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Summary

Quantum field theory on curved spacetimes is understood as a semiclassical approximation of some
quantum theory of gravitation, which models a quantum field under the influence of a classical gra-
vitational field, that is, a curved spacetime. The most remarkable effect predicted by this approach is
the creation of particles by the spacetime itself, represented, for instance, by Hawking’s evaporation of
black holes or the Unruh effect. On the other hand, these aspects already suggest that certain corner-
stones of Minkowski quantum field theory, more precisely a preferred vacuum state and, consequently,
the concept of particles, do not have sensible counterparts within a theory on general curved spacetimes.
Likewise, the implementation of covariance in the model has to be reconsidered, as curved spacetimes
usually lack any non-trivial global symmetry. Whereas this latter issue has been resolved by introducing
the paradigm of locally covariant quantum field theory (LCQFT), the absence of a reasonable concept
for distinct vacuum and particle states on general curved spacetimes has become manifest even in the
form of no-go-theorems.

Within the framework of algebraic quantum field theory, one first introduces observables, while states
enter the game only afterwards by assigning expectation values to them. Even though the construction
of observables is based on physically motivated concepts, there is still a vast number of possible states,
and many of them are not reasonable from a physical point of view. We infer that this notion is still
too general, that is, further physical constraints are required. For instance, when dealing with a free
quantum field theory driven by a linear field equation, it is natural to focus on so-called quasifree states.
Furthermore, a suitable renormalization procedure for products of field operators is vitally important.
This particularly concerns the expectation values of the energy momentum tensor, which correspond to
distributional bisolutions of the field equation on the curved spacetime. J. Hadamard’s theory of hyper-
bolic equations provides a certain class of bisolutions with fixed singular part, which therefore allow for
an appropriate renormalization scheme.

By now, this specification of the singularity structure is known as the Hadamard condition and widely
accepted as the natural generalization of the spectral condition of flat quantum field theory. Moreover,
due to Radzikowski’s celebrated results, it is equivalent to a local condition, namely on the wave front
set of the bisolution. This formulation made the powerful tools of microlocal analysis, developed by
Duistermaat and Hormander, available for the verification of the Hadamard property as well as the
construction of corresponding Hadamard states, which initiated much progress in this field. However,
although indispensable for the investigation in the characteristics of operators and their parametrices,
microlocal analyis is not practicable for the study of their non-singular features and central results are
typically stated only up to smooth objects. Consequently, Radzikowski’s work almost directly led to ex-
istence results and, moreover, a concrete pattern for the construction of Hadamard bidistributions via a
Hadamard series. Nevertheless, the remaining properties (bisolution, causality, positivity) are ensured
only modulo C'*.

It is the subject of this thesis to complete this construction for linear and formally self-adjoint wave
operators acting on sections in a vector bundle over a globally hyperbolic Lorentzian manifold. Based
on Wightman’s solution of d”Alembert’s equation on Minkowski space and the construction for the ad-
vanced and retarded fundamental solution, we set up a Hadamard series for local parametrices and
derive global bisolutions from them. These are of Hadamard form and we show existence of smooth
bisections such that the sum also satisfies the remaining properties exactly.



Zusammenfassung

Quantenfeldtheorie auf gekriimmten Raumzeiten ist eine semiklassische Ndherung einer Quantenthe-
orie der Gravitation, im Rahmen derer ein Quantenfeld unter dem Einfluss eines klassisch modellierten
Gravitationsfeldes, also einer gekriimmten Raumzeit, beschrieben wird. Eine der bemerkenswertesten
Vorhersagen dieses Ansatzes ist die Erzeugung von Teilchen durch die gekriimmte Raumzeit selbst, wie
zum Beispiel durch Hawkings Verdampfen schwarzer Locher und den Unruh Effekt. Andererseits deu-
ten diese Aspekte bereits an, dass fundamentale Grundpfeiler der Theorie auf dem Minkowskiraum,
insbesondere ein ausgezeichneter Vakuumzustand und damit verbunden der Teilchenbegriff, fiir allge-
meine gekriimmte Raumzeiten keine sinnvolle Entsprechung besitzen. Gleichermaflen benttigen wir
eine alternative Implementierung von Kovarianz in die Theorie, da gekriimmte Raumzeiten im Allge-
meinen keine nicht-triviale globale Symmetrie aufweisen. Letztere Problematik konnte im Rahmen
lokal-kovarianter Quantenfeldtheorie gelost werden, wohingegen die Abwesenheit entsprechender
Konzepte fiir Vakuum und Teilchen in diesem allgemeinen Fall inzwischen sogar in Form von no-go-
Aussagen manifestiert wurde.

Beim algebraischen Ansatz fiir eine Quantenfeldtheorie werden zunichst Observablen eingefiihrt und
erst anschlieffend Zustdnde via Zuordnung von Erwartungswerten. Obwohl die Observablen unter
physikalischen Gesichtspunkten konstruiert werden, existiert dennoch eine grofie Anzahl von mog-
lichen Zustdnden, von denen viele, aus physikalischen Blickwinkeln betrachtet, nicht sinnvoll sind.
Dieses Konzept von Zustdnden ist daher noch zu allgemein und bedarf weiterer physikalisch mo-
tivierter Einschrankungen. Beispielsweise ist es natiirlich, sich im Falle freier Quantenfeldtheorien mit
linearen Feldgleichungen auf quasifreie Zustdnde zu konzentrieren. Dariiber hinaus ist die Renormier-
ung von Erwartungswerten fiir Produkte von Feldern von zentraler Bedeutung. Dies betrifft ins-
besondere den Energie-Impuls-Tensor, dessen Erwartungswert durch distributionelle Bilosungen der
Feldgleichungen gegeben ist. Tatsdchlich liefert J. Hadamard Theorie hyperbolischer Differentialglei-
chungen Bilosungen mit festem singuldren Anteil, so dass ein geeignetes Renormierungsverfahren
definiert werden kann.

Die sogenannte Hadamard-Bedingung an Bidistributionen steht fiir die Forderung einer solchen Singu-
laritdtenstruktur und sie hat sich etabliert als natiirliche Verallgemeinerung der fiir flache Raumzeiten
formulierten Spektralbedingung. Seit Radzikowskis wegweisenden Resultaten ldsst sie sich aufserdem
lokal ausdriicken, ndmlich als eine Bedingung an die Wellenfrontenmenge der Bilosung. Diese Formu-
lierung schlédgt eine Briicke zu der von Duistermaat und Hormander entwickelten mikrolokalen Ana-
lysis, die seitdem bei der Uberprl'ifung der Hadamard-Bedingung sowie der Konstruktion von Hada-
mard Zustdanden vielfach Verwendung findet und rasante Fortschritte auf diesem Gebiet ausgeldst hat.
Obwohl unverzichtbar fiir die Analyse der Charakteristiken von Operatoren und ihrer Parametrizen
sind die Methoden und Aussagen der mikrolokalen Analysis ungeeignet fiir die Analyse von nicht-
singuldren Strukturen und zentrale Aussagen sind typischerweise bis auf glatte Anteile formuliert.
Beispielsweise lassen sich aus Radzikowskis Resultaten nahezu direkt Existenzaussagen und sogar ein
konkretes Konstruktionsschema fiir Hadamard Zustdande ableiten, die tibrigen Eigenschaften (Bilosung,
Kausalitét, Positivitidt) konnen jedoch auf diesem Wege nur modulo C* gezeigt werden.

Es ist das Ziel dieser Dissertation, diesen Ansatz fiir lineare Wellenoperatoren auf Schnitten in Vek-
torbiindeln tiber global-hyperbolischen Lorentz-Mannigfaltigkeiten zu vollenden und, ausgehend von
einer lokalen Hadamard Reihe, Hadamard Zustande zu konstruieren. Beruhend auf Wightmans Losung
tiir die d’Alembert-Gleichung auf dem Minkowski-Raum und der Herleitung der avancierten und re-
tardierten Fundamentallosung konstruieren wir lokal Parametrizen in Form von Hadamard-Reihen
und fligen sie zu globalen Bilosungen zusammen. Diese besitzen dann die Hadamard-Eigenschaft
und wir zeigen anschlieflend, dass glatte Bischnitte existieren, die addiert werden kénnen, so dass die
verbleibenden Bedingungen erfiillt sind.
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1 Introduction

""We apologize for the inconvenience.” I think, I feel good about it.”

1.1 Quantum field theory on a curved spacetime

Quantum field theory on curved spacetimes is regarded as an intermediate step on the path to a not yet
available quantum description of gravitation. This framework investigates the coupling of a quantum
field with classical gravitation, i.e. a curved spacetime, and is widely accepted as a reasonable paradigm
outside the event horizon of black holes and with the exception of the first 10~%3 seconds of the universe,
where gravitation is considered negligibly weak on Planck length scales.

Despite its still semiclassical character, this model already predicts remarkable effects beyond the under-
standing of Minkowski quantum field theory, such as the creation of particles by the curved spacetime it-
self, a phenomenon most prominently represented by Hawking’s evaporation of black holes [Haw1975]
and the Unruh effect [Ful1973, Dav1975, Unr1976]. Flat Minkowski space possesses a rich group of
isometries, namely the Poincaré group, providing a conserved quantity "energy" and ruling out effects
like those mentioned above [Haw1970]. Curved spacetimes, however, usually lack any non-trivial sym-
metry and thus a reasonable notion of energy at all, thereby prompting a fundamental reconsideration
of essential concepts of quantum field theory. In particular, a distinct vacuum - the state of lowest
energy of the quantum field — and, as a consequence, the notion of particles turn out to be non-sensible
in general curved spacetimes since only a certain class of observers, namely the inert ones, would agree
on the same vacuum state. For a discussion of this issue and related effects see [Dav1984] and [Wal1994]
as well as the references therein.

It follows that there is no universal interpretation of states in terms of their particle content but only as
expectation values of suitable observables. We should therefore think of the observables as the more
fundamental objects. These should be constructed directly from the outset and not as operators on a
previously specified state space.

1.2 Algebraic and locally covariant bosonic quantum field theory

This view is best addressed by the algebraic approach to quantum field theory [HK1964, Dim1980],
where first of all observables are introduced as elements of rather abstract algebras A(O) < A(M)
associated to spacetime regions O < M in a local and covariant manner. The most common refe-
rences for an introduction to Algebraic Quantum Field Theory (AQFT) are the classic monographs
[Haal992, Ara1999]. Contemporary overviews and developments can be found in [BDFY2015, FR2019]
and the connection to quantum measurement theory has been investigated in [FV2018, Few2019].

By a spacetime M, we always mean a globally hyperbolic Lorentzian manifold (Definition 1.3.8 of
[BGP2007]), which because of its causality properties qualifies for a physically reasonable model. In
such a spacetime, for example, closed causal curves are forbidden, and we find global time functions
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and spacelike Cauchy hypersurfaces (Definition 1.3.4 of [BGP2007]) representing submanifolds of con-
stant time. More precisely, globally hyperbolic Lorentzian manifolds are isometric to (R x S, —3 dt*+ g;)
with § € C®(R x S,R~() and ¢; a Riemannian metric on S. This metric depends smoothly on ¢, and each
{t} x S is a smooth spacelike Cauchy hypersurface of M [BS2005]. From an analytic point of view, it is
also sensible to work with these manifolds since well-posed Cauchy problems are admitted for linear
field equations describing frequently investigated quantum fields [Fur1999, AB2018].

The local algebras of observables are most commonly modelled as C*-algebras (for a brief introduction
see chapter 1 of [BF2009]; the approach using #-algebras is given, for instance, in [KM2015]). Accor-
ding to this model, states are introduced only afterwards as normed and positive functionals 7, where
7(a) can be thought of as the expectation value of the observable a in the state 7. The induced GNS-
representation (7, 77, (1) provides the familiar framework of a state space .7 with the observables
represented as bounded operators 7 (a) and a cyclic vector €2, (see section 2.3 of [BR2002] for details).
Hence, the selection of a distinct vacuum is shifted to that of an algebraic state 7. The pure states then
correspond to the extreme points of the convex set of all states, which are equivalently characterized by
certain irreducibility properties of their GNS-representation (see sections 1.8 and 2.3 of [Ara1999]).

One crucial ingredient of AQFT is the aspect of covariance, implemented by translating symmetries
of the spacetime, i.e. isometries, into algebra-automorphisms. A possible vacuum state would be con-
sidered to be invariant under these automorphisms, and indeed, an appropriately large isometry group
does single out such a state. For instance, the existence of a timelike Killing field, meaning that M is sta-
tionary, would suffice (see for instance [Wal1994] or [KM2015]). However, general spacetimes have no
non-trivial symmetries at all, so covariance in the AQFT-sense is a trivial demand. On the other hand,
full general covariance, i.e. if the group of isometries were replaced by the diffeomorphism group, is not
compatible with the local structure of the theory. Therefore, covariance has to be built in more subtly.
Whereas certain no-go-theorems demonstrate the absence of a distinct vacuum or natural state in
any reasonable sense [FV2012a], the approach of locally covariant quantum field theory initiated by
[BFV2003] yields a suitable local and covariant generalization of the principles of AQFT to general space-
times. Instead of fixing a spacetime from the beginning, a whole category of spacetimes is considered
with arrows given by certain isometric embeddings. The actual quantum field theory is then repre-
sented by a covariant functor to the category of C*-algebras and injective C*-homomorphisms. Thus,
covariance is implemented via isometric embeddings that correspond to C*-algebra-monomorphisms,
rather than via isometries of a fixed spacetime and C*-algebra-automorphisms. This emphasizes the
local character of the theory yet more strongly.

For the category of spacetimes, we adopt the setting of [BG2011], where the field is also taken as a datum
instead of being fixed from the outset:

Definition 1.2.1. The category GlobHypGreen consists of the following objects and morphisms:

e An object is a triple (M, E, P), where
» M is globally hyperbolic Lorentzian manifold,
» L is a finite-dimensional, real vector bundle over M with a non-degenerate inner product,

» P: C*(M,E) - C*(M,E) is a formally self-adjoint, Green hyperbolic operator.

e A morphism between two objects (M, E1, Py) and (Ma, Es, P») is a pair (f, F'), where
» f is a time-orientation preserving, isometric embedding M; — My with f(M;) < M, causally
compatible and open,

» [ is a fiberwise isometric vector bundle isomorphism over f such that Py, P, are related via
Py ores = res o Py, whereres(y) := F~! oo f the restriction of p € C®(Ma, E5) to Mj.



1.3 Quasifree states

Note that the usual demand of a well-posed Cauchy problem for P is replaced by the weaker assump-
tion of Green-hyperbolicity, that is, P admits an advanced and retarded Green operator G 4, G. For a
thorough discussion of Green-hyperbolic operators, we refer to [Bar2015]). Furthermore, the focus on
real vector bundles reflects the restriction to Hermitian fields, implying that, for instance, charged fields
are not considered.

This thesis will mostly deal with wave operators, which are Green-hyperbolic, as is shown in [BGP2007],
and bosonic quantum field theory. Therefore, we only sketch the bosonic quantization scheme given in
section 3.1 of [BG2011]. For G := G4 — G'g, Theorem 3.5 of [BG2011] provides the exact sequence

{0} — 2(M,E) 5> 2(M, E) % CX(M, E) 2> C%(M, E), (1.1)

and hence, it leads to a covariant functor into the category of symplectic vector spaces with objects (V, o)
essentially given by the solution space of the field equation

Vi=92(M,E)/ker G = kerP|C§%, o([e], [¥]) == (G, ¥) m. (1.2)

2(M, E) represents test sections in E, more precisely smooth sections with compact support, and
C%(M, E) those with only spacelike compact support, meaning that it is contained in the causal fu-
ture and past of some compact subset of M. The L2-product (-,-)ys of test sections is induced by the
non-degenerate inner product on E.

Every real symplectic vector space (V, o) admits a CCR-representation, i.e. a pair (w, A) consisting of
a C*-algebra A and a map w from V into the unitary elements of A such that A is generated as a C*-
algebra by {w(x)},c1 and the Weyl relations hold:

w(z)w(y) = e 2" Vw(z +y),  zyeV. (1.3)

This construction goes back to [Man1968] (see also section 4.2 of [BGP2007] and 5.2.2.2 of [BR2002]),
and it is unique in an appropriate sense, so we refer to A as the CCR-algebra CCR(V) of the symplectic
space V. Thus, altogether, (M, E, P) — CCR(Z(M, E)/ker G) provides the desired functor.

1.3 Quasifree states

The GNS-representation (7, .7;,);) of a state 7 on the CCR-algebra of some real symplectic vector
space (V, o) provides unitary operators 7 (w(z)) on the induced Hilbert space #;. There is a subclass
of states 7 for which the unitary one-parameter group {,(w(tz))},  is strongly continuous for all
z € V, and hence, field operators ¢,(x) can be defined as the corresponding self-adjoint generators by
Stone’s theorem (Theorem VIIIL.8 of [RS1980]). Furthermore, they ensure the existence of a dense domain
D, < s such that ran ®,(z) < D, < dom ®,(z) for all z, and thus, polynomials of field operators are
well-defined on D;. Then the Weyl relations (1.3) imply the familiar canonical commutator relations

(@7 (2), @ (y)] = io(x,y) -ids,,  x,y€V, (1.4)
and moreover, for all n € N, the n-point-function of the state
Tn(T1, ..o xp) 1= <<I>T(:U1)...<I>T(a:n)QT,QT>%, T1,...,Tp €V, (1.5)

represents a well-defined distribution (M, E) x ... x Z(M,E) — R (see section 4.2 of [BG2011] for
precise definitions and proofs).
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Particularly adapted to free quantum fields are the so-called quasifree states, which have been first
introduced in [Rob1965] and treated in the framework of CCR-representations in [MV1968]. They are
generated by

T(w(m)) = e*%”(x’x), eV,

for some scalar product  on V, by which the GNS-representation of 7 is determined up to unitary
equivalence. An overview of quasifree states and their properties can be found, for instance, in chapter
17 of [DG2013], from where we just present the most important facts. Although not regular in the strong
sense of [BG2011], a quasifree state 7 still provides self-adjoint field operators and n-point-functions. In
particular, the two-point-function is of the form

i
mo(z,y) = n(z,y) + 50(:8, Y), z,y eV, (1.6)

so it reproduces 1 and hence 7. Indeed, we have 7,, = 0 for n odd, and for n even, (1.5) is given by some
polynomial in the elements of {73(x;, x;)}i j=1,..n. Thinking of the n-point-functions as the propagation
of the state of the field, the focus on quasifree states corresponds to the perception that this propagation
is essentially given by independent one-particle-propagations, which legitimates them as the natural
objects to look at when dealing with free quantum fields.

For the real symplectic vector space provided by the functor (1.2), a scalar product corresponds to a
bidistribution S: 2(M, E) x (M, E) — R with

S[Py1,v2] = 0 = S[t1, Pyo], S[tp1,92] = S[th2, 1], Sy, ] = 0, (1.7)

for all ¥, 91,19 € Z(M, E), since ker G = ran P|@(M ) by exactness of (1.1). With regard to (1.2) and
(1.6), a quasifree state is then determined by S and G.

1.4 Hadamard states

The fundamental reasoning of general relativity — condensed in J. A. Wheeler’s statement "Space tells
matter how to move and matter tells space how to curve" — motivates the investigation in the back
reaction effect on the spacetime induced by the particles the curved spacetime itself creates. This would
require a semiclassical Einstein equation

G = 8 (T, (1.8)

where G in this instance denotes the Einstein tensor describing the spacetime curvature and (7°) the
expectation value of the energy-momentum tensor with respect to the state of the particle field. Since T
is quadratic in the field ®, which is an operator-valued distribution in the quantum description, corres-
ponding to @, in (1.4) and (1.5), this expression needs some renormalization, as products of distributions
are in general ill-defined. Within Minkowski quantum field theory, normal ordering of the fields yields
a satisfactory procedure, basically given by subtracting the (infinite) vacuum energy. This method or, to
be more precise, the expectation value of 7" with respect to the ground state of the field would require
a preferred choice of vacuum, which is not at our disposal for general spacetimes. Among many alter-
native renormalization approaches (see the classic monographs [BD1984, Ful1989] for an overview), an
axiomatic ansatz like the one suggested by Wald [Wal1977, Wal1978, Wal1994] has been widely accepted
as most natural and general. Wald’s axioms determine (7") in a largely satisfactory sense, and further-
more, he proposes a concrete procedure, fulfilling the axiomatic framework.



1.4 Hadamard states

Although normally, there is no such thing as a vacuum expectation value to be subtracted, we can, more
generally, focus on differences of expectation values given by the application of states 7 to 7" within the
algebraic framework. Note that the expectation value of the squared field at = corresponds to m(z, z),
which we consider as a limit Z}l_rg T9(x,y) of the well-defined distributions 75 (z,y), = # y. Thus, we can

in fact adopt the idea of renormalization on Minkowski spacetime by restricting ourselves to a class of
quasifree states such that the expectation values of all products ®(z)®(y) have the same "singularity
structure” in the sense that subtracting them from one another provides a smooth expression. J. Hada-
mard’s theory of second order hyperbolic equations [Had1923] indeed leads to a family of bisolutions
with a fixed local singular part, i.e. for z, y "close", the difference of two Hadamard bisolutions is smooth
and the limit for y — x exists (see [Wal1994] and the more recent book [Hac2016] for details). The renor-
malization of (T") using this approach has been carried out, for instance, in [DF2008].

Accordingly, a state 7 is called a Hadamard state if 7 has the Hadamard singularity structure. If we as-
sume that the Hadamard property holds in a whole neighborhood of a spacelike Cauchy hypersurface
— that is that no additional singularities arise for spacelike separated pairs of spacetime points — then
this is invariant under Cauchy evolution [FSW1978], meaning that it then holds in some neighborhood
of every Cauchy hypersurface. This additional assumption is referred to as the global Hadamard con-
dition [NO1985, GK1989], and any globally hyperbolic spacetime admits a large class of pure (global)
Hadamard states [FNW1981, SV2001].

The first mathematically precise definition of the Hadamard singularity structure have been specified
in [KW1991], in which the authors also show that for a wide class of spacetimes the Hadamard pro-
perty singles out an invariant quasifree state. Moreover, in any spatially compact spacetime ("closed
universes"), all Hadamard states, more specifically their GNS representations, comprise one unitary
equivalence class. For general spacetimes, this suggests a certain local indistinguishability, and indeed,
the restrictions of quantum field constructions given by two Hadamard states on some relatively com-
pact spacetime region turn out to be unitarily equivalent [Ver1994]. Hence, although there is no distinct
vacuum, all possible notions are equivalent in the sense that inequivalent constructions can be only dis-
tinguished by measurements over unbounded regions of spacetime. In addition, Hadamard states yield
finite fluctuations for all Wick polynomials [BF2000], which makes them relevant also for the perturba-
tive construction of interacting fields (see also [HW2015, Rej2016, Diit2019] and references therein). For
instance, on ultrastatic slabs with compact Cauchy hypersurface, also the converse implication holds
[FV2013], and hence, under certain circumstances, there is an alternative characterization of Hadamard
states less strongly tied to ultrashort distance behaviour.

Consequently, Hadamard states are by now considered a reasonable counterpart of Minkowski finite
energy states and the Hadamard condition an appropriate generalization of the energy condition for
Minkowski quantum field theory. Note that the replacement of a distinct vacuum state by a whole class
of states somehow reflects the essence of general relativity: Just like there is no preferred coordinate sys-
tem, the concept of vacuum and particles as absolute quantities has to be re-evaluated and eventually
downgraded to one choice among many.

It was Radzikowski who showed that for the massive scalar field the global Hadamard condition is equi-
valent to a certain requirement on the wave front set of the two-point-function [Rad1992, Rad1996a],
namely

WE(72) = {(p, —&4,¢) € (T"M x T*M)\{0} | (p,€) ~ (¢,¢), & is future-directed }, (1.9)

where

7 lightlike geodesic ¢: I — M and t,t' € I':
(p,€) ~ (¢, ¢) = (1.10)
/ . b #
c(t) =p, o(t) =g, é(t) =&, ) = ¢
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Here we adapted the original formulation with regard to the convention used in this thesis. Further-
more, he proved equivalence of the local and global Hadamard condition [Rad1996b], and hence, (1.9)
represents a local formulation of the positive energy condition.

Sahlmann and Verch generalized Radzikowski’s equivalence for sections in general vector bundles
[SV2001], in particular for Hadamard states of the Dirac field in the sense of [K6h1995, Kra2000,
Hol2001], which have been used, for instance, for a mathematical rigorous description of the chiral
anomaly [BS2016]. In addition, [SVW2002] proposed an even more elegant characterization of the Ha-
damard property in terms of Hilbert space valued distributions ¢ — ®,[¢]2; € 7, involving the
GNS-representation induced by 7. Also for non-quasifree states, one can formulate (1.9) as a constraint
on the whole n-point-function, which is compatible with the special case of quasifree states [San2010].
Moreover, in analytic spacetimes, this generalized Hadamard condition can be sharpened to a condition
on the analytic wave front set, thereby implying the Reeh-Schlieder-property [SVW2002]. Likewise, for
non-globally hyperbolic spacetimes, there is a formulation of the Hadamard condition via restriction to
globally hyperbolic subregions. Hadamard states have therefore been studied in connection with the
Casimir effect and on anti-de Sitter spacetime (see [DNP2014, DFM2018] and references therein). By
using the weaker concept of Sobolev wave front sets, a definition of adiabatic states on globally hyper-
bolic spacetimes similar to (1.9) is given in [JS2002], thus implying that Hadamard states are adiabatic.
However, most importantly for the purpose of this thesis, the Hadamard condition in the form (1.9)
allows us to employ the techniques of microlocal analysis provided by Duistermaat and Hérmander
[DH1972]. Soon after Radzikowski’s work, Junker derived pure Hadamard states for the massive scalar
field on spatially compact globally hyperbolic spacetimes, using a factorization of the Klein-Gordon
operator by pseudo-differential operators [Jun1996, Jun2002]. Gérard, Wrochna et al. generalized this
construction to a large class of spacetimes [GOW2017] and even gauge fields [GW2015]. Furthermore,
they proved the existence of (not necessarily pure) Hadamard states [GW2014] in a much more concrete
manner than [FNW1981]. See [Gér2019] for a recent review of these techniques.

On the other hand, there have been further proposals for physically reasonable states like the Sorkin-
Johnston-states [AAS2012], which in general lack the Hadamard property [FV2012b]. Nevertheless, a
modification of their construction produces Hadamard states [BF2014]. For a contemporary synopsis
concerning preferred vacuum states on general spacetimes, the nature of the Hadamard property and
this construction in particular, see also [Few2018]. Apart from these rather general prescriptions, Hada-
mard states have been constructed explicitly for a large variety of spacetimes with special (asymptotic)
symmetries, and furthermore, well-established states have been tested for the Hadamard property (see
the introduction sections of [GW2014, GOW2017] and the references therein as well as section 8.4 of
[FV2015] and 2.4 of [Hac2016] for an overview).

1.5 Subject of the thesis

In their seminal work [DH1972], Duistermaat and Hormander showed the existence of distinguished
two-sided parametrices classified by their singularity structure for a huge class of manifolds and opera-
tors acting on (real-valued) functions. In the case of linear wave operators P and spacetime dimension
d > 3, this singles out four parametrices G A, G R, G Jak C~¥a r, which correspond to the familiar advanced,
retarded, Feynman and anti-Feynman Green operator for linear wave equations on Minkowski space.
With A’ := {(p, &; p, —£)} the primed diagonal, they are characterized by

WF(GA> =A"v {(pa {) ~ (Qa _C)7 qe J+(p)}ﬂ WF(éR> =A"u {(pa g) ~ (q7_C)7 qe J—(p)}7

R R (1.11)
WE(Gr) = A" U{(p,&) ~ (¢,0), t > '}, WE(Gar) = A" 0 {(p,§) ~ (¢,¢), t <t'}.
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However, Theorem 6.5.3 of [DH1972] ensures the existence of these objects only as parametrices, i.e.
Green operators up to smoothing. As it happens, on globally hyperbolic Lorentzian manifolds, there is
exactly one advanced and retarded Green operator G 4, G r for P [BGP2007], but the authors of [DH1972]
point out that they do not see how to fix the C*-indetermination for G r and éa F.

On the other hand, for any bidistribution H of Hadamard form (1.9), which is a bisolution up to C*
and whose antisymmetric part is given by %(CNJ A—G r), Radzikowski proved that iH + Gy yields a
Feynman parametrix in the sense of (1.11), thatis WE(iH +G 4) = WF(Gr) (Theorem 5.1 of [Rad1996a]).
Furthermore, section 6.6 of [DH1972] provides the identity G F+ éa F= G A+ G r, s0 Feynman and anti-
Feynman parametrices can be extracted from H , G A, G R Via

Grp=iH+Ga,  Gop =—iH + Gp, (1.12)
and hence, H has to be of the form

H=-(Gur — Gr +Ga—Gp). (1.13)

DN | .

Moreover, %(éa F— G F) automatically fulfills (1.7) due to Theorem 6.6.2 of [DH1972] up to smooth
functions. Therefore, the characterization of Hadamard states by means of microlocal analysis almost
directly provides a further existence proof of (not necessarily pure) Hadamard states by employing
the existence of distinguished parametrices and their positivity properties (Theorems 6.5.3 and 6.6.2 of
[DH1972]). Compared, for instance, to the deformation argument in [FNW1981], this approach is rather
constructive and furthermore, it covers the cases of analytic spacetimes, which, in general, can not be
treated by local deformations. However, Radzikowski remarked that it is not clear how to prove that
one may choose the smooth functions such that (1.7) is exactly satisfied [Rad1992]. This issue is clearly
related to the previously mentioned C*-indetermination via (1.13).

This thesis solves both problems in the setting given by Definition 1.2.1. We construct bisolutions
S: 9(M,E) x 2(M, E*) — R with singularity structure equal to WF (éa r—G ) such that Hadamard
bisolutions as well as Feynman and anti-Feynman Green operators are determined via S + (G4 — Gp)
and (1.12). The crucial properties of S are invariant under the addition of some smooth bisolution, and
our construction will determine bisolutions only up to this degree of freedom. The basic idea for that
is to follow the lines of [BGP2007] and deduce S from the well-known object %(GQF — Gp) for O on
Minkowski space via local Hadamard series. The derivation of well-defined local parametrices and the
following propagation procedure to globally defined bisolutions involve several choices of objects like
local domains, covers, cut-offs etc., which are canonical only in the sense that the results arising from
two different choices merely differ by some smooth bisolution.

Provided that Theorem 6.6.2 of [DH1972] also holds for corresponding operators acting on sections in
some Riemannian vector bundle, we then show that there is a choice of bisolutions which fulfill (1.7) and
hence lead to Hadamard two-point functions. By this, we mean that for each S there is a smooth bisolu-
tion u such that S + u has these properties. Conversely, given Green operators G, G,r, we provide a
criterion for the existence of such a choice for more general differential operators.

Before approaching this construction, some preparation has to be done. In the first half of chapter
2, we classify certain ﬁl-invariant distributions on Minkowski space and then construct families of
them containing fundamental solutions for [J later identified as the distinguished parametrices. In the
second half, we prove well-posedness of the Cauchy-problem for singular sections and smooth bisec-
tions, which will be needed for the eventual globalization procedure. Chapter 3 generalizes symmetry
of the Hadamard coefficients for formally self-adjoint P given in [Mor2000] to the vector-valued case.
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Afterwards, in chapter 4, we start with the actual construction by providing explicit and local expres-
sions for the Feynman and anti-Feynman fundamental solution in the prototype case (O, R{y; ). We
identify them as members of the previously derived families of L’L—invariant and homogeneous dis-
tributions just like the advanced and retarded fundamental solution are represented by Riesz distribu-
tions. As depicted in chapter 5, this allows the construction of parametrices on small domains O of
any Lorentzian manifold M via Hadamard series such that the singularity structure transforms natu-
rally. Unlike the advanced and retarded fundamental solution, the objects constructed here are far from
unique. Thus, in order to ensure that they produce actual two-sided parametrices, we need symmetry
of the coefficients, and therefore, with regard to chapter 3, we assume formal self-adjointness of P. This
leads to local Feynman and anti-Feynman parametrices and hence Hadamard bidistributions via (1.13).
For M globally hyperbolic, we moreover derive local bisolutions which have the Hadamard property.
Chapter 6 then finally provides the global construction on globally hyperbolic spacetimes. Here, the
well-posed Cauchy problems derived in section 2.3 are the crucial instruments for the propagation as
bisolutions to M x M and moreover for the preservation of the singularity structure at each propagation
step. We construct (singular) bisolutions on domains of the form O x M, which cover M x M. We show
that there are local choices of bisolutions that fit together on the overlaps and thus constitute a globally
well-defined object. Altogether, we obtain global Hadamard bisolutions and finally prove that each of
them can be chosen as an actual Hadamard two-point-function.



2 Preliminaries

"But time, it’s on your side now.”

After having briefly fixed notations and conventions (mostly by adopting [BGP2007]), we derive a clas-
sification of El-invariant distributions on Minkowski space supported on the light cone C. Solutions
and fundamental solutions for [ are El-invariant with singular support contained in C, and thus, co-
incidence of two such objects can be checked directly outside of that set. In that case, their difference is
a El-invariant distribution supported in C, and we are going to exhibit criteria for equality also there.
Therefore, we employ the close relation between El-invariant distributions on R%\{0} and distributions
on R, and we trace back our setting to the well-known classification of distributions supported in {0}.
Afterwards, we construct fundamental solutions for [, which, by means of the previous classification,
will later be revealed as the distinguished fundamental solutions corresponding to (1.11).

In the second half, we use well-posedness of the smooth and singular Cauchy problem, provided in
[BGP2007, BF2009, BTW2015], in order to derive a well-posed Cauchy problem for smooth bisections,
and furthermore, we show propagation of singular solutions in a suitable sense.

2.1 Notations and conventions

For any d-dimensional vector space with non-degenerate inner product -, -)) of index 1, i.e. isometric
to d-dimensional Minkowski space, we adopt the notations and conventions of [BGP2007], that is, for
instance, the signature (—, +, ..., +) and the squared distance

d—1
v(z) = — Lz, ) = x2 — Z x?, x = (zg,...,xq-1) € V. (2.1)
j=1

The two connected components I of the set of timelike vectors I := {y(z) > 0} then determine a time-
orientation. Correspondingly, we set C := dly, J1 := I, whose non-zero elements we call "lightlike"
and "causal", respectively. Leaving out "+" means the union of both components, i.e. 1 := I, U I_ and
similarly C' and J. The zero-vector and all elements of {y(x) < 0} are referred to as "spacelike".

For M a d-dimensional time-oriented Lorentzian manifold and p € M, we write I} (p), C¥ (p) and
Jf (p) for the corresponding chronological/lightlike/causal future/past of p. These sets comprise
all points that can be reached from p via timelike/lightlike/causal future/past directed differentiable
curves, that is, curves with tangent vectors of the respective type at each point. For subsets A < M,
we define I (A) := Upca
of M like future/past compact, geodesically starshaped, convex, causally compatible, causal, Cauchy
hypersurface etc., we refer to section 1.3 of [BGP2007]. Moreover, we point out that in the whole thesis
a Cauchy hypersurface of M is always assumed to be spacelike.

For E some real or complex finite-dimensional vector bundle over M, the spaces of Ck-, C*-, P-sections
in F as well as distributional sections (M, E, W)' with values in some finite-dimensional space W, in-
cluding their (singular) support, convergence, order etc., are defined as in section 1.1 of [BGP2007].

IM(p) and similarly J{/(A). For the definitions of different types of subsets
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For F another vector bundle over M and P: C*(M, E) — C*(M, F) some linear differential operator,
the formally transposed operator P': C®(M, F*) — C®(M, E*) of P is given by

(Plo)[i] = o[ PY] = fM o(PY)AV,  pe (M. E), pe I(M,F¥).

dV denotes the volume density induced by the Lorentzian metric. Let £ be equipped with a non-
degenerate inner product (-, -), which induces the L?-product of test sections

(1, 2)ag = jM () () AV (D), 1 € D(M,E), 2.2)

and the isomorphism ©: E — E*. We call P formally self-adjoint if (P1,v2)am = (31, Pi2) s for all
1,19, thatis, P = ©~1 P*@. The focus of this thesis lies on wave operators P: C*(M,E) — C*(M,E),
i.e. linear differential operators of second order with, effectively, scalar principal symbol determined by
the metric, namely ¢ — g(¢&%, &%) -id, € € T*M (see section 1.5 of [BGP2007] for details).

L. Schwartz” kernel theorem (Theorem 5.2.1 of [H6r1990]) establishes a one-to-one-correspondence
between bidistributions K: (M, E) x (M, E*) — R and linear, sequentially continuous operators
K: 2(M,E*) - 2(M,E*), thatis, Kg; — Ky if p; — ¢, given by

K[V, 0] = (Ko)[¥], e P(ME), g 2(M,E"). (2.3)

K is called the Schwartz kernel of K, and it is represented by a distributional section in the bundle
E* X E over M x M, whose fibers we identify via

(E*RE)p, = EX @ E, =~ Hom(EX, E¥),  (p,q) € M x M. (2.4)

This allows us to define the wave front set of an operator via the wave front set of its Schwartz ker-
nel. Furthermore, we introduce the concept of parametrices for differential operators P, which yields a
generalized concept of both, inverse operators and fundamental solutions for P, related by (2.3).

Definition 2.1.1. Let P: C*(M, E) — C®(M, E) be a linear differential operator. A linear and sequen-
tially continuous operator Q: (M, E*) — C*(M, E*) is called

e left parametrix for P if QP'|_ — id is smoothing,

P

e right parametrix for P! if P'Q — id is smoothing,

e (two-sided) parametrix for P' if Q is left and right parametrix for P*,

e Green operator for P! if QPt|@ = P'Q = id.

A bidistribution Q: 2(M,E) x 2(M,E*) — R withp — Q(p)[¢] € C* (M, E*) for all ¢ is called
e left parametrix for P atp € M if P5)Q(p) — 6p € C*(M, E),

e (two-sided) parametrix for P atp € M if () is a left parametrix for P atp, and for all p € (M, E*),
we have P{,, (Q()[¢]) — ¢ € C*(M, E*),

e fundamental solution for P atp € M if P)Q(p) = 0.

Note that Q is a (left) parametrix for P! if its Schwartz kernel Q[v, ¢] := Qp[1] is a (left) parametrix for
Ptatall p e M. In this thesis, we will mostly refer synonymously to a parametrix as an operator Q or
the bidistribution ) given by its Schwartz kernel.

10
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2.2 Fundamental solutions for d’Alembert’s operator on Minkowski space

2.2.1 Lorentz-invariant distributions on the light cone

Let R? := R4\ {0} and J§ = R\ J.. We find submersions 4 := ~

Je J¢ — R, whose preimages

vil(k) = {7(z) = Kk} nJE = HE, k€ R, (2.5)

foliate J$. In particular, we have ’y;l ’R<0 = 41 ‘R<0' Recall that any El-invariant function ¢ € C* (]f%d)
is constant on those preimages, i.e. ¢(HY) = {ct}, and thus determines a pair of functions

b R — R, K —> cr, (2.6)

which satisfy ¢+’R<o = ¢*|R<o and vigy = ¢
function ¢: R? - R via ¢ Je == Vigx

Since we are interested in the more general case of distributions, we consider a pair 7 € Z(R)" with
Ty |r_, = T_|r_,- By Theorem 10.18 of [DK2010], the pushforward of ¢ € 2(R?) along the submersion
7+ yields a continuous linear map Z(J%) — 2(R) with ((v+)«¢) () given by integration of ¢ over the
submanifold v; (k) for all € R. Thus, we can pull back T along v+ via

e - Conversely, any such pair ¢ induces a Ll-invariant
F

ViTe[p] := Te[(v4)sp], 0 e 2(J%), (2.7)

and hence, we obtain a £1—invariant distribution T € 2(R%) via T

e = viT+. However, for the
converse construction, a pointwise definition of 7' like in the smooth case (2.6) is not available for dis-
tributions. Alternatively, pushing forward 7" along ~+ by pulling back the test function does not work
either since supp (v} ¢) is not compact unless ¢ = 0. On the other hand, the only compactly supported
El—invariant distributions are derivatives of dg, so (y+)«1 is a priori ill-defined for almost all such 7T'.
[Met1954] constructs an approximating sequence of £1-invariant modifications of 7', for which the
pushforward is well-defined and independent of the modification. As a result, the relation generali-
zes to El-invariant distributions on R? and pairs of distributions on R that coincide on R(:

Theorem 2.2.1 (Théoreme 2 of [Met1954]). For any pair T+ € Z(R) with Ty|r_, = T-|r_,, there is
a El—invariant distribution T € 2(R%)" given by T|J% := 7iT4%. Conversely, for any El-invariant
T € 2(RYY, we find a pair Ty € 2(R) with T |g_, = T_|g_, such that T e = viTs.

Theorem 2.2.1 is the crucial result for our classification since it translates Lil-invariant distributions
with support on C into distributions on the real line supported only in {0}, for which a classification is
well-known (e.g. see section 3.2 of [H6r1990]). The particular construction moreover shows that (74 ).
maps Z({zo > 0}) surjectively onto Z(R) (see equation (4.6) on page 233 in [Met1954]). For x > 0, the
diffeomorphisms

A~

N Iy — {zg >0}, T — (’y(:c),x),

with inverse maps ®1' () = (++/20 + [|2]2, #), 20 > 0, provide the particular expressions

K 2. %
(<v+>*¢)<ﬂ>zf o+ /r+[2]% )

sy o 11 diz,  pe 2(R%). (2.8)

In particular, supp ¢ < J$\C' leads to supp (v+)+p < R. For any ﬁl—invariant T € 2(R%) only sup-
ported in C, we therefore obtain T'[p] = 0 for all ¢ € Z(J5\C), and thus, T¢[(v+)s¢] = 0 for the

11
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corresponding Ty € Z(R)’, that is supp T+ < {0}. Applying Theorem 3.2.4 of [H6r1990] then provides

0]
Z (5(k —

- k)
=X 16y, (29)

where ai # 0 for only finitely many & and v% 5((]k) [0] = ((v+)«p) *) (0). Since {0} represents an orbit of
El, the classification of all El—invariant distributions on R¢ will require one further result:

Theorem 2.2.2 (Théoréme 1 of [Met1954]). Any Ll—invariant T € 2(RY) with suppT < {0} is of the
formT = Y7 by - 0%y with by, # 0 for only finitely many k.

Corollary 2.2.3. Any LL -invariant measure 4 on Cy is of the form

o
ol =a [ PR o o), e 2(RY,
s 23]

for some a,b € Rxy.

Proof. Recall that ¢y is represented by a measure on R?, whereas none of its derivatives is, and by defi-
nition of (v+)«¢(k) as the integral of ¢ along H,F, the same is true for v% 5. Let

PR

A0 [e] := f M dz, e (RY, (2.10)
- ri-1 2|2

which is well-defined for all p € 2(R?), and, due to (2.8) and (2.9), coincides with (v4).p(0) for

peD (I@d). Therefore, Theorem 2.2.2 and the fact that [1%4; is a measure only for k£ = 0, we obtain

pr —adQY = by for some a, b € R, which is the claim. O

2.2.2 Riesz distributions

We saw that (2.8) provides an explicit extension for v} dg to all of RY, so with regard to (2.9), for the

desired classification, it remains to give an extension also for the pullback of the derivatives 3 (()k).

According to chapter 13 of [DK2010], such extensions can be derived by regarding 6(()k) as holomorphic
extensions in k of certain functions. It follows that the pullback can directly be calculated and produces a
family of El—invariant functions on R?, which are holomorphic in k. By the identity theorem of complex
analysis, this identifies v} 5(()k)

x € R, we introduce

with the distributional extensions of these functions. For all k¥ € N and

where H the step function at x = 0, which satisfies H' = d;. We directly obtain ox**! = x*, so x* yields

a fundamental solution of * and thus leads to a distributional extension x~* via

ka = 6“1)(1 =oFlg = 5(gk), k € Np.

The analytic continuations e®!°6% and I'(« + 1) of 2* and k! for a € C yield a further generalization
e(a— 1)logx

x*(z) := T H(x), aeC. (2.11)

12
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Thus, for fixed ¢ € Z(R), the map a — x“[¢] is holomorphic on all of C, so we embedded 5(()k) into a
family of distributions {x“} ¢, which are continuous for Re (o) > 1. In this spirit, on R¢ and for all

Re (o) > d, we define

R (2) = 2C(a, d) - ’y(ar)%d, x € Jy, Olad) 9—a
8 0, otherwise, 7 ’ (%) ( )

(2.12)

This yield holomorphic maps a — R$[¢] on {Re (a) > d} for each ¢ € Z(R%), and a simple calculation
shows that I:ll'%‘_li+2 = R¢. Hence, we obtain a distributional extension for all « € C via

¢ :=0OFRY™,  Re(a)+2k>d, (2.13)

which is independent of k by the identity theorem. The distributions defined by (2.12) and (2.13) are
known as the Riesz distributions, and they represent the family of El—invariant distributions corres-

ponding to {x*}aec, i.e. in particular {7} 5((]k) } ke -

Proposition 2.2.4. For all o« € C, we have

(67
R3|,

Moreover, R = 6§, and R3 are the unique fundamental solutions of (] with support contained in J.

For the proof, see section 13.2 of [DK2010]. This provides us with the desired explicit expression

r(¢—(k+1
2160 — oyt 2 LG+ D) paae

= . 2.14
TEX 92k+3—d 52 Je @19
Proposition 2.2.5. Any £1—1‘nvar1'ant T € 2(RY) with suppT < C is of the form
Q0
Z ( RITAHD |\ gD Ly IZI’“&O) (2.15)

with only finitely many non-vanishing coefficients.

Proof. Note that (2.9) and (2.14) imply that, away from zero, T" is given by some linear combination of

Riesz distributions: .

T|. = At Rd 2(k+1) + AL rR- 2(k+1)
e = 35 (2 )

R
Due to El—invariance of the Riesz distributions, it follows that the difference is a El—invariant distribu-
tion supported only in {0}, which, according to Theorem 2.2.2, is of the form

i( d2k+1)+)\ R" 2k+1> Zbk 00k 5, 0O

A function f: R? — C is homogeneous of degree a € C if f(tz) = t*f(x) for all t € R-g, x € R% This
generalizes to distributions via:

13
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Definition 2.2.6. A distribution u: 2(R?) — C is homogeneous of degree a € C if

ulpe] =t - ule], oi(x) :=t7% (£> , ve 2(RY), teRsy.

t
It directly follows that Jy is homogeneous of order —d. Note that oy = t7H (d'p); foralll € N, so if u is
homogeneous of degree a, then 0'u is homogeneous of degree a—I. In particular, R is homogeneous of
degree a— d and consequently [1%6; = R;?* of degree —d — 2k. Hence, (2.15) provides a decomposition
of El—invariant distributions 7" with support on the light cone in terms of homogeneous distributions,
which is particularly useful if 7" itself is homogeneous:

Corollary 2.2.7. Let T € 2(RY)’ be [,1 -invariant, supported in C' and homogeneous of degree a > —d
with a # —2k for allk € N. Then T = 0. Moreover, this still holds for all a = —2k > —d if, in addition, T
is a solution of d’Alembert’s equation and symmetric, i.e. T'(x) = T'(—x) in the distributional sense.

Proof. The first claim follows immediately from Corollary 2.2.5, since T" is supposed to coincide with a
finite sum of homogeneous distributions of degree —2k, k € N. Therefore, demanding T[¢:] = t® T[]
for all t > 0 shows that all coefficients have to vanish.

However, for 7" homogeneous of degree a = —2k > —d, (2.15) leads to the form

d—2k | \— . pd—2k
T =\ R 4 A R
Due to R} (—x) = R%(z), symmetry yields A = A\;” =: A, and thus,

0=0T =2\ (RT*+ R — XN =0 O

. v

#0

2.2.3 Symmetric fundamental solutions

Due to Corollary 2.2.5, the Riesz distributions are the only El-invariant distributions supported ex-
clusively on the light cone (note that %6y = R;zk). Moreover, somehow as a side product, we found
fundamental solution R%L for [, which are the unique ones with support contained in J+, and therefore,
we will later identify them with the advanced and retarded fundamental solution for [.

In this subsection, we derive a further family of El—invariant distributions from (2.11), which, unlike
the Riesz distributions, do not satisfy any support restriction and thus will correspond to the Feynman
and anti-Feynman fundamental solution, eventually. To this end, we sketch the construction given in
the chapters 1.3 and II1.2 of [GS1967]. Let always be d > 3, and for ¢ € Z(R?), let always denote
Y(r) := §ga_1 p(r#) d&, which is smooth at r = 0 and hence lies in Z(Rx). For all p € 2(R?) and k € Ny,
we define

el = | uk@@Mx=fwM”1wwnv=rw+dwx“ﬁm,
R4 0

so by holomorphicity of (2.11), & — r*[¢] extends to a meromorphic function on all of C with simple
poles inherited only from the I'-function. Note that v is an even function, so the residues

(k)
Res r[g] = x *[i)] - Res T(a) = L0

a=—d—k am—k k! (2.16)

exist for all £ € Ny and vanish for odd k, i.e. we obtain simple poles at {—d — 2k} jen,. We aim at defining
complex powers of v (2.1) in the sense (7 £ i0)*, a € C, where the branch cut is taken along the negative
real axis and +i0 refers to the respective branch.
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2.2 Fundamental solutions for d’Alembert’s operator on Minkowski space

Let Hy := {#Im > 0} < C denote the open upper and lower half-plane, and A; := H; x H.. For
(ap,a1) € Ay, we define the bilinear form

d—1
Q(ao, a1) := apxy + ay Y 7 (2.17)
j=1
with the corresponding operator
1 82 —ia
D(aga) 1= — Z Pt (2.18)

ap 61‘0

hl\'.)

If Re () > 0, we calculate Dy 4,)@(a0,a1)**! = 4(a+1) (o + ) Q(ao, a1)®, and hence, a distributional
extension of (2.17) to all of C is given by

D?ao al)Q(a(]; al)aJrk

Q(ag,a1)” = " HJ (ot i) (at] — ) Re () + k > 0. (2.19)

Note that, due to the identity theorem, this does not depend on &, and furthermore, it actually does not
yield any poles for Re (o) > —¢ since

o lerm) DD, e ()™ D
oRes Q= i T a+ i) (a+j+52)  4amti(m) [ (j—m+ 52) 0 @20
j=1 2 j=1 2

for all natural numbers m < % Thus, for fixed ¢ € 2(R%), the map (ag,a1,a) — Q(ag,a1)*[¢] is
holomorphicon Ay x {Re > —4}, and hence, so are the maps
ar— (ytie)*[p] = QL tie,—1+ie)[¢],  ¢e I(RY), (2.21)
on {Re > — d} for fixed ¢ > 0. Next, we investigate the residues of (2.19) at a = —g. For fixed o with
Re (o) > g, we obtain holomorphic maps
2 (0)
7T .
(ag,ar) —> Res Q(ag, a1)[¢], (ag,ay) — ﬁ , @ e 2(RY). (2.22)
VT ()

On the other hand, for all € > 0, we have
Q(tie, tie)*[p] = (iie)af Ja]** - () dw = (£ie)* - r*[¢], e 2(RY),
]Rd

so by (2.16), the residues of Q(+ic, +ic)® at « = —$ are essentially given by do:

I:{es Q(xie, tie)*[p] = S (i ie)2r%[p] = 7= <$i7T)2 : 1202(31))
d 2 2

o 2 a=—d 2(+ie)
It follows that the holomorphic maps (2.22) coincide on {+iR-} x {+iR-¢} < A+, and therefore, they
coincide on all of A+ by the identity theorem (in the version given by Theorem 3.2.6 in [AF2003]). Hence,

(2.23)

15



2 Preliminaries

the residues of (2.19) can be calculated via (2.22), and in particular for (2.21), we obtain

[NIISW

™

Res (v +ie)[o] = R 1+ ie, —1 + ie)*[p] = ¢(0) . 2.24
aisg('y )*[¢] a:gng( £ )*[¢] iTE i) (2.24)

With regard to (2.19) and (2.21), the distributions (y 4 :0)* are well-defined as the limits ¢ — 0 of (2.21)
in the distributional sense, so taking the limit for (2.18) and (2.19) leads to

B O (y £ i0)***
T (a+ ) (a+j+452)

(v + i0)® (2.25)

where Re (o) > —¢ and k € Ny chosen such that Re (a) + & > 0.

Proposition 2.2.8. The distributions (2.25) are symmetric and L’L -invariant, and for fixed ¢ € 2(R),
the maps a +— (v + i0)*[p] are holomorphic on {Re > —%}. More precisely, form = 1,2,.. ., [d;QlJ, we

have
yom _ (DT (5 —m)
+10)"" = O™l +10),
(v +i0) 27 T (m)r (2 og(7y + i0)
and for d > 2, fundamental solutions for [] are given by
T (4=2 _
Sy = (ii)d“(i%i) (v +i0) . (2.26)
4dm2

Proof. Clearly, (2.25) is holomorphic on {Re > —¢}\{-N}, and for « = —m > —%, m € N, this can

be checked similarly to (2.20). Since (v + i0)* is symmetric and El-invariant for Re (o) > 0, so is the

holomorphic extension (2.25). Moreover, holomorphicity ensures (y + i0)™" = ag_m(’y + i0)* for all
natural numbers m < %, and thus,
i, sz
(v +10) :47"1_[;7:11(j—m)~1_[;71:1(j—m+%)
O™ 45| (yxio)tm D" (E-m) ,
T ($om) 2y [ m ) 4nT(m)D(4) og(7 £ 10).

Eventually, continuity of ¢ — Resd (v £ ie)¥[¢] due to (2.24) for fixed ¢ as well as v/1 +ic — 1 and

v—1+ie — +iyield

2

d
Res (v +i0)* = lim Res (y + ie)® = (Fi)* ! Wz - 0o,
a1 #0 0=t r(9)
so holomorphicity at o = 25% implies
da
= 2—d d 472
O +i0)2 = lim O +i0)*™ =4-2"% tim (a+2)(y+i0)* = (7)1 . 5. O
a1t ot 2 T (42)
2 2 2
= Resd(yiiO)D‘
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2.3 Cauchy problems on globally hyperbolic manifolds

2.3 Cauchy problems on globally hyperbolic manifolds

A crucial feature of globally hyperbolic Lorentzian manifolds M is a well-posed Cauchy problem for
wave operators (see Theorems 3.2.11 and 3.2.12 of [BGP2007] as well as Theorem 13 of [BTW2015]).
In this section, we adjust those results for our purposes. Furthermore, we demonstrate, how well-
posedness for differential operators P, () on globally hyperbolic Lorentzian manifolds M, N entails well-
posedness for P® Q on M x N.

2.3.1 Smooth sections

Let M be a globally hyperbolic Lorentzian manifold with Cauchy hypersurface ¥ < M, 7: E — M a
real or complex vector bundle over M and P: C*(M, E) — C*(M, E) a wave operator.
For ug,u; € C* (%, E) and f € C*(M, E), we consider the Cauchy problem

Pu = f,
ulg, = uo, (2.27)
V,,u|E = uy,

which is well-posed by the Theorems 3.2.11 and 3.2.12 of [BGP2007] for compactly supported ug, u1, f,
and the smooth solution u satisfies

suppu < J(supp up U supp uy U supp f). (2.28)

Adopting the exhaustion argument in the proof of Corollary 5 in chapter 3 of [BF2009], this statement
extends to general smooth data:

Theorem 2.3.1. For all ug,u; € C*(X, E) and f € C*(M, E), the Cauchy problem (2.27) is well-posed
with smooth solution u satisfying (2.28).

2.3.2 Smooth bisections

For F' a vector bundle over some further globally hyperbolic Lorentzian manifold NV, recall (2.4) for the
definition of the vector bundle £ X F over M x N.

Theorem 2.3.2. Let M, N be globally hyperbolic Lorentzian manifolds with a Cauchy hypersurfaces
¥, 2 and unit normal fields p,v. Furthermore, let P, () denote linear differential operators of second
order acting on smooth sections in vector bundles E, F' over M, N, which admit well-posed Cauchy
problems and only lightlike characteristic directions. Then, for allu; € C* (X x E,EX F), i = 1,...,4,
and f,ge C*(M x N,EX F) with Qf = Pg, there is some unique section u € C*(M x N,EX F)
solving

Pu = f,
Qu =9
{ Uls= = U (2.29)
Vilg,z = us
Vuly, = =us,
V,,VMMEX, = Uq.

17



2 Preliminaries

Proof. Forall g € N and hg, h; € C*(X x N, EX F'), the Cauchy problem

Pug = f(-q9),
uq‘z = hU('7q>7 (230)
vu“q|z = hi(,q),

has a unique solution u, € C*(M, E ® F,;) by Theorem 2.3.1, and furthermore, the mapping of the data
to the solution u, is linear and continuous. Thus, it remains to determine hg, h1 from w1, uo, us, u4, g and
to show that then Qu = g is automatically fulfilled. For all o € ¥ and ¢ € =, we define smooth sections
ho(o,-),hi(o,-) € C*(N,E, ® F) and ho(-,§), ha(-, &) € C*(M, E ® Fy) as solutions of

Pho(-,€) £, ), Phy(€) = (Vuf)(-9),
ho(€)ly, = w(:8), § ha(H8)]g = us(:8),
Viho(-, 6y = ua(-€), ( Viha(8)|y, = ual- ), 31
[ Qholo,:)  =glo,), ([ Qhi(o,) = (Vpug)(a,),
3 koo =wilo,), O (o) = ue(oy),
Voho(o, )|z = us(o,-), [ Vohi(o,)z = ua(o,).

By adapting the proof of Proposition A.1 of [FNW1981], we obtain smooth sections hg, hi, he in E X F
over (M x Z) u (¥ x N),¥ x N and M x E, respectively, and, following the same lines, u(-,q) := u,
depends smoothly on ¢. Hence, we found some u € C*(M x N, E X F') solving (2.30), which yields the
initial data of a solution of (2.29):

U|E><E - h0|2x5 = U Vu“|zx5 - h1|zX5 = U2,

v”“|2x5 = v’/h0|2x5 = us, Vvvuu| =V,h = uy.

|Z><~

Note that P and (Q commute, since they act on different factors of M x N. Therefore, (2.30) and (2.31)
imply that Qu and g satisfy the same Cauchy problem:

PQu = QPu=Qf = Pg,
QU|E><N = Qho = glsz’
Q“‘sz QVNU‘EXN Qh1 = “g‘ExN’

and hence Qu = g. By the same arguments, we have

Qu =g,
u’ng = hyg, (2.32)
VVuiMxE = ha.

Uniqueness follows directly since trivial Cauchy data in (2.29) lead to trivial data in (2.31) and therefore
in (2.30), which implies u, = 0 for all ¢, thatis u = 0. O
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2.3 Cauchy problems on globally hyperbolic manifolds

Corollary 2.3.3. With regard to the assumptions of Theorem 2.3.2, let (N, =,v) = (M, %, n), F = E* and
E be equipped with a non-degenerate inner product. Let Q = P' and for all (p,q) € M x M assume

fp.q) =0,'9(q,;p)'Oq,  uz(01,02) = O ug(02,01)' Oy, 03
ui(oq,092) = @;11u1(02, al)t@@, ug(oy,09) = @;11U4(O'2, 01)’5@(72 '
with fiberwise transposition *: Hom(E,, E,) — Hom(E;, E;‘) Then the solution of (2.29) satisfies
u(p,q) = 0, u(q,p)'Oq,  p.ge M. (2.34)
Proof. Well-posedness of the Cauchy problems (2.31) and the symmetries (2.33) directly lead to
ho(p, o) = @;lho(a,p)t@g and hi(o,p) = O, ha(p,0)0,, peM, o€,

since the corresponding Cauchy data coincide. Therefore, (2.30) and (2.32) imply (2.34). O

We proceed with stability, i.e. continuous dependence on the Cauchy data. Recall that any manifold is
paracompact, so the topology of C* (M, E) is generated by a countable family of seminorms. Thus, it is
metrizable and we obtain a Fréchet space, for which the open mapping theorem holds.

Theorem 2.3.4. LetZ := (&*C*(M x N, ERF))® (@' C*(S xE, EXF)) and X the subset of elements
(f,g,u1,u2,us, uq) satisfying Q f = Pg. Then the map

X —C®MxN,EXF), (f,g,u1,us,us, ug) — u, (2.35)
which sends the Cauchy data to the unique solution u of (2.29), is linear continuous.
Proof. The map
»: C°(MxN,ERF)—Z
ur— (Pu, Qu,uly, =, Vulg, = Vouly, =, Vo Vil o)

is linear, injective and continuous. By Theorem 2.3.2, X < Z is a closed subspace, which is contained
in ran ®, and due to continuity of differential operators, the subspace ®~}(X) ¢ C*(M x N,EX F) is
also closed. Hence, we obtain a continuous and bijective map ®: ®~!(X) — X between Fréchet spaces,
whose inverse (2.35) is continuous by the open mapping theorem. ]

A similar argumentation as for Theorem 2.3.2 and Corollary 2.3.3 leads to

Theorem 2.3.5. Under the assumptions of Theorem 2.3.2 but P and () assumed to be first-order opera-
tors, the Cauchy problem

Pu =,
Qu =gy,
U|E><E = u1,

is well-posed with smooth solution u € C*(M x N, E X F'). Moreover, u is symmetric in the sense of
(2.34) if uy, f, g are in the sense of (2.33).
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2.3.3 Singular sections

We close this chapter by investigating the propagation of a family of singular solutions from a neighbor-
hood of a Cauchy hypersurface ¥ to the whole spacetime by applying the well-posed Cauchy problem
for singular sections, treated in [BTW2015]. Therefore, we just have to ensure the existence of the re-
striction to X by checking Hormander’s criterion.

Theorem 2.3.6. Let M be a globally hyperbolic Lorentzian manifold with a Cauchy hypersurface
Yc M, n: E — M a real or complex vector bundle over M and P: C*(M,E) — C*(M,E) a wave
operator. Furthermore, let O < M be relatively compact, and for p € O, let v(p) € (M, E, E})’
have spacelike compact support and only lightlike singular directions. Moreover, we assume
p — v(p)[p] € C*(M, E*) for fixed p € (M, E*). Then the Cauchy problem

Pu(p) =0,

u(p)’2 = U(p) Y
Vou)lg = Voo(p)ls,

has a unique solution u(p) € (M, E, E};)’, which has spacelike compact support and provides a smooth
section p — u(p)|y¢] for each ¢ € (M, E*).

Proof. Let t: M — R be a Cauchy time function on M such that ¥ = ¢71(0) (Theorem 1.3.13 of
[BGP2007]). Therefore, the normal directions of ¥ are timelike and do not match the singular direc-
tions of v, so v(p)|y,; and V,v(p)|,, are well-defined and compactly supported distributions on X for all p
due to Hérmander’s criterion ((8.2.3) of [H6r1990]).

Recall that any compactly supported distribution lies in some Sobolev space HY (see e.g. (31.6) of
[Tre1967]), and hence, v(p)|,, € H¥(S, E* ® E) and V,u(p)|,, € HF (3, Ef ® E) for some k € R. Thus,
for all p, Corollary 14 of [BTW2015] provides a unique solution

u(p) € CO.(t(M), H¥(S.); Bf ® E) n Ch(t(M), H* 1 (X.); EX @ E),

where this intersection is better known as the space of finite k-energy sections (see section 1.7 of
[BTW2015] for details about them). Moreover, the mapping of initial data to the solution is a linear
homeomorphism, so because the restriction v(p) — (v(p) o Vl,v(p)lz) is linear and continuous, so is
the map of distributions T" given by v(p) — u(p) for all p.

For D a differential operator, let (D 1yv)(p) denote the distribution ¢ — (D(v(-)[¢])) (p). It follows that
(D@yv) (p) is linearly and continuously mapped to (D(1yu)(p), that is, T commutes with Dy (see the
proof of Proposition A.1 in [FNW1981]). In particular, the map

p— (Dayw) (p)le] — (Dayu) (0)l¢] = (D()le]))(p),  ©we 2(M,E"),

is continuous due to smoothness of the first arrow. Since this holds for all differential operators D, we
obtain smoothness of p — u(p)[p] for fixed . O
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3 Symmetry of the Hadamard coefficients

"Symmetrie ist die Schonheit der Dummen.”

Let M be a Lorentzian manifold, 7: E — M a real or complex, finite-dimensional vector bundle over
M with non-degenerate inner product and P: C*(M,E) — C*(M, E) a formally self-adjoint wave
operator. Furthermore, (2 = M is assumed to be a non-empty and convex domain, which therefore is
time-orientable, and V denotes the P-compatible connection on FE, that is,

Viradfs = %(f -Ps—P(f-s)+0f-s), se C*(M,E), feC®(M). (3.1)

It follows that P = (Y + B for some unique endomorphism field Band OV = (tr ® idg) o V"M@ o v
the connection-d’Alembert operator (see section 1.5 of [BGP2007]). Then the Hadamard coefficients
U e C*(Q x Q, E* X E), k € Ny, for P are defined as the unique solutions of the transport equations

1 _
Vgradr, Uy — <2DFp —d+ 21<,-> Uy =2k-PUF, ke N, (3.2)
with Uy(p,p) = id B for all p € Q (Proposition 2.3.1 of [BGP2007]). I', denotes the squared Lorentz
distance from p, and U;f := Uk(p, -). In this chapter, we show symmetry of Uy, in the sense

Uk(p7 q) = GpUk(qap)t@q_17 p,q € Q7 ke NO- (33)

Recall the identification (2.4), meaning that Uy (p, ¢) is considered as a homomorphism E; — E; with
fiberwise transposed operator Uy (p, q)' € Hom(E,, E,,).

[Mor2000] already checked the scalar case £ = M x R and very recently, a proof for a vector bundle set-
ting and for arbitrary signature of M has been proposed in [Kam2019]. We restrict to Lorentz signature
and adopt Moretti’s approach insofar that we demonstrate (3.3) for analytic P and deduce the smooth
case by analytic approximation afterwards. However, for the proof in the analytic setting, we choose an
alternative approach employing symmetry properties of the advanced and retarded Green operator.

3.1 A link between even and odd dimensions
For p,q € Q, let ¢q(t) := exp, (¢ exp;,*(q)) denote the unique connecting geodesic, which provides a
map

o: [0,1] x 2 x Q@ — Q, (t,p,q) — dpq(t). (3.4)

Let M := M x R be equipped with the metric § := g + ds?, Q:=QxRand P := P — % on M.

Furthermore, over M, we consider the same vector bundle E with fibers E, ;) := E), for all (p,s) € M.

Lemma 3.1.1. For (p,s),(q,s') € Q the map (3.4) and the squared Lorentzian distance are given by

d)(p,s)(q,s’)(t) = (¢Pq(t)7 s+ t(sl - S))? f((p, 8)7 (q7 Sl)) = F(p, Q) - (S/ - 8)2'
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3 Symmetry of the Hadamard coefficients

Moreover, for f € C*(M) and X = (X, X%*1) e (M, TM), we obtain

~ ~ 0f 0 X d+1 . ~ 92f
gradgf = gradgf + 35 05’ dIVgX divg X + ——— EA Ogf =0yf — FIoR
Proof. The Christoffel symbols F of the Levi-Civita-connection on T'M vanish for i, j or k = d + 1, so
the geodesic equation separates 1nto the one on 2 and ¢(d+1( ,)( ) = 0 on R with boundary conditions

¢(Z;)1(q,s ,(0) = sand ¢, d+1 Y. (1) = 8" Thus, ¢, (g6 (t) = (¢pq(t), s+ t(s’ — s)), and consequently,

1 . .
L'((p,s),(¢,8")) = fo 3600100 0 (P05 (.5 ()5 (s, (1)) Al

1

1 . .
= fo Ipq(t) (¢pq(t): ¢pq(t)) dt — J (s — 3)2 dt =T'(p,q) — (s’ — 8)2.

0

From the local form g = (g ?) follows det g = det g, and therefore,

~ij af & _ ‘]/C\ (9 ~ af
S 1 0 ,
R 0 5 _
legX maﬂﬂ (X \/@)
= 1 i(XjM)+£(Xd+l\/M) d1VX+0Xd+1
\/m axj aS 9 as )
~ -~ N 2 ~
0, = ~div; grad, f = ~div, grad, f — ~ 2L~ g, f - ¢1. .

0s 0s

One can say that the Hadamard coefficients somehow measure the deviation of (M, g, E, P) from
(RY};,i- O), and indeed, "adding” (R, ds?, {0}, %) does not change them:

Proposition 3.1.2. Let ﬁk, U, denote the Hadamard coefficients associated to (]/\4\ , g, F, ]3) and
(M, g, E, P), respectively. Then, for all (p, s), (q,s’) € Q and k € Ny, we have

~

Uk ((pa 5)7 (Qa S/)) = Uk(p7 Q)

Proof. For V the ﬁ-compatible connection on E/, Lemma 3.1.1 provides

grad vgradg 7 +

<P

of < -
5* . Va%’ I:I;]F(W) = Dgl“p + 2.

Clearly, Uo (p,s;p,s) =1id gr =Uo (p, p) holds, and moreover, for all p € ), the transport equations

A~ g

Frk—1
vgradgf(p,s) U(p,s) 2]€PU

0= ps) )

1 ~
— (2D§P(p,s) —(d+1)+ 2/<:> U(

2k PUF L +2ka—U’“ !

. SN 1
k
= Virad, 1, U +2(5' = 5)V 2 Ub o — (Q(Dgrp +2) = (d+1) + 2k> Ulys) — (p.s) 252 (ps)

. 1 ~ - * -
. k k k—1 / rrk—1
= vgradngU(p,s) — <2|:|gfp—d+2k> U(p,s) _2kPU(p,s) +2(S _S)V(" U(ps) +2]€§ 2U( s)

are obviously solved by U}. O
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3.2 Analytic approximation

3.2 Analytic approximation

In the following, let P have analytic coefficients, and we deduce analyticity of (p, q) — Ui(p,q) on Q x Q
for all k£ € Ny. As the coefficient of the highest order of P, also the metric g is assumed to be analytic,
so the Levi-Civita connection on 7'M and the P-compatible connection V on E are analytic as well, that
is, the corresponding Christoffel symbols are. Due to basic ODE-theory, the geodesic equation ensures
analyticity of (¢,£,p) — exp,(t§) on the domain of existence, and furthermore, (p,q) — exp, L(q) is
analytic by the analytic inverse function theorem (Theorem 1.4.3 of [KP1992]). This provides analyticity
of (t,p,q) — ¢pe(t) = exp,, (texp,'(q)), the Lorentzian distance (p, q) — I'(p,q) = g,(exp,*(¢)) and the

distortion function (p, q) — u(p,q) := ‘det (dexpp |expgl(q)) ‘

Lemma 3.2.1. The V-parallel transport along ¢, is analytic as a map

0,1]xQ2xQ— E*RE,  (t,p,q) — T,

Gpalt)” (35)

Proof. Letp € Q2 be fixed and we identify Hom(E(’;pq )’ E;;) ~ Hom (Ep, Ey . (t)). For any e € E,, the map
sp(t,q) = Hf;pq( 0e defines a parallel section ¢p,(t) — s,(t,q) in E along ¢,, for all g € €2, and therefore,
it satisfies s,(0, ¢) = e and the following system of ODE’s

B(t,q) = —T0, (dpa(1)) dy(t) s3(L,q). (3.6)

v

"

The columns of the corresponding fundamental matrix ®,(t, ¢) are given by rk(£) linearly independent
solutions of (3.6). Thus, we have ®,(t, q) = A,(t,q)®,(t,q) and the solution of (3.6) takes the form

Sp(t>Q) = ‘I)p(t7Q)q)p(0>Q)_13p(07Q)a
From the definition of s,, we read off ngq( = Q,(t,q)P,(0, q)~!, and hence, the map

s * [ p
0,1]xQ—>E®E,  (tg—1I .

is analytic, since (, q) — A,(t, q) and therefore (¢, q) — ®,(t, q) is. Moreover, from I} = (H‘?)_1 follows

B, (1,7)@,(0,7) 7" = (@,(1,p)®,(0,p) ) " = &,(0,p)®,(1,p) ",

and hence, p — II} is analytic for each 7 € Q. By Osgood’s Lemma [Osg1898], a map is analytic if it is
with respect to each argument, which implies analyticity of (3.5). O

Proposition 3.2.2. The map (p, q) — Ui(p, q) is analytic on Q2 x Q for all k € Ny.
Proof. Analyticity of the zeroth Hadamard coefficient can be directly read off from

(p,q) — Uo(p,q) = \/%,

and we proceed via induction. By analyticity of P, clearly (p,q) — Po)Us—1(p, pq(t)) is analytic if

(p,q) — Uk_1(p,q) is. Similarly, (¢,p,q) — Uo(p, gbpq(t))_l = A/ 1(p, dpqg(t)) ~Hf;pq(t) is analytic as a
composition of analytic maps (recall that y is positive). Therefore, the integrand of

1
Uk(pa Q) = —ka(p, Q) fo ¢t Uo (p, ¢pq(t))7lp(2)Uk—l (p7 ¢pq(t)) dt
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is analytic in (p, ¢) and uniformly continuous in ¢ on [0, 1]. Hence, taking the power series expression of
the integrand, the sum and the integral can be swapped, which results in a uniformly converging power
series for Uj,. O

Now we tackle the general case of smooth P by analytic approximation of the coefficients. This requires
the following crucial result:

Proposition 3.2.3 (Proposition 2.1 of [Mor1999]). Let M be a real, smooth and connected manifold with
non-singular metric g.

(a) For any local chart (z,V) of M and any relatively compact domain O with O < V, there is a
sequence {g" }nen of real and analytic (with respect to x) metrics with the same signature as g,
which are defined on some neighborhood of O such that g" — g in C®, that is, all derivatives of
g™ converge uniformly on O:

Vi, j=1,....,D, aeNP. max ‘(Do‘(g" ox ™)) (v) — (D*(g o x*l)ij)(v)( 0.
vex(O

(b) For any (x,V),0,{g" }nen as in (a) and additionally any z € O, there is an ng € N and a family
{N:i}icr of open neighborhoods of z such that N: = N, < O for any j > i, and {N:}cr is a
local base of the topology of M. Moreover, for all i € R, both N} and N, are common convex
neighborhoods of z for all metrics {g" }n>n, and g.

Proposition 3.2.4. Let O <  be relatively compact and {¢" },en a sequence of real and analytic metrics
defined in a neighborhood of O with the same signature as g such that O and O are convex with respect
toall g", n € N, and g and g" — g in C*. For {U]'},,en the corresponding Hadamard coefficients, we
obtain U}}(p,q) — Uk(p,q) forall k € Ny and p, q € O.

Proof. The assumption directly provides FZ" — Ffj, and with regard to the geodesic equation with

converging right hand side, we similarly obtain exp™ — exp as smooth maps (t, &, p) — exp,,(t£) on their
domain of existence. Then, the inverse function theorem provides convergence of (exp™ ) 1 expt
as smooth maps on O x O and, as a consequence, of the Lorentzian distance I'" — I" and the distortion
function " — p. Eventually, we have ¢ — ¢ for the connecting geodesic (3.4).
It remains to investigate the parallel transport. For all p € O, convergence of FZ" and ¢" leads to
A;‘ — A, for the matrices defined in (3.6), and hence,
b} _1 —1

HZ;Z@) = q)Z(ta q)‘bZ(O, q " — (I)p(t’Q)q)p(Oa q) " = Hg,pq(t)
as smooth maps [0,1] x O — E¥ ® E. Thus, we can directly conclude convergence of the zeroth Hada-
mard coefficient

HP:” HP

’ iy

as smooth maps O — E} ® E and, in particular, Ug'(p, q) — Uo(p, ¢) in Hom(Ey, E}).

We proceed inductively. Due to ¢, — ¢, in C*([0,1],0), (3.7) implies U (p, -) o ¢y, = Uo(p, -) © ¢pq in
c® ([O, 1, E; ® E) and consequently, PU (p, -) o ¢, — PUo(p, -) © ¢pq. Therefore, the integrand in the
expression of the first Hadamard coefficient

1

UL (p.q) = —kUZ(p. ) jo U2 (0,80 (8)) ™ Py UG (p. 60 (1)) it
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3.3 Proof of the symmetry

converges to the one in the expression of Uj(p, ¢), and as a smooth function in ¢, it is integrable on the
compact interval [0, 1]. Hence, due to majorized convergence, the integral converges as well, so we have

1

1
—kUg (p, Q)JO U (p, ¢ (1))~ PiayUgt (p, ¢ (1)) dt — —kUs (p, q)f0 Uo (P, 6pa(t)) ™ Py Uo (p, dpa (1))

which is Uy (p, ¢). Recursively, this implies U}'(p, q) — Uk(p,q) forall k e Nand p,q € O. O

3.3 Proof of the symmetry

Let Vi € C*(Q x Q, EX E*), k € Ny, denote the Hadamard coefficients associated to (M, g, E*, P!),
which, due to formal self-adjointness of P, are closely related to U:

Lemma 3.3.1. The Hadamard coefficients of P and P! are related via

Vi(p,q) = ©, ' U(p,9)0g,  p,q€ .
Proof. For all p € €, this clearly holds for the initial condition
Vo(p,p) = idg, = ©,'idgx0, = ©, ' Up(p,p)Op.

Formal self-adjointness of P implies P! = OPO~ !, so with regard to (3.1), the P*-compatible connection
V' is given by ©VO~!. Therefore, we just have to check that ©,'Uy(p, q)O, satisfies the transport
equations (3.2) induced by P! and V. Setting M,, := (10I'(p, ) — d + 2k), we indeed obtain

to-lyrk—1 —1prrk—1 -1 k k t 177k
2% P'O, UL 10 = 260, PUL 10 = 0, (Vygraa 1, Up — My - UF) © = (Vipoa 1, — M,)0, UL,
which proves the claim. O
For p € Q, let y, := |det(dexp,) o exp, 1: @ — R and {R%}.ec denote the Riesz distributions.
According to section 1.4 of [BGP2007], we define
R(a,p)le] == RY[(mpp) o exp, |, @€ 2(Q), (3.8)

a—d
which ensures the identification RY (v, p C(a,d)-T'p? for Re (a) > d. Due to Proposition 2.4.6

”Jfg ® ~
of [BGP2007], they comprise Hadamard series, which yield advanced and retarded parametrices %+ (p)
for P at each p € O on any relatively compact domain O = Q. More precisely, for any integer N > 4 and
cut-off function o € Z((—1,1), [0, 1]) with U’[,; =1 there is a sequence {e; }x>n < (0, 1] such that
272
~ Ug, k < N,

0
He(p) = Y, U(p,) REC2k +2,p), Uy :=
2 : (0oL) on, =N,

€k

(3.9)

represent well-defined distributions and satisfy (p, q) — (P@i (p) — &) (q) € C*(Q x Q, E* K E). Fur-
thermore, we have p — Z4(p)[p] € C* (0, E*) for fixed p € 2(0, E*), so regarded as bidistributions
and due to compactness of O, they provide continuous operators

Gi: 2(0,E*) - C*(0,E*), ¢— (p—Z:(p)[0]). (3.10)
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3 Symmetry of the Hadamard coefficients

Consequently, G+ yield left parametrices for P* with supp G+¢ c J? (supp ¢), and for G+ the advanced
and retarded Green operator for P?, we have:

Lemma 3.3.2. The operators G+ — G+ are smoothing.

Proof. This directly follows by realizing that the last equation in the proof of Proposition 2.5.1 of
[BGP2007] actually yields a smooth section, since the integral representing the C*-term corresponds
to a smoothing operator applied to a C*-section. Due to (3.8) in [BGP2007] and (3.10), this represents
the Schwartz kernel of G4 — éi. O

Therefore, G- actually represent an advanced and a retarded parametrix for P* in the sense of (1.11).

Proposition 3.3.3. For all convex and relatively compact O c (2, the maps

(p,q) — D, ((ﬁk(n ) = Vi(,p)") RE (2K + 2,p)> (9) (3.11)
k=0

define smooth sections in E* X E over O x O.

Proof. By Lemma 3.4.4 of [BGP2007], the advanced and retarded Green operators for P are given by

G, so formal self-adjointness of P and uniqueness of G+ lead to G = ©GLO!. Hence, Lemma 3.3.2

shows that the operators G — @C:’f—k@*l are smoothing:

Gy —0GLO ' =0 Gy —0(Gs —G3)'07L
—— ——

smoothing smoothing

By recalling the relation between the Schwartz kernel of an operator and its transpose

Gllp.v] = GLolp] = Giplv] = Gilv, 9], v e 2(0,E), g€ 2(0,E),

we just have to show that the Schwartz kernel of C:“Z_r is given by the distribution
~ w ~
Gl(p) = ). 6,'Vi(-,p)'® RE(2j + 2,p).
k=0
Indeed, Lemma 1.4.3 of [BGP2007] and Lemma 3.3.1 imply

Gl ] = Glv, o] = D jo RE(2k +2,p)[ (Uk(p, )¢) (¥(p)] dV (p)
k=0

> L RE(2k + 2,p)[0p%(p) (0, ' Uk(p, -)¢) ] dV (p)
k=0

RE(2k + 2,p)[0%(0) (Vi (p, VO ) | dV (p)

I
s
Q 4

Eo
I
=]

RE(2k +2,9)[0¢(Vi(-,9)O; ¢ (q)) ] dV (p)

bl
Il
=

I
s
Q ?

R

HD

2k + 2, 0)[ (Vii(, 0)'O) (8, ¢(q)) | dV (a),

Il
T8
Q ?

which reveals the desired equality. O
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3.3 Proof of the symmetry

Lemma 3.3.4. Letk € Ny and assume that for all quadruples (M, g, E, P) as introduced in the beginning
of the chapter with odd spacetime dimension and all lightlike related p, q € O, we have

Ur(p,q) = Vi(g,p)".
Then this equality holds for all p,q €  and all (M, g, E, P).

Proof. Consider the setting (M, g, E, P) with odd spacetime dimension d. Let p, ¢ be causally related,
ie. I'(p,q) = 0, and choose a,a’ € R? such that |a — a'|* = T(p, ¢). It follows that I'((p, a), (¢,a’)) = 0, so
(p,a), (¢, a’) are lightlike related in (M x R?, g + gguc ), which results in

A~

Uk((pu CL), <Q7 a/)) = ‘/}k((pv CL), (Q7 a’/))t

by assumption. Therefore, Proposition 3.1.2 provides Ux(p, q) = Vi(q,p)".

Let {g"}nen be an analytic approximation of g and U}, V;"* the corresponding Hadamard coefficients.
Write D (p, q) := U(p,q) — V*(¢, p)", which depends analytically on p, ¢ due to Proposition 3.2.2 and
vanishes on I'"!(Rx¢), so the identity theorem for analytic maps implies D} = 0 on all of O x O.
Furthermore, by Proposition 3.2.4, we have D} (p,q) — Dy (p,q) and therefore D;(p,q) = 0 for all p, q,
which proves the claim in the case of odd spacetime dimension.

The claim for even-dimensional settings (M, g, E, P) can be deduced from (M xR, g+ ds®, E, P — %),
which is odd-dimensional, and Proposition 3.1.2.

Since this works for any relatively compact and convex domain O < 2, by uniqueness of the Hadamard
coefficients, an appropriate exhaustion of €2 by such subsets proves the claim on all of Q2 x €. O

Lemma 3.3.5. Let X be a smooth manifold, T € 2(X)" and f € C*(X). Then

f-TeC?X) =— 0.

f’singsuppT -

Proof. Let x € singsupp T and assume f(z) # 0. Then there is a neighborhood N, of z such that
f’Nx # 0 and therefore % e C*(N;). Thus, by smoothness of f - T, we have % - f-T =T ¢e C®(Ny),
which contradicts = € sing supp 7. O

Theorem 3.3.6. Let M be a Lorentzian manifold of dimension d, m: E — M a real or complex vector
bundle over M with non-degenerate inner product, P: C* (M, E) — C*(M, E) a formally self-adjoint
wave operator and ) — M a convex domain. Then the Hadamard coefficients U, € C* (2 x Q, E* X E)
are symmetric in the sense

Uk(p,q) = OpUk(q,p)'©, ", p,qeQ, keNo. (3.12)
Proof. Let d be odd. For all k, j € Ny with j < k, Lemma 1.4.2 (1) of [BGP2007] provides the recursion

C(2k +2,d)

R(2%k +2.p) = JWER+2,d)
sk +20) = G 2.4)
—_—

I'(p,)* 7 RE(25 +2,p), (3.13)
:ZKk,j,d

with K, j 4 € R\{0} due to (2.12), so (3.11) can be rewritten into

~

Rsiz(2ap) Z Kk,(),d(ﬁk(p7 ) - Vk(-,p)t)F(p, )k
k=0
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3 Symmetry of the Hadamard coefficients

The proof of Lemma 2.4.2 in [BGP2007] shows that

o0
(p.q) — Y Kro.a(Uk(p, 9) — Vil(a,p))T(p,9)" € C*(O x O, E* K E).
k=0

Furthermore, we have sing supp R¢ = C4 for all a € C, and thus, sing supp R («,p) = C¢(p) by (3.8).
Hence, for lightlike separated p, g, Lemma 3.3.5 implies

Z (T;(p.q) = Vi(a,)")T(p,0)* = Uo(p, q) — Vo(q,p)"

since o (F(pkq)) = ¢(0) = 1, that is Uy(p, q) = Uo(p, q) and Vy(p,q) = Vo(p,q). It follows from Lemma
3.3.4 that for k = 0, (3.12) is true also for even d and on all of 2 x €.

Now let d again be odd, and for some ko € N, assume (3.12) to hold for all £ = 0,...,kp — 1, i.e. the
smooth section (3.11) is given by

0 0
Z (Uk(p7 ) - Vk(»l’?)t)RSJ_Z(Z]‘f + 2ap) = Rg(QkO + 2ap) Z Kk’,k’o,d(Uk(pa ) - Vk’(ap)t)l—‘(pv ‘)k—k’o'
k=ko k=ko

Analogously, we obtain
(D ~ ~
0= Kioa(Uk(p,a) = Vilg,p)") T (0, 0)* " = Upy(p, @) = Vi (¢,p)"
k=ko
if I'(p, q) = 0, so again applying Lemma 3.3.4 completes the proof by induction. O

Note that the induction would have been more elaborate for even d since K4 jd = 0, which is circum-
27 K
vented by using Proposition 3.1.2.
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4 The Prototype

"The universe is basically an animal. It grazes on the
ordinary. It creates infinite idiots just to eat them.”

In this chapter, we begin with the actual construction. Recall that (1.9) is a local condition and, moreover,
that the singularity structure of a bisolution is related to the corresponding differential operator es-
sentially via its principal symbol. On these grounds, we start with the prototype setting P = [ on
M = RY. . d > 3, since, from the viewpoint of the singularity structure of the solutions, this already
incorporates the characteristic properties of the solutions for the general setting of wave operators on
curved spacetimes.

From Wightman’s axioms, we deduce explicitely and in a rigorous manner solutions W of d’Alembert’s
equation. This can be directly done by employing Fourier transformation, but with regard to the sub-
sequent local construction on curved spacetimes, we derive a local formulation instead. We introduce
the distinguished fundamental solutions und identify them with R% and S, leading to the decompo-
sition W = (54 — S_ + R%2 — R%), from which we will read off explicitly the Hadamard form that
motivated the definition given in [KW1991]. This decomposition and the corresponding identifications
constitute the cornerstone of the upcoming construction in the general case.

4.1 Wightman’s solution

Following Wightman’s axiomatic framework on Minkowski space, a quantum field theory is regarded
as a quadruple (7, U, ®, D), consisting of a Hilbert space (%, (-, -)) with dense subspace D, a strongly
continuous unitary representation U of the proper orthochronous Poincaré group PJTF on s and a
tempered distribution ® on R? with values in the self-adjoint operators on .# such that Wightman's
axioms are satisfied (see section IX.8 of [RS1975]). In particular, for all ¢ € .7 (R%), we assume that
ran (®[¢]) © D < dom (®[¢]) and the existence of a unique U-invariant unit vector hg € ., which is
cyclic with respect to {®[¢]},. Furthermore, we demand U-invariance of ¢ — ®[¢] and D, that is,

U(av A)D c D, U((I, A)(D[QO]U((% A)il = q)[T(a,A)@]v pE y(Rd)’
for all (a,A) € PL and T(, p)¢(z) := ¢(A~ (z — a)), x € R%. The one-point-function then corresponds to
the distribution W1 [p] := (<I>[g0] ho, hg)jf, which is constant due to translation invariance of hg. Repla-

cing ® by ®'[¢] := ®[¢] — Wi § ¢ - id» shows that, without loss of generality, we can restrict ourselves
to the case W; = 0. However, the two-point-function is given by the bidistribution

Wy y(Rd) X y(Rd) - (Cv (901, 902) — ((I)[(pl](I)[SOQ]hOv hO)j{ﬂ (41)
which is Pl -invariant in the sense

Wale1, p2] = Wa [ Tia n)01, Ta,n)92] (a,A) e PL, 1,906 S (RY).
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4 The Prototype

Hence, by translation-invariance, W5 is completely determined by some £L—invariant distribution W
via

Walp1, @2] = J]Rd p1(z) - W([T, —1)p]dz (4.2)

for all o1, 2 € .7(R?) (see p. 66 of [RS1975]). Since Wightman’s axiomatic framework does not encode
dynamics, we additionally demand W> to be a bisolution. This results in LW = 0 and we derive a local
expression of the solution roughly following the lines of chapter 5 of [Ste2000]. We introduce the Fourier
transformation as follows

~ 1

1&) = gz )., (2)e " dz,  £eR? (4.3)

which corresponds to the traditional Fourier transformation in space and the inverse transformation in
time. Therefore, all important properties remain valid and in addition, El-invariance is preserved. In
particular, (4.3) yields a homeomorphism .7 (R?) — .#(R%) with inverse map

~ 1

[(@) = Gyam |, JOFE7de, aeR,

and thus admits a continuous extension .7 (R?) — .7 (R?)’. It is for that reason that we only considered
tempered distributions @, a restriction, which will be insignificient, eventually, since we pursue a local
formulation of W not involving any Fourier transformation.

Proposition 4.1.1. Let W be given by (4.2) and satisfy JW = 0. Then Wisa multiple of dQJ (2.10).

Proof. OW = 0 directly leads to supp W < C, since y(0) = C and
0=0OWlel =W[Ogl = Wiy -3, pes R,

Moreover, the spectral condition (Property 2 in section IX.8 of [RS1975]), which is the Wightman ax-
iom corresponding to the Hadamard condition, and Theorem IX.32 of [RS1975] lead to the constraint
supp W < C. Furthermore, we consider a Hermitian theory, that is ®[%]| p = @lp]*

D’ SO

W [+ Rp| = JRd p(x) - W[l — ) |de = Walp, ] = [@[elho|?, =0,

where Ry(x) := ¢(—z). Therefore, W is a distribution of positive type, and hence, W is a measure
due to Theorem IX.10 of [RS$1975]. By Corollary 2.2.3, it has to be of the form a d€2} + bdy. Recall that
(®[p]ho, ho) o =0forallpe (R%), so the claim follows from Theorem IX.34 of [RS$1975]. O

It follows that W = a d(vlar and we proceed by reformulating this in an entirely local manner. In consi-
deration of the eventual extraction of fundamental solutions from W, we choose a := (27) ¥, ie.

W= (2r)72" - A (4.4)
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4.2 Local expression for Wightman’s solution

4.2 Local expression for Wightman’s solution

For (-,-) the bilinear extension of the Minkowski product to C? and T := {z € C?|Im (z) € I, } the
complex forward and backward tube, we define

7 . -
Ai : Ti —_— (C, Z iW fo ez<<z,p>> an'_ (p) (45)
F

Note that the integral always exists since for all z” = (z{,2") := Im (z) € I+ and p = (po,p) € C¢, we

have
o) =zl - Ipol + 2"y = |2"] - 1Bl + (2", D) = 0
due to the Cauchy-Schwarz inequality, and equality holds if and only if p = 0.

Lemma 4.2.1. The functions (4.5) are holomorphic and El-invariant, and they fulfill
AT (2) = —AF(—2), zeTy.

Proof. e~€Im(2)P) ensures the existence of the integral and, in particular, that all complex derivatives
exist:

<
6zk

i ; iz F
A*(2) = iW JC ipre’ P2 dOF (p).
F

This already demonstrates holomorphicity and the other claims follow by direct calculation:

A*(Az) = L =A7) 40F (p) = £ —— JA . () 40T (Ap) — A (2),
- -1

(2m)d—1 (2m)d—1 )
i i—z,— F i i~z F
A*(z) = + T L 2P dOf (p) = + Gy T L ¢ THP) dOF (p) = AT (—2),
+ L
forall Ae £! and z e Ty O

Corollary 4.2.2. Let e; denote the future-directed unit vector in time direction. Then, for all z € T'y, we
find z € R* and ¢ > 0 such that

AT (2) = AT (x +icep).
Proof. £} -invariance yields A% (z) = A% (3) if y(2) = 7(2). Let 2 := 2/ + i2" € Ty, thatis, 2’ € R? and

2" € I. Due to the transitive action of LL on H* (2.5), the choice ¢ := v(z") > 0 ensures the existence
of some A € El such that Az” = teey. Choosing = := A2/, we have = + icep € Ty and

v(z ticeg) = v(z) —7(Feeo) —2i (A2, teeg ) = v(2') — (") — 2i {7, 2") = 7(2). O
(AZ)  =y(A2) =N A2

Hence, for all € > 0, we are left with analytic functions
AF R? — C, z— AT(z + icep). (4.6)
Proposition 4.2.3. The limits — 0 of (4.6) exists in . (R?)’ and we have

W =ilimA_. (4.7)
e—0
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4 The Prototype

Proof. For all ¢ € . (R%), dominated convergence provides

e—0 e—0

1 ) . _
hm ZA;_F [QD] = $W hm JRd jc SO(J:) . el<<-73i15601p>> dQS’ (p) dfl:
¥

= F2m) 7 lim | @p)e W dOF () = F(2m) 2" dOF[],
E—> C:

and hence 7 hH(l) A7 = (27T)2%d dSvla’ =W. O
E—>
Therefore, we found a formulation of W as the distributional limit of analytic functions

1 . A
=il - I iz —ieeo,p) 3O+
W (x) z?_}mo A7 (z) G ;Lmo . e dQg (p),

so for a local formulation, we need to evaluate the integral. Due to El-invariance, Ai(z) depend on
z € Ty only via vy(z). Furthermore,

z=72 +i €Ty = v(2) = v(2') —v(z") — 2i {7, 2" ) € C\Rxy, (4.8)

since y(z"”) > 0, and moreover, (z’,z") = 0 implies v(z’) < 0 due to the inverse Cauchy-Schwarz-
inequality on I (chapter 5, Proposition 30 of [O'Ne1983]). It follows that 4/v(z) € C\R and thus, the
square root yields a map o: T+ — {£Im > 0} = C, i.e. 0(2)? = ~(z) and the branch chosen such that
+Im(o(z)) > 0 for z € T. Hence, o(2)eg € T+ and v(z) = v(o(z)eg), so similarly to Corollary 4.2.2, we
obtain

A*(z) = A* (o(2)eo), zeTy. 4.9)

In particular, z = x + iceq leads to the expression
o(x +iceg) = sgn(zo)r/72 (2), vE(x) := y(x +iceg) = y(x) — 2 + 2iexy. (4.10)
Proposition 4.2.4. The distributions A* := lim AT are given by
im (—AF) 7. (4.11)
Proof. (4.9) and (4.10) provide
M%) = &% (sgnlaiy @) e )

so the integrals (4.5) can be calculated explicitely. Since pg = +|p| for p € C+, (2.10) implies

; - _ ; e dp
AL (2) = n 7 j e—w(wizseo)po doF p) =+ ? j eiw(acizseo)HpH X
=t T 2]
= d—2 o ) ) - _
— i% J eiza(mizseo)p . pd—g dp . d_lz ) F(d 2) —
2-(2m) 0 (4m) 2 I (452E) (Fio(z + icep))
and hence, the claim follows from Fio(z + iceg) = v/—7: (z) and I' (452) ' (452) = ngf(d -2). 0O
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4.3 Advanced and retarded fundamental solution

In particular, away from the light cone, A™ is represented by the functions

(“2%)
=

i
Ai(x) =t
i - ()|

{ (Fi- sgn(a:o))Q_d, rel, @12)

1, T ¢ J,

Remark 4.2.5. For d = 4, note that A~ satisties or rather motivates the Hadamard condition given in
[KW1991]. Furthermore, instead of ey, we could have chosen any other future-directed timelike vector
and A* would not depend on that choice. Unlike in [KW1991], there is no logarithmic contribution in
our prototype setting. However, a term log(—vX) appears already in the slightly more general case of
the Klein-Gordon operator (1 + M?, M > 0.

Recall that the Fourier transform of A* (4.4) is essentially given by the §-measure along C., so it is
constant in all lightlike and rapidly decreasing in all other directions. Hence, we obtain

WE(A*) = {(2,6) eRT x R | ¢ € O, = =)E, AeR}. (4.13)

4.3 Advanced and retarded fundamental solution

We proceed by extracting the advanced and retarded as well as the Feynman and anti-Feynman funda-
mental solution for [J in the sense of (1.11) from W and demonstrate coincidence with the expressions
R3Sy derived in section 2.2. The antisymmetric part of the two-point-function (4.1) represents the ex-
pectation value of the commutator of the field in two spacetime regions supp ¢1, supp 2, and hence, it
is supposed to vanish if these regions are non-causally related. Therefore, the following bidistribution
is occasionally referred to as the causal propagator:

A [@1, ()02 =1 <h07 [ ] (I)[(pQ]]h0>jf =—i (WQ[QPh 302] - WQ[@% ()01]> y P1,92,€ -@(Rd> (414)

Similar to (4.2) and due to translation invariance, A§ is determined by some distribution A® via

Alereal = =i | (pr@Wleale = ) = Wlga(whpa(o = ) da

_ f p1(@) (Wlepa(x — )] — Wlea(e + )] ) da
R ~—
=(RW)[p2(z—")]

: f o1(2) Aol — )] da,
Rd

where Rp(r) := p(—z), and thus A® = —i(W — RW).

Proposition 4.3.1. We have A® = A~ + A" and supp A® < J. Furthermore, supp A® < C for d even,
and otherwise

AC(z) = +(-1)F (dT)d vely.
2ms y(2) T
Proof. Lemma 4.2.1 and (4.7) imply W = iA~ = —iRA™, and hence
A% = —i(iA” +iAT) = A7 + AT (4.15)
The rest now follows directly from (4.12). O
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4 The Prototype

Therefore, A” vanishes for all non-zero spacelike vectors, which confirms the expected causality pro-
perty of (4.14).

Proposition 4.3.2. Let H, denote the step function with respect to the time coordinate. Then —Hy - A®
is a well-defined distribution and yields a fundamental solution for [J.

Proof. Since
sing supp AY n singsupp Hy = C n {zg = 0} = {0} # &,
we have to check the wave front sets for Hormander’s criterion (Theorem 8.2.10 of [H6r1990]). (4.13)
implies
WF (AY) < {(z,€)[€€C, 2 =X-& AeR},
and due to Hy = H ® 1ga—1, where H the step function at 0 on R, Theorem 8.2.9 of [H6r1990] provides

WE(Ho) = WE(H) x (R x {0}) = {(z,€) e RT x RA{0} |2 = (0, ), € = (60,0)}.
(0} xR\(0)
It follows that the singular directions of H are timelike, whereas those of AC are lightlike, so Hor-

mander’s criterion is satisfied and hence, Hy - A€ exists as a distribution.
It remains to show O (Hy - AY) = —§, and we start by proving JAF = 0 for all ¢ > 0. From (4.8)

2—d
follows that (z + iceg) # 0 forallz € R, soz — (—~Z(z)) 2 is smooth and we can directly calculate

d—2

2—d _d
3(-)% =0 (- o)

s d—2 _
= (=08)" 7 - (00F) + =5 (=0F) - e

Since dpvF (z) = 2(wo + ie) and 9;vF (x) = 2z; for j # 0, we obtain

2—d o d(d - 2) + d+2 d 2
4

and hence, JAZ = 0. Therefore, AY := At + A7 is a solution for every ¢ > 0 such that for all p € Z(R?),
integration by parts yields

O (Ho - A%)[] = lim Ho[AL - O]

o0
= lim f f AC(t, &) - Oe(t, &) di dt
Rd 1

e—0 0

C
— Tim (aﬁf (0,2) - (0, 2) — AC(0,2) aaf(o,x)> ds.

d
The second integrand vanishes, since (—7F(0,2)) = = (|&]? + ¢ 2%3% and thus AC(0, %) = 0 by (4.11)
and (4.15). For the first term

OAZT d=2 2—d A T (4
ate (07£) -+ d( 2 ) ( 2 )g (_ (90’)/3)(0,$) - y € (2) v
dmt (= F00) g 2wl )
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4.4 Feynman and anti-Feynman fundamental solution

results in
oNC B el (%)
ot W% (Hxﬂz + 62)%

The substitution & =: 3 provides

d 5 d -
HO[AgC X DQO] — _EF ((12) J QD(O,.T) dz = _F (dQ) . J @(075y) d:l),
mE TR (a2 + ) R (1LY

vl

so we can take the limit € — 0 and finally obtain

c r(3) a2y [T
O(Ho - A)[¢] = — 7 (0) -vol(5477%) f —— dr = —¢(0). O
T2 T 0 (T2 +1)2
2m 2 ~ g o

r(F) ()

2r(4)

This provides the late motivation for the choice of the prefactor in (4.4) and furthermore, the advanced

Nl

and retarded fundamental solution for [ in the sense of (1.11) are given by
At = (1—Hy) A  AR.— —H,. A°.

Hence, the support properties supp A < T_, supp Af* = J; and Proposition 2.2.4 reveal the Riesz
distributions R3 as distinguished fundamental solutions:

A4 = R?, AR = R2.

Furthermore, we directly obtain that (A4 — AF) represents the antisymmetric part of W'

4.4 Feynman and anti-Feynman fundamental solution

It remains to investigate the symmetric part of W. Recalling (1.12), the Feynman and anti-Feynman
fundamental solution AF', A% can be extracted via

AF —iW + A= (1—Hy)- AT —Hy- A,
(4.16)
A = W+ AR = (1—-Hy) - A~ — Hy- AT,
which leads to the identities

W= S (A — AT 4 A% - AT, AF £ A = AL AR, (4.17)
We close the discussion of the prototype by showing that (4.16) correspond to the symmetric funda-
mental solutions S+ derived in paragraph 2.2.3.
Proposition 4.4.1. For Sy given by (2.25), we have A" = S_ and A*f" = S,
Proof. For x ¢ C, (4.12) yields

i (4=2 2, rel,
AF(z) = (1= Ho(x)) - A*(z) — Ho(x) - A™(z) = ;(—Q)H ' { )
4r% ()

l\')‘\
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4 The Prototype

since (1 — Ho(z))(— sgn(xo))Q_d = i?74(1 — Hy(x)) and Ho(z)(i sgn(xo))2_d =2~ Hy(z). Similarly,

aF _ N il (42) (—i)>1, zel,
A (x) = (1= Ho(x)) - A~ (2) — Ho(x) - AT (2) = ——5——"—"55 -
4r2 - |y(x)| 2 1, x € JC,
and, on the other hand, outside of C (2.25) becomes
il (452 (F)*79,  zel,
Si(x) =F— ( 2 )d72 )
dmz |’7(‘T)|T 1, x e J,

Altogether, we obtain symmetric and £Ir—invariant solutions A" — S AT — S_ with support on the
light cone. Moreover, they are homogeneous of degree 2 — d as can be deduced directly from (2.26) and
(4.11). Consequently, these differences vanish by Corollary 2.2.7 and the claimed equality holds. O

From (4.17), we deduce the following final result of this chapter:

Theorem 4.4.2. For Wightman’s solution W and the distinguished fundamental solutions Sy, R3 for [J,
the following identities hold:

W =-(S: —S_+R2 - R?%), Sy +S_=R2+R%

N | =
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5 Local Hadamard bisolutions

"Den Raum nehmen wir doch mit unseren Organen
wahr, mit dem Gesichtssinn und dem Tastsinn. Schon.
Aber welches ist denn unser Zeitorgan?”

We proceed with the local construction of Hadamard bidistributions for general wave operators on
curved spacetimes. Therefore, let M be a time-oriented Lorentzian manifold of dimensiond > 3, 7: E —
M a real or complex vector bundle over M and P: C* (M, E) — C*(M, E) a wave operator. Inspired
by the local construction of the advanced and retarded parametrices G+ (3.10) for P in [Giin1988] and
[BGP2007], we introduce families of distributions similar to the Riesz distributions (2.12) but containing
S+ instead. After setting up a formal Hadamard series, some well-known procedure ([Fri1975, Giin1988,
BGP2007]) locally produces left parametrices 2, for P'. For E equipped with a non-degenerate inner
product and P formally self-adjoint, they are right parametrices as well. We show that £ (Z ~Z +G,—
G _) is of Hadamard form with antisymmetric part given by % (é -G _) and hence, .,é’zr represents anti-
Feynman and Feynman parametrices for P! in the sense of (1.11). Finally, assuming M to be globally
hyperbolic, we derive bisolutions of Hadamard form on suitably small domains.

As usual when working with wave equations, the qualitative behaviour of the solutions depends on
whether the spacetime dimension d is even or odd. Thus, for notational convenience, we introduce the
even numbers

[d} d+1, d odd
Kg:=2-|=| = .
2 d, d even

5.1 Families of Riesz-like distributions on Minkowski space

Let (7 £i0)* denote the distributions derived in section 2.2.3 on d-dimensional Minkowski space, which
are holomorphic in a on {Re > —£} by Proposition 2.2.8. For Re () > 0, we introduce the distributions

2

l\')‘\
19

19 = Clayd)- (r £i0)°,  Clayd)im ——

- . (5.1)
- L(5)T (7% +1)

As a product of holomorphic functions, o — C(a,d) is holomorphic on all of C, and moreover, the
following recursion holds

C(a,d)

ala+2—4d) (5:2)

Cla+2,d) =
Then (2.25) implies (JL{™ = L and hence holomorphic extensions to all of C via LY := OOFL{2
with k chosen such that Re («) + 2k > 0. These extensions are independent of & by the identity theorem,
and we note that the zeros of T’ (%)71 compensate the poles of (7 + i0)“z", that is, T (%)71 (v +i0)°z"
are holomorphic in a. Despite the strong resemblance of (5.1) with the Riesz distributions (2.12), a
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5 Local Hadamard bisolutions

fundamental discrepancy consists of the missing support restriction. Moreover, the L yield symmetric
distributions for all &.On the other hand, with regard to Lemma 1.2.4 of [BGP2007], the relations between
the elements L are quite similar:

Proposition 5.1.1. For all « € C, we have
(1) 7- L3 = ala—d+ 2L,
(2) grady - LY = 2a gradL"?,
3) OLY™ = Lg,
4) LY =0, neN,
(5) LI+ = L[4 pe N,
(6) if Re (a) > 0, then Lg are distributions of order at most k.

Proof. (1): Follows directly from (5.2).
(2): Forog:=1land o := —1if j =1,...,d — 1, we obtain d;v = 20;z; and thus, (5.2) provides

20(gradL3?); = 200,192 = Ca + 2,d) - 202 - afor + 2 — d) (7 £ i0) T = 2052, L% = (grady); L
(3): Follows from (2.25) and (5.2):
at+2—d
2

a+2—d

=C(a+2,d)-0O(y+i0) 2 =0OLY™.

L% = ala—d+2)Cla +2,d) D§ £i0)

: (4 (%5

(4): Due to (3), integration by parts yields

M‘
&
1\7\&

+9)

Li2"p] = L4 [O"p] = C(d, d) fRd (O"¢)(x)dz =0, pe 2R, neN.

(5): Follows from (y £ i0)"™ = 4™ for all n € Ny.
(6): Since Re (a) + riq > d, the maps  — L$""(z) are continuous and hence distributions of order 0. As

[ increases the order by at most 2, the claim follows from (3), that is, L$ = [J 3 Lﬁ“;”d. O

With regard to the equality given by Proposition 5.1.1 (5), we write L4+2" := L4"2". The crucial proper-
ties of the Riesz distributions for the construction of the advanced and retarded fundamental solution
are R(l = §p. Clearly, this does not hold for L‘i if d is even, since then n = %, and Proposition 5.1.1 (4)
implies LY = 0. Anyhow, it holds in the odd-dimensional case:

Proposition 5.1.2. Letd be odd. Then L = 6, and L% = S..

Proof. The first claim follows from the second one by Propositions 2.2.8 and 5.1.1 (3). For odd d, we have

I (452) .7 (459) = e = (—1)“% 7, and thus, (2.26) provides
d+1 Nd+1 d—2
_ 4 (+ T (&2 _
2 = 1) (D (viiO)Zsz(J) d(Q)‘(’YiiO)%d:Si- 0
- 4r'3T (459) Amz

Therefore, Sy is contained in {L¢ },cc if d is odd. In order to find corresponding families {ES“L }aec With
LY = §y in the even-dimensional case, the naive idea is multiply L% with a function of d and «, which
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5.1 Families of Riesz-like distributions on Minkowski space

is singular for o = d — 2n and equal to one for o = d — 2n — 1 for all n € N. However, this creates poles:

Ta (ii)d_a_l o
L+::f' Ty Oze(C\{,d—Q,d,d—i-Q,} (5.3)
(g
These are well-defined distributions and by employing I' (45%) I' (254 + 1) = ﬁ, we find
1mn WT
~ ~ o ~ + d—a—17
12 = Cla,d) - (v +i0)“2", Cla,d) = J (5%, (5.4)
: 2T ()

Indeed, the zeros of L§ and the poles of the prefactor in (5.3) compensate, and hence, 1~L’3‘_r exist as distri-
butions for all « = d — 2n, n € N. Therefore, o — L[] are meromorphic functions with simple poles
ata=d,d+2,... for fixed ¢, and by definition, many properties of L are directly adopted:

Proposition 5.1.3. Forallo # d —2,d,d + 2, ..., we have
(1) y-Lg = a(a —d+2)LY",
(2) grady- L% = 2a - gradLa+2
(3) OLY™ = I3,
(4) if Re(«) > 0, then f@ are distributions of order at most kg,
(5) LY. = d.
Proof. (1) — (4) follow directly from Proposition 5.1.1 via (5.3). For (5), we just compare (5.3) and (2.26):

~ ~ B +4)d+1 . d—2 B
I? =C@.d)- (v +i0)*7 = () . (5 )-(wiz‘o)¥ — 5. 0
T2

Thus, the Feynman and anti-Feynman fundamental solution S5 for [J are contained in the families
{L% }o and we close this section by particularly investigating the integers, where L¢ are non-singular:

Proposition 5.1.4. For a € Z\{d,d + 2, ...}, we have

- a, d— o odd,
LY = . B (5.5)
- i%LdElnlog(yiiO), a=d-2n,neN,
where the distributions log(y + i0) are given by
1 d+2
log(y £10) = ﬁlj (vlog(y +140)) — — (5.6)
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5 Local Hadamard bisolutions

d

Proof. For d—a odd, we directly obtain (+i)* 1 = (=1) 2
2 d
from (5.3). Furthermore, (5.1) yields L‘i =(C(d,d) =

' _ sin (d2 ) and thus, La = LY follows

5T ( } so (5.4) and Proposition 2.2.8 imply

L2 = C(d —2n,d)(y £ i0) ™

e (n—1) (—1)" - O log(y + i0)
= il(_l) ’ d ’ n d—2
2d-2n 75 T (4 —p) 4"(n—D![]i_, (k—n+ 9F7)
o
(3 Y
—+— n +40).
T (9 O™ log(y £ i0)
—_
=C(d,d)=L%
A direct calculation provides O (ylog(y & i0)) = 2dlog(v + i0) + 2(d + 2) and thus (5.6). O

Proposition 5.1.5. For all o € Z and n € N, the following expressions are R-valued:
i(Lg — L), (L4 L), L2 (log (y 4 i0) + log(y — i0)). (5.7)

Proof. With regard to the definition of L as holomorphic extensions, for the first claim, it suffices to
check the case o > d. If o — d is even, Proposition 5.1.1 (5) directly shows (LS — L®) = 0. On the other
hand, for odd o — d, we calculate

. . 0, 720
(LY = L?) = iC(a,d)((y +1i0) = — (y—i0) =) { (—1) od '

Since L4*+2(=1) = C(d 4 2(n — 1),d) 4" ! is obviously real for all n € N, for the third term of (5.7), we
just have to check the logarithms. Indeed, due to

log 7, v >0,
log(y £140) = .
log(—y) tim, <0,

it equals C'(d—2(n—1),d)y" ' log ||, which is R-valued. This shows the claim also for the second term
using Proposition 5.1.4:

N o d
(L2 — L972) = —%D”(log(v +140) + log(y — 10)). O

Remark 5.1.6. It is not hard to show that also for d = 1 and d = 2, (5.1) and Proposition 5.1.5 provide
the respective fundamental solutions:

211 og( + i0).

Therefore, it follows that E?i = g also in these cases.
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5.2 Families of Riesz-like distributions on a convex domain

5.2 Families of Riesz-like distributions on a convex domain

Following section 1.4 of [BGP2007], we now transfer the families {L }qec, {E%}aeC\{d,dH,...} locally to
M. For p e M and Q ¢ M geodesically starshaped with respect to p, let I',(q) := T'(p, q) = v(exp, '(q))
denote the squared Lorentz distance to p and 1, the distortion function defined by (1.9) in [BGP2007].
Analogous to (3.8), we define the corresponding distributions on {2 via

~

LE(a,p) i= (exp,)« g, LE(a,p) = (exp,)u L, (5.8)

ie. L (o, p)[e] = LE [(upp) o exp,] for all ¢ € 2(Q) due to Theorem 10.11 of [DK2010]. These are
well-defined distributions on €2, since i, € Z(2) and

supp (expy (kpw)) < exp, ' (supp (up)),

which is compact due to continuity of exp,, and hence, (exp,)* (i) € Z( exp, 1(Q)). Consequently,
for fixed p € 2(Q), they provide holomorphic maps a +— L%(a,p)[p] and meromorphic maps
a— [jg__z(a,p)[go] with simple polesata = d,d + 2, .. ..

Proposition 5.2.1. Let p € M and Q2 < M be geodesically starshaped with respect to p. Then, for all
o € C, we have:

(1) For Re(c) > d, the maps p — L% (a, p) are continuous on 2 and given by

a—d
2

LY (a,p) = C(a,d) (T +i0) 2 . (5.9)

27T, LS_Z(a,p) =a(a—d+2) -LS_Z(O[ +2,p),

(3) gradT, - L (o, p) = 2 gradL§ (o + 2, p),

@ OLY(a +2,p) = (DI;I;;“ +1) L(a,p), a#0.

(5) For Re () > 0, (5.8) yield distributions of order at most k4. Moreover, there is an open neighbor-
hood U of p and some C > 0 such that

1L (e, )[¢]| < C - |@lomagy, €U, pe D(Q).

(6) Let U — ) be an open neighborhood of p such that () is geodesically starshaped with respect to all
q € U. Furthermore, let Re(a)) > 0 and V € C*t*(U x Q) such that suppV (q,-) = Q is compact
forallqe U. Then g — L¥(a, q)[V(g,-)] € C*(U).

(7) For all p € C¥(Q2), the map o — L («v, p)|¢] is holomorphic on {Re (o) > d — 2[%]}

On the domain of holomorphicity of f&(a, p), the statements (1) — (7) remain true, when we replace
LY (a,p) and C(a, d) by LY (a, p) and C (e, d).

(8) Ford — « an odd integer, we have LY (a,p) = i%(a,p).
(9) L£(0,p) = 5.

(10) Foralln € N, we have L} (d — 2n,p) = 0 and LE(d + 2n — 2,p) = L(d + 2n — 2, p).
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5 Local Hadamard bisolutions

Proof. (1): By definition of L and y,, for all ¢ € 2(12), we have

d

LE(a,p)[e] = LE[(1p - @) 0 expy)] = Clav, d)f - (7(2) £i0)"7" - (12 - pp) (expy () dar

= C(a, d) L (Tplq) + Z'O)QT% ~(a) - po(a) ((exp,")" dz) () = Cla,d) L (Tplq) + Z'O)QT% ~(q)dV (g).
=dV(q)

(2), (3): Follow directly from Definition (5.8) and Proposition 5.1.1.
(4): Let Re(o) > d + 2, so we can employ (5.9) and (gradl',, gradl',) = —4I', (Lemma 1.3.19 of
[BGP2007]). Then (2) and (3) yield

EILS_E (a+2,p) = —divgrade_ﬁ(a +2,p) = —%div (gradl’, - Lg (o, p))
1
% (OT, - LY (a,p) — (gradL{ (a, p), gradl',))
1

- 5o (00 2200 -

_/ar, a-d\ g ~(/4r, —2d O
_<2a + 5 >L+(a,p)—<2a +1> Ly (o, p).

LY (a—2,p
i2<(a_2)) (gradl,, grade>>

Both sides are holomorphic on {Re (a) > d + 2} and can be extended uniquely and holomorphically to
the punctured plane C\{0}, where they consequently have to coincide by the identity theorem.

(5): Since p,, is smooth and exp,, a diffeomorphism, the order of Lg (o, p) coincides with the one of L,
which is at most x4 due to Proposition 5.1.1. Hence, for ' := exp, 1(Q), we find some C’ such that
ILL[¢]] < C'|l¢ | craqery, @' € 2(€), and therefore,

|LE (. p)[]| < C')|(pp 0 exp,) - (0 0 exp,)) | cra(ery < Cllellomae)-

(6): For any linear isometry A(p, q): T2 — T,Q2 and all ¢ € U, we have

(g - V(g,")) o exp, 0A(p, q) € CET (exp, 1 (U)),

and hence, ¢ —> L% (e, q) [V (g,-)] € C*(U) by Lemma 1.1.6 of [BGP2007] and (5).
(7): a — LY (o + 21, z)[O'p] is well-defined if 21 < k and o + 21 > d, for which the maximal possible
integer is | = |%|. Hence, @ — L% (cv, z)[i] is holomorphic on {Re (a) > d — 2| 4|}.

By employing the respective properties of INJ?‘_H the proofs for ES_Z (o, p) are identical.

(8): Follows directly from (5.5).
(9): Due to L9_r = dp and p(p) = 1 by Lemma 1.3.17 of [BGP2007], we directly obtain

L0, p)[0] = L% [(1p - ) 0 exp,] = (1 - ) (exp,y(0) = pp(p) 9(0), € D(9).
=1

(10): Follows from Proposition 5.1.1. O

Note that (8) and (9) of Proposition 5.2.1 imply L (0,p) = 6, for odd d, and due to (10), we again
set L}(d + 2n,p) := L(d + 2n,p) for all n € Ny. Similarly to (5.8), L(d, p) log(I', =+ i0) is given by
fip - (exp,)s (L4 log(y + i0)) and thus by (5.6).
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5.2 Families of Riesz-like distributions on a convex domain

With regard to the Hadamard series and the recursions in the next section, we prove the following
technical Lemma, which relates L («, p) and O (L (d, p) log(I', + i0)) for even d.

Lemma 5.2.2. Letd be even and k € N with k > %. Then we have

grad (L (2k + 2,p) - log (T, £ 40))

gradl'y, . gradl'),
_ gradl, + YA I
L (2k,p)log('y +40) + 2k(2k + 2 — d)

ey

O (L%(2k + 2,p) - log (T, £ 40))

5 _ g4 2k
= 2T - L2k, p) - log(T), £ i0) +

D —2d + 4k + 2

ok (5~ )

L2k, p),

and for k = %

grad (L(d, p) - log(T', +i0)) = F ' 2'(d_ 2) 2(d—2,p)
O (L%(d, p) - log(T'p + i0)) = $mi(DdF_” 2_) 4) LY (d—2,p)

Proof. Proposition 5.2.1 (3) provides
grad (L(2k + 2, p) - log(T', + i0))
= log(T, % i0) - grad L (2k + 2, p) + L®(2k + 2,p) - grad log (T, + i0)

[, L% (2k,p) gradl,
2k(2k +2—d) L,

dr
- % - L2k, p) log (T, + i0) +

_ gradl’, 1o

L2
4]€ ( k7p)?

, gradl’,
2 log(I'), £ —_—

and hence, (gradl',, gradI',) = —4I"), implies
O (L%(2k + 2,p) - log (T, £ i0))

— _div (gradrf’ - L2k, p) og(T)  i0) + 5 gradl’y

4k k(2k +2— d) 'LQ(2k’p)>

_1
4k

L¥(2k — 2,p) log(L,, £ i0)
4(k — 1)

(Drp - L4(2k, p) log (T, + i0) — (gradl'p, gradl',)

2 (2k—
(gradl’,, grade>> N ar, - LY(2k,p) — % -(gradI'p, gradl',)

—L%(2k
(2k.p) T, 2%(2k + 2 — d)

_ 1
4k

(OT, + 2(2k — d)) L*(2k, p) log (T, + i0) + (; + Dzll;fz; i(zk__d;l)> L¥(2k, p)

O —d+ 2k O on + 4k + 2

=2 7 %2k, p)log(T, + i0) +

LY(2k, p).
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5 Local Hadamard bisolutions

By Proposition 5.2.1 (1) L(d, p) = C(d,d) = $m§((57:22)’d) is constant on (2, so again using (3) yields

inC(d - 2,d) gradl',  _im-gradl',
2(d—2) r,  2d-2)

+

grad (L%(d, p) - log(T, + i0)) = L(d—2,p),

Q . , frd 72.7.[- ] . ~Q —
O (L%(d.p) - log(T +i0)) = +3 oy (grade -2, p))
o im Q. B (gradI'y, gradl',) g

T

=$m (Drp+2(d4_4)-(d—4)(d—4—d+2)> -Eﬁ(d—&p)

C_in (O, —4) sq,

For Q < M convex and Re () > d, the symmetry of I" on © x  implies symmetry of the continuous
functions L% (), Eg (a) by Proposition 5.2.1 (1). We finish this section by showing that this remains true
for Re () < d in the sense of bidistributions:

Lemma 5.2.3. Let Q2 = M be convex, o € C and u € (2 x Q). Then we have

| B nave) - | 12ealut.oldv)

Q

which similarly holds for IN& ().

Proof. Replacing the Riesz distributions and their antisymmetry property kY (c,p)(q) = R%(«, q)(p) by
the symmetric LY, Esz, respectively, the proof coincides with the one of Lemma 1.4.3 in [BGP2007]. O

Remark 5.2.4. Considering L}(«) as bidistributions via

L2 (). 9] = L Lol v dVp), e e D), (5.10)

Lemma 5.2.3 provides symmetry in the sense LY (a)[¢, ] = LE ()[4, ]

5.3 The Hadamard series

Let E be a real vector bundle over M and P: C*(M,E) — C*(M, E) a wave operator. Adopting the
approach pursued in section 5.2 of [Gar1964], we start the deduction of local expressions for Feynman
and anti-Feynman parametrices for P by taking the following ansatz of a formal Hadamard series:

ee} 0
Y UFLE(2k +2,p) + Y WFLR(2k + 2,p), d odd,
k=0 k=132
Zr(p) =1 s . (5.11)
kgo UFLY(2k +2,p) + L zd 2 (UFlog(T) +i0) + WF)L2(2k + 2,p),  deven,
= k?=;

with coefficients U¥, W} e C* (Q, E} Q E) yet to be determined. For ¢ € 2(Q, E*), we identify
Uéfgo, chp with E-valued test functions (see section 2.1 of [BGP2007]), so £ (p) is (formally) un-
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5.3 The Hadamard series

derstood as a distribution on Z(2, E*) with values in the complexified fiber E; ®g C. Similar to the
procedure in chapter 2 of [BGP2007], we determine U}, W} by formally demanding P.Z4 (p) = 4,,. Since
Definition 3.1 of the P-compatible connection V implies a product rule for P(f - s), we obtain for odd d

0 0
LE(0,p) =0, = PLs(p) = Y. P(UFLE(2k +2,p)) + Y. P (WEL®(2k +2,p))
k=0

_d—2
k= 2

0

= U9 OLE(2,) — 2Vgrarg e UL + 2 (PUk LI (26, D) — 2V graarg ars2 U + Up OLE(2k +2, p))

ve]

+ >0 (PWET L (2K, p) — 2Vgraro@ur2pm Wy + W OL?(2k + 2,p))

_d
k=3

S 1 1
=U) OLE(2,p) - 2V grad enUp + Z 5 <2k PUF™" — Vgraar, US + (QDP,, —d+ 2k) U§> L (2k, p)
k=1

&1 N 1
+ ) 5 (% PW)™' = Vgraar, Wy + (QDF,, —d+ Qk) ka) L (2k, p).
k=4
Furthermore, for even d, Lemma 5.2.2 leads to

L(0,p) = 6, = PZ4(p)

[o0]
NP (U§i$(2k +2,p ) + = N1 P(USLY(2k +2,p) log(T, + i0) + WEL(2k + 2,p))
- s
k=0 e d=2

)

=0 =0

0 70 0, b d2 T g i
= Up DLi(Q,p) - 2vgradi¥(2,p)Up * ; Wp 0L (dap) _2VgradL9(d,p)Wp

—4

a
|

~ ~ ~ d—a
+ 3 (UF OL2@k +2,0) ~ 2,70 ok 29 Up + L2k p)PUST) + L2(d - 2,p) P, ?

i
|
H

d—2 d—2

Up? O(L%(d,p) log(I'p +i0)) = 2V grad(1.2(d,p) 1og(T +i0)) Up °

-+
N | .

—

+

o~
Il
vl

[L(2k,p) log(T'), +i0) PUF ™ — 2V graq 102k +2,p) tog(r, +ion Up + UF O (L?(2k + 2,p) log(T',, + i0)) ]

MS

(Wy OL(2k + 2,p) — 2Vgraaroors2,m Wy + L (2k,p) PWET) }

=
T & , 1 L2 2k, p
= US I:‘Lg<2’p) - QVgradLQ 2,p) p Z |:< —d+ 2k> UZI; - Vgradl‘p(]z])C + 2]€PIJZ])C 1:| %

d—a 1 d—2 LQ d—2
¥ ((d— 2)PU,” + (2|:|Fp _ 2) Up? — Vaar, U,z ) 272]’)

H
.\.]\NA
D18

E
Il
wla.

1 L2(2k, p) log(T,, + i0
(QDFp —d+ %) Uy — Vraar, Uy + QkPU;;l] (2k, p) 2(;5( p £ 10)

[H
ﬂ\s.
D18

1 1 L2k,
(QDI‘,, +2+4kz—2d> Uk —ngdppsz] (2k.p)

2k (k — 452)

=
Il
wla.

[+
3 ‘N.
D18

/1 k k k—1 LQ(Zk,p)
<2|:|Fp + 2k — d) Wp — VgradeWp + QkPWp —or

b
Il
vl
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5 Local Hadamard bisolutions

Imposing the initial condition U7 (p) = id g, we read off the transport equations

2k PU}™ ' = Vgraar, Uy — < ar, —d + 2k> Uy, k € Ny, (5.12)

Vgraar, W — (300, — d + 2k) W, k+ieN k>4,
(5.13)

2k PW) ! = .
’ { Vegraar, W5 — (30T, + 2k —d) Wh + 2P0 _opk peN, k>4
2

Remark 5.3.1. Note that there is no constraint on W -2, which is therefore free to choose. Hence, even

if (5.11) converges, the requirement P.Z, (p) = 0, determines Z (p) only up to smooth solutions of the
P & (WE-Wk) Tk
orm Z o r'(k+%)

with W}, Wk arising from different choices of Wa-2.
2
Proposition 5.3.2. Let O < () be a non-empty domain such that Q) is geodesically starshaped with
respect to allp € O. For any Wi € C*(0O x Q, E* X E), there are unique and smooth solutions of (5.12)
2
and (5.13) given by

P
UO(pa Q) = La
1(p, q)
1
Uk(pa Q) = _kUO(p7 Q)JO tkilUO (p7 (Zqu(t))il (P(2)Uk71) (p7 (Zqu(t)) dt, k= 17 (514)

l\D'\ S

1 —~
Wk(pa Q) = _kUO(p7 q) J;) tk_lUO (p7 gbpq(t))_lwk’—l (pa gbpq(t)) dta k> (515)

I1}: E, — E, denotes the V-parallel transport, ¢,,: [0,1] — § the unique geodesic connecting p, q (3.4)
and

P(Q)Wk_l, k’+ eN, k> %,

Wiy =
Pa) <Wk1 — kde212> +8% keN k>4

Proof. The transport equations (5.12) and for half-integer & also (5.13) coincide with (2.3) of [BGP2007].
Therefore, U, and for k + % € N also W}, are the Hadamard coefficients given by (5.14) and (5.15) due to
Proposition 2.3.1 of [BGP2007]. For integer k, we can apply the same proof for W}, with PI/VI?_1 replaced
by Wé“*l everywhere, for which the same procedure then leads to (5.15). O

Corollary 5.3.3. For 2 convex, E equipped with a non-degenerate inner product and P formally self-
adjoint, we have symmetry of U}, for all k € Ny and, in case of symmetric Wa—2, of W}, for half-integer
2

k> g in the sense of (3.3).

Remark 5.3.4. Note that, if d is even, the transport equation (5.13) for W} is coupled to the U} since the

derivatives of the logarithmic term have to be somewhat compensated. In the odd-dimensional case,
d—2

Wp? = 0 leads to WF = 0 for all k, whereas, as a consequence of the coupling with U}, for even
dimensions, we have W]f # 0, in general.

A more remarkable discrepancy is revealed by investigating the symmetry properties of W, in the even
dimensional case, that is, for integer k. It is tempting to conjecture symmetry like for odd d, but in fact, it
does not hold [Wal1978]. This phenomenon played a prominent role during the development of Wald’s
axiomatic approach to a renormalized energy-momentum tensor. More precisely, the lack of symmetry
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5.4 Local parametrices and Hadamard bidistributions

of the W},’s prohibits the implementation of {I') with vanishing divergence and trace at the same time.
This is closely related to the conformal trace anomaly, which indeed does not occur in odd-dimensional
spacetimes. For details concerning this issue, we also refer to [DF2008] and [Wal1994].

5.4 Local parametrices and Hadamard bidistributions

From now on let 2 < M always denote a convex domain. We referred to (5.11) as formal, since in gen-
eral, the series do not converge, and we just used it to extract equations for the coefficients. Neverthe-
less, it leads to left parametrices by some well-known procedure [Fri1975, Giin1988, BGP2007], which
smoothly cuts off .Z;(p) away from its singular support and leads to convergent series on relatively
compact domains. Due to the derivatives arising from the cut-off, this results in left parametrices for P
at p rather than fundamental solutions. To be more precise, for N > %, some sequence {¢}r=n < (0,1]
and o € 2([-1,1],[0,1]) with a|[7%é] = 1, we define

kfﬂ UFLE(2k +2,p) + %; ) WW/;“LQ(% +2,p), d odd,
Zp) =1 L N (5.16)
kg[) UFLE(2k +2,p) + %k,zd; (Uklog(Ty +i0) + WE)LE(2k + 2,p),  deven,
2
where
N Uy, k < N, N Wi, k<N,
Uk :{ (ooé)-Uk, k=N, W :{ (GO%)-WJQ, k> N. G179

Proposition 5.4.1. For any relatively compact domain O < ) and any smooth choice of Wa-2, there is a
2

sequence {e }x=n < (0, 1] such that (5.16) yield well-defined distributions for all p € O, and
(i) singsupp (Z=(p)) < C(p),
(ii) PZs(p) = 6, + K+ (p,-) with Ky € C*(0 x O, E* R E),
(i) p— 25 (p)[¢] € C*(0, E*) forall ¢ € 2(0, E¥),
(iv) they are of order at most k4,
(v) there is a constant C' > 0 such that ]z(p) [e]] < Clelcrao,px forallp € O and ¢ € (0, E*).

The proofs of Lemma 2.4.1 - 2.4.4 of [BGP2007] only employ smoothness of the Hadamard coefficients
and o (%ﬁ) = 0if |T'(p, q)| = ey, so replacing RS} by Lf! proves the Proposition in the odd-dimensional
case. Similarly, we obtain convergence in C* of the Wj-part in even dimensions. However, for the lo-
garithmic terms we have to adapt the corresponding,westimates, which is of purely technical nature and
therefore removed to the Appendix. Considering .7}, K+ as Schwartz kernels, we extract the corres-

ponding operators

Li:  92(0,E*) — C*(0,E*), ¢— (p— Zr0)[]), (5.18)

ICJ_F: CO(Ov E*) - 000(67 E*)’ U — <p = fKi(p, Q)U(Q) dV(‘])) ) (519)
o
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5 Local Hadamard bisolutions

which are bounded, since O is compact. Let E be equipped with some non-degenerate inner product
and P be formally self-adjoint. The aim of the rest of the section is to show that then, for all choices
involved in Proposition 5.4.1, the corresponding operators £ represent anti-Feynman and Feynman
parametrices for P! in the sense of (1.11).

Corollary 5.4.2. Let £+ and L', be the operators (5.18) arising from two different choices of N, Wa_s,0
- 2

and {ey }ren. Then Ei — Eﬁ_r is a smoothing operator on O n O'.

Proof. The Schwartz kernels of these differences are given by the bidistributions

(p,g) — (Z:(p) — ZL () (a),

which are smooth due to Lemma 2.4.3 of [BGP2007] and Lemma 7.1.2, since supp (o —0},) nI'1(0) = &
for all k. O

Note that in terms of the operators (5.18), (5.19), Proposition 5.4.1 (iii) reads Zi P! =id + K4, and hence,
L are left parametrices for P’. Due to formal self-adjointness of P, they also provide right parametrices:

Proposition 5.4.3. For P formally self-adjoint, the operators L define two-sided parametrices for P!,

Proof. We just have to show that £+ yield right parametrices. From the symmetry properties of LY ()
and Uy, (Theorem 3.3.6 and Lemma 5.2.3) directly follows

fo LE@k +2,p)[(Tk(p, )e) (¥(p)) ] dV (p) = fo LE(2k + 2,p)[(0pTk(-,0)'O7 1) (¥(p))] AV (p)

_ fo L2 2k + 2.0)[0,0(p) (T p)'© ') ] dV (p)
- fo L2 2k + 2,0) [T )0, (p) (0 2)) | dV ()

- fo LE(2k + 2,9)[Uk(q, )0 (0, ()] dV (9)

forall p € 2(0,E*),vp € 2(0,F) and k € Ny. This works analogously for the logarithmic and Z%-
terms in (5.16). Furthermore, the series involving the coefficients W}, are given by convergent power
series Z;O:o a;I7, which yield smooth sections in E* X E. Altogether, we obtain the decomposition

L+ = Us + W with Uy representing the symmetric Uy-part, i.e. UL = 07,0, and W the smooth
Wi-part. Hence, £+ is symmetric up to smoothing in the sense

Li=0LL0 '+ W-—anwe !, (5.20)
-+ [y ——

smoothing
from which we directly deduce the claim:

P'L. = Pl(0LLe +w-ewe)

oPLLO™ + PW! — Plow'e!
= 0(LsP)'Ot +oP(OIW-We™)
=id+0K,e'+er(e'w-Wwe ). O

~
smoothing
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5.4 Local parametrices and Hadamard bidistributions

Define the operator
L:=—-(L,—L_) (5.21)

with Schwartz kernel given by . = £ (%, — Z_).

Corollary 5.4.4. For P formally self-adjoint, £ is formally self-adjoint as well and has a real-valued and
symmetric Schwartz kernel .Z.

Proof. Let ¢ € 2(0, E*) and recall that ,@(p) [¢] take their values in the co~mplexified fiber E; ®g C.
Note that the W}-series in (5.16) cancel, when taking the difference (5.21), so £ = 5 (U, —U_) is formally
self-adjoint due to (5.20). Therefore, its Schwartz kernel is symmetric and furthermore real-valued by
Proposition 5.1.5. O

So far, we found two-sided parametrices éi, ,,5,7i given by Hadamard series (3.9), (5.16), and [SV2001]
actually proved equivalence of the Hadamard condition (1.9) and that the bidistribution is given by a
certain Hadamard series. This latter condition together with the results of chapter 4 therefore allows
us to express (1.13) in terms of G+, s by « dlrectly comparing the corresponding Hadamard series.
More precisely, we confirm that % ($+ -7 +4d, - CNL) is a Hadamard bidistribution, which, up
to smooth errors, moreover is a b1solut10n with the right antisymmetric part. By examining a further
linear combination of parametrices, analogous to (1.12), it will follow that 2y represent a Feynman and
an anti-Feynman parametrix.

Proposition 5.4.5. Let O < (2 be relatively compact, P formally self-adjoint and G+, % the bidistribu-
tions given by (3.10) and (5.16). Then, for

~ ~ ~ ~ ~

_ %(.,gﬁ ~Z + Gy -G, (5.22)

the sections P(tl)fl , P(z)fl are smooth, the antisymmetric part of H is given by %(C:Ur - é_) and H has
the Hadamard singularity structure (1.9). Furthermore,

P+ P —G,—G_eC®O0x0,B*KE). (5.23)

Proof. Since G+, 2 yield two-sided parametrices for P!, the first two properties follow immediately
from Corollary 5.4.4, and we proceed with the Hadamard singularity structure.
Let k, j € Ny such that & > j, and for even d, let either j, k < de or j, k> %. Then, for K}, ; q defined
as in (3.13), we have K}, ; 4 # 0, and moreover,

RY(2k+2) LE(2k+2) LL(2k+2)

+ k—j
o =Ky ja- I,
Re(2j+2) L2(2j+2) I19(2j+2) .

A
i
Q
t

due to (5.3) and Proposition 5.2.1. R$(«) denote the Riesz distributions (3.8), which, similar to
L (a), L () in (5.10), are considered as bidistributions. Define

(LQ( ) — L(2) + R%(2) - R%(2)),
(5.24)

HY(d) := —L% (log(T" +i0) + log(T" — i0)) + %(R‘E(d) — RY(d)),
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5 Local Hadamard bisolutions

and thus, the Hadamard series (5.22) takes the form

CD ~
H2(2) 3 Krod- Upl™", d odd,
~ k=0
H = N N @ L (5.25)
HY2) Y Kyoa Ul* + HYd) Y, K, a2, U7, d even.
k=0 k=% T2

We show that this is of Hadamard form in the sense of Definition 5.1 in [SV2001], where mostly the
notations and conventions of [Giin1988] are adopted. In particular, the Hadamard coefficients U used
in [SV2001] are related with Uj, via 2¥k! - Uiy = Uy (see Remark 2.3.2 of [BGP2007]). In addition, with

the notation (a, k) := 2F - F<%+k),we find (2 +2,k—j) - (2j+4—d, k—j) = K,;;d, and hence,

r(s)

2k . k! Ur) Uk
K . = =
k.0, - Uk 2k k. (4—d k)  (4—d, k)’
ok k1.T (%) .U, 2,452
Kkﬂd'Uk: d—2 (2) ®) = ok+d (2 2 )d—2 U(k)
i 45 kT (kv2-g) 28R (k- 552)

For all n € N, we choose N > n + %! in (5.17), so the series in (5.25) truncated at k = n + %! coincide
with U, V(™ 1) given in Appendix A.1 of [SV2001]. The remainder term is then of regularity C" and
corresponds to H (") in Definition 5.1 of [SV2001].

It remains to identify the singular terms (5.24) with G(!), G(?) given by (5.3) in [SV2001] up to some
global factor, which is —2 in the odd- and 2 (— 1)% in the even-dimensional case. Moreover, note that for
the squared Lorentzian distance in the definition of G (1), G@), the convention s = —TI is used, whereas
in Appendix A.1 we have s = I'.

Let p, g € O. By definition of fg (ar, p) and RS_Z(@, p) as well as Theorem 4.4.2, we have

H®(2,p) = (expp )*W = i(expp )*A_
with Wightman's solution W for (R, ., [0) (4.7). Recalling A~ from (4.11) leads to

T (4=2 _
( 2 ) lim(—F(p,q)+2i5-q0+52)22d
5 €0

HY(2,p)(q) =

in the distributional sense with ¢° = (exp, 1(q))o. Since T (42)T (1 - 42) = (—1)%7r for odd d, this
coincides with G,

Furthermore, one directly calculates H*(d)— G = 0 away from I'1(0). For ¢,(t) := exp, (t exp,(q))
with t € [0, 1], we obtain I'(p, ¢pq(t)) = t* - '(p, q). Similar to (4.10), we set T'Z (p, -) := 7 o exp, !, which
yields T'F (p, ¢pg(t)) = > - F%—r (p,q) forall ¢ € (0,1], and hence,

L2(d) lim log ( — rt (p, dpq(1))) = —QLZM) logt + G (p, q).

™ e—0

GO (p, dpq(t)) = —

On the other hand, since R%}(d), L*(d) are homogeneous distributions of degree 0, (5.24) provides

L%(d)
2w

_2L°(d)

H(d,p)(¢pq(t)) = — (2logt + 2logt) + H(d,p)(q) = logt + H?(d,p)(q).
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5.5 Local fundamental solutions and Hadamard bisolutions

Of course, both expressions have to be understood in the distributional sense. Since (2 is diffeomorphic
to exp, HQ) = T,M for all p € Q, their difference corresponds to a El—invariant distributions on
Minkowski space R?, which is supported on the light cone and homogeneous of degree 0. Therefore,
it has to vanish everywhere by Corollary 2.2.7 and thus, Theorem 5.8 of [SV2001] ensures that H is of
Hadamard form in the sense of (1.9). It remains to show (5.23). According to (5.24), we define

A%(2) = %(iﬁ@) 1 122) - R22) - R (2)),
Lo, | (5.26)
AYd) = — 2£r ) (log(I" + i0) — log(I' — 40)) — %(Rg(d) + Rg(d))

such that for (5.23), we obtain the expression (5.25) with H®(2), H}(d) replaced by A?(2), A%(d) and
it suffices to show smoothness of the bidistributions (5.26). For A%(2), this follows directly from the
definitions of Zg(z), RS} (2) as pullbacks of Si, R along a diffeomorphism and Theorem 4.4.2. On the
other hand, one directly calculates that A*(d) is given by the constant —iC(d, d). O

Since .Z;, G+ are determined merely up to smooth sections, without loss of generality, we regard (5.23)
as the equality

P+ P =G +G_. (5.27)

Corollary 5.4.6. For P formally self-adjoint, the operators L+ represent anti-Feynman and Feynman
parametrices for P! in the sense of (1.11) on O.

Proof. Note that the proof of (1.12) given by Theorem 5.1 of [Rad1996a] and section 6.6 of [DH1972] ex-
clusively employs the singularity structure of the involved parametrices as well as that the antisymmet-
ric part of (5.22) is given by %(Cwﬁ — CNL), which is the case here, since (5.21) is symmetric. Furthermore,
the singularity structure of H is entirely carried by the scalar distributions L% () and therefore remains
unaffected when multiplying smooth vector-valued Hadamard coefficients. Hence, the statement (1.12)
remains valid, that is, for the distinguished parametrices G A, G R, G 7, C:’a r and up to smooth bisections,
we have

ﬁZ%(éaF—éF-l-éA—éR), Gar + Gr = Ga+ G (5.28)
Since G + represent advanced and retarded parametrices, it follows from (5.27) and (5.28) that
L — L = —2%H -Gy +G_ = Gur — G, Lo+ L =Gy + G =Gup +Gp,

which provides P, = Gup, Z = Gr up to smooth bisections and thus completes the proof. O

5.5 Local fundamental solutions and Hadamard bisolutions

In the last section of this chapter, we construct bisolutions S for P on certain relatively compact do-
mains O < M of globally hyperbolic Lorentzian manifolds with singularity structure given by WF (.,é’?/ ),
thatis, S© + £(G; — G_) provides a local Hadamard bisolution. We start by constructing fundamental
solutions S (p) for P atall p € O from (5.16), so S (p) — SO (p) yields a solution. For M globally hyper-
bolic, solving a Cauchy problem then provides a bisolution with the right singularity structure.

By Proposition 5.4.1 (ii), we have Z_rpt!@(oﬂ*)
tained by inverting the operators id + K+. Indeed, if vol(O) - |K+|comxp) < 1, that is, for O chosen

= id + K4, and hence, fundamental solutions are ob-
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5 Local Hadamard bisolutions

"small enough", (5.19) provides isomorphisms id + K+: C'(O, E*) — CY(O, E*) for all | € Ny with
bounded inverses given by the Neumann series

(id+Ke) ™" = D (-K2). (5.29)
j=0

This means that all Ct-norms of the series exist, which follows from compactness of O and smoothness
of K. The full proof coincides with the one of Lemma 2.4.8 of [BGP2007]. In the following, we restrict
to such small domains:

Definition 5.5.1. We call a relatively compact and causal subdomain O of Q2 admissible if Proposition
5.4.1 provides parametrices L via (5.18) such that the smooth Schwartz kernel K of L4 P* — id fulfills

vol(0) - | K+ cogroy < 1- (5.30)

More precisely, O is admissible, if there is a choice of {e;}r and Wa_» such that (5.30) holds for the
2

corresponding K .. Lemma 2.4.8 of [BGP2007] shows that for O admissible, the corresponding operators

L4 P! = id + K4 are isomorphisms with bounded inverses (5.29).

Proposition 5.5.2. For any admissible O, the operators
SO = (id + K4) M Ls: 2(0,E*) — C*(0, E¥)

fulfill §g Pt )= id, and hence, the distributions §g (p), p € O, given by

’@(O,E*
SOp)e] = ((d+Ky) " Lip)(p),  we 2(0,E*), (5.31)

yield fundamental solutions for P at p. Furthermore, Q, := (id + K+)~! — id are smoothing operators.

Proof. The first claim follows from ENJ_F P! = id + K+. Moreover, Proposition 5.4.1 and Lemma 2.4.10 of
[BGP2007], with % (-)[¢] and F ()] replaced by L1 and gg ¢, show that (5.31) yield fundamental
solutions. Finally, (5.29) directly yields Q; = (id + K+)' o K4, which is smoothing, since K is, and
(id + K4 )~ ! is a continuous map C* (M, E*) — C®(M, E*). O

From now on, let I/ be always equipped with some non-degenerate inner product, P formally self-
adjoint and O admissible.
Proposition 5.5.3. The operators §g — L are smoothing.
Proof. Note that §g — Ei = Qifi. Since Q+, /:‘i are bounded and @+ has a smooth Schwartz kernel,
they extend to bounded maps

Qi:  9(0,E*) — C*(0, E*), Li: EO,E*Y - 2(0,E*).
Hence, QL. : £(O, E*) — C°(0, E*) is bounded and therefore smoothing. O

It follows that S‘g yield anti-Feynman and Feynman parametrices for P on O. Moreover, their Schwartz
kernels determine a real-valued bidistribution via

which has the right singularity structure and is a solution for P in the second argument, meaning
WEF(S9 ) = WF(.Z) and P5,S° = 0.
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5.5 Local fundamental solutions and Hadamard bisolutions

Proposition 5.5.4. Let M be a globally hyperbolic Lorentzian manifold, 7: E — M a real vector bundle
with non-degenerate inner product and P: C*(M, E) — C® (M, E) a formally self-adjoint wave ope-
rator. Furthermore, let O — M be admissible and .# denote the bidistribution given by Proposi-
tion 5.4.1 and Corollary 5.4.4. Then there is a bisolution S°: 2(0,E) x 2(0,E*) — R for P with
WF(S°) = WF(.Z).

Proof. Since O is admissible, we obtain fundamental solutions §g (p) ateach p € O, and furthermore,
(5.32) provides p — SO (p)[p] € C®(O, E*) for all ¢ € Z(0, E*). Moreover, as a causal subdomain of
a globally hyperbolic Lorentzian manifold, O is globally hyperbolic on its own right (Lemma A.5.8 of
[BGP2007]). Hence, for ¥ a Cauchy hypersurface of O with unit normal field v, there is a unique smooth
solution of
PUSOOR) =0,
SOO)elly =590l
VV(SO(')[SO])‘E = VV‘?O('>[<P]’2'

By continuous dependence on the Cauchy data, S°(p) defines an Ej-valued distribution for all p € O.
Furthermore, S (-)[Ply] = 0 for all ¢, since it satisfies the trivial Cauchy problem.

It remains to check the wave front set, that is, smoothness of DO := & — SO. Since S, 50 and & yield
parametrices for P, the sections given by P(Q)DO, P(tl)DO and .Z — SO are smooth, and hence, D? is the
solution of a Cauchy problem with smooth Cauchy data, which is smooth by Theorem 2.3.2. O

Altogether, any choice of parametrices Z: in the sense of Proposition 5.4.1 leads to a bisolution S with
singularity structure given by %(C:’a r — Gr) in the sense of (1.11).

We briefly investigate the relation to the original formal fundamental solutions (5.11). To this end, for
all I € Ny and p € Q, we introduce the following truncated Hadamard series

N+Il-1 N+Il-1
kz UFLE(2k +2,p) + Zd WEL(2k + 2,p), dodd,
L) = ot Nti-1
S UFL@2k+2,p)+ L 3 (UF log(Ty +140) + WE)L?(2k +2,p), deven.
k=0 kz%

These are (E; ®g C)-valued distributions on any domain 2 ¢ M geodesically starshaped with respect
to p, so in particular on every admissible subset O containing p. Then .ZV*! := L(.Z NH N +l)
approximates S¢ in the following sense:

Proposition 5.5.5. For all | € Ny, we have
(p,q) — (S9(p) — LN (p))(q) € C'(O x O, E* K E).

Proof. Considering the expansion S© — N+l = 5O — L+ L — £V, due to Proposition 5.5.4, we
just have to check C'-regularity of Z. — Z{*!. Since the arguments for all series involved in (5.16)
are completely analogous, we demonstrate this only for 2 (p) = >;° UF L (2k + 2, p), for which we

obtain the explicit expressions
N+i-1 0

L= LN = N ok = DU, )Lk +2)+ Y, Tlp,)LE(2k +2).
k=N k=N+1
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5 Local Hadamard bisolutions

The infinite sum is a C'-section due to Lemma 2.4.2 of [BGP2007] with R%! replaced by L} and Lemma

7.1.2 for the logarithmic part of (5.16), respectively. The first part is a finite sum of smooth functions,

since o}, — 1 vanishes in a neighborhood of I'"!(0) and hence on the singular support of % and LN
O

Altogether, we constructed bisolutions with the Hadamard singularity structure on every O x O and we
summarize:

Theorem 5.5.6. Let M be a globally hyperbolic Lorentzian manifold, O < M an admissible domain,
n: E — M a real vector bundle with non-degenerate inner product and P: C*(M,E) — C*(M,E)
a formally self-adjoint wave operator. For S© the bisolution given by Proposition 5.5.4 and G+ the
advanced and retarded Green operator on O, the bisolution

HO =59 + %(G+ -G_)

is of Hadamard form.

Proof. By Lemma 3.3.2 and Proposition 5.5.4, the bidistributions S© — Zand G4 — G4 are smooth, which
provides smoothness of HY — H, so Proposition 5.4.5 ensures the Hadamard property of H°. O

Remark 5.5.7. Due to Proposition 2.5.1 in [BGP2007] and Proposition 5.5.5, H® is given by a Hadamard
series up to terms of arbitrarily high regularity.
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6 Global Hadamard two-point-functions

"Ich bin sicher, man kann immer positive Losungen finden.”

From now on, we adopt the setting given by Definition 1.2.1 restricted to wave operators P. In the
preceding chapter, we derived bisolutions S® on O x O for any admissible domain O c M with
WEF(S9) = WF (é’a =G ) in the sense of (1.11). In this chapter, we finally tackle the construction
of global bisolutions S, which locally coincide with those S up to smooth bisolutions and thus inherit
their singularity structure. It is therefore not hard to show that each S can be chosen as a symmetric
bidistribution. Recall that "choice" means the existence of a smooth bisolution u such that S + u is a
symmetric bisolution. Assuming E to be Riemannian and the validity of Theorem 6.6.2 of [DH1972] for
sections in E, we furthermore prove the existence of a positive choice for S. It follows that S provides a
scalar product (1.7), leading to the two-point-function of a quasifree state via (1.6)

H:=8+-(Gy—G_), 6.1)

which has the Hadamard singularity structure due to Theorem 5.5.6.

Multiplication with some suitable cut-off allows us to regard S (p) as a distribution on M with spatially
compact support. By employing Theorem 2.3.6, we propagate it to all of M for all p € O, and we
show that the results arising from two different cut-offs differ merely by some smooth bisolution. In
this way, bisolutions SO with the right singularity structure are determined on all domains O x M
for O admissible, and we find a locally finite cover of M x M by such domains. By means of Cech
cohomology theory, the corresponding bisolutions SO can be chosen in a compatible manner, meaning
that they match up on the overlaps and hence form a global bisolution S. Afterwards, we show that
there are symmetric and even positive choices for S.

6.1 Global construction of symmetric bisolutions

Fix a Cauchy hypersurface ¥ < M and two locally finite covers O := {O;}ier, 0’ := {O}},_, of it by
admissible subsets of M with O; = Oj if and only if i = j. Without loss of generality, we assume O; N X
to be a Cauchy hypersurface of O;. For instance, we could choose for O the Cauchy developments
D(%;), i € I, (Definition 1.3.5 of [BGP2007]) of relatively compact and sufficiently small subdomains
¥; < X, which comprise a locally finite cover of X.

Then N := [ J,.; O; yields a causal normal neighborhood of ¥ in the sense of Lemma 2.2 of [KW1991].
By paracompactness of M and the Hopf-Rinow-Theorem, we find an exhaustion { A, } ey of I by finite
subsets such that the relatively compact sets Ny, := [ J;c 4, Oi exhaust N and every compact subset of
N is contained in some N,,. Besides that, causality of O implies O < D(O) = D(O n %) and therefore,

Np e D(Oﬂ\E)CD(U om2> = D(N,, n %). (6.2)

€A €A
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6 Global Hadamard two-point-functions

It follows that every inextendible causal curve in N, meets IV,,, " 3 exactly ones, so N,,, n X is a Cauchy
hypersurface of N,,, i.e. N, is globally hyperbolic. In addition, for all < € I, we choose the corresponding

local bisolutions S, SO, obtained by Theorem 5.5.6, such that SO OixO: = SOi

Proposition 6.1.1. For each O € O, there is a bisolution S° on O x M satisfying §O|O><O = 59.

Proof. Let O' € O such that O < O', and x € 2(0') with y| o = L. Then xS9 (p) is a well-defined
distribution with spacelike compact support on M for all p € O, since xS9 (p) [¢] = 59 (p) [xel,
¢ € 2(M, E*). With regard to Theorem 2.3.6, we define S°(p) € 2(M, E, E;)" as the unique solution of

PS°(p) =0,
S’\O(p)‘z = XSO,(p)‘E, (6.3)
Vugo(p”g) = VV(XSOI(p)HE)

which moreover depends smoothly on p in the sense p — SO (p)[¢] € C*(O, E*) for fixed ¢ € (M, E*).
Furthermore, global hyperbolicity of O ensures §O’0x 0= SO by Theorem 2.3.2, since the difference
solves the trivial Cauchy problem on O x O.

Let T(p)[¢] := P*(S°(-)[¢]) (p) and hence T'(p) € Z(M, E,E}) forall p € O. It follows that PT'(p) = 0,
and T'(p)[¢] = 0 = T'(p)[Voe] if supp ¢ < O, which leads to T(p)]Z = VVT(p)‘Z = 0. Consequently, it
satisfies the trivial Cauchy problem, so we have T'(p) = 0, that is, SO represents a bisolution. O

This definition of S is independent of the choice of y in an appropriate sense: Let Y € 2(0’) be another
cut-off with ¥| o = 1 and corresponding bisolution SO. Then D := §° — 59 is a bisolution with Cauchy
data on (O N X) x ¥ given by (y — X)S9". Recall that sing supp S°" = I'"1(0) n (O x O’), so causality of
O yields sing supp 59 (p)|5, = (C*(p) n O’ " ) < O for all p € O, and hence, sing supp xSY'|, ;. v is
contained in O x O. Since D satisfies the trivial Cauchy problem on O x O, i.e. D| Ox0 = 0, itis a smooth

bisolution by Theorem 2.3.2. Therefore, 50 and S© differ merely by some smooth bisolution.
, CM(p)
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6.1 Global construction of symmetric bisolutions

Next, we prove the existence of a compatible choice of bisolutions {§Oi }ier, meaning that they coincide
on the overlaps O; n O;, i,j € 1. In this way, these compatible bisolutions assemble to a well-defined
object on N x M. The tools for such a procedure are provided by Cech cohomology theory, for which
we give a brief and purposive overview. For an introduction to this subject with details and proofs, we
refer to section 5.33 of [War1983].

On N x M, let € denote the sheaf given by the germs of the smooth sections in £* X E (see Example
5.2 in [War1983]). For the open cover OM := {O; x M};c; of N x M, the n-simplices correspond to the
non-empty (n + 1)-times intersections

OM . = (04 n...00;,) x M, i0y...,in €1,

10---in,

with n + 1 faces {OM

0.erlf--in

n-cochain is a map that assigns to each non-empty O} ; asection of €* over O} ; , which we identify
w1th the elements of C* (0} ; | E* X E). The space of n-cochains is denoted by C"(OM €*), where

= {0} if n < 0, and the coboundary operator is defined by

| ... ODtained by leaving out one O; in the intersection, respectively. An

n+1
. n M n M .
Oni CHOM 67— CHOM,E7),  (ufu)(OM ) = Y (—)F - fu(O zOW%HMH)|O?gmi .
k=0 "
It follows that ,, 41 0 0, = 0 for all n € Ny and we set H"(OM, ¢*) := r;‘r‘fgij -, These modules are trivial

for all n € N by some well-known construction (e.g. p. 202 in [War1983]), employing that ¢ admits a
partition of unity subordinate to the locally finite cover O:

Lemma 6.1.2. For alln € N, we have
H"(OM €% = {0}.

Proof. By choice of O, the cover OM is locally finite. Let {x;}ic; denote a partition of unity subordinate
to OM and f,, € C"(OM,¢). Then, for each i € I, the smooth section x; f, (O} nOM . ) is supported

90...0n

in OM N Olj‘o/[ Py and thus, via extension by zero, we consider it as an element of C* (Of‘oj i E *KE )

In this way, we obtain homomorphisms h,,: C*(OM,€°) — C"1(OM,€%) via

(fn) zo i 1 EXzfn OM noM ) € COO(OM ,E* &E),

10 in 10 in
el

which satisfy

(hns10nfn)) (ON 5) =D xi- o f (O A O} ;)

el

_Zlen 10...0n +ZZ(_ Frl len(OM Of\j,_zk,,,zn)‘OM

el i€l k=0
_fn( 10...%n )_( n— lh (fn))( 0. 'Ln)
Hence, f,, € ker 0,, implies f,, = 0p—1hn(fr), thatis, f, € randp_1. O

Lemma 6.1.3. For alli € I, there is a bisolution h; € C*(0O; x M, E* X F) such that

(59 + hi)‘og = (59 + hj)‘ogfv i,jel.
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6 Global Hadamard two-point-functions

Proof. For i,j € I, we consider the bisolution h;; := SO | oM — SO; | ou- Forallm € N, Proposition 5.4.1
ij iJ

provides parametrices DZ’F” on the relative compact domains N,, such that for M= %(ﬁ” - ﬁ”),
Propositions 5.5.4 and 6.1.1 yield

SO - Z" (8% = Z™) e C*(0ij x Ny, E* K E). (6.4)

Oij X Npm, = ~-
eC® eC®

Such .Z™ exist for all m and {Nm}men exhausts N, so we have smoothness on O;; x N. Furthermore,
as O;; is causal and N a neighborhood of a Cauchy hypersurface, h;; fulfills a Cauchy problem with
smooth Cauchy data and hence is smooth on all of Of\f by Theorem 2.3.2.

Therefore, recalling the identification of sections of ¥ with smooth sections in E* X E, the map
fi: Of‘f > h;; represents a Cech-1-cochain, which moreover is a cocycle since

(01/1)(O) = hjkloyk - hz’k}oyk + hij‘oyk
ij ij ij

— 59| SOk — SO — 59|

M T
Oijk Oijk

go GO;
+ STk o + 57
oM, |ogjfk

M M
Oijk Oz‘jk

=0

for all i, j, k € I. Thus, Lemma 6.1.2 ensures the existence of fo: OM h; € C*(OM, E* K E) such that
0o fo = f1, and hence,

hij = AI(O}) = dofo(O}) = fo(Oéw)!olzvjf - fO(Oy)’ng = 713“0%4 - %i\o?]@ i,j €1

Recall that O; n X is a Cauchy hypersurface of O; for all 7 € I and thus, each 711 determines a bisolution
h; € C® (OZM ,E* X E) via Theorem 2.3.2. On the other hand, due to causality of O;;, we have a well-
posed Cauchy problem on O

1, and consequently, h; | om —hi | oum = hij, since their Cauchy data coincide.
ij ij

This proves the claim:

(59 + ha) [ orr = (S + By = hig) o = (8% + hy) | oar- 0
(%] 7 ]
For a partition of unity {x;}ier subordinate to OM , a well-defined bisolution on N x M is given via
SN0l == D1 (SO + hi)[xiv, 9], e 2(N,E), g€ 2(M,E*). (6.5)

el
Since OM is a locally finite cover, for each 1), only finitely many summands are non-zero. Moreover, due
to Lemma (6.1.3), this definition does not depend on the choice of the partition, and for all i, we directly
read off from (6.5) that

SN 5% € C*(0; x M, E* R E). (6.6)

Oi X M -
Hence, two different constructions of such a bisolution on N x M differ only by a smooth bisolution.

Proposition 6.1.4. There is a bisolution S: (M, E) x 2(M, E*) — R such that

S S% e C*(0; x 0;, E*RE), iel. 6.7)

OiXOi B
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6.1 Global construction of symmetric bisolutions

Proof. Let SN be the bisolution on N' x M defined by (6.5) and recall that N is an open neighborhood of
Y. Forall p € (M, E*), we define S(-)[¢] as the unique solution of

PH(S()e])
SCelly
el )’2

0,
SN ()[ ]‘
v,

/\

)
V. (S( SN

This yields a smooth section, which leads to a bisolution since SV (-)[P'y] = 0, and hence, S(-)[P'y]

el

solves the trivial Cauchy problem. Furthermore, we have S ] 0:x0: = N ‘ 0.x0,» S0 (6.7) follows from
(6.6) and Proposition 6.1.1. O

Corollary 6.1.5. There is a smooth bisolution u € C*(M x M, E* K E) such that

(S —u)[p1, O] = (S — u)[12, Or1], V1,2 € (M, E).

Proof. For (15)[1h1,O12] := S[the, Oth1], let u := (S — 1S). It follows that S — u = (S — u) and we

show that « is smooth. For all m € N, let Z™ be given as in (6.4), i.e. ™ = . ¢™ and §N‘N N — Pm

smooth due to Corollary 5.4.4 and Proposition 5.5.3. Therefore, u is smooth on V,,, x Ny, for all m:
2u|Nm =§N’”—L§Nm+§m—§m=§Nm—§m—L(§Nm—§m)

and thus on NV x N. Since u is a bisolution and NV a neighborhood of ¥, Theorem 2.3.2 ensures smoothness
onall of M x M. O

Theorem 6.1.6. Let M be a globally hyperbolic Lorentzian manifold, n: E — M a real vector bundle
with non-degenerate inner product over M and P: C*(M,E) — C*(M, FE) a formally self-adjoint
wave operator. Furthermore, let G+ denote the advanced and retarded Green operator for P* and S the
symmetric bisolution given by Proposition 6.1.4 and Corollary 6.1.5. Then

H::S+%(G+—G,) (6.8)
is a Hadamard bisolution, and a Feynman and an anti-Feynman Green operator for P* is determined by
Gp=1iS+ = (G++G ) Gar = —1S + = (G++G ). (6.9)

Proof. For each m € N, let 2™ be given as in (6.4). It follows that WF (927’”) = WF(Gup — Gp) in the
sense of (1.11) from Corollary 5.4.6, and moreover, we have

S|y xn,, — L™ € C* (N x Ny, B* K E)

by Propositions 5.5.4 and 6.1.1 as well as (6.6). This holds for all m and hence, H is of Hadamard form
in a causal normal neighborhood NNV of ¥ due to Proposition 5.4.5. Therefore, H is globally Hadamard
by Theorem 5.8 of [SV2001] or, more precisely, by (i) of the subsequent Remark.

By the same reasoning as for Corollary 5.4.6, a Feynman and an anti-Feynman parametrix for P’ are
given by (1.12), that is,

+iH + Gy = +iS + - (G++G )

These are even Green operators, since S is a bisolution and G+ are Green operators for Pt. O
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6 Global Hadamard two-point-functions

6.2 Positivity

In the previous section, we depicted the construction of symmetric bisolutions S leading to Hadamard
bisolutions via (6.8). Therefore, with regard to (1.7), it only remains to show that S can be chosen such
that S[y,©¢] = 0, ¢ € Z(M, E), holds. The basis for the proof is Theorem 6.6.2 of [DH1972], which
ensures the existence of some smooth f such that %(CNJGF ye. r) + f satisfies this positivity property.
Unfortunately, it is formulated merely for the scalar setting.

Let M be a smooth manifold, 7: E — M a real or complex vector bundle over M with non-degenerate
inner product and P: C*(M, E) — C®(M, E) a properly supported pseudodifferential operator. For
the definitions of P being of real principal type in M, pseudo-convexity of M with respect to P and the
bicharacteristic relation Cp of P, we adopt Definition 3.1 of [Den1982] as well as Definition 6.3.2 and
(6.5.2) of [DH1972], respectively. Assuming those properties for M and P, according to Theorem 6.5.3
of [DH1972], there are distinguished parametrices QCP\ As Q@ associated to the respective components
of Cp\A, where A denotes the diagonal in Char P x Char P. For P a wave operator, they correspond to
Feynman and anti-Feynman parametrices, respectively.

Definition 6.2.1. Let M be a smooth manifold, 7: E — M a real or complex vector bundle with non-
degenerate inner product and P: C*(M,E) — C*(M, E) a formally self-adjoint, properly supported
pseudodifferential operator of real principal type in M such that M is pseudo-convex with respect to P.
Then P is called of positive propagator type if there exists some f € C*(M x M,E* X E) such that the
bidistribution T := (QCP\A — Qg) + f satisfies

T[y,09] >0, e (M,E).

Note that f is not demanded to be unique and in general, a positive propagator type operator will have
many such sections. For E the trivial line bundle M x R, every such P is of that type due to Theorem
6.6.2 of [DH1972]. On the other hand, by Proposition 5.6 of [SV2001], the Hadamard bisolutions fail to
be positive if the inner product on E is not positive definite. Hence, anticipating the result of this sec-
tion, wave operators acting on sections in a non-Riemannian vector bundle over a globally hyperbolic
Lorentzian manifold are not of positive propagator type.

The proof of Theorem 6.6.2 of [DH1972] employs positivity of %(éa r — Gp) for the directional deriva-
tives D,, := —i%, n =0,...,d —1on C®(R?% and by applying certain operators, allowing one to
keep track of the singularity structure of the corresponding parametrices, the general case is reduced to
D,,. Eventually, positivity holds up to smooth functions, since there is no way to control this smooth
part in terms of the singularity structure. However, in the setting of Definition 1.2.1 with ' assumed
to be Riemannian, we can choose the same ansatz and basically the same procedure. This strongly sug-
gests the assumption that wave operators acting on smooth sections in some general Riemannian vector
bundle over a globally hyperbolic Lorentzian manifold are of positive propagator type.

Nevertheless, even with this property and actual Green operators G, G,r at hand, we can still only de-
duce the existence of some f € C*(M x M, E* X F) such that (S + f)[,©¢] > 0forall € (M, E),
where S := %(G,r — GF) denotes the corresponding symmetric bisolution. It is the task of this fi-
nal section to show that f can be chosen as a symmetric bisolution. As it happens, the proof actually
works for a much wider class of differential operators P of positive propagator type. More precisely,
they merely have to admit a Feynman and an anti-Feynman Green operator Gr, G,r and a well-posed
Cauchy problem. Furthermore, the characteristic set and the bicharacteristic relation have to be given

b
Y Char (P) = {(p,€) € T*M\{0} | g (¢%,€%) = 0},
C’P = {(paf;q,ﬁ) € (T*M x T*M )\{0} | p> 7C)}

(6.10)
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6.2 Positivity

For ¥ some Cauchy hypersurface of M, the idea is to use f as initial data on ¥ x X in order to determine
a smooth bisolution u via Theorem 2.3.2. Following the lines of section 3.3 of [GW2015], positivity of the
bisolution S + u can be related to positivity on the level of Cauchy data, where S+ v and S + f coincide.
For the precise argument, we need some preparation.

Let t: ¥ < M be the embedding map and p := (.*,¢* o V,,) the corresponding pullback to the initial
dataon X, i.e.

p: C*(M,E) - C*(S,E@E), u— (ulg, Vyuly). (6.11)

Clearly, p is surjective and we have p(C2(M,E)) = 2(M,E @ E). Furthermore, for any differential
operator P with well-posed Cauchy problem, p yields a bijection ker P — C*(X, E@FE). The transposed
map p' is related to the pushforward along the embedding, which creates singular directions orthogonal
to the embedded (spacelike) hypersurface. More precisely, according to Proposition 10.21 of [DK2010],
Ly corresponds to ¢dy, for any ¢ € C* (X, E), and hence, p' is a map

Pt C*(%,EB* ® E*) — Dn+x(M,E*).

2{. denotes the distributions with wave front set contained in the closed cone I' = T*M\{0}, and we
refer to section 8.2 of [H6r1990] for precise definitions and properties of these spaces. Due to Hor-
mander’s criterion ((8.2.3) of [H6r1990]), we can pull back a distribution along . if its wave front set
does not contain the orthogonal directions mentioned above. Hence, for all closed cones I' = T*M\{0}
with' n N*¥ = ¢, (6.11) extends to a map

p: Dr(M,E*) — D (X, E* @ E*), U —> (XHu[ptx]),

where .*T := {(o, d¢[5(€)) | (1(0),€) € I'} © T*X\{0} contains the projections of £ € I" onto T*X. Let

(6, O)s = L (v + (s () dVe, (e D5, E@ E), (6.12)

denote the inner product on 2(%, E @ E) with dVx the induced volume density and © := (O, ) the
corresponding isomorphism £ @ E — E* @ E*. If P is Green-hyperbolic, we obtain the exact sequence
(1.1) and thus, ran G = ker P’ngg‘ This provides a further bijection pG: (M, E)/kerG — (X, E® E),
which transfers G to a Green operator G's; on the space of initial data (X, E @ F) via

(pGY1, G pGipo)s = (Y1, G2) um, Y1, € (M, E). (6.13)

We finish the preparation by giving an explicit expression for G'x;. Using the adjoints with respect to (2.2)
and (6.12), as well as G* = —G, (6.13) becomes G = —Gp*GyxpG and hence, —Gp*Ggp] = id‘

ranG ranG*
Then bijectivity of p on ker P = ran G leads to a well-defined map

Us := —Gp*Gyx: C*(C,E®FE) — C*(M,E),

which satisfies
pUs. = id, UEp|kerP = id’kerP’ PUs, =0.

In other words, Us; maps initial data (ug, u1) € C*(X, E @ E) to the solution u of the corresponding ho-
mogeneous Cauchy problem and therefore, it is frequently referred to as the Cauchy evolution operator.
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6 Global Hadamard two-point-functions

On the other hand, [Dim1980] and, for the vector-valued case, [BS2018] provide the expression
u = G*(pjuo — pgur),

where p = (po, p1). By uniqueness, this has to coincide with Us;(ug, u1) = (pG)*Gx(uop, u1), which leads

to
G —
() we), = () 0),, = on = ((0) (o)), = () )
u1 ) u1l M U1 —poGY ) Uo »
for all ¢y € 2(M, E). By surjectivity of pG: (M, E) — 2(X, E ® E), this identifies G5, as the map
Gz): COO(E,E(—BE)—>COO(E,E(—BE), (uo,ul) [— (—ul,uo).

Theorem 6.2.2. Let M be a globally hyperbolic Lorentzian manifold, 7: E — M a Riemannian vector
bundle and P: C*(M, E) — C®(M, E) a linear first- or second-order differential operator, which is of
positive propagator type and admits a well-posed Cauchy problem. Assume that the characteristic set
and the bicharacteristic relation of P are given by (6.10) and that @CP\A’ @@ can be chosen as actual
Green operators Qc,p\a, Q-

Then there is a real-valued and symmetric bisolution S such that S — %(Qcp\ A— Q@) is smooth and

S[$.0¢] 20, e I(M,E).

Proof. The desired real-valued bisolution is given by

S1,¢) = (Qopa — Qo) 9 + 1 (@cpa —Q)el, € Z(M,E), o (M, E¥), (614

and we show the claimed properties. With regard to Corollary 6.1.5 and without loss of generality, we
assume S to be symmetric, and furthermore, there is some f € C*(M x M, E* X E) such that

(S + f)lv,0¢] =0, Yve P(M,E), (6.15)
since P is of positive propagator type. Because f [V1, O] = %( flw1, ©2] + flae, @¢1]) also satisfies
(6.15), we assume symmetry of f as well, thatis, f[y1, ©2] = f[2, Oy ] for all ¢y, 12 € Z(M, E).
Recall that Green operators map Z(M, E*) to C*(M, E*), so for fixed ¢ € C* (M, E*), (6.14) provides
a smooth section p — S(p)[¢] in E*. It follows that for each p € M, we obtain a well-defined E;-valued
distribution S(p), which is a bisolution for P. Therefore, the assumptions on P imply that WF(S(p))
exclusively contains lightlike directions. Hence, WF(S(p)) n N*X = ¢, so the restriction of S(p) to &
yields a well-defined distribution p(S(p)): 2(Z, E* @ E*) — R for any Cauchy hypersurface X. This
means that, due to Theorem 8.2.13 of [H6r1990], the operator S associated to (6.14) can be applied to
pix € Dnxs (M, E*), x € 2(%, E* ® E*), and for the result, we obtain

WE(Sp'x) < {(.€) | (p:&:¢,0) e WE(S)} U {(p,€) | 3(¢,¢) e WF(p'x) : (p,&:q,—C) € WE(S)}.

Since WF(S) <« Cp = {(p,€) ~ (¢,¢)} and WE(p'x) = N*X, both contributions on the right hand
side are empty. Hence, Sp’ represents a map Z(X, E* @ E*) — C%(M,E*), so it follows that
p— p(S(p))[x] = (Sp'x)(p) is smooth for fixed x. With the adjoint operator p* = ©!p'O, we even-
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6.2 Positivity
tually obtain a well-defined bidistribution S*: (X, E® E) x 2(%, E* ® E*) — R via

S¥Axd = S[p"A '] = f 800~ (S()['x])(0) (A(@) dVs(0); (6.16)

The bisection f determines smooth and symmetric Cauchy data on ¥ x ¥ and thus a smooth and sym-
metric bisolution u by the Theorems 2.3.2 and 2.3.5. Using the short-hand notation Sy := S + f and
Sy = S + u, this yields SE = S? for the corresponding bidistributions (6.16), and we show that positiv-

ity is preserved under the restriction to %, i.e. S?[/\, OX] = 0forall A € 2(Z, E @ E). Due to Theorem
8.2.3 of [Ho6r1990], we find a sequence (¢,)neny © Z(M, E) such that ¢, — p*Xin Py«xn (M, E)’, and
consequently, ©v, — Op*\ = PO, By continuity of Sy as a bidistribution, it follows that

SFIN OA] = S¢[p*A, p'ON] = lim Sy[th, O] = 0. (6.17)
n—00 | ]

=0

The proof of Theorem 3.3.1 and Proposition 3.4.2 of [BGP2007] show that well-posedness of the Cauchy
problem implies the existence of a unique advanced and retarded Green operator and hence exactness
of the sequence (1.1). Thus, due to ker P = ran G, S,, does not only descend to a well-defined bilinear
form on Z(M, E)/ker P, since it is a bisolution, but also to ran G via

S;[G¢1,@G¢2] = SU[¢17@¢2]7 @ZJ]_,?,[JQE.@(M,E).

By following the lines of Proposition 3.9 of [GW2015] and employing G = —Gp*GxpG, this allows us to
trace back the claimed positivity property to (6.17). More precisely, for all ¢, € Z(M, E), we have

Sulth1, 2] = S, [G1, ©GY2] = S, [Gp*GspGip1, OGp* GspGibs]
= Sulp*GrpGio1, 09" GxpGiin] = S [GrpGibr, OGspGi]
= SF[GxpGip1, OGspGify],
which proves the theorem. O

In the case of formally self-adjoint wave operators, the existence of Gr and G, r is ensured by Theorem
6.1.6, so Theorem 6.2.2 leads to the final result of this thesis:

Theorem 6.2.3. Let M be a globally hyperbolic Lorentzian manifold, 7: E — M a Riemannian vector
bundle and P: C*(M,E) — C®*(M, E) a formally self-adjoint wave operator of positive propagator
type. Then there exists a bidistribution S: (M, E) x 2(M, E*) — R such that

H::S+%(G+ —Go)

yields a Hadamard two-point-function, where G+ denotes the advanced and retarded Green operator
for P'. This means that WF(H) has the Hadamard singularity structure (1.9) and satisfies

HIPY,¢] = 0= H[y, P'el,  HIp ¢l - HO '6,00] = 5(G4 —~ Glwgl,  HIY, 09120

foralliyy e (M, E), pe€ (M, E*).

Moreover, a Feynman and an anti-Feynman Green operator G, G,F are given by (6.9).
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6 Global Hadamard two-point-functions

Note that, in general, S is far from being unique, i.e. there may be many bidistributions with the re-
quired properties. Clearly, this is related to the non-uniqueness of the many choices of smooth sections
during the construction, and in most cases, it is not at all obvious, how to find these sections practi-
cally. This particularly concerns the choice of the h;’s in Lemma 6.1.3 and the f for operators of positive
propagator type.

However, the overall reasoning provides a comparatively constructive alternative to the existence
proofs, which are already present in the literature ([BF2014], [FNW1981], [GOW2017]). It starts most
naturally with the Hadamard condition, so the form of the bidistributions is, up to smooth terms, de-
termined right from the start. It therefore might provide a promising starting point for a possible clas-
sification of these states up to unitary equivalence of their respective GNS-representations. This and
the identification of pure states in particular would require to investigate the choices of the said smooth
sections.

Furthermore, the methods used here provide an alternative procedure to the classic deformation argu-
ments since they rely on the ability to make modifications to the metric confined to certain spacetime
regions. There are situations, where this is not applicable, for instance, in the case of linearized gra-
vity, where the background spacetime must solve the Einstein equation, or similarly for linearizations
of Yang-Mills theories. They also occur if one is restricted to analytic metrics.
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7 Appendix

7.1 Proof of Proposition 5.4.1 for even dimensional spacetimes

Note that in the proofs of all following Lemmas, ¢ denotes a generic constant, i.e. its particular value
can change from one line to another.

Lemma 7.1.1. Foralll € N and 3 > | + 1, there is some c; g such that for all 0 < € < 1, we have

l
Hcclitl <0 (Z) otﬁ-logt)

Proof. We start with calculating

1
<e <log5 +4 1) ~ap - llollenw)-

COR)

FT (tﬂ - log t)

B

COR)

j .
|B(ﬁ —1)...(B—j+ DtP T logt + 1777 ) (Z)(—l)i_l(z’ —DIBB-1)...(6-j+i+1)

- com)
<c¢jp- [t (|logt| +1)
<cjp- 1777 (|logt]| + m+1).
Since o"=7) (L) = 0 for [t| > e and e’ < e due to 8 > I + 1, this yields
d! t L/l (=) (1) ,
Hdtl <0 (E).t Jogt) éZ <j)‘C],B gli_j?im J(|10g|t||+7r+1)
CO(R) Jj=0 CO(R)
Lo/ .
g ePt (1-3)
< ) cig-e log—+m7+1 'Ho ‘
j;) <]> 7,8 < g - > o)
1
Sagp-€ <10g i 1> Nl i gy -
O

Lemma 7.1.2. For any open and relatively compact domain O < ) and | € Ny, there is a sequence
{ek}r=n < (0, 1] such that for all | > 0 the series

0

(p.@) — Y. Uk(p,q)log (T(p, q) £0) LL(2k + 2,p)(q) (7.1)
k=N+l

converges in C! (5 x 0,E*K E) In particular, for | = 0, this defines a continuous section over O x O
and a smooth section over (O x O)\I'"*(0).
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7 Appendix
Proof. Since k > N > g and d even, I'(p, q)k_% is a smooth and T'(p, q)k_% - log (T'(p,q) £ 10) a

continuous section over O x O, so every single summand of (7.1) is at least continuous, individually.
Due to supp (O‘ o %) c {I'(p,q) <ex}forallk > N and 0 < 0 < 1 by Lemma 7.1.1, we have

(O log (T £10) - C(2k + 2, a0

1
0(0x0) < Crg HUkHCo@X@) - Ek (log 5 + T+ 1) .

Since ¢ log é — 0 for ¢, — 0, we can choose ¢}, such that

1
ck,d |Ukl co - ek <1Og€k + 7+ 1) <27F,

and (7.1) converges in C°. Now let ! > 0 and k > N + [ such that I'(p, q)k_% log (I'(p, q) +40) is of

Cl-regularity. Set py(t) := o (i) %" s0 by Lemma 7.1.1 we have

1
lpkllcrry < cia - exllolon ), lpk - 1og |ciry < cik.d -k <10g STt 1> lolevwy, — (7.2)
and Lemma 1.1.11 and 1.1.12 of [BGP2007] yield

Hﬁk log (T % i0) - C(2k + 2,d)I*

= = < nralUk - (k- 108) o D) e (o0

C'(0x0)
" aralUil n0) 1 ox108) o Tlou(o,)
he? cLkd|Uklonox0) P HFHjCl(@a) o log lereey
= akdlol o) " HF”él(@@) Nkl @x0) 2 log <k o 1> |

Hence, forall £k > N — [, we demand
1 —k
Cl,k‘,dHUk”(jl(bxﬁ) - log ; +r+1) <277 (7.3)

so the k. summand can be estimated by

”o-Hcl(]R)
Tk MaXj—q,..1

PHél (0x0) and (7.1) converges in
C' (O x O, E* K E). Note that for each k, we impose only finitely many conditions on ¢, namely one
for each | < k— N, which are satisfied by some positive number. Hence, for each k, there is a sufficiently
small number ¢; > 0 such that (7.3) is fulfilled forall I < k — N.

Since all summands are smooth on (O x O) \I'"!(0) and the series converges in all C'-norms, it defines

a smooth section on (O x O) \I'"}(0). O

Thus, we showed that (5.16) yield well-defined distributions with singular support on the light cone,
i.e. property (i). Furthermore, (iii) follows from Proposition 5.2.1 (6). We proceed with (ii):

Lemma 7.1.3. The sequence (), . ,, can be chosen such that

Py Zs(p) = 6, + K+ (p, )

for some Ky € C* (O x O, E* KR E).
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7.1 Proof of Proposition 5.4.1 for even dimensional spacetimes

Proof. Letoy := 0o % e C*(Q x Q), 50 Uy = oy - Uy forall k > N and supp o, © {T(p,q) < ex}. Dueto
Lemma 1.1.10 of [BGP2007], we can exchange P with the sum, so the transport equations (5.12) imply

o0
Z Poy ok (U log(T +i0) + Wi,) LE(2k + 2)

0
= 2 ( (2)0k — grad(2>ak + UkP(2)> (Uk IOg(F + 10) + Wk)Ls_z_ (2k + 2)

oo
=1+ 5o + | 0% Py (Uklog(T" £ i0) + Wi) LE (2K + 2).
k=N

Recall that the transport equations (5.12) and (5.13) are derived from the requirement that P5) applied
to (5.11) is a telescoping series, that is,

Ppoy (Ug log(T +40) + Wy ) LE (2k + 2)
= (log(T" +i0) - Py Uy, + PoyWi) LE(2k + 2) — (log(T" % i0) - PoyUy—1 + PoyWi—1)LE(2k).
Hence, the right hand side becomes
S1 + Bp — on (log(T' +0) - PoyUn—1 + PoyWi—1)LE(2N) + 3
with

o0
Yg = 2 (Jk — ak+1)(log(F + ZO) . P(g)Uk + P(Q)Wk)LSJ_E(Qk + 2)

Then, for K4 (p,-) := P(Q).,Z (p) — 6,, the transport equations (5.12) for U}, yield

Ky = (1 — UN)(IOg(F + iO) . P(Q)UNfl + P(Q)WNfl)Lg(QN) + X1+ 2o + Y. (74)

On the right hand side, every summand individually yields a smooth section, since both 1 — o and
o —0k+1 as well as all derivatives of o), vanish in a neighborhood of I'"1(0), which contains the singular
support of Z;. Thus, K vanishes on I'~1(0) to arbitrary order and it remains to show convergence in all
C!'-norms, which again for the W-part is provided by the proof of Lemma 2.4.3 of [BGP2007]. Therefore,
we concentrate on

ol
I
LDs

(D(Q)ak — 2V grad o0 + akP(Q)) Uy log(T + i0) L2 (2k + 2) =: ) + 5 + 3.

For fixed I € No, let k > 2(1 + 1) + N and Sy, := {% < [['(p, q)| < &1 }. Then Lemma 1.1.12 of [BGP2007]
implies for the k. summand of ¥,

| Vigrady o Ui log (T £ 0) LE(2k +2),

— | Vigradyy o Uk l0g (T £10) LE(2k +2)

grad ) ol (5><5 grad,) C! (6><5m5‘k)

fe— d—
(0xOnSk) HOkHCHl(@x@mSk HF &2 log (1" + ZO)’

Cl+1(5x5msk)

lollr

k—
sy I oo 2 g
k

Cl+1 k €k]) ' j=%)1,1~~a§+1 H HCl+1(O><OmSk)
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7 Appendix

HUHCZH(R) 2j k—9=2_(141)
(0x0ns) ™ T j_max | IPl o (@) . (ﬁaﬁm |t] ) (logt| + 1)

1
(5><5) “Ek (10g 5 + 7+ 1> ”O'HclJrl(R) . 76nax HF||CZ+1(5><5)’

so we additionally demand

1 _
Clk,d HUk”C”“(@xﬁ) - Ek <log€k + T+ 1> <2 k.

Then, for all /, the C'-norm of almost all summands (without the first 2(I + 1) + N) of ¥} is bounded by
27k lollcre gy - max;j—o,-.. 1+1 HFHing(bx@) and thus, we have convergence in C! for all /, i.e. ¥, defines

a smooth section in E* X E over O x O .
The treatment for 3] is completely identical, so we directly turn to the k. summand of X%:

[0k = o1e1) LE 2k + 2,) log (T £ i0) - PiyUi a5,

< Clk,d (HO’k FlJrl log ( HCl

) o Hakﬂ I log (I + ZO)‘

) i PRLCTE

Set pri(t) := o ( ) t"*11ogt, so we have oj, T'*!log (I' £i0) = py; o I'. Then again Lemma 1.1.12 of
[BGP2007] and Lemma 7.2 yield

Hak I+ og (T + iO)’

01(5xD) < aprillorm L max, ITleioxo)

1
< Ckl - €k (IOggk + 7T+ 1) loll ey ' max, ”FHCZ(OXO)

’” 7

1
| + 7T+ 1>> ”O'Hcl(R)

1
Y log— +7+1)+ 1
H BHCl(oXo) X Clkd < < og er ™ > Ek+1 ( og -

so we obtain

k—N—I
.Jr%?x, HF“CZ(OXO HF C'(Ox HP(Q)UICHCZ@X@'
Hence, for all k > N + [ we demand
1
e (log — 1) | PoyU HP’C—N—l‘ <91
Clkd " €k (og o T ) | kHcl 0x0) C1(0x0)
aswell asforall k > N + [ + 1 that
1 kaflq‘ —k—2
, = . .. < )
Clk—1,d * €k <10g - + T+ 1> HP(Q)Uk_lHCl(OxO) HF Cl(5><5) 2

Then the C'-norm of almost all summands of E’ (without the first l + N) is bounded by 27k loller )

.....

each k we again added only finitely many conditions. O

Finally, we show that the £;’s can be chosen such that for all p € O, the parametrices .:?ZL (p) are distribu-
tions of degree at most «4.
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7.1 Proof of Proposition 5.4.1 for even dimensional spacetimes

Lemma 7.1.4. There is a sequence (i )k=n < (0, 1], for which we find some C' > 0 such that
[Zi el < C-Ielcray,  pE0. pe P (QEY).

Furthermore, for fixed p € 7 (2, E*), the map p — .Z,Z_r(p) [¢] is smooth.

Proof. We show the claim only for the logarithmic part, i.e. f := >} 4 » Uy log(T + i0) LY (2K + 2), since
= +

for the other two sums the proof of Lemma 2.4.4 of [BGP2007] applies identically. By Lemma 7.1.2, we

have f € C%(O x O, E* X E) and thus,

[F@)ell < [ floo@xo) - vOlO) - [loo@xo) < [ flora@xa) - VOUO) - ¢l o @ o)

forallp € O and ¢ € (0, E*), so the constant can be chosen via C' := || f|oxs(5x5) - vOI(O).
Since Proposition 5.2.1 (6) directly applies also to log(I', +0) LS (2k + 2, p) and Uy is smooth on O x O
with supp (U)¢ compact, for every k > 22 the map

p— UFlog(T, +i0)LE(2k + 2,p)[0],  we 2(0,E¥),

is smooth. Therefore, also ', , (75 log(I', & i0) LY (2k + 2,p)[¢] is smooth for all I > ¢ and the re-
2

k=
maining term Zl?:l ﬁzlf log(I'p & iO)Lﬁ (2k +2,p)[p]is C ! by Lemma 7.1.2. This holds for all / and hence,
p+— f(p)[¢] is smooth. -

Lemma 7.1.4 shows properties (iv) and (v) of ,,%_r, so Proposition 5.4.1 is proved also for even d.
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