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Abstract

Continuous insight into biological processes has led to the development of large-scale, mech-
anistic systems biology models of pharmacologically relevant networks. While these models
are typically designed to study the impact of diverse stimuli or perturbations on multiple
system variables, the focus in pharmacological research is often on a specific input, e.g., the
dose of a drug, and a specific output related to the drug effect or response in terms of some
surrogate marker. To study a chosen input-output pair, the complexity of the interactions
as well as the size of the models hinders easy access and understanding of the details of the
input-output relationship.
The objective of this thesis is the development of a mathematical approach, in specific a
model reduction technique, that allows (i) to quantify the importance of the different state
variables for a given input-output relationship, and (ii) to reduce the dynamics to its essential
features – allowing for a physiological interpretation of state variables as well as parameter
estimation in the statistical analysis of clinical data. We develop a model reduction technique
using a control theoretic setting by first defining a novel type of time-limited controllability
and observability gramians for nonlinear systems. We then show the superiority of the time-
limited generalised gramians for nonlinear systems in the context of balanced truncation for
a benchmark system from control theory. The concept of time-limited controllability and ob-
servability gramians is subsequently used to introduce a state and time-dependent quantity
called the input-response (ir) index that quantifies the importance of state variables for a
given input-response relationship at a particular time. We subsequently link our approach to
sensitivity analysis, thus, enabling for the first time the use of sensitivity coefficients for state
space reduction. The sensitivity based ir-indices are given as a product of two sensitivity
coefficients. This allows not only for a computational more efficient calculation but also for
a clear distinction of the extent to which the input impacts a state variable and the extent
to which a state variable impacts the output.
The ir-indices give insight into the coordinated action of specific state variables for a chosen
input-response relationship. Our developed model reduction technique results in reduced
models that still allow for a mechanistic interpretation in terms of the quantities/state vari-
ables of the original system, which is a key requirement in the field of systems pharmacology
and systems biology and distinguished the reduced models from so-called empirical drug ef-
fect models. The ir-indices are explicitly defined with respect to a reference trajectory and
thereby dependent on the initial state (this is an important feature of the measure). This
is demonstrated for an example from the field of systems pharmacology, showing that the
reduced models are very informative in their ability to detect (genetic) deficiencies in certain
physiological entities. Comparing our novel model reduction technique to the already existing
techniques shows its superiority.
The novel input-response index as a measure of the importance of state variables provides
a powerful tool for understanding the complex dynamics of large-scale systems in the con-
text of a specific drug-response relationship. Furthermore, the indices provide a means for
a very efficient model order reduction and, thus, an important step towards translating in-
sight from biological processes incorporated in detailed systems pharmacology models into
the population analysis of clinical data.





Zusammenfassung

Die kontinuierliche Erforschung von biologischen Prozessen hat zur Entwicklung umfang-
reicher, mechanistischer systembiologischer Modelle von pharmakologisch relevanten Netz-
werken beigetragen. Während diese Modelle in der Regel darauf ausgelegt sind, die Auswirk-
ung von Stimuli oder Störungen auf die Systemdynamik zu untersuchen, liegt der Fokus
in der pharmakologischen Forschung häufig auf einer bestimmten Kontrolle, z.B. der Do-
sis eines Wirkstoffes, und einer bestimmten Ausgangsgröße, welche in Bezug steht zu dem
Wirkstoff-Effekt oder das Ansprechen auf einen Wirkstoff über einen Surrogatmarker. Die
Untersuchung und ein einfaches Verständnis einer spezifischen Eingabe-Ausgabe-Beziehung
wird durch die Komplexität der Interaktionen sowie der Größe des Modells erschwert.
Das Ziel dieser vorliegenden Arbeit ist die Entwicklung eines mathematischen Ansatzes,
insbesondere eines Modellreduktionsverfahrens, der es ermöglicht, (i) die Bedeutung der
verschiedenen Zustandsvariablen für eine gegebene Eingabe-Ausgabe-Beziehung zu quan-
tifizieren, und (ii) die Dynamik des Systems auf seine wesentlichen Merkmale zu reduzieren,
während gleichzeitig die physiologische Interpretierbarkeit von Zustandsvariablen sowie eine
Parameterschätzung im Rahmen von einer statistischen Analyse klinischer Daten ermöglicht
wird. Unter Verwendung eines kontrolltheoretischen Settings entwickeln wir eine Modellre-
duktionstechnik, indem wir vorerst einen neuartigen Typ von zeitlich begrenzten Kontrolllier-
barkeits- und Beobachtbarkeitsgramian für nichtlineare Systeme definieren. Anschließend
zeigen wir die Überlegenkeit der zeitlich begrenzten verallgemeinerten Gramian für nichtlin-
eare Systeme im Kontext von Balanced Truncation am Beispiel eines Benchmark-Systems aus
der Kontrolltheorie. Wir nutzten das Konzept der zeitlich begrenzten Kontrolllierbarkeits-
und Beobachtbarkeitsgramian, um eine neue Zustands- und zeitabhängige Größe, die als
Input-Response (IR-) Index bezeichnet wird, einzuführen. Dieser Index quantifiziert die Be-
deutung von Zustandsvariablen zu einem bestimmten Zeitpunkt für eine bestimmte Eingabe-
Ausgabe-Beziehung. Schließlich verknüpfen wir unseren Ansatz mit der Sensitivitätsanalyse
und ermöglichen so erstmals die Verwendung von Sensitivitätskoeffizienten im Rahmen der
Reduktion des Zustandsraumes. Wir erhalten die sensitivitätsbasierten IR-Indizes als Pro-
dukt zweier Sensitivitätskoeffizienten. Dies ermöglicht nicht nur eine effizientere Berechnung,
sondern auch eine klare Unterscheidung, inwieweit die Eingabe eine Zustandsvariable beein-
flusst und inwieweit eine Zustandsvariable die Ausgabe beeinflusst.
Mit Hilfe der IR-Indizes erhalten wir einen Einblick in den koordinierten Ablauf der Ak-
tivierung von spezifischen Zustandsvariablen für eine ausgewählte Eingabe-Ausgabe-Bezieh-
ung. Unser entwickeltes Modellreduktionsverfahren resultiert in reduzierten Modelle, welche
eine mechanistische Interpretation hinsichtlich der Originalgrößen und Zustandsvariablen des
Ursprungssystems zulassen. Dies war eine wichtige Anforderung an das Verfahren von Seiten
der Systempharmakologie und -biologie. Die reduzierten Modelle unterscheiden sich damit
wesentlich von den so genannten empirischen Wirkstoff-Effekt-Modellen. Die IR-Indizes sind
explizit in Bezug auf eine Referenzlösung definiert und damit vom Anfangszustand abhängig
(dies ist ein wichtiges Merkmal der Indizes). Wir zeigen anhand eines Beispiels aus dem
Bereich der Systempharmakologie, dass die reduzierten Modelle sehr aussagekräftig sind, um
(genetische) Mängel in bestimmten physiologischen Einheiten festzustellen. Der Vergleich
unseres neuartigen Modellreduktionsverfahrens mit den bereits vorhandenen Verfahren zeigt



dessen Überlegenheit.
Der neuartige IR-Index als Maß für die Wichtigkeit von Zustandsvariablen bietet ein leis-
tungsfähiges mathematisches Werkzeug zum Verständnis und der Analyse der komplexen
Dynamik von großen Systemen im Kontext einer bestimmten Wirkstoff-Effekt-Beziehung.
Darüber hinaus sind die Indizes eine wichtige Grundlage für das eingeführte und sehr ef-
fiziente Modellreduktionsverfahren. Insgesamt stellt dies einen wichtigen Schritt zur Nutzung
von Erkenntnissen über biologische Prozesse in Form von detaillierten systempharmakologis-
chen Modellen in der Populationsanalyse klinischer Daten dar.
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1. Introduction

1. Introduction

”Everything should be made as simple as possible, but not simpler.”
- Albert Einstein -

In clinical pharmacology, it is of major importance to understand the dose-response relation-
ship for a therapeutic agent [54]. During the drug development process an enormous amount
of experimental and clinical data is generated, and using this information efficiently to guide
decision-making across the various phases is a challenging task [64]. Mathematical models
are used in clinical development, (i) to understand and guide the selection of optimal drug
candidates in drug discovery and preclinical development; (ii) to asses safety, efficacy and
characterise variability in exposure and response of drugs [71]. In drug discovery and preclin-
ical development, continuous insight into biological processes has led to the development of
large-scale, mechanistic systems biology models of pharmacologically relevant networks. In
clinical development, the characterisation of the pharmacokinetics (PK) and pharmacody-
namic (PD) of the drug are of interest [86]. To study the PK and PD, the drug is administered
and the resulting drug concentration in the body, as well as a surrogate marker for the drug
effect, are measured in several patients repeatedly over time. These types of data, collected
in clinical trials, are usually referred to as population data. An important aspect of the
analysis of population data is the identification of patient characteristics (covariates), that
partly explain the observed variability in the concentration-time and/or drug response pro-
files [105], allowing, for example, to identify patient populations at risk e.g. therapy failure
or personalise treatment. For the analysis of population data of a clinical trial, so-called em-
pirical models are prevalently employed, because the large-scale mechanistic systems biology
models can not be used for the estimation of individual parameters. For empirical modelling
approaches, the model structure and the model parameters are solely derived from data and,
thus, highly-dependent on the data quality and quantity. The resulting parsimonious models
– i.e. a model with the fewest possible number of parameters – [2] are used for decision
making (e.g. dose selection, clinical trial design), however, completely neglecting the insight
including mechanistic covariates gained in the earlier drug development stages. The inte-
gration of covariates in the empirical models is mostly based on statistical significance often
neglecting the correlation between covariates [105]. Thus, an approach that allows to trans-
late the knowledge present in large-scale mechanistic models including mechanistic covariates
across the different drug development phases is highly desirable, yet still a challenging task.

While the large-scale mechanistic models in the early drug development stages are typically
designed to study the impact of diverse inputs or stimuli, the focus in later stages of drug
development is often on a specific input, e.g. dose of a drug, and a specific output related to the
drug effect or response in terms of some surrogate marker. Understanding the specific input-
response relationship of interest in pharmacology is a challenging task due to the complexity
of interactions between the state variables (nonlinearity) and the high-dimensionality of the
model. In general, model reduction is a crucial step towards solving this issue.

In the literature, various model reduction approaches have been proposed in the different
fields of application [110, 5, 92]. Due to the specific requirements on the model structure
in systems pharmacology, mainly three model reduction techniques are used [92]: sensitivity
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analysis [103, 95, 139], time scale analysis [73, 138] and lumping [1, 11, 77, 99].
Sensitivity analysis quantifies the influence of the parameters and initial states on a specific
output variable [139]. Typically a reduced model is obtained by eliminating those reactions,
whose parameters have little or no effect on the model predictions [79]. However, model
reduction techniques solely based on the importance of parameters obtained by sensitivity
analysis have resulted in models with low accuracy [123, 126]. Various attempts to use
additional features or techniques have not resulted in a unique criterion for the elimination
of parameters [25, 79]. Therefore, an established model reduction technique based on the
sensitivities of the system is still missing. Time scale analysis partitions the systems into
slow and fast state variables. The reduced model is then obtained by a quasi-steady-state
approximation (QSSA) of the fast state variables. The mathematical justification of the
QSSA is singular perturbation theory [113]. Often, however, a substantial reduction of the
system is possible without time scale separation. In general, the technique is, thus, not
efficient enough as a single tool. Lumping is the most widely used technique [92]. It is based
on a coarse-graining of the state space by merging several state variables into pseudo-state
variables. There exist two different variants: proper and improper lumping. Proper lumping
can be understood as a partitioning of the state variables, each partition is then associated
with a single dynamical state variable in the reduced system [118]. Finding an optimal
proper lumping scheme is a challenging task, especially for large-scale systems, since it is
practically impossible to test all possible lumped models due to the curse of dimensionality.
As a consequence, heuristics are used to find a nearly optimal lumping scheme. In [1], a
recursive greedy search strategy is proposed: among all possible lumps of two state variables
the pair of state variables is lumped that results in the lowest approximation error. It remains
unclear, however, (i) to what extent the sequence, in which state variables are lumped, and
(ii) to what extent the state variables, which are not important for a specific input-response
relationship, impact the final reduced model. This might have implications on both, the
approximation quality as well as the interpretation of the reduced model.

Very recently, a model reduction technique based on balanced truncation was developed and
applied to a large systems biology model of the epidermal growth factor receptor (EGFR) and
nerve growth factor receptor pathways [117]. The approach, however, is based on improper
lumping (with the problems mentioned above) and requires substantial preprocessing (non-
dimensionalisation, conservation analysis, preconditioning).

In summary, a model reduction approach that allows (i) to quantify the importance of the
different constituents for a given input-output relationship, and (ii) to reduce the dynamics to
its essential features is still lacking, yet highly desirable in the context of clinical development.

In this thesis, we address this gap by exploiting a control-theoretic setting for our model
reduction. First, we define a novel type of time-limited empirical gramians with respect
to a reference trajectory of the nonlinear system. Subsequently, the concept of empirical
gramian is used to develop a novel state and time-dependent quantity called the input-
response (ir) index that allows one to understand the essential features of the system dynamics
for a given input-response relationship over time. We introduce an automated and efficient
model reduction technique based on the ir-indices. The state variables and parameters in
the reduced model still allow for a mechanistic interpretation in terms of quantities of the
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original system and, thus, physical entities. By showing that the ir-indices can be linked to
sensitivity analysis, we enable for the first time the use of sensitivity coefficients for state-
space reduction.

Using an example from the field of systems pharmacology, we additionally show that the
definition of the ir-indices with respect to the reference solution is an important feature
of the measure as we are able to reproduce experimental findings. Our introduced model
reduction technique is dependent on the considered time interval and the ranking according
to the maximal value of the ir-indices. Therefore, we investigate how the ranking and time
interval influences our technique showing that the ir-indices provide potential reduced model
structures for different time intervals and insight into the reduced models based on a random
ranking. Comparing our novel model reduction technique to the already existing techniques
shows its superiority.

Outline: In Chapter 2, we introduce the general concepts of pharmacodynamic modelling as
well as the relevant large-scale mechanistic pharmacodynamic models, later used to illustrate
the strength of the novel approach. In Chapter 3, we outline the various existing techniques
for model reduction, to enable a thorough discussion of the different techniques in the appli-
cation context. Subsequently, in Chapter 4, we develop the novel model reduction technique
based on the input-response characterisation. In Chapter 5, we apply our novel model reduc-
tion approach to various input-response relationships of two large-scale mechanistic models,
the blood coagulation network [130] and the EGFR signalling cascade [55]. Chapter 6 gives
a discussion and outlook of this thesis. The conclusion is then presented in Chapter 7.
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2. Modelling the drug effect: empirical versus systems

pharmacology models

It is of major importance in clinical pharmacology to understand the dose-effect/response re-
lationship to demonstrate the safety and efficacy of a therapeutic agent [54]. This is studied
amongst other aspects by (i) describing the drug concentration-time profile in body fluids
resulting from the administration of a drug (pharmacokinetics) and (ii) characterising the
observed effect resulting from the drug concentration (pharmacodynamics). This thesis will
focus on the pharmacodynamics (PD) of a drug assuming a given drug concentration-time
profile or pharmacokinetic (PK) model. Mathematical models are used to analyse the re-
peatedly measured clinical drug response over time in several patients (population analysis
of clinical data). The two different types of modelling approaches for the pharmacody-
namic analysis are (i) data-driven and (ii) mechanism-based models [27]. In the first section,
these two modelling approaches are briefly presented. We then introduce two exemplary
mechanism-based models from two different fields of pharmacology: the epidermal growth
factor receptor (EGFR) system and the blood coagulation network. To guide understanding,
we provide a short biological background for each system. In the last section, the need for
model reduction is illustrated by discussing potential modelling approaches for two example
drugs affecting the blood coagulation network: warfarin and rivaroxaban.

2.1. Data-driven versus mechanism-based pharmacodynamic (PD) models

Often pharmacodynamics is characterised in terms of ‘what the drug does to the body’ [17].
The measured PD data in a clinical trial can be either continuous (∈ R), e.g. concentration-
time profile of biomarkers, or discrete (∈ Z), e.g. survival analysis of patients on a specific
treatment [125]. In this section, we will introduce two different modelling approaches for
continuous PD data.

2.1.1. Empirical/data-driven PD models

For so-called empirical PD or data-driven models, the model structure and model parameters
are derived from clinical data and often lack a physiological explanation in terms of physical
quantities. The resulting parsimonious model is the model with the fewest possible number
of parameters [2].

Examples for empirical PD models are:

• linear model:

E(t) = E0 ± Eslope · Cplasma(t) (1)
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• Emax model :

E(t) = E0 ±
Emax · Cplasma(t)γ

ECγ50 + Cplasma(t)γ
(2)

• effect-compartment model:

dCeffect(t)

dt
= keffect · (Cplasma(t)− Ceffect(t)) (3)

E(t) = E0 ±
Emax · Ceffect(t)

γ

ECγ50 + Ceffect(t)γ
(4)

• indirect response model [114]:

dE(t)

dt
= kin ·

Imax · Cplasma(t)

IC50 + Cplasma(t)
− kout · E(t) (5)

where E0 ∈ R+ is the baseline value of the drug effect E (when no drug concentration is
present), Emax ∈ R+ is the maximal change in drug effect/response that the drug can induce,
EC50 ∈ R+ is the drug concentration that produces the half maximal drug effect/response
and γ ∈ R+ is the so-called Hill exponent which is primarily used to provide a better fit,
Imax ∈ R+ is the maximal inhibiting effect that the drug can induce and IC50 ∈ R+ is the
drug concentration that produces the half maximal inhibitory effect.

The algebraic equations (1) and (2) are known in pharmacology as the so-called direct link,
direct effect or direct response models [125, 54, 28]. These types of models are used if
there is no time delay observed between the drug concentration in plasma and the drug
effect/response. For these models, the assumption is made that the drug concentration in
plasma is proportional to the concentration at the effect site (e.g. receptor site) [28].

If the maximal drug effect is delayed compared to the maximal drug concentration in plasma,
various modelling approaches are used to account for this time delay. In general, this type
of models is referred to as so-called indirect effect models in pharmacology [125]. Mathe-
matically the time delay could be modelled by delay differential equations, this is, however,
usually not done in the field of pharmacology. Instead, the delay differential equation is
often approximated by the use of transit compartment chains of different length [81]. The
simplest model is given by a transit compartment chain of length 1, also known as the effect-
compartment model (cf. equ. (3)). The drug effect is then calculated based on an algebraic
equation e.g. equ. (4). Another approach for modelling the time delay between the drug
concentration and the drug effect is by an additional ordinary differential equation for the
drug effect, where the drug concentration in plasma influences either production or loss of the
drug effect directly by stimulation or inhibition of the process (example given in equ. (5)).

2.1.2. System pharmacology/mechanism-based PD models

The model structure of a mechanistic pharmacodynamic model explicitly and conceptually
represents the constituent parts and mechanism of a general physiological process to the de-
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gree of currently available knowledge [24, 17]. These models are often built by integrating
diverse types of data to provide a comprehensive understanding of the underlying biologi-
cal processes [17]. The model structure and the model parameters are, thus, derived from
the knowledge of the physiology and biochemistry of the organism and the models do not
necessarily require clinical data to allow for predictive simulations of clinical trials not yet
completed [9]. In many examples of relevance, mechanistic models are given by a system of
nonlinear ordinary differential equations based on mass-action principles [8].

Examples for mechanistic pharmacodynamic models are the calcium homeostasis and the
bone model [97, 106] (cf. Figure 1(A)), the bovine estrous cycle [120] (cf. Figure 1(B)),
epidermal growth factor receptor (EGFR) system [111, 55](cf. section 2.2, Figure 2) and
blood coagulation network [130, 40](cf. section 2.3, Figure 6).

(A) (B)
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Figure 1: Mechanistic pharmacodynamic model examples: (A) calcium homeostasis
and bone model [97, 106] (B) bovine estrous cycle [120]

The calcium homeostasis and bone model [97, 106] (cf. Figure 1(A)) was used to quantify
the effect of estrogen suppression therapy on the long-term loss of bone mineral density
(BMD). In [106] it was shown that using the comprehensive model for calcium homeostasis
and bone remodelling one could identify reliable predictor biomarkers of the long-term BMD.
Thus, answering questions such as which biomarker offers an early sensitivity measure of the
long-term BMD outcome.

In contrast, the bovine estrous cycle [120] (cf. Figure 1(B)) was employed to study the estrus
synchronisation protocol where Prostagladin F2α (PGFα) is administered to facilitate the
timing of artificial insemination. Due to the short half-life of PGFα it is highly important to
identify the optimal time points of administration of PGFα.

In general, mechanistic pharmacodynamic models can answer questions, which can not neces-
sarily be addressed by traditional empirical models: e.g. (i) effects of treatment (changes), (ii)
treatment discontinuation, (iii) effect of prior treatments or (iv) drug safety questions [96].

In the next section, two large-scale mechanistic models are presented more in detail. They
were chosen based on their relevance for the field of oncology and haematology. Important
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modelling aspects are highlighted and their application in the pharmacological context is
shortly described. Both large-scale mechanistic models are used in section 5 as a challenging
example for our novel model reduction technique.

2.2. Oncology: epidermal growth factor receptor (EGFR) system

In this section, a short biological background on the epidermal growth factor receptor (EGFR)
system and associated therapeutics are provided. Subsequently, we introduce a comprehen-
sive mathematical model of the epidermal growth factor (EGF) signalling pathway, which is
used in section 5 as a challenging example for our novel model reduction technique.

2.2.1. Biological background of the EGFR signalling pathway

The EGFR signalling cascade is an important pathway in cell division, death, motility and
adhesion [112, 137, 63]. In addition, it is of key interest in the development of anti-cancer
therapies, as the pathway is often dysfunctional in tumour cells. A deeper understanding of
the pathway can, therefore, yield direct clinical benefit.

The pathway is activated by the binding of EGF to its receptor (EGFR). Dimerised EGFR
autophosphorylates, creating binding sites for the adapter proteins GAP, Shc, Grb2 and Sos.
The signalling cascade has two major pathways: the Shc-dependent and the Shc-independent
pathway. The two pathways, however, do not act independently from each other since there
are many molecules involved in both pathways. Both pathways have the ability to activate
Ras:GTP, a well-known oncogene. Ras:GTP [13] is the branching point of the two signalling
pathways and activates the mitogen-activated protein (MAP) kinase cascade through the
activation of Raf. The signalling output is the transient phosphorylation of extracellular
signal-regulated kinase (ERK). A simplified reaction network of the EGF signalling pathway
is given in Figure 2. While the principal flow of the downstream signalling and activation
sequence is generally known, the kinetic network of this cascade is not completely under-
stood [111].

In cancer cells two major mutations affecting the EGF signalling pathway have been reported:
KRas, a mutation of the Ras protein, and Braf, a mutation of Raf [91]. These mutations
do not occur concomitantly because their combined impact would be incompatible with
proliferation, as an excess ERK signalling could lead to cell cycle arrest, differentiation,
senescence or even cell death [91]. This shows the importance of the two oncogenes Ras and
Raf. The similarities in the sequence and structure of Ras proteins [46] make targeting the
Ras protein directly very challenging [62]. Therefore, the targeting of the EGFR signalling
cascade is done by either targeting Raf, MEK or ERK [62]. The standard of care is the
combination of a Raf inhibitor with a MEK inhibitor [62].

2.2.2. Comprehensive mathematical model of the EGFR system

The mitogen-activated protein kinase (MAPK) pathway is one of the best-studied systems
because of its relevance to the development of cancer therapies [124]. The EGFR reaction
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2. Modelling the drug effect: empirical versus systems pharmacology models

Figure 2: Simplified reaction network of the EGF signalling pathway including
nuclear ERK (taken from [58]).

network including the MAPK pathway is initiated by the binding of the epidermal growth
factor to its receptor and results in transient phosphorylation of the extracellular signal-
regulated kinase. We used a detailed model of the EGFR reaction network [112, 55] consisting
of 106 state variables, 148 (mostly reversible) reactions and 95 parameters. See Figure 4 for
a common illustration that includes only the membrane-bound receptor part of the pathway,
while there is in addition an internalised receptor-based part. The original model includes
some ‘degraded molecular species’ that serve as a substitute for various degradation products.
In some cases, this hindered the exploitation of conservation laws so that we modelled in these
cases the degradation products as separate molecular species (thereby increasing the number
of molecular species by six to 112). This extension did not change the remaining system
dynamics.

In the absence of EGF, the stimulus of the system, all state variables are assumed to be in
steady-state. All initial conditions and parameter values for the model can be found in [55,
Suppl. Table 2]. The transient ERK-PP profile (cf. Figure 3) upon stimulation by EGF is
an important determinant for the subsequent cellular response [55] and has been validated
experimentally [56].
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Figure 3: ERK-PP transient signal.

The EGF receptor signalling system is one of the best-studied pathways in systems biol-
ogy [135]. Due to the complexity, the EGF receptor signalling system has been used many
times to illustrate diverse model reduction approaches [79, 4, 55, 21, 132]. In [4] the assump-
tion is made to ignore receptor internalisation and, thus, started from a nonlinear model
with 35 state variables. The remaining system is then linearised around the equilibrium and
a model reduction based on control theory is applied to further reduce the model to 8 state
variables. In [79] sensitivity, principal component and flux analysis are used to reduce the
full epidermal growth factor-mediated signalling model presented in [112]. They reduced the
system by the elimination of reactions and, thus, found that the EGF mediated signalling
was mainly mediated by the Shc-dependent pathway. In [55] an extensive sensitivity analysis
for the three different characteristics of the output of the EGF-ERK-PP system (amplitude,
duration of signal and integrated response) is performed. They showed that all characteristics
were highly controlled by the processes involved in MEK phosphorylation by Raf and Raf
dephosphorylation. However, this result was not used for model reduction. In [21] simulation
studies were used to analyse the input-output behaviour of submodules of the system. This
heuristic approach was then used to reduce the model. A similar approach was employed
by [132]. Their analysis of the system revealed redundancies of the system that help maintain
functional robustness. The various reduced models obtained by the different model reduction
techniques presented in this paragraph are very heterogenous and there exists little consensus
between the resulting reduced models.

Although the EGFR system has been intensively studied, it is still not fully understood
how the signal is translated through the system and which parts are most important for
the dynamics of the system. The identification of the most important state variables of the
dynamics of the system might reveal new insights for the design or optimisation of anti-EGFR
drug therapies.
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Figure 4: EGF receptor - induced MAP kinase cascade model (based on [55, Fig. 1]).
The model comprises 106 molecular species (state variables) involved in 148 re-
actions. The input signal is the epidermal growth factor (EGF) that eventually
activates the extracellular signal-regulated kinase (ERK). In the reaction graph,
only parts of the state variables are shown; in particular, most of the so-called
internalised forms are not shown.
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2.3. Haematology: blood coagulation network

In this section, some background information on the blood coagulation network and associated
anticoagulant therapy are presented. Subsequently, a comprehensive mathematical model is
introduced, which is used in section 5.1 for the illustration of our novel model reduction
technique in application to different aspects of the human blood coagulation network.

2.3.1. Biological background of the blood coagulation network

The process of clotting including the blood coagulation network is of vital importance for
preventing leakage in the vascular system in cases of an injury [3]. The blood coagulation
is a complex interaction network of many proteins and enzymes (cf. Figure 5). The blood
coagulation functions reliably even though the activity and amount of proteins and enzymes
vary between individuals [122].

The different coagulation factors are present in the blood in an inactive form [93]. The
cascade can be initiated by the release of the tissue factor (TF) leading to the activation of
the so-called extrinsic pathway (given in Figure 5 by red arrows), and/or the contact factor
(CA), activating the so-called intrinsic pathway (yellow arrows in Figure 5), both pathways
end in a common pathway (denoted by orange arrows in Figure 5) ultimately leading to the
activation of fibrinogen to fibrin, which then forms the fibrin strands that strengthen the
blood clot [69]. The various feedbacks in the network make it difficult to understand the
PK-PD relationship for anticoagulants, like warfarin.

TF

TF:VIITF:VIIa

IX IXa

XI XIa

IX

VIII

VIIIa

X Xa

Va

VProthrombin (II) Thrombin (IIa)

Fibrinogen (Fg) Fibrin(F)

XIII

XIIIa

X

CA

Figure 5: Simplified interaction network of the blood coagulation cascade (based
on [88]). The cascade can be initiated by the release of the tissue factor (TF)
leading to the activation of the extrinsic pathway (red arrows), and/or the contact
factor (CA), activating the intrinsic pathway (yellow arrows), both pathways end in
a common pathway (orange arrow) ultimately leading to the activation of fibrinogen
to fibrin, which then forms the fibrin strands. The back arrows represent feedbacks
of the proteins on the network.
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The activated factors have a short half-life (on the time scale of seconds to minutes [59])
compared to the inactivated factors (on the time scale of hours to days) so that the clotting
ceases after a short time period. There exist, however, other potent activators of specific
factors in the blood coagulation system such as the brown snake venom which induces the
activation of prothrombin [40].

To measure the clotting ability of the blood many clinical assays, usually, in vitro procedures,
have been developed and are used in clinical practice [68]. In the following two of these assays
are discussed in detail, because of their clinical relevance for the two model drugs analysed in
this thesis (warfarin and rivaroxaban, compare section 2.4 and 5.1.3). One is the prothrombin
time (PT) test, an in vitro blood coagulation test quantifying the activity of the so-called
extrinsic pathway activated by the tissue factor TF. The reference range of the prothrombin
time for a healthy donor is around 11.6-13.8 seconds [14]. Due to the usage of different types
and batches of manufacturer’s TF, the result of PT test is usually reported as the international
normalised ratio (INR) for better comparability between laboratories. The INR is defined as

INR =
tPT,warfarin therapy

tPT,reference
∈ [0,∞) (6)

where tPT,reference is the calculated geometric mean prothrombin time of a minimum of 20
healthy donors for the specific TF used in the laboratory [102] and tPT,warfarin therapy is the
measured prothrombin time for the patient receiving warfarin therapy. The other is the
activated partial thromboplastin time (aPTT) test, which quantifies the function of the so-
called intrinsic pathway.

Anticoagulants are routinely prescribed as prevention after hip or knee arthroplasty, treat-
ment of deep vein thrombosis or pulmonary embolism and stroke prevention [16]. Warfarin
is the most prescribed anticoagulant in practice [37, 61, 66] since its approval for use in hu-
mans in 1954, even though it has a very complex dose-response relationship [45]. Warfarin
is administered as a racemic mixture of two enantiomers [65] (50% R-warfarin and 50% S-
warfarin [23]) with S-warfarin being 3-5 times more potent than R-warfarin [44]. Warfarin
acts on the vitamin K cycle which in turn reduces the synthesis of various factors of the blood
coagulation namely factor II, VII, IX, X, protein S and protein C [101]. The antidote for
warfarin is vitamin K. The effect of warfarin therapy on the blood coagulation network can
be assessed via the PT test, where the measured prothrombin time is prolonged. The target
range for the INR with warfarin therapy is 2 to 3 [107]. Due to warfarin’s narrow therapeutic
window (INR ∈ [2, 3]) under- or over-anticoagulation during initiation of warfarin therapy
as well as maintenance needs to be avoided [53]. Over-anticoagulation results in the most
common side effect of warfarin bleeding that occurs in up to 41% of patients treated with
warfarin [65]. The risk of bleeding (over-anticoagulation) is highest during the dose-titration
period of warfarin use [134]. It has been shown that several patient characteristics (e.g. age,
gender, body weight and body surface area), pharmacologic factors (vitamin K intake, drug-
drug interactions) and genetic factors (CYP2C9, VKORC1 and CYP4F2 polymorphisms)
impact warfarin maintenance dose [33]. An average maintenance dose of 4-5 mg daily has
been reported, however, the individual maintenance dose can vary up to 15-fold between pa-
tients [66]. Additionally shortening the time needed to reach the correct maintenance dose is
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of high value not only for the patient but also to reduce the cost of treatment [53]. Currently,
the initiation of warfarin is a very iterative process taking anything between a few weeks to
months [61]. Thus, to maintain effective drug concentrations of warfarin to avoid adverse
effects, enhance safety and efficacy of the drug and reduce the associated costs to warfarin
therapy, therapeutic drug monitoring is required [108]. However, the frequency of monitoring
varies greatly in clinical practice due to direct costs associated with the service [100].

Modern modelling techniques, in the form of systems pharmacology model (i.e. the blood
coagulation network model [130] described in the next section) can serve as a valuable tool to
help with individualised dose titration and maintenance dose for warfarin therapy. However,
due to their complexity, these models can not yet be employed in this context.

Due to warfarin’s difficult use in clinical practice [65], new anticoagulant drugs have been
developed (e.g. rivaroxaban, apixaban and dabigatran) [47, 78, 34, 89, 22]. Each of these
anticoagulant targets only one factor of the coagulation network. It has been shown that
they have a comparable or even superior effect as warfarin [94, 38, 20]. Furthermore, for
these drugs in contrast to warfarin, it is not necessary to monitor the drug effect [87].

Rivaroxaban is a direct factor Xa inhibitor [87] and has an almost linear relationship be-
tween rivaroxaban concentration and prothrombin time. The prothrombin time is consid-
ered as the primary response variable in existing population PD models for rivaroxaban
response [136, 36]. In contrast to warfarin, rivaroxaban has been shown to have predictable
pharmacokinetics and pharmacodynamics, which makes it highly attractive to use in clinical
practice [87].

2.3.2. Comprehensive mathematical model of the blood coagulation network

The detailed mathematical model of the interplay between the various coagulation factors
was developed in [130] to study in vivo warfarin and vitamin K therapy as well as in vitro
blood coagulation tests (prothrombin time (PT) test, activated partial thromboplastin time
(aPTT) test); see Figure 6 for illustration. The original model consists of 51 states. The
model describes the coordinate activation of different proteins (so-called coagulation factors)
upon stimulation that eventually result in the activation of fibrinogen. To study the effect of
the Australian elapid venoms on the blood coagulation, in [39, 40] the model was extended
to include the effect of the brown snake, tiger snake, rough-scaled snake and snake of the
genus Hoplocephalus spp venom [39, 40, 121], resulting in a model of 62 state variables and
178 parameters. As was already stated in [130] the complexity of the model makes any
inferences about the behaviour of specific model parts difficult. This highlights the necessity
for the development of new mathematical tools suitable for the analysis of complex systems
pharmacology/biology models.

We will illustrate our novel model reduction technique in application to various aspects of
the human blood coagulation network. Therefore, important modelling aspects that were
included in the model, developed in [130, 40], are discussed in the next sections to enable
understanding and discussion of the resulting reduced models in the sections 5.1.
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2. Modelling the drug effect: empirical versus systems pharmacology models

Figure 6: Blood coagulation network including the effect of warfarin therapy and
the brown snake venom on the activation of factor II. Abbreviations used in
the main text: activated protein C (APC); activator for the contact system (CA);
fibrin (F); degradation product (FDP); fibrinogen (Fg); prothrombin (II); thrombin
(IIa); plasmin (P); protein C (PC); plasminogen (Pg); protein S (PS); tissue factor
(TF); vitamin K (VK). The graphic is based on [130, Fig. 1] and not all 62-state
variables are shown.

Important modelling aspects of the blood coagulation model [130, 40]
The model consists of 62 state variables (x ∈ R62) and 178 parameters. In the following,
we refer to a specific concentration of protein P by xP, where P denotes the name of the
factor/ protein. All activated factors are identified by the name of the factor followed by an
additional small letter ’a’ e.g. inactivated factor II has activated form IIa.

Inactive system and in vivo
Prior to the activation of the blood coagulation (the in vivo and inactivated setting) the
model is a linear ordinary differential equation (ODE) system and all concentrations of the
inactivated factors are constant (the system is in steady state). The activated forms of the
factors are absent. The ODEs for the inactivated factor except for the vitamin K dependent
factors (factor II, VII, IX, X, protein C and protein S) are given by

dxi(t)

dt
= pi − di · xi(t) (7)

with pi, di ∈ R where xi denotes the protein concentration and pi, di the production and
degradation rate constants of the protein/factor i [130]. The production rates were chosen
by Wajima et al. [130] such that

pi = di · xi(t0) (8)

with xi(t0) denoting the physiological concentration of the inactivated factor/protein i. For
the vitamin K dependent factors the production rate is dependent on vitamin K hydroquinone
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(VKH2) and the ODEs for these factors become

dxi(t)

dt
= pi(xVKH2(t))− di · xi(t)

with di ∈ R for i ∈ {II,VII, IX,X,PC,PS} denoting the indices of vitamin K dependent
factors.

Active system / in vitro
In vitro e.g. clinical blood coagulation assays (PT test, aPTT test) the production of each
inactivated factor and protein is assumed to be zero (pi = 0) [130], so that the steady state
in vitro is zero. The system only exhibits nonlinear behaviour if the blood coagulation is
activated via the extrinsic (tissue factor) and/or the intrinsic (contact factor, CA in Figure
6) pathway. The intrinsic pathway is not of interest for the assessment of the effect of warfarin
therapy (the PD model of warfarin) or rivaroxaban therapy due to the fact that both drugs
don’t significantly affect the factors in the intrinsic pathway. The model of the PT test is a
nonlinear system.

In the active system setting the transformation rates v(t) of inactivated factors to activated
factors are given by Michaelis-Menten kinetics:

v(t) =
∑

j∈Jxi

Vmax,jxj(t)

Kj + xj(t)
· xi(t)

where Jxi denotes the indices of the factors which activate the respective factor or induce its
degradation and xi denotes the concentration of the inactivated factor.

Brown snake venom - in vivo and activated system
The brown snake venom induces the degradation of fibrinogen by the activation of pro-
thrombin (also called factor II), see Figure 2. After an initial steep decline, the fibrinogen
concentration recovers to its initial steady-state concentration. In this case, the initial parts
of both, the intrinsic and the extrinsic pathway do not play a role due to the direct activation
of prothrombin by the brown snake venom.

2.3.3. Warfarin therapy - in vivo and in vitro

The understanding of the dose-response relationship to find the appropriate warfarin dosing
scheme for each patient remains up to this day an important goal [107, 65]. The warfarin con-
centration influences the vitamin K cycle by inhibiting the chemical reduction reactions [129].
This, in turn, leads to a decrease in the synthesis of the vitamin K dependent factors (factor
II, VII, IX, X, protein C and protein S).

There exist various empirical dose-effect models for warfarin. The most cited empirical dose-
response model is by Hamberg et al. [45], consisting of two transit compartment chains with
different length and mean transition time. This will be explained in more detail in the
subsection 2.4.

As previously described, the drug effect of warfarin therapy is assessed by the PT test and
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results in a prolongation of the prothrombin time. This is an in vitro procedure. Blood is
drawn from the patient then the PT test is initialised experimentally by adding a well-defined
amount of tissue factor (TF in Figure 6) to the diluted sample and the time is measured until
the blood has clotted. By this procedure, the activity of the extrinsic pathway is measured.

This experimental procedure to assess the effect of the warfarin therapy via the PT test (as
described in the previous paragraph) is mirrored in the model simulation (cf. for graphical
depiction Figure 7). In [130], the PT test is initialised by 100 nM of initial TF concentration
and the initial factor concentrations are scaled by 1/3 to account for the dilution process
of the sample1. For TBlood ∈ [t0, t1], t0, t1 ∈ R the time of blood drawing (switching time
(TBlood) from in vivo to in vitro ) with t0 time point of first warfarin dose, usually t0 = 0,
and t1 is time point of e.g. end of warfarin therapy, the following equations are solved in the
model

ẋ =

{
f1(x(t), pin vivo ), t ∈ [t0,TBlood], with x(0) = x0

f2(x(t), pin vitro ), t ∈ (TBlood, T1], with x(TBlood) = 1
3x(TBlood) + xTF(0)

(9)

where f1(x(t), pin vivo ) represents the model in the in vivo setting, f2(x(t), pin vitro ) repre-
sents the in vitro situation and xTF(0) is the initial TF concentration of 100 nM added to
simulate the PT test. In this context the end time T1 is given by T1 = TBlood +tPT where
tPT is of interest. The prothrombin time tPT is dependent on TBlood and thereby indirectly
dependent on warfarin concentration until TBlood.

As previously mentioned the effect of the warfarin therapy is reported by the INR. In the
blood coagulation model [130] both tPT,reference = tPT(t0) and tPT,warfarin therapy(TBlood) are
defined by

tPT(TBlood) = inf

{
t > 0 :

∫ t+TBlood

TBlood

xF(τ)dτ > 1.500nmol/l· s

}

= inf

{
t > 0 :

∫ t

0

xF(TBlood +s)ds > 1.500nmol/l· s

}
(10)

where xF is the fibrin concentration. The threshold of 1.500nmol/l· s of the integral of fibrin
is equivalent to an ∼ 30% fibrinogen reduction in the standard plasma [130] and results in a
feasible tPT,reference value of 11.8 seconds. The INR is then calculated as given in equation (6).
The typical target INR range which should be achieved with warfarin therapy is 2-3 [107],
dependent on the disease. See Figure 8 for a typical predicted concentration time course of
warfarin therapy with 4 mg daily and the corresponding INR time course.

1In [130] the concentration for the high TF scenario is reported to be 300 nM, but subsequently scaled to
1/3 of its value to reflect a dilution process.
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Figure 7: Graphical representation of how warfarin therapy is simulated by the
blood coagulation model [130].
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Figure 8: Warfarin pharmacokinetics and pharmacodynamics for daily dosing of 4
mg (A) Simulated time course of warfarin plasma concentration (daily dose 4mg).
(B) Simulated time course of the INR (normalised prothrombin time) for warfarin
dosing of 4 mg daily.
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2.3.4. Rivaroxaban therapy - in vitro

We extended the comprehensive blood coagulation model (given in Figure 6) to include the
effect of rivaroxaban on the blood coagulation. The pharmacokinetics of rivaroxaban was
modelled as a one-compartment model (taken from Girgis et al. [36]). The interaction of
rivaroxaban plasma concentration CRiva with factors Xa and Xa:Va was implemented as in
Burghaus et al. [12] choosing the same parameter values. The additional reactions are given
by

Xa + CRiva
kXa,CRiva−⇀↽−
kXa:CRiva

Xa:CRiva ,

Xa:Va + CRiva
kXa:Va,CRiva−⇀↽−
kXa:Va:CRiva

Xa:Va:CRiva .

In contrast to warfarin, rivaroxaban does not influence the blood coagulation system in its
inactivated form, but only exhibits an effect when the system becomes activated by the intrin-
sic and/or the extrinsic pathway. Therefore, it is sufficient to consider the activation of the
system including the extension with the pharmacokinetics of rivaroxaban (more specifically
the in vitro assays - e.g. PT test) to assess the effect of rivaroxaban on the blood coagulation
network.
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2.4. Need for model order reduction of systems pharmacology models

The analysis of clinical trial data is of key importance for drug development. In drug dis-
covery and preclinical development the drug properties, exposure, efficacy and drug-drug
interactions are assessed and detailed knowledge about the underlying processes is avail-
able. By using and integrating many different data sources large-scale, mechanistic phar-
macological models e.g. the EGFR system [55] (cf. section 2.2) and the blood coagulation
network [130] (cf. section 2.3) can be developed, providing a comprehensive understanding
of the underlying biological processes. The large-scale mechanistic models have successfully
been employed to identify possible drug targets [111], investigate the action of drugs (or ven-
oms) on the system [12, 40] or to study the effect of drug combinations [67]. However, due
to the complexity of the interactions and the model size in terms of parameters and state
variables these mechanistic models are not yet used for the population analysis of clinical
data in late development of drug discovery and development. Translating the knowledge
represented in the form of these detailed mechanistic models into the population analysis of
clinical data is highly desirable, yet a still challenging task. For the analysis of population
data of a clinical trial, empirical PD models are prevalently employed. Examples for the
most frequently employed empirical models are given in section 2.1. For empirical modelling
approaches, the model structure and the model parameters are derived from data and, thus,
highly-dependent on the data quality (as described in section 2.1).

In the following section, the need for model reduction of systems pharmacology models is
made apparent by illustrating the difficulties with the empirical modelling approach for two
example drugs (e.g warfarin and rivaroxaban). The following empirical models will be used in
section 5.1.3 as benchmarks to understand the resulting models obtained by our novel model
reduction technique.

Warfarin was chosen due to the continuing efforts to individualise its dosing schedule. War-
farin is the most widely used anticoagulant [37, 61]. However, finding an optimal dosing
strategy is challenging due to warfarin’s narrow therapeutic window. Its large inter-individual
variability often results in insufficient anticoagulation or increased bleeding risk [26]. Addi-
tionally, the dose-response relationship for warfarin has not been fully understood and, thus,
remains to this day an important area of research [107, 65]. Knowing the factors that in-
fluence individual responses to warfarin therapy would help in tailoring the doses needed to
maintain appropriate anticoagulation with fewer serious complications [60].

Rivaroxaban was chosen due to its novelty in clinics (approved in 2008 [87]) and predictable
pharmacokinetics and pharmacodynamics. As discussed earlier, rivaroxaban inhibits one
factor of the blood coagulation network directly, namely factor Xa. It is believed that ri-
varoxaban may ensure more consistent and predictable anticoagulation than warfarin [94]

Example 1: warfarin effect
In [53] a review of the different empirical PD models used to describe the response of warfarin
is given. In [53] it is stated that the simplest system accounting for the changes in prothrombin
time induced by warfarin is achieved by four independent models: (i) PK model: for the
absorption, distribution and elimination of warfarin; (ii) PD model: for the effect of warfarin
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on the synthesis of clotting factors collectively referred to as the prothrombin complex; (iii)
physiological model: for the synthesis and degradation of the prothrombin complex; and
(iv) a link model: for the relationship between the physiological model and the actually
measured drug effect (prothrombin time) [53]. This highlights the complexity of an empirical
PD model for warfarin. Of these different empirical PD models for warfarin, two of the
most recent ones which are most frequently used in literature shall be discussed in detail
in this section: the empirical pharmacodynamic models developed in [45, 44] (cf. Figure 9)
and [90](cf. Figure 10).

The empirical pharmacodynamic model for warfarin effect in [45, 44] consists of two transit
chains of different length and with different mean transition time. The INR is then calculated
via a combination of baseline and a maximal effect depending exponentially on the last
compartments of the two transit chains. The transit compartment chain approach was chosen
to account for the time delay between drug concentration and an increase in INR. In [44] it
is stated, that up to 3 parallel transit compartment chains were tested corresponding to the
inhibition of the coagulation factors II, VII and X.

A6

A7 INR = BASE+ INRMax(1− A6 · A7)λ

E = 1− EMax ·
C
γ
S

EC
γ
50+C

γ
S

MTT1 ≈ 11.6 h

MTT2 ≈ 120 h

Figure 9: Empirical pharmacodynamic model for warfarin by Hamberg et al. (based
on [45, 44]). Here CS represents the S-warfarin concentration. The parameters:
mean transition time (MTT), drug concentration that produces the half maximal
inhibitory effect (EC50), maximal inhibiting effect (EMax), baseline (BASE) of the
international normalised ratio (INR) and exponent λ were taken from [45, 44].

The structure of the empirical pharmacodynamic model for warfarin in [90] differs from the
model in [45, 44] and was developed based on the data of an Asian population (cf. Figure 10).
In the model [90] the normal prothrombin concentration (NPT) was chosen as a biomarker for
the coagulation activity and the synthesis of this biomarker was modelled to be inhibited by
the warfarin concentration (similar to equ. (5)). The effect on the INR was again calculated as
a change from baseline by a maximal effect INRMax depending exponentially on the relative
change in NPT.

The empirical pharmacodynamic models in [45, 44] (cf. Figure 9) and [90](cf. Figure 10) can
actually be seen as a composition of these 4 models described in [53]. The Emax/Imax model
in both models corresponds to the PD model, the transition chain model/the PD-1 model
would then be the physiological model and the equation for the international normalised ratio
(INR) equals the link model.
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Figure 10: Pharmacokinetic and empirical pharmacodynamic models of warfarin
(based on [90]). The pharmacokinetic model describes the time course of the
plasma concentration of S-warfarin Cp(S). The normal prothrombin (NPT) and
international normalised ratio (INR) time course are described by the empirical
pharmacodynamic model.

The empirical pharmacodynamic models for warfarin presented in this subsection can be
categorised as indirect empirical models accounting for the time delay in the drug response.
Both models were successfully employed for the analysis of clinical data. Due to the complex
concentration-response relationship for warfarin, both models attempted a semi-mechanistic
empirical PD model for warfarin. The chosen parameterisation in both models does not allow
for a physiological interpretation.

Example 2: rivaroxaban effect
Rivaroxaban in contrast to warfarin only targets one factor within the coagulation cascade,
Factor Xa [12]. The drug effect of rivaroxaban on the blood coagulation can be also be
assessed by the PT test [36]. The PD relationship of rivaroxaban concentration CRiva on
prothrombin time prolongation was among others described by a so-called direct nonlinear
empirical pharmacodynamic model [36]:

PT = PTBASE +Slope · C(1−Exponent·CRiva)
Riva . (11)

In contrast, in [87] a linear relationship between rivaroxaban concentration and prothrombin
time is reported.

Need for model order reduction of systems pharmacology models
All of the empirical models (given in Figure 9, 10 and in equ. (11)) were successfully em-
ployed for the population analysis of clinical data (including the statistical identification of
covariates). There exist, however, various empirical models for the description of the same
concentration-response relationship. This raises the questions ’How to identify an appro-
priate pharmacodynamic model?’ and ’What model should be employed?’. As it was the
case for warfarin, a simple concentration-response relationship is often not readily apparent,
which makes the development of appropriate fit-for-purpose empirical PD models challeng-

22



2. Modelling the drug effect: empirical versus systems pharmacology models

ing. Furthermore, in general, empirical models can only be used to a very limited extent for
extrapolation to e.g. outside the boundaries of the experimental data used for their develop-
ment [83, 27].

In contrast, large-scale mechanistic models (e.g. the EGFR system [55](cf. section 2.2) and
the blood coagulation network [130] (cf. section 2.3)) are typically designed to study the im-
pact of diverse inputs or stimuli, often already incorporate important covariates or markers
mechanistically and are more likely to be successfully used for extrapolation [83]. Addition-
ally, as shown in section 2.3, the drug effect of various drugs acting on one particular system
can be incorporated and described by the same mechanistic model.

In general, the two different modelling approaches presented for warfarin and rivaroxaban
based on (i) the mechanistic blood coagulation model (section 2.3) and (ii) the empirical PD
models (previous paragraphs) exist in parallel without cross-fertilisation between them. As
described in this section, both approaches have their clinical relevance in the drug develop-
ment process, however, could markedly benefit from a cross-link between them.

It is, therefore, highly desirable to develop a rational method to obtain suitable pharmacody-
namic models from large-scale mechanistic pharmacodynamic models retaining the mecha-
nistically incorporated covariates. In general, model reduction is a step towards this and can
provide a link between mechanistic pharmacodynamic models and the classical drug effect
models.
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3. Relevant methods of model reduction for systems

pharmacology/biology models from two different fields of

application

The systems pharmacology/biology models of interest in this thesis are generally of the form:

dx(t)

dt
= f

(
x(t), p

)
, x(0) = x0 (12)

where x(t) ∈ Rn is the vector of state variables at time t ∈ [0, tend], p ∈ Rd is the vector of
parameters. The function f : Rn × Rd → Rn represents the systems pharmacology/biology
model of interest, and is typically nonlinear. In this thesis the systems pharmacology/biology
models are considered for a fixed vector of parameter values (cf. section 6 for discussion)
and, thus, we drop p in the notation if not otherwise needed. Typically, systems pharma-
cology/biology models provide a detailed description of the underlying biological process
reflecting the current state of knowledge. However, the complexity of interactions as well as
the size of the models in terms of parameters and state variables render these models unsuit-
able for the estimation of individual parameters in a statistical setting due to identifiability
issues. In general, model reduction is a step towards solving this identifiability issue.

The goal of model reduction techniques is to reduce large-scale complex models to ’suitable’
reduced models. The requirements on the model reduction technique are set by the field
of application as well as the desired application or task. Although model reduction and
model order reduction are often used interchangeable [70], in this thesis, we will make a clear
distinction between model reduction and model order reduction. In this thesis, model order
reduction methods denote those methods that result in a reduction of the state space of a
model, while model reduction will also refer to methods reducing the parameter space of a
model. Furthermore, in this thesis, we focus on model order reduction techniques that apply
a linear transformation to the system to obtain a reduced system.

All model order reduction techniques can be considered as a projection of the state space
(⊂ Rn) to a state space of lower dimension (⊂ Rnred with nred < n). Let us consider
T : Rn → Rn a nonsingular transformation such that

Tx = xtrans =

(
xred

x̂

)
(13)

with xred ∈ Rnred . Let us assume that the transformation T can be written as

T =

(
W>

T>2

)

and its inverse is given by

T−1 =
(
V T1

)
,
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where V,W ∈ Rn×nred and T1, T2 ∈ Rn×(n−nred). The transformed system is then given by

ẋtrans(t) = Tf(T−1xtrans(t))

and, thus, the ordinary differential equation for xred can be written as

ẋred(t) = W>f(V xred(t) + T1x̂) . (14)

Note that this equation is exact. An approximation of the reduced system given in eq. (14)
can then be obtained by neglecting x̂, replacing ˙̂x with algebraic equations or combining x̂
with other state variables. In the case of neglecting x̂ the projection to the reduced state
space is then obtained by P = VW>, since W>V = Inred . The projection is called Petrov-
Galerkin projection if V 6= W and Galerkin projection otherwise. The approximated reduced
system x̃red is then given by

˙̃xred(t) = W>f(V x̃red(t))

⇔ ˙̃xred(t) = W>f(V (W>V )−1x̃red(t)) ,
(15)

In order to quantify the accuracy of the reduced model in eq. (15) in approximating the
original model in eq. (14) an approximation error ε with an appropriate norm needs to
be defined. The chosen approximation error ε and chosen norm have implications for the
projection and, thus, the construction of the projection varies between the model order
reduction techniques.

A large variety of model order reduction methods is available in the different fields of appli-
cation [110, 5, 92]. However, not all of the methods fulfil the specific requirements inherent
in the field of systems pharmacology/biology. In particular, the most important yet most
challenging aspect to take into account is that the model parameters and state variables
correspond to physical processes, e.g. production rate of a protein (cf. eq. (8)), and entities,
e.g concentrations of proteins (cf. eq. (7)). In order to analyse patient data and understand
variability in specific patient parameters (so-called inter-individual variability/ between pa-
tient variability), the parameters and state variables of the reduced model must allow for a
mechanistic interpretation in terms of quantities of the original model. This leads to a re-
striction of the set of allowed transformation matrices in the context of model reduction. The
three established methods of model reduction in the field of systems pharmacology/biology
are lumping, time scale analysis and sensitivity analysis.

In the following sections, we will focus on the most common techniques in the context of
systems pharmacology/biology models. The topic of model order reduction is an extensive
field and there exist various variants of each method. Therefore, this section focuses on the
general concepts and does not attempt to give a full review of all adapted model reduction
techniques to systems pharmacology/biology models. For a survey of the current methods
and trends in model reduction for large-scale biological systems, we refer to [118]. In this
section, the applicability, advantages and drawbacks of the different concepts are discussed
after all the different methods have been introduced.
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3.1. Systems pharmacology/biology: model reduction techniques

In systems pharmacology/biology, mainly three model reduction approaches are used [92]:
lumping [1, 11, 77, 99], time scale analysis [73, 138] and sensitivity analysis [103, 95, 139].
These three approaches shall be discussed in detail in this section.

3.1.1. Lumping

In the field of systems pharmacology/biology, the reduction of a system by a linear transfor-
mation is referred to as lumping. To allow for consistency with the literature on lumping, the
lumping matrix is denoted by L in this subsection and the relationship between the projection
matrix V,W> and L is given after lumping has been introduced.

The first analysis of lumpability of monomolecular reaction systems was performed in 1969
by [133]. Since then lumping has become the most widely used technique in this field [92].
Two different variants of lumping are distinguished: proper and improper lumping.

Definition 3.1 (lumping matrix)
The matrix L ∈ Rnred×n is called a lumping matrix if

∑nred
i=1 Lij = 1 for all 1 ≤ j ≤ n and

Lij ∈ [0, 1] for all 1 ≤ j ≤ n and 1 ≤ i ≤ nred.

Definition 3.2 (proper lumping matrix)
The lumping matrix L ∈ Rnred×n is called proper if Lij ∈ {0, 1} for all 1 ≤ j ≤ n and
1 ≤ i ≤ nred.

A lumping matrix that does not fulfil the definition 3.2 is called improper. In proper lumping
the original state vector is partitioned and each partition is then reduced to a single dynamical
state variable in the reduced system [118]. Note that the lumping matrix which is given in
definition 3.1 or 3.2 is singular.

The reduced state variables are given by

xred(t) = Lx(t) .

By applying the Galerkin projection, the dynamics of the reduced system can be written as

dxred(t)

dt
= Lf

(
L̂xred(t)

)
, xred(0) = Lx0 (16)

with L̂ a generalised inverse such that LL̂ = Inred . There are infinitely many generalised
inverses fulfilling this requirement [76, 31]. The choice of inverse L̂ has an influence on the
approximation error in the case of approximate lumping [117], as will be described in the
subsequent paragraphs. The approximation of the original state variables is given by

x ≈ L̂xred .
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In the general framework as introduced in eq. (13), (14) and (15), L is equal to W> and
L̂ = V (W>V )−1.

There exist two ways to compute the differential equations for the reduced system: (i)
ẋred(t) = fred(Lx(t)) and (ii) ẋred(t) = Lf(x(t)) assuming that a nred dimensional vector-
function fred exists. A system is called exactly lumpable by a matrix L if fred(Lx(t)) =

Lf(x(t)) [133]. In the case of an exactly lumpable system the approximation error ε(x(t)) =

fred(Lx(t)) − Lf(x(t)) is zero and, thus, ε(x(t)) is independent of the choice of the inverse
of L. However, even if a system is exactly lumpable, the requirement, that a specific easily
measurable state variable should be kept unlumped, will result in approximate lumping of
the system [75]. If a system is not exactly lumpable, the lumping matrices are chosen such
that the approximation error ε(x(t)) is minimised. The main objective is, therefore, to find
an appropriate lumping scheme (L and L̂) that will minimise the approximation error ε [76].

In the simple case of a linear system it was proven that for a chosen L a unique solution
for L̂ can be found by projection of the approximation error ε onto the subspace spanned
by L such that εL> = 0 or onto the subspace spanned by LXss such that ε(Xss)L

> = 0

with Xss = diag{xss}, where xss denotes the steady state of the system assuming that the
system has a unique steady state [76]. The first projection will lead to the Moore-Penrose
inverse L+ = L>(LL>)−1, which was proven to minimise the squared Frobenius norm of
the approximation error ε (i.e. ||ε(x(t))||2F ) along the solution trajectory [76]. The second
approach gives a generalised inverse L̂ = XssL

>(LXssL
>)−1 ensuring that the steady state

xss of the system is retained [117]. For a linear system ẋ = Ax the approximation error

ε(Xss) = LAXss︸ ︷︷ ︸
=0

−LAXss︸ ︷︷ ︸
=0

L>(LXssL
>)−1Xss = 0

vanishes in the steady state. Clearly this choice of inverse only makes sense if the steady
state of the system is distinct from zero.

Finding an optimal lumping scheme is a challenging task, especially for large-scale nonlinear
systems, since it is practically impossible to test all possible lumped models due to the curse
of dimensionality. As a consequence, heuristics are used to find a nearly optimal lumping
scheme L and L̂ with an optimality criterion e.g. minimising the squared difference of a
subset of state variables of interest of the reduced and original system. In [1] a recursive
greedy search strategy is proposed: at each step all possible lumps of two state variables are
computed, among all these possible lumps the pair of state variables is lumped that results
in the lowest approximation error ε between the state variables of interest of the reduced
and original system. This process is continued until no further reduction is possible within
the desired accuracy of the approximation. This algorithm uses the Moore-Penrose inverse,
but can easily be adapted to use the generalised inverse retaining the steady state. The
proper lumping method is one of the model reduction techniques of choice in the field of
systems pharmacology/biology since this special case of transformation matrix allows for
some conservation of physiological interpretability in the reduced system’s structure [1].
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3.1.2. Time scale separation

The motivation for time scale separation is that the dynamic behaviour of pharmacol-
ogy/biology reaction systems often contains multiple time scales, i.e. after an initial transient
period, some fast reactions can be considered almost instantaneously relative to the remain-
ing reactions [92]. This provides the basis for the quasi-steady-state approximation (QSSA),
which is mathematically justified by singular perturbation theory [113].

The first step of time scale analysis is to find a partition of the system into slow and fast
state variables. The second step is to approximate the dynamics of the fast state variables
by their steady state as a function of the slow state variables. The equation of the fast state
variables as a function of the slow state variables can then be substituted into the differential
equations for the slow state variables to obtain a reduced system of ODEs in terms of only the
slow state variables. In the derivation of the method, we closely follow [98]. In the following
paragraph, it is assumed that such a partition of the system into slow and fast state variables
was found. Let xslow denote the state variables which are evolving slowly compared to xfast
and xfast denote the state variables evolving on a fast time scale, then the ODE system in
eq. (12) can be partitioned and is given by

dxslow(t)

dt
= f1(xslow(t), xfast(t)) ,

dxfast(t)

dt
= f2(xslow(t), xfast(t))

with x(t0) = (xslow(0), xfast(0)). The dynamics of the fast state variables is then approxi-
mated by their steady state (quasi-steady state assumption)

f2(xslow(t), xfast(t)) = 0.

A system reduced based on the quasi-steady state assumption results in the following system
of differential algebraic equations (DAE)

dxslow(t)

dt
= f1(xslow(t), xfast(t)) ,

0 = f2(xslow(t), xfast(t)).

In general one hopes to find a function xfast(t) = g(xslow(t)) with (xslow(t), g(xslow(t))) a root
of f2(xslow(t), xfast(t)) = 0.

The main drawback of this technique is that often it is not known a priori if a slow/fast parti-
tioning of the system exists and how to obtain it. In order to obtain a good approximation of
the original system by the reduced system with the QSSA a clear separation in the timescales
is required. The difficulty of this technique is, thus, to find the partition of the system into
slow and fast state variables. While the partition might not be apparent in the original state
space, a transformation of the state space can lead to a clear time scale separation. Existing
automated techniques such as Intrinsic Low-Dimensional Manifold (ILDM) [127] and com-
putational singular perturbation (CSP) [72, 73, 138] transform either state or tangent space
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of the state space (e.g. f) to find an appropriate partition into slow and fast dynamics. How-
ever, after the coordinate transformation has been applied, the physiological interpretation
of the original state variables might be lost.

The ILDM technique provides a numerically stable means for obtaining an eigenvalue de-
composition of the system. Therefore, we have chosen the ILDM technique to be used in
section 5.3 in the comparison of model order reduction techniques on an example of phar-
macological interest. We shortly describe the ILDM method closely following the derivation
in [127].

The ILDM method automatically partitions the system into fast and slow dynamics by first
applying a Schur decomposition to the Jacobian of the right-hand side at a particular state.
The Schur decomposition applied to a square matrix gives an upper triangular matrix and
some orthonormal basis. If it is applied to the Jacobian of the dynamical system in eq. (12)
at a particular state e.g. steady state xss of the system, one obtains

QTJ(xss)Q =

(
Sslow Scoup

0 Sfast

)
.

The upper triangular matrices Sslow and Sfast correspond to the slow and fast eigenvalues
of the Jacobian respectively. The matrix Scoup gives the coupling between the fast and the
slow dynamics of the system. The ILDM method then aims to find a transformation matrix
Z ∈ Rnslow×nfast of the system that decouples the fast and slow dynamics. The matrix Z can
be obtained by solving the Sylvester equation

SslowZ − ZSfast + Scoup = 0 .

The full transformation matrix T decoupling the system into slow and fast dynamics is given
by

T = Q

(
I Z

0 I

)
.

After the transformation has been applied, QSSA is used to transform the system into a
differential algebraic equation (DAE) system.

A classical example for this technique is the use of QSSA to reduce a simple enzym-substrate
reaction system that leads to the Michaelis-Menten kinetic [84, 10]. For low-dimensional
model systems, time scale separation techniques are often successfully employed, therefore,
time scale separation methods are one of the most commonly employed model reduction
techniques in the field of pharmacology/biology.

3.1.3. Sensitivity analysis

Sensitivity analysis plays an important role in the analysis of the dynamics of systems phar-
macology/biology models, furthermore, it has proven to be useful in the context of model
simplification [139]. In sensitivity analysis, the impact of parameter changes (incl. initial
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conditions) on state variables as a function of time is assessed [139]. Typically a reduced
model is obtained by eliminating those reactions, whose parameters have little or no effect
on the model predictions [79]. State variables found to be least sensitive with respect to their
initial condition are usually fixed to a constant value (e.g. steady state) [116].

The parameter sensitivity matrix Sp(t) is defined as

Sp(t) :=
(
∂x(t)
∂p1

. . . ∂x(t)
∂pd

)
=




∂x1(t)
∂p1

. . . ∂x1(t)
∂pd

...
...

...
∂xn(t)
∂p1

. . . ∂xn(t)
∂pd


 ∈ Rn×d

where xk denotes the kth state variable and pi denotes the ith parameter.

The parameter sensitivity matrix Sp(t) is calculated by the linear variational equation:

dSp(t)
dt

= fx(x(t), p)Sp(t) + fp(x(t), p) , (17)

where fx and fp are the Jacobian matrices of the system with respect to states and parame-
ters. The initial condition for the sensitivity matrix Sp is given by

Sp(t0) =
(
∂x0

∂p1
. . . ∂x0

∂pd

)

and equals zero, if the initial conditions do not depend on the parameters. Sensitivity coef-
ficients are usually normalised to compensate for different scales and to eliminate units [95].
The normalised sensitivity coefficient Ŝpi,j is defined as

Ŝpi,j =
∂xi(t)

∂pj
· pj
xi(t)

=
∂ log(xi)

∂ log(pj)
. (18)

The sensitivity matrix of the state variables with respect to the initial condition is defined
by

Sx0(t) =
∂x(t)

∂x0
.

The initial condition sensitivity matrix Sx0(t) is obtained by solving the differential equation

dSx0(t)

dt
= fx(x(t), p)Sx0(t)

with initial condition Sx0(t0) = In. The matrix Sx0(t) = ∂x(t)
∂x0

is called the Wronksi matrix.

The above given sensitivity matrices are considered the local sensitivities. The importance of
reactions is then assessed by generating a ranking based on an appropriate summary statistics
of the parameters sensitivities over time, such as the infinity norm, the Fisher information
matrix, the time integral or the parameter sensitivity of the system at a particular state,
e.g. steady state [95]. However, sensitivity analysis showing the effect of small parameter
changes can not solely be used to classify the importance of reactions to the system of
interest [123, 126]. In particular, a reduction based on the importance obtained only by
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sensitivity analysis will result in reduced models with low approximation quality [123, 126].
Various attempts of model reduction techniques based on sensitivity analysis have tried to
overcome this issue, usually by using additional features of the model such as flux analysis [79]

and additional techniques such as principal component analysis of
(
Ŝp
)>
Ŝp [25]. However,

in [25] it is noted that no unique criterion for the elimination of parameters could be identified
since even parameters with low importance caused significant model prediction discrepancies.
In [25] the normalised parameter sensitivities in eq. (18) were used, the importance was then
defined by the sum of squares of the normalised sensitivities for predefined discrete time
point of a time interval of interest. The model reduction in [25] was, however, based on the

eigenvalue decomposition of
(
Ŝp
)>
Ŝp. Therefore, there still does not exist an established

model reduction technique based on the sensitivities of the system. In order to use sensitivity
analysis as one of the methods that shall be compared for an example of pharmacological
interest in section 5.3 we have not deleted parameters solely based on their sensitivity measure
but additionally required the relative approximation error ε between the original and reduced
system to be below a user-defined threshold.

We would like to note that for signalling cascades in biological systems (e.g. the EGFR sig-
nalling pathway in section 2.2), signals are often propagated through a series of activation
steps. Activated forms temporarily rise from zero or very low concentrations to their maxi-
mum, while inactive forms almost vanish. In such a situation, the normalisation in eq. (18)
is highly problematic, since xk(t0) = 0 for active forms and xk(t) ≈ 0 at later times for
inactive forms, resulting in ill-defined coefficients and numerical problems, respectively. It is,
therefore, highly desirable to extend the consideration of sensitivity coefficients of the state
variables beyond the initial time point.

3.2. Control theory: gramian based model order reduction

In control theory, one aims to predict the effect that a particular action will have on a
physical system [74, p. 5-2]. More precisely, how will the response, y(t), of a specified system
evolve over time t ∈ [t0, t1] after an arbitrary input u(t) has been applied over the same time
interval [74, p. 5-2]. In order to analyse the system with respect to a particular input-output
relationship, the system equation in eq. (12) is changed such that the input and output are
explicitly stated. Following [109] the system of interest is, thus, written as

ẋ(t) = f(x(t), u(t)), x(t0) = x0 ,

y(t) = h(x(t), u(t))
(19)

where

x : [t0, t1] 7→ Rn is the vector function of state variables of the system,

u : [t0, t1] 7→ Rs is the vector function of control signals which affect the system to

achieve a desired behaviour,

y : [t0, t1] 7→ Rq is the vector function of output signals which serve to assess whether

the control achieved the desired goal,
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x0 ∈ Rn initial value,

f, h set of differential and algebraic equations, respectively, which describe

the relationship between input, state and output variables.

In control theory, the system in eq. (19) is used to understand whether an optimal input
that achieves a specific response exists, whether one can reconstruct the solution trajectory
from partially observed measurements and to understand the input-output behaviour of the
system. To characterise the input-output behaviour of a system the concepts of controllability
and observability are introduced.

Model reduction techniques in the field of control theory focus on approximating the output
of the system in eq. (19) as good as possible, e.g. the difference between the output of the
original system and reduced system is small in an appropriate norm. Under the assumption
that an appropriate state space transformation T was found, the reduced system is then given
by

ẋred(t) = fred(xred(t), u(t)), xred(t0) = xred,0 ,

yred = hred(xred(t), u(t)) ,
(20)

with fred : Rnred × Rs → Rnred , hred : Rnred × Rs → Rq and yred(t) ≈ y(t) ∈ Rq, nred � n.

In order to find an appropriate state space transformation T , in the gramian-based model
reduction techniques it is investigated if the system in eq. (19) is controllable and observable.

In this section we make the dependence of the solution trajectory of the differential equation
system (defined by (19)) on the initial value x0 and on the input function u explicit, by
writing x(t) as x(t;x0, u(t)) and y(t) = h(x(t;x0, u(t)), u(t)) = y(t;x0, u(t)). This notation
is chosen to make the differences in the definitions in section 3.2.3 clear and to make the
dependence of the solution on the input readily apparent.

Definition 3.3 (controllable)
The system in eq. (19) is controllable on the time interval [t0, t1] if there exists for all states
x0, x1 ∈ Rn a control function u, such that the solution satisfies: x(t0;x0, u(t0)) = x0 and
x(t1;x0, u(t1)) = x1.

Definition 3.4 (observable)
The system in eq. (19) is observable on the time interval [t0, t1] if it is possible to uniquely
determine the initial state x0 ∈ Rn by measuring the output function y(t;x0, u(t)) on [t0, t1]

given the input function u on [t0, t1].

These two properties of a system given in definition 3.3 and 3.4 play a central role for the
gramian-based model reduction in control theory. These properties are closely related to
the concept of gramians, which will be introduced in the next subsection. More specifically,
whether a system is controllable/observable can be determined by the gramians. If both
gramians are positive definite the linear system in eq. (21) or in eq. (34) is fully controllable
and observable. In order to understand the concepts needed for nonlinear systems (e.g. sys-
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tems pharmacology/biology model), we first introduce the analytical gramians for linear
systems and subsequently for nonlinear systems. This allows us to show under which condi-
tions on the linear systems the gramians for nonlinear systems are identical to the gramians
for linear systems.

3.2.1. Overview of analytical gramians for linear systems

In this section, we will first introduce the analytical controllability and observability gramians
for linear systems and in section 3.2.3 we will elucidate how this concept of controllability
and observability gramians can be extended for nonlinear systems. In general, a gramian or
gram matrix is a special square matrix, that is given by the pairwise scalar product of a set
of vectors. All gram matrices are non-negative definite and symmetric. The controllability
and observability gramians are fundamental for the most popular model order reduction
technique in control theory called balanced truncation, which will be introduced at the end
of this section.

A linear time invariant (LTI) system is given by:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0 ,

y(t) = Cx(t)
(21)

with u the input and y the output function, A ∈ Rn×n, B ∈ Rn×s and C ∈ Rq×n. Thus, we
have that f(x(t), u(t)) = Ax(t) +Bu(t) and h(x(t), u(t)) = Cx(t) in eq. (19).

The solution of the system (21) is given by

x(t;x0, u(t)) = Φt,t0x0 +

∫ t

t0

Φt,sBu(s)ds

= eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds ,

y(t;x0, u(t)) = C

(
Φt,t0x0 +

∫ t

t0

Φt,sBu(s)ds

)

with Φt,t0 the state transition matrix, that maps the initial state at time t0 to the solution
x(t;x0, u(t)).

For the LTI system given in eq. (21) the input-to-state map Ψu→x(t) is defined as
Ψu→x(t) = eAtB and the state-to-output map Ψx→y(t) is defined as Ψx→y(t) = CeAt [5,
p. 79].

Definition 3.5 (unit/delta impulse [74, p.5-8ff])
Let f(t) be any function that is continuous on the interval −ε < t < ε for every ε > 0. Then
the unit/delta impulse δ(t) satisfies

f(0) =

∫ ∞

−∞
f(τ)δ(τ)dτ .
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If the input of the system is a unit/delta impulse, then the resulting state is Ψu→x(t) [5, p.
79].

When applying a model reduction technique in the field of control theory, it is important to
understand how the state space transformation T in eq. (13) changes the input-output be-
haviour of an LTI system in eq. (21). In particular, one is interested in functions/ quantities
with respect to the input-output behaviour that do not change under a state space transfor-
mation T . In the following paragraph, such a function is introduced for an LTI system in
eq. (21).

The Laplace transform (also known as the frequency domain method [74, p.1-2]) of a function
is defined by L : f(t) 7→ F (s) := L[f(t)] =

∫∞
0
e−stf(t)dt, s ∈ C. The application of the

Laplace transformation to the state and output equations is often beneficial since it allows to
use the frequency domain in system and control theory [74, p.9-26ff]. By applying the Laplace
transformation to the LTI system in eq. (21) under the assumption that x0 = 0, the transfer
function G of the system is obtained. The transfer function G defines the relationship between
the Laplace transform of the input and the Laplace transform of the output Y (s) = G(s)U(s),
and is given by

G(s) = C>(sI −A)−1B . (22)

In the frequency domain analysis G(s) is evaluated for s = iω, where ω ∈ [0,∞] has the
physical interpretation of a frequency and the input is considered as a signal with frequency
ω [74, p.9-26ff]. Additionally, a state space transformation T as given in eq. (13) of the system
does not change the input-output behaviour of the system, such that the transfer function of
the transformed system is equal to the transfer function of the original system. Due to these
properties, the goal of many model reduction techniques is to achieve a good approximation
between the transfer functions of the original and reduced system.

Let us now introduce the analytical finite time gramians that will subsequently be linked
to the Definition 3.3 and 3.4. These gramians will then be used in section 3.2.2 to find an
appropriate state space transformation T that achieves a good approximation between the
transfer function of the original and reduced system.

Definition 3.6 (finite time controllability gramian [5, p.68])
For an LTI system eq. (21) the n× n finite time controllability gramian C(0, t) is defined by

C(0, t) :=

∫ t

0

eA(t−τ)BB>eA
>(t−τ)dτ. (23)

Definition 3.7 (finite time observability gramian [5, p.76])
For an LTI system eq. (21) the n× n finite time observability gramian O(0, t) is defined by

O(0, t) :=

∫ t

0

eA
>τC>CeAτdτ. (24)
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Both gramians are positive semidefinite by definition [85, 5]. The link to the controllability/
observability of the system is given by the following corollaries.

Corollary 3.8 ([5, p.69])
The LTI system eq. (21) is controllable if and only if C(0, t) is positive definite for some t > 0.

Corollary 3.9 ([5, p.78])
The LTI system eq. (21) is observable if and only if O(0, t) is positive definite for some t > 0.

For the proof of these corollaries we refer to [5, p.69]. The unobservable states are exactly
in the kernel of O(0, t) and the system contains uncontrollable states if C(0, t) does not have
full rank.

For the limit case of t→∞ for asymptotically stable LTI systems, C(0,∞) and O(0,∞) are
well-defined and subsequently always denoted by C(∞),O(∞). For unstable LTI systems the
infinite time gramians C(∞) and O(∞) are not defined.

Another important gramian for model reduction is the infinite time cross gramian [50].

Definition 3.10 (infinite time cross gramian [32])
For an asymptotically stable LTI system in eq. (21) with q = s the n× n infinite time cross
gramian X (∞) is defined by

X (∞) := X (0,∞) =

∫ ∞

0

eAtBCeAtdt .

The infinite time cross gramian carries information pertaining to both controllability and
observability of the LTI system in eq. (21) [32]. For a symmetric and stable LTI system
in eq. (21) with q = s the cross gramian is the product of infinite time observability and
controllability gramian X (∞) = C(∞)O(∞) [50]. Thus, the infinite time cross gramian is a
quantity that allows to investigate both controllability and observability of a system at the
same time [32]. Additionally, it will be shown in section 4.3 how the novel input-response
indices are related to the cross gramian.

In [7] a simpler way of calculating the gramians than computing the analytical expression
given in eq. (23) and (24) is provided. For an asymptotically stable LTI system (fully control-
lable and observable) the controllability and observability gramian given in eq. (23) and (24)
for t → ∞ are the unique symmetric positive definite solution of the following algebraic
matrix equations, also known as Lyapunov equations [7]

AC(∞) + C(∞)A> +BB> = 0, (25)

A>O(∞) +O(∞)A+ C>C = 0. (26)

That eqs. (25) and (26) hold for C(∞),O(∞), can be easily verified by inserting the expression
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e.g. eq. (24) in eq. (26):

A>O(∞) +O(∞)A+ C>C = A>
∫ ∞

0

eA
>τC>CeAτdτ +

∫ ∞

0

eA
>τC>CeAτdτA+ C>C,

=

∫ ∞

0

A>eA
>τC>CeAτ + eA

>τC>CeAτA︸ ︷︷ ︸
d
dτ e

A>τC>CeAτ

dτ + C>C,

= lim
τ→∞

eA
>τC>CeAτ − eA>0

︸ ︷︷ ︸
In

C>C eA0
︸︷︷︸
In

+C>C.

For asymptotically stable LTI systems, it holds that limτ→∞ eA
>τ = 0, such that one obtains

A>O(∞) +O(∞)A+ C>C = −C>C + C>C = 0.

In the following paragraph, it is discussed under which conditions the infinite time gramians
provide a good approximation for the finite time gramians [128]. By considering the time
interval [0, t] we get the finite time gramians, which satisfy the following functional equation
(due to linearity of the integral and properties of the state transition matrix)

C(∞) = C(0, t) + eAtC(∞)eA
>t,

O(∞) = O(0, t) + eAtO(∞)eA
>t.

(27)

The infinite time gramians can be used to approximate the finite time gramians. The approx-
imation quality can be obtained by rearranging eq. (27) and taking a matrix norm. Then it
is clear that the following error estimate between the infinite time gramian and finite time
gramian holds [128]

||C(∞)− C(0, t)|| ≤ ||eAt||2||C(∞)||,
||O(∞)−O(0, t)|| ≤ ||eAt||2||O(∞)||.

(28)

The finite time gramian is, thus, a good approximation for the infinite time gramian if the
system given in eq. (21) is asymptotically stable and t is chosen large enough (twice the
largest characteristic time in the system [128]) .

No realistic system can be considered on an infinite time horizon, however, under asymptotic
stability of the system given in eq. (21) the infinite time gramians provide a good approxima-
tion of the finite time (e.g [0, t]) or time-limited (e.g. [t0, t1]) gramians that actually describe
any physical system [35]. In the case of unstable systems the infinite time gramians are not
defined and, thus, cannot be used to obtain a reduced model.

As an alternative to the infinite time gramians, in [35] the time-limited controllability and
observability gramians are introduced, these are defined by

C(t0, t1) :=

∫ t1

t0

eA(t1−τ)BB>eA
>(t1−τ)dτ , (29)

O(t0, t1) :=

∫ t1

t0

eA
>(τ−t0)C>CeA(τ−t0)dτ (30)
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with t0 = 0 and t1 = t these are exactly the gramians given in Definition 3.6 and 3.7. The
time-limited gramians can be used for model reduction (described in detail in section 3.2.2).

Let us now provide a simpler way of calculating the time-limited gramians given in eq. (29)
and (30), the derivation closely follows [35]. The time-limited gramians can be calculated by
adapted Lyapunov equations for asymptotically stable LTI systems. This will be exemplified
for the observability gramian. We start by linking the time-limited observability gramian
(eq. (30)) to infinity gramian by simply exploiting the linearity of the integral

O(t0, t1) =

∫ t1

t0

eA
>(τ−t0)C>CeA(τ−t0)dτ

⇔ O(t0, t1) = e−A
>t0

∫ t1

t0

eA
>τC>CeAτdτ e−At0

and
∫ t1

t0

eA
>τC>CeAτdτ =

∫ ∞

0

eA
>τC>CeAτdτ −

∫ t0

0

eA
>τC>CeAτdτ −

∫ ∞

t1

eA
>τC>CeAτdτ

= O(∞)−O(0, t0)−O(t1,∞).

Now computing the first two terms of the Lyapunov equations (26) for
∫ t1
t0
eA
>τC>CeAτdτ :

A>
∫ t1

t0

eA
>τC>CeAτdτ +

∫ t1

t0

eA
>τC>CeAτdτA =

∫ t1

t0

d

dτ
eA
>τC>CeAτdτ

= eA
>t1C>CeAt1 − eA>t0C>CeAt0 .

(31)

Multiplying equation (31) with e−A
>t0 from the left, e−At0 from the right and usingA>eA

>t1 =

eA
>t1A>, equation (31) results in

A>O(t0, t1) +O(t0, t1)A = eA
>(t1−t0)C>CeA(t1−t0) − C>C.

It was, therefore, shown as in [35] that the time-limited observability gramian O(t0, t1) for
stable LTI systems can be calculated by solving the following adapted Lyapunov equation

A>O(t0, t1) +O(t0, t1)A+ C>C − eA>(t1−t0)C>CeA(t1−t0) = 0. (32)

Similarly, for the time limited controllability gramian, we have

C(t0, t1) =

∫ t1

t0

eA(t1−τ)BB>eA
>(t1−τ)dτ

and by using s = t1 − τ we obtain

C(t0, t1) = −
∫ 0

t1−t0
eAsBB>eA

>sds,

=

∫ t1−t0

0

eAsBB>eA
>sds.

Following the same steps as for the observability gramian, the time limited controllability
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gramian C(t0, t1) can be calculated by

AC(t0, t1) + C(t0, t1)A> +BB> − eA(t1−t0)BB>eA
>(t1−t0) = 0. (33)

The time-limited Lyapunov eqs. (32) and (33) can be employed to calculate the finite time
gramian for stable LTI systems. The computation of the analytical expression in eq. (23)
and (24) is challenging from a numerical viewpoint due to the matrix exponential [5, p. 70],
such that for the efficient computation of the gramians other approaches are used e.g. solving
the Lyapunov equations in case of a stable LTI system.

For the LTI systems the questions of controllability/observability on a time interval [t0, t1]

can always be rephrased as the controllability/observability on the time interval [0, t1− t0] =

[0, tend] with tend = t1 − t0. This is not the case for systems where the matrices A,B and C
are time dependent.

Linear time-varying (LTV) systems naturally arise when one linearises a nonlinear system
about a specific trajectory [131] and are, thus, of interest in section 3.2.3, where gramians
are introduced for nonlinear systems.

An LTV system is given by

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 ,

y(t) = C(t)x(t),
(34)

where B and C are matrix functions. For LTV systems equation (29) and (30) have to be
adapted.

Definition 3.11 (time-limited controllability gramian [6, p. 230])
For an LTV system eq. (34) the n×n time-limited controllability gramian C(t0, t1) is defined
by

C(t0, t1) =

∫ t1

t0

Φt1,τB(τ)B(τ)>
(
Φt1,τ

)>
dτ , (35)

with Φt,t0 the state transition matrix.

Definition 3.12 (time-limited observability gramian [6, p.249])
For an LTV system eq. (34) the n× n time-limited observability gramian O(t0, t1) is defined
by

O(t0, t1) =

∫ t

t0

(
Φτ,t0

)>
C>(τ)C(τ)Φτ,t0dτ , (36)

with Φt,t0 the state transition matrix.

For LTV systems, there does not exist a well-defined transfer function G. Thus, model re-
duction methods based on providing a good approximation of the transfer function cannot
necessarily be employed for LTV systems (no analytical error bound available). The charac-
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terisation of controllability/observability (in analogy to LTI systems given by corollary 3.8 and
3.9) of the LTV system on the time interval [t0, t1] is given if the controllability/observability
gramian is positive definite [30].

The analytical gramians (e.g. eq. (23) and eq. (24)) introduced in this section provide a
basis for a popular model order reduction technique in control theory, which shall be briefly
introduced in the subsequent subsection.

3.2.2. Balanced truncation

Balanced truncation is one of the most commonly used methods of model reduction in the
field of control theory and was first introduced by Moore [85]. In this section important
aspects of balanced truncation are discussed in detail, closely following the derivations in
[5, ch. 7]. The idea of balanced truncation is to remove state variables that have the least
contribution to the overall input-output behaviour of the system. Important properties of
balanced truncation for LTI system with zero initial condition (x(t0) = 0) are that by the
elimination of some of the transformed state variables stability of the system is preserved and
there exists an a-priori computable error bound for the reduced system [5, p. 207]. This a-
priori error bound explains the popularity of balanced truncation for reduction of large-scale
systems [7].

Balanced truncation can only be applied to systems that are controllable and observable,
i.e. the controllability and observability gramian are positive definite. The coordinate trans-
formation is then constructed by simultaneously diagonalising the controllability and observ-
ability gramian.

In order to investigate the input-output behaviour of a system, the Hankel operator needs to
be employed.

Definition 3.13 (Hankel operator [5, p. 135])
Given an LTI system eq. (21) the Hankel operator H : Ls2(−∞, 0) → Lq2(0,∞), u− 7→ y+ is
defined by

y+(t) = H(u−)(t) =

∫ 0

−∞
CeA(t−s)Bu−(s)ds = CeAt

∫ 0

−∞
e−AsBu−(s)ds ,

with Ls2(−∞, 0), Lq2(0,∞) the Lebesque function spaces with 2-norm over Rs,Rq respectively.

The Hankel operator, which is closely linked to the controllability and observability gramian,
thus, maps past inputs u− into future outputs y+. A singular value decomposition of this
linear operator leads to n singular values, called the Hankel singular values.

In balanced truncation, the goal is to find a basis in the state space in which states that are
difficult to control are simultaneously difficult to observe. The problem is, thus, to find a
transformation matrix T , such that C and O are equal and diagonal.
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Definition 3.14 (balanced system [5, p. 210])
A fully controllable, fully observable and stable system as given in eq. (21) is called balanced
if C = O = Σ.

In a balanced system the degree of controllability and the degree of observability of each state
are the same [29].

A state space transformation T that balances an LTI system exists if the controllability and
observability gramian are both positive definite [5, p. 209ff]. The transformation T is then
constructed by first computing the Cholesky factorisation of C = RR>. Then the Hankel
singular values {σ1, . . . , σn} are derived by applying the eigenvalue value decomposition to
R>OR

R>OR = UΣ2U> with Σ =




σ1

. . .

σn


 .

The Hankel singular values can be used to assess the importance of state variables for the
input-output behaviour of the system. The state variables of the transformed system corre-
sponding to large Hankel singular values are more important for the system.

The transformation, balancing the system, is defined as

T = Σ
1
2U>R−1 ,

with inverse

T−1 = RUΣ−
1
2 .

In the transformed system xtrans = Tx, state variables are orthogonal in terms of their
contribution to the input-output behaviour [116]. By truncation of the x̂ (cf. eq. (13))
corresponding to small Hankel singular values σnred ≥ σi with nred the dimension of the
reduced system, a good approximation of the transfer function G (cf. eq. (22)) can be
obtained. The truncation is obtained by applying the following Petrov-Galerkin projection

P =

(
Inred

0

)
.

Then

V = TP ,

W = (T−1)>P ,

which results in the following reduced system

ẋred(t) = W>f(V xred(t)) +W>g(u(t)) ,

yred(t) = h(V xred(t)) .
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For LTI system, the dimension nred of the reduced system can be determined a-priori based
on the error bound

σnred+1 ≤ ||G−Gred||∞ = sup
u∈Ls2

||y − yred||
||u|| ≤ 2

n∑

i=nred+1

σi ,

with G,Gred the transfer functions of the full system (given in eq. (22)) and reduced system,
respectively. Although no error-bound is available for nonlinear systems, balanced truncation
has gained popularity for nonlinear systems, too [116]. We will use balanced truncation in
section 4.2 to obtain a reduced model for a challenging benchmark system from the field of
electrical circuits.

3.2.3. Overview of empirical gramians for nonlinear systems

So far we have introduced the characterisation of both controllability and observability by the
analytical gramians of linear systems. To obtain analytical gramians for nonlinear system one
can apply linearisation around (i) a specific state of interest, e.g. steady state, which results
in an LTI system or (ii) a specific solution trajectory, which gives an LTV system. The
linearisation will only provide a good approximation of the gramian for the nonlinear system
around the (i) specific state or (ii) the specific solution trajectory. The so-called empirical
gramians are the extension of gramians to nonlinear systems without linearisation and, thus,
provide a means for a more accurate approximation over a larger operating region Ω, which
is defined by the predefined perturbations in the input and initial state. They are computed
by averaging over trajectory samples with perturbations in the input and initial state. The
empirical gramians are a ’local’ quantity in the sense that they are defined with respect to a
pre-specified operating region Ω. In the literature there exist different variants of empirical
gramians, which are discussed in this section.

The first attempt to characterise the controllability and observability of nonlinear systems
was done by so-called covariance matrices [80], based on the following calculation

M =

∫

Ω

∫ ∞

0

Q(x(t)− x∗)(x(t)− x∗)>Q>dtdµΩ

with a positive definite and quadratic weighting matrix Q, an arbitrary stationary reference
state x∗ and an appropriate measure µΩ on Ω.

Empirical gramians
The so-called empirical controllability and observability matrices were first introduced in [70].
The empirical gramians can be seen as an extension of the analytical LTI gramians to nonlin-
ear time invariant systems. The empirical gramians were introduced by [70] for a control-affine
(the control enters the differential equation linearly) nonlinear system of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = 0

y(t) = h(x(t))
(37)

with u(t) ∈ Rs, y ∈ Rq.
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The construction of the empirical gramians in [70] is based on specific correlation matrices
defined as

N :=

∫ ∞

0

(x(t)− x̄)(x(t)− x̄)>dt (38)

where the so called time averaged state is defined by

x̄ := lim
T→∞

1

T

∫ >

0

x(t)dt (39)

and x(t) the vector of state variables of the system. In [70] it is assumed that the nonlinear
system given in eq. (37) is exponentially stable with zero being the steady state and the time
averaged state as given in eq. (39) is, thus, zero.

The empirical gramians are then numerically computed using finite time trajectory samples
with perturbations in input and initial states for a time interval [0, tend], which give a good
approximation of the infinite time gramian if tend is chosen large enough. Note that this was
shown for LTI systems in eq. (28), but was not proven for nonlinear systems.

To construct the different variants of empirical gramians, let us define the following two sets
for the input and state perturbations:

U = {uper ∈ Rs | uper = cmTlei for i ∈ {1, . . . , s}, l ∈ {1, . . . , L},m ∈ {1, . . . ,M},
cm ∈ R+, Tl ∈ Rs×s, T>l Tl = Is and ei the ith standard unit vector in Rs}

(40)

X = {xper(0) ∈ Rn×n | xper(0) = cmTl for l ∈ {1, . . . , L},m ∈ {1, . . . ,M},
cm ∈ R+, Tl ∈ Rn×n, T>l Tl = In}

(41)

with L orthogonal matrices Tl and M different perturbation magnitudes cm. The orthogonal
matrices Tl represent the direction of the perturbation, the positive real constants cm give
the magnitude of the perturbation and the standard unit vector ei represents the input or
state variable that is affected by the perturbation. In this case the operating region Ω is,
thus, given by U × X .

For each perturbation, the correlation matrix as given in eq. (38) is calculated in [70] and then
the empirical gramians are given by the weighted average over all the calculated correlation
matrices. In order to understand the differences in the development of the empirical gramians
and, in particular, our developed extension of the empirical gramians, we provide in this
section a unified framework for the empirical gramians given in literature [70, 43, 19]. The
definitions from [70] for an infinite time empirical controllability gramian and an infinite time
empirical observability gramian in our unified framework are then given by:

Definition 3.15 (Infinite time empirical controllability gramian)
Let U be the set of input perturbations as defined in eq. (40). For the nonlinear system
eq. (37), an infinite time empirical controllability gramian Lall–CU (∞) is defined by

Lall–CU (∞) =

∫ ∞

0

Ψ(t, 0)Ψ(t, 0)>dt (42)
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where Ψ(t, 0) ∈ Rn×s is given by

Ψ(t, 0) :=
s

|U|
∑

uper∈U

1

||uper||22
Ψuper(t, 0) (43)

and Ψuper(t, 0) is defined by

Ψuper(t, 0) := (x(t; 0, uper(t))− x̄(uper)) · u>per (44)

with x(t; 0, uper(t)) the state of the system corresponding to the impulse input
uper(t) = uperδ(t).

Note that the impulse input could as well have been written as xuper(0) = g(0)uper. It was
shown in [70] that for stable LTI systems an infinite time empirical controllability gramian is
equal to the infinite time analytical controllability gramian, as shown in the following lemmas
given with proof. The proofs of both lemmas are provided for completeness and to facilitate
understanding of subsequent proofs.

Lemma 3.16 ([70])
Given a stable LTI system of the form ẋ(t) = Ax(t) + Bu(t) and y = Cx(t) on the time
interval [0,∞]. Then, for any non-empty perturbation set U as given in eq. (40), an infinite
time empirical controllability gramian Lall–CU (∞) is identical to the infinite time analytical
controllability gramian C(∞) =

∫∞
0
eAtBB>eA

>tdt.

Proof: The input-perturbed solution for the LTI system is
x(t; 0, uper) =

∫ t
0
eA(t−s)Buper(s)ds with uper(t) = uperδ(t) and, thus,

x(t; 0, uper) = eAtBuper.
Using the input-perturbed solution for the LTI system, Ψuper(t, 0) becomes

Ψuper(t, 0) =

(
eAtBuper − lim

T→∞
1

T

∫ T

0

eAtBuperdt

)
u>per .

Next we use the fact that the system is stable and that the time averaged state is zero.
Thus, Ψuper(t, 0) simplifies to

Ψuper(t, 0) = eAtBuperu
>
per ,

with uper ∈ U . Inserting Ψuper(t, 0) into eq. (43), Ψ(t, 0) becomes

Ψ(t, 0) =
s

|U|
∑

uper∈U

1

||uper||22
eAtBuperu

>
per ,

and using uper = cmTlei, we get

Ψ(t, 0) =
s

s · L ·M
∑

i,l,m

1

c2m
eAtBcmTlei(cmTlei)

>

=
1

L ·M
∑

i,l,m

eAtBTleie
>
i T
>
l ,

(45)
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where

∑

i

eAtBTleie
>
i T
>
l = eAtBTlT

>
l .

Thus, eq. (45) further simplifies to

Ψ(t, 0) =
1

L ·M
∑

l,m

eAtB TlT
>
l︸ ︷︷ ︸

=Is

=
1

L ·M
∑

l,m

eAtB

= eAtB .

(46)

Then finally by inserting eq. (46) into eq. (42) an infinite time empirical gramian Lall–CU (∞)

is given by

Lall–CU (∞) =

∫ ∞

0

eAtB
(
eAtB

)>
dt

=

∫ ∞

0

eAtBB>eA
>tdt = C(∞) ,

which is the desired result. �

Definition 3.17 (Infinite time empirical observability gramian)
Let X be the set of initial state perturbations as defined in eq. (41). For the nonlinear system
eq. (37), an infinite time empirical observability gramian Lall–OX (∞) is defined by

Lall–OX (∞) =

∫ ∞

0

Θ(t, 0)>Θ(t, 0)dt (47)

where Θ(t, 0) ∈ Rq×n is given by

Θ(t, 0) =
1

|X |
∑

xper∈X

n∑

i=1

1

||xper||22
Θxper,i(t, 0) (48)

and Θxper,i(t, 0) is defined by

Θxper,i(t, 0) := (y(t;xper,i(0), 0)− ȳ(xper,i)) · xper,i(0)> (49)

with y(t;xper,i(0), 0) the output of the system corresponding to the initial condition
xper,i(0) = xperei, ei the ith standard unit vector in Rn and u(t) = 0.

Lemma 3.18 ([70])
Given a stable LTI system of the form ẋ(t) = Ax(t) + Bu(t) and y = Cx(t) on the time
interval [0,∞]. Then, for any non-empty perturbation set X as given in eq. (41), an infinite
time empirical observability gramian Lall–OX (∞) is identical to the infinite time analytical
observability gramian O(∞) =

∫∞
0
eA
>τC>CeAτdτ .
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Proof: The initial state-perturbed solution for the LTI system is
x(t;xper,i(0), 0) = eAtxper,i(0) and y(t;xper,i(0), 0) = CeAtxper,i(0).

Inserting the initial state-perturbed solution into eq. (49) gives

Θxper,i(t, 0) =

(
CeAtxper,i(0)− lim

T→∞
1

T

∫ T

0

CeAtxper,i(0)dt

)
· xper,i(0)> .

Using the fact that the system is stable and the time averaged state is zero, Θxper,i(t, 0)

simplifies to

Θxper,i(t, 0) = CeAtxper,i(0) · xper,i(0)>

with xper,i(0) = xperei. Inserting Θxper,i(t, 0) into eq (48), Θ(t, 0) becomes

Θ(t, 0) =
1

|X |
∑

xper∈X

n∑

i=1

1

||xper||22
CeAtxper,i(0) · xper,i(0)> .

and using xper,i(0) = xperei = cmTlei, we get

Θ(t, 0) =
1

L ·M
∑

l,m

n∑

i=1

1

c2m
CeAtcmTlei · (cmTlei)>

=
1

L ·M
∑

l,m

n∑

i=1

CeAtTleie
>
i T
>
l ,

(50)

where

n∑

i=1

CeAtTleie
>
i T
>
l = CeAtTlT

>
l .

Thus, eq. (50) further simplifies to

Θ(t, 0) =
1

L ·M
∑

l,m

CeAt TlT
>
l︸ ︷︷ ︸

In

=
1

L ·M
∑

l,m

CeAt = CeAt .

(51)

Then by inserting eq. 51 into eq. 47, an infinite time empirical observability gramian
Lall–OX (∞) becomes

Lall–OX (∞) =

∫ ∞

0

(
CeAt

)>
CeAtdt

=

∫ ∞

0

eA
>tC>CeAtdt = O(∞) ,

which is the desired result. �

The infinite time empirical gramians with impulse inputs given in definitions 3.15 and 3.17,
thus, are identical to the infinite time analytical gramians for stable time-invariant linear
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systems independent of applied input and initial state perturbation. In order to provide
a comprehensive overview over the properties of each empirical gramian definition in this
section, we provide a summary of the conditions (e.g. stable LTI system etc.) in which the
defined empirical gramians are identical to the analytical gramians (cf. Table 1).

Table 1: Conditions on an LTI system under which the infinite time empirical
gramians in eqs. (42) and (47) are identical to the infinite time analytical
gramians in eqs. (23) and (24) with t→∞.

Properties of the LTI system given as in eq. (21) Lall–CU (∞) = C(∞) ,
Lall–OX (∞) = O(∞)

stable with
x0 = xss

finite time x0 = 0 sometimes
x0 6= 0 no

infinite time x0 = 0 yes
x0 6= 0 no

stable with
x0 6= xss

finite time x0 = 0 no
x0 6= 0 no

infinite time x0 = 0 no
x0 6= 0 no

unstable finite time x0 = 0 no
x0 6= 0 no

Infinite time empirical covariance gramians
The infinite time empirical gramians given in definitions 3.15 and 3.17 are explicitly based
on impulse inputs. In order to allow for different kinds of inputs the concept was extended
in [41, 42, 43] by the introduction of infinite time empirical covariance matrices, which allow
for step inputs as well as series of step inputs. The empirical observability covariance matrix
is given by the definition 3.17 with the adaptation, that the steady state of the system must
not be the zero state and, thus, xper,i(0) becomes xper,i(0) = xper(0)ei+xss with xss denoting
the steady state of the system. The infinite time empirical controllability covariance matrix
is given by the following definition.

Definition 3.19 (Infinite time empirical controllability covariance gramian)
Let U be the set of input perturbations as defined in eq. (40). For the nonlinear system
eq. (37), an infinite time empirical controllability covariance gramian Hahn–CU (∞) is defined
by

Hahn–CU (∞) =

∫ ∞

0

Ψ(t, 0)Ψ(t, 0)>dt (52)

where Ψ(t, 0) ∈ Rn×s is given by

Ψ(t, 0) :=
s

|U|
∑

uper∈U

1

||uper||22
Ψuper(t, 0) (53)

and Ψuper(t, 0) is defined by

Ψuper(t, 0) := (x(t;xss, uper(t))− xper,ss) · u>per (54)

47



3. Relevant methods of model reduction for systems pharmacology/biology models

with x(t;xss, uper(t)) the state of the system corresponding to the perturbed input
uper(t) = uperu(t) + uss, where uss denotes the input at the original steady state, xss and
xper,ss denote the steady state of the original and perturbed solution trajectory corresponding
to the input uper(t) respectively.

In [43] it was shown that both infinite time empirical covariance gramians are identical to the
infinite time analytical gramians for stable time invariant linear systems for inputs defined
by a delta impulse or a series of step functions given by

u(t) =

z∑

k=1

akS(t− tstepk ), −1 ≤ ak ≤ 1

with S(t − tstepk ) = 1 for t < tstepk and zero otherwise, tstepk time points when a step change
occurs, ak is the size and direction of the step change. Furthermore, in [43] it is noted that
it is possible to compute the infinite time empirical covariance gramians even for systems
with multiple steady states, however, special attention should be given to the interpretation
of results for cases in which perturbed solution trajectories leave the region of attraction of
the original considered steady state. In Table 2 the cases are listed in which the infinite time
empirical covariance gramians, defined in 3.19, are identical to the infinite time analytical
gramians.

A major drawback of the so far discussed empirical gramians (cf. Definition 3.15, 3.17 and
3.19), however, is that only the relationship to stable LTI systems was established. Thus,
completely neglecting the relationship between a nonlinear system and the linearised system
along the trajectory resulting in an LTV system. Note that the definitions above do not
produce the correct gramians for stable LTV systems since they are computed using delta
impulses to characterise the input-to-state behaviour of the system. The characterisation of
the input-state behaviour by delta impulses is sufficient for LTI systems, but not for LTV
systems. In [19] an extension of the empirical gramians was presented and shown that the
extended empirical gramians are identical to the analytical infinite time gramians for stable
LTV systems. The extended empirical gramians provide a better approximation for the
nonlinear system.

Extension of empirical gramians to be linked to stable LTV systems
In the following we consider the nonlinear system given in eq. (37) with g(x(t)) = B(t).
In [19] the steady state as well as the input into the system is assumed to be zero. Then the
extended infinite time empirical controllability and observability gramian based on averaging
of the state transition matrix are defined by

Definition 3.20 (Infinite time empirical controllability gramian)
Let X be the set of initial condition perturbations as defined in eq. (41). For the nonlin-
ear system eq. (37) with g(x(t)) = B(t), an infinite time empirical controllability gramian
Condon–CX (∞) is defined by

Condon–CX (∞) =

∫ 0

−∞
Ψ(t, 0)Ψ(t, 0)>dt , (55)
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Table 2: Conditions on an LTI system under which the infinite time empirical
covariance gramians in eq.(52) are identical to the infinite time analytical
gramian in eqs. (23) and (24) with t→∞.

Properties of the LTI system given as in eq. (21) Hahn–CU (∞) = C(∞) ,
Hahn–OX (∞) = O(∞)

stable with
x0 = xss

finite time x0 = 0 sometimes
x0 6= 0 sometimes

infinite time x0 = 0 yes
x0 6= 0 yes

stable with
x0 6= xss

finite time x0 = 0 no
x0 6= 0 no

infinite time x0 = 0 no
x0 6= 0 no

unstable finite time x0 = 0 no
x0 6= 0 no

where Ψ(t, 0) ∈ Rn×s is given by

Ψ(t, 0) =


 1

|X |
∑

xper∈X

n∑

i=1

1

||xper||22
Ψxper(t, 0)



−1

·B(t) (56)

and Ψxper(t, 0) is defined by

Ψxper(t, 0) = x(t;xper,i(0); 0) · xper,i(0)> (57)

with x(t;xper,i(0); 0) the state of the system for the initial condition xper,i(0) = xperei and
ei ∈ Rn the standard unit vector.

Definition 3.21 (Infinite time empirical observability gramian)
Let X be the set of initial condition perturbations as defined in eq. (41). For the nonlin-
ear system eq. (37) with g(x(t)) = B(t), an infinite time empirical observability gramian
Condon–OX (∞) is defined by

Condon–OX (∞) =

∫ ∞

0

Θ(t, 0)>Θ(t, 0)dt (58)

where Θ(t, 0) ∈ Rq×n is given by

Θ(t, 0) =
1

|X |
∑

xper∈X

n∑

i=1

1

||xper||22
Θxper,i(t, 0) (59)

and Θxper,i(t, 0) is defined by

Θxper,i(t, 0) := y(t;xper,i(0), 0) · xper,i(0)> (60)

with y(t;xper,i(0), 0) the state of the system for the initial condition xper,i(0) = xperei and
ei ∈ Rn the standard unit vector.
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Additionally in [19], it is assumed that the perturbation xper,i(0) does not result in a solution
trajectory that leaves the region of attraction of the equilibrium point xss = 0. In the case of
multiple steady states of the system given in eq. (37) it is suggested to construct empirical
gramians for each steady state separately [19].

In Table 3 the condition on an LTI systems are listed in which the infinite time empirical
gramians defined in 3.20 and 3.21 are identical to the infinite time analytical gramians for
linear systems.

Table 3: Conditions on an LTI system or an LTV system under which the infinite
time empirical gramians in 3.20 and 3.21 are identical to the infinite time
analytical gramians in eqs. (23) and (24) with t→∞.

Properties of the LTI system given as in eq. (21) Condon–CU (∞) = C(∞) ,
Condon–OX (∞) = O(∞)

stable with
x0 = xss

finite time x0 = 0 sometimes
x0 6= 0 sometimes

infinite time x0 = 0 yes
x0 6= 0 sometimes

stable with
x0 6= xss

finite time x0 = 0 no
x0 6= 0 no

infinite time x0 = 0 no
x0 6= 0 no

unstable finite time x0 = 0 no
x0 6= 0 no

Properties of the LTV system given as in eq. (34) Condon–CU (∞) = C(∞) ,
Condon–OX (∞) = O(∞)

stable with
xss = x0

finite time x0 = 0 sometimes
x0 6= 0 sometimes

infinite time x0 = 0 yes
x0 6= 0 sometimes

stable with
xss 6= x0

finite time x0 = 0 no
x0 6= 0 no

infinite time x0 = 0 no
x0 6= 0 no

unstable finite time x0 = 0 no
x0 6= 0 no

Although the empirical gramians can easily be obtained by simple matrix computations, they
have not gained much attention in the literature, until recently with the introduction of the
empirical cross gramian in [49, 50, 51], which also can be used for model order reduction
of nonlinear systems. Furthermore, in [49] a unified software framework for the empirical
gramians is provided. In Figure 11 the development of the empirical gramians given in this
section is summarised.

So far, so-called infinite time empirical gramians (e.g. Lall–CU (∞), Hahn–CU (∞),
Condon–CU (∞)) were considered, with the underlying assumption that the nonlinear sys-
tem is stable. No realistic system can be considered on an infinite time horizon. The infinite
time gramians constitute only an approximation of the finite time/time-limited gramians that
describe any physical system [35]. A formulation of the empirical gramians for finite time
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Figure 11: Summary of the development of the different empirical gramians intro-
duced in section 3.2.3.
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(e.g. time interval [0, t]) or time-bounded (e.g. time interval [t0, t1] with t0 6= 0) gramians is,
thus, needed to provide not only a more accurate approximation of the nonlinear gramians
but also to allow for the consideration of the transient behaviour of the nonlinear system.

In section 4.1 we, therefore, will generalise the empirical gramian formulation for nonlin-
ear control affine system (not necessarily stable) which links to the time-limited analytical
gramians for both LTI and LTV systems (not necessarily stable). In the next section, the
presented relevant model reduction techniques are discussed in the context of system phar-
macology/biology models.

3.3. Discussion of applicability of methods in the context of systems
pharmacology/biology models

In the previous sections, we have introduced four different general concepts which are used
for model order reduction in two different fields of application. The systems of interest in this
thesis are from the field of systems pharmacology/biology. The models are usually nonlinear,
have a meaningful interpretation of state variables and the number of parameters exceeds
the number of state variables. In drug development and discovery the focus, under which
systems pharmacology/biology models are investigated, is often on a specific drug influencing
the system and one wants to characterise the drug effect or response in terms of some surrogate
marker. Thus, we are interested in the characterisation of a specific input-output relationship
for these systems. The system of interest is then given by

ẋ(t) = f(x(t)) + u(t), x(0) = x0 ,

y(t) = h(x(t)).
(61)

The function f : Rn → Rn represents the systems pharmacology/biology model of interest,
and the function h : Rn → Rq maps the state vector x to the output y of interest (e.g. an
experimentally observed quantity). In a typical setting, u(t) ∈ Rn represent some drug
administration (including intravenous bolus (i.v. bolus), intravenous infusion (i.v. infusion)
and per os administration (p.o. administration)) or other stimulus of the system.

In the following sections, we discuss the introduced methods under aspects which are cru-
cial for the application in system pharmacology/biology, namely the approximation accuracy,
interpretability of state variables/parameters and consideration of the input-output relation-
ship. All the introduced methods are in general suitable for nonlinear systems, however, the
local sensitivities might not reflect the true importance of parameters and, in particular, a
reduction based on the importance of reactions according to their sensitivity could lead to
models with low approximation quality [123, 126]. Furthermore, the larger the nonlinear
system the more difficult it is to find a suitable slow/fast partition of the system for time
scale analysis and it must not necessarily exist. Finding an optimal lumping scheme is also
a challenging task, especially for large-scale systems, since it is practically impossible to test
all possible lumped models due to the combinatorial explosion in the number of possibilities.
This problem can be overcome by using greedy search algorithms (e.g. in [1]), where then,
however, it has not been considered to what extent the sequence in which state variables
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are lumped impacts the final reduced model. This might have possible implications on the
approximation quality of the reduced model.

The interpretability of the reduced model system is an important requirement in the field of
systems pharmacology/biology, which is met by the proper lumping approach, time scale sep-
aration (if such a partition is known/ exists) and sensitivity analysis. As soon as a coordinate
transformation is applied, this requirement might be violated, e.g. for balanced truncation
and ILDM. Nonetheless, model reduction techniques for system pharmacology/biology mod-
els have used balanced truncation [117]. Due to the balanced truncation applied in this
approach, the final reduced model lost its interpretability (as mentioned above).

We are interested in systems pharmacology/ biology models under a specific input-output
relationship and want to reduce the system to its essential features for this relationship.
Balanced truncation is very well suited for this purpose since it is specifically designed to
maintain a particular input-output setting of a system. Time scale separation, on the other
hand, does not explicitly take into account a specific input-output behaviour. For example,
based on the chosen input-output setting, only certain pathways might be active. For the
sensitivity analysis, an extension to take the input-output relationship into account exists.
This is done by introducing an additional function for the output and considering how sen-
sitive the output trajectory is to small changes in the parameters and initial values. It is,
however, not clear how to extend the impact of state variables beyond the initial time point.
We remark, that especially for signalling cascades in system pharmacology/biology, it is fea-
sible to assume that a state variable might have no/ only a small impact initially on the
output but a significant impact at later times. It is, therefore, highly desirable to extend the
consideration of sensitivity coefficients of the model system state variables.
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4. Novel input-response characterisation for model analysis

& reduction

Often the transient output of systems pharmacology/biology models (cf. section 2.2 and 2.3)
is of particular interest. For linear systems time-limited analytical gramians were introduced
in order to capture the transient system behaviour [35]. For nonlinear systems, empirical
gramians have been introduced to characterise the controllability and observability in the
steady state of the system. In order to characterise the transient system behaviour for
nonlinear systems, we will introduce time-limited empirical gramians in this section. To
show the applicability of the novel empirical gramians beyond system pharmacology/biology
models, we have chosen a nonlinear benchmark example from the field of control theory,
which has been previously employed to show the superiority of a novel empirical gramian
formulation [18]. Additionally, based on the introduced time-limited empirical gramians we
will derive the novel quantity called the input-response index. The input-response index
quantify the importance of state variables for a given input-output relationship as a function
of time. We will show that a local variant of the input-response indices can be defined as
the product of two sensitivity coefficients over time, the indices thus obtained will be termed
sensitivity based input-response indices. These indices, as well as the empirical based indices,
can be used to understand the dynamics of the system upon perturbation or stimulation by the
input with respect to the specified output. Based on the input-response indices we introduce
a very efficient model order reduction based on a four-step procedure: (i) elimination of state
variables whose dynamics have only negligible impact on the input-response relationship,
(ii) application of the quasi-steady state approximation to eliminate fast changing molecular
species, (iii) exploiting the conservation laws, and a potential last step where (iv) proper
lumping is applied to the remaining state variables (cf. section 4.5). The reduced model still
allows for a mechanistic interpretation in terms of the quantities of the original system, which
is a key requirement in the pharmacology domain of application.

4.1. New generalised empirical gramians

The novel generalised empirical gramians are defined with respect to a reference trajectory
and given in a time-limited formulation. It can be shown that for LTI and LTV systems, the
generalised empirical gramians are identical to the analytical time-limited gramians.

To construct the empirical gramians, we use the perturbation sets for the input and initial
state perturbations as defined in section 3.2.1 in eq. (40) and (41).

Definition 4.1 (Time-limited empirical controllability gramian)
Let U be the set of input perturbations as defined in eq. (40). For the nonlinear system eq. (37)
with reference solution xref(t) = x(t;xref(t0), uref(t)), input uref and time interval [t0, t1], a
time-limited empirical controllability gramian REF–CU (t0, t1) with respect to the reference
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solution xref is defined by

REF–CU (t0, t1) =

∫ t1

t0

Ψ(t1, τ)Ψ(t1, τ)>dτ (62)

where Ψ(t1, τ) ∈ Rn×s is given by

Ψ(t1, τ) :=
s

|U|
∑

uper∈U

1

||uper||22
Ψuper(t1, τ) (63)

and Ψuper(t1, τ) is defined by

Ψuper(t1, τ) =
(
x(t;xuper(τ), uref(t))− xref(t;xref(τ), uref(t))

)
· u>per (64)

and x(t;xuper(τ), uref) is the state corresponding to the initial state value
xuper(τ) = xref(τ) + g(xref(τ))uper.

Lemma 4.2
Given an LTV system of the form ẋ(t) = A(t)x(t) + B(t)u(t) and y(t) = C(t)x(t) on the
time interval [t0, t1]. Then, for any non-empty perturbation set U as given in eq. (40), a
time-limited empirical controllability gramian REF–CU (t0, t1) is identical to the analytical
time-limited controllability gramian C(t0, t1) =

∫ t1
t0

Φt1,τB(τ)B(τ)> (Φt1,τ )
>

dτ .

Proof: The input-perturbed solution for the LTV system is
x(t;xuper(τ), uref(t)) = Φt,τxuper(τ) +

∫ t
τ

Φt,sB(s)uref(s)ds with
xuper(τ) = xref(τ) +B(τ)uper.

Using the input-perturbed solution of the LTV system, Ψuper(t1, τ) becomes

Ψuper(t1, τ) =
(
Φt1,τxuper(τ)− Φt1,τxref(τ)

)
· u>per

=
(
Φt1,τxref(τ) + Φt1,τB(τ)uper − Φt1,τxref(τ)

)
· u>per

=
(
Φt1,τB(τ)uper

)
· u>per

with uper ∈ U . Inserting Ψuper(t1, τ) into eq. (63), Ψ(t1, τ) becomes

Ψ(t1, τ) =
s

|U|
∑

uper∈U

1

||uper||22
Φt1,τB(τ)uper · u>per

and using uper = cmTlei, we get

Ψ(t1, τ) =
s

s · L ·M
∑

i,l,m

1

c2m
Φt1,τB(τ)cmTlei · (cmTlei)>

=
1

L ·M
∑

i,l,m

c2m
c2m

Φt1,τB(τ)Tleie
>
i T
>
l ,

(65)
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where

∑

i

Φt1,τB(τ)Tleie
>
i T
>
l = Φt1,τB(τ)TlT

>
l .

Thus, eq. (65) further simplifies to

Ψ(t1, τ) =
1

L ·M
∑

l,m

Φt1,τB(τ)TlT
>
l︸ ︷︷ ︸

=Is

=
1

L ·M
∑

l,m

Φt1,τB(τ)

= Φt1,τB(τ) ,

(66)

Finally, by inserting eq. (66) into (62), a time-limited empirical controllability gramian
REF–CU (t0, t1) is given by

REF–CU (t0, t1) =

∫ t1

t0

Φt1,τB(τ)B(τ)>
(
Φt1,τ

)>
dτ = C(t0, t1),

which is the desired result. �

Definition 4.3 (Time-limited empirical observability gramian)
Let X be the set of input perturbations as defined in eq. (41). For the nonlinear system
given in eq. (37) with reference solution xref(t) = x(t;xref(t0), uref(t)), input uref and time
interval [t0, t1], a time-limited empirical observability gramian REF–OX (t0, t1) with respect
to the reference solution xref is defined by

REF–OX (t0, t1) :=

∫ t1

t0

Θ(τ, t0)>Θ(τ, t0)dτ (67)

where Θ(τ, t0) ∈ Rq×n is given by

Θ(τ, t0) =
1

|X |
∑

xper∈X

n∑

i=1

1

||xper||22
Θxper,i(τ, t0) (68)

and Θxper,i(τ, t0) is defined by

Θxper,i(τ, t0) = (y(τ ;xper,j(t0), uref(τ))− y(τ ;xref(t0), uref(τ))) · (xper · ei)> (69)

with y(τ ;xper,i(t0), uref(τ)) the state of the system corresponding to the initial value
xper,i(t0) = xref(t0) + xper · ei and ei the ith standard unit vector in Rn.

Lemma 4.4
Given an LTV system of the form ẋ(t) = A(t)x(t) + B(t)u(t) and y(t) = C(t)x(t) on the
time interval [t0, t1]. Then, for any non-empty initial value perturbation set X eq. (41), a
time-limited empirical observability gramian REF–OX (t0, t1) is identical to the time-limited
analytical observability gramian O(t0, t1) =

∫ t1
t0

(Φτ,t0)
>
C(τ)>C(τ)Φτ,t0dτ .
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Proof: The initial state-perturbed solution for the LTV system is
x(t;xper,i(t0), uref(t)) = Φt,t0xper,i(t0)+

∫ t
t0

Φt,τB(τ)uref(τ)dτ with xper,i(t0) = xref(t0)+

xper · ei.

Inserting the initial state-perturbed solution into eq. (69) gives

Θxper,i(τ, t0) =

[
C(τ)

(
Φτ,t0xper,i(t0) +

∫ τ

t0

Φτ,sB(s)uref(s)ds

)

−C(τ)

(
Φτ,t0xref(t0) +

∫ τ

t0

Φτ,sB(s)uref(s)ds

)]
· (xper · ei)>

=
(
C(τ)

(
Φτ,t0xper,i(t0)− Φτ,t0xref(t0)

))
· (xper · ei)>

=
(
C(τ)Φτ,t0xper · ei

)
· (xper · ei)>

Inserting Θxper,i(τ, t0) into eq. (68), Θ(τ, t0) becomes

Θ(τ, t0) =
1

|X |
∑

xper∈X

n∑

i=1

1

||xper||22
(
C(τ)Φτ,t0xper · ei

)
· (xper · ei)> .

Using xper = cmTl, we get

Θ(τ, t0) =
1

L ·M
∑

l,m

n∑

i=1

1

c2m
C(τ)Φτ,t0cmTleie

>
i T
>
l c
>
m

=
1

L ·M
∑

l,m

n∑

i=1

C(τ)Φτ,t0Tleie
>
i T
>
l ,

(70)

where

n∑

i=1

C(τ)Φτ,t0Tleie
>
i T
>
l = C(τ)Φτ,t0TlT

>
l .

Thus, eq. (70) further simplifies to

Θ(τ, t0) =
1

L ·M
∑

l,m

C(τ)Φτ,t0 TlT
>
l︸ ︷︷ ︸

=In

=
1

L ·M
∑

l,m

C(τ)Φτ,t0 = C(τ)Φτ,t0 .

(71)

Then, by inserting eq. (71) into eq. (67), a time-limited empirical observability gramian
REF–OX (t0, t1) becomes

REF–OX (t0, t1) =

∫ t1

t0

(
Φτ,t0

)>
C(τ)>C(τ)Φτ,t0dτ = O(t0, t1) ,

which is the desired result. �

In Table 4 the conditions on the LTI or LTV system are summarised in which the novel
time-limited empirical gramians are identical to the time-limited analytical gramians.

As described in section 3.2.3 the infinite time empirical gramians [70, 19, 42] defined in 3.15,
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3.17, 3.19, 3.20 and 3.21 are equal to the infinite time analytical gramians for stable LTI
or LTV system with initial state equal to zero or a particular steady state of the system,
respectively. In the numerical approximation of these infinite time empirical gramians, the
calculation time interval needs to be chosen ’large’ enough to ensure that the perturbed
system trajectory has reached a steady state. However, there does not exist an explicit
definition or mathematical justification as to when the chosen time interval is large enough.
As a consequence the numerical approximation of the infinite time empirical gramians is
dependent on both the pre-defined perturbations as well as the chosen time interval [0, t].
Additionally, if the system has multiple steady states, the perturbation sets eq. (40) and (41)
need to be chosen such that the perturbed system trajectory does not leave the region of
attraction of the specified equilibrium point [19].

In contrast to the infinite time empirical gramians, our time-limited extension of the empirical
gramians allows for a characterisation of the transient system behaviour. This is explicit of
interest in the context of systems pharmacology/biology models which will be considered in
chapter 5. However, the characterisation of transient system behaviour is also of relevance
in the context of control theory, as previously described in section 3.2.1. In the subsequent
section, we will, thus, consider a benchmark example for model order reduction techniques
to demonstrate the usefulness of the novel formulation over the previously defined empirical
gramians in section 3.2.1.
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Table 4: Conditions on an LTI system or an LTV system under which the time-
limited empirical gramians in eqs. (62) and (67) are identical to the time-
limited analytical gramians in eqs. (35) and (36).

Properties of the LTI system given as in eq. (21) REF–CU (t0, t1) = C(t0, t1) ,
REF–OX (t0, t1) = O(t0, t1)

stable with
x0 = xss

finite time x0 = 0 yes
x0 6= 0 yes

infinite time x0 = 0 yes
x0 6= 0 yes

stable with
x0 6= xss

finite time x0 = 0 yes
x0 6= 0 yes

infinite time x0 = 0 yes
x0 6= 0 yes

unstable finite time x0 = 0 yes
x0 6= 0 yes

Properties of the LTV system given as in eq. (34) REF–CU (t0, t1) = C(t0, t1) ,
REF–OX (t0, t1) = O(t0, t1)

stable with
xss = x0

finite time x0 = 0 yes
x0 6= 0 yes

infinite time x0 = 0 yes
x0 6= 0 yes

stable with
xss 6= x0

finite time x0 = 0 yes
x0 6= 0 yes

infinite time x0 = 0 yes
x0 6= 0 yes

unstable finite time x0 = 0 yes
x0 6= 0 yes

4.2. Numerical example: resistor-capacitor (RC) ladder

The nonlinear resistor-capacitor (RC) ladder system is often employed to test model order
reduction techniques for nonlinear systems [15, 18, 104]. It is an electronic circuit consisting
of a parallel connected resistor with a diode. For a large number of nodes, the simulation of
the behaviour of this system becomes computationally demanding [104]. Furthermore, the
series of nonlinear resistors produces a strong global nonlinearity, which makes the system a
challenging test system for model order reduction techniques [18].

The systems equations of the RC ladder are given by

ẋ(t) = f(x(t)) + g(x(t))u(t), x(t0) = 0

y(t) = h(x(t)) ,
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where

f(x(t)) =




−2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −1



x(t)+




2− exp(40x1(t))− exp(40(x1(t)− x2(t)))

exp(40(x1(t)− x2(t)))− exp(40(x2(t)− x3(t)))
...

exp(40(xN−2(t)− xN−1(t)))− exp(40(xN−1(t)− xN (t)))

exp(40(xN−1(t)− xN (t)))− 1



,

and g(x(t)) = B, h(x(t)) = Cx(t) and C = BT = (1, 0, . . . , 0) ∈ RN with N denoting
the number of nodes and xi denoting the voltage at node i [19]. This nonlinear system is
asymptotically stable around zero if no input is applied, i.e. xss = 0.

In order to compare our novel empirical gramians against the infinite time empirical gramians
in definition 3.15 and 3.17, we have chosen the number of nodes to be N = 64 and the time
interval of interest to be t ∈ [0, 1] (as in [48]). Based on the empirical controllability and
observability gramian a nonlinear system can be reduced by balanced truncation (as outlined
in section 3.2.2). Therefore, we will use balanced truncation to show the benefits of our
novel empirical gramians formulation. In contrast to linear systems, there does not exist
an a-priori error bound for balanced truncation for nonlinear systems. We have chosen the
following approximation error εrel

εrel =

(∫ tend
0

(yref(t)− yred(t))2dt
) 1

2

(∫ tend
0

yref(t)2dt
) 1

2

. (72)

We compare our new approach, the introduced generalised empirical gramians (cf. defini-
tion 4.1 and 4.3) with subsequent model reduction by balanced truncation, with two others:
(i) analytical gramians based on linearisation of the nonlinear system in the steady state, (ii)
infinite time empirical gramians and subsequent balanced truncation. The resulting orders
of the reduced models for all three approaches for varying error tolerance εrel are given in
Table 5.

The comparison of the obtained order of the reduced system based on the different user-
defined relative error tolerance (cf. Table 5) it becomes evident that for every error tolerance
the order of reduced model obtained by balanced truncation based on the time-limited em-
pirical is lower than for the two other approaches, e.g. for εrel = 0.1 order 6 versus 12 and
36. This demonstrates the superiority of the novel empirical gramians for this numerical
example.

In this section we have shown that the novel generalised empirical gramian formulation can be
used in the context of balanced truncation for nonlinear systems exemplified for a benchmark
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Table 5: Order of reduced models obtained by balanced truncation based on dif-
ferent controllability and observability gramians for varying relative er-
ror tolerance. The resulting orders of the reduced model obtained by balanced
truncation based on (i) the analytical gramians calculated for the steady state of
the nonlinear system (linearisation in steady state), (ii) the infinite time empirical
gramian formulation in definition 3.15 and 3.17 and (iii) the time-limited empirical
gramians.

Dimension of the reduced model obtained by BT based on
error
tolerance

analytical gramians
calculated for the
steady state of the
nonlinear system

Lall–CU (∞)
Lall–OX (∞)

REF–CU (t0, t1)
REF–OX (t0, t1)

0.1 12 36 6
0.01 61 51 19
0.001 64 64 31

model from the field of control theory, furthermore they can be used to calculate approxima-
tions of the analytical gramians in the case where one cannot solve the Lyapunov equations
(e.g. unstable system, uncontrollable/ unobservable system parts).

The drawback of balanced truncation in the context of systems pharmacology/biology models
has already been discussed in section 3.3. Balanced truncation might be applied to systems
pharmacology/biology models, but then the interpretability of the system components can
be lost. We will use the novel empirical gramians and balanced truncation for the PT test
setting in section 5.3 to compare the method with other model order reduction methods. If the
requirement of interpretability of the reduced model components can be neglected, balanced
truncation can be used to obtain a reduced system for systems pharmacology/biology models.

The goal of this thesis is to develop a model reduction technique which retains the physi-
ological interpretability of the reduced system. To that end, we will introduce in the next
section so-called input-response indices, which are based on the novel time-limited empirical
gramians introduced in this section.
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4.3. Derivation of input-response indices

In a typical pharmacology/biology setting, u(t) represents some drug administration (includ-
ing i.v. bolus, i.v. infusion and p.o. administration) or some other stimulus of the system
(e.g. the release of the tissue factor as in section 2.3). In the case of single dosing most inputs
to the system are, thus, at t = 0. Therefore, we will focus in the following section on the case
that u(t) = δ(t) = u0, such that the system in equ. (61) simplifies to

dx

dt
(t) = f

(
x(t)

)
, x(0) = x0 + u0 , (73)

y(t) = h
(
x(t)

)
. (74)

The output of interest y is then either the concentration-time profile of a specific state
variable, its associated nadir concentration or the time point at which the concentration of
a specific state variable reaches a threshold. The initial condition x(0) comprises two parts,
an input-independent part x0 and the input u0. The input-independent part x0 characterises
the state of the system prior to the input, which typically corresponds to some steady state.
The input-dependent part u0 is chosen such that u0,i 6= 0 only for every ith state variable
that is associated with the input. However, how the concept can be extended to account also
for time-dependent inputs, like multiple dosing, will be discussed in section 6.

In the following sections, we will drop the explicit dependence of the solution trajectory of
the differential equation with respect to the initial value and input function in the notation
for simplicity.

As in section 3.2.1, the operator Φt,0 (i.e. the state transition matrix) maps the initial
condition x(0) to the solution x(t) of the differential equation (73) at time t > 0, thus

x(t) = Φt,0(x0 + u0). (75)

We are ultimately interested in the dynamics of the output y as a response to the input u0

on the time interval [0, tend] with tend > 0. Using the evolution operator Φ, we obtain

y(t) = h
(
Φt,0(x0 + u0)

)
,

which makes the dependence of the output y on the input u0 explicit.

The input-response indices are based on two constituents that characterise

1. to what extent the input at t = 0 has an impact on the state variable xi at some time
t∗ ∈ [0, tend], and

2. to what extent variations in xi at time t∗ impact the output y on the remaining time
interval [t∗, tend] ,

In control theory, the first part is associated with the time-bounded controllability of xi by
the input u0, while the second part is associated with the time-bounded observability of xi
through the output y; cf. Figure 12 for illustration. In contrast to existing approaches in
control theory, however, we combined time-bounded controllability and observability in a
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novel way to quantify the overall impact of a state variable on the input-output relationship.
For an efficient numerical realisation, we borrowed ideas from the concept of the time-limited
empirical gramians (introduced in section 4.1).

t
0 t∗ tend

input state output

controllability observability

Figure 12: Schematic representing the consideration of observability and control-
lability of the system. Controllability characterises how the input affects the
state variables xi and is considered from 0 to t∗. Observability then quantifies
how the state variables impact the output and this is considered on the interval
[t∗, tend].

We define the importance of state variables relative to some reference trajectory xref , defined
as the solution of eq. (73) with initial value xref(0) = x0 +uref , where uref denotes a reference
input. Using the evolution operator defined in eq. (75), it is

xref(t) = Φt,0(x0 + uref), t ∈ [0, tend]. (76)

To quantify the extent to which the input has an impact on a given state variable xi at
time t∗ ∈ [0, tend], we considered perturbations ∆u of the reference input uref at time t = 0

and determined the resulting perturbation of xi at time t∗. In other words, it is determined
how the perturbation of the input propagates through the system to affect the different state
variables xi. To this end, we denoted by x∆u the solution of the system based on the input
perturbation ∆u, i.e.

x∆u(t∗) = Φt
∗,0(x0 + uref + ∆u) .

Note that x∆u(t∗) is a vector of state variables, with the ith component (x∆u(t∗))i referring
to state variable xi at time t∗. Thus, a perturbation ∆u of the input uref results in a
perturbation

∆xi(t
∗) =

(
x∆u(t∗)− xref(t

∗)
)
i

(77)

of xi at time t∗ relative to the reference solution xref . The larger ∆xi(t
∗), the larger the

impact of the input on the state variable xi at time t∗. If the input has no impact on the
state variable xi, then ∆xi(t

∗) = 0 for all t∗ > 0, since the ith component of the perturbed
trajectory xu will be identical to the ith component of the reference trajectory xref . The size
of the perturbation ∆xi, however, does not allow to infer anything about the relevance of a
state variable for the input-response relationship. For example, if xi does not affect the output
y at all, it will be considered as unimportant for the input-response relationship, independent
of the size of ∆xi. Therefore, we next quantified the impact of the perturbation ∆xi(t

∗) on
the output y during the remaining time interval [t∗, tend]. To this end, the reference output
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is determined
yref(t) = h(xref(t)), t ∈ [t∗, tend] ,

and the specific perturbation of the ith component is defined as

∆ui(t
∗) = (0, . . . , 0,∆xi(t

∗)︸ ︷︷ ︸
ith entry

, 0, . . . , 0)> ∈ Ri−1 × R× Rn−(i+1) .

This allowed us to define the output y∆ui(t∗) based on the perturbation of the ith component
of the reference trajectory xref at time t∗

y∆ui(t∗)(t) = h
(

Φt,t
∗
(xref(t

∗) + ∆ui(t
∗))
)

for t ∈ [t∗, tend]. In other words, y∆ui(t∗) is the output that results from a perturbation
∆xi(t

∗) of the ith state variable of the reference trajectory xref at time t∗ (cf. Figure 13 for
graphical illustration). This perturbation is specific to the state variable xi and is the result
of a perturbation of the input uref by ∆u at t = 0.

pre-input state
x0

input
u = uref + ∆u

state at time t∗

x∆u(t
∗)

∆u1(t
∗) + xref(t

∗)

∆u2(t
∗) + xref(t

∗)

.........

∆un(t
∗) + xref(t

∗)
∆ui(t

∗) = (0, . . . , 0,∆xi(t
∗), 0, . . . , 0)T

∆xi(t
∗) = (x∆u(t

∗)− xref(t
∗))i

y∆u1(t∗)

y∆u2(t∗)

.........

y∆un(t∗)

output

Figure 13: Schematic representing of the derivation of the input-response indices
for one input perturbation ∆u

To quantify the impact of the input uref + ∆u on the response y via xi at time t∗, we deter-
mined the squared absolut difference between the reference response yref and the resulting
perturbed response yui(t∗), integrated over the remaining time interval [t∗, tend]

∫ tend

t∗

∣∣y∆ui(t∗)(t)− yref(t)
∣∣2 dt . (78)

To remove the dependence on a particular perturbation, the average over a number of initial
perturbations

U = {∆u1, . . . ,∆uN}

of the reference input is determined. The input perturbations ∆u are chosen to reflect the
expected variability of the input and defined as in eq. (40) with s = n, i ∈ Iu and Iu the
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indices of the state variables associated with non-zero input. This resulted in the following
definition:

Definition 4.5 (input-response (ir-) index)
For the nonlinear system in eqs. (73) and (74) with reference solution xref(t) and time interval
[0, tend] of interest, the input-response index iri of the ith state component at time t∗ are
defined by

iri(t
∗) =

(
1

N

∑

∆u∈U

1

Zu

∫ tend

t∗

∣∣y∆ui(t∗)(t)− yref(t)
∣∣2 dt

) 1
2

, (79)

where Zu denotes a normalisation constant.

We will use Zu = t2end · ‖(∆u)‖22, but alternative constants could be used. The input-response
index iri is a measure of the importance of the ith state variable to the input-output behaviour
of the system as a function of time. A large value of iri(t

∗) indicates that the impact of the
input u on xi at time t∗ impacts the output y on the time interval [t∗, tend] in a substantial
way. It is a distinct feature of the input-response index that it combines both, the impact of
the input on the state variables as well as the impact of the state variables on the output.
Neither one nor the other impact on its own is informative for the relevance of a state variable
xi for the input-response relationship. Since the input-response index is a function of time,
it not only characterises whether a state variable is important but also when. For example,
a state variable might have a large impact on the output at some early time point, but a
minor impact at much later times. This will be illustrated for the blood coagulation system
in section 5.1.

Note that as for the time-limited empirical gramians in section 4.1 the ir-indices for nonlinear
systems are dependent on the set of chosen input perturbations U . It can, however, be shown
that the ir-indices for LTI systems with a single input (B ∈ Rn×1) and a single output
y(t) ∈ R, are independent of the magnitude of the chosen input perturbations (for any non-
empty perturbation set U).

As before, the ir-indices are defined with respect to the reference trajectory xref

xref(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)uref(s)ds.

However, since uref(t) = Bδ(t), the reference solution xref(t) becomes

xref(t) = eA(t−t0)(x0 +B) .

To quantify the extend to which an input impacts a state, as in section 4.3, an input pertur-
bation ∆u is applied. In this case, ∆u = Buper with uper ∈ U as defined in eq. (40) to enable
the clear link to previously introduced control-theoretic concepts. The resulting perturbed
solution is denoted by x∆u(t∗)

x∆u(t∗) = eA(t∗−t0)(x0 +B + ∆u).
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Thus, the perturbation ∆xi(t
∗) on each state variable induced by the input perturbation

becomes

∆xi(t
∗) =

(
x∆u(t∗)− xref(t

∗)
)
i

=
(
eA(t∗−t0)∆u

)
i
,

which characterises the controllability of the system. The input into the observability con-
sideration of the system at time point x(t∗) is then

∆ui(t
∗) = (0, . . . , 0,∆xi(t

∗)︸ ︷︷ ︸
ith entry

, 0, . . . , 0)>

= (0, . . . , 0,
(
eA(t∗−t0)∆u

)
i
, 0, . . . , 0)> .

We define for the linear system a projection Πi selecting the ith component of the state vector

Πi : Rn → Rn

x 7→ (0, . . . , 0, xi, 0, . . . , 0)> ,

such that we can write ui(t∗) as

∆ui(t
∗) = Πie

A(t∗−t0)∆u .

The next step is to quantify the impact of the perturbation ∆xi(t
∗) on the output y. To that

end we first determine the reference output yref by

yref(t) = CeA(t−t∗)
(
eA(t∗−t0)(x0 +B)

)
.

The output y∆ui(t∗) based on a perturbation of the ith component of the state vector at time
t∗ is given by

y∆ui(t∗)(t) = CeA(t−t∗)
(
eA(t∗−t0)(x0 +B) + Πie

A(t∗−t0)∆u
)
.

Finally inserting yref and y∆ui(t∗) into eq. (79) the input-response indices for the LTI system
are given by

iri(t
∗) =


 1

N

∑

uper∈U

1

||uper||22

∫ tend

t∗

∣∣∣CeA(t−t∗)Πie
A(t∗−t0)∆u

∣∣∣
2

dt




1
2

,

=


 1

N

∑

uper∈U

∫ tend

t∗

∣∣∣∣CeA(t−t∗)Πie
A(t∗−t0)B

uper
||uper||22

∣∣∣∣
2

dt




1
2

.
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Using the initial assumption, that we are considering a single input system, we obtain

iri(t
∗) =




1

N

∑

uper∈U

∫ tend

t∗

∣∣∣CeA(t−t∗)Πie
A(t∗−t0)B

∣∣∣
2 ||uper||22
||uper||22︸ ︷︷ ︸

=1

dt




1
2

=

(∫ tend

t∗

∣∣∣CeA(t−t∗)Πie
A(t∗−t0)B

∣∣∣
2

dt

) 1
2

(80)

Now, we can, furthermore, show how the input-response indices can be expressed in terms
of the input-to-state and state-to-output map introduced in section 3.2.1. To that end, we
define the operator inside the integral by

H̃ : R→ L2(t∗, tend,R),

y(t) = H̃(u0)(t) = CeA(t−t∗)Πie
A(t∗−t0)Bu0.

(81)

Using the input-to-state Ψu→x(t) and state-to-output maps Ψx→y(t) defined as follows

Ψu→x(t) : R1 → Rn

x(t) = Ψu→x(t)u = eAtBu ,

and

Ψx→y(t) : Rn → R1

y(t) = Ψx→y(t)x = CeAtx ,

the operator H̃ becomes

H̃(u0)(t) = Ψx→y(t− t∗)ΠiΨu→x(t∗ − t0)u0 .

This operator maps, similar to the Hankel operator, past inputs into future outputs. Such
that we can write the eq. (80) as

iri(t
∗) =

(∫ tend

t∗
|Ψx→y(t− t∗)ΠiΨu→x(t∗ − t0)|2 dt

) 1
2

=

(∫ tend

t∗
H̃H̃>dt

) 1
2

=

(∫ tend

t∗
Ψx→y(t− t∗)ΠiΨu→x(t∗ − t0) (Ψx→y(t− t∗)ΠiΨu→x(t∗ − t0))

>
dt

) 1
2

=



∫ tend

t∗
Ψx→y(t− t∗) ΠiΨu→x(t∗ − t0)Ψu→x(t∗ − t0)>Πi︸ ︷︷ ︸

iith entry of squared impulse response at time t∗

Ψx→y(t− t∗)>dt




1
2

We have, thus, shown that for the LTI system (single input-single output), the input-response
indices are independent of the magnitude of the perturbation. The indices were linked to
the impulse response of the system. In definition 3.10 the infinite time analytical cross
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gramian was given. The infinite time cross gramian gives a measure for controllability and
observability of a system in a single matrix. However, in contrast to the infinite time cross
gramian the input-response indices quantify the impact of each state variable on the input-
output relationship separately. Thus, the indices provide for linear systems a novel insight
into the importance of a state variable for the impulse-response of the system.

4.4. Derivation of the sensitivity based input-response indices

We will show in this section that the sensitivity based ir-indices can be given as a product of
two sensitivity coefficients over time. This allows for a clear distinction between the extent
to which the input impacts a state variable, a state variable impacts the output. In addition,
it allows for a computationally more efficient calculation. We will subsequently show how
the concept of sensitivity coefficients in the context of our newly introduced sensitivity based
ir-indices can be leveraged for model order reduction.

To quantify the extent to which the input has an impact on the state variables, we again
consider a perturbation ∆u of the input uref and determine the resulting perturbation of
the state variables xi at time t∗. We, thus, determine how the perturbation in the input is
propagated through the system. We denote by x∆u the solution of the system with input
perturbation ∆u

x∆u(t∗) = Φt
∗,0(x0 + uref + ∆u).

Thus, a perturbation ∆u results in a perturbation of the ith state variable at time t∗ of size

∆xi(t
∗) = (x∆u(t∗)− xref(t

∗))i

with xref the reference trajectory as defined in eq. (76). Subsequently, as in section 4.3,
we derive a quantity that measures how large the impact of the input perturbation is on
each state variable at time point t∗. In contrast to the previous calculation via multiple
perturbations, we consider the first order perturbation of the state variables at time point t∗

with respect to the input. This impact of the input on the state variables is given by the ith
row of the Jacobian

Ju(t∗, t0) =
∂

∂u
Φt
∗,t0(x0 + u)

∣∣∣
u=uref

=
∂xref(t

∗)
∂u

.

Whenever [Ju(t∗, t0)]i,j is large, the jth input uj has a large impact on the ith state variable
xi at time t∗. If [Ju(t∗, t0)]i.j = 0, then the jth input has no impact on the ith state variable
at time t∗. As in section 4.3, the quantification of the impact on the state variable alone,
however, is not sufficient to infer the importance of state variables for the input-response
relationship.
As a second step we quantified the extent, to which a perturbation of the ith state variable
at t∗ impacts the output y on the remaining interval. Rather than using equal or normalised
perturbations like in eq. (18), we used the input-induced perturbation ∆xi(t

∗). To this end,

69



4. Novel input-response characterisation for model analysis & reduction

we reinterpreted this perturbation as some input

∆ui(t
∗) = (0, . . . , 0,∆xi(t

∗), 0, . . . , 0)> ∈ Ri−1 × R× Rn−(i+1) ,

of the ODE (73) at time t0 = t∗. The input-independent part x0 was chosen as the reference
trajectory xref at t∗. Thus, we considered the ODE (73) on [t∗, tend] with initial condition
given by x(t∗) = xref(t

∗) + ∆ui(t
∗). This results for t ≥ t∗ in the output

y∆ui(t∗)(t) = h
(

Φt,t
∗(
xref(t

∗) + ∆ui(t
∗)
))

,

while the reference output is

yref(t) = h
(

Φt,t
∗(
xref(t

∗)
))

= h
(
Φt,t0

(
x0 + uref

))
.

Using first order perturbations, this impact was quantified by the Jacobian

Jy(t, t∗) =
∂h
(
Φt,t

∗
x
)

∂x

∣∣∣∣
x=xref (t∗)

.

We finally define the input-response index iri(t
∗) of the ith state variable at time t∗ as the

(component-wise squared entries of the) product of the two Jacobian’s Ju(t∗, t0) and Jy(t, t∗),
integrated over the remaining time span [t∗, tend]

Definition 4.6 (sensitivity based input-response (ir-) index)
For the nonlinear system in eqs. (73) and (74) with reference solution xref(t) and time interval
[0, tend] of interest, the sensitivity based input-response indices of the ith state variable for
the jth input and kth output are defined by

[iri(t
∗)]2kj =

1

tend

∫ tend

t∗

(
[Jy(t, t∗)]k,i [Ju(t∗, t0)]i,j

)2

dt . (82)

In the special case of a single-state input (u0 has only a single non-zero entry, e.g. uj = xj) and
the output being identical to a (different) state variable xo (i.e. y(t) = h(x(t)) = xo(t) ∈ R),
the input-response index iri is real-valued and given by

iri(t
∗) =

(
1

tend

∫ tend

t∗
So,i(t, t∗)2dt

) 1
2

· |Si,j(t∗, t0)| (83)

with |z| doting the modulus of z ∈ Rn and

Sm,n(t, s) =
∂ [Φt,sx]m

∂xn

∣∣∣∣
x=xref(s)

.

As before, there is also a link to control theory, where the first factor quantifies the observ-
ability and the second factor the controllability of the state xi. The eq. (83) is a local variant
of eq. (79).

Since the sensitivity based input-response indices are stated in terms of the product of two
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sensitivity coefficients, they allow for a distinction of effects. The second factor of the product
can be interpreted in a control theoretical context as some controllability index

Ci(t
∗) = |Si,j(t∗, t0)| ,

while the first factor can be interpreted as some observability index

Oi(t
∗) =

1

tend

(∫ tend

t∗
So,i(t, t∗)2dt

) 1
2

.

These additional indices provide further insight in the case, when an input-response index
is small. For example, a state variable can have a large controllability index, in which case
perturbations in the input have a large impact on this state variables. If, however, at the
same time the observability index is very small or even zero, the input-response index might
be small or zero. See section 5.2.2 for an application to the EGFR system. Note that all
three indices iri, Ci and Oi are unitless.

In [117], alternative control-theoretical indices are presented based on so-called empirical
observability and controllability gramians. As the authors state themselves, however, ’they
are somewhat limited in their usefulness’ [117, p.15]. Another approach is metabolic control
analysis (MCA) [52] characterising how state variables influence the system in steady state.
Here, flux control coefficients, quantifying how changes in the state variable effect the flux,
and concentration control coefficients, quantifying the sensitivity of the response of the system
with respect to the state variables, are defined. MCA has proven useful in elucidating rate-
controlling steps in enzymatic reaction networks [119, Chap. 11]. Both MCA coefficients
have little predictive value for the transient behaviour of the system since they are defined
only in the steady state of a system [119, Chap. 11].

4.5. Model order reduction method based on input-response indices

In the following section, we will introduce a model order reduction technique that allows for
a mechanistic interpretation in terms of the quantities of the original system. To that end we
combine various aspects of the model reduction techniques introduced in section 3: namely
the elimination of the systems state variables based on non-important part as in balanced
truncation, the consideration of fast and slow dynamics from time scale separation that leads
to the quasi-steady-state approximation, as well as the aspect that state variables are not
dynamically important and can be considered as constants (as it is done in model reduction
techniques based on sensitivity analysis). Additionally, we will exploit conservation laws if
they are present in the model system.

For a given input-response relationship, reference trajectory and time interval of interest, we
used the following classification of state variables to subsequently reduce the complexity of
the system:

(a) environmental state variables xenv: considered to be constant on the time interval of
interest. We assumed environmental state variables to be identical to their initial value.
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(b) negligible state variables xneg: considered unimportant for the given setting and set to
zero, thereby neglected in the model for the specific input-output behaviour of interest.

(c) state variables in quasi-steady state xqss: assumed to evolve on a fast time scale than
the time scale of the response such that they can be determined by the well-known
quasi-steady state approximation.

(d) conserved quantities xcon: eliminated by exploiting a conservation law.

(e) dynamical state variables xdyn: all remaining state variables

In the reduced model, the dynamic state variables are characterised by differential equations
(as in the original model). The environmental state variables enter differential equations
as covariates, while the negligible state variables completely disappear from the system.
The state variables in quasi-steady state are represented by algebraic equations, as are the
conserved state variables.

The key problem is to decide for a given state variable xi, whether it is an environmental,
negligible, quasi-steady state, conserved or dynamic state variable. Since for large-scale sys-
tems, it is prohibitive to test all possible combinations, iterative approaches are the methods
of choice. To this end, the input-response indices (defined in eq. (79) and (83)) will play a
crucial role.

For illustration, consider the following reaction scheme:

A+ E
ka−⇀↽−
kd

E∗
kin−−→ Ei; M + E∗

kon−−→M∗ + E∗; M∗
koff−−→M

of a simple enzyme-mediated activation pathway. An activator A that binds to an enzyme E
with rate constant ka in [1/min/nM]. The resulting complex E∗, the active enzyme, can either
dissociate or be inactivated to Ei with rate constants kd and kin in [1/min], respectively. The
activated enzyme transforms a protein M to become M∗ (an active form of M) with rate
constant kon in [1/min/nM], while M∗ turns back to its inactive form M with rate constant
koff in [1/min].

The resulting system of six ODEs for the rate of change of the corresponding concentrations
is then

dA

dt
=

dE

dt
= −kaAE + kdE

∗

dE∗

dt
= kaAE − (kd + kin)E∗

dEi

dt
= kinE

∗

−dM

dt
=

dM∗

dt
= konE

∗M − koffM
∗ ,

with initial conditions A0 > 0, E0 > 0, E∗0 = 0, M0 > 0 and M∗0 = 0. Let us consider
A as input and M∗ as output. For illustration, we assume that A0 � E0 and that E∗ is
in quasi-steady state because the complex formation usually happens on a much faster time
scale then the output dynamic in this case of M∗. In the chosen setting A(t) ≈ A0 because the
concentration of A0 is assumed to be much larger then the enzyme concentration E0. Then,
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the activator is classified as an environmental state variable with Aenv ≡ A0; the complex E∗

as a quasi-steady state variable with

E∗qss =
kaA0E

kd + kin
. (84)

The enzyme is kept as a dynamic state variable with

dE

dt
= −kaA0E + kdE

∗
qss = −ka

kin

kd + kin
A0E . (85)

The inactivated enzyme Ei has no impact on the output and is classified as a neglected
state variable, i.e., Ei ≡ 0 and thereby removed from the reduced model. Finally, we would
eliminate M by the conservation law M(t) + M∗(t) = M0 and keep its active variant as
dynamical state variable with

dM∗

dt
= konE

∗
qssM − koffM

∗ = kon
kaA0E

kd + kin
(M0 −M∗)− koffM

∗ .

This would result in a reduction from six to two ODEs.

A reduced model is uniquely determined by the sets of indices (or state variables) that
correspond to the dynamic, environmental, neglected, quasi-steady state approximated or by
conservation law eliminated state variables, stated as five-tuple

M = (Mdyn,Menv,Mneg,Mqss,Mcon).

In the illustrative example, the reduced model is ({E,M∗}, {A}, {Ei}, {E∗}, {M}). For a
given reduced model with output yred, we defined the relative approximation error εrel as

εrel =

(∫ tend
0

(yref(t)− yred(t))2dt
) 1

2

(∫ tend
0

yref(t)2dt
) 1

2

(86)

with yref denoting the output of the original (reference) model. For a user-defined relative
error threshold δ > 0 (e.g., 10%), the challenge is to find a reduced model that still satisfies
εrel ≤ δ. Since this optimisation problem suffers from the ’curse of dimensionality’, we applied
the following iterative procedure (for a visual illustration, see the flowchart in Fig. 14):

1. Order state variables according to maximal value of their ir-index

Compute the input-response indices iri for all n state variables. Then, order all state
variables in order of increasing maximal value of their input-response indices (short:
maximal ir-index) such that ir1 corresponds to the state variable with lowest maximal
value, and irn to the state variable with largest. Set M0 = ({1, . . . , n}, {}, {}, {}, {})
representing the original model.

2. Check for classification as neglected or environmental state variable

Iterate in order of increasing maximal ir-index starting with ir1 and j = 1. At the jth
iteration and based on the reduced modelMj−1 of the previous iteration, compute the
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reduced-order modelsMj,env andMj,neg by considering the jth ordered state variable
as environmental or neglected, respectively. Based on the resulting relative errors εenv

and εneg, set

Mj =





Mj,env; εenv ≤ δ and εenv < εneg

Mj,neg; εneg ≤ δ and εneg ≤ εenv

Mj−1; εenv > δ

Iterate until j = n.

3. Check for classification as quasi-steady state variable

Amongst all (say m) remaining dynamic state variables ofMn, iterate again in order of
increasing maximal ir-index. At the jth iteration and based onMn+j−1, compute the
reduced-order modelMn+j,qss by considering the jth dynamic state variable ofMn in
quasi-steady state. Based on the resulting relative error εqss, set

Mn+j =




Mn+j,qss; εqss ≤ δ
Mn+j−1; otherwise

Iterate until j = m.

4. Exploit remaining conservation laws

Amongst all (say l) remaining dynamic state variables ofMn+m, iterate again in order
of increasing maximal ir-index. At the jth iteration and based on Mn+m+j−1, check
whether the jth dynamic state variable of Mn+m is part of a conservation law of the
original model M0. If so, compute the reduced-order modelMn+m+j,con by eliminat-
ing the jth dynamic state variable by exploiting the conservation law. Based on the
resulting relative error εcon, set

Mn+m+j =




Mn+m+j,con; εcon ≤ δ
Mn+m+j−1; otherwise

Iterate until j = l.

The final reduced-order model is then Mfinal = Mn+m+k. As a potential 5th step, one
could further reduce the modelMfinal based on proper lumping (e.g., based on the approach
described in [1]).

Exploiting conservation laws in the original model M0 comes without any approximation
error. It is therefore tempting to start with step 4. The problem is that we do not know
initially, which state variable to eliminate via a conservation law. We could, however, use
a first (pre-)run to determine in step 4, which state variables to eliminate from the original
modelM0 via conservation laws (in a preliminary pre-run). In the second run, we eliminate
all state variables determined by the pre-run in step 4 using conservation laws, and then
proceed with steps 1-3. While this increases the computational cost, we found that at the
same time it also increases numerical stability.
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Input: 1) Calculate input-response indices for all state variables.
Order input-response indices with respect to increasing maximal
input-response value such that ir1 < · · · < iri < · · · < irn

j = 1
reduced M0 = original model

while
j ≤ n

Mn with m re-
maining dynamical

state variables
j = 1

while
j ≤ m

3) apply QSS as-
sumption to jth

dynamic state vari-
able of Mn+j−1 to
obtain Mn+j,qss

and calculate ǫqss

ǫqss <TOL

Mn+j = Mn+j,qss

j = j + 1 4) Exploit remaining
conservation laws

5) apply proper
lumping to resulting

reduced model

Output: reduced model

2) compute

and

• neglect jth ordered state variable in Mj−1

to obtain Mj,neg

• calculate relative error

ǫneg =
(∫

T
0

(yred(t)−yref(t))
2dt∫ T

0
(yref(t))2dt

) 1
2

• set jth ordered state variable as environ-
ment in Mj−1 to obtain Mj,env

• calculate relative error

ǫenv =
(∫

T
0

(yred(t)−yref(t))
2dt∫ T

0
(yref(t))2dt

) 1
2

calculate
ǫrel = min(ǫneg, ǫenv)

ǫrel <TOL

ǫenv < ǫneg

Mj = Mj−1

Mj = Mj,neg

Mj = Mj,env

j = j + 1

yes

yes

yes

no

no

no

no

yes

no

Mn+j = Mn+j−1

yes

Figure 14: Flowchart for the model reduction technique presented in this thesis.

75





5. Application: analysis & reduction of two large-scale systems pharmacology models

5. Application: analysis & reduction of two large-scale

systems pharmacology models

To illustrate the potential of the novel input-response indices to obtain insight into the dy-
namic behaviour and to reduce complex systems pharmacology models, the blood coagulation
network and the EGFR signalling cascade were chosen as challenging model systems. We
will address different aspects (i.e. the influence of time interval, the sequence of elimina-
tion steps and input domain) of our introduced model order reduction technique. First in
section 5.1 we will benchmark our model order reduction technique against a previously em-
ployed model reduction technique in the context of the brown snake venom-fibrinogen system.
In the brown-snake venom-fibrinogen setting we will focus on the first step of our proposed
model order reduction method (cf. section 4.5) in order to analyse the impact of the time
interval and the sequence of elimination steps on the reduced model, hereinafter, referred
to as elimination-reduced model. Subsequently, it will be demonstrated how the choice of
reference trajectory impacts the resulting elimination-reduced models in the context of the
PT test. This will allow us to understand the lack of impact of certain genetic modifications
on the outcome of the standard blood coagulation test and their impact on the results of
a modified test. Next, we will apply our model order reduction technique to extract the
essential features of two different anticoagulant drug effects, namely of warfarin and rivarox-
aban. This will allow us to answer the previously stated questions of ’How to identify an
appropriate pharmacodynamic model?’ and ’What model should be employed?’. To show
the general applicability of our model reduction technique, we have further chosen the EGFR
signalling cascade. While for the EGFR signalling cascade the principal downstream sig-
nalling and activation sequence has been intensively studied, the relative importance of the
different pathways and molecular constituents is still controversially discussed. In section 5.2
we will demonstrate how the sensitivity based ir-indices can be applied to provide a better
understanding of these features. Finally in section 5.3, we will compare our introduced model
reduction technique for the PT test setting to the most commonly employed MOR techniques
in the field of systems pharmacology/biology.

5.1. Blood coagulation network

In this section, we illustrate our novel model reduction technique in application to different
aspects of the human blood coagulation network [130, 39, 40] described in detail in section 2.3.

5.1.1. The brown snake venom - fibrinogen system: Impact of the time interval of interest

and sequence of elimination steps on the reduced model

The brown snake venom-fibrinogen system was studied in detail in [39, 40]. The authors
simplified the system to obtain a reduced model of 5 state variables for the effect of the brown
snake venom on fibrinogen (Fg) [40]. Their simplification was based on proper lumping [1]
in addition to heuristically manipulating parameter values. Their results were considered as
a benchmark for testing our novel model reduction technique. As in [40], the brown snake
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venom, triggering the activation of the blood coagulation through activation of factor II
(as described in section 2.3.2), was considered as the input and fibrinogen as the response
(output).

Input-response indices during the first hour after envenomation

The reference dynamics was chosen to be the dynamics of the blood coagulation network with
an initial amount of brown snake venom of 0.0015 mg (as in [40]). The empirical ir-indices
were determined based on ten perturbations of the snake venom input ranging from 50% to
150% of the reference input according to eq. (79). Since activation of the coagulation factors
occurs on a fast time scale compared to the recovery phase, we first studied the system on
a time period up to 1 h (and subsequently up to 40 h, see section “Input-response indices of
the brown snake venom-fibrinogen system including recovery“).
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Figure 15: Empirical ir-indices for the brown snake venom-fibrinogen system up to
1h and time profiles of corresponding factors. (A) Shown are the empirical
ir-indices of the most important state variables for the time interval [0, 0.15] h. The
insets shows the ir-indices on the entire interval [0, 1] h. Ir-indices not shown are
below 2 ·103 in magnitude. (B) Concentration-time profiles of the most important
model molecular species (according to the indices) predicted by the original model.
The inset shows the concentration-time profiles on the entire time interval. The
concentration-time profiles of the remaining states are given in Figure 43 in the
appendix.

Figure 15(A) shows the ir-indices for the time interval [0, 1] h. The ir-indices nicely reflect
the coordinated activation of the different coagulation factors. These include the factors: IIa,
complex of thrombin and thrombmodulin (IIa:Tmod), complex of activated protein C and
protein S (APC:PS), and P. The remaining factors do not substantially impact the output Fg
up to 1h after envenomation, since their ir-indices are to small to be visible in Figure 15(A).
Figure 15(B) shows the concentration-time courses of the corresponding coagulation factors.
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The time courses of the remaining factors are shown in Figure 43 in the appendix. In contrast
to the ir-indices, a clear insight into the relevance of factors for the system dynamics is difficult
to obtain. The ir-indices highlight the most relevant path through the coagulation system
from the activation by the snake venom (input - AVenom) to the resulting blood coagulation
response (output - Fg). Furthermore, the ir-indices indicate that coagulation factors are only
of relevance during certain time windows. For example, while the impact of the factors IIa
and IIa:Tmod on Fg is largely confined to the initial time window up to 0.05h (cf. panel A),
the concentrations of these factors change during the whole time interval (cf. panel B).

Elimination-reduced model of the brown snake venom-fibrinogen system

We next reduced the 62-state brown snake venom-fibrinogen system based on the ir-indices
(cf. Figure 15). To this end, we recursively eliminated state variables in the order of the
maximum of the input-response indices by determining if they can be classified as neglected
or environmental state variables, starting with the lowest value. The relative approximation
error in eq. (86) was required to satisfy εrel ≤ 0.1. The elimination process using only
step one of the model order reduction technique (cf. section 4.5) resulted in a so-termed
elimination-reduced model with 8 dynamical state variables (cf. Figure 16), in addition to
5 environmental state variables (indicated with ∗ in Figure 16). While environmental state
variables are important for the input-response relationship, they are considered as constant
for the time scale of interest, in contrast to the dynamical state variables. The remaining
49 = 62 − 8 − 5 state variables were neglected for the input-output relationship since they
were not important for the effect of the brown snake venom on Fg during the first hour after
envenomation.

Figure 16: Elimination-reduced model of the brown snake venom-fibrinogen sys-
tem. Model reduction was based on maximal value of the input-response indices
with εrel ≤ 0.1. Shown are the 8 dynamical state variables. The environmental
state variables (indicated by ’*’) are II, Pg, PC, Tmod and PS. The corresponding
differential equations and further details are given in the appendix. Cf. Figure 6
for a legend of the different arrow types.

A distinction of state variables into dynamical, environmental and negligible is in line with
biological and pharmacological insight and expectations: The blood coagulation cascade
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consists of two main pathways: the extrinsic pathway activated by TF and the intrinsic
pathway activated by the contact factor (CA). In case of an injury, both pathways act together
to form fibrin strands. The brown snake venom directly activates the blood coagulation
through factor II. In this case, the initial parts of both, the intrinsic and extrinsic pathway
do not play a role. Therefore, both initial parts (TF, VII, VII:TF, etc. as well as CA, XII, etc)
can be eliminated. The activation of factor II is key for the brown snake venom-fibrinogen
system. While factor II concentration is important, it does not change significantly during
the time of interest. Thus it was considered as an environmental state.

As expected, the elimination-reduced model (8-state variable model) approximates the Fg
concentration-time profile of the original model (62-state variable model) with high accuracy
for the time interval up to 1h (cf. Figure 17). As can be inferred from the inset in Figure 17,
the approximation quality also extends to the time interval up to 40 h (cf. Table 14 in
the appendix for a quantification of the relative error pre and post nadir of the fibrinogen
concentration).
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Figure 17: Comparison of fibrinogen (output) for the brown snake venom-
fibrinogen system based on the original 62-state variable model (solid), the eli-
mination-reduced 8-state variable model (cf. Figure 16) (dashed) and the lumped
elimination-reduced 5-state variable model (cf. Figure 20) (dot-dashed). The inset
shows the comparison of fibrinogen for the time interval of 40 hours. The compar-
ison of the concentration time profile for the remaining 7 state variables is shown
in Figure 44 in the appendix.

The elimination-reduced model (8-state variable model) in Figure 16 gives further insight into
the full coagulation dynamics (cf. Figure 6). The activated factor IIa impacts the decline
of Fg in three different ways: (i) directly by increasing the transformation of Fg to F; (ii)
indirectly via the factor P that mediates the transformation of Fg to the fibrin degradation
product (FDP); and (iii) indirectly via the activated protein C (APC) that in turn increases
the impact of P on Fg. In order to quantify the relative contributions between the direct and
the indirect impact, we determined the transformation rates of Fg to F (direct impact) and
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Fg to FDP (indirect impact) from the original model. As can be inferred from Figure 18,
the indirect impact largely outperforms the direct impact. This is in agreement with the
concentration-time courses shown in Figure 15(B), in which factor P concentrations were
considerably higher than factor IIa levels.

Figure 18: Transformation rates of Fg for the brown snake venom-fibrinogen sys-
tem. Shown are the transformation rates of Fg mediated by P and IIa in addition
to the degradation rate based on the original 62-state variable model. Transfor-
mation of Fg is dominated by vP. The inset shows the rates for an extended time
interval.

The reduced model obtained in this section depends on the choice of user-defined error
tolerance. If a higher approximation accuracy of the reduced model is required, the error
tolerance should be decreased. As a result, the order of the reduced model is expected to
increase. This is demonstrated and summarised in Table 15 in the appendix, showing the
resulting order of the reduced model for decreasing values of the user-defined error tolerance.

Input-response indices for fibrinogen recovery up to 40 h

We next studied the brown snake venom-fibrinogen system on the time period up to 40 h
after envenomation thereby including the recovery phase of Fg. The corresponding ir-indices
are shown in Figure 19. In contrast to the ir-indices obtained for the time period up to 1h,
we observed that the pathway including the factors Xa and Xa:Va becomes relevant on the
longer time period up to 40h. This highlights the fact that also the time interval is important,
on which one aims to approximate the full dynamics.

To understand the importance of factors V, Va, Xa and Xa:Va as indicated by the indices, we
compared the dynamics of Fg predicted by the 62-state variable model and a model, where
(i) the factors V and X, or (ii) only factor V were artificially knocked out. This was realised
by setting the production rates of the corresponding factors and their initial concentration to
zero. Consequently, also the activated factors Xa, Va and Xa:Va were absent in the knock-out
model.
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As can be inferred from Figure 42 in the appendix, the pathway via activation of X and V
influences the recovery phase of Fg. Performing an analogous analysis by knocking-out factor
Pg, the inactive form of factor P, a key factor in the 8-state variable elimination-reduced
model in Figure 16, we inferred that factor P is important for the initial transient decay of
Fg (cf. Figure 42 in the appendix).
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Figure 19: Empirical ir-indices for the brown snake venom-fibrinogen system up to
40h. Shown are the indices of the most important state variables; input-response
indices below 102 in magnitude are not shown. To reduce the complexity of the
figure, the ir-indices of the states already shown in Figure 15 are coloured in grey,
since their initial transient peak did not change (up to a normalisation constant).
This was done for illustrative purposes and did not influence the subsequent model
reduction. The inset shows the ir-indices on the entire time interval [0,40h].

For the elimination of state variables according to step one of our model order reduction
technique (cf. section 4.5), we again proceeded recursively in the order of the maximum of
their input-response indices, starting with the lowest value. The relative approximation error
in eq. (86) was required to satisfy εrel ≤ 0.1. Interestingly, the elimination-reduced model
based on the indices up to 40h is identical to the corresponding elimination-reduced model
based on the indices up to 1h. An explanation of this unexpected result is provided in the
next subsection.

Influence of sequence of elimination steps on the elimination-reduced model

In our approach, the elimination of states is based on the maximum of the ir-indices, proceed-
ing from low to high values. Thereby, we first eliminate state variables that have a low impact
on the output. Recursively, it is tested whether a state variable can be eliminated by fixing
it to its initial value (environmental state variable) or by fixing it to zero (negligible state
variable). The question arises whether one could simply have chosen a random order of the
state variables instead and subsequently proceeded with the elimination steps as above. In
other words, the question is: How does the sequence of elimination steps affect the resulting
reduced model?
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To address this question, we randomly chose a sequence of state variables and performed the
elimination steps as outlined above. Note that all state variables were tested for elimina-
tion, proceeding in the (randomly) chosen order. The time interval was set to be [0, 40] h,
thus including both, the initial drop and the subsequent recovery phase of Fg. The relative
approximation error was required to satisfy εrel ≤ 0.1. The resulting elimination-reduced
models for ten random sequences are stated in Table 6. We observed that the order of the
models differs, ranging from 8 to 13, and that the models fall into one of two groups: (i)
reduced models comprising the factors P, APC and APC:PS (including the model shown in
Figure 16); and (ii) reduced models including the factors Xa, Va and Xa:Va. A model of the
latter type based on run no. 2 is shown in the appendix (cf. Figure 41).

Table 6: Influence of the sequence of elimination steps on the reduced model Listed
are the dynamical state variables of the elimination-reduced model based on ten
randomly chosen sequences in which state variables were tested for elimination.

Run Order Dynamical state variables of the
elimination-reduced model

Environmental
state variables

1 8 Fg, IIa, IIa:Tmod, AVenom, CVenom, P,
APC, APC:PS

II, Pg, PC, PS, Tmod

(identical to model depicted in Figure 16)
4 8 identical to run no. 1 identical to run no. 1
5 8 identical to run no. 1 identical to run no. 1
8 8 identical to run no. 1 identical to run no. 1
3 9 Fg, IIa, IIa:Tmod, AVenom, CVenom, Pg, P,

APC, APC:PS
II, PC, PS, Tmod

6 9 Fg, IIa, IIa:Tmod, AVenom, CVenom, P,
APC, APC:PS, XIIIa

II, Pg, PC, PS, Tmod,
XIII

9 11 Fg, II, IIa, CVenom, Xa, Va, Xa:Va, XIa, IXa
,VIIIa, IXa:VIIIa

AVenom, VIII, XI, IX,
V

2 12 Fg, IIa, AVenom, CVenom, Xa, Va, Xa:Va,
XIa, IX, IXa, VIIIa, IXa:VIIIa

II, V, VIII, X, XI

7 13 Fg, II, IIa, AVenom, CVenom, Xa, Va, Xa:Va,
XIa, IXa, VIII, VIIIa, IXa:VIIIa

XI, X, V, IX

10 13 identical to run no. 7 identical to run no. 7

As stated in the previous section, the elimination-reduced model based on the indices up to
40h does not include the factors V, Xa, Va and Xa:Va, despite their importance indicated
by the input-response indices shown in Figure 19. They only appeared in reduced models
based on the elimination of state variables in a randomly chosen order that is substantially
different from the order defined by the ir-indices.

As outlined in the previous section, also the order, in which state variables are tested for
elimination, has an impact on an iterative model reduction process. In this regard it is
important to notice that the ir-indices of the activated factors Va and Xa have a lower
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maximum than factor P. Consequently, they are earlier tested for elimination than factor P.
If Va and Xa are eliminated, then factor V does not play any role and can be eliminated as
well. Thus, the relevance of factor V is conditioned on the presence of Va, Xa and/or Xa:Va;
only in the presence of Va, Xa and/or Xa:Va, the factor V does have a large impact. If,
however, factor P is eliminated before the factors Xa, Va, Xa:Va and V in the iterative model
reduction process2, then Xa, Va, Xa:Va and V are important for the recovery phase and are
not neglected in subsequent iterations. In this case, the reduced model approximates the
recovery phase well at the expense of the initial transient decay (cf. Table 14 in the appendix
for quantification of the relative error pre and post nadir of the fibrinogen concentration).

The ir-indices quantify the importance of state variables in the original model. It is important
to emphasise that the ir-indices do not depend on any error tolerance that a user has to
specify to control the approximation error in the model reduction process. Thus, while
the ir-indices do not change with different error tolerances, one would, however, expect to
obtain different reduced models when changing the error tolerance. This is demonstrated in
Table 15 (appendix): If the error tolerance is decreased, the reduced model contains more
state variables. In particular, we observed that the reduced models obtained with a lower
error tolerance contain the pathways involving both, factor P and factor V. For the chosen
error tolerance of 0.01, both the 8- and 12-state variable model (cf. Figure 16 and 41) satisfy
the error threshold (see Table 14 in the appendix).

From a pure theoretical point of view, both the 8-state variable and 12-state variable elimi-
nation-reduced models in Figures 16 and 41 satisfy the approximation error as set by the
user-defined tolerance. From a clinical point of view, their utility and the interpretation
of the two models could be considerably different, depending on the question of interest.
Importantly, the ir-indices allow to understand the origin of these differences between the
two reduced models as well as potential differences between the reduced and the original
model, as outlined above.

Elimination-reduced and lumped model of the brown snake venom-fibrinogen
system up to 40h

Finally, we further simplified the 8-state variable model given in Figure 16 via proper lumping
(described in detail in section 3.1.1). For the proper lumping approach, the same threshold
on the approximation error, i.e, εrel < 0.1, was used and the time interval of [0, 40] h was
considered. This resulted in an elimination-reduced and lumped (short: reduced) model of 5
state variables in addition to 3 environmental state variables. See Figure 20 for a graphical
representation of the reduced model. The differential equations of the reduced 5-state variable
model are:

dxL1

dt
= − dCVenom ·

1

2
xL1

dxL2

dt
= VXa:Va,IIa

1
2xL1

1
2xL1 +KXa:Va,IIa

· xenv,1 − (dIIa:Tmod + dIIa) · 1

2
xL2

dxL3

dt
= VIIa:Tmod,APC

1
2xL2

1
2xL2 +KIIa:Tmod,APC

· xenv,2 − (dAPC:PS + dAPC) · 1

2
xL3

2e.g„ due to a different order of state variables in a randomly chosen order, cf. Table 6, e.g., run no. 2
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dxL4

dt
=

(
VIIa,P

1
2xL2

1
2xL2 +KIIa,P

+ VAPC:PS,P

1
2xL3

1
2xL3 +KAPC:PS,P

)
· xenv,3 − dP · xL4

dxL5

dt
= pFg −

(
VIIa,Fg

1
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2xL2 +KIIa,Fg
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xL4

xL4 +KP,Fg
+ dFg

)
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Figure 20: Reduced 5-state variable model of the brown snake venom-fibrinogen
system with εrel ≤ 0.1. Shown are the lumped state variables with their corre-
sponding state variables of the 8 state variable model. The environmental state
variables are indicated by ’*’ (cf. Table 7 for further details).

Table 7 lists the reduced and environmental state variables and their corresponding (initial)
values. The parameter values are given in Table 12 in the appendix. The snake venom input
corresponds to the state variable xL1, while the Fg output corresponds to the state variable
xL5. The reduced 5-state variable model still reproduced the Fg response sufficiently well as
a result of the snake venom input (cf. Figure 17 and inset).

Table 7: Reduced 5-state variable model of the brown snake venom-fibrinogen
system. Definition of the reduced and environmental state variables.

Lumped state variable Original state variables Initial condition
xL1 AVenom + CVenom 0.0075 [nM]
xL2 IIa + IIa:Tmod 0 [nM]
xL3 APC + APC:PC 0 [nM]
xL4 P 0 [nM]
xL5 Fg 8945.5 [nM]

Environmental state variable Original state variable Constant value
xenv,1 II 1394.4 [nM]
xenv,2 PC 60 [nM]
xenv,3 Pg 2154.3 [nM]
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5.1.2. The PT test: Impact of the magnitude of the input on the resulting reduced model

It is well known that model reduction techniques for nonlinear systems typically only apply
locally, i.e., the reduced model is a good approximation to the original model for a given
domain of the input, the initial state and the parameter values. While this is often consid-
ered as a disadvantage of model reduction techniques, we believe that it should be rather
considered as a feature allowing for valuable insight into the dynamics. We illustrated this
in the following section by studying the blood coagulation system in vitro in the absence of
any pharmacological agent.

The prothrombin time (PT) test is an in vitro blood coagulation test quantifying the activity
of the so-called extrinsic pathway activated by the tissue factor TF. It has been studied in
detail by Wajima et al. [130]; the model is a variant of the coagulation network shown in
Figure 6. The PT test is initiated experimentally by adding a well-defined amount of TF to
a sample of blood and measuring the time until the blood has clotted. In [130], the PT test
was studied with the TF concentration as input and fibrin (F) as the response.

It has been reported in the literature that the common PT test—characterised by a high TF
concentration—is insensitive to genetic deficiencies of factors VIII and IX, while a modified
PT test—characterised by a much lower TF concentration (roughly by a factor 1000)—is
sensitive to these deficiencies [14]. This suggests that depending on the magnitude of the
input the same in vitro PT test model should result in different reduced models (in particular
regarding the inclusion of factors VIII and IX).

Input-response indices for two PT test scenarios

The reference dynamics were chosen to be the dynamics of the PT test with an initial TF
concentration of 5pM (low TF scenario) and 100nM (high TF scenario), in line with [14, 130]
using the 62-state variable model (cf. Figure 6).3 The ir-indices were determined based on ten
perturbations of the TF input ranging from 50% to 150 % of the reference input according to
eq. (79). The time interval of interest was determined based on the corresponding reference
dynamics to include the transformation of Fg to F (which is required for the PT test). For
the low TF scenario, we chose [0, 240] seconds, while for the high TF scenario, we chose [0, 30]

seconds. The latter include the prothrombin time of about 11.6-13.8 seconds for a healthy
individual [14]. Figure 21 shows the corresponding input-response indices for the low and
high TF scenario.

Both scenarios have seven factors of high importance according to the ir-indices in common:
TF, IIa, VII:TF, VIIa:TF, Xa, Fg, and F. In the low TF scenario, in line with expectations,
also the factors V, VIII and IX (and their activated forms) impact the output via the factors
Xa and Xa:Va.

3In [130], the concentration for the high TF scenario is reported to be 300 nM, but subsequently scaled to
1/3 of its value to reflect a dilution process.
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Figure 21: Empirical ir-indices for two PT test scenarios. Shown are the input-
response indices of the most important state variables as a function of time for
(A) the low TF and (B) high TF scenario. Input-response indices not shown
are below 3 · 104 in magnitude in the low TF and 3 in magnitude in the high TF
scenario.

Reduced models for two PT test scenarios

We next reduced the 62-state variable model (cf. section 2.3.2) for the low and high TF PT
test scenarios by applying step one of our model order reduction procedure (as described in
detail in section 4.5). The relative approximation error was required to satisfy εrel ≤ 0.1. The
resulting elimination-reduced models comprised 13 state variables for the low TF scenario
and 7 state variables for the high TF scenario (cf. Figure 22).

The difference between the two reduced models is the pathway of factor V, VIII and IX, which
is included in the low TF scenario but not in the reduced model for the high TF scenario.
This is due to the fact that the activation of Fg is much faster in the high TF scenario such
that delayed positive feedback via the factors V, VIII and IX has no substantial impact on
the output. In the low TF scenario, this delayed feedback amplifies the weak TF-induced
activation of factor II to a substantial extent.

The two TF scenarios clearly demonstrate that the magnitude of the input can have a pro-
found impact on the resulting elimination-reduced model, and this impact may be important
for our understanding of the dynamics.

The elimination-reduced models for both TF scenarios were further reduced via proper lump-
ing. The same threshold on the approximation error and time interval was used. The result-
ing elimination-reduced and lumped models consist of 12 state variables and 6 environmental
state variables in the low TF case and 5 state variables and 4 environmental state variables
in the high TF scenario (cf. Table 8).
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(A) (B)

Figure 22: Elimination-reduced models for two PT test scenarios the (A) low TF and
(B) high TF scenario with εrel ≤ 0.1. Shown are the dynamical state variables.
The environmental state variables (indicated by ’*’) are II, V, VII, IX and X for
low TF and II,VII and X for high TF. The corresponding differential equations
and further details are given in the appendix. Compare Figure 6 for a legend of
the different arrow types.

Table 8: Reduced models for two PT test scenarios for low TF and high TF with
relative approximation error εrel ≤ 0.1. Definition of the reduced and environmental
state variables.

low TF high TF
Lumped state
variables

Original state
variables

Lumped state
variables

Original state
variables

xL1 F xL1 F
xL2 Fg xL2 Fg
xL3 TF xL3 TF
xL4 IXa xL4 Xa
xL5 IIa xL5 IIa + VII:TF + VIIa:TF
xL6 IXa:VIIIa
xL7 VIII
xL8 VIIIa
xL9 VII:TF
xL10 VIIa:TF
xL11 Va + Xa
xL12 Xa:Va

Environmental
state variable

Original state
variables

Environmental
state variable

Original state
variables

xenv,1 II xenv,1 II
xenv,2 VII xenv,2 VII
xenv,3 X xenv,3 X
xenv,4 TFPI xenv,4 TFPI
xenv,5 IX
xenv,6 V
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5.1.3. Extracting the essential features of two different drug effects: warfarin and

rivaroxaban

In this section, the usefulness of model order reduction in the context of a systems pharma-
cology model is highlighted by using the blood coagulation network model (cf. section 2.3.2)
to extract two drug effect models - warfarin and rivaroxaban effect. As described in sec-
tion 2.4 warfarin was chosen due to its clinical relevance and pharmacological challenges to
date (narrow therapeutic window, large inter-individual variability, genetic polymorphisms in
e.g. CYP2C9 and VKORC1), while rivaroxaban was chosen due to its novelty in clinics and
its completely different mode of action. In order to include the effect of rivaroxaban on the
blood coagulation model we extended the original 62-state variable model [130, 40] resulting
in 66 state variables (detailed description in section 2.3.4). This extension had no impact on
the original systems dynamics.

Warfarin effect
The general procedure of warfarin effect assessment by drawing blood from the patient and
initialising the PT test by adding a well-defined amount of tissue factor was described in
section 2.3.3. It is possible to describe this with the blood coagulation network model (cf.
Figure 7). Therefore, we have chosen the dynamics of the blood coagulation system under
warfarin therapy (4 mg daily) with a range of sample times TBlood ∈ [0, 20] days of blood
withdrawal and an addition of TF concentration of 100 [nM] to the diluted factor concentra-
tions (dilution to one third) at time TBlood as the reference dynamics. Instead of computing
multiple dosing for warfarin, we considered a constant infusion. This was chosen for nu-
merical reasons and closely matches the dynamics under multiple dosing (as it is the limit
case).

The sensitivity based ir-indices for the warfarin-fibrin system during the initiation of war-
farin therapy (cf. Figure 23) clearly shows that during the in vivo setting, the warfarin
concentration (the input) only influences the vitamin K-dependent factors as well as vitamin
K hydroquinone (VKH2). All the other factors/proteins of the blood coagulation system
did not change from their initial value (excluding the vitamin K cycle). Furthermore, the
ir-indices reflect that during therapy initiation factor VII is the most important state vari-
able for the in vivo response. This is in line with expectations since it is known that the
early changes in prothrombin time reflect the changes in VII levels [45]. In the in vitro set-
ting after the addition of TF the blood coagulation network becomes activated and thus the
ir-indices reflect the sequential activation of the blood coagulation by the most important
factors. However, in contrast to the high TF PT test scenario (cf. Figure 21(B)), factor VII
and not the tissue factor (TF) is considered as important for the dynamics of the system.

The sensitivity based ir-indices for later time points of blood withdrawal are shown in the
appendix (cf. Figure 45 and 46). Factor VII is the most important factor during the initiation
of warfarin therapy, however, closer to the so-called clinical ’steady state’ under warfarin
therapy, factor II and X become more important than factor VII (cf. Figure 45 and 46 in the
appendix).

To illustrate how the input-response indices change for different time points of blood with-
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Figure 23: Sensitivity based ir-indices for the warfarin-fibrin system during the
initiation of warfarin therapy. Time of blood withdrawal was chosen to be
TBlood = 20 h. Shown are the sensitivity based ir-indices for the most important
state variables of the (A) in vivo and (B) in vitro parts under warfarin therapy
(4 mg daily). For better readability, the ir-indices were shown for in vivo and in
vitro part in two different panels. Sensitivity based ir-indices not shown are below
5 in magnitude.

drawal during warfarin therapy, we summarise the indices by their maximal value for TBlood ∈
[0, 20] days (cf. Figure 24). As previously mentioned, the summarised indices indicate that
factor VII is the most important factor during the first 3 days of warfarin therapy, while in
the maintenance phase of warfarin therapy factor X and factor II are of more/similar impor-
tance. Additionally, one can infer from the Figure 24, that although the importance of each
factor changes over the duration of warfarin therapy the order of importance based on their
maximal value at each time point TBlood is largely retained, especially in the in vitro setting
(exceptions are factor X and II).

Next, we reduced the 66-state blood coagulation model by successively eliminating states
according to their importance to the system dynamics of interest, starting with the lowest
value (as described in detail in section 4.5) based on the sensitivity based input-response
indices for various TBlood. In all cases, the resulting relative approximation error was required
to satisfy εrel < 0.05 (cf. eq. 86). The resulting reduced models for the maintenance phase of
warfarin therapy had 11 dynamical state variables of the original blood coagulation network
model and 2 additional state variables for the pharmacokinetics of warfarin (cf. Figure 25).

In section 2.4 two empirical pharmacodynamic models were introduced for the warfarin ef-
fect. In order to assess the plausibility of the resulting INR prediction from both the original
mechanistic 66-state variable and reduced mechanistic 13-state variable model (cf. Figure 25)
we have chosen the most widely used empirical PK-PD model for S-warfarin [45] in our com-
parison. As was previously described in section 2.4 the empirical PD model consists of two
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Figure 24: Maximal values for sensitivity based ir-indices for the warfarin
concentration-fibrin system over time of blood withdrawal (TBlood).
Shown are maximal values of the sensitivity based ir-indices for the most impor-
tant state variables over TBlood of the (A) in vivo and (B) in vitro parts under
warfarin therapy (4 mg daily). For better readability, the ir-indices were shown
for in vivo and in vitro part in two different panels. Sensitivity based ir-indices
not shown are below 5 in magnitude. The inset shows the maximal values of the
sensitivity based ir-indices on the entire time interval [0, 20] days.

Figure 25: Reduced model for warfarin therapy. Shown are the dynamical state vari-
ables. The environmental state variables (indicates by ’*’) are TF and VK. The
state variable approximated by its quasi-steady state is indicated by the subscript
’qss’. In the model order reduction process the relative approximation error was
required to satisfy εrel ≤ 0.05.

transit compartment chains of different length and different mean transition time (cf. Fig-
ure 9). In order to compare the predictions, it was necessary to account for the differences in
pharmacokinetics. In the mechanistic model, a PK model for the racemic warfarin concen-
tration was used, while in the empirical PK-PD model S-warfarin concentration was chosen.
Therefore, we assumed a dose of 2 mg daily in the empirical PK-PD model to be comparable
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to 4 mg daily dosing in the mechanistic model. This assumption was based on the finding in
the literature that the racemic mixture consists of 50% R-warfarin and 50% S-warfarin [23,
Ch. 20] and [82, 33]. In Figure 26 we compare the typical INR predictions of the original
(blue line) and reduced (red dashed line) mechanistic model with the 90% CI of the empirical
PK-PD model based on 1000 simulations of the typical patient accounting for parameter
uncertainty. Thus, the 90% CI of the empirical PD model reflects the effect of the uncer-
tainty in the PD parameter estimates as reported in [45]. We assumed the parameters to be
uncorrelated since no uncertainty covariance matrix was published in [45].
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Figure 26: Comparison of international normalised ratio (INR) for warfarin ther-
apy of 4mg daily based on the original 66-state variable model (solid blue), the
reduced 13-state variable model (dashed red) and the empirical PD model in [45]
with median (black) and 90% CI (grey area).

As can be inferred from Figure 26 during the induction of warfarin therapy the two different
modelling approaches produce divergent predictions for the INR both in actual levels as well
as time to maintenance phase (’steady state’ - stable limit cycle). However, the mechanistic
based ’steady state’ INR predictions lie within the 90% CI of the empirical PK-PD model.
The difference in the predictions of the induction phase of warfarin therapy can in parts be
explained by the fact that only data for a single dose and during stable maintenance dose were
used to develop the empirical PK-PD model with slightly more than half of the data coming
from the single dose administration. As was remarked in [45, p. 535], ‘the model needs to be
further informed by data from the induction phase’. This informative difference in the model
INR prediction might thus indicate model misspecification and under-prediction of warfarin
initiation therapy by the empirical PK-PD model. The slight differences in the intensity of
anticoagulation during one dosing interval between the two modelling approaches is due to
the differences in warfarin pharmacokinetics. In the mechanistic blood coagulation model,
a 1 compartment (CMT) model for the racemic warfarin concentration is used while in the
PK-PD model a 2 CMT model for S-warfarin concentration was chosen. The concentration-
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5. Application: analysis & reduction of two large-scale systems pharmacology models

time profiles of the respective pharmacokinetics are shown in Figure 47 in the appendix. In
a recent study, the clinical significant contribution of R-warfarin to the biological effect was
shown [82]. This indicates that the R-warfarin is of clinical relevance and should be accounted
for in the PK model.

In summary, we believe that by incorporating the known covariates for warfarin mechanis-
tically in the reduced model obtained from the mechanistic blood coagulation model, the
reduced model can help improve predictions of a more individualised loading and mainte-
nance dose. This, in turn, will help to improve the efficacy and safety of warfarin therapy by
achieving the target INR range faster as well as avoid over- or under-anticoagulation.

Rivaroxaban effect
In contrast to warfarin, rivaroxaban does not influence the blood coagulation system prior
to activation. Therefore, to assess the effect of rivaroxaban it is sufficient to consider the
activation of the system - more specifically - the in vitro assays: PT test.

The reference dynamic was chosen to be the dynamics of the blood coagulation network with
an initial TF concentration of 100 [nM] and initial rivaroxaban concentration of 114.5 [nM]
(average rivaroxaban concentration at so-called clinical ’steady state’ of rivaroxaban therapy
with 20 mg twice daily [36]) in the time interval [0, 90] seconds. The sensitivity based indices
were determined according to eq. (83). Figure 27(A) shows the most important sensitivity
based ir-indices during the time interval of interest.
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Figure 27: Sensitivity based ir-indices for the rivaroxaban-fibrin system and time
profiles of the corresponding factors. (A) Shown are the sensitivity based
ir-indices of the most important state variables for the time interval [0, 90] sec-
onds. Sensitivity-based ir-indices not shown are below 0.5 in magnitude. (B)
Concentration-time profiles of the most important molecular species (according to
the ir-indices) predicted by the original 66-state variable model.

The differences to the high TF PT test setting are more apparent in form of the resulting
reduced model. To this end, we exploit one mass conservation law to eliminate the molecular
species Xa:CRiva. The state variable to be eliminated was determined in a pre-run (see the
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last paragraph in section 4.5). Next, we recursively eliminate state variables in order of
increasing magnitude of their sensitivity based ir-index (as described in detail in section 4.5).
In all cases, the resulting relative approximation error was required to satisfy εrel < 0.05 (see
Eq. 86). Surprisingly, factor Xa remains only implicitly present in the reduced dynamics. The
resulting reduced model comprised 8 dynamic state variables and 2 state variables describing
the pharmacokinetics of rivaroxaban.

The reduced model is depicted in Figure 28, in contrast to the reduced model for the high
TF PT test setting (cf. Figure 22) factors Va, Xa:Va and VII are included as dynamical state
variables. Furthermore, as is already evident from the sensitivity based ir-indices factor Xa
loses its importance once a rivaroxaban concentration is present in the system dynamics of
the PT test. This can be explained by the rapid formation of the Xa:CRiva complex, such
that factor Xa can actually be considered in quasi-steady state.

Figure 28: Reduced model for rivaroxaban therapy. Shown are the dynamical state
variables after application of our model order reduction technique (as described
in detail in section 4.5) with user defined error tolerance of 5%. The environ-
mental state variables (indicates by ’*’) are II, V, X and TF. The state variable
approximated by its quasi-steady state is indicated by the subscript ’qss’. The
state variable eliminated by mass conservation is indicated by the subscript ’con’.

Similarly, as for the warfarin effect model obtained from the blood coagulation network
model, we again aim to compare the mechanistic model prothrombin time predictions with
an available pharmacodynamic model. In section 2.4 two different PD model for rivaroxaban
were presented. We will employ the empirical PD model by [36] to investigate the plausibility
of the resulting prothrombin time (PT) prediction of the reduced mechanistic model. For
the rivaroxaban models, we compare the typical prothrombin time prediction of the original
(blue line) and reduced (red dashed line) mechanistic model with the 90% CI of the empirical
PD model (cf. Figure 29) based on 1000 simulations. The 90% CI of the empirical PD model
shows the effect of the parameter uncertainty in the PD parameters that were reported in [36].
We assumed the parameters to be uncorrelated since no uncertainty covariance matrix was
published in [36]. The PK model was chosen to be the same for both mechanistic and
empirical PD model.

The comparison of the different model predictions shows a clear discrepancy between the
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Figure 29: Comparison of prothrombin time (PT) for rivaroxaban therapy of 20mg
daily based on the original 66-state variable model (solid blue), the elimination-
reduced 10-state model (dashed red) and the empirical PD model in [36] with
median (black) and 90% CI (grey area) in (A) and (B) with increased typical
baseline value for empirical PD model by 2 seconds.

mechanism based and the empirical PT time predictions (cf. Figure 29(A)). The mechanism
based PT time predictions are 2 seconds higher than the typical empirical PD model pre-
diction. In order to show that the discrepancy is due to different assumed baseline in the
different models, we increased the typical baseline level by 2 seconds in the PT time predic-
tions of the empirical PD model (cf. Figure 29(B)). Consequently, in Figure 29(B) one can see
that the mechanism based predictions lie within the 90% CI of the empirical PD model with
the updated typical baseline value. Further, it is apparent that the predicted curves during
one dosing interval decline slightly different between the two models. This might suggest
model miss-specifications.

In future, the obtained reduced models for warfarin and rivaroxaban (cf. Figure 25 and 28)
could be applied to perform the population analysis of clinical data. Although the reduced
models obtained for warfarin and rivaroxaban from the large-scale mechanistic model depend
on the chosen reference solution and time interval, the model order reduction technique allows
for easy extraction of a new reduced system depending on the desired accuracy and require-
ments on the model. Model order reduction can thus answer the questions ’How to identify
an appropriate pharmacodynamic model’ as well as ’What model should be employed’. It
should be noted that due to the (yet large) number of state variables and parameters of the
reduced models for warfarin and rivaroxaban, both models might not be identifiable when
used in a population analysis approach and a further reduction might be necessary to achieve
full identifiability. However, our introduced model order reduction technique allows for a
substantial reduction while at the same time retaining the physiological interpretability. In
future, it should additionally be investigated how to implement covariates as well as random
interindividual variability and how to incorporate their possible effects into the model reduc-
tion technique to obtain reduced models that automatically consider these components.
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5.2. EGFR signalling cascade

The biological background and a comprehensive mathematical model for the EGFR signalling
cascade were introduced in section 2.2. As previously described, the signalling cascade is
activated by binding of EGF to EGFR and ultimately results in a transient ERK-PP output
signal (cf. Figure 3). In view of the input (EGF) and the output (ERK-PP), the signalling
cascade is in this section sometimes termed the EGF–ERK-PP system.

While the principal flow of the downstream signalling and activation sequence is well known,
the relative importance of the different pathways (with/without Shc, membrane-bound vs.
internalized forms) and its molecular constituents is still not well understood. We have,
therefore, chosen this system to illustrate the potential of the sensitivity based input-response
indices in gaining a detailed understanding of the transient behaviour of complex networks.

5.2.1. Model reduction of the EGF–ERK:PP signalling cascade using sensitivity based

input-response indices

The reference dynamics was chosen to be the dynamics of the EGFR signalling cascade with
a constant EGF concentration of 5 ·10−8 molecules per cell in the time interval [0, 100] min as
in [55]. The sensitivity based ir-indices were determined according to eq. (83). Figure 30(A)
shows the most important ir-indices during the onset of signal propagation up to 0.3 min,
while Figure 31(A) shows the time interval up to 3 min, when the output signal ERK-PP
already peaks (compare also inset in Figure 36). The indices nicely illustrate how the signal
propagates through the network. This signal propagation is not explicitly inferable from the
concentration-time profiles (see corresponding panels (B). A detailed discussion is given in
section 5.2.2. The complete list of input-response indices, also given on the full time interval,
is shown in the appendix (cf. Figure 48-56).

In the attempt to understand the EGF–ERK-PP system, we first used the ir-indices to
determine a reduced model of the signalling system, which subsequently guided our view and
understanding of the activation cascade. This, in turn, allowed us to understand the transient
dynamics and critical stoichiometry of key molecular species of the signalling pathway by
analysing their ir-indices.

At start, all state variables were ordered according to the magnitude of their input-response
index; see Figure 32. In a first reduction step, we exploited mass conservation laws to
eliminate eight molecular species (see Table 16 in the appendix, column ‘con’). The state
variables to be eliminated were determined in a pre-run (see the last paragraph in section 4.5).
Next, we recursively eliminated state variables in the order of increasing magnitude of their
input-response index. This included complete removal from the reaction system (neglected
state variables) or considering the state variables as being constant (environmental state
variables). In all cases, the resulting relative approximation error was required to satisfy
εrel < 0.1 (see Eq. 86). This error tolerance was chosen to allow a substantial reduction of
the system, while still maintaining a good approximation of the output signal. As a result,
additional 42 state variables were eliminated (see Table 16 in the appendix, columns ‘neg’
and ‘env’). Finally, we exploited time-scale separation, i.e., a quasi-steady state assumption,
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Figure 30: Sensitivity based ir-indices and concentration-time profiles during onset
of signal propagation. State variables with largest input-response indices (A)
and corresponding concentration-time profiles (B) during the time interval [0, 0.3]
min.

to eliminate additional 34 state variables (see Table 16 in the appendix, column ‘qss’). These
molecular species are implicitly present in the reduced model, comparable to the substrate-
enzyme complex in the Michaelis-Menten approximation. Surprisingly, also Raf* and some
of its complexes are only present implicitly due to their fast dynamics. The resulting reduced
model comprised only 28 dynamic state variables (modelled via differential equations). Thus,
the number of state variables was reduced by approximately 75%.

The reduced model is depicted in Figure 33. It provides a clear view on the propagation of
the input signal through the signalling cascade. While the first part of the signalling cascade
is a linear sequence of activation steps (from EGF to (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos),
the remaining part of the network consists of a cyclic module and a sequence of activation
cascades. The complex (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos is key in the activation of Ras-
GDP to Ras-GTP. Finally, the output ERK-PP feeds back to the degradation of (EGF-

97



5. Application: analysis & reduction of two large-scale systems pharmacology models

(A)

(B)

0 1 2 3
0

1

2

3

4

5

·1010

(EGF-EGFR*)2-GAP-Shc*

(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos

ERK

ERK-P

ERK-PP

ERK-PP-Pase3

ERK-P-MEK-PPERK-P-Pase3

Grb2-Sos
MEK

MEK-P

MEK-PP
MEK-Raf*

MEK-P-Raf*

Phosphatase3

Raf

Ras-GDP

Ras-GTP

Ras-GTP*

t∗[min]

ir
i(
t∗
)

input-response indices

0 1 2 3102

103

104

105

106

107

(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos

(EGF-EGFR*)2-GAP-Shc*
(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP

ERK

ERK-P

ERK-PP
ERK-PP-Pase3

ERK-P-MEK-PP

ERK-P-Pase3

Grb2-Sos

MEK

MEK-P

MEK-PP

MEK-Raf* MEK-P-Raf*

Raf

Phosphatase3

Ras-GDP

Ras-GTP

Ras-GTP*

t[min]

M
ol
ec
u
le
s/
ce
ll

system dynamics

Figure 31: Sensitivity based ir-indices and concentration-time profiles until peak
of output signal. State variables with largest input-response indices (A) and
corresponding concentration-time profiles (B) during the time interval [0, 3] min.

EGFR*)2-GAP-Shc*-Grb2-Sos, thereby attenuating the input signal.

The EGFR signalling network comprises membrane-bound and internalised forms of the
receptor and its complexes. Previous reduced models of the EGFR signalling pathway simply
neglected those molecular species as a way to reduce the order [4, 21]. In contrast, our
approach highlights the relevance of these internalised forms. They are considered explicitly,
like (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos, or implicitly in form of quasi-steady state species
(Table 16 in the appendix, column ‘qss’, and Figure 33) and constitute an alternative way to
activate Ras-GDP.

Figure 32 shows the maximal value of the sensitivity based ir-indices for all state variables.
The classification of a state variable into dynamic (dyn), environmental (env), neglected
(neg), in quasi-steady state (qss) or conserved (con) is colour-coded. As can be inferred
from the Figure, only states with a larger maximal value of the ir-index were considered as
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Figure 32: Maximal value of the ir-indices in decreasing order and corresponding
state classification. Indices were determined based on a constant reference
stimulus of EGF=5 · 10−8 molecules per cell and a time interval of [0, 100] min as
in [55]. The relative approximation error was set to εrel < 0.1. The colour coding
indicates the classification of a state as: dynamical (red), mass conserved (dark
grey), environmental (blue), in quasi-steady state (green) and neglected (light
grey). Input-response indices of value zero are not shown. The bottom panel is
the continuation of the top panel.

dynamic. Amongst the states with the 30 largest values, only five states were not classified as
dynamic. Beyond the 30 largest values, most state variables were either classified as neglected
or in quasi-steady state.

Finding the lowest order reduced model is an optimisation problem suffering from the ‘curse
of dimensionality’. Therefore, model reduction approaches of large networks typically proceed
sequentially. Figure 32 a-posteriori underpins the usefulness of the ir-indices to determine an
informed order of state variables for the sequential reduction process. In contrast to many
greedy approaches, this order is based (via the ir-indices) on the original model (determined
prior to the reduction process), rather than recursively based on some intermediate reduced
model.

5.2.2. Understanding the dynamics of EGFR signalling using the input-response indices

Figures 30+31 show the input-response indices and the temporal change of the 28 dynamic
state variables of the reduced model. They allow to get further insight into the two questions:
When is a state variable important? Why is it important?

The input-response index is a time dependent measure of importance. It gives insight about
when a state variable is important for a given input-response relationship. Figure 30(A)
shows the input-response indices on the time interval [0, 0.3] min. The indices show that the
importance of EGFR is restricted to the first 10-20 sec and does not influence the system in
the sequel (cf. Figure 48-56 given in the appendix). The indices for EGF-EGFR and (EGF-
EGFR)2 become small in comparison to the other indices (< 109). This is due to the fact
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Figure 33: Graphical representation of the reduced EGF–ERK:PP signalling cas-
cade based on ir-indices. The reduced model comprises 28 dynamical state vari-
ables (75% reduction compared to the original model) and was derived based on
a relative error tolerance of 10%. The environmental state variables are indicated
by ’*’. For a clearer layout, dynamical state variables representing intermediate
complexes (e.g., ERK-PP-Pase3) are not explicitly listed, but rather indicated by
a dot on the corresponding reaction arrow. For better readability, we included the
Raf∗ although it was eliminated via quasi-steady state approximation.

that at those time points the input perturbation does not lead to a substantial perturbation
in the concentration-time profile of these molecular species. Most other state variables are
not yet important during this time span and have indices that are too small to be visible
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in the figure. Figure 30(B) shows the concentration-time course of the corresponding state
variables. In contrast to the indices, it does not become evident by only considering the time
profiles, when a state variable has a large impact on the system.

Figure 31(A) shows the input-response indices on a 10x larger time interval [0, 3] min. While
some of the indices meet our expectations (e.g., temporal ordering of Ras-GTP, MEK-Raf*,
MEK-P etc), others are more surprising, as the indices of phosphatase 3 (most prominent on
[0.5, 2] min) or MEK-PP (only visible after 2.5 min). In combination with the time profiles,
we infer that upon phosphorylation of MEK-P, double phosphorylated MEK immediately
forms a complex with ERK. Once ERK has been phosphorylated, the dominant binding
partner seems to be phosphatase 3 (see a strong increase of ERK-P-Pase3 starting roughly at
0.5 min). Analogously, any ERK-PP seems to immediately bind to phosphatase 3, resulting
in a strong increase of ERK-PP-Pase3 up to 2 min. Only when the impact of phosphatase
3 is sufficiently diminished (in form of reduced free phosphatase 3), ERK-PP levels increase.
Thus, one effect of phosphatase 3 is a delay in the onset of ERK activation. Due to the fast
complex formation of MEK-PP with ERK and ERK-P during the first 2.5 min, its input-
response index is low (almost quasi-steady state condition of MEK-PP). Only after ERK-PP
decreases, the impact of MEK-PP becomes more dominant.

A large input-response index may be due to a large controllability coefficient or a large ob-
servability coefficient (cf. eq. (83)). Figure 35(A) depicts the controllability indices, i.e., how
the EGF signal influences the state variables. The system is mostly controlled by EGF during
the time window of [0, 3] min. Largest controllability is exerted on the ERK module, in par-
ticular, ERK and ERK-PP. Given that EGF is the stimulus for ERK phosphorylation, this
result is in line with expectations. The observability indices, shown in Figure 35(B), provide a
measure of how the state variable at time t∗ impacts the output on the remaining time inter-
val. Interestingly (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos has initially the largest observability
index. To understand this phenomenon, we performed an in silico experiment with an ad-
ditional stimulus of (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos (magnitude 5 ∗ 103 molecules/cell
at time t=0), see Figure 34. The resulting output demonstrates that (EGF-EGFRi*)2-GAP-
Shca-Grb2-Sos does have a large impact on the time course of ERK-PP, rising to much lower
values. If, however, the same stimulus of (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos is given at a
t=3 min, the output signal of ERK-PP is only very slightly perturbed.

This distinction into controllability and observability indices allows to understand due to
which processes the state variables might be important. If the controllability dominates, the
state variable is largely influenced by changes in the input signal. If the observability index
dominates, then small changes in the level of the state variable have a large impact on the
output concentration.

5.2.3. Further reduction of the model complexity by applying proper lumping

As the final step of the model reduction process, we applied proper lumping to the 28-
state variable model, using the same threshold on the approximation error as before. This
resulted in a lumped 19-state variable model that implicitly includes 3 environmental and 34
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Figure 34: Comparison of ERK-PP (output) of the original 112-state variable
model based on three different inputs: a) original input of EGF only (black
line); b) additional input of (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos at time t = 0
min of magnitude 5 ∗ 103 molecules/cell (dashed light grey line); c) additional
input of (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos at time t = 3 min of magnitude
5 ∗ 103 molecules/cell (dot-dashed dark grey line).

quasi-steady state variables. Both reduced models, the 28-state and lumped 19-state model
reproduced the transient output signal ERK-PP with the desired accuracy (see Figure 36).
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Figure 35: Controllability and observability indices of the dynamical state vari-
ables of the reduced model (A) Controllability indices and (B) observability
indices of the dynamical state variables of the reduced model for t∗ ∈ [0, 3] min.

0 20 40 60 80 100

t [min]

0

2

4

6

8

10

12

E
R

K
-P

P
 [

M
o

le
c
u

le
s
/c

e
ll]

10
6

0 2 4
0

5

10

10
6

19-state variable

 model

28-state variable

 model

Original 106-state

variable model

Figure 36: Comparison of ERK-PP (output) for the EGF–ERK-PP signalling cas-
cade based on the original 106-state variable model (solid), the reduced 28-state
variable model (dashed) and the lumped reduced 19-state variable model (dot-
dashed).
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5.3. Comparison of different MORs

In this section, we provide a comparison of the following model reduction techniques: sen-
sitivity analysis, proper lumping, ILDM and balanced truncation introduced in section 3 to
reduce the complexity of a specific pharmacological example of interest: the PT test of the
blood coagulation model. We will discuss the advantages and disadvantages of each method
in the application context. The different magnitudes of the input (TF concentration) are
chosen as 5pM (low TF scenario) and 100nM (high TF scenario) (cf. section 5.1.2). The fib-
rin concentration is chosen as a surrogate for the response. The user-defined error tolerance
was chosen to be 20% for each model reduction method.

Employing scaled sensitivity coefficients for model order reduction
First we use the local sensitivities of the system, obtained by solving the variational equation
in eq. (17). Usually for systems pharmacology/biology models the sensitivities are computed
for the steady state of the system. However, in the PT test setting we are interested in the
transient behaviour of the fibrin concentration xF (t) and, thus, compute the scaled sensitivity
ŜpF,j(t) = δxF (t)

δpj
· pj
xF (t) of each t ∈ [0, 30] seconds for the high TF case and t ∈ [0, 240] seconds

for the low TF case with respect to each parameter. The resulting scaled sensitivities with
respect to the parameters are given in Figure 37 and the scaled sensitivities with respect to
the initial condition are given in Figure 38.
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Figure 37: Absolute scaled parameter sensitivities of the output xF (fibrin concen-
tration) over time for two PT test scenarios for (A) low TF and (B) high
TF. Shown are the sensitivities of the most important parameters as a function of
time for the (A) low TF and (B) high TF scenario.
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Figure 38: Absolute scaled sensitivities of the output xF (fibrin concentration)
with respect to the initial condition for two PT test scenarios for (A)
low TF and (B) high TF. Shown are the sensitivities of the most important initial
conditions as a function of time for (A) the low TF and (B) high TF scenario.

The model reduction based on the sensitivities with respect to the parameters was performed
in a similar manner as the first step of our novel model reduction technique (cf. section 4.5):
First computing the scaled parameter sensitivities for all parameters. Then, we ordered all of
the parameters according to increasing maximal value of their scaled parameter sensitivities.
In the iteration, each parameter according to the previously determined order is considered
for elimination. The parameter is only set to zero if the relative l2-error is below the user-
defined threshold4. The most important parameters according to their maximal value of
the scaled parameter sensitivities for each setting are given in Figure 39. As was already
stated in section 3.1.3 some parameters which were considered important based on the scaled
sensitivities with respect to parameters were eliminated in the process and some parameters
which were considered less important were kept in the reduced model. In Figure 39 the
classification of parameters into eliminated and kept is color coded. For the high TF setting
all parameters from the reduced model are shown, for the low TF case parameters with very
low sensitivity, which are not included in the figure, are kept in the reduced system.

The resulting reduced models are given in Figure 40. All degradation reactions were elimi-
nated from the model in the high TF setting. The similarities between these reduced models
in Figure 40 and the elimination-reduced model in Figure 22 are obvious. This can be
explained by the similarities in the model reduction technique and the fact that the input-
response indices can be derived as the product of two sensitivity coefficients with respect to
the states (cf. section 4.4). The fact that the state variables II, VII, X can be considered to
be constant and thus environmental states do not become obvious with using the sensitivities
with respect to the parameters or initial conditions. Rather based on Figure 38 the state
variables II, VII, X and Fg would have been considered important for the system dynamics.

4To allow for parameter elimination the model was re-parameterised without changing the systems dynamics.
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Important in which sense can not be distinguished since it is not clear how to extend the
impact of state variables on the system dynamics beyond the initial time point.
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Figure 39: Magnitude of the scaled parameter sensitivities of two PT test scenarios
for (A) low TF and (B) high TF. Shown are the sensitivities of the most important
parameters (a forth of all parameters) for (A) the low TF and (B) high TF
scenario. The color coding indicates how the parameter was classified in the
reduction process: kept (red) and eliminated (grey).
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Figure 40: Reduced models for two PT test scenarios based on parameter sensitiv-
ities for (A) low TF and (B) high TF. Shown are the dynamical state variables.
See Figure 6 for a legend of the different arrow types.

In the case of using sensitivity analysis for model reduction not actually the scaled sensitivities
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(cf. Figure 37 and 38) but the reduced models (which are comparable to ones obtained by
our model reduction technique) give insight into the important parts of the system. This
stresses the point that our introduced measure of importance (the ir-index) uses the state
sensitivities in an efficient way to immediately filter the important dynamics.

Proper lumping using a recursive greedy search strategy
In this section, we use proper lumping to reduce the PT test setting for the two settings (low
and high TF). We have used the previously mentioned recursive greedy search strategy [1].
The resulting lumped models are given in Table 9 and Table 10. As with our novel model
order reduction technique in Table 8, one obtains two different reduced models for the different
PT test settings (low and high TF). However, the interpretability of the lumps e.g. xL1 and
xL2 in Table 9 is obscured in contrast to the reduced models in Table 8. Physiologically it
is intuitive that the snake venoms do not play a role for the PT test, they are, however,
included in the lumped state variables. Furthermore, we can not clearly distinguish based on
the automated greedy lumping search why we obtain two different reduced models for the
PT test.

Table 9: Resulting reduced model for the low TF PT test setting obtained by
proper lumping using a recursive greedy search strategy [1] with εrel ≤ 0.2.

Lumped
state
variables

Original state variables

xL1 XII,XI,X,V,VIIa: TF: Xa: TFPI,TAT,FDP,XIII,Pg,PC,VK,VKH2,

VKO,VKp,PS,Pk,AWarf,CWarf,AUC

xL2 XIIa,Xa:Va,D,APC,Tmod, IIa: Tmod,K,CA,AVenom,CVenom,

A_Enox,ENOp,Taipan Venom,AT: III,delay Taipan CMT 1,

delay Taipan CMT 2,AVenom Tiger,CVenom Tiger,AT: III: UFH

xL3 VIII,VIIIa,TFPI

xL4 IX, II

xL5 IXa,XIa,VIIa,Va,Xa: TFPI,XF,XIIIa,P,APC: PS,AT: III: Heparin

xL6 VII

xL7 Xa,VIIa: TF

xL8 IIa

xL9 Fg

xL10 F

xL11 IXa: VIIIa

xL12 TF

xL13 VII: TF
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Table 10: Resulting reduced model for the high TF PT test setting obtained by
proper lumping using a recursive greedy search strategy [1] with εrel ≤ 0.2.

Lumped
state
variables

Original state variables

xL1 XII,VIIIa, IX,XI,X,V, II,VIIa: TF: Xa: TFPI,TAT,FDP,XIII,Pg,PC,

TF,VK,VKH2,VKO,VKp,PS,Pk,AWarf,CWarf,AUC,AT: III,

AT: III: UFH

xL2 XIIa,VIII, IXa,XIa,VIIa,Xa: TFPI,XF,XIIIa,TFPI

xL3 VII,Xa,Va,P, IXa: VIIIa,VII: TF,VIIa: TF

xL4 Xa:Va, IIa

xL5 Fg

xL6 F

xL7 D,APC,Tmod, IIa: Tmod,APC: PS,K,CA,AVenom,CVenom,

AT: III: Heparin,A_Enox,ENOp,Taipan Venom,delay Taipan CMT 1,

delay Taipan CMT 2,AVenom Tiger,CVenom Tiger

Time scale separation - ILDM method
In this section, we use the ILDM method to reduce the blood coagulation model for the PT
test setting. The ILDM method (cf. section 3.1.2) is based on the Jacobian of the system in
a specific state. Usually, the steady state is chosen for the ILDM method. For the PT test
setting the steady state is zero, we have therefore chosen the initial state. We have eliminated
the state variables that were known to be zero for this reduction. The ILDM based on the
Jacobian in the initial state did lead to a resulting reduced model of dimension 45 for the
low TF and no further reduction for the high TF setting.

Using the ILDM based on the Jacobian of the initial state as a subsequent step after our
elimination model reduction step, we are actually able to reduce the system for both high and
low TF case to a system with only one dynamical state variable for the given error tolerance.

We can conclude that ILDM can not be applied to the blood coagulation system, in particular,
the PT test setting without preconditioning. Although highlighting the fact that time scale
separation is a powerful model reduction technique, it can not be used as a single tool for
large-scale models.

Gramian based model reduction - balanced truncation
In this section, we use balanced truncation based on the time-limited empirical gramians (pre-
sented in section 4.1). The time-limited empirical gramians were determined based on ten
perturbations ranging from 50% to 150% of the reference input and initial conditions. An im-
portant prerequisite for the application of the balanced truncation method (cf. section 3.2.2)
is that the system is fully controllable and observable. Unobservable and uncontrollable state
variables can be deleted by identifying zero rows and columns in the empirical controllability
and observability gramian respectively. The minimal system where each state variable is
both controllable as well as observable of the PT test consists of 27 state variables for the
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high TF case and 29 state variables for the low TF setting. Using the time-limited empirical
gramians, we were able to reduce the system to 24 state variables. No further reduction was
possible due to the stiffness of the transformed system leading to unfeasible small step sizes
with an implicit ode solver, such that the integration with ode15s was aborted.

Table 11: Summary of the results from the comparison of using IR based MOR
(cf. section 4.5), sensitivity analysis, proper lumping, ILDM and bal-
anced truncation for model reduction of the blood coagulation for the
PT test setting with different magnitudes of the input.

Model reduction
technique

Dimension of the
reduced model
low TF high TF

IR based MOR (cf. sec-
tion 4.5)

13 6

MOR based on parameter
sensitivity coefficient

18 10

Proper lumping 13 7
ILDM 46 47
Balanced truncation 24 24

In Table 11 the resulting model dimensions obtained from the different model reduction
techniques are summarised. As expected model reduction based on parameter sensitivity
and proper lumping perform best in the context of the PT test setting. Both ILDM and
balanced truncation required preconditioning in terms of removing state variables that are
zero or that are uncontrollable/unobservable respectively. However, the dimension of the
reduced model obtained by balanced truncation is comparable to the dimension obtained by
model reduction based on parameter sensitivity and proper lumping in the low TF setting.
Interestingly there exists no clear difference in terms of dimension of the obtained model from
both ILDM and balanced truncation. This highlights that our introduced model reduction
technique (described in section 4.5) using ir-indices based on the concept of empirical gramian
and incorporating the consideration of environmental state variables as well as approximating
some state variable by their quasi-steady state is a valuable addition in the field of model
order reduction of systems pharmacology/biology models.
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6. Discussion

In this section, we will set the main results of this thesis into a larger context, discuss features,
limitations and give possible extensions for future work.

Local model reduction method
Model reduction techniques are often discussed in terms of ’local’ and ’global’ approaches.
Typically, the connotation with ’local’ is negative, meaning that one should aim for a ’global’
approach (e.g., [31]). We believe, however, that the property of a reduced model being valid
only locally can also be a positive feature, rather than a negative one. To be able to distinguish
different local regimes, our ir-indices are defined with respect to a reference trajectory. It
was illustrated for the PT test that different reference trajectories (resulting from different
magnitudes of the inputs: low vs. high initial TF concentration) can give rise to different
reduced models (cf. Figure 22). Rather than aiming for a single compromise reduced model,
we believe that the difference between the two reduced models is very informative about the
PT test, in particular about its ability to detect (genetic) deficiencies in the factors VIII and
IX. Our results confirm the statement in [14] that only the low TF, but not the high TF
prothrombin time test is sensitive to detecting genetic deficiencies of factors VIII and IX.

Multiple reduced models can also be integrated in a statistical setting. Assume that the model
reduction of a large-scale model of a pharmacologically targeted system results in two different
reduced models, depending on the reference trajectory. In a statistical context like NLME, one
would then aim to estimate parameters based on a mixture modelling approach. One could
further try to identify covariates in the model reduction process that indicate the expected
reduced model. An approach based on a compromise reduced model, however, would most
likely run into parameter identifiability issues—unless additional prior information within a
Bayesian approach is assumed (as in [31]).

Dependence of ir-indices on time interval
The focus of this thesis was on relatively short observation periods for the various application
examples. For applications to chronic progressive diseases, longer time periods are of interest.
Then, slow changes in endogenous or exogenous factors may determine the rate of change
in the system, while such changes are likely to be irrelevant on short time intervals. The
model reduction should be based on a time span that covers the entire disease progression
period. The application of our model reduction technique can then result in two different
outcomes: for the period of chronic progression, the input-response indices of slow-changing
endogenous or exogenous factors become important; or remain unimportant. In the first case,
these factors are considered in the reduced model, while in the second case, these factors are
not included. In the latter situation, either the model does not yet fully account for the
importance of this slow changing factors (indicating that the model should be revised), or
the factors do indeed not play an important role (indicating that clinical expectations might
need to be revised).
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Ranking of state variables according to ir-indices
The proposed model order reduction technique is based on a ranking of the state variables
according to their importance for the input-response setting. The maximal value of the ir-
index was chosen as a summary metric for the ranking. This choice was motived by the fact
that in signalling cascades some state variables are important for very short periods of time
and others are relevant during longer time periods. Therefore if a state variable is important
at some point in time (even, if only for a very brief period of time), we consider it to be
potentially relevant. Alternative metrics to rank state variables, like the AUC (1-norm) of
the ir-index, are possible. In addition to the summary metric, the model reduction process
also depends on the user-defined error tolerance δ (as for any model reduction technique) and
the time span on which the dynamics was considered.

Global search strategies for complex networks are challenging due to the combinatorial ex-
plosion in the number of possibilities, therefore many model reduction approaches are greedy
and recursive: the reduced model at the current step is a reduction of the reduced model
obtained at the previous step. As a consequence, the final result can potentially depend
on the sequence, in which the steps are taken. We showed for the brown snake venom-
fibrinogen system that randomly chosen orders can result in different reduced models (cmp.
Figure 16 with Figure 41). Note that all models are ’valid’ approximations obeying the same
criterion on the relative approximation error. When interpreting different reduced models,
however, this dependence could result in confusion, since different researchers (using differ-
ent algorithms) on the same problem could end up with different models. Our ir-indices
(cf. Figure 19) are indicative for the two different reduced model structures of the brown
snake venom-fibrinogen system since both, the pathway involving the factors P and APC as
well as the pathway involving the factors VIII, IX and X are expected to impact the output
Fg. We further infer that the first pathway is more important during the first 1h after enven-
omation, since in Figure 15, where the indices have been determined up to 1h, factors of the
second pathway do not show up. Only beyond the 1h period, the second pathway becomes
relevant. A purely ’objective’ model reduction criterion in terms of meeting a given threshold
criterion ’randomly’ choses one of the two potential reduced model structures, depending on
the sequence of reduction steps. It does, however, in general not give further information
about alternatives.

Our model order reduction technique versus other model reduction techniques
A central component of our model order reduction approach is the elimination of state
variables—either by completely neglecting them or by considering them as environmental
variables. In [31] it is argued that lumping is more powerful than elimination, with the lat-
ter being almost a special case of lumping. We believe, in contrast, that the elimination of
state variables is a very valuable and efficient model order reduction approach that moreover
reflects biological and experimental expectations. When a complex pathway with multiple
potential inputs and multiple outputs is stimulated by a specific input and analysed in terms
of a specific output, one would expect parts of the pathway to be negligible for the given
input-output relation. These parts correspond to state variables that will be eliminated by
neglecting them. If moreover, the time scale of interest is such that some constituents do not
change in a relevant way, but impact the output, we would expect them to be eliminated by
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considering them as environmental states. Lumping all these state variables into one or more
pseudo-state variables might formally result in the same approximation quality—however the
interpretation of the reduced model will be obscured as was shown in the context of the PT
test in section 5.3. This can also be seen in [40], where after lumping 58 state variables into
a single pseudo-state variable, it is given a-posteriori the interpretation of a specific coagu-
lation factor (namely factor II) that meets the expectations of the authors, but that is not
consistent with the pseudo-state variable originating from 58 state variables of the original
model.

Various other model reduction approaches have been employed for the EGFR system. Ex-
isting reduced models, however, suffer from the loss of the transient output signal [4], high
complexity [79] or heuristic model reduction techniques that are not easily translatable to
other signalling cascades [21]. In addition, reduced models have been proposed by exploiting
the redundancy within the EGFR signalling cascade, i.e., the existence of parallel pathways.
These include the Shc-dependent and Shc-independent pathway as well as signal process-
ing through membrane-bound or internalised receptors. While simply neglecting a parallel
pathway will reduce the order of the model, it might lead to misleading conclusions when
interpreting the full model based on the reduced one. In contrast, our approach maintains
parallel pathways (cf. Figure 33) and is easily applied to other systems biology models. In
addition, our model order reduction technique scales well with the size of the models due
to the usage of the ir-indices to obtain a sequence for the sequential model order reduction
procedure.

Link to sensitivity analysis
The theory of sensitivity analysis is well established; yet its use in model order reduction is
unclear. It has been noted that a reduction based on the importance of states obtained solely
by sensitivity analysis will result in reduced models with low approximation quality [123, 126].
The sensitivity based ir-indices show how the concept of sensitivity coefficients, suitably
expanded, can be leveraged for model reduction.

Leveraging ir-indices for model analysis
Although the ir-indices were particularly developed for our model order reduction approach,
they additionally allow to gain a better understanding of the model dynamics of large-scale
mechanistic models. The ir-indices nicely illustrate how the signal propagates through the
chosen network. This was examplified for the EGFR system, where several studies reported
signalling via the internalised receptor species as being unimportant [79, 112, 55]. The sen-
sitivity based ir-indices revealed, however, that not all of the internalised state variables can
be neglected. For a given maximal relative error, some of the internalised species need to
be considered dynamically or in quasi-steady state, as can be inferred from Table 33. As a
consequence, they enter the differential equations implicitly via algebraic equations (like E∗qss

in eq. (84) entering the eq. for E in (85)). This way, although not explicitly present in the
reduced model, the internalised species indirectly influence the dynamic behaviour.

A detailed study of the EGFR signalling pathway is presented in [55]. The authors analyse,
which molecular species of the complex network do control the ERK-PP output profile. To
this end, they first simplified the extensive reaction scheme given in Figure 4 into a simpler
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textbook type cartoon [55, Fig. 4] using their expert knowledge on the studied system. The
authors then quantified the relevance of reaction processes based on the concept of ‘impact
control coefficients’. Interestingly, our automated model reduction process resulted in a re-
duced model scheme (Figure 33) that has many features in common with their cartoon. In
addition, it also shows informative differences. These include the mentioned relevance of the
Shc-independent pathway.

Future work
There are some important open questions related to our novel approaches that will be subject
to future research.

Approximation error for non-observed states
By construction, only the approximation error of the output variables is controlled during the
model reduction process. We noticed, however, that the approximation error of the remaining
state variables of the reduced model is also small during their time interval of importance (i.e.,
when their input-response index is large). This could potentially be theoretically studied to
see if an a-priori analytical or numerical error bound can be derived based on the ir-indices.
For now, if one needs to control the approximation error of additional state variables, then
theses variables should be included as ’output state variables’.

Using time-limited gramians for model order reduction
The focus in this thesis was the development of a model order reduction technique for systems
pharmacology/biology models. However, in section 4.1, we introduced time-limited empirical
gramians and showed how these could be used for balanced truncation of the nonlinear RC
ladder - a benchmark model from the field of control theory. For this numerical example
we were able to demonstrate the superiority of the time-limited empirical gramians over
(i) the analytical gramians based on linearisation in the steady state and (ii) the infinite
time empirical gramians in the context of balanced truncation. To further demonstrate the
usefulness of the time-limited empirical gramians, they should be applied to a wider range of
control theoretic model systems.

Importance of state variables during specific time windows
The ir-indices indicate that state variables are only important during different time windows
(cf. section 5.1.1). Thus a possible extension of the model order reduction technique is to
obtain a set of reduced models for a specific discretisation of the time interval. In [104] such
an approach was introduced based on trajectory piecewise-linearisation and Krylov methods
for the model order reduction of nonlinear systems dynamics. In contrast the extension of
our model order reduction technique would result in nonlinear models for each time window
and, thus, more accurately approximate the nonlinear dynamics.
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Generalising ir-indices to account for parameter uncertainty and time-dependent
inputs
In this thesis, we introduced the ir-index for a fixed set of model parameter values of the
large-scale model and for an input that is restricted to perturbations at the initial time only.
Both assumptions can be relaxed. Uncertainty and variability in parameter values can be
accounted for by considering different reference trajectories. Thus an important next step
for the model order reduction technique based on the input-response indices is to show how
robust the reduced model is with respect to parameter perturbations (region of the parameter
space). The extension of the ir-indices for time-dependent inputs u(·) is also possible. In this
case, the system equation in (73) changes to dx

dt (t) = f(x(t), p) + g(x(t))u(t) with a function
g : Rn → Rn×s, where s denotes the number of inputs into the system. In this notation the
link to control theory becomes even more apparent.

Applicability of mechanistic PD model for population analysis of clinical data
We successfully extracted mechanistic PD models for both warfarin and rivaroxaban (cf. Fig-
ure 25 and 28). The emphasis was set on obtaining reduced models retaining the physiological
interpretability. As a logical next step both the large-scale mechanistic model as well as the
model order reduction technique need to be extended (by allowing for parameter perturba-
tions). Into the large-scale mechanistic model covariates as well as interindividual variability
should be incorporated. Then the extracted minimal mechanistic PD models can be em-
ployed for population analysis of clinical data. Additionally, the reduction process offers a
systematic means to derive the covariate relationship for the mechanistic PD model based
on the integration of the covariates in the large-scale mechanistic model. In contrast to the
empirical PD models, where covariates are mainly included based on statistical significance,
this will allow for a physiological interpretation of the covariates in the reduced model. In
the context of physiologically based pharmacokinetics models an approach already exists that
employs lumping to obtain mechanistically justified covariate models [57].

Dependency on the chosen user-defined error tolerance
We have shown in the context of the brown snake venom-fibrinogen system that the reduced
model was unique for a given user-defined error tolerance when considered on a short time
span (activation of the cascade), while there were two competing models on the longer time
span (activation and recovery of the cascade). This allows to gain additional insight into the
role of the different constituents of the signalling pathway (like feedback loops). However, a
more in depth analysis of the entirety of the reduced models for large-scale systems pharma-
cology/biology models, including its dependency on the chosen user-defined error tolerance
δ should be subject to future research. In this context the usage of artificial intelligence
approaches might be advantageous.

Extension from deterministic to stochastic model dynamics
In this thesis, we introduced the ir-index for large-scale models based on ordinary differential
equations. As possible future extension, the ir-indices could be developed for models based
on stochastic differential equations.
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7. Conclusion

There is a clear need for predictive rather than descriptive modelling approaches – mech-
anistic models as opposed to empirical models – in drug development [115]. A growing
understanding of complex processes in biology has led to large-scale mechanistic models of
pharmacologically relevant processes. While these models are designed to study the impact
of various inputs or stimuli on the system behaviour, the focus in pharmacology is often on
describing the relationship between a specific input (e.g administration of a drug) to specific
output (e.g. drug effect, drug response, surrogate marker). These particular questions aris-
ing in drug development can be set into a control theoretical framework and allowed us to
develop a novel simple and automated model order reduction algorithm based on the intro-
duction of a novel time- and state-dependent quantity called the input-response index. The
method has been particularly tailored for systems pharmacology models and thus maintains
the interpretability of the parameters and state variables in the reduced model. For the first
time, we show how sensitivity analysis can be systematically used for efficient model order
reduction. Rather than relying on a single reduction technique, our proposed model reduc-
tion approach leverages conservation laws, time-scale separation (QSSA) and time-limited
controllability/observability ideas. We can conclude that this work presents a step towards
the usage of mechanistic pharmacodynamic models in the context of population analysis of
clinical data and thus can provide model continuity from preclinical or early clinical devel-
opment to the later stages of drug development. All in all, we believe that the proposed
concept of input-response indices and the thereon based introduced model order reduction
technique significantly broaden our means to analyse and understand complex systems phar-
macology/biology models.
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I. Appendix

I.1. Elimination reduced model for the fibrinogen-brown snake venom
setting

Differential equations for the elimination-reduced 8-state variable model of the
snake venom system

The model equations for the elimination-reduced model are:

dxred,IIa

dt
= VXa:Va,IIa

xred,CVenom

xred,CVenom +KXa:Va,IIa
· xenv,II

− (cIIa,Tmodxenv,Tmod + dIIa) · xred,IIa

dxred,Fg

dt
= pFg −

(
VIIa,Fg

xred,IIa

xred,IIa +KIIa,Fg

+VP,Fg
xred,P

xred,P +KP,Fg
+ dFg

)
· xred,Fg

dxred,P

dt
=

(
VIIa,P

xred,IIa

xred,IIa +KIIa,P

+VAPC:PS,P
xred,APC:PS

xred,APC:PS +KAPC:PS,P

)

· xenv,Pg − dP · xred,P

dxred,APC

dt
= xenv,PC · VIIa:Tmod,APC

· xred,IIa:Tmod

xred,IIa:Tmod +KIIa:Tmod,APC

− (cAPC,PS · xenv,PS + dAPC) · xred,APC

dxred,APC:PS

dt
= cAPC,PS · xenv,PS · xred,APC

− dAPC:PS · xred,APC:PS

dxred,IIa:Tmod

dt
= cIIa,Tmod · xred,IIa · xenv,Tmod

− dIIa:Tmod · xred,IIa:Tmod

dxred,AVenom

dt
= −kabs · xred,AVenom

dxred,CVenom

dt
= kabs · xred,AVenom

− dCVenom · xred,CVenom

All parameter values can be found in [130, Suppl. Fig. 2] and [39, Tab. 1&Tab. 2]. The
variable xenv,II is equal to the initial value of II (xII(0)). This holds for all environmental
state variables. All initial conditions can be found in [130, Suppl. Fig. 3].
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Figure 41: Alternative elimination-reduced model of the brown snake venom-
fibrinogen system. Model reduction based on randomly chosen ranking of state
variables (based on run no 2). Shown are the 12 dynamical state variables. The
environmental state variables (indicated by ’*’) are II, V, VIII, X and XI.

Table 12: Parameter values of the elimination-reduced and lumped 5-state vari-
able model of the brown snake venom-fibrinogen system. Explanation of
notation (by examples): VIIa,P represents maximal reaction velocity and KIIa,P the
concentration of IIa were half the maximal velocity is obtained (both are Michaelis-
Menten constants). In both cases, P represents the factor which is being activated
by this reaction. A degradation rate constants is denoted by dP and production
rate constants by pIIa. A constant cIIa,Tmod denotes a reaction rate constant for
complex formation.

Parameter Value Unit Reference
VXa:Va,IIa 100 1/h [130, Suppl. Fig. 2]
KXa:Va,IIa 10 nM [130, Suppl. Fig. 2]
VIIa:Tmod,APC 7 1/h [130, Suppl. Fig. 2]
KIIa:Tmod,APC 1 nM [130, Suppl. Fig. 2]
VIIa,P 7 1/h [130, Suppl. Fig. 2]
KIIa,P 5000 nM [130, Suppl. Fig. 2]
VAPC:PS,P 2 1/h [130, Suppl. Fig. 2]
KAPC:PS,P 1 nM [130, Suppl. Fig. 2]
VIIa,Fg 21000 1/h [39, Tab. 2]
KIIa,Fg 30000 nM [39, Tab. 2]
VP,Fg 500 1/h [39, Tab. 2]
KP,Fg 500 nM [39, Tab. 2]
dFg 0.032 1/h [130, Suppl. Fig. 2]
dP 20 1/h [130, Suppl. Fig. 2]
dAPC:PS 20 1/h [130, Suppl. Fig. 2]
dAPC 20.4 1/h [130, Suppl. Fig. 2]
dIIa:Tmod 20 1/h [130, Suppl. Fig. 2]
dIIa 67.4 1/h [130, Suppl. Fig. 2]
dCVenom 3.5 1/h [39, Tab. 1]
pFg 286.256 nM/h [130, Suppl. Fig. 2]
cAPC,PS 2 1/(nM · h) [130, Suppl. Fig. 2]
cIIa,Tmod 2 1/(nM · h) [130, Suppl. Fig. 2]
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Table 13: Ordering of the state variables based on the input-response indices for
the brown snake venom-fibrinogen system up to 1h. State variables not
included in the table had an input-response index of zero.

State
variable

||iri||∞ State
variable

||iri||∞

1 AVenom 4.87e4 19 F 2.09e2
2 Fg 2.48e4 20 II 1.21e2
3 CVenom 1.80e4 21 PC 9.87e1
4 P 1.57e4 22 XI 1.39e1
5 APC:PS 1.08e4 23 IX 6.82
6 IIa:Tmod 1.07e4 24 X 6.44
7 IIa 6.99e3 25 PS 3.94
8 APC 2.03e3 26 XIIIa 2.22
9 XIa 1.65e3 27 TFPI 1.05
10 Xa:Va 1.56e3 28 XF 0.19
11 IXa:VIIIa 1.51e3 29 XIII 0.19
12 Xa 1.31e3 30 D 0.18
13 IXa 1.17e3 31 AUC 0.18
14 Va 1.17e3 32 FDP 0.18
15 V 6.73e2 33 TAT 0.18
16 VIIIa 3.30e2 34 VII 0.18
17 Pg 2.58e2 35 VIIa 0.18
18 Tmod 2.36e2 36 Xa:TFPI 0.18
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Figure 42: Comparison of fibrinogen concentration-time profile based on 62-state vari-
able model (solid) and the model with knock-out of X and V (dot-dashed), knock-
out of V (dashed) and knock-out of Pg, the inactive form of factor P (dotted).
Note that the larger impact of a knock-out of V is due the fact that in this case,
the impact of the activated form of factor X changes (due to the lacking complex
formation of Xa and Va).
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Table 14: Relative error for the 8-state variable and the 12-state variable model on
the interval [0, 40]h. Given is the squared relative error for the output fibrinogen
based on the 62-state variable and the reduced models (Figure 16 and Figure 41) for
different time intervals of interest (pre nadir, post nadir and for the whole interval).

Reduced model Squared relative
error pre nadir

Squared relative
error post nadir

Squared relative
error for [0, 40h]

8-state variable model
depicted in Figure 16

3.78e-6 0.0022 0.0022

12-state variable model
depicted in Figure 41

0.0002 0.002 0.0022

Table 15: Order of the elimination-reduced model obtained by varying the user-
defined error tolerance for the brown snake venom-fibrinogen system for
the first hour after envenomation. Given are the dynamical state variables
and the environmental state variables for each of the obtained elimination-reduced
model for the different user-defined error tolerance.

Error
toler-
ance

Order Dynamical state variables Environmental
state variables

0.001 23 APC, APC:PS, AVenom, CVenom, F, Fg,
II, IIa, IIa:Tmod, IXa, IXa:VIIIa, P, PC,
Pg, Tmod, V, VIII, VIIIa, Va, XI, XIa, Xa,
Xa:Va

VKH2, TFPI, PS,
X, IX

0.01 16 APC, APC:PS, AVenom, CVenom, Fg, IIa,
IIa:Tmod, IXa, IXa:VIIIa, P, VIII, VIIIa,
Va, XIa, Xa, Xa:Va

TFPI, PS, X, IX,
XI, PC, II, Tmod,
Pg, V

0.1 8 APC, APC:PS, AVenom, CVenom, Fg, IIa,
IIa:Tmod, P

II, Pg, PC, Tmod,
PS
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Figure 43: Concentration-time profiles of all state variables of the blood co-
agulation predicted by the original 62-state variable model excluding those
concentration-time profiles already given in Figure 15B.
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Figure 44: Comparison of concentration-time profiles for dynamical state vari-
ables of the elimination-reduced model (given in Figure 16) based on
62-state variable model (solid) and the elimination-reduced 8-state variable model
(dashed). For AVenom and CVenom the dashed and solid line coincide.

I.2. Elimination reduced model for the PT test

The model equations for the 7-state variable elimination-reduced model for the high TF are:

dxred,IIa

dt
= VXa,IIa

xred,Xa

xred,Xa +KXa,IIa
· xenv,II − dIIa · xred,IIa

dxred,Fg

dt
= −VIIa,Fg

xred,IIa

xred,IIa +KIIa,Fg
· xred,Fg − dFg · xred,Fg

dxred,F

dt
= VIIa,Fg

xred,IIa

xred,IIa +KIIa,Fg
· xred,Fg − dF · xred,F

dxred,Xa

dt
= VVIIa:TF,X

xred,VII:TF

xred,VII:TF +KVII:TF,X
· xenv,X − cTFPI,Xa · xenv,TFPI · xred,Xa

− dXa · xred,Xa

dxred,VII:TF

dt
= cVII,TF · xred,TF · xenv,VII −

(
VXa,VII:TF

xred,Xa

xred,Xa +KXa,VII:TF

+VTF,VII:TF
xred,TF

xred,TF +KTF,VII:TF

)
· xred,VII:TF − dVII:TF · xred,VII:TF

dxred,VIIa:TF

dt
=

(
VXa,VII:TF

xred,Xa

xred,Xa +KXa,VII:TF
+ VTF,VII:TF

xred,TF

xred,TF +KTF,VII:TF

)
· xred,VII:TF

− dVIIa:TF · xred,VIIa:TF

dxred,TF

dt
= −cVII,TF · xred,TF · xenv,VII − dTF · xred,TF

All parameter values and initial conditions for the state variables can be found in [130,
Suppl.Fig. 2&Fig. 3]. The state variable xenv,II is equal to the initial value of II (xII(0)).
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This holds for all environmental state variables.
The model equations for the 13-state variable elimination-reduced model for the low TF are:

dxred,IIa

dt
= VXa,IIa

xred,Xa

xred,Xa +KXa,IIa
· xenv,II − dIIa · xred,IIa

dxred,Fg

dt
= −VIIa,Fg

xred,IIa

xred,IIa +KIIa,Fg
· xred,Fg − dFg · xred,Fg

dxred,F

dt
= VIIa,Fg

xred,IIa

xred,IIa +KIIa,Fg
· xenv,Fg − dF · xred,F

dxred,Xa

dt
=

(
VVIIa:TF,X

xred,VII:TF

xred,VII:TF +KVII:TF,X
+ VIXa,X

xred,IXa

xred,IXa +KIXa,X

+VIXa:VIIIa,X
xred,IXa:VIIIa

xred,IXa:VIIIa +KIXa:VIIIa,X

)
· xenv,X

− cTFPI,Xa · xenv,TFPI · xred,Xa − dXa · xred,Xa

dxred,VII:TF

dt
= cVII,TF · xred,TF · xenv,VII −

(
VXa,VII:TF

xred,Xa

xred,Xa +KXa,VII:TF

+VTF,VII:TF
xred,TF

xred,TF +KTF,VII:TF

)
· xred,VII:TF − dVII:TF · xred,VII:TF

dxred,VIIa:TF

dt
=

(
VXa,VII:TF

xred,Xa

xred,Xa +KXa,VII:TF
+ VTF,VII:TF

xred,TF

xred,TF +KTF,VII:TF

)
· xred,VII:TF

− dVIIa:TF · xred,VIIa:TF

dxred,TF

dt
= −cVII,TF · xred,TF · xenv,VII − dTF · xred,TF

dxred,VIII

dt
= −VIIa,VIII

xred,IIa

xred,IIa +KIIa,VIII
· xred,VIII − dVIII · xred,VIII

dxred,VIIIa

dt
= VIIa,VIII

xred,IIa

xred,IIa +KIIa,VIII
· xred,VIII − (cIXa,VIIIa · xred,IXa + dVIIIa) · xred,VIIIa

dxred,IXa

dt
= VVIIa:TF,IX

xred,VIIa:TF

xred,VIIa:TF +KVIIa:TF,IX
· xenv,IX − (cIXa,VIIIa · xred,VIIIa + dIXa) · xred,IXa

dxred,IXa:VIIIa

dt
= cIXa,VIIIa · xred,IXa · xred,VIIIa − dIXa:VIIIa · xred,IXa:VIIIa

dxred,Va

dt
= VIIa,V

xred,IIa

xred,IIa +KIIa,V
· xenv,V − dIXa:VIIIa · xred,Va

dxred,Xa:Va

dt
= cXa,Va · xred,Xa · xred,Va − dXa:Va · xred,Xa:Va

All parameter values and initial conditions for the state variables can be found in [130,
Suppl.Fig. 2&Fig. 3]. The state variable xenv,II is equal to the initial value of II (xII(0)).
This holds for all environmental state variables.
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I.3. Sensitivity input-response indices for the warfarin-fibrin system for
varying time of blood withdrawal TBlood

TBlood = 96 h
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Figure 45: Sensitivity based ir-indices for the warfarin-fibrin system during the
initiation of warfarin therapy. Time of blood withdrawal was chosen to be
TBlood = 96 h. Shown are the sensitivity based ir-indices for the most important
state variables of the (A) in vivo and (B) in vitro parts under warfarin therapy.
For better readability, the ir-indices were shown for in vivo and in vitro part in two
different panels. Sensitivity based ir-indices not shown are below 2 in magnitude.
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Figure 46: Sensitivity based ir-indices for the warfarin-fibrin system during the
maintance phase of warfarin therapy. Time of blood withdrawal was chosen
to be TBlood = 240 h. Shown are the sensitivity based ir-indices for the most
important state variables of the (A) in vivo and (B) in vitro parts under warfarin
therapy. For better readability, the ir-indices were shown for in vivo and in vitro
part in two different panels. Sensitivity based ir-indices not shown are below 1 in
magnitude.
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Comparison of warfarin plasma concentrations predicted by the empirical PKPD [45] and

mechanistic model [130]
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Figure 47: Comparison of warfarin plasma concentrations predicted by the empir-
ical PKPD [45] and mechanistic model [130] Warfarin plasma concentration
given for warfarin therapy of 4 mg racemic warfarin dose.
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I.4. Sensitivity input-response indices of the EGF-ERK-PP signalling
cascade

Table 16: Classification of state variables of the EGFR system based on their ir-
indices. State variables were classified as dynamic (dyn); environmental (env);
neglected (neg); in quasi-steady state (qss), or implicitly determined via conserva-
tion laws (con). For details, see section 5.2.1. For any complex with a phosphatase,
we (as others) used the abbreviation P’ase for Phosphatase.

d
yn

en
v

n
eg

qs
s

co
n

State variable
x AUC ERK-PP

x EGF
x EGFR

x EGFRi
x EGFRideg

x EGF-EGFR
x (EGF-EGFR)2
x (EGF-EGFR*)2
x (EGF-EGFR*)2-GAP

x (EGF-EGFR*)2-GAP-Grb2
x (EGF-EGFR*)2-GAP-Grb2-Prot
x (EGF-EGFR*)2-GAP-Grb2-Sos
x (EGF-EGFR*)2-GAP-Grb2-Sos-ERK-PP
x (EGF-EGFR*)2-GAP-Grb2-Sos-Prot

x (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP
x (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP-Prot

x (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP
x (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP-Prot

x (EGF-EGFR*)2-GAP-Grb2-Sosdeg

x (EGF-EGFR*)2-GAP-Shc
x (EGF-EGFR*)2-GAP-Shc*

x (EGF-EGFR*)2-GAP-Shc*-Grb2
x (EGF-EGFR*)2-GAP-Shc*-Grb2-Prot

x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos
x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-ERK-PP

x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Prot
x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP

x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP-Prot
x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP
x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP-Prot

x (EGF-EGFR*)2-GAP-Shc*-Grb2-Sosdeg

x EGF-EGFRi
x (EGF-EGFRi)2

Table is continued on next page
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Table 16 – cont.

d
yn

en
v

n
eg

qs
s

co
n

State variable
x (EGF-EGFRi*)2
x (EGF-EGFRi*)2-GAP
x (EGF-EGFRi*)2-GAP-Grb2
x (EGF-EGFRi*)2-GAP-Grb2-Sos

x (EGF-EGFRi*)2-GAP-Grb2-Sos-ERKi-PP
x (EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP
x (EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP

x (EGF-EGFRi*)2-GAP-Grb2-Sos-Rasdeg

x (EGF-EGFRi*)2-GAP-Grb2-Sosdeg

x (EGF-EGFRi*)2-GAP-Grb2deg

x (EGF-EGFRi*)2-GAP-Shc
x (EGF-EGFRi*)2-GAP-Shcdeg

x (EGF-EGFRi*)2-GAP-Shc*
x (EGF-EGFRi*)2-GAP-Shc*-Grb2

x (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos
x (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-ERKi-PP

x (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP
x (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP

x (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Rasdeg

x (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sosdeg

x (EGF-EGFRi*)2-GAP-Shc*-Grb2deg

x (EGF-EGFRi*)2-GAPdeg

x (EGF-EGFRi*)2,deg

x EGFi
x EGFideg

x ERK
x ERK-MEK-PP

x ERK-P
x ERK-PP
x ERK-PP-P’ase3
x ERK-P-MEK-PP
x ERK-P-P’ase3

x ERKi-MEKi-PP
x ERKi-P
x ERKi-PP
x ERKi-PP-P’ase3i
x ERKi-P-MEKi-PP
x ERKi-P-P’ase3i

x GAP
x Grb2

Table is continued on next page
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Table 16 – cont.

d
yn

en
v

n
eg

qs
s

co
n

State variable
x Grb2-Sos
x MEK
x MEK-P
x MEK-PP

x MEK-PP-P’ase2
x MEK-P-P’ase2

x MEK-P-Raf*
x MEK-Raf*

x MEKi-P
x MEKi-PP
x MEKi-PP-P’ase2i
x MEKi-P-P’ase2i
x MEKi-P-Rafi*
x MEKi-Rafi*

x Phosphatase1 (P’ase1)
x Phosphatase2 (P’ase2)

x Phosphatase3 (P’ase3)
x Prot

x Proti
x Raf

x Raf-Ras-GTP
x Raf*

x Raf*-P’ase
x Rafi-Rasi-GTP
x Rafi*
x Rafi*-P’ase

x Ras-GDP
x Ras-GTP
x Ras-GTP*

x Rasi-GTP
x Rasi-GTP*
x Shc

x Shc*
x Shc*-Grb2

x Shc*-Grb2-Sos
x Sos

x Sos-ERK-PP
x Sos-ERKi-PP
x Sosi

28 3 39 34 8 Sum
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Table 17: Modularisation of the state variables of the EGFR system adapted from
existing modularisation in literature [132, 4, 79, 21] . Note that state variables can
belong to more than one module. The modularisation is introduced to display the
sensitivity based ir-indices into meaningful groups in Figs. 48-56.

Module name Module state variables
1 - EGF and
EGFR

EGF, EGFR, EGF-EGFR, (EGF-EGFR)2, (EGF-EGFR*)2,
EGFRi, EGFRideg, EGFi, EGF-EGFRi, (EGF-EGFRi)2,
(EGF-EGFRi*)2, (EGF-EGFRi*)2deg, EGFideg

2a - Pathway
without SHC
(membrane forms)

(EGF-EGFR*)2-GAP, (EGF-EGFR*)2-GAP-Grb2,
(EGF-EGFR*)2-GAP-Grb2-Prot,
(EGF-EGFR*)2-GAP-Grb2-Sos,
(EGF-EGFR*)2-GAP-Grb2-Sos-Prot,
(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP, (EGF-EGFR*)2-GAP-
Grb2-Sos-Ras-GTP, (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP-
Prot, (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP-Prot, (EGF-
EGFR*)2-GAP-Grb2-Sos-ERK-PP, (EGF-EGFR*)2-GAP-Grb2-
Sosdeg

2b - Pathway
without SHC
(internalised
forms)

(EGF-EGFRi*)2-GAP, (EGF-EGFRi*)2-GAP-Grb2,
(EGF-EGFRi*)2-GAP-Grb2-Sos,
(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP, (EGF-EGFRi*)2-GAP-
Grb2-Sos-Ras-GTP, (EGF-EGFRi*)2-GAP-Grb2-Sos-ERKi-PP,
(EGF-EGFRi*)2-GAP-Grb2-Sosdeg

3a - Pathway
including SHC
(membrane forms)

(EGF-EGFR*)2-GAP, Shc, Shca, Shca-Grb2,
Shca-Grb2-Sos, (EGF-EGFR*)2-GAP-Shc,
(EGF-EGFR*)2-GAP-Shca, (EGF-EGFR*)2-GAP-Shca-Grb2,
(EGF-EGFR*)2-GAP-Shca-Grb2-Prot, (EGF-EGFR*)2-GAP-
Shca-Grb2-Sos, (EGF-EGFR*)2-GAP-Shca-Grb2-Sos-Prot, (EGF-
EGFR*)2-GAP-Shca-Grb2-Sos-Ras-GDP, (EGF-EGFR*)2-GAP-
Shca-Grb2-Sos-Ras-GTP, (EGF-EGFR*)2-GAP-Shca-Grb2-Sos-
Ras-GDP-Prot, (EGF-EGFR*)2-GAP-Shca-Grb2-Sos-Ras-GTP-
Prot, (EGF-EGFR*)2-GAP-Shca-Grb2-Sos-ERK-PP, (EGF-
EGFR*)2-GAP-Shca-Grb2-Sosdeg

3b - Pathway
including SHC
(internalised
forms)

(EGF-EGFRi*)2-GAP-Shc, (EGF-EGFRi*)2-GAP-Shca,
(EGF-EGFRi*)2-GAP-Shca-Grb2,
(EGF-EGFRi*)2-GAP-Shca-Grb2-Sos, (EGF-EGFRi*)2-GAP-Shca-
Grb2-Sos-Ras-GDP, (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos-Ras-
GTP, (EGF-EGFRi*)2-GAP-Shca-Grb2-Sos-ERKi-PP

4 - State variables
common to both
pathways

Prot, Proti, GAP, Grb2, Sos, Sosi, Grb2-Sos,
Sos-ERK-PP, Sos-ERKi-PP

Table is continued on next page
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Table 17 – cont.
Module name Module state variables
5 - Ras and Raf Ras-GTP, Ras-GDP, Raf, Raf-Ras-GTP, Ras-GTP*, Raf*,

Raf*-Pase, Phosphatase1, Rasi-GTP, Rafi-Rasi-GTP,
Rasi-GTPa, Rafia, Rafi*-Pase

6 - MEK MEK, MEK-Raf*, MEK-P, MEK-P-Raf*, MEK-PP,
MEK-PP-Pase2, Phosphatase2, MEK-P-Pase2,
MEKi-Rafi*, MEKi-P, MEKi-P-Rafi*, MEKi-PP,
MEKi-PP-Pase2i, MEKi-P-Pase2i

7 - ERK ERK, ERK-MEK-PP, ERK-P, ERK-P-MEK-PP,
ERK-PP, Phosphatase3, ERK-PP-Pase3, ERK-P-Pase3,
ERKi-P, ERKi-MEKi-PP, ERKi-P-MEKi-PP, ERKi-PP,
ERKi-PP-Pase3i, ERKi-P-Pase3i

1 - EGF and EGFR module
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Figure 48: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘EGF and EGFR’ module (see Table 17) on the
time interval [0, 5]min (inset: [0, 100]min): concentration-time profiles (A); input-
response (B), controllability (C) and observability indices (D).
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2a - Pathway without SHC (membrane forms)
(A) (B)

(C) (D)

0 1 2 3 4 5
0

100

200

300

400

500

t[min]

M
ol
ec
u
le
s/
ce
ll

system dynamics

(EGF-EGFR*)2-

GAP

(EGF-EGFR*)2-

GAP-Grb2

(EGF-EGFR*)2-
GAP-Grb2-Prot

(EGF-EGFR*)2-
GAP-Grb2-Sos

(EGF-EGFR*)2-

GAP-Grb2-Sos-
Prot

(EGF-EGFR*)2-

GAP-Grb2-Sos-
Ras-GDP

(EGF-EGFR*)2-
GAP-Grb2-Sos-

Ras-GTP

(EGF-EGFR*)2-
GAP-Grb2-Sos-

Ras-GDP-Prot

(EGF-EGFR*)2-

GAP-Grb2-Sos-
Ras-GTP-Prot

(EGF-EGFR*)2-
GAP-Grb2-Sos-

ERK-PP

(EGF-EGFR*)2-
GAP-Grb2-Sosdeg

0 50 100
0

200

400

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·109

t∗[min]

ir
i(
t∗
)

input-response indices

0 50 100
0

0.5

1

1.5

2
·109

0 1 2 3 4 5
0

1

2

3

4

5
·108

t∗[min]

C i
(t

∗ )

controllability indices

0 50 100
0

2

4

·108

0 1 2 3 4 5
0

1

2

3

4

5

6

7

t∗[min]

O
i(
t∗
)

observability indices

0 50 100
0

2

4

6

Figure 49: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘Pathway without SHC (membrane forms)’ module
(see Table 17) on the time interval [0, 5]min (inset: [0, 100]min): concentration-
time profiles (A); ir- (B), controllability (C) and observability indices (D).

2b - Pathway without SHC (internalised forms)
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Figure 50: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘Pathway without SHC (internalised forms)’ mod-
ule (see Table 17) on the time interval [0, 5]min (inset: [0, 100]min): concentration-
time profiles (A); input-response (B), controllability (C) and observability indices
(D).
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3a - Pathway including SHC dynamic (membrane forms)
(A) (B)
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Figure 51: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘Pathway with SHC (membrane forms)’ module
(see Table 17) on the time interval [0, 5]min (inset: [0, 100]min): concentration-
time profiles (A); input-response (B), controllability (C) and observability indices
(D).

3b - Pathway including SHC (internalised forms)
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Figure 52: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘Pathway with SHC (internalised forms)’ module
(see Table 17) on the time interval [0, 5]min (inset: [0, 100]min): concentration-
time profiles (A); input-response (B), controllability (C) and observability indices
(D).
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4 - State variables common to both pathways
(A) (B)
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Figure 53: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘State variables common to both pathways’ module
(see Table 17) on the time interval [0, 5]min (inset: [0, 100]min): concentration-
time profiles (A); input-response (B), controllability (C) and observability indices
(D).
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Figure 54: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘Ras and Raf’ module (see Table 17) on the time inter-
val [0, 5]min (inset: [0, 100]min): concentration-time profiles (A); input-response
(B), controllability (C) and observability indices (D).
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6 - MEK module
(A) (B)

(C) (D)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
·107

t[min]

M
ol
ec
u
le
s/
ce
ll

system dynamics

MEK
MEK-Raf*
MEK-P
MEK-P-Raf*
MEK-PP
MEK-PP-Pase2
Phosphatase2
MEK-P-Pase2
MEKi-Rafi*
MEKi-P
MEKi-P-Rafi*
MEKi-PP
MEKi-PP-Pase2i
MEKi-P-Pase2i

0 50 100
0

1

2

·107

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·1010

t∗[min]

ir
i(
t∗
)

input-response indices

0 50 100
0

0.5

1

1.5

2
·1010

0 1 2 3 4 5
0

2

4

6

8

·1011

t∗[min]

C i
(t

∗ )

controllability indices

0 50 100
0

2

4

6

8

·1011

0 1 2 3 4 5
0

1

2

3

4

5

t∗[min]

O
i(
t∗
)

observability indices

0 50 100
0

2

4

Figure 55: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘MEK’ module (see Table 17) on the time interval
[0, 5]min (inset: [0, 100]min): concentration-time profiles (A); input-response (B),
controllability (C) and observability indices (D).
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Figure 56: Concentration-time profiles, input-response, controllability and observ-
ability indices of the ‘ERK’ module (see Table 17) on the time interval
[0, 5]min (inset: [0, 100]min): concentration-time profiles (A); input-response (B),
controllability (C) and observability indices (D).
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