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Multivariate chemometrics as a key 
tool for prediction of K and fe in a 
diverse German agricultural soil-set 
using eDXRf
Dominique Büchele1,2*, Madlen chao1,2, Markus ostermann1, Matthias Leenen3 & ilko Bald1,2

Within the framework of precision agriculture, the determination of various soil properties is moving 
into focus, especially the demand for sensors suitable for in-situ measurements. energy-dispersive 
X-ray fluorescence (EDXRF) can be a powerful tool for this purpose. In this study a huge diverse soil 
set (n = 598) from 12 different study sites in Germany was analysed with EDXRF. First, a principal 
component analysis (PCA) was performed to identify possible similarities among the sample set. 
Clustering was observed within the four texture classes clay, loam, silt and sand, as clay samples 
contain high and sandy soils low iron mass fractions. Furthermore, the potential of uni- and multivariate 
data evaluation with partial least squares regression (PLSR) was assessed for accurate determination 
of nutrients in German agricultural samples using two calibration sample sets. Potassium and iron were 
chosen for testing the performance of both models. Prediction of these nutrients in 598 German soil 
samples with EDXRF was more accurate using PLSR which is confirmed by a better overall averaged 
deviation and PLSR should therefore be preferred.

In recent years, precision agriculture has become increasingly important especially for targeted fertilisation 
due to cost reduction, reduction of environmental pollution and crop yield increase due to rising population1–3. 
Adjusted fertilisation highly depends on the requirements of the plant and knowledge of different soil proper-
ties like texture, organic and inorganic carbon content, pH and elemental composition4–7. However, given that 
the distribution of elements within a field varies widely, site-specific optimised introduction of plant essential 
macro and micro nutrients is required8. As conventional routine analysis for determination of nutrients in soils, 
wet digestion followed by measurement with inductively-coupled plasma optical emission spectrometry/-mass 
spectrometry (ICP-OES/ICP-MS) is used9,10. Disadvantages such as time-consuming sample preparation, pos-
sible contamination of chemical reagents and loss of volatile analytes through heating the sample solution may 
occure11,12. It has to be considered that XRF provides total contents while the plant can only absorb plant available 
nutrients. Especially for precision agriculture where it is helpful to combine many sensors for cultivation soils 
more effectively and sustainably and to improve soil functions, a combination of XRF with Raman spectroscopy 
could be considered. Since Raman spectroscopy identifies the compounds of the element, it is possible to estimate 
the plant available amount of nutrients with help of the total content. Especially for fast online measurements, a 
combination of both methods would be an improvement.

X-Ray fluorescence methods for detection of element specific radiation are already known as a fast, 
non-destructive multi-element spectroscopic technique and have been widely applied in a variety of fields, 
such as agricultural13 and geological14 applications or environmental12,15 monitoring. EDXRF has already been 
used for the analysis of trace elements as well as major and minor nutrients16 in soils from different countries 
such as contaminated soils in the UK17, clayey and sandy soils from Denmark18 or heavy trace elements in soils 
from Australia19 with univariate calibration. Univariate data evaluation uses only one variable of the spectra and 
doesn´t take any causes or relationships into account. Regarding the complex soil matrix, chemometric methods 
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based on mathematical models considering the entire spectral information and therefore more variables, offer 
another way to traditional univariate regression and have already been used for optical spectroscopic analysis20,21. 
Multivariate data analysis is especially suitable for large data sets as they occur during sampling of arable land. 
PLSR as one chemometric approach provides the opportunity to accomplish a multivariate regression relation-
ship and has also the ability to overcome matrix effects11.

Recent papers have shown that multivariate data analysis can also be applied to XRF for example for the clas-
sification of different types of Argentine soils10, determination of heavy metal concentrations22 or the element 
content in soils from India8, Northern Ireland23 or France24. For calibration with chemometric tools, Kaniu et al. 
has tested the performance of PLSR and artificial neural network (ANN) in combination with energy-dispersive 
X-ray fluorescence and scattering spectroscopy for soil quality assessment in Kenja11,25,26. It was also possible to 
predict the sand or clay content with chemometric tools such as PLSR27,28. Prior studies have treated soils from 
different countries all over the world with small sample sizes or sample sets from one or two study sites, but less 
work has been carried out for studying such a large selection of German agricultural soils as presented in this 
paper.

From 12 different study sites all across Germany, 598 field samples were collected with widely varying texture. 
First, PCA of the spectra was conducted for clustering the samples and to identify similarities within the sample 
set. The second aim of this study was to test the potential of two different calibration methods in combination 
with EDXRF for accurate and reliable determination of important analytes in German agricultural soils. As a case 
study, this paper is focused on K and Fe. In the plant, potassium is responsible for the adjustment of osmotic pres-
sure and the regulation of the water balance, while iron is extremely important as a component for chlorophyll 
and proteins and activates different enzymes for photosynthesis and energy metabolism29.

Traditional univariate analysis and multivariate partial least squares regression were applied as method of 
choice. Univariate calibration is simple especially with regard to data handling while PLSR often leads to better 
prediction ability, as the attained robustness of the spectra is higher30. To receive a matrix-specific calibration 
either certified reference materials (CRM) or a subset of the German field samples were used. For independent 
validation purpose the concentration of K and Fe in the sample set (n = 598) was predicted and compared by 
means of standard methods such as ICP-OES and WDXRF. The capability of both regression methods in com-
bination with the two calibration sample sets was studied by comparing the overall averaged deviation of the 
prediction of unknown samples as a key parameter.

Results and Discussion
Principal component analysis for classification of German soil sample. Principal component anal-
ysis can be applied as a qualitative classification approach and for detection of outliers within repetition measure-
ments of the same sample by reducing the dimensionality of the data set. This leads to separation of information 
arising from noise and to identification of a few influential and statistically relevant variables31. To achieve this, 
new latent variables are formed as linear combination from the original variables, so a transformation of the data 
in a new orthogonal coordinate system with uncorrelated so-called principal components (PC) is conducted. The 
data are split according to their major variance, making the relevant similarities and differences in the data set 
visible in a score plot8,32,33.

The original data set consists of a matrix with 15 rows (CRM) and 2048 columns (fluorescence intensities) 
from the corresponding energy channels −0.02 to 25.68 keV. Parts of the spectra that didn´t contain any peaks 
were omitted for clarity and for better interpretation of the loading plot. Looking at the PCA score and load-
ing plot, no differences were observed between the full and the reduced (1.00–16.49 keV) spectra. CRM NCS 
DC87104 and NIST 2710 were excluded from the PCA prior to modelling, so only 13 CRM were used (see 
Supplementary Information Fig. S1). When performing PCA the software The Unscrambler® X automatically 
mean-centered the data and auto-scaling was done. Furthermore, non-linear iterative partial least squares 
(NIPALS) was used as algorithm and a cross-validation of the CRM was conducted. The spectrum in the region 
between 2.70 and 3.18 keV, that is related to the Ag-Lα peak of the X-ray tube, showed peak fluctuations between 
repeat measurements, and hence, this area was down-weighted automatically by the software for calculation to 
prevent influences on the PCA.

First, a PCA was implemented using the spectra of the 13 highly diverse CRM. In the second step, the projec-
tion of the 409 arable soil samples (409 × 1234 matrix) into this PCA took place. For this, the software compares 
the spectra of the samples with those of the CRM to classify them into the PCA. This procedure facilitates the 
integration of further samples in perspective to later in-situ measurements on arable land. In Fig. 1, the score plot 
of 13 CRM based on PC-1 and PC-2, describing a total variance of 99%, is shown. The data points are all within 
the 95% confidence level for T² (see Supplementary Information Fig. S1).

The relation between the original and the new variables is expressed through the so-called loadings. A loading 
plot shows which properties of the samples, in this case elements, define the principal components and thus, 
which elements in the soil matrix show the greatest variance within the data set12. The first principal compo-
nent should only be related to relevant fluorescence peaks allowing the sorting of the samples34. Looking at the 
corresponding loading plot in Fig. 1, main clustering was based on the fluorescence intensity of iron. A strong 
peak with a negative loading value arising from the Fe Kα peak characterises PC-1 and leads to 95% of the total 
variance. In conclusion, a sample with a high concentration of iron corresponds to a point located on the left side 
in the negative area of the horizontal PC-1 axes in the score plot. This agrees with the results given that CRM 
GBW07405 with the highest iron content of 8.83 wt-% is farthest to the left while Till3 with 2.74 wt-% is close to a 
score of 0 and VS 2498-83 with 0.69 wt-% is the sample with the highest PC-1 score. Similar correlation between 
PC-1 and Fe with a high variance was proposed by Kaniu et al., who used energy-dispersive X-ray fluorescence 
and scattering spectroscopy for assessment of soil quality. Moreover, soils were clustered according to their soil 
type and not to their texture25,35. The second PC is dominated by calcium with a peak in the positive area of the 
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loading plot and a residual variance of 4%. Splitting of the CRM along the vertical axis of PC-2 in the middle mass 
fraction range works only to a limited extent due to the low variance. Samples with high Ca content like NCS 
DC85109 are in the positive area and GBW07405 with a low content in the negative area with the lowest score 
value.

Figure 2 shows the score plot of 409 projected soil samples from 12 different study sites in Germany. All PC´s 
for the projected samples account for 99% of the total variance whereas PC-1 dominates around 97%. Regarding 
the results for PCA of CRM, a distinction between the different German soils is possible due to their variation in 
PC-1. The separation of the samples in the score plot fits to reference values of ICP-OES and WDXRF with respect 
to the iron and calcium content.

In the score plot, all samples were labelled with colours by their texture according to their classification by the 
German VDLUFA. Superordinate classes of soils in consideration to VDLUFA texture are sand, silt, loam and clay 
with different subdivisions36. The subdivisions of the soil types differ by their sand, silt, loam and clay content. As 
shown in Fig. 2, samples with the same colour and therefore the same texture cluster together. The lowest scores 
were mostly associated with clay samples while sandy samples offered the highest score for PC-1. Given that the 
solubility of Fe oxides is extremely low they are especially located in the clay fraction27,37,38. In accordance with 
this, the splitting of the soils corresponds with the results of iron content. Similar correlations between iron and 
clay content were also observed in soils from the USA and Angouran Area though no comparison and classifi-
cation of texture was done1,27. Clay samples on the left-hand side contain the highest amount of iron (>4 wt-%). 
Sandy samples are in the right area of PC-1 with a low iron content of <1.1 wt-%. Samples of sandy loam are split 
into two groups. One group is closer to silty clay loam (Tu3) while the other group is located near the silt samples. 
This can be explained by the different subdivisions of sandy loam: according to VDLUFA the subdivisions are 
St3, Ls4, Ls3, Ls2 with the same clay content, while Lt2 has a higher clay content. The sandy loam samples used 
in this study only belong to the group Ls4 and Lt2. The samples in the upper part belong to Ls4 while the other 

Figure 1. PCA score plot (a) of EDXRF soil data for the first two principal components PC-1 and PC-2 of 
13 certified reference materials with a total variance of 99%. Corresponding loading plot (b) of the first three 
principal components for CRM. Loadings are plotted against the energy [keV]. PC-1 corresponds to iron, PC-2 
to calcium and PC-3 to silicon.

Figure 2. PCA score plot, projection of the EDXRF German agricultural soil data for the first two principal 
components PC-1 and PC-2 of 13 certified reference materials.
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three samples are Lt2. Lt2 has a higher clay content (25–35%) than Ls4 (17–25%), so considering the results, also 
a higher Fe content. Besides this, their calcium content (>0.95 wt-%) is higher than the one for Lt2 (<0.5 wt-%). 
The silty samples such as sandy silt, high sandy silt and loamy silt are grouped together. These samples have a 
similar iron content, so that a separation of the individual subdivisions is not possible by PCA. All outliers in the 
upper quartile of the score plot have a high mass fraction of Ca compared to the other samples in this subdivision. 
Taking this fact into account a classification of these soils is possible on basis of the other samples within the same 
field.

Classification of subordinate texture using PCA as chemometric tool combined with this EDXRF set-up was 
possible for a variety of 409 German arable soils. Given that all samples are located within the 95% confidence 
level they are well described by the model. On basis of the iron content a separation of the different soils by their 
texture according to VDLUFA36 on the PC-1 axes was possible. Clay containing samples have the highest amount 
of iron while the iron content decreases with increasing silt and sand ratio. With view to later field-application a 
division of the texture of agricultural soils from Germany is possible. Knowing the texture is especially important 
given that it affects the crop growth environment for example for water-holding capacity39. Further development 
should be done by classification of more field samples with known texture, especially clay samples, from different 
sites in Germany.

Univariate data analysis for determination of nutrients. The calibration models obtained by uni-
variate data analysis are shown in Fig. 3a,c. Averaged net peak area of the characteristic fluorescence peak of the 
analyte is fitted against the known mass fraction in the 15 CRM. A linear regression is obtained with the equation 
y = m * x + b, where m denotes to the slope or sensitivity and b to the intercept. A strong correlation is reflected by 
the coefficient of determination (R²), which should be almost equal to 1, and the root mean square error (RMSE), 
which should be close to 040. R² for K and Fe (0.920; 0.965) as well as the small error bars demonstrate a good 
linear relationship where just a few mean values were not within the 95% confidence level. For later comparison 
of the RMSE with the multivariate one, the univariate predicted values of K and Fe were fitted against the certified 
reference values (see Fig. 3b,d).

For validation of the calibration model and determination of the accuracy, the CRM IAEA Soil-5 was ana-
lysed and the mass content was calculated. It is important to note, that this reference material was not used to 
generate the linear fit. For the univariate calibration model with CRM a mass content of 1.90 ± 0.03 wt-% for K 
and 4.29 ± 0.05 wt-% for Fe was predicted (see Table 1). These values are in accordance to the certified values 

Figure 3. Univariate calibration model for potassium (a,b) and iron (c,d) based on 15 CRM. The net peak area 
of the characteristic fluorescence peak [cps] was fitted against the mass fraction in the CRM [wt-%] (a,c). The 
error bars represent the standard deviation of five measurements. For comparison purpose of the univariate 
calibration model: predicted values [wt-%] were fitted against the reference values [wt-%] (b,d).
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(K: 1.86 ± 0.15 wt-%; Fe: 4.45 ± 0.19 wt-%) which is confirmed by a good recovery rate of 102.2% and 96.4%. 
Through validation, the quality of the obtained calibration model could be monitored.

A calibration was also done by a selected subset of German soil samples (Supplementary Information 
Tables S8, S9). The samples were chosen randomly by looking at their element mass content to receive a wide 
linear range (n = 41). From every study side at least two samples were used. In Fig. 4, the predicted values were 
fitted against the reference values of WDXRF for the selected samples. A high degree of linearity was maintained 
for both analytes (R² = 0.899 K, 0.982 Fe). For K the RMSE increases (0.143 vs. 0.169) compared to the calibration 
with CRM, while the opposite effect is observed for Fe (0.221 vs. 0.173). Validation of the univariate calibration 
with agricultural soils achieved a recovery of 101.6% for K and 93.6% for Fe in IAEA Soil-5.

partial least squares regression for determination of nutrients. The model was created by the 
Y-variables (mass fraction of the analyte) as a function of the X-variables (intensity of the fluorescence)25,41. In 
this work the used dataset for calibration with 15 CRM was a 75 × 1234 matrix and for prediction of German 
agricultural soils a 2990 × 1234 matrix (598 samples, 5 repetitive measurements). As already established for PCA, 
same parts of the spectra with no spectral information were removed. Different methods for data treatment of the 
raw spectra including background correction, smoothing and Savitzky-Golay derivation were applied to obtain 
the best cross-validation model (lowest RMSEC and RMSEV) and the best prediction ability. Savitzky-Golay 
derivation (polynomial order: 2, smoothing points: 3) for K and a linear baseline correction for Fe as data 
pre-treatment were selected. Due to varying matrix composition of each soil sample, the region of interest was 
carefully selected (K: 3.19–3.48 keV; Fe: 6.1–7.3 keV) and fluorescence signals not related to either potassium or 
iron were down-weighted with the software The Unscrambler® X21. For pre-processing, mean-centering was done 
automatically by the software. Kernel as algorithm was used and for validation of the PLSR model leave-one-out 
cross-validation was chosen.

Figure 5 shows the PLSR of 15 CRM as calibration-set. The linear regression for calibration (line) and vali-
dation (dotted line) differ little from each other, whereupon the validation regression is located within the 95% 
confidence level of the calibration. Predicted Y-variables (mass content) are highly correlated with the refer-
ence Y-variables in a linear relationship. R² for calibration and validation are close to each other and account 
0.899/0.861 for K and 0.994/0.990 for Fe, while RMSE is 0.143 and 0.144 for calibration. The linearity of the model 
is given between 0.8–2.6 wt-% for potassium and 0.6–5.4 wt-% for iron in soil samples using this EDXRF set-up 
combined with PLSR.

For external validation of the PLSR the analyte contents in CRM IAEA Soil-5 were predicted with a value 
of 1.88 ± 0.06 wt-% for K and 4.28 ± 0.08 wt-% for Fe. Under consideration of the error margin, the predicted 
mass fractions are in good agreement with the certified values (see Table 1). With PLSR, a recovery of 101.1% 

Element Calibration with
Certified mass 
content/wt-%

Predicted mass content/wt-%

univariate multivariate

K
15 CRM

1.86 ± 0.15
1.90 ± 0.03 1.88 ± 0.06

41 agricultural soil samples 1.89 ± 0.04 1.90 ± 0.05

Fe
15 CRM

4.45 ± 0.19
4.29 ± 0.05 4.28 ± 0.08

41 agricultural soil samples 4.17 ± 0.06 4.22 ± 0.08

Table 1. Comparison of certified mass content [wt-%] compared to predicted mass content [wt-%] of 
potassium and iron with either univariate or multivariate calibration models with 15 CRM and a subset of 41 
German agricultural soil samples.

Figure 4. Predicted values [wt-%] of potassium (a) and iron (b) using univariate analysis with 41 German 
agricultural soils fitted against the reference values of WDXRF [wt-%].
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and 96.2% was achieved indicating that multivariate regression leads to an accurate and robust quantification of 
potassium and iron in German agricultural soil samples.

In addition, PLSR was carried out with the same selected 41 German soil samples (205 × 1234 matrix) as 
already mentioned in the section before (see Fig. 6). Pre-treatment of the dataset and region of interest were the 
same as for calibration with CRM.

Predicted values and reference values (WDXRF) for both analytes are closely correlated for PLSR of agricul-
tural soils. Especially calibration and validation for potassium are in better accordance now. For Fe the linear 
regression is nearly the same as for CRM, while RMSE is better for calibration with soils (0.144 vs. 0.136). 102.2% 
and 96.2% recovery rate were received when predicting K and Fe in IAEA Soil-5.

Comparison of univariate and multivariate calibration strategies for German soils. The perfor-
mance of traditional uni- and multivariate matrix-specific calibration with CRM as well as a selection of German 
agricultural soils was evaluated to determine nutrients, in this study K and Fe, in German agricultural soils con-
sidering statistical parameters. As a key parameter, the overall averaged deviation of the predicted values in 598 
German soil samples was applied indicating that the used German data set is described well by the models.

Comparing R² for uni- and multivariate regression with CRM, a better correlation (0.965 vs. 0.994) was 
achieved for iron when using PLSR, while for potassium R² was better for univariate calibration (0.920 vs. 0.899). 
Furthermore, the multivariate calibration leads to a similar or lower RMSE (K: 0.143 vs. 0.143; Fe: 0.221 vs. 0.144) 
and a better recovery rate (K: 102.2 vs. 101.1%; Fe: 104.9 vs. 96.2%) in IAEA Soil-5 for both elements, respectively 
(Table 1).

To receive an even more customised matrix-specific calibration, a linear regression with a subset of German 
soil samples was conducted. It was expected to achieve a more reliable model and to increase prediction ability 
and thus the accuracy. As already observed for the calibration with CRM, the multivariate calibration leads to 
a better R² for iron (0.982 vs. 0.993), a similar R² for potassium (0.899 vs. 0.895) and lower RMSE (K: 0.169 vs. 
0.159; Fe: 0.173 vs. 0.136) for both analytes when using German field samples as calibration set. A comparison 

Figure 5. Partial least squares regression of 15 CRM for K (a) and Fe (b) using Savitzky-Golay derivation, linear 
baseline correction as data pre-treatment, Kernel as algorithm and leave-one-out cross-validation.

Figure 6. Partial least squares regression with 41 German agricultural soils for K (a) and Fe (b) using Savitzky-
Golay derivation, linear baseline correction as data pre-treatment, Kernel as algorithm and leave-one-out cross-
validation.
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between the 15 CRM and the 41 subset soils shows, that the calibration varies only slightly. Basically, RMSE for K 
is increasing and decreasing for Fe.

For all 598 agricultural soils K and Fe content was determined with both evaluation methods as independ-
ent validation. To compare the predicted values of the two approaches, reference values for the sample set were 
obtained with WDXRF and ICP-OES. The number of samples with absolute deviations <5%, 5–10%, 10–15%, 
15–20% and >20% was added together for better comparability of the values. The predicted mass fraction in 
the sample set ranges from 0.6 to 3.1 wt-% for potassium and from 0.6 to 5.5 wt-% for iron and reflects the real 
element content in German agricultural soils, which can vary appreciable. It should be considered, that the mass 
content of both analytes in the calibration set covers a wide range of mass fractions, so linear dynamic range for 
all linear regressions should be sufficient.

As a key parameter, the absolute deviations between predicted and reference WDXRF values were averaged 
over all 598 samples to determine the method with the lowest averaged deviation and therefore with the best 
accuracy and precision24. Since the models are slightly different (R2 and RMSE) and the recovery rate is very sim-
ilar, this average value is a good option to compare the models with each other. If the averaged deviation is small, 
the bias between predicted and reference values is low and a high accuracy is achieved. The value is representative, 
as it reflects the deviations of a huge sample set. In Table 2 the descriptive statistics for the prediction of K and Fe 
in the sample set is listed and for a detailed evaluation, the absolute deviations were divided in different deviation 
areas.

For both analytes, PLSR with 15 CRM leads to the lowest averaged deviation with 7.19% for K, 4.4% for Fe 
while univariate calibration yields in 8.45% and 11.79%. Particularly, for PLSR with CRM more samples were 
predicted with derivations <10% while less samples drift more than 15% (K: 26 vs. 110; Fe: 13 vs. 134). This can 
be confirmed by the mean absolute error (MAE) of multi- and univariate prediction: 0.13 vs. 0.15 wt-% for K and 
0.08 vs. 0.22 wt-% for Fe. The mean coefficient of variation for all predicted values was below 3% for K and Fe 
indicating a high repeatability and accuracy at a fast scanning-time of 60 s.

As mentioned earlier, the calibration of CRM and German agricultural soils are quite similar for both uni- and 
multivariate regression, still using CRM leads to a better prediction ability. For example, the averaged deviation 
for potassium increases from 8.45 to 9.16% for univariate and from 7.19 to 8.03% for multivariate regression. On 
the contrary, using CRM for univariate calibration yields in a higher averaged deviation (11.79 vs. 7.74%) for iron 
compared to calibration with German soils, while there is no impact between the multivariate calibrations (4.40 
vs. 4.40%). The CRM have the advantage that they are better characterised compared to the real soil samples. They 
are examined in round robin tests by several laboratories and the certified value is statistically calculated from 
different values. In addition, the CRM are grounded to small grain sizes. The real soil samples were also grounded 
but their grain sizes are much bigger (<500 µm). That can be the reason for this bias.

Robust and reliable calibration models were achieved for all regression methods with high R² and low RMSE. 
External validation with IAEA Soil-5 showed that the obtained calibration curves performed very well indicated 
by a good recovery rate between 94–105%. The averaged deviation for all 598 soil samples was below 12% for uni- 
and multivariate calibration with both sample sets (CRM and selected subset). Thus, univariate regression can 
also be used to determine nutrients in German arable soils with focus on the prediction ability, however a multi-
variate evaluation results in a significantly higher accuracy and precision. Moreover, the data handling, especially 
when using the reduced spectra with less data points is easy to manage and as fast as the univariate data treatment. 
The advantage of the multivariate PLSR is that the entire spectrum is taken into account for modelling the linear 
regression. As a result, PLSR is capable of compensating matrix effects. Particularly, when changes in the peak 
shape occur then the PLSR considers them. In this case, both reasons lead to a higher accuracy and precision 
compared to the univariate data evaluation.

Despite the challenges of analysing light elements such as K with XRF, the prediction ability and the accuracy 
for K are comparable to these of Fe, which is easier to detect due to better resolution and a higher atomic weight. 

Average deviation/% Median/% MAEa/wt-%

Number of samples with absolute deviationsb

<5% 5–10% 10–15% 15–20% >20%

Calibration with 15 CRM

K
uni 8.45 7.28 0.15 210 170 108 96 14

multi 7.19 6.96 0.13 261 168 143 23 3

Fe
uni 11.79 11.37 0.22 110 110 244 71 63

multi 4.40 3.50 0.08 403 145 37 12 1

Calibration with 41 agricultural soil samples

K
uni 9.16 8.22 0.16 200 159 95 113 31

multi 8.03 6.74 0.14 227 163 119 82 7

Fe
uni 7.74 7.50 0.15 185 252 120 24 17

multi 4.40 3.50 0.08 403 145 37 12 1

Table 2. Number of samples with absolute deviations summarized in deviation areas and the descriptive 
statistics of those deviations for the prediction of K and Fe content in 598 German agricultural soils using 
either univariate (uni) regression or PLSR (multi) with 15 CRM or with 41 German soil samples for calibration. 
aMAE = Mean absolute error (see Section Material and Methods). bNumber of samples with absolute deviations 
<5%, 5–10%, 10–15%, 15–20% and >20%.
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In addition to the difficulties in analysing light elements by means of poorer resolution and lower fluorescence 
yield, the prediction ability can be increased by calibration with CRM instead of a selection of German agricul-
tural soils.

Hence, EDXRF as sensor can be used to achieve a fast, accurate and reliable prediction of analytes in unknown 
German agricultural soils and analyser performance can be improved by coupling with multivariate data evalua-
tion using PLSR instead of univariate data analysis. Further work is dedicated to convert the information collected 
for lab measurements of German soils with prepared samples to in-situ soil measurements considering particle 
size and soil moisture15,27.

Materials and Methods
Sampling and sample preparation of the German soil sample set. In this investigation, 598 differ-
ent soil samples with varying levels of element content (0.64–3.10 wt-% for K; 0.59–5.4 wt-% for Fe) and texture 
extracted from arable land were used. Soil samples and information about location, horizon and soil texture 
were provided by S. Pätzold and M. Leenen, Institute of Crop Science and Resource Conservation (INRES), Soil 
Science and Soil Ecology, University of Bonn (Germany), A. Mizgirev, Institute of Agricultural and Nutrition 
Sciences, Martin-Luther University of Halle/Wittenberg (Germany), R. Gebbers, Department of Engineering for 
Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB, Potsdam, Germany) and 
E. Wallor, Institute of Landscape Systems Analysis, Leibnitz Institute for Agricultural Landscape Research (ZALF, 
Muencheberg, Germany)37. The samples were collected in the field from 12 different study sites in Germany. An 
analysis of the texture was done by other laboratories or the project partners themselves. Extended information 
about the sample set are listed in the Supplementary Information (Table S1).

All samples were air dried at room temperature and sieved to grain sizes smaller than 2 mm with a 2 mm-mesh 
stainless steel sieve. Samples (A, G, Zalf, Goerzig) were homogenised through the cross-riffling method using the 
rotary cone sample divider from Fritsch, model Laborette 27 (Germany). Each sample was mixed by grinding in 
a Spex Mixer/Mill from Spex Industries Inc. (USA) to suitable grain size for preparation of homogenous pellets. 
Pressed pellets were prepared with a force of 10 kN for 10 s in a hydraulic press machine, Model HTB 40 from 
Herzog (Germany). 7 g of each sample was placed in an aluminium cup and pressed without additional binder to 
a 32 mm diameter pellet.

Relative methods such as XRF require standard materials with known elemental composition for quantita-
tive evaluation of the spectra. The matrix of standard materials should be as similar as possible to the unknown 
samples for matrix-specific calibration and to diminish the absorption-enhancement effects10,20,40. For calibra-
tion of the sensor, 15 CRM from different manufactures were used. All CRM offer different elemental composi-
tions (0.86–2.55 wt-% for K; 0.69–5.5 wt-% for Fe): BAM U110; GBW07402; GBW07405; NCS DC73023; NCS 
DC73030; NCS DC85109; NCS DC87104; NIST 1646a; NIST 2704; NIST 2709; NIST 2710; TILL1-3; VS 2498-83. 
Details are listed in the Supplementary Information Tables S2, 3. IAEA Soil-5 has served as external validation 
sample for both regression methods. The standard soil LUFA 2.2 and 2.3 with certified texture was only used for 
PCA with lack of total values.

Experimental setup for EDXRF analysis. X-ray fluorescence spectra were obtained by using a 
non-commercial energy-dispersive spectrometer constructed by the Institute for Applied Photonics e.V. 
(Germany). The instrument is equipped with an Ag-target X-ray tube with a maximum power of 30 W. A peltier 
cooled 25 mm2 thick silicon drift detector (Amptek SSD-123×) with a resolution of about 145 eV for Mn-Kα 
X-ray line at 5.9 keV was used as detection unit. The built-in collimator is 0.5 mm thick with a cross-diameter of 
5 mm. Incident and take-off angles were 42°. The distance between tube and sample was 8 cm, between sample 
and detector 2.5 cm. As medium between tube, detector and sample helium was chosen for detection of light 
elements. Weighing less than 2 kg this setup can be used for later on-site measurements.

evaluation and analysis of X-ray spectra. Spectra were acquired using a voltage of 29.7 kV, a current 
of 0.49 mA and a spectral acquisition time of 60 s. Experimental parameters were optimised for the wide range 
of elements in soil in the region of interest from K–Zn with regard to later in-situ application on the field. High 
signal-to-noise ratios could be achieved at the respective current, voltage and acquisition time, hence, a compro-
mise between EDXRF sensitivity and analytical speed was chosen. A representative spectrum of an arable soil 
sample is shown in the Supplementary Information Fig. S4. With this setup, Kα of potassium and Kα as well as 
Kβ of iron were detectable at an energy of 3.29, 6.31 and 7.06 keV. The iron peaks are well resolved and therefore 
good to analyse while potassium has a spectral overlap with Ag-Lα from the X-ray tube that needs appropriate 
data pre-treatment.

The following software was used: Origin® 2016G (OriginLab, USA) and the instrument software Elbrus (IAP, 
Germany) for univariate evaluation, The Unscrambler® X Version 10.5 (Camo, Norway) for modelling the PCA 
and PLSR.

Chemical and physical properties differ from one soil to another soil. In particular, the composition of major 
and minor nutrients is significantly diverse as well as the grain size distribution33,34,39. Particle sizes can influence 
the quantification results especially for light elements as they are present in soils18. The German field samples were 
grounded to obtain a homogenous surface but still inhomogeneity of the pellets could be seen by eyes at parts of 
the sample. For this reason and to avoid matrix effects, a matrix-specific calibration was carried out using either 
CRM or a selected subset of the German agricultural soils. In the case of XRF, matrix effects are the results of 
different mass fractions of interfering elements, which may have an impact on the detected X-ray intensity of the 
analyte. Response of the intensity to the mass content is not linear anymore, so X-ray absorption or enhancement 
effects may occur30,42.
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The obtained X-ray spectra for CRM and soil samples were smoothed (number of smooths: 2), background 
corrected, and each evaluated peak was automatically fitted with a Gaussian function by the instrument’s soft-
ware. The calculated net peak areas for the characteristic element lines were used for evaluation with univariate 
analysis whereas for multivariate analysis the raw spectra were pre-treated prior to modelling. Each pellet was 
measured at five different positions to consider inhomogeneity of the soil samples and to reduce statistical error9. 
For univariate data analysis the peak areas were averaged while for multivariate data analysis the software is able 
to average the five spectra to one spectrum prior to modelling.

Considering statistical parameter, coefficient of determination and root mean square error, the potential of 
univariate regression and chemometric PLSR is discussed. Prediction ability was evaluated by calculating the 
overall averaged deviation and the mean absolute error of prediction (MAE) as follows24,37:
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where n is the number of German soil samples (n = 598), yRef  is the reference value of the analyte with WDXRF 
and yPred is the predicted value of the analyte using either uni- or multivariate calibration with EDXRF.

Instrument stability was controlled using CRM GBW07405 and agricultural soil Zalf_010. Replicate measure-
ments at the same position (n = 5) and measurements at different positions of the pellets (n = 5) were conducted 
to calculate the precision43. Both, spatial heterogeneity and precision are reflected by the relative standard devia-
tion (RSD) represented as error bars. The RSD for potassium and iron net peak area was below 8% and 10%, while 
the mean coefficient of variation for all 598 soil samples was below 3% indicating that the repeatability is very well 
for both analytes.

Reference values of the german sample set. For ICP-OES, prior microwave assisted HF-digestion 
was performed with an Anton Paar Multiwave 3000 (Austria). The used ICP-OES instrument was an Agilent 
5100 with pneumatic nebulisation. Due to time-consuming sample preparation, a selection of 70 representative 
German soil samples were measured. WDXRF measurements were done with a MagiX Pro from Panalytical (The 
Netherlands), equipped with a water-cooled Rh-tube. Regarding the high amounts of sample and the need for 
binder because of the upside-down instrument set-up, no pressed pellets were used instead the 598 soil samples 
were placed in a X-ray sample cup covered with a 6 µm X-ray Mylar® foil. WDXRF was calibrated with the same 
15 CRM listed above and the calibration was done automatically by the software SuperQ 5.1B. Helium was used 
as atmosphere. Further details are listed in the Supplementary Information (Tables S5–S7, Fig. S3).

Data availability
The data generated during the current study are available from the corresponding author on reasonable request.

Received: 12 June 2019; Accepted: 30 October 2019;
Published: xx xx xxxx

References
 1. Qishlaqi, A., Moore, F. & Forghani, G. Characterization of metal pollution in soils under two landuse patterns in the Angouran 

region, NW Iran; a study based on multivariate data analysis. Journal of Hazardous Materials 172, 374–384, https://doi.org/10.1016/j.
jhazmat.2009.07.024 (2009).

 2. Raliya, R., Saharan, V., Dimkpa, C. & Biswas, P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future 
Perspectives. Journal of Agricultural and Food Chemistry 66, 6487–6503, https://doi.org/10.1021/acs.jafc.7b02178 (2018).

 3. Czarnecki, S. & Düring, R. A. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken 
from different locations in Hesse, Germany. SOIL 1, 23–33, https://doi.org/10.5194/soil-1-23-2015 (2015).

 4. Viscarra Rossel, R. A., Taylor, H. J. & McBratney, A. B. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal 
soil sensing. European Journal of Soil Science 58, 343–353, https://doi.org/10.1111/j.1365-2389.2006.00859.x (2007).

 5. Yu, K.-Q., Zhao, Y.-R., Liu, F. & He, Y. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety 
Discrimination of Soil. Scientific Reports 6, 1–10, https://doi.org/10.1038/srep27574 (2016).

 6. Ge, Y., Thomasson, J. A. & Sui, R. Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science 5, 
229–238, https://doi.org/10.1007/s11707-011-0175-0 (2011).

 7. Achari, G. A. & Kowshik, M. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and 
Interactions with Soil Microflora. Journal of Agricultural and Food Chemistry 66, 8647–8661, https://doi.org/10.1021/acs.
jafc.8b00691 (2018).

 8. Singh, V., Agrawal, H. M., Joshi, G. C., Sudershan, M. & Sinha, A. K. Elemental profile of agricultural soil by the EDXRF technique 
and use of the Principal Component Analysis (PCA) method to interpret the complex data. Applied Radiation and Isotopes 69, 
969–974, https://doi.org/10.1016/j.apradiso.2011.01.025 (2011).

 9. Matsunami, H. et al. Rapid simultaneous multi-element determination of soils and environmental samples with polarizing energy 
dispersive X-ray fluorescence (EDXRF) spectrometry using pressed powder pellets. Soil Science and Plant Nutrition 56, 530–540, 
https://doi.org/10.1111/j.1747-0765.2010.00489.x (2010).

 10. Custo, G., Boeykens, S., Cicerone, D. & Vázquez, C. Combining XRF analysis and chemometric tools for a preliminary classification 
of argentine soils. X-Ray Spectrometry 31, 132–135, https://doi.org/10.1002/xrs.555 (2002).

 11. Kaniu, M. I. & Angeyo, K. H. Challenges in rapid soil quality assessment and opportunities presented by multivariate chemometric 
energy dispersive X-ray fluorescence and scattering spectroscopy. Geoderma 241, 32–40, https://doi.org/10.1016/j.
geoderma.2014.10.014 (2015).

https://doi.org/10.1038/s41598-019-53426-5
https://doi.org/10.1016/j.jhazmat.2009.07.024
https://doi.org/10.1016/j.jhazmat.2009.07.024
https://doi.org/10.1021/acs.jafc.7b02178
https://doi.org/10.5194/soil-1-23-2015
https://doi.org/10.1111/j.1365-2389.2006.00859.x
https://doi.org/10.1038/srep27574
https://doi.org/10.1007/s11707-011-0175-0
https://doi.org/10.1021/acs.jafc.8b00691
https://doi.org/10.1021/acs.jafc.8b00691
https://doi.org/10.1016/j.apradiso.2011.01.025
https://doi.org/10.1111/j.1747-0765.2010.00489.x
https://doi.org/10.1002/xrs.555
https://doi.org/10.1016/j.geoderma.2014.10.014
https://doi.org/10.1016/j.geoderma.2014.10.014


1 0Scientific RepoRtS |         (2019) 9:17588  | https://doi.org/10.1038/s41598-019-53426-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

 12. Angeyo, K. H., Gari, S., Mangala, J. M. & Mustapha, A. O. Principal component analysis‐assisted energy dispersive X‐ray 
fluorescence spectroscopy for non‐invasive quality assurance characterization of complex matrix materials. X-Ray Spectrometry 41, 
321–327, https://doi.org/10.1002/xrs.2405 (2012).

 13. Jørgensen, N., Laursen, J., Viksna, A., Pind, N. & Holm, P. E. Multi-elemental EDXRF mapping of polluted soil from former 
horticultural land. Environment International 31, 43–52, https://doi.org/10.1016/j.envint.2004.06.007 (2005).

 14. Krishna, A. K., Khanna, T. C. & Mohan, K. R. Rapid quantitative determination of major and trace elements in silicate rocks and 
soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic 
Spectroscopy 122, 165–171, https://doi.org/10.1016/j.sab.2016.07.004 (2016).

 15. Schneider, A. R. et al. Comparison of field portable XRF and aqua regia/ICPAES soil analysis and evaluation of soil moisture 
influence on FPXRF results. Journal of Soils and Sediments 16, 438–448, https://doi.org/10.1007/s11368-015-1252-x (2016).

 16. Zhu, Y. & Weindorf, D. C. Determination of Soil Calcium Using Field Portable X-Ray Fluorescence. Soil Science 174, 151–155, 
https://doi.org/10.1097/SS.0b013e31819c6e1b (2009).

 17. Kilbride, C., Poole, J. & Hutchings, T. R. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/
ICP–OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution 143, 16–23, https://doi.org/10.1016/j.
envpol.2005.11.013 (2006).

 18. Laursen, J., Vestergaard, B. T., Pind, N., Karlsen, K. & Bruun Hansen, H. C. Rapid method for EDXRF analysis of clayey and sandy 
soil. X-Ray Spectrometry 30, 186–189, https://doi.org/10.1002/xrs.486 (2001).

 19. Sacristán, D., Viscarra Rossel, R. A. & Recatalá, L. Proximal sensing of Cu in soil and lettuce using portable X-ray fluorescence 
spectrometry. Geoderma 265, 6–11, https://doi.org/10.1016/j.geoderma.2015.11.008 (2016).

 20. Yongcheng, J., Wen, S., Baohua, Z. & Dong, L. Quantitative Analysis of Magnesium in Soil by Laser-Induced Breakdown 
Spectroscopy Coupled with Nonlinear Multivariate Calibration. Journal of Applied Spectroscopy 84, 731–737, https://doi.
org/10.1007/s10812-017-0537-9 (2017).

 21. Takahashi, T. & Thornton, B. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced 
Breakdown Spectroscopy signals of solids. Spectrochimica Acta Part B: Atomic Spectroscopy 138, 31–42, https://doi.org/10.1016/j.
sab.2017.09.010 (2017).

 22. Li, X. & Feng, L. Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. 
Atmospheric Environment 47, 58–65, https://doi.org/10.1016/j.atmosenv.2011.11.041 (2012).

 23. Dempster, M., Dunlop, P., Scheib, A. & Cooper, M. Principal component analysis of the geochemistry of soil developed on till in 
Northern Ireland. Journal of Maps 9, 373–389, https://doi.org/10.1080/17445647.2013.789414 (2013).

 24. Schneider, A. R. et al. Multivariate spatial analyses of the distribution and origin of trace and major elements in soils surrounding a 
secondary lead smelter. Environmental Science and Pollution Research 23, 15164–15174, https://doi.org/10.1007/s11356-016-6624-2 
(2016).

 25. Kaniu, M. I., Angeyo, K. H., Mangala, M. J., Mwala, A. K. & Bartilol, S. K. Feasibility for chemometric energy dispersive X-ray 
fluorescence and scattering (EDXRFS) spectroscopy method for rapid soil quality assessment. X-Ray Spectrometry 40, 432–440, 
https://doi.org/10.1002/xrs.1363 (2011).

 26. Kaniu, M. I., Angeyo, K. H., Mwala, A. K. & Mwangi, F. K. Energy dispersive X-ray fluorescence and scattering assessment of soil 
quality via partial least squares and artificial neural networks analytical modeling approaches. Talanta 98, 236–240, https://doi.
org/10.1016/j.talanta.2012.06.081 (2012).

 27. Zhu, Y., Weindorf, D. C. & Zhang, W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. 
Geoderma 167-168, 167–177, https://doi.org/10.1016/j.geoderma.2011.08.010 (2011).

 28. Wang, S.-q, Li, W.-d, Li, J. & Liu, X.-s Prediction of Soil Texture Using FT-NIR Spectroscopy and PXRF Spectrometry With Data 
Fusion. Soil Science 178, 626–638, https://doi.org/10.1097/ss.0000000000000026 (2013).

 29. Blume, H.-P. et al. Scheffer/Schachtschabel: Lehrbuch der Bodenkunde. 16. edn, (Spektrum Akademischer Verlag, 2010).
 30. Arantes de Carvalho, G. G. et al. Recent advances in LIBS and XRF for the analysis of plants. Journal of Analytical Atomic 

Spectrometry 33, 919–944, https://doi.org/10.1039/C7JA00293A (2018).
 31. Henrich, A., Hoffmann, P., Ortner, H. M., Greve, T. & Itzel, H. Non-invasive identification of chemical compounds by energy 

dispersive X-ray fluorescence spectrometry, combined with chemometric methods of data evaluation. Fresenius’ Journal of Analytical 
Chemistry 368, 130–138, https://doi.org/10.1007/s002160000425 (2000).

 32. Towett, E. K., Shepherd, K. D. & Lee Drake, B. Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: 
quantification under different analytical parameters. X-Ray Spectrometry 45, 117–124, https://doi.org/10.1002/xrs.2678 (2016).

 33. Hussain, T., Gondal, M. A., Yamani, Z. H. & Baig, M. A. Measurement Of Nutrients In Green House Soil With Laser Induced 
Breakdown Spectroscopy. Environmental Monitoring and Assessment 124, 131–139, https://doi.org/10.1007/s10661-006-9213-x 
(2007).

 34. Bousquet, B., Sirven, J. B. & Canioni, L. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples. 
Spectrochimica Acta Part B: Atomic Spectroscopy 62, 1582–1589, https://doi.org/10.1016/j.sab.2007.10.018 (2007).

 35. Kaniu, M. I., Angeyo, K. H., Mwala, A. K. & Mangala, M. J. Direct rapid analysis of trace bioavailable soil macronutrients by 
chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry. Analytica Chimica Acta 729, 21–25, 
https://doi.org/10.1016/j.aca.2012.04.007 (2012).

 36. Geologischer Dienst, N., www.landwirtschaftskammer.de/ landwirtschaft/ackerbau/duengung/basisinfos/einteilung-bodenarten-
pdf.pdf (2019).

 37. Heggemann, T. et al. Proximal gamma-ray spectrometry for site-independent in situ prediction of soil texture on ten heterogeneous 
fields in Germany using support vector machines. Soil and Tillage Research 168, 99–109, https://doi.org/10.1016/j.still.2016.10.008 
(2017).

 38. Saccà, C., Saccà, D., Nucera, P. & De Fazio, A. Composition and geochemistry of clay sediments offshore the northeastern Sicilian 
coast (Southeastern Tyrrhenian Sea, Italy). Estuarine, Coastal and Shelf Science 92, 564–572, https://doi.org/10.1016/j.
ecss.2011.02.012 (2011).

 39. Adamchuk, V. I., Hummel, J. W., Morgan, M. T. & Upadhyaya, S. K. On-the-go soil sensors for precision agriculture. Computers and 
Electronics in Agriculture 44, 71–91, https://doi.org/10.1016/j.compag.2004.03.002 (2004).

 40. Awasthi, S., Kumar, R., Devanathan, A., Acharya, R. & Rai, A. K. Multivariate methods for analysis of environmental reference 
materials using laser-induced breakdown spectroscopy. Analytical Chemistry Research 12, 10–16, https://doi.org/10.1016/j.
ancr.2017.01.001 (2017).

 41. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 
58, 109–130, https://doi.org/10.1016/S0169-7439(01)00155-1 (2001).

 42. Kalnicky, D. J. & Singhvi, R. Field portable XRF analysis of environmental samples. Journal of Hazardous Materials 83, 93–122, 
https://doi.org/10.1016/S0304-3894(00)00330-7 (2001).

 43. Gustavsson, B., Luthbom, K. & Lagerkvist, A. Comparison of analytical error and sampling error for contaminated soil. Journal of 
Hazardous Materials 138, 252–260, https://doi.org/10.1016/j.jhazmat.2006.01.082 (2006).

https://doi.org/10.1038/s41598-019-53426-5
https://doi.org/10.1002/xrs.2405
https://doi.org/10.1016/j.envint.2004.06.007
https://doi.org/10.1016/j.sab.2016.07.004
https://doi.org/10.1007/s11368-015-1252-x
https://doi.org/10.1097/SS.0b013e31819c6e1b
https://doi.org/10.1016/j.envpol.2005.11.013
https://doi.org/10.1016/j.envpol.2005.11.013
https://doi.org/10.1002/xrs.486
https://doi.org/10.1016/j.geoderma.2015.11.008
https://doi.org/10.1007/s10812-017-0537-9
https://doi.org/10.1007/s10812-017-0537-9
https://doi.org/10.1016/j.sab.2017.09.010
https://doi.org/10.1016/j.sab.2017.09.010
https://doi.org/10.1016/j.atmosenv.2011.11.041
https://doi.org/10.1080/17445647.2013.789414
https://doi.org/10.1007/s11356-016-6624-2
https://doi.org/10.1002/xrs.1363
https://doi.org/10.1016/j.talanta.2012.06.081
https://doi.org/10.1016/j.talanta.2012.06.081
https://doi.org/10.1016/j.geoderma.2011.08.010
https://doi.org/10.1097/ss.0000000000000026
https://doi.org/10.1039/C7JA00293A
https://doi.org/10.1007/s002160000425
https://doi.org/10.1002/xrs.2678
https://doi.org/10.1007/s10661-006-9213-x
https://doi.org/10.1016/j.sab.2007.10.018
https://doi.org/10.1016/j.aca.2012.04.007
http://www.landwirtschaftskammer.de/
http://www.landwirtschaftskammer.de/
https://doi.org/10.1016/j.still.2016.10.008
https://doi.org/10.1016/j.ecss.2011.02.012
https://doi.org/10.1016/j.ecss.2011.02.012
https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.1016/j.ancr.2017.01.001
https://doi.org/10.1016/j.ancr.2017.01.001
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0304-3894(00)00330-7
https://doi.org/10.1016/j.jhazmat.2006.01.082


1 1Scientific RepoRtS |         (2019) 9:17588  | https://doi.org/10.1038/s41598-019-53426-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
We would like to thank the University of Bonn, University of Halle/Wittenberg, ZALF and ATB for providing the 
soil samples from different study sites in Germany. This work is part of the project “Intelligence for soils” (I4S) 
and was financially supported by the German Federal Ministry of Education and Research (BMBF) within the 
BonaRes program (grant 031A564). We acknowledge the support of the Deutsche Forschungsgemeinschaft and 
Open Access Publishing Fund of University of Potsdam.

Author contributions
D.B. designed and performed all the experiments and wrote this manuscript. D.B and M.C. executed the reference 
analysis. M.L. contributed soil samples and texture information. I.B., M.O. and M.C. assisted in discussions and 
reviewed the manuscript. All authors have given approval to the final version of the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53426-5.
Correspondence and requests for materials should be addressed to D.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-53426-5
https://doi.org/10.1038/s41598-019-53426-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multivariate chemometrics as a key tool for prediction of K and Fe in a diverse German agricultural soil-set using EDXRF
	Results and Discussion
	Principal component analysis for classification of German soil sample. 
	Univariate data analysis for determination of nutrients. 
	Partial least squares regression for determination of nutrients. 
	Comparison of univariate and multivariate calibration strategies for German soils. 

	Materials and Methods
	Sampling and sample preparation of the German soil sample set. 
	Experimental setup for EDXRF analysis. 
	Evaluation and analysis of X-ray spectra. 
	Reference values of the german sample set. 

	Acknowledgements
	Figure 1 PCA score plot (a) of EDXRF soil data for the first two principal components PC-1 and PC-2 of 13 certified reference materials with a total variance of 99%.
	Figure 2 PCA score plot, projection of the EDXRF German agricultural soil data for the first two principal components PC-1 and PC-2 of 13 certified reference materials.
	Figure 3 Univariate calibration model for potassium (a,b) and iron (c,d) based on 15 CRM.
	Figure 4 Predicted values [wt-%] of potassium (a) and iron (b) using univariate analysis with 41 German agricultural soils fitted against the reference values of WDXRF [wt-%].
	Figure 5 Partial least squares regression of 15 CRM for K (a) and Fe (b) using Savitzky-Golay derivation, linear baseline correction as data pre-treatment, Kernel as algorithm and leave-one-out cross-validation.
	Figure 6 Partial least squares regression with 41 German agricultural soils for K (a) and Fe (b) using Savitzky-Golay derivation, linear baseline correction as data pre-treatment, Kernel as algorithm and leave-one-out cross-validation.
	Table 1 Comparison of certified mass content [wt-%] compared to predicted mass content [wt-%] of potassium and iron with either univariate or multivariate calibration models with 15 CRM and a subset of 41 German agricultural soil samples.
	Table 2 Number of samples with absolute deviations summarized in deviation areas and the descriptive statistics of those deviations for the prediction of K and Fe content in 598 German agricultural soils using either univariate (uni) regression or PLSR (m




