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Upper Palaeolithic genomes reveal deep roots
of modern Eurasians
Eppie R. Jones1, Gloria Gonzalez-Fortes2,3, Sarah Connell4, Veronika Siska5, Anders Eriksson5,6,

Rui Martiniano1, Russell L. McLaughlin1, Marcos Gallego Llorente5, Lara M. Cassidy1, Cristina Gamba1,4,7,

Tengiz Meshveliani8, Ofer Bar-Yosef9, Werner Müller10,11, Anna Belfer-Cohen12, Zinovi Matskevich13,

Nino Jakeli8, Thomas F.G. Higham14, Mathias Currat15, David Lordkipanidze8, Michael Hofreiter2,

Andrea Manica5,*, Ron Pinhasi1,4,* & Daniel G. Bradley1,*

We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper

Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold)

males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old,

9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic

continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct

ancient clade that split from western hunter-gatherers B45 kya, shortly after the expansion

of anatomically modern humans into Europe and from the ancestors of Neolithic farmers

B25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the

Yamnaya steppe herders who migrated into Europe B3,000 BC, supporting a formative

Caucasus influence on this important Early Bronze age culture. CHG left their imprint on

modern populations from the Caucasus and also central and south Asia possibly marking the

arrival of Indo-Aryan languages.
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A
ncient genomes from Eurasia have revealed three
ancestral populations that contributed to contemporary
Europeans in varying degrees1. Mesolithic individuals,

sampled from Spain all the way to Hungary1–3, belong to a
relatively homogenous group, termed western hunter-gatherers
(WHG). The expansion of early farmers (EF) out of the Levant
during the Neolithic transition led to major changes in the
European gene pool, with almost complete replacement in the
south and increased mixing with local WHG further north1–5.
Finally, a later wave originating with the Early Bronze Age
Yamnaya from the Pontic steppe, carrying partial ancestry from
ancient North Eurasians (ANE) and ancestry from a second,
undetermined source, arrived from the east, profoundly changing
populations and leaving a cline of admixture in Eastern and
Central Europe1,3,6. This view, which was initially based on a
handful of genomes, was recently confirmed by extensive surveys
of Eurasian samples from the Holocene5,7.

Here, we extend our view of the genetic makeup of early
Europeans by both looking further back in time and sampling
from the crossroads between the European and Asian continents.
We sequenced a Late Upper Palaeolithic (‘Satsurblia’ from
Satsurblia cave, 1.4-fold coverage) and a Mesolithic genome
(‘Kotias’ from Kotias Klde cave, 15.4-fold) from Western Georgia,
at the very eastern boundary of Europe. We term these two
individuals Caucasus hunter-gatherers (CHG). To extend our
overview of WHG to a time depth similar to the one available for
our samples from the Caucasus, we also sequenced a western
European Late Upper Palaeolithic genome, ‘Bichon’ (9.5-fold)
from Grotte du Bichon, Switzerland. These new genomes,
together with already published data, provide us with a much-
improved geographic and temporal coverage of genetic diversity
across Europe after the Last Glacial Maximum (LGM)8. We show
that CHG belong to a new, distinct ancient clade that split from
WHG B45 kya and from Neolithic farmer ancestors B25 kya.
This clade represents the previously undetermined source of
ancestry to the Yamnaya, and contributed directly to modern
populations from the Caucasus all the way to Central Asia.

Results
Samples, sequencing and authenticity. Recent excavations of
Satsurblia cave in Western Georgia yielded a human right
temporal bone, dated to the Late Upper Palaeolithic
13,132–13,380 cal. BP. Following the approach of Gamba et al.3,
extractions from the dense part of the petrous bone yielded
sequencing libraries comprising 13.8% alignable human sequence
which were used to generate 1.4-fold genome coverage. A molar
tooth sampled from a later Mesolithic (9,529–9,895 cal. BP) burial
in Kotias Klde, a rockshelter also in Western Georgia showed
excellent preservation, with endogenous human DNA content of
76.9%. This was sequenced to 15.4-fold genome coverage. Grotte
du Bichon is a cave situated in the Swiss Jura Mountains where a
skeleton of a young male of Cro-magnon type was found and
dated to the late Upper Palaeolithic 13,560–13,770 cal. BP (for
further details on the archaeological context see Supplementary
Note 1). A petrous bone sample extraction from this also gave
excellent endogenous content at 71.5% and was sequenced to
9.5-fold coverage. The sequence data from each genome showed
sequence length and nucleotide misincorporation patterns which
were indicative of post-mortem damage and contamination
estimates, based on X chromosome and mitochondrial DNA tests
(Supplementary Note 2), were o1%, comparable to those found
in other ancient genomes2,3,8.

Continuity across the Palaeolithic–Mesolithic boundary. Kotias
and Satsurblia, the two CHG, are genetically different from all

other early Holocene (that is, Mesolithic and Neolithic) ancient
genomes1–6,8–10, while Bichon is similar to other younger WHG.
The distinctness of CHG can be clearly seen on a principal
component analysis (PCA) plot11 loaded on contemporary
Eurasian populations1, where they fall between modern
Caucasian and South Central Asian populations in a region of
the graph separated from both other hunter gatherer and EF
samples (Fig. 1a). Clustering using ADMIXTURE software12

confirms this view, with CHG forming their own homogenous
cluster (Fig. 1b). The close genetic proximity between Satsurblia
and Kotias is also formally supported by D-statistics13, indicating
the two CHG genomes form a clade to the exclusion of other
pre-Bronze Age ancient genomes (Supplementary Table 2;
Supplementary Note 3), suggesting continuity across the Late
Upper Palaeolithic and Mesolithic periods. This result is mirrored
in western Europe as Bichon is close to other WHG in PCA space
(Fig. 1a) and outgroup f3 analysis (Supplementary Fig. 1), belongs
to the same cluster as other WHG in ADMIXTURE analysis
(Fig. 1b), and forms a clade with other WHG to the exclusion of
other ancient genomes based on D-statistics (Supplementary
Table 3; Supplementary Note 3). Thus, these new data indicate
genomic persistence between the Late Upper Palaeolithic and
Mesolithic both within western Europe and, separately, within the
Caucasus.

Deep coalescence of early Holocene lineages. The geographical
proximity of the Southern Caucasus to the Levant begs the
question of whether CHG might be related to early Neolithic
farmers with Near Eastern heritage. To address this question
formally we reconstructed the relationship among WHG, CHG
and EF using available high-quality ancient genomes1,3. We used
outgroup f3-statistics14 to compare the three possible topologies,
with the correct relationship being characterized by the largest
amount of shared drift between the two groups that form a clade
with respect to the outgroup (Fig. 2a; Supplementary Note 4). A
scenario in which the population ancestral to both CHG and EF
split from WHG receives the highest support, implying that CHG
and EF form a clade with respect to WHG. We can reject a
scenario in which CHG and WHG form a distinct clade with
respect to EF. The known admixture of WHG with EF1,3–5

implies that some shared drift is found between WHG and EF
with respect to CHG, but this is much smaller than the shared
drift between CHG and EF. Thus, WHG split first, with CHG and
EF separating only at a later stage.

We next dated the splits among WHG, CHG and EF using a
coalescent model implemented with G-PhoCS15 based on the
high-coverage genomes in our data set (Fig. 2b for a model
using the German farmer Stuttgart1 to represent EF; and
Supplementary Table 5 for models using the Hungarian farmer
NE1 (ref. 3)) and taking advantage of the mutation rate recently
derived from Ust’-Ishim10. G-Phocs dates the split between WHG
and the population ancestral to CHG and EF at B40–50 kya
(range of best estimates depending on which genomes are used;
see Supplementary Table 5 and Supplementary Note 5 for
details), implying that they diverged early on during the
colonisation of Europe16, and well before the LGM. On the
WHG branch, the split between Bichon and Loschbour1 is dated
to B16–18 kya (just older than the age of Bichon), implying
continuity in western Europe, which supports the conclusions
from our previous analyses. The split between CHG and EF is
dated at B20–30 kya emerging from a common basal Eurasian
lineage1 (Supplementary Fig. 2) and suggesting a possible link
with the LGM, although the broad confidence intervals require
some caution with this interpretation. In any case, the sharp
genomic distinctions between these post-LGM populations
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contrasts with the comparative lack of differentiation between the
earlier Eurasian genomes, for example, as visualized in the
ADMIXTURE analysis (Fig. 1a), and it seems likely that this
structure emerged as a result of ice age habitat restriction. Like
EF, but in contrast to WHG, CHG carry a variant of the SLC24A5
gene17 associated with light skin colour (rs1426654, see
Supplementary Note 6). This trait, which is believed to have
risen to high frequency during the Neolithic expansion18, may
thus have a relatively long history in Eurasia, with its origin
probably predating the LGM.

A partial genome from a 24,000-year-old individual (MA1)
from Mal’ta, Siberia6 had been shown to be divergent from other
ancient samples and was shown by Lazaridis et al.1, using f4
statistics, to have more shared alleles with nearly all modern
Europeans than with an EF genome. This allowed inference of an
ANE component in European ancestry, which was subsequently
shown to have an influence in later eastern hunter-gatherers and
to have spread into Europe via an incursion of Steppe herders
beginning B4,500 years ago5,7. Several analyses indicate that
CHG genomes are not a subset of this ANE lineage. First, MA1
and CHG plot in distinct regions of the PCA and also have very
different profiles in the ADMIXTURE analysis (Fig. 1). Second,
when we test if CHG shows any evidence of excess allele sharing
with MA1 relative to WHG using tests of the form D(Yoruba,
CHG; MA1, WHG) no combinations were significantly positive
(Supplementary Table 6). Last, we also tested whether the
ancestral component inferred in modern Europeans from MA1
was distinct from any that may have been donated from CHG
using tests of the form D(Yoruba, MA1; CHG, modern North
European population) (Supplementary Table 7). All northern
Europeans showed a significant sharing of alleles with MA1
separate to any they shared with CHG.

WHG and CHG are the descendants of two ancient
populations that appear to have persisted in Europe since the
mid Upper Palaeolithic and survived the LGM separately. We
looked at runs of homozygosity (ROH: Fig. 3) which inform on
past population size3,19,20. Both WHG and CHG have a high
frequency of ROH and in particular, the older CHG, Satsurblia,
shows signs of recent consanguinity, with a high frequency of
longer (44Mb) ROH. In contrast, EF are characterised by lower
frequency of ROH of all sizes, suggesting a less constricted
population history20,21, perhaps associated with a more benign
passage through the LGM than the more northern populations
(see Supplementary Note 7 for further details).

Caucasus hunter-gatherer contribution to subsequent populations.
We next explored the extent to which Bichon and CHG
contributed to contemporary populations using outgroup
f3(African; modern, ancient) statistics, which measure the shared
genetic history between an ancient genome and a modern
population since they diverged from an African outgroup.
Bichon, like younger WHG, shows strongest affinity to northern
Europeans (Supplementary Fig. 3), while contemporary southern
Caucasus populations are the closest to CHG (Fig. 4a and
Supplementary Fig. 3), thus implying a degree of continuity in
both regions stretching back at least 13,000 years to the late
Upper Palaeolithic. Continuity in the Caucasus is also supported
by the mitochondrial and Y chromosomal haplogroups of
Kotias (H13c and J2a, respectively) and Satsurblia (K3 and J),
which are all found at high frequencies in Georgia today22–24

(Supplementary Note 8).
EF share greater genetic affinity to populations from southern

Europe than to those from northern Europe with an inverted
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by each component accompanies the titles of the axes. For context we included data from published Eurasian ancient genomes sampled from the Late

Pleistocene and Holocene where at least 200000 SNPs were called1–7,9 (Supplementary Table 1). Among ancients, the early farmer and western

hunter-gatherer (including Bichon) clusters are clearly identifiable, and the influence of ancient north Eurasians is discernible in the separation of eastern

hunter-gatherers and the Upper Palaeolithic Siberian sample MA1. The two Caucasus hunter-gatherers occupy a distinct region of the plot suggesting a
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pattern for WHG1–5. Surprisingly, we find that CHG influence is
stronger in northern than Southern Europe (Fig. 4a and
Supplementary Fig. 3A) despite the closer relationship between
CHG and EF compared with WHG, suggesting an increase of
CHG ancestry in Western Europeans subsequent to the early
Neolithic period. We investigated this further using D-statistics of
the form D(Yoruba, Kotias; EF, modern Western European
population), which confirmed a significant introgression from
CHG into modern northern European genomes after the early
Neolithic period (Supplementary Fig. 4).

CHG origins of migrating Early Bronze Age herders. We
investigated the temporal stratigraphy of CHG influence by
comparing these data to previously published ancient genomes.
We find that CHG, or a population close to them, contributed to
the genetic makeup of individuals from the Yamnaya culture,
which have been implicated as vectors for the profound influx of
Pontic steppe ancestry that spread westwards into Europe and
east into central Asia with metallurgy, horseriding and probably
Indo-European languages in the third millenium BC5,7. CHG
ancestry in these groups is supported by ADMIXTURE analysis
(Fig. 1b) and admixture f3-statistics14,25 (Fig. 5), which best
describe the Yamnaya as a mix of CHG and Eastern European
hunter-gatherers. The Yamnaya were semi-nomadic pastoralists,
mainly dependent on stock-keeping but with some evidence for
agriculture, including incorporation of a plow into one burial26.
As such it is interesting that they lack an ancestral coefficient of
the EF genome (Fig. 1b), which permeates through western
European Neolithic and subsequent agricultural populations.
During the Early Bronze Age, the Caucasus was in
communication with the steppe, particularly via the Maikop

culture27, which emerged in the first-half of the fourth
millennium BC. The Maikop culture predated and, possibly
with earlier southern influences, contributed to the formation of
the adjacent Yamnaya culture that emerged further to the north
and may be a candidate for the transmission of CHG ancestry. In
the ADMIXTURE analysis of later ancient genomes (Fig. 1b) the
Caucasus component gives a marker for the extension of
Yamnaya admixture, with substantial contribution to both
western and eastern Bronze Age samples. However, this is not
completely coincident with metallurgy; Copper Age genomes
from Northern Italy and Hungary show no contribution; neither
does the earlier of two Hungarian Bronze Age individuals.

Modern impact of CHG ancestry. In modern populations, the
impact of CHG also stretches beyond Europe to the east. Central
and South Asian populations received genetic influx from
CHG (or a population close to them), as shown by a prominent
CHG component in ADMIXTURE (Supplementary Fig. 5;
Supplementary Note 9) and admixture f3-statistics, which show
many samples as a mix of CHG and another South Asian
population (Fig. 4b; Supplementary Table 9). It has been
proposed that modern Indians are a mixture of two ancestral
components, an Ancestral North Indian component related
to modern West Eurasians and an Ancestral South Indian
component related more distantly to the Onge25; here Kotias
proves the majority best surrogate for the former28,29

(Supplementary Table 10). It is estimated that this admixture
in the ancestors of Indian populations occurred relatively
recently, 1,900–4,200 years BP, and is possibly linked with
migrations introducing Indo-European languages and Vedic
religion to the region28.

f3(CHG,EF; WHG)=0.11–0.16 f3(WHG,EF; CHG)=0.05–0.06 f3(WHG,CHG; EF)=0.01–0.02
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Discussion
Given their geographic origin, it seems likely that CHG and EF
are the descendants of early colonists from Africa who stopped
south of the Caucasus, in an area stretching south to the Levant
and possibly east towards Central and South Asia. WHG, on the
other hand, are likely the descendants of a wave that expanded
further into Europe. The separation of these populations is one
that stretches back before the Holocene, as indicated by local
continuity through the Late Palaeolithic/Mesolithic boundary and
deep coalescence estimates, which date to around the LGM and
earlier. Several analyses show that CHG are distinct from another
inferred minor ancestral population, ANE, making them a
divergent fourth strand of European ancestry that expands the
model of the human colonization of that continent.

The separation between CHG and both EF and WHG ended
during the Early Bronze Age when a major ancestral component
linked to CHG was carried west by migrating herders from the
Eurasian Steppe. The foundation group for this seismic change
was the Yamnaya, who we estimate to owe half of their ancestry
to CHG-linked sources. These sources may be linked to the

Maikop culture, which predated the Yamnaya and was located
further south, closer to the Southern Caucasus. Through the
Yamanya, the CHG ancestral strand contributed to most modern
European populations, especially in the northern part of the
continent.

Finally, we found that CHG ancestry was also carried east to
become a major contributor to the Ancestral North Indian
component found in the Indian subcontinent. Exactly when the
eastwards movement occurred is unknown, but it likely included
migration around the same time as their contribution to the
western European gene pool and may be linked with the spread of
Indo-European languages. However, earlier movements asso-
ciated with other developments such as that of cereal farming and
herding are also plausible.

The discovery of CHG as a fourth ancestral component of the
European gene pool underscores the importance of a dense
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geographical sampling of human palaeogenomes, especially
among diverse geographical regions. Its separation from other
European ancestral strands ended dramatically with the extensive
population, linguistic and technological upheavals of the Early
Bronze Age resulting in a wide impact of this ancestral strand on
contemporary populations, stretching from the Atlantic to
Central and South Asia.

Methods
Sample preparation and DNA sequencing. DNA was extracted from three
samples; two from Georgia (Kotias and Satsurblia) and one from Switzerland
(Bichon; Supplementary Fig. 6). Sample preparation, DNA extraction and library
construction were carried out in dedicated ancient DNA facilities at Trinity College
Dublin (Kotias and Satsurblia) and the University of York, England (Bichon). DNA
was extracted from Kotias and Satsurblia following a silica column based protocol3

based on ref. 30 and libraries were prepared and amplified with AccuPrime Pfx
Supermix (Life Technology), using a modified version of ref. 31 as outlined in ref. 3.
For the ancient Swiss sample Bichon, DNA was extracted following32 and libraries
were built as described above with the exception that enzymatic end-repair was
arrested using heat inactivation rather than a silica-column purification step33,34.
Libraries were first screened to assess their human DNA content on an Illumina
MiSeq platform at TrinSeq, Dublin using 50 base pair (bp) single-end sequencing
(Supplementary Table 11). Selected libraries were further sequenced on a HiSeq 2000
platform using 100 bp single-end sequencing (Supplementary Table 12).

Sequence processing and alignment. To reduce the effects of post-indexing
contamination, raw reads were retained if the Hamming distance for the observed
index was within 1 base of the expected index. Adapter sequences were trimmed
from the 3’ ends of reads using cutadapt version 1.3 (ref. 35), requiring an overlap of

1 bp between the adapter and the read. As ancient DNA damage is more apparent at
the ends of sequences36,37, the first and last two bp of all reads from the deep
sequencing phase of analysis (Supplementary Table 12) were removed using SeqTK
(https://github.com/lh3/seqtk). A minimum read length of 30 bp was imposed.

Sequences were aligned using Burrows-Wheeler Aligner (BWA) version 0.7
(ref. 38), with the seed region disabled, to the GRCh37 build of the human genome
with the mitochondrial sequence replaced by the revised Cambridge reference
sequence (NCBI accession number NC_012920.1). Sequences from the same
sample were merged using Picard MergeSamFiles (http://picard.sourceforge.net/)
and duplicate reads were removed using SAMtools version 0.1.19 (ref. 39). Average
depth of coverage was calculated using genome analysis toolkit (GATK) Depth of
Coverage and indels were realigned using RealignerTargetCreator and
IndelRealigner from the same suite of tools40. Reads with a mapping quality of at
least 30 were retained using SAMtools39, and mapDamage 2.0 (ref. 41) was used
with default parameters to downscale the quality scores of likely damaged bases,
reducing the influence of nucleotide misincorporation on results. Only data from
the deep sequencing phase of the project (100 bp single-end sequencing on a HiSeq
2,000) were used in the subsequent analyses.

Authenticity of results. Rigorous measures were taken during laboratory work in
an effort to minimize DNA contamination3 and negative controls were processed
in parallel with samples. The authenticity of the data was further assessed in silico
in a number of ways. The data were examined for the presence of short average
sequence length and nucleotide misincorporation patterns which are characteristic
of aDNA36,37 (Supplementary Figs 7 and 8). The degree of mitochondrial DNA
contamination3,42 (Supplementary Table 13) and X chromosome contamination in
male samples3 (Supplementary Tables 14-16) was also assessed (for further details
see Supplementary Information).

Molecular sex and uniparental haplogroups. Genetic sex was determined by
examining the ratio of Y chromosome reads to reads aligning to both sex chro-
mosomes43 (Supplementary Table 17). Mitochondrial haplogroups were assigned
following4 with coverage determined using GATK Depth of Coverage40

(Supplementary Table 18). YFitter44, which employs a maximum likelihood based
approach, was used to determine Y chromosome haplogroups for our ancient male
samples (Supplementary Table 19).

Merging ancient data with modern reference data set. Genotype calls from
Kotias, Satsurblia, Bichon and selected Eurasian samples (Supplementary Table 1;
Supplementary Note 10) were merged with modern genotype calls from the
Human Origins data set1 using PLINK45. This data set was first filtered to exclude
genotypes which had a minor allele frequency of zero in the modern populations,
non-autosomal sites and modern populations with less than four individuals.
Genotypes where neither allele was consistent with the GRCh37 orientation of the
human genome were also removed.

For ancient samples with48� genome-wide coverage (namely Kotias, Bichon,
Ust’-Ishim, Loschbour, Stuttgart, NE1 and BR2 (Supplementary Table 1))
genotypes were determined using GATK Unified Genotyper40. Genotypes were
called at single-nucleotide polymorphism (SNP) positions observed in the Human
Origins data set using sequencing data with a base qualityZ30, depthZ8 and
genotype qualityZ20. The resulting VCF files were converted to PLINK format
using VCFtools46.

For lower coverage samples genotypes were called at positions that overlapped
with the Human Origins data set using GATK Pileup40. Bases were required to
have a minimum quality of 30 and all triallelic SNPs were discarded. For SNP
positions with more than one base call, one allele was randomly chosen with a
probability equal to the frequency of the base at that position. This allele was
duplicated to form a homozygous diploid genotype which was used to represent the
individual at that SNP position47. This merged data set was used for PCA,
ADMIXTURE, f3-statistics, D-statistics and ROH analysis.

Population genetic analyses. PCA was performed by projecting selected ancient
Eurasian data onto the first two principal components defined by a subset of the
filtered Human Origins data set (Fig. 1a). This analysis was carried out using
EIGENSOFT 5.0.1 smartpca11 with the lsqproject option on and the outlier
removal option off. One SNP from each pair in linkage disequilibrium with r240.2
was removed47.

A clustering analysis was performed using ADMIXTURE version 1.23 (ref. 12).
Genotypes were restricted to those that overlapped with the SNP capture panel
described in ref. 5. Single-nucleotide polymorphisms in linkage disequilbrium were
thinned using PLINK (v1.07)45 with parameters—indep-pairwise 200 25 0.5 (ref. 5)
resulting in a set of 229,695 SNPs for analysis. Clusters (K) (2–20) were explored
using 10 runs with fivefold cross-validation at each K with different random seeds
(Supplementary Fig. 5). The minimal cross-validation error was found at K¼ 17,
but the error already starts plateauing from roughly K¼ 10, implying little
improvement from this point onwards. (Supplementary Fig. 9).

D-statistics13 and f3-statistics14,25 were used to formally assess the relationships
between samples. Statistics were computed using the qpDstat (D-statistics) and
3PopTest (f3-statistics) programs from the ADMIXTOOLS package14. Significance
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Figure 5 | Lowest admixture f3-statistics of the form f3 (X, Y; Yamnaya).

These statistics represent the Yamnaya as a mix of two populations with a

more negative result signifying the more likely admixture event. (a). All

negative statistics found for the test f3(X, Y; Yamnaya) with the most

negative result f3(CHG, EHG; Yamnaya) highlighted in purple. Lines

bisecting the points show the standard error. (b). The most significantly

negative statistics which are highlighted by the yellow box in a. Greatest

support is found for Yamnaya being a mix of Caucasus hunter-gatherers

(CHG) and Russian hunter-gatherers who belong to an eastern extension of

the WHG clade (EHG).
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was assessed using a block jackknife over 5 cM chunks of the genome14 and
statistics were considered significant if their Z-score was of magnitude greater than
3 (ref. 25) corresponding approximately to a P valueo0.001. For f3-statistics where
the test population was ancient the inbreed:YES option was used.

Dating split times using G-PhoCS. A coalescent model implemented with
G-PhoCS15 was used to date the split among WHG, CHG and EF. Both a tree with
only ancient genomes and a tree with an African San Pygmy48 as the outgroup
were considered (see Supplementary Information for further details).

Runs of homozygosity. Examination of ROH requires dense diploid genotypes.
Imputation was used to maximise the information content of our most ancient
sample, Satsurblia, following the procedure described in ref. 3. Implementing a
genotype probability threshold of 0.99 (Supplementary Fig. 10), imputed data for
Satsurblia and downsampled-Kotias (see Supplementary Information) was merged
with high confidence diploid calls for selected ancient samples (namely Bichon,
Loschbour, NE1, Stuttgart and Kotias) as well as with SNP data from modern
samples using PLINK45. This resulted in 199,868 overlapping high-quality diploid
loci for ROH analysis which was carried out using PLINK45 as described in ref. 3.

Phenotypes of interest. Genes which have been associated with particular phe-
notypes in modern populations were examined, including some loci which have
been subject to selection in European populations (Supplementary Tables 20–23).
We called genotypes in Bichon, Kotias and Satsurblia using GATK Unified
Genotyper40. For each position under investigation we only called alleles which
were present in the 1,000 Genomes data set49, using bases with a qualityZ30 in
positions with a depthZ4. Because of the low average coverage of Satsurblia
(1.44� ) we also used imputed genotypes for this sample (see above) imposing a
genotype probability cut-off of 0.85 (ref. 3). We used the 8-plex50 and Hirisplex51

prediction models to predict hair, eye and skin colour for our samples. Other loci
investigated are discussed in the Supplementary Information.
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