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Summary
Quantum field theory on curved spacetimes is understood as a semiclassical approximation of some
quantum theory of gravitation, which models a quantum field under the influence of a classical gra-
vitational field, that is, a curved spacetime. The most remarkable effect predicted by this approach is
the creation of particles by the spacetime itself, represented, for instance, by Hawking’s evaporation of
black holes or the Unruh effect. On the other hand, these aspects already suggest that certain corner-
stones of Minkowski quantum field theory, more precisely a preferred vacuum state and, consequently,
the concept of particles, do not have sensible counterparts within a theory on general curved spacetimes.
Likewise, the implementation of covariance in the model has to be reconsidered, as curved spacetimes
usually lack any non-trivial global symmetry. Whereas this latter issue has been resolved by introducing
the paradigm of locally covariant quantum field theory (LCQFT), the absence of a reasonable concept
for distinct vacuum and particle states on general curved spacetimes has become manifest even in the
form of no-go-theorems.
Within the framework of algebraic quantum field theory, one first introduces observables, while states
enter the game only afterwards by assigning expectation values to them. Even though the construction
of observables is based on physically motivated concepts, there is still a vast number of possible states,
and many of them are not reasonable from a physical point of view. We infer that this notion is still
too general, that is, further physical constraints are required. For instance, when dealing with a free
quantum field theory driven by a linear field equation, it is natural to focus on so-called quasifree states.
Furthermore, a suitable renormalization procedure for products of field operators is vitally important.
This particularly concerns the expectation values of the energy momentum tensor, which correspond to
distributional bisolutions of the field equation on the curved spacetime. J. Hadamard’s theory of hyper-
bolic equations provides a certain class of bisolutions with fixed singular part, which therefore allow for
an appropriate renormalization scheme.
By now, this specification of the singularity structure is known as the Hadamard condition and widely
accepted as the natural generalization of the spectral condition of flat quantum field theory. Moreover,
due to Radzikowski’s celebrated results, it is equivalent to a local condition, namely on the wave front
set of the bisolution. This formulation made the powerful tools of microlocal analysis, developed by
Duistermaat and Hörmander, available for the verification of the Hadamard property as well as the
construction of corresponding Hadamard states, which initiated much progress in this field. However,
although indispensable for the investigation in the characteristics of operators and their parametrices,
microlocal analyis is not practicable for the study of their non-singular features and central results are
typically stated only up to smooth objects. Consequently, Radzikowski’s work almost directly led to ex-
istence results and, moreover, a concrete pattern for the construction of Hadamard bidistributions via a
Hadamard series. Nevertheless, the remaining properties (bisolution, causality, positivity) are ensured
only modulo C8.
It is the subject of this thesis to complete this construction for linear and formally self-adjoint wave
operators acting on sections in a vector bundle over a globally hyperbolic Lorentzian manifold. Based
on Wightman’s solution of d’Alembert’s equation on Minkowski space and the construction for the ad-
vanced and retarded fundamental solution, we set up a Hadamard series for local parametrices and
derive global bisolutions from them. These are of Hadamard form and we show existence of smooth
bisections such that the sum also satisfies the remaining properties exactly.
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Zusammenfassung
Quantenfeldtheorie auf gekrümmten Raumzeiten ist eine semiklassische Näherung einer Quantenthe-
orie der Gravitation, im Rahmen derer ein Quantenfeld unter dem Einfluss eines klassisch modellierten
Gravitationsfeldes, also einer gekrümmten Raumzeit, beschrieben wird. Eine der bemerkenswertesten
Vorhersagen dieses Ansatzes ist die Erzeugung von Teilchen durch die gekrümmte Raumzeit selbst, wie
zum Beispiel durch Hawkings Verdampfen schwarzer Löcher und den Unruh Effekt. Andererseits deu-
ten diese Aspekte bereits an, dass fundamentale Grundpfeiler der Theorie auf dem Minkowskiraum,
insbesondere ein ausgezeichneter Vakuumzustand und damit verbunden der Teilchenbegriff, für allge-
meine gekrümmte Raumzeiten keine sinnvolle Entsprechung besitzen. Gleichermaßen benötigen wir
eine alternative Implementierung von Kovarianz in die Theorie, da gekrümmte Raumzeiten im Allge-
meinen keine nicht-triviale globale Symmetrie aufweisen. Letztere Problematik konnte im Rahmen
lokal-kovarianter Quantenfeldtheorie gelöst werden, wohingegen die Abwesenheit entsprechender
Konzepte für Vakuum und Teilchen in diesem allgemeinen Fall inzwischen sogar in Form von no-go-
Aussagen manifestiert wurde.
Beim algebraischen Ansatz für eine Quantenfeldtheorie werden zunächst Observablen eingeführt und
erst anschließend Zustände via Zuordnung von Erwartungswerten. Obwohl die Observablen unter
physikalischen Gesichtspunkten konstruiert werden, existiert dennoch eine große Anzahl von mög-
lichen Zuständen, von denen viele, aus physikalischen Blickwinkeln betrachtet, nicht sinnvoll sind.
Dieses Konzept von Zuständen ist daher noch zu allgemein und bedarf weiterer physikalisch mo-
tivierter Einschränkungen. Beispielsweise ist es natürlich, sich im Falle freier Quantenfeldtheorien mit
linearen Feldgleichungen auf quasifreie Zustände zu konzentrieren. Darüber hinaus ist die Renormier-
ung von Erwartungswerten für Produkte von Feldern von zentraler Bedeutung. Dies betrifft ins-
besondere den Energie-Impuls-Tensor, dessen Erwartungswert durch distributionelle Bilösungen der
Feldgleichungen gegeben ist. Tatsächlich liefert J. Hadamard Theorie hyperbolischer Differentialglei-
chungen Bilösungen mit festem singulären Anteil, so dass ein geeignetes Renormierungsverfahren
definiert werden kann.
Die sogenannte Hadamard-Bedingung an Bidistributionen steht für die Forderung einer solchen Singu-
laritätenstruktur und sie hat sich etabliert als natürliche Verallgemeinerung der für flache Raumzeiten
formulierten Spektralbedingung. Seit Radzikowskis wegweisenden Resultaten lässt sie sich außerdem
lokal ausdrücken, nämlich als eine Bedingung an die Wellenfrontenmenge der Bilösung. Diese Formu-
lierung schlägt eine Brücke zu der von Duistermaat und Hörmander entwickelten mikrolokalen Ana-
lysis, die seitdem bei der Überprüfung der Hadamard-Bedingung sowie der Konstruktion von Hada-
mard Zuständen vielfach Verwendung findet und rasante Fortschritte auf diesem Gebiet ausgelöst hat.
Obwohl unverzichtbar für die Analyse der Charakteristiken von Operatoren und ihrer Parametrizen
sind die Methoden und Aussagen der mikrolokalen Analysis ungeeignet für die Analyse von nicht-
singulären Strukturen und zentrale Aussagen sind typischerweise bis auf glatte Anteile formuliert.
Beispielsweise lassen sich aus Radzikowskis Resultaten nahezu direkt Existenzaussagen und sogar ein
konkretes Konstruktionsschema für Hadamard Zustände ableiten, die übrigen Eigenschaften (Bilösung,
Kausalität, Positivität) können jedoch auf diesem Wege nur modulo C8 gezeigt werden.
Es ist das Ziel dieser Dissertation, diesen Ansatz für lineare Wellenoperatoren auf Schnitten in Vek-
torbündeln über global-hyperbolischen Lorentz-Mannigfaltigkeiten zu vollenden und, ausgehend von
einer lokalen Hadamard Reihe, Hadamard Zustände zu konstruieren. Beruhend auf Wightmans Lösung
für die d’Alembert-Gleichung auf dem Minkowski-Raum und der Herleitung der avancierten und re-
tardierten Fundamentallösung konstruieren wir lokal Parametrizen in Form von Hadamard-Reihen
und fügen sie zu globalen Bilösungen zusammen. Diese besitzen dann die Hadamard-Eigenschaft
und wir zeigen anschließend, dass glatte Bischnitte existieren, die addiert werden können, so dass die
verbleibenden Bedingungen erfüllt sind.
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"Wir legen ab und fahr’n nach Singapur

mit ’nem Schiff aus schäbigem Holz.

Auch wenn der Wind uns das Segel zerreißt,

wir müssen weiter, immer weiter, was soll’s?"
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1 Introduction

"’We apologize for the inconvenience.’ I think, I feel good about it."

1.1 Quantum field theory on a curved spacetime

Quantum field theory on curved spacetimes is regarded as an intermediate step on the path to a not yet
available quantum description of gravitation. This framework investigates the coupling of a quantum
field with classical gravitation, i.e. a curved spacetime, and is widely accepted as a reasonable paradigm
outside the event horizon of black holes and with the exception of the first 10´43 seconds of the universe,
where gravitation is considered negligibly weak on Planck length scales.
Despite its still semiclassical character, this model already predicts remarkable effects beyond the under-
standing of Minkowski quantum field theory, such as the creation of particles by the curved spacetime it-
self, a phenomenon most prominently represented by Hawking’s evaporation of black holes [Haw1975]
and the Unruh effect [Ful1973, Dav1975, Unr1976]. Flat Minkowski space possesses a rich group of
isometries, namely the Poincaré group, providing a conserved quantity "energy" and ruling out effects
like those mentioned above [Haw1970]. Curved spacetimes, however, usually lack any non-trivial sym-
metry and thus a reasonable notion of energy at all, thereby prompting a fundamental reconsideration
of essential concepts of quantum field theory. In particular, a distinct vacuum – the state of lowest
energy of the quantum field – and, as a consequence, the notion of particles turn out to be non-sensible
in general curved spacetimes since only a certain class of observers, namely the inert ones, would agree
on the same vacuum state. For a discussion of this issue and related effects see [Dav1984] and [Wal1994]
as well as the references therein.
It follows that there is no universal interpretation of states in terms of their particle content but only as
expectation values of suitable observables. We should therefore think of the observables as the more
fundamental objects. These should be constructed directly from the outset and not as operators on a
previously specified state space.

1.2 Algebraic and locally covariant bosonic quantum field theory

This view is best addressed by the algebraic approach to quantum field theory [HK1964, Dim1980],
where first of all observables are introduced as elements of rather abstract algebras ApOq Ă ApMq

associated to spacetime regions O Ă M in a local and covariant manner. The most common refe-
rences for an introduction to Algebraic Quantum Field Theory (AQFT) are the classic monographs
[Haa1992, Ara1999]. Contemporary overviews and developments can be found in [BDFY2015, FR2019]
and the connection to quantum measurement theory has been investigated in [FV2018, Few2019].
By a spacetime M , we always mean a globally hyperbolic Lorentzian manifold (Definition 1.3.8 of
[BGP2007]), which because of its causality properties qualifies for a physically reasonable model. In
such a spacetime, for example, closed causal curves are forbidden, and we find global time functions
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1 Introduction

and spacelike Cauchy hypersurfaces (Definition 1.3.4 of [BGP2007]) representing submanifolds of con-
stant time. More precisely, globally hyperbolic Lorentzian manifolds are isometric to

`

RˆS,´β dt2`gt
˘

with β P C8pRˆS,Rą0q and gt a Riemannian metric on S. This metric depends smoothly on t, and each
ttu ˆ S is a smooth spacelike Cauchy hypersurface of M [BS2005]. From an analytic point of view, it is
also sensible to work with these manifolds since well-posed Cauchy problems are admitted for linear
field equations describing frequently investigated quantum fields [Fur1999, AB2018].
The local algebras of observables are most commonly modelled as C˚-algebras (for a brief introduction
see chapter 1 of [BF2009]; the approach using ˚-algebras is given, for instance, in [KM2015]). Accor-
ding to this model, states are introduced only afterwards as normed and positive functionals τ , where
τpaq can be thought of as the expectation value of the observable a in the state τ . The induced GNS-
representation pπτ ,Hτ ,Ωτ q provides the familiar framework of a state space Hτ with the observables
represented as bounded operators πτ paq and a cyclic vector Ωτ (see section 2.3 of [BR2002] for details).
Hence, the selection of a distinct vacuum is shifted to that of an algebraic state τ . The pure states then
correspond to the extreme points of the convex set of all states, which are equivalently characterized by
certain irreducibility properties of their GNS-representation (see sections 1.8 and 2.3 of [Ara1999]).
One crucial ingredient of AQFT is the aspect of covariance, implemented by translating symmetries
of the spacetime, i.e. isometries, into algebra-automorphisms. A possible vacuum state would be con-
sidered to be invariant under these automorphisms, and indeed, an appropriately large isometry group
does single out such a state. For instance, the existence of a timelike Killing field, meaning that M is sta-
tionary, would suffice (see for instance [Wal1994] or [KM2015]). However, general spacetimes have no
non-trivial symmetries at all, so covariance in the AQFT-sense is a trivial demand. On the other hand,
full general covariance, i.e. if the group of isometries were replaced by the diffeomorphism group, is not
compatible with the local structure of the theory. Therefore, covariance has to be built in more subtly.
Whereas certain no-go-theorems demonstrate the absence of a distinct vacuum or natural state in
any reasonable sense [FV2012a], the approach of locally covariant quantum field theory initiated by
[BFV2003] yields a suitable local and covariant generalization of the principles of AQFT to general space-
times. Instead of fixing a spacetime from the beginning, a whole category of spacetimes is considered
with arrows given by certain isometric embeddings. The actual quantum field theory is then repre-
sented by a covariant functor to the category of C˚-algebras and injective C˚-homomorphisms. Thus,
covariance is implemented via isometric embeddings that correspond to C˚-algebra-monomorphisms,
rather than via isometries of a fixed spacetime and C˚-algebra-automorphisms. This emphasizes the
local character of the theory yet more strongly.
For the category of spacetimes, we adopt the setting of [BG2011], where the field is also taken as a datum
instead of being fixed from the outset:

Definition 1.2.1. The category GlobHypGreen consists of the following objects and morphisms:

• An object is a triple pM,E,P q, where

▶ M is globally hyperbolic Lorentzian manifold,

▶ E is a finite-dimensional, real vector bundle over M with a non-degenerate inner product,

▶ P : C8pM,Eq Ñ C8pM,Eq is a formally self-adjoint, Green hyperbolic operator.

• A morphism between two objects pM1, E1, P1q and pM2, E2, P2q is a pair pf, F q, where

▶ f is a time-orientation preserving, isometric embeddingM1 Ñ M2 with fpM1q Ă M2 causally
compatible and open,

▶ F is a fiberwise isometric vector bundle isomorphism over f such that P1, P2 are related via
P1 ˝ res “ res ˝ P2, where respφq :“ F´1 ˝ φ ˝ f the restriction of φ P C8pM2, E2q to M1.
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1.3 Quasifree states

Note that the usual demand of a well-posed Cauchy problem for P is replaced by the weaker assump-
tion of Green-hyperbolicity, that is, P admits an advanced and retarded Green operator GA, GR. For a
thorough discussion of Green-hyperbolic operators, we refer to [Bär2015]). Furthermore, the focus on
real vector bundles reflects the restriction to Hermitian fields, implying that, for instance, charged fields
are not considered.
This thesis will mostly deal with wave operators, which are Green-hyperbolic, as is shown in [BGP2007],
and bosonic quantum field theory. Therefore, we only sketch the bosonic quantization scheme given in
section 3.1 of [BG2011]. For G :“ GA ´GR, Theorem 3.5 of [BG2011] provides the exact sequence

t0u ÝÑ DpM,Eq
P

ÝÑ DpM,Eq
G

ÝÑ C8
scpM,Eq

P
ÝÑ C8

scpM,Eq, (1.1)

and hence, it leads to a covariant functor into the category of symplectic vector spaces with objects pV, σq

essentially given by the solution space of the field equation

V :“ DpM,Eq{ kerG – kerP
ˇ

ˇ

C8
sc
, σ

`

rφs, rψs
˘

:“ pGφ,ψqM . (1.2)

DpM,Eq represents test sections in E, more precisely smooth sections with compact support, and
C8
scpM,Eq those with only spacelike compact support, meaning that it is contained in the causal fu-

ture and past of some compact subset of M . The L2-product p¨, ¨qM of test sections is induced by the
non-degenerate inner product on E.
Every real symplectic vector space pV, σq admits a CCR-representation, i.e. a pair pw,Aq consisting of
a C˚-algebra A and a map w from V into the unitary elements of A such that A is generated as a C˚-
algebra by twpxquxPV and the Weyl relations hold:

wpxqwpyq “ e´ i
2
σpx,yqwpx` yq, x, y P V. (1.3)

This construction goes back to [Man1968] (see also section 4.2 of [BGP2007] and 5.2.2.2 of [BR2002]),
and it is unique in an appropriate sense, so we refer to A as the CCR-algebra CCRpV q of the symplectic
space V . Thus, altogether, pM,E,P q ÞÑ CCR

`

DpM,Eq{ kerG
˘

provides the desired functor.

1.3 Quasifree states

The GNS-representation pπτ ,Hτ ,Ωτ q of a state τ on the CCR-algebra of some real symplectic vector
space pV, σq provides unitary operators πτ

`

wpxq
˘

on the induced Hilbert space Hτ . There is a subclass
of states τ for which the unitary one-parameter group

␣

πτ
`

wptxq
˘(

tPR is strongly continuous for all
x P V , and hence, field operators Φτ pxq can be defined as the corresponding self-adjoint generators by
Stone’s theorem (Theorem VIII.8 of [RS1980]). Furthermore, they ensure the existence of a dense domain
Dτ Ă Hτ such that ranΦτ pxq Ă Dτ Ă domΦτ pxq for all x, and thus, polynomials of field operators are
well-defined on Dτ . Then the Weyl relations (1.3) imply the familiar canonical commutator relations

“

Φτ pxq,Φτ pyq
‰

“ iσpx, yq ¨ idHτ , x, y P V, (1.4)

and moreover, for all n P N, the n-point-function of the state

τnpx1, . . . , xnq :“
@

Φτ px1q . . .Φτ pxnqΩτ ,Ωτ

D

Hτ
, x1, . . . , xn P V, (1.5)

represents a well-defined distribution DpM,Eq ˆ . . . ˆ DpM,Eq Ñ R (see section 4.2 of [BG2011] for
precise definitions and proofs).
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1 Introduction

Particularly adapted to free quantum fields are the so-called quasifree states, which have been first
introduced in [Rob1965] and treated in the framework of CCR-representations in [MV1968]. They are
generated by

τ
`

wpxq
˘

“ e´ 1
2
ηpx,xq, x P V,

for some scalar product η on V , by which the GNS-representation of τ is determined up to unitary
equivalence. An overview of quasifree states and their properties can be found, for instance, in chapter
17 of [DG2013], from where we just present the most important facts. Although not regular in the strong
sense of [BG2011], a quasifree state τ still provides self-adjoint field operators and n-point-functions. In
particular, the two-point-function is of the form

τ2px, yq “ ηpx, yq `
i

2
σpx, yq, x, y P V, (1.6)

so it reproduces η and hence τ . Indeed, we have τn “ 0 for n odd, and for n even, (1.5) is given by some
polynomial in the elements of tτ2pxi, xjqui,j“1,...,n. Thinking of the n-point-functions as the propagation
of the state of the field, the focus on quasifree states corresponds to the perception that this propagation
is essentially given by independent one-particle-propagations, which legitimates them as the natural
objects to look at when dealing with free quantum fields.
For the real symplectic vector space provided by the functor (1.2), a scalar product corresponds to a
bidistribution S : DpM,Eq ˆ DpM,Eq Ñ R with

SrPψ1, ψ2s “ 0 “ Srψ1, Pψ2s, Srψ1, ψ2s “ Srψ2, ψ1s, Srψ,ψs ě 0, (1.7)

for all ψ,ψ1, ψ2 P DpM,Eq, since kerG “ ranP
ˇ

ˇ

DpM,Eq
by exactness of (1.1). With regard to (1.2) and

(1.6), a quasifree state is then determined by S and G.

1.4 Hadamard states

The fundamental reasoning of general relativity – condensed in J. A. Wheeler’s statement "Space tells
matter how to move and matter tells space how to curve" – motivates the investigation in the back
reaction effect on the spacetime induced by the particles the curved spacetime itself creates. This would
require a semiclassical Einstein equation

G “ 8π xT y, (1.8)

where G in this instance denotes the Einstein tensor describing the spacetime curvature and xT y the
expectation value of the energy-momentum tensor with respect to the state of the particle field. Since T
is quadratic in the field Φ, which is an operator-valued distribution in the quantum description, corres-
ponding to Φτ in (1.4) and (1.5), this expression needs some renormalization, as products of distributions
are in general ill-defined. Within Minkowski quantum field theory, normal ordering of the fields yields
a satisfactory procedure, basically given by subtracting the (infinite) vacuum energy. This method or, to
be more precise, the expectation value of T with respect to the ground state of the field would require
a preferred choice of vacuum, which is not at our disposal for general spacetimes. Among many alter-
native renormalization approaches (see the classic monographs [BD1984, Ful1989] for an overview), an
axiomatic ansatz like the one suggested by Wald [Wal1977, Wal1978, Wal1994] has been widely accepted
as most natural and general. Wald’s axioms determine xT y in a largely satisfactory sense, and further-
more, he proposes a concrete procedure, fulfilling the axiomatic framework.
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1.4 Hadamard states

Although normally, there is no such thing as a vacuum expectation value to be subtracted, we can, more
generally, focus on differences of expectation values given by the application of states τ to T within the
algebraic framework. Note that the expectation value of the squared field at x corresponds to τ2px, xq,
which we consider as a limit lim

yÑx
τ2px, yq of the well-defined distributions τ2px, yq, x ‰ y. Thus, we can

in fact adopt the idea of renormalization on Minkowski spacetime by restricting ourselves to a class of
quasifree states such that the expectation values of all products ΦpxqΦpyq have the same "singularity
structure" in the sense that subtracting them from one another provides a smooth expression. J. Hada-
mard’s theory of second order hyperbolic equations [Had1923] indeed leads to a family of bisolutions
with a fixed local singular part, i.e. for x, y "close", the difference of two Hadamard bisolutions is smooth
and the limit for y Ñ x exists (see [Wal1994] and the more recent book [Hac2016] for details). The renor-
malization of xT y using this approach has been carried out, for instance, in [DF2008].
Accordingly, a state τ is called a Hadamard state if τ2 has the Hadamard singularity structure. If we as-
sume that the Hadamard property holds in a whole neighborhood of a spacelike Cauchy hypersurface
– that is that no additional singularities arise for spacelike separated pairs of spacetime points – then
this is invariant under Cauchy evolution [FSW1978], meaning that it then holds in some neighborhood
of every Cauchy hypersurface. This additional assumption is referred to as the global Hadamard con-
dition [NO1985, GK1989], and any globally hyperbolic spacetime admits a large class of pure (global)
Hadamard states [FNW1981, SV2001].
The first mathematically precise definition of the Hadamard singularity structure have been specified
in [KW1991], in which the authors also show that for a wide class of spacetimes the Hadamard pro-
perty singles out an invariant quasifree state. Moreover, in any spatially compact spacetime ("closed
universes"), all Hadamard states, more specifically their GNS representations, comprise one unitary
equivalence class. For general spacetimes, this suggests a certain local indistinguishability, and indeed,
the restrictions of quantum field constructions given by two Hadamard states on some relatively com-
pact spacetime region turn out to be unitarily equivalent [Ver1994]. Hence, although there is no distinct
vacuum, all possible notions are equivalent in the sense that inequivalent constructions can be only dis-
tinguished by measurements over unbounded regions of spacetime. In addition, Hadamard states yield
finite fluctuations for all Wick polynomials [BF2000], which makes them relevant also for the perturba-
tive construction of interacting fields (see also [HW2015, Rej2016, Düt2019] and references therein). For
instance, on ultrastatic slabs with compact Cauchy hypersurface, also the converse implication holds
[FV2013], and hence, under certain circumstances, there is an alternative characterization of Hadamard
states less strongly tied to ultrashort distance behaviour.
Consequently, Hadamard states are by now considered a reasonable counterpart of Minkowski finite
energy states and the Hadamard condition an appropriate generalization of the energy condition for
Minkowski quantum field theory. Note that the replacement of a distinct vacuum state by a whole class
of states somehow reflects the essence of general relativity: Just like there is no preferred coordinate sys-
tem, the concept of vacuum and particles as absolute quantities has to be re-evaluated and eventually
downgraded to one choice among many.
It was Radzikowski who showed that for the massive scalar field the global Hadamard condition is equi-
valent to a certain requirement on the wave front set of the two-point-function [Rad1992, Rad1996a],
namely

WFpτ2q “
␣

pp,´ξ; q, ζq P
`

T ˚M ˆ T ˚M
˘

zt0u
ˇ

ˇ pp, ξq „ pq, ζq, ξ is future-directed
(

, (1.9)

where

pp, ξq „ pq, ζq ðñ
D lightlike geodesic c : I Ñ M and t, t1 P I :

cptq “ p, cpt1q “ q, 9cptq “ ξ7, 9cpt1q “ ζ7.
(1.10)
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Here we adapted the original formulation with regard to the convention used in this thesis. Further-
more, he proved equivalence of the local and global Hadamard condition [Rad1996b], and hence, (1.9)
represents a local formulation of the positive energy condition.
Sahlmann and Verch generalized Radzikowski’s equivalence for sections in general vector bundles
[SV2001], in particular for Hadamard states of the Dirac field in the sense of [Köh1995, Kra2000,
Hol2001], which have been used, for instance, for a mathematical rigorous description of the chiral
anomaly [BS2016]. In addition, [SVW2002] proposed an even more elegant characterization of the Ha-
damard property in terms of Hilbert space valued distributions φ ÞÑ Φτ rφsΩτ P Hτ , involving the
GNS-representation induced by τ . Also for non-quasifree states, one can formulate (1.9) as a constraint
on the whole n-point-function, which is compatible with the special case of quasifree states [San2010].
Moreover, in analytic spacetimes, this generalized Hadamard condition can be sharpened to a condition
on the analytic wave front set, thereby implying the Reeh-Schlieder-property [SVW2002]. Likewise, for
non-globally hyperbolic spacetimes, there is a formulation of the Hadamard condition via restriction to
globally hyperbolic subregions. Hadamard states have therefore been studied in connection with the
Casimir effect and on anti-de Sitter spacetime (see [DNP2014, DFM2018] and references therein). By
using the weaker concept of Sobolev wave front sets, a definition of adiabatic states on globally hyper-
bolic spacetimes similar to (1.9) is given in [JS2002], thus implying that Hadamard states are adiabatic.
However, most importantly for the purpose of this thesis, the Hadamard condition in the form (1.9)
allows us to employ the techniques of microlocal analysis provided by Duistermaat and Hörmander
[DH1972]. Soon after Radzikowski’s work, Junker derived pure Hadamard states for the massive scalar
field on spatially compact globally hyperbolic spacetimes, using a factorization of the Klein-Gordon
operator by pseudo-differential operators [Jun1996, Jun2002]. Gérard, Wrochna et al. generalized this
construction to a large class of spacetimes [GOW2017] and even gauge fields [GW2015]. Furthermore,
they proved the existence of (not necessarily pure) Hadamard states [GW2014] in a much more concrete
manner than [FNW1981]. See [Gér2019] for a recent review of these techniques.
On the other hand, there have been further proposals for physically reasonable states like the Sorkin-
Johnston-states [AAS2012], which in general lack the Hadamard property [FV2012b]. Nevertheless, a
modification of their construction produces Hadamard states [BF2014]. For a contemporary synopsis
concerning preferred vacuum states on general spacetimes, the nature of the Hadamard property and
this construction in particular, see also [Few2018]. Apart from these rather general prescriptions, Hada-
mard states have been constructed explicitly for a large variety of spacetimes with special (asymptotic)
symmetries, and furthermore, well-established states have been tested for the Hadamard property (see
the introduction sections of [GW2014, GOW2017] and the references therein as well as section 8.4 of
[FV2015] and 2.4 of [Hac2016] for an overview).

1.5 Subject of the thesis

In their seminal work [DH1972], Duistermaat and Hörmander showed the existence of distinguished
two-sided parametrices classified by their singularity structure for a huge class of manifolds and opera-
tors acting on (real-valued) functions. In the case of linear wave operators P and spacetime dimension
d ě 3, this singles out four parametrices rGA, rGR, rGF , rGaF , which correspond to the familiar advanced,
retarded, Feynman and anti-Feynman Green operator for linear wave equations on Minkowski space.
With ∆1 :“

␣

pp, ξ; p,´ξq
(

the primed diagonal, they are characterized by

WFp rGAq “ ∆1 Y
␣

pp, ξq „ pq,´ζq, q P J`ppq
(

, WFp rGRq “ ∆1 Y
␣

pp, ξq „ pq,´ζq, q P J´ppq
(

,

WFp rGF q “ ∆1 Y
␣

pp, ξq „ pq, ζq, t ą t1
(

, WFp rGaF q “ ∆1 Y
␣

pp, ξq „ pq, ζq, t ă t1
(

.
(1.11)
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1.5 Subject of the thesis

However, Theorem 6.5.3 of [DH1972] ensures the existence of these objects only as parametrices, i.e.
Green operators up to smoothing. As it happens, on globally hyperbolic Lorentzian manifolds, there is
exactly one advanced and retarded Green operatorGA, GR for P [BGP2007], but the authors of [DH1972]
point out that they do not see how to fix the C8-indetermination for rGF and rGaF .
On the other hand, for any bidistribution rH of Hadamard form (1.9), which is a bisolution up to C8

and whose antisymmetric part is given by i
2

`

rGA ´ rGR

˘

, Radzikowski proved that i rH ` rGA yields a
Feynman parametrix in the sense of (1.11), that is WF

`

i rH` rGA

˘

“ WF
`

rGF

˘

(Theorem 5.1 of [Rad1996a]).
Furthermore, section 6.6 of [DH1972] provides the identity rGF ` rGaF “ rGA ` rGR, so Feynman and anti-
Feynman parametrices can be extracted from rH, rGA, rGR via

rGF “ i rH ` rGA, rGaF “ ´i rH ` rGR, (1.12)

and hence, rH has to be of the form

rH “
i

2

`

rGaF ´ rGF ` rGA ´ rGR

˘

. (1.13)

Moreover, i
2

`

rGaF ´ rGF

˘

automatically fulfills (1.7) due to Theorem 6.6.2 of [DH1972] up to smooth
functions. Therefore, the characterization of Hadamard states by means of microlocal analysis almost
directly provides a further existence proof of (not necessarily pure) Hadamard states by employing
the existence of distinguished parametrices and their positivity properties (Theorems 6.5.3 and 6.6.2 of
[DH1972]). Compared, for instance, to the deformation argument in [FNW1981], this approach is rather
constructive and furthermore, it covers the cases of analytic spacetimes, which, in general, can not be
treated by local deformations. However, Radzikowski remarked that it is not clear how to prove that
one may choose the smooth functions such that (1.7) is exactly satisfied [Rad1992]. This issue is clearly
related to the previously mentioned C8-indetermination via (1.13).
This thesis solves both problems in the setting given by Definition 1.2.1. We construct bisolutions
S : DpM,Eq ˆ DpM,E˚q Ñ R with singularity structure equal to WF

`

rGaF ´ rGF

˘

such that Hadamard
bisolutions as well as Feynman and anti-Feynman Green operators are determined via S ` i

2pGA ´GRq

and (1.12). The crucial properties of S are invariant under the addition of some smooth bisolution, and
our construction will determine bisolutions only up to this degree of freedom. The basic idea for that
is to follow the lines of [BGP2007] and deduce S from the well-known object i

2pGaF ´ GF q for 2 on
Minkowski space via local Hadamard series. The derivation of well-defined local parametrices and the
following propagation procedure to globally defined bisolutions involve several choices of objects like
local domains, covers, cut-offs etc., which are canonical only in the sense that the results arising from
two different choices merely differ by some smooth bisolution.
Provided that Theorem 6.6.2 of [DH1972] also holds for corresponding operators acting on sections in
some Riemannian vector bundle, we then show that there is a choice of bisolutions which fulfill (1.7) and
hence lead to Hadamard two-point functions. By this, we mean that for each S there is a smooth bisolu-
tion u such that S ` u has these properties. Conversely, given Green operators GF , GaF , we provide a
criterion for the existence of such a choice for more general differential operators.
Before approaching this construction, some preparation has to be done. In the first half of chapter
2, we classify certain LÒ

`-invariant distributions on Minkowski space and then construct families of
them containing fundamental solutions for 2 later identified as the distinguished parametrices. In the
second half, we prove well-posedness of the Cauchy-problem for singular sections and smooth bisec-
tions, which will be needed for the eventual globalization procedure. Chapter 3 generalizes symmetry
of the Hadamard coefficients for formally self-adjoint P given in [Mor2000] to the vector-valued case.

7



1 Introduction

Afterwards, in chapter 4, we start with the actual construction by providing explicit and local expres-
sions for the Feynman and anti-Feynman fundamental solution in the prototype case

`2,Rd
Mink

˘

. We
identify them as members of the previously derived families of LÒ

`-invariant and homogeneous dis-
tributions just like the advanced and retarded fundamental solution are represented by Riesz distribu-
tions. As depicted in chapter 5, this allows the construction of parametrices on small domains O of
any Lorentzian manifold M via Hadamard series such that the singularity structure transforms natu-
rally. Unlike the advanced and retarded fundamental solution, the objects constructed here are far from
unique. Thus, in order to ensure that they produce actual two-sided parametrices, we need symmetry
of the coefficients, and therefore, with regard to chapter 3, we assume formal self-adjointness of P . This
leads to local Feynman and anti-Feynman parametrices and hence Hadamard bidistributions via (1.13).
For M globally hyperbolic, we moreover derive local bisolutions which have the Hadamard property.
Chapter 6 then finally provides the global construction on globally hyperbolic spacetimes. Here, the
well-posed Cauchy problems derived in section 2.3 are the crucial instruments for the propagation as
bisolutions toMˆM and moreover for the preservation of the singularity structure at each propagation
step. We construct (singular) bisolutions on domains of the form OˆM , which cover M ˆM . We show
that there are local choices of bisolutions that fit together on the overlaps and thus constitute a globally
well-defined object. Altogether, we obtain global Hadamard bisolutions and finally prove that each of
them can be chosen as an actual Hadamard two-point-function.
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2 Preliminaries

"But time, it’s on your side now."

After having briefly fixed notations and conventions (mostly by adopting [BGP2007]), we derive a clas-
sification of LÒ

`-invariant distributions on Minkowski space supported on the light cone C. Solutions
and fundamental solutions for 2 are LÒ

`-invariant with singular support contained in C, and thus, co-
incidence of two such objects can be checked directly outside of that set. In that case, their difference is
a LÒ

`-invariant distribution supported in C, and we are going to exhibit criteria for equality also there.
Therefore, we employ the close relation between LÒ

`-invariant distributions on Rdzt0u and distributions
on R, and we trace back our setting to the well-known classification of distributions supported in t0u.
Afterwards, we construct fundamental solutions for 2, which, by means of the previous classification,
will later be revealed as the distinguished fundamental solutions corresponding to (1.11).
In the second half, we use well-posedness of the smooth and singular Cauchy problem, provided in
[BGP2007, BF2009, BTW2015], in order to derive a well-posed Cauchy problem for smooth bisections,
and furthermore, we show propagation of singular solutions in a suitable sense.

2.1 Notations and conventions

For any d-dimensional vector space with non-degenerate inner product xx¨, ¨yy of index 1, i.e. isometric
to d-dimensional Minkowski space, we adopt the notations and conventions of [BGP2007], that is, for
instance, the signature p´,`, . . . ,`q and the squared distance

γpxq :“ ´ xxx, xyy “ x20 ´

d´1
ÿ

j“1

x2j , x “ px0, . . . , xd´1q P V. (2.1)

The two connected components I˘ of the set of timelike vectors I :“ tγpxq ą 0u then determine a time-
orientation. Correspondingly, we set C˘ :“ BI˘, J˘ :“ I˘, whose non-zero elements we call "lightlike"
and "causal", respectively. Leaving out "˘" means the union of both components, i.e. I :“ I` Y I´ and
similarly C and J . The zero-vector and all elements of tγpxq ă 0u are referred to as "spacelike".
For M a d-dimensional time-oriented Lorentzian manifold and p P M , we write IM˘ ppq, CM

˘ ppq and
JM

˘ ppq for the corresponding chronological/lightlike/causal future/past of p. These sets comprise
all points that can be reached from p via timelike/lightlike/causal future/past directed differentiable
curves, that is, curves with tangent vectors of the respective type at each point. For subsets A Ă M ,
we define IM˘ pAq :“

Ť

pPA I
M
˘ ppq and similarly JM

˘ pAq. For the definitions of different types of subsets
of M like future/past compact, geodesically starshaped, convex, causally compatible, causal, Cauchy
hypersurface etc., we refer to section 1.3 of [BGP2007]. Moreover, we point out that in the whole thesis
a Cauchy hypersurface of M is always assumed to be spacelike.
ForE some real or complex finite-dimensional vector bundle overM , the spaces ofCk-, C8-, D-sections
in E as well as distributional sections DpM,E,W q1 with values in some finite-dimensional space W , in-
cluding their (singular) support, convergence, order etc., are defined as in section 1.1 of [BGP2007].
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2 Preliminaries

For F another vector bundle over M and P : C8pM,Eq Ñ C8pM,F q some linear differential operator,
the formally transposed operator P t : C8pM,F ˚q Ñ C8pM,E˚q of P is given by

pP tφqrψs :“ φrPψs “

ż

M
φ
`

Pψ
˘

dV, ψ P DpM,Eq, φ P DpM,F ˚q.

dV denotes the volume density induced by the Lorentzian metric. Let E be equipped with a non-
degenerate inner product x¨, ¨y, which induces the L2-product of test sections

pψ1, ψ2qM :“

ż

M

@

ψ1ppq, ψ2ppq
D

dV ppq, ψ1, ψ2 P DpM,Eq, (2.2)

and the isomorphism Θ: E Ñ E˚. We call P formally self-adjoint if pPψ1, ψ2qM “ pψ1, Pψ2qM for all
ψ1, ψ2, that is, P “ Θ´1P tΘ. The focus of this thesis lies on wave operators P : C8pM,Eq Ñ C8pM,Eq,
i.e. linear differential operators of second order with, effectively, scalar principal symbol determined by
the metric, namely ξ ÞÑ gpξ7, ξ7q ¨ idE , ξ P T ˚M (see section 1.5 of [BGP2007] for details).
L. Schwartz’ kernel theorem (Theorem 5.2.1 of [Hör1990]) establishes a one-to-one-correspondence
between bidistributions K : DpM,Eq ˆ DpM,E˚q Ñ R and linear, sequentially continuous operators
K : DpM,E˚q Ñ DpM,E˚q1, that is, Kφj Ñ Kφ if φj Ñ φ, given by

Krψ,φs “ pKφqrψs, ψ P DpM,Eq, φ P DpM,E˚q. (2.3)

K is called the Schwartz kernel of K, and it is represented by a distributional section in the bundle
E˚ ⊠ E over M ˆM , whose fibers we identify via

pE˚ ⊠Eqpp,qq “ E˚
p b Eq – HompE˚

q , E
˚
p q, pp, qq P M ˆM. (2.4)

This allows us to define the wave front set of an operator via the wave front set of its Schwartz ker-
nel. Furthermore, we introduce the concept of parametrices for differential operators P , which yields a
generalized concept of both, inverse operators and fundamental solutions for P , related by (2.3).

Definition 2.1.1. Let P : C8pM,Eq Ñ C8pM,Eq be a linear differential operator. A linear and sequen-
tially continuous operator Q : DpM,E˚q Ñ C8pM,E˚q is called

• left parametrix for P t if QP t
ˇ

ˇ

D
´ id is smoothing,

• right parametrix for P t if P tQ ´ id is smoothing,

• (two-sided) parametrix for P t if Q is left and right parametrix for P t,

• Green operator for P t if QP t
ˇ

ˇ

D
“ P tQ “ id.

A bidistribution Q : DpM,Eq ˆ DpM,E˚q Ñ R with p ÞÑ Qppqrφs P C8pM,E˚q for all φ is called

• left parametrix for P at p P M if Pp2qQppq ´ δp P C8pM,Eq,

• (two-sided) parametrix for P at p P M if Q is a left parametrix for P at p, and for all φ P DpM,E˚q,
we have P t

p1q

`

Qp¨qrφs
˘

´ φ P C8pM,E˚q,

• fundamental solution for P at p P M if Pp2qQppq “ δp.

Note that Q is a (left) parametrix for P t if its Schwartz kernel Qrψ,φs :“ Qφrψs is a (left) parametrix for
P t at all p P M . In this thesis, we will mostly refer synonymously to a parametrix as an operator Q or
the bidistribution Q given by its Schwartz kernel.
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2.2 Fundamental solutions for d’Alembert’s operator on Minkowski space

2.2 Fundamental solutions for d’Alembert’s operator on Minkowski space

2.2.1 Lorentz-invariant distributions on the light cone

Let R̊d :“ Rdzt0u and Jc
˘ :“ R̊dzJ˘. We find submersions γ˘ :“ γ

ˇ

ˇ

Jc
¯
: Jc

¯ Ñ R, whose preimages

γ´1
˘ pκq “

␣

γpxq “ κ
(

X Jc
¯ “: H˘

κ , κ P R, (2.5)

foliate Jc
¯. In particular, we have γ´1

`

ˇ

ˇ

Ră0
“ γ´1

´

ˇ

ˇ

Ră0
. Recall that any LÒ

`-invariant function ϕ P C8
`

R̊d
˘

is constant on those preimages, i.e. ϕpH˘
κ q “ tc˘

κ u, and thus determines a pair of functions

ϕ˘ : R ÝÑ R, κ ÞÝÑ c˘
κ , (2.6)

which satisfy ϕ`

ˇ

ˇ

Ră0
“ ϕ´

ˇ

ˇ

Ră0
and γ˚

˘ϕ˘ “ ϕ
ˇ

ˇ

Jc
¯

. Conversely, any such pair ϕ˘ induces a LÒ
`-invariant

function ϕ : R̊d Ñ R via ϕ
ˇ

ˇ

Jc
¯
:“ γ˚

˘ϕ˘.

Since we are interested in the more general case of distributions, we consider a pair T˘ P DpRq1 with
T`|Ră0 “ T´|Ră0 . By Theorem 10.18 of [DK2010], the pushforward of φ P DpRdq along the submersion
γ˘ yields a continuous linear map DpJc

¯q Ñ DpRq with
`

pγ˘q˚φ
˘

pκq given by integration of φ over the
submanifold γ´1

˘ pκq for all κ P R. Thus, we can pull back T˘ along γ˘ via

γ˚
˘T˘rφs :“ T˘

“

pγ˘q˚φ
‰

, φ P DpJc
¯q, (2.7)

and hence, we obtain a LÒ
`-invariant distribution T P DpR̊dq1 via T

ˇ

ˇ

Jc
¯

:“ γ˚
˘T˘. However, for the

converse construction, a pointwise definition of T˘ like in the smooth case (2.6) is not available for dis-
tributions. Alternatively, pushing forward T along γ˘ by pulling back the test function does not work
either since supp pγ˚

˘φq is not compact unless φ “ 0. On the other hand, the only compactly supported
LÒ

`-invariant distributions are derivatives of δ0, so pγ˘q˚T is a priori ill-defined for almost all such T .
[Met1954] constructs an approximating sequence of LÒ

`-invariant modifications of T , for which the
pushforward is well-defined and independent of the modification. As a result, the relation generali-
zes to LÒ

`-invariant distributions on R̊d and pairs of distributions on R that coincide on Ră0:

Theorem 2.2.1 (Théorème 2 of [Met1954]). For any pair T˘ P DpRq1 with T`|Ră0 “ T´|Ră0 , there is
a LÒ

`-invariant distribution T P DpR̊dq1 given by T |Jc
¯

:“ γ˚
˘T˘. Conversely, for any LÒ

`-invariant
T P DpR̊dq1, we find a pair T˘ P DpRq1 with T`|Ră0 “ T´|Ră0 such that T |Jc

¯
“ γ˚

˘T˘.

Theorem 2.2.1 is the crucial result for our classification since it translates LÒ
`-invariant distributions

with support on C into distributions on the real line supported only in t0u, for which a classification is
well-known (e.g. see section 3.2 of [Hör1990]). The particular construction moreover shows that pγ˘q˚

maps D
`

tx0 ą 0u
˘

surjectively onto DpRq (see equation (4.6) on page 233 in [Met1954]). For κ ě 0, the
diffeomorphisms

Φ˘ : I˘ ÝÑ tx0 ą 0u, x ÞÝÑ
`

γpxq, x̂
˘

,

with inverse maps Φ´1
˘ pxq “

`

˘
a

x0 ` }x̂}2, x̂
˘

, x0 ą 0, provide the particular expressions

`

pγ˘q˚φ
˘

pκq “

ż

Rd´1

φ
`

˘
a

κ` }x̂}2, x̂
˘

2
a

κ` }x̂}2
dx̂, φ P DpRdq. (2.8)

In particular, suppφ Ă Jc
¯zC leads to supp pγ˘q˚φ Ă R̊. For any LÒ

`-invariant T P DpR̊dq1 only sup-
ported in C, we therefore obtain T rφs “ 0 for all φ P D

`

Jc
¯zC

˘

, and thus, T˘rpγ˘q˚φs “ 0 for the
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corresponding T˘ P DpRq1, that is suppT˘ Ă t0u. Applying Theorem 3.2.4 of [Hör1990] then provides

T˘ “

8
ÿ

k“0

a˘
k ¨ δ

pkq
0 ùñ T

ˇ

ˇ

Jc
¯

“

8
ÿ

k“0

a˘
k ¨ γ˚

˘δ
pkq
0 , (2.9)

where a˘
k ‰ 0 for only finitely many k and γ˚

˘δ
pkq
0 rφs “

`

pγ˘q˚φ
˘pkq

p0q. Since t0u represents an orbit of
LÒ

`, the classification of all LÒ
`-invariant distributions on Rd will require one further result:

Theorem 2.2.2 (Théorème 1 of [Met1954]). Any LÒ
`-invariant T P DpRdq1 with suppT Ă t0u is of the

form T “
ř8

k“0 bk ¨ 2kδ0 with bk ‰ 0 for only finitely many k.

Corollary 2.2.3. Any LÒ
`-invariant measure µ˘ on C˘ is of the form

µ˘rφs “ a

ż

Rd´1

φ
`

˘ }x̂}, x̂
˘

2}x̂}
dx̂` bφp0q, φ P DpRdq,

for some a, b P Rě0.

Proof. Recall that δ0 is represented by a measure on Rd, whereas none of its derivatives is, and by defi-
nition of pγ˘q˚φpκq as the integral of φ along H˘

κ , the same is true for γ˚
˘δ0. Let

dΩ0
˘rφs :“

ż

Rd´1

φ
`

˘ }x̂}, x̂
˘

2}x̂}
dx̂, φ P DpRdq, (2.10)

which is well-defined for all φ P DpRdq, and, due to (2.8) and (2.9), coincides with pγ˘q˚φp0q for
φ P DpR̊dq. Therefore, Theorem 2.2.2 and the fact that 2kδ0 is a measure only for k “ 0, we obtain
µ˘ ´ adΩ0

˘ “ bδ0 for some a, b P R, which is the claim.

2.2.2 Riesz distributions

We saw that (2.8) provides an explicit extension for γ˚
˘δ0 to all of Rd, so with regard to (2.9), for the

desired classification, it remains to give an extension also for the pullback of the derivatives γ˚
˘δ

pkq
0 .

According to chapter 13 of [DK2010], such extensions can be derived by regarding δpkq
0 as holomorphic

extensions in k of certain functions. It follows that the pullback can directly be calculated and produces a
family of LÒ

`-invariant functions on Rd, which are holomorphic in k. By the identity theorem of complex
analysis, this identifies γ˚

˘δ
pkq
0 with the distributional extensions of these functions. For all k P N and

x P R, we introduce

χkpxq :“
xk´1

pk ´ 1q!
¨Hpxq

where H the step function at x “ 0, which satisfies H 1 “ δ0. We directly obtain Bχk`1 “ χk, so χk yields
a fundamental solution of Bk and thus leads to a distributional extension χ´k via

χ´k :“ Bk`1χ1 “ Bk`1H “ δ
pkq
0 , k P N0.

The analytic continuations eα log x and Γpα ` 1q of xk and k! for α P C yield a further generalization

χαpxq :“
epα´1q log x

Γpαq
¨Hpxq, α P C. (2.11)

12



2.2 Fundamental solutions for d’Alembert’s operator on Minkowski space

Thus, for fixed φ P DpRq, the map α ÞÑ χαrφs is holomorphic on all of C, so we embedded δ
pkq
0 into a

family of distributions tχαuαPC, which are continuous for Re pαq ą 1. In this spirit, on Rd and for all
Re pαq ą d, we define

Rα
˘pxq “

$

&

%

2Cpα, dq ¨ γpxq
α´d
2 , x P J˘,

0, otherwise,
, Cpα, dq “

2´απ
2´d
2

Γ
`

α
2

˘

Γ
`

α´d
2 ` 1

˘ . (2.12)

This yield holomorphic maps α ÞÑ Rα
˘rφs on tRe pαq ą du for each φ P DpRdq, and a simple calculation

shows that 2Rα`2
˘ “ Rα

˘. Hence, we obtain a distributional extension for all α P C via

Rα
˘ :“ 2kRα`2k

˘ , Re pαq ` 2k ą d, (2.13)

which is independent of k by the identity theorem. The distributions defined by (2.12) and (2.13) are
known as the Riesz distributions, and they represent the family of LÒ

`-invariant distributions corres-
ponding to tχαuαPC, i.e. in particular tγ˚

˘δ
pkq
0 ukPN0 .

Proposition 2.2.4. For all α P C, we have

Rα
˘

ˇ

ˇ

Jc
¯

“
21´απ

2´d
2

Γ
`

α
2

˘ ¨ γ˚
˘χ

α´d
2

`1, α P C.

Moreover, R0
˘ “ δ0 and R2

˘ are the unique fundamental solutions of 2 with support contained in J˘.

For the proof, see section 13.2 of [DK2010]. This provides us with the desired explicit expression

γ˚
˘δ

pkq
0 “ γ˚

˘χ
´k “

Γ
`

d
2 ´ pk ` 1q

˘

22k`3´dπ
d´2
2

¨R
d´2pk`1q
˘

ˇ

ˇ

ˇ

Jc
¯

. (2.14)

Proposition 2.2.5. Any LÒ
`-invariant T P DpRdq1 with suppT Ă C is of the form

T “

8
ÿ

k“0

´

λ`
k ¨R

d´2pk`1q
` ` λ´

k ¨R
d´2pk`1q
´ ` bk ¨ 2kδ0

¯

(2.15)

with only finitely many non-vanishing coefficients.

Proof. Note that (2.9) and (2.14) imply that, away from zero, T is given by some linear combination of
Riesz distributions:

T
ˇ

ˇ

R̊d “

8
ÿ

k“0

´

λ`
k ¨R

d´2pk`1q
` ` λ´

k ¨R
d´2pk`1q
´

¯

ˇ

ˇ

ˇ

ˇ

R̊d

.

Due to LÒ
`-invariance of the Riesz distributions, it follows that the difference is a LÒ

`-invariant distribu-
tion supported only in t0u, which, according to Theorem 2.2.2, is of the form

T ´

8
ÿ

k“0

´

λ`
k ¨R

d´2pk`1q
` ` λ´

k ¨R
d´2pk`1q
´

¯

“

8
ÿ

k“0

bk ¨ 2kδ0.

A function f : Rd Ñ C is homogeneous of degree α P C if fptxq “ tαfpxq for all t P Rą0, x P Rd. This
generalizes to distributions via:

13



2 Preliminaries

Definition 2.2.6. A distribution u : DpRdq Ñ C is homogeneous of degree α P C if

urφts “ tα ¨ urφs, φtpxq :“ t´d ¨ φ
´x

t

¯

, φ P DpRdq, t P Rą0.

It directly follows that δ0 is homogeneous of order ´d. Note that Blφt “ t´l pBlφqt for all l P N, so if u is
homogeneous of degree α, then Blu is homogeneous of degree α´l. In particular,Rα

˘ is homogeneous of
degree α´d and consequently 2kδ0 “ R´2k

˘ of degree ´d´2k. Hence, (2.15) provides a decomposition
of LÒ

`-invariant distributions T with support on the light cone in terms of homogeneous distributions,
which is particularly useful if T itself is homogeneous:

Corollary 2.2.7. Let T P DpRdq1 be LÒ
`-invariant, supported in C and homogeneous of degree a ą ´d

with a ‰ ´2k for all k P N. Then T “ 0. Moreover, this still holds for all a “ ´2k ą ´d if, in addition, T
is a solution of d’Alembert’s equation and symmetric, i.e. T pxq “ T p´xq in the distributional sense.

Proof. The first claim follows immediately from Corollary 2.2.5, since T is supposed to coincide with a
finite sum of homogeneous distributions of degree ´2k, k P N. Therefore, demanding T rφts “ ta T rφs

for all t ą 0 shows that all coefficients have to vanish.
However, for T homogeneous of degree a “ ´2k ą ´d, (2.15) leads to the form

T “ λ`
k ¨Rd´2k

` ` λ´
k ¨Rd´2k

´ .

Due to Rα
˘p´xq “ Rα

¯pxq, symmetry yields λ`
k “ λ´

k “: λk, and thus,

0 “ 2T “ 2λk
`

Rd´2k
` `Rd´2k

´

˘

looooooooomooooooooon

‰0

ùñ λk “ 0.

2.2.3 Symmetric fundamental solutions

Due to Corollary 2.2.5, the Riesz distributions are the only LÒ
`-invariant distributions supported ex-

clusively on the light cone (note that 2kδ0 “ R´2k
˘ ). Moreover, somehow as a side product, we found

fundamental solutionR2
˘ for 2, which are the unique ones with support contained in J˘, and therefore,

we will later identify them with the advanced and retarded fundamental solution for 2.
In this subsection, we derive a further family of LÒ

`-invariant distributions from (2.11), which, unlike
the Riesz distributions, do not satisfy any support restriction and thus will correspond to the Feynman
and anti-Feynman fundamental solution, eventually. To this end, we sketch the construction given in
the chapters I.3 and III.2 of [GS1967]. Let always be d ě 3, and for φ P DpRdq, let always denote
ψprq :“

ş

Sd´1 φprx̂q dx̂, which is smooth at r “ 0 and hence lies in DpRě0q. For all φ P DpRdq and k P N0,
we define

rkrφs :“

ż

Rd

}x}k φpxq dx “

ż 8

0
rk`d´1 ψprq dr “ Γpk ` dq ¨ χk`drψs,

so by holomorphicity of (2.11), α ÞÑ rαrφs extends to a meromorphic function on all of C with simple
poles inherited only from the Γ-function. Note that ψ is an even function, so the residues

Res
α“´d´k

rαrφs “ χ´krψs ¨ Res
α“´k

Γpαq “
ψpkqp0q

k!
(2.16)

exist for all k P N0 and vanish for odd k, i.e. we obtain simple poles at t´d´2kukPN0 . We aim at defining
complex powers of γ (2.1) in the sense pγ˘ i0qα, α P C, where the branch cut is taken along the negative
real axis and ˘i0 refers to the respective branch.

14



2.2 Fundamental solutions for d’Alembert’s operator on Minkowski space

Let H˘ :“ t˘Im ą 0u Ă C denote the open upper and lower half-plane, and A˘ :“ H˘ ˆ H˘. For
pa0, a1q P A˘, we define the bilinear form

Qpa0, a1q :“ a0x
2
0 ` a1

d´1
ÿ

j“1

x2j (2.17)

with the corresponding operator

Dpa0,a1q :“
1

a0

B2

Bx20
`

1

a1

d´1
ÿ

j“1

B2

Bx2j
. (2.18)

If Re pαq ą 0, we calculateDpa0,a1qQpa0, a1qα`1 “ 4pα`1q
`

α ` d
2

˘

Qpa0, a1qα, and hence, a distributional
extension of (2.17) to all of C is given by

Qpa0, a1qα :“
Dk

pa0,a1q
Qpa0, a1qα`k

4k
śk

j“1pα ` jq
`

α ` j ` d´2
2

˘
, Re pαq ` k ą 0. (2.19)

Note that, due to the identity theorem, this does not depend on k, and furthermore, it actually does not
yield any poles for Re pαq ą ´d

2 since

Res
α“´m

Qα “ lim
αÑ´m

pα `mq ¨Dm`1
pa0,a1q

Qα`m`1

4m`1
śm`1

j“1 pα ` jq
`

α ` j ` d´2
2

˘ “
p´1qm´1 ¨Dm`1

pa0,a1q
Q

4m`1Γpmq ¨
śm`1

j“1

`

j ´m` d´2
2

˘ “ 0 (2.20)

for all natural numbers m ă d
2 . Thus, for fixed φ P DpRdq, the map pa0, a1, αq ÞÑ Qpa0, a1qαrφs is

holomorphic on A˘ ˆ
␣

Re ą ´d
2

(

, and hence, so are the maps

α ÞÝÑ pγ ˘ iεqαrφs :“ Qp1 ˘ iε,´1 ˘ iεqαrφs, φ P DpRdq, (2.21)

on
␣

Re ą ´d
2

(

for fixed ε ą 0. Next, we investigate the residues of (2.19) at α “ ´d
2 . For fixed α with

Re pαq ą ´d
2 , we obtain holomorphic maps

pa0, a1q ÞÝÑ Res
α“´ d

2

Qpa0, a1qαrφs, pa0, a1q ÞÝÑ
π

d
2 ¨ φp0q

?
a0 a

d´1
2

1 Γ
`

d
2

˘

, φ P DpRdq. (2.22)

On the other hand, for all ε ą 0, we have

Qp˘iε,˘iεqαrφs “ p˘iεqα
ż

Rd

}x}2α ¨ φpxq dx “ p˘iεqα ¨ r2αrφs, φ P DpRdq,

so by (2.16), the residues of Qp˘iε,˘iεqα at α “ ´d
2 are essentially given by δ0:

Res
α“´ d

2

Qp˘iε,˘iεqαrφs “
1

2
Res
α“´d

`

˘ iεq
α
2 rαrφs “

ψp0q

2p˘iεq
d
2

“

ˆ

¯
iπ

ε

˙
d
2

¨
φp0q

Γ
`

d
2

˘ . (2.23)

It follows that the holomorphic maps (2.22) coincide on t˘iRą0u ˆ t˘iRą0u Ă A˘, and therefore, they
coincide on all ofA˘ by the identity theorem (in the version given by Theorem 3.2.6 in [AF2003]). Hence,
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2 Preliminaries

the residues of (2.19) can be calculated via (2.22), and in particular for (2.21), we obtain

Res
α“´ d

2

pγ ˘ iεqαrφs “ Res
α“´ d

2

Qp1 ˘ iε,´1 ˘ iεqαrφs “
π

d
2 ¨ φp0q

?
1 ˘ iε p´1 ˘ iεq

d´1
2 Γ

`

d
2

˘

. (2.24)

With regard to (2.19) and (2.21), the distributions pγ ˘ i0qα are well-defined as the limits ε Ñ 0 of (2.21)
in the distributional sense, so taking the limit for (2.18) and (2.19) leads to

pγ ˘ i0qα “
2kpγ ˘ i0qα`k

4k
śk

j“1pα ` jq
`

α ` j ` d´2
2

˘
, (2.25)

where Re pαq ą ´d
2 and k P N0 chosen such that Re pαq ` k ą 0.

Proposition 2.2.8. The distributions (2.25) are symmetric and LÒ
`-invariant, and for fixed φ P DpRdq,

the maps α ÞÑ pγ ˘ i0qαrφs are holomorphic on
␣

Re ą ´d
2

(

. More precisely, for m “ 1, 2, . . . ,
X

d´1
2

\

, we
have

pγ ˘ i0q´m “
p´1qm´1 Γ

`

d
2 ´m

˘

4m ΓpmqΓ
`

d
2

˘ ¨ 2m logpγ ˘ i0q,

and for d ą 2, fundamental solutions for 2 are given by

S˘ :“ p˘iqd`1Γ
`

d´2
2

˘

4π
d
2

¨ pγ ˘ i0q
2´d
2 . (2.26)

Proof. Clearly, (2.25) is holomorphic on
␣

Re ą ´d
2

(

zt´Nu, and for α “ ´m ą ´d
2 , m P N, this can

be checked similarly to (2.20). Since pγ ˘ i0qα is symmetric and LÒ
`-invariant for Re pαq ą 0, so is the

holomorphic extension (2.25). Moreover, holomorphicity ensures pγ ˘ i0q´m “ lim
αÑ´m

pγ ˘ i0qα for all

natural numbers m ă d
2 , and thus,

pγ ˘ i0q´m “

lim
αÑ´m

2mpγ˘i0qα`m

α`m

4m
śm´1

j“1 pj ´mq ¨
śm

j“1

`

j ´m` d´2
2

˘

“

2m d
dα

ˇ

ˇ

ˇ

α“´m
pγ ˘ i0qα`m

4m
`

d
2 ´m

˘

. . . d´2
2 p´1qm´1

śm´1
j“1 pm´ jq

“
p´1qm´1 Γ

`

d
2 ´m

˘

4m ΓpmqΓ
`

d
2

˘ ¨ 2m logpγ ˘ i0q.

Eventually, continuity of ε ÞÑ Res
α“´ d

2

pγ ˘ iεqαrφs due to (2.24) for fixed φ as well as
?
1 ˘ iε Ñ 1 and

?
´1 ˘ iε Ñ ˘i yield

Res
α“´ d

2

pγ ˘ i0qα “ lim
εÑ0

Res
α“´ d

2

pγ ˘ iεqα “ p¯iqd´1 π
d
2

Γ
`

d
2

˘ ¨ δ0,

so holomorphicity at α “ 2´d
2 implies

2 pγ ˘ i0q
2´d
2 “ lim

αÑ´ d
2

2 pγ ˘ i0q
α`1

“ 4 ¨
2 ´ d

2
lim

αÑ´ d
2

ˆ

α `
d

2

˙

pγ ˘ i0q
α

looooooooooooooomooooooooooooooon

“ Res
α“´ d

2

pγ˘i0qα

“ p¯iqd`1 4π
d
2

Γ
`

d´2
2

˘ ¨ δ0.
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2.3 Cauchy problems on globally hyperbolic manifolds

2.3 Cauchy problems on globally hyperbolic manifolds

A crucial feature of globally hyperbolic Lorentzian manifolds M is a well-posed Cauchy problem for
wave operators (see Theorems 3.2.11 and 3.2.12 of [BGP2007] as well as Theorem 13 of [BTW2015]).
In this section, we adjust those results for our purposes. Furthermore, we demonstrate, how well-
posedness for differential operators P,Q on globally hyperbolic Lorentzian manifoldsM,N entails well-
posedness for P bQ on M ˆN .

2.3.1 Smooth sections

Let M be a globally hyperbolic Lorentzian manifold with Cauchy hypersurface Σ Ă M , π : E Ñ M a
real or complex vector bundle over M and P : C8pM,Eq Ñ C8pM,Eq a wave operator.
For u0, u1 P C8pΣ, Eq and f P C8pM,Eq, we consider the Cauchy problem

$

’

’

&

’

’

%

Pu “ f,

u
ˇ

ˇ

Σ
“ u0,

∇νu
ˇ

ˇ

Σ
“ u1,

(2.27)

which is well-posed by the Theorems 3.2.11 and 3.2.12 of [BGP2007] for compactly supported u0, u1, f ,
and the smooth solution u satisfies

suppu Ă J
`

suppu0 Y suppu1 Y supp f
˘

. (2.28)

Adopting the exhaustion argument in the proof of Corollary 5 in chapter 3 of [BF2009], this statement
extends to general smooth data:

Theorem 2.3.1. For all u0, u1 P C8pΣ, Eq and f P C8pM,Eq, the Cauchy problem (2.27) is well-posed
with smooth solution u satisfying (2.28).

2.3.2 Smooth bisections

For F a vector bundle over some further globally hyperbolic Lorentzian manifold N , recall (2.4) for the
definition of the vector bundle E ⊠ F over M ˆN .

Theorem 2.3.2. Let M,N be globally hyperbolic Lorentzian manifolds with a Cauchy hypersurfaces
Σ,Ξ and unit normal fields µ, ν. Furthermore, let P,Q denote linear differential operators of second
order acting on smooth sections in vector bundles E,F over M,N , which admit well-posed Cauchy
problems and only lightlike characteristic directions. Then, for all ui P C8pΣ ˆ Ξ, E ⊠ F q, i “ 1, ..., 4,

and f, g P C8pM ˆN,E ⊠ F q with Qf “ Pg, there is some unique section u P C8pM ˆ N,E ⊠ F q

solving
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Pu “ f,

Qu “ g,

u
ˇ

ˇ

ΣˆΞ
“ u1,

∇µu
ˇ

ˇ

ΣˆΞ
“ u2,

∇νu
ˇ

ˇ

ΣˆΞ
“ u3,

∇ν∇µu
ˇ

ˇ

ΣˆΞ
“ u4.

(2.29)
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Proof. For all q P N and h0, h1 P C8pΣ ˆN,E ⊠ F q, the Cauchy problem

$

’

’

&

’

’

%

Puq “ fp¨, qq,

uq
ˇ

ˇ

Σ
“ h0p¨, qq,

∇µuq
ˇ

ˇ

Σ
“ h1p¨, qq,

(2.30)

has a unique solution uq P C8pM,E b Fqq by Theorem 2.3.1, and furthermore, the mapping of the data
to the solution uq is linear and continuous. Thus, it remains to determine h0, h1 from u1, u2, u3, u4, g and
to show that then Qu “ g is automatically fulfilled. For all σ P Σ and ξ P Ξ, we define smooth sections
h0pσ, ¨q, h1pσ, ¨q P C8pN,Eσ b F q and h0p¨, ξq, h2p¨, ξq P C8pM,E b Fξq as solutions of

$

’

’

&

’

’

%

Ph0p¨, ξq “ fp¨, ξq,

h0p¨, ξq
ˇ

ˇ

Σ
“ u1p¨, ξq,

∇µh0p¨, ξq
ˇ

ˇ

Σ
“ u2p¨, ξq,

$

’

’

&

’

’

%

Ph2p¨, ξq “
`

∇νf
˘

p¨, ξq,

h2p¨, ξq
ˇ

ˇ

Σ
“ u3p¨, ξq,

∇µh2p¨, ξq
ˇ

ˇ

Σ
“ u4p¨, ξq,

$

’

’

&

’

’

%

Qh0pσ, ¨q “ gpσ, ¨q,

h0pσ, ¨q
ˇ

ˇ

Ξ
“ u1pσ, ¨q,

∇νh0pσ, ¨q
ˇ

ˇ

Ξ
“ u3pσ, ¨q,

$

’

’

&

’

’

%

Qh1pσ, ¨q “
`

∇µg
˘

pσ, ¨q,

h1pσ, ¨q
ˇ

ˇ

Ξ
“ u2pσ, ¨q,

∇νh1pσ, ¨q
ˇ

ˇ

Ξ
“ u4pσ, ¨q.

(2.31)

By adapting the proof of Proposition A.1 of [FNW1981], we obtain smooth sections h0, h1, h2 in E ⊠ F

over pM ˆ Ξq Y pΣ ˆ Nq,Σ ˆ N and M ˆ Ξ, respectively, and, following the same lines, up¨, qq :“ uq
depends smoothly on q. Hence, we found some u P C8pM ˆN,E ⊠ F q solving (2.30), which yields the
initial data of a solution of (2.29):

u
ˇ

ˇ

ΣˆΞ
“ h0

ˇ

ˇ

ΣˆΞ
“ u1, ∇µu

ˇ

ˇ

ΣˆΞ
“ h1

ˇ

ˇ

ΣˆΞ
“ u2,

∇νu
ˇ

ˇ

ΣˆΞ
“ ∇νh0

ˇ

ˇ

ΣˆΞ
“ u3, ∇ν∇µu

ˇ

ˇ

ΣˆΞ
“ ∇νh1

ˇ

ˇ

ΣˆΞ
“ u4.

Note that P and Q commute, since they act on different factors of M ˆ N . Therefore, (2.30) and (2.31)
imply that Qu and g satisfy the same Cauchy problem:

$

’

’

&

’

’

%

PQu “ QPu “ Qf “ Pg,

Qu
ˇ

ˇ

ΣˆN
“ Qh0 “ g

ˇ

ˇ

ΣˆN
,

∇µQu
ˇ

ˇ

ΣˆN
“ Q∇µu

ˇ

ˇ

ΣˆN
“ Qh1 “ ∇µg

ˇ

ˇ

ΣˆN
,

and hence Qu “ g. By the same arguments, we have

$

’

’

&

’

’

%

Qu “ g,

u
ˇ

ˇ

MˆΞ
“ h0,

∇νu
ˇ

ˇ

MˆΞ
“ h2.

(2.32)

Uniqueness follows directly since trivial Cauchy data in (2.29) lead to trivial data in (2.31) and therefore
in (2.30), which implies uq “ 0 for all q, that is u “ 0.
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Corollary 2.3.3. With regard to the assumptions of Theorem 2.3.2, let pN,Ξ, νq “ pM,Σ, µq, F “ E˚ and
E be equipped with a non-degenerate inner product. Let Q “ P t and for all pp, qq P M ˆM assume

fpp, qq “ Θ´1
p gpq, pqtΘq, u2pσ1, σ2q “ Θ´1

σ1
u3pσ2, σ1qtΘσ2 ,

u1pσ1, σ2q “ Θ´1
σ1
u1pσ2, σ1qtΘσ2 , u4pσ1, σ2q “ Θ´1

σ1
u4pσ2, σ1qtΘσ2

(2.33)

with fiberwise transposition t : HompEq, Epq Ñ HompE˚
p , E

˚
q q. Then the solution of (2.29) satisfies

upp, qq “ Θ´1
p upq, pqtΘq, p, q P M. (2.34)

Proof. Well-posedness of the Cauchy problems (2.31) and the symmetries (2.33) directly lead to

h0pp, σq “ Θ´1
p h0pσ, pqtΘσ and h1pσ, pq “ Θ´1

σ h2pp, σqΘp, p P M, σ P Σ,

since the corresponding Cauchy data coincide. Therefore, (2.30) and (2.32) imply (2.34).

We proceed with stability, i.e. continuous dependence on the Cauchy data. Recall that any manifold is
paracompact, so the topology of C8pM,Eq is generated by a countable family of seminorms. Thus, it is
metrizable and we obtain a Fréchet space, for which the open mapping theorem holds.

Theorem 2.3.4. Let Z :“
`

‘2C8pMˆN,E⊠F q
˘

‘
`

‘4C8pΣˆΞ, E⊠F q
˘

andX the subset of elements
pf, g, u1, u2, u3, u4q satisfying Qf “ Pg. Then the map

X ÝÑ C8pM ˆN,E ⊠ F q, pf, g, u1, u2, u3, u4q ÞÝÑ u, (2.35)

which sends the Cauchy data to the unique solution u of (2.29), is linear continuous.

Proof. The map

Φ: C8pM ˆN,E ⊠ F q ÝÑ Z

u ÞÝÑ
`

Pu,Qu, u
ˇ

ˇ

ΣˆΞ
,∇µu

ˇ

ˇ

ΣˆΞ
,∇νu

ˇ

ˇ

ΣˆΞ
,∇ν∇µu

ˇ

ˇ

ΣˆΞ

˘

is linear, injective and continuous. By Theorem 2.3.2, X Ă Z is a closed subspace, which is contained
in ranΦ, and due to continuity of differential operators, the subspace Φ´1pXq Ă C8pM ˆ N,E ⊠ F q is
also closed. Hence, we obtain a continuous and bijective map Φ: Φ´1pXq Ñ X between Fréchet spaces,
whose inverse (2.35) is continuous by the open mapping theorem.

A similar argumentation as for Theorem 2.3.2 and Corollary 2.3.3 leads to

Theorem 2.3.5. Under the assumptions of Theorem 2.3.2 but P and Q assumed to be first-order opera-
tors, the Cauchy problem

$

’

’

&

’

’

%

Pu “ f,

Qu “ g,

u
ˇ

ˇ

ΣˆΞ
“ u1,

is well-posed with smooth solution u P C8pM ˆ N,E ⊠ F q. Moreover, u is symmetric in the sense of
(2.34) if u1, f, g are in the sense of (2.33).
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2 Preliminaries

2.3.3 Singular sections

We close this chapter by investigating the propagation of a family of singular solutions from a neighbor-
hood of a Cauchy hypersurface Σ to the whole spacetime by applying the well-posed Cauchy problem
for singular sections, treated in [BTW2015]. Therefore, we just have to ensure the existence of the re-
striction to Σ by checking Hörmander’s criterion.

Theorem 2.3.6. Let M be a globally hyperbolic Lorentzian manifold with a Cauchy hypersurface
Σ Ă M , π : E Ñ M a real or complex vector bundle over M and P : C8pM,Eq Ñ C8pM,Eq a wave
operator. Furthermore, let O Ă M be relatively compact, and for p P O, let vppq P DpM,E,E˚

p q1

have spacelike compact support and only lightlike singular directions. Moreover, we assume
p ÞÑ vppqrφs P C8pM,E˚q for fixed φ P DpM,E˚q. Then the Cauchy problem

$

’

’

&

’

’

%

Puppq “ 0,

uppq
ˇ

ˇ

Σ
“ vppq

ˇ

ˇ

Σ
,

∇νuppq
ˇ

ˇ

Σ
“ ∇νvppq

ˇ

ˇ

Σ
,

has a unique solution uppq P DpM,E,E˚
p q1, which has spacelike compact support and provides a smooth

section p ÞÑ uppqrφs for each φ P DpM,E˚q.

Proof. Let t : M Ñ R be a Cauchy time function on M such that Σ “ t´1p0q (Theorem 1.3.13 of
[BGP2007]). Therefore, the normal directions of Σ are timelike and do not match the singular direc-
tions of v, so vppq

ˇ

ˇ

Σ
and ∇νvppq

ˇ

ˇ

Σ
are well-defined and compactly supported distributions on Σ for all p

due to Hörmander’s criterion
`

(8.2.3) of [Hör1990]
˘

.
Recall that any compactly supported distribution lies in some Sobolev space Hk

c (see e.g. (31.6) of
[Tre1967]), and hence, vppq

ˇ

ˇ

Σ
P Hk

c pΣ, E˚
p b Eq and ∇νvppq

ˇ

ˇ

Σ
P Hk´1

c pΣ, E˚
p b Eq for some k P R. Thus,

for all p, Corollary 14 of [BTW2015] provides a unique solution

uppq P C0
sc

`

tpMq,HkpΣ¨q;E
˚
p b E

˘

X C1
sc

`

tpMq, Hk´1pΣ¨q;E
˚
p b E

˘

,

where this intersection is better known as the space of finite k-energy sections (see section 1.7 of
[BTW2015] for details about them). Moreover, the mapping of initial data to the solution is a linear
homeomorphism, so because the restriction vppq ÞÑ

`

vppq
ˇ

ˇ

Σ
,∇νvppq

ˇ

ˇ

Σ

˘

is linear and continuous, so is
the map of distributions T given by vppq ÞÑ uppq for all p.
For D a differential operator, let

`

Dp1qv
˘

ppq denote the distribution φ ÞÑ
`

Dpvp¨qrφsq
˘

ppq. It follows that
`

Dp1qv
˘

ppq is linearly and continuously mapped to
`

Dp1qu
˘

ppq, that is, T commutes with Dp1q (see the
proof of Proposition A.1 in [FNW1981]). In particular, the map

p ÞÝÑ
`

Dp1qv
˘

ppqrφs ÞÝÑ
`

Dp1qu
˘

ppqrφs “
`

Dpup¨qrφsq
˘

ppq, φ P DpM,E˚q,

is continuous due to smoothness of the first arrow. Since this holds for all differential operators D, we
obtain smoothness of p ÞÑ uppqrφs for fixed φ.
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3 Symmetry of the Hadamard coefficients

"Symmetrie ist die Schönheit der Dummen."

Let M be a Lorentzian manifold, π : E Ñ M a real or complex, finite-dimensional vector bundle over
M with non-degenerate inner product and P : C8pM,Eq Ñ C8pM,Eq a formally self-adjoint wave
operator. Furthermore, Ω Ă M is assumed to be a non-empty and convex domain, which therefore is
time-orientable, and ∇ denotes the P -compatible connection on E, that is,

∇gradfs “
1

2

`

f ¨ Ps´ P pf ¨ sq ` 2f ¨ s
˘

, s P C8pM,Eq, f P C8pMq. (3.1)

It follows that P “ 2∇`B for some unique endomorphism fieldB and 2∇ “ ptr b idEq ˝ ∇T˚MbE ˝ ∇
the connection-d’Alembert operator (see section 1.5 of [BGP2007]). Then the Hadamard coefficients
Uk P C8pΩ ˆ Ω, E˚ ⊠ Eq, k P N0, for P are defined as the unique solutions of the transport equations

∇gradΓp
Uk
p ´

ˆ

1

2
2Γp ´ d` 2k

˙

Uk
p “ 2k ¨ PUk´1

p , k P N, (3.2)

with U0pp, pq “ idE˚
p

for all p P Ω (Proposition 2.3.1 of [BGP2007]). Γp denotes the squared Lorentz
distance from p, and Uk

p :“ Ukpp, ¨q. In this chapter, we show symmetry of Uk in the sense

Ukpp, qq “ ΘpUkpq, pqtΘ´1
q , p, q P Ω, k P N0. (3.3)

Recall the identification (2.4), meaning that Ukpp, qq is considered as a homomorphism E˚
q Ñ E˚

p with
fiberwise transposed operator Ukpp, qqt P HompEp, Eqq.
[Mor2000] already checked the scalar case E “ M ˆR and very recently, a proof for a vector bundle set-
ting and for arbitrary signature of M has been proposed in [Kam2019]. We restrict to Lorentz signature
and adopt Moretti’s approach insofar that we demonstrate (3.3) for analytic P and deduce the smooth
case by analytic approximation afterwards. However, for the proof in the analytic setting, we choose an
alternative approach employing symmetry properties of the advanced and retarded Green operator.

3.1 A link between even and odd dimensions

For p, q P Ω, let ϕpqptq :“ expp
`

t exp´1
p pqq

˘

denote the unique connecting geodesic, which provides a
map

ϕ : r0, 1s ˆ Ω ˆ Ω ÝÑ Ω, pt, p, qq ÞÝÑ ϕpqptq. (3.4)

Let xM :“ M ˆ R be equipped with the metric pg :“ g ` ds2, pΩ :“ Ω ˆ R and pP :“ P ´ B2

Bs2
on xM .

Furthermore, over xM , we consider the same vector bundle E with fibers Epp,sq :“ Ep for all pp, sq P xM .

Lemma 3.1.1. For pp, sq, pq, s1q P pΩ the map (3.4) and the squared Lorentzian distance are given by

ϕpp,sqpq,s1qptq “
`

ϕpqptq, s` tps1 ´ sq
˘

, pΓ
`

pp, sq, pq, s1q
˘

“ Γpp, qq ´ ps1 ´ sq2.
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3 Symmetry of the Hadamard coefficients

Moreover, for pf P C8pxMq and pX “ pX,Xd`1q P C8pxM,TxMq, we obtain

grad
pg
pf “ gradg

pf `
B pf

Bs

B

Bs
, div

pg
pX “ divgX `

BXd`1

Bs
, 2

pg
pf “ 2g

pf ´
B2

pf

Bs2
.

Proof. The Christoffel symbols Γk
ij of the Levi-Civita-connection on TxM vanish for i, j or k “ d ` 1, so

the geodesic equation separates into the one on Ω and :ϕ d`1
pp,sqpq,s1q

ptq “ 0 on R with boundary conditions

ϕ d`1
pp,sqpq,s1q

p0q “ s and ϕ d`1
pp,sqpq,s1q

p1q “ s1. Thus, ϕpp,sqpq,s1qptq “
`

ϕpqptq, s` tps1 ´ sq
˘

, and consequently,

pΓ
`

pp, sq, pq, s1q
˘

“

ż 1

0
pgϕpp,sqpq,s1qptq

`

9ϕpp,sqpq,s1qptq, 9ϕpp,sqpq,s1qptq
˘

dt

“

ż 1

0
gϕpqptq

`

9ϕpqptq, 9ϕpqptq
˘

dt´

ż 1

0
ps1 ´ sq2 dt “ Γpp, qq ´ ps1 ´ sq2.

From the local form pg “

˜

g 0

0 1

¸

follows det pg “ det g, and therefore,

grad
pg
pf “ pgij

B pf

Bxi
B

Bxj
“ gradg

pf `
B pf

Bs

B

Bs
“

˜

gradg
pf,

B pf

Bs

¸

,

div
pg
pX “

1
a

det pg

B

Bxj
`

pXj
a

det pg
˘

“
1

?
det g

ˆ

B

Bxj
`

Xj
a

det g
˘

`
B

Bs

`

Xd`1
a

det g
˘

˙

“ divgX `
BXd`1

Bs
,

2
pg
pf “ ´div

pg grad
pg
pf “ ´divg gradg

pf ´
B

Bs

B pf

Bs
“ 2g

pf ´
B2

pf

Bs2
.

One can say that the Hadamard coefficients somehow measure the deviation of pM, g,E, P q from
pRd

Mink,2q, and indeed, "adding"
`

R, ds2, t0u, B2

Bs2

˘

does not change them:

Proposition 3.1.2. Let pUk, Uk denote the Hadamard coefficients associated to pxM, pg,E, pP q and
pM, g,E, P q, respectively. Then, for all pp, sq, pq, s1q P pΩ and k P N0, we have

pUk

`

pp, sq, pq, s1q
˘

“ Ukpp, qq.

Proof. For p∇ the pP -compatible connection on E, Lemma 3.1.1 provides

p∇grad
pg
pf

“ p∇gradg
pf

`
B pf

Bs
¨ p∇ B

Bs
, 2

pg
pΓpp,sq “ 2gΓp ` 2.

Clearly, pU0pp, s; p, sq “ idE˚
p

“ U0pp, pq holds, and moreover, for all p P Ω, the transport equations

0 “ p∇grad
pg
pΓpp,sq

pUk
pp,sq ´

ˆ

1

2
2

pg
pΓpp,sq ´ pd` 1q ` 2k

˙

pUk
pp,sq ´ 2k pP pUk´1

pp,sq

“ ∇gradgΓp
pUk

pp,sq ` 2ps1 ´ sqp∇ B
Bs

pUk
pp,sq ´

ˆ

1

2

`2gΓp ` 2
˘

´ pd` 1q ` 2k

˙

pUk
pp,sq ´ 2kP pUk´1

pp,sq
` 2k

B2

Bs2
pUk´1

pp,sq

“ ∇gradgΓp
pUk

pp,sq ´

ˆ

1

2
2gΓp ´ d` 2k

˙

pUk
pp,sq ´ 2kP pUk´1

pp,sq
` 2ps1 ´ sqp∇ B

Bs

pUk
pp,sq ` 2k

B2

Bs2
pUk´1

pp,sq

are obviously solved by Uk
p .
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3.2 Analytic approximation

3.2 Analytic approximation

In the following, let P have analytic coefficients, and we deduce analyticity of pp, qq ÞÑ Ukpp, qq on ΩˆΩ

for all k P N0. As the coefficient of the highest order of P , also the metric g is assumed to be analytic,
so the Levi-Civita connection on TM and the P -compatible connection ∇ on E are analytic as well, that
is, the corresponding Christoffel symbols are. Due to basic ODE-theory, the geodesic equation ensures
analyticity of pt, ξ, pq ÞÑ exppptξq on the domain of existence, and furthermore, pp, qq ÞÑ exp´1

p pqq is
analytic by the analytic inverse function theorem (Theorem 1.4.3 of [KP1992]). This provides analyticity
of pt, p, qq ÞÑ ϕpqptq “ expp

`

t exp´1
p pq

˘

q, the Lorentzian distance pp, qq ÞÑ Γpp, qq “ gp
`

exp´1
p pqq

˘

and the

distortion function pp, qq ÞÑ µpp, qq :“
ˇ

ˇ

ˇ
det

´

d expp
ˇ

ˇ

exp´1
p pqq

¯ˇ

ˇ

ˇ
.

Lemma 3.2.1. The ∇-parallel transport along ϕpq is analytic as a map

r0, 1s ˆ Ω ˆ Ω ÝÑ E˚ ⊠ E, pt, p, qq ÞÝÑ Πp
ϕpqptq. (3.5)

Proof. Let p P Ω be fixed and we identify Hom
`

E˚
ϕpqptq, E

˚
p

˘

– Hom
`

Ep, Eϕpqptq

˘

. For any e P Ep, the map
sppt, qq :“ Πp

ϕpqptqe defines a parallel section ϕpqptq ÞÑ sppt, qq in E along ϕpq for all q P Ω, and therefore,
it satisfies spp0, qq “ e and the following system of ODE’s

9sβp pt, qq “ ´Γβ
iα

`

ϕpqptq
˘

9ϕipqptq
looooooooooomooooooooooon

“:Appt,qq
β
α

sαp pt, qq. (3.6)

The columns of the corresponding fundamental matrix Φppt, qq are given by rkpEq linearly independent
solutions of (3.6). Thus, we have 9Φppt, qq “ Appt, qqΦppt, qq and the solution of (3.6) takes the form

sppt, qq “ Φppt, qqΦpp0, qq´1spp0, qq,

From the definition of sp, we read off Πp
ϕpqptq “ Φppt, qqΦpp0, qq´1, and hence, the map

r0, 1s ˆ Ω Ñ E˚
p b E, pt, qq ÞÝÑ Πp

ϕpqptq,

is analytic, since pt, qq ÞÑ Appt, qq and therefore pt, qq ÞÑ Φppt, qq is. Moreover, from Πr
p “

`

Πp
r

˘´1 follows

Φpp1, rqΦpp0, rq´1 “
`

Φrp1, pqΦrp0, pq´1
˘´1

“ Φrp0, pqΦrp1, pq´1,

and hence, p ÞÑ Πp
r is analytic for each r P Ω. By Osgood’s Lemma [Osg1898], a map is analytic if it is

with respect to each argument, which implies analyticity of (3.5).

Proposition 3.2.2. The map pp, qq ÞÑ Ukpp, qq is analytic on Ω ˆ Ω for all k P N0.

Proof. Analyticity of the zeroth Hadamard coefficient can be directly read off from

pp, qq ÞÝÑ U0pp, qq “
Πp

q
a

µpp, qq
,

and we proceed via induction. By analyticity of P , clearly pp, qq ÞÑ Pp2qUk´1

`

p,Φpqptq
˘

is analytic if

pp, qq ÞÑ Uk´1pp, qq is. Similarly, pt, p, qq ÞÑ U0

`

p, ϕpqptq
˘´1

“

b

µ
`

p, ϕpqptq
˘

¨ Π
ϕpqptq
p is analytic as a

composition of analytic maps (recall that µ is positive). Therefore, the integrand of

Ukpp, qq “ ´kU0pp, qq

ż 1

0
tk´1 ¨ U0

`

p, ϕpqptq
˘´1

Pp2qUk´1

`

p, ϕpqptq
˘

dt
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3 Symmetry of the Hadamard coefficients

is analytic in pp, qq and uniformly continuous in t on r0, 1s. Hence, taking the power series expression of
the integrand, the sum and the integral can be swapped, which results in a uniformly converging power
series for Uk.

Now we tackle the general case of smooth P by analytic approximation of the coefficients. This requires
the following crucial result:

Proposition 3.2.3 (Proposition 2.1 of [Mor1999]). Let M be a real, smooth and connected manifold with
non-singular metric g.

(a) For any local chart px, V q of M and any relatively compact domain O with O Ă V , there is a
sequence tgnunPN of real and analytic (with respect to x) metrics with the same signature as g,
which are defined on some neighborhood of O such that gn Ñ g in C8, that is, all derivatives of
gn converge uniformly on O:

@i, j “ 1, . . . , D, α P ND
0 : max

vPxpOq

ˇ

ˇ

ˇ

`

Dαpgn ˝ x´1qij
˘

pvq ´
`

Dαpg ˝ x´1qij
˘

pvq

ˇ

ˇ

ˇ
ÝÑ 0.

(b) For any px, V q, O, tgnunPN as in (a) and additionally any z P O, there is an n0 P N and a family
tN i

zuiPR of open neighborhoods of z such that N i
z Ă N

j
z Ă O for any j ą i, and tN i

zuiPR is a
local base of the topology of M . Moreover, for all i P R, both N i

z and N
i
z are common convex

neighborhoods of z for all metrics tgnunąn0 and g.

Proposition 3.2.4. Let O Ă Ω be relatively compact and tgnunPN a sequence of real and analytic metrics
defined in a neighborhood of O with the same signature as g such that O and O are convex with respect
to all gn, n P N, and g and gn Ñ g in C8. For tUn

k unPN the corresponding Hadamard coefficients, we
obtain Un

k pp, qq Ñ Ukpp, qq for all k P N0 and p, q P O.

Proof. The assumption directly provides Γk,n
ij Ñ Γk

ij , and with regard to the geodesic equation with
converging right hand side, we similarly obtain expn Ñ exp as smooth maps pt, ξ, pq ÞÑ exppptξq on their
domain of existence. Then, the inverse function theorem provides convergence of

`

expn
˘´1

Ñ exp´1

as smooth maps on O ˆ O and, as a consequence, of the Lorentzian distance Γn Ñ Γ and the distortion
function µn Ñ µ. Eventually, we have ϕn Ñ ϕ for the connecting geodesic (3.4).
It remains to investigate the parallel transport. For all p P O, convergence of Γk,n

ij and ϕn leads to
An

p Ñ Ap for the matrices defined in (3.6), and hence,

Πp,n
ϕn
pqptq “ Φn

p pt, qqΦn
p p0, qq´1 ÝÑ Φppt, qqΦpp0, qq´1 “ Πp

ϕpqptq

as smooth maps r0, 1s ˆ O Ñ E˚
p b E. Thus, we can directly conclude convergence of the zeroth Hada-

mard coefficient

Un
0 pp, ¨q “

Πp,n
¨

a

µnp
ÝÑ

Πp
¨

?
µp

“ U0pp, ¨q (3.7)

as smooth maps O Ñ E˚
p b E and, in particular, Un

0 pp, qq Ñ U0pp, qq in HompE˚
q , E

˚
p q.

We proceed inductively. Due to ϕnpq Ñ ϕpq in C8
`

r0, 1s, O
˘

, (3.7) implies Un
0 pp, ¨q ˝ ϕnpq Ñ U0pp, ¨q ˝ ϕpq in

C8
`

r0, 1s, E˚
p b E

˘

and consequently, PUn
0 pp, ¨q ˝ ϕnpq Ñ PU0pp, ¨q ˝ ϕpq. Therefore, the integrand in the

expression of the first Hadamard coefficient

Un
1 pp, qq “ ´kUn

0 pp, qq

ż 1

0
Un
0

`

p, ϕnpqptq
˘´1

Pp2qU
n
0

`

p, ϕnpqptq
˘

dt
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3.3 Proof of the symmetry

converges to the one in the expression of U1pp, qq, and as a smooth function in t, it is integrable on the
compact interval r0, 1s. Hence, due to majorized convergence, the integral converges as well, so we have

´kUn
0 pp, qq

ż 1

0
Un
0

`

p, ϕnpqptq
˘´1

Pp2qU
n
0

`

p, ϕnpqptq
˘

dt ÝÑ ´kU0pp, qq

ż 1

0
U0

`

p, ϕpqptq
˘´1

Pp2qU0

`

p, ϕpqptq
˘

dt,

which is U1pp, qq. Recursively, this implies Un
k pp, qq Ñ Ukpp, qq for all k P N and p, q P O.

3.3 Proof of the symmetry

Let Vk P C8pΩ ˆ Ω, E ⊠ E˚q, k P N0, denote the Hadamard coefficients associated to pM, g,E˚, P tq,
which, due to formal self-adjointness of P , are closely related to Uk:

Lemma 3.3.1. The Hadamard coefficients of P and P t are related via

Vkpp, qq “ Θ´1
p Ukpp, qqΘq, p, q P Ω.

Proof. For all p P Ω, this clearly holds for the initial condition

V0pp, pq “ idEp “ Θ´1
p idE˚

p
Θp “ Θ´1

p U0pp, pqΘp.

Formal self-adjointness of P implies P t “ ΘPΘ´1, so with regard to (3.1), the P t-compatible connection
∇t is given by Θ∇Θ´1. Therefore, we just have to check that Θ´1

p Ukpp, qqΘq satisfies the transport
equations (3.2) induced by P t and ∇t. Setting Mp :“

`

1
22Γpp, ¨q ´ d` 2k

˘

, we indeed obtain

2k P tΘ´1
p Uk´1

p Θ “ 2kΘ´1
p PUk´1

p Θ “ Θ´1
p

´

∇gradgΓp
Uk
p ´Mp ¨ Uk

p

¯

Θ “
`

∇t
gradgΓp

´Mp

˘

Θ´1
p Uk

pΘ,

which proves the claim.

For p P Ω, let µp :“ |detp d exppq ˝ exp´1
p | : Ω Ñ R and tRα

˘uαPC denote the Riesz distributions.
According to section 1.4 of [BGP2007], we define

RΩ
˘pα, pqrφs :“ Rα

˘

“

pµpφq ˝ expp
‰

, φ P DpΩq, (3.8)

which ensures the identification RΩ
˘pα, pq

ˇ

ˇ

JΩ
˘ppq

“ Cpα, dq ¨ Γ
α´d
2

p for Re pαq ą d. Due to Proposition 2.4.6

of [BGP2007], they comprise Hadamard series, which yield advanced and retarded parametrices rR˘ppq

for P at each p P O on any relatively compact domain O Ă Ω. More precisely, for any integer N ą d
2 and

cut-off function σ P D
`

p´1, 1q, r0, 1s
˘

with σ
ˇ

ˇ

r´ 1
2
, 1
2 s

“ 1, there is a sequence tεkukěN Ă p0, 1s such that

rR˘ppq “

8
ÿ

k“0

rUkpp, ¨q RΩ
˘p2k ` 2, pq, rUk :“

$

&

%

Uk, k ă N,
´

σ ˝ Γ
εk

¯

¨ Uk, k ě N,
(3.9)

represent well-defined distributions and satisfy pp, qq ÞÑ
`

P rR˘ppq ´ δp
˘

pqq P C8pΩ ˆ Ω, E˚ ⊠ Eq. Fur-
thermore, we have p ÞÑ rR˘ppqrφs P C8pO,E˚q for fixed φ P DpO,E˚q, so regarded as bidistributions
and due to compactness of O, they provide continuous operators

rG˘ : DpO,E˚q Ñ C8pO,E˚q, φ ÞÝÑ
`

p ÞÑ rR¯ppqrφs
˘

. (3.10)
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3 Symmetry of the Hadamard coefficients

Consequently, rG˘ yield left parametrices for P t with supp rG˘φ Ă JO
˘ psuppφq, and forG˘ the advanced

and retarded Green operator for P t, we have:

Lemma 3.3.2. The operators G˘ ´ rG˘ are smoothing.

Proof. This directly follows by realizing that the last equation in the proof of Proposition 2.5.1 of
[BGP2007] actually yields a smooth section, since the integral representing the Ck-term corresponds
to a smoothing operator applied to a Ck-section. Due to (3.8) in [BGP2007] and (3.10), this represents
the Schwartz kernel of G˘ ´ rG˘.

Therefore, rG˘ actually represent an advanced and a retarded parametrix for P t in the sense of (1.11).

Proposition 3.3.3. For all convex and relatively compact O Ă Ω, the maps

pp, qq ÞÝÑ

8
ÿ

k“0

´

`

rUkpp, ¨q ´ rVkp¨, pqt
˘

RΩ
˘p2k ` 2, pq

¯

pqq (3.11)

define smooth sections in E˚ ⊠ E over O ˆO.

Proof. By Lemma 3.4.4 of [BGP2007], the advanced and retarded Green operators for P are given by
Gt

¯, so formal self-adjointness of P and uniqueness of G˘ lead to G˘ “ ΘGt
¯Θ

´1. Hence, Lemma 3.3.2
shows that the operators rG˘ ´ Θ rGt

¯Θ
´1 are smoothing:

rG˘ ´ Θ rGt
¯Θ

´1 “ rG˘ ´G˘
loooomoooon

smoothing

´ Θ
`

rG¯ ´G¯
loooomoooon

smoothing

˘t
Θ´1.

By recalling the relation between the Schwartz kernel of an operator and its transpose

rGt
˘rφ,ψs “ rGt

˘ψrφs “ rG˘φrψs “ rG˘rψ,φs, ψ P DpO,Eq, φ P DpO,E˚q,

we just have to show that the Schwartz kernel of rGt
˘ is given by the distribution

rGt
˘ppq “

8
ÿ

k“0

Θ´1
p

rVkp¨, pqtΘ RΩ
˘p2j ` 2, pq.

Indeed, Lemma 1.4.3 of [BGP2007] and Lemma 3.3.1 imply

rGt
¯rφ,ψs “ rG¯

“

ψ,φ
‰

“

8
ÿ

k“0

ż

O
RΩ

˘p2k ` 2, pq
“`

rUkpp, ¨qφ
˘`

ψppq
˘‰

dV ppq

“

8
ÿ

k“0

ż

O
RΩ

˘p2k ` 2, pq
“

Θpψppq
`

Θ´1
p

rUkpp, ¨qφ
˘‰

dV ppq

“

8
ÿ

k“0

ż

O
RΩ

˘p2k ` 2, pq
“

Θpψppq
`

rVkpp, ¨qΘ´1φ
˘‰

dV ppq

“

8
ÿ

k“0

ż

O
RΩ

¯p2k ` 2, qq
“

Θψ
`

rVkp¨, qqΘ´1
q φpqq

˘‰

dV ppq

“

8
ÿ

k“0

ż

O
RΩ

¯p2k ` 2, qq
“`

rVkp¨, qqtΘψ
˘`

Θ´1
q φpqq

˘‰

dV pqq,

which reveals the desired equality.
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3.3 Proof of the symmetry

Lemma 3.3.4. Let k P N0 and assume that for all quadruples pM, g,E, P q as introduced in the beginning
of the chapter with odd spacetime dimension and all lightlike related p, q P O, we have

Ukpp, qq “ Vkpq, pqt.

Then this equality holds for all p, q P Ω and all pM, g,E, P q.

Proof. Consider the setting pM, g,E, P q with odd spacetime dimension d. Let p, q be causally related,
i.e. Γpp, qq ě 0, and choose a, a1 P R2 such that }a´ a1}2 “ Γpp, qq. It follows that pΓ

`

pp, aq, pq, a1q
˘

“ 0, so
pp, aq, pq, a1q are lightlike related in

`

M ˆ R2, g ` gEucl
˘

, which results in

pUk

`

pp, aq, pq, a1q
˘

“ pVk
`

pp, aq, pq, a1q
˘t

by assumption. Therefore, Proposition 3.1.2 provides Ukpp, qq “ Vkpq, pqt.
Let tgnunPN be an analytic approximation of g and Un

k , V
n
k the corresponding Hadamard coefficients.

Write Dn
k pp, qq :“ Un

k pp, qq ´ V n
k pq, pqt, which depends analytically on p, q due to Proposition 3.2.2 and

vanishes on Γ´1
`

Rě0

˘

, so the identity theorem for analytic maps implies Dn
k “ 0 on all of O ˆ O.

Furthermore, by Proposition 3.2.4, we have Dn
k pp, qq Ñ Dkpp, qq and therefore Dkpp, qq “ 0 for all p, q,

which proves the claim in the case of odd spacetime dimension.
The claim for even-dimensional settings pM, g,E, P q can be deduced from

`

M ˆR, g` ds2, E, P ´ B2

Bs2

˘

,
which is odd-dimensional, and Proposition 3.1.2.
Since this works for any relatively compact and convex domain O Ă Ω, by uniqueness of the Hadamard
coefficients, an appropriate exhaustion of Ω by such subsets proves the claim on all of Ω ˆ Ω.

Lemma 3.3.5. Let X be a smooth manifold, T P DpXq1 and f P C8pXq. Then

f ¨ T P C8pXq ùñ f
ˇ

ˇ

sing suppT
“ 0.

Proof. Let x P sing suppT and assume fpxq ‰ 0. Then there is a neighborhood Nx of x such that
f
ˇ

ˇ

Nx
‰ 0 and therefore 1

f P C8pNxq. Thus, by smoothness of f ¨ T , we have 1
f ¨ f ¨ T “ T P C8pNxq,

which contradicts x P sing suppT .

Theorem 3.3.6. Let M be a Lorentzian manifold of dimension d, π : E Ñ M a real or complex vector
bundle over M with non-degenerate inner product, P : C8pM,Eq Ñ C8pM,Eq a formally self-adjoint
wave operator and Ω Ă M a convex domain. Then the Hadamard coefficients Uk P C8pΩ ˆ Ω, E˚ ⊠ Eq

are symmetric in the sense

Ukpp, qq “ ΘpUkpq, pqtΘ´1
q , p, q P Ω, k P N0. (3.12)

Proof. Let d be odd. For all k, j P N0 with j ď k, Lemma 1.4.2 (1) of [BGP2007] provides the recursion

RΩ
˘p2k ` 2, pq “

Cp2k ` 2, dq

Cp2j ` 2, dq
loooooomoooooon

“:Kk,j,d

Γpp, ¨qk´j ¨RΩ
˘p2j ` 2, pq, (3.13)

with Kk,j,d P Rzt0u due to (2.12), so (3.11) can be rewritten into

RΩ
˘p2, pq

8
ÿ

k“0

Kk,0,d

`

rUkpp, ¨q ´ rVkp¨, pqt
˘

Γpp, ¨qk.
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3 Symmetry of the Hadamard coefficients

The proof of Lemma 2.4.2 in [BGP2007] shows that

pp, qq ÞÝÑ

8
ÿ

k“0

Kk,0,d

`

rUkpp, qq ´ rVkpq, pqt
˘

Γpp, qqk P C8pO ˆO,E˚ ⊠ Eq.

Furthermore, we have sing suppRα
˘ “ C˘ for all α P C, and thus, sing suppRΩ

˘pα, pq “ CΩ
˘ppq by (3.8).

Hence, for lightlike separated p, q, Lemma 3.3.5 implies

0 “

8
ÿ

k“0

`

rUjpp, qq ´ rVjpq, pqt
˘

Γpp, qqk “ U0pp, qq ´ V0pq, pqt

since σ
´

Γpp,qq

εk

¯

“ σp0q “ 1, that is rU0pp, qq “ U0pp, qq and rV0pp, qq “ V0pp, qq. It follows from Lemma
3.3.4 that for k “ 0, (3.12) is true also for even d and on all of Ω ˆ Ω.
Now let d again be odd, and for some k0 P N, assume (3.12) to hold for all k “ 0, . . . , k0 ´ 1, i.e. the
smooth section (3.11) is given by

8
ÿ

k“k0

`

rUkpp, ¨q ´ rVkp¨, pqt
˘

RΩ
˘p2k ` 2, pq “ RΩ

˘p2k0 ` 2, pq

8
ÿ

k“k0

Kk,k0,d

`

rUkpp, ¨q ´ rVkp¨, pqt
˘

Γpp, ¨qk´k0 .

Analogously, we obtain

0 “

8
ÿ

k“k0

Kk,k0,d

`

rUkpp, qq ´ rVkpq, pqt
˘

Γpp, qqk´k0 “ Uk0pp, qq ´ Vk0pq, pqt

if Γpp, qq “ 0, so again applying Lemma 3.3.4 completes the proof by induction.

Note that the induction would have been more elaborate for even d since K d
2
,j,d “ 0, which is circum-

vented by using Proposition 3.1.2.
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4 The Prototype

"The universe is basically an animal. It grazes on the
ordinary. It creates infinite idiots just to eat them."

In this chapter, we begin with the actual construction. Recall that (1.9) is a local condition and, moreover,
that the singularity structure of a bisolution is related to the corresponding differential operator es-
sentially via its principal symbol. On these grounds, we start with the prototype setting P “ 2 on
M “ Rd

Mink, d ě 3, since, from the viewpoint of the singularity structure of the solutions, this already
incorporates the characteristic properties of the solutions for the general setting of wave operators on
curved spacetimes.
From Wightman’s axioms, we deduce explicitely and in a rigorous manner solutions W of d’Alembert’s
equation. This can be directly done by employing Fourier transformation, but with regard to the sub-
sequent local construction on curved spacetimes, we derive a local formulation instead. We introduce
the distinguished fundamental solutions und identify them with R2

˘ and S˘, leading to the decompo-
sition W “ i

2

`

S` ´ S´ ` R2
´ ´ R2

`

˘

, from which we will read off explicitly the Hadamard form that
motivated the definition given in [KW1991]. This decomposition and the corresponding identifications
constitute the cornerstone of the upcoming construction in the general case.

4.1 Wightman’s solution

Following Wightman’s axiomatic framework on Minkowski space, a quantum field theory is regarded
as a quadruple pH , U,Φ, Dq, consisting of a Hilbert space

`

H , p¨, ¨q
˘

with dense subspace D, a strongly
continuous unitary representation U of the proper orthochronous Poincaré group PÒ

` on H and a
tempered distribution Φ on Rd with values in the self-adjoint operators on H such that Wightman’s
axioms are satisfied (see section IX.8 of [RS1975]). In particular, for all φ P S pRdq, we assume that
ran

`

Φrφs
˘

Ă D Ă dom
`

Φrφs
˘

and the existence of a unique U -invariant unit vector h0 P H , which is
cyclic with respect to

␣

Φrφsuφ. Furthermore, we demand U -invariance of φ ÞÑ Φrφs and D, that is,

Upa,ΛqD Ă D, Upa,ΛqΦrφsUpa,Λq´1 “ Φ
“

Tpa,Λqφ
‰

, φ P S pRdq,

for all pa,Λq P PÒ
` and Tpa,Λqφpxq :“ φ

`

Λ´1px´ aq
˘

, x P Rd. The one-point-function then corresponds to
the distribution W1rφs :“

`

Φrφsh0, h0
˘

H
, which is constant due to translation invariance of h0. Repla-

cing Φ by Φ1rφs :“ Φrφs ´ W1

ş

φ ¨ idH shows that, without loss of generality, we can restrict ourselves
to the case W1 “ 0. However, the two-point-function is given by the bidistribution

W2 : S pRdq ˆ S pRdq ÝÑ C, pφ1, φ2q ÞÝÑ
`

Φrφ1sΦrφ2sh0, h0
˘

H
, (4.1)

which is PÒ
`-invariant in the sense

W2rφ1, φ2s “ W2

“

Tpa,Λqφ1, Tpa,Λqφ2

‰

, pa,Λq P PÒ
`, φ1, φ2 P S pRdq.
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4 The Prototype

Hence, by translation-invariance, W2 is completely determined by some LÒ
`-invariant distribution W

via

W2rφ1, φ2s “

ż

Rd

φ1pxq ¨W
“

Tpx,´1qφ
‰

dx (4.2)

for all φ1, φ2 P S pRdq (see p. 66 of [RS1975]). Since Wightman’s axiomatic framework does not encode
dynamics, we additionally demand W2 to be a bisolution. This results in 2W “ 0 and we derive a local
expression of the solution roughly following the lines of chapter 5 of [Ste2000]. We introduce the Fourier
transformation as follows

pfpξq :“
1

p2πqd{2

ż

Rd

fpxqe´ixxξ,xyy dx, ξ P Rd, (4.3)

which corresponds to the traditional Fourier transformation in space and the inverse transformation in
time. Therefore, all important properties remain valid and in addition, LÒ

`-invariance is preserved. In
particular, (4.3) yields a homeomorphism S pRdq Ñ S pRdq with inverse map

qfpxq :“
1

p2πqd{2

ż

Rd

fpξqeixxξ,xyy dξ, x P Rd,

and thus admits a continuous extension S pRdq1 Ñ S pRdq1. It is for that reason that we only considered
tempered distributions Φ, a restriction, which will be insignificient, eventually, since we pursue a local
formulation of W not involving any Fourier transformation.

Proposition 4.1.1. Let W be given by (4.2) and satisfy 2W “ 0. Then xW is a multiple of dΩ`
0 (2.10).

Proof. 2W “ 0 directly leads to supp xW Ă C, since γ´1p0q “ C and

0 “ 2W rφs “ W r2φs “ ´xW rγ ¨ qφs, φ P S pRdq.

Moreover, the spectral condition (Property 2 in section IX.8 of [RS1975]), which is the Wightman ax-
iom corresponding to the Hadamard condition, and Theorem IX.32 of [RS1975] lead to the constraint
supp xW Ă C`. Furthermore, we consider a Hermitian theory, that is Φrφs

ˇ

ˇ

D
“ Φrφs˚

ˇ

ˇ

D
, so

W
“

φ ˚Rφ
‰

“

ż

Rd

φpxq ¨W
“

φpx´ ¨q
‰

dx “ W2rφ,φs “
›

›Φrφsh0
›

›

2

H
ě 0,

where Rφpxq :“ φp´xq. Therefore, W is a distribution of positive type, and hence, xW is a measure
due to Theorem IX.10 of [RS1975]. By Corollary 2.2.3, it has to be of the form adΩ`

0 ` bδ0. Recall that
`

Φrφsh0, h0
˘

H
“ 0 for all φ P DpRdq, so the claim follows from Theorem IX.34 of [RS1975].

It follows that W “ adqΩ`
0 and we proceed by reformulating this in an entirely local manner. In consi-

deration of the eventual extraction of fundamental solutions from W , we choose a :“ p2πq
2´d
2 , i.e.

W :“ p2πq
2´d
2 ¨ dqΩ`

0 . (4.4)
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4.2 Local expression for Wightman’s solution

4.2 Local expression for Wightman’s solution

For xx¨, ¨yy the bilinear extension of the Minkowski product to Cd and T˘ :“
␣

z P Cd
ˇ

ˇ Im pzq P I˘

(

the
complex forward and backward tube, we define

∆˘ : T˘ ÝÑ C, z ÞÝÑ ˘
i

p2πqd´1

ż

C¯

eixxz,pyy dΩ¯
0 ppq. (4.5)

Note that the integral always exists since for all z2 “ pz2
0 , pz

2q :“ Im pzq P I˘ and p “ pp0, ppq P C¯, we
have

@@

z2, p
DD

“ |z2
0 | ¨ |p0| `

@

pz2, pp
D

ě }pz2} ¨ }pp} `
@

pz2, pp
D

ě 0

due to the Cauchy-Schwarz inequality, and equality holds if and only if p “ 0.

Lemma 4.2.1. The functions (4.5) are holomorphic and LÒ
`-invariant, and they fulfill

∆˘pzq “ ´∆¯p´zq, z P T˘.

Proof. e´xxImpzq,pyy ensures the existence of the integral and, in particular, that all complex derivatives
exist:

B

Bzk
∆˘pzq “ ˘

i

p2πqd´1

ż

C¯

ipke
ixxz,pyy dΩ¯

0 ppq.

This already demonstrates holomorphicity and the other claims follow by direct calculation:

∆˘pΛzq “ ˘
i

p2πqd´1

ż

C¯

eixxz,Λ
´1pyy dΩ¯

0 ppq “ ˘
i

p2πqd´1

ż

Λ´1pC¯q

eixxz,pyy dΩ¯
0 pΛpq “ ∆˘pzq,

∆˘pzq “ ˘
i

p2πqd´1

ż

C¯

eixx´z,´pyy dΩ¯
0 ppq “ ˘

i

p2πqd´1

ż

C˘

eixx´z,pyy dΩ˘
0 ppq “ ´∆¯p´zq,

for all Λ P LÒ
` and z P T˘.

Corollary 4.2.2. Let e0 denote the future-directed unit vector in time direction. Then, for all z P T˘, we
find x P Rd and ε ą 0 such that

∆˘pzq “ ∆˘px˘ iεe0q.

Proof. LÒ
`-invariance yields ∆˘pzq “ ∆˘

`

rz
˘

if γpzq “ γprzq. Let z :“ z1 ` iz2 P T˘, that is, z1 P Rd and
z2 P I˘. Due to the transitive action of LÒ

` on H˘
κ (2.5), the choice ε :“ γpz2q ą 0 ensures the existence

of some Λ P LÒ
` such that Λz2 “ ˘εe0. Choosing x :“ Λz1, we have x˘ iεe0 P T˘ and

γ
`

x˘ iεe0
˘

“ γpxq
loomoon

γpΛz1q

´ γp˘εe0q
looomooon

“γpΛz2q

´2i
@@

Λz1,˘εe0
DD

loooooomoooooon

“xxΛz1,Λz2yy

“ γpz1q ´ γpz2q ´ 2i
@@

z1, z2
DD

“ γpzq.

Hence, for all ε ą 0, we are left with analytic functions

∆˘
ε : Rd ÝÑ C, x ÞÝÑ ∆˘px˘ iεe0q. (4.6)

Proposition 4.2.3. The limit ε Ñ 0 of (4.6) exists in S pRdq1 and we have

W “ i lim
εÑ0

∆´
ε . (4.7)
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4 The Prototype

Proof. For all φ P S pRdq, dominated convergence provides

lim
εÑ0

i∆˘
ε rφs “ ¯

1

p2πqd´1
lim
εÑ0

ż

Rd

ż

C¯

φpxq ¨ eixxx˘iεe0,pyy dΩ¯
0 ppq dx

“ ¯p2πq
2´d
2 lim

εÑ0

ż

C¯

qφppqe´ε}p̂} dΩ¯
0 ppq “ ¯p2πq

2´d
2 dΩ¯

0 rqφs,

and hence i lim
εÑ0

∆´
ε “ p2πq

2´d
2 dqΩ`

0 “ W .

Therefore, we found a formulation of W as the distributional limit of analytic functions

W pxq “ i lim
εÑ0

∆´
ε pxq “

1

p2πqd´1
lim
εÑ0

ż

C`

eixxx´iεe0,pyy dΩ`
0 ppq,

so for a local formulation, we need to evaluate the integral. Due to LÒ
`-invariance, ∆˘pzq depend on

z P T˘ only via γpzq. Furthermore,

z “ z1 ` iz2 P T˘ ùñ γpzq “ γpz1q ´ γpz2q ´ 2i
@@

z1, z2
DD

P CzRě0, (4.8)

since γpz2q ą 0, and moreover, xxz1, z2yy “ 0 implies γpz1q ď 0 due to the inverse Cauchy-Schwarz-
inequality on I˘ (chapter 5, Proposition 30 of [O’Ne1983]). It follows that

a

γpzq P CzR and thus, the
square root yields a map σ : T˘ Ñ t˘Im ą 0u Ă C, i.e. σpzq2 “ γpzq and the branch chosen such that
˘Im

`

σpzq
˘

ą 0 for z P T˘. Hence, σpzqe0 P T˘ and γpzq “ γ
`

σpzqe0
˘

, so similarly to Corollary 4.2.2, we
obtain

∆˘pzq “ ∆˘
`

σpzqe0
˘

, z P T˘. (4.9)

In particular, z “ x˘ iεe0 leads to the expression

σpx˘ iεe0q “ sgnpx0q

b

γ˘
ε pxq, γ˘

ε pxq :“ γpx˘ iεe0q “ γpxq ´ ε2 ˘ 2iεx0. (4.10)

Proposition 4.2.4. The distributions ∆˘ :“ lim
εÑ0

∆˘
ε are given by

∆˘ “ ˘
iΓ

`

d´2
2

˘

4π
d
2

¨ lim
εÑ0

`

´ γ˘
ε

˘
2´d
2 . (4.11)

Proof. (4.9) and (4.10) provide

∆˘
ε pxq “ ∆˘

ˆ

sgnpx0q

b

γ˘
ε pxq e0

˙

,

so the integrals (4.5) can be calculated explicitely. Since p0 “ ˘}p̂} for p P C˘, (2.10) implies

∆˘
ε pxq “ ˘

i

p2πqd´1

ż

C¯

e´iσpx˘iεe0qp0 dΩ¯
0 ppq “ ˘

i

p2πqd´1

ż

Rd´1

e˘iσpx˘iεe0q}p̂} dp̂
2}p̂}

“ ˘
i ¨ vol Sd´2

2 ¨ p2πqd´1

ż 8

0
e˘iσpx˘iεe0qp ¨ pd´3 dp “ ˘

i

p4πq
d´1
2 Γ

`

d´1
2

˘

¨
Γpd´ 2q

`

¯ iσpx˘ iεe0q
˘d´2

,

and hence, the claim follows from ¯iσpx˘ iεe0q “
a

´γ˘
ε pxq and Γ

`

d´2
2

˘

Γ
`

d´1
2

˘

“
?
π

2d´3Γpd´ 2q.
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4.3 Advanced and retarded fundamental solution

In particular, away from the light cone, ∆˘ is represented by the functions

∆˘pxq “ ˘
iΓ

`

d´2
2

˘

4π
d
2 ¨ |γpxq|

d´2
2

$

&

%

`

¯ i ¨ sgnpx0q
˘2´d

, x P I,

1, x R J,
. (4.12)

Remark 4.2.5. For d “ 4, note that ∆´ satisfies or rather motivates the Hadamard condition given in
[KW1991]. Furthermore, instead of e0, we could have chosen any other future-directed timelike vector
and ∆˘ would not depend on that choice. Unlike in [KW1991], there is no logarithmic contribution in
our prototype setting. However, a term logp´γ˘

ε q appears already in the slightly more general case of
the Klein-Gordon operator 2 `M2, M ą 0.
Recall that the Fourier transform of ∆˘ (4.4) is essentially given by the δ-measure along C˘, so it is
constant in all lightlike and rapidly decreasing in all other directions. Hence, we obtain

WF
`

∆˘
˘

“
␣

px, ξq P Rd ˆ R̊d
ˇ

ˇ ξ P C˘, x “ λξ, λ P R
(

. (4.13)

4.3 Advanced and retarded fundamental solution

We proceed by extracting the advanced and retarded as well as the Feynman and anti-Feynman funda-
mental solution for 2 in the sense of (1.11) from W and demonstrate coincidence with the expressions
R2

˘, S˘ derived in section 2.2. The antisymmetric part of the two-point-function (4.1) represents the ex-
pectation value of the commutator of the field in two spacetime regions suppφ1, suppφ2, and hence, it
is supposed to vanish if these regions are non-causally related. Therefore, the following bidistribution
is occasionally referred to as the causal propagator:

∆C
2 rφ1, φ2s :“ ´i

@

h0,
“

Φrφ1s,Φrφ2s
‰

h0
D

H
“ ´i pW2rφ1, φ2s ´W2rφ2, φ1sq , φ1, φ2, P DpRdq. (4.14)

Similar to (4.2) and due to translation invariance, ∆C
2 is determined by some distribution ∆C via

∆C
2 rφ1, φ2s “ ´i

ż

Rd

`

φ1pxqW rφ2px´ ¨qs ´W rφ2pxqφ1px´ ¨qs
˘

dx

“ ´i

ż

Rd

φ1pxq
`

W rφ2px´ ¨qs ´ W rφ2px` ¨qs
looooooomooooooon

“pRW qrφ2px´¨qs

˘

dx

“:

ż

Rd

φ1pxq ∆Crφ2px´ ¨qs dx,

where Rφpxq :“ φp´xq, and thus ∆C “ ´ipW ´RW q.

Proposition 4.3.1. We have ∆C “ ∆´ ` ∆` and supp∆C Ă J . Furthermore, supp∆C Ă C for d even,
and otherwise

∆Cpxq “ ˘p´1q
d´1
2

Γ
`

d´2
2

˘

2π
d
2 γpxq

d´2
2

, x P I˘.

Proof. Lemma 4.2.1 and (4.7) imply W “ i∆´ “ ´iR∆`, and hence

∆C “ ´i
`

i∆´ ` i∆`
˘

“ ∆´ ` ∆`. (4.15)

The rest now follows directly from (4.12).
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4 The Prototype

Therefore, ∆C vanishes for all non-zero spacelike vectors, which confirms the expected causality pro-
perty of (4.14).

Proposition 4.3.2. Let H0 denote the step function with respect to the time coordinate. Then ´H0 ¨ ∆C

is a well-defined distribution and yields a fundamental solution for 2.

Proof. Since
sing supp∆C X sing suppH0 “ C X tx0 “ 0u “ t0u ‰ H,

we have to check the wave front sets for Hörmander’s criterion (Theorem 8.2.10 of [Hör1990]). (4.13)
implies

WF
`

∆C
˘

Ă
␣

px, ξq
ˇ

ˇ ξ P C, x “ λ ¨ ξ, λ P R
(

,

and due to H0 “ H b 1Rd´1 , where H the step function at 0 on R, Theorem 8.2.9 of [Hör1990] provides

WF
`

H0

˘

Ă WFpHq
loomoon

t0uˆRzt0u

ˆ

´

Rd´1 ˆ t0u

¯

“
␣

px, ξq P Rd ˆ Rdzt0u
ˇ

ˇx “ p0, x̂q, ξ “ pξ0, 0q
(

.

It follows that the singular directions of H0 are timelike, whereas those of ∆C are lightlike, so Hör-
mander’s criterion is satisfied and hence, H0 ¨ ∆C exists as a distribution.
It remains to show 2 `

H0 ¨ ∆C
˘

“ ´δ0 and we start by proving 2∆˘
ε “ 0 for all ε ą 0. From (4.8)

follows that γpx˘ iεe0q ‰ 0 for all x P Rd, so x ÞÑ
`

´ γ˘
ε pxq

˘
2´d
2 is smooth and we can directly calculate

B2
j

`

´ γ˘
ε

˘
2´d
2 “ Bj

ˆ

d´ 2

2

`

´ γ˘
ε

˘´ d
2 ¨ Bjγ

˘
ε

˙

“
dpd´ 2q

4

`

´ γ˘
ε

˘´ d`2
2 ¨

`

Bjγ
˘
ε

˘2
`
d´ 2

2

`

´ γ˘
ε

˘´ d
2 ¨ B2

j γ
˘
ε .

Since B0γ
˘
ε pxq “ 2px0 ˘ iεq and Bjγ

˘
ε pxq “ 2xj for j ‰ 0, we obtain

2`

´ γ˘
ε

˘
2´d
2 “

dpd´ 2q

4

`

´ γ˘
ε

˘´ d`2
2 ¨ 4γ˘

ε `
d´ 2

2

`

´ γ˘
ε

˘´ d
2 ¨ 2d “ 0,

and hence, 2∆˘
ε “ 0. Therefore, ∆C

ε :“ ∆`
ε `∆´

ε is a solution for every ε ą 0 such that for all φ P DpRdq,
integration by parts yields

2`

H0 ¨ ∆C
˘

rφs “ lim
εÑ0

H0

“

∆C
ε ¨ 2φ

‰

“ lim
εÑ0

ż 8

0

ż

Rd´1

∆C
ε pt, x̂q ¨ 2φpt, x̂q dx̂dt

“ lim
εÑ0

ż

Rd´1

ˆ

B∆C
ε

Bt
p0, x̂q ¨ φp0, x̂q ´ ∆C

ε p0, x̂q ¨
Bφ

Bt
p0, x̂q

˙

dx̂.

The second integrand vanishes, since
`

´ γ˘
ε p0, x̂q

˘
2´d
2 “ p}x̂}2 ` ε2q

2´d
2 and thus ∆C

ε p0, x̂q “ 0 by (4.11)
and (4.15). For the first term

B∆˘
ε

Bt
p0, x̂q “ ˘

iΓ
`

d´2
2

˘

¨
`

2´d
2

˘

4π
d
2

`

´ γ˘
ε p0, x̂q

˘
d
2

`

´ B0γ
˘
ε

˘

p0, x̂q
loooooooomoooooooon

“¯2iε

“ ´
εΓ

`

d
2

˘

2π
d
2

`

}x̂}2 ` ε2
˘

d
2
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4.4 Feynman and anti-Feynman fundamental solution

results in
B∆C

ε

Bt
p0, x̂q “ ´

εΓ
`

d
2

˘

π
d
2

`

}x̂}2 ` ε2
˘

d
2

.

The substitution x̂ “: εŷ provides

H0

“

∆C
ε ¨ 2φ

‰

“ ´
εΓ

`

d
2

˘

π
d
2

¨

ż

Rd´1

φp0, x̂q
`

}x̂}2 ` ε2
˘

d
2

dx̂ “ ´
Γ
`

d
2

˘

π
d
2

¨

ż

Rd´1

φp0, εŷq
`

}ŷ}2 ` 1
˘

d
2

dŷ,

so we can take the limit ε Ñ 0 and finally obtain

2`

H0 ¨ ∆C
˘

rφs “ ´
Γ
`

d
2

˘

π
d
2

¨ φp0q ¨ vol
`

Sd´2
˘

loooomoooon

“ 2π
d´1
2

Γp d´1
2 q

ż 8

0

rd´2

`

r2 ` 1
˘

d
2

dr

looooooooomooooooooon

“

?
πΓp d´1

2 q
2Γp d

2 q

“ ´φp0q.

This provides the late motivation for the choice of the prefactor in (4.4) and furthermore, the advanced
and retarded fundamental solution for 2 in the sense of (1.11) are given by

∆A :“ p1 ´H0q ¨ ∆C , ∆R :“ ´H0 ¨ ∆C .

Hence, the support properties supp∆A Ă J´, supp∆R Ă J` and Proposition 2.2.4 reveal the Riesz
distributions R2

˘ as distinguished fundamental solutions:

∆A “ R2
´, ∆R “ R2

`.

Furthermore, we directly obtain that i
2

`

∆A ´ ∆R
˘

represents the antisymmetric part of W .

4.4 Feynman and anti-Feynman fundamental solution

It remains to investigate the symmetric part of W . Recalling (1.12), the Feynman and anti-Feynman
fundamental solution ∆F ,∆aF can be extracted via

∆F “ iW ` ∆A “ p1 ´H0q ¨ ∆` ´H0 ¨ ∆´,

∆aF “ ´iW ` ∆R “ p1 ´H0q ¨ ∆´ ´H0 ¨ ∆`,
(4.16)

which leads to the identities

W “
i

2

`

∆aF ´ ∆F ` ∆A ´ ∆R
˘

, ∆F ` ∆aF “ ∆A ` ∆R. (4.17)

We close the discussion of the prototype by showing that (4.16) correspond to the symmetric funda-
mental solutions S˘ derived in paragraph 2.2.3.

Proposition 4.4.1. For S˘ given by (2.25), we have ∆F “ S´ and ∆aF “ S`.

Proof. For x R C, (4.12) yields

∆F pxq “
`

1 ´H0pxq
˘

¨ ∆`pxq ´H0pxq ¨ ∆´pxq “
iΓ

`

d´2
2

˘

4π
d
2 ¨ |γpxq|

d´2
2

¨

#

i2´d, x P I,

1, x P Jc,
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4 The Prototype

since
`

1 ´H0pxq
˘`

´ i sgnpx0q
˘2´d

“ i2´d
`

1 ´H0pxq
˘

and H0pxq
`

i sgnpx0q
˘2´d

“ i2´dH0pxq. Similarly,

∆aF pxq “
`

1 ´H0pxq
˘

¨ ∆´pxq ´H0pxq ¨ ∆`pxq “ ´
iΓ

`

d´2
2

˘

4π
d
2 ¨ |γpxq|

d´2
2

¨

#

p´iq2´d, x P I,

1, x P Jc,

and, on the other hand, outside of C (2.25) becomes

S˘pxq “ ¯
iΓ

`

d´2
2

˘

4π
d
2 ¨ |γpxq|

d´2
2

¨

#

p¯iq2´d, x P I,

1, x P Jc,

Altogether, we obtain symmetric and LÒ
`-invariant solutions ∆aF ´ S`, ∆

F ´ S´ with support on the
light cone. Moreover, they are homogeneous of degree 2 ´ d as can be deduced directly from (2.26) and
(4.11). Consequently, these differences vanish by Corollary 2.2.7 and the claimed equality holds.

From (4.17), we deduce the following final result of this chapter:

Theorem 4.4.2. For Wightman’s solutionW and the distinguished fundamental solutions S˘, R
2
˘ for 2,

the following identities hold:

W “
i

2

`

S` ´ S´ `R2
´ ´R2

`

˘

, S` ` S´ “ R2
` `R2

´.
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5 Local Hadamard bisolutions

"Den Raum nehmen wir doch mit unseren Organen
wahr, mit dem Gesichtssinn und dem Tastsinn. Schön.
Aber welches ist denn unser Zeitorgan?"

We proceed with the local construction of Hadamard bidistributions for general wave operators on
curved spacetimes. Therefore, letM be a time-oriented Lorentzian manifold of dimension d ě 3, π : E Ñ

M a real or complex vector bundle over M and P : C8pM,Eq Ñ C8pM,Eq a wave operator. Inspired
by the local construction of the advanced and retarded parametrices rG˘ (3.10) for P in [Gün1988] and
[BGP2007], we introduce families of distributions similar to the Riesz distributions (2.12) but containing
S˘ instead. After setting up a formal Hadamard series, some well-known procedure ([Fri1975, Gün1988,
BGP2007]) locally produces left parametrices ĂL˘ for P t. For E equipped with a non-degenerate inner
product and P formally self-adjoint, they are right parametrices as well. We show that i

2

`

ĂL`´ ĂL´` rG`´

rG´

˘

is of Hadamard form with antisymmetric part given by i
2

`

rG` ´ rG´

˘

and hence, ĂL˘ represents anti-
Feynman and Feynman parametrices for P t in the sense of (1.11). Finally, assuming M to be globally
hyperbolic, we derive bisolutions of Hadamard form on suitably small domains.
As usual when working with wave equations, the qualitative behaviour of the solutions depends on
whether the spacetime dimension d is even or odd. Thus, for notational convenience, we introduce the
even numbers

κd :“ 2 ¨

R

d

2

V

“

#

d` 1, d odd

d, d even
.

5.1 Families of Riesz-like distributions on Minkowski space

Let pγ˘ i0qα denote the distributions derived in section 2.2.3 on d-dimensional Minkowski space, which
are holomorphic in α on

␣

Re ą ´d
2

(

by Proposition 2.2.8. For Re pαq ą 0, we introduce the distributions

Lα
˘ :“ Cpα, dq ¨ pγ ˘ i0q

α´d
2 , Cpα, dq :“

2´απ
2´d
2

Γ
`

α
2

˘

Γ
`

α´d
2 ` 1

˘ . (5.1)

As a product of holomorphic functions, α ÞÑ Cpα, dq is holomorphic on all of C, and moreover, the
following recursion holds

Cpα ` 2, dq “
Cpα, dq

αpα ` 2 ´ dq
. (5.2)

Then (2.25) implies 2Lα`2
˘ “ Lα

˘ and hence holomorphic extensions to all of C via Lα
˘ :“ 2kLα`2k

˘

with k chosen such that Re pαq ` 2k ą 0. These extensions are independent of k by the identity theorem,
and we note that the zeros of Γ

`

α
2

˘´1 compensate the poles of pγ ˘ i0q
α´d
2 , that is, Γ

`

α
2

˘´1
pγ ˘ i0q

α´d
2

are holomorphic in α. Despite the strong resemblance of (5.1) with the Riesz distributions (2.12), a
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5 Local Hadamard bisolutions

fundamental discrepancy consists of the missing support restriction. Moreover, the Lα
˘ yield symmetric

distributions for allα.On the other hand, with regard to Lemma 1.2.4 of [BGP2007], the relations between
the elements Lα

˘ are quite similar:

Proposition 5.1.1. For all α P C, we have

(1) γ ¨ Lα
˘ “ αpα ´ d` 2qLα`2

˘ ,

(2) gradγ ¨ Lα
˘ “ 2α gradLα`2

˘ ,

(3) 2Lα`2
˘ “ Lα

˘,

(4) Ld´2n
˘ “ 0, n P N,

(5) Ld`2n
` “ Ld`2n

´ , n P N0,

(6) if Re pαq ą 0, then Lα
˘ are distributions of order at most κd.

Proof. (1): Follows directly from (5.2).
(2): For σ0 :“ 1 and σj :“ ´1 if j “ 1, . . . , d´ 1, we obtain Bjγ “ 2σjxj and thus, (5.2) provides

2αpgradLα`2
˘ qj “ 2αBjL

α`2
˘ “ Cpα ` 2, dq ¨ 2σjxj ¨ αpα ` 2 ´ dqpγ ˘ i0q

α´d
2 “ 2σjxjL

α
˘ “ pgradγqj L

α
˘.

(3): Follows from (2.25) and (5.2):

Lα
˘ “ αpα ´ d` 2qCpα ` 2, dq ¨

2pγ ˘ i0q
α`2´d

2

4
`

α´d
2 ` 1

˘ `

α´d
2 ` d

2

˘ “ Cpα ` 2, dq ¨ 2pγ ˘ i0q
α`2´d

2 “ 2Lα`2
˘ .

(4): Due to (3), integration by parts yields

Ld´2n
˘ rφs “ Ld

˘

“2nφ
‰

“ Cpd, dq

ż

Rd

`2nφ
˘

pxq dx “ 0, φ P DpRdq, n P N.

(5): Follows from pγ ˘ i0qn “ γn for all n P N0.
(6): Since Re pαq `κd ą d, the maps x ÞÑ Lα`κd

˘ pxq are continuous and hence distributions of order 0. As2 increases the order by at most 2, the claim follows from (3), that is, Lα
˘ “ 2κd

2 Lα`κd
˘ .

With regard to the equality given by Proposition 5.1.1 (5), we write Ld`2n :“ Ld`2n
˘ . The crucial proper-

ties of the Riesz distributions for the construction of the advanced and retarded fundamental solution
are R0

˘ “ δ0. Clearly, this does not hold for L0
˘ if d is even, since then n “ d

2 , and Proposition 5.1.1 (4)
implies L0

˘ “ 0. Anyhow, it holds in the odd-dimensional case:

Proposition 5.1.2. Let d be odd. Then L0
˘ “ δ0 and L2

˘ “ S˘.

Proof. The first claim follows from the second one by Propositions 2.2.8 and 5.1.1 (3). For odd d, we have
Γ
`

d´2
2

˘

¨ Γ
`

4´d
2

˘

“ π
sinp d´2

2
πq

“ p´1q
d`1
2 π, and thus, (2.26) provides

L2
˘ “

p´1q
d`1
2 ¨ p´1q

d`1
2

4π
d´2
2 Γ

`

4´d
2

˘

pγ ˘ i0q
2´d
2 “

p˘iqd`1 ¨ Γ
`

d´2
2

˘

4π
d
2

¨ pγ ˘ i0q
2´d
2 “ S˘.

Therefore, S˘ is contained in tLα
˘uαPC if d is odd. In order to find corresponding families trLα

˘uαPC with
rL0

˘ “ δ0 in the even-dimensional case, the naive idea is multiply Lα
˘ with a function of d and α, which
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5.1 Families of Riesz-like distributions on Minkowski space

is singular for α “ d´ 2n and equal to one for α “ d´ 2n´ 1 for all n P N. However, this creates poles:

rLα
˘ :“

p˘iqd´α´1

sin
`

d´α
2 π

˘ ¨ Lα
˘, α P Czt. . . , d´ 2, d, d` 2, . . .u. (5.3)

These are well-defined distributions and by employing Γ
`

d´α
2

˘

Γ
`

α´d
2 ` 1

˘

“ π
sinpπ d´α

2 q
, we find

rLα
˘ “ rCpα, dq ¨ pγ ˘ i0q

α´d
2 , rCpα, dq :“

p˘iqd´α´1Γ
`

d´α
2

˘

2α π
d
2 Γ

`

α
2

˘

. (5.4)

Indeed, the zeros of Lα
˘ and the poles of the prefactor in (5.3) compensate, and hence, rLα

˘ exist as distri-
butions for all α “ d ´ 2n, n P N. Therefore, α ÞÑ rLα

˘rφs are meromorphic functions with simple poles
at α “ d, d` 2, . . . for fixed φ, and by definition, many properties of Lα

˘ are directly adopted:

Proposition 5.1.3. For all α ‰ d´ 2, d, d` 2, . . ., we have

(1) γ ¨ rLα
˘ “ αpα ´ d` 2qrLα`2

˘ ,

(2) gradγ ¨ rLα
˘ “ 2α ¨ gradrLα`2

˘ ,

(3) 2rLα`2
˘ “ rLα

˘,

(4) if Re pαq ą 0, then rLα
˘ are distributions of order at most κd,

(5) rL0
˘ “ δ0.

Proof. (1) – (4) follow directly from Proposition 5.1.1 via (5.3). For (5), we just compare (5.3) and (2.26):

rL2
˘ “ rCp2, dq ¨ pγ ˘ i0q

2´d
2 “

p˘iqd`1 ¨ Γ
`

d´2
2

˘

4π
d
2

¨ pγ ˘ i0q
2´d
2 “ S˘.

Thus, the Feynman and anti-Feynman fundamental solution S˘ for 2 are contained in the families
trLα

˘uα and we close this section by particularly investigating the integers, where rLα
˘ are non-singular:

Proposition 5.1.4. For α P Zztd, d` 2, . . .u, we have

rLα
˘ “

#

Lα
˘, d´ α odd,

˘ i
πL

d2n logpγ ˘ i0q, α “ d´ 2n, n P N,
(5.5)

where the distributions logpγ ˘ i0q are given by

logpγ ˘ i0q “
1

2d
2`

γ logpγ ˘ i0q
˘

´
d` 2

d
. (5.6)
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5 Local Hadamard bisolutions

Proof. For d´α odd, we directly obtain p˘iqd´α´1 “ p´1q
d´α´1

2 “ sin
`

d´α
2 π

˘

and thus, rLα
˘ “ Lα

˘ follows

from (5.3). Furthermore, (5.1) yields Ld
˘ “ Cpd, dq “ π

2´d
2

2d Γp d
2 q

, so (5.4) and Proposition 2.2.8 imply

rLd´2n
˘ “ rCpd´ 2n, dqpγ ˘ i0q´n

“ ˘ip´1qn´1 ¨
pn´ 1q!

2d´2n π
d
2 Γ

`

d
2 ´ n

˘

¨
p´1qn´1 ¨ 2n logpγ ˘ i0q

4npn´ 1q!
śn

k“1

`

k ´ n` d´2
2

˘

“ ˘
i

π

π
2´d
2

2d Γ
`

d
2

˘

looomooon

“Cpd,dq“Ld
˘

2n logpγ ˘ i0q.

A direct calculation provides 2`

γ logpγ ˘ i0q
˘

“ 2d logpγ ˘ i0q ` 2pd` 2q and thus (5.6).

Proposition 5.1.5. For all α P Z and n P N, the following expressions are R-valued:

i
`

Lα
` ´ Lα

´

˘

, i
`

rLd´2n
` ´ rLd´2n

´

˘

, Ld`2pn´1q
`

log
`

γ ` i0q ` logpγ ´ i0q
˘

. (5.7)

Proof. With regard to the definition of Lα
˘ as holomorphic extensions, for the first claim, it suffices to

check the case α ě d. If α ´ d is even, Proposition 5.1.1 (5) directly shows ipLα
` ´ Lα

´q “ 0. On the other
hand, for odd α ´ d, we calculate

ipLα
` ´ Lα

´q “ iCpα, dq
`

pγ ` i0q
α´d
2 ´ pγ ´ i0q

α´d
2

˘

“

$

&

%

0, γ ě 0

p´1q
α´d`1

2 ¨ 2p´γq
α´d
2 , γ ă 0

.

Since Ld`2pn´1q “ Cpd ` 2pn ´ 1q, dq γn´1 is obviously real for all n P N, for the third term of (5.7), we
just have to check the logarithms. Indeed, due to

logpγ ˘ i0q “

#

log γ, γ ą 0,

logp´γq ˘ iπ, γ ă 0,

it equals C
`

d´2pn´1q, d
˘

γn´1 log |γ|, which is R-valued. This shows the claim also for the second term
using Proposition 5.1.4:

i
`

rLd´2n
` ´ rLd´2n

´

˘

“ ´
Ld

π
2n

`

logpγ ` i0q ` logpγ ´ i0q
˘

.

Remark 5.1.6. It is not hard to show that also for d “ 1 and d “ 2, (5.1) and Proposition 5.1.5 provide
the respective fundamental solutions:

L2pxq “
|x|

2
, rL2

˘ “ ˘
i

2π
logpγ ˘ i0q.

Therefore, it follows that rL0
˘ “ δ0 also in these cases.
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5.2 Families of Riesz-like distributions on a convex domain

5.2 Families of Riesz-like distributions on a convex domain

Following section 1.4 of [BGP2007], we now transfer the families tLα
˘uαPC, trL

α
˘uαPCztd,d`2,...u locally to

M . For p P M and Ω Ă M geodesically starshaped with respect to p, let Γppqq :“ Γpp, qq “ γ
`

exp´1
p pqq

˘

denote the squared Lorentz distance to p and µp the distortion function defined by (1.9) in [BGP2007].
Analogous to (3.8), we define the corresponding distributions on Ω via

LΩ
˘pα, pq :“ pexppq˚L

α
˘,

rLΩ
˘pα, pq :“ pexppq˚

rLα
˘, (5.8)

i.e. LΩ
˘pα, pqrφs “ Lα

˘

“

pµpφq ˝ expp
‰

for all φ P DpΩq due to Theorem 10.11 of [DK2010]. These are
well-defined distributions on Ω, since µpφ P DpΩq and

supp
`

exp˚
ppµpφq

˘

Ă exp´1
p

`

supp pµpφq
˘

,

which is compact due to continuity of expp, and hence, pexppq˚pµpφq P D
`

exp´1
p pΩq

˘

. Consequently,
for fixed φ P DpΩq, they provide holomorphic maps α ÞÑ LΩ

˘pα, pqrφs and meromorphic maps
α ÞÑ rLΩ

˘pα, pqrφs with simple poles at α “ d, d` 2, . . ..

Proposition 5.2.1. Let p P M and Ω Ă M be geodesically starshaped with respect to p. Then, for all
α P C, we have:

(1) For Re pαq ą d, the maps p ÞÑ LΩ
˘pα, pq are continuous on Ω and given by

LΩ
˘pα, pq “ Cpα, dq pΓp ˘ i0q

α´d
2 . (5.9)

(2) Γp ¨ LΩ
˘pα, pq “ αpα ´ d` 2q ¨ LΩ

˘pα ` 2, pq,

(3) gradΓp ¨ LΩ
˘pα, pq “ 2α gradLΩ

˘pα ` 2, pq,

(4) 2LΩ
˘pα ` 2, pq “

´2Γp´2d
2α ` 1

¯

¨ LΩ
˘pα, pq, α ‰ 0.

(5) For Re pαq ą 0, (5.8) yield distributions of order at most κd. Moreover, there is an open neighbor-
hood U of p and some C ą 0 such that

ˇ

ˇLΩ
˘pα, qqrφs

ˇ

ˇ ď C ¨ }φ}Cκd pΩq, q P U, φ P DpΩq.

(6) Let U Ă Ω be an open neighborhood of p such that Ω is geodesically starshaped with respect to all
q P U . Furthermore, let Re pαq ą 0 and V P Cκd`kpU ˆ Ωq such that suppV pq, ¨q Ă Ω is compact
for all q P U . Then q ÞÑ LΩ

˘pα, qqrV pq, ¨qs P CkpUq.

(7) For all φ P Ck
c pΩq, the map α ÞÑ LΩ

˘pα, pqrφs is holomorphic on
␣

Re pαq ą d´ 2tk2 u
(

.

On the domain of holomorphicity of rLΩ
˘pα, pq, the statements (1) – (7) remain true, when we replace

LΩ
˘pα, pq and Cpα, dq by rLΩ

˘pα, pq and rCpα, dq.

(8) For d´ α an odd integer, we have LΩ
˘pα, pq “ rLΩ

˘pα, pq.

(9) rLΩ
˘p0, pq “ δp.

(10) For all n P N, we have LΩ
˘pd´ 2n, pq “ 0 and LΩ

`pd` 2n´ 2, pq “ LΩ
´pd` 2n´ 2, pq.
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5 Local Hadamard bisolutions

Proof. (1): By definition of LΩ
˘ and µp, for all φ P DpΩq, we have

LΩ
˘pα, pqrφs “ Lα

˘

“

pµp ¨ φq ˝ exppq
‰

“ Cpα, dq

ż

exp´1
p pΩq

pγpxq ˘ i0q
α´d
2 ¨ pφ ¨ µpqpexpppxqq dx

“ Cpα, dq

ż

Ω

`

Γppqq ˘ i0
˘

α´d
2 ¨ φpqq ¨ µppqq

``

exp´1
p

˘˚ dx
˘

pqq
loooooooooooooomoooooooooooooon

“ dV pqq

“ Cpα, dq

ż

Ω

`

Γppqq ˘ i0
˘

α´d
2 ¨ φpqq dV pqq.

(2), (3): Follow directly from Definition (5.8) and Proposition 5.1.1.
(4): Let Re pαq ą d ` 2, so we can employ (5.9) and xgradΓp,gradΓpy “ ´4Γp (Lemma 1.3.19 of
[BGP2007]). Then (2) and (3) yield

2LΩ
˘pα ` 2, pq “ ´divgradLΩ

˘pα ` 2, pq “ ´
1

2α
div

`

gradΓp ¨ LΩ
˘pα, pq

˘

“
1

2α

`2Γp ¨ LΩ
˘pα, pq ´

@

gradLΩ
˘pα, pq,gradΓp

D˘

“
1

2α

ˆ2Γp ¨ LΩ
˘pα, pq ´

LΩ
˘pα ´ 2, pq

2pα ´ 2q
xgradΓp,gradΓpy

˙

“

ˆ2Γp

2α
`
α ´ d

α

˙

LΩ
˘pα, pq “

ˆ2Γp ´ 2d

2α
` 1

˙

LΩ
˘pα, pq.

Both sides are holomorphic on tRe pαq ą d ` 2u and can be extended uniquely and holomorphically to
the punctured plane Czt0u, where they consequently have to coincide by the identity theorem.
(5): Since µp is smooth and expp a diffeomorphism, the order of LΩ

˘pα, pq coincides with the one of Lα
˘,

which is at most κd due to Proposition 5.1.1. Hence, for Ω1 :“ exp´1
p pΩq, we find some C 1 such that

ˇ

ˇLα
˘rφ1s

ˇ

ˇ ď C 1}φ1}Cκd pΩ1q, φ
1 P DpΩ1q, and therefore,

ˇ

ˇLΩ
˘pα, pqrφs

ˇ

ˇ ď C 1}pµp ˝ exppq ¨ pφ ˝ exppqq}Cκd pΩ1q ď C}φ}Cκd pΩq.

(6): For any linear isometry App, qq : TpΩ Ñ TqΩ and all q P U , we have

pµq ¨ V pq, ¨qq ˝ expq ˝App, qq P Ck`d
c

`

exp´1
p pUq

˘

,

and hence, q ÞÝÑ LΩ
˘pα, qq rV pq, ¨qs P CkpUq by Lemma 1.1.6 of [BGP2007] and (5).

(7): α ÞÑ LΩ
˘pα ` 2l, xq

“2lφ
‰

is well-defined if 2l ă k and α ` 2l ą d, for which the maximal possible
integer is l “ tk2 u. Hence, α ÞÑ LΩ

˘pα, xqrφs is holomorphic on
␣

Re pαq ą d´ 2tk2 u
(

.

By employing the respective properties of rLα
˘, the proofs for rLΩ

˘pα, pq are identical.

(8): Follows directly from (5.5).
(9): Due to rL0

˘ “ δ0 and µpppq “ 1 by Lemma 1.3.17 of [BGP2007], we directly obtain

rLΩ
˘p0, pqrφs “ rL0

˘rpµp ¨ φq ˝ expps “ pµp ¨ φqpexppp0qq “ µpppq
loomoon

“1

φppq, φ P DpΩq.

(10): Follows from Proposition 5.1.1.

Note that (8) and (9) of Proposition 5.2.1 imply LΩ
˘p0, pq “ δp for odd d, and due to (10), we again

set LΩpd ` 2n, pq :“ LΩ
˘pd ` 2n, pq for all n P N0. Similarly to (5.8), LΩ

˘pd, pq logpΓp ˘ i0q is given by
µp ¨ pexppq˚

`

Ld
˘ logpγ ˘ i0q

˘

and thus by (5.6).
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5.2 Families of Riesz-like distributions on a convex domain

With regard to the Hadamard series and the recursions in the next section, we prove the following
technical Lemma, which relates rLΩ

˘pα, pq and 2`

LΩ
˘pd, pq logpΓp ˘ i0q

˘

for even d.

Lemma 5.2.2. Let d be even and k P N with k ě d
2 . Then we have

grad
`

LΩp2k ` 2, pq ¨ logpΓp ˘ i0q
˘

“
gradΓp

4k
¨ LΩp2k, pq logpΓp ˘ i0q `

gradΓp

2kp2k ` 2 ´ dq
¨ LΩp2k, pq,

2 `

LΩp2k ` 2, pq ¨ logpΓp ˘ i0q
˘

“

2Γp

2 ´ d` 2k

2k
¨ LΩp2k, pq ¨ logpΓp ˘ i0q `

2Γp

2 ´ 2d` 4k ` 2

2k
`

k ´ d´2
2

˘ ¨ LΩp2k, pq,

and for k “ d´2
2

grad
`

LΩpd, pq ¨ logpΓp ˘ i0q
˘

“ ¯
iπ ¨ gradΓp

2pd´ 2q
¨ rLΩ

˘pd´ 2, pq

2 `

LΩpd, pq ¨ logpΓp ˘ i0q
˘

“ ¯
iπ p2Γp ´ 4q

4pd´ 2q
¨ rLΩ

˘pd´ 2, pq.

Proof. Proposition 5.2.1 (3) provides

grad
`

LΩp2k ` 2, pq ¨ logpΓp ˘ i0q
˘

“ logpΓp ˘ i0q ¨ gradLΩp2k ` 2, pq ` LΩp2k ` 2, pq ¨ grad logpΓp ˘ i0q

“
gradΓp

4k
¨ LΩp2k, pq logpΓp ˘ i0q `

Γp ¨ LΩp2k, pq

2kp2k ` 2 ´ dq
¨

gradΓp

Γp

“
gradΓp

4k
¨ LΩp2k, pq logpΓp ˘ i0q `

gradΓp

2kp2k ` 2 ´ dq
¨ LΩp2k, pq,

and hence, xgradΓp,gradΓpy “ ´4Γp implies

2 `

LΩp2k ` 2, pq ¨ logpΓp ˘ i0q
˘

“ ´div
ˆ

gradΓp

4k
¨ LΩp2k, pq logpΓp ˘ i0q `

gradΓp

2kp2k ` 2 ´ dq
¨ LΩp2k, pq

˙

“
1

4k

ˆ2Γp ¨ LΩp2k, pq logpΓp ˘ i0q ´
LΩp2k ´ 2, pq logpΓp ˘ i0q

4pk ´ 1q
xgradΓp,gradΓpy

´LΩp2k, pq ¨
xgradΓp,gradΓpy

Γp

˙

`
2Γp ¨ LΩp2k, pq ´

LΩp2k´2,pq

4pk´1q
¨ xgradΓp,gradΓpy

2kp2k ` 2 ´ dq

“
1

4k

`2Γp ` 2p2k ´ dq
˘

LΩp2k, pq logpΓp ˘ i0q `

ˆ

1

k
`

2Γp ` 2p2k ´ dq

2kp2k ` 2 ´ dq

˙

LΩp2k, pq

“

2Γp

2 ´ d` 2k

2k
¨ LΩp2k, pq logpΓp ˘ i0q `

2Γp

2 ´ 2n` 4k ` 2

2k
`

k ´ d´2
2

˘ ¨ LΩp2k, pq.
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5 Local Hadamard bisolutions

By Proposition 5.2.1 (1) LΩpd, pq “ Cpd, dq “ ¯
iπ rCpd´2,dq

2pd´2q
is constant on Ω, so again using (3) yields

grad
`

LΩpd, pq ¨ logpΓp ˘ i0q
˘

“ ¯
iπ rCpd´ 2, dq

2pd´ 2q
¨

gradΓp

Γp
“ ¯

iπ ¨ gradΓp

2pd´ 2q
¨ rLΩ

˘pd´ 2, pq,

2 `

LΩpd, pq ¨ logpΓp ˘ i0q
˘

“ ˘
iπ

2pd´ 2q
div

´

gradΓp ¨ rLΩ
˘pd´ 2, pq

¯

“ ¯
iπ

2pd´ 2q

ˆ2Γp ¨ rLΩ
˘pd´ 2, pq ´

xgradΓp,gradΓpy

2pd´ 4q
¨ rLΩ

˘pd´ 4, pq

˙

“ ¯
iπ

2pd´ 2q

ˆ2Γp `
4

2pd´ 4q
¨ pd´ 4qpd´ 4 ´ d` 2q

˙

¨ rLΩ
˘pd´ 2, pq

“ ¯
iπ p2Γp ´ 4q

2pd´ 2q
¨ rLΩ

˘pd´ 2, pq.

For Ω Ă M convex and Re pαq ą d, the symmetry of Γ on Ω ˆ Ω implies symmetry of the continuous
functions LΩ

˘pαq, rLΩ
˘pαq by Proposition 5.2.1 (1). We finish this section by showing that this remains true

for Re pαq ď d in the sense of bidistributions:

Lemma 5.2.3. Let Ω Ă M be convex, α P C and u P DpΩ ˆ Ωq. Then we have
ż

Ω
LΩ

˘pα, pqrupp, ¨qs dV ppq “

ż

Ω
LΩ

˘pα, qqrup¨, qqs dV pqq,

which similarly holds for rLΩ
˘pαq.

Proof. Replacing the Riesz distributions and their antisymmetry property RΩ
˘pα, pqpqq “ RΩ

¯pα, qqppq by
the symmetric LΩ

˘, rL
Ω
˘, respectively, the proof coincides with the one of Lemma 1.4.3 in [BGP2007].

Remark 5.2.4. Considering LΩ
˘pαq as bidistributions via

LΩ
˘pαqrφ,ψs “

ż

Ω
LΩ

˘pα, pqrφs ¨ ψppq dV ppq, φ, ψ P DpΩq, (5.10)

Lemma 5.2.3 provides symmetry in the sense LΩ
˘pαqrφ,ψs “ LΩ

˘pαqrψ,φs.

5.3 The Hadamard series

Let E be a real vector bundle over M and P : C8pM,Eq Ñ C8pM,Eq a wave operator. Adopting the
approach pursued in section 5.2 of [Gar1964], we start the deduction of local expressions for Feynman
and anti-Feynman parametrices for P by taking the following ansatz of a formal Hadamard series:

L˘ppq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

8
ř

k“0

Uk
pL

Ω
˘p2k ` 2, pq `

8
ř

k“ d´2
2

W k
p L

Ωp2k ` 2, pq, d odd,

d´4
2
ř

k“0

Uk
p
rLΩ

˘p2k ` 2, pq ˘ i
π

8
ř

k“ d´2
2

`

Uk
p logpΓp ˘ i0q `W k

p

˘

LΩp2k ` 2, pq, d even,
(5.11)

with coefficients Uk
p ,W

k
p P C8

`

Ω, E˚
p b E

˘

yet to be determined. For φ P DpΩ, E˚q, we identify
Uk
pφ,W

k
p φ with E˚

p -valued test functions (see section 2.1 of [BGP2007]), so L˘ppq is (formally) un-
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5.3 The Hadamard series

derstood as a distribution on DpΩ, E˚q with values in the complexified fiber E˚
p bR C. Similar to the

procedure in chapter 2 of [BGP2007], we determine Uk
p ,W

k
p by formally demanding PL˘ppq “ δp. Since

Definition 3.1 of the P -compatible connection ∇ implies a product rule for P pf ¨ sq, we obtain for odd d

LΩ
˘p0, pq “ δp

!
“ PL˘ppq “

8
ÿ

k“0

P
`

Uk
pL

Ω
˘p2k ` 2, pq

˘

`

8
ÿ

k“ d´2
2

P
`

W k
p L

Ωp2k ` 2, pq
˘

“ U0
p 2LΩ

˘p2, pq ´ 2∇gradLΩ
˘p2,pqU

0
p `

8
ÿ

k“1

´

PUk´1
p LΩ

˘p2k, pq ´ 2∇gradLΩ
˘p2k`2,pqU

k
p ` Uk

p 2LΩ
˘p2k ` 2, pq

¯

`

8
ÿ

k“ d
2

`

PW k´1
p LΩp2k, pq ´ 2∇gradLΩp2k`2,pqW

k
p `W k

p 2LΩp2k ` 2, pq
˘

“ U0
p 2LΩ

˘p2, pq ´ 2∇gradLΩ
˘p2,pqU

0
p `

8
ÿ

k“1

1

2k

ˆ

2k PUk´1
p ´ ∇gradΓp

Uk
p `

ˆ

1

2
2Γp ´ d` 2k

˙

Uk
p

˙

LΩ
˘p2k, pq

`

8
ÿ

k“ d
2

1

2k

ˆ

2k PW k´1
p ´ ∇gradΓp

W k
p `

ˆ

1

2
2Γp ´ d` 2k

˙

W k
p

˙

LΩp2k, pq.

Furthermore, for even d, Lemma 5.2.2 leads to

rLΩ
˘p0, pq “ δp

!
“ PL˘ppq

“

d´4
2
ÿ

k“0

P
´

Uk
p
rLΩ

˘p2k ` 2, pq

¯

˘
i

π

8
ÿ

k“ d´2
2

P
`

Uk
pL

Ωp2k ` 2, pq logpΓp ˘ i0q `W k
p L

Ωp2k ` 2, pq
˘

“ U0
p 2rLΩ

˘p2, pq ´ 2∇gradrLΩ
˘p2,pq

U0
p ˘

i

π

ˆ

W
d´2
2

p

“0
hkkkkkikkkkkj2LΩpd, pq ´

“0
hkkkkkkkkkkkikkkkkkkkkkkj

2∇gradLΩpd,pqW
d´2
2

p

˙

`

d´4
2
ÿ

k“1

´

Uk
p 2rLΩ

˘p2k ` 2, pq ´ 2∇gradrLΩ
˘p2k`2,pq

Uk
p ` rLΩ

˘p2k, pqPUk´1
p

¯

` rLΩ
˘pd´ 2, pqPU

d´4
2

p

˘
i

π

"

U
d´2
2

p 2`

LΩpd, pq logpΓp ˘ i0q
˘

´ 2∇gradpLΩpd,pq logpΓp˘i0qqU
d´2
2

p

`

8
ÿ

k“ d
2

“

LΩp2k, pq logpΓp ˘ i0qPUk´1
p ´ 2∇gradpLΩp2k`2,pq logpΓp˘i0qqU

k
p ` Uk

p 2`

LΩp2k ` 2, pq logpΓp ˘ i0q
˘‰

`

8
ÿ

k“ d
2

`

W k
p 2LΩp2k ` 2, pq ´ 2∇gradLΩp2k`2,pqW

k
p ` LΩp2k, pqPW k´1

p

˘

*

“ U0
p 2rLΩ

˘p2, pq ´ 2∇gradrLΩ
˘p2,pq

U0
p `

d´4
2
ÿ

k“1

„ˆ

1

2
2Γp ´ d` 2k

˙

Uk
p ´ ∇gradΓp

Uk
p ` 2kPUk´1

p

ȷ

rLΩ
˘p2k, pq

2k

`

ˆ

pd´ 2qPU
d´4
2

p `

ˆ

1

2
2Γp ´ 2

˙

U
d´2
2

p ´ ∇gradΓp
U

d´2
2

p

˙

rLΩ
˘pd´ 2, pq

d´ 2

˘
i

π

8
ÿ

k“ d
2

„ˆ

1

2
2Γp ´ d` 2k

˙

Uk
p ´ ∇gradΓp

Uk
p ` 2kPUk´1

p

ȷ

LΩp2k, pq logpΓp ˘ i0q

2k

˘
i

π

8
ÿ

k“ d
2

„ˆ

1

2
2Γp ` 2 ` 4k ´ 2d

˙

Uk
p ´ ∇gradΓp

Uk
p

ȷ

LΩp2k, pq

2k
`

k ´ d´2
2

˘

˘
i

π

8
ÿ

k“ d
2

„ˆ

1

2
2Γp ` 2k ´ d

˙

W k
p ´ ∇gradΓp

W k
p ` 2kPW k´1

p

ȷ

LΩp2k, pq

2k
.
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5 Local Hadamard bisolutions

Imposing the initial condition U0
p ppq “ idE˚

p
, we read off the transport equations

2k PUk´1
p “ ∇gradΓp

Uk
p ´

ˆ

1

2
2Γp ´ d` 2k

˙

Uk
p , k P N0, (5.12)

2k PW k´1
p “

$

&

%

∇gradΓp
W k

p ´
`

1
22Γp ´ d` 2k

˘

W k
p , k ` 1

2 P N, k ě d
2 ,

∇gradΓp
W k

p ´
`

1
22Γp ` 2k ´ d

˘

W k
p `

2k PUk´1
p

k´ d´2
2

´ 2Uk
p , k P N, k ě d

2 .
(5.13)

Remark 5.3.1. Note that there is no constraint on W d´2
2

, which is therefore free to choose. Hence, even
if (5.11) converges, the requirement PL˘ppq “ δp determines L˘ppq only up to smooth solutions of the

form
8
ř

k“0

pWk
p ´ĂWk

p q Γk

4kk! Γpk` d
2 q

with W k
p ,

ĂW k
p arising from different choices of W d´2

2
.

Proposition 5.3.2. Let O Ă Ω be a non-empty domain such that Ω is geodesically starshaped with
respect to all p P O. For any W d´2

2
P C8pOˆΩ, E˚ ⊠Eq, there are unique and smooth solutions of (5.12)

and (5.13) given by

U0pp, qq “
Πp

q
a

µpp, qq
,

Ukpp, qq “ ´kU0pp, qq

ż 1

0
tk´1U0

`

p, ϕpqptq
˘´1`

Pp2qUk´1

˘`

p, ϕpqptq
˘

dt, k ě 1, (5.14)

Wkpp, qq “ ´kU0pp, qq

ż 1

0
tk´1U0

`

p, ϕpqptq
˘´1

xWk´1

`

p, ϕpqptq
˘

dt, k ě
d

2
. (5.15)

Πp
q : Ep Ñ Eq denotes the ∇-parallel transport, ϕpq : r0, 1s Ñ Ω the unique geodesic connecting p, q (3.4)

and

xWk´1 :“

$

’

&

’

%

Pp2qWk´1, k ` 1
2 P N, k ě d

2 ,

Pp2q

ˆ

Wk´1 ´
Uk´1

k´ d´2
2

˙

`
Uk
k , k P N, k ě d

2 .

Proof. The transport equations (5.12) and for half-integer k also (5.13) coincide with (2.3) of [BGP2007].
Therefore, Uk and for k ` 1

2 P N also Wk are the Hadamard coefficients given by (5.14) and (5.15) due to
Proposition 2.3.1 of [BGP2007]. For integer k, we can apply the same proof forWk with PW k´1

p replaced
by xW k´1

p everywhere, for which the same procedure then leads to (5.15).

Corollary 5.3.3. For Ω convex, E equipped with a non-degenerate inner product and P formally self-
adjoint, we have symmetry of Uk for all k P N0 and, in case of symmetric W d´2

2
, of Wk for half-integer

k ě d
2 in the sense of (3.3).

Remark 5.3.4. Note that, if d is even, the transport equation (5.13) for W k
p is coupled to the Uk

p since the
derivatives of the logarithmic term have to be somewhat compensated. In the odd-dimensional case,

W
d´2
2

p “ 0 leads to W k
p “ 0 for all k, whereas, as a consequence of the coupling with Uk

p , for even
dimensions, we have W k

p ‰ 0, in general.
A more remarkable discrepancy is revealed by investigating the symmetry properties of Wk in the even
dimensional case, that is, for integer k. It is tempting to conjecture symmetry like for odd d, but in fact, it
does not hold [Wal1978]. This phenomenon played a prominent role during the development of Wald’s
axiomatic approach to a renormalized energy-momentum tensor. More precisely, the lack of symmetry
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5.4 Local parametrices and Hadamard bidistributions

of the Wk’s prohibits the implementation of xT y with vanishing divergence and trace at the same time.
This is closely related to the conformal trace anomaly, which indeed does not occur in odd-dimensional
spacetimes. For details concerning this issue, we also refer to [DF2008] and [Wal1994].

5.4 Local parametrices and Hadamard bidistributions

From now on let Ω Ă M always denote a convex domain. We referred to (5.11) as formal, since in gen-
eral, the series do not converge, and we just used it to extract equations for the coefficients. Neverthe-
less, it leads to left parametrices by some well-known procedure [Fri1975, Gün1988, BGP2007], which
smoothly cuts off L˘ppq away from its singular support and leads to convergent series on relatively
compact domains. Due to the derivatives arising from the cut-off, this results in left parametrices for P
at p rather than fundamental solutions. To be more precise, for N ą d

2 , some sequence tεkukěN Ă p0, 1s

and σ P D
`

r´1, 1s, r0, 1s
˘

with σ
ˇ

ˇ

r´ 1
2
, 1
2 s

” 1, we define

ĂL˘ppq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

8
ř

k“0

rUk
pL

Ω
˘p2k ` 2, pq `

8
ř

k“ d´2
2

ĂW k
p L

Ωp2k ` 2, pq, d odd,

d´4
2
ř

k“0

Uk
p
rLΩ

˘p2k ` 2, pq ˘ i
π

8
ř

k“ d´2
2

`

rUk
p logpΓp ˘ i0q ` ĂW k

p

˘

LΩp2k ` 2, pq, d even,
(5.16)

where

rUk :“

$

&

%

Uk, k ă N,
´

σ ˝ Γ
εk

¯

¨ Uk, k ě N,
ĂWk :“

$

&

%

Wk, k ă N,
´

σ ˝ Γ
εk

¯

¨Wk, k ě N.
(5.17)

Proposition 5.4.1. For any relatively compact domain O Ă Ω and any smooth choice of W d´2
2

, there is a

sequence tεkukěN Ă p0, 1s such that (5.16) yield well-defined distributions for all p P O, and

(i) sing supp
´

ĂL˘ppq

¯

Ă Cppq,

(ii) P ĂL˘ppq “ δp `K˘pp, ¨q with K˘ P C8pO ˆO,E˚ ⊠ Eq,

(iii) p ÞÑ ĂL˘ppqrφs P C8pO,E˚q for all φ P DpO,E˚q,

(iv) they are of order at most κd,

(v) there is a constant C ą 0 such that
ˇ

ˇ ĂL˘ppqrφs
ˇ

ˇ ď C}φ}Cκd pO,E˚q for all p P O and φ P DpO,E˚q.

The proofs of Lemma 2.4.1 – 2.4.4 of [BGP2007] only employ smoothness of the Hadamard coefficients
and σ

´

Γpp,qq

εk

¯

“ 0 if |Γpp, qq| ě εk, so replacingRΩ
˘ byLΩ

˘ proves the Proposition in the odd-dimensional
case. Similarly, we obtain convergence in C8 of the Wk-part in even dimensions. However, for the lo-
garithmic terms we have to adapt the corresponding estimates, which is of purely technical nature and
therefore removed to the Appendix. Considering ĂL˘,K˘ as Schwartz kernels, we extract the corres-
ponding operators

rL˘ : DpO,E˚q ÝÑ C8pO,E˚q, φ ÞÝÑ
`

p ÞÑ ĂL˘ppqrφs
˘

, (5.18)

K˘ : C0pO,E˚q ÝÑ C8pO,E˚q, u ÞÝÑ

ˆ

p ÞÑ

ż

O
K˘pp, qqupqq dV pqq

˙

, (5.19)

47



5 Local Hadamard bisolutions

which are bounded, since O is compact. Let E be equipped with some non-degenerate inner product
and P be formally self-adjoint. The aim of the rest of the section is to show that then, for all choices
involved in Proposition 5.4.1, the corresponding operators rL˘ represent anti-Feynman and Feynman
parametrices for P t in the sense of (1.11).

Corollary 5.4.2. Let rL˘ and rL1
˘ be the operators (5.18) arising from two different choices of N,W d´2

2
, O

and tεkukPN. Then rL˘ ´ rL1
˘ is a smoothing operator on O XO1.

Proof. The Schwartz kernels of these differences are given by the bidistributions

pp, gq ÞÝÑ
`

ĂL˘ppq ´ ĂL 1
˘ppq

˘

pqq,

which are smooth due to Lemma 2.4.3 of [BGP2007] and Lemma 7.1.2, since supp pσk´σ1
kqXΓ´1p0q “ H

for all k.

Note that in terms of the operators (5.18), (5.19), Proposition 5.4.1 (iii) reads rL˘P
t “ id `K˘, and hence,

rL˘ are left parametrices for P t. Due to formal self-adjointness of P , they also provide right parametrices:

Proposition 5.4.3. For P formally self-adjoint, the operators rL˘ define two-sided parametrices for P t.

Proof. We just have to show that rL˘ yield right parametrices. From the symmetry properties of LΩ
˘pαq

and rUk (Theorem 3.3.6 and Lemma 5.2.3) directly follows
ż

O
LΩ

˘p2k ` 2, pq
“`

rUkpp, ¨qφ
˘`

ψppq
˘‰

dV ppq “

ż

O
LΩ

˘p2k ` 2, pq
“`

Θp
rUkp¨, pqtΘ´1φ

˘`

ψppq
˘‰

dV ppq

“

ż

O
LΩ

˘p2k ` 2, pq
“

Θpψppq
`

rUkp¨, pqtΘ´1φ
˘˘‰

dV ppq

“

ż

O
LΩ

˘p2k ` 2, pq
“

rUkp¨, pqΘpψppq
`

Θ´1φ
˘˘‰

dV ppq

“

ż

O
LΩ

˘p2k ` 2, qq
“

rUkpq, ¨qΘψ
`

Θ´1
q φpqq

˘˘‰

dV pqq

for all φ P DpO,E˚q, ψ P DpO,Eq and k P N0. This works analogously for the logarithmic and rLΩ
˘-

terms in (5.16). Furthermore, the series involving the coefficients ĂWk are given by convergent power
series

ř8
j“0 ajΓ

j , which yield smooth sections in E˚ ⊠ E. Altogether, we obtain the decomposition
rL˘ “ U˘ ` W with U˘ representing the symmetric rUk-part, i.e. U t

˘ “ Θ´1U˘Θ, and W the smooth
ĂWk-part. Hence, rL˘ is symmetric up to smoothing in the sense

rL˘ “ Θ rLt
˘Θ

´1 ` W ´ ΘWtΘ´1
loooooooomoooooooon

smoothing

, (5.20)

from which we directly deduce the claim:

P t
rL˘ “ P t

`

Θ rLt
˘Θ

´1 ` W ´ ΘWtΘ´1
˘

“ ΘP rLt
˘Θ

´1 ` P tWt ´ P tΘWtΘ´1

“ Θ
`

rL˘P
t
˘t
Θ´1 ` ΘP

`

Θ´1W ´ WtΘ´1
˘

“ id ` ΘKt
˘Θ

´1 ` ΘP
`

Θ´1W ´ WtΘ´1
˘

loooooooooooooooooooooomoooooooooooooooooooooon

smoothing

.
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5.4 Local parametrices and Hadamard bidistributions

Define the operator

rL :“
i

2
p rL` ´ rL´q (5.21)

with Schwartz kernel given by ĂL “ i
2

`

ĂL` ´ ĂL´

˘

.

Corollary 5.4.4. For P formally self-adjoint, rL is formally self-adjoint as well and has a real-valued and
symmetric Schwartz kernel ĂL .

Proof. Let φ P DpO,E˚q and recall that ĂL˘ppqrφs take their values in the complexified fiber E˚
p bR C.

Note that the Wk-series in (5.16) cancel, when taking the difference (5.21), so rL “ i
2pU` ´U´q is formally

self-adjoint due to (5.20). Therefore, its Schwartz kernel is symmetric and furthermore real–valued by
Proposition 5.1.5.

So far, we found two-sided parametrices rG˘, ĂL˘ given by Hadamard series (3.9), (5.16), and [SV2001]
actually proved equivalence of the Hadamard condition (1.9) and that the bidistribution is given by a
certain Hadamard series. This latter condition together with the results of chapter 4 therefore allows
us to express (1.13) in terms of rG˘, ĂL˘ by directly comparing the corresponding Hadamard series.
More precisely, we confirm that i

2

`

ĂL` ´ ĂL´ ` rG` ´ rG´

˘

is a Hadamard bidistribution, which, up
to smooth errors, moreover is a bisolution with the right antisymmetric part. By examining a further
linear combination of parametrices, analogous to (1.12), it will follow that ĂL˘ represent a Feynman and
an anti-Feynman parametrix.

Proposition 5.4.5. Let O Ă Ω be relatively compact, P formally self-adjoint and rG˘, ĂL˘ the bidistribu-
tions given by (3.10) and (5.16). Then, for

rH :“
i

2

`

ĂL` ´ ĂL´ ` rG` ´ rG´

˘

, (5.22)

the sections P t
p1q

rH,Pp2q
rH are smooth, the antisymmetric part of rH is given by i

2

`

rG` ´ rG´

˘

and rH has
the Hadamard singularity structure (1.9). Furthermore,

ĂL` ` ĂL´ ´ rG` ´ rG´ P C8pO ˆO,E˚ ⊠ Eq. (5.23)

Proof. Since rG˘, ĂL˘ yield two-sided parametrices for P t, the first two properties follow immediately
from Corollary 5.4.4, and we proceed with the Hadamard singularity structure.
Let k, j P N0 such that k ě j, and for even d, let either j, k ď d´2

2 or j, k ą d´2
2 . Then, for Kk,j,d defined

as in (3.13), we have Kk,j,d ‰ 0, and moreover,

RΩ
˘p2k ` 2q

RΩ
˘p2j ` 2q

“
LΩ

˘p2k ` 2q

LΩ
˘p2j ` 2q

“
rLΩ

˘p2k ` 2q

rLΩ
˘p2j ` 2q

“ Kk,j,d ¨ Γk´j .

due to (5.3) and Proposition 5.2.1. RΩ
˘pαq denote the Riesz distributions (3.8), which, similar to

LΩ
˘pαq, rLΩ

˘pαq in (5.10), are considered as bidistributions. Define

HΩp2q :“
i

2

`

rLΩ
`p2q ´ rLΩ

´p2q `RΩ
´p2q ´RΩ

`p2q
˘

,

HΩpdq :“ ´
LΩpdq

2π

`

logpΓ ` i0q ` logpΓ ´ i0q
˘

`
i

2

`

RΩ
´pdq ´RΩ

`pdq
˘

,

(5.24)
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5 Local Hadamard bisolutions

and thus, the Hadamard series (5.22) takes the form

rH “

$

’

’

’

&

’

’

’

%

HΩp2q
8
ř

k“0

Kk,0,d ¨ rUkΓ
k, d odd,

HΩp2q

d´4
2
ř

k“0

Kk,0,d ¨ rUkΓ
k `HΩpdq

8
ř

k“ d´2
2

Kk, d´2
2

,d ¨ rUkΓ
k´ d´2

2 , d even.
(5.25)

We show that this is of Hadamard form in the sense of Definition 5.1 in [SV2001], where mostly the
notations and conventions of [Gün1988] are adopted. In particular, the Hadamard coefficients Upkq used
in [SV2001] are related with Uk via 2kk! ¨ Upkq “ Uk (see Remark 2.3.2 of [BGP2007]). In addition, with

the notation pα, kq :“ 2k ¨
Γpα

2
`kq

Γpα
2 q

, we find p2j ` 2, k ´ jq ¨ p2j ` 4 ´ d, k ´ jq “ K´1
k,j,d, and hence,

Kk,0,d ¨ Uk “
2k ¨ k! ¨ Upkq

2k ¨ k! ¨ p4 ´ d, kq
“

Upkq

p4 ´ d, kq
,

Kk, d´2
2

,d ¨ Uk “
2k ¨ k! ¨ Γ

`

d
2

˘

¨ Upkq

4k´ d´2
2 ¨ k! ¨ Γ

`

k ` 2 ´ d
2

˘

“

`

2, d´2
2

˘

2k`d´2 ¨
`

k ´ d´2
2

˘

!
¨ Upkq.

For all n P N, we choose N ě n ` κd
2 in (5.17), so the series in (5.25) truncated at k “ n ` κd

2 coincide
with U, V pnq, T pnq given in Appendix A.1 of [SV2001]. The remainder term is then of regularity Cn and
corresponds to Hpnq in Definition 5.1 of [SV2001].
It remains to identify the singular terms (5.24) with Gp1q, Gp2q given by (5.3) in [SV2001] up to some
global factor, which is ´2 in the odd- and 2 ¨ p´1q

d
2 in the even-dimensional case. Moreover, note that for

the squared Lorentzian distance in the definition of Gp1q, Gp2q, the convention s “ ´Γ is used, whereas
in Appendix A.1 we have s “ Γ.
Let p, q P O. By definition of rLΩ

˘pα, pq and RΩ
˘pα, pq as well as Theorem 4.4.2, we have

HΩp2, pq “
`

expp
˘

˚
W “ i

`

expp
˘

˚
∆´

with Wightman’s solution W for pRd
Mink,2q (4.7). Recalling ∆´ from (4.11) leads to

HΩp2, pqpqq “
Γ
`

d´2
2

˘

4π
d
2

lim
εÑ0

`

´ Γpp, qq ` 2iε ¨ q0 ` ε2
˘

2´d
2

in the distributional sense with q0 “
`

exp´1
p pqq

˘0. Since Γ
`

d´2
2

˘

Γ
`

1 ´ d´2
2

˘

“ p´1q
d`1
2 π for odd d, this

coincides with Gp1q.
Furthermore, one directly calculatesHΩpdq´Gp2q “ 0 away from Γ´1p0q. For ϕpqptq :“ expp

`

t exp´1
p pqq

˘

with t P r0, 1s, we obtain Γ
`

p, ϕpqptq
˘

“ t2 ¨ Γpp, qq. Similar to (4.10), we set Γ˘
ε pp, ¨q :“ γ˘

ε ˝ exp´1
p , which

yields Γ˘
ε

`

p, ϕpqptq
˘

“ t2 ¨ Γ˘
ε
t

`

p, q
˘

for all t P p0, 1s, and hence,

Gp2q
`

p, ϕpqptqq “ ´
LΩpdq

π
lim
εÑ0

log
`

´ Γ˘
ε

`

p, ϕpqptq
˘˘

“ ´
2LΩpdq

π
¨ log t`Gp2qpp, qq.

On the other hand, since RΩ
˘pdq, LΩpdq are homogeneous distributions of degree 0, (5.24) provides

HΩpd, pq
`

ϕpqptq
˘

“ ´
LΩpdq

2π

`

2 log t` 2 log t
˘

`HΩpd, pqpqq “ ´
2LΩpdq

π
¨ log t`HΩpd, pqpqq.
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Of course, both expressions have to be understood in the distributional sense. Since Ω is diffeomorphic
to exp´1

p pΩq Ă TpM for all p P Ω, their difference corresponds to a LÒ
`-invariant distributions on

Minkowski space Rd, which is supported on the light cone and homogeneous of degree 0. Therefore,
it has to vanish everywhere by Corollary 2.2.7 and thus, Theorem 5.8 of [SV2001] ensures that rH is of
Hadamard form in the sense of (1.9). It remains to show (5.23). According to (5.24), we define

AΩp2q :“
i

2

`

rLΩ
`p2q ` rLΩ

´p2q ´RΩ
´p2q ´RΩ

`p2q
˘

,

AΩpdq :“ ´
LΩpdq

2π

`

logpΓ ` i0q ´ logpΓ ´ i0q
˘

´
i

2

`

RΩ
´pdq `RΩ

`pdq
˘

(5.26)

such that for (5.23), we obtain the expression (5.25) with HΩp2q,HΩpdq replaced by AΩp2q, AΩpdq and
it suffices to show smoothness of the bidistributions (5.26). For AΩp2q, this follows directly from the
definitions of rLΩ

˘p2q, RΩ
˘p2q as pullbacks of S˘, R

2
˘ along a diffeomorphism and Theorem 4.4.2. On the

other hand, one directly calculates that AΩpdq is given by the constant ´iCpd, dq.

Since ĂL˘, rG˘ are determined merely up to smooth sections, without loss of generality, we regard (5.23)
as the equality

ĂL` ` ĂL´ “ rG` ` rG´. (5.27)

Corollary 5.4.6. For P formally self-adjoint, the operators rL˘ represent anti-Feynman and Feynman
parametrices for P t in the sense of (1.11) on O.

Proof. Note that the proof of (1.12) given by Theorem 5.1 of [Rad1996a] and section 6.6 of [DH1972] ex-
clusively employs the singularity structure of the involved parametrices as well as that the antisymmet-
ric part of (5.22) is given by i

2

`

rG` ´ rG´

˘

, which is the case here, since (5.21) is symmetric. Furthermore,
the singularity structure of rH is entirely carried by the scalar distributions LΩpαq and therefore remains
unaffected when multiplying smooth vector-valued Hadamard coefficients. Hence, the statement (1.12)
remains valid, that is, for the distinguished parametrices rGA, rGR, rGF , rGaF and up to smooth bisections,
we have

rH “
i

2

`

rGaF ´ rGF ` rGA ´ rGR

˘

, rGaF ` rGF “ rGA ` rGR. (5.28)

Since rG˘ represent advanced and retarded parametrices, it follows from (5.27) and (5.28) that

ĂL` ´ ĂL´ “ ´2i rH ´ rG` ` rG´ “ rGaF ´ rGF , ĂL` ` ĂL´ “ rG` ` rG´ “ rGaF ` rGF ,

which provides ĂL` “ rGaF , ĂL´ “ rGF up to smooth bisections and thus completes the proof.

5.5 Local fundamental solutions and Hadamard bisolutions

In the last section of this chapter, we construct bisolutions SO for P on certain relatively compact do-
mains O Ă M of globally hyperbolic Lorentzian manifolds with singularity structure given by WF

`

ĂL
˘

,
that is, SO ` i

2pG` ´G´q provides a local Hadamard bisolution. We start by constructing fundamental
solutions rSO

˘ ppq for P at all p P O from (5.16), so rSO
` ppq ´ rSO

´ ppq yields a solution. For M globally hyper-
bolic, solving a Cauchy problem then provides a bisolution with the right singularity structure.
By Proposition 5.4.1 (ii), we have ĂL˘P

t
ˇ

ˇ

DpO,E˚q
“ id ` K˘, and hence, fundamental solutions are ob-

tained by inverting the operators id ` K˘. Indeed, if volpOq ¨ }K˘}C0pOˆOq ă 1, that is, for O chosen
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5 Local Hadamard bisolutions

"small enough", (5.19) provides isomorphisms id ` K˘ : C lpO,E˚q ÝÑ C lpO,E˚q for all l P N0 with
bounded inverses given by the Neumann series

pid ` K˘q´1 “

8
ÿ

j“0

p´K˘qj . (5.29)

This means that all C l-norms of the series exist, which follows from compactness of O and smoothness
of K˘. The full proof coincides with the one of Lemma 2.4.8 of [BGP2007]. In the following, we restrict
to such small domains:

Definition 5.5.1. We call a relatively compact and causal subdomain O of Ω admissible if Proposition
5.4.1 provides parametrices rL˘ via (5.18) such that the smooth Schwartz kernel K˘ of rL˘P

t ´ id fulfills

volpOq ¨ }K˘}C0pOˆOq ă 1. (5.30)

More precisely, O is admissible, if there is a choice of tεkuk and W d´2
2

such that (5.30) holds for the
correspondingK˘. Lemma 2.4.8 of [BGP2007] shows that forO admissible, the corresponding operators
rL˘P

t “ id ` K˘ are isomorphisms with bounded inverses (5.29).

Proposition 5.5.2. For any admissible O, the operators

rSO
˘ :“ pid ` K˘q´1

rL˘ : DpO,E˚q Ñ C8pO,E˚q

fulfill rSO
˘P

t
ˇ

ˇ

DpO,E˚q
“ id, and hence, the distributions rSO

˘ ppq, p P O, given by

rSO
˘ ppqrφs “

`

pid ` K˘q´1
rL˘φ

˘

ppq, φ P DpO,E˚q, (5.31)

yield fundamental solutions for P at p. Furthermore, Q˘ :“ pid ` K˘q´1 ´ id are smoothing operators.

Proof. The first claim follows from rL˘P
t “ id ` K˘. Moreover, Proposition 5.4.1 and Lemma 2.4.10 of

[BGP2007], with rR˘p¨qrφs and FΩ
˘ p¨qrφs replaced by rL˘φ and rSO

˘φ, show that (5.31) yield fundamental
solutions. Finally, (5.29) directly yields Q˘ “ pid ` K˘q´1 ˝ K˘, which is smoothing, since K˘ is, and
pid ` K˘q´1 is a continuous map C8pM,E˚q Ñ C8pM,E˚q.

From now on, let E be always equipped with some non-degenerate inner product, P formally self-
adjoint and O admissible.

Proposition 5.5.3. The operators rSO
˘ ´ rL˘ are smoothing.

Proof. Note that rSO
˘ ´ rL˘ “ Q˘

rL˘. Since Q˘, rL˘ are bounded and Q˘ has a smooth Schwartz kernel,
they extend to bounded maps

Q˘ : DpO,E˚q1 Ñ C8pO,E˚q, rL˘ : EpO,E˚q1 Ñ DpO,E˚q1.

Hence, Q˘
rL˘ : EpO,E˚q1 Ñ C8pO,E˚q is bounded and therefore smoothing.

It follows that rSO
˘ yield anti-Feynman and Feynman parametrices for P t onO. Moreover, their Schwartz

kernels determine a real-valued bidistribution via

rSOrψ,φs :“
i

4

´

rSO
` rψ,φs ´ rSO

´ rψ,φs ´ rSO
` rψ,φs ` rSO

´ rψ,φs

¯

, ψ P DpO,Eq, φ P DpO,E˚q, (5.32)

which has the right singularity structure and is a solution for P in the second argument, meaning
WF

`

rSO
˘

“ WF
`

ĂL
˘

and Pp2q
rSO “ 0.
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Proposition 5.5.4. Let M be a globally hyperbolic Lorentzian manifold, π : E Ñ M a real vector bundle
with non-degenerate inner product and P : C8pM,Eq Ñ C8pM,Eq a formally self-adjoint wave ope-
rator. Furthermore, let O Ă M be admissible and ĂL denote the bidistribution given by Proposi-
tion 5.4.1 and Corollary 5.4.4. Then there is a bisolution SO : DpO,Eq ˆ DpO,E˚q Ñ R for P with
WF

`

SO
˘

“ WF
`

ĂL
˘

.

Proof. Since O is admissible, we obtain fundamental solutions rSO
˘ ppq at each p P O, and furthermore,

(5.32) provides p ÞÑ rSOppqrφs P C8pO,E˚q for all φ P DpO,E˚q. Moreover, as a causal subdomain of
a globally hyperbolic Lorentzian manifold, O is globally hyperbolic on its own right (Lemma A.5.8 of
[BGP2007]). Hence, for Σ a Cauchy hypersurface ofO with unit normal field ν, there is a unique smooth
solution of

$

’

’

&

’

’

%

P t
`

SOp¨qrφs
˘

“ 0,

SOp¨qrφs
ˇ

ˇ

Σ
“ rSOp¨qrφs

ˇ

ˇ

Σ
,

∇ν

`

SOp¨qrφs
˘ˇ

ˇ

Σ
“ ∇ν

rSOp¨qrφs
ˇ

ˇ

Σ
.

By continuous dependence on the Cauchy data, SOppq defines an E˚
p -valued distribution for all p P O.

Furthermore, SOp¨qrP tφs “ 0 for all φ, since it satisfies the trivial Cauchy problem.
It remains to check the wave front set, that is, smoothness of DO :“ ĂL ´ SO. Since SO, rSO and ĂL yield
parametrices for P , the sections given by Pp2qD

O, P t
p1q
DO and ĂL ´ rSO are smooth, and hence, DO is the

solution of a Cauchy problem with smooth Cauchy data, which is smooth by Theorem 2.3.2.

Altogether, any choice of parametrices ĂL˘ in the sense of Proposition 5.4.1 leads to a bisolution SO with
singularity structure given by i

2p rGaF ´ rGF q in the sense of (1.11).
We briefly investigate the relation to the original formal fundamental solutions (5.11). To this end, for
all l P N0 and p P Ω, we introduce the following truncated Hadamard series

L N`l
˘ ppq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

N`l´1
ř

k“0

Uk
pL

Ω
˘p2k ` 2, pq `

N`l´1
ř

k“ d´2
2

W k
p L

Ωp2k ` 2, pq, d odd,

d´4
2
ř

k“0

Uk
p
rLΩ

˘p2k ` 2, pq ˘ i
π

N`l´1
ř

k“ d´2
2

`

Uk
p logpΓp ˘ i0q `W k

p

˘

LΩp2k ` 2, pq, d even.

These are pE˚
p bR Cq-valued distributions on any domain Ω Ă M geodesically starshaped with respect

to p, so in particular on every admissible subset O containing p. Then L N`l :“ i
2

`

L N`l
` ´ L N`l

´

˘

approximates SO in the following sense:

Proposition 5.5.5. For all l P N0, we have

pp, qq ÞÑ
`

SOppq ´ L N`lppq
˘

pqq P C lpO ˆO,E˚ ⊠ Eq.

Proof. Considering the expansion SO ´ L N`l “ SO ´ ĂL ` ĂL ´ L N`l, due to Proposition 5.5.4, we
just have to check C l-regularity of ĂL˘ ´ L N`l

˘ . Since the arguments for all series involved in (5.16)
are completely analogous, we demonstrate this only for ĂL˘ppq “

ř8
k“0

rUk
p L

Ω
˘p2k ` 2, pq, for which we

obtain the explicit expressions

ĂL˘ ´ L N`l
˘ “

N`l´1
ÿ

k“N

pσk ´ 1qUkpp, ¨qLΩ
˘p2k ` 2q `

8
ÿ

k“N`l

rUkpp, ¨qLΩ
˘p2k ` 2q.
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5 Local Hadamard bisolutions

The infinite sum is a C l-section due to Lemma 2.4.2 of [BGP2007] with RΩ
˘ replaced by LΩ

˘ and Lemma
7.1.2 for the logarithmic part of (5.16), respectively. The first part is a finite sum of smooth functions,
since σk ´ 1 vanishes in a neighborhood of Γ´1p0q and hence on the singular support of ĂL˘ and L N`l

˘ .

Altogether, we constructed bisolutions with the Hadamard singularity structure on every OˆO and we
summarize:

Theorem 5.5.6. Let M be a globally hyperbolic Lorentzian manifold, O Ă M an admissible domain,
π : E Ñ M a real vector bundle with non-degenerate inner product and P : C8pM,Eq Ñ C8pM,Eq

a formally self-adjoint wave operator. For SO the bisolution given by Proposition 5.5.4 and G˘ the
advanced and retarded Green operator on O, the bisolution

HO :“ SO `
i

2

`

G` ´G´

˘

is of Hadamard form.

Proof. By Lemma 3.3.2 and Proposition 5.5.4, the bidistributions SO´ ĂL andG˘´ rG˘ are smooth, which
provides smoothness of HO ´ rH , so Proposition 5.4.5 ensures the Hadamard property of HO.

Remark 5.5.7. Due to Proposition 2.5.1 in [BGP2007] and Proposition 5.5.5, HO is given by a Hadamard
series up to terms of arbitrarily high regularity.
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6 Global Hadamard two-point-functions

"Ich bin sicher, man kann immer positive Lösungen finden."

From now on, we adopt the setting given by Definition 1.2.1 restricted to wave operators P . In the
preceding chapter, we derived bisolutions SO on O ˆ O for any admissible domain O Ă M with
WF

`

SO
˘

“ WF
`

rGaF ´ rGF

˘

in the sense of (1.11). In this chapter, we finally tackle the construction
of global bisolutions S, which locally coincide with those SO up to smooth bisolutions and thus inherit
their singularity structure. It is therefore not hard to show that each S can be chosen as a symmetric
bidistribution. Recall that "choice" means the existence of a smooth bisolution u such that S ` u is a
symmetric bisolution. Assuming E to be Riemannian and the validity of Theorem 6.6.2 of [DH1972] for
sections in E, we furthermore prove the existence of a positive choice for S. It follows that S provides a
scalar product (1.7), leading to the two-point-function of a quasifree state via (1.6)

H :“ S `
i

2
pG` ´G´q, (6.1)

which has the Hadamard singularity structure due to Theorem 5.5.6.
Multiplication with some suitable cut-off allows us to regard SOppq as a distribution onM with spatially
compact support. By employing Theorem 2.3.6, we propagate it to all of M for all p P O, and we
show that the results arising from two different cut-offs differ merely by some smooth bisolution. In
this way, bisolutions pSO with the right singularity structure are determined on all domains O ˆ M

for O admissible, and we find a locally finite cover of M ˆ M by such domains. By means of Čech
cohomology theory, the corresponding bisolutions pSO can be chosen in a compatible manner, meaning
that they match up on the overlaps and hence form a global bisolution S. Afterwards, we show that
there are symmetric and even positive choices for S.

6.1 Global construction of symmetric bisolutions

Fix a Cauchy hypersurface Σ Ă M and two locally finite covers O :“ tOiuiPI ,O1 :“
␣

O1
i

(

iPI
of it by

admissible subsets of M with Oi Ă O1
j if and only if i “ j. Without loss of generality, we assume Oi X Σ

to be a Cauchy hypersurface of Oi. For instance, we could choose for O the Cauchy developments
DpΣiq, i P I, (Definition 1.3.5 of [BGP2007]) of relatively compact and sufficiently small subdomains
Σi Ă Σ, which comprise a locally finite cover of Σ.
Then N :“

Ť

iPI Oi yields a causal normal neighborhood of Σ in the sense of Lemma 2.2 of [KW1991].
By paracompactness of M and the Hopf-Rinow-Theorem, we find an exhaustion tAmumPN of I by finite
subsets such that the relatively compact sets Nm :“

Ť

iPAm
Oi exhaust N and every compact subset of

N is contained in some Nm. Besides that, causality of O implies O Ă DpOq “ DpO X Σq and therefore,

Nm Ă
ď

iPAm

DpOi X Σq Ă D

˜

ď

iPAm

Oi X Σ

¸

“ DpNm X Σq. (6.2)
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6 Global Hadamard two-point-functions

It follows that every inextendible causal curve in Nm meets Nm XΣ exactly ones, so Nm XΣ is a Cauchy
hypersurface ofNm, i.e.Nm is globally hyperbolic. In addition, for all i P I , we choose the corresponding
local bisolutions SO1

i , SOi , obtained by Theorem 5.5.6, such that SO1
i

ˇ

ˇ

OiˆOi
“ SOi .

Proposition 6.1.1. For each O P O, there is a bisolution pSO on O ˆM satisfying pSO
ˇ

ˇ

OˆO
“ SO.

Proof. Let O1 P O1 such that O Ă O1, and χ P DpO1q with χ
ˇ

ˇ

O
“ 1. Then χSO1

ppq is a well-defined
distribution with spacelike compact support on M for all p P O, since χSO1

ppqrφs “ SO1
ppqrχφs,

φ P DpM,E˚q. With regard to Theorem 2.3.6, we define pSOppq P DpM,E,E˚
p q1 as the unique solution of

$

’

’

&

’

’

%

P pSOppq “ 0,

pSOppq
ˇ

ˇ

Σ
“ χSO1

ppq
ˇ

ˇ

Σ
,

∇ν
pSOppq

ˇ

ˇ

Σ
“ ∇ν

`

χSO1
ppq

˘ˇ

ˇ

Σ
,

(6.3)

which moreover depends smoothly on p in the sense p ÞÑ pSOppqrφs P C8pO,E˚q for fixed φ P DpM,E˚q.
Furthermore, global hyperbolicity of O ensures pSO

ˇ

ˇ

OˆO
“ SO by Theorem 2.3.2, since the difference

solves the trivial Cauchy problem on O ˆO.
Let T ppqrφs :“ P t

`

pSOp¨qrφs
˘

ppq and hence T ppq P DpM,E,E˚
p q1 for all p P O. It follows that PT ppq “ 0,

and T ppqrφs “ 0 “ T ppqr∇νφs if suppφ Ă O, which leads to T ppq
ˇ

ˇ

Σ
“ ∇νT ppq

ˇ

ˇ

Σ
“ 0. Consequently, it

satisfies the trivial Cauchy problem, so we have T ppq “ 0, that is, pSO represents a bisolution.

This definition of pSO is independent of the choice of χ in an appropriate sense: Let rχ P DpO1q be another
cut-off with rχ

ˇ

ˇ

O
“ 1 and corresponding bisolution rSO. Then D :“ pSO ´ rSO is a bisolution with Cauchy

data on pOXΣq ˆΣ given by pχ´ rχqSO1
. Recall that sing suppSO1

Ă Γ´1p0q X pO1 ˆO1q, so causality of
O yields sing suppSO1

ppq
ˇ

ˇ

Σ
Ă

`

CM ppq XO1 X Σ
˘

Ă O for all p P O, and hence, sing suppχSO1 ˇ
ˇ

OXΣˆΣ
is

contained in OˆO. Since D satisfies the trivial Cauchy problem on OˆO, i.e. D
ˇ

ˇ

OˆO
“ 0, it is a smooth

bisolution by Theorem 2.3.2. Therefore, pSO and rSO differ merely by some smooth bisolution.

b

b b

p O

O1

ΣDppq “ 0

CM ppq

sing supp pSO1
ppq

ˇ

ˇ

Σ
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6.1 Global construction of symmetric bisolutions

Next, we prove the existence of a compatible choice of bisolutions tpSOiuiPI , meaning that they coincide
on the overlaps Oi X Oj , i, j P I . In this way, these compatible bisolutions assemble to a well-defined
object on N ˆ M . The tools for such a procedure are provided by Čech cohomology theory, for which
we give a brief and purposive overview. For an introduction to this subject with details and proofs, we
refer to section 5.33 of [War1983].
On N ˆ M , let C 8 denote the sheaf given by the germs of the smooth sections in E˚ ⊠ E (see Example
5.2 in [War1983]). For the open cover OM :“ tOi ˆ MuiPI of N ˆ M , the n-simplices correspond to the
non-empty (n` 1)-times intersections

OM
i0...in :“

`

Oi0 X . . .XOin

˘

ˆM, i0, . . . , in P I,

with n ` 1 faces
␣

OM
i0...̂ik...in

(

k“0,...,n
obtained by leaving out one Oi in the intersection, respectively. An

n-cochain is a map that assigns to each non-emptyOM
i0...in

a section of C 8 overOM
i0...in

, which we identify
with the elements of C8

`

OM
i0...in

, E˚ ⊠ E
˘

. The space of n-cochains is denoted by CnpOM ,C 8q, where
Cn :“ t0u if n ă 0, and the coboundary operator is defined by

Bn : CnpOM ,C 8q ÝÑ Cn`1pOM ,C 8q, pBnfnq
`

OM
i0...in`1

˘

:“
n`1
ÿ

k“0

p´1qk ¨ fn
`

OM
i0...̂ik...in`1

˘ˇ

ˇ

OM
i0...in`1

.

It follows that Bn`1 ˝ Bn “ 0 for all n P N0 and we set HnpOM ,C 8q :“ ker Bn
ran Bn´1

. These modules are trivial
for all n P N by some well-known construction (e.g. p. 202 in [War1983]), employing that C 8 admits a
partition of unity subordinate to the locally finite cover OM :

Lemma 6.1.2. For all n P N, we have
HnpOM ,C 8q “ t0u.

Proof. By choice of O, the cover OM is locally finite. Let tχiuiPI denote a partition of unity subordinate
to OM and fn P CnpOM ,C 8q. Then, for each i P I , the smooth section χifn

`

OM
i XOM

i0...in´1

˘

is supported
inOM

i XOM
i0...in´1

, and thus, via extension by zero, we consider it as an element of C8
`

OM
i0...in´1

, E˚⊠E
˘

.
In this way, we obtain homomorphisms hn : CnpOM ,C 8q Ñ Cn´1pOM ,C 8q via

hnpfnq
`

OM
i0...in´1

˘

:“
ÿ

iPI

χifn
`

OM
i XOM

i0...in´1

˘

P C8
`

OM
i0...in´1

, E˚ ⊠ E
˘

,

which satisfy

`

hn`1pBnfnq
˘`

OM
i0...in

˘

“
ÿ

iPI

χi ¨ Bnf
`

OM
i XOM

i0...in

˘

“
ÿ

iPI

χifn
`

OM
i0...in

˘

`
ÿ

iPI

n
ÿ

k“0

p´1qk`1 ¨ χifn
`

OM
i XOM

i0...̂ik...in

˘ˇ

ˇ

OM
i0...in

“ fn
`

OM
i0...in

˘

´
`

Bn´1hnpfnq
˘`

OM
i0...in

˘

.

Hence, fn P ker Bn implies fn “ Bn´1hnpfnq, that is, fn P ran Bn´1.

Lemma 6.1.3. For all i P I , there is a bisolution hi P C8pOi ˆM,E˚ ⊠ Eq such that

`

pSOi ` hi
˘ˇ

ˇ

OM
ij

“
`

pSOj ` hj
˘ˇ

ˇ

OM
ij
, i, j P I.
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6 Global Hadamard two-point-functions

Proof. For i, j P I , we consider the bisolution hij :“ pSOi
ˇ

ˇ

OM
ij

´ pSOj
ˇ

ˇ

OM
ij

. For all m P N, Proposition 5.4.1

provides parametrices ĂL m
˘ on the relative compact domains Nm such that for ĂL m :“ i

2

`

ĂL m
` ´ ĂL m

´

˘

,
Propositions 5.5.4 and 6.1.1 yield

hij
ˇ

ˇ

OijˆNm
“ pSOi ´ ĂL m

looooomooooon

PC8

´
`

pSOj ´ ĂL m
looooomooooon

PC8

˘

P C8
`

Oij ˆNm, E
˚ ⊠ E

˘

. (6.4)

Such ĂL m exist for all m and tNmumPN exhausts N , so we have smoothness on Oij ˆ N . Furthermore,
as Oij is causal and N a neighborhood of a Cauchy hypersurface, hij fulfills a Cauchy problem with
smooth Cauchy data and hence is smooth on all of OM

ij by Theorem 2.3.2.
Therefore, recalling the identification of sections of C 8 with smooth sections in E˚ ⊠ E, the map
f1 : O

M
ij ÞÑ hij represents a Čech-1-cochain, which moreover is a cocycle since

pB1f1qpOM
ijkq “ hjk

ˇ

ˇ

OM
ijk

´ hik
ˇ

ˇ

OM
ijk

` hij
ˇ

ˇ

OM
ijk

“ pSOj
ˇ

ˇ

OM
ijk

´ pSOk
ˇ

ˇ

OM
ijk

´ pSOi
ˇ

ˇ

OM
ijk

` pSOk
ˇ

ˇ

OM
ijk

` pSOi
ˇ

ˇ

OM
ijk

´ pSOj
ˇ

ˇ

OM
ijk

“ 0

for all i, j, k P I . Thus, Lemma 6.1.2 ensures the existence of f0 : OM
i ÞÑ rhi P C8pOM

i , E
˚ ⊠ Eq such that

B0f0 “ f1, and hence,

hij “ f1pOM
ij q “ B0f0pOM

ij q “ f0pOM
j q

ˇ

ˇ

OM
ij

´ f0pOM
i q

ˇ

ˇ

OM
ij

“ rhj
ˇ

ˇ

OM
ij

´ rhi
ˇ

ˇ

OM
ij
, i, j P I.

Recall that Oi X Σ is a Cauchy hypersurface of Oi for all i P I and thus, each rhi determines a bisolution
hi P C8

`

OM
i , E

˚ ⊠ E
˘

via Theorem 2.3.2. On the other hand, due to causality of Oij , we have a well-
posed Cauchy problem onOM

ij , and consequently, hj
ˇ

ˇ

OM
ij

´hi
ˇ

ˇ

OM
ij

“ hij , since their Cauchy data coincide.

This proves the claim:

`

pSOi ` hi
˘ˇ

ˇ

OM
ij

“
`

pSOi ` hj ´ hij
˘ˇ

ˇ

OM
ij

“
`

pSOj ` hj
˘ˇ

ˇ

OM
ij
.

For a partition of unity tχiuiPI subordinate to OM , a well-defined bisolution on N ˆM is given via

pSN rψ,φs :“
ÿ

iPI

`

pSOi ` hi
˘

rχiψ,φs, ψ P DpN,Eq, φ P DpM,E˚q. (6.5)

Since OM is a locally finite cover, for each ψ, only finitely many summands are non-zero. Moreover, due
to Lemma (6.1.3), this definition does not depend on the choice of the partition, and for all i, we directly
read off from (6.5) that

pSN
ˇ

ˇ

OiˆM
´ pSOi P C8pOi ˆM,E˚ ⊠ Eq. (6.6)

Hence, two different constructions of such a bisolution on N ˆM differ only by a smooth bisolution.

Proposition 6.1.4. There is a bisolution S : DpM,Eq ˆ DpM,E˚q Ñ R such that

S
ˇ

ˇ

OiˆOi
´ SOi P C8

`

Oi ˆOi, E
˚ ⊠ E

˘

, i P I. (6.7)
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6.1 Global construction of symmetric bisolutions

Proof. Let pSN be the bisolution on N ˆM defined by (6.5) and recall that N is an open neighborhood of
Σ. For all φ P DpM,E˚q, we define Sp¨qrφs as the unique solution of

$

’

’

&

’

’

%

P t
`

Sp¨qrφs
˘

“ 0,

Sp¨qrφs
ˇ

ˇ

Σ
“ pSN p¨qrφs

ˇ

ˇ

Σ
,

∇ν

`

Sp¨qrφs
˘ˇ

ˇ

Σ
“ ∇ν

pSN p¨qrφs
ˇ

ˇ

Σ
.

This yields a smooth section, which leads to a bisolution since pSN p¨qrP tφs “ 0, and hence, Sp¨qrP tφs

solves the trivial Cauchy problem. Furthermore, we have S
ˇ

ˇ

OiˆOi
“ pSN

ˇ

ˇ

OiˆOi
, so (6.7) follows from

(6.6) and Proposition 6.1.1.

Corollary 6.1.5. There is a smooth bisolution u P C8pM ˆM,E˚ ⊠ Eq such that

pS ´ uqrψ1,Θψ2s “ pS ´ uqrψ2,Θψ1s, ψ1, ψ2 P DpM,Eq.

Proof. For pιSqrψ1,Θψ2s :“ Srψ2,Θψ1s, let u :“ 1
2pS ´ ιSq. It follows that S ´ u “ ιpS ´ uq and we

show that u is smooth. For all m P N, let ĂL m be given as in (6.4), i.e. ĂL m “ ι ĂL m and rSN
ˇ

ˇ

NmˆNm
´ ĂL m

smooth due to Corollary 5.4.4 and Proposition 5.5.3. Therefore, u is smooth on Nm ˆNm for all m:

2u
ˇ

ˇ

NmˆNm
“ pSNm ´ ιpSNm ` ĂL m ´ ĂL m “ pSNm ´ ĂL m ´ ι

`

pSNm ´ ĂL m
˘

and thus onNˆN . Since u is a bisolution andN a neighborhood of Σ, Theorem 2.3.2 ensures smoothness
on all of M ˆM .

Theorem 6.1.6. Let M be a globally hyperbolic Lorentzian manifold, π : E Ñ M a real vector bundle
with non-degenerate inner product over M and P : C8pM,Eq Ñ C8pM,Eq a formally self-adjoint
wave operator. Furthermore, let G˘ denote the advanced and retarded Green operator for P t and S the
symmetric bisolution given by Proposition 6.1.4 and Corollary 6.1.5. Then

H :“ S `
i

2
pG` ´G´q (6.8)

is a Hadamard bisolution, and a Feynman and an anti-Feynman Green operator for P t is determined by

GF “ iS `
1

2
pG` `G´q, GaF “ ´iS `

1

2
pG` `G´q. (6.9)

Proof. For each m P N, let ĂL m be given as in (6.4). It follows that WF
`

ĂL m
˘

“ WFp rGaF ´ rGF q in the
sense of (1.11) from Corollary 5.4.6, and moreover, we have

S
ˇ

ˇ

NmˆNm
´ ĂL m P C8pNm ˆNm, E

˚ ⊠Eq

by Propositions 5.5.4 and 6.1.1 as well as (6.6). This holds for all m and hence, H is of Hadamard form
in a causal normal neighborhood N of Σ due to Proposition 5.4.5. Therefore, H is globally Hadamard
by Theorem 5.8 of [SV2001] or, more precisely, by (i) of the subsequent Remark.
By the same reasoning as for Corollary 5.4.6, a Feynman and an anti-Feynman parametrix for P t are
given by (1.12), that is,

˘iH `G˘ “ ˘iS `
1

2
pG` `G´q.

These are even Green operators, since S is a bisolution and G˘ are Green operators for P t.
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6 Global Hadamard two-point-functions

6.2 Positivity

In the previous section, we depicted the construction of symmetric bisolutions S leading to Hadamard
bisolutions via (6.8). Therefore, with regard to (1.7), it only remains to show that S can be chosen such
that Srψ,Θψs ě 0, ψ P DpM,Eq, holds. The basis for the proof is Theorem 6.6.2 of [DH1972], which
ensures the existence of some smooth f such that i

2

`

rGaF ´ rGF

˘

` f satisfies this positivity property.
Unfortunately, it is formulated merely for the scalar setting.
Let M be a smooth manifold, π : E Ñ M a real or complex vector bundle over M with non-degenerate
inner product and P : C8pM,Eq Ñ C8pM,Eq a properly supported pseudodifferential operator. For
the definitions of P being of real principal type in M , pseudo-convexity of M with respect to P and the
bicharacteristic relation CP of P , we adopt Definition 3.1 of [Den1982] as well as Definition 6.3.2 and
(6.5.2) of [DH1972], respectively. Assuming those properties for M and P , according to Theorem 6.5.3
of [DH1972], there are distinguished parametrices rQCP z∆, rQH associated to the respective components
of CP z∆, where ∆ denotes the diagonal in CharP ˆ CharP . For P a wave operator, they correspond to
Feynman and anti-Feynman parametrices, respectively.

Definition 6.2.1. Let M be a smooth manifold, π : E Ñ M a real or complex vector bundle with non-
degenerate inner product and P : C8pM,Eq Ñ C8pM,Eq a formally self-adjoint, properly supported
pseudodifferential operator of real principal type in M such that M is pseudo-convex with respect to P .
Then P is called of positive propagator type if there exists some f P C8pM ˆ M,E˚ ⊠ Eq such that the
bidistribution T :“ i

2

`

rQCP z∆ ´ rQH

˘

` f satisfies

T rψ,Θψs ě 0, ψ P DpM,Eq.

Note that f is not demanded to be unique and in general, a positive propagator type operator will have
many such sections. For E the trivial line bundle M ˆ R, every such P is of that type due to Theorem
6.6.2 of [DH1972]. On the other hand, by Proposition 5.6 of [SV2001], the Hadamard bisolutions fail to
be positive if the inner product on E is not positive definite. Hence, anticipating the result of this sec-
tion, wave operators acting on sections in a non-Riemannian vector bundle over a globally hyperbolic
Lorentzian manifold are not of positive propagator type.
The proof of Theorem 6.6.2 of [DH1972] employs positivity of i

2p rGaF ´ rGF q for the directional deriva-
tives Dn :“ ´i B

Bxn
, n “ 0, . . . , d ´ 1 on C8pRdq and by applying certain operators, allowing one to

keep track of the singularity structure of the corresponding parametrices, the general case is reduced to
Dn. Eventually, positivity holds up to smooth functions, since there is no way to control this smooth
part in terms of the singularity structure. However, in the setting of Definition 1.2.1 with E assumed
to be Riemannian, we can choose the same ansatz and basically the same procedure. This strongly sug-
gests the assumption that wave operators acting on smooth sections in some general Riemannian vector
bundle over a globally hyperbolic Lorentzian manifold are of positive propagator type.
Nevertheless, even with this property and actual Green operators GF , GaF at hand, we can still only de-
duce the existence of some f P C8pM ˆM,E˚ ⊠ Eq such that pS ` fqrψ,Θψs ě 0 for all ψ P DpM,Eq,
where S :“ i

2pGaF ´ GF q denotes the corresponding symmetric bisolution. It is the task of this fi-
nal section to show that f can be chosen as a symmetric bisolution. As it happens, the proof actually
works for a much wider class of differential operators P of positive propagator type. More precisely,
they merely have to admit a Feynman and an anti-Feynman Green operator GF , GaF and a well-posed
Cauchy problem. Furthermore, the characteristic set and the bicharacteristic relation have to be given
by

Char pP q “
␣

pp, ξq P T ˚Mzt0u
ˇ

ˇ gppξ7, ξ7q “ 0u,

CP “
␣

pp, ξ; q, ηq P
`

T ˚M ˆ T ˚M
˘

zt0u
ˇ

ˇ pp, ξq „ pq, ζq
(

.
(6.10)
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6.2 Positivity

For Σ some Cauchy hypersurface of M , the idea is to use f as initial data on ΣˆΣ in order to determine
a smooth bisolution u via Theorem 2.3.2. Following the lines of section 3.3 of [GW2015], positivity of the
bisolution S`u can be related to positivity on the level of Cauchy data, where S`u and S`f coincide.
For the precise argument, we need some preparation.
Let ι : Σ ãÑ M be the embedding map and ρ :“

`

ι˚, ι˚ ˝ ∇ν

˘

the corresponding pullback to the initial
data on Σ, i.e.

ρ : C8pM,Eq Ñ C8pΣ, E ‘ Eq, u ÞÝÑ
`

u
ˇ

ˇ

Σ
,∇νu

ˇ

ˇ

Σ

˘

. (6.11)

Clearly, ρ is surjective and we have ρ
`

C8
scpM,Eq

˘

“ DpM,E ‘ Eq. Furthermore, for any differential
operator P with well-posed Cauchy problem, ρ yields a bijection kerP Ñ C8pΣ, E‘Eq. The transposed
map ρt is related to the pushforward along the embedding, which creates singular directions orthogonal
to the embedded (spacelike) hypersurface. More precisely, according to Proposition 10.21 of [DK2010],
ι˚φ corresponds to φδΣ for any φ P C8pΣ, Eq, and hence, ρt is a map

ρt : C8pΣ, E˚ ‘ E˚q ÝÑ DN˚ΣpM,E˚q1.

D 1
Γ denotes the distributions with wave front set contained in the closed cone Γ Ă T ˚Mzt0u, and we

refer to section 8.2 of [Hör1990] for precise definitions and properties of these spaces. Due to Hör-
mander’s criterion

`

(8.2.3) of [Hör1990]
˘

, we can pull back a distribution along ι if its wave front set
does not contain the orthogonal directions mentioned above. Hence, for all closed cones Γ Ă T ˚Mzt0u

with Γ XN˚Σ “ H, (6.11) extends to a map

ρ : DΓpM,E˚q1 ÝÑ Dι˚ΓpΣ, E˚ ‘ E˚q1, u ÞÝÑ pχ ÞÑ urρtχsq,

where ι˚Γ :“
␣`

σ, dι|tσpξq
˘ ˇ

ˇ

`

ιpσq, ξ
˘

P Γ
(

Ă T ˚Σzt0u contains the projections of ξ P Γ onto T ˚Σ. Let

pχ, ζqΣ :“

ż

Σ

`

xχ0, ζ0y ` xχ1, ζ1y
˘

dVΣ, χ, ζ P DpΣ, E ‘ Eq, (6.12)

denote the inner product on DpΣ, E ‘ Eq with dVΣ the induced volume density and rΘ :“ pΘ,Θq the
corresponding isomorphism E ‘E Ñ E˚ ‘E˚. If P is Green-hyperbolic, we obtain the exact sequence
(1.1) and thus, ranG “ kerP

ˇ

ˇ

C8
sc

. This provides a further bijection ρG : DpM,Eq{ kerG Ñ DpΣ, E ‘ Eq,
which transfers G to a Green operator GΣ on the space of initial data DpΣ, E ‘ Eq via

pρGψ1, GΣρGψ2qΣ :“ pψ1, Gψ2qM , ψ1, ψ2 P DpM,Eq. (6.13)

We finish the preparation by giving an explicit expression forGΣ. Using the adjoints with respect to (2.2)
and (6.12), as well as G˚ “ ´G, (6.13) becomes G “ ´Gρ˚GΣρG and hence, ´Gρ˚GΣρ

ˇ

ˇ

ranG
“ id

ˇ

ˇ

ranG
.

Then bijectivity of ρ on kerP “ ranG leads to a well-defined map

UΣ :“ ´Gρ˚GΣ : C8pΣ, E ‘ Eq ÝÑ C8pM,Eq,

which satisfies
ρUΣ “ id, UΣρ

ˇ

ˇ

kerP
“ id

ˇ

ˇ

kerP
, PUΣ “ 0.

In other words, UΣ maps initial data pu0, u1q P C8pΣ, E ‘ Eq to the solution u of the corresponding ho-
mogeneous Cauchy problem and therefore, it is frequently referred to as the Cauchy evolution operator.
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6 Global Hadamard two-point-functions

On the other hand, [Dim1980] and, for the vector-valued case, [BS2018] provide the expression

u “ G˚
`

ρ˚
1u0 ´ ρ˚

0u1
˘

,

where ρ “ pρ0, ρ1q. By uniqueness, this has to coincide with UΣpu0, u1q “ pρGq˚GΣpu0, u1q, which leads
to

ˆ

GΣ

ˆ

u0
u1

˙

, ρGψ

˙

Σ

“

ˆ

UΣ

ˆ

u0
u1

˙

, ψ

˙

M

“ pu, ψqM “

ˆˆ

u0
u1

˙

,

ˆ

ρ1Gψ

´ρ0Gψ

˙˙

Σ

“

ˆˆ

´u1
u0

˙

, ρGψ

˙

Σ

for all ψ P DpM,Eq. By surjectivity of ρG : DpM,Eq Ñ DpΣ, E ‘ Eq, this identifies GΣ as the map

GΣ : C8pΣ, E ‘ Eq ÝÑ C8pΣ, E ‘ Eq, pu0, u1q ÞÝÑ p´u1, u0q.

Theorem 6.2.2. Let M be a globally hyperbolic Lorentzian manifold, π : E Ñ M a Riemannian vector
bundle and P : C8pM,Eq Ñ C8pM,Eq a linear first- or second-order differential operator, which is of
positive propagator type and admits a well-posed Cauchy problem. Assume that the characteristic set
and the bicharacteristic relation of P are given by (6.10) and that rQCP z∆, rQH can be chosen as actual
Green operators QCP z∆, QH.
Then there is a real-valued and symmetric bisolution S such that S ´ i

2

`

QCP z∆ ´QH

˘

is smooth and

Srψ,Θψs ě 0, ψ P DpM,Eq.

Proof. The desired real-valued bisolution is given by

Srψ,φs :“
i

4

`

QCP z∆ ´QH

˘

rψ,φs `
i

4

`

QCP z∆ ´QH

˘

rψ,φs, ψ, P DpM,Eq, φ P DpM,E˚q, (6.14)

and we show the claimed properties. With regard to Corollary 6.1.5 and without loss of generality, we
assume S to be symmetric, and furthermore, there is some f P C8pM ˆM,E˚ ⊠ Eq such that

pS ` fqrψ,Θψs ě 0, ψ P DpM,Eq, (6.15)

since P is of positive propagator type. Because rf rψ1,Θψ2s :“ 1
2

`

f rψ1,Θψ2s ` f rψ2,Θψ1s
˘

also satisfies
(6.15), we assume symmetry of f as well, that is, f rψ1,Θψ2s “ f rψ2,Θψ1s for all ψ1, ψ2 P DpM,Eq.
Recall that Green operators map DpM,E˚q to C8pM,E˚q, so for fixed φ P C8pM,E˚q, (6.14) provides
a smooth section p ÞÑ Sppqrφs in E˚. It follows that for each p P M , we obtain a well-defined E˚

p -valued
distribution Sppq, which is a bisolution for P . Therefore, the assumptions on P imply that WF

`

Sppq
˘

exclusively contains lightlike directions. Hence, WF
`

Sppq
˘

X N˚Σ “ H, so the restriction of Sppq to Σ

yields a well-defined distribution ρ
`

Sppq
˘

: DpΣ, E˚ ‘ E˚q Ñ R for any Cauchy hypersurface Σ. This
means that, due to Theorem 8.2.13 of [Hör1990], the operator S associated to (6.14) can be applied to
ρtχ P DN˚ΣpM,E˚q1, χ P DpΣ, E˚ ‘ E˚q, and for the result, we obtain

WF
`

Sρtχ
˘

Ă
␣

pp, ξq
ˇ

ˇ pp, ξ; q, 0q P WFpSq
(

Y
␣

pp, ξq
ˇ

ˇ Dpq, ζq P WFpρtχq : pp, ξ; q,´ζq P WFpSq
(

.

Since WFpSq Ă CP “
␣

pp, ξq „ pq, ζq
(

and WFpρtχq Ă N˚Σ, both contributions on the right hand
side are empty. Hence, Sρt represents a map DpΣ, E˚ ‘ E˚q Ñ C8pM,E˚q, so it follows that
p ÞÑ ρ

`

Sppq
˘

rχs “
`

Sρtχ
˘

ppq is smooth for fixed χ. With the adjoint operator ρ˚ “ Θ´1ρtrΘ, we even-
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6.2 Positivity

tually obtain a well-defined bidistribution SΣ : DpΣ, E ‘ Eq ˆ DpΣ, E˚ ‘ E˚q Ñ R via

SΣrλ, χs :“ S
“

ρ˚λ, ρtχ
‰

“

ż

Σ

rΘρΘ´1
´

Sp¨q
“

ρtχ
‰

¯

pσq
`

λpσq
˘

dVΣpσq. (6.16)

The bisection f determines smooth and symmetric Cauchy data on Σ ˆ Σ and thus a smooth and sym-
metric bisolution u by the Theorems 2.3.2 and 2.3.5. Using the short-hand notation Sf :“ S ` f and
Su :“ S ` u, this yields SΣ

u “ SΣ
f for the corresponding bidistributions (6.16), and we show that positiv-

ity is preserved under the restriction to Σ, i.e. SΣ
f rλ, rΘλs ě 0 for all λ P DpΣ, E ‘ Eq. Due to Theorem

8.2.3 of [Hör1990], we find a sequence pψnqnPN Ă DpM,Eq such that ψn Ñ ρ˚λ in DN˚ΣpM,Eq1, and
consequently, Θψn Ñ Θρ˚λ “ ρtrΘλ. By continuity of Sf as a bidistribution, it follows that

SΣ
f rλ, rΘλs “ Sf

“

ρ˚λ, ρtrΘλ
‰

“ lim
nÑ8

Sf
“

ψn,Θψn

‰

loooooomoooooon

ě0

ě 0. (6.17)

The proof of Theorem 3.3.1 and Proposition 3.4.2 of [BGP2007] show that well-posedness of the Cauchy
problem implies the existence of a unique advanced and retarded Green operator and hence exactness
of the sequence (1.1). Thus, due to kerP “ ranG, Su does not only descend to a well-defined bilinear
form on DpM,Eq{ kerP , since it is a bisolution, but also to ranG via

S1
urGψ1,ΘGψ2s :“ Surψ1,Θψ2s, ψ1, ψ2 P DpM,Eq.

By following the lines of Proposition 3.9 of [GW2015] and employing G “ ´Gρ˚GΣρG, this allows us to
trace back the claimed positivity property to (6.17). More precisely, for all ψ1, ψ2 P DpM,Eq, we have

Surψ1,Θψ2s “ S1
urGψ1,ΘGψ2s “ S1

urGρ˚GΣρGψ1,ΘGρ
˚GΣρGψ2s

“ Surρ˚GΣρGψ1,Θρ
˚GΣρGψ2s “ SΣ

u rGΣρGψ1, rΘGΣρGψ2s

“ SΣ
f rGΣρGψ1, rΘGΣρGψ2s,

which proves the theorem.

In the case of formally self-adjoint wave operators, the existence of GF and GaF is ensured by Theorem
6.1.6, so Theorem 6.2.2 leads to the final result of this thesis:

Theorem 6.2.3. Let M be a globally hyperbolic Lorentzian manifold, π : E Ñ M a Riemannian vector
bundle and P : C8pM,Eq Ñ C8pM,Eq a formally self-adjoint wave operator of positive propagator
type. Then there exists a bidistribution S : DpM,Eq ˆ DpM,E˚q Ñ R such that

H :“ S `
i

2
pG` ´G´q

yields a Hadamard two-point-function, where G˘ denotes the advanced and retarded Green operator
for P t. This means that WFpHq has the Hadamard singularity structure (1.9) and satisfies

HrPψ,φs “ 0 “ Hrψ, P tφs, Hrψ,φs ´HrΘ´1φ,Θψs “
i

2
pG` ´G´qrψ,φs, Hrψ,Θψs ě 0

for all ψ P DpM,Eq, φ P DpM,E˚q.

Moreover, a Feynman and an anti-Feynman Green operator GF , GaF are given by (6.9).
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6 Global Hadamard two-point-functions

Note that, in general, S is far from being unique, i.e. there may be many bidistributions with the re-
quired properties. Clearly, this is related to the non-uniqueness of the many choices of smooth sections
during the construction, and in most cases, it is not at all obvious, how to find these sections practi-
cally. This particularly concerns the choice of the hi’s in Lemma 6.1.3 and the f for operators of positive
propagator type.
However, the overall reasoning provides a comparatively constructive alternative to the existence
proofs, which are already present in the literature ([BF2014], [FNW1981], [GOW2017]). It starts most
naturally with the Hadamard condition, so the form of the bidistributions is, up to smooth terms, de-
termined right from the start. It therefore might provide a promising starting point for a possible clas-
sification of these states up to unitary equivalence of their respective GNS-representations. This and
the identification of pure states in particular would require to investigate the choices of the said smooth
sections.
Furthermore, the methods used here provide an alternative procedure to the classic deformation argu-
ments since they rely on the ability to make modifications to the metric confined to certain spacetime
regions. There are situations, where this is not applicable, for instance, in the case of linearized gra-
vity, where the background spacetime must solve the Einstein equation, or similarly for linearizations
of Yang-Mills theories. They also occur if one is restricted to analytic metrics.
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7 Appendix

7.1 Proof of Proposition 5.4.1 for even dimensional spacetimes

Note that in the proofs of all following Lemmas, c denotes a generic constant, i.e. its particular value
can change from one line to another.

Lemma 7.1.1. For all l P N and β ě l ` 1, there is some cl,β such that for all 0 ă ε ď 1, we have
›

›

›

›

›

dl

dtl

ˆ

σ

ˆ

t

ε

˙

¨ tβ ¨ log t

˙

›

›

›

›

›

C0pRq

ď ε

ˆ

log
1

ε
` π ` 1

˙

¨ cl,β ¨ }σ}ClpRq.

Proof. We start with calculating
›

›

›

›

›

dj

dtj
´

tβ ¨ log t
¯

›

›

›

›

›

C0pRq

“

›

›

›

›

›

βpβ ´ 1q . . . pβ ´ j ` 1qtβ´j log t` tβ´j
j
ÿ

i“1

ˆ

j

i

˙

p´1qi´1pi´ 1q!βpβ ´ 1q . . . pβ ´ j ` i` 1q

›

›

›

›

›

C0pRq

ď cj,β ¨ |t|β´j p| log t| ` 1q

ď cj,β ¨ |t|β´j
`ˇ

ˇ log |t|
ˇ

ˇ ` π ` 1
˘

.

Since σpl´jq
`

t
ε

˘

“ 0 for |t| ě ε and εβ´l ď ε due to β ě l ` 1, this yields

›

›

›

›

›

dl

dtl

ˆ

σ

ˆ

t

ε

˙

¨ tβ ¨ log t

˙

›

›

›

›

›

C0pRq

ď

l
ÿ

j“0

ˆ

l

j

˙

¨ cj,β

›

›

›

›

›

σpl´jq
`

t
ε

˘

εl´j
¨ |t|β´j

`ˇ

ˇ log |t|
ˇ

ˇ ` π ` 1
˘

›

›

›

›

›

C0pRq

ď

l
ÿ

j“0

ˆ

l

j

˙

¨ cj,β ¨ εβ´l

ˆ

log
1

ε
` π ` 1

˙

¨

›

›

›
σpl´jq

›

›

›

C0pRq

ď cl,β ¨ ε

ˆ

log
1

ε
` π ` 1

˙

¨ }σ}ClpRq .

Lemma 7.1.2. For any open and relatively compact domain O Ă Ω and l P N0, there is a sequence
tεkukěN Ă p0, 1s such that for all l ě 0 the series

pp, qq ÞÝÑ

8
ÿ

k“N`l

rUkpp, qq log
`

Γpp, qq ˘ i0
˘

LΩ
˘p2k ` 2, pqpqq (7.1)

converges in C l
`

O ˆO,E˚ ⊠ E
˘

. In particular, for l “ 0, this defines a continuous section over O ˆ O

and a smooth section over
`

O ˆO
˘

zΓ´1p0q.
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Proof. Since k ě N ě d
2 and d even, Γpp, qqk´ d´2

2 is a smooth and Γpp, qqk´ d´2
2 ¨ log pΓpp, qq ˘ i0q a

continuous section over O ˆ O, so every single summand of (7.1) is at least continuous, individually.
Due to supp

´

σ ˝ Γ
εk

¯

Ă tΓpp, qq ă εku for all k ě N and 0 ď σ ď 1 by Lemma 7.1.1, we have

›

›

›

rUk log
`

Γ ˘ i0
˘

¨ Cp2k ` 2, dqΓk´ d´2
2

›

›

›

C0pOˆOq
ď ck,d }Uk}C0pOˆOq ¨ εk

ˆ

log
1

εk
` π ` 1

˙

.

Since εk log 1
εk

Ñ 0 for εk Ñ 0, we can choose εk such that

ck,d }Uk}C0 ¨ εk

ˆ

log
1

εk
` π ` 1

˙

ă 2´k,

and (7.1) converges in C0. Now let l ą 0 and k ě N ` l such that Γpp, qqk´ d´2
2 log pΓpp, qq ˘ i0q is of

C l-regularity. Set ρkptq :“ σ
´

t
εk

¯

tk´ d´2
2 , so by Lemma 7.1.1 we have

}ρk}ClpRq ď cl,k,d ¨ εk}σ}ClpRq, }ρk ¨ log }ClpRq ď cl,k,d ¨ εk

ˆ

log
1

εk
` π ` 1

˙

}σ}ClpRq, (7.2)

and Lemma 1.1.11 and 1.1.12 of [BGP2007] yield
›

›

›

rUk log
`

Γ ˘ i0
˘

¨ Cp2k ` 2, dqΓk´ d´2
2

›

›

›

ClpOˆOq
ď cl,k,d}Uk ¨

`

pρk ¨ logq ˝ Γ
˘

}ClpOˆOq

1.1.11
ď cl,k,d}Uk}ClpOˆOq ¨ }pρk ¨ logq ˝ Γ}ClpOˆOq

1.1.12
ď cl,k,d}Uk}ClpOˆOq ¨ max

j“0,...,l
}Γ}

j

ClpOˆOq
¨ }ρk ¨ log }ClpRq

p7.2q

ď cl,k,d}σ}ClpRq ¨ max
j“0,...,l

}Γ}
j

ClpOˆOq
¨ }Uk}ClpOˆOq ¨ εk log

ˆ

1

εk
` π ` 1

˙

.

Hence, for all k ě N ´ l, we demand

cl,k,d}Uk}ClpOˆOq ¨ εk log

ˆ

1

εk
` π ` 1

˙

ď 2´k, (7.3)

so the k. summand can be estimated by
}σ}

ClpRq

2k
¨ maxj“0,...,l }Γ}

j

ClpOˆOq
and (7.1) converges in

C l
`

O ˆO,E˚ ⊠ E
˘

. Note that for each k, we impose only finitely many conditions on εk, namely one
for each l ď k´N , which are satisfied by some positive number. Hence, for each k, there is a sufficiently
small number εk ą 0 such that (7.3) is fulfilled for all l ď k ´N .
Since all summands are smooth on

`

O ˆO
˘

zΓ´1p0q and the series converges in all C l-norms, it defines
a smooth section on

`

O ˆO
˘

zΓ´1p0q.

Thus, we showed that (5.16) yield well-defined distributions with singular support on the light cone,
i.e. property (i). Furthermore, (iii) follows from Proposition 5.2.1 (6). We proceed with (ii):

Lemma 7.1.3. The sequence
`

εk
˘

kěN
can be chosen such that

Pp2q
ĂL˘ppq “ δp `K˘pp, ¨q

for some K˘ P C8
`

O ˆO,E˚ ⊠ E
˘

.
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7.1 Proof of Proposition 5.4.1 for even dimensional spacetimes

Proof. Let σk :“ σ ˝ Γ
εk

P C8pΩ ˆ Ωq, so rUk “ σk ¨ Uk for all k ě N and suppσk Ă
␣

Γpp, qq ď εk
(

. Due to
Lemma 1.1.10 of [BGP2007], we can exchange P with the sum, so the transport equations (5.12) imply

8
ÿ

k“N

Pp2q σk
`

Uk logpΓ ˘ i0q `Wk

˘

LΩ
˘p2k ` 2q

“

8
ÿ

k“N

´2p2qσk ´ 2∇gradp2qσk
` σkPp2q

¯

`

Uk logpΓ ˘ i0q `Wk

˘

LΩ
˘p2k ` 2q

“: Σ1 ` Σ2 `

8
ÿ

k“N

σkPp2q

`

Uk logpΓ ˘ i0q `Wk

˘

LΩ
˘p2k ` 2q.

Recall that the transport equations (5.12) and (5.13) are derived from the requirement that Pp2q applied
to (5.11) is a telescoping series, that is,

Pp2q

`

Uk logpΓ ˘ i0q `Wk

˘

LΩ
˘p2k ` 2q

“
`

logpΓ ˘ i0q ¨ Pp2qUk ` Pp2qWk

˘

LΩ
˘p2k ` 2q ´

`

logpΓ ˘ i0q ¨ Pp2qUk´1 ` Pp2qWk´1

˘

LΩ
˘p2kq.

Hence, the right hand side becomes

Σ1 ` Σ2 ´ σN
`

logpΓ ˘ i0q ¨ Pp2qUN´1 ` Pp2qWN´1

˘

LΩ
˘p2Nq ` Σ3

with

Σ3 :“
8
ÿ

k“N

pσk ´ σk`1q
`

logpΓ ˘ i0q ¨ Pp2qUk ` Pp2qWk

˘

LΩ
˘p2k ` 2q.

Then, for K˘pp, ¨q :“ Pp2q
ĂL˘ppq ´ δp, the transport equations (5.12) for Uk yield

K˘ “ p1 ´ σN q
`

logpΓ ˘ i0q ¨ Pp2qUN´1 ` Pp2qWN´1

˘

LΩ
˘p2Nq ` Σ1 ` Σ2 ` Σ3. (7.4)

On the right hand side, every summand individually yields a smooth section, since both 1 ´ σN and
σk ´σk`1 as well as all derivatives of σk vanish in a neighborhood of Γ´1p0q, which contains the singular
support of ĂL˘. Thus,K˘ vanishes on Γ´1p0q to arbitrary order and it remains to show convergence in all
C l-norms, which again for the W -part is provided by the proof of Lemma 2.4.3 of [BGP2007]. Therefore,
we concentrate on

8
ÿ

k“N

´2p2qσk ´ 2∇gradp2qσk
` σkPp2q

¯

Uk logpΓ ˘ i0q LΩ
˘p2k ` 2q “: Σ1

1 ` Σ1
2 ` Σ1

3.

For fixed l P N0, let k ě 2pl ` 1q ` N and Sk :“
␣

εk
2 ď |Γpp, qq| ď εk

(

. Then Lemma 1.1.12 of [BGP2007]
implies for the k. summand of Σ1

2

›

›

›
∇gradp2qσk

Uk log
`

Γ ˘ i0
˘

LΩ
˘p2k ` 2q

›

›

›

ClpOˆOq
“

›

›

›
∇gradp2qσk

Uk log
`

Γ ˘ i0
˘

LΩ
˘p2k ` 2q

›

›

›

ClpOˆOXSkq

ď cl,d}Uk}Cl`1pOˆOXSkq ¨ }σk}Cl`1pOˆOXSkq ¨

›

›

›
Γk´ d´2

2 log
`

Γ ˘ i0
˘

›

›

›

Cl`1pOˆOXSkq

ď cl,d}Uk}Cl`1pOˆOXSkq ¨
}σ}Cl`1pRq

εl`1
k

¨

›

›

›
t ÞÑ tk´ d´2

2 ¨ log t
›

›

›

Cl`1pr
εk
2
,εksq

¨ max
j“0,¨¨¨ ,l`1

}Γ}
2j

Cl`1pOˆOXSkq
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ď cl,k,d}Uk}Cl`1pOˆOXSkq

}σ}Cl`1pRq

εl`1
k

max
j“0,¨¨¨ ,l`1

}Γ}
2j

Cl`1pOˆOXSkq
max

tPpr
εk
2
,εksq

|t|k´ d´2
2

´pl`1q p| log t| ` 1q

ď cl,k,d}Uk}Cl`1pOˆOq ¨ εk

ˆ

log
1

εk
` π ` 1

˙

}σ}Cl`1pRq ¨ max
j“0,¨¨¨ ,l`1

}Γ}
2j

Cl`1pOˆOq
,

so we additionally demand

cl,k,d ¨ }Uk}Cl`1pOˆOq ¨ εk

ˆ

log
1

εk
` π ` 1

˙

ď 2´k.

Then, for all l, the C l-norm of almost all summands (without the first 2pl ` 1q `N ) of Σ1
2 is bounded by

2´k ¨ }σ}Cl`1pRq ¨ maxj“0,¨¨¨ ,l`1 }Γ}
2j

Cl`1pOˆOq
and thus, we have convergence in C l for all l, i.e. Σ1

2 defines

a smooth section in E˚ ⊠ E over O ˆO .
The treatment for Σ1

1 is completely identical, so we directly turn to the k. summand of Σ1
3:

›

›pσk ´ σk`1qLΩ
˘p2k ` 2, ¨q log pΓ ˘ i0q ¨ Pp2qUk

›

›

ClpOˆOq

ď cl,k,d

´›

›

›
σk Γl`1 log pΓ ˘ i0q

›

›

›

Cl
`

›

›

›
σk`1 Γ

l`1 log pΓ ˘ i0q

›

›

›

Cl

¯ ›

›

›
Γk´N´l

›

›

›

Cl
¨
›

›Pp2qUk

›

›

Cl .

Set ρklptq :“ σ
´

t
εk

¯

¨ tl`1 log t, so we have σk Γl`1 log pΓ ˘ i0q “ ρkl ˝ Γ. Then again Lemma 1.1.12 of
[BGP2007] and Lemma 7.2 yield

›

›

›
σk Γl`1 log pΓ ˘ i0q

›

›

›

ClpOˆOq
ď cl ¨ }ρkl}ClpRq ¨ max

j“0,...,l
}Γ}ClpOˆOq

ď ck,l ¨ εk

ˆ

log
1

εk
` π ` 1

˙

}σ}ClpRq ¨ max
j“0,...,l

}Γ}ClpOˆOq,

so we obtain

}Σ1
3}ClpOˆOq ď cl,k,d

ˆ

εk

ˆ

log
1

εk
` π ` 1

˙

` εk`1

ˆ

log
1

εk`1
` π ` 1

˙˙

}σ}ClpRq

¨ max
j“0,...,l

}Γ}ClpOˆOq ¨

›

›

›
Γk´N´l

›

›

›

ClpOˆOq
¨
›

›Pp2qUk

›

›

ClpOˆOq
.

Hence, for all k ě N ` l we demand

cl,k,d ¨ εk

ˆ

log
1

εk
` π ` 1

˙

¨
›

›Pp2qUk

›

›

ClpOˆOq
¨

›

›

›
Γk´N´l

›

›

›

ClpOˆOq
ď 2´k´1

as well as for all k ě N ` l ` 1 that

cl,k´1,d ¨ εk

ˆ

log
1

εk
` π ` 1

˙

¨
›

›Pp2qUk´1

›

›

ClpOˆOq
¨

›

›

›
Γk´N´l´1

›

›

›

ClpOˆOq
ď 2´k´2.

Then the C l-norm of almost all summands of Σ1
3 (without the first l ` N ) is bounded by 2´k ¨ }σ}ClpRq ¨

maxj“0,...,l }Γ}ClpOˆOq, so the series converges in all C l-norms and is therefore smooth. Note that for
each k we again added only finitely many conditions.

Finally, we show that the εk’s can be chosen such that for all p P O, the parametrices ĂL˘ppq are distribu-
tions of degree at most κd.
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7.1 Proof of Proposition 5.4.1 for even dimensional spacetimes

Lemma 7.1.4. There is a sequence pεkqkěN Ă p0, 1s, for which we find some C ą 0 such that
ˇ

ˇ

ˇ

ĂL˘ppqrφs

ˇ

ˇ

ˇ
ď C ¨ }φ}Cκd pΩq, p P O, φ P D pΩ, E˚q .

Furthermore, for fixed φ P D pΩ, E˚q, the map p ÞÑ ĂL˘ppqrφs is smooth.

Proof. We show the claim only for the logarithmic part, i.e. f :“
ř8

k“ d´2
2

rUk logpΓ ˘ i0qLΩ
˘p2k ` 2q, since

for the other two sums the proof of Lemma 2.4.4 of [BGP2007] applies identically. By Lemma 7.1.2, we
have f P C0pO ˆO,E˚ ⊠ Eq and thus,

|fppqrφs| ď }f}C0pOˆOq ¨ volpOq ¨ }φ}C0pOˆOq ď }f}Cκd pOˆOq ¨ volpOq ¨ }φ}Cκd pOˆOq

for all p P O and φ P DpO,E˚q, so the constant can be chosen via C :“ }f}Cκd pOˆOq ¨ volpOq.
Since Proposition 5.2.1 (6) directly applies also to logpΓp ˘ i0qLΩ

˘p2k` 2, pq and Ukφ is smooth on OˆO

with supp pUk
p qφ compact, for every k ě d´2

2 , the map

p ÞÝÑ rUk
p logpΓp ˘ i0qLΩ

˘p2k ` 2, pqrφs, φ P DpO,E˚q,

is smooth. Therefore, also
řl´1

k“ d´2
2

rUk
p logpΓp ˘ i0qLΩ

˘p2k ` 2, pqrφs is smooth for all l ą d
2 and the re-

maining term
ř8

k“l
rUk
p logpΓp ˘ i0qLΩ

˘p2k ` 2, pqrφs is C l by Lemma 7.1.2. This holds for all l and hence,
p ÞÑ fppqrφs is smooth.

Lemma 7.1.4 shows properties (iv) and (v) of ĂL˘, so Proposition 5.4.1 is proved also for even d.
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