

Universität Potsdam

Gerhard Püschel, C. Kirchner, A. Schröder, Kurt Jungermann

Glycogenolytic and antiglycogenolytic prostaglandin E_2 actions in rat hepatocytes are mediated via different signalling pathways

First published in:

European Journal of Biochemistry. - ISSN 0014-2956. - 218 (1993), 3, p. 1083-1089 DOI 10.1111/j.1432-1033.1993.tb18468.x

Postprint published at the Institutional Repository of the Potsdam University:

In: Postprints der Universität Potsdam

Mathematisch-Naturwissenschaftliche Reihe; 112

http://opus.kobv.de/ubp/volltexte/2010/4585/

http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45853

Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe; 112

Glycogenolytic and antiglycogenolytic prostaglandin E₂ actions in rat hepatocytes are mediated via different signalling pathways

G. P. PÜSCHEL, C. KIRCHNER, A. SCHRÖDER and K. JUNGERMANN

Institut für Biochemie und molekulare Zellbiologie, Georg-August-Universität, Göttingen, Germany

(Received June 26/August 30, 1993) — EJB 93 0921/6

Prostaglandin E_2 has been reported both to stimulate glycogen-phosphorylase activity (glycogenolytic effect) and to inhibit the glucagon-stimulated glycogen-phosphorylase activity (antiglycogenolytic effect) in rat hepatocytes. It was the purpose of this study to resolve this apparent contradiction and to characterize the signalling pathways and receptor subtypes involved in the opposing prostaglandin E_2 actions.

Prostaglandin E_2 (10 μ M) increased glucose output, glycogen-phosphorylase activity and inositol trisphosphate formation in hepatocyte cell culture and/or suspension. In the same systems, prostaglandin E_2 decreased the glucagon-stimulated (1 nM) glycogen-phosphorylase activity and cAMP formation.

The signalling pathway leading to the glycogenolytic effect of PGE_2 was interrupted by incubation of the hepatocytes with 4β -phorbol 12-myristate 13-acetate (100 nM) for 10 min, while the antiglycogenolytic effect of prostaglandin E_2 was not attenuated.

The signalling pathway leading to the antiglycogenolytic effect of prostaglandin E₂ was interrupted by an incubation of cultured hepatocytes with pertussis toxin (100 ng/ml) for 18 h, whereas the glycogenolytic effect of prostaglandin E₂ was enhanced.

The EP_1/EP_3 prostaglandin- E_2 -receptor-specific prostaglandin E_2 analogue Sulproston had a stronger glycogenolytic potency than the EP_3 prostaglandin- E_2 -receptor-specific prostaglandin E_2 analogue Misoprostol. The antiglycogenolytic potency of both agonists was equal.

It is concluded that the glycogenolytic and the antiglycogenolytic effects of prostaglandin E₂ are mediated via different signalling pathways in hepatocytes possibly involving EP₁ and EP₃ prostaglandin E₂ receptors, respectively.

Prostaglandins have been implicated to participate in cell to cell signal propagation between non-parenchymal and parenchymal cells in the liver. They are synthesized only in non-parenchymal liver cells [1], primarily Kupffer cells, but also in endothelial cells and Ito cells. They are degraded mainly by the parenchymal cells, i.e. hepatocytes [2–6], which also have been shown to possess binding sites for prostaglandins [2, 7–10]. The role of prostaglandins in the regulation of liver metabolism has been discussed controversially in previous studies. The use of cyclooxygenase inhibitors have revealed the involvement of prostaglandins in signalling pathways leading to an increase in glycogenolysis and glucose output elicited by such diverse stimuli as zymo-

Correspondence to G. P. Püschel, Institut für Biochemie und molekulare Zellbiologie, Humboldtallee 23, D-37073 Göttingen, Germany

Fax: +49 551 395960.

Abbreviations. PGE₂, prostaglandin E₂; G protein, trimeric GTP-binding protein; Ins P_3 , inositol 1,4,5-trisphosphate; PMA, 4 β -phorbol 12-myristate 13-acetate; EP₁, EP₂, EP₃ receptors, prostaglandin E₂ receptor types 1-3; G_i, inhibitory G protein; G_s, stimulatory G protein.

Enzymes. Glycogen phosphorylase (EC 2.4.1.1); alanine amino transferase (EC 2.6.1.2); glucose dehydrogenase (EC 1.1.1.47); lactate dehydrogenase (EC 1.1.1.27); mutarotase (EC 5.1.3.3).

Note. Dedicated to Professor Dr. Gustav Paumgartner on the occasion of his 60th birthday.

san [11], endotoxins [12], heat-aggregated immunoglobulins [13], peptides of the activated complement system [14-16], platelet-activating factor [17], extracellular nucleotides and nucleosides [18, 19], phorbol esters [20, 21] and stimulation of sympathetic hepatic nerves [22]. Many of these effectors have also been shown to stimulate eicosanoid formation in Kupffer cells. Prostaglandins D_2 , E_2 (PGE₂) and $F_{2\alpha}$ enhanced glucose output in perfused liver [23-26] and elevated the glycogen-phosphorylase activity in isolated rat hepatocytes via an increase in inositol 1,4,5-trisphosphate (InsP₃) [27, 28]. In addition, prostaglandins E_2 and $F_{2\alpha}$ have been shown to decrease glucagon-stimulated glycogen-phosphorylase activity and cAMP formation in rat hepatocytes [29-38]. These studies failed to show a stimulatory effect of prostaglandins on basal glycogen-phosphorylase activity and glucose output. The contradicting results have been ascribed to differences in the experimental protocol. It was the purpose of this study to resolve this apparent contradiction and to study the signalling pathways as well as the receptor subtypes involved in the glycogenolytic and antiglycogenolytic PGE₂ actions.

PGE₂ stimulated glycogen-phosphorylase activity both in cell suspension and cell culture (glycogenolytic effect). In the same experimental systems, PGE₂ decreased the glucagon-stimulated glycogen-phosphorylase activity (antiglycogenolytic effect). The glycogenolytic effect was mediated via an

Ins P_3 -coupled PMA-inhibitable signal chain possibly involving EP₁ prostaglandin-E₂ receptors, whereas the antiglycogenolytic effect was mediated via a G_i-(inhibitory G protein)-linked, pertussis-toxin-sensitive signal chain, possibly involving type 3 prostaglandin-E₂ receptors (EP₃).

MATERIALS AND METHODS

Materials

All chemicals were reagent grade and were from commercial sources. The Merck Glucose System was purchased from Merck. Lactate dehydrogenase, alanine amino transferase, M199 and fetal calf serum were from Boehringer. PGE₂ was from Paesel; the InsP₃ and cAMP assay kit was from Amersham Buchler. Percoll was purchased from Pharmacia. Misoprostol and SC 19220 were gifts of Searle; Sulproston and AH 6809 were gifts of Schering and Glaxo, respectively.

Methods

Male Wistar rats (160–200 g, Winkelmann) were kept on a 12-h day/night rhythm, light from 7 a.m. to 7 p.m., with free access to water and food (standard rat diet, Ssniff). All experiments were begun between 9 a.m. and 10 a.m. Rats were anaesthetized by intraperitoneal injection of pentobarbital (60 mg/kg body mass).

For cell-suspension experiments, hepatocytes were isolated according to Meredith without the use of collagenase [39] to avoid degradation of surface receptors by the proteases during cell preparation. The method was slightly modified. The liver was perfused without recirculation via the portal vein with a Ca²⁺-free Krebs-Henseleit buffer containing 15 mM glucose, 2 mM lactic acid, 0.2 mM sodium pyruvate and 2 mM EDTA for 30–40 min. The bulk of detritus and non-parenchymal cells was removed by three subsequent washing steps, sedimenting the viable hepatocytes at 50 g. Viable hepatocytes were further purified by centrifugation through a gradient with 58% Percoll.

Purified hepatocytes (30 mg/ml, 3×10⁶ cells/ml) were suspended in Hepes-buffered saline (20 mM Hepes, 120 mM NaCl, 4,8 mM KCl, 1.2 mM MgSO₄, 1.2 mM KH₂PO₄, 2.5 mM CaCl₂, pH 7.4). The incubation mixture contained a final concentration of 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate (buffer A). Cells were incubated for 10 min; then PGE₂ (final concentration 10 µM), glucagon (1 nM) or both were added. The incubation was stopped by the addition of trichloroacetic acid after 30 s for the measurement of InsP₃ and after 30 min for the determination of glucose or by freezing in liquid nitrogen after 2 min for the assay of glycogen phosphorylase. For the zero time values, the reactions were terminated immediately before addition of the agonist.

For experiments in cell culture, hepatocytes were isolated either according to Berry and Friend [40] or as described above for cell suspensions according to Meredith [39]. Both methods yielded the same results. Hepatocytes were plated on 9-cm² tissue plates (9 mg/plate, 9×10⁵ cells/plate) in M199 medium containing 0.5 nM insulin, 100 nM dexamethasone, penicillin/streptomycin (10 mg/ml) and for the first 4 h of culture 4% fetal calf serum. After 24 h in primary culture, the medium was removed and cells were washed three times with buffer A. Cells were incubated for 10 min at 37°C in 1 ml buffer A; then PGE₂ (final concentration

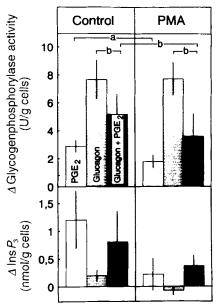


Fig. 1. Inhibition of the glycogenolytic but not the antiglycogenolytic PGE₂ effect by PMA. Hepatocytes (30 mg/ml) were suspended in Hepes-buffered saline, containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. PGE₂ (10 μ M), glucagon (1 nM) or both were added after a 10-min initial incubation with or without PMA (100 nM). Samples were stopped in 45% trichloroacetic acid for the determination of Ins P_3 at 30 s or frozen in liquid nitrogen at 2 min for the determination of glycogen-phosphorylase activity. The basal levels for glycogen phosphorylase was 4.7 ± 0.4 U/g and Ins P_3 was 0.9 ± 0.2 nmol/g. The values are means \pm SEM of four experiments. The student's *t*-test for paired values was performed. a, P < 0.01; b, P < 0.05.

 $10\,\mu\text{M}$), glucagon (1 nM) or both were added. The buffer was removed after 2 min and the plates were frozen in liquid nitrogen.

Glucose was assayed in the hepatocyte supernatants using a commercial test kit (Merck Glucose System) based on the glucose-dehydrogenase method [41]. Lactate was measured using a combined optical test with alanine amino transferase and lactate dehydrogenase in a glutamate buffer (230 mM glutamate, pH 9.5) [42]. Glycogen-phosphorylase activity was determined by a standard assay [43] and protein was determined by the method of Lowry [44]; InsP₃ and cAMP were determined using Amersham radioligand assays.

RESULTS

Glycogenolytic and antiglycogenolytic effect of PGE₂ in hepatocyte suspensions and hepatocyte cultures

Hepatocytes were suspended in Hepes-buffered saline. After a 10-min incubation at 37°C, the glucose concentration was approximately 5 mM. At this time, buffer (controls), PGE₂, glucagon or PGE₂ plus glucagon were added. Cells released glucose at a basal rate of 0.78 \pm 0.08 μ mol \cdot min $^{-1}$. g^{-1} , the basal glycogen-phosphorylase activity was 4.6 μ mol \cdot min $^{-1}$. g cells $^{-1}$, the basal InsP $_3$ level was 0.9 \pm 0.2 nmol \cdot g cells $^{-1}$, the basal InsP $_3$ level was 0.9 \pm 0.2 nmol \cdot g cells $^{-1}$. PGE $_2$ enhanced glucose output by 20%, glycogen-phosphorylase activity by 60% and InsP $_3$ levels by approximately 100% (Fig. 1 left, Table 1). Glucagon increased glucose output by 50% and glycogen-phosphorylase activity by 160%. Glucagon stimulated hepatocytes to take up lactate at a rate of 0.31 μ mol \cdot min $^{-1}$. It had no

Table 1. Increase in glucose output and lactate uptake by PGE₂, glucagon and PGE₂ plus glucagon. Rat hepatocytes (30 mg in a final volume of 1 ml), that were prepared as described in the Materials and Methods section, were incubated at 37 °C in Hepes-buffered saline, containing approximately 5 mM glucose at the beginning of the experiment. PGE₂, glucagon or both were added to a final concentration of 10 μ M and 1 nM, respectively. Glucose and lactate were determined in the supernatant at 1 min and 30 min. The basal rate of glucose output was 0.78 μ mol · min $^{-1}$ · g $^{-1}$, the basal lactate balance was not significantly different from 0, the mean value was - 0.087 μ mol · min $^{-1}$ · g $^{-1}$. Values are the means \pm SEM. The student's t-test was performed for paired values. Positive values indicate release and negative values indicate uptake.

Additions	Increase in glucose output	Increase in lactate uptake
	μmol·min ⁻¹ ·g wet mass ⁻¹	
PGE ₂ Glucagon PGE ₂ + glucagon	$0.14 \pm 0.02^{a,d}$ 0.37 ± 0.02^{b} $0.23 \pm 0.02^{a,c}$	$-0.04 \pm 0.03^{\text{e,d}}$ $-0.31 \pm 0.04^{\text{b}}$ $-0.14 \pm 0.04^{\text{a.c}}$

- ^a P < 0.05 versus control.
- ^b P < 0.01 versus control.
- $^{\circ}$ P < 0.05 versus glucagon-treated samples.
- ^d P < 0.01 versus glucagon-treated samples.
- Not significant.

effect on InsP₃ formation. The glucagon-mediated increases in glucose output, lactate uptake and glycogen-phosphorylase activity were partially inhibited, if PGE₂ was added concomitantly with glucagon (Fig. 1 left, Table 1). InsP₃ formation was not significantly different from samples that were stimulated with PGE₂ alone.

Similar results were obtained in hepatocytes after 24 h of primary culture, yet changes in metabolite concentrations could not be determined because of the unfavourable ratio of cell mass to medium. PGE₂ as well as glucagon increased the glycogen-phosphorylase activity by 50% and 180%, respectively (Fig. 2). Glucagon increased the cAMP level by more than 1000% (from 0.2 to 2.4 nmol/g) but PGE₂ had no effect. Both the glucagon-mediated increase in glycogen-phosphorylase activity and cAMP formation were antagonized if PGE₂ was administered simultaneously with glucagon; the glucagon-stimulated glycogen-phosphorylase activity was lowered to the same activity as with PGE₂ alone, the cAMP level was reduced strongly (Fig. 2 left).

Interruption by 4β -phorbol 12-myristate 13-acetate of the glycogenolytic but not the antiglycogenolytic PGE₂ signal chain

Activation of protein kinase C with the phorbol ester 4β -phorbol 12-myristate 13-acetate (PMA) has been shown to interrupt the signal chains of hormones, that mediate their effects via an increase in $InsP_3$ and cytosolic free calcium, e.g. noradrenaline or vasopressin [45–49]. Incubation of hepatocytes in suspension for 10 min prior to the experiment with 100 nM PMA, which suffices to activate protein kinase C [45], resulted in a partial reduction of the PGE₂-mediated increase in glycogen-phosphorylase activity and an almost complete reduction in PGE₂-mediated $InsP_3$ formation (Fig. 1 right). The glucagon-mediated increase in glycogen-phosphorylase activity was not affected by a prior PMA treat-

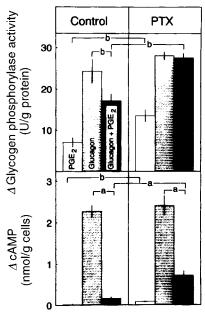


Fig. 2. Inhibition of the antiglycogenolytic but not the glycogenolytic PGE₂ effect by pertussis toxin. Hepatocytes were maintained in primary culture for 24 h in M199 containing 0.5 nM insulin, 100 nM dexamethason and 1% (mass/vol.) penicillin-streptomycin on 3-cm-diameter tissue-culture plates. Pertussis toxin (PTX, 100 ng/ml) was added where indicated for the last 18 h of culturing. For the experiments, cells were washed three times with Hepesbuffered saline, containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1 ml of this buffer was added to all plates. After 10 min, PGE₂ (10 μ M), glucagon (1 nM) or both were added. The reaction was stopped after 2 min by removing the medium and freezing the plates in liquid nitrogen for the determination of the glycogen-phosphorylase activity or the cAMP concentration. Values are the means \pm SEM of four experiments. The student's t-test was performed for paired values. a, P < 0.01; b, P < 0.05.

ment. The antiglycogenolytic PGE₂ effect tended to be more pronounced than in control experiments.

Interruption by pertussis toxin of the antiglycogenolytic but not the glycogenolytic PGE₂ signal chain

The signal chain leading to the antiglycogenolytic PGE₂ effects had previously been shown to be interrupted by prior treatment of hepatocytes with pertussis toxin [32, 34]. As in these studies, treatment of hepatocytes in primary culture with 100 ng/ml pertussis toxin for 18 h abolished the inhibitory effect of PGE2 on the glucagon-stimulated glycogenphosphorylase activity (Fig. 2). The glucagon-mediated increase in cAMP formation, that had been inhibited strongly by PGE₂, was partially restored in cells that had been incubated with pertussis toxin for 18 h prior to the experiment; cAMP levels increased by 350% (from 0.2-0.85 nmol/g) and thus reached approximately 35% of the level of glucagon-stimulated cells. In contrast to the antiglycogenolytic PGE₂ effect, the glycogenolytic PGE₂ effect was not inhibited but rather enhanced by a pertussis toxin treatment; the PGE₂-mediated increase in glycogen-phosphorylase activity was twice as large as in control cells. In cells treated with pertussis toxin, PGE2 caused a small but significant increase in cAMP formation by 50% (from 0.2-0.3 nmol/g).

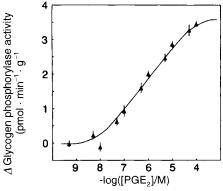


Fig. 3. Dose/response curve of the glycogenolytic PGE_2 effect. Hepatocytes (30 mg/ml) were suspended in Hepes-buffered saline, containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. PGE_2 was added after a 10-min initial incubation to the concentrations indicated. Samples were frozen in liquid nitrogen for the determination of glycogen-phosphorylase activity at 2 min. Values are the means \pm SEM of six experiments.

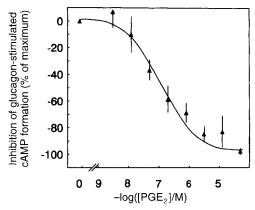


Fig. 4. Dose/response curve of the antiglycogenolytic PGE₂ effect. Hepatocytes were maintained in primary culture for 24 h in M199 containing 0.5 nM insulin, 100 nM dexamethasone and 1% (mass/vol.) penicillin-streptomycin on 3-cm-diameter tissue-culture plates. For the experiments, cells were washed three times with Hepesbuffered saline, containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1 ml of this buffer was added to all plates. After 10 min, PGE₂ at the concentration indicated and glucagon (1 nM) were added simultaneously. The reaction was stopped after 2 min by removing the medium and freezing the plates in liquid nitrogen for a later determination of the cAMP concentration in a radioimmuno-assay. Values are the means ± SEM of four experiments.

Concentration dependence of the glycogenolytic and antiglycogenolytic PGE₂ response

PGE₂ stimulated glycogen-phosphorylase activity half maximally at concentrations of approximately $0.5 \,\mu\text{M}$ (Fig. 3). It also increased Ins P_3 significantly at concentrations greater than $1 \,\mu\text{M}$ PGE₂ (data not shown); a dose/response curve for the formation of Ins P_3 could, however, not be obtained since the results varied too much between the experiments (compare Fig. 1). PGE₂ inhibited the glucagon-dependent increase in glycogen-phosphorylase activity (data not shown) and in the increase cAMP (Fig. 4) at concentrations of $0.1-50\,\mu\text{M}$. Since the inhibitory PGE₂ effect was clearly greater with cAMP formation (compare Fig. 2), the latter was the better parameter to obtain a dose/response curve (Fig. 4). The glucagon-stimulated cAMP formation

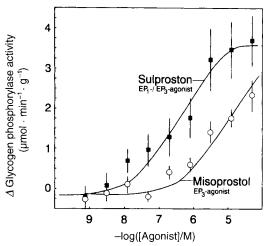


Fig. 5. Dose/response curve of the glycogenolytic effect of the EP₁/EP₃ agonist Sulproston and the EP₃ agonist Misoprostol. Hepatocytes (30 mg/ml) were suspended in Hepes-buffered saline, containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. Sulproston and Misoprostol were added after a 10-min initial incubation to the concentrations indicated. Samples were frozen in liquid nitrogen for the determination of glycogen-phosphorylase activity at 2 min. Values are the means \pm SEM of three and six experiments, respectively.

was half-maximally inhibited at PGE_2 concentrations of approximately 0.2 μ M. The dose/response curves do not allow to distinguish whether a single or different subtypes of the PGE_2 receptor were involved in the glycogenolytic and the antiglycogenolytic PGE_2 action, because both effects were half maximal at similar concentrations and because the saturation level for the signal chains is not known.

Receptors involved in the glycogenolytic and the antiglycogenolytic PGE₂ actions

So far, three types of PGE₂ receptors, named EP₁, EP₂ and EP₃ receptors, have been described in non-hepatic organs [50, 51]. To assess whether a single PGE₂ receptor type was linked to two different signal chains or whether two different PGE₂ receptor types were responsible for the glycogenolytic and the antiglycogenolytic PGE₂ effects, experiments with the EP₁/EP₃ receptor-specific agonist Sulproston and the EP₃-specific Misoprostol were performed. Both agonists are approximately equipotent on EP₃ receptors [52]. In addition, Sulproston potently stimulates EP₁ receptors and EP₃ receptors in chick ileum [50, 51]. Misoprostol is equipotent with PGE₂ on guinea pig vas deferens EP₃ receptors and is three times less potent on EP₂ receptors of cat trachea [53].

Both Sulproston and Misoprostol stimulated glycogen-phosphorylase activity (Fig. 5), yet the EP₁ and EP₃ agonist Sulproston enhanced glycogen phosphorylase activity at 10 μ M concentrations approximately twice as much as the EP₃ agonist Misoprostol. The half-maximally effective concentration (EC₅₀) of Sulproston for the stimulation of glycogen phosphorylase was approximately tenfold lower than the EC₅₀ of Misoprostol. At concentrations that half-maximally stimulated glycogen-phosphorylase activity, Sulproston (0.5 μ M) and Misoprostol (3 μ M) increased the InsP₃ formation to 152 ± 28% and 166 ± 17%, respectively. Neither Sulproston nor Misoprostol at concentrations up to 50 μ M increased cAMP formation. Thus, the glycogenolytic effect was probably mediated via EP₁ receptors.

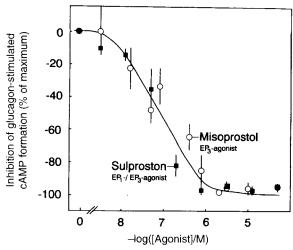


Fig. 6. Dose/response curve of the antiglycogenolytic effect of the EP₁/EP₃ agonist Sulproston and the EP₃ agonist Misoprostol. Hepatocytes were maintained in primary culture for 24 h in M199 containing 0.5 nM insulin, 100 nM dexamethasone and 1% (mass/vol.) penicillin-streptomycin on 3-cm-diameter tissue-culture plates. For the experiments, cells were washed three times with Hepes-buffered saline containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1 ml of this buffer was added to all plates. After 10 min, Sulproston or Misoprostol at the concentration indicated and glucagon (1 nM) were added simultaneously. The reaction was stopped after 2 min by removing the medium and freezing the plates in liquid nitrogen for a later determination of the cAMP concentration in a radioimmunoassay. Values are the means \pm SEM of three experiments.

Sulproston and Misoprostol also inhibited the glucagonstimulated cAMP formation with a similar EC_{50} value of approximately 0.1 μ M (Fig. 6). Since both substances can act as EP_3 agonists, the antiglycogenolytic effect was most likely mediated via EP_3 receptors.

To further corroborate these data, the EP₁-receptor-selective antagonists AH 6809 and SC 19220 were used. However, AH 6809 had a strong intrinsic activity; it stimulated glycogen-phosphorylase activity twofold over basal rates and had no antiglycogenolytic effect on the glucagon-stimulated glycogen-phosphorylase activity (data not shown). SC 19220 neither inhibited the glycogenolytic nor the antiglycogenolytic PGE₂ effect if added at concentrations up to approximately 10 μ M as a stock solution in ethanol (data not shown). Since this drug is extremely insoluble in water and the addition of higher concentrations of organic solvents is prohibitive in cell-suspension experiments, the effective concentration of SC 19220 might have been much lower. Thus, the lack of an inhibition by this inhibitor does not argue against the involvement of EP₁ receptors.

DISCUSSION

Glycogenolytic and antiglycogenolytic PGE_2 actions in the same experimental system

The glycogenolytic and antiglycogenolytic actions of PGE₂ have previously been observed in different experimental systems. The glycogenolytic effect has either been shown in rat liver perfused with glucose-free [23, 25, 26] or glucose-containing medium [24] or in hepatocyte suspensions with glucose-free media [27, 28]. In these investigations, an increase either in glucose output or glycogen-phosphorylase

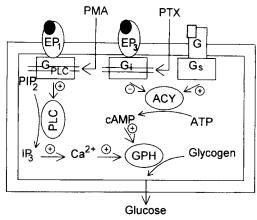


Fig. 7. Hypothetical signal chains for the glycogenolytic and antiglycogenolytic PGE₂ actions. Glycogenolytic signal chain: EP₁, PGE₂ receptor of the subtype 1; PMA, 4β -phorbol 12-myristate 13-acetate; G_{PLC}, phospholipase-C-linked G protein; PIP₂, phosphatidyl-inositol 4,5-bisphosphate; PLC, phospholipase C; IP₃, inositol 1,4,5-trisphosphate. Antiglycogenolytic signal chain: EP₃, PGE₂ receptor of the subtype 3; G, glucagon receptor; PTX, pertussis toxin; G_i, inhibitory G protein; G_s, stimulatory G protein; ACY, adenylate cylase; GPH, glycogen phosphorylase.

a activity was determined. The antiglycogenolytic effect has been demonstrated in cell culture or suspension with media containing 5 mM glucose and no substrates for gluconeogenesis [29-38]. In these studies, either the glycogenolytic rate was determined as the release into the medium of glucose or [14C]glucose from labelled glycogen, or the decrease in the glucagon-induced cAMP formation was measured. Differences in the experimental set up, i.e. perfusion and cell suspension with glucose-free media versus culture with glucosecontaining media have previously been used [37] to explain the lack of glycogenolytic PGE2 effects in the latter studies with cultures [29-38]. A slight PGE2-mediated increase in cAMP has previously been described in hepatocytes in the presence of the cAMP-phosphodiesterase inhibitor isobutyl methyl xanthine together with an inhibition of the glucagonmediated cAMP formation [32]. A potentiation of the glucagon-mediated glucose output at low (10⁻⁹ M) concentrations of PGE₂ and an attenuation of the glucagon-mediated glucose output at high (10⁻⁶ M) concentrations of PGE₂ in cell suspension in a glucose-free and lactate free medium has also been reported [28].

In the present investigation, both the glycogenolytic and antiglycogenolytic actions of PGE2 have been observed in hepatocyte suspensions and cultures with media containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate by measuring glycogen-phosphorylase activity. Moreover, in suspensions an increase by PGE₂ in basal glucose release and a decrease by PGE₂ in the glucagon-stimulated glucose release into the medium could be demonstrated. In addition to the attenuation of the glucagon-stimulated glycogenolysis, PGE₂ seemed to decrease the glucose output from the hepatocytes by diminishing the glucagon-stimulated lactate uptake, which can be used as a rough estimate for gluconeogenesis. Both the glycogenolytic and antiglycogenolytic PGE₂ effects were half maximal at concentrations of 0.5 µM exceeding by at least one order of magnitude the systemic or portal concentrations of 0.5-1 nM. However, local prostaglandin concentrations of 5-10 µM may be reached in the proximity of hepatocytes due to the local production and secretion into the narrow space of Disse by non-parenchymal liver cells [10].

Involvement of different signal chains

The glycogenolytic PGE_2 effect was mediated via an $InsP_3$ -dependent signal chain. It could be interrupted by a short-term activation of protein kinase C with the phorbol ester PMA (Fig. 7, compare Fig. 1). This interruption by PMA has been demonstrated previously for other $InsP_3$ -dependent signal chains such as noradrenaline, vasopressin, phenylephrine [45–49] and prostaglandins [54–56]. Activation of protein kinase C neither interfered with the cAMP-dependent signal chain of glucagon nor with the antiglycogenolytic PGE_2 signal chain.

The antiglycogenolytic PGE₂ effect was mediated via a decrease in cAMP. It could be inhibited by an incubation of hepatocytes with pertussis toxin (Fig. 7, compare Fig. 2). This is in agreement with previously published data [32, 34]. By contrast, the glycogenolytic PGE₂ effect was rather enhanced. Thus, the antiglycogenolytic effect but not the glycogenolytic effect was mediated via a pertussis-toxin-inhibitable G_i protein.

Treatment with pertussis toxin abolished the inhibition by PGE_2 of the glucagon-stimulated glycogen-phosphorylase activity entirely, whereas it reduced the inhibition by PGE_2 of the glucagon-stimulated cAMP formation only partially. Hence, a submaximal increase (35%) in cAMP formation already yielded a maximal activation of glycogen phosphorylase. This lack of a strict correlation of cAMP formation and activation of glycogen phosphorylase, where cAMP apparently is produced in excess, is a well-known phenomenon [57, 58] which is also observed with the second messenger $InsP_3$ [59].

The enhancement of the glycogenolytic PGE₂ effect by pertussis toxin might be explained in two ways. (a) Pertussis toxin might have diminished an inhibition by PGE₂ of the glycogenolytic of the phospholipase-C-linked PGE₂ signal chain. This inhibition might be mediated via a pertussis toxin sensitive phospholipase-C-like G_i protein as has been described for endothelin in brain [60] and heart [61]. This hypothesis cannot be tested at the level of the second-messenger $InsP_3$, since the increases in $InsP_3$ formation seems not to correlate strictly with the activation of glycogen phosphorylase [27, 59]. (b) Alternatively, pertussis toxin might abrogate a PGE₂-enhanced block via a G_i protein of a stimulatory G-protein (G_s)-linked glycogenolytic PGE₂ signal chain. The latter view is supported by the fact that PGE₂ elicited a small but significant increase in cAMP formation only in presence of pertussis toxin (Fig. 2) indicating that the partial inactivation of a G₁ protein revealed the presence a G₂-linked PGE₂ receptor signal chain normally obscured by the predominance of G_i action. This is in agreement with a previous finding, that a small PGE₂-mediated increase in cAMP formation was potentiated by initial treatment of hepatocytes with pertussis toxin [32].

Involvement of different receptor types

PGE₂ receptors have been subdivided into three classes, EP₁, EP₂ and EP₃ receptors [50, 51], according to the relative potency of PGE₂ analogues in various non-hepatic tissues and the signal chain they use. The existence of a fourth EP-receptor subtype linked to G_s has been suggested [62] and two isoforms of the EP₃ receptor have been cloned [63]. Receptors designated EP₁ receptors operate via phospholipase C and InsP₃ [64], EP₂ receptors via a G_s -mediated increase in cAMP and EP₃ receptors via a G_i -mediated decrease in

cAMP [65]. Since the glycogenolytic effect of PGE₂ could be mimicked best by Sulproston, that acts both as an EP₁ and EP₃ agonist, whereas the EP₃-selective Misoprostol was clearly less effective, it seems that the glycogenolytic effect of PGE₂ was mediated via EP₁ receptors (Fig. 7, compare Fig. 5). This is in agreement with the observed increase in InsP₃ (Fig. 1).

The antiglycogenolytic PGE₂ effect was mimicked equally well by Sulproston and Misoprostol, which have a similar affinity to EP₃ receptors [52]. The antiglycogenolytic PGE₂ effect thus seems to be mediated by EP₃ receptors (Fig. 7, compare Fig. 6). This is in agreement with the observed pertussis-toxin-sensitive decrease in cAMP formation (Fig. 2).

Conclusion

The data presented in this study favour the hypothesis that hepatocytes possess two PGE_2 receptor subtypes. These subtypes are an EP_1 receptor that stimulates glycogenolysis via a PMA-sensitive, pertussis-toxin-insensitive $InsP_3$ -linked signal chain and an EP_3 receptor that inhibits the glucagon-stimulated glycogenolysis via a pertussis-toxin-sensitive G_i protein.

We wish to thank Glaxo, Schering and Searle for providing prostaglandin-E₂-receptor subtype-specific agonists and antagonists. This study was supported by the *Deutsche Forschungsgemeinschaft* through the SFB 236, Göttingen, Teilprojekt A11.

REFERENCES

- 1. Decker, K. (1985) Semin. Liver Dis. 5, 175-190.
- Kuiper, J., Zijlstra, F. J., Kamps, J. A. & Van Berkel, T. J. (1989) Biochem. J. 262, 195-201.
- 3. Okumura, T. & Saito, K. (1984) J. Biochem. (Tokyo) 96, 429–36.
- Brass, E. P. & Garrity, M. J. (1989) Biochim. Biophys. Acta 1010, 233-236.
- Garrity, M. J., Brass, E. P. & Robertson, R. P. (1984) Biochim. Biophys. Acta 796, 136-141.
- Brass, E. P., Beyerinck, R. A. & Garrity, M. J. (1988) Biochem. Pharmacol. 37, 1343-1349.
- Okumura, T., Sago, T. & Saito, K. (1987) Biochem. Int. 14, 443–449.
- Garrity, M. J. & Brass, E. P. (1987) Endocrinology 120, 1134– 1139.
- Garrity, M. J., Brass, E. P. & Robertson, R. P. (1987) Adv. Prostaglandin Thromboxane Leukotriene Res. 17, 686-690.
- Neuschäfer-Rube, F., Püschel, G. P. & Jungermann, K. (1993)
 Eur. J. Biochem. 211, 163–169.
- Dieter, P., Altin, J. G. & Bygrave, F. L. (1987) FEBS Lett. 213, 174–178.
- Casteleijn, E., Kuiper, J., Van Rooij, H. C., Kamps, J. A., Koster, J. F. & Van Berkel, T. J. (1988) J. Biol. Chem. 263, 6953

 6955
- Buxton, D. B., Fisher, R. A., Briseno, D. L., Hanahan, D. J. & Olson, M. S. (1987) *Biochem. J.* 243, 493–498.
- Püschel, G. P., Oppermann, M., Muschol, W., Götze, O. & Jungermann, K. (1989) FEBS Lett. 243, 83-87.
- Muschol, W., Püschel, G. P., Hülsmann, M. & Jungermann, K. (1991) Eur. J. Biochem. 196, 525-530.
- Flynn, J. T. (1987) Prostaglandins Leukotrienes Med. 27, 93– 103
- Altin, J. G., Dieter, P. & Bygrave, F. L. (1987) Biochem. J. 245, 145-150.
- Tran Thi, T. A., Häussinger, D., Gyufko, K. & Decker, K. (1988) Biol. Chem. Hoppe-Seyler 369, 65-68.

- vom Dahl, S., Wettstein, M., Gerok, W. & Häussinger, D. (1990) *Biochem. J.* 270, 39–44.
- Tran Thi, T. A., Gyufko, K., Reinke, M. & Decker, K. (1988)
 Biol. Chem. Hoppe-Seyler 369, 1179-1184.
- 21. Tran Thi, T. A., Gyufko, K., Häussinger, D. & Decker, K. (1988) J. Hepatol. (Amst.) 6, 151-157.
- 22. Iwai, M. & Jungermann, K. (1987) FEBS Lett. 221, 155-160.
- 23. Altin, J. G. & Bygrave, F. L. (1988) Biochem. J. 249, 677-685.
- Iwai, M., Gardemann, A., Püschel, G. & Jungermann, K. (1988)
 Eur. J. Biochem. 175, 45-50.
- 25. Häussinger, D., Stehle, T., Tran Thi, T. A., Decker, K. & Gerok, W. (1987) *Biol. Chem. Hoppe-Seyler 368*, 1509–1513.
- Kuiper, J., Casteleyn, E. & Van Berkel, T. J. (1988) Adv. Enzyme Regul. 27, 193-208.
- Athari, A. & Jungermann, K. (1989) Biochem. Biophys. Res. Commun. 163, 1235-1242.
- Mine, T., Kojima, I. & Ogata, E. (1990) Endocrinology 126, 2831–2836.
- 29. Bronstad, G. O. & Christoffersen, T. (1981) Eur. J. Biochem. 117, 369-374.
- Brass, E. P., Garrity, M. J. & Robertson, R. P. (1984) FEBS Lett. 169, 293-296.
- 31. Brass, E. P. & Garrity, M. J. (1985) Diabetes 34, 291-294.
- 32. Melien, O., Winsnes, R., Refsnes, M., Gladhaug, I. P. & Christoffersen, T. (1988) *Eur. J. Biochem.* 172, 293–297.
- 33. Brass, E. P. & Garrity, M. J. (1990) Biochem. J. 267, 59-62.
- Garrity, M. J., Reed, M. M. & Brass, E. P. (1989) J. Pharmacol. Exp. Ther. 248, 979–983.
- 35. Okumura, T., Sago, T. & Saito, K. (1988) Prostaglandins 36, 463-475.
- 36. Okumura, T., Sago, T. & Saito, K. (1988) *Biochim. Biophys. Acta* 958, 179–187.
- 37. Okumura, T. & Saito, K. (1990) Prostaglandins 39, 525-540.
- 38. Okumura, T. & Saito, K. (1990) *Biochim. Biophys. Acta* 1051, 300-305.
- 39. Meredith, M. J. (1988) Cell Biol. Toxicol. 4, 405-425.
- 40. Berry, M. N. & Friend, D. S. (1969) J. Cell Biol. 43, 506-520.
- Banauch, D., Brümmer, W., Ebeling, W., Rendrey, H., Seybold, K. & Rick, R. (1975) Z. Klin. Chem. Klin. Biochem. 13, 101– 107
- Noll, F. (1974) in Methoden der enzymatischen Analyse (Bergmeyer, H. U., ed.) pp. 1521–1525, Verlag Chemie, Weinheim/Bergstraße.
- 43. Hue, L., Bontemps, F. & Hers, H. G. (1975) *Biochem. J.* 152, 105–114.
- 44. Lowry, O. H., Rosebrough, N. J., Farr, L. & Randall, R. J. (1951) *J. Biol. Chem.* 193, 265-275.

- Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H. & Blackmore, P. F. (1985) J. Biol. Chem. 260, 2844-2851.
- Garcia Sainz, J. A., Mendlovic, F. & Martinez Olmedo, M. A. (1985) Biochem. J. 228, 277-280.
- 47. Leeb Lundberg, L. M., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F., Lefkowitz, R. J. & Caron, M. G. (1985) *Proc. Natl Acad. Sci. USA* 82, 5651–5655.
- 48. Cooper, R. H., Coll, K. E. & Williamson, J. R. (1985) *J. Biol. Chem.* 260, 3281–3288.
- van de Werve, G., Proietto, J. & Jeanrenaud, B. (1985) *Biochem. J.* 231, 511-516.
- Coleman, R. A., Kennedy, I., Sheldrick, R. L. G. & Tolowinska, I. Y. (1987) *Br. J. Pharmacol.* 91, 407.
- Coleman, R. A., Kennedy, I. & Sheldrick, R. L. G. (1987) Br. J. Pharmacol. 91, 323.
- Molderings, G., Malinowska, B. & Schlicker, E. (1992) Br. J. Pharmacol. 107, 352-355.
- Bunce, K. T., Cayton, N. M., Coleman, R. A., Collington, E. W., Finch, H., Humphray, J. M., Humphrey, P. P. A., Reeves, J. J., Sheldrick, R. L. G. & Stables, R. (1990) Adv. Prostaglandin Thromboxane Leukotriene Res. 21, 379-382.
- Black, F. M. & Wakelam, M. J. (1990) Biochem. J. 267, 809

 813.
- 55. Yokohama, H., Negishi, M., Sugama, K., Hayashi, H., Ito, S. & Hayaishi, O. (1988) *Biochem. J.* 255, 957–962.
- 56. Püschel, G. P., Miura, H., Neuschäfer-Rube, F. & Jungermann, K. (1993) Z. Gastroenterol. 31, 51-52.
- 57. van de Werve, G. & Jeanrenaud, B. (1987) *Diabetes Metab. Rev.* 3, 46-78.
- Wakelam, M. J. O., Murphy, G. J., Hruby, V. J. & Houslay, M. D. (1986) *Nature 323*, 68-71.
- Charest, R., Prpic, V., Exton, J. H. & Blackmore, P. F. (1985) *Biochem. J.* 227, 79–90.
- 60. Ross, E. M. (1989) Neuron 3, 141-152.
- Galron, G., Bdolah, A., Kloog, Y. & Sokolovsky, M. (1990)
 Biochem. Biophys. Res. Commun. 171, 949-954.
- Honda, A., Sugimoto, Y., Namba, T., Watabe, A., Irie, A., Negishi, M., Narumiya, S. & Ichihawa, A. (1993) *J. Biol. Chem.* 268, 7759-7762.
- Sugimoto, Y., Negishi, M., Hayaishi, Y., Namba, T., Honda, A., Watabe, A., Hirata, M., Narumiya, S. & Ichikawa, A. (1993) J. Biol. Chem. 268, 2712–2718.
- 64. Nakahata, N. (1992) Nippon Yakurigaku Zasshi 99, 1-11.
- Sugimoto, Y., Namba, T., Honda, A., Hayashi, Y., Negishi, M., Ichikawa, A. & Narumiya, S. (1992) J. Biol. Chem. 267, 6463-6466.