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Abstract. Grain-size distributions are a key geomorphic metric of gravel-bed rivers. Traditional measurement
methods include manual counting or photo sieving, but these are achievable only at the 1–10 m2 scale. With the
advent of drones and increasingly high-resolution cameras, we can now generate orthoimagery over hectares at
millimeter to centimeter resolution. These scales, along with the complexity of high-mountain rivers, necessitate
different approaches for photo sieving. As opposed to other image segmentation methods that use a watershed
approach, our open-source algorithm, PebbleCounts, relies on k-means clustering in the spatial and spectral
domain and rapid manual selection of well-delineated grains. This improves grain-size estimates for complex
riverbed imagery, without post-processing. We also develop a fully automated method, PebbleCountsAuto, that
relies on edge detection and filtering suspect grains, without the k-means clustering or manual selection steps.
The algorithms are tested in controlled indoor conditions on three arrays of pebbles and then applied to 12× 1 m2

orthomosaic clips of high-energy mountain rivers collected with a camera-on-mast setup (akin to a low-flying
drone). A 20-pixel b-axis length lower truncation is necessary for attaining accurate grain-size distributions. For
the k-means PebbleCounts approach, average percentile bias and precision are 0.03 and 0.09 ψ , respectively,
for ∼ 1.16 mm pixel−1 images, and 0.07 and 0.05 ψ for one 0.32 mm pixel−1 image. The automatic approach
has higher bias and precision of 0.13 and 0.15 ψ , respectively, for ∼ 1.16 mm pixel−1 images, but similar values
of −0.06 and 0.05 ψ for one 0.32 mm pixel−1 image. For the automatic approach, only at best 70 % of the
grains are correct identifications, and typically around 50 %. PebbleCounts operates most effectively at the 1 m2

patch scale, where it can be applied in ∼ 5–10 min on many patches to acquire accurate grain-size data over
10–100 m2 areas. These data can be used to validate PebbleCountsAuto, which may be applied at the scale
of entire survey sites (102–104 m2). We synthesize results and recommend best practices for image collection,
orthomosaic generation, and grain-size measurement using both algorithms.

1 Introduction

Gravel-bed rivers transport water, nutrients, and sediment
downstream, linking high mountains with populated fore-
lands. The grain-size distributions – and associated per-
centile diameters, such as the D50 and D84 – in a river
reach are fundamental geomorphic metrics of these sys-
tems (e.g., Shields, 1936; Parker et al., 1982; Church
et al., 1998). They are used to characterize aquatic habi-
tats (e.g., Kondolf and Wolman, 1993), assess the impacts
of human infrastructure like dams (e.g., Kondolf, 1997;
Grant, 2012), calibrate theoretical models of river transport

and erosion (e.g., Sklar et al., 2006; Attal and Lavé, 2006;
Attal et al., 2015; Dunne and Jerolmack, 2018), and explore
natural phenomena such as downstream fining (e.g., Paola
et al., 1992; Ferguson et al., 1996; Rice and Church, 1998;
Gomez et al., 2001; Chatanantavet et al., 2010; Lamb and
Venditti, 2016), which is essential for nutrient transport and
ecological diversity.

Accurate grain-size measurement is elusive in nature given
the heterogeneity of gravel-bed rivers, particularly in steep
mountain catchments where the range of grain sizes is large.
Traditionally, grain-size distributions have been gathered via
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physical clast measurement and counting along grids (Wol-
man, 1954), lines (Wohl et al., 1996), or in ∼ 1 m2 patches
(Bunte and Abt, 2001), all truncated at some lower observ-
able limit (e.g., Rice and Church, 1998). Not only are these
techniques time-consuming, prone to operator bias, and dis-
ruptive to the environment, but they also require large (hun-
dreds of pebbles) sample sizes to accurately estimate the
characteristic nature of the grains in each location (Wolcott
and Church, 1991).

In light of this, measurement from photographs is an
attractive option for increasing sample size and decreas-
ing fieldwork, while covering larger areas. Increasingly af-
fordable high-resolution – 12- to 24-megapixel – cam-
eras allow the collection of high-quality photo surveys via
structure from motion with multi-view stereo (SfM-MVS)
(Smith et al., 2015; Eltner et al., 2016) at scales of entire
river cross sections or reaches with resolutions at, or ex-
ceeding, 1 cm pixel−1 (e.g., Woodget and Austrums, 2017).
Even higher-resolution (1 mm pixel−1) river surveys can
be accomplished with low-flying unmanned aerial vehicles
(UAVs) (e.g., Carbonneau et al., 2018), pole-mounted cam-
eras, or using handheld imagery.

We build on previous work and introduce the addition
of color-space clustering techniques to present efficient new
semi-automated (PebbleCounts) and fully automated (Peb-
bleCountsAuto) algorithms for grain sizing from imagery in
high-energy mountain rivers. Our algorithms are built on
Python with a few popular libraries and are open source. The
instructions and code can be accessed at https://github.com/
UP-RS-ESP/PebbleCounts (last access: 12 September 2019)
(Purinton and Bookhagen, 2019). In this study, we present
previous work on grain-size measurement from rivers and
our motivation for new developments. The processing chains
of PebbleCounts and PebbleCountsAuto are then discussed.
We test the algorithms in controlled conditions and then in
a more challenging field setting in the northwestern Argen-
tine Andes. The limits and caveats of the method are dis-
cussed using imagery of varying resolution, and suggestions
for photo collection and processing are provided.

1.1 Prior studies

Modern digital grain sizing is divided into texture- and
segmentation-based image-processing methods, as opposed
to previous manual digitization (e.g., Kellerhals and Bray,
1971; Ibbeken and Schleyer, 1986). Many texture methods
rely on the relationship between grains and their shadowed
interstices to derive size estimates over image windows. Ex-
amples include semivariance (Verdú et al., 2005; Carbon-
neau et al., 2003, 2004; Carbonneau, 2005), entropy or iner-
tia calculated from gray-level co-occurrence matrices (Haral-
ick et al., 1973; Carbonneau et al., 2004; Carbonneau, 2005;
Dugdale et al., 2010; de Haas et al., 2014; Woodget and
Austrums, 2017; Woodget et al., 2018), and autocorrelation
(Rubin, 2004; Warrick et al., 2009; Buscombe et al., 2010).

These methods only provide one estimate of grain size (e.g.,
D50), which often requires site-specific calibration.

Buscombe (2013) achieved full grain-size distribution
measurements using wavelet decomposition and published
an open-source Python tool, pyDGS. This is a texture method
that has been designed for the analysis of thin sections or
beach sands and requires each grain to be fully resolvable
and the distributions to be fairly homogeneous in size and
shape. Additional texture methods rely on the 3-D texture (or
roughness) of point clouds to relate the variance of bed-scale
topography to average grain size (Brasington et al., 2012;
Rychkov et al., 2012; Westoby et al., 2015; Woodget and
Austrums, 2017; Bertin and Friedrich, 2016); however, these
techniques also require site calibration, and the relationships
have been found to vary widely (Pearson et al., 2017).

In contrast to texture methods, the focus of segmenta-
tion is the full delineation and measurement of every visi-
ble grain. Segmentation is error prone in images that con-
tain overlapping grains, a large range of grain sizes including
sand patches, changes in land cover (e.g., vegetation), peb-
bles that are highly irregular in shape (non-ellipsoid), pebbles
with intragranular color variations or texture such as veins or
fractures, and in which shadowing is irregular. Herein, we re-
fer to these factors collectively as image complexity. Further-
more, segmentation-based methods also require high-spatial-
resolution point clouds or images that resolve the specific
grain geometries. The benefits are that segmentation does
not require any site calibration besides knowledge of the im-
age scale and it provides a full grain-size distribution and
all the commonly used percentiles (D5,16,25,50,75,84,95). Pub-
lished methods by Butler et al. (2001), Sime and Ferguson
(2003), and Graham et al. (2005a, b) all rely on edge detec-
tion followed by watershed segmentation and ellipse fitting
to each separate grain to get the long (a) and intermediate (b)
axes. Detert and Weitbrecht (2012) added some sophistica-
tion to the algorithm of Graham et al. (2005a, b) and provide
a free – though closed-source – application called Basegrain
for Matlab™, which has become a standard tool (e.g., Bertin
and Friedrich, 2016; Bertin et al., 2017; Langhammer et al.,
2017; Carbonneau et al., 2018).

1.2 Motivation

Watershed segmentation is effective for interlocking, uni-
formly colored, oblate grains; however, energetic gravel-bed
rivers in mountains often have more complex grain composi-
tions with intragranular variation, irregular shadowing, and a
large range of sizes. The automated watershed methods pro-
posed suffer from oversegmentation, grain misidentification,
and the need for significant, time-consuming post-processing
(e.g., in Basegrain with the split, merge, and delete tools)
when applied to complex images. These issues limit their ap-
plication to areas < 10 m2.

Thus, we are motivated to develop a new semi-automated
technique that uses k-means clustering of pixels and rapid
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Figure 1. Difference between our k means with manual selection (KMS) and automatic with image filtering (AIF) approaches versus a fully
automated watershed segmentation approach on a gravel image from a high-mountain river. The a and b axes of each grain mask are found
via an ellipse fit to the same area. Fewer grains are found in the KMS and AIF results, and there is still some misidentification in the case of
AIF but less than in the watershed result.

manual selection of well-defined grains, herein referred to as
the k means with manual selection (KMS) or PebbleCounts
approach, and a fully automated version that uses filtering of
suspect grains, herein referred to as the automatic with image
filtering (AIF) or the PebbleCountsAuto approach (Fig. 1).
By avoiding oversegmentation and misidentification, we are
able to select fewer grains per image but be sure that those
selected are correctly delineated, thus improving the result-
ing distribution (Fig. 2), with the intention of upscaling to
include many thousands of grain measurements over large
areas. Despite the selection of fewer grains, Fig. 2 demon-
strates that these represent the true grain size through the
close match in distribution with hand-clicked results.

Furthermore, faced with diverse camera models and the
rise of SfM-MVS for the generation of georeferenced or-
thophotos, we wish to explore reasonable and appropriate
combinations for covering acre-to-hectare areas while main-
taining accurate grain-size measurement. Fundamentally, our

aim for the KMS approach is not in the delineation of a sin-
gle high-resolution image from a ∼ 1 m2 patch as in previ-
ous segmentation work but rather a method that can cover
areas of 10–100 m2 containing complex grain arrangements,
despite missing many grains at the patch scale. These semi-
automated photo-sieving results can then be used to validate
the AIF method at much greater spatial scales (102–104 m2),
where physical counting is infeasible and previous methods
are unreliable or time-consuming.

2 Algorithm description

Our methods are similar to previous work by Graham et al.
(2005a) and Detert and Weitbrecht (2012), with some key
differences. A flow chart of both methods is shown in Fig. 3
and the processing is presented briefly. We direct the in-
terested user to the manual (https://github.com/UP-RS-ESP/
PebbleCounts) for a full description of the steps. Our algo-
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Figure 2. Watershed segmentation (blue, dashed and dotted line)
versus KMS (gray, dashed line) and AIF (red, dotted line) ap-
proaches compared with a hand-clicked b-axis grain-size distribu-
tion (black line) for a∼ 1 m2 river patch (S09 in Fig. 6b). Watershed
approach leads to oversegmentation of grains, giving an unreason-
able number of clasts (276 versus 106 in the control) and an overly
fine grain-size distribution.

rithms use 2-D image processing in the spatial and spectral
domains, which ignores the potential to exploit third height
dimensions from irregularly spaced point clouds generated
via lidar or SfM-MVS. The reader is directed to Sect. S1 in
the Supplement for our efforts in this regard.

2.1 PebbleCounts: KMS

We employ the additional color spaces HSV (hue, saturation,
value) and CIELab (Russ, 2002), aside from traditional RGB
(red, green, blue) and gray scale, to enhance differences in
the spectral domain separate from lighting. First, the RGB
image undergoes strong non-local means de-noising (Buades
et al., 2011) to smooth intragranular color difference, inter-
active gray-scale shadow masking (Otsu, 1979) to separate
obvious interstices, and HSV color selection for sand-patch
masking (whereby sand is filtered by a narrow, user-selected
color mask). The image and shadow/sand edge mask are then
windowed for further processing.

At each window, the RGB image undergoes another
weaker non-local means de-noising, is then converted to
CIELab, and the chromaticity bands from this color space
undergo bilateral filtering (Tomasi and Manduchi, 1998) to
preserve intergranular edges while further smoothing color.
Following this, edge detection on the smoothed, gray-scaled
image occurs via a combination of top-hat, Sobel, and Canny
methods with feature-AND selections (Russ, 2002), in which

an edge is added to the full mask only if it overlaps with a
found edge in the previous edge mask, thus piecewise build-
ing an edge map while avoiding lone (i.e., intragranular)
edges (Detert and Weitbrecht, 2012).

After edge detection, our algorithm uses k-means clus-
tering (Lloyd, 1982; Sculley, 2010) to further segment the
pebbles. First, the matrix of non-masked pixels is converted
into a vector that includes the spectral information at each
location. This N × 4-dimensional vector (N being the num-
ber of non-masked pixels) includes two spectral observables:
the green–red and blue–yellow smoothed chromaticity bands
from CIELab; and the two spatial observables: the x and y
coordinates of the pixel in image space. To avoid overseg-
mentation by anisotropic or image-spanning grains, the x,y
coordinates are rescaled to 50 % of the color, which is also
rescaled from 0 to 1.

We attempted using agglomerative Ward hierarchical clus-
tering (Ward, 1963) to further improve results on anisotropic
and/or large grains; however, this approach is prohibitively
slow on large images, and test results did not show signifi-
cant improvement. The k-means clustering requires a user-
supplied number of clusters. Here, we add clusters beginning
at 1 and recalculate up to an inertia improvement threshold
of 1 %–10 % (user supplied). Resulting labeled masks are
cleaned via binary operations and the user is prompted to se-
lect the labeled regions that contain full, single grains within
a simple pop-up window (Fig. S3).

After selection, the orientation and a and b axes of an el-
lipse fit to the labeled region, shown to accurately approxi-
mate grain size (Graham et al., 2005a), are recorded and the
grain is added to the final list and the masked region. This
processing takes place over three separate scales represent-
ing a “burrowing” of the algorithm through the image (from
largest to smallest window/grain size). Scales are set by the
user-supplied longest expected a axis and image resolution.
In contrast to the 46 variables employed by Basegrain, Peb-
bleCounts has 20 command-line variable flags – of which 15
exert influence on the results – with most requiring little to
no modification (Table S1). Examples of the command-line
interface and clicking steps are in the manual and Sect. S2.

2.2 PebbleCountsAuto: AIF

This method applies the same initial non-local means de-
noising and interactive shadow/sand masking, with the op-
tion to input user-supplied values for full automation. From
here, we diverge from the windowing and k-means approach
and move directly to edge detection on the entire image us-
ing the same top-hat, Canny, and Sobel combination with
feature-AND selections.

The resulting mask is then cleaned via binary morpholog-
ical operations and each label is measured via ellipse fitting.
To reduce the misidentified grains, the ellipses are filtered in
a three-step chain. (A) Does the centroid fall within another
ellipse? (B) Does the ellipse overlap with any neighboring el-
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Figure 3. Flowchart of PebbleCounts (a) and PebbleCountsAuto (b). The boxes are user-supplied input or output from the algorithm. Dashed
lines indicate a user input step during processing, either entering and checking values or clicking.

lipses above some threshold? (C) Is the percent misfit (ellipse
area versus grain-mask area) above some threshold? At each
step, an answer of “yes” leads to the elimination of the grain.
The (A) and (B) steps filter grains that have high overlap
or are oversegmented, whereas (C) helps filter areas where
multiple grains were combined in one mask or a non-grain
was identified (e.g., remaining sand patch). Grains passing
the test are taken as the final results, with the assumption
that misidentified grains are minimal, particularly when up-
scaling to large areas and tens of thousands of pebbles on
high-quality (low-blur) images. The command-line variables
for this method are shown in Table S2, and command-line
examples can be found in the manual.

We experimented with resampling (over- and undersam-
pling) the image prior to grain detection to increase smooth-
ing and to improve the detection of larger grains at the cost
of measuring fewer smaller grains. The majority of images
achieved the best results using the original resolution, though
we did find a slight improvement in results using undersam-
pling on some unsharp images (see Sect. S3). The selection

of other parameters like the maximum percent misfit is also
covered in Sect. S3.

3 Calibration and validation I: controlled experiment

3.1 Experimental setup

To test the KMS and AIF approaches on a simple control, we
arranged three distributions of well-rounded, river pebbles
with a-axis sizes from 3 to 130 mm in semi-overlapping pat-
terns in a 0.5× 0.5 m area (Fig. 4). As opposed to most stud-
ies that use b-axis lengths to measure the grain-size distribu-
tion (Bunte and Abt, 2001), in the experimental setup, we use
a axes since it was easier to hand-measure the longest axis of
the > 200 grains used. Six size-class bins (3–5, 10–20, 25–
35, 40–50, 60–70, and 80–130 mm; all a axes) were sampled
to approximate two log-normal and one bimodal grain-size
distribution. The river pebbles used had uniform intragran-
ular color with minimal striations (i.e., veins), low angular-
ity, and a diverse array of intergranular colors. Lighting was
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controlled by overhead fluorescent bulbs and the photos were
taken without flash to limit cast shadows.

3.2 Orthomosaic generation

We tested a Fujifilm X100F model camera with a fixed
23 mm focal length lens and a Sony α6000 model with
a removable 35 mm fixed length lens. Both had the
same advanced photo system type-C (APS-C) sensors
(23.6 mm× 15.6 mm) and both output photos at 24 megapix-
els in a 4000× 6000-pixel format. Following initial tests, it
became clear that the image quality and grain-size results
were practically identical for these two cameras, so the re-
sults presented are only those for the Fujifilm, as the photo
quality was slightly sharper throughout and less distorted
at the image corners. To simulate reduced quality, the 24-
megapixel Fujifilm picture dimensions were reduced to 75 %,
50 %, and 25 %, resulting in 13.5-, 6-, and 1.5-megapixel im-
ages at pixel dimensions of 3000× 4500, 2000× 3000, and
1000× 1500, respectively.

For each test setup, we collected ∼ 10 images from ∼ 20◦

off nadir (oblique) and at least four overhead near-nadir (tilts
< 10◦) pictures, for 12–16 photos in total. The collection of
oblique images aided in removing doming effects from the
resulting point clouds (e.g., James and Robson, 2014) and for
capturing the pebble edges and sides (Fig. S1). As consumer-
grade cameras have square pixels with negligible difference
in horizontal and vertical resolution, the image scale can be
calculated directly from the camera parameters and camera
height with the resolution (R) in mm pixel−1 given by

R =
(S ·h)
(f · I )

, (1)

where S is the sensor height or width in millimeters, f is
the lens focal length in millimeters, h is the camera height in
millimeters, and I is the image height or width in pixels. S
and I should either both be the width or both be the height
of the sensor and image, respectively. This assumes no ma-
jor distortions within the field of view, which is not valid for
oblique imagery but is negligible for near-nadir photography
at close range using non-fisheye lenses. With h= 1.55 m,
the resulting image resolutions tested from the Fujifilm were
0.26, 0.35, 0.53, and 1.05 mm pixel−1 by Eq. (1).

We used the 12–16 photos to generate SfM-MVS orthoim-
ages in Agisoft Photoscan v.1.4.2 (Agisoft, 2018) – renamed
Agisoft Metashape in recent versions. This allows rapid out-
put of additional information including point clouds, digital
elevation models (DEMs), and the undistorted orthomosaics,
with resolution recorded in the image metadata for direct in-
put into PebbleCounts and PebbleCountsAuto. Detailed Ag-
isoft processing steps are provided in Sect. S4.

3.3 Comparison metrics

For the simple controlled experiment, with relatively coarse
grain-size bins, it is not appropriate to compare percentiles
(e.g., D50) or to run Kolmogorov–Smirnov (KS) tests and
measure the difference in distributions between the AIF or
KMS and control grain-size distributions. Instead, we com-
pared the counts in each bin between the control and algo-
rithm and visually assessed the matching of the grain-size
distributions. This provides a reasonable baseline for check-
ing the performance of the algorithm in a highly controlled
setting.

3.4 Results I: controlled experiment

For each of the three 150–200 clast arrangements, the KMS
PebbleCounts runtime was ∼ 7 min on a laptop with 16 GB
RAM and 2 cores (Intel i7-6650U 2.20 GHz) and no GPU,
whereas the AIF PebbleCountsAuto runtime was ∼ 1 min.
Both a single near-nadir image and the combined orthomo-
saic were used, but the results were entirely consistent aside
from some inter-run variability in the KMS approach caused
by the non-unique solution of k-means clustering. Given this
consistency, we only present the results from the single near-
nadir images. Furthermore, the use of only four overlapping
near-nadir photos also generated the same results, albeit in
about one-sixth the Agisoft orthomosaic processing time of
using all 12–16 photos (∼ 10 min versus ∼ 1 h on the same
laptop).

Across all three distributions, the KMS approach consis-
tently undercounts the number of clasts in each a-axis bin
(Fig. 4). However, and in agreement with previous research
(Graham et al., 2010), this undercounting is uniformly dis-
tributed, and thus the grain-size distributions do not show
notable differences between the algorithm and control. For
the two arrangements with increased fine (3–5 mm) and
coarse (60–130 mm) pebbles (Fig. 4b, c), the undercounting
is stronger at the finer end of the distribution, leading to a
slight underestimation of the grain-size distribution by the
KMS approach in this region. This is caused partially by the
user missing more of the smaller grains (of which there are
exponentially more), some smaller grains being partially hid-
den by the larger, and also by the smallest grains being only a
few pixels in area and thus eliminated during mask-cleaning
steps or not captured at all. On the other hand, the AIF ap-
proach tends to overcount the fine pebbles, leading to over-
estimation of the grain-size distribution, because many small
non-grain areas remaining in the masked image are automat-
ically selected in the final result, rather than ignored as in the
KMS approach.

As we reduced the resolution from 0.26 to
1.05 mm pixel−1, the reduction in the finest size class
increased dramatically for the KMS approach (Fig. 5). At
the lowest resolution tested (1.5 megapixels), this under-
counting leads to severe discrepancies in the grain-size
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Figure 4. Result of KMS (gray, dashed lines) and AIF (red, dotted lines) on the three experimental lab setups (a–c) with known grain inputs
in six size classes (black line), measured as the grain a axis: (a) log normal, (b) log normal with increased number of all classes, including
fines, and (c) skewed bimodal with increased number of coarser grains. Bottom row shows the counts per bin and the top row shows the
resulting grain-size distribution. The images are 0.26 mm pixel−1 (24 megapixels).

Figure 5. Results of reducing the image dimensions to (a) 75 % (13.5 megapixels), (b) 50 % (6 megapixels), and (c) 25 % (1.5 megapixels)
and rerunning the KMS approach on the distribution in Fig. 4a. The control is shown as solid black (left y axis) and gray (right y axis) lines
and KMS as the dashed lines.

distribution curve. As the resolution degrades, it becomes
more difficult to discern rocks in the smallest size class
(3–5 mm), which correspond to a-axis grain sizes of 12–19,
9–14, 6–9, and 3–5 pixels for the 24-, 13.5-, 6-, and 1.5-
megapixel resolutions, respectively, indicating the necessity
of a limiting lower measurement factor (e.g., Graham et al.,
2005a).

4 Calibration and validation II: field surveys

4.1 Field setting

Having established the algorithms on control data, we sought
to evaluate the performance on complex, natural photos.
Field data provide the real-world application and detailed
uncertainty analysis most useful for researchers seeking to
apply the methods to their own sites. For this, we turned
to photo surveys carried out on gravel-bed river cross sec-
tions of the foreland and topographic transition zone of the
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northwestern Argentine Andes (Fig. 6). This is an area of
strong precipitation, topographic, and environmental gradi-
ents, and the dynamic rivers surveyed are capable of trans-
porting enormous quantities of sand, gravel, and boulders of
various lithologies (Bookhagen and Strecker, 2012; Purin-
ton and Bookhagen, 2018). Catchment-average erosion rates
from the area, based on cosmogenic nuclide inventories, sug-
gest rates on the order of 0.6–1 mm year−1 (Bookhagen and
Strecker, 2012), with large variability during the Pleistocene
and Holocene (Tofelde et al., 2017). The region is frequently
affected by extreme hydrometeorological events that lead to
flooding and drainage-pattern rearrangement (Castino et al.,
2016, 2017).

4.2 Orthomosaic generation

All cross-section surveys were collected using the Sony
α6000 camera model at 24-megapixel resolution, and survey
sizes ranged from ∼ 1000 to 5000 m2. In this case, the stan-
dard zoom lens delivered with the camera was used at the
shortest focal length of 16 mm to maximize the field of view.
Also, to help cover the large survey sites, the camera was af-
fixed to the end of a pole with a remote control trigger, allow-
ing overhead shots to be collected from a height of 4.5–5 m
(Fig. 7), giving a ground resolution of approximately 1.1–
1.2 mm pixel−1 by Eq. (1). UAV flights have proven diffi-
cult in the windy conditions experienced in these valleys, but
flights at 20–30 m heights with the 12-megapixel camera pro-
vided on the DJI Mavic and Phantom models (focal lengths
of 3.6–4.3 mm, sensor dimensions of 6.17× 4.55 mm, and
image dimensions of 4000× 3000 pixels) would result in
image resolutions of ∼ 7–13 mm pixel−1 and are thus inade-
quate for delineating centimeter-scale pebbles.

To generate georeferenced orthomosaics that could be
tiled and passed directly to PebbleCounts and Pebble-
CountsAuto, survey sites on the dry riverbed were laid out
with on average 18 coded targets (with a range of 10–24)
and the position of each was measured with a differential
GPS (Fig. 7). Kinematic post-processing with a permanent
base station < 100 km away at the Universidad Nacional de
Salta (UNSA) in Salta, Argentina, led to centimeter accuracy
of XYZ target locations. The site was traversed in a cross-
hatched pattern with a photo captured every two to three
paces, so that each location appeared in ∼ 9 near-nadir pic-
tures from slightly different angles. We refer to the images
as near nadir, rather than nadir, due to the fact that during
mast photo collection some unintentional tilting of the cam-
era (< 10◦) occurred. These near-nadir photos aided in re-
moving doming effects but did not allow us to capture the
sides of pebbles as in the oblique images taken in the exper-
imental setup (Fig. S1). Capturing oblique images of every
patch in the field sites would require infeasible amounts of
time and processing power.

Agisoft processing was similar to that described for the
experiment, with some key differences (see Sect. S4). Given

the volume of photos (600–1300 per site), the sites were
processed automatically using the Python API for Agisoft,
with processing times consistently over 10 h on an 80-core,
500 GB RAM server making use of 1 GPU NVIDIA Tesla
K80 unit for some of the steps (e.g., dense matching).

From 10 of our full survey sites over three different
river systems, we selected 12×∼ 1 m2 patches to clip out
of the full orthomosaics and evaluate using the KMS and
AIF approaches. The final resolution of these 12 GeoTiff
orthoimages matched the theoretical value from Eq. (1),
with an average of 1.16 mm pixel−1 and range of 1.08–
1.24 mm pixel−1 (standard deviation of 0.05 mm pixel−1).
The patches (Fig. 6b) include variable amounts of sand and
a large range of grain sizes, packing arrangements, and shad-
owing. From one site (S14A), there were handheld images
available for the same selected patch from the same Sony
α6000 camera zoomed to 20 mm focal length and taken from
a height of∼ 1.5 m, allowing for the generation of a comple-
mentary orthomosaic at 0.32 mm pixel−1 resolution.

4.3 Comparison metrics

For control data from the field, we return to b-axis measure-
ments (rather than a axes as in the lab). In each patch, the b
axes of all grains visible to the naked eye were manually dig-
itized. This generated a 5490 pebble control dataset across
all 12 mast-surveyed sites. For the lone handheld patch at
0.32 mm pixel−1, the control data were 1726 pebbles versus
621 from the same patch at the 1.12 mm pixel−1 mast reso-
lution, as smaller grains could be manually measured on the
image at a resolution that was 4 times greater.

The use of continuous control data, as opposed to discrete
bins in the lab experiment, allows a more detailed investi-
gation of the performance of both approaches, including bi-
ases and their correction. The b-axis measurements of over-
lapping control and KMS grains were compared to look for
sizing bias. This was followed by a search for the lower trun-
cation limit (the lower cutoff in b-axis length in pixels that
grains are reliably measured at) of the algorithm, also using
the KMS results. For parts of the analysis, the size data were
converted to the typical ψ scale (ψ =−φ = log2(mm)) of
grain-size measurement of coarse river sediments. This al-
lows direct comparison of statistical results with other stud-
ies (e.g., Graham et al., 2005b)

We compared the grain-size distributions from the KMS
and AIF approaches with the control using a two-sample KS
test to check the null hypothesis that the two samples are
drawn from the same distribution. Because sample sizes were
at times small, leading to erroneous KS-test results, we also
devised a second metric of grain-size distribution compari-
son. Similar to the KS test, which uses the maximum dis-
tance between the cumulative distribution functions (grain-
size distributions), our metric interpolates both distributions
to the same lengths in 0.1 ψ steps and then sums the dif-
ference between the re-interpolated curve to give an approx-
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Figure 6. (a) Field cross-section survey sites (black triangles) in NW Argentina from three gravel-bed rivers (Toro, Vaqueros, and Grande)
and their tributaries, draining from the sparsely vegetated mountains in the west towards the verdant foreland and city centers of Salta and Ju-
juy in the east. The Landsat 8 RGB composite satellite image (using bands 2, 3, and 4) from 12 June 2017 shows the climatic transition from
wet foreland to dry mountains, demarcated by the green–brown transition zone, running approximately north–south, corresponding to vegeta-
tion changes. (b) Detailed view of the 12×∼ 1 m2 orthomosaic clips from each of the field sites with average resolution of 1.16 mm pixel−1.

Figure 7. Sony α6000 24-megapixel camera affixed to mast for
photo collection at a height of 4.5–5 m (a) and differential GPS
measurement of coded targets (b).

imate integral of the difference between the two grain-size
distributions (AIF or KMS minus the control), which we term
Adiff. Here, an Adiff value close to 0 indicates good match-
ing, and positive or negative values indicate underestimation
or overestimation, respectively.

We also examined the performance of some key per-
centiles (D5,16,25,50,75,84,95). The metrics for comparison of
control (PC) and KMS or AIF (PP) percentiles are consistent
with other studies (Sime and Ferguson, 2003; Graham et al.,
2005b, 2010). These are the mean (m= 1/n ·6(PP−PC)),
the mean squared (ms= 1/n ·6(PP−PC)2), and the irre-
ducible random error (e =

√
ms−m2). The bias of Pebble-

Counts is quantified by m, and e measures the scatter or pre-
cision after bias correction (Sime and Ferguson, 2003).

4.4 Results II: field surveys

The KMS PebbleCounts approach took ∼ 10 min per 1 m2

orthomosaic clip at 1.16 mm pixel−1 resolution, depending
on the number of grains, and particularly the number of finer
grains, present. Runtime for the AIF PebbleCountsAuto ap-
proach was typically ∼ 2 min per site. All runtimes refer
to the same laptop with 16 GB RAM and 2 cores (Intel i7-
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6650U 2.20 GHz) and no GPU. For the 0.32 mm pixel−1 im-
age, the processing for KMS took ∼ 45 min, as there were
more fine grains to be identified (given the log-normal dis-
tribution) and so the clicking took exponentially longer, and
the AIF took ∼ 20 min given the longer time spent filtering
the large number of grains. We note that the use of a GPU for
the filtering steps will significantly improve processing time.
Importantly, these runtimes refer to the use of no lower trun-
cation value, which leads to much longer processing time.

An aggregation and coarse binning of all b axes in the
control versus KMS and AIF data for the coarser imagery
are presented in Fig. 8. There is obvious undercounting in
these data from the KMS results, similar to the experimen-
tal setup, and here it causes a significant discrepancy in the
grain-size distribution curves. Whereas the manual clicking
found over 1000 grains in the smallest classes (1–2 and 2–
3 ψ), the KMS approach found none in the smallest and only
∼ 100 in the second smallest. This skews the percentiles to
the higher grain sizes and thus overestimates them signifi-
cantly. In opposition to this, but again in agreement with the
experimental setup, the AIF results display significant over-
counting at the finer sizes as many non-grains are identified,
particularly when the algorithm is run with no lower trunca-
tion.

The skewed results from both the KMS and AIF ap-
proaches warrant detailed analysis of the algorithms’ defi-
ciencies and grain-size distribution corrections. To begin, we
examined the performance of PebbleCounts on grains man-
ually digitized and the same grains selected during clicking
in the KMS approach on the coarser imagery (Fig. 9). There
is only a slight negative bias across all grain sizes, indicating
underestimation of individual grains by PebbleCounts; how-
ever, this median shift varies with no apparent pattern and
is likely caused by uncertainties in the manual b-axis digiti-
zation of thousands of grains. For instance, digitization with
b-axis vector lines can achieve subpixel accuracy compared
to the raster processing of PebbleCounts. The AIF approach
measures grains identically to the KMS method and thus has
the same misfit errors on correctly identified grains. From
this, we conclude that the algorithm is effective on a grain-
by-grain basis and the skewing of the grain-size distributions
is instead caused by sampling errors related to the image res-
olution and ability to find small grains (see Fig. 5).

The undercounting error can be explored on the full dis-
tribution of pebbles by gradually increasing the lower trun-
cation value and assessing the error in percentiles versus the
control data at each step (Fig. 10). As truncation is increased,
the median percentile error decreases rapidly up to an in-
flecting value – manually chosen from the graph as a sig-
nificant local minimum where the median difference is near
0 mm. Truncating the KMS distributions at a minimum b-
axis length of 23 mm (rounded to 20 pixels) improves the
results significantly for the 1.16 mm pixel−1 imagery taken
from the mast. Beyond this truncation, there is limited im-
provement. Regarding the 0.32 mm pixel−1 image, the 20-

pixel (6.5 mm) truncation also results in a median differ-
ence near 0 mm, with subsequent truncation values leading
to only ∼ 0.5 mm improvements. Supplying these truncation
values directly to the KMS PebbleCounts tool results in re-
duced processing time to ∼ 5 min for the coarser imagery
and ∼ 15 min for the finer, as many small grains were then
ignored and left out of the clicking mask.

The same analysis for the AIF approach is complicated by
the large number of false grains found and the extreme over-
counting of fine grains. Given this, we instead make the as-
sumption that the similarity of the two methods, particularly
in the edge detection and ellipse fitting steps, leads to similar
errors in both. Therefore, we assume the same 20-pixel trun-
cation. For the AIF PebbleCountsAuto tool, processing times
with the 20-pixel truncation reduced to < 1 min and ∼ 3 min
for the coarse and fine images, respectively.

The combined results before and after lower truncation
for the coarser (∼ 1.16 mm pixel−1) imagery taken from the
mast surveys are shown in Fig. 11. Without any lower trun-
cation, the AIF tool results in significant overcounting and
grain-size distribution underestimation with a high Adiff > 8.
The KMS tool instead shows undercounting and grain-size
distribution overestimation with a low Adiff <−4. Both have
KS-test p values < 0.0001. When we apply a 20-pixel trun-
cation, both the AIF and KMS approaches achieve Adiff val-
ues near or below −1, with the manual KMS approach per-
forming best and achieving a high KS-test p value of 0.2398.
The AIF approach retains a low p of 0.0008 with a ∼ 0.1–
0.2 ψ bias towards coarser values in the upper portion of the
grain-size distribution (>D50).

In Sect. S5 (Fig. S7), we show the 20-pixel truncated KMS
and AIF results on a site-by-site basis. For the KMS ap-
proach, following truncation, 11 sites have p values > 0.1
and one site (S16) has p = 0.0971. Adiff values are also near
0, indicating close matching of the grain-size distributions,
aside from S24 and S34, which both show large discrepan-
cies. The AIF results in Fig. S7 follow a similar trend to the
KMS results, but there is a bias towards coarser values, with
many Adiff values <−1, and generally poorer results com-
pared with the KMS approach, with grain-size distributions
being overestimated by∼ 0.1–0.2 ψ . In the KMS results, de-
spite a high p value, S24 demonstrates a stronger bias in the
grain-size distribution towards coarser grains (up to 0.5 ψ
discrepancy), as indicated by the high Adiff value of −1.36.
Here, the KS-test pass is likely caused by the small sample
size remaining after truncation (n= 24), the least of any site.
The poor performance of S24 was expected given the large
size range with many sub-centimeter pebbles and a few large
boulders, strong cast shadows from the large grains, and in-
tragranular edges on angular boulders with quartz veins (see
Fig. 6b). Importantly, S24 is the only site not from a major
river stem but rather from a debris-flow fan draining a small
tributary catchment in the Quebrada del Toro. S34 also had a
high Adiff =−2.11. In this case, poor performance is due to
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Figure 8. Comparison of (a) KMS and (b) AIF at the 12 field sites all aggregated and coarsely binned. Control is shown as solid black (left
y axis) and gray (right y axis) lines and KMS and AIF as the dashed lines.

Figure 9. Measurement error of PebbleCounts (here the KMS re-
sults) versus control on a grain-by-grain basis for overlapping grains
in the coarser (1.16 mm pixel−1) imagery. There is an overall me-
dian shift, but the binned medians do not display a consistent pat-
tern.

significant blurriness of this image and again a small sample
size (n= 47).

We also compared the individual percentiles of interest to
assess the bias and accuracy of truncated results (Fig. 12).
For the KMS approach, the bias (m) is 0.06 ψ with a preci-
sion (e) of 0.13 ψ . Excluding S24 and S34, m and e drop to
0.03 and 0.09 ψ , respectively. The AIF results have higher
m and e values of 0.15 and 0.17 ψ , respectively, which are
reduced to 0.13 and 0.15 ψ following exclusion of the same
S24 and S34 sites, in addition to the S10 site, which was also
somewhat blurry and with relatively few grains. For the AIF
percentiles, we chose to include S16 despite a large overes-
timation at higher percentiles (Fig. S7), as this was a sharp

image with a relatively large sample size. The high uncer-
tainties from this scene likely require some adjustment of the
edge-detection variables (see Sect. S3) for improved segmen-
tation, but the results presented are realistic for fast process-
ing using the AIF method, with the caveat of higher expected
uncertainties.

The uncertainties in Fig. 12 are average values, and the in-
set plots also demonstrate the increasing uncertainty of larger
percentiles. The maximum uncertainty for both atD95 ism=
0.08ψ and e = 0.07 ψ for the KMS result and m= 0.35ψ
and e = 0.2ψ for the AIF result. Importantly, since the ψ
scale is logarithmic, the larger errors at higher percentiles
correspond to similar percentage misfits as lower errors at
smaller percentiles (e.g., 0.2 ψ precision at a grain size of
6.5 ψ (91 mm) is a 13 %–15 % misfit, whereas a 0.01 ψ pre-
cision at 4.5 ψ (23 mm) is a 4 %–10 % misfit).

As a final test for the KMS and AIF approaches, we
turn towards our handheld imagery taken from S14A with
a 4 times greater resolution of 0.32 mm pixel−1 (Fig. 13).
We only show the 20-pixel truncated results, which displayed
high KS-test p values> 0.2 andAdiff close to 0 in both cases,
with the AIF approach slightly underestimating (Adiff = 0.6)
and KMS slightly overestimating (Adiff =−0.77). For the
KMS approach, m and e are 0.07 and 0.05 ψ , respectively,
and −0.06 and 0.05 ψ for AIF.

4.5 Caveat of PebbleCountsAuto AIF

The promising results of the AIF approach shown in
Figs. 11–13 come with some consideration of the grain-by-
grain accuracy. In Fig. 14, we analyze the percentage of
grains found in the AIF approach that have a corresponding
grain in either the hand-clicked control (based on a 6 mm
buffer of the b-axis line) or the KMS results (based on a
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Figure 10. (a) Error in each percentile (5th–95th) as lower truncation value is increased in 1 mm steps for the 1.16 mm pixel−1 imagery.
Only a few steps are plotted for clarity. (b) The median difference in percentiles compared with the control versus the lower truncation value,
with the normalized median absolute difference (NMAD) shown as the error envelope (Höhle and Höhle, 2009). From this analysis, we
select a lower truncation of 20 pixels. The analysis in panel (a) was repeated for the finer image (with 0.5 mm truncation steps) to get the
gray squares line in panel (b) and is not shown here.

Figure 11. Results from hand-clicked control (black line), KMS PebbleCounts (gray, dashed line), and AIF PebbleCountsAuto (red, dotted
line) with the initial non-truncated run (a) and the 20-pixel truncated run (b). In corresponding colors are the p value results of a KS test
and the Adiff approximate integral between the curves for each approach versus the control data. The legend indicates the number of grains
(n) making up each curve. Note the reduction in x-axis scale between the columns, where the right truncated distributions are plotted on a
narrower range to emphasize the remaining discrepancies. The curves separated by site (Fig. 6b) are shown in Sect. S5 and Fig. S7.

6 mm centroid buffer). From this subset of grains, we con-
sider the AIF grain to be a matching (or correct) result if
the b-axis difference between it and the nearby “good” grain
(from the control or KMS) is < 1 cm. From this, we see
that in the best-case scenario the percentage of correct grains
identified by the AIF approach is only 70 %, from the hand-
held 0.32 mm pixel−1 image. A number of sites (S10, S16,
S20B, S24, S34, and S35) have < 50 % matched grains. The
two poorly performing sites (S24 with grain complexity and
S34 with image blur) both demonstrate the lowest accuracy
with < 40 % matches. Notably, despite a significant number

of false positives in the results, when comparing the overall
grain-size distributions (Fig. 11), and on a site-by-site ba-
sis (Fig. S7), the distribution of the AIF results matches the
hand-clicked control well. The errors associated with the AIF
method are demonstrated in Sect. S6.

5 Discussion

In this study, we developed two new methods for grain-size
measurement with low uncertainties and the potential to de-
liver full grain-size distributions from complex images of
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Figure 12. Comparing the key b-axis percentiles across all 12 field sites and between the KMS and AIF approaches with the 20-pixel
truncation applied. (a) All 12 sites from KMS, (b) KMS improvement when excluding S24 and S34, (c) all 12 sites from AIF, and (d) AIF
improvement when excluding S10, S24, and S34. For the main plot, each data point is a percentile value from a single site and the 1 : 1
relationship is the gray diagonal. The mean (m), mean squared (ms), and irreducible (e) errors are shown for each plot, taken as the average
of all seven percentile errors across the 9–12 sites plotted. Them and e are separately plotted for each percentile in the inset plot. The number
of grains in the control (“control grains”) and KMS or AIF results (“grains found”) is also indicated. The individual site curves where these
data points originate are shown in Sect. S5 and Fig. S7.

high-energy mountain rivers. Our open-source Python-based
algorithms perform equally well to other image segmenta-
tion tools but can be applied more quickly over larger areas
surveyed by the SfM-MVS workflow we present. Critical to
success is the application of a strict lower cutoff, which lim-
its the minimum measurable b-axis grain size to 20 times the
pixel resolution. The automated version of the algorithm de-
livers less accurate measurements, but these can be limited
by using low-blur, higher-resolution imagery. We focus our
discussion on the comparison of our approach with similar
work, the effect of the lower truncation on grain-size distri-

bution estimates, and practical guidelines for acquiring im-
agery and applying PebbleCounts, including the application
of UAV surveys.

5.1 Performance

For comparison of our algorithms to previous work, we do
not consider errors reported in studies using texture-based
measurements (e.g., Woodget et al., 2018), since these are
based on correlative relationships rather than physical mea-
surement of each grain. Texture methods work well for ho-
mogeneous pebble arrangements in lower-energy settings,

www.earth-surf-dynam.net/7/859/2019/ Earth Surf. Dynam., 7, 859–877, 2019



872 B. Purinton and B. Bookhagen: PebbleCounts: grain sizing for gravel-bed rivers

Figure 13. (a) Results from hand-clicked control (black line), KMS PebbleCounts (gray, dashed line), and AIF PebbleCountsAuto (red,
dotted line) from the 20-pixel truncated run on the 0.32 mm pixel−1 handheld imagery. In corresponding colors are the p-value results of a
KS test and the Adiff approximate integral between the curves for each approach versus the control data. (b) Percentile comparison for both
methods with KMS in gray and AIF in red, with inset box showing the uncertainties for each in the corresponding color.

Figure 14. Percentage of grains from AIF results with a match-
ing grain in either the hand-clicked control or in the KMS result.
A match is defined as a grain within 5 pixels of the hand-clicked
line or the KMS grain centroid for the 1.16 mm pixel−1 imagery
or within 20 pixels for the 0.32 mm pixel−1 image (corresponding
in both cases to a distance of ∼ 6 mm), and with a 1 cm maximum
b-axis difference between the AIF grain and the match. The total
percent correct, taken across all black triangles, is 51 %.

but high-energy mountain rivers with heterogeneous pebble
arrangements and large ranges in sizes require segmentation
approaches. Similar to other image segmentation methods,
the KMS PebbleCounts approach undercounts grain sizes in
each respective size class (Graham et al., 2010). This under-
counting does not undermine the resulting grain-size distri-
butions and associated percentile estimates, so long as an ap-
propriate lower truncation is defined. This cutoff was found

to be 20 pixels (compare to 23 pixels found by Graham et al.
(2005a)) in b-axis length (Fig. 10), which explains the degra-
dation in 3–5 mm counting in the reduced-resolution lab im-
ages (Fig. 5), where the smallest pebbles were only a few
pixels in size as resolution was decreased.

As shown in Fig. 12, when we apply this cutoff and ex-
clude poorly performing images, we find an averagem (bias)
and e (precision) of 0.03 and 0.09 ψ , respectively, for the
∼ 1.16 mm pixel−1 imagery and 0.07 and 0.05 ψ for the
0.32 mm pixel−1 image. For the AIF approach, these values
are 0.13 and 0.15 ψ for the ∼ 1.16 mm pixel−1 imagery and
−0.06 and 0.05 ψ for the 0.32 mm pixel−1 image. These
are averages, which actually increase at higher percentiles
in agreement with other image segmentation methods (e.g.,
Sime and Ferguson, 2003). We thus suggest higher error bud-
gets at higher percentiles.

As demonstrated in Figs. 14 and S8, there are significant
inaccuracies associated with the AIF approach. The errors
associated with the AIF approach can be limited when ap-
plied to high-quality (low-blur) ∼ 1 mm pixel−1 resolution
imagery, with better results possible on < 0.5 mm pixel−1

imagery. Ultimately, the uncertainties are highly dependent
on the input image quality and complexity (range in grain
size, angularity, intragranular variability) and providing blan-
ket estimates is less useful than end users applying the KMS
tool to a subset of images to validate the results of the AIF
approach.

In spite of this caveat, our bias and precision values of
−0.06–0.15 ψ are on the low end of previously published
errors from similar techniques (Table 1). To our knowledge,
the only study to compare Basegrain results to control data
by Westoby et al. (2015), makes comparisons in millime-
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Table 1. Comparison of PebbleCounts and PebbleCountsAuto results with other segmentation-based pebble counting studies.

Study/technique Bias (ψ) Precision (ψ)

This study/KMS 0.03–0.07 0.05–0.09
This study/AIF −0.06–0.13 0.05–0.15
Butler et al. (2001)/custom watershed segmentation 0.13–0.33a –
Sime and Ferguson (2003) /custom watershed segmentation 0.14b 0.22b

Graham et al. (2005b)/custom watershed segmentation 0.007–0.03 0.07–0.09
Westoby et al. (2015)c/Basegrain(Detert and Weitbrecht, 2012) 0.16–0.82d 0.33–1.99d

a Taken from only three percentiles (D50,84,95). b Corrected value presented by Graham et al. (2005b). c Comparison made in
millimeters, converted to ψ units here. d Large spread caused by significant disagreement at higher percentiles.

ters rather than ψ units. Since the ψ scale is logarithmic,
in our study, the error in millimeter increases with ψ from
∼ 0.8 mm uncertainty at 4.5 ψ (23 mm) to ∼ 7 mm uncer-
tainty at 6.5 ψ (91 mm) for the ∼ 1.16 mm pixel−1 imagery
in the KMS case. Westoby et al. (2015) report even greater
bias and lower precision from Basegrain, with errors also in-
creasing in magnitude at higher percentiles. We emphasize
that the previous image segmentation techniques discussed
all rely on watershed segmentation, whereas neither of our al-
gorithms use this step for the reasons demonstrated in Figs. 1
and 2.

5.2 Lower truncation

The issue of lower truncation on grain-size distributions
and percentile estimates has received much attention in the
literature (e.g., Fripp and Diplas, 1993; Rice and Church,
1996; Bunte and Abt, 2001; Graham et al., 2010). Previously,
field geomorphologists were interested in all grains above 8–
16 mm, simply because smaller grains were difficult to man-
ually identify and thus underrepresented in the results (e.g.,
Fripp and Diplas, 1993; Rice and Church, 1998). Previous
work suggests that truncation at the finer end of the distri-
bution primarily increases the lower percentiles, while hav-
ing less effect on the large (>D50) percentiles (Bunte and
Abt, 2001). We find significant shifts in all percentiles of
> 0.5 ψ when applying a 20-pixel truncation. Graham et al.
(2010) report truncation errors of < 0.3 ψ for all percentiles
in 1, 3, and 5 ψ truncated distributions. Their better results at
lower percentiles are likely because the data were collected
manually grid-by-number style in the field with the ability
to include smaller grain sizes. The measurement resolution
presents the ultimate control on how accurately grain-size
percentiles can be measured. The purpose of the KMS and
AIF approaches introduced here is in acquiring grain-size
distributions from a subset of the full grain-size range present
in the river, namely the subset with > 20-pixel b-axis length
in image resolution.

5.3 Image acquisition

Ideally, collecting more than nine near-nadir images m−2 (as
in our field surveys) or collecting an approximately 1 : 2 (or
greater) ratio of near-nadir to oblique imagery (as in our ex-
periments with point-cloud data dimensions; see Sect. S1),
leads to the highest quality point-cloud results in Agisoft.
Higher-quality point clouds, in turn, lead to less distortion
errors during orthorectification and higher-quality orthomo-
saics. Due to the textured nature of gravel images, we at-
tained comparable results in reduced time using only four
overlapping near-nadir images m−2 in the lab setting. In any
case, high overlap of ∼ 80 % between images is recom-
mended to ensure the best results. Where a user desires accu-
rate and dense point-cloud data in addition to the 2-D ortho-
mosaics, it is recommended that (many) more images closer
to the surface be collected (e.g., Verma and Bourke, 2019)
and from oblique viewing angles (e.g., James and Robson,
2014).

As we find the difference in calculated resolution and sub-
sequent grain-size measurement to be negligible between or-
thorectified and raw near-nadir imagery at these scales, the
use of orthoimagery is not strictly necessary when using
image-segmentation software like PebbleCounts (e.g., Car-
bonneau et al., 2018). However, on very rough surfaces with
cast shadows from large grains, generating orthoimagery will
overcome distortions present in the raw photos. Furthermore,
georeferenced orthomosaics may be preferable for capturing
large sites at a constant resolution that can be fed into the
algorithm.

In terms of camera and photographic height (and thus res-
olution) considerations, one first needs to assess the mini-
mum grain size that is desired. Following this, the resolu-
tion of the image can be determined using Eq. (1) with some
knowledge of the camera parameters (focal length, camera
height, sensor size, and image size). The smallest grain b
axis needed should be 20 times this resolution. For instance,
using a similar camera to the Sony α6000 (24-megapixel,
15.6× 23.5 mm sensor, 16 mm focal length), to measure all
grains down to 1 cm one needs a resolution of 0.5 mm pixel−1

and thus a maximum camera height of ∼ 2 m. If finer grain
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sizes are desired, the user can use higher-resolution imagery
but must be aware of the longer time needed for processing.

5.4 UAV surveying

The > 20 m flight heights typical of UAV surveys lead to
centimeter-scale imagery with currently available 12- to 24-
megapixel cameras, which is less appropriate for Pebble-
Counts processing, unless large (> 0.2 m) cobbles and boul-
ders dominate the river site. Acquiring 0.5 mm pixel−1 im-
agery from a DJI Mavic drone with a 12-megapixel camera
requires a very low flight height of ∼ 1.4 m, giving a field of
view of only∼ 1.5×2 m. This may be improved using better
cameras like on the Mavic 2 Pro (20-megapixel camera), but
gathering such imagery with the high overlap (∼ 80 %) re-
quired for SfM-MVS processing is still difficult, particularly
given current ∼ 20 min flight length limitations from avail-
able batteries. Given continual technology improvements
(e.g., greater battery life, more accurate geotags from on-
board dGPS, higher megapixel cameras, and reduced motion
blur), it is within reason to expect hectare to multi-hectare
SfM-MVS UAV surveys at mm resolution in seamless ortho-
mosaics along entire river reaches in the near future. But, for
the time being, a single, non-overlapping orthoimage work-
flow proposed by Carbonneau et al. (2018) has high poten-
tial to achieve large-areal results. Their workflow, building
on Carbonneau and Dietrich (2017), uses a number of high
and oblique overlapping flights to orthorectify a lower non-
overlapping flight with millimeter-scale acquisition, with re-
sulting single, scaled images passed to Basegrain, or, alter-
natively, to PebbleCounts.

5.5 Coverage and processing limits

Using handheld imagery, a survey site of 1000–5000 m2 with
∼ 10 ground control points (GCPs) measured via dGPS can
be covered in 2–6 h by one person (including GCP collec-
tion). Using a camera-on-mast setup, this time can be re-
duced by half, with even greater speed possible using more
people and cameras (of the same sensor dimensions, focal
length, and height). The potential to cover even larger sites
up to or exceeding 100× 100 m (1 ha) is feasible in a day of
work by two people (with one measuring the targets and both
sharing the photo-taking) using the proposed method with a
16–20 mm focal length lens and a 3–5 m mast.

One limit of the scalability of the PebbleCounts method
is processing time. The KMS PebbleCounts tool is recom-
mended to be applied to maximum 1–2 m2 patches, depend-
ing on the image resolution, as the manual clicking of good
grains is time-consuming, requiring 5–20 min per patch de-
pending on patch size, image resolution, and abundance of
finer grains. On the other hand, the AIF PebbleCountsAuto
tool can theoretically be applied at larger scales. However, it
is also advisable to tile data and feed them to the algorithm
in maximum 1–2 m2 patches for ∼ 1 mm pixel−1 imagery,

since the non-local means de-noising can take minutes on
very large images (> 2000× 2000 pixels). Again, the use of
systems with GPUs or large memory will shorten processing
times and allow for larger images to be run.

In practical terms, a workflow to cover a∼ 2500 m2 survey
site captured at 1 mm pixel−1 resolution and processed into
a georeferenced orthomosaic would be (1) tiling into 2 m2

patches, (2) passing each patch to the AIF PebbleCountsAuto
tool with quick manual steps of shadow-masking and sand-
clicking (if sand is present), where each tile takes 1–2 min,
(3) selecting a random subset of∼ 20 tiles to pass to the KMS
PebbleCounts tool as validation and uncertainty estimation
for the AIF approach. Such a workflow could be accom-
plished in 1–2 d of work by an experienced user, providing
tens to hundreds of thousands of measured grains from the
survey site and a robust measurement of the full grain-size
distribution. To increase processing speed, a gridded subset
of tiles could also be extracted from the full survey site, with
a 3–5 m step size between patches, to provide complete cov-
erage across heterogeneous gravel-bar features, while avoid-
ing unnecessary oversampling and processing of every patch
in the survey site.

6 Conclusions

Using a k-means approach for pebble segmentation in the
spectral and spatial domain combined with fast manual se-
lection of good results, we developed a new semi-automated
algorithm for grain sizing optimized for images taken over
gravel-bed rivers (PebbleCounts). We also developed an au-
tomated algorithm that uses suspect grain filtering (Peb-
bleCountsAuto), albeit with larger uncertainties in the re-
sults. The lower truncation of the methods (minimum b-axis
length measurable) is limited to 20 pixels and above. These
new methods were necessary to acquire grain-size distribu-
tions from dynamic high-mountain rivers with complexity
from sources such as large ranges in grain size, intragranular
heterogeneity, grain overlap, irregular shadowing, and sand
patches. Similar to previous methods, PebbleCounts is best
applied at the patch scale (∼ 1 m2); however, PebbleCounts
provides more realistic results in complex images without
any post-processing steps in∼ 5–10 min per patch, assuming
∼ 1 mm pixel−1 resolution imagery. PebbleCountsAuto per-
forms very well on high-quality (low-blur) imagery, though
with remaining misidentification that must be approached
with caution. Grain-sizing results can be upscaled to areas on
the order of 102–104 m2 when PebbleCounts results are used
as validation for the automated PebbleCountsAuto function.

Code availability. PebbleCounts is a Python-based program with
the code and documentation available on GitHub at https://github.
com/UP-RS-ESP/PebbleCounts (last access: 12 September 2019)
(Purinton and Bookhagen, 2019).
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