resp. e′bt).

We define TripleGraphsBSTCTTT
as the slice category

TripleGraphs/BSTCTTT of the slice category ExtGraphs/BTRIPLE. It con-
sists of so-called typed triple graphs and morphisms with bookkeeping.

It follows from [4] that the category TripleGraphsBSTCTTT
of typed triple

graphs with bookkeeping, together with the setM of monomorphisms forms an
adhesive HLR category. Moreover, it follows from [18] that this category with
M =M′ = Q′ is also NAC-adhesive HLR. This is a prerequisite for being able
to do critical pair analysis as presented in [4, 18] on bookkeeping rules, since in
particular these rules hold NACs.

For the attributed case, it follows in an analogous way that the category
ATripleGraphsBSTCTTT

of typed attributed triple graphs with bookkeeping,
M the set of monomorphisms with isomorphism on the data part, and suitable
M′,Q and E ′ morphisms (see [4, 18]) is a NAC-adhesive HLR category.

Given the adhesive HLR category TripleGraphsBSTCTTT

(ATripleGraphsBSTCTTT
), bookkeeping forward, backward and correspondence

rules and transformations corresponding to a given TGG are distinguished rules
(as introduced for the bookkeeping forward case in Section 3) and transforma-
tions in the NAC-adhesive HLR category TripleGraphsBSTCTTT

(ATripleGraphsBSTCTTT
).

C Proof of Lemma 1 and Theorem 1

Lemma 1 (partial consistency). For a TGG and its operationalization
CON = OPFT (TGG) holds that BinitS →aBF BASCATA →∗CON BiSCiTi ∧
TransF (BiSCiTi) = Si implies SACATA →∗TGG SiCiTi via the related TGG
rules.
16 As an additional constraint, we assume that there is exactly one bookkeeping node,

i.e. node of type b in BTRIPLE, in each triple graph with bookkeeping. Therefore,
we denote the bookkeeping node in each triple graph with bookkeeping also by b.

Bridging the Gap between Formal Semantics and Implementation of TGGs 23

Proof. First, we show that for the bookkeeping forward transformation

tBF : BinitS →mA,aBF BASCATA →∗CON BiSCiTi

we can construct the following source transformation via corresponding source
rules17

tS : ∅ →aS TransF (BASCATA)→∗SRC TransF (BiSCiTi)

To this extent, first, we show that BinitS →mA,aBF BASCATA leads to a
source transformation ∅ →aS TransF (BASCATA) with co-match mA|SA

. This
is because in BinitS →mA,aBF BASCATA, mA matches all elements of SA to
elements in S with incoming bookkeeping edges from b and deletes these edges
such that mA(SA) equals TransF (BASCATA).

Secondly, we show that for the forward transformation

t′BF : BASCATA →m1,rBF
1

B1SC1T1 . . .→mi,rBF
i

BiSCiTi

a source transformation

t′S : TransF (BASCATA)→rS1 ,m1|S1,L
TransF (B1SC1T1) . . .

. . .→rSi ,mi|Si,L
TransF (BiSCiTi)

exists. We argue by induction over i, the number of transformation steps.
The rule application BASCATA →m1,rBF

1
B1SC1T1 implicates that we have

the transformation TransF (BASCATA)→rS1 ,m1|S1,L
TransF (B1SC1T1) with co-

match m1|S1,R
. This is because m1 matches all elements in S1,L to elements in

TransF (BASCATA) because otherwise NACBF of rule rBF
1 would not be ful-

filled. Moreover, m1 matches all elements in S1,R\S1,L to elements in BASCATA\
TransF (BASCATA) because these elements should have incoming bookkeeping
edges from b. Exactly these elements are then added to TransF (BASCATA),
obtaining TransF (B1SC1T1).

Suppose that we have for the bookkeeping forward transformation

t′′BF : BASCATA →m1,rBF
1

B1SC1T1 . . .→mi−1,rBF
i−1

Bi−1SCi−1Ti−1

a corresponding source transformation

t′′S : TransF (BASCATA)→rS1 ,m1|S1,L
TransF (B1SC1T1) . . .

. . .→rSi−1,mi−1|Si−1,L
TransF (Bi−1SCi−1Ti−1)

Then,
TransF (Bi−1SCi−1Ti−1)→rSi ,mi|Si,L

TransF (BiSCiTi)

17 Given a TGG, then SRC denotes the set of source rules that can be derived from
the rules in TGG.

24 H. Giese et al.

exists with co-match mi|Si,R
. This is because mi matches all elements in Si,L

to elements in TransF (Bi−1SCi−1Ti−1) because otherwise NACBF of rule rBF
i

would not be fulfilled. Moreover, mi matches all elements in Si,R\Si,L to elements
in Bi−1SCi−1Ti−1\TransF (Bi−1SCi−1Ti−1) because these elements should have
incoming bookkeeping edges from b. Exactly these elements are then added to
TransF (Bi−1SCi−1Ti−1) obtaining TransF (BiSCiTi) = Si ⊆ S.

Summarizing, we have obtained the source sequence:

tS : ∅ →aS TransF (BASCATA)→∗SRC TransF (BiSCiTi)

for the corresponding bookkeeping forward transformation

tBF : BinitS →mA,aBF BASCATA →∗CON BiSCiTi

By type restriction, we can derive from tBF the forward transformation without
bookkeeping via the corresponding forward rules in FOR:

tF : S →aF SCATA →∗FOR SCiTi

Moreover, we can restrict tF to the transformation:

tFi : Si →aF SiCATA →∗FOR SiCiTi

This is because the elements belonging to S \Si (with TransF (BiSCiTi) = Si ⊆
S) are not mapped by any match in tF such that we can apply the Restriction
Theorem [4, 18] to tF obtaining tFi . Consider the transformation tS followed by
tFi :

∅ →aS TransF (BASCATA)→rS1
TransF (B1SC1T1) . . .

. . .→rSi
TransF (BiSCiTi)→aF SiCATA →rF1

S1C1T1 . . .→rFi
SiCiTi

We can switch each source transformation step via rSk (1 ≤ k ≤ i) in tS

with each forward transformation step via aF and rFj with 1 ≤ j < k ≤ i,
respectively. This is because these transformations steps are sequentially inde-
pendent, i.e. nothing is produced in source transformation step k what is used
by a forward transformation step via aF and rFj , respectively, since each source

transformation step via rSk produces graph elements used for the first time by
a forward transformation via rule rFk . By switching all source transformation
steps in tS with forward transformation steps in tFi , starting with switching
TransF (Bi−1SCi−1Ti−1) →rSi

TransF (BiSCiTi) →aF SiCATA, as much as
possible to the right, we obtain a transformation

t : ∅ →aS SA →aF SACATA →rS1
S1CATA →rF1

S1C1T1 . . .

. . . SiCi−1Ti−1 →rFi
SiCiTi

We can build concurrent rules of the source and forward transformations such
that using the Concurrency Theorem [4], we obtain:

SACATA →rS1 ∗rF1 S1C1T1 . . .→rSi ∗rFi SiCiTi

Consequently, SiCiTi is an element of L(TGG) with Si = TransF (BiSCiTi). �

Bridging the Gap between Formal Semantics and Implementation of TGGs 25

Theorem 1 (conformance). For a TGG and its operationalization CON =
OPFT (TGG), it holds that FTTGG(S) = FTCON (S). In particular, BinitS →aBF

BASCATA →∗CON BiSCiTi and TransF (BiSCiTi) = S if and only if
SACATA →∗TGG SCiTi via the related TGG rules.

Proof. FTCON (S) ⊆ FTTGG(S) (consistency) follows from Lemma 1 for the
special case that TransF (BiSCiTi) = S.

FTCON (S) ⊇ FTTGG(S) (completeness) holds because of the following argu-
mentation: Each transformation

t : ∅ →a SACATA →r1 S1C1T1 . . .→ri SiCiTi

where Si = S, can be decomposed via the Concurrency Theorem [4] into a trans-
formation

t′ : ∅ →aS SA →aF SACATA →rS1
S1CATA →rF1

S1C1T1 . . .

. . .→rSi
SiCi−1Ti−1 →rFi

SiCiTi

The forward transformation step via aF can be switched with each source trans-
formation step via rSj (1 ≤ j ≤ i) since these steps are sequentially independent.

This is because aF produces only correspondence and target elements that are not
used by some source transformation step via rSj (1 ≤ j ≤ i). Moreover, each for-

ward transformation step via rFk (1 ≤ k ≤ i−1) can be switched with each source
transformation step via rSj (1 ≤ k < j ≤ i) since these steps are sequentially

independent. This is because each rFk only produces correspondence and target
elements not used by some source transformation step via rSj . By switching like
this in t′ each forward transformation step with each source transformation step,
starting with switching Si−1Ci−2Ti−2 →rFi−1

Si−1Ci−1Ti−1 →rSi
SiCi−1Ti−1, as

much as possible to the right, we obtain a source transformation tS where first,
Si is generated via the source rules in SRC with

tS : ∅ →aS SA →rS1 ,m1|S1,L
S1 . . .→rSi ,mi|Si,L

Si

and co-matches mA|SA
,m1|S1,R

, . . . ,mi|Si,R
, respectively, together with a forward

transformation tF transforming Si into SiCiTi via the corresponding forward
rules in FOR

tF : Si →aF ,mA
SiCATA →rF1 ,m1

SiC1T1 . . .→rFi ,mi
SiCiTi

Thereby note, that after this switching, the elements produced by the first source
transformation step via aS in tS are matched for the first time in tF by mA in
the first forward transformation step via aF . Moreover, the elements produced by
the k-th (1 ≤ k ≤ i) source transformation step via rSk in tS are matched for the
first time in tF by mk(Sk,R \ Sk,L) in the k-th forward transformation step via
the corresponding forward rule rFk . Therefore, we can enrich tF to a bookkeeping
forward transformation

tBF : BinitSi →aBF BASiCATA →rBF
1

B1SiC1T1 . . .→rBF
i

BiSiCiTi

26 H. Giese et al.

via the corresponding rules in CON as follows: First, we add bookkeeping edges to
all elements in Si, obtaining BinitSi. We enrich the forward transformation step
via rule aF to a forward transformation step with bookkeeping via aBF such that
it deletes exactly those bookkeeping edges pointing to elements in Si produced by
aS. We then have TransF (BASCATA) = SA. Moreover, we enrich each forward
transformation step via rFk (1 ≤ k ≤ i) to a forward transformation step with
bookkeeping via rBF

k such that it deletes exactly those bookkeeping edges pointing
to elements in Si produced by the corresponding source transformation step via
rSk such that in the end TransF (BiSCiTi) = Si = S. �

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

36 978-3-86956-

065-6
Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Felix Geller, Robert Hirschfeld,
Gilad Bracha

35 978-3-86956-
054-0

Business Process Model Abstraction :
Theory and Practice

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske

34 978-3-86956-
048-9

Efficient and exact computation of
inclusion dependencies for data
integration

Jana Bauckmann, Ulf Leser,
Felix Naumann

33 978-3-86956-
043-4

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

32 978-3-86956-
037-3

STG Decomposition:
Internal Communication for SI
Implementability

Dominic Wist, Mark Schaefer,
Walter Vogler, Ralf Wollowski

31 978-3-86956-
036-6

Proceedings of the 4th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

30 978-3-86956-
009-0

Action Patterns in Business Process
Models

Sergey Smirnov, Matthias
Weidlich, Jan Mendling,
Mathias Weske

29 978-3-940793-
91-1

Correct Dynamic Service-Oriented
Architectures: Modeling and
Compositional Verification with Dynamic
Collaborations

Basil Becker, Holger Giese,
Stefan Neumann

28 978-3-940793-
84-3

Efficient Model Synchronization of
Large-Scale Models

Holger Giese, Stephan
Hildebrandt

27

978-3-940793-
81-2

Proceedings of the 3rd Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

26

978-3-940793-
65-2

The Triconnected Abstraction of Process
Models

Artem Polyvyanyy, Sergey
Smirnov, Mathias Weske

25

978-3-940793-
46-1

Space and Time Scalability of Duplicate
Detection in Graph Data

Melanie Herschel,
Felix Naumann

24

978-3-940793-
45-4

Erster Deutscher IPv6 Gipfel

Christoph Meinel, Harald Sack,
Justus Bross

23

978-3-940793-
42-3

Proceedings of the 2nd. Ph.D. retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

22

978-3-940793-
29-4

Reducing the Complexity of Large EPCs

Artem Polyvyanyy, Sergy
Smirnov, Mathias Weske

21

978-3-940793-
17-1

"Proceedings of the 2nd International
Workshop on e-learning and Virtual and
Remote Laboratories"

Bernhard Rabe, Andreas Rasche

20

978-3-940793-
02-7

STG Decomposition: Avoiding Irreducible
CSC Conflicts by Internal Communication

Dominic Wist, Ralf Wollowski

ISBN 978-3-86956-078-6
ISSN 1613-5652

	Title page
	Imprint

	Abstract
	1 Introduction
	2 Relational Scheme
	3 Conform Scheme
	4 Deterministic Scheme
	5 Implementation Scheme
	6 Related Work
	7 Conclusion & Future Work
	References
	Appendix
	A Triple Graphs and TGGs
	B Triple Graph Transformation extended with Bookkeeping
	C Proof of Lemma 1 and Theorem 1

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

