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The Runge-Kutta type regularization method was recently proposed as a
potent tool for the iterative solution of nonlinear ill-posed problems. In this paper
we analyze the applicability of this regularization method for solving inverse
problems arising in atmospheric remote sensing, particularly for the retrieval
of spheroidal particle distribution. Our numerical simulations reveal that the
Runge-Kutta type regularization method is able to retrieve two-dimensional
particle distributions using optical backscatter and extinction coefficient profiles,
as well as depolarization information.
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1. Introduction

Nonlinear ill-posed inverse problems are frequently found in various fields of the natural
sciences, ranging, e.g. from sonar sensing of sediments in Geology to measurements of
infrared and ultraviolet atmospheric radiation inAtmospheric Physics. They occur wherever
a set of measurement data is used to draw conclusions about a set of variables related to the
former via a forward model.Astraight-forward solution to ill-posed problems is problematic,
and regularization methods must be used in order to obtain a solution with physical meaning.

In [1–4], an iterative regularization method known as the Runge–Kutta type regular-
ization method was introduced. The efficiency of this method for aerosol remote sensing
was successfully investigated in a series of papers.[5–8] Essentially, optical extinction and
backscatter profiles [8] as well as microphysical properties [5–7] of spherical aerosol parti-
cles in the atmosphere were inverted from LIDAR-signals (LIght Detection And Ranging)
using advanced laser remote sensing techniques.

The goal of this paper is to analyze the applicability of the Runge–Kutta type
regularization method for the retrieval of two-dimensional spheroidal particle distribution.
The organization of the paper is as follows: In Section 2 we outline the fundamentals of the
Runge–Kutta type regularization method by focussing our presentation on the derivation
of iteration schemes in continuous and discrete settings. Section 3, explains practical
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implementation issues concerning the database used, the degree of ill-posedness and the
ill-conditionedness of the discretized system. Finally, simulation examples are given.

2. Mathematical formulation

2.1. Runge–Kutta type regularization method in a continuous setting

In atmospheric remote sensing the relationship between the state parameters x encapsulating
the two-dimensional spheroidal particle distribution and the set of data y encapsulating
the optical coefficient profiles is described by a forward model F . Formally, the retrieval
problem is modeled by a Frechet-differentiable nonlinear operator equation

F(x) = y, (1)

where the forward model operator F : D (F) ⊂ X → Y , acting between the infinite-
dimensional real Hilbert spaces X and Y , has a non-closed range of values R (F), and
possesses a locally, uniformly bounded Frechet derivative F ′ in D (F). In practice, we can
envisage the data yδ /∈ R (F) as consisting of noiseless observations y ∈ R (F) from a
perfect instrument plus a noise component δ, i.e. yδ = y + δ. For retrieval problems arising
in atmospheric remote sensing, the inverse operator F−1 is not continuous, and the solution
xδ of (1), if it exists, with the right-hand side yδ , does not depend continuously on the data.
As a result, the solution is unstable under data perturbation (small errors in the data space
Y are dramatically amplified in the state space X ) and the problem (1) is said to be ill-
posed. It should be remarked that the prototype of ill-posed problems is a Fredholm integral
equation of the first kind, and as will be shown in Section 3, our atmospheric retrieval
problem requires the solution to this kind of equations. Ill-posed problems can be solved by
regularization methods, whereby the solution is stabilized by taking additional information
into account.

In this paper, we are concerned with a regularization approach which applies the family
of Runge–Kutta methods to the asymptotical regularization method. Initial work on this for
the case of linear problems was first done by Böckmann [9], Rieder [4], extended to Padé
iteration by Kirsche and Böckmann [3], and later successfully used in active LIDAR remote
sensing of the atmosphere to retrieve microphysical aerosol properties.[5] Recently, in [1,2]
this method was extended to nonlinear problems. The method of asymptotical regularization
can be regarded as a continuous analogue of the Landweber iteration, see [10,11], generated
by the particular Runge–Kutta method, namely the explicit Euler method,

xδ
k+1 = xδ

k + F ′ (xδ
k

)∗ [
yδ − F

(
xδ

k

)]
, k = 0, 1, . . . , (2)

in which, as shown in [12], a regularized approximation xδ (t) of the solution is obtained
by solving the initial value problem (Showalter differential equation)

ẋδ(t) = F ′ (xδ(t)
)∗ [

yδ − F
(
xδ(t)

)]
, 0 < t ≤ t1, xδ(0) = xa . (3)

Here, xa is the a priori state (the best estimate of the solution before solving), F ′ (·)∗
stands for the adjoint operator of F ′ (·), and the time interval t1 plays the role of the
regularization parameter. The family of Runge–Kutta methods applied to a problem of
the form

ẋ(t) = � (t, x(t)) , x(0) = xa, (4)
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Table 1. (a)–(c) Butcher tableaus for three second-stage Runge-Kutta methods: Runge, Radau and
Lobatto; (d) General Butcher tableau.

0 0 0
1/2 1/2 0

0 1

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

0 1/2 −1/2
1 1/2 1/2

1/2 1/2

c A

bT

(a) Runge method (b) Radau method (c) Lobatto method (d) General tableau

is characterized by the iterative procedure

xk+1 = xk + τk

s∑
i=1

bi� (t + ciτk, vi ) (5)

and

vi = xk + τk

s∑
j=1

ai j�
(
t + c jτk, v j

)
, (6)

where τk is the step size or the relaxation parameter at the actual iteration step, and A =[
ai j
] ∈ R

s×s , b = [b1, . . . , bs]T ∈ R
s , and c = [c1, . . . , cs]T ∈ R

s specify the particular
method from the Runge–Kutta family. In particular, s denotes the stage of the Runge-Kutta
method. These parameters are often aligned in a Butcher-tableau as shown in Table 1(d).

Applied to the initial value problem (3), following [1], this iterative procedure yields

xδ
k+1 = xδ

k + τk

s∑
i=1

bi F ′(vi )
∗ [yδ − F(vi )

]
(7)

and

vi = xδ
k + τk

s∑
j=1

ai j F ′(v j )
∗ [yδ − F(v j )

]
. (8)

Setting zi = vi − xδ
k , using the linearization

F(vi ) = F
(
xδ

k + zi
) ≈ F

(
xδ

k

)+ F ′ (xδ
k

)
zi , (9)

and the approximation F ′ (vi ) ≈ F ′ (xδ
k

)
, we express (7) and (8) as

xδ
k+1 = xδ

k + τk

s∑
i=1

bi F ′ (xδ
k

)∗ [
r δ

k − F ′ (xδ
k

)
zi
]

(10)

and

zi = τk

s∑
j=1

ai j F ′ (xδ
k

)∗ [
r δ

k − F ′ (xδ
k

)
z j
]

(11)

respectively. In (10) and (11), r δ
k = yδ − F

(
xδ

k

)
is the nonlinear residual at the iteration

step k. Manipulating (10) and (11) in an appropriate way (see Section 2.2), we end up with
the iteration formula

xδ
k+1 = xδ

k + τkbT �−1
k eF ′ (xδ

k

)∗
r δ

k , (12)
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where e = [1, . . . , 1]T ∈ R
s ,

�k = Is + τkAF ′ (xδ
k

)∗
F ′ (xδ

k

)
, (13)

and Is ∈ R
s×s is the identity matrix. In [1,2] it was shown that the iteration (12) together

with the discrepancy principle as a stopping rule is a convergent regularization method of
optimal order under Hölder source conditions, in the sense that the regularized solution
converges to the exact solution as the time interval t1 approaches infinity.

2.2. Runge–Kutta type regularization method in a discrete setting

Applications require a discretization of the state parameter function. Moreover, as any
measurement system can deliver only a discrete, finite set of data, the atmospheric retrieval
problems we are dealing with are discrete. Essentially, we are faced with the solution of the
nonlinear equation

F(x) = y, (14)

where x ∈ R
n is the vector of state parameters, y ∈ R

m is the data vector, and the
vector-valued function F : R

n → R
m is the (discrete) forward model. The data vector

is supposed to be contaminated by measurement errors, and we write yδ = y + δ. Because
the continuous problem is ill-posed, the underlying discrete problem generally inherits an
analogous property and we may say that we are dealing with a discrete ill-conditioned
problem. As in a continuous setting, a reliable approximation of the solution can only be
obtained by employing a regularization method. The goal of this section is to give a detailed
description of the Runge–Kutta type regularization method for solving (14).

Setting zi = [zi1, . . . , zin]T ∈ R
n for all i = 1, . . . , s, Kk = F′ (xδ

k

) ∈ R
m×n and

rδ
k = yδ − F

(
xδ

k

)
, the discrete versions of (10) and (11) become

xδ
k+1 = xδ

k + τk

s∑
i=1

bi KT
k

(
rδ

k − Kkzi
)
, (15)

and

zi = τk

s∑
j=1

ai j KT
k

(
rδ

k − Kkz j
)
, (16)

respectively. Putting Z = [z1, . . . , zs]T ∈ R
s·n , we express (16) in matrix form as

(Is ⊗ In)Z = τk(A ⊗ In)

⎡
⎢⎣

KT
k rδ

k
...

KT
k rδ

k

⎤
⎥⎦− τk

(
A ⊗ KT

k Kk

)
Z, (17)

where the notation A ⊗ B stands for the Kronecker product of the matrices A ∈ R
m×n and

B ∈ R
k×p, i.e.

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...

am1B am2B . . . amnB

⎞
⎟⎟⎟⎠

(m k)×(n p)

.
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The use of the Kronecker product enables us to derive a transparent solution representation
in a straightforward manner. Some calculation rules involving the Kronecker product are
given in Appendix A. From (17) we get[

Isn + τk(A ⊗ KT
k Kk)

]
Z = τk (A ⊗ In)

(
e ⊗ KT

k rδ
k

)
. (18)

where Isn = Is ⊗ In . Hence, assuming that

�k = Isn + τk(A ⊗ KT
k Kk), (19)

some properties of which are discussed in more detail in Appendix B, is regular, gives us

Z = τk�
−1
k (A ⊗ In)(e ⊗ KT

k rδ
k). (20)

Going back to (15) and using (B1) of Appendix B,

�−1
k = Isn −

(
Is ⊗ KT

k Kk

)
τk�

−1
k (A ⊗ In) ,

an implicit representation of the inverse, yields

xδ
k+1 = xδ

k + τk

(
bT ⊗ In

) (
e ⊗ KT

k rδ
k

)
− τk

(
bT ⊗ In

) (
Is ⊗ KT

k Kk

)
Z

= xδ
k + τk

(
bT ⊗ In

) [
Isn −

(
Is ⊗ KT

k Kk

)
τk�

−1
k (A ⊗ In)

] (
e ⊗ KT

k rδ
k

)
= xδ

k + τk

(
bT ⊗ In

)
�−1

k

(
e ⊗ KT

k rδ
k

)
. (21)

In the particular case s = 2 considered here, (21) reduces to

xδ
k+1 = xδ

k + [ b1In b2In
] (

αkI2n +
[

a11KT
k Kk a12KT

k Kk

a21KT
k Kk a22KT

k Kk

])−1 [
KT

k rδ
k

KT
k rδ

k

]
(22)

where we used the notation αk = 1/τk . Some of the most popular Runge–Kutta type
methods of the second stage include the Runge method, the Radau method and the Lobatto
method, whose Butcher tableaus are illustrated in Table 1(a)–(c). The Runge method,
notably, is ill suited for our purposes, since it is notA-stable, seeAppendix C. The Radau and
Lobatto methods, however, are perfectly suitable–both of them are A-stable. Fortunately,
this means that the step size τk can theoretically be chosen arbitrarily large, and this choice
reduces the number of iteration steps drastically in contrast to (2).

It should be pointed out that for the explicit Euler iteration (s = 1, a11 = 0, b1 = 1) we
are left with z1 = 0, and (15) is the nonlinear Landweber iteration. For the implicit Euler
method (s = 1, a11 = 1, b1 = 1), (21) reads as

xδ
k+1 = xδ

k + (αkIn + KT
k Kk)

−1KT
k rδ

k, (23)

and coincides with the iteration formula of the regularizing Levenberg–Marquardt method,
see [11,13–15]. This equivalence shows the role of the inverse of the step size αk : It takes
on the role of a second parameter which controls the amount of constraint at each iteration
step. The parameters αk are usually chosen as the terms of a decreasing sequence. This is
because at the beginning of the iterative process large αk values avoid local minima and
ensure that the (linearized) problem is better conditioned, while at the end of the iterative
process small αk values lower the importance of the constraint and yield a stable solution.



Inverse Problems in Science and Engineering 155

However, it should not be too small, i.e. the step size τk should not be too large, since
otherwise the discrepancy principle could be overshot with the last iteration step.

In the next Section, we apply the Radau method, see Table 1(b), to an atmospheric
problem from remote sensing.

3. Application

Studying the influence of non-spherical cloud and aerosol particles on the radiation budget
of Earth’s atmosphere is of growing importance in remote sensing. Saharan dust storms
as well as volcanic eruptions are, e.g. sources of non-spherical aerosol particles which are
important for a better understanding of the direct and indirect climate effects of such global
events. We conduct our investigation with the inversion of the size distribution function
from limited LIDAR data.

We consider here an ensemble of spheroidal particles characterized by the complex
refractive index m and the aspect ratio a, while r is the radius of a volume-equivalent
sphere.

A spheroid is created by rotating the curve C defined by

C(ϑ) = rh

(
sin2 ϑ + a2 cos2(ϑ)

)−1/2
, ϑ ∈ [0, π ], (24)

see Figure 1 for examples of oblate and prolate spheroids.
Let us denote by rh the horizontal semi-axis of the spheroid, and by rv the vertical one.

This means the aspect ratio a = rv/rh . The problem consists in retrieving the volume size
distribution function v(r, a) of the spheroidal particle ensemble from the optical particle
properties. The inversion will be performed with the following optical data 	 j : the direct-
polarization particle backscatter coefficient β at 355, 532 and 1064 nm and the cross-
polarization component of the particle backscatter coefficient δ at 355, 532 and 1064 nm
as well as the particle extinction coefficient α at 355 and 532 nm (in sum: 3β + 3δ + 2α

wavelengths λ). Since we will assume r denotes the radius of the volume-equivalent
sphere, the volume distribution is v(r, a) = 4πr3

3 n(r, a), where n(r, a) is the number size
distribution. The volume distribution is used since it is less prone to numerical instabilities
than the size distribution n(r, a), see [16]. We can model the inverse ill-posed retrieval
problem with the spheroidal efficiencies Q j , j ∈ {β, δ, α} from the scattering database for
spheroidal particles,[17] see Table 2, and the spheroid surface S as

(a) (b)

Figure 1. Two spheroids. On the left, an oblate spheroid with aspect ratio a = 0.5, on the right, a
prolate spheroid with a = 1.5.
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Table 2. Refractive indices m and aspect ratios a of the database.


(m) 1.33 1.4 1.5 1.6 1.7 1.8
�(m) 0 0.001 0.005 0.01 0.03 0.05 0.1
a 0.67 0.77 0.87 1.0 1.15 1.3 1.5

	 j (λ) =
∫ amax

amin

∫ rmax

rmin

3S

16πr3
Q j (r, λ, m, a)v(r, a)drda. (25)

Thus, the integral over the radius is integrated again over a parameter representing the
different aspect ratios. Here the direct problem consists in calculating 	 j (λ) from a given
distribution v(r, a) whereas the inverse problem means the determination of v(r, a) from
given data 	 j (λ). More precisely, this means here that we are looking for two-dimensional
distributions from given optical data; for more details see [16]. The retrieval problem of
the distribution from the above two-dimensional Fredholm system of the first kind, i.e.
the underlying operator is compact, is ill-posed in nature, and therefore requires partic-
ular regularization techniques. In case the complex refractive index is fixed and known
a-posteriori the model (25) is a linear one. Iterative regularization methods are very appro-
priate to solve Equation (25) for v(r, a). The well-known Landweber iteration is very slow,
therefore, even for linear problems the iteration methods with A-stable Butcher tableaus
from Section 2 are very advantageous here.

3.1. Degree of Ill-posedness and simulations

An interesting question when considering spheroids with a fixed aspect ratio is to what
extent this affects the ill-posedness of the problem. It is known that the singular values of
a compact operator approach zero, i.e. lim j→∞ σ j = 0. The faster the decay rate, the more
“ill-posed” the operator problem becomes, and the more difficult the solution process is. A
problem is said to be ill-posed of degree μ ∈ R

+ if we have σ j ∼ j−μ for j → ∞. In other
words, it is helpful in such worst cases to include additional a-priori information into the
solution process. Here we will also use cross-polarization particle backscatter coefficient
profiles.

Intuitively, we would assume that the degree of ill-posedness is slightly dependent on
the aspect ratio, and grows along with increasing non-sphericity. Therefore, in Figure 2
we have plotted the degree of ill-posedness of the corresponding one-dimensional operator
of Equation (25) for extinction and backscatter dependent on the fixed aspect ratio a for
two different refractive indices, non-absorbing m = 1.5 and absorbing m = 1.5 + 0.01i.
We have numerically calculated an approximation of the degree of ill-posedness for 20
different fixed values between a = 0.67 and a = 1.5; for more details see [16,18]. As one
can see in Figure 2, the effect that we have predicted from observing efficiency functions is
obviously present here. The larger the non-sphericity of the particles, the higher the degree
of ill-posedness. It is interesting to see that the additional effect of the refractive index
seems to be, more or less, additive in nature; the curves for the two different indices look
more or less the same, the degree for the absorbing refractive index is about 1 or 1.5 higher
for extinction or backscatter, respectively. The difference in the degree for spherical and
highly a-spherical particles is much more pronounced for backscatter than for extinction.
However, in sum, the increase in ill-posedness is not very significant and the degree is still
moderate for spheroidal particles as it is for spheres.
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In the inversion process of the corresponding one-dimensional system of Equation (25)
the aspect ratio has a large influence as the following simulation shows. The inversion will be
performed with error-free simulated data, 3β + 3δ + 2α wavelengths (direct-polarization and
cross-polarization backscatter at 355, 532 and 1064 nm and extinction at 355 and 532 nm)
for the complex refractive index m = 1.5 + 0.01i. In Figure 3(a), the forward calculation
with a distribution as described in Equation (28), a fixed aspect ratio of a = 1.15 and
a refractive index of m = 1.5 + 0.01i was done, and afterwards inverted with the exact
refractive index but with different aspect ratios. As one can see, the reconstruction works
very well for the correct aspect ratio of a = 1.15. On the other hand, the reconstruction fails
completely for all other assumed aspect ratios; even correctly assuming prolate particles,
but with an incorrect aspect ratio of a = 1.5, leads to completely worthless results here.

Figure 3(b) is the same example with a true aspect ratio of a = 0.67, thus an ensemble
of oblate spheroids. Basically the same behavior is exhibited here; the distribution is
reconstructed very well for the correct aspect ratio, and it fails completely for any incorrect
fixed aspect ratio.

Basically, assuming a wrong aspect ratio for spheroids is very similar to choosing a
wrong refractive index for spheres; as the corresponding kernel functions for different aspect
ratios or refractive indices wildly fluctuate, reconstruction fails completely when a different
kernel function is used for the forwards and backwards models. Therefore, it is useful and
even necessary to investigate and use in application scenarios the two-dimensional (2D)
model Equation (25).

Another interesting question concerns the condition number of the matrix after
discretization of the Fredholm system. In Figure 2(c) and (d) we show the transition
from infinite-dimensional to finite-dimensional spaces, which depends very much on the
discretization itself; for more details see [19]. After discretization of Equation (25) by
collocation, the degree of ill-posedness can be expressed with the condition number
κ = σmax

σmin
. This effectively produces the factor by which a given disturbance in the data

can be amplified. In Figure 2(c) and (d) we have plotted the logarithms (base 10) of the
condition numbers κ of the matrices AC , see Equation (26), resulting for B-spline
collocation discretization of Equation (25), dependent on the complex refractive index.
We have assumed realistic values that do not include any a priori information, thus
rmin = 10−4µm, rmax = 2µm, λ = (355α, 355β, 532α, 532β, 1064β nm) for spheres and
λ = (355α, 355β, 355δ, 532α, 532β, 532δ, 1064β, 1064δ nm) for spheroids, respectively,
as well as a B-spline basis of order 4 and 9 equidistantly distributed base points. Our limited
data points are 5 data points for spheres and 8 data points for spheroids, respectively.

As shown in Figure 2(c), the condition numbers, spherical case a = 1, are in the order
of magnitude between 1 and 3. In detail, they are growing with an increasing imaginary
part I(m) and roughly with a decreasing real part R(m) of the complex refractive index.

In Figure 2(d) we have plotted the spheroidal condition numbers of the resulting spline
collocation matrices. The qualitative behavior is more or less the same as for spheres, par-
ticularly the monotonic behavior with an increasing imaginary part. The different behavior
of the real part is an ongoing investigation. Furthermore, the orders of magnitude of the
condition numbers are slightly higher, ranging from 2 to 4 as one would expect from the ill-
posedness shown in Figure 2(a) and (b). Therefore, we have to use an appropriated iterative
regularization technique to solve Equation (25) for v(r, a) as mentioned before, e.g. the
iterative regularizing Radau method from Section 2.
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Figure 2. (a) and (b): Degrees of ill-posedness of the infinite dimensional model for two different
refractive indices. (c) and (d): The condition numbers κ of the collocation matrices AC resulting from
discretizing the problem. Scale: log10 κ(AC ).
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Figure 3. Reconstruction of a particle distribution with fixed aspect ratio a = 1.15 and
a = 0.67, inverted assuming different aspect ratios using a mono-modal log-normal distribution with
rmed = 0.5µm, σ = 1.2 and Nt = 1cm−3.

The spline collocation matrix is given by

AC
i,τ (l,k) =

∫ amax

amin

∫ rmax

rmin

3S

16πr3
Q j (r, λi , m, a)�l,k(r, a)drda, (26)
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where �l,k(r, a) (l = 1, . . . , lr ; k = 1, . . . , la; i = 1, . . . , l	) is the two-dimensional
B-spline basis, i.e. describes the B-spline surface, meaning that AC ∈ R

l	,lr la . τ (l, k) is
a one-dimensional rearranging for the indices l and k and τ−1( j) is the inverse, i.e. the
back-rearranging. We solve the inverse problem AC x = 	, and obtain our reconstructed
volume distribution by

v(r, a) =
lr la∑
j=1

x j�τ−1( j)(r, a) (27)

using a projected Radau iteration since we have to determine a non-negative distribution, see
[20,21]. Moreover, the iteration stops using Morozov’s well-known discrepancy principle;
for more details see [7].

3.2. Simulation results of the 2D model

To evaluate the validity of the proposed 2D model and algorithm, we first tested it on data
simulated from spherical particles. We used simulated data gained from the 1D spher-
ical forward model (direct problem) assuming the mono-modal (M = 1) log-normal
distribution with rmed = 0.1µm, σ = 1.6, Nt = 1 cm−3 with m = 1.5 + 0.01i at
extinction wavelengths of 355 and 532 nm and backscatter wavelengths at 355, 532 and
1064 nm, i.e.

n(r) =
M∑

j=1

Nt, j√
2πr ln σ j

exp

(
(ln r − ln rmed, j )

2

−2(ln σ j )2

)
. (28)

The inversion results with the 2D model (inverse problem) are shown in Figure 4. We
performed the inversion with noiseless data. Consider first Figure 4(b), 4(d) and 4(f), in
which we used the spherical forward data as described above. Not surprisingly, while the
aspect-ratio-integrated distribution va(r) in Figure 4(d) can be calculated quite exactly, the
radius-integrated distribution over the aspect ratios vr (a) as shown in 4(f) is very far from
correct; the true solution is only a delta peak at a = 1.

For the other three figures on the left, Figure 4(a), (c) and (e), we have also incor-
porated depolarization information, i.e. cross-polarization backscatter coefficients. This
means that in addition to the data points at 355α, 355β, 532α, 532β and 1064β nm we
included 355δ, 532δ and 1064δ nm for the 2D inversion. The three additional values are of
course zero, as one knows that spherical particles will not result in any cross-polarization
backscatter. As one can see from the figures, while the reconstruction of va(r) is nearly
identical, the reconstruction of vr (a) works much better in this case as expected.

This leads to a very interesting proposition, which we will further investigate in other
examples; while information about the sizes of the particles are mostly included in the
extinction and total backscatter data, the shape of the particles (here represented by the
aspect ratio) can only be reliably determined with knowledge of the depolarization.

Secondly, we will move on to real simulation examples which consist of ensembles of
spheroids with variable aspect ratios.

For our simulations, we used distributions that assume a uniform mono-modal
log-normal distribution with respect to the radius, multiplied by a weighting function w(a)

over the different aspect ratios. Note that we basically only define the w(a) on the seven
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Figure 4. Inverting data gained from a spherical forward model with a mono-modal log-normal
distribution and a complex refractive index of m = 1.5 + 0.01i. For (e) and (f) the exact solution is
a delta peak at a = 1.

aspect ratios we have available in the database – everything else must be interpolated. We
perform our evaluations with two-dimensional volume distributions calculated by

v j (r, a) = 4πr3

3
n(r) · w j (a), (29)
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Table 3. Test cases for two-dimensional distribution retrieval.

Case rmed σ Nt w(a)

1 0.5 1.2 1 w1(a) =

⎧⎪⎨
⎪⎩

1/3, a = 1.15,

1/3, a = 1 ∨ a = 1.3

0 otherwise

2 0.1 1.6 100 w2(a) =
{

0.5, a = 0.67 ∨ a = 0.77

0 otherwise

3 0.1 1.6 100 w3(a) =
{

0.5, a = 1.3 ∨ a = 1.5

0 otherwise
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Figure 5. Reconstructions with and without depolarization data for the three cases from Table 3.

where j is the number of the case taken from Table 3. We will assume a refractive index of
m = 1.5 + 0.01i for both forward and inversion calculations.

In the examples from Table 3, case 2 represents an ensemble of solely oblate particles,
case 3 an ensemble of solely prolate particles while case 1 contains a mixture of prolate
particles with spheres.
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After simulating the forward calculation with these particle distributions according to
Equation (25), we try to invert the optical coefficients gained to reconstruct the volume
distribution. We will do this in two different ways, first while ignoring all potential depo-
larization information, i.e. l	 = 5, and second with the assumption that we cleanly separate
the direct-polarization and cross-polarization fractions of the total backscatter coefficients,
i.e. l	 = 8. These two approaches lead to completely different results in some cases. We
will see that sometimes, especially for oblate particles, depolarization information does not
play a big role in obtaining a good reconstruction of the volume distribution, while it is
absolutely necessary for prolate particles with respect to our selected examples.

We look at reconstruction results gained from inverting noiseless data, see Figure 5.
Interestingly, the radius-averaged volume distribution is reconstructed with good quality
for all cases, whether we consider the depolarization information or not. The situation
looks much different for the aspect-ratio-averaged volume distribution results. For case 3,
the ensemble of prolate particles, the reconstruction with respect to the aspect ratio fails
completely, as shown in Figure 5(i). Whether in general prolate ensembles are much more
difficult to reconstruct than oblate ones is a question in need of further investigation. But
it leads us to the confirmation that it is the depolarization information that may contain the
crucial information about the aspect ratio distribution of the particles.

3.3. Summary and conclusion

In this application Section, a model used for the forward calculation and inversion of
aerosol optical properties that is based on Mie theory and used for spheres with limited
input data has been extended to work on spheroids, where the underlying kernel functions
were exchanged with database values that have been calculated via a T-matrix method,
see [17,22]. Furthermore, we have investigated the role that depolarization information
plays in this inversion. Experiments have shown that the importance of depolarization
information is highly dependent on each individual case. This, of course, implies the high
significance of availability of these separated direct-polarization and cross-polarization
backscatter coefficient profiles, since results can be completely invalidated in some cases if
there is no depolarization information present. This is a very important result for inversion of
remote sensing data, as we showed that the availability of good depolarization information
is what makes inversion of optical particle profiles of ensembles of spheroidal particles
towards microphysical particle properties workable.

The determination of the size distribution function is very important, since from it one
can calculate all microphysical properties in a straightforward manner, in particularly the
single scattering albedo of aerosol necessary as input for climate models to predict global
warming or cooling.

Further interesting and important tasks in future arise in examinations of non-spherical
particle shapes with edges.
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Appendix A. The Kronecker product
We report here the definition and the principal properties of the Kronecker product of matrices, see
e.g. [23]. Let A = (ai j ) ∈ R

m×n and B ∈ R
k×p , in which case the matrix

A ⊗ B :=

⎛
⎜⎜⎝

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

⎞
⎟⎟⎠

(m k)×(n p)

(A1)

is called the Kronecker (or tensor) product of A and B.
Let A, B, C and D be matrices such that all the operations below reported are defined. Then:

(i) for all α ∈ R : (αA) ⊗ B = A ⊗ (αB) = α(A ⊗ B);
(ii) (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C);

(iii) A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C);
(iv) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C;
(v) (A ⊗ B)T = AT ⊗ BT ;

(vi) (A ⊗ B)(C ⊗ D) = (A C) ⊗ (B D);
(vii) for all A ∈ R

n×n and B ∈ R
m×m :

A ⊗ B = (A ⊗ Im)(In ⊗ B) = (In ⊗ B)(A ⊗ Im)
(viii) if A and B are nonsingular matrices: (A ⊗ B)−1 = A−1 ⊗ B−1;

(ix) for all A ∈ R
n×n and B ∈ R

m×m : det(A ⊗ B) = det(A)ndet(B)m .

Appendix B. Properties of �

In this appendix, we show that the inverse of � has the implicit representation

�−1 = Isn − τ(Is ⊗ KT K)�−1(A ⊗ In), (B1)

where we cut the iteration index k for brevity’s sake. Starting with (19) and using (Appendix A..(vii)),
we get

� = Isn + τ(A ⊗ KT K)

= Isn + τ(A ⊗ In)(Is ⊗ KT K)

= Isn + τ(Is ⊗ KT K)��−1(A ⊗ In)

= Isn + τ [(Is ⊗ KT K) + τ(Is ⊗ KT K)(A ⊗ In)(Is ⊗ KT K)]�−1(A ⊗ In)

= Isn + τ [Isn + τ(A ⊗ In)(Is ⊗ KT K)](Is ⊗ KT K)�−1(A ⊗ In)

= Isn + τ [Isn + τ(A ⊗ KT K)](Is ⊗ KT K)�−1(A ⊗ In)

= Isn + τ�(Is ⊗ KT K)�−1(A ⊗ In). (B2)

For the uniquely existing inverse Isn = �−1� holds. Multiplying (B2) with �−1 from the left
side therefore yields

Isn = �−1 + τ(Is ⊗ KT K)�−1(A ⊗ In), (B3)

which can be re-arranged into (B1).

Appendix C. A-stability
Runge-Kutta methods can either be explicit when A is a lower-triangular matrix with zero diagonal,
or be implicit otherwise. While a single step in an explicit method is usually easier to calculate, it
suffers on so-called stiff problems, i.e. differential equations for which the numerical solution proves
numerically unstable unless the step size taken is very small. A numerical method that does not suffer
from this drawback is called A-stable. The A-stability of a method can be tested by applying it to the
test problem d f

dx = k f, k ∈ C. A solution derived by a strict A-stable method will decrease (at least
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taken absolutely) like the exact solution as x → ∞ for Re(k) < 0, i.e. the step size is not restricted.
Explicit Runge-Kutta methods are not A-stable, while a lot of implicit ones are. In our frame, A-stable
implicit Runge-Kutta methods are very effective since the step size is not limited, i.e. the resulting
iterative regularization methods need fewer iteration steps. Moreover, this means that the parameter
αk from this point of view is not restricted.
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