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Abstract

With the emergence of the Internet of things (IoT), plenty of battery-powered
and energy-harvesting devices are being deployed to fulfill sensing and actuation
tasks in a variety of application areas, such as smart homes, precision agricul-
ture, smart cities, and industrial automation. In this context, a critical issue is
that of denial-of-sleep attacks. Such attacks temporarily or permanently deprive
battery-powered, energy-harvesting, or otherwise energy-constrained devices of
entering energy-saving sleep modes, thereby draining their charge. At the ve-
ry least, a successful denial-of-sleep attack causes a long outage of the victim
device. Moreover, to put battery-powered devices back into operation, their
batteries have to be replaced. This is tedious and may even be infeasible, e.g.,
if a battery-powered device is deployed at an inaccessible location. While the
research community came up with numerous defenses against denial-of-sleep at-
tacks, most present-day IoT protocols include no denial-of-sleep defenses at all,
presumably due to a lack of awareness and unsolved integration problems. Af-
ter all, despite there are many denial-of-sleep defenses, effective defenses against
certain kinds of denial-of-sleep attacks are yet to be found.

The overall contribution of this dissertation is to propose a denial-of-sleep-
resilient medium access control (MAC) layer for IoT devices that communi-
cate over IEEE 802.15.4 links. Internally, our MAC layer comprises two main
components. The first main component is a denial-of-sleep-resilient protocol for
establishing session keys among neighboring IEEE 802.15.4 nodes. The esta-
blished session keys serve the dual purpose of implementing (i) basic wireless
security and (ii) complementary denial-of-sleep defenses that belong to the se-
cond main component. The second main component is a denial-of-sleep-resilient
MAC protocol. Notably, this MAC protocol not only incorporates novel denial-
of-sleep defenses, but also state-of-the-art mechanisms for achieving low energy
consumption, high throughput, and high delivery ratios. Altogether, our MAC
layer resists, or at least greatly mitigates, all denial-of-sleep attacks against it
we are aware of. Furthermore, our MAC layer is self-contained and thus can
act as a drop-in replacement for IEEE 802.15.4-compliant MAC layers. In fact,
we implemented our MAC layer in the Contiki-NG operating system, where it
seamlessly integrates into an existing protocol stack.
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Zusammenfassung

Mit dem Aufkommen des Internets der Dinge (IoT), werden immer mehr batte-
riebetriebene und energieerntende Geräte in diversen Anwendungsbereichen ein-
gesetzt, etwa in der Heimautomatisierung, Präzisionslandwirtschaft, Industrie-
automatisierung oder intelligenten Stadt. In diesem Kontext stellen sogenannte
Denial-of-Sleep-Angriffe eine immer kritischer werdende Bedrohung dar. Solche
Angriffe halten batteriebetriebene, energieerntende oder anderweitig energie-
beschränkte Geräte zeitweise oder chronisch ab, in energiesparende Schlafmo-
di überzugehen. Erfolgreiche Denial-of-Sleep-Angriffe führen zumindest zu ei-
ner langen Ausfallzeit der betroffenen Geräte. Um betroffene batteriebetriebene
Geräte wieder in Betrieb zu nehmen, müssen zudem deren Batterien gewech-
selt werden. Dies ist mühsam oder eventuell sogar unmöglich, z.B. wenn sol-
che Geräte an unzugänglichen Orten installiert sind. Obwohl die Forschungsge-
meinschaft bereits viele Denial-of-Sleep-Abwehrmechanismen vorgeschlagen hat,
besitzen die meisten aktuellen IoT-Protokolle überhaupt keine Denial-of-Sleep-
Abwehrmechanismen. Dies kann zum einen daran liegen, dass man des Problems
noch nicht gewahr ist, aber zum anderen auch daran, dass viele Integrationsfra-
gen bislang ungeklärt sind. Des Weiteren existieren bisher sowieso noch keine
effektiven Abwehrmechanismen gegen bestimmte Denial-of-Sleep-Angriffe.

Der Hauptbeitrag dieser Dissertation ist die Entwicklung einer Denial-of-
Sleep-resilienten Mediumzugriffsschicht für IoT-Geräte, die via IEEE-802.15.4-
Funkverbindungen kommunizieren. Die entwickelte Mediumzugriffsschicht be-
sitzt zwei Hauptkomponenten. Die erste Hauptkomponente ist ein Denial-of-
Sleep-resilientes Protokoll zur Etablierung von Sitzungsschlüsseln zwischen be-
nachbarten IEEE-802.15.4-Knoten. Diese Sitzungsschlüssel dienen einerseits der
grundlegenden Absicherung des Funkverkehrs und andererseits der Implemen-
tierung zusätzlicher Denial-of-Sleep-Abwehrmechanismen in der zweiten Haupt-
komponente. Die zweite Hauptkomponente ist ein Denial-of-Sleep-resilientes
Mediumzugriffsprotokoll. Bemerkenswert an diesem Mediumzugriffsprotokoll
ist, dass es nicht nur neuartige Denial-of-Sleep-Abwehrmechanismen enthält,
sondern auch dem Stand der Technik entsprechende Mechanismen zur Ver-
ringerung des Energieverbrauchs, zur Steigerung des Durchsatzes sowie zur
Erhöhung der Zuverlässigkeit. Zusammenfassend widersteht bzw. mildert unse-
re Denial-of-Sleep-resiliente Mediumzugriffsschicht alle uns bekannten Denial-
of-Sleep-Angriffe, die gegen sie gefahren werden können. Außerdem kann unsere
Denial-of-Sleep-resiliente Mediumzugriffsschicht ohne Weiteres an Stelle von
IEEE-802.15.4-konformen Mediumzugriffsschichten eingesetzt werden. Dies zei-
gen wir durch die nahtlose Integration unserer Mediumzugriffsschicht in den
Netzwerk-Stack des Betriebssystems Contiki-NG.
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Chapter 1

Introduction

Broadly defined, the Internet of things (IoT) is the trend of interconnecting
embedded devices with the Internet. This trend is driven by fascinating appli-
cations in areas such as smart homes, precision agriculture, smart cities, and
industrial automation. Behind the scenes, most IoT applications involve two
kinds of embedded devices. IoT devices, on the one hand, fulfill sensing and
actuation tasks. Typically, IoT devices have low processing capabilities, commu-
nicate via radio, and run on batteries or do energy harvesting. IoT gateways, on
the other hand, provide IoT devices with connectivity to the Internet. Usually,
IoT gateways are mains powered and have capable microprocessors.

An example hardware platform for IoT devices is the CC2538 system on
chip (SoC) [14]. The CC2538 SoC includes an ARM Cortex M3 microprocessor,
up to 512KB of program memory, up to 32KB of static random-access memory
(SRAM), and an IEEE 802.15.4 transceiver. Furthermore, the CC2538 SoC
offers 3 low-power modes (LPMs), among which the least energy-consuming one
is LPM 3, as shown in Figure 1.1. Yet, switching to LPM 3 will not be always
possible if no tasks are pending. This is because the deeper the sleep mode,
the longer it takes to wake up again. Besides, waking up from LPM 3 requires
an external interrupt. In comparison to the LPMs, significantly more current
is drawn if the ARM Cortex M3 microprocessor is active. Moreover, the most
energy-consuming modes of the CC2538 SoC are receiving and transmitting.
In receive mode, the CC2538 SoC draws between 20 and 24mA, depending on
the strength of the input signal. In transmit mode, the CC2538 SoC consumes
between 24 and 34mA, depending on the configured transmission power.

Though the CC2538 SoC is only an example hardware platform for IoT de-
vices, the proportions of the energy consumption in low-power, active, receive,
and transmit modes are consistent across diverse hardware platforms [15]. That
is, receiving and transmitting constitute the most energy-consuming modes on
most IoT devices, followed by the active mode [15]. This has far-reaching im-
plications to the design of software, protocols, and security for IoT devices.

As for software, it is essential to switch to the deepest LPM possible between
processing, radio, and I/O tasks. Otherwise, the charge of a battery-powered or
energy-harvesting IoT device will be depleted quickly. Consider, e.g., a CC2538-
based IoT device that is powered by two AA batteries, each of which has a
charge of 2600mAh. If this device never enters an LPM, but busy-waits at
32MHz, its batteries will be depleted after 2×2600mAh

13mA = 16.67d at the latest.

1
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Figure 1.1: Current draw of the CC2538 SoC in various operational modes

Conversely, if this device uses LPM 2, the batteries’ lifetime will be upper-
bounded by 2×2600mAh

1.3µA = 456.6a. Of course, this is only a rough illustrative
estimate since it neglects the batteries’ self-discharge, the time spend in more
energy-consuming modes, the energy consumption of peripherals, as well as the
influences of temperatures on the batteries’ discharge behavior.

As for protocols, any reduction in traffic may pay off twice, once at the
sender side and again at the receiver side. At the sender side, the less data
is transmitted, the less time may need to be spent in the energy-consuming
transmit mode. At the receiver side, the less data is received, the less time may
need to be spent in the energy-consuming receive mode. Thus, communication
protocols for IoT devices should minimize their traffic. However, the amount of
time spent in transmit and receive mode during transmissions and receptions
ultimately depends on the employed medium access control (MAC) protocol
since it is in charge of enabling the transceiver and putting it in transmit and
receive mode. Hence, MAC protocols for IoT devices should operate in a way
that minimizes the time spent in transmit and receive modes.

As for security, the energy constraints of IoT devices limit the solution space
in two ways. On the one hand, it is also advisable to minimize the communi-
cation overhead due to security. A counterexample is to use a key distribution
center (KDC)-based protocol for establishing session keys among neighboring
IoT devices of a wireless mesh network [16, 17, 18]. In this case, each time a
session key is established, one party has to reach out to the KDC, thereby requir-
ing every IoT device along the path to expend energy for receiving, processing,
and forwarding. On the other hand, it is also advisable to avoid processing-
intensive tasks, such as public-key cryptography. In fact, despite software op-
timizations and hardware acceleration, public-key cryptography continues to
be a processing-intensive task for IoT devices [17, 19, 20]. For example, a
hardware-accelerated Elliptic Curve Digital Signature Algorithm (ECDSA) sig-
nature generation and verification, takes 340ms and 521ms on the CC2538 SoC,
respectively [21].



1.1. RESEARCH SCOPE 3

1.1 Research Scope

Much effort already went into designing and implementing energy-efficient soft-
ware, protocols, and security for IoT devices, yet mostly without integrating
any defenses against so-called denial-of-sleep attacks. A denial-of-sleep attack
temporarily or permanently deprives a battery-powered, energy-harvesting, or
otherwise energy-constrained device of entering an LPM, thereby draining its
charge [22, 23]. In the context of IoT, denial-of-sleep attacks may result in long
outages of energy-constrained IoT devices. This risk is unacceptable in safety
critical IoT applications, and, at least, undesirable in safety uncritical IoT appli-
cations for reasons such as customer satisfaction, quality-of-service guarantees,
and reliability requirements.

IoT devices are by far not the only devices that are susceptible to denial-of-
sleep attacks. Potentially, any energy-constrained device is susceptible to denial-
of-sleep attacks, including smartphones and implanted devices [24, 25, 26]. Be-
sides, there exist attacks similar to denial-of-sleep attacks against cloud infras-
tructures, too [27, 28]. In that regard, an attacker’s goal is to cause a general
increase in energy consumption or to provoke energy consumption peaks that
overload a cloud infrastructure [27, 28]. This dissertation particularly focuses
on protecting IoT devices against denial-of-sleep attacks.

Additionally, we narrow the scope of this dissertation to the IEEE 802.15.4
radio technology for three reasons [29]. First, radio technologies constitute
common targets of denial-of-sleep attacks because radio technologies usually
comprise a MAC protocol, which enables and disables the energy-consuming
receive and transmit modes. Second, among the multitude of radio technologies
that lend themselves to low-power IoT applications, IEEE 802.15.4 has become
a main choice of practitioners. This success can partly be attributed to the
availability of complete protocol stacks on top of IEEE 802.15.4 and partly to
the versatility of this radio technology. In fact, IEEE 802.15.4 supports both
star and mesh topologies, sub-GHz and 2.4-GHz frequency bands, as well as
various MAC protocols. Third, as IEEE 802.15.4 standardizes not only a single
MAC protocol, IEEE 802.15.4 transceivers often provide generic interfaces. This
spawned a lot of research on further custom-built MAC protocols for IEEE
802.15.4 networks and facilitates the prototyping of security enhancements.

1.2 Problem Statement

There are two functions in IEEE 802.15.4 that may be subjected to denial-of-
sleep attacks, namely session key establishment and medium access control.

1.2.1 Denial-of-Sleep-Resilient Session Key Establishment

To protect itself, as well as upper-layer protocols, IEEE 802.15.4 optionally fil-
ters out inauthentic and replayed radio frames, as well as encrypts parts of ra-
dio frames. Theoretically, these security services of IEEE 802.15.4, collectively
called IEEE 802.15.4 security, work without establishing session keys among
neighboring IEEE 802.15.4 nodes, but it is generally impractical to do so for
subtle reasons we discuss in Chapter 4. Nevertheless, IEEE 802.15.4 itself spec-
ifies no protocol for establishing session keys among neighboring IEEE 802.15.4
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nodes. Prior work filled this gap already [10, 16, 20, 30, 31, 32, 33, 34, 35].
However, all existing proposals on how to establish session keys among neigh-

boring IEEE 802.15.4 nodes leave the issue of denial-of-sleep attacks widely un-
addressed. Essentially, there are two possible avenues for denial-of-sleep attacks
against protocols for establishing session keys among neighboring IEEE 802.15.4
nodes. First, in a so-called HELLO flood attack, an attacker injects a request for
session key establishment with a high transmission power, which may trigger
energy-consuming processing or communication on all receivers [35, 36]. Sec-
ond, in what we introduce as a yo-yo attack in Chapter 4, an attacker makes
links temporarily available or temporarily unavailable so as to provoke more at-
tempts to establish session keys, reestablishments of session keys, or both. Thus
far, there are - to the best of our knowledge - only limited attempts to protect
against HELLO flood attacks [10, 34, 35], and no defenses against yo-yo attacks.

1.2.2 Denial-of-Sleep-Resilient Medium Access Control

Medium access control is also target of various denial-of-sleep attacks [22, 37, 38].
A basic distinction of denial-of-sleep attacks against MAC protocols we suggest
is between reception-oriented and transmission-oriented ones. While reception-
oriented denial-of-sleep attacks mainly cause victim devices to stay longer in the
energy-consuming receive mode, transmission-oriented denial-of-sleep attacks
mainly cause victim devices to stay longer in the energy-consuming transmit
mode. For example, an often applicable reception-oriented denial-of-sleep attack
is to send plenty of radio frames to a victim device [22]. This usually causes the
victim device’s MAC protocol to fully receive these radio frames before they are
further validated. On the other hand, an often applicable transmission-oriented
denial-of-sleep attack is, e.g., to jam radio transmissions of a victim device,
which typically causes its MAC protocol to retransmit [38].

Many proposals on how to protect MAC protocols against denial-of-sleep
attacks were made [39, 40, 41, 42, 43, 44]. However, a common hurdle to the
adoption of these proposals is that they either assume by now superseded MAC
protocols [39, 40, 41], or radio chips with features different from commodity
IEEE 802.15.4 transceivers [42, 43, 44]. Moreover, prior proposals in the area of
denial-of-sleep-resilient medium access control stay at a conceptual level, thus
leaving many integration and implementation issues unaddressed. After all,
the effectiveness of most existing denial-of-sleep defenses for MAC protocols
is limited and there do not even exist any proposals on how to protect MAC
protocols against certain denial-of-sleep attacks.

1.2.3 Basic Issues

Besides protecting session key establishment and medium access control against
denial-of-sleep attacks, there are additional basic issues on the way to a fully
functional denial-of-sleep-resilient MAC layer for IEEE 802.15.4 networks.

1.2.3.1 Generating Cryptographic Random Numbers

In order to generate session keys, IEEE 802.15.4 nodes typically have to generate
cryptographic random numbers [10, 20, 30, 31, 33, 34, 35], i.e., random numbers
that appear uniformly distributed to a computationally-bounded attacker [45].



1.2. PROBLEM STATEMENT 5

The generation of cryptographic random numbers itself is unproblematic since
a secret truly random bit string, called seed, can efficiently be expanded into a
stream of cryptographic random numbers [46, 47]. However, the generation of a
seed in the first place poses a challenge in our context since IEEE 802.15.4 nodes
often lack common sources of randomness, such as user interaction. A promising
replacement is to use power-up SRAM states, which are partly random due to
manufacturing variations [48]. Thus far, there, however, seems to be no method
for extracting seeds from power-up SRAM states in a practical and information-
theoretically secure manner. Moreover, the randomness of power-up SRAM
states is susceptible to various factors [49, 50, 51, 52, 53].

1.2.3.2 Adapting to Topology Changes

Owing to mobile nodes and changing surroundings, new IEEE 802.15.4 links
may become available over time. To take advantage of these links, session keys
should not only be established among neighboring IEEE 802.15.4 nodes at start
up, but also at runtime. Nevertheless, most current protocols for establishing
session keys among neighboring IEEE 802.15.4 nodes only perform neighbor
discovery at start up [10, 16, 20, 30, 31, 34, 35]. The only exception appears
to be Ilia et al.’s protocol, where session key establishment is triggered if the
upper layer sends a radio frame to a node with whom no session keys were
established, yet [33]. Yet, Ilia et al. do not specify what happens if the upper
layer broadcasts a radio frame, leaving their solution incomplete.

1.2.3.3 Providing Strong Freshness

Generally, the replay protection of IEEE 802.15.4 security only provides sequen-
tial freshness, i.e., merely ascertains that no radio frame is accepted more than
once [54]. By contrast, strong freshness is provided if the receiver of a radio
frame can additionally ensure that the radio frame was sent within a limited
time span prior to its reception [54]. Strong freshness is desirable in IEEE
802.15.4 networks since delaying data or control traffic may cause unforeseen
issues. Consider, e.g., an IEEE 802.15.4-based remote control for a garage door.
If a user tries to open his garage door via the remote control, but it does not
open, the user may give up and park outside. However, the garage door may not
open due to a jamming attack by an attacker. Moreover, sequential freshness
does not prevent the attacker from opening the garage door by replaying the
radio frames that were missed by the garage door later on.

1.2.3.4 Preventing Acknowledgment Spoofing

Finally, a subtle basic issue relates to so-called acknowledgment frames. Basi-
cally, acknowledgment frames are special radio frames that acknowledge the
successful reception of a radio frame. In earlier versions of IEEE 802.15.4
[55, 56, 57], acknowledgment frames were always sent unauthenticated, which is
why no reliance could be placed on whether a radio frame was actually received
when receiving an acknowledgment frame in response [36]. Hence, when such
reliance was required, it was necessary to implement acknowledgments in up-
per layers [58]. This issue was addressed in the 2015 version of IEEE 802.15.4
by optionally securing acknowledgment frames like any other radio frames [29].
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Figure 1.2: Main components of our denial-of-sleep-resilient MAC layer

Despite this fix, we will point out in Chapter 5 that even when a node receives
a fresh authentic acknowledgment frame, the node can still not be sure whether
the corresponding radio frame was successfully received.

1.3 Contributions

The overall contribution of this dissertation is to propose a fully functional
denial-of-sleep-resilient MAC layer for IEEE 802.15.4 networks. As shown in
Figure 1.2, our denial-of-sleep-resilient MAC layer incorporates a denial-of-sleep-
resilient protocol for establishing session keys among neighboring IEEE 802.15.4
nodes and a denial-of-sleep-resilient MAC protocol. The development of both
of these components led to various contributions to the areas of session key
establishment among neighboring IEEE 802.15.4 nodes and MAC security:

• As for the establishment of session keys among neighboring IEEE 802.15.4
nodes, we propose the Adaptive Key Establishment Scheme (AKES).
AKES stands out in that it resists both HELLO flood and yo-yo attacks.
This is achieved by tailoring the intuitive concept of leaky bucket counters
(LBCs) to the prevention of these denial-of-sleep attacks [59].

• Concerning MAC security, our first contribution is to review the four -
according to our impression - most prevalent MAC protocols for IEEE
802.15.4 networks regarding their denial-of-sleep resilience, namely Con-
tikiMAC [60], coordinated sampled listening (CSL) [29], time-slotted chan-
nel hopping (TSCH) [29], and low-power wireless bus (LWB) [61]. It
turned out that ContikiMAC and CSL are more denial-of-sleep-resilient
than TSCH and LWB, yet both ContikiMAC and CSL have denial-of-
sleep vulnerabilities that need fixing. Hence, as a second contribution to
the area of MAC security, we propose denial-of-sleep-protected versions
of both ContikiMAC and CSL. Having implemented and evaluated these
denial-of-sleep-protected versions of ContikiMAC and CSL, we found our
denial-of-sleep-protected version of CSL to be advantageous not only in
terms of denial-of-sleep resilience, but also in terms of reliability. Lastly,
a third contribution to the area of MAC security is the identification of
design patterns of denial-of-sleep defenses, some of which emerged from
our literature review, others of which are newly introduced by us.

Beyond that, we also overcome all of the aforementioned basic issues:

• Regarding the generation of cryptographic random numbers, our first main
contribution is to propose a superior method for extracting seeds from
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power-up SRAM states. Unlike current methods, ours is both information-
theoretically secure and practical. Additionally, many factors threaten-
ing the randomness of power-up SRAM states do not apply when our
method is used. As a second main contribution in this regard, we propose
the design of a cryptographically-secure pseudo-random number genera-
tor (CSPRNG), which seeds itself with power-up SRAM states using our
method, as well as with radio noise for additional security. As shown
in Figure 1.2, this CSPRNG is separate from our denial-of-sleep-resilient
MAC layer and thus can be shared with upper layers.

• To adapt to topology changes, AKES continuously searches new neigh-
bors, on the one hand, and deletes inactive neighbors on the other hand.
Furthermore, for saving energy, AKES self-adaptively decreases its efforts
to find new neighbors when the network topology stabilizes, and increases
its efforts to find new neighbors when the network topology destabilizes.

• Our denial-of-sleep-resilient MAC layer provides strong freshness by inte-
grating the newly devised concept of wake-up counters into IEEE 802.15.4
security. As a result, our denial-of-sleep-resilient MAC layer not only fil-
ters out inauthentic and replayed radio frames, but also radio frames that
were delayed by more than a configurable period of time.

• Finally, when using our denial-of-sleep-resilient MAC layer, reliance can
be placed on that a radio frame was successfully received when getting a
fresh authentic acknowledgment frame in response.

Altogether, this dissertation thus comes up with a fully functional denial-of-
sleep-resilient MAC layer for IEEE 802.15.4 networks. Our implementation of
this MAC layer is readily available as an add-on to the Contiki-NG operating
system at https://github.com/kkrentz/contiki-ng.

1.4 Organization

The rest of this dissertation is organized as follows:

Chapter 2 introduces relevant technologies. We will first contrast the IEEE
802.15.4 radio technology with two radio technologies for low-power wide-
area networks (LPWANs) and give insight when IEEE 802.15.4 is favorable
for implementing low-power IoT applications. Then, we present the design
of the - according to our impression - four most prevalent MAC protocols
for IEEE 802.15.4 networks, namely ContikiMAC, CSL, TSCH, and LWB.
These MAC protocols will undergo a review regarding their denial-of-sleep
resilience later in Chapter 5. Next, we outline widely employed upper-layer
protocols for IEEE 802.15.4 networks and highlight their dependence on
IEEE 802.15.4 security. Lastly, we sum up the main concepts of two
mainstream operating systems for IoT devices, among which we opted for
Contiki-NG for prototyping our denial-of-sleep-resilient MAC layer.

Chapter 3 presents our CSPRNG, which seeds itself with power-up SRAM
states and radio noise. To begin with, we motivate the need for crypto-
graphic random numbers and argue that IoT devices should be capable

https://github.com/kkrentz/contiki-ng
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of generating cryptographic random numbers entirely by themselves. Fur-
thermore, we point out limitations of current methods for extracting seeds
from power-up SRAM states. Then, we go into information-theoretic no-
tions and survey related work. Next, we explain our superior method for
extracting seeds from power-up SRAM states. Finally, we describe the
design of our CSPRNG and give an experimental evaluation.

Chapter 4 details AKES - our denial-of-sleep-resilient protocol for establish-
ing session keys among neighboring IEEE 802.15.4 nodes. At first, we
make a case for session keys and point out limitations of current proto-
cols for establishing session keys among neighboring IEEE 802.15.4 nodes.
Then, we introduce related work on which AKES is based. Next, we de-
tail AKES, outline denial-of-sleep attacks against AKES, and propose two
sets of corresponding denial-of-sleep defenses. Further, we outline our im-
plementation of AKES and quantify the overhead due to AKES. Also, we
give a comparative evaluation of AKES’ resilience to denial-of-sleep at-
tacks when using our two different sets of denial-of-sleep defenses. Lastly,
we wrap up with completing our discussion of related work.

Chapter 5 elaborates on the problem of denial-of-sleep-resilient medium ac-
cess control. We begin with analyzing the susceptibility of ContikiMAC,
CSL, TSCH, and LWB to denial-of-sleep attacks. Then, we sum up prior
work on denial-of-sleep-resilient medium access control and highlight per-
sisting research gaps. Eventually, we conclude that ContikiMAC and CSL
are most promising to be developed into a denial-of-sleep-resilient MAC
protocol, yet that several research gaps have to be filled in this endeavor.

Chapter 6 reports on our development steps toward a denial-of-sleep-
protected version of ContikiMAC.

Chapter 7 presents our denial-of-sleep-protected version of CSL, which con-
stitutes the final design of our denial-of-sleep-resilient MAC protocol. Our
version of CSL resists, or at least greatly mitigates, all denial-of-sleep at-
tacks against CSL we found. Beyond that, our version of CSL incorporates
a channel hopping extension, as well as a throughput optimization.

Chapter 8 summarizes this dissertation, paraphrases follow-up master’s the-
ses, suggests topics for future research, and closes with general observa-
tions.



Chapter 2

Technologies for the
Internet of Things

This chapter introduces relevant technologies. We will first contrast the IEEE
802.15.4 radio technology with two radio technologies for LPWANs and give
insight when IEEE 802.15.4 is favorable for implementing low-power IoT ap-
plications. Then, we present the design of the - according to our impression -
four most prevalent MAC protocols for IEEE 802.15.4 networks, namely Con-
tikiMAC, CSL, TSCH, and LWB. These MAC protocols will undergo a review
regarding their denial-of-sleep resilience later in Chapter 5. Next, we outline
widely employed upper-layer protocols for IEEE 802.15.4 networks and high-
light their dependence on IEEE 802.15.4 security. Lastly, we sum up the main
concepts of two mainstream operating systems for IoT devices, among which we
opted for Contiki-NG for prototyping our denial-of-sleep-resilient MAC layer.

2.1 Radio Technologies

As shown in Table 2.1, several radio technologies lend themselves to low-power
IoT applications. A basic distinction between these radio technologies is if they
are designed for LPWANs or low-power wireless personal area networks (LoW-
PANs). Examples of radio technologies for LPWANs include Sigfox, long range
wide area network (LoRaWAN), Weightless-P, and NarrowBand-IoT (NB-IoT),
all of which feature communication ranges of a couple kilometers. Examples
of radio technologies for LoWPANs are Z-Wave, IEEE 802.15.4, Bluetooth low
energy (BLE), and enOcean, all of which achieve communication ranges of a few
hundreds of meters at most. Besides communication range, there are many other
criteria to consider when selecting a radio technology for a particular IoT appli-
cation, such as hardware costs, operational costs, coverage, penetration, energy
efficiency, delays, reliability, data rates, mesh support, and security properties.
Despite all these choices and criteria to consider, two radio technologies are reg-
ularly employed in today’s low-power IoT applications, namely IEEE 802.15.4
and LoRaWAN. Besides, NB-IoT is becoming increasingly popular.

9
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Table 2.1: Radio Technologies for Low-Power IoT Applications
Radio technology Target

use case
Frequency band
in Europe

Network
topology

Data rate
(in kbit/s)

Sigfox LPWAN 868MHz SRD star 0.1
LoRaWAN LPWAN 868MHz SRD star 0.3 - 50
Weightless-P LPWAN 868MHz SRD star 0.625 - 100
NB-IoT LPWAN LTE or GSM star 20-250
Z-Wave LoWPAN 868MHz SRD mesh 9.6-100
IEEE 802.15.4
(O-QPSK PHY)

LoWPAN 868MHz SRD
or 2.4GHz ISM

mesh 100 - 250

IEEE 802.15.4
(SUN OFDM PHY)

LoWPAN 868MHz SRD
or 2.4GHz ISM

mesh 50 - 800

BLE LoWPAN 2.4GHz ISM star 270
enOcean LoWPAN 868MHz SRD star 125

2.1.1 IEEE 802.15.4

To start with, let us take a closer look at IEEE 802.15.4 [29].

2.1.1.1 Overview

IEEE 802.15.4 layers its functionality into a physical layer (PHY) and a MAC
layer. The PHY provides raw transceiver functions, such as enabling the
transceiver, disabling the transceiver, listening for radio frames, transmitting
radio frames, configuring a channel, performing a clear channel assessment
(CCA), etc. The MAC layer uses these raw transceiver functions to organize
the medium access as per a MAC protocol. Additionally, the MAC layer offers
security services. Upper layers can interface with the MAC layer so as to send
and receive frames, as well as to configure the MAC layer.

2.1.1.2 Network Topology

Unlike most low-power radio technologies, IEEE 802.15.4 supports mesh topolo-
gies. This feature is valuable since mesh topologies (i) contain redundant paths
that IoT devices and gateways can resort to and (ii) extend a network’s cover-
age beyond the communication range of IoT gateways. However, as for mesh
topologies, IEEE 802.15.4 merely standardizes basic concepts depicted in Figure
2.1. For example, IEEE 802.15.4 defines two classes of nodes, namely reduced-
function devices (RFDs) and full-function devices (FFDs). Whereas an RFD
can only be linked with a single FFD at a time, an FFD can be linked with
multiple FFDs and RFDs in parallel. It is further standardized that an IEEE
802.15.4 network is clustered into one or more subnetworks, called personal area
networks (PANs). Each PAN has exactly one FFD that acts as a PAN coor-
dinator. The PAN coordinator has special responsibilities, such as choosing a
PAN ID that differs from the PAN IDs of all co-located PANs. For many other
aspects, in particular the formation of mesh topologies and the routing of pack-
ets, IEEE 802.15.4 declares an upper layer responsible. These tasks can, e.g.,
be fulfilled by IEEE 802.15.10 or the IPv6 routing protocol for low-power and
lossy networks (RPL) [62, 63].
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Figure 2.1: Organization of an IEEE 802.15.4 network

2.1.1.3 Frame Format

In order to separate PHY and MAC layer functionalities, both layers use their
own headers and footers. When, e.g., using the offset quadrature phase-shift
keying (O-QPSK) PHY, the PHY header is to be formatted like shown in Figure
2.2a. The O-QPSK PHY header consists of a synchronization header (SHR)
and the Frame Length field. Some other PHYs also append a footer, such
as the smart utility network (SUN) orthogonal frequency-division multiplexing
(OFDM) PHY. At the MAC layer, the formatting of headers and footers depends
on the type of frame being sent. For the scope of this dissertation, the following
six frame types are relevant:

Beacon: FFDs may send beacon frames so as to announce the presence of
an IEEE 802.15.4 network and to enable other nodes to join that IEEE
802.15.4 network. The format of beacon frames is shown in Figure 2.2b.

Data: Data frames carry upper-layer traffic. Their format also follows the
general frame format shown in Figure 2.2b.

Command: In contrast to data frames, command frames are not passed on to
the upper layer, but are processed at the MAC layer. Command frames
are formatted like shown in Figure 2.2b.

Acknowledgment: The main purpose of acknowledgment frames is to ac-
knowledge the successful reception of a frame. The format of acknowl-
edgment frames is shown in Figure 2.2b.

Multipurpose: Multipurpose frames can take the place of data and command
frames. Their format is a bit more concise, as shown in Figure 2.2c.

Extended: The extended frame type is a placeholder for new frame types. The
format of extended frames is widely left open, as shown in Figure 2.2d.

Thus, most types of frames are formatted like shown in Figure 2.2b. Therein,
the Frame Control field is a bitfield that, e.g., encodes a frame’s type and which
fields follow. Thereafter, in the case of non-acknowledgment frames, the optional
Sequence Number field contains a rolling-over 1-byte counter of outgoing frames,
allowing receivers to detect duplicates. Otherwise, in the case of acknowledg-
ment frames, the optional Sequence Number field echoes the sequence number of
the frame that is being acknowledged, allowing receivers to match acknowledg-
ment frames with the frames that are being acknowledged. The addressing fields
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are self-explanatory, yet it is crucial to remark that IEEE 802.15.4 supports two
kinds of addresses, namely 8-byte extended addresses that are globally unique
and 2-byte short addresses that are unique within a PAN. Whereas extended
addresses are burnt into IEEE 802.15.4 transceivers during manufacturing, short
addresses are assigned at runtime. The Auxiliary Security Header field helps in
unsecuring frames. Thereafter, so-called information elements (IEs) may carry
metadata. IEs can be added and processed by both the MAC layer and the
upper layer. The Payload field conveys the actual payload. Finally, the frame
check sequence (FCS) field holds a checksum.

2.1.1.4 Security

The security services of the IEEE 802.15.4 MAC layer are often collectively
referred to as IEEE 802.15.4 security. Essentially, IEEE 802.15.4 security filters
out inauthentic and replayed frames, as well as optionally encrypts parts of
frames. Below, we detail (i) how IEEE 802.15.4 security authenticates and
encrypts data and (ii) how IEEE 802.15.4 security realizes replay protection.

Authentication and Encryption For authentication and encryption, IEEE
802.15.4 security combines a restricted version of the block cipher mode CCM
with the block cipher AES-128 [64, 65]. The inputs to CCM-AES-128 are data
a to authenticate only, data m to authenticate and encrypt, a 13-byte nonce
N , and a 128-bit symmetric key K. Given these inputs, CCM operates in two
phases. First, CCM generates a message integrity code (MIC) over a and m via
cipher block chaining (CBC). Second, CCM encrypts both m and the generated
CBC MIC in counter mode (CTR). It is deemed that encrypting CBC MICs
prevents collision attacks against CBC MICs, i.e., the misuse of occasions where
different plain texts yield equal CBC MICs [64]. The outputs of CCM are the
encrypted data and the encrypted CBC MIC, henceforth called CCM MIC.

In IEEE 802.15.4 security, the CCM inputs a and m are chosen in accordance
with the selected security level. Table 2.2 lists available security levels and the
resulting values for a and m. Basically, upper layers can either just authenticate
an outgoing frame, or authenticate an outgoing frame and encrypt parts of it.
Also, depending on the selected security level, CCM MICs are either truncated
to 4, 8, or 16 bytes, thus enabling practitioners to trade off guessing attack
resistance against per-frame overhead. The selected security level is sent along
with frames as part of the Auxiliary Security Header field, as shown in Figure
2.2e. Receivers reject an incoming frame if its security level is too low.

The CCM nonceN is generated by IEEE 802.15.4 security in one of two ways.
First, if not using TSCH, N is derived from an incrementing frame counter and
the sender’s extended address. IEEE 802.15.4 security offers a choice between
two kinds of frame counters, namely per-key and per-device frame counters. As
their names suggest, per-key frame counters are maintained on a per-key basis,
whereas per-device frame counters are not tied to a specific key. Regardless,
of which kind of frame counter is used, the actual frame counter value from
which N was derived is conveyed as part of the Auxiliary Security Header field.
Second, if using TSCH, IEEE 802.15.4 security derives N from the sender’s short
or extended address, and the index of the current timeslot. More specifically, in
TSCH, each transmission happens within a single timeslot, each of which has an
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Figure 2.2: Format of (a) the O-QPSK PHY header, (b) beacon, data, acknowl-
edgment, and command frames, (c) multipurpose frames, (d) extended frames,
and (e) the Auxiliary Security Header field

Table 2.2: Security Levels of IEEE 802.15.4 Security
Security
level

Length of CCM
MIC (in byte)

Data a to authenticate only Data m to au-
thenticate and
encrypt

1 4 frame header and frame
payload (see Figure 2.2b
and 2.2c)

empty2 8
3 16
5 4 frame header and special

fields of the frame payload
(see Figure 2.2b and 2.2c)

frame payload
except for certain
fields therein

6 8
7 16
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index assigned to it. Since both the sender and the receiver(s) are aware of the
current timeslot’s index, timeslot indices need not be sent along with frames.

The CCM key K, on the other hand, has to be provided by an upper layer.
What IEEE 802.15.4 security standardizes, however, is a mechanism for desig-
nating which key was used to secure a frame. For this purpose, the Auxiliary
Security Header field contains the Key Identifier field.

Replay Protection Depending on whether TSCH is used or not, IEEE
802.15.4 security realizes replay protection differently. If TSCH is not used, a
received frame is considered replayed if and only if its frame counter is smaller
or equal than that of the last authentic frame with this frame counter. If TSCH
is used, replay protection is actually provided as a side effect of deriving CCM
nonces from timeslot indices. This is because, if a frame is replayed in a later
timeslot, a receiver will restore a wrong CCM nonce, causing the receiver to
consider the CCM MIC of the replayed frame inauthentic. These two methods
for realizing replay protection make a difference from a security perspective.
Whereas the frame counter-based replay protection only provides sequential
freshness, the timeslot index-based replay protection provides strong freshness.

2.1.2 LoRaWAN

The LoRaWAN specification not only spans PHY and MAC layer operations,
but also the back end, as shown in Figure 2.3 [66]:

End-devices: LoRaWAN end-devices form a star network, i.e., directly con-
nect to a nearby LoRaWAN gateway. The MAC protocol employed be-
tween LoRaWAN end-devices and LoRaWAN gateways is the LoRaWAN
MAC protocol, which supports different trade-offs between energy effi-
ciency and delays. Underneath the LoRaWAN MAC protocol, it is possi-
ble to either use the long range (LoRa) PHY or the frequency shift keying
(FSK) PHY. Both these PHYs support trading off communication range
against data rate and transmission power.

Gateways: LoRaWAN gateways relay traffic between the network server and
LoRaWAN end-devices. Optionally, LoRaWAN gateways may broadcast
beacons so as to support gateway-initiated transmissions to LoRaWAN
end-devices within scheduled timeslots.

Network server: The main task of the network server is to relay application-
layer traffic between LoRaWAN end-devices and their associated applica-
tion servers. For this, the network server keeps track of the LoRaWAN
gateway via which each LoRaWAN end-device of the LoRaWAN network
is connected. Maybe surprisingly, the network server can also take care of
tuning the LoRa and FSK PHY to minimize the energy consumption of
LoRaWAN end-devices, as well as to minimize channel utilization. The
tuning of the LoRaWAN MAC protocol, on the other hand, is up to
LoRaWAN end-devices. Also, the network server implements security
features, such as replay protection and authentication. The encryption
of application-layer traffic, however, is done “end-to-end” between Lo-
RaWAN end-devices and their associated application servers.
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Figure 2.3: Interconnection of a LoRaWAN network with its back-end

Application servers: Application servers implement the actual applications.

Join server: When LoRaWAN end-devices join or rejoin a LoRaWAN net-
work, join servers are potentially asked to assist the network server.

2.1.3 NB-IoT

An NB-IoT network is organized like shown in Figure 2.4 [67, 68]:

UEs: User equipments (UEs) take the role of IoT devices. UEs form a star
topology, i.e., directly connect to a nearby IoT gateway, called evolved
node Bs (eNBs) in the context of NB-IoT. The NB-IoT radio technology
used between UEs and eNBs, is based on long term evolution (LTE). In
comparison to LTE, NB-IoT requires less signaling overhead, implements
medium access control more energy efficiently, achieves better indoor pen-
etration, reduces the hardware costs for UEs, and offers a lower data rate.

eNBs: In order to support NB-IoT, LTE eNBs have to provide an additional
air interface for NB-IoT, as well as to interact with the cellular IoT serv-
ing gateway node (C-SGN). Adding support for NB-IoT to an LTE eNB
usually requires only a software update.

C-SGN: The C-SGN is a streamlined version of the core network of LTE. Its
main responsibility is to route packets to their destination.

HSS: Each UE is equipped with a subscriber identity module (SIM) for mutual
authentication with the home subscriber service (HSS). The HSS manages
a database of subscriber-related information. It performs authentication
and authorization, as well as keeps track of the locations of UEs.

SCEF: The service capability exposure function (SCEF) mainly relays non-IP
and IP data between application servers and the C-SGN. Using non-IP
data is preferable since this leads to less data being transmitted between
UEs and eNBs, thereby reducing the energy consumption of UEs.

Application servers: Application servers provide the actual applications.
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Figure 2.4: Interconnection of an NB-IoT network with application servers

2.1.4 Discussion

IEEE 802.15.4 excels at interconnecting dense deployments of IoT devices since
IEEE 802.15.4 enables IoT devices to form mesh networks with redundant paths.
Only to some extent, IEEE 802.15.4 can be tailored to networks of medium
density by choosing PHYs and frequency bands that yield longer communication
ranges, such as the SUN OFDM PHY and the short range device (SRD) band
[69]. However, in the SRD band, the transmission time per hour is restricted
in Europe [70]. This, in turn, may, e.g., hinder rolling out software updates to
IoT devices wirelessly.

On the other hand, both LoRaWAN and NB-IoT are suitable for sparse de-
ployments of IoT devices, given that LoRaWAN and NB-IoT enable IoT devices
to directly connect to a distant IoT gateway. Doubts were, however, raised on
the scalability of LoRaWAN to dense deployments [71]. This is because the
probability of collisions increases dramatically with the number of LoRaWAN
end-devices, even though concurrent transmissions only collide if they use the
same spreading factor and channel. This issue is aggravated by the low data
rate, long communication range, and use of possibly interfered unlicensed fre-
quency bands of LoRaWAN. By contrast, NB-IoT is deemed to scale to dense
deployments thanks to its use of licensed frequency bands, which are under the
control of a mobile network operator [67].

That said, limitations of NB-IoT lie in its operational costs and fragmented
coverage. To illustrate the operational costs, consider, e.g., a current offering
by Deutsche Telekom called NB-IoT Access. NB-IoT Access costs e199 and
includes 25 SIM cards, each of which may be used for 6 months and has a data
volume of 500 kB. Apart from operational costs, the coverage of NB-IoT in the
envisaged deployment area may be too low. By contrast, IEEE 802.15.4 and
LoRaWAN enable practitioners to set up private networks at will.

Regarding security, a common limitation of IEEE 802.15.4, LoRaWAN, and
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NB-IoT is their lack of defenses against denial-of-sleep attacks. As already
indicated in the introduction, we suspect that overcoming this limitation is
most reachable in the case of IEEE 802.15.4 due to the versatility of IEEE
802.15.4 transceivers. In fact, there exist prototypical implementations of denial-
of-sleep defenses for IEEE 802.15.4 already [39, 72]. Furthermore, it is easier to
deploy third-party security additions in IEEE 802.15.4 networks than in NB-IoT
networks because NB-IoT networks must interoperate with a large number of
heterogenous devices, whereas IEEE 802.15.4 networks are private networks that
consist of fewer heterogenous devices if any. As for LoRaWAN, deploying third-
party security additions seems also feasible, but, to the best of our knowledge,
there is no implemented denial-of-sleep defense for LoRaWAN to date.

2.2 MAC Protocols for IEEE 802.15.4 Networks

In order to be suitable for low-power IoT applications, MAC protocols for
IEEE 802.15.4 networks should minimize the time they spent in the energy-
consuming transmit and receive modes. At the same time, MAC protocols for
IEEE 802.15.4 networks should achieve high throughputs and low delays, as
well as operate reliably. These partly contrasting requirements spawned a lot
of research. By now, there are very many MAC protocols for IEEE 802.15.4
networks, which are often classified into synchronous (aka schedule-based) and
asynchronous (aka contention-based) ones [73, 74]. While synchronous MAC
protocols depend on network-wide or cluster-wide time synchronization, asyn-
chronous MAC protocols do not. In the following, we present the design of the
four - according to our impression - most prevalent MAC protocols for IEEE
802.15.4 networks, namely ContikiMAC, CSL, TSCH, and LWB.

2.2.1 ContikiMAC

ContikiMAC is an unstandardized asynchronous MAC protocol, which, however,
plays a key role in the literature [60]. This is because ContikiMAC integrates
various ideas of earlier MAC protocols [75, 76, 77, 78], as well as acts as a baseline
for several follow-up efforts [79, 80, 81, 82, 83, 84, 85, 86, 87]. The operation
of ContikiMAC is shown in Figure 2.5. ContikiMAC regularly performs two
CCAs. If any of these CCAs indicates a busy channel, ContikiMAC stays in
receive mode to potentially receive a frame. Correspondingly, ContikiMAC
repeatedly transmits an outgoing frame for a whole wake-up interval, plus once
to cover corner cases. This behavior is often called strobing. As for unicast
frames, ContikiMAC stops strobing prematurely if the intended receiver replies
with an acknowledgment frame within one of the silence periods after single
transmissions of unicast frames. If a unicast frame remains unacknowledged,
ContikiMAC retries by strobing that unicast frame after a random back off
period again, unless a maximum number of retransmissions is reached already.

Additionally, ContikiMAC comprises two optimizations. First, Contiki-
MAC’s phase-lock optimization learns the wake-up times of neighboring nodes
so as to start the strobing of a unicast frame right before the intended receiver
wakes up. For this, the phase-lock optimization exploits that if an acknowledg-
ment frame is received, the next to last strobed unicast frame must have been
transmitted while the receiver woke up. Hence, the time when the transmis-
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Figure 2.5: Operation of (a) a unicast and (b) a broadcast transmission in
ContikiMAC. ContikiMAC not only uses CCAs to avoid collisions, but also to
detect incoming transmissions.

sion of the next to last acknowledged unicast frame began can serve to estimate
when the receiver will wake up next. Also as part of the phase-lock optimiza-
tion, once the wake-up time of a receiver is learned, ContikiMAC no longer
strobes unicast frames to that receiver for a whole wake-up interval plus once
if no acknowledgment frame comes back, but only for a shorter time span plus
once. Yet, to account for clock drift, ContikiMAC’s phase-lock optimization
relearns the wake-up time of a receiver if unicast transmissions to the receiver
tend to fail. Second, ContikiMAC’s fast-sleep optimization allows receivers to
go back to sleep after they obtained a negative CCA at three occasions, namely
(i) when radio noise lasts longer than for transmitting a maximum-length frame,
(ii) when the silence period after the radio noise takes longer than ContikiMAC’s
inter-frame period, and (iii) when no frame is detected after the silence period.

2.2.2 CSL

CSL is a standardized asynchronous MAC protocol [29]. As shown in Figure 2.6,
CSL wakes up periodically to shortly listen for a so-called wake-up frame. Wake-
up frames are transmitted by CSL in a continuous sequence before transmitting
an actual payload frame1. Each wake-up frame contains the time when the
transmission of the payload frame begins. This hint, called rendezvous time,

1Instead of transmitting wake-up frames back-to-back, it is optionally possible to leave
pauses between them. However, this would require prolonging the time in the energy-
consuming receive mode during CSL’s periodic wake ups. Hence, we focus on the case of
sending wake-up frames back-to-back for the scope of this dissertation.
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Figure 2.6: Operation of a unicast transmission in CSL

enables the receiver of a wake-up frame to temporarily go back to sleep until
the transmission of the payload frame is about to begin. If the payload frame is a
unicast frame, CSL expects an acknowledgment frame in response. The absence
of an acknowledgment frame causes CSL to retransmit after a random back-off
period, unless a maximum number of retransmissions is reached already.

In addition, CSL comprises two crucial optimizations. The first of them re-
lates to the length of wake-up sequences. This length defaults to span a whole
wake-up interval, but is shortened in what the IEEE 802.15.4 radio standard
calls synchronized transmissions. As part of this optimization, CSL piggybacks
its current phase, i.e., the time until its next wake up, on acknowledgment
frames, as well as, optionally, on payload frames. This piggybacked data en-
ables CSL to learn and keep track of the wake-up times of neighboring nodes.
Later, when transmitting a unicast frame to a receiver whose wake-up time is
known, CSL only transmits wake-up frames for the clock drift-based uncertainty
about the receiver’s expected wake-up time and starts this wake-up sequence
right before the receiver may wake up at the earliest. The second optimization
relates to CSL’s throughput. If CSL has multiple outgoing payload frames for
the same destination, CSL supports to transmit these frames in bursts. That is,
without sending another wake-up sequence, CSL transmits such pending uni-
cast or broadcast frames right after the last received acknowledgment or sent
broadcast frame, respectively. Receivers are informed whether more payload
frames follow through the Frame Pending flag of the Frame Control field.

2.2.3 TSCH

TSCH is a standardized synchronous MAC protocol for IEEE 802.15.4 networks
[29], which was originally developed by Dust Networks Inc. [88]. The idea of
TSCH is that each node of a TSCH network wakes up in certain timeslots so as
to receive or transmit data on a certain channel as governed by a schedule. By
doing channel hopping, TSCH alleviates fading effects, as well as interference
[88]. Furthermore, TSCH operates energy efficiently since nodes can (i) enter
an LPM during unused timeslots and (ii) quickly go back to sleep if no frame is
received within a reception timeslot.

Keeping all nodes of a TSCH network tightly time synchronized is vital as,
otherwise, transmissions may fail. In fact, receivers only stay in receive mode
for RxWait=2.2ms per wake up by default when operating in the 2.4-GHz band.
Hence, senders have to schedule frame transmissions so that, if a receiver is
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perfectly synchronized, SHRs arrive RxWait
2 after enabling the receive mode, as

shown in Figure 2.7. Consequently, the local time of a sender and a receiver
must never be skewed by more than GuardTime = RxWait

2 .
To attain tight time synchronization, TSCH specifies a couple of elemen-

tary mechanisms. Initially, to help unsynchronized nodes join a TSCH network,
synchronized FFDs may periodically broadcast beacon frames that contain the
index of the current timeslot, among others. Unsynchronized nodes shall listen
for beacon frames for a limited time span. If, during this time span, an unsyn-
chronized node has received an appropriate beacon frame, the unsynchronized
node learns the current timeslot’s index, as well as the time within the current
timeslot by assuming that the beacon frame’s SHR arrived TxOffset after the
beginning of the timeslot. If, on the other hand, an unsynchronized node has re-
ceived no appropriate beacon frame, it is typical to re-enter the receive mode to
listen for beacon frames for a limited time span, and so on. Once synchronized,
TSCH nodes shall resynchronize regularly because of clock drift. For doing so,
TSCH specifies two further mechanisms, which are shown in Figure 2.8. In the
frame-based resynchronization, a receiver resynchronizes with the local time of
a sender by correcting the time offset δ between the expected reception time
and the actual reception time. In the acknowledgment-based resynchronization,
a sender resynchronizes with the local time of a receiver. The receiver measures
the time offset δ upon reception of a unicast frame and reports back on δ to the
sender by piggybacking δ on the corresponding acknowledgment frame.

However, while TSCH prescribes mechanisms for becoming and staying syn-
chronized, it leaves the details of synchronizing a whole TSCH network open.
Synchronizing a whole TSCH network requires organizing all nodes into a hier-
archy so that time propagates without synchronization loops. To this end, the
Internet engineering task force (IETF) working group 6TiSCH proposed reusing
the routing topology of RPL [89].

Another unspecified aspect is the resynchronization rate. Originally, it was
proposed to resynchronize at a preset rate that is calculated as GuardTime

MaxDrift
, where

MaxDrift is the maximum drift by which the employed clocks may drift apart
[88]. For example, if GuardTime = 1100µs and MaxDrift = 30ppm, nodes will
resynchronize at 1

36Hz. Yet, actually, resynchronizations have to be scheduled
slightly more frequently to allow for retransmissions. Moreover, this calcula-
tion also neglects that uncertainties propagate and accumulate, which is why
the more hops nodes are away from the time source, the more often they need
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Figure 2.8: TSCH’s (a) frame-based and (b) acknowledgment-based resynchro-
nization

to resynchronize. To alleviate the accumulation of uncertainties, Chang et al.
suggested coordinating resynchronizations, which, however, incurs a communi-
cation overhead [90]. A newer, currently favored proposal is to gradually reduce
the resynchronization rate by getting better and better estimates of the clock
drift [91, 92]. This greatly reduces the resynchronization rate over time, but
does not solve the problem that uncertainties propagate and accumulate.

2.2.4 LWB

LWB comprises an unstandardized synchronous MAC protocol [61]. The main
idea of LWB is to leverage a physical effect called constructive interference.
Usually, interference is destructive in the sense that it prevents receivers from
demodulating signals correctly. However, Ferrari et al. found that, when using
the 2.4-GHz O-QPSK PHY of IEEE 802.15.4, receivers can correctly demodulate
signals if all senders transmit the same signals almost simultaneously. According
to their analysis and experimental results, transmissions interfere constructively
as long as the temporal displacement between them is below 0.5µs.

This finding gives rise to the flooding protocol Glossy [93], which is a building
block of LWB. In Glossy, all nodes periodically and synchronously wake up
for a period of time to listen for a Glossy-related frame. If a node receives
a Glossy-related frame, the node retransmits that frame unmodified, except
for the relay counter therein, which is incremented, as shown in Figure 2.9.
The duration of the silence period between receptions and retransmissions is a
network-wide constant so that retransmissions happen concurrently and hence
interfere constructively. Once a node has retransmitted the same frame a certain
number of times, it stops to participate in the flood. As the initiator of a
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Glossy flood embeds the flood’s start time in the frame being flooded, receivers
can synchronize with the initiator’s clock precisely with the help of the relay

counter. This also enables unsynchronized nodes to become synchronized by
listening for a Glossy frame. In fact, an unsynchronized Glossy node indefinitely
stays in receive mode until the reception of a Glossy frame.

As such, Glossy is just a flooding protocol, but Ferrari et al. evolved Glossy
into a combined data link and network layer protocol named LWB [61]. LWB
splits time into rounds of varying durations. Each round consists of a number
of communication slots, which are assigned to nodes according to their traffic
demands. Within such a communication slot, the assigned node can send out-
going packets as a Glossy flood to all other nodes. In fact, in LWB, a node
sends every outgoing packet as a Glossy flood to all other nodes. Also, all nodes
participate in every Glossy flood, but only further process packets that are des-
tined to themselves. The assignment of communication slots is performed by a
special node, called host, which broadcasts its assignments along with the round
duration via Glossy floods at the beginning and the end of each round.

2.3 The 6LoWPAN Protocol Stack

On top of IEEE 802.15.4, several upper-layer protocols were specified, namely
ZigBee IP, Thread, WirelessHART, ISA100, WIA-PA, WIA-FA, and IPv6 over
LoWPANs (6LoWPAN). In this section, we outline 6LoWPAN [94, 95], as well as
its companion protocols RPL and the Constrained Application Protocol (CoAP)
[63, 96]. Together, IEEE 802.15.4, 6LoWPAN, RPL, and CoAP form the widely
employed 6LoWPAN protocol stack [97], which is depicted in Figure 2.10. Lastly,
we highlight the dependence of this stack on IEEE 802.15.4 security.

2.3.1 6LoWPAN

The joint goal of 6LoWPAN and RPL is to seamlessly connect IEEE 802.15.4
networks with IPv6 networks [94, 95]. In this endeavor, the responsibility of
6LoWPAN is to convey IPv6 packets over IEEE 802.15.4 links. To do so,
6LoWPAN, on the one hand, compresses IPv6 packets and, on the other hand,
fragments and reassembles IPv6 packets that do not fit within a single IEEE
802.15.4 frame. Besides, a rarely used feature of 6LoWPAN is its support for
mesh-under routing, where routing decisions are taken at the data link layer.
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For illustration, let us look at how 6LoWPAN compresses an IPv6 header.
The format of an IPv6 header is shown in Figure 2.11a. Instead of conveying
an IPv6 packet “as is”, 6LoWPAN prepends its LOWPAN IPHC header to a com-
pressed version of the IPv6 packet, as shown in Figure 2.11b. The compression
of the individual fields of the IPv6 header works as follows:

Version: The Version field is always omitted and assumed to be 6.

Traffic Class and Flow Label: If both the Traffic Class and the Flow Label
field are zeroed, both fields are omitted and TF is set to 11. The TF values
01 and 10 encode other common cases. If no such case applies, both the
Traffic Class and Flow Label field are carried in-line and TF is set to 00.

Payload Length: The Payload Length field is always omitted since it can
either be inferred from the PHY header or from fragmentation headers.

Next Header: While the Next Header field is never omitted, it can be re-
formatted so as to signal whether the subsequent header is being com-
pressed. More specifically, if the subsequent header is being compressed
the Next Header field is re-formatted and the NH flag is set. For example,
user datagram protocol (UDP) headers are being compressed by using 4-
bit identifiers that resolve to the actual 16-bit port numbers and by eliding
UDP’s Length field.

Hop Limit: Similar to the Traffic Class and Flow Label fields, if the value of
the Hop Limit field is 1, the Hop Limit field is omitted and HLIM is set to
01. The HLIM values 10 and 11 encode other common cases. If no such
case applies, the Hop Limit field is carried in-line and HLIM is set to 00.

Network Prefixes: Some predefined network prefixes, such as FE80::/64, can
be elided by setting certain bits of the LOWPAN IPHC header. Other network
prefixes can, at least, be compressed to 4 bits if mappings between 4-bit
context identifiers and those network prefixes are configured.
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Interface Identifiers: Generally, an interface identifier (IID) can only be
omitted or compressed if it is derived from an IEEE 802.15.4 address as
per 6LoWPAN. Furthermore, the source IID of an IPv6 packet can only
be omitted if the originator of the IPv6 packet is also the MAC layer
sender since the source IID can then be inferred from the MAC header.
Likewise, the destination IID of an IPv6 packet can only be omitted if the
destination of an IPv6 packet also is the MAC layer receiver. Finally, an
IID can be compressed to 2 bytes if it is derived from an IEEE 802.15.4
short address. That said, the derivation of IIDs from IEEE 802.15.4
addresses, especially short ones, is discouraged for security reasons [98].

If an IPv6 packet does not fit within a single IEEE 802.15.4 frame even after
compressing it, 6LoWPAN splits it up into fragments. The format of such frag-
ments is shown in Figure 2.12. Note that the naming of the fields is misleading
as 6LoWPAN can not only fragment UDP datagrams, but any IPv6 packet. The
field datagram size contains the overall length of the fragmented IPv6 packet.
The field datagram tag includes the value of a counter that is incremented each
time an IPv6 packet is fragmented. Finally, the datagram offset field carries
the offset into the fragmented IPv6 packet.

2.3.2 RPL

RPL organizes an IEEE 802.15.4 network into one or more destination-oriented
directed acyclic graphs (DODAGs), each of which is directed toward a single
root node, as shown in Figure 2.13 [63]. Typically, but not necessarily, a root
node provides a path to another network. Within a DODAG, RPL either routes
IPv6 packets upward, i.e., toward the root node, or downward, i.e., away from
the root node. This usually means that if a node sends an IPv6 packet to another
node inside the same DODAG, the IPv6 packet first travels upward and then
downward. RPL only avoids this detour if the destination is on the upward route
or if both the source and the destination node are one-hop neighbors anyway.

To avoid detours of IPv6 packets within DODAGs, as well as to enable rout-
ing certain IPv6 packets along special DODAGs, RPL supports the formation
of additional independent sets of DODAGs. Each independent set of DODAGs
(called RPL Instance in RPL parlance), may designate different root node(s)
and be optimized according to a different routing metric (called Objective Func-
tion in RPL parlance). However, each additional RPL Instance also consumes
additional resources, especially in terms of energy and RAM.
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RPL Instance
DODAG

Figure 2.13: Formation of an IEEE 802.15.4 network into two DODAGs

Essentially, any DODAG is formed as follows. Initially, the root node broad-
casts a DODAG information object (DIO) message. A DIO message is an Inter-
net control message protocol version 6 (ICMPv6) message whose main contents
are (i) an identifier of the corresponding RPL Instance, (ii) an identifier of the
DODAG itself, (iii) an identifier of the used Objective Function, and (iv) an
indication of the sender’s “rank” within the DODAG. This information enables
receivers to select a DODAG of a RPL Instance and to build up a set of parents
within the selected DODAG. From then on, receivers may also start broadcast-
ing DIO messages so as to invite farther nodes to join the DODAG. In order to
save energy, the frequency of DIO messages decreases as a DODAG stabilizes,
but increases if it destabilizes so as to quickly adapt to topology changes.

After joining a DODAG, a node can immediately send IPv6 packets upward,
whereas downward routing requires additional steps. Specifically, a RPL In-
stance can decide to implement downward routing in one of two modes. First,
in storing mode, each non-leaf node builds up a routing table that contains
possible next hops to nodes that the non-leaf node can reach. Second, in non-
storing mode, each root node stores possible routes to nodes of its DODAG and
performs source routing, thus freeing other nodes from storing routing tables.

Apart from setting up downward and upward routes, RPL also takes care
of detecting and removing loops. Loops generally occur if a node moves within
a DODAG and if certain RPL messages are missed before such movements.
To detect loops, RPL validates that IPv6 packets make progress toward their
destinations by adding information to IPv6 extension headers. Upon detecting
a loop, RPL initiates a repair operation. However, since loops can not occur
in downward routes if RPL operates in non-storing mode, RPL does not add
information to downward IPv6 packets when operating in non-storing mode.

2.3.3 CoAP

CoAP can be thought of as a concise version of the Hypertext Transfer Protocol
(HTTP) [96]. Unlike HTTP, CoAP is not typically run on top of the Transmis-
sion Control Protocol (TCP), but on top of UDP. By obviating the complex-
ity of TCP’s connection establishment, connection termination, retransmission
mechanism, and congestion control, CoAP implementations become relatively
lightweight in terms of traffic, program memory, and RAM demands compared
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Figure 2.14: Format of CoAP messages

to HTTP counterparts. Nevertheless, CoAP not only supports unreliable mes-
sage transmissions, but also reliable message transmissions. That is, retrans-
missions are enabled only on demand for selected CoAP messages, which saves
bandwidth and RAM when retransmissions are unnecessary. Other features
that set CoAP apart from HTTP are (i) that CoAP allows servers to postpone
responses and (ii) that CoAP has a built-in resource discovery mechanism.

More specifically, CoAP defines four types of messages, namely Confirmable
messsages (CONs), Non-confirmable messages (NONs), Acknowledgment mes-
sages (ACKs), and Reset messages (RSTs), all of which share the binary format
shown in Figure 2.14. CONs are retransmitted till a corresponding ACK or RST
returns or a maximum number of retransmissions is reached, whatever happens
first. By contrast, NONs are not acknowledged, yet may be sent multiple times
so as to improve the delivery ratio of NONs. ACKs are sent in response to
CONs and may either indicate a success or failure. Additionally, ACKs may
contain a piggybacked response. Finally, RSTs are sent in response to a CON
or NON if the CON or NON could not be processed.

CoAP further refines the use of CONs, NONs, ACKs, and RSTs like follows.
A client always initiates the communication by sending a request to a server.
Such a request is either a CON or NON and uses one of four possible methods,
namely either GET, PUT, POST, or DELETE. Regardless of the message type and
method, the client expects one response from the server. If the client sends a
CON and if the server can respond immediately, the server responds with an
ACK and piggybacks its response on the ACK. On the other hand, if the server
receives a CON and wishes to respond later, the server immediately responds
with an empty ACK and, at a later time, sends its actual response as a separate
CON to the client. Else, if the server encounters problems with a CON, the
server replies either with an RST or a negative ACK. As for NONs, the server
may either respond with a NON, CON, or RST.

Thus far, we only touched on parts of CoAP that appear in the fundamental
CoAP request for comments (RFC) [96]. Apart from this fundamental RFC,
there are a couple of complementary RFCs. For example, RFC 7049 defines
the Concise Binary Object Representation (CBOR), which is commonly used
for encoding the payload of CoAP messages [99]. Also noteworthy, RFC 7641
enables the observation of CoAP resources, and RFC 7959 specifies methods for
avoiding the fragmentation of CoAP messages at lower layers [100, 101].

2.3.4 Dependence on IEEE 802.15.4 Security

The 6LoWPAN protocol stack can be complemented with various security mea-
sures, such as with IEEE 802.15.4 security at the MAC layer, with RPL’s own
security mechanisms or IPsec at the network layer [63, 102], with Datagram
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Transport Layer Security (DTLS) at the transport layer [103], and with Object
Security for Constrained RESTful Environments (OSCORE) at the application
layer [104]. To highlight the dependence of the 6LoWPAN protocol stack on
IEEE 802.15.4 security, let us consider which attacks become possible if IEEE
802.15.4 security is disabled.

As for 6LoWPAN, two attacks will become possible if IEEE 802.15.4 security
is disabled [105, 106]. The first of them exploits that 6LoWPAN cancels the
reassembly of an IPv6 packet upon reception of an overlapping fragment. Thus,
to block the reception of a 6LoWPAN-fragmented IPv6 packet, an attacker just
needs to inject an overlapping 6LoWPAN fragment with the same datagram tag

as the 6LoWPAN-fragmented IPv6 packet. Such an attack is called a fragment
duplication attack [105]. The second attack exploits that, upon reception of a
fragment, 6LoWPAN allocates memory for putting it together with the other
fragments. Thus, by injecting fragments with different datagram tags, an at-
tacker can exhaust the memory resources of a victim node. This second attack
is called a buffer reservation attack [105]. Both attacks will not work out, if
IEEE 802.15.4 security filters out any injected and replayed frames.

As for RPL, security may not break down immediately if IEEE 802.15.4
security is disabled. This is because RPL has own optional security mechanisms
as a substitute [63]. However, RPL’s own security mechanisms are usually not
implemented due to gaps in the RFCs [107]. Another substitute is IPsec, but its
combination with RPL was not specified, yet [32, 102]. Thus, if IEEE 802.15.4
security is disabled, RPL can typically be attacked in various ways (see [107] for
a survey of attacks against RPL). Most of these attacks require an attacker to
first inject one or more malicious nodes into a DODAG. Regardless of whether
this attack step is required, all attacks against RPL can be classified into three
categories [107]. The first category encompasses attacks that make RPL expend
energy, memory, or processing resources. This can either be achieved directly
by injecting malicious RPL messages, or indirectly by provoking a partly or
complete reorganization of a DODAG. The second category encompasses attacks
that degrade a DODAG’s topology in the sense that suboptimal routes are
used or in the sense that single nodes or a subset of nodes become isolated.
This can be achieved by injecting malicious RPL messages, manipulating RPL’s
information contained in IPv6 extension headers, dropping IPv6 packets instead
of forwarding them, or a combination thereof. The third category encompasses
attacks concerning network traffic, such as (i) overhearing RPL control traffic as
a stepping stone to other attacks, (ii) attracting traffic by advertising false ranks
in DIOs, or (iii) injecting traffic under the name of non-compromised nodes.

As for CoAP, despite when using an end-to-end security solution, such as
IPsec [102], DTLS [103], or OSCORE [104], CoAP will still be affected if IEEE
802.15.4 security is disabled. For instance, an attacker may then launch so-
called path-based denial-of-service (PDoS) attacks against CoAP [108]. In the
context of CoAP, a PDoS attack works by injecting or replaying a CoAP mes-
sage that is destined to a distant destination, thereby making each node along
the path expend energy for receiving, processing, and forwarding the injected
or replayed CoAP message. Only at the final destination, an end-to-end secu-
rity solution filters out injected and replayed CoAP messages. Moreover, CoAP
may suffer from spoofed acknowledgment frames. Specifically, CoAP relies on
that NONs are forwarded on a best-effort basis. Yet, at the MAC layer, the
forwarding of NONs is stoppable by spoofing acknowledgment frames [36]. Un-
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fortunately, even if IEEE 802.15.4 security is enabled, this will only complicate
acknowledgment spoofing attacks, as we discuss in Chapter 5.

Given that IEEE 802.15.4 security can prevent all of the above attacks, it
is worthwhile to overcome its limitations, namely the lack of (i) a protocol for
establishing session keys among neighboring IEEE 802.15.4 nodes, (ii) strong
freshness (unless using TSCH), and (iii) effective defenses against acknowledg-
ment spoofing attacks. However, even if all these limitations are overcome, the
security provided by IEEE 802.15.4 security will still depend on the secrecy of
the employed CCM keys. That said, if CCM keys leak, IEEE 802.15.4 security
can still be useful, provided that pairwise CCM keys are employed. This is be-
cause pairwise CCM keys will, at least, contain the repercussions of key losses.
Beyond that, the use of pairwise CCM keys provides a sufficient condition for
intrusion detection: the sender of a malicious fresh authentic frame can be con-
sidered compromised [10]. Likewise, the sender of an abnormal high number of
fresh authentic frames can be considered compromised.

2.4 Operating Systems

6LoWPAN stacks are, e.g., available for the open-source operating systems Con-
tiki and RIOT [109, 110]. We considered both these operating systems for
prototyping our denial-of-sleep-resilient MAC layer as they are mainstream.
Eventually, we opted for Contiki due to the availability of implementations of
ContikiMAC and a predecessor of AKES [10, 60]. Meanwhile, a variant of Con-
tikiMAC became available for RIOT, too. Below, we present the main concepts
of Contiki, which was recently renamed to Contiki-NG after a major revision,
and RIOT.

2.4.1 Contiki-NG

Contiki-NG has an event-driven kernel, meaning that every process has a set
of event handlers, each of which runs to completion [109]. Since event handlers
run to completion, all processes can share a single stack. In particular, Contiki-
NG neither has to store the state of the microprocessor nor the call stack after
running an event handler. Also, there is no need for locking as a result.

However, while an event-driven kernel saves RAM and obviates locking, it
incurs three problems. First, usually an event-driven kernel leads to hard-to-
read code because it necessitates (i) plenty of event handlers and (ii) sepa-
rating logically related code. However, Contiki-NG solves this first problem
via Protothreads [111]. The idea of Protothreads is to hide event handlers
from developers by means of sophisticated preprocessor macros. For example,
PT WAIT UNTIL(pt, condition) pauses a Prothread until a condition is met.
Second, long-running event handlers monopolize the microprocessor. One solu-
tion to this second problem is to implement preemptive multi-threading on top
of an event-driven kernel [109]. Alternatively, Contiki-NG enables pausing a
Protothread voluntarily via PT YIELD(pt) [111]. Third, an event-driven kernel
makes it very difficult to adhere to real-time constraints. Unfortunately, we are
not aware of any solution to this third problem other than running real-time
code within appropriately prioritized interrupt service routines (ISRs).
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Figure 2.15: Contiki-NG’s 6LoWPAN Stack

A critical feature of any operating system for low-power IoT devices is the
ability to set an IoT device to sleep if nothing is left to be done, rather than
busy waiting in the meantime. In Contiki-NG, this is taken care of by the lpm

module. This module enters an appropriate LPM until the next timer event.
Contiki-NG’s network stack resembles the 6LoWPAN protocol stack, as

shown in Figure 2.15. The lowest layer of Contiki-NG’s network stack consti-
tutes an exchangeable RADIO driver, which implements the PHY in cooperation
with the radio transceiver. On top of the RADIO driver, Contiki-NG has an
exchangeable MAC driver, which implements the MAC protocol. Internally, an
exchangeable FRAMER handles the assembling and parsing of radio frames. On
top of the MAC driver, an exchangeable NETWORK driver may, e.g., implement
6LoWPAN. On top of the NETWORK driver, uIP (pronounced “micro IP”) im-
plements IPv6, UDP, ICMPv6, as well as other network and transport layer
protocols. The implementation of the routing protocol, however, is separate
from uIP and encapsulated behind an interface. Finally, on top of uIP, applica-
tion layer protocols, such as CoAP, can run.

2.4.2 RIOT

As opposed to Contiki-NG, RIOT is especially designed for adhering to real-time
constraints [112]. The basic approach of RIOT is to abstain from an event-driven
kernel and to implement true multi-threading instead. Consequently, RIOT’s
scheduler has to store the microprocessor’s state before context switches and
each thread has to have its own call stack. Moreover, threads need to use
locking as they may preempt each other, depending on their priority.

In order to provide real-time guarantees, the scheduler of RIOT is imple-
mented so that scheduling decisions are taken in constant time. For this, the
scheduler maintains 32 circular linked lists, each of which stores paused threads
for each of the 32 priority levels. Thus, for finding the paused thread with the
highest priority, the scheduler can just take the highest-priority circular linked
list with paused threads and take the first paused thread therefrom in O(1).

For locking and communication among threads, RIOT offers mutexes and
synchronous message passing, respectively. Mutexes are realized as queues of
waiting threads. Threads that have to wait for a mutex add themselves to the
corresponding queue and then issue a context switch. Synchronous message
passing works similarly in that a queue of pending messages is maintained. A
sender thread can enqueue messages while receiver threads can dequeue mes-
sages in a blocking manner. Both mutexes and synchronous message passing
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work without allocating memory other than on the thread’s stack. This is es-
sential for providing real-time guarantees. Furthermore, queues are sorted with
respect to priorities, which avoids deferring higher-priority threads for longer
than necessary.

To save energy if nothing is left to be done, RIOT sets up a timer interrupt
until when the device can sleep and then enters an LPM. While this is unsur-
prising, this actually deviates from the common approach followed in real-time
operating systems of configuring a periodic timer interrupt.

RIOT also comes with a network stack, named Generic (GNRC) [113]. Ap-
plications interact with GNRC via a high-level network interface, such as sock-
ip for raw IPv6 traffic or sock udp for UDP traffic. Internally, GNRC is even

more modular than Contiki-NG’s network stack. In GNRC, each protocol has
its own thread and interacts with other protocols via the netapi interface. The
lowest layer protocol, which typically implements the MAC protocol, interacts
with the hardware via the netdev interface.

2.5 Summary

In this chapter, we have looked at three radio standards employed in today’s
low-power IoT applications in more detail. Among them, IEEE 802.15.4 ex-
cels at interconnecting dense deployments of IoT devices. Furthermore, IEEE
802.15.4 can bridge longer distances if an appropriate PHY and frequency band
are chosen. What makes IEEE 802.15.4 particularly attractive for us, is the pos-
sibility to easily experiment with third-party security additions. We have also
mentioned standards that build on IEEE 802.15.4 and outlined the 6LoWPAN
protocol stack. This protocol stack seamlessly connects IEEE 802.15.4 networks
with IPv6 networks and enables RESTful interactions with IoT devices. How-
ever, the 6LoWPAN protocol stack depends on IEEE 802.15.4 security, which
presently has three limitations one should overcome. Finally, we have presented
the main concepts of Contiki-NG and RIOT. For practical reasons, we have
selected Contiki-NG for prototyping our denial-of-sleep-resilient MAC layer.
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Chapter 3

Cryptographically-Secure
Pseudo-Random Number
Generator

This chapter presents our CSPRNG, which seeds itself with power-up SRAM
states and radio noise. To begin with, we motivate the need for cryptographic
random numbers and argue that IoT devices should be capable of generating
cryptographic random numbers entirely by themselves. Furthermore, we point
out limitations of current methods for extracting seeds from power-up SRAM
states. Then, we go into information-theoretic notions and survey related work.
Next, we explain our superior method for extracting seeds from power-up SRAM
states. Finally, we describe the design of our CSPRNG and give an experimental
evaluation.

3.1 Extended Problem Statement

Random numbers are a preliminary to many cryptographic operations. For
example, the generation of a CCM key requires a random number. Yet, to be
suitable in a cryptographic context, random numbers generally have to fulfill a
special requirement. Concretely, such random numbers should appear uniformly
distributed to a computationally-bounded attacker [45]. We refer to random
numbers that fulfill this requirement as cryptographic random numbers.

For generating cryptographic random numbers, an efficient method is to ex-
pand a secret truly random bit string (called seed) into a stream of cryptographic
random numbers [45]. The mathematical constructs that follow this method are
often called CSPRNGs. The challenging part of implementing a CSPRNG is
usually not the implementation of the CSPRNG itself, but the generation of a
seed in the first place. This is especially true for IoT devices as most IoT devices
lack common sources of randomness, such as user interaction or hard disks.

A straightforward solution is to ask the user to preload his IoT devices
with seeds [34]. This, however, is tedious if done via cables. Several wireless
preloading schemes approach this usability problem (see [114] for a survey), but
may require cryptographic random numbers for securing the wireless preloading

33
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process itself [8, 115, 116], making them often inapplicable to preloading seeds.
Moreover, a subtlety of preloading seeds is reboots. After a reboot, a CSPRNG
must not start over with the same seed as, otherwise, the same sequence of
cryptographic random numbers is regenerated. Hence, some data has to be
kept across reboots. Yet, the only non-volatile memory on most IoT devices is
flash memory, which is slow, energy consuming, as well as prone to wear [117].

After all, an IoT device may have to be able to reseed its CSPRNG for
two reasons anyway. First, at some point, a seed is exhausted and has to
be replaced [46]. Second, reseeding is also necessary to achieve forward and
backward security [45]. Forward and backward security is the property of a
CSPRNG that, if an attacker compromises the internal state of a CSPRNG, he
is unable to predict past and future outputs of the CSPRNG, respectively [45].

Fortunately, though IoT devices lack common sources of randomness, they
may have alternative sources of randomness available, such as radio noise [118,
119, 120], sensor readings [121, 122, 123], clock differences [124, 125], dynamic
RAM (DRAM) decays [125], or power-up SRAM states [49, 50, 52, 126, 127,
128]. Especially power-up SRAM states are widely available on low-power IoT
devices due to the better energy efficiency of SRAM compared to that of DRAM.
Thus far, there, however, seems to be no method for extracting seeds from
power-up SRAM states in a practical and information-theoretically secure man-
ner. In fact, using a deterministic hash function, as suggested by van der Leest
et al. [50, 126, 127, 128], is not information-theoretically secure, whereas the
information-theoretically secure extractor suggested by Holcomb et al. is im-
practical due to its dependence on additionally provisioned truly random bits
[49]. Another issue with power-up SRAM states is that their randomness is
adversely affected by various factors [49, 50, 51, 52, 53].

In this chapter, we make four contributions:

• First, we point out a trick that enables sampling power-up SRAM states
not only once at boot time, but multiple times, even at runtime. Our
trick is to leverage that certain hardware platforms only retain a fraction
of their SRAM in deep LPMs, such as the CC2538 or the SiM3U167-B-
GDI [14, 129]. Thus, by switching to a deep LPM and back again, one
can obtain fresh power-up SRAM states at runtime, too.

• Second, based on the above trick, we propose a superior method for ex-
tracting seeds from power-up SRAM states. Unlike current methods, ours
is both information-theoretically secure and practical. Additionally, many
factors threatening the randomness of power-up SRAM states do not apply
when our method is used.

• Third, we propose the design of a CSPRNG, which seeds itself with power-
up SRAM states using our method, as well as with radio noise for addi-
tional security. Besides, our proposed CSPRNG provides forward and
backward security if it is configured to reseed itself regularly at runtime.

• Forth, we compare the energy consumption of seeding an IoT device either
with radio noise or power-up SRAM states. While seeding with power-up
SRAM states turned out to be more energy efficient, we advise against
using any of these two entropy sources alone since both have weaknesses.
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3.2 Preliminaries

The usage of a CSPRNG happens in three phases, namely entropy gathering,
randomness extraction, and pseudo-random number generation.

3.2.1 Entropy Gathering

During entropy gathering, the user (e.g., an IoT device) obtains an observation
from an entropy source. An entropy source X is a discrete random variable. We
use x ← X to denote that x is drawn at random according to the probability
distribution of X. An attacker would try to predict an observation by choosing
its most likely value. Therefore, the predictability of an entropy source X is
maxx Pr[X = x]. Correspondingly, the min-entropy H∞(X) of X is

H∞(X)
def
= − log2(max

x
Pr[X = x]) (3.1)

For comparison, the Shannon entropy H1(X) of X is

H1(X)
def
= −

∑
x

Pr[X = x] log2 Pr[X = x] (3.2)

While Shannon entropy is a measure of the average level of surprise when seeing
an observation x ← X, min-entropy is a measure of the minimum level of
surprise when seeing an observation x← X.

3.2.2 Randomness Extraction

To serve as seeds, observations of an entropy source have to be distilled into
shorter close-to-uniformly distributed bit strings. The functions for doing so
are often referred to as extractors. Basically, an extractor Ext is a function
Ext : N × {0, 1}d → {0, 1}m that takes an observation x ∈ N , as well as public
truly random bits (called extractor seed) sExt ∈ {0, 1}d as input, and outputs
a bit string s ∈ {0, 1}m, where d < m. Such a function is called an (r,m, ε)-
strong extractor if for all entropy sources X with H∞(X) ≥ r the statistical
distance between the outputs of Ext and the uniform distribution over {0, 1}m
is smaller or equal than ε [130]. For our purposes, it is important that extractors
necessarily are randomized functions. Otherwise, in the case of a deterministic
function, there will, e.g., exist entropy sources with high min-entropy that are
mapped to outputs that are trivially distinguishable from random [131]. This
raises a conflict since, to be able to generate a seed, the user (e.g., an IoT device)
has to have an extractor seed already. There are two solutions to this:

Limiting input distributions: On the one hand, if an entropy source follows
a specific distribution, a seedless extractor may exist [132, 133, 134]. Most
prominently, if an entropy source is composed of i.i.d. Bernoulli trials, the
seedless von Neumann extractor is applicable [132]. Let X be an entropy
source that is composed of Bernoulli trials X1,1, X1,2, X2,1, X2,2, . . . ∼
Bernoulli(p), where p is the probability of observing a value of 1. Given
an observation x1,1, x1,2, x2,1, x2,2, . . . ← X, the von Neumann extractor
iterates through each pair (xi,1, xi,2). If xi,1 = 0 and xi,2 = 1, the von Neu-
mann extractor appends 1 to the resulting output. If xi,1 = 1 and xi,2 = 0,
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the von Neumann extractor appends 0 to the resulting output. Otherwise,
if xi,1 = xi,2, the von Nemann extractor appends nothing to the resulting
output. Since Pr[Xi,1 = 1, Xi,2 = 0] = Pr[Xi,1 = 0, Xi,2 = 1] = p2, the
von Neumann extractor produces uniformly distributed outputs.

Limiting attackers: On the other hand, Barak et al. considered using a fixed
extractor seed, and even sharing it among multiple users, enabling the
fixed extractor seed to be stored in the firmware of IoT devices [135, 136].
Barak et al. found this approach to work out if an attacker has limited
capabilities. Specifically, the attacker must not be able to modify more
than a limited number of boolean properties of the distribution of the
employed entropy source and such modifications must not cause the min-
entropy of the employed entropy source to fall below a threshold.

Altogether, information-theoretically secure randomness extraction without ad-
ditionally provisioned extractor seeds is feasible. Nevertheless, practitioners
tend to use deterministic hash functions for randomness extraction. This en-
tails the risk that despite of using an entropy source with high min-entropy, the
distilled seeds may not be close-to-uniformly distributed.

3.2.3 Pseudo-Random Number Generation

With a seed in place, the user (e.g., an IoT device) can efficiently generate
a stream of cryptographic random numbers r1, r2, . . .by, e.g., invoking a block
cipher in output feedback mode (OFB) [34, 47, 137]. Concretely, let Enc :
{0, 1}k × {0, 1}l → {0, 1}l be a block cipher, where k denotes key length and l
block size. Furthermore, let s = sEnc‖r1 be a seed, where sEnc ∈ {0, 1}k and
r1 ∈ {0, 1}l. OFB generates ri+1 ∈ {0, 1}l inductively as Enc(sEnc, ri).

3.3 Related Work

In the following, we will first sum up prior efforts on identifying and evaluating
available entropy sources on IoT devices. Then, we point out another use of
power-up SRAM states, namely as physically unclonable functions (PUFs).

3.3.1 Entropy Sources on IoT Devices

Holcomb et al. were first among many to consider power-up SRAM states as an
entropy source [49, 50, 52, 126, 127, 128]. The motivation behind using power-up
SRAM states as an entropy source is that, after powering up, each SRAM cell
eventually settles to either 0 or 1. The tendency of whether an SRAM cell settles
to 0 or 1 mainly depends on the individual characteristics of each cell. These
characteristics stem from uncontrollable variations during the manufacturing of
each individual SRAM cell. Yet, at runtime, six additional factors were found to
influence the probability of an SRAM cell to settle to either 0 or 1 at powering
up. First, when exposed to low temperatures, many SRAM cells become either
0-skewed or 1-skewed [49, 50]. Second, burn-in effects occur when an SRAM cell
stores the same bit for several hours [49]. Third, data remanence refers to the
issue that data stored in an SRAM cell persists across very short power outages
[51]. Forth, Liao et al. observed that, when powering up after a long period
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Figure 3.1: Conversion of an I/Q reading to amplitude and phase

of time, SRAM cells have a different tendency of settling to either 0 or 1 as
compared to powering up after a short power outage [52]. Fifth, silicon aging
causes the randomness of power-up SRAM states to increase over long periods
of time [53]. Finally, an attacker may be able to predictably influence power-up
SRAM states by tampering with the supply voltage [49].

Alternatively, several manuals of IEEE 802.15.4 transceivers suggest using
radio noise as an entropy source [14, 138]. Radio noise can be measured in one
of two ways. First, a common feature of IEEE 802.15.4 transceivers is their
support for energy scans, which return the average amplitude of the current
channel over 8 symbol periods. Unfortunately, according to a small experiment
we conducted, the outcomes of energy scans can be forced to a constant value
by emitting interference, thereby nullifying the min-entropy of energy scans.
Second, some transceivers, such as that of the CC2538, also provide I/Q readings
[14]. I/Q readings are cartesian representations of the amplitude and phase of
the sinusoidal wave in the channel, as depicted in Figure 3.1. According to
experiments of Yan et al., influencing the least significant bits (LSBs) of I/Q
readings is very hard [139]. Yan et al. could only influence the LSBs of I/Q
readings by connecting the antennas of a software-defined radio (SDR) platform
and a CC2538 radio transceiver via a SubMiniature version A (SMA) cable.

A similar approach is the gathering of entropy from incoming frames [118,
119, 120]. In particular, received signal strength indicators (RSSIs) and link
quality indicators (LQIs) of incoming IEEE 802.15.4 frames can serve as entropy
sources [118, 120]. Also, erroneous IEEE 802.15.4 frames, i.e., IEEE 802.15.4
frames with false checksums, were considered as an entropy source [119, 120].
Yet, RSSIs, LQIs, as well as erroneous frames are susceptible to frame injection
attacks [120]. Moreover, RSSIs are vulnerable to eavesdropping, too [120].

Hennebert et al. considered sensor readings as entropy sources [121]. Unfor-
tunately, they found sensor readings to be weak entropy sources. Only special
sensors, such as accelerometers and microphones, serve well as entropy sources
[122, 123], but are not available on all IoT devices.

More commonly available entropy sources are those based on clocks. For
instance, a straightforward approach is to read the LSB of one clock at intervals
that are measured by another clock [124]. Besides, Mowery et al. proposed using
execution times as an entropy source [125]. Yet, it remains to be investigated
how suitable these entropy sources for cryptographic purposes are [124, 125].

Also, Mowery et al. considered using DRAM decays as an entropy source
[125]. Indeed, they conclude that DRAM decays is a good entropy source on



38 CHAPTER 3. CRYPTOGRAPHICALLY-SECURE PSEUDO-...

DRAM-based IoT devices. But, on low-power IoT devices, SRAM is usually
preferred over DRAM since SRAM is more energy efficient than DRAM.

In sum, entropy sources on IoT devices fall into three classes. First, there are
weak entropy sources, such as energy scans. Second, there are strong entropy
sources that are only available on IoT devices with special hardware, such as
accelerometers. Finally, there are also a few strong entropy sources that are
commonly available on IoT devices, such as power-up SRAM states.

3.3.2 SRAM-based Physically Unclonable Functions

Power-up SRAM states have also found adoption as PUFs [48, 126, 140, 141].
Basically, a PUF is a physical system that, in response to a challenge, gener-
ates a response and fulfills four requirements, namely reliability, unclonability,
tamper evidence, and unpredictability [48]. Reliability requires the responses
of a PUF to be relatively stable across the range of operating conditions. Un-
clonability requires that, without access to a PUF, it is very difficult to obtain
the response to a challenge of the PUF. Tamper evidence requires that if an
attacker physically tampers with a PUF, the PUF will become unusable, e.g.,
due to producing responses that deviate from the original pattern. Finally, un-
predictability requires the generated responses to have a high min-entropy with
respect to all possible responses of the class of PUFs under consideration.

One example use case of a PUF is a secure key storage [126]. Usually, long-
term keys need to be stored in non-volatile memory, where they are accessible
when a device is off, as well as when it is running. This security weakness is
avoidable by means of a PUF. The idea is as follows. In an enrollment phase,
a special, so-called fuzzy extractor is given (i) one response of the PUF and
(ii) an extractor seed [130]. The fuzzy extractor then produces two outputs:
(i) public helper data P , usually including the employed extractor seed, and
(ii) a symmetric key R that can, e.g., serve for encrypting and authenticating
cryptographic material stored in non-volatile memory. The public helper data
P is constructed so that it assists the fuzzy extractor in restoring R given a
fresh PUF response. Thus, at runtime, R can be restored by means of P so as
to, e.g., decrypt and authenticity check cryptographic material stored in non-
volatile memory. Another example use case of SRAM PUFs, in particular, is to
use their noisy responses as entropy sources [49, 50, 52, 126, 127, 128].

3.4 Proposed Method for Extracting Seeds from
Power-Up SRAM States

Our proposed method for extracting seeds from power-up SRAM states involves
four steps, as shown in Figure 3.2:

1. Step 1 is to reset the SRAM. For resetting the SRAM, our method relies
on that the underlying hardware platform does not retain the complete
SRAM in a deep LPM. This enables resetting the SRAM by switching
to that deep LPM and back again after a configurable time tlpm. Note
that this step is also necessary at boot time. This is because our method
may be executed after a warm reboot or a long power outage. In the first
case, some SRAM cells may no longer store their power-up values. In the
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Figure 3.2: Proposed method for extracting seeds from power-up SRAM states

latter case, the SRAM cells’ tendencies of settling to either 0 or 1 may
be different as compared to powering up after a short power outage [52].
This would be detrimental to our method as will become apparent shortly.

2. Step 2 is to read a region within the just reset SRAM and to store the
result within an SRAM region that is retained in deep LPMs.

3. Step 3 is to reset the SRAM again and to re-read the same SRAM region.

4. Step 4 is to compare, for each SRAM cell in the twice read SRAM region,
whether its value has flipped from 0 to 1, from 1 to 0, or stayed unchanged.
In the case of a flip from 0 to 1, our method appends a 1 to the resulting
seed. In the case of a flip from 1 to 0, our method appends a 0 to the
resulting seed. In the case of no flip, our method appends nothing to the
resulting seed. If all comparisons are done and the resulting seed does not
yet have the desired length, our method repeats from Step 1.

Our method has the following features:

Information-theoretical security: Observe that the probability that an
SRAM cell flips from 0 to 1 is the same as that the SRAM cell flips
from 1 to 0. This is because, after a short power outage of the order of
seconds, each SRAM cell has a stable probability of settling to a value of
1 [52]. Our method takes advantage of this fact by applying the proven
von Neumann extractor to consecutive power-up values of an SRAM cell.

Resistance to freezing attacks: In the face of low temperatures, many
SRAM cells become either 0-skewed or 1-skewed [49, 50]. Nevertheless,
our method terminates as long as some flips occur in each round. Ac-
cording to results of von Herrewege et al., this is the case for both SRAM
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Figure 3.3: Design of our CSPRNG

chips they tested at −30◦C [50]. Likewise, all seven SRAM chips tested
by Schrijen et al. do not lose all their randomness at −40◦C [142].

Resistance to burn-in effects: Our method also resists burn-in effects [49].
This is because our method makes use of an SRAM region where no data
is stored for long. On the contrary, the SRAM region that is not retained
in a deep LPM can only contain short-term data as it is deleted when
entering the deep LPM, which should happen regularly for saving energy.

Resistance to data remanence: If the parameter tlpm is configured long
enough, data remanence is not an issue to our method [51].

3.5 Implementation

We implemented our method as part of an entirely new CSPRNG for Contiki-
NG. Figure 3.3 gives an overview of our CSPRNG. At the core of our CSPRNG,
we use OFB-AES-128 to generate cryptographic random numbers [34, 47, 137].
Hence, the internal state of our CSPRNG consists of an 128-bit AES key sEnc

and the next 128-bit cryptographic random number ri that will be provided to
applications. So-called seeders generate 256-bit seeds and pass them to our
CSPRNG. When a new seed is passed to our CSPRNG, we mix it with the
internal state by XORing both. Thus, if the internal state leaks, the attacker
is unable to predict future cryptographic random numbers beyond the point
where a seed unknown to the attacker is being XORed. Likewise, if the internal
state leaks, the attacker is unable to restore past cryptographic random numbers
beyond the point where a seed unknown to the attacker was XORed.

So far, we implemented two seeders, namely the sram seeder and the iq-

seeder. Both of them have CC2538 SoCs as their target platform [14]. CC2538
SoCs are built into various IoT prototyping platforms, such as Re-Motes and
OpenMotes. We worked with OpenMotes, such as the one in Figure 3.4.

The sram seeder follows our proposed method for extracting uniformly dis-
tributed seeds from power-up SRAM states. For resetting the SRAM, the sram-
seeder leverages that CC2538 SoCs do not retain data stored in the second half

of their SRAM in LPM 2. Hence, to reset the SRAM, the sram seeder switches
to LPM 2 and back again after tlpm = 2s. The duration of 2s was chosen because
with shorter durations, such as 1s, we encountered data remanence.

The iq seeder extracts seeds from I/Q LSBs. For randomness extraction,
we assume that an attacker cannot modify more than 64 boolean properties of
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Figure 3.4: OpenMote

the distribution of I/Q LSBs, and that 200 I/Q LSBs (i.e., 200 I LSBs and 200
Q LSBs) always have a min-entropy of at least 256. These assumptions allow
us to use Barak et al.’s Toeplitz matrix-based extractor ExtToeplitz : {0, 1}n ×
{0, 1}d → {0, 1}m [135]. ExtToeplitz multiplies an Fm′×n′

Toeplitz matrix with

the observation x ∈ Fn′×1 of an entropy source, where F is a finite field, and the
first column and first row of the Toeplitz matrix are defined by a fixed extractor
seed sExt ∈ Fm

′+n′−1. Our iq seeder sets F = GF (28), m = 8m′ = 128,
n = 8n′ = 400, and d = 8(m′ + n′ − 1) = 520. If invoked, the iq seeder

samples 400 I/Q LSBs at times when the channel seems clear according to
CCAs and calls ExtToeplitz twice: the first 200 I/Q LSBs yield sEnc and the
other 200 I/Q LSBs yield r1. According to results of Skorski, our iq seeder

achieves with probability 1 − 10−9 over the choice of sExt that the statistical
distance between sEnc and the uniform distribution U128 over {0, 1}128 is at
most 10−9 [136]. Likewise, the statistical distance between r1 and U128 is at
most 10−9 with probability 1− 10−9 over the choice of sExt [136].

While the iq seeder can also be invoked at runtime, we note that the iq-

seeder is more appropriate for seeding at boot time. This is because the iq-

seeder explicitly enables the receive mode, which may conflict with the MAC
protocol. Hence, for reseeding, we suggest implementing an additional seeder
that samples I/Q LSBs at times when the receive mode is enabled by the MAC
protocol anyway. Not only will this avoid conflicts, but also save energy.

3.6 Evaluation

In the following, we first show the viability of seeding a CC2538-based IoT
device like explained above by showing that the min-entropy of power-up SRAM
states and I/Q LSBs is sufficiently high. Subsequently, we compare the energy
consumption of seeding with I/Q LSBs, power-up SRAM states, or both.

3.6.1 Entropy Assessment

To estimate the min-entropy of power-up SRAM states, the following sequence
was repeated 1000 times. An OpenMote (i) switched to LPM 2, (ii) back to
the active mode after 2s, and (iii) dumped a contiguous 512-byte SRAM region
that was not retained in LPM 2. Throughout, the temperature was 22◦C.

Figure 3.5 shows a histogram of the observed empirical probabilities per
each SRAM cell of settling to 1 at powering up and the resultant empirical
min-entropys. Most SRAM cells are either 1- or 0-skewed and hence yield very
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Figure 3.5: Histogram of (a) the empirical probabilities per each SRAM cell of
settling to 1 at powering up and (b) the resultant empirical min-entropys
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Figure 3.6: Workflow of NIST 800-90B

little min-entropy. On the other hand, there are numerous neutral-skewed cells,
too. The mean over all empirical min-entropys is 0.073. Of course, this value
is specific to the concrete CC2538 SoC and memory region we used, but, fortu-
nately, our method for extracting seeds from power-up SRAM states is agnostic
to these choices. This is because our method adaptively increases the number
of rounds in the face of few flips. Our method only depends on that some flips
occur in each round, as, otherwise, our method may not terminate.

The min-entropy of I/Q LSBs was estimated using an open-source implemen-
tation of NIST 800-90B [143]. Figure 3.6 depicts the workflow of NIST 800-90B.
From a user’s perspective, if X is the entropy source under test, NIST 800-90B
takes values x1 ← X, . . . , xt ← X as input and outputs either an error or an
estimation of H∞(X). Choosing t = 1, 000, 000 is the minimum required by
NIST 800-90B. Internally, NIST 800-90B has two tracks - an i.i.d. track for the
case that x1, . . . , xt are mutually independent and identically distributed (i.i.d.),
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and a non-i.i.d. track for the opposite case. On the i.i.d. track, the min-entropy
is estimated by calculating the empirical min-entropy like above. Yet, prior to
doing so, NIST 800-90B verifies the i.i.d. property by calculating various statis-
tics, namely an over/under runs score, an excursion score, a directional runs
score, a covariance score, and a collision score. On the non-i.i.d. track, the min-
entropy is estimated by taking the minimum over five min-entropy estimators,
namely a collision test, a partial collection test, a Markov test, a compression
test, and a frequency test. Finally, if the estimated min-entropy H∞(X) passes
two additional sanity checks, NIST 800-90B outputs H∞(X).

We sampled t = 1, 000, 000 pairs of I/Q LSBs and passed them to NIST
800-90B. As a result, NIST 800-90B reported that I/Q LSBs are i.i.d., as well
as that they are almost perfectly random, as shown in Figure 3.7. We also
repeated this experiment with the difference being that a nearby OpenMote
continuously transmitted while sampling I/Q LSBs. As shown in Figure 3.7,
the results did not change much. However, in both cases, NIST 800-90B did not
report that I/Q LSBs are perfectly random, which is why it makes sense to apply
a randomness extractor prior to using I/Q LSBs as seeds. Another cautionary
note about these results is that they do not exclude that the min-entropy of
I/Q LSBs reduces under other sorts of interference or eavesdropping. In fact,
Yan et al. observed abnormal runs of zeroes and ones under extremely strong
interference [139]. As a countermeasure, our iq seeder only samples I/Q LSBs
at times when the channel seems clear according to CCAs.

3.6.2 Energy Consumption

To measure the energy consumption of our seeders, an OpenMote, a µCurrent
Gold, and a Rigol DS1000E oscilloscope were connected in series, as shown in
Figure 3.8. This enables capturing an OpenMote’s current draw over time like
detailed in [144]. However, deviating from [144], we added a 0.1Ω shunt resistor
across the input terminals of the µCurrent Gold in order to reduce the noise on
the oscilloscope. Using this experimental setup, the current draw while seeding
with the iq seeder and the sram seeder was sampled piece by piece for each
phase of the seeding process. 100 samples per piece were taken. Throughout,
the sram seeder was configured to use a 1024-byte SRAM region so that the
sram seeder never had to perform more than one round.

Figure 3.9 sums up the results. The iq seeder consumes a considerable
amount of energy for entropy gathering since it needs to enable the energy-
consuming receive mode for sampling I/Q LSBs. Moreover, the randomness
extraction with Barak et al.’s Toeplitz matrix-based extractor makes up the
bulk of the energy consumption of the iq seeder. By contrast, the sram-

seeder consumes much less energy, mainly because the sram seeder gathers
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Figure 3.8: Experimental setup for measuring the current draw over time
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entropy by reading the SRAM, which costs very little in terms of energy. Also,
the sram seeder consumes less energy for randomness extraction.

3.7 Summary

In this chapter, we have made two main contributions. First, we have proposed
a superior method for extracting seeds from power-up SRAM states. Currently
proposed methods for extracting seeds from power-up SRAM states (i) read a
region of the SRAM at boot time and (ii) pass the result to a deterministic hash
or extractor function. By contrast, our method is based on the novel approach
of taking multiple samples of power-up SRAM states, as is supported by certain
hardware platforms. Compared to current methods for extracting seeds from
power-up SRAM states, ours has the advantages of being (i) both information-
theoretically secure and practical, (ii) resistant to freezing attacks, (iii) resistant
to burn-in effects, as well as (iv) resistant to data remanence. Second, we have
presented the design of a self-seeding CSPRNG for IoT devices. Our CSPRNG
can mix multiple entropy sources, provides forward and backward security if
configured to reseed itself regularly at runtime, and efficiently expands seeds
into a stream of cryptographic random numbers via OFB-AES-128.



Chapter 4

Denial-of-Sleep-Resilient
Session Key Establishment

This chapter details AKES - our denial-of-sleep-resilient protocol for establish-
ing session keys among neighboring IEEE 802.15.4 nodes. At first, we make a
case for session keys and point out limitations of current protocols for estab-
lishing session keys among neighboring IEEE 802.15.4 nodes. Then, we intro-
duce related work on which AKES is based. Next, we detail AKES, outline
denial-of-sleep attacks against AKES, and propose two sets of corresponding
denial-of-sleep defenses. Further, we outline our implementation of AKES and
quantify the overhead due to AKES. Also, we give a comparative evaluation of
AKES’ resilience to denial-of-sleep attacks when using our two different sets of
denial-of-sleep defenses. Lastly, we wrap up with completing our discussion of
related work.

4.1 Extended Problem Statement

IEEE 802.15.4 security leaves key management unspecified. Key management
is an umbrella term that subsumes four components, namely key establishment,
key refreshment, key revocation, and rekeying [145]. Among these components,
key establishment is a scheme as per which two or more parties agree on a shared
secret key [145]. A special way of realizing key establishment is key predistribu-
tion, where the established keys are entirely predetermined by preloaded keying
material [145]. Actually, key predistribution is a tempting choice for realizing
key establishment in IEEE 802.15.4 networks due to its low, if any, commu-
nication and processing overhead. Yet, as for key predistribution, the validity
of the established keys never expires. This incurs two conflicts with the frame
counter-based replay protection of IEEE 802.15.4 security.

The first conflict concerns topology changes. Recall that IEEE 802.15.4
security requires each node to keep track of the frame counters of its neighbors
so as to detect replayed frames. Normally, this anti-replay data is kept in RAM,
but, in bigger IEEE 802.15.4 networks with mobile nodes, not all anti-replay
data may fit within the constrained RAM of IEEE 802.15.4 nodes over time.
Hence, some anti-replay data may have to be swapped to non-volatile memory
over time. However, swapping is problematic because the only non-volatile

45
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memory on most IEEE 802.15.4 nodes is flash memory, which is slow, energy
consuming, as well as prone to wear [117]. After all, swapping may also become
necessary in bigger IEEE 802.15.4 networks without mobile nodes if an attacker
tunnels the traffic between non-neighboring nodes verbatim. This can, e.g.,
be achieved by (i) placing two transceivers in distant parts of the victim IEEE
802.15.4 network and (ii) using these two transceivers to relay the traffic between
those network parts [146]. Such an attack is known as a hidden wormhole [146].
In effect, non-neighboring nodes are tricked to believe they were neighbors and
have to store anti-replay data about each other forever [147].

The second conflict concerns reboots. In order to prevent replay attacks after
reboots, all anti-replay data must be stored across reboots, i.e., in non-volatile
memory. Again, this is highly problematic because flash memory is slow, energy
consuming, as well as prone to wear [117]. Besides, two more issues arise if a
node’s frame counter starts over after a reboot. First, this causes a nonce reuse
in IEEE 802.15.4 security and, second, neighbors consider a rebooted node’s
frames replayed [58, 148]. Therefore, Sastry et al. considered storing a node’s
frame counter in non-volatile memory, too [58].

By contrast, when establishing session keys, neither of the above conflicts
arises. To understand this, note that if an attacker replays an IEEE 802.15.4
frame that was secured with a session key that differs from the current one,
receivers will consider the frame’s CCM MIC inauthentic. Thus, session keys
enable nodes to securely delete anti-replay data pertaining to expired sessions,
rather than swapping this data [58]. Likewise, if a node establishes new session
keys after a reboot, it will discard replayed IEEE 802.15.4 frames from previous
sessions due to inauthentic CCM MICs anyway, without having to store data
across reboots. Furthermore, if a node establishes new session keys after a
reboot, the node’s frame counter can start over after a reboot. This is because
reusing CCM nonces together with different CCM keys is secure and, in the
course of establishing new session keys, neighbors can be informed of a frame
counter reset.

However, establishing session keys among neighboring IEEE 802.15.4 nodes
is challenging because of special requirements in this context. In particular,
one special requirement is to resist denial-of-sleep attacks. Another special
requirement is to not just establish session keys with neighboring nodes at start
up, but also at runtime so as to adapt to topology changes.

Krentz et al.’s Adaptable Pairwise Key Establishment Scheme (APKES)
addresses the former of these special requirements comparatively well [10]. Es-
sentially, APKES derives pairwise session keys from predistributed keys in the
course of a three-way handshake between each pair of neighboring IEEE 802.15.4
nodes. Thus, unlike public-key cryptography (PKC)- and KDC-based alterna-
tives [16, 20, 30, 31, 32, 33], APKES operates in a distributed manner without
PKC. This already makes APKES relatively resilient to denial-of-sleep attacks
since requests for session key establishment, called HELLOs in APKES, do neither
trigger energy-consuming communication nor processing. Additionally, APKES
sheds HELLOs when they arrive in bursts.

On the other hand, APKES has three limitations. First, APKES is not de-
signed to survive reboots, but crashes after a reboot, as we discuss in Section
4.2.2. Second, APKES only broadcasts HELLOs at start up and makes no effort
to discover new neighbors at runtime. Even in the broader context of estab-
lishing session keys among neighboring IEEE 802.15.4 nodes, there is only one
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proposal on how to discover new neighbors at runtime to the best of our knowl-
edge [33]. That proposal, however, has problems with broadcast frames, as we
detail in Section 4.6. Third, in APKES, sessions never expire. Therefore, AP-
KES actually aggravates the need for swapping since APKES not only requires
swapping anti-replay data to non-volatile memory, but also session keys.

Our AKES makes the following improvements over APKES:

• AKES survives reboots through three changes to APKES. Most impor-
tantly, AKES avoids a deadlock after reboots by processing HELLOs from
neighbors with whom session keys were already established.

• To discover new neighbors at runtime, AKES schedules the broadcasting
of HELLOs using Trickle [149]. By means of Trickle, AKES self-adaptively
reduces the rate of HELLOs if the neighborhood is stable and increases the
rate of HELLOs if the neighborhood is instable. As a result, AKES saves
energy when the neighborhood is stable, yet quickly adapts to topology
changes. In this regard, we also propose and evaluate two defenses against
a resultant denial-of-sleep attack against AKES, where an attacker desta-
bilizes the network topology in order to cause AKES to send more HELLOs
and hence to consume more energy. Since such attacks manifest them-
selves in temporarily available or temporarily unavailable links, we refer
to them as yo-yo attacks.

• To obviate the need for swapping data to non-volatile memory, AKES in-
cludes a mechanism for detecting inactive neighbors. If an inactive neigh-
bor is detected, AKES deletes him along with associated data, such as
session keys and anti-replay data, thereby freeing RAM.

4.2 Background

Below, we first motivate the design of APKES by reconsidering the IOWEU
dilemma. Then, we introduce APKES, the predecessor of AKES. Also, we intro-
duce a special technique that we evaluate for authenticating broadcast frames.

4.2.1 The IOWEU Dilemma

Ideally, a scheme for establishing keys among neighboring IEEE 802.15.4 nodes
should perform well in terms of all of the properties inoculation, opaqueness,
welcomingness, efficiency, and universality (IOWEU) [10, 34]:

Inoculation: Inoculation is the property of a key establishment scheme that
an attacker is unable to authenticate himself to a non-compromised node
with a different identity than that of a compromised node.

Opaqueness: Opaqueness is the property of a key establishment scheme that,
in the event of a node compromise, only keys of links from and to the
compromised node leak.

Welcomingness: Welcomingness describes to what degree a key establishment
scheme supports the addition of new nodes after deployment.
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Table 4.1: Key Predistribution Schemes and their Trade-offs regarding
Inoculation, Opaqueness, Welcomingness, Efficiency, and Universality

Scheme I O W E U
Single key [150] × ×

√ √ √

Fully pairwise key [150]
√ √ √

×
√

Random-pairwise keys [151]
√ √ √ √

×
Blom’s scheme [152, 153] (

√
) (
√

)
√

O(λ)
√

Efficiency: Efficiency describes to what degree a key establishment scheme
operates memory and energy efficiently.

Universality: Universality describes to what degree a key establishment
scheme takes assumptions on the network topology.

Owing to the energy inefficiency of PKC- and KDC-based key establishment
schemes [17], key predistribution schemes are preferable for establishing keys
among neighboring IEEE 802.15.4 nodes. Table 4.1 evaluates four fundamental
key predistribution schemes according to the IOWEU criteria:

Single key scheme: In the single key scheme, each node is preloaded with the
same network-wide key. Hence, the single key scheme consumes very little
memory. Also, since the single key scheme requires no communication at
runtime, like all of the key predistribution schemes listed in Table 4.1,
the single key scheme operates energy efficiently. On the other hand, the
single key scheme lacks both inoculation and opaqueness. Inoculation is
not fulfilled since if an attacker extracts the network-wide key from one
node, he can authenticate himself as any other node and can thus inject
nodes with arbitrary identities at will. Opaqueness is not fulfilled because
if an attacker extracts the network-wide key from one node, the keys of
all links in the network are immediately compromised, as well.

Fully pairwise key scheme: In the fully pairwise key scheme, each node is
preloaded with distinct pairwise keys for communication with any other
node. The fully pairwise key scheme fulfills inoculation and opaqueness.
Inoculation is fulfilled since, in the event of a node compromise, the at-
tacker can only authenticate himself as the compromised node to non-
compromised nodes, thus restricting him to inject nodes into the victim
network that use the identity of the compromised node. Likewise, opaque-
ness is fulfilled since, in the event of a node compromise, the attacker only
obtains keys that pertain to links from and to the compromised node. On
the other hand, the fully pairwise key scheme is very memory consuming.

Random-pairwise keys scheme: The random-pairwise keys scheme can be
thought of as a memory-efficient variant of the fully pairwise key scheme.
Instead of preloading pairwise keys for communication with any other
node, each node is preloaded with a random subset of pairwise keys, called
key ring. Furthermore, using a heuristic of Du et al., one can minimize the
number of keys per key ring k so that a network of size n with minimum
node degree d is connected with some high probability c [153]. Unfor-
tunately, while being inoculated and opaque, the random-pairwise keys
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scheme only makes use of a fraction of all links. Hence, the random-
pairwise keys scheme is only suitable for networks with high node degrees.

Blom’s scheme: Blom’s scheme keeps up inoculation and opaqueness as long
as no more than λ nodes are compromised, as well as makes no assump-
tions on the network topology. Specifically, let l be the key length in
bits, λ be the number of tolerable node compromises, n be the maximum
number of nodes in the network, and q ≥ 2l be a prime power. In a
pre-deployment step, Blom’s scheme randomly generates (i) a symmetric
matrix D ∈ GF(q)(λ+1)×(λ+1) and (ii) a matrix G ∈ GF(q)(λ+1)×n with
linearly independent columns. Next, each node A is preloaded with the
IDA-th column vector of (DG)T (denoted by (DG)TIDA,−) and the IDA-
th row vector of G (denoted by G−,IDA

), where IDA ∈ {1, . . . , n} is an
identifier of A, such as A’s MAC address. At runtime, two nodes A and B
calculate their pairwise key as (DG)TIDA,−G−,IDB

= (DG)TIDB ,−G−,IDA
.

For this, A and B need to exchange their row vectors of G, except when
G is chosen as a Vandermonde matrix since this enables any node to re-
compute G entirely [153]. Consequently, if G is a Vandermonde matrix,
Blom’s scheme operates very energy efficiently. On the negative side, the
memory consumption and processing overhead of Blom’s scheme increases
linearly with the tolerable number of node compromises λ.

While many advanced versions of the above key predistribution schemes
exist (see [150] for a survey), the IOWEU dilemma is that there is no key
predistribution scheme that fulfills all of the IOWEU criteria [10, 154].

4.2.2 APKES: Adaptable Pairwise Key Establishment
Scheme

The basic approach of APKES is to derive pairwise session keys from predis-
tributed keys in the course of a three-way handshake between each pair of neigh-
boring IEEE 802.15.4 nodes. Furthermore, the main contribution of APKES is
to decouple its three-way handshake from the key predistribution scheme in
use. This enables practitioners to reuse the bulk of their code across differ-
ent key predistribution schemes, as well as to select the most appropriate key
predistribution scheme for their use case. APKES is split into three phases:

Optional preloading of short addresses: In the first phase, each node is
optionally preloaded with an IEEE 802.15.4 short address that uniquely
identifies the node in its IEEE 802.15.4 network. The motivation behind
this phase is as follows. For looking up the predistributed key shared
with a neighboring node, most key predistribution schemes have to be
given an identifier of that node. To this end, APKES chooses to reuse
IEEE 802.15.4 MAC addresses. That is, when APKES requires the pre-
distributed key shared with a neighboring node, APKES passes the node’s
extended address and, if assigned, short address as parameters to the un-
derlying key predistribution scheme. An extended address can always
be passed to the underlying key predistribution scheme since extended
addresses are burnt into IEEE 802.15.4 transceivers during manufactur-
ing. However, some key predistribution may be unable to look up predis-
tributed keys by extended addresses. For example, in Blom’s scheme, the
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dimensions of the matrix G get too large when using extended addresses.
Furthermore, while protocols for autoconfiguring short addresses exist,
e.g., 6LoWPAN neighbor discovery (6LoWPAN-ND) [155], such protocols
conflict with APKES. This is because such protocols randomly assign short
addresses, rendering the assigned short addresses inapplicable to looking
up predistributed keys. Preloading short addresses avoids this conflict.

Preloading of cryptographic material: In the second phase, each node is
preloaded with cryptographic material. This cryptographic material com-
prises (i) a seed for generating cryptographic random numbers and (ii)
keying material, which is specific to the underlying key predistribution
scheme. For example, when using the fully pairwise key scheme, each
node is preloaded with n − 1 pairwise keys, each of which is shared with
the n− 1 other nodes in the network, including not-yet-deployed nodes.

Pairwise session key establishment: In the third phase, which is performed
at start up, each node establishes pairwise session keys with its neigh-
bors. This happens in the course of a three-way handshake by exchanging
newly defined IEEE 802.15.4 command frames, named HELLO, HELLOACK,
and ACK. Let us look into APKES’ three-way handshake without going
into the error handling. Initially, a node A generates a cryptographic
random number RA and broadcasts a HELLO containing RA. A receiver
B also generates a cryptographic random number RB , obtains the pre-
distributed key KB,A shared with A from the underlying key predistri-
bution scheme, and stores A as a tentative neighbor. After a random
back-off period, B sends a HELLOACK to A containing RA and RB . The
HELLOACK is authenticated by using KA,B as CCM key. Upon reception,
A also obtains the predistributed key KA,B = KB,A from the underlying
key predistribution scheme and derives the pairwise session key K ′A,B as
AES-128(KA,B , RA‖RB). Lastly, A stores B as a permanent neighbor and
replies with an ACK. The ACK is authenticated by using K ′A,B as CCM key.
Upon reception, B also derives the pairwise session key analogously and
turns the tentative neighbor A into a permanent one.

Unfortunately, APKES’ three-way handshake is not designed with reboots
in mind. Specifically, two problems may occur after a reboot. First, as nodes
ignore HELLOs from senders that are stored as a neighbor already, a deadlock
occurs after a reboot, unless all nodes reboot. Second, note that HELLOACKs are
secured with predistributed keys. Consequently, if a node’s frame counter starts
over after a reboot, a nonce reuse may occur after a reboot.

Concerning denial-of-sleep attacks, a defense of APKES is to shed HELLOs as
the number tentative neighbors reaches a threshold. This defense targets HELLO
flood attacks, where an attacker sends HELLOs with high transmission powers so
as to, e.g., provoke HELLOACK transmissions [35, 36]. We will compare APKES’
and a newly proposed HELLO flood defense in our evaluation of AKES.

4.2.3 EBEAP: Easy Broadcast Encryption and Authenti-
cation Protocol

While pairwise session keys can serve for securing unicast frames, they can not
directly be used for securing broadcast frames. To this end, Krentz et al. pro-
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posed the Easy Broadcast Encryption and Authentication Protocol (EBEAP)
[10]. The idea of EBEAP is as follows. Suppose a node A wants to securely send
a broadcast frame f . Then, A adds a frame counter to f to obtain f ′ and sends
two broadcast frames. The first broadcast frame contains MICs MIC0,MIC1, . . .
over f ′ for each of A’s neighbors B0, B1, . . ., where MICi is generated using the
pairwise session key between A and Bi. Upon reception, neighbor Bi extracts
its corresponding MIC MICi and buffers it in a ring buffer. For this, Bi has
to have its index i in the neighbor list of A. These indices are exchanged in
the course of establishing session keys. The second broadcast is f ′ itself. Upon
reception, Bi generates a MIC over f ′ using its pairwise session key with A. If
the generated MIC is buffered and if the frame counter of f ′ is fresh, Bi will
accept f ′. On demand, EBEAP also encrypts the payload of broadcast frames
via group session keys, which then have to be established in addition to pairwise
session keys. In effect, though a compromised node can decrypt the broadcast
frames of its neighbors, he can never impersonate its neighbors, provided that
the pairwise session keys are established in an inoculated and opaque manner.

4.3 AKES: Adaptive Key Establishment Scheme

AKES builds on the idea of leaving the underlying key predistribution scheme
exchangeable and moves on to address widely open problems, namely the adap-
tation to topology changes and the mitigation of denial-of-sleep attacks. In this
section, we detail AKES’ design, which is depicted in Figure 4.1.

4.3.1 Looking up Predistributed Keys

Recall that for looking up the predistributed key shared with a neighboring
node, most key predistribution schemes have to be given an identifier of that
node. To this end, AKES also reuses IEEE 802.15.4 MAC addresses. That
is, AKES requests the predistributed key shared with a neighboring node by
passing the node’s IEEE 802.15.4 MAC address to the underlying key predistri-
bution scheme. This way of looking up predistributed keys has two advantages.
First, since IEEE 802.15.4 addresses are sent along with IEEE 802.15.4 frames
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as part of the addressing fields anyway, there is no need to include extra node
identifiers in the payload of command frames used for establishing session keys.
Second, when looking up the predistributed key with a neighboring node by its
IEEE 802.15.4 MAC address, it is automatically ensured that the neighboring
node owns that IEEE 802.15.4 MAC address in the course of establishing ses-
sion keys, provided that the underlying key predistribution is inoculated and
opaque. Unfortunately, another restriction on this second advantage is that it
is only ensured that a neighboring node owns either a certain short or extended
address, depending on whether predistributed keys are looked up by short or
extended addresses, respectively. For example, if the predistributed key shared
with a neighboring node was looked up by its short address, the neighboring
node could still use the extended address of another node. To fix this security
weakness, AKES presumes that there is a network-wide agreement on whether
short or extended addresses are used for both addressing and looking up pre-
distributed keys. In practical terms, when, e.g., agreeing on short addresses,
frames containing extended addresses are to be ignored.

4.3.2 Preloading Configuration Settings

Prior to deploying a new node, AKES requires preloading it with configuration
settings. The preloaded configuration settings may comprise an IEEE 802.15.4
short address that uniquely identifies the node in its IEEE 802.15.4 network and
must comprise keying material, which is specific to the underlying key predistri-
bution scheme. The preloading of short addresses solves two problems at once.
First, protocols for autoconfiguring short addresses, such as with 6LoWPAN-ND
[155], conflict with AKES. This is because such protocols randomly assign short
addresses, rendering the assigned short addresses inapplicable to looking up pre-
distributed keys. Second, if not using TSCH, IEEE 802.15.4 security derives the
CCM nonce of a frame from the sender’s extended address and the frame’s frame
counter value. Thus, even if there is a network-wide agreement on using short
addresses for both addressing and looking up predistributed keys, extended ad-
dresses still have to be negotiated for deriving IEEE 802.15.4-compliant CCM
nonces. This is actually done by APKES and ensues a communication and
memory overhead. However, if a short address uniquely identifies a node within
its IEEE 802.15.4 network, it is equally secure to derive CCM nonces from short
addresses.

4.3.3 Establishing Session Keys

At runtime, AKES establishes session keys in the course of a three-way hand-
shake between each pair of neighboring IEEE 802.15.4 nodes, as shown in Figure
4.2. There are three messages involved, namely HELLOs, HELLOACKs, and ACKs.
These messages are sent as newly defined command frames. A node A initiates
the three-way handshake by broadcasting a HELLO. The HELLO contains a crypto-
graphic random number RA and is either authenticated with pairwise or group
session keys. However, only receivers that already established session keys with
A can distinguish between fresh authentic, and inauthentic or replayed HELLOs
from A. Any receiver B that wishes to establish session keys with A stores A
as a tentative neighbor and replies with a HELLOACK after a random back off pe-
riod Tbac < Mbac. Like A’s HELLO, B’s HELLOACK also contains a cryptographic
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random number RB . Furthermore, the HELLOACK is authenticated with a pair-
wise session key K ′B,A that is derived from the predistributed key KB,A shared
between A and B, as well as the two cryptographic random numbers RA and
RB . Upon reception of the HELLOACK from B, A checks its authenticity, among
others. If successful, A completes the three-way handshake by sending an ACK

to B. Analogous to B’s HELLOACK, A’s ACK is authenticated using the pairwise
session key K ′A,B . After completing this three-way handshake, A and B store
each other as permanent neighbors and can start using the established pairwise
session key K ′B,A = K ′A,B as CCM key.

Optionally, A and B may establish group session keys in addition to or in
lieu of a pairwise session key. If so, each node generates a group session key
using our CSPRNG at start up and generates a new one after each reboot.
Furthermore, during the three-way handshake, B piggybacks its group session
key KB,∗ encrypted with K ′B,A on the HELLOACK. Likewise, the ACK carries A’s
group session key KA,∗ encrypted with K ′A,B . Also, A and B may piggyback
each other’s index in their neighbor lists on the HELLOACK and ACK, respectively.
These indices are, e.g., required to implement EBEAP.

A crucial change to APKES is that HELLOs from permanent neighbors are
processed in order to survive reboots. Let us, e.g., consider the case that A
reboots. Then, a former permanent neighbor B will eventually receive an in-
authentic HELLO from A. This will cause B to store A as a tentative neighbor,
but, at the same time, to keep A as a permanent neighbor. As the ACK from A
arrives, B will delete the former permanent neighbor A and turn the tentative
neighbor A into a permanent one. This effectively starts a new session between
A and B. The more common case is that B receives fresh authentic HELLOs from
A, which are silently discarded. However, a subtlety arises if a node B receives
an inauthentic HELLO from a permanent neighbor A, although A did not reboot
(e.g, due to missing EBEAP’s first broadcast frame). In this case, B will also
reply with a HELLOACK, but with the P flag set since A is currently stored as
a permanent neighbor by B. Upon reception, A will discard HELLOACKs from
permanent neighbors with the P flag set right away, thereby avoiding to start a
new session unnecessarily.

Two further changes to APKES are also crucial for surviving reboots. First,
whereas APKES secures HELLOACKs with predistributed keys, AKES secures
HELLOACKs with pairwise session keys. This avoids resuing the same nonce in
conjunction with the same key after reboots. Second, whereas APKES detects
replayed HELLOACKs via frame counters, AKES uses an internal mechanism for
this. Specifically, if the sender B of an authentic HELLOACK is stored as a perma-
nent neighbor, AKES checks whether the contained challenge RB differs from
its previous one. This can be implemented either by caching challenges or, more
efficiently, by checking whether the newly generated pairwise session key would
match the current one. Either way, the result is that HELLOACKs from a rebooted
node will not be considered replayed due to a low frame counter value.

The replay of ACKs, on the other hand, is pointless anyway since a tenta-
tive neighbor is turned into a permanent neighbor just once. The situation
is different when a permanent neighbor was deleted. Then, an attacker could
try becoming a permanent neighbor by (i) injecting a HELLO and (ii) replaying
an ACK. However, the cryptographic random number within the HELLOACK will
have changed and hence the derived pairwise session key. Thus, the MIC of the
replayed ACK will turn out inauthentic, causing the replayed ACK to be rejected.
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4.3.4 Adapting to Topology Changes

Owing to mobile nodes and changing surroundings, nodes can get out of range
and new ones can come into range. In the following, we detail how AKES adapts
to such topology changes by continuously deleting inactive permanent neighbors
and continuously “Trickling” HELLOs to discover new neighbors.

4.3.4.1 Deletion of Inactive Permanent Neighbors

When a permanent neighbor expires, AKES checks if that neighbor is still in
range via a newly defined command frame, named UPDATE. For example, in
Figure 4.3, A sends an UPDATE to B to check if B is still in range. Upon
reception, B replies with an authenticated acknowledgment frame. Finally, as A
receives a fresh authentic acknowledgment frame from B in response, A prolongs
B’s expiration time. Otherwise, if B does not reply with a fresh authentic
acknowledgment frame after A retransmitted the UPDATE a configurable number
of times, A eventually gives up and deletes B. Note that when B receives a fresh
authentic UPDATE from A, B prolongs A’s expiration time, too. Prolonging a
permanent neighbor’s expiration time is also done implicitly when receiving any
fresh authentic frame, thereby reducing the number of explicit UPDATEs.

4.3.4.2 Trickle-Based Broadcasting of HELLOs

For scheduling the broadcasting of HELLOs, AKES adopts the Trickle algorithm
[149]. This algorithm takes three parameters:

Imin: the minimum interval duration

Imax: the maximum interval duration

k: the redundancy constant

and maintains three variables:

c: a counter

I: the current interval duration

t: an instant within the second half of the current interval
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Initially, Trickle sets c to 0, I to a random duration within the range [Imin, Imax],
and t to a random instant within the range [ I2 , I). Up to time t, Trickle incre-
ments c upon receiving a consistent broadcast, where the notion of consistent
is left application specific. At time t, Trickle broadcasts if c < k. What Trickle
broadcasts is also left application specific. At the end of the current interval I,
Trickle starts a new interval with c = 0, I = min{I × 2, Imax}, and a random
instant t ∈ [ I2 , I). A new interval also begins immediately if a reset is issued
- unless I already is at its minimum Imin. If a new interval begins as a re-
sult of a reset, Trickle starts over with c = 0, I = Imin, and a random instant
t ∈ [ Imin

2 , Imin). Altogether, Trickle reduces its broadcast rate exponentially
while consistency is achieved and increases its broadcast rate when Trickle is
reset. Further energy is saved by suppressing broadcasts if c < k.

AKES tailors Trickle to broadcast HELLOs as follows. By default, AKES sets
Imin = max{30s, 2 ×Mbac + 1s}, Imax = Imin × 28, and k = 2. Setting Imin to
max{30s, 2×Mbac + 1s} avoids broadcasting another HELLO while still waiting
for HELLOACKs. AKES resets Trickle if max{bn4 c, 1} permanent neighbors were
added during the current interval, where n is the current number of perma-
nent neighbors. The motivation behind this reset rule is that new permanent
neighbors are a good indicator of far-reaching topology changes. Yet, when es-
tablishing a new session key with a permanent neighbor (which, e.g., happens
after a permanent neighbor rebooted), AKES does not count this permanent
neighbor as new. As consistent broadcasts, AKES considers fresh authentic
HELLOs unless they originate from a permanent neighbor that already sent a
fresh authentic HELLO since the last time the receiver broadcasted a HELLO. The
basic motivation behind this definition of consistent transmissions is that fresh
authentic HELLOs from permanent neighbors indicate a stable topology. Addi-
tionally, this definition factors in that the uncertainty about the consistency of
the network topology grows when just hearing fresh authentic HELLOs from one
permanent neighbor or from a small group of permanent neighbors. In particu-
lar, if one permanent neighbor sends fresh authentic HELLOs at a high rate, the
permanent neighbor may have reset Trickle as a result of far-reaching topology
changes, which may also affect a receiver’s neighborhood. To speed up joining a
network, AKES broadcasts one HELLO at start up and resets Trickle thereafter.

4.3.5 Defending against Denial-of-Sleep Attacks

There are two kinds of denial-of-sleep attacks against AKES, as shown in Figure
4.4:

HELLO flood attacks: In a HELLO flood attack, on the one hand, an exter-
nal attacker, i.e., an attacker without access to any cryptographic key
[156], injects a HELLO with a high transmission power, thereby causing
each receiver to store a tentative neighbor with the address that is pre-
tended to be the source address of the HELLO [36]. More severely, receivers
will also send a HELLOACK after a random back off period [35]. This con-
sumes a good amount of energy, especially if the external attacker does not
acknowledge the reception of HELLOACKs because victim nodes will then
retransmit HELLOACKs multiple times. Moreover, as an internal attacker,
i.e., an attacker who gained access to one or more cryptographic keys [156],
a method for aggravating HELLO flood attacks against AKES is to reply
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Figure 4.4: Attack tree of denial-of-sleep attacks against AKES

to HELLOACKs with valid ACKs. Normally, if a victim node has reached its
maximum number of tentative neighbors, AKES will no longer respond to
HELLOs until one of the tentative neighbors expires. Yet, upon reception
of a valid ACK, AKES turns a tentative neighbor into a permanent one,
allowing internal attackers to launch HELLO flood attacks at a higher rate.

Yo-yo attacks: In a yo-yo attack, on the other hand, an attacker makes links
temporarily available or temporarily unavailable so as to provoke more at-
tempts to establish session keys, reestablishments of session keys, or both.
As an external attacker there appear to be two avenues for carrying out
a yo-yo attack. First, an external attacker can jam certain frames so as
to cause bit errors and hence prevent their successful reception, aka re-
active jamming [38]. For example, if an attacker jams all frames except
HELLOs, HELLOACKs, and ACKs, AKES will delete permanent neighbors and
later reestablish session keys. As a result, victim nodes send additional
HELLOACKs and ACKs. Moreover, victim nodes potentially reset Trickle due
to adding permanent neighbors. Thus, this example yo-yo attack may en-
sue more HELLO transmissions, too. Another reactive jamming-based yo-yo
attack is to prevent a victim node from receiving HELLOs from permanent
neighbors, which effectively disables AKES’ suppression of HELLOs. A last
reactive jamming-based yo-yo attack is to prevent nodes that just reset
Trickle from receiving HELLOs so as to delay session key establishment and
potentially cause additional Trickle resets. Second, an external attacker
can also temporarily open a hidden wormhole so as to trick distant nodes
into believing they were neighbors [146], thereby causing AKES to estab-
lish session keys between them and potentially reset Trickle, too. More-
over, an internal attacker with access to one or more predistributed keys
can become a permanent neighbor of any node by injecting valid ACKs and
HELLOACKs. This provokes additional HELLOACK and ACK transmissions,
and potentially Trickle resets, as well. Yo-yo attacks by an internal at-
tacker aggravate when the internal attacker does not reply to UPDATEs or
other frames after sending its valid HELLOACK or ACK. This is because AKES
will delete the seemingly inactive permanent neighbor, thus allowing the
internal attacker to become a permanent neighbor thereafter again.
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To protect AKES against HELLO flood and yo-yo attacks, we propose and
evaluate two sets of denial-of-sleep defenses, named intrinsic and LBC-based
denial-of-sleep defenses. The approach of the intrinsic denial-of-sleep defenses
is to tune AKES’ existing parameters to counter HELLO flood and yo-yo attacks.
Unfortunately, as we argue shortly, the intrinsic denial-of-sleep defenses require a
trade-off between denial-of-sleep resilience and the speed at which AKES adapts
to topology changes. This observation gives rise to complementary LBC-based
denial-of-sleep defenses. Indeed, the LBC-based denial-of-sleep defenses shall
turn out to significantly accelerate AKES’ reaction to topology changes, without
incurring much overhead nor sacrificing on security.

4.3.5.1 Intrinsic Denial-of-Sleep Defenses

In the following, we first explain AKES’ intrinsic denial-of-sleep defenses.

Defense against HELLO Flood Attacks Recall that AKES has the following
parameters, as shown in Figure 4.2:

Mten: the maximum number of tentative neighbors

Mbac: the maximum back off period of HELLOACKs

Tack: the maximum waiting period for ACKs

Hence, by injecting HELLOs with random source addresses, external attackers
can cause AKES to send HELLOACKs at a mean rate of

Mten
1
2Mbac + Tack

(4.1)

at most, not counting retransmissions separately. Unfortunately, this rate
can not be tuned without affecting the speed at which AKES reacts to topology
changes. Specifically, lowering Mten reduces the number of neighbors that AKES
can add in parallel. Increasing Mbac delays session key establishment. Lastly,
increasing Tack entails the following issue. Suppose that a node A broadcasted
a HELLO and that session key establishment with a neighbor B did not complete
due to a missed HELLOACK or ACK. Now, if A sends another HELLO before B may
delete A from its list of tentative neighbors, B will ignore A’s HELLO.

Moreover, internal attackers may be able to cause a victim node to send
HELLOACKs at a higher rate than in Equation (4.1). This is because, once an
internal attacker obtained the predistributed key shared between a victim node
and another node, he can (i) establish session keys with the victim node and
(ii) reestablish session keys with the victim node over and over, with the only
delay being 1

2Mbac on average. Concretely, if an internal attacker controls k out
of a victim node’s n ≥ k permanent neighbors, the internal attacker can force
the victim node to send HELLOACKs at a mean rate of

k
1
2Mbac

(4.2)

at most, not counting retransmissions separately. Thus, to also withstand inter-
nal attackers, Mbac has to be chosen long, delaying session key establishment.
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Figure 4.5: Intuition behind leaky bucket counters

Defense against Yo-Yo Attacks Recall that AKES does not delete inactive
permanent neighbors immediately, but only after a hysteresis Tlif. This rate-
limits reestablishments of session keys with the same permanent neighbor. Yet,
to counter yo-yo attacks effectively, Tlif must be chosen very long. This is
because an external attacker may set up multiple hidden wormholes or reactively
jam on several links. Hence, victim nodes may not always reestablish session
keys with the same permanent neighbor during a yo-yo attack, but with different
permanent neighbors over and over. In such occasions, AKES will still issue
many Trickle resets, unless Tlif is chosen very long so that AKES either abstains
from reestablishing session keys with any of a whole set of permanent neighbors
for long or cancels reestablishments of session keys because of running out of
RAM.

On the other hand, while extending Tlif increases AKES’ resilience to yo-yo
attacks, it also defers the deletion of inactive permanent neighbors and hence
the freeing of allocated RAM. Moreover, if much RAM is allocated for storing
inactive permanent neighbors, this can deprive AKES of establishing session
keys with actual neighbors, decelerating AKES’ adaption to topology changes.

4.3.5.2 LBC-based Denial-of-Sleep Defenses

Since the intrinsic denial-of-sleep defenses require a trade-off between denial-
of-sleep resilience and the speed at which AKES adapts to topology changes,
we propose complementary LBC-based denial-of-sleep defenses below. The in-
tuition behind an LBC is a bucket with a hole in it, as shown in Figure 4.5
[59]. Events drop into the bucket and increase its filling level. It is possible to
associate different events with different drop sizes. As the bucket has a hole,
its filling level decreases as long as there is water in it. Pressure is neglected so
that the filling level of the bucket decreases with a constant rate ρ. In our use
case, we want to avoid that the bucket overflows by taking appropriate actions
beforehand, i.e., before the filling level exceeds the bucket’s capacity β.

Defense against HELLO Flood Attacks As a complementary defense
against HELLO flood attacks, we suggest that each node maintains an LBC
LBCHELLOACK that is defined as follows:

Capacity: Its capacity βHELLOACK corresponds to the maximum number of
HELLOACKs that AKES may send in the short run, not counting retrans-
missions separately.

Leakage rate: Its leakage rate ρHELLOACK corresponds to the maximum rate
at which AKES may send HELLOACKs in the long run, not counting re-
transmissions separately.
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Table 4.2: Parameter Sets
ID Imin Imax Mten Mbac Tack Tlif
1 30s 128min 5 5s 747.5s ∞
2 601s 160min16s 5 300s 600s ∞
3 30s 128min 5 5s 5s ∞
4 30s 128min 5 5s 747.5s 5min
5 30s 128min 5 5s 747.5s 30min
6 30s 128min 5 5s 5s 5min

ID with βHELLO ρHELLO βHELLOACK ρHELLOACK

LBCs (= βACK) (= ρACK)
1,2,4,5 × n/a n/a n/a n/a

3,6 X 10 1
300Hz 20 1

150Hz

Drop sizes: In the event that a HELLOACK is scheduled to be sent, LBCHELLOACK

is incremented by one. When retransmitting a HELLOACK, however,
LBCHELLOACK is not incremented.

Overflow prevention: AKES shall shed a received HELLO if LBCHELLOACK

overflows otherwise.

An immediate benefit of our LBC-based HELLO flood defense is that its pa-
rameters are independent from other parameters of AKES. In fact, Mbac can
now be shortened - but should not be zeroed to avoid overwhelming senders of
HELLOs with HELLOACKs, as well as collisions among HELLOACKs [157]. Likewise,
Tack can now be minimized according to what is the maximum waiting period
between the transmission of a HELLOACK and the reception of the correspond-
ing ACK. Finally, Mten can now be configured independently from the aimed
maximum rate of outgoing HELLOACKs under HELLO flood attacks.

For example, suppose we aim for a mean rate of 1
150Hz of outgoing HELLOACKs

under continuous HELLO flood attacks by external attackers, not counting re-
transmissions separately. According to Equation (4.1), a suitable configuration
of the intrinsic defense against HELLO flood attacks is Mten = 5, Mbac = 5s,
and Tack = 747.5s. However, in order to also withstand HELLO flood attacks
by, at least, one attacker-controlled permanent neighbor, choosing Mten = 5,
Mbac = 300s, and Tack = 600s is necessary according to Equation (4.2). In
either case, Tack is quite long, which can lead to delays to session key establish-
ment if frame loss occurs, as described in Section 4.3.5.1. Moreover, raising Mbac

delays HELLOACKs and therefore session key establishment. By contrast, when
using the LBC-based defense against HELLO flood attacks, a parameter set that
provides an equal level of security is Mbac = 5s, Tack = 5s, βHELLOACK = 20,
and ρHELLOACK = 1

150Hz. Apparently, AKES reacts much faster to topology
changes with these parameters. Beyond that, the LBC-based defense against
HELLO flood attacks protects against any number of attacker-controlled perma-
nent neighbors. Table 4.2 lists these parameter sets with IDs for future reference.

Defense against Yo-Yo Attacks Likewise, as a complementary defense
against yo-yo attacks, we suggest that each node maintains two additional LBCs
LBCHELLO and LBCACK:
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Capacity: The capacity βHELLO of LBCHELLO corresponds to the maximum
number of HELLOs that AKES may broadcast in the short run.

Leakage rate: The leakage rate ρHELLO of LBCHELLO corresponds to the max-
imum rate at which AKES may broadcast HELLOs in the long run.

Drop sizes: In the event that AKES broadcasts a HELLO, LBCHELLO is incre-
mented by one. When retransmitting a HELLO, however, LBCHELLO is not
incremented.

Overflow prevention: AKES suppresses a HELLO if LBCHELLO will overflow
otherwise.

Capacity: The capacity βACK of LBCACK corresponds to the maximum num-
ber of ACKs that AKES may send in the short run, not counting retrans-
missions separately.

Leakage rate: The leakage rate ρACK of LBCACK corresponds to the maxi-
mum rate at which AKES may send ACKs in the long run, not counting
retransmissions separately.

Drop sizes: In the event that AKES sends an ACK, LBCACK is incremented by
one. When retransmitting an ACK, however, LBCACK is not incremented.

Overflow prevention: AKES shall shed an incoming HELLOACK if LBCACK

may overflow otherwise.

An immediate benefit of the LBC-based defense against yo-yo attacks is that
Tlif may be minimized. Conversely, when using the intrinsic defense against yo-
yo attacks, Tlif has to be chosen long for mitigating yo-yo attacks effectively, as
discussed earlier, and as is also empirically confirmed in Section 4.5.5.

4.4 Implementation

We integrated AKES and IEEE 802.15.4 security into Contiki-NG by introduc-
ing a special MAC driver named akes mac driver and a special FRAMER named
akes mac framer. The akes mac driver transparently decorates another MAC

driver with security features and is compatible with virtually any MAC driver
that implements an asynchronous MAC protocol, such as Contiki-NG’s csma-

driver, which implements a simplified version of the carrier sense multiple
access with collision avoidance (CSMA-CA) MAC protocol of IEEE 802.15.4,
or our own MAC drivers contikimac driver and csl driver, which implement
ContikiMAC and CSL, respectively. The akes mac framer, on the other hand,
hooks into the assembling and parsing of frames for security-related adjustments.

Our implementation can be tailored to satisfy different requirements in three
ways. First, it offers several configuration parameters, most importantly con-
figurable security levels as defined in Table 2.2. Second, it leaves the under-
lying key predistribution scheme exchangeable. Third, it encapsulates selected
functions behind an interface called akes mac strategy so as to enable dif-
ferent flavors of IEEE 802.15.4 security. For example, we implemented (i)
an akes mac strategy called noncoresec strategy that secures both broad-
cast and unicast frames using group session keys, (ii) an akes mac strategy
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called coresec strategy that secures broadcast frames using EBEAP and uni-
cast frames using pairwise session keys, and (iii) an akes mac strategy called
unicast strategy that secures unicast frames using pairwise session keys, au-
thenticates HELLOs by including one CCM MIC for each permanent neighbor
(each of which is generated using the respective pairwise session key), and sends
other broadcast frames as unicast frames to each permanent neighbor, one after
another.

As for LBCs, we added an abstract data type for the creation and manage-
ment of LBCs to Contiki-NG. For implementing the leaking of LBCs, we decided
to lazily update the filling levels of LBCs upon enquiries. This not only reduces
the processing overhead, but also avoids depriving an IoT device from sleep-
ing just for updating filling levels. As a result, our implementation of LBCs is
lightweight in terms of energy consumption. Also, our implementation of LBCs
is lightweight in terms of RAM consumption. In fact, the RAM consumption
per LBC is merely 12 bytes when using the CC2538 SoC as target platform.

4.5 Evaluation

In the following, we first determine the memory and energy consumption of our
implementation in various configurations. Then, we showcase the efficacy of
AKES’ Trickle-based scheduling of HELLOs. Finally, we empirically compare the
intrinsic and the LBC-based denial-of-sleep defenses concerning protection and
the resultant speed at which AKES adapts to topology changes.

4.5.1 Memory Consumption

The program memory and RAM consumption of our implementation was de-
termined as follows. At first, as a baseline for comparison, the program mem-
ory and RAM consumption of ContikiMAC without MAC layer security was
measured using the tool arm-none-eabi-size and the CC2538 SoC as target
platform. Then, the program memory and RAM overhead due to AKES, the
noncoresec strategy, as well as dependent modules such as our CSPRNG,
was determined. Next, these measurements were repeated with the coresec-

strategy, the unicast strategy, as well as with different numbers of perma-
nent neighbor slots. Throughout, short addresses, Security Level 6 (see Table
2.2), and Parameter Set 6 were used (see Table 4.2).

As shown in Figure 4.6, the program memory and RAM overhead due to
AKES is significant. Only a little amount of program memory can be saved by
using the least secure akes mac strategy, namely the noncoresec strategy.
Likewise, the basic RAM consumption differs only marginally between the dif-
ferent akes mac strategys. That said, practitioners can save RAM by reducing
the number of permanent neighbor slots. When using the coresec strategy,
the RAM consumption per permanent neighbor slot is higher since EBEAP
necessitates storing both a pairwise session key and a group session key per
permanent neighbor if the Security Level is ≥ 5.
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Figure 4.6: Memory footprint of AKES on CC2538 SoCs

4.5.2 Energy Consumption

To measure the energy overhead during receptions and transmissions due to
securing frames, a network of 10 nearby OpenMotes was set up. The Open-
Motes ran our implementation of ContikiMAC and, after learning the wake-up
time of each of the 9 other OpenMotes, began to send unicast frames containing
64 bytes of payload to each other with a random delay of 0 - 4.5min in be-
tween. In the background, each OpenMote ran Contiki-NG’s tool “Energest” to
trace the energy consumed for transmitting and receiving these unicast frames
[158]. Initially, this experiment was conducted without IEEE 802.15.4 security
enabled and subsequently with each of our three akes mac strategys. Also,
this experiment was repeated with broadcast frames instead of unicast frames.
Throughout, ContikiMAC’s wake-up interval was set to 125ms and all upper-
layer protocols were disabled. Furthermore, like in the previous experiment,
short addresses, Security Level 6, and Parameter Set 6 were used.

The results are shown in Figure 4.7. As for unicast receptions, the energy
consumption increases slightly when enabling any of our akes mac strategys.
This is mostly because receiving secured unicast frames and transmitting se-
cured acknowledgment frames takes longer. Likewise, as for unicast transmis-
sions, there is also a general increase in energy consumption due to the increased
security-related per-frame overhead. As for broadcast receptions, the energy
consumption increases also slightly when using the noncoresec strategy or
the unicast strategy. However, when using the coresec strategy the energy
consumption per broadcast reception approximately doubles because receivers
need to receive EBEAP’s additional broadcast frame. Similarly, as for broadcast
transmissions, using the coresec strategy causes the energy consumption to
approximately double as compared to using no security since senders need to
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Figure 4.7: Energy consumption per transmission and reception of (a) a unicast
frame and (b) a broadcast frame containing 64 bytes of payload

send EBEAP’s additional broadcast frame. Moreover, when using the unicast-
strategy, senders need to send broadcast frames as multiple unicast frames.

This consumes much energy despite of ContikiMAC’s phase-lock optimization.
Surprisingly, when using the noncoresec strategy, the energy consumption
per broadcast transmission decreases as compared to using no security. This
comes down to a peculiarity of ContikiMAC, which repeatedly transmits broad-
cast frames for an entire wake-up interval plus once to cover corner cases. Thus,
it may happen that longer broadcast frames are strobed less often than shorter
ones, which then leads to a lower energy consumption. Altogether, in terms of
energy consumption, the noncoresec strategy is the best choice.

4.5.3 Communication Overhead

Asynchronous MAC protocols generally consume a considerable amount of en-
ergy during broadcast transmissions. Therefore, we put special emphasis on
reducing the number of outgoing HELLOs in the design of AKES. To showcase
the efficacy of the Trickle-based scheduling of HELLOs, Contiki-NG’s network
simulator Cooja was used [159]. The simulated network is shown in Figure 4.8.
It comprised 25 nodes, each of which booted at a random point in time dur-
ing the first 30 virtual minutes. At runtime, each node logged its number of
outgoing HELLOs. Throughout, Parameter Set 6 was used.
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Figure 4.9: Number of sent HELLOs between (a) hour 0 and 6 (b) hour 6 and 12

Figure 4.9a shows the number of outgoing HELLOs after 6 virtual hours.
Afterwards, each node only sent 0-3 HELLOs within 6 virtual hours, as shown in
Figure 4.9b. Of course, even more energy-efficient configurations are possible,
but at the cost of a slower adaptation to topology changes.

4.5.4 Protection against HELLO Flood Attacks

4.5.4.1 HELLO Flood Attacks by External Attackers

To compare the protection against external attackers of the intrinsic and the
LBC-based HELLO flood defense, the following experiment was conducted. A
Cooja simulation with two nodes was run for three virtual hours. The first node
acted as an external attacker who continuously injected HELLOs with random
source addresses at the rate of 1Hz. The second node acted as a victim and
initially ran AKES with Parameter Set 1 shown in Table 4.2. This simulation
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Figure 4.10: Sent HELLOACKs under continuous HELLO flood attacks by (a) an
external attacker and (b) an internal attacker controlling one node

was then rerun using Parameter Set 2 and 3. In each run, the victim node
logged its number of sent HELLOACKs. Throughout, the frame loss was 0%.

Figure 4.10a shows the results. At the beginning, the victim node answers
five HELLOs in a row when using the intrinsic HELLO flood defense. This is because
the intrinsic HELLO flood defense only comes into play as the number of tentative
neighbors reaches the threshold Mten = 5. Similarly, when using the LBC-based
HELLO flood defense, the bucket initially is empty, thus causing the victim node
to answer the first βHELLOACK = 20 HELLOs. Then, the victim node gradually
answers further HELLOs since the bucket leaks at the rate of ρHELLOACK = 1

150Hz.
When using the intrinsic HELLO flood defense, the victim node answers further
HELLOs in bursts since all initially stored tentative neighbors expire closely after
one another. As previously conjectured, both HELLO flood defenses restrict the
rate of outgoing HELLOACKs to 1

150Hz in the long run.

4.5.4.2 HELLO Flood Attacks by Internal Attackers

To compare the protection against one attacker-controlled permanent neighbor
of the intrinsic and the LBC-based HELLO flood defense, the following experi-
ment was conducted. Again, a Cooja simulation was run for three virtual hours
in which one node acted as an attacker-controlled node and another node acted
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as a victim. In three successive run, the victim node used (i) Parameter Set 1,
(ii) Parameter Set 2, and (iii) Parameter Set 3. During all runs, the victim node
logged its number of sent HELLOACKs, the frame loss was 0%, and the attacker-
controlled node operated as follows. At first, the attacker-controlled node es-
tablished session keys with the victim node. Then, the attacker-controlled node
broadcasted inauthentic HELLOs at the rate of 1Hz. In the case that the vic-
tim node replied with a HELLOACK, the attacker-controlled node completed the
three-way handshake by sending a valid ACK in response.

As shown in Figure 4.10b, the results differ from the previous experiment
as far as the intrinsic HELLO flood defense is concerned. Particularly, when
using Parameter Set 1, the victim node ends up with 2993 sent HELLOACKs
after three virtual hours. This disastrous result arises because the attacker-
controlled node reestablishes session keys with the victim node again and again
with a short waiting period in between. This waiting period takes 1

2Mbac =
2.5s on average. Only when tuning Mbac appropriately, the intrinsic HELLO

flood defense approaches the aimed maximum rate of one outgoing HELLOACK

per 150s. However, if more than one attacker-controlled permanent neighbors
shows up, Mbac has to be extended further. On the other hand, the LBC-
based HELLO flood defense protects against any number of attacker-controlled
permanent neighbors, even without configuration changes.

4.5.4.3 Speed of Adapting to Topology Changes

To compare AKES’ speed of establishing session keys when using either the
intrinsic or the LBC-based HELLO flood defense, another set of Cooja simulations
was run. Throughout, the topology shown in Figure 4.8 was used, where every of
the 25 nodes logged its number of permanent neighbors and booted at a pseudo-
random point in time during the first 30 virtual minutes. In three successive runs
over one virtual hour, all nodes were configured to use (i) Parameter Set 1, (ii)
Parameter Set 2, and (iii) Parameter Set 3. These three runs were also repeated
with (i) a frame loss of 10% (instead of 0%) without enabling retransmissions
and (ii) a frame loss of 10% with three retransmissions at most.

Figure 4.11a shows the results with frame loss disabled. Overall, the speed
of adding permanent neighbors does not differ greatly when using either the
intrinsic or the LBC-based HELLO flood defense. Yet, the intrinsic HELLO flood
defense with Parameter Set 2 lags behind since it delays HELLOACKs by 1

2Mbac =
150s on average. Moreover, in the case of a frame loss of 10%, the intrinsic
HELLO flood defense becomes noticeably slower, as shown in Figure 4.11b. This
is because of an issue we mentioned earlier - if an ACK or HELLOACK is missed,
tentative neighbors are kept for long if Tack is long, thus causing incoming HELLOs
from tentative neighbors to be ignored for a long period of time. A remedy to
this issue is to retransmit frames, as shown in Figure 4.11c. Despite this, the
intrinsic HELLO flood defense with Parameter Set 2 remains slower at adding
permanent neighbors because it delays HELLOACKs.

4.5.4.4 Discussion

The intrinsic HELLO flood defense comes at the cost of extending both Tack and
Mbac. Extending Tack, on the one hand, may be acceptable if retransmissions are
enabled, as shown in Figure 4.11c. Extending Mbac, on the other hand, severely
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Figure 4.11: Speed of adding permanent neighbors with (a) 0% frame loss, (b)
10% frame loss and without retransmissions, and (c) 10% frame loss and with
three retransmissions at most
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deteriorates the user experience because session key establishment becomes very
slow as a result. For comparison, the LBC-based HELLO flood defense also
protects against HELLO flood attacks, without requiring to set Tack and Mbac

to long durations. Beyond that, the LBC-based HELLO flood defense protects
against any number of attacker-controlled nodes and is easier to configure.

4.5.5 Protection against Yo-Yo Attacks

4.5.5.1 Yo-Yo Attacks by External Attackers

To compare the protection against reactive jamming-based yo-yo attacks of the
intrinsic and the LBC-based defense against yo-yo attacks, a Cooja simulation
was set up. In each run, the network shown in Figure 4.8 was simulated for
12 virtual hours, where all 25 nodes booted at a random point in time during
the first 30 virtual minutes, and the frame loss was 0%. During each run,
every node logged its number of sent HELLOs, HELLOACKs, and ACKs. In the
first run, no attack was launched as a baseline for comparison. In the second
run, the nodes {1, 2, 3, 6, 7, 8, 11, 12, 13} solely received HELLOs, HELLOACKs, and
ACKs, thus simulating reactive jamming attacks against other kinds of frames.
In the third run, the same set of nodes did, in addition, not receive HELLOs from
their permanent neighbors. This reactive jamming attack effectively disables
AKES’ suppression of redundant HELLOs. In the forth run, if any of the nodes
{1, 2, 3, 6, 7, 8, 11, 12, 13} had just reset Trickle, i.e., if I = Imin, it did not receive
any HELLOs. The idea behind this reactive jamming attack is to delay session
key establishment in order to cause multiple Trickle resets instead of just one.
Initially, all nodes used Parameter Set 4 and then all four runs were repeated
with Parameter Set 5 and 6.1

Figure 4.12 shows the results. Let us first look at the number of sent HELLOs.
If no reactive jamming attack is launched, extremely few HELLOs are sent, re-
gardless of the employed parameter set. This is because Trickle suspects that
the network topology is stable and therefore reduces the rate of HELLOs. A lot
more HELLOs are sent when jamming all frames except HELLOs, HELLOACKs, and
ACKs as this causes AKES to delete permanent neighbors, reestablish session
keys, and potentially reset Trickle. Expectably, the intrinsic defense against
yo-yo attacks greatly mitigates such reactive jamming attacks if Tlif = 30min.
This is due to the fact that AKES then deletes inactive permanent neighbors
only after Tlif = 30min. Conversely, when configuring AKES more responsively
by setting Tlif = 5min, the intrinsic defense against yo-yo attacks protects much
worse. For comparison, although the LBC-based defense against yo-yo attacks
also uses Tlif = 5min, it limits the rate of sent HELLOs to ρHELLO = 1

300Hz.
Another attack strategy is to jam HELLOs to permanent neighbors so as to ab-
stain victim nodes from suppressing HELLOs. Indeed, the number of sent HELLOs
increases under such reactive jamming attacks, at least when using the intrinsic
defense against yo-yo attacks, as shown in Figure 4.12c. By contrast, the LBC-
based defense against yo-yo attacks successfully limits the rate of sent HELLOs

1Though it seems difficult for an attacker to prevent some nodes from receiving a HELLO

while letting it pass to others, this is possible, e.g., if the victim network uses ContikiMAC.
This is because ContikiMAC transmits broadcasts as a strobe of frames, selected ones of which
may be jammed exactly when a certain node wakes up. Alternatively, an attacker may install
multiple jammers and locally jam HELLOs. In Section 4.6, we discuss the feasibility of reactive
jamming and hidden wormhole attacks in more detail.
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Figure 4.12: Sent HELLOs, HELLOACKs, and ACKs per node after 12 virtual hours
(a) without attacks, (b) when jamming all frames except HELLOs, HELLOACKs,
and ACKs, (c) when jamming HELLOs to permanent neighbors in addition, and
(d) when also jamming HELLOs to nodes that had just reset Trickle
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to 1
300Hz. Another level of aggravation is to jam HELLOs to nodes that had just

reset Trickle so as to cause multiple Trickle resets instead of just one. Again, the
LBC-based defense against yo-yo attacks limits the rate of sent HELLOs under
such kind of reactive jamming attacks to 1

300Hz, as shown in Figure 4.12d. A
secondary repercussion of yo-yo attacks is additional HELLOACK and ACK trans-
missions and receptions. In this regard, the LBC-based restriction on the rate of
HELLOACKs also takes effect in this context. The intrinsic HELLO flood defense, by
contrast, fails to limit the rate of HELLOACKs to 1

150Hz. For example, in Figure
4.12b, the rate of answered HELLOs of node 7 between hour 1 and 12 is 1

70.09Hz
when using Parameter Set 4, whereas it is 1

150.00Hz when using Parameter Set 6.
In sum, the intrinsic defense against yo-yo attacks only protects against reactive
jamming-based yo-yo attacks when extending Tlif to undesirable durations.

Next, to compare the protection against hidden wormhole-based yo-yo at-
tacks of the intrinsic and the LBC-based defense against yo-yo attacks, the above
experiment was repeated with a modified topology, which is shown in Figure
4.13. Therein, the nodes {3, 4, 5, 9, 10, 15} and {11, 16, 17, 21, 22, 23} could com-
municate with each other. However, the hidden wormhole exclusively tunneled
HELLOs, HELLOACKs, and ACKs and not other kinds of frames. In the first run,
no attacks other than the hidden wormhole attack was launched. In the second
run, this attack was exacerbated by combining it with reactive jamming-based
yo-yo attacks against the nodes {1, 2, 3, 6, 7, 8, 11, 12, 13}. Specifically, like in the
previous experiment, each of these nodes only received (i) ACKs, (ii) HELLOACKs,
and (iii) HELLOs from non-permanent neighbors if the node had not just reset
Trickle.

Figure 4.14 shows the results. Interestingly, the hidden wormhole turned
out to be relatively benign. Furthermore, the results suggest that hidden
wormhole-based yo-yo attacks only cause the nodes that are connected via the
hidden wormhole to send more HELLOs, HELLOACKs, and ACKs, whereas reac-
tive jamming-based yo-yo attacks also cause non-attacked nodes of the victim
network to send more HELLOs, HELLOACKs, and ACKs, as shown in Figure 4.12b
through 4.12d. That said, Figure 4.14b demonstrates that combining hidden
wormhole with reactive jamming attacks exacerbates both of these attacks.

4.5.5.2 Yo-Yo Attacks by Internal Attackers

Lastly, the protection against yo-yo attacks by internal attackers of the intrinsic
and the LBC-based defense against yo-yo attacks was assessed as follows. Once
more, the topology shown in Figure 4.8 was used, where all 25 nodes booted
at a random point in time during the first 30 virtual minutes, and the frame
loss was 0%. However, this time, the nodes {13, 14, 18, 19} acted maliciously
by (i) setting Imin = Imax = 30s, (ii) choosing Mbac = Tack = 5s, (iii) not
replying to UPDATEs, (iv) deleting any new permanent neighbor right after ses-
sion key establishment, (v) not rate-limiting their number of outgoing HELLOs,
HELLOACKs, and ACKs, and (vi) not communicating among themselves. In effect,
these nodes frequently sent valid HELLOs and completed three-way handshakes
whenever possible by sending valid HELLOACKs and ACKs. In three successive
runs over 12 virtual hours, the legitimate nodes used Parameter Set 4 through
6 and logged their number of sent HELLOs, HELLOACKs, and ACKs.

Figure 4.15 shows the results. Unsurprisingly, the LBC-based defense against
yo-yo attacks protects against yo-yo attacks by internal attackers equally well
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Figure 4.13: Network topology with a hidden wormhole that ralays the traffic
between the nodes {3, 4, 5, 9, 10, 15} and the nodes {11, 16, 17, 21, 22, 23}
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Figure 4.14: Sent HELLOs, HELLOACKs, and ACKs per node after 12 virtual hours
(a) in the presence of a hidden wormhole and (b) if launching reactive jamming
attacks in parallel
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Figure 4.15: Sent HELLOs, HELLOACKs, and ACKs per node after 12 virtual hours
in the face of four attacker-controlled nodes

like against yo-yo attacks by external attackers. Yet, surprisingly, when using
the intrinsic defense against yo-yo attacks, the results indicate that yo-yo attacks
by internal attackers are less severe than yo-yo attacks by external attackers.
This is in contrast to HELLO flood attacks by internal attackers, which are more
severe than HELLO flood attacks by external attackers, at least when using the
intrinsic HELLO flood defense.

4.5.5.3 Discussion

The intrinsic defense against yo-yo attacks comes at the cost of extending Tlif.
As discussed earlier, extending Tlif may deprive AKES from establishing session
keys with actual neighbors in situations where a lot of RAM is allocated for
storing inactive permanent neighbors. Moreover, an open question is how to
choose Tlif so as to achieve a certain level of protection. Conversely, the LBC-
based defense against yo-yo attacks enables freeing allocated RAM quickly and
can directly be configured to meet any required level of protection.

4.6 Related Work

Below, we sum up related work on alternatives to session keys, session key
establishment, HELLO flood attacks, reactive jamming, and hidden wormholes.

4.6.1 Alternatives to Session Keys

Establishing session keys solves both conflicts between the frame counter-based
replay protection of IEEE 802.15.4 security and key predistribution. A different
approach to avoid the swapping of frame counters, in particular, was proposed by
Luk et al. [147]. They suggested storing anti-replay data in Bloom filters, which
consume a fixed amount of RAM and hence obviate swapping frame counters
[147]. Unfortunately, Bloom filters sometimes falsely report that a frame was
replayed and, disapprovingly, cause a high energy consumption [160]. After all,
Bloom filters do not help survive reboots, whereas session keys help both to
avoid swapping and to survive reboots.
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An entirely different approach to solve both conflicts between the frame
counter-based replay protection of IEEE 802.15.4 security and key predistribu-
tion appeared as part of the TSCH MAC protocol [29]. There, the approach
is to use timeslot indices in lieu of frame counters. However, TSCH’s mech-
anisms for time synchronization are vulnerable to both internal and external
attackers. In fact, Yang et al. pointed out that attacker-controlled nodes can
launch various attacks against TSCH’s mechanisms for time synchronization
[161]. Moreover, TSCH’s mechanisms for time synchronization do not even
withstand external attackers. For example, jamming beacon frames constitutes
a devastating denial-of-sleep attack against unsynchronized TSCH nodes since
this holds unsynchronized TSCH nodes in the energy-consuming receive mode.

4.6.2 Session Key Establishment

Current protocols for establishing session keys among neighboring IEEE
802.15.4 nodes can be clustered into PKC-based [20, 30, 31, 32, 33], KDC-
based [16], and key predistribution-based protocols [10, 34, 35]. Unfortunately,
all current PKC- and KDC-based protocols are susceptible to denial-of-sleep
attacks since, by injecting requests for session key establishment, attackers can
either trigger energy-consuming processing or communication [17]. Moreover,
another limitation of most of the current protocols for establishing session
keys among neighboring IEEE 802.15.4 nodes is that they do not discover
new neighbors at runtime. The only exception to this seems to be Ilia et al.’s
protocol, where session key establishment is triggered if the upper layer sends
a unicast frame to a neighbor with whom no session keys were established,
yet [33]. However, they do not specify what happens if the upper layer sends
a broadcast frame, leaving their solution incomplete. A possible solution
we considered is to use upper-layer broadcast frames as HELLOs. That is, if
the upper layer sends a broadcast frame, the MAC layer could piggyback a
cryptographic random number on it. Receivers that have not yet established
session keys with the sender of a broadcast frame could extract the contained
cryptographic random number and reply with a HELLOACK as per AKES’ three
way handshake. This solution would obviate Trickling HELLOs and may even
result in a faster adaption to topology changes. On the other hand, this solu-
tion would break compatibility with the unicast strategy, where broadcast
frames are sent as unicast frames to each permanent neighbor one after another.
Furthermore, since the unicast strategy comes in very handy when it comes
to implementing channel hopping in Chapter 7, we did not follow up on that
solution.

4.6.3 HELLO Flood Attacks

Karlof et al. identified HELLO flood attacks as a general attack against wireless
mesh networks [36]. Actually, many protocols for wireless mesh networks use
some kind of HELLO messages to discover neighboring nodes. Thus, a general
attack against such protocols is to inject or replay their HELLO messages with
high transmission powers. Such HELLO flood attacks usually mislead receivers
into thinking that they are in direct communication range of the node that is
pretended to be the sender of the injected or replayed HELLO message [36]. In
the context of session key establishment, a basic countermeasure is to perform a
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three-way handshake so as to raise the confidence of being in direct communica-
tion range of each other [34]. But, this countermeasure entails the denial-of-sleep
vulnerability that injected HELLOs trigger replies. To avoid replying to injected
HELLOs, Lim suggested authenticating HELLOs using hash chains [35]. However,
when using his approach, attackers can force victim nodes to perform many hash
computations by injecting HELLOs with late deployment intervals, which consti-
tutes a denial-of-sleep vulnerability, too. Alternatively, APKES sheds HELLOs
if they arrive in bursts. Our LBC-based defense against HELLO flood attacks
advances the shedding of HELLOs by reducing its incurred delays to session key
establishment. In Chapter 6, we further expand on the shedding HELLOs by
performing the shedding of HELLOs already during reception.

4.6.4 Reactive Jamming

The feasibility of reactively jamming IEEE 802.15.4 frames was shown by differ-
ent groups [72, 162, 163]. Wood et al., for instance, configured an off-the-shelf
IEEE 802.15.4 transceiver to issue interrupts upon detecting the SHR of a frame
[72]. Then, if an SHR interrupt is issued, the IEEE 802.15.4 transceiver was
instructed to jam for a short period of time. Alternatively, Wilhelm et al. im-
plemented reactive jamming based on software-defined radio, which minimizes
the time between the analysis of incoming radio traffic and the decision to jam
[163]. Either method is applicable to carry out reactive jamming against AKES.

4.6.5 Hidden Wormholes

The feasibility of setting up a hidden wormhole was, e.g., demonstrated by Fran-
cillon et al. [164]. They achieved delays of the order of nanoseconds by using
cut-through forwarding, i.e., by tunnelling incoming frames already during re-
ception. Such hidden wormholes are hard to detect by measuring delays. Hence,
more sophisticated methods for detecting hidden wormholes were devised. In
[9], we, e.g., propose a channel reciprocity-based scheme for detecting and sub-
sequently avoiding hidden wormholes, called Secure Channel REciprocity-based
WormholE Detection (SCREWED). Unfortunately, SCREWED comes at a high
communication overhead and can be bypassed. In this chapter, we hence re-
sorted to an alternative way of dealing with hidden wormholes, namely by mit-
igating their repercussions.

4.7 Summary

In this section, we have tackled two widely open problems regarding the estab-
lishment of session keys among neighboring IEEE 802.15.4 nodes. The first of
them is the adaptation to topology changes. To this end, we have proposed a
mechanism that deletes inactive permanent neighbors, as well as a Trickle-based
mechanism for initiating the discovery of new neighbors. Though Trickle actu-
ally is an algorithm for disseminating information in wireless sensor networks,
we have shown that Trickle is general enough to be applied to the problem of
scheduling the broadcasting of HELLOs, too. The advantages of doing so are
twofold. On the one hand, Trickle is well-known, well-studied, and even stan-
dardized [149]. On the other hand, Trickle helps trade off energy efficiency
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against the speed of adapting to topology changes. The second open problem
is protecting protocols for establishing session keys among neighboring IEEE
802.15.4 nodes against denial-of-sleep attacks. We have identified two kinds of
denial-of-sleep attacks against such protocols. In HELLO flood attacks, on the
one hand, an attacker injects requests for session key establishment so as to
trigger energy-consuming processing or communication. In yo-yo attacks, on
the other hand, an attacker makes links temporarily available or temporarily
unavailable so as to provoke more attempts to establish session keys, reestab-
lishments of session keys, or both. To mitigate HELLO flood attacks, we have
proposed to abstain from using KDCs and PKC. Besides, to defend against both
HELLO flood and yo-yo attacks, we have considered adapting intrinsic parame-
ters of AKES, as well as adding LBC-based defenses that rate-limit outgoing
session key establishment-related messages. Both sets of defenses have turned
out to protect against HELLO flood and yo-yo attacks. However, in contrast to
the intrinsic denial-of-sleep defenses, the LBC-based ones incur no delays to
session key establishment at times when no denial-of-sleep attacks are launched
and can be configured more easily.



Chapter 5

Denial-of-Sleep-Resilient
Medium Access Control:
Extended Problem
Statement

This chapter elaborates on the problem of denial-of-sleep-resilient medium ac-
cess control. We begin with analyzing the susceptibility of ContikiMAC, CSL,
TSCH, and LWB to denial-of-sleep attacks. Then, we sum up prior work on
denial-of-sleep-resilient medium access control and highlight persisting research
gaps. Eventually, we conclude that ContikiMAC and CSL are most promising
to be developed into a denial-of-sleep-resilient MAC protocol, yet that several
research gaps have to be filled in this endeavor.

5.1 Review of Prevalent MAC Protocols

ContikiMAC, CSL, TSCH, and LWB come without integrated denial-of-sleep
defenses. This raises the question whether it is possible to retrofit denial-of-
sleep resilience into them at all. To approach this question, this section identifies
potential denial-of-sleep attacks against ContikiMAC, CSL, TSCH, and LWB.

5.1.1 Terminology

Let us first clarify some of our terminology. We subdivide denial-of-sleep attacks
against MAC protocols into reception- and transmission-oriented ones. While
reception-oriented denial-of-sleep attacks mainly cause victim nodes to stay
longer in the energy-consuming receive mode, transmission-oriented denial-of-
sleep attacks mainly cause victim nodes to stay longer in the energy-consuming
transmit mode. An orthogonal distinction we sometimes use is between exter-
nal and internal denial-of-sleep attacks. External denial-of-sleep attacks, on the
one hand, can be carried out without access to any cryptographic key. Internal
denial-of-sleep attacks, on the other hand, can only be launched by an attacker
with access to one or more cryptographic keys. Hence, internal denial-of-sleep
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Figure 5.1: Attack tree of denial-of-sleep attacks against ContikiMAC

attacks involve an additional attack step wherein the attacker obtains certain
cryptographic keys, such as through side-channel attacks or physical tampering
[165, 166]. Correspondingly, we refer to an attacker without access to any cryp-
tographic key as an external attacker, and to an attacker with access to one or
more cryptographic keys as an internal attacker [156].

5.1.2 ContikiMAC

Figure 5.1 shows an attack tree of our identified denial-of-sleep attacks against
ContikiMAC. In the following, we will first go through reception-oriented denial-
of-sleep attacks against ContikiMAC and then through transmission-oriented
denial-of-sleep attacks against ContikiMAC.

5.1.2.1 Reception-Oriented Denial-of-Sleep Attacks

Recall that ContikiMAC regularly performs two CCAs for detecting incoming
transmissions. This approach for detecting incoming transmissions results in a
low base energy consumption, but incurs two issues. First, it is crucial to set the
CCA threshold appropriately [81, 167, 168]. If the CCA threshold is too low,
receivers will often wake up unnecessarily, thereby wasting much energy. Con-
versely, if the CCA threshold is too high, transmissions may go undetected. Sec-
ond, if an attacker constantly or intermittently jams the channel, ContikiMAC
will stay in receive mode until ContikiMAC’s fast-sleep optimization eventually
disables the received mode. However, despite ContikiMAC’s fast-sleep opti-
mization eventually intervenes, ContikiMAC’s energy consumption increases a
lot under jamming attacks, as we demonstrate in Section 6.2.4. Sha et al. ad-
dressed the first issue [81]. They showed that setting a static CCA threshold is
insufficient to cope with false wake ups and undetected transmissions. Rather,
the CCA threshold should be adapted dynamically at runtime. Accordingly,
they proposed the Adaptive Energy Detection Protocol (AEDP), which adjusts
the CCA threshold to trade off false wake ups against undetected transmissions.

At first glance, AEDP might also reduce the incurred energy consumption
of jamming attacks since AEDP increases the CCA threshold as false wake ups
occur. However, AEDP caps CCA thresholds to fit between the minimum RSSI
among all incoming links and the floor noise, as shown in Figure 5.2. Thus, as
long as attackers jam with a strong enough transmission power, receivers still
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wake up. On the other hand, if a jamming attack causes the floor noise to
increase beyond the RSSI of an incoming link, AEDP’s behavior is undefined.
In such cases, it is reasonable to set the CCA threshold slightly above the level
of the floor noise. This is because (i) communication on links with lower RSSIs
than the floor noise is error-prone anyway and (ii) it requires attackers to launch
jamming attacks with higher and higher transmission powers as otherwise victim
nodes will not wake up, thus complicating jamming attacks at least.

After all, to cause ContikiMAC to spend more time in receive mode, attack-
ers can launch broadcast [22], unicast, or droplet attacks [169], as well. In a
broadcast attack, an attacker injects or replays a broadcast frame in the same
way as a legitimate sender. As a result, every receiver in range will expend en-
ergy for receiving and processing the frame. Of course, IEEE 802.15.4 security
and AKES eventually reject injected and replayed frames, but only after having
consumed energy for their reception and processing already. Likewise, in what
we call a unicast attack, an attacker injects or replays a unicast frame like a le-
gitimate sender. In effect, a receiver may not only receive and process the frame,
but also send an acknowledgment frame since IEEE 802.15.4 security permits
receivers to acknowledge prior to checking the authenticity and freshness of the
unicast frame that is being acknowledged. Finally, in order to save his own en-
ergy during unicast and broadcast attacks, an attacker can send droplets instead
of whole frames. A droplet is just the beginning of a frame without the rest of it
being transmitted. Nevertheless, receivers will detect a droplet and demodulate
the noise that follows, just to conclude that the checksum is erroneous.

Moreover, a reception-oriented internal denial-of-sleep attack against Con-
tikiMAC is to inject what we call a chatty node into a victim network. A chatty
node sends fresh authentic frames to its neighbors, thus causing its neighbors
to spend more time in receive mode and to further process these frames.

5.1.2.2 Transmission-Oriented Denial-of-Sleep Attacks

The denial-of-sleep attacks discussed so far primarily aim to mislead victim
nodes into staying longer in receive mode. Sometimes these reception-oriented
denial-of-sleep attacks also cause victim nodes to stay longer in transmit mode.
This, e.g., happens if a victim node sends an acknowledgment frame in response
to a unicast attack or if retransmissions happen due to the attacker using the
channel. Next, we look at denial-of-sleep attacks that primarily aim to mislead
victim nodes into staying longer in transmit mode, namely pulse-delay [156],
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Figure 5.3: Pulse-delay attack via (a) interference and (b) a hidden wormhole

acknowledgment spoofing [36], collision [38], and interruption attacks.
Pulse-delay attacks against ContikiMAC come in two flavors. First, an at-

tacker can jam during the transmission of an acknowledgment frame and replay
the jammed acknowledgment frame later on, as shown in Figure 5.3a. Second,
an attacker can set up a hidden wormhole and deliberately delay acknowledg-
ment frames, as shown in Figure 5.3b. In either case, senders strobe more often.
Moreover, since ContikiMAC’s phase-lock optimization learns wake-up times
based on when acknowledgment frames are received, ContikiMAC’s phase-lock
optimization learns wrong wake-up times as a result. Thus, subsequent trans-
missions to affected neighbors are likely to fail and hence to ensue retrans-
missions. In the worst case, ContikiMAC’s phase-lock optimizations resorts to
relearn the wake-up time of an affected neighbor. If so, the next unicast frame
to the affected neighbor is sent “unsynchronized” for an entire wake-up interval
plus once, which consumes much energy.

An acknowledgment spoofing attack against ContikiMAC is shown in Figure
5.4. The attack comprises two phases. In the first phase, an attacker captures
a fresh authentic acknowledgment frame sent from a node B to a node A. It is
crucial that the captured acknowledgment frame was not received by A, e.g, due
to having been jammed. Jamming is, however, not the only possible method
for capturing such an acknowledgment frame. Alternatively, an attacker may
inject or replay a unicast frame to B under the name of A. Since IEEE 802.15.4
security permits receivers to send acknowledgment frames prior to checking the
authenticity and freshness of the unicast frame that is being acknowledged,
B may reply with a fresh authentic acknowledgment frame destined to A like
in Figure 5.4. In the second phase, when A sends a unicast frame to B, the
attacker replays the captured acknowledgment frame so as to trick A into be-
lieving that its unicast frame was successfully received, though it might have
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Figure 5.4: Acknowledgment spoofing attack against ContikiMAC

been jammed for example. This attack works out if A has not seen a greater
frame counter than that of the captured acknowledgment frame from B in the
meantime. Echoing sequence numbers (introduced in Section 2.1.1.3) only com-
plicates acknowledgment spoofing attacks since sequence numbers reoccur every
28 = 256 increments, thus rendering coincidences likely. After all, attackers can
easily predict a node’s next sequence number via eavesdropping and capture a
fitting acknowledgment frame in the first phase. In the context of ContikiMAC,
acknowledgment spoofing attacks entail three repercussions. First, a sender is
misled into believing that its unicast frame was successfully received. This can
result in the loss of important messages or the continuation to use bad links
[36]. Second, ContikiMAC’s phase-lock optimization learns a wrong wake-up
time, likely causing subsequent transmissions to the affected neighbor to fail.
Third, ContikiMAC’s phase-lock optimization may ultimately decide to relearn
the wake-up time of the affected neighbor, which then consumes much energy.

A collision attack is a special reactive jamming attack, where the attacker
jams unicast or acknowledgment frames with the goal of provoking retransmis-
sions. In the context of ContikiMAC, a collision attack causes a victim node
to strobe for long since no acknowledgment frame comes back. The incurred
energy consumption increases further if the attacker interferes with subsequent
retransmissions, too. To some extent, ContikiMAC’s phase-lock optimization
mitigates collision attacks by shortening the maximum duration of a strobe
of unicast frames once a receiver’s wake-up time is known. However, recall
that for handling clock drift, ContikiMAC’s phase-lock optimization relearns
the wake-up time of a receiver if unicast transmissions to the receiver tend to
fail. Attackers can hence aggravate collision attacks by repeating them.

Similarly, we identified a variation of collision attacks that we call interrup-
tion attacks. Interruption attacks exploit that ContikiMAC checks whether the
channel is still free between each consecutively strobed frame. If the channel
is no longer free, ContikiMAC starts over with strobing the frame after a ran-
dom back off period, unless a maximum number of retransmissions is reached
already. Accordingly, in an interruption attack, an attacker jams the channel
between consecutively strobed frames so as to provoke retransmissions.

Moreover, a transmission-oriented internal denial-of-sleep attack against
ContikiMAC is to inject what we call a deaf node into a victim network.
A deaf node intentionally acknowledges transmissions only after a couple of
retransmissions or not at all.
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Figure 5.5: Attack tree of denial-of-sleep attacks against CSL

5.1.3 CSL

Figure 5.5 shows an attack tree of our identified denial-of-sleep attacks against
CSL.

5.1.3.1 Reception-Oriented Denial-of-Sleep Attacks

Recall that CSL detects incoming transmissions by shortly listening for a wake-
up frame. More specifically, when waking up, CSL shortly enables the receive
mode to listen for an SHR. If an SHR is detected and the subsequent frame turns
out to be a valid wake-up frame, CSL sleeps until shortly before the announced
rendezvous time. Then, CSL re-enables the receive mode to listen for another
SHR. If an SHR is detected, CSL proceeds to receive the subsequent payload
frame. Accordingly, pure jamming attacks do not cause CSL to stay longer in
receive mode. However, an attacker can mislead CSL into staying longer in
receive mode by launching broadcast, unicast, or droplet attacks. To do so, an
attacker injects or replays a sequence of wake-up frames followed by a payload
frame that is either a broadcast frame, unicast frame, or droplet. In effect,
CSL will receive, process, and potentially acknowledge the injected or replayed
payload frame. Moreover, a method for aggravating broadcast, unicast, and
droplet attacks against CSL is to set the Frame Pending bit of the injected
or replayed payload frame. If a receiver does not check the authenticity and
freshness of a payload frame right after its reception, the receiver will stay in
receive mode since he expects another payload frame. That payload frame may,
again, have the Frame Pending bit set and so on.

Besides, attackers may use captured cryptographic keys to inject chatty
nodes into a victim network, which is not different from ContikiMAC.

5.1.3.2 Transmission-Oriented Denial-of-Sleep Attacks

CSL is also vulnerable to collision, pulse-delay, and acknowledgment spoofing
attacks. A collision attack against CSL is depicted in Figure 5.6. To some
extent, CSL’s optimization of shortening wake-up sequences mitigates collision
attacks. But, collision attacks can also deprive CSL of updating stored wake-
up times for long, thus causing the uncertainty about the affected neighbor’s
wake-up time to increase and wake-up sequences to him to stretch. Pulse-
delay attacks may be launched against any frame that piggybacks a CSL phase,
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Figure 5.6: Collision attack against CSL. Interfering with unicast transmissions
ensues energy-consuming retransmissions, as well as the uncertainty about the
affected neighbor’s wake-up time to extend.

Sender Receiver Attacker

Figure 5.7: Pulse-delay attack against CSL. Jamming frames that piggyback a
CSL phase and replaying these jammed frames delayed misleads victim nodes
into learning wrong wake-up times, likely causing subsequent transmissions to
the affected neighbor to fail.

as exemplified in Figure 5.7. A delayed frame passes IEEE 802.15.4 security
since IEEE 802.15.4 security considers frames fresh as long as they contain a
greater frame counter than the last authentic frame with that frame counter.
Further, since the piggybacked CSL phase of a delayed frame is relative to its
time of transmission, CSL learns wrong wake-up times as a result. Ultimately,
subsequent unicast transmissions to the affected neighbor are likely to fail, thus
ensuing retransmissions, too. Again, these repercussions exacerbate over time
as the uncertainty about the affected neighbor’s wake-up time extends. Finally,
acknowledgment spoofing attacks can be launched against CSL in the same
manner as against ContikiMAC.

Besides, internal attackers may inject deaf nodes into a victim network, too.

5.1.4 TSCH

Figure 5.8 shows an attack tree of our identified denial-of-sleep attacks against
TSCH.

5.1.4.1 Reception-Oriented Denial-of-Sleep Attacks

TSCH is also vulnerable to broadcast, unicast, and droplet attacks. Moreover,
an attacker can schedule the injection or replay of a frame or droplet so that its
SHR arrives at the end of the reception period of duration RxWait. In effect,
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Figure 5.8: Attack tree of denial-of-sleep attacks against TSCH

TSCH not only stays in receive mode for RxWait, but also for the time it takes
to receive the bulk of the injected or replayed frame or droplet.

Apart from broadcast, unicast, and droplet attacks, we also identified one
other external denial-of-sleep attack that causes TSCH to stay longer in receive
mode. We call this attack beacon jamming. Recall that unsynchronized TSCH
nodes repeatedly enter the receive mode until they overhear an appropriate
beacon frame. Thus, jamming beacon frames causes an unsynchronized TSCH
node to stay in receive mode almost continuously, which is extremely energy
consuming. Similarly, a variation of this attack is to continuously inject frames
so as to keep unsynchronized TSCH nodes busy with demodulating unwanted
frames instead of beacon frames. Beacon jamming can not only be performed at
deployment time when TSCH nodes are unsynchronized anyway, but potentially
at any time by desynchronizing victim nodes beforehand. For this, an attacker
can, e.g., reactively jam resynchronization-related frames or inject unwanted
frames, too. Additional methods for desynchronizing TSCH nodes are pulse-
delay and acknowledgment spoofing attacks, both of which we discuss shortly.

Besides, internal attackers can not only desynchronize TSCH nodes in vari-
ous ways [161], but also inject chatty nodes into a victim network.

5.1.4.2 Transmission-Oriented Denial-of-Sleep Attacks

Figure 5.9 depicts a pulse-delay attack against TSCH’s frame-based resynchro-
nization [161]. The general idea is to jam a frame that is used for frame- or
acknowledgment-based resynchronization and to replay the jammed frame later
on. As a result, victim nodes are tricked into “moving to the future”. However,
delaying frames during a frame-based resynchronization can not cause the time
offset Offset to grow larger than RxWait as delayed frames will either be missed
or rejected otherwise. This is because receivers only stay in receive mode for
RxWait and replaying a frame within a later timeslot causes receivers to reject
the frame since they will use a different CCM nonce to check its MIC. Simi-
larly, senders of unicast frames only accept acknowledgment frames AckDelay

after transmitting for AckWait, as shown in Figure 2.7. Thus, Offset remains
smaller or equal than the minimum over {RxWait, AckWait} when an attacker
delays unicast frames during an acknowledgment-based resynchronization.

As for acknowledgment spoofing attacks, these are more difficult against
TSCH, but seem feasible if receivers send acknowledgment frames prior to check-
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Figure 5.9: Pulse-delay attack against TSCH’s frame-based resynchronization
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Figure 5.10: Acknowledgment spoofing attack against TSCH’s acknowledgment-
based resynchronization

ing the authenticity and freshness of the unicast frame that is being acknowl-
edged, as shown in Figure 5.10. In the first phase of the attack, an attacker
captures a fresh authentic acknowledgment frame by injecting or replaying a
unicast frame to a node B under the name of another node A. In the second
phase of the attack, within the same timeslot, when A sends a frame to B, the
attacker replays the captured acknowledgment frame so as to trick A into be-
lieving that its frame was successfully received. As both phases have to happen
within one timeslot, the attacker must be quite fast. This may still be feasible
when injecting or replaying a very short frame right when B wakes up, as shown
in Figure 5.10. The short-term repercussions of an acknowledgment spoofing
attack against TSCH’s acknowledgment-based resynchronization are (i) that the
victim node “moves to the past” by RxWait at most and (ii) that the victim
node is tricked into believing that its unicast frame was successfully received.

Although RxWait and AckWait impose a limit on the time offset due to
pulse-delay and acknowledgment spoofing attacks, attackers can cause a larger
time offset in two ways. First, as for multi-hop TSCH networks, attackers can
launch such attacks at multiple hops so that time offsets propagate and hence
accumulate. Second, as for TSCH networks that use Chang et al.’s adaptive
resynchronization [91], false time offsets lead to wrong estimates of clock drifts,
which also aggravates pulse-delay and acknowledgment spoofing attacks.

The long-term repercussions of pulse-delay and acknowledgment spoofing
attacks are fourfold. First, victim nodes and their timing children desynchro-
nize and may become unable to communicate with properly synchronized nodes.
Thus, a whole subtree of nodes may waste energy for retransmissions of unicast
frames. Second, in order to synchronize again, unsynchronized TSCH nodes
have to listen for a beacon frame and hence become vulnerable to beacon jam-
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Figure 5.11: Attack tree of denial-of-sleep attacks against LWB

ming. Third, if TSCH’s time synchronization is also used for application-specific
tasks, victim nodes may, e.g., report sensor readings with wrong timestamps or
actuate at wrong times. Forth, once victim nodes are properly synchronized
again, they may experience a timing loop. If so, CCM nonces may reoccur and
thus confidential data may leak [170]. Also, replay attacks may become possible.

Another method for misleading TSCH into staying longer in transmit mode
is a collision attack. Collision attacks against TSCH work in the same manner
as discussed in the context of ContikiMAC and CSL. In the context of TSCH,
collision attacks are, however, much less severe since TSCH does not need to
wake up the receiver side via strobing or wake-up sequences.

Additionally, internal attackers can inject deaf nodes into a victim network.

5.1.5 LWB

Figure 5.11 shows an attack tree of our identified denial-of-sleep attacks against
LWB.

5.1.5.1 Reception-Oriented Denial-of-Sleep Attacks

In LWB, the equivalent of TSCH’s beacon frames are schedule floods. Schedule
floods occur at the beginning and end of each round and serve two purposes.
First, they assign communication slots to LWB nodes. Second, schedule floods
allow unsynchronized LWB nodes to synchronize with the time of the host, as
well as synchronized LWB nodes to resynchronize with the time of the host. Yet,
when an attacker repeatedly prevents the reception of schedule floods, e.g., by
injecting unwanted frames or jamming reactively, victim nodes desynchronize
and eventually fall back on listening for schedule floods. Then, as long as an
attacker continues to prevent the reception of schedule floods, victim nodes stay
in receive mode 100% of their time, which is highly energy consuming.

As for chatty nodes, they may cause LWB to schedule extra communication
slots and then incur an increased energy consumption on every node.

5.1.5.2 Transmission-Oriented Denial-of-Sleep Attacks

While LWB does not define retransmission mechanisms, upper layers may notice
packet loss and hence initiate end-to-end retransmissions. Thus, collision attacks
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may still be launched against LWB in order to cause victim nodes to stay longer
in transmit mode. Moreover, if end-to-end retransmissions are provoked, LWB
potentially schedules additional communication slots, thereby causing all nodes
in the network to stay longer in receive mode, too.

Similarly, malicious nodes may decide to omit acknowledgments at upper
layers, but we do not count such attacks as attacks against LWB.

5.1.6 Discussion

ContikiMAC, CSL, TSCH, as well as LWB are vulnerable to various denial-of-
sleep attacks. The most severe denial-of-sleep attack we identified is beacon
jamming. Beacon jamming is particularly severe because it can be launched by
external attackers and because it holds victim nodes in receive mode indefinitely.
To counter beacon jamming, we considered three approaches. First, a straight-
forward approach is to send unsynchronized nodes back to sleep for a while
when they do not detect an appropriate beacon frame (resp. schedule flood) for
some time span. This way, one could limit the severity of beacon jamming, but
one would decelerate the recovery from desynchronizations at the same time,
resulting in a worse user experience. Second, an approach that would overcome
this drawback is a hybrid MAC protocol. More specifically, unsynchronized
TSCH nodes could sleep most of their time if they used an asynchronous MAC
protocol for receiving beacon frames (resp. schedule floods) and if synchronized
nodes used the asynchronous MAC protocol for sending beacon frames (resp.
schedule floods). However, the implementation complexity and runtime over-
head of such a hybrid MAC protocol would be immense. Third, unsynchronized
TSCH nodes could detect beacon jamming and react to it. Yet, while detecting
jamming attacks is feasible to some extent [162, 171], it is virtually impossible
to discriminate between frames from co-located IEEE 802.15.4 networks and
frames injected by an attacker so as to keep unsynchronized TSCH nodes busy
with demodulating unwanted frames instead of beacon frames (resp. sched-
ule floods). Altogether, none of our three considered approaches to countering
beacon jamming is promising.

Another hard-to-solve issue with both TSCH and LWB is their susceptibility
to internal attackers. As for TSCH, Yang et al. showed that internal attackers
can launch various attacks against TSCH’s mechanisms for time synchronization
[161]. Fixing these vulnerabilities, appears to be a major undertaking in its
own right. As for LWB, it seems even more difficult to defend against internal
attackers because leveraging constructive interference necessitates either the use
of network-wide keys, which do not provide any protection against internal
attackers, or the use of digital signatures, which are energy consuming [21].

Both CSL and ContikiMAC are not prone to these issues with TSCH and
LWB. In fact, both CSL and ContikiMAC are (i) immune to beacon jamming,
(ii) immune to time synchronization attacks except for the more tractable pulse-
delay and acknowledgment spoofing attacks, and (iii) compatible with pairwise
session keys. Thus, our review of prevalent MAC protocols retains ContikiMAC
and CSL as promising candidates for further development.



88 CHAPTER 5. DENIAL-OF-SLEEP-RESILIENT MEDIUM ACCESS ...

5.2 Related Work

Below, we sum up prior work on protecting medium access control against
denial-of-sleep attacks. We will first go into existing defenses against reception-
oriented denial-of-sleep attacks and then move on to existing defenses against
transmission-oriented denial-of-sleep attacks. Lastly, we highlight research gaps.

5.2.1 Reception-Oriented Denial-of-Sleep Attacks

Hsueh et al. proposed a defense against unicast attacks for two asynchronous
MAC protocols for IEEE 802.15.4 networks [40], namely X-MAC and A-MAC
[172, 173]. In X-MAC, receivers wake up periodically and scan the channel
for a wake-up frame like in CSL. However, in X-MAC, wake-up frames do not
contain a rendezvous time and are spaced by short silence periods. Upon re-
ception of a wake-up frame, the receiver replies with an acknowledgment frame,
whereupon the sender transmits the payload frame. In A-MAC, each node reg-
ularly transmits probe frames. Senders wait until they receive a probe frame
from the intended receiver and thereupon transmit an acknowledgment frame
followed by the payload frame. To secure X-MAC and A-MAC against unicast
attacks, Hsueh et al. suggest exchanging random numbers during the wake-up
frame/acknowledgment frame and probe frame/acknowledgment frame negoti-
ation, respectively. These random numbers are used to derive a one-time pass-
word (OTP), which is then prefixed to the payload frame. While receiving the
payload frame, receivers check if the prefixed OTP is valid and otherwise disable
the receive mode immediately. Unfortunately, Hsueh et al.’s method is neither
applicable to ContikiMAC nor CSL since, in ContikiMAC and CSL, frames are
sent without prior negotiation. Also, a drawback of X-MAC compared to both
ContikiMAC and CSL is the higher energy consumption per wake up [60]. Be-
sides, a basic drawback of A-MAC compared to both ContikiMAC and CSL is
that probe frames may interfere with the incoming transmissions of neighbor-
ing nodes. Performing a CCA before transmitting a probe frame mitigates this
issue, yet not entirely due to the hidden node problem.

He et al. considered adopting a technique called frame masking for prevent-
ing droplet attacks [72, 169]. As per IEEE 802.15.4, O-QPSK SHRs are actually
fixed. Nevertheless, CC2420 transceivers support changing an SHR’s final two
bytes to a custom value [138]. Accordingly, the idea of frame masking is to
replace an SHR’s final two bytes with a pseudo-random value that is derived
from a pairwise key between the sender and the receiver, as well as the index of
the current timeslot. In effect, receivers only detect IEEE 802.15.4 frames with
valid “one-time SHRs”. Yet, owing to deriving one-time SHRs from pairwise
keys, frame masking lacks support for broadcast frames.

Similar concepts appeared in the context of wake-up receivers [42, 43, 44].
Falk et al. designed a wake-up receiver, which only wakes up upon receiving
an OTP that is contained in a list of acceptable OTPs [42]. Yet, in Falk et
al.’s design, nodes have to run an energy-consuming initialization protocol and
senders and receivers can get out of sync [43]. Aljareh et al. solved both
problems via time-synchronized OTPs [43]. Capossele et al. expanded on Falk
et al.’s and Aljareh et al.’s work by (i) adding support for broadcast frames and
(ii) obviating the need for time synchronization [44].

Raymond et al. devised a reactive defense against broadcast attacks, enti-
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tled Clustered Adaptive Rate Limiting (CARL) [174]. CARL detects broadcast
attacks by caching whether recent wake ups led to receiving an inauthentic
or replayed broadcast frame. In response to broadcast attacks, CARL lowers
the wake-up interval. Furthermore, Raymond et al. addressed the problem
that lowering the wake-up interval should be done in a coordinated manner as
senders need to be aware of the wake-up interval of receivers in order to convey
frames reliably. To this end, they suggest that nodes do not lower their wake-up
interval immediately when they detect a broadcast attack. Instead, nodes that
detected a broadcast attack and have a frame to send, send this frame and only
thereafter lower their wake-up interval. Other nodes that also detected a broad-
cast attack wait until they receive a frame and thereupon lower their wake-up
intervals. However, if a node neither receives nor sends a frame, the node even-
tually lowers its wake-up interval after a timeout. Yet, this way of coordinating
the response to broadcast attacks (i) defers the reaction to broadcast attacks
and (ii) does not exclude the possibility that some nodes temporarily use differ-
ent wake-up intervals than other nodes, potentially leading to retransmissions
of unicast frames, as well as to an increased loss of broadcast frames.

Raymond et al. also devised a reactive defense against jamming attacks [39].
In response to jamming attacks, Raymond et al. suggest switching to an LPM
for some time span. Yet, their reactive defense against jamming attacks does
not coordinate the response to jamming attacks. Hence, neighbors of victim
nodes may retransmit pointlessly in the face of jamming attacks.

Chatty nodes are a generalization of PDoS attacks. In a PDoS attack, a
malicious node sends packets to distant destinations, thereby causing each node
along the path to expend energy for receiving, processing, and forwarding [108].
To counter PDoS attacks, many so-called en-route filtering schemes were pro-
posed [108, 175, 176]. Their common idea is to add extra authentication tags to
packets so that intermediary nodes can filter out packets en-route [108, 175, 176].
However, current en-route filtering schemes incur a high communication over-
head and do not protect against chatty nodes that send fresh authentic frames
to one-hop neighbors. Moreover, current en-route filtering schemes only filter
out unwanted packets after having consumed energy for their reception already.
Hence, we conjecture that a more lightweight, more holistic, as well as more ef-
fective defense would be to rate-limit the number of frames that a node is willing
to receive from a particular neighbor. Furthermore, if a neighbor exceeded this
rate, its frames could be rejected early during reception.

5.2.2 Transmission-Oriented Denial-of-Sleep Attacks

Ren et al. put forward a reactive defense against collision attacks [41]. They
use an intricate threshold rule to detect collision attacks, as well as many other
denial-of-sleep attacks. If a node detects any denial-of-sleep attack, they suggest
switching to an LPM for some time span, similar to Raymond et al.’s reactive
defense against jamming attacks. However, Ren et al. also neglected the prob-
lem that transmissions fail if a receiver is currently reacting to denial-of-sleep
attacks. Moreover, as the neighbor of a victim node may retransmit pointlessly,
the neighbor may suspect a collision attack and enter an LPM, too. Thus, a
single denial-of-sleep attack may propagate through a whole network.

Song et al. defined delay attacks as attacks where an “attacker deliberately
delays some of the time messages [. . .] so as to fail the time synchronization
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Figure 5.12: Susceptibility of one-time SHRs to hidden wormholes

process” [177]. Especially internal attackers can launch delay attacks since
compromised nodes can send time messages at will [161]. Moreover, Ganeriwal
et al. found that external attackers can launch pulse-delay attacks. In order
to counter pulse-delay attacks, Ganeriwal et al. proposed the Secure Pairwise
Synchronization Protocol (SPS) [156]. SPS does not actually prevent pulse-
delay attacks, but confines the maximum time offset due to pulse-delay attacks.

5.2.3 Research Gaps

Synergistic integration of OTPs: An effective pattern for defending against
broadcast, unicast, as well as droplet attacks emerged to be the embedding
of OTPs in synchronization or frame headers. The general idea is to
validate the embedded OTPs during reception and, if an OTP turns out
invalid, to discard the incoming transmission without receiving the rest
of it. For generating these OTPs, it is common to pass a key derivation
function a symmetric key and a varying portion, such as a frame counter
[42, 44], a timeslot index [43, 72], or a random number [40].

However, an open issue is the integration of session key establishment
protocols, such as AKES, with an OTP-based defense against broadcast,
unicast, and droplet attacks. More precisely, Hsueh et al. and Capossele
et al. made proposals for such an integration [40, 44], but their proposals
leave nodes vulnerable to broadcast, unicast, and droplet attacks during
session key establishment. Moreover, they suggest establishing extra keys
for the purpose of generating OTPs, rather than looking for synergies with
protocols that establish session keys for basic wireless security anyway.

Practical implementation of OTPs: Another open research question is
how to practically implement an OTP-based defense against broadcast,
unicast, and droplet attacks. Indeed, the effectiveness of such defenses
was shown in simulation studies [40, 44], but no practical implementation
is available, yet. An exception is frame masking for which a prototype was
implemented using CC2420 transceivers [72]. However, newer transceivers
do not support changing SHRs anymore [14]. Even CC2420 transceivers
have fairly limited support for changing SHRs - these transceivers can only
scan for single SHR at a time. This restriction raises three vulnerabilities
when trying to add support for broadcast frames to frame masking:

1. First, assume that the receivers of a broadcast frame are indefinite,
e.g., during neighbor discovery. Then, the one-time SHR of the
broadcast frame should be derived from a network-wide key. Further-
more, all nodes that currently listen for indefinite broadcast frames
should be ready to accept that SHR. Attackers can exploit this by
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replaying the one-time SHR of the broadcast frame in the same times-
lot elsewhere. For example, in Figure 5.12, the one-time SHR sent
from A to B is relayed by the hidden wormhole W to wake up C.

2. Second, if a broadcast frame is only destined to known neighbors
B1, . . . , Bn, one can derive its one-time SHR from a group key so as
to limit the scope of the one-time SHR. However, B1, . . . , Bn may
also wish to accept broadcast frames from their neighbors in the
same timeslot and so on. In this case, one-time SHRs of targeted
broadcast frames are to be derived from a network-wide key, too.
This can, again, be exploited via a hidden wormhole.

3. Third, if a node accepts both unicast and broadcast frames in a
single timeslot, unicast frames have to have the same one-time SHRs
as broadcast frames. Consequently, in Figure 5.12, an eavesdropped
one-time SHR of a unicast frame from A to B can also be misused to
wake up C if both C and B accept broadcast frames in this timeslot.

Holistic defense against chatty nodes: Current en-route filtering schemes
incur a high communication overhead, do not fully protect against chatty
nodes, and only filter out unwanted packets after having consumed energy
for their reception already. Hence, a more lightweight, more holistic, and
more effective defense has to be developed.

Effective defense against collision attacks: Since Ren et al.’s defense
against collision attacks may even aggravate collision attacks [41], an
effective defense against collision attacks is yet to be found.

Lightweight defense against pulse-delay attacks: While Ganeriwal et
al.’s SPS prevents pulse-delay attacks [156], it incurs a high communi-
cation overhead since it requires sending cryptographic random numbers
in addition. Thus, a lightweight defense against pulse-delay attacks is
needed.

First defenses against certain denial-of-sleep attacks: Thus far, there
exist - to the best of our knowledge - no defenses against beacon jamming,
interruption attacks, acknowledgment spoofing attacks, and deaf nodes.

5.3 Summary

In this chapter, we have reviewed the four - according to our impression - most
prevalent MAC protocols for IEEE 802.15.4 networks regarding their denial-of-
sleep resilience, namely ContikiMAC, CSL, TSCH, and LWB. A particularly
severe denial-of-sleep attack we have identified is beacon jamming against LWB
and TSCH. Moreover, securing the time synchronization of LWB and TSCH
against internal attackers appears to be a hard-to-solve issue in its own right.
Thus, our review has retained ContikiMAC and CSL as the most promising
starting points for developing a denial-of-sleep-resilient MAC protocol.

Unfortunately, little can be drawn from prior work in the endeavor of se-
curing ContikiMAC and CSL against denial-of-sleep attacks. On the one hand,
there is the promising OTP-based approach to defending against broadcast, uni-
cast, and droplet attacks. But, the practical implementation of OTPs, as well
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as their synergistic integration with basic wireless security constitute research
gaps. On the other hand, Ganeriwal et al.’s SPS prevents pulse-delay attacks,
but incurs a high communication overhead. As for all other denial-of-sleep at-
tacks against ContikiMAC and CSL, it is necessary to develop denial-of-sleep
defenses practically from scratch.



Chapter 6

Denial-of-Sleep Defenses for
ContikiMAC

This chapter reports on our development steps toward a denial-of-sleep-
protected version of ContikiMAC. For the scope of this chapter, we restrict
ourselves to external attackers and also assume the use of group session keys.
Later, in Chapter 7, we will widen our scope to internal attackers.

6.1 Overview

In sum, this chapter reports on our following development steps:

• For mitigating broadcast, unicast, as well as droplet attacks against
ContikiMAC, we propose Practical On-the-fly Rejection (POTR). POTR
adopts the emergent pattern of embedding OTPs, yet features three main
novelties. First, rather than depending on special hardware, such as
wake-up or CC2420 transceivers, POTR leverages the common capability
of IEEE 802.15.4 transceivers of parsing incoming frames during recep-
tion. Second, POTR integrates with AKES so as to mitigate broadcast,
unicast, and droplet attacks during session key establishment, too. Third,
POTR uses the same keys as IEEE 802.15.4 security, thereby obviating
the establishment of extra keys. Such a reuse of keys in different con-
texts often enables related-key attacks, but POTR avoids this potential
vulnerability by staying within the framework of CCM.1

• To mitigate jamming attacks, as well as to further mitigate broadcast,
unicast, and droplet attacks, we propose a tweak to ContikiMAC named

1We will present a revised version of POTR, which, unlike originally defined [6], integrates
with CCM and uses LBCs to protect against broadcast, unicast, and droplet attacks dur-
ing session key establishment. Originally, POTR did not integrate with CCM, but used an
unproven method for preventing related-key attacks. Moreover, instead of LBCs, POTR orig-
inally used special OTPs for protecting against broadcast, unicast, and droplet attacks during
session key establishment, which ensued two problems. First, since the insertion of PAN IDs
would have delayed the validation of OTPs of HELLOs, HELLOs from co-located IEEE 802.15.4
networks were processed and answered with HELLOACKs. Second, since the special OTPs of
HELLOACKs and ACKs did not change in each transmission and retransmission, it could happen
that retransmitted HELLOACKs and ACKs were considered replayed and not acknowledged.
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dozing optimization. The dozing optimization not only helps in mitigat-
ing jamming, broadcast, unicast, and droplet attacks, but also reduces
ContikiMAC’s energy consumption for receiving legitimate frames.

• To protect ContikiMAC against acknowledgment spoofing, pulse-delay,
and collision attacks, we propose the Secure Phase-Lock Optimization
(SPLO). To prevent pulse-delay attacks, in particular, SPLO secures ac-
knowledgment frames much like Ganeriwal et al.’s SPS [156]. However, as
opposed to SPS, SPLO prevents pulse-delay attacks without any commu-
nication overhead and is closer to practice.2

• We integrate the last bits (LB) optimization into IEEE 802.15.4 security,
AKES, POTR, and SPLO [147, 178]. While the LB optimization is in-
tended to reduce the per-frame overhead of a frame counter-based replay
protection, we demonstrate that the LB optimization also helps in ac-
celerating POTR’s on-the-fly rejection of unwanted frames and hence in
mitigating broadcast, unicast, as well as droplet attacks.3

• Next, we propose an intra-layer optimization between ContikiMAC
and IEEE 802.15.4 security, named Intra-Layer Optimization for IEEE
802.15.4 Security (ILOS). Essentially, ILOS replaces frame counters with
what we term wake-up counters. This brings several advantages. Most
notably, ILOS achieves strong freshness, thus overcoming a basic issue
with the frame counter-based replay protection of IEEE 802.15.4 security.

Besides, to prevent interruption attacks against ContikiMAC, we propose to
not perform CCAs between successively strobed frames. While this increases the
probability of inter-network collisions, intra-network collisions are still avoided
by the two CCAs that precede each strobe. The existing open-source imple-
mentation of ContikiMAC already provides the possibility to not perform CCAs
between successively strobed frames. Henceforth, we assume this configuration.

6.2 POTR: Practical On-the-Fly Rejection

In this section, we propose and evaluate POTR.

6.2.1 Design

POTR introduces a special frame format, as well as corresponding procedures
for validating incoming frames during reception.

2We will present a revised version of SPLO, fixing two flaws within the initialization of
wake-up times [5]. First, whereas, in the original version of SPLO, ACKs are acknowledged
before checking their authenticity, in our revised version of SPLO the authenticity of ACKs is
checked beforehand. This change is necessary to prevent acknowledgment spoofing attacks
against ACKs. Second, whereas, in the original version of SPLO, the random number Q is
generated by the HELLOACK receiver, in our revised version of SPLO the HELLOACK sender
generates Q. This change is necessary to fully prevent pulse-delay attacks against HELLOACKs.
Besides, in our revised version of SPLO, wake-up times are initialized earlier during AKES’
three-way handshake. Hence, as opposed to the original version of SPLO, our revised version
of SPLO also mitigates collision attacks against transmissions of HELLOACKs and ACKs.

3We will present a streamlined integration of the LB optimization. Whereas, for resynchro-
nizing frame counters, we originally required receivers to respond to UPDATEs with UPDATEACKs
[6, 7], here we piggyback the receiver’s response on acknowledgment frames.
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6.2.1.1 Frame Format

The intention behind POTR’s special frame format is to reject unwanted IEEE
802.15.4 frames as early as possible during reception. The special frame format
of POTR is shown in Figure 6.1. In comparison to the IEEE 802.15.4-compliant
frame format shown in Figure 2.2b, POTR makes seven changes:

1. First, POTR uses the IEEE 802.15.4-compliant customization mechanism
of extended frame types. Furthermore, in conjunction, the Extended
Frame Type and Subtype fields imply which fields follows and whether
an acknowledgment frame is expected, thereby obviating the Frame Con-
trol field. Overall, POTR supports eight kinds of frames, namely HELLO,
HELLOACK, ACK, unicast data, unicast command, broadcast data, broad-
cast command, and acknowledgment frames. The difference between data
and command frames is that data frames are passed to the upper layer,
whereas command frames are processed at the MAC layer.

2. Second, POTR always elides the Destination Address and PAN ID fields
in frames with OTPs. Instead, a frame with an OTP is assumed to be
intended for a receiver if the receiver finds the OTP valid. Besides, in line
with AKES, two simplifications of POTR are to assume (i) a network-wide
agreement on using either short or extended addresses and (ii) that short
addresses are unique within an IEEE 802.15.4 network.

3. Third, POTR reduces the Auxiliary Security Header field to the Frame
Counter field, thus cutting off the Security Control and Key Identifier
fields. Instead of sending the Security Control field, POTR assumes a
preloaded security level. Alternatively, a security level may be negotiated
during session key establishment, as well [179]. Instead of sending the
Key Identifier field, POTR looks up keys by the sender’s address and the
frame’s type. Finally, a crucial change to the Auxiliary Security Header
field is that POTR increments the frame counter in retransmissions, too.

4. Forth, POTR adds the l-bit OTP field for embedding OTPs. The gener-
ation and validation of OTPs will be described shortly.

5. Fifth, POTR moves the Sequence Number field right behind the OTP
field. This is because the validation of OTPs should happen as soon as
possible, whereas the detection of duplicates has lower priority. Note that
broadcast frames do not include a sequence number. This is because
ContikiMAC never retransmits broadcast frames with our defense against
interruption attacks anyway. Adding sequence numbers to HELLOACKs and
ACKs is also unnecessary since AKES considers duplicated HELLOACKs and
ACKs replayed and hence rejects them anyway.

6. Fifth, to avoid that a frame can fall between ContikiMAC’s two regular
CCAs, POTR adds a sufficient number of padding bytes to each frame.

7. Sixth, POTR removes the FCS field as all frames are authenticated via
CCM MICs and thus integrity protected anyway. The securing of acknowl-
edgment frames, however, is deferred to Section 6.4.
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Figure 6.1: Frame format of POTR

Table 6.1: CCM Inputs as per POTR. CA denotes A’s frame counter, IDB

denotes B’s MAC address, and ID∗ denotes the broadcast MAC address
Occasion CCM key CCM nonce
OTP of a broadcast data or com-
mand frame from A

A’s group session
key KA,∗

ID∗‖CA‖0xFF

OTP of a unicast data or command
frame from A to B

A’s group session
key KA,∗

IDB‖CA‖0xFF

OTP of an ACK from A to B Pairwise session
key K ′A,B

IDB‖CA‖0xFF

Authentication and encryption of a
HELLO, broadcast data, or broadcast
command frame from A

A’s group session
key KA,∗

ID∗‖CA‖0xFE

Authentication and encryption of
a unicast data or command frame
from A to B

A’s group session
key KA,∗

IDB‖CA‖0xFE

Authentication and encryption of a
HELLOACK or ACK from A to B

Pairwise session
key K ′A,B

IDB‖CA‖0xFE

6.2.1.2 On-the-Fly Rejection

When ContikiMAC detects the SHR of a frame, POTR takes over and performs
the following checks during reception. Throughout, if any check fails, POTR
disables the receive mode immediately, thereby stopping further energy loss.

Data and command frames: Upon reception of a data or command frame,
POTR first ensures that the sender is stored as a permanent neighbor by
inspecting the Source Address field. If so, POTR proceeds with generating
the expected OTP and checks if it matches the one in the incoming frame.
The OTP of a data or command frame is generated as the CCM MIC
over the length of the data or command frame with the sender’s group
session key as CCM key and a special CCM nonce shown in Table 6.1.
Finally, POTR makes sure that the frame is fresh and, if so, updates the
anti-replay data about the sender.

ACKs: Analogously, upon reception of an ACK, POTR checks that the sender
is stored as a tentative neighbor by inspecting the Source Address field. If
true, POTR proceeds with generating the expected OTP and checks if it
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the bucket’s capacity defines the acceptable
short-term rate of inauthentic and replayed HELLOs
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inauthentic and replayed HELLOs fill the bucket

Figure 6.2: Mitigation of broadcast and droplet attacks with HELLOs

matches the one in the incoming frame. The OTP of an ACK is generated
as the CCM MIC over the length of the ACK with the pairwise session key
as CCM key and a special CCM nonce shown in Table 6.1 (In spite of
establishing group session keys, AKES temporarily generates a pairwise
session key we can use at this point.). Finally, POTR makes sure that the
frame is fresh and, if so, updates the anti-replay data about the sender.

HELLOs: Upon reception of a HELLO, POTR first ensures that the HELLO is
not destined to a co-located IEEE 802.15.4 network by inspecting the
Destination PAN ID field. Next, POTR checks that the length of the
HELLO complies with POTR’s frame format. Then, if the sender of the
HELLO is not a permanent neighbor, POTR ascertains that the sender is
not a tentative neighbor already, as well as that AKES can reply with a
HELLOACK at all. In fact, AKES may be unable to reply with a HELLOACK

because AKES may run out of memory and because AKES restricts itself
to sending a maximum rate of HELLOACKs. Note, however, that AKES
is interested in receiving HELLOs from permanent neighbors since AKES
uses such HELLOs to trigger a reestablishment of session keys after reboots,
as well as to suppress redundant HELLOs. Lastly, POTR makes sure that
receiving the HELLO does not result in exceeding a maximum rate of in-
coming HELLOs. POTR implements this rate limitation via an LBC, as
illustrated in Figure 6.2. Yet, to avoid penalizing fresh authentic HELLOs,
the LBC is decremented again if a HELLO turns out authentic and fresh.

HELLOACKs: Upon reception of a HELLOACK, POTR ascertains that the
HELLOACK is not destined to another node and that its length complies with
POTR’s frame format. Also, POTR ensures that AKES recently sent a
HELLO at all and that AKES’ LBC for rate-limiting outgoing ACKs is not full
at the moment. Finally, POTR makes sure that receiving the HELLOACK

does not ensue exceeding a maximum rate of incoming HELLOACKs. Again,
POTR implements this rate limitation via another LBC and decrements
that LBC if a HELLOACK turns out authentic and fresh.

Acknowledgment frames: Upon reception of an acknowledgment frame,
POTR just ensures that its length is compliant with POTR’s frame
format.

6.2.2 Security Analysis

Below, we analyze the applicability of various attacks against POTR.
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6.2.2.1 Replay Attacks

POTR takes over the task of filtering out replayed data, command, and ACK

frames from IEEE 802.15.4 security and fulfills this task already during recep-
tion. Hence, a first aspect that is worth analyzing is the applicability of replay
attacks. Assume that a node A receives a replayed data, command, or ACK

frame that originated from a node B. Only if B is still stored as a permanent or
tentative neighbor and the CCM key from which the replayed OTP was derived
has not changed in the meantime, A may find the OTP of the replayed frame
valid. Yet, A will eventually reject the replayed frame since the contained frame
counter will not be greater than that of the last accepted frame from B. On the
other hand, if A missed the original frame and any subsequent frame from B,
A may find the replayed OTP valid and fresh, but only once. Also, note that
if an attacker replays an OTP as part of a frame that is longer than the frame
wherein the OTP was originally embedded, the OTP will become invalid.

6.2.2.2 Guessing Attacks

The probability of guessing an OTP right is 2−l. A repercussion of a correctly
guessed OTP is not only that the attacker’s frame is fully received, but also
that the respective anti-replay data gets corrupted. Thus, after a successful
guessing attack, legitimate data, command, and ACK frames may be considered
replayed. In the worst case, the affected nodes need to reestablish session keys
so as to recover from such a situation. If a reestablishment of session keys
becomes necessary, AKES will automatically do so since AKES deletes inactive
permanent neighbors and continuously discovers new neighbors. We suggest
setting l = 24 to trade off the repercussions of successful guessing attacks against
the per-frame overhead of longer OTPs. Shorter values of l become reasonable
when deriving OTPs from wake-up counters, as we will discuss in Section 6.6.

6.2.2.3 Broadcast, Unicast, and Droplet Attacks

Data, command, and ACK frames: Let us now consider a broadcast, unicast,
or droplet attack with a data, command, or ACK frame. If POTR finds the
OTP of such a frame invalid or replayed, POTR will discard the frame
early during reception, thereby stopping further energy loss and preventing
ContikiMAC from sending an acknowledgment frame, too. POTR does,
however, not prevent ContikiMAC from staying in receive mode during the
time span between a negative CCA and the detection of a frame’s SHR.
During this time span, ContikiMAC still only leaves the receive mode if
the fast-sleep optimization decides so. This is a basic limitation of POTR,
which we analyze and address in Section 6.3.

HELLOs and HELLOACKs: As for broadcast, unicast, and droplet attacks
with HELLOs or HELLOACKs, the protection provided by POTR is weaker.
This is because POTR accepts such frames up to a configurable rate
via LBCs. Nevertheless, even when configuring POTR’s LBCs to accept
HELLOs and HELLOACKs at moderate rates, the level of protection provided
by POTR is relatively strong. For illustration, let us compare the time
that ContikiMAC stays in receive mode anyway for doing two CCAs every
tw = 125ms with the time it takes to receive 64-byte frames at the rate of
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1
15Hz. When using the 2.4-GHz O-QPSK PHY, the time in receive mode
per CCA is 0.128ms as per IEEE 802.15.4. Thus, on a percentage basis,
ContikiMAC’s base time in receive mode is 100% × 0.128ms×2

tw
= 0.205%.

On the other hand, receiving a 64-byte frame plus the 6-byte O-QPSK

PHY header takes
70byte×8 bit

byte

250 kbit
s

= 2.24ms. Altogether, permitting Contiki-

MAC to receive 64-byte frames at a rate of 1
15Hz only adds 0.016% to the

base time in receive mode.

Acknowledgment frames: As for acknowledgment frames, POTR protects
against an increased energy consumption due to over-long acknowledgment
frames by validating the length of acknowledgment frames.

6.2.2.4 Hidden Wormholes

An idea to bypass POTR’s checks is to set up a hidden wormhole. Indeed, an
attacker can, e.g., relay HELLOs, HELLOACKs, and ACKs, thereby causing nodes
at the other end of the hidden wormhole to receive these frames. Moreover, if
an attacker subsequently also tunnels data and command frames, victim nodes
need to receive such frames, too. Fortunately, since AKES limits the number
of outgoing HELLOs, HELLOACKs, and ACKs, the number of additionally received
HELLOs, HELLOACKs, and ACKs under hidden wormhole attacks is limited, as well.
Furthermore, only UPDATEs are currently sent as command frames and at a low
rate. The rate of incoming data frames, on the other hand, depends on the
upper layers, which may include their own defenses against hidden wormholes.
For example, RPL uses a hysteresis to mitigate hidden wormholes [180].

6.2.3 Implementation

We first integrated POTR with the existing open-source implementation of Con-
tikiMAC [60]. However, we encountered two severe issues with this implementa-
tion of ContikiMAC. First, it blocks all other Protothreads while sending frames.
Second, as also reported by Uwase et al. [181], it is subject to timing issues. In
view of these two issues, we eventually opted for reimplementing ContikiMAC
entirely. Unlike the existing open-source implementation of ContikiMAC, our
reimplementation allows other Protothreads to progress while sending and re-
ceiving frames. For this, we make use of an enriched RADIO driver, which exposes
SFD, FIFOP, and TXDONE interrupts of CC2538 SoCs. SFD interrupts issue when
an SHR was detected. FIFOP interrupts issue as soon as FIFOP THR bytes can
be parsed or when a frame was completely received (The FIFOP interrupt has
a different behavior when enabling the in-built frame filtering of the CC2538
transceiver. However, since the in-built frame filtering of CC2538 transceivers
validates against the original IEEE 802.15.4 frame format and not POTR’s
frame format, our enriched RADIO driver disables the in-built frame filtering
of CC2538 transceivers). TXDONE interrupts issue when a frame was sent [14].
While other hardware platforms may not offer SFD, FIFOP, and TXDONE inter-
rupts, one may still be able to use our ContikiMAC implementation unmodified
by emulating these interrupts in software. Besides, we use Contiki-NG’s rtimer
module for scheduling wake ups, transmissions, and other events.

Within the FIFOP ISR, POTR performs its on-the-fly rejection. For example,
if it comes to validating an OTP, POTR (i) generates the expected OTP, (ii)
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Figure 6.3: Integration of our reimplementation of ContikiMAC into Contiki-
NG’s network stack, as well as into our implementation of AKES

busy-waits for the OTP field to arrive, and (iii) checks if both OTPs match.
Thus, the validation and reception of an OTP happens in parallel. Yet, a major
difficulty with implementing the on-the-fly rejection of POTR was concurrency.
This is because the bulk of Contiki-NG’s code can not be called from within
an ISR. To resolve this problem, we added locks so as to protect code regions
that should not be interrupted by POTR. Besides, we adapted Contiki-NG’s
packetbuf module to support parsing incoming frames within an ISR.

Figure 6.3 depicts how our reimplementation of ContikiMAC integrates into
Contiki-NG’s network stack and our implementation of AKES. At the RADIO

layer, we use our enriched cc2538 rf driver. At the MAC layer, the akes mac-

driver decorates our reimplementation of ContikiMAC, which is contained in
the contikimac driver. For assembling and parsing frames, the contikimac-

driver calls the akes mac framer, which, in turn, calls the contikimac-

framer potr. Optionally, POTR can be disabled, in which case an IEEE
802.15.4-compliant FRAMER is called instead of the contikimac framer potr.
Also, it is possible to run our reimplementation of ContikiMAC without AKES,
in which case the contikimac driver and the IEEE 802.15.4-compliant FRAMER
are called directly, i.e., without passing through AKES’ modules.

6.2.4 Evaluation

Using our implementation, we now demonstrate that, in comparison to using
no denial-of-sleep defense, POTR reduces the time that ContikiMAC spends in
receive mode in the face of unicast attacks with unicast data frames significantly.
Thereafter, we also measure the actual energy savings under broadcast and
unicast attacks with data frames. Lastly, we determine that POTR actually
saves program memory as compared to not using POTR.

6.2.4.1 Rejection Speed

As a baseline for comparison, it was first measured how long it takes to re-
ceive a maximum-length frame of 127 bytes. Concretely, an OpenMote A sent
maximum-length frames to another OpenMote B. During 100 receptions, B
logged the time between when a frame’s SHR was detected, which is signaled
by SFD interrupts, and when a frame was completely received, which is signaled
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Figure 6.4: Rejection speed of POTR

by FIFOP interrupts. The mean time between these two instants turned out
to be 4.129ms. This result accords with our expectations since the 2.4-GHz
O-QPSK PHY has a data rate of 250kbit/s. Furthermore, the 1-byte Frame
Length field of the O-QPSK PHY header has to be received in addition to the
127 bytes and hence the time between the detection of a frame’s SHR and its

complete reception should theoretically be
(1byte+127byte)×8 bit

byte

250 kbit
s

= 4.096ms.

Next, to measure the time until POTR rejects a frame due to an invalid OTP,
an OpenMote A injected maximum-length unicast data frames, each of which
contained the source address of a permanent neighbor of another OpenMote B,
as well as an invalid 3-byte OTP. The OpenMote B, which had POTR enabled,
received 100 of these frames and logged the time between SFD interrupts and the
moment when the frame reception aborts, which is signaled by RXABO interrupts.
This experiment was repeated for both short and extended addresses.

Figure 6.4 shows how quick B rejects the injected 127-byte frames. The
employed addressing mode has a noticeable effect on the rejection speed. This
is because POTR starts validating OTPs earlier or later, depending on the
employed addressing mode. Thus, it is advisable to use short addresses.

6.2.4.2 Energy Savings

To determine the energy consumption of ContikiMAC under broadcast attacks
with versus without POTR, an OpenMote A sent maximum-length broadcast
data frames to another OpenMote B, which was placed 50cm apart from A.
B rejected these frames due to an invalid 3-byte OTP or an inauthentic CCM
MIC when using POTR or not, respectively. During 200 receptions, the energy
consumed by B was recorded using the experimental setup described in Section
3.6.2. To avoid bias, A sent at randomized times. This experiment was repeated
with short and extended addresses, as well as with maximum-length unicast data
frames instead of maximum-length broadcast data frames. Lastly, as a baseline
for comparison, B’s energy consumption when performing ContikiMAC’s two
CCAs and directly going back to sleep was measured, too.

Figure 6.5 shows the results. When not using POTR, the energy consump-
tion under broadcast attacks with data frames increases a lot compared to
ContikiMAC’s baseline energy consumption. This is because, when not using
POTR, injected and replayed broadcast frames are fully received before being
rejected. Using short instead of extended addresses does not mitigate broadcast
attacks since we always padded the injected broadcast frames to the maximum
frame length like an attacker would do, as well. Moreover, under a unicast at-
tack, a victim node may not only fully receive the injected or replayed unicast
frame, but additionally send an acknowledgment frame. This actually happened
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Figure 6.5: Energy consumption per wake up (a) if both CCAs return positive,
(b) in the face of a broadcast attack, and (c) in the face of a unicast attack

in this experiment. Also, as acknowledgment frames extend when using ex-
tended addresses, the incurred energy consumption of unicast attacks increases
in this case. When using POTR, the energy consumption under broadcast and
unicast attacks is much lower since POTR rejects the injected broadcast and
unicast data frames early during reception. Hence, POTR also avoids sending
acknowledgment frames in response to the injected unicast frames. When us-
ing short addresses instead of extended addresses, the effectiveness of POTR
increases because POTR then rejects frames with invalid OTPs earlier.

6.2.4.3 Processing Overhead

To showcase the processing overhead of POTR, the following experiment mea-
sures the time spent in the FIFOP ISR when successfully validating an OTP.
Concretely, an OpenMote A sent maximum-length unicast data frames to an-
other OpenMote B. A and B were permanent neighbors of each other and the
frames contained valid and fresh OTPs. During each reception, B logged the
time spent in the FIFOP ISR. This experiment was repeated with both short and
extended addresses, as well as with different OTP lengths l ∈ {8, 16, 24, 32, 40}.

Figure 6.6 shows the results. The workload of the FIFOP ISR increases as l
exceeds 24. This is because, at this point, the reception of OTPs takes longer
than their validation, thus necessitating busy-waiting within the FIFOP ISR.
One can minimize busy-waiting by configuring the FIFOP interrupt to issue later.
Currently, our implementation is optimized for l = 24. Another observation is
that short addresses slightly reduce the workload of the FIFOP ISR, which can
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be attributed to the fact that less bytes are being processed.

6.2.4.4 Program Memory Overhead

To measure the overhead in program memory due to POTR, it was first mea-
sured how much program memory is consumed when using ContikiMAC without
MAC layer security using the tool arm-none-eabi-size. Then, the overhead
in program memory (i) due to enabling AKES, but not POTR and (ii) due to
enabling both AKES and POTR was measured. Throughout, short addresses,
Security Level 6, and 3-byte OTPs were used.

Figure 6.7 shows the results. It turned out that POTR actually saves pro-
gram memory, which can, on the one hand, be attributed to the streamlined
frame format of POTR, and, on the other hand, to Contiki-NG’s currently un-
optimized assembling and parsing of IEEE 802.15.4-compliant frames.

6.2.5 Discussion

We have argued and partly demonstrated that POTR greatly mitigates broad-
cast, unicast, and droplet attacks against ContikiMAC. However, two limitations
of POTR have become apparent in this section. First, if an attacker guesses
an OTP right, the repercussion is not only that the attacker’s frame is fully
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received, but also that the respective anti-replay data gets corrupted. The cor-
ruption of anti-replay data upon successful guessing attacks is not a specific
issue to POTR, but regularly arises when deriving OTPs from frame counters
[42, 44]. Second, POTR just mitigates broadcast, unicast, and droplet attacks.
We work on both these limitations in subsequent development steps.

6.3 The Dozing Optimization

In this section, we propose the dozing optimization. The dozing optimization
complements POTR very well since it further mitigates broadcast, unicast, and
droplet attacks, as well as adds protection against jamming attacks.

6.3.1 Design

We will denote by:

• tl the time to transmit a maximum-length IEEE 802.15.4 frame. When
using the 2.4-GHz O-QPSK PHY, tl is 4.256ms because (i) the 2.4-GHz
O-QPSK PHY has a data rate of 250kbit/s, (ii) the length of the O-QPSK
PHY header is 6 bytes and (iii) the maximum frame length that O-QPSK
supports is 127 bytes.

• tr the duration of one CCA. When using the 2.4-GHz O-QPSK PHY, tr
is 0.128ms since a CCA shall take 8 symbol periods as per IEEE 802.15.4.

• tc the configurable time span between ContikiMAC’s two regular CCAs,
as depicted in Figure 6.8a.

• ti ContikiMAC’s inter-frame period, as shown in Figure 6.8a. Though ti
is configurable, ti can not be set arbitrarily short to allow for sending and
detecting acknowledgment frames between successively strobed unicast
frames. Neither can ti be set arbitrarily long as otherwise ContikiMAC’s
two regular CCAs may fall between successively strobed frames.

• td the time to detect an SHR. When using 2.4-GHz O-QPSK, td is 0.16ms.

• tp the time that POTR needs to decide if a frame is to be rejected once
ContikiMAC detected its SHR. The actual value of tp depends on the
addressing mode, the length of OTPs, as well as the PHY. As previously
demonstrated, tp can get as low as 0.374ms.

Recall that ContikiMAC’s fast-sleep optimization lets receivers go back to
sleep (i) after tl if the radio noise lasts longer than tl, (ii) after tl + ti if the
silence period lasts longer than ti, and (iii) after tl+ti+td if no SHR is detected.
Attackers can misuse this behavior by launching jamming, broadcast, unicast,
and droplet attacks. POTR mitigates broadcast, unicast, and droplet attacks
by rejecting an unwanted frame tp after the detection of its SHR. Yet, in the
worst case, an attacker can still cause ContikiMAC to stay in receive mode for
tr + tr + tl + ti + td + tp = woriginal(ti), where “tr+” accounts for the occasion
when the first of ContikiMAC’s two regular CCAs returns positive and “+tr+”
allows for a minimal overlap between the ending of the second CCA and the
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Figure 6.8: Operation of a unicast transmission in ContikiMAC (a) without the
dozing optimization and (b) with the dozing optimization

beginning of a frame. Analogously, the maximum time that ContikiMAC stays
in receive mode for receiving a legitimate frame is woriginal(ti)− td − tp + tl.

The operation of the dozing optimization is exemplified in Figure 6.8b. As
opposed to the original design of ContikiMAC, if a CCA returns negative, the
dozing optimization goes back to sleep and schedules another CCA after ti−tr. If
this CCA also returns negative, the dozing optimization goes back to sleep again
and performs another CCA after ti− tr and so on. In accordance with the fast-
sleep optimization, if the radio noise lasts longer than tl, the dozing optimization
schedules no further CCAs. If, however, a subsequent CCA returns positive, the
dozing optimization stays in receive mode as this indicates that a silence period
between two successively strobed frames is found. Also, in accordance with the
fast-sleep optimization, a receiver goes back to sleep if no radio noise is detected
after tl + ti and if no SHR is detected after tl + ti + td. Essentially, the dozing
optimization thus mimics the fast-sleep optimization except for dozing after a
negative CCA when searching a silence period.

Observe that, if ti is long, the dozing optimization dozes longer and hence
performs less CCAs, while, if ti is short, the dozing optimization needs to spend
less time in receive mode once a CCA returns positive. Concretely, under attack,
the dozing optimization performs up to 2 + d tlti e + 1 CCAs and stays at most
ti + td + tp in receive mode. Again, “2+” accounts for a positive first CCA
and a negative second CCA. Then, up to d tlti e negative CCAs and one positive
CCA may follow. Next, the dozing optimization stays up to ti + td + tp in
receive mode. Altogether, the worst-case time in receive mode in the adversarial
case is (3 + d tlti e) × tr + ti + td + tp = wdozing(ti). Similarly, upon receiving a
legitimate frame, the dozing optimization stays in receive mode for at most
wdozing(ti)− td− tp + tl. As shown in Figure 6.9a, wdozing(ti) has a minimum at
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Figure 6.9: Worst-case duration that ContikiMAC stays in receive mode in
the face of broadcast, unicast, and droplet attacks when using POTR alone
(woriginal(ti)) and when using the dozing optimization in addition (wdozing(ti))
(a) if tl = 4.256ms, tr = 0.128ms, td = 0.16ms, and tp = 0.374ms and (b)
tl = 4.256ms, tr = 0.32ms, td = 0.16ms, and tp = 0.374ms

ti = 0.7094 when using the 2.4-GHz O-QPSK PHY. Figure 6.9a also shows that
the dozing optimization greatly reduces the time spent in receive mode in the
face of broadcast, unicast, and droplet attacks compared to using POTR alone.

6.3.2 Implementation

We integrated the dozing optimization into our implementation of ContikiMAC
for CC2538 SoCs. However, unlike standardized in IEEE 802.15.4, the CC2538
needs 0.32ms per CCA. This is because the CC2538 stays 0.192ms in an energy-
consuming intermediate state before it actually starts with a CCA. This affects
the functions woriginal(ti) and wdozing(ti) in Figure 6.9a. Figure 6.9b shows the
updated functions. Now, wdozing(ti) has a minimum at 1.064ms. Thus, 1.064ms
constitutes the optimal value for ti in terms of worst-case duration in receive
mode. However, owing to the limited precision of Contiki-NG’s rtimer module,
our implementation rounds up to ti = 1.068ms.
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Figure 6.10: Current draw while receiving a maximum-length broadcast data
frame when the dozing optimization is (a) off and (b) on

6.3.3 Evaluation

Using our implementation, we now demonstrate that the dozing optimization
(i) noticeably reduces the energy consumption for receiving legitimate frames,
(ii) significantly reduces the energy consumption in the face of jamming attacks,
as well as in the face broadcast and unicast attacks with data frames, and (iii)
practically incurs no overhead in program memory.

6.3.3.1 Energy Consumption of Frame Receptions

To compare the energy consumption for receiving legitimate frames with ver-
sus without the dozing optimization, an OpenMote A sent fresh authentic
maximum-length broadcast data frames to another OpenMote B. B was placed
50cm away from A. During 200 receptions, the current draw of B was recorded
like described in Section 3.6.2. This experiment was conducted two times for
the cases of (i) disabling the dozing optimization and (ii) enabling the dozing
optimization. Throughout, POTR was disabled, short addresses were used, A
sent at randomized times to avoid bias, and Security Level 6 was configured.

Figure 6.10a exemplifies a frame reception, where the dozing optimization is
off. Here, the first of ContikiMAC’s two regular CCAs returns negative, causing
B to stay in receive mode and to periodically perform CCAs so as to find a silence
period. As B finds a silence period at time 4ms, B stops performing CCAs and
enables the SHR search of the CC2538. It would also be possible to enable
the SHR search of the CC2538 right from the beginning, but then chances are
that an SHR is found within radio noise or the previously transmitted frame
[81]. Then, B stays in receive mode to receive the approaching maximum-length
broadcast data frame. Lastly, B processes the frame and enters an LPM.
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Figure 6.10b shows a frame reception, where the dozing optimization is on.
Since the first of the two regular CCAs returns negative, B starts dozing. The
second CCA also returns negative, which is whyB continues to doze. Eventually,
the third CCA returns positive, causing B to stay in receive mode. At this point,
B also enables the SHR search of the CC2538. Again, the SHR search could be
enabled in the first place. Despite this, we disable the SHR search during CCAs
since this improves the delivery ratio for unknown reasons. Finally, B processes
the received maximum-length broadcast data frame and enters an LPM.

Figure 6.11 shows boxplots of the energy consumption per reception of a
fresh authentic maximum-length broadcast data frame. Accordingly, the dozing
optimization saves a good amount of energy.

6.3.3.2 Mitigation of Jamming, Broadcast, and Unicast Attacks

To determine the incurred energy consumption of jamming attacks, as well as
of broadcast and unicast attacks with data frames, the above experiment was
adapted as follows. As for jamming attacks, A continuously emitted radio noise
via a special transmit mode of its CC2538. In four subsequent runs, B was pro-
grammed to use (i) neither POTR nor the dozing optimization, (ii) not POTR,
but the dozing optimization, (iii) POTR, but not the dozing optimization, and
(iv) both POTR and the dozing optimization. In each run, 200 traces of B’s cur-
rent draw per wake up were recorded. As for broadcast attacks, the procedure
was the same, except that A sent maximum-length broadcast data frames that
are rejected by B due to invalid 3-byte OTPs or inauthentic MICs when using
POTR or not, respectively. Likewise, as for unicast attacks, A sent maximum-
length unicast data frames that are rejected by B due to invalid 3-byte OTPs
or inauthentic MICs when using POTR or not, respectively.

Figure 6.12a shows the results for jamming attacks. Without any defense,
ContikiMAC’s fast sleep optimization leaves the receive mode only after tl =
4.256ms. This causes a mean energy consumption of 0.103mAs. By contrast,
if the dozing optimization is enabled, jamming attacks are much less severe.
Expectably, POTR does not help in mitigating jamming attacks since POTR
only comes into effect once an SHR is detected.

Figure 6.12b shows the results for broadcast attacks. If using no defense or
only the dozing optimization, we get similar results as in Figure 6.11. On the
one hand, this is because even frames with inauthentic MICs are fully received
and validated before they get rejected. On the other hand, we disabled upper-
layer protocols in both experiments. Normally, the processing of fresh authentic
data frames is more energy consuming. Enabling POTR mitigates broadcast
attacks greatly since POTR rejects frames with invalid OTPs on the fly. Even
more energy can be saved by enabling both POTR and the dozing optimization.

Figure 6.12c shows the results for unicast attacks. In contrast to broadcast
attacks, unicast attacks may cause victim nodes to send acknowledgment frames.
This actually happened in our experiment because, if POTR is off, even injected
and replayed unicast frames are being acknowledged if they pass basic validity
checks. Hence, unicast attacks can cause a higher energy consumption than
broadcast attacks if POTR is off. If POTR is on, the maximum-length unicast
data frames are rejected on the fly and thus no acknowledgment frames are
triggered. The dozing optimization further mitigates unicast attacks.
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Figure 6.11: Energy consumption per reception of a fresh authentic maximum-
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Figure 6.12: Energy consumption per wake up under (a) jamming, (b) broad-
cast, and (c) unicast attacks with vs without the dozing optimization
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Figure 6.13: Program memory overhead due to the dozing optimization
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6.3.3.3 Program Memory Overhead

To measure the overhead in program memory due to the dozing optimization,
it was first measured how much program memory is consumed when using Con-
tikiMAC without MAC layer security. Subsequently, the overhead in program
memory due to enabling AKES, POTR, and the dozing optimization was mea-
sured. Short addresses, Security Level 6, and 3-byte OTPs were used.

The result is shown in Figure 6.13 alongside the results obtained for POTR.
Maybe surprisingly, the dozing optimization incurs a marginal overhead in pro-
gram memory of 56 bytes. The reason for this is that the dozing optimization
only requires few modifications to the original version of ContikiMAC.

6.3.4 Discussion

To further mitigate broadcast, unicast, and droplet attacks, as well as to mit-
igate jamming attacks, we have proposed the dozing optimization. Both in
theory and in practice, the dozing optimization has turned out to be very effec-
tive in mitigating these attacks. Beyond that, we have shown the dozing opti-
mization to also reduce the energy consumption for receiving legitimate frames.
However, even when combining POTR and the dozing optimization, the energy
consumption of victim nodes still increases under jamming, broadcast, unicast,
and droplet attacks, thus still leaving room for improvements.

6.4 SPLO: Secure Phase-Lock Optimization

In this section, we propose SPLO, which makes ContikiMAC resistant to ac-
knowledgment spoofing and pulse-delay attacks, as well as resilient to collision
attacks. We will first go into the design of SPLO and then evaluate SPLO.

6.4.1 Design

We split the description of the design of SPLO into three parts. First, we explain
how SPLO secures acknowledgment frames that are sent in response to unicast
data and command frames. Second, we explain how SPLO mitigates collision
attacks. Third, we explain how SPLO securely initializes wake-up times in
parallel to AKES’ three-way handshake. This involves special means to secure
acknowledgment frames that are sent in response to HELLOACKs and ACKs.

6.4.1.1 Securing Acknowledgment Frames

While IEEE 802.15.4 security can be used “as is” to secure acknowledgment
frames, the security provided by IEEE 802.15.4 security is limited in two ways.
First, IEEE 802.15.4 security does not achieve strong freshness. Second, IEEE
802.15.4 security does not ensure the “correspondence” between unicast and ac-
knowledgment frames, i.e., whether an acknowledged unicast frame was actually
received successfully. As these two limitations enable pulse-delay and acknowl-
edgment spoofing attacks, SPLO takes over the task of securing acknowledgment
frames that are sent in response to unicast data and command frames and not
only ensures their authenticity and sequential freshness, but also their strong
freshness and correspondence.
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Table 6.2: CCM Inputs as per SPLO. CA is A’s frame counter, IDB is B’s MAC
address, ID∗ is the broadcast MAC address, and κ < 0xFE is the strobe index.

Occasion CCM key CCM nonce
OTP of a broadcast data or com-
mand frame from A

A’s group session
key KA,∗

ID∗‖CA‖0xFF

OTP of a unicast data or command
frame from A to B

A’s group session
key KA,∗

IDB‖CA‖0xFF

OTP of an ACK from A to B Pairwise session
key K ′A,B

IDB‖CA‖0xFF

Authentication and encryption of a
HELLO, broadcast data, or broadcast
command frame from A

A’s group session
key KA,∗

ID∗‖CA‖0xFE

Authentication and encryption of
a unicast data or command frame
from A to B

A’s group session
key KA,∗

IDB‖CA‖κ

Authentication and encryption of a
HELLOACK or ACK from A to B

Pairwise session
key K ′A,B

IDB‖CA‖κ

Authentication of an acknowledg-
ment frame from B to A

Same as the cor-
responding uni-
cast frame

IDA‖CA‖κ

For authenticating acknowledgment frames that are sent in response to uni-
cast data and command frames, SPLO appends a MIC to each such acknowledg-
ment frame. These MICs are generated using CCM. As CCM key, SPLO uses
the same as was used for securing the unicast data or command frame whose
reception is being acknowledged. As CCM nonce, SPLO uses the concatenation
of (i) the MAC address of the receiver of the acknowledgment frame, (ii) the
frame counter of the unicast data or command frame whose reception is being
acknowledged, and (iii) the value of the Strobe Index field of the unicast data
or command frame whose reception is being acknowledged, as shown in Table
6.2. The Strobe Index field is a new 1-byte header field, which indicates how
often ContikiMAC strobed a unicast frame already. Since the Strobe Index field
changes in each consecutively strobed unicast frame, CCM has to be rerun over
each consecutively strobed unicast frame. To avoid a nonce reuse in this process,
SPLO also includes the strobe index in the CCM nonces of unicast frames.

For ensuring the strong freshness and correspondence of acknowledgment
frames that are sent in response to unicast data and command frames, SPLO
takes three complementary measures. First, senders of such acknowledgment
frames implicitly echo the source address, the frame counter, and the strobe
index of the unicast data or command frame whose reception is being acknowl-
edged. By implicitly we mean that these values are not actually included in the
payload of such acknowledgment frames, but only included in the CCM nonces
of such acknowledgment frames. Second, SPLO checks the authenticity of a re-
ceived unicast data or command frame before replying with an acknowledgment
frame. Third, SPLO requires a confined reception window for acknowledgment
frames. We denote the duration of this reception window by ta. The effective-
ness of these three measures will become apparent in the course of our security
analysis of SPLO.
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6.4.1.2 Mitigating Collision Attacks

Recall that ContikiMAC’s original phase-lock optimization schedules the start
of a strobe of unicast frames right before the intended receiver wakes up. For
this, the original phase-lock optimization exploits the fact that if an acknowledg-
ment frame is received, the next to last strobed unicast frame must have been
transmitted while the receiver woke up. Specifically, like shown in Figure 6.14,
let t0 denote the time when the transmission of the next to last acknowledged
frame to a neighbor began, t1 denote the time when the transmission of the
next to last acknowledged frame to a neighbor ended, and tw be ContikiMAC’s
wake-up interval. When another strobe of unicast frames to a neighbor shall be
sent, the original phase-lock optimization starts strobing at t0 + tw×n− tg and
only strobes once more after t1 + tw × n+ tg, where tg is a configurable guard
time and the integer n is chosen so that t0 + tw × n− tg is in the future.

While ContikiMAC’s original phase-lock optimization uses a static guard
time, SPLO uses a guard time with a static and a dynamic portion. The static
portion, denoted by ts, should account for inaccuracies. Additionally, ts must
accommodate pulse-delay attacks and therefore ts > ta. The dynamic portion,
denoted by tu, can be chosen according to the current uncertainty about the
wake-up time of the intended receiver. This uncertainty can be upper bounded
as follows. Let θ be the frequency tolerance of the employed clocks and let t be
the current time. Then, tu = (t− t0)× (θ + θ) [75].

The above consideration also implies when the intended receiver must have
woken up, namely before t1 + tw × n+ (ts + tu). Hence, when starting a strobe
of unicast frames at t0 + tw × n− (ts + tu), only one additional frame must be
strobed after t1 + tw×n+(ts+ tu). Consequently, unlike in ContikiMAC’s orig-
inal phase-lock optimization, SPLO needs no fallback mechanism when unicast
transmissions to a receiver tend to fail.

Note that t0 and t1 serve as lower and upper bounds of the true wake-up
time τ , as shown in Figure 6.14. To allow for a better estimation of τ , SPLO
reports back on ∆ = t1 − τ to senders by piggybacking ∆ on acknowledgment
frames, similar to what was suggested in [182]. With the knowledge of ∆, SPLO
starts strobing at τ+tw×n−(ts+t′u), where t′u = (t−τ)×(θ+θ). Analogously,
SPLO only strobes one additional frame after τ+tw×n+(ts+t′u). This interval
is more narrow than [t0 + tw × n − (ts + tu), t1 + tw × n + (ts + tu)], thereby
saving energy during normal operation and under collision attacks.

SPLO’s main defense against collision attacks is to send keep-alive messages
in the absence of upper-layer traffic. This keeps t′u low throughout a session
and thus all strobes of unicast data and command frames short. Specifically,
SPLO modifies AKES to send UPDATEs to permanent neighbors whose wake-up
time was not updated for a critical period of time Tlif. This incurs additional
transmissions of UPDATEs as compared to not using SPLO since AKES otherwise
also prolongs a permanent neighbor’s lifetime upon reception of a fresh authentic
broadcast or unicast frame, i.e., not only upon reception of a fresh authentic
acknowledgment frame. On the other hand, this change leads to a reduction in
RAM consumption since it is no longer necessary to store for each permanent
neighbor an expiration time. Instead, an UPDATE is sent as t − τ exceeds Tlif,
where τ is stored anyway. To also keep strobes of HELLOACKs and ACKs short,
SPLO initializes the wake-up times of new neighbors early on, as we detail below.
In the exceptional case that 2 × (ts + t′u) ≥ tw, SPLO starts strobing unicast
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Figure 6.14: Illustration of t0, t1, tw, τ, and ∆

Figure 6.15: Initialization of wake-up times in parallel to AKES’ three-way
handshake

frames instantly for at most a whole wake-up interval plus once. Usually, this
condition should not take effect since Tlif should be chosen so that 2× (ts + t′u)
always stays well below tw.

6.4.1.3 Initializing Wake-Up Times

SPLO initializes wake-up times in parallel to AKES’ three-way handshake, as
shown in Figure 6.15. Actually, SPLO initializes wake-up times twice during
this three-way handshake. The first round of initializations happens when B
receives A’s HELLO and A receives B’s HELLOACK. For this, A embeds the time
to its next wake up φHELLO in each consecutively strobed HELLO. Likewise, B
embeds the time to its next wake up φHELLOACK in each consecutively strobed
HELLOACK. However, this first round of initializations is vulnerable to attacks.
If an attack happens, the firstly initialized wake-up times can be wrong, poten-
tially preventing the successful reception of the subsequent HELLOACK or ACK.
The second round of initializations happens when B receives A’s ACK and A
receives B’s acknowledgment frame. For this, A reports back on (i) the crypto-
graphic random number Q that was contained in B’s HELLOACK, (ii) the strobe
index κHELLOACK that was contained in B’s HELLOACK, and (iii) ∆HELLOACK, which
is calculated like shown in Figure 6.14 upon receiving B’s HELLOACK. Similarly,
B piggybacks ∆ACK on its acknowledgment frame. Acknowledgment frames that
are sent in response to ACKs are secured in the same manner as acknowledgment
frames that are sent in response to unicast data and command frames.

6.4.2 Security Analysis

In the following, we argue that SPLO makes ContikiMAC resistant to acknowl-
edgment spoofing and pulse-delay attacks, as well as resilient to collision attacks.
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6.4.2.1 Resistance to Acknowledgment Spoofing Attacks

To see that acknowledgment spoofing attacks are prevented, let us assume the
contrary that a node A receives an authentic acknowledgment frame f in re-
sponse to a unicast data, unicast command, or ACK frame g, though the intended
receiver B did not successfully receive g. From the construction of CCM nonces
we know that f correctly echoed g’s source address, frame counter, and strobe
index. Thus, some node must have found a unicast data, unicast command,
or ACK frame, say h, with g’s source address, frame counter, and strobe index
authentic. Since f is also authentic, h must have been secured with the same
up-to-date session key as f . However, since A’s last reboot, the combination of
g’s frame counter and strobe index is unique, which is why h is g. Yet, any other
node than B would have discarded g due to an inauthentic MIC and hence not
acknowledged g. Consequently, there is a contradiction.

6.4.2.2 Resistance to Pulse-Delay Attacks

To show that SPLO resists pulse-delay attacks, we will first show the strong
freshness of acknowledgment frames:

Let us first assume that a node A receives an acknowledgment frame f
delayed by > ta in response to a unicast data, unicast command, or ACK frame
g. Note that if f was originally sent in response to a unicast data, unicast
command, or ACK frame with a different source address, frame counter, or strobe
index than g, A will find f inauthentic because all these values are “implicitly
echoed” as part of the CCM nonces of acknowledgment frames. Thus, only if
f was originally sent in response to a unicast data, unicast command, or ACK

frame, say h, with g’s source address, frame counter, and strobe index, A may
find f authentic. Now, there are two cases. First, the sender of h may be A
itself. However, h can not be the frame that A just sent because the duration
of the reception window for acknowledgment frames is ta. We can also exclude
that A sent h since A’s last reboot because A’s frame counter increments in each
transmission and retransmission. This only retains the possibility that A sent
h before the last reboot, in which case A finds f inauthentic since h was then
secured using an old session key. Second, the sender of h may be an attacker who
impersonated A. In this case, h will not be a fresh authentic frame (unless the
session key leaked, but, by definition, pulse-delay attacks are done by external
attackers). Thus, no receiver would have replied to h with an acknowledgment
frame. Altogether, there is no possibility that A finds f authentic.

Let us now assume that a HELLOACK sender B receives a corresponding ac-
knowledgment frame f purportedly from a neighbor A delayed by > ta. Since
the duration of the reception window for acknowledgment frames is ta, f was
originally sent in response to a HELLOACK that contained a different crypto-
graphic random number Q or a different strobe index κHELLOACK. In either case,
B will discard A’s ACK. Thus, B’s (second) initialization of A’s wake-up time
is correct up to ta. Note that this even holds when acknowledging HELLOACKs
immediately, without checking their authenticity beforehand. This is crucially
important since session keys are not yet in place when receiving a HELLOACK.

Consequently, pulse-delay attacks can only be successful if acknowledgment
frames are delayed by ≤ ta. Yet, since SPLO allows for the undetectable offset
ta when scheduling unicast frames, SPLO resists pulse-delay attacks.
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6.4.2.3 Mitigation of Collision Attacks

In the original phase-lock optimization, senders resort to strobe unicast frames
for a whole wake-up interval plus once if unicast transmissions to the intended
receiver tend to fail, as well as if the wake-up time of the intended receiver was
not learned, yet. Thus, the maximum duration of a strobe of unicast frames is
tw + tl + ti + tl, where “+tl+” allows for the situation that the transmission of
the next to last unicast frame may have begun right before tw elapsed.

By contrast, in SPLO, the maximum duration of a strobe of unicast data or
command frames is min{tw, 2×(ts+t′u)}+tl+ti+tl. Taking the minimum over
2×(ts+t

′
u) and tw accounts for the fact that SPLO strobes unicast data and com-

mand frames instantly for a full wake-up interval plus once if 2×(ts+t
′
u) becomes

greater or equal than tw. Figure 6.16 shows how this duration compares to that
of the original phase-lock optimization. Clearly, if the last acknowledged frame
was sent a short time ago, SPLO mitigates collision attacks greatly. For mitigat-
ing collision attacks throughout a session, SPLO relies on AKES’ UPDATEs. In
our implementation, we default to send an UPDATE to a permanent neighbor if he
sent no authentic acknowledgment frame for Tlif = 5min. This reduces the max-
imum duration of a strobe of unicast data or command frames from 134.58ms
to 18.95ms in our implementation. Consequently, collision attacks against uni-
cast data or command frames become much less severe when using SPLO. This
even holds true if an attacker jams the UPDATEs themselves. This is because if
an UPDATE is not acknowledged after a configurable number of retransmissions,
AKES will delete the seemingly inactive neighbor. Furthermore, no upper-layer
traffic can be sent to a deleted neighbor until reestablishing session keys with
him. Thus, a victim node may even save energy if an attacker jams UPDATEs.
However, it remains to be investigated if, by blocking certain links, attackers
can also cause an increased energy consumption since this prevents the use of
certain routes.

Also, SPLO mitigates collision attacks against HELLOACKs and ACKs. This is
because senders of HELLOACKs and ACKs already have an estimate of the receiver’s
wake-up time. Further, since this estimate was only initialized a couple of
seconds before sending a HELLOACK or ACK, strobes of HELLOACKs and ACKs are
very short, thus rendering collision attacks against HELLOACKs and ACKs benign.

6.4.3 Implementation

A small fix to IEEE 802.15.4 security is to check the authenticity of received
unicast data, unicast command, and ACK frames before replying with acknowl-
edgment frames. Yet, the implementation of this fix is problematic because Con-
tikiMAC’s inter-frame period is pretty short, leaving little time for authenticity
checks. We solved this issue by accelerating the transmission of acknowledgment
frames through four measures. First, we check the authenticity of a received uni-
cast data, unicast command, or ACK frame directly within an interrupt context,
rather than waiting for other Protothreads to finish. Second, we leverage the
hardware-accelerated CCM implementation of CC2538 SoCs. Third, we prepare
acknowledgment frames already during the reception of a unicast frame. Finally,
we begin the transmission of acknowledgment frames before the authenticity of
a received unicast data, unicast command, or ACK frame is checked. This works
since we can abort the transmission of an acknowledgment frame early enough
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if a received unicast data, unicast command, or ACK frame turns out inauthen-
tic. Early enough here means that the abortion happens before the MIC of the
acknowledgment frame is being transmitted. These four measures enable us to
send acknowledgment frames immediately after receiving a unicast frame.

6.4.4 Evaluation

Using our implementation, we now determine the energy cost of securing ac-
knowledgment frames. Also, we demonstrate that SPLO greatly mitigates col-
lision attacks. Finally, we measure the memory overhead due to SPLO.

6.4.4.1 Energy Cost of Securing Acknowledgment Frames

While SPLO protects ContikiMAC against collision and pulse-delay attacks,
SPLO adds the Strobe Index field to each unicast frame and appends a CCM
MIC to each acknowledgment frame that is not sent in response to a HELLOACK.
To see the increased energy consumption at the sender side, the following ex-
periment was conducted. An OpenMote A sent unicast data frames with 50
bytes of payload to another OpenMote B, which was located 50cm apart from
A. During 200 frame transmissions, the energy consumption of A was recorded
using the experimental setup described in Section 3.6.2. This experiment was
conducted two times, once with SPLO disabled and once with SPLO enabled.
Throughout, short addresses, 3-byte OTPs, and Security Level 6 were used.

Figure 6.17 and 6.18a show the results. When not using SPLO, the energy
consumption per transmission follows a bimodal distribution. This is because
ContikiMAC strobed each frame either two or three times. By contrast, when
using SPLO, ContikiMAC always strobed just twice since SPLO predicts wake-
up times more precisely than ContikiMAC’s original phase-lock optimization.
Thus, surprisingly, SPLO may actually save energy at the sender side.

To also measure the energy consumption at the receiver side with vs without
SPLO, the above experiment was repeated with the modification that the energy
consumption of A instead of B was measured during 200 receptions per run.
Throughout, the dozing optimization was used.

The results in Figure 6.18b show that the energy consumption per reception
increases when enabling SPLO as expected.

6.4.4.2 Mitigation of Collision Attacks

To put SPLO’s mitigation of collision attacks into perspective, the following
experiment was conducted. In three successive runs, two OpenMotes ran (i)
ContikiMAC without MAC layer security (tg = 2ms), (ii) ContikiMAC with
AKES, POTR, and the dozing optimization (tg = 2ms), and (iii) ContikiMAC
also with SPLO (ts = 0.183ms, θ = 15ppm, Tlif = 5min). In each run, the two
OpenMotes sent maximum-length unicast data frames to each other with a ran-
dom delay of 0 - 4.5min in between. Further, to simulate collision attacks, these
unicast data frames were not acknowledged. The energy consumed for trans-
mitting and retransmitting these unicast data frames was traced via Energest
[158]. Throughout, ContikiMAC’s maximum number of retransmissions was 5,
ContikiMAC’s wake-up interval tw was 125ms, and ContikiMAC’s inter-frame
period ti was 1.068ms.
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Figure 6.19: Energy consumption per transmission of a maximum-length unicast
data frame in the face of collision attacks

As shown in Figure 7.10, when using no MAC layer security, ContikiMAC
turned out to expend the most energy. This is because the simulated collision
attacks prevent both OpenMotes from learning each other’s wake-up time, thus
causing ContikiMAC to always strobe for a whole wake-up interval. When
enabling POTR, collision attacks become less severe. This positive result comes
down to the use of AKES for session key establishment. Specifically, in the
course of AKES’ three-way handshake, each OpenMote sends one unicast frame
to the other OpenMote and hence learns the other OpenMote’s wake-up time.
Furthermore, AKES sends UPDATEs so as to check if a permanent neighbor is
still in range. As a side effect, these UPDATEs update wake-up times and hence
cause ContikiMAC’s original phase-lock optimization to strobe only for a limited
period of time. Of course, an attacker can also interfere with these UPDATEs,
but this would usually decrease the energy consumption of victim nodes in the
long run. This is because AKES would delete a seemingly inactive neighbor
and hence stop upper-layer traffic to the deleted neighbor. Nevertheless, AKES
does not reliably mitigate collision attacks because AKES suppresses UPDATEs to
permanent neighbors that recently sent a fresh authentic broadcast or unicast
frame, which, unlike fresh authentic acknowledgment frames, do not update
wake-up times as a side effect. Moreover, the effectiveness of these UPDATEs is
limited since ContikiMAC’s original phase-lock optimization relearns the wake-
up time of a neighbor if unicast transmissions to the neighbor tend to fail, thus
aggravating consecutive collision attacks. By contrast, SPLO never relearns
wake-up times and modifies AKES to send UPDATEs to permanent neighbors
whose wake-up time was not updated for a critical period of time Tlif. This
explains the much better mitigation of collision attacks when using SPLO.

6.4.4.3 Memory Overhead

For measuring the memory overhead due to SPLO, the tool arm-none-eabi-
-size was used. As a baseline for comparison, the memory consumption of
using ContikiMAC without MAC layer security was measured. Then, the mem-
ory overhead due to enabling AKES, POTR, and the dozing optimization was
measured. Next, the memory consumption when enabling also SPLO was mea-
sured. These measurements were repeated with different numbers of permanent
neighbor slots, whereas the number of tentative neighbor slots was fixed to 5.
Throughout, short addresses, Security Level 6, and 3-byte OTPs were used.

The results are shown in Figure 6.20. While the program memory consump-
tion increases due to SPLO, the RAM consumption per permanent neighbor
decreases when enabling SPLO. This is because SPLO requires storing only τ
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Figure 6.20: Memory overhead due to SPLO

per permanent neighbor, whereas ContikiMAC’s original phase-lock optimiza-
tion requires storing t0 and t1. Additionally, SPLO frees AKES from storing an
expiration time per permanent neighbor.

6.4.5 Discussion

To protect ContikiMAC against acknowledgment spoofing, pulse-delay, and col-
lision attacks, we have proposed replacing ContikiMAC’s original phase-lock
optimization with SPLO. For protecting against acknowledgment spoofing and
pulse-delay attacks, SPLO not only ensures the authenticity of acknowledgment
frames, but also their correspondence and strong freshness. Yet, in contrast to
Ganeriwal et al.’s SPS, SPLO protects against pulse-delay attacks without any
communication overhead [156]. For protecting against collision attacks, SPLO
restricts the maximum length of strobes of unicast frames throughout a session.
Thus, unlike Ren et al.’s reactive defense against collision attacks [41], SPLO
proactively defends against collision attacks.

6.5 The Last Bits Optimization

As became apparent when we compared different addressing modes, the effec-
tiveness of POTR improves when reducing the number of bytes that have to be
received prior to validating an OTP. In this regard, the LB optimization may
come in handy [147, 178]. The idea of the LB optimization is to just send the
L least significant bits of frame counters and to let receivers restore the higher
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Table 6.3: CCM Inputs as per the LB Optimization. CA,∗ is A’s broadcast
frame counter, CA,B is A’s counter for unicast frames to B, IDB is B’s MAC
address, ID∗ is the broadcast MAC address, and κ < 0xFE is the strobe index.

Occasion CCM key CCM nonce
OTP of a broadcast data or com-
mand frame from A

A’s group session
key KA,∗

ID∗‖CA,∗‖0xFF

OTP of a unicast data or command
frame from A to B

A’s group session
key KA,∗

IDB‖CA,B‖0xFF

OTP of an ACK from A to B Pairwise session
key K ′A,B

IDB‖CA,B‖0xFF

Authentication and encryption of a
HELLO, broadcast data, or broadcast
command frame from A

A’s group session
key KA,∗

ID∗‖CA,∗‖0xFE

Authentication and encryption of
a unicast data or command frame
from A to B

A’s group session
key KA,∗

IDB‖CA,B‖κ

Authentication and encryption of a
HELLOACK or ACK from A to B

Pairwise session
key K ′A,B

IDB‖CA,B‖κ

Authentication of an acknowledg-
ment frame from B to A

Same as the cor-
responding uni-
cast frame

IDA‖CA,B‖κ

order bits by means of their anti-replay data. In this section, we hence integrate
the LB optimization into IEEE 802.15.4 security, AKES, POTR, and SPLO.

6.5.1 Design

When using the LB optimization, each node maintains a separate frame counter
for outgoing broadcast frames (i.e., HELLO, broadcast data, and broadcast com-
mand frames) and separate per-neighbor frame counters for outgoing unicast
frames (i.e., HELLOACK, ACK, unicast data, and unicast command frames) [147,
178]. If each node continued to use a single frame counter, the restoration of
higher order bits would be unreliable in situations where a node sends many
unicast frames to a particular neighbor in a row. By contrast, when using a
separate broadcast frame counter, a receiver B can restore a permanent neigh-
bor A’s broadcast frame counter unambiguously as long as B missed less than
2L broadcast frames from A in a row. Likewise, when using per-neighbor uni-
cast frame counters, a permanent neighbor B of A can restore A’s unicast frame
counter unambiguously as long as B missed less than 2L unicast frames from A
in a row.

Yet, as a result of using separate frame counters, CCM nonces of unicast
data and command frames may reoccur together with the same group session
key, as becomes apparent in Table 6.3. Therefore, each node A additionally
maintains an overall frame counter for outgoing unicast frames, denoted by
CA,◦. Its purpose is to initialize new unicast frame counters to a value that is
definitely greater than any value that might have been used already.

In order to initially learn the values of a new neighbor’s broadcast frame
counter, HELLOACKs and ACKs piggyback this counter in full, as shown in Fig-
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Figure 6.21: Bootstrapping of the LB optimization in parallel to AKES’ three-
way handshake

ure 6.21. HELLOs additionally carry the sender’s overall unicast frame counter.
This is because the OTP of ACKs is derived from a unicast frame counter whose
higher order bits would be unknown at time of reception otherwise. By con-
trast, HELLOACKs contain the sender’s unicast frame counter in full, i.e., without
compressing the higher order bits, as indicated in Figure 6.21.

While using separate frame counters reduces the risk of getting out of sync,
a node A may still lose track of the unicast or broadcast frame counter of a
permanent neighbor B. In effect, A no longer gets fresh authentic unicast or
broadcast frames from B. To recover from this situation, we apply two tweaks to
AKES’ detection of inactive permanent. First, we piggyback the sender’s broad-
cast frame counter in full on AKES’ UPDATEs, as well as the acknowledgment
frames that are sent in response to UPDATEs. This enables the receiver of such
a frame to resynchronize with the sender’s broadcast frame counter. Second,
we modify AKES and SPLO to not only send UPDATEs to permanent neighbors
whose wake-up time was not updated for Tlif, but also when no fresh authen-
tic broadcast frame, UPDATE, or UPDATE acknowledgment frame was received
for Tlif. Thus, when a node A loses track of the broadcast frame counter of a
permanent neighbor B, A will eventually send an UPDATE to B. Furthermore,
the corresponding acknowledgment frame contains B’s broadcast frame in full
so that A can resynchronize with B’s broadcast frame counter. On the other
hand, when a node A loses track of the unicast frame counter of a permanent
neighbor B, B will eventually delete A from its list of permanent neighbors.
This is because A rejects B’s unicast data and command frames and therefore
sends no acknowledgment frames in response. After B deleted A from its list
of permanent neighbors, A no longer receives fresh authentic acknowledgment
frames from B. Thus, A will delete B from its list of permanent neighbors, as
well. Then, A and B no longer silently discard each other’s HELLOs, eventually
triggering a reestablishment of session keys between them. While reestablishing
session keys, A and B relearn each other’s frame counters like explained above.

6.5.2 Evaluation

In the following, we first measure the acceleration of the rejection speed of POTR
when using the LB optimization, as well as the resultant energy savings in the
face of broadcast and unicast attacks with data frames. Next, we demonstrate
that when using the LB optimization, the energy consumption of transmitting
and receiving unicast data frames decreases slightly. Finally, we determine the
memory overhead due to the LB optimization.
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Figure 6.22: POTR’s rejection speed with vs without the LB optimization

6.5.2.1 Rejection Speed

To measure the rejection speed, an OpenMote A injected maximum-length uni-
cast data frames, each of which contained the source address of a permanent
neighbor of another OpenMote B, as well as an invalid OTP. The OpenMote
B, which had POTR, SPLO, and the LB optimization enabled, received 100
of these frames and logged the time between SFD interrupts and the moment
when the frame reception aborts, which is signaled by RXABO interrupts. This
experiment was then repeated without the LB optimization. Throughout, short
addresses, 3-byte OTPs, and L = 8 were used.

The results are shown in Figure 6.22. As expected, when using the LB
optimization, the rejection speed is faster by ≈ 24bit

250 kbit
s

= 96µs.

6.5.2.2 Energy Savings

Next, to compare the resultant energy savings under broadcast and unicast at-
tacks with data frames, an OpenMote A was placed 50cm apart from another
OpenMote B. Furthermore, the OpenMote A sent maximum-length broadcast
data frames, which are rejected by B due to invalid OTPs. During 200 of these
broadcast attacks, the energy consumption of B was traced using the experi-
mental setup described in Section 3.6.2. This experiment was first performed
without the LB optimization and subsequently with the LB optimization. Then,
these two runs were repeated with maximum-length unicast data frames instead
of maximum-length broadcast data frames. Throughout, short addresses, 3-byte
OTPs, L = 8, and the dozing optimization were used.

The results are shown in Figure 6.23. The energy savings when using the
LB optimization are marginal, which can be explained as follows. Recall that
OpenMotes draw between 20 and 24mA in receive mode, depending on the
strength of the input signal. Furthermore, as explained above, the time in
receive mode is only reduced by 96µs when using the LB optimization. Hence,
the reduction in energy consumption should theoretically range between 0.00192
and 0.00230mAs. In Figure 6.23a and 6.23b, the mean reduction in energy
consumption is 0.00282mAs and 0.00289mAs, respectively.

Another beneficial effect of the LB optimization is that the energy consump-
tion for transmitting and receiving legitimate data frames decreases because of
the decreased security-related per-frame overhead. To show this effect, an Open-
Mote A sent unicast data frames with 50 bytes of payload to another OpenMote
B, which was located 50cm apart from A. During 200 frame receptions and 200
frame transmissions, the energy consumption of B and A was recorded using the
experimental setup described in Section 3.6.2, respectively. This experiment was
conducted two times, once with the LB optimization disabled and once with the
LB optimization enabled. Throughout, short addresses, 3-byte OTPs, Security
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Figure 6.23: Energy consumption per wake up under (a) unicast and (b) broad-
cast attacks with vs without the LB optimization
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Figure 6.24: Energy consumption per (a) transmission and (b) reception of a
unicast data frame with 50 bytes of payload with vs without the LB optimization

Level 6, L = 8, SPLO, and the dozing optimization were used.
The results are shown in Figure 6.24. Expectably, transmissions and recep-

tions consume slightly less energy when the LB optimization is enabled.

6.5.2.3 Memory Overhead

The memory overhead due to the LB optimization was determined as fol-
lows. At first, as a baseline for comparison, the memory consumption of us-
ing ContikiMAC without MAC layer security was measured using the tool
arm-none-eabi-size. Then, the memory overhead due to enabling AKES,
POTR, the dozing optimization, SPLO, and the LB optimization was deter-
mined. This measurement was repeated with different numbers of permanent
neighbor slots, whereas the number tentative neighbor slots was fixed to 5.
Throughout, short addresses, Security Level 6, and 3-byte OTPs were used.

The results are shown in Figure 6.25 alongside previously obtained results.
While the program memory overhead due to the LB optimization is small, the
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Figure 6.25: Memory overhead due to the LB optimization

RAM overhead increases considerably when enabling the LB optimization. This
is because the LB optimization necessitates storing two frame counters per per-
manent neighbor, rather than just one. Moreover, whereas SPLO just requires
storing the last known wake-up time of a permanent neighbor for scheduling
UPDATEs, the LB optimization additionally necessitates storing per permanent
neighbor the time when its broadcast frame counter should be updated next.

6.5.3 Discussion

To improve the effectiveness of POTR, we have integrated the LB optimization
into IEEE 802.15.4 security, AKES, POTR, and SPLO. Indeed, we have demon-
strated that the LB optimization accelerates POTR’s rejection speed, leading
to a slight reduction of the incurred energy consumption of broadcast, unicast,
and droplet attacks with ACK, data, and command frames. Additionally, the
LB optimization reduces the security-related per-frame overhead, which saves
energy during receptions and transmissions of legitimate data frames. Also,
thanks to reducing the security-related per-frame overhead, fragmentation at
upper layers may happen less often. On the other hand, the LB optimization
requires an energy- and time-consuming resynchronization when losing track
of a permanent neighbor’s unicast or broadcast frame counter. Moreover, the
RAM overhead of the LB optimization is considerable.
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6.6 ILOS: Intra-Layer Optimization for IEEE
802.15.4 Security

ILOS overcomes the following three remaining issues with our denial-of-sleep-
protected version of ContikiMAC:

• If an attacker guesses an OTP right, the corresponding anti-replay data
gets corrupted, potentially ensuing a reestablishment of session keys.

• Strong freshness is only ensured in the case of acknowledgment frames.
For all other frames, only sequential freshness is achieved.

• While the LB optimization reduces the security-related per-frame over-
head and accelerates POTR’s rejection speed, it comes at the cost of an
increased RAM consumption and occasional energy- and time-consuming
resynchronizations. Moreover, these resynchronizations are not triggered
immediately upon desynchronization, but only delayed.

6.6.1 Design

The main idea of ILOS is to replace frame counters with what we term wake-up
counters. This requires changes to (i) CCM nonces, (ii) AKES, and (iii) replay
protection. In the following, we will explain each of these changes.

6.6.1.1 Notations

Let A and B be adjacent nodes. We denote by:

• tw ContikiMAC’s wake-up interval, as shown in Figure 6.15.

• ωA the wake-up counter of A. A increments ωA at the rate of tw in lockstep
with ContikiMAC’s two regular CCAs. If A skips over doing two CCAs
due to sending at that time, A must increment ωA anyway.

• τA,B what A stores as the last wake-up time of B. SPLO initializes τA,B in
parallel to establishing group session keys and updates τA,B upon reception
of an authentic acknowledgment frame from B.

• ωA,B the wake-up counter of B at time τA,B . Likewise, ILOS initializes
ωA,B in the course of establishing session keys and updates τA,B upon
reception of an authentic acknowledgment frame from B.

• IDA A’s MAC address.

• ID∗ the broadcast MAC address.

• KA,∗ A’s group session key.

• κ < 0xFE a strobe index.
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Table 6.4: CCM Inputs as per ILOS
Occasion CCM key CCM nonce
OTP of a broadcast data or com-
mand frame from A

A’s group session
key KA,∗

ID∗‖ωA+1‖0xFF

OTP of a unicast data or command
frame from A to B

B’s group session
key KB,∗

IDA‖ωB‖0xFF

OTP of an ACK from A to B pairwise session
key K ′A,B

IDB‖ωB‖0xFF

Authentication and encryption of a
HELLO, broadcast data, or broadcast
command frame from A

A’s group session
key KA,∗

ID∗‖ωA+1‖0xFE

Authentication and encryption of
a unicast data or command frame
from A to B

B’s group session
key KB,∗

IDA‖ωB‖κ

Authentication and encryption of a
HELLOACK or ACK from A to B

pairwise session
key K ′A,B

IDA‖ωB‖κ

Authentication of an acknowledg-
ment frame from B to A

same as the cor-
responding uni-
cast frame

¬IDA‖ωB‖κ

6.6.1.2 Adapting CCM Nonces

In order for CCM nonces to be secure, they must never reoccur in conjunction
with the same key. ILOS achieves this via two complementary techniques. On
the one hand, ILOS uses a common base format and differing values in the final
field to avoid collisions among CCM nonces that are used in different occasions.
On the other hand, ILOS uses wake-up counters and MAC addresses to avoid
collisions among CCM nonces that are used in same occasions. Concretely,
ILOS generates CCM nonces like shown in Table 6.4.

Unicast frames: As for authenticating and encrypting a unicast frame from
a node A to a node B, ILOS generates the CCM nonce by concatenating
IDA, ωB , and κ, where ωB is B’s wake-up counter at time of reception.
Thus, A has to predict ωB . As A is aware of τA,B and ωA,B , A can predict

ωB as ωA,B +
⌈
tsched−τA,B

tw

⌉
, where tsched is the time when SPLO schedules

the transmission of the unicast frame. This prediction is correct if SPLO is
configured to keep the uncertainty about the wake-up time of a permanent
neighbor below tw.

Unicast OTPs: As for generating the OTPs of unicast data, unicast com-
mand, and ACK frames, the CCM nonce is generated in the same manner
like for authenticating and encrypting unicast frames, except that the final
field is set to 0xFF.

Acknowledgment frames: As for authenticating acknowledgment frames,
the same CCM nonce is used like for authenticating and encrypting
unicast frames, except that the MAC address is bitwise negated.

Broadcast frames: As for authenticating and encrypting broadcast frames
from a node A, ILOS generates the CCM nonce by concatenating ID∗,
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Figure 6.26: Initialization of wake-up counters in parallel to AKES’ three-way
handshake

ωA+1, and 0xFE. Here, ωA is A’s wake-up counter as A begins to strobe.
To aid receivers in restoring ωA + 1, ωA + 1 needs to be even and A must
begin to strobe at t − tw

2 , where t is when A increments ωA next. Thus,
A may need to defer the transmission of the broadcast frame until both
conditions are met. Yet, this way, a receiver B can restore ωA + 1 by
rounding ωB,A +

tawoke−τB,A

tw
to the next even value, where tawoke is when

B awoke for doing ContikiMAC’s two CCAs that led to receiving the
broadcast frame. This restoration of ωA + 1 is correct (i) if SPLO keeps
the uncertainty about the wake-up time of A below tw and (ii) if B wakes
up during the interval [t− tw

2 , t+ tw
2 ].

Broadcast OTPs: As for generating the OTPs of broadcast data and com-
mand frames, the CCM nonce is generated in the same manner like for
authenticating and encrypting broadcast frames, except that the final field
is set to 0xFF.

6.6.1.3 Adapting AKES

Let A and B be adjacent nodes. To initialize ωA,B and ωB,A while A and B
establish session keys, ILOS adds additional data to HELLOs and HELLOACKs, as
shown in Figure 6.26. Recall that SPLO already piggybacks the time to the
next wake up on HELLOs and HELLOACKs, as shown in Figure 6.15. Hence, by
piggybacking the sender’s current wake-up counter on HELLOs and HELLOACKs in
addition, A and B can now initialize ωA,B and ωB,A, respectively. Subsequently,
if SPLO updates τA,B or τB,A, ILOS updates ωA,B or ωB,A to the correctly
predicted wake-up counter at that time, respectively.

6.6.1.4 Adapting Replay Protection

ILOS provides replay protection as follows.

Unicast frames: As for unicast frames, replay protection comes almost as a
side effect of generating CCM nonces like ILOS does. This is because a
receiver B increments ωB when waking up. Thus, if B receives a replayed
unicast frame during a later wake up, B will assume a CCM nonce that
differs from the CCM nonce that was used to secure the replayed unicast
frame. Hence, B will reject the replayed unicast frame due to an invalid
OTP or an inauthentic MIC. However, a subtlety is that the sender A of
a unicast frame may miss an acknowledgment frame. In this case, A may
retransmit and hence, the receiver B, may accept the same frame twice.
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Hence, it is still necessary to add sequence numbers to unicast data and
command frames. Although duplicated unicast data and command frames
could already be discarded during reception, they must be fully received
and acknowledged to avoid self-imposed collision attacks.

Acknowledgment frames: As for acknowledgment frames, replay protection
is provided by retaining SPLO’s mechanisms for this.

Broadcast frames: As for broadcast frames, replay protection does not come
automatically. Suppose a node B receives a broadcast frame from a sender
A and, during the next wake up of B, an attacker replays that same
broadcast frame. In this case, B may assume the same CCM nonce,
thus causing B to consider both the OTP and the MIC of the replayed
broadcast frame valid. Only if there is one wake up in between, B will
definitely assume a different CCM nonce and hence reject the replayed
broadcast frame due to an invalid OTP or an inauthentic MIC. This also
holds true if B updates τB,A and ωB,A in between since, in this case,
ωB,A is raised, which causes B to restore a different CCM nonce, too.
Altogether, ILOS merely needs to take care of not accepting a broadcast
frame if, during the last wake up, a broadcast frame from the same sender
was accepted already. ILOS does so already during reception.

6.6.2 Security Analysis

Below, we (i) show that ILOS’ CCM nonces do not reoccur in conjunction with
the same CCM key and (ii) argue that ILOS achieves strong freshness.

6.6.2.1 Uniqueness of CCM Nonces

Since ILOS’ CCM nonces have a common format, we can separate three cases:

0xFF: As for OTPs, the final field of CCM nonces is set to 0xFF. Furthermore,
in the case of broadcast OTPs, the MAC address field of CCM nonces is
set to ID∗, which distinguishes their CCM nonces from the ones of unicast
OTPs. Hence, it remains to ensure that the value of the wake-up counter
field of the CCM nonce of a broadcast or unicast OTP does not coincide
with the one of other broadcast or unicast OTPs in conjunction with the
same CCM key, respectively. As for CCM nonces of broadcast OTPs,
this holds true since ILOS centers strobes of consecutive broadcast frames
around distinct even wake ups. Likewise, since SPLO centers strobes of
unicast frames around different wake ups of a receiver, CCM nonces of
unicast OTPs do not reoccur in conjunction with the same CCM key.

0xFE: As for the authentication and encryption of broadcast frames, the final
field of CCM nonces is set to 0xFE. Thus, such CCM nonces differ from
CCM nonces that are used in other occasions. Further, since ILOS centers
strobes of consecutive broadcast frames around distinct even wake ups,
such CCM nonces do not reoccur in conjunction with the same CCM key.

Else: As for the authentication and encryption of unicast frames, as well as the
authentication of acknowledgment frames, the final field of CCM nonces
is set to a strobe index. Let us first ensure that when authenticating
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and encrypting unicast frames, the corresponding CCM nonces do not
collide among themselves in conjunction with the same CCM key. Note
that such CCM nonces contain the sender’s MAC address, the receiver’s
wake-up counter at time of reception, and the current strobe index. Thus,
such CCM nonces can only collide if they originate from the same sender.
Furthermore, if the CCM key is unchanged, a different wake-up counter or
strobe index will be used. Consequently, the CCM nonces used for authen-
ticating and encrypting unicast frames can not collide among themselves
in conjunction with the same CCM key. Likewise, let us also ensure that
the CCM nonces used for authenticating acknowledgment frames do not
collide among themselves in conjunction with the same CCM key. This
can be seen by observing that a node can acknowledge at most one unicast
frame per wake up. Thus, it remains to ensure that the CCM nonces used
for authenticating and encrypting unicast frames, and the CCM nonces
used for authenticating acknowledgment frames do not collide among each
other in conjunction with the same CCM key. In the case of group session
keys, this is achieved through bitwise negating the MAC address field. In
the case of pairwise session keys, additionally observe that authenticated
acknowledgment frames are only sent in one direction, thereby excluding
that the pathological case of ¬IDA = IDB can ensue a nonce reuse.

6.6.2.2 Freshness Guarantees

In the case of unicast frames, ILOS achieves strong freshness up to tw. This
is because, if a unicast frame is delayed by ≥ tw, receivers will use a different
CCM nonce to verify its MIC, which results in the rejection of the frame. Fur-
ther, duplicate unicast frames are either detected by AKES or through sequence
numbers. In the case of acknowledgment frames, strong freshness is ensured by
retaining SPLO’s mechanisms for this. In the case of broadcast frames, ILOS
achieves strong freshness up to 2tw since receivers will definitely assume a dif-
ferent CCM nonce when a broadcast frame is delayed by ≥ 2tw. Also, ILOS
takes care of not accepting the same broadcast frame twice.

6.6.3 Implementation

Our implementation of ILOS advances our implementation of ContikiMAC,
AKES, POTR, the dozing optimization, and SPLO. We preserved the soft-
ware architecture and inserted the changes of ILOS surrounded by conditional
preprocessor directives. This enables us to switch between frame counters and
wake-up counters at compilation time. Within our conditional code, we only
let information flow downwards, following the terminology introduced in [183].
That is, upper layers retrieve additional information, such as the current wake-
up counter, from lower layers. Nevertheless, ILOS is not a real cross-layer
optimization because ILOS only affects the MAC layer.

6.6.4 Evaluation

Using our implementation, we now (i) quantify the reduction of the security-
related per-frame overhead thanks to ILOS, (ii) demonstrate the resulting re-
duction in energy consumption during transmissions and receptions of unicast
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Table 6.5: Security-Related Per-Frame Overhead
Frame Format Overhead (in bytes)
IEEE 802.15.4 [5, 14] + m

8
IEEE 802.15.4+TSCH [1, 10] + m

8
IEEE 802.15.4+AKES 5 + m

8

POTR+AKES 4 + l+m
8

POTR+AKES+SPLO [4, 5] + l+m
8

POTR+AKES+SPLO+LB [1, 2] + l+m
8

POTR+AKES+SPLO+ILOS [0, 1] + l+m
8

data frames, (iii) demonstrate that ILOS accelerates the on-the-fly rejection of
unwanted unicast data frames, and (iv) give insight to ILOS’ memory overhead.

6.6.4.1 Security-Related Per-Frame Overhead

Table 6.5 compares the security-related per-frame overhead of various frame
formats. As per IEEE 802.15.4, if not using TSCH, a secured IEEE 802.15.4
frame has a 1-byte Security Control field, a 4-byte Frame Counter field, an
optional Key Identifier field of up to 9 bytes, as well as an m-bit CCM MIC.
In TSCH networks, the Frame Counter field is obsolete. Using AKES obviates
the Key Identifier field. On the other hand, while POTR removes the Security
Control field, POTR adds the l-bit OTP field to data, command, and ACK

frames. Moreover, SPLO requires adding the 1-byte Strobe Index field to unicast
frames. The LB optimization can reduce the length of POTR’s Frame Counter
field from 4 bytes to 1 byte. ILOS further reduces the security-related per-frame
by dispensing with frame counters entirely. Additionally, when using ILOS, it
becomes reasonable to use shorter OTPs, e.g., 2-byte OTPs. This is because if
an attacker guesses an OTP right, no anti-replay data gets corrupted.

6.6.4.2 Energy Efficiency

To demonstrate that ILOS reduces the energy consumption of sending unicast
data frames, the following experiment was conducted. An OpenMote A sent
unicast data frames with 50 bytes of payload to another OpenMote B, which
was placed 50cm apart from A. While A strobed and subsequently received B’s
acknowledgment frame, the current draw of A was measured like described in
Section 3.6.2. This was repeated using three different configurations, namely (i)
with neither the LB optimization nor ILOS, (ii) with the LB optimization, and
(iii) with ILOS. For each of the three configurations, 200 samples were obtained.
Throughout, short addresses, L = 8, Security Level 6, SPLO, POTR, and the
dozing optimization were used. Furthermore, the length of OTPs l was set to
24 when ILOS was disabled and to 16 otherwise.

Figure 6.27a shows the results. Expectably, the most energy-consuming
configuration is to use neither the LB optimization nor ILOS. This is because,
in this configuration, frame counters are transmitted uncompressed. Enabling
the LB optimization saves energy since this reduces the Frame Counter field by
3 bytes. Another 2 bytes can be saved by enabling ILOS instead, yielding a
slightly lower energy consumption compared to using the LB optimization.
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Figure 6.27: Energy consumption per (a) transmission and (b) reception of a
unicast data frame with 50 bytes of payload in different configurations

To also demonstrate that ILOS reduces the energy consumption of receiving
legitimate unicast data frames, the above experiment was repeated with two
differences. First, B’s energy consumption while receiving A’s unicast data
frames and acknowledging them was measured. Second, to avoid bias, A sent
at randomized times.

Figure 6.27b shows the results. This time, the variation in the data is much
higher because the energy consumption per frame reception highly depends on
how long a receiver waits until the next unicast frame is being strobed. Apart
from that, the results are similar. While ILOS constitutes the most energy-
efficient configuration, using neither the LB optimization nor ILOS constitutes
the least energy-efficient configuration.

The above results apply to unicast command and data frames alike since
they are treated equally. Broadcast receptions should also consume less energy
when using the LB optimization or ILOS. Broadcast transmissions, by contrast,
will not become more energy efficient on average since ContikiMAC strobes
broadcast frames for a whole wake-up interval anyway. Additionally, we note
that thanks to reducing the security-related per-frame overhead, fragmentation
at upper layers may happen less often when using ILOS, then saving further
energy.

6.6.4.3 Rejection Speed

To show the acceleration of POTR’s rejection speed, the following experiment
was conducted. An OpenMote A sent a maximum-length unicast data frame
with an invalid OTP to another OpenMote B, which stored A as a permanent
neighbor. Upon reception, B stopped the time between detecting the frame’s
SHR and the rejection of the frame, which is signaled by RXABO interrupts.
This was repeated using three different configurations, namely (i) with the LB
optimization, as well as ILOS disabled, (ii) with the LB optimization enabled,
and (iii) with ILOS enabled. For each of the three configurations, 100 samples
were obtained. Throughout, short addresses and L = 8 were used. Furthermore,
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the length of OTPs l was set to 24 when ILOS was disabled and to 16 otherwise.
Figure 6.28 shows that the LB optimization accelerates POTR’s rejection

speed noticeably. ILOS accelerates POTR’s rejection speed even more since the
validation of OTPs begins even earlier. In effect, ILOS further reduces the time
spent in receive mode under broadcast, unicast, and droplet attacks.

6.6.4.4 Memory Overhead

As a baseline for comparison, the memory consumption was first measured when
using ContikiMAC without MAC layer security using the tool arm-none-eabi-
-size. Then, the memory overhead of enabling AKES, POTR, the dozing op-
timization, SPLO, as well as ILOS was measured. This procedure was repeated
with different numbers of permanent neighbor slots, whereas the number of ten-
tative neighbor slots was fixed to 5. Throughout, short addresses, Security Level
6, and 2-byte OTPs were used.

The results are shown in Figure 6.29 alongside previous ones. The program
memory overhead of ILOS turned out to be small. Also, ILOS saves RAM thanks
to dispensing with frame counters. This is in contrast to the LB optimization.

6.6.5 Discussion

A core concept of IEEE 802.15.4 security is the use of frame counters for both
nonce generation and replay protection. While being functional, frame counters
(i) cause an increased energy consumption as they incur a per-frame overhead
of 4 bytes, (ii) only provide sequential freshness, and (iii) suffer from the issue
that if an OTP is guessed right, anti-replay data gets corrupted. The LB opti-
mization does reduce the per-frame overhead of frame counters, yet at the cost
of an increased RAM consumption and occasional energy- and time-consuming
resynchronizations. We have proposed ILOS, which outperforms the LB op-
timization in terms of security-related per-frame overhead, energy efficiency,
rejection speed, as well as RAM footprint. Furthermore, in contrast to the
LB optimization, ILOS requires no resynchronizations. Beyond that, thanks to
wake-up counters, ILOS achieves strong freshness and avoids the corruption of
anti-replay data in case of a successful guessing attack. The only drawback of
ILOS is that ILOS intertwines ContikiMAC and MAC layer security. From a
software engineer’s perspective, we would actually like to decouple these aspects
so that we can change one without affecting the other.

6.7 Summary

Related work proposed the embedding of OTPs in synchronization or frame
headers to defend against broadcast, unicast, and droplet attacks. Thus far,
it was, however, unclear how to (i) practically implement OTPs, (ii) avoid the
overhead of establishing extra keys for deriving OTPs, (iii) prevent broadcast,
unicast, and droplet attacks while establishing these extra keys, and (iv) mit-
igate successful guessing attacks without the overhead of network-wide time
synchronization. In this chapter, we have proposed POTR and ILOS, which
address these open issues. POTR only depends on features of commodity IEEE
802.15.4 transceivers, uses the same keys as IEEE 802.15.4 security, and in-
tegrates with AKES so as to mitigate broadcast, unicast, and droplet attacks
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Figure 6.28: POTR’s rejection speed in different configurations
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while establishing those keys. ILOS, on the other hand, adapts POTR to derive
OTPs from wake-up counters. In doing so, ILOS renders successful guessing
attacks against POTR benign without network-wide time synchronization.

In this chapter, we have also considered two optimizations to further mit-
igate external reception-oriented denial-of-sleep attacks against ContikiMAC.
The dozing optimization, on the one hand, reduces ContikiMAC’s time in receive
mode while searching for the silence period between two successively strobed
frames. Indeed, the dozing optimization has turned out to further mitigate
broadcast, unicast, and droplet attacks compared to using POTR alone, as well
as to mitigate jamming attacks. Beyond that, the dozing optimization reduces
the energy consumption for receiving legitimate frames, too. The LB optimiza-
tion, on the other hand, compresses frame counters and thereby accelerates the
speed at which POTR rejects frames with invalid OTPs. However, the LB op-
timization is superseded by ILOS since ILOS outperforms the LB optimization
in rejection speed, as well as in all other considered regards. Beyond that, ILOS
achieves strong freshness, thereby overcoming a basic limitation of the frame
counter-based replay protection of IEEE 802.15.4 security.

Furthermore, we have proposed SPLO. SPLO constitutes the first defense
against acknowledgment spoofing attacks, the first lightweight defense against
pulse-delay attacks, as well as the first effective defense against collision attacks.
For preventing acknowledgment spoofing and pulse-delay attacks, SPLO not
only ensures the authenticity of acknowledgment frames, but also their strong
freshness and correspondence. For mitigating collision attacks, SPLO restricts
the maximum length of strobes of unicast frames throughout a session.

Finally, for preventing interruption attacks, we have proposed to not perform
CCAs between successively strobed frames at all.

In sum, in this chapter, we have proposed a denial-of-sleep-protected version
ContikiMAC, which prevents, or at least greatly mitigates, all external denial-
of-sleep attacks against ContikiMAC we identified in Chapter 5.

However, our denial-of-sleep-protected version of ContikiMAC inherits three
basic limitations from ContikiMAC. First, ContikiMAC depends on CCAs to
detect transmissions, thus rendering ContikiMAC difficult to configure and sus-
ceptible to interference [81, 167, 168]. Second, ContikiMAC requires padding
short frames with extra bytes, as otherwise they may fall between ContikiMAC’s
two regular CCAs [60]. Third, ContikiMAC is prone to duplicate receptions of
broadcast frames since senders need to strobe broadcast frames not only for an
entire wake-up interval, but once more to cover corner cases [184].

Actually, all these three limitations of ContikiMAC can be overcome, too.
An approach to automatically tune CCA thresholds to trade off false wake ups
against undetected transmissions was proposed by Sha et al. [81]. An approach
to avoid padding bytes is to do three CCAs instead of two CCAs [185]. Finally,
an approach to avoid duplicate receptions of broadcast frames is to embed strobe
indices also in broadcast frames, which would enable receivers to skip over a
wake up after receiving a broadcast frame with a low strobe index. On the
other hand, none of these limitations arises when using CSL.



Chapter 7

Denial-of-Sleep Defenses for
CSL

This chapter presents our denial-of-sleep-protected version of CSL, which consti-
tutes the final design of our denial-of-sleep-resilient MAC protocol. Our version
of CSL resists, or at least greatly mitigates, all denial-of-sleep attacks against
CSL we found. Furthermore, our version of CSL integrates a channel hopping
extension, as well as CSL’s throughput optimization of bursting pending frames.

7.1 Overview

To protect CSL against denial-of-sleep attacks, we propose CSL-enabled and
partially enhanced versions of POTR, SPLO, and ILOS, entitled POTR++,
SPLO++, ILOS++, respectively:

POTR++: The basic design of POTR and POTR++ is similar. Both adopt
the emergent pattern of OTPs for defending against broadcast, unicast,
and droplet attacks. Also, both integrate with AKES so as to resolve the
conflict that frames exchanged during session key establishment have to be
protected against broadcast, unicast, and droplet attacks without session
keys in place. On the other hand, a fundamental difference between POTR
and POTR++ is that POTR++ exclusively derives OTPs from pairwise
session keys in order to provide a basis for pinpointing and evicting chatty
nodes. Another basic difference between POTR and POTR++ is that
POTR++ supports bursts (introduced in Section 2.2.2).

SPLO++: SPLO and SPLO++ use similar means for preventing acknowledg-
ment spoofing and pulse-delay attacks, as well as for mitigating collision
attacks. To prevent acknowledgment spoofing and pulse-delay attacks,
both ensure not only the authenticity and sequential freshness of acknowl-
edgment frames, but also their correspondence and strong freshness. To
mitigate collision attacks, both keep the maximum uncertainty about a
permanent neighbor’s wake-up time below a user-defined threshold tt by
sending UPDATEs in the absence of upper-layer traffic. However, a crucial
difference between the two is that SPLO++ leverages the predictability
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of clock drifts. In effect, this lowers the energy cost of sending UPDATEs
and other unicast frames, as well as further mitigates collision attacks.

ILOS++: Like ILOS, ILOS++ has the responsibilities to generate and restore
CCM nonces, as well as to initialize and maintain all relevant data.

POTR++, SPLO++, and ILOS++ are built around our concept of wake-
up counters, which replace frame counters. As their name suggests, wake-up
counters are incremented in lockstep with CSL’s wake ups, even if CSL has
to skip over a wake up due to sending at that time. Furthermore, as men-
tioned above, SPLO++ maintains precise estimates of the wake-up time of
each neighbor. ILOS++ takes advantage of these estimates for predicting and
restoring a neighbor’s current wake-up counter. That is, unlike frame counters,
wake-up counters need not be sent along with secured frames, which reduces
the security-related per-frame overhead. More importantly, if an authenticated
frame is delayed by a critical period of time, receivers will end up generating
a different CCM nonce. Consequently, receivers consider delayed authenticated
frames inauthentic, thereby achieving strong freshness. This is in contrast to a
frame counter-based replay protection, which only provides sequential freshness.

7.2 Design

In the following, we detail the design of POTR++, SPLO++, and ILOS++.

7.2.1 Notations

For reference, we summarize our notations below. We denote by:

• IDA the short or extended MAC address of A. In line with AKES, we
assume that either short or extended addresses are used within an IEEE
802.15.4 network and that short addresses are unique within an IEEE
802.15.4 network.

• K ′A,B the pairwise session key between A and B.

• l the length of an OTP in bits.

• ta the duration of the reception window for acknowledgment frames.

• tt the maximum allowable uncertainty about a permanent neighbor’s
wake-up time.

• tw CSL’s wake-up interval.

• α a field within the CCM nonces generated by ILOS++.

• ηA,B an estimate of the clock drift of A against B.

• θ the frequency tolerance of the employed clocks.

• θη the frequency tolerance of estimates of clock drifts.

• tm a parameter of SPLO++.
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• λ a burst index. The first payload frame after a wake-up sequence always
has burst index λ = 0, a payload frame that follows right after has burst
index λ = 1, and so on.

• τA,B B’s last wake-up time that is known to A.

• ϕ a CSL phase. Unless otherwise mentioned, measured as the time be-
tween when the SHR of the frame containing ϕ was transmitted and the
sender’s next wake-up time.

• ωA the wake-up counter of A. A increments ωA in lockstep with CSL’s
periodic wake ups, even if CSL skips over a wake up due to sending at
that time.

• ωA,B the wake-up counter of B at time τA,B .

7.2.2 POTR++: CSL-Enabled and Enhanced POTR

The design of POTR++ is divided into two parts, namely a special frame format
and corresponding procedures for rejecting unwanted frames during reception.

7.2.2.1 Frame Format

When we defined the frame format of POTR++, a first design decision was
where to embed OTPs. A first option is to leave wake-up frames unsecured
and to embed OTPs in payload frames. But, a drawback of this first option
is that receivers of unwanted payload frames will always need to receive both
an entire wake-up frame plus the beginning of the payload frame before they
can reject it. A second option is to embed OTPs in wake-up frames along with
all necessary information for deciding whether to receive the payload frame.
Yet, while this second option accelerates the rejection of unwanted payload
frames, it will extend wake-up frames and hence necessitate prolonging the time
in receive mode during CSL’s periodic wake ups. Thus, there is a trade-off
between rejection speed and the duration of periodic wake ups. POTR++ goes
for faster rejection speed, as shown in Figure 7.1. Therein, l denotes the length
of an OTP in bits. The choice of l presents a trade-off between per-frame
overhead and resistance to guessing attacks. Besides, λ denotes the burst index
- the first payload frame after a wake-up sequence always has burst index λ = 0,
a payload frame that follows right after has burst index λ = 1, and so on.

Note that a format for broadcast frames is missing in Figure 7.1. This is be-
cause POTR++ requires sending broadcast frames as normal unicast frames to
each permanent neighbor, one after another, following the unicast strategy

introduced earlier. Though we showed the unicast strategy to be energy con-
suming, this way of transmitting broadcast frames may actually save energy
when it comes to implementing channel hopping, as we will demonstrate in
Section 7.5.1. Three further advantages of sending broadcast frames as normal
unicast frames are (i) that, in this way, pairwise session keys can serve to se-
cure broadcast transmissions without difficulty (ii) that broadcast transmissions
update stored wake-up times as a side effect, thereby lowering the amount of
UPDATEs, and (iii) that failed broadcast transmissions are recognized and retried,
thus improving the reliability of broadcast transmissions.
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Figure 7.1: POTR++’s format of (a) wake-up, (b) payload, and (c) acknowl-
edgment frames. Sticking with the standardized format of these frames would
require transmitting many more fields that are functionally unnecessary, only
delaying on-the-fly rejection and increasing energy consumption. Therefore,
POTR++ departs from the standardized format of CSL frames by leveraging
the IEEE 802.15.4-compliant customization mechanism of extended frame types.

HELLOs, however, are still to be broadcasted as usual since not-yet-discovered
neighbors should receive HELLOs, as well. This leaves the problem of how to
authenticate HELLOs with pairwise session keys. To this end, POTR++ also
follows the unicast strategy by including multiple CCM MICs in a HELLO, one
for each permanent neighbor, and generates them using the respective pairwise
session key. The ordering of the CCM MICs corresponds to the ordering of the
sender’s neighbor list. Thus, for extracting its MIC, the receiver of a HELLO from
a permanent neighbor needs to know its index within the sender’s neighbor list.
These indices are piggybacked on HELLOACKs and ACKs. POTR++ also uses
these indices as 1-byte source addresses in some types of wake-up frames.

7.2.2.2 On-the-Fly Rejection

Depending on which type of frame is being received, POTR++ performs dif-
ferent checks, which we detail below. Throughout, if any check fails, POTR++
disables the receive mode immediately, thereby stopping further energy loss.

Wake-up frames: When receiving a wake-up frame, POTR++ first checks
that its length complies with POTR++’s frame format. Then, POTR++
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Figure 7.2: Mitigation of broadcast and droplet attacks with HELLOs

proceeds to perform special checks, depending on which type of payload
frame follows as announced through the Subtype field. If a HELLO fol-
lows, POTR++ ensures (i) that the HELLO is not destined to a co-located
IEEE 802.15.4 network by inspecting the destination PAN ID contained
in the wake-up frame and (ii) that receiving the HELLO does not result in
exceeding a maximum rate of incoming HELLOs. POTR++ implements
this rate limitation via an LBC, as shown in Figure 7.2. Yet, to avoid
penalizing authentic HELLOs, the LBC is decremented again if a HELLO

turns out authentic. This LBC-based approach to mitigating broadcast
and droplet attacks with inauthentic HELLOs nicely allows the short-term
rate of incoming inauthentic HELLOs to overshoot, while still enforcing a
maximum long-term rate of incoming inauthentic HELLOs. If a HELLOACK

follows, POTR++ validates (i) that AKES recently sent a HELLO at all,
(ii) that AKES can reply with an ACK, which may not be true since AKES
restricts itself to sending a maximum rate of ACKs, (iii) that the HELLOACK

is not destined to a co-located IEEE 802.15.4 network by inspecting the
destination PAN ID contained in the wake-up frame, and (iv) that receiv-
ing the HELLOACK does not ensue exceeding a maximum rate of incoming
HELLOACKs. Again, POTR++ implements this rate limitation via an LBC
and decrements that LBC if a HELLOACK turns out authentic. If an ACK or
normal unicast frame follows, POTR++ ascertains that the OTP matches
the expected one. Concretely, if A sends an ACK or normal unicast frame
to B, the OTP is expected to match the l-bit truncated CCM MIC over
the frame length of the ACK or normal unicast frame, respectively. Fur-
thermore, this CCM MIC is to be generated using the pairwise session key
K ′A,B between A and B as CCM key, and the CCM nonce shown in Table
7.1. Finally, if all type-specific checks passed, POTR++ also validates
that the wake-up frame’s rendezvous time is not unreasonably late.

Payload frames: When it comes to receiving a payload frame, POTR++ per-
forms the following checks. In the case of a HELLO from a non-permanent
neighbor, POTR++ ensures that AKES can reply with a HELLOACK at
all. This may not be the case because AKES restricts itself to sending a
maximum rate of HELLOACKs and because AKES may run out of memory.
Note, however, that AKES is interested in receiving HELLOs from perma-
nent neighbors since AKES uses such HELLOs to trigger a reestablishment
of session keys after reboots, as well as to suppress redundant HELLOs. In
the case of a HELLOACK, POTR++ just validates that its length complies
with POTR++’s frame format. In the case of an ACK or normal uni-
cast frame, POTR++ ascertains that its length matches the one that was
announced in the wake-up frame. Furthermore, if more normal unicast
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Table 7.1: Modified CCM Inputs
Occasion CCM

Key
CCM Nonce

OTP of a wake-up
frame from A to B

K ′A,B IDA‖α‖λ‖ωB , where IDA is A’s MAC ad-
dress, α = 0, λ = 0, and ωB is B’s wake-
up counter at time of receiving the wake-up
frame

Authentication of a
HELLO from A

see
Sec-
tion
7.2.2.1

IDA‖α‖λ‖ωA, where IDA is A’s MAC ad-
dress, α = 1, λ = 0, and ωA is A’s wake-up
counter when sending the HELLO - ωA is also
contained in the HELLO, but a permanent
neighbor B of A restores ωA like specified
in Section 7.2.4

Authentication and
encryption of a unicast
frame from A to B

K ′A,B IDA‖α‖λ‖ωB , where IDA is A’s MAC ad-
dress, α = 2, λ is the burst index, and ωB
is B’s wake-up counter at time of receiving
the wake-up frame that leads to receiving
the unicast frame

Authentication of
an acknowledgment
frame from A to B

K ′A,B IDA‖α‖λ‖ωA, where IDA is A’s MAC ad-
dress, α = 3, λ is the burst index of the
acknowledged unicast frame, and ωA is A’s
wake-up counter at time of receiving the
wake-up frame that led to receiving the ac-
knowledged ACK or normal unicast frame

frames burst in, POTR++ always makes sure that their length matches
the length announced in the previous one.

Acknowledgment frames: When it comes to receiving an acknowledgment
frame, POTR++ only ensures that its length complies with POTR++’s
frame format.

7.2.3 SPLO++: CSL-Enabled and Enhanced SPLO

Now, we specify how SPLO++ secures acknowledgment frames and how
SPLO++ limits the maximum duration of wake-up sequences. Later, in
Section 7.2.4.2, we also specify how SPLO++ initializes wake-up times.

7.2.3.1 Securing Acknowledgment Frames

Once wake-up times are initialized, each node A stores for every permanent
neighbor B the last known wake-up time τA,B of B. A exclusively updates
τA,B when receiving an authentic acknowledgment frame from B. In contrast
to the standardized version of CSL, SPLO++ does not only ensure the authen-
ticity and sequential freshness of acknowledgment frames, but also their corre-
spondence and strong freshness. For ensuring the correspondence and strong
freshness of authenticated acknowledgment frames, SPLO++ takes three com-
plementary measures. First, senders of authenticated acknowledgment frames
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implicitly echo the wake-up counter at time of receiving the wake-up frame that
led to receiving the unicast frame that is being acknowledged, as well as the
burst index of the unicast frame that is being acknowledged. By implicitly, we
mean that this data is not explicitly sent along with authenticated acknowledg-
ment frames, but included in the CCM nonces of authenticated acknowledgment
frames, as shown in Table 7.1. Second, unlike specified by CSL, all nodes must
check the authenticity of normal unicast frames before replying with authenti-
cated acknowledgment frames. Third, SPLO++ requires a confined reception
window for acknowledgment frames of duration ta. The effectiveness of these
three measures will become apparent in the course of our security analysis.

7.2.3.2 Limiting the Maximum Duration of Wake-Up Sequences

To keep the maximum uncertainty about a permanent neighbor’s wake-up time
below a user-defined threshold tt, SPLO++ modifies AKES to schedule UPDATEs
like follows. Initially, a node A has no estimate of its clock drift ηA,B against a
new permanent neighbor B, which is why A can only assume A’s and B’s clocks
to diverge by 2θ at most, where θ is the frequency tolerance of the employed
clocks. Hence, A has to send B an UPDATE tt

2θ seconds after discovering B,
unless A sends another normal unicast frame to B beforehand anyway. For
example, if tt = 2ms and θ = 15ppm, A sends the first UPDATE to B after 66s
of inactivity, minus a bit to account for retransmissions. However, every time
when A updates τA,B to τ ′A,B , A can compute its current clock drift against

B as ηA,B =
τ ′
A,B−τA,B

(ω′
A,B−ωA,B)×tw , where tw is the interval of CSL’s periodic wake

ups, ωA,B is the wake-up counter of B at time τA,B , and ω′A,B is the wake-
up counter of B at time τ ′A,B . From then on, A compensates for ηA,B and
assumes ηA,B to be correct up to θη < θ. Thus, A can not only reduce the
length of wake-up sequences, but also raise the duration after which A sends B
UPDATEs, yet not too much as ηA,B may deviate from the real clock drift too
much otherwise [91, 92]. We denote the maximum duration until sending an
UPDATE by tm. Also note that, in order to get a precise estimate of ηA,B , the
difference τ ′A,B−τA,B should be sufficiently long [91, 92], which may necessitate
delaying the initialization and updating of ηA,B until two sufficiently distant
samples are in place.

7.2.4 ILOS++: CSL-Enabled ILOS

ILOS++ has the responsibilities to generate and restore CCM nonces, as well
as to keep track of the wake-up counters of neighboring nodes.

7.2.4.1 Generation and Restoration of CCM Nonces

ILOS++ generates CCM nonces like shown in Table 7.1. The security of this
construction of CCM nonces will be proven in Section 7.3, but, basically, rests
on two complementary measures. On the one hand, ILOS++ avoids collisions
among CCM nonces of different frame types by using a common base format
and the distinguishing field α. On the other hand, ILOS++ avoids collisions
among CCM nonces of the same frame type by including the burst index, as
well as either the sender’s or the receiver’s wake-up counter.
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Figure 7.3: Initialization of wake-up counters and times in parallel to AKES’
three-way handshake by SPLO++ and ILOS++

As CCM nonces either contain the receiver’s or the sender’s wake-up counter,
it is either necessary that the sender predicts the receiver’s wake-up counter or
that the receiver restores the sender’s wake-up counter. Predicting a wake-up
counter is necessary to generate the CCM nonces of unicast frames and OTPs.
To do so, a sender A predicts a receiver B’s wake-up counter at time of receiving
A’s wake-up frame as ωA,B+

t−τA,B

twηA,B
, where τA,B is A’s last known wake-up time

of B, ωA,B is B’s wake-up counter at time τA,B , t is the expected wake-up time
of B around which A arranges its wake-up sequence, and ηA,B = 1 if not yet
initialized. Restoring a wake-up counter is only necessary to restore the CCM
nonce of a HELLO from a permanent neighbor. To aid receivers of HELLOs in
doing so, senders have to time HELLOs so that the end of the transmission of
a HELLO’s SHR falls right in the middle between two consecutive wake ups of
the sender. This enables a permanent neighbor B of A to restore A’s wake-up
counter at time of transmitting a HELLO by rounding ωB,A +

t−τB,A

tw
ηB,A − 1

2 ,
where τB,A is B’s last known wake-up time of A, ωB,A is A’s wake-up counter at
time τB,A, t is when the HELLO’s SHR arrived, and ηB,A = 1 if not yet initialized.

For implementing the prediction and restoration of wake-up counters,
ILOS++ requires every node A to store each permanent neighbor B’s wake-up
counter ωA,B at time τA,B . In this regard, note that when SPLO++ updates
τA,B to τ ′A,B , A already knows B’s wake-up counter ω′A,B at time τ ′A,B because
A correctly predicted B’s wake-up counter ω′A,B at time τ ′A,B . Thus, when-
ever SPLO++ updates τA,B to τ ′A,B , ILOS++ updates ωA,B to the correctly
predicted wake-up counter ω′A,B of B at time τ ′A,B without further calculations.

7.2.4.2 Initialization of Wake-up Counters and Times

An overlapping part of SPLO++ and ILOS++ is the initialization of wake-up
times and counters. This initialization actually happens twice in parallel to
AKES’ three-way handshake.

1. The first initialization happens upon reception of a HELLO or HELLOACK.
Specifically, as shown in Figure 7.3, the HELLO carries A’s current wake-up
counter ωA. Though attackers can delay HELLOs, B takes this informa-
tion for granted and initializes ωB,A to ωA and τB,A to the time when the
HELLO’s SHR arrived minus tw

2 (since a HELLO’s SHR is transmitted in the
middle between two consecutive wake ups of the sender). As B generates
the CCM nonce of the HELLOACK, B uses this data for the first time so as
to predict A’s wake-up counter. If this prediction is incorrect, B will not
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receive an ACK in response and eventually delete A from its list of tenta-
tive neighbors. Otherwise, it may still be the case that τB,A is slightly
offset due to a pulse-delay attack. Hence, B corrects τB,A upon receiving
A’s ACK like is explained shortly. Similarly, B’s HELLOACK carries B’s CSL
phase ϕ1 and B’s current wake-up counter ωB . A also takes this data for
granted and uses it to initialize τA,B and ωA,B . When generating the CCM
nonce of the ACK, A uses τA,B and ωA,B for the first time so as to predict
B’s wake-up counter. Only if this prediction is correct, A will get an au-
thentic acknowledgment frame in response and, else, will delete B from
its list of permanent neighbors. Besides, B’s HELLOACK carries a crypto-
graphic random number Q that is newly generated for each transmission
and retransmission. After receiving B’s HELLOACK, A acknowledges with
an unauthenticated acknowledgment frame. As opposed to authenticated
acknowledgment frames, unauthenticated acknowledgment frames can be
sent immediately without executing AKES’ checks beforehand.

2. The second “corrective” initialization happens upon reception of an ACK

or the corresponding authenticated acknowledgment frame. Specifically,
A’s ACK contains ϕ2 and Q, where ϕ2 is A’s CSL phase when receiving the
HELLOACK’s SHR. Upon receiving A’s ACK, B ensures that Q is unmodified
and uses ϕ2 to correct its value of τB,A. Also, B updates ωB,A to A’s
correctly predicted wake-up counter at time of receiving B’s HELLOACK.
Lastly, B replies with an authenticated acknowledgment frame containing
B’s CSL phase ϕ3. If A finds B’s authenticated acknowledgment frame
authentic, A uses ϕ3 to correct its value of τA,B and updates ωA,B to B’s
correctly predicted wake-up counter at time of receiving A’s ACK.

7.3 Security Analysis

In this section, we analyze the security of POTR++, SPLO++, and ILOS++.
We start with showing that basic wireless security is preserved if using our
wake-up counter-based CCM nonces and replay protection. Then, we argue
that POTR++ and SPLO++ counter all denial-of-sleep attacks against CSL.

7.3.1 Basic Wireless Security

7.3.1.1 Uniqueness of CCM nonces

In order for CCM nonces to be secure, they must never reoccur in conjunction
with the same key. Owing to using pairwise session keys and since all CCM
nonces include the sender’s MAC address and the distinguishing field α, it suf-
fices to ensure that no CCM nonce coincides with other CCM nonces from a
particular sender to a particular receiver for each value of α within a session.

HELLOs: As for α = 1, the inclusion of the sender’s wake-up counter ensures
that such CCM nonces differ from previous ones of a particular sender
within a session since CSL needs to transmit wake-up frames for an entire
wake-up interval before sending another HELLO, thus causing a sender’s
wake-up counter to increment in the meantime.
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Unicast frames: As for α = 2, CCM nonces include the burst index and the
receiver’s wake-up counter at time of receiving the wake-up frame that
leads to receiving the unicast frame. The inclusion of the burst index
distinguishes CCM nonces of normal unicast frames within a burst. Thus,
it remains to ensure that the included wake-up counter differs in “spaced”
transmissions of unicast frames from a particular sender to a particular
receiver within a session. As SPLO++ keeps the uncertainty about a
receiver’s wake-up time below tt < tw within a session, CSL will arrange
the wake-up sequences of spaced transmissions of unicast frames around
distinct wake ups within a session. Hence, the included wake-up counter
indeed differs in spaced transmissions of unicast frames within a session.

Authenticated acknowledgment frames: As for α = 3, CCM nonces in-
clude the burst index of the acknowledged unicast frame and the sender’s
wake-up counter at time of receiving the wake-up frame that led to receiv-
ing the acknowledged unicast frame. Since the burst index differs when
acknowledging individual normal unicast frames of a burst, it remains
to ensure that the included wake-up counter differs when acknowledging
spaced transmissions of unicast frames within a session. This holds true
since CSL can receive at most one wake-up frame per wake up and because
the wake-up counter at time of a wake up is unique within a session.

7.3.1.2 Freshness Guarantees

Recall that strong freshness is provided if a receiver can not only ensure that a
frame was never accepted before, but also that it was sent within a limited time
span prior to its reception [54]. Together, SPLO++ and ILOS++ do achieve
strong freshness, as we argue below.

HELLOs: Suppose B receives a HELLO that originates from a permanent neigh-
bor A delayed by ≥ tw. Then, B will round A’s wake-up counter to a dif-
ferent value than was used by A to generate the CCM nonce of the HELLO.
As a result, B will consider the HELLO inauthentic. The same reasoning
applies to why B never considers the same HELLO authentic twice.

Unicast frames: Suppose B receives a unicast frame f that originates from
a neighboring node A delayed by ≥ tw. Then, B will derive f ’s CCM
nonce from a different wake-up counter than was predicted by A. Hence,
B will consider f ’s CCM MIC inauthentic and discard f . However, a
subtlety is that the sender of a unicast frame may miss the corresponding
acknowledgment frame and decide to retransmit. As a result, a receiver
may accept the same unicast frame twice. To this end, we add sequence
numbers to normal unicast frames, as shown in Figure 7.1b. These se-
quence numbers are maintained on a per-neighbor basis and are incre-
mented each time a normal unicast frame is transmitted to a permanent
neighbor, yet not incremented when retransmitting the last normal uni-
cast frame. Consequently, receivers can identify and filter out duplicated
normal unicast frames. On the other hand, adding sequence numbers to
ACKs and HELLOACKs is unnecessary since AKES considers duplicated ACKs
and HELLOACKs replayed anyway.
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Authenticated acknowledgment frames: Suppose B receives an authenti-
cated acknowledgment frame f delayed by > ta. Since B only accepts
acknowledgment frames for ta, f must originally have been sent in re-
sponse to a different normal unicast frame or ACK. There are two cases
how this may happen. First, f was originally sent in response to a differ-
ent normal unicast frame of the same burst. In this case, B will include
a different burst index in the CCM nonce. Second, f was originally sent
in response to a previous spaced transmission of a normal unicast frame
or ACK. In this case, B will include a different wake-up counter in the
CCM nonce. In both cases, B ends up considering the CCM MIC of f
inauthentic and rejects f .

Unauthenticated acknowledgment frames: The strong freshness of unau-
thenticated acknowledgment frames, which are only sent in response to
HELLOACKs, is ensured only after the corresponding ACK comes in. Suppose
B receives an unauthenticated acknowledgment frame f from A delayed
by > ta. Since B only accepts acknowledgment frames for ta, f must
originally have been sent in response to a different HELLOACK. However,
the originally acknowledged HELLOACK contained a different cryptographic
random number Q, thus causing B to reject A’s ACK and AKES’ three-way
handshake to remain incomplete.

7.3.2 Denial-of-Sleep Resilience

7.3.2.1 Broadcast, Unicast, and Droplet Attacks

Now, we argue that POTR++ mitigates broadcast, unicast, and droplet attacks,
no matter what the frame type of the injected or replayed frame or droplet is.

HELLOs and HELLOACKs: POTR++ mitigates broadcast, unicast, and
droplet attacks with HELLOs and HELLOACKs by only letting such types of
frames pass at a maximum rate, if they seem valid and are of interest at
all. To exemplify the effectiveness of this defense, let us compare the time
that CSL needs to spend in receive mode during its periodic wake ups
if tw = 125ms and l = 16 anyway with the additional worst-case time in
receive mode when accepting HELLOs at a rate of 1

15Hz. Assuming the data

rate of the 2.4-GHz O-QPSK PHY of 250kbit
s , the time in receive mode

per wake up is
(6+6+5)byte×8 bit

byte

250 kbit
s

= 0.544ms minimum. Here, 6+ accounts

for the length of the O-QPSK PHY header, +6+ is the maximum length
of a wake-up frame as per POTR++’s frame format, and +5 allows for
detecting a wake-up frame’s SHR when the beginning of the previous wake-
up frame was just missed. Thus, on a percentage basis, the base time in
receive mode is 100% × 0.544ms

tw
= 0.43%. For comparison, receiving one

maximum-length HELLO takes
(6+127)byte×8 bit

byte

250 kbit
s

= 4.256ms. Moreover, we

have to account for the unfortunate case that the SHR of the wake-up
frame of a HELLO may be detected right at the end of a periodic wake
up. In such cases, receivers need to stay in receive mode slightly longer
to see whether the SHR is the beginning of a wake-up frame. In the
case of a HELLO, receivers may need to receive up to 6 more bytes as
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per Figure 7.1a, which translates into an additional time in receive mode
of up to 0.192ms. Altogether, the additional worst-case time in receive
mode is 0.192ms + 4.256ms. Yet, on a percentage basis, receiving one
maximum-length HELLO at the rate of 1

15Hz only adds 0.03% to the base
time in receive mode at most. Thus, when configuring POTR++ to only
let HELLOs and HELLOACKs pass at a moderate rate, POTR++ makes CSL
practically resistant to broadcast, unicast, and droplet attacks with HELLOs
and HELLOACKs.

ACKs and normal unicast frames: One method for launching unicast and
droplet attacks with ACKs or normal unicast frames is to (i) inject or
replay a wake-up sequence and (ii) inject or replay an ACK, normal unicast
frame, or droplet. However, for this method to work out, attackers need to
come up with valid OTPs as invalid OTPs trigger an on-the-fly rejection.
Crafting a valid OTP seems impossible since unicast and droplet attacks
are launched by external attackers, which have no access to cryptographic
keys. Also, guessing an OTP, or replaying an OTP that is older than ≥ tw,
is pointless because such an OTP will turn out invalid with probability
1−2−l. On the other hand, a victim may consider a replayed OTP that is
younger than < tw valid, but this means that the victim node missed the
original transmission. Hence, in terms of energy consumption, there will
be not much of a difference compared to receiving the original transmission
in the first place. This even holds true if an attacker tampers with the
length of an ACK, normal unicast frame, or droplet. This is because the
length of a payload frame is announced in the preceding wake-up frames
and because changing the announced length would invalidate the replayed
OTP.

Another method for launching unicast and droplet attacks with ACKs or
normal unicast frames is to “jump on” unicast transmissions. That is, after
a victim node received a wake-up frame or a normal unicast frame with the
Frame Pending flag set, an attacker can inject or replay an ACK, normal
unicast frame, or droplet. But, the only repercussion is that the victim
node receives the attacker’s frame or droplet instead of the legitimate
frame. This does not result in an increased energy consumption because,
if the attacker’s frame or droplet has a different length than was previously
announced, the attacker’s frame or droplet will be rejected on the fly.

Acknowledgment frames: Since POTR++ validates the length of acknowl-
edgment frames during reception, over-long acknowledgment frames do
not cause receivers to stay longer in receive mode.

7.3.2.2 Collision Attacks

Now, we argue that SPLO++ mitigates collision attacks.

HELLOACKs and ACKs: Owing to initializing wake-up times early on, the
sender of a HELLOACK or ACK already has an estimate of its new neighbor’s
wake-up time and can hence shorten wake-up sequences before HELLOACKs
and ACKs. Furthermore, since this estimate is initialized only a couple
of seconds before transmitting a HELLOACK or ACK, the uncertainty about
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a new neighbor’s wake-up time is tiny and hence wake-up sequences be-
fore HELLOACKs and ACKs are very short. As a result, retransmissions of
HELLOACKs and ACKs also consume little energy, which is why collision
attacks against transmissions of HELLOACKs and ACKs are benign.

Normal unicast frames: Recall that SPLO++ keeps the uncertainty about
a permanent neighbor’s wake-up time below a user-defined threshold tt
by sending UPDATEs in the absence of upper-layer traffic. Thus, wake-up
sequences before normal unicast frames do not exceed a maximum dura-
tion of about tt. This limits the severity of collision attacks. In practice,
wake-up sequences can get slightly longer than tt since CSL rounds up
the number of required wake-up frames and always has to send one more
wake-up frame in order to also reach receivers that missed the beginning
of a wake-up frame. Note that collision attacks against the UPDATEs them-
selves may actually reduce a victim node’s energy consumption. This is
because if an UPDATE is not acknowledged after a configurable number of
retransmissions, AKES will delete the seemingly inactive neighbor. Thus,
in such an occasion, no upper-layer traffic will be sent to a deleted neigh-
bor until reestablishing session keys with him. However, it remains to
be investigated if, by blocking certain links, attackers can also cause an
increased energy consumption since this prevents the use of certain routes.

7.3.2.3 Acknowledgment Spoofing Attacks

To see that acknowledgment spoofing attacks are prevented, let us assume the
contrary that a node A receives an authentic acknowledgment frame f in re-
sponse to a normal unicast or ACK frame g, though the intended receiver B did
not successfully receive g. From the construction of CCM nonces we know that
f correctly echoed the wake-up counter ωB that was predicted by A, g’s burst
index, as well as B’s MAC address. Thus, B must have found a normal unicast
or ACK frame, say h, with g’s burst index at the ωB-th wake up authentic. As
f is authentic, h must have been secured with the same up-to-date pairwise
session key as f . Yet, no other node than A or B has access to their pairwise
session key K ′A,B and B can not be the sender of h. This retains A as the sender
of h. But, since establishing K ′A,B , the combination of wake-up counter ωB and
g’s burst index is unique in the communication direction A to B, which is why
h is g. However, any other node than B would have discarded g due to an
inauthentic MIC and hence not acknowledged g. Thus, there is a contradiction.

7.3.2.4 Pulse-Delay Attacks

In Section 7.3.1.2, we already showed that authenticated acknowledgment
frames turn out inauthentic if they are delayed by > ta. This means that, if the
receiver of an authentic acknowledgment frame uses the contained CSL phase to
compute the sender’s last wake-up time, the offset due to pulse-delay attacks is
upper-bounded by ta. As also discussed in Section 7.3.1.2, delaying unauthen-
ticated acknowledgment frames by > ta causes AKES’ three-way handshake
to fail, thereby preventing pulse-delay attacks while initializing wake-up times
up to ta, as well. Altogether, pulse-delay attacks cause no repercussions if the
undetectable offset ta is taken into account when estimating wake-up times.



148 CHAPTER 7. DENIAL-OF-SLEEP DEFENSES FOR CSL

cc2538_rf_driver

csl_driver akes_mac_framer

csl_framer_potr_framer

R

R

RADIO

FRAMER
R

FRAMER

akes_mac_driver

NETWORK

MAC NETWORK

MAC MAC

Figure 7.4: Integration of our CSL implementation into Contiki-NG’s network
stack, as well as into our implementation of AKES

7.3.2.5 Chatty Nodes

POTR++ provides a basis for pinpointing and evicting chatty nodes through
the adoption of pairwise session keys. In fact, owing to deriving OTPs from
pairwise session keys, a chatty node that sends plenty of normal unicast frames
or ACKs with valid OTPs can be considered compromised as no other node
than the chatty node and the victim node can access their pairwise session key
(provided that the underlying key predistribution is inoculated and opaque).
Likewise, authentic HELLOs and HELLOACKs can be attributed to the sender due
to authenticating them with pairwise session keys.

7.3.2.6 Deaf Nodes

Deaf nodes are also mitigated by SPLO++ through limiting the maximum
length of wake-up sequences that precede unicast frames.

7.4 Implementation

We implemented our denial-of-sleep defenses for CSL as part of a whole new CSL
implementation for Contiki-NG. Figure 7.4 shows how our CSL implementation
integrates into Contiki-NG’s network stack. Instead of using the current RADIO
interface “as is”, our CSL implementation is written against our enriched RADIO

interface, which supports an asynchronous mode of operation. Optionally, our
CSL implementation can be configured to act like the standardized version of
CSL. In this case, an IEEE 802.15.4-compliant FRAMER is called instead of the
csl framer potr framer. Besides, it is also possible to disable MAC layer
security, in which case the csl driver and an IEEE 802.15.4-compliant FRAMER
are called directly, i.e., without passing through AKES’ modules.

A main feature of our CSL implementation is its support for channel hopping,
which generally proved to be an effective means to alleviate interference, as
well as fading effects [186]. This feature is realized following Al Nahas et al.’s
generic channel hopping extension “MiCMAC” to asynchronous MAC protocols
[83]. The rationale of MiCMAC is to do each consecutive periodic wake up
on a different pseudo-random channel. As for unicasts, a sender may be able
to predict a receiver’s current channel and otherwise resorts to transmit on
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Figure 7.5: MAC layer overhead when unicasting data

one channel for as long as it takes to revisit this channel in the worst case.
Fortunately, our implementation works without this fallback mechanism since
we derive channels from wake-up counters and MAC addresses, both of which
are known to senders of unicast frames. However, as for broadcasts, MiCMAC
always requires transmitting on one channel for as long as it takes to revisit this
channel in the worst case. Normally, this is a severe drawback of MiCMAC,
but POTR++ only requires broadcasting HELLOs as usual and requires sending
other broadcast frames as unicast frames anyway. Furthermore, HELLOs are sent
very rarely once the network topology becomes stable.

7.5 Evaluation

In this section, we report on a set of experiments we conducted to assess the
overhead and effectiveness of our denial-of-sleep defenses for CSL. In sum, our
denial-of-sleep defenses turned out to (i) lower the communication overhead
compared to the standardized version of CSL, (ii) incur a low RAM overhead,
(iii) make CSL resistant to unicast attacks with normal unicast frames, and (iv)
highly mitigate collision attacks.

7.5.1 Communication Overhead

An apparent drawback of our denial-of-sleep defenses for CSL is their addition
of new fields, such as OTPs. To asses this overhead, the overall length of
the MAC layer fields of wake-up, payload, and acknowledgment frames was
logged while unicasting data. Furthermore, this was done using three different
configurations. First, MAC layer security was disabled. Second, AKES was then
enabled. Finally, all our denial-of-sleep defenses were enabled, too. Throughout,
2-byte OTPs, short addresses, and Security Level 6 were used.

The, maybe surprising, results are shown in Figure 7.5. As for wake-up
frames, our denial-of-sleep defenses for CSL actually reduces the overall length
of MAC layer fields. This is because POTR++ elides destination addresses
and checksums, as well as because POTR++ encodes rendezvous times more
concisely. As for payload frames, POTR++ also reduces the overall length
of MAC layer fields by eliding checksums and source addresses. Besides, our
denial-of-sleep defenses use wake-up counters, which, unlike frame counters,
need not be transmitted. As for acknowledgment frames, POTR++, again,
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Figure 7.6: Energy consumption per wake up

achieves significant savings by encoding the CSL phase more concisely, as well
as by avoiding frame counters and checksums.

Thanks to reducing the length of wake-up frames, our denial-of-sleep de-
fenses for CSL also reduce the energy consumption of CSL’s periodic wake ups.
This is because CSL only has to wake up for as long as it takes to detect the
SHR of a wake-up frame in the worst case. To measure the resulting energy sav-
ings, an OpenMote was connected with a µCurrent Gold and a Rigol DS1000E
oscilloscope in series like described in Section 3.6.2. Then, the OpenMote’s en-
ergy consumption per wake up was gauged when using the three configurations
mentioned above.

Figure 7.6 shows the results alongside with our results obtained for Con-
tikiMAC in the previous chapter. As we expected, the energy consumption of
CSL’s periodic wake ups decreases when using our denial-of-sleep defenses.

Another critical design decision of us is to send broadcast frames as unicast
frames to each permanent neighbor, one after another. To compare the energy
consumption of transmitting broadcast frames as usual and as unicast frames,
a network of 20 nearby OpenMotes was set up. The behavior of the OpenMotes
was as follows. At first, all OpenMote’s established session keys with each
other and learned each other’s clock drift. Then, each OpenMote began to send
maximum-length broadcast frames with a random delay of 0 - 4.5min in between.
In the background, each OpenMote ran Contiki-NG’s tool Energest to trace the
energy consumed for transmitting these broadcasts (which are transmitted as
unicast frames), as well as AKES’ HELLOs (which are transmitted as usual) [158].
For a fair comparison, each OpenMote padded its HELLOs with as many zeroes
as possible. Initially, all OpenMotes ran our denial-of-sleep-protected version of
CSL using tt = 2.38ms, θ = 15ppm, θη = 3ppm, tm = 5min, and 16 channels.
Then, this experiment was repeated using 8, 4, 2, and 1 channel(s).

As shown in Figure 7.7, the energy consumed for processing is very low,
regardless of how broadcasts are sent. This is because our implementation
leverages the hardware-accelerated CCM implementation of CC2538 SoCs and
widely avoids busy-waiting. Also, the energy consumed for receiving is very low,
but is noticeable when transmitting broadcast frames as unicast frames, which
is due to performing more CCAs and receiving acknowledgment frames. The
bulk of the energy is consumed for transmitting. Moreover, when transmitting
broadcast frames as usual, the energy consumption for transmitting increases
linearly with the number of channels, whereas, when sending broadcast frames
as unicast frames, the energy consumption is independent of the number of
channels. On the other hand, when sending broadcast frames as unicast frames,
the energy consumption depends on the number of permanent neighbors, which
was always 19 in this experiment. That said, many more neighbors than 19 do
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Figure 7.7: Consumed charge per transmission of a zero-padded HELLO and a
maximum-length broadcast frame

often not even fit in the constrained RAM of IoT devices [187]. Thus, these
results show that sending broadcast frames as unicast frames is not only a
viable choice, but actually advantageous in combination with MiCMAC. Even
when not using MiCMAC, sending broadcast frames as unicast frames does not
consume much more energy compared to sending broadcast frames as usual.
This can be attributed to the prediction of clock drifts by SPLO++, which
shortens the length of wake-up sequences that precede normal unicast frames.

7.5.2 Memory Overhead

For measuring the memory overhead due to our denial-of-sleep defenses, the tool
arm-none-eabi-size was used. As a baseline for comparison, the memory con-
sumption of using CSL without MAC layer security was measured. Then, the
memory overhead due to enabling AKES was measured. Next, the memory con-
sumption when also enabling our denial-of-sleep defenses was measured. These
measurements were repeated with different numbers of permanent neighbor
slots, whereas the number of tentative neighbor slots was fixed to 5. Through-
out, short addresses and Security Level were used.

The results are shown in Figure 7.8. Our denial-of-sleep defenses even save
a few bytes of program memory, which comes down to the streamlined frame
format of POTR++ and Contiki-NG’s unoptimized assembling and parsing of
IEEE 802.15.4-compliant frames. As for the RAM consumption, our denial-
of-sleep defenses incur a small overhead per permanent neighbor slot. This
overhead can be attributed to the prediction of clock drifts by SPLO++, which
requires storing extra data per permanent neighbor.

7.5.3 Denial-of-Sleep Resilience

The following experiment compares the energy consumption of protected and
unprotected versions of CSL and ContikiMAC under unicast attacks. An Open-
Mote was connected with a µCurrent Gold and a Rigol DS1000E oscilloscope
in series like described in Section 3.6.2. In six successive runs, the OpenMote’s
energy consumption was gauged while receiving injected maximum-length uni-
cast data frames if running (i) CSL without MAC layer security, (ii) CSL with
AKES, (iii) CSL also with our denial-of-sleep defenses (tt = 2.38ms; θ = 15ppm;
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Figure 7.8: Memory overhead due to our denial-of-sleep defenses for CSL

θη = 3ppm; tm = 5min), (iv) ContikiMAC without MAC layer security, (v)
ContikiMAC with AKES, and (vi) ContikiMAC also with our denial-of-sleep
defenses (θ = 15ppm). In each run, 200 samples were taken. Throughout,
2-byte OTPs, short addresses, Security Level 6, and Parameter Set 6 were used.

The results are shown in Figure 7.9. As for the configuration of CSL without
any MAC layer security, unicast attacks are rather severe since injected unicast
data frames are not only fully received, but also acknowledged. Moreover, when
enabling IEEE 802.15.4 security, acknowledgment frames additionally carry a
CCM MIC, thereby aggravating unicast attacks. As for our denial-of-sleep-
protected version of CSL, the energy consumption actually slightly decreases
compared to receiving no wake-up frame at all. There are two reasons for this.
First, if an OTP turns out invalid, POTR++ disables the receive mode imme-
diately, which may happen earlier than when CSL would stop listening for a
wake-up frame. Second, OpenMotes consume less energy in receive mode when
there is a strong input signal, which is the case under unicast attacks. The
denial-of-sleep-unprotected versions of ContikiMAC behave like the denial-of-
sleep-unprotected versions of CSL. They not only fully receive injected unicast
data frames, but also acknowledge them. Our denial-of-sleep-protected version
of ContikiMAC greatly mitigates unicast attacks, but, does not nullify the ad-
ditional energy consumption due to unicast attacks.

To compare the resilience to collision attacks of protected and unprotected
versions of CSL and ContikiMAC, the following experiment was conducted. In
six successive runs, two OpenMotes ran the same six configurations that were
mentioned above. In each run, the two OpenMotes sent maximum-length uni-
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cast data frames to each other with a random delay of 0 - 4.5min in between.
Further, to simulate collision attacks, these unicast data frames were not ac-
knowledged. The energy consumed for transmitting and retransmitting these
unicast data frames was traced via Energest. Throughout, the maximum num-
ber of retransmissions was 5, bursts were disabled, and a wake-up interval of
tw = 125ms was used.

As shown in Figure 7.10, when using no MAC layer security, CSL turned out
to be particularly susceptible to collision attacks. This is because the simulated
collision attacks prevent both OpenMotes from learning each other’s wake-up
time, thus causing CSL to always transmit wake-up sequences that span a whole
wake-up interval. When enabling IEEE 802.15.4 security, collision attacks be-
come less severe. This positive result comes down to the use of AKES for session
key establishment. Specifically, in the course of AKES’ three-way handshake,
each OpenMote sends one unicast frame to the other OpenMote and hence
learns the other OpenMote’s wake-up time. Furthermore, AKES sends UPDATEs
so as to check if a permanent neighbor is still in range. As a side effect, these
UPDATEs update wake-up times and hence reduce the uncertainty about the
other OpenMote’s wake-up time. Of course, an attacker can also interfere with
these UPDATEs, but this would usually decrease the energy consumption of victim
nodes in the long run. This is because AKES would delete a seemingly inactive
neighbor and hence stop upper-layer traffic to the deleted neighbor. Neverthe-
less, AKES does not reliably defend against collision attacks because AKES
suppresses UPDATEs to permanent neighbors that recently sent a fresh authen-
tic broadcast or unicast frame, which, unlike fresh authentic acknowledgment
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frames, do not necessarily update wake-up times as a side effect. Our denial-
of-sleep-protected version of CSL further reduces the mean consumed charge
due to collision attacks from 2.268mAs to 1.044mAs by enforcing a maximum
uncertainty about a permanent neighbor’s wake-up time throughout a session.
Thus, as opposed to AKES, SPLO++ reliably protects against collision attacks.
Similar to an unsecured version of CSL, an unsecured version of ContikiMAC
strobes for a whole wake-up interval if the receiver’s wake-up time is unknown,
thereby rendering collision attacks severe. Enabling AKES alleviates the effects
of collision attacks due to sending UPDATEs and hence updating wake-up times.
However, ContikiMAC’s original phase-lock optimization relearns the wake-up
time of a neighbor if unicast transmissions to the neighbor tend to fail, aggra-
vating consecutive collision attacks. SPLO never relearns wake-up times and
modifies AKES to send UPDATEs to permanent neighbors whose wake-up time
was not updated for a critical period of time. Yet, unlike SPLO++, SPLO does
not predict clock drifts, which leads to lower mitigation of collision attacks.

7.6 Summary

In this chapter, we have proposed CSL-enabled and security-enhanced versions
of POTR, SPLO, and ILOS. Together, POTR++, SPLO++, and ILOS++ have
made CSL resistant to broadcast, unicast, droplet, pulse-delay, and acknowledg-
ment spoofing attacks, as well as highly resilient to collision attacks and deaf
nodes. Furthermore, we have argued that our denial-of-sleep defenses for CSL
also provide a basis for pinpointing and evicting chatty nodes. Thus, our denial-
of-sleep-protected version resists, or at least greatly mitigates, all denial-of-sleep
attacks against CSL we identified in Chapter 5.

Compared to our denial-of-sleep-protected version of ContikiMAC, our
denial-of-sleep-protected version of CSL has three security advantages. First,
POTR++, SPLO++, and ILOS++ enable the detection and eviction of chatty
nodes because of using pairwise session keys instead of group session keys.
Second, SPLO++ better mitigates collision attacks and deaf nodes owing to
predicting clock drifts. Third, POTR++ makes CSL resistant to broadcast,
unicast, and droplet attacks, rather than just resilient.

Additionally, our denial-of-sleep-protected version of CSL inherits three se-
curity unrelated advantages from CSL. First, unlike ContikiMAC, CSL does
not require configuring CCA thresholds for detecting incoming transmissions,
which renders CSL more resilient to interference and easier to configure. Sec-
ond, unlike ContikiMAC, CSL does not require padding short frames with extra
bytes. Third, unlike ContikiMAC, CSL does not suffer from duplicate receptions
of broadcast frames. But, CSL also has two security unrelated disadvantages
compared to ContikiMAC. On the one hand, CSL’s base energy consumption
is slightly higher. On the other hand, CSL requires sending certain frames
back-to-back, which is not supported by all IEEE 802.15.4 transceivers.



Chapter 8

Conclusions and Future
Work

This chapter summarizes this dissertation, paraphrases follow-up master’s the-
ses, suggests topics for future research, and closes with general observations.

8.1 Summary of Research

Several radio technologies lend themselves to low-power IoT applications.
Among them, IEEE 802.15.4 features several PHY options, reliable mesh
topologies, zero operational costs, cheap off-the-shelf hardware, as well as
standardized upper-layer protocols. However, like all radio technologies for
low-power IoT applications we have looked at, IEEE 802.15.4 comes without
any protection against denial-of-sleep attacks. Moreover, the security services
of IEEE 802.15.4, collectively called IEEE 802.15.4 security, have three more
limitations. First, IEEE 802.15.4 security leaves the whole issue of key man-
agement unspecified. Second, the frame counter-based replay protection of
IEEE 802.15.4 security only provides sequential freshness and thus does not
filter out delayed frames. Third, receivers of a fresh authentic acknowledgment
frame can not be sure whether the corresponding unicast frame was successfully
received. Fixing these three limitations of IEEE 802.15.4 security is a timely
since protocols on top of IEEE 802.15.4 rely on IEEE 802.15.4 security.

We have proposed a denial-of-sleep-resilient MAC layer for IEEE 802.15.4
networks, which overcomes the other three limitations of IEEE 802.15.4 secu-
rity, too. Our denial-of-sleep-resilient MAC layer mainly consists of a denial-
of-sleep-resilient protocol for establishing session keys among neighboring IEEE
802.15.4 nodes, called AKES, and a denial-of-sleep-protected version of CSL.
AKES is particularly designed for low-power IEEE 802.15.4 nodes, handles
topology changes, and survives reboots. Additionally, a main feature of AKES
is its denial-of-sleep resilience. This feature stems, on the one hand, from using
key predistribution, and, on the other hand, from rate-limiting outgoing ses-
sion key establishment-related messages. Our denial-of-sleep-protected version
of CSL combines existing ideas with plenty new ones to protect CSL against
denial-of-sleep attacks. For example, our denial-of-sleep-protected version of
CSL adopts the emergent OTP pattern for protecting CSL against unicast and
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droplet attacks. Basically, the OTP pattern is to embed OTPs in synchroniza-
tion or frame headers at the sender side and to validate the embedded OTPs at
the receiver side. If an OTP turns out invalid, the receiver cancels the reception,
thereby stopping further energy loss. Thus far, it was however unclear how to
synergistically integrate the OTP pattern with basic wireless security and how
to practically implement the OTP pattern. Our denial-of-sleep-protected ver-
sion of CSL resolves these unclarities by (i) integrating with CCM and AKES,
and (ii) relying only on capabilities of commodity IEEE 802.15.4 transceivers.

Unfortunately, the embedding of OTPs only protects against a small sub-
set of denial-of-sleep attacks against CSL. Further denial-of-sleep attacks against
CSL are pulse-delay attacks, acknowledgment spoofing attacks, collision attacks,
chatty nodes, and deaf nodes. Except for pulse-delay attacks, no effective de-
fenses had existed against these additional denial-of-sleep attacks. Hence, we
have devised defenses against those denial-of-sleep attacks from scratch.

For achieving strong freshness, our denial-of-sleep-resilient MAC layer uses
our newly introduced concept of wake-up counters. Wake-up counters com-
bine the benefits of frame counters and timeslot indices. Like frame counters,
wake-up counters do not require network-wide time synchronization. This is
highly beneficial since securing network-wide time synchronization against in-
ternal attackers is a hard-to-solve issue in its own right [161]. Furthermore, like
timeslot indices, wake-up counters do not incur any per-frame overhead and
help in achieving strong freshness.

Our denial-of-sleep-protected version of CSL also uses wake-up counters for
deriving OTPs. Thus far, it was only considered to derive OTPs from frame
counters [42, 44], timeslot indices [43, 72], or random numbers [40]. However,
each of these approaches has its drawbacks. As for frame counters, if an OTP is
guessed correctly, resynchronization may become necessary [44]. As for timeslot
indices, they require network-wide time synchronization. As for random num-
bers, they need to be received prior to validating an OTP, thus deferring the
on-the-fly rejection of unwanted frames. None of these drawbacks arises when
deriving OTPs from wake-up counters.

To evaluate our denial-of-sleep-resilient MAC layer, we have integrated it into
the network stack of Contiki-NG. The target platform of our implementation is
the CC2538 SoC, which is built into many IoT devices, such as OpenMotes and
RE-Motes [144]. CC2538 SoCs comprise up to 512KB of program memory, up to
32KB of RAM, and an 2.4-GHz O-QPSK IEEE 802.15.4 transceiver. This built-
in transceiver, in particular, supports parsing incoming frames during reception,
as well as sending IEEE 802.15.4 frames back-to-back. These capabilities are
necessary to implement the on-the-fly rejection of unwanted frames and the
wake-up sequences of CSL. Yet, not all IEEE 802.15.4 transceivers support
sending IEEE 802.15.4 frames back-to-back, which is why we think our work
on securing ContikiMAC against denial-of-sleep attacks is also relevant. Yet, a
major disadvantage of ContikiMAC is its detection of incoming transmissions
via CCAs. The problem with this is that if the CCA threshold is too high,
transmissions may go undetected, while if the CCA threshold is too low, the
susceptibility to interference increases [81, 167, 168]. Even when autoconfiguring
CCA thresholds to trade off between undetected transmissions and susceptibility
to interference, these issues do not vanish completely [81].

On our way to a fully functional denial-of-sleep-resilient MAC layer, we
have also solved the problem of generating cryptographic random numbers on
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CC2538-based IoT devices. To this end, we have proposed a CSPRNG, which
seeds itself with power-up SRAM states and radio noise. For extracting seeds
from power-up SRAM states, we have proposed a novel method, which is prac-
tical, information-theoretically secure, and insusceptible to many randomness-
reducing factors [49, 50, 51, 52, 53]. However, our method for extracting seeds
from power-up SRAM states depends on a feature that is only available on spe-
cial hardware platforms, such as the CC2538 or the SiM3U167-B-GDI [14, 129].
Thus, care must be taken when selecting a hardware platform so that either this
feature or an appropriate alternative entropy source is available.

8.2 Follow-Up Master’s Theses

8.2.1 Protocol Verification of AKES

Eirik Klevstad formally verified AKES’ establishment of pairwise session keys in
his master’s thesis [188]. More specifically, he modeled AKES’ three-way hand-
shake using the protocol verification tool Scyther. As a result, he found AKES
secure concerning all checked security properties, namely entity authentication,
implicit key authentication, explicit key authentication, known-key secrecy, key
control, and secrecy of key. Entity authentication requires that both commu-
nication partners that are establishing a pairwise session key mutually authen-
ticate each other in this process. Implicit key authentication requires that an
established pairwise session key is only recoverable by the rightful communi-
cation partners. Explicit key authentication additionally requires the rightful
communication partners to mutually confirm the knowledge of the established
pairwise session key. Known-key secrecy requires that the established pairwise
session key is secret from attackers, even when given access to previously estab-
lished pairwise session keys. Key control requires that no communication party
can enforce the establishment of a specific pairwise session key. Secrecy of key
requires that the established pairwise session key is secret from attackers.

8.2.2 Key Revocation and Rekeying for AKES

Aspects left unaddressed by AKES are key revocation and rekeying. Key revo-
cation is “the process of removing keys from operational use”, whereas rekeying
is the process of putting new keys into operational use [145]. In our context, key
revocation and rekeying is usually done as part of evicting a node from its IEEE
802.15.4 network. A reason for evicting a node, e.g., is that its cryptographic
keys leaked to an attacker or that a user wishes to relocate an IoT device from
one IEEE 802.15.4 network to another. To do an eviction in a “clean” manner,
it is necessary to (i) remove AKES’ pairwise session keys shared with the node
that is being evicted, (ii) change AKES’ group session keys shared with the node
that is being evicted, and (iii) update AKES’ predistributed keying material.

To fill the gap that AKES lacks a key revocation and rekeying protocol,
Daniel Werner proposed a CoAP-based solution in his master’s thesis [189]. In
his solution, a base station sends a CoAP request, called Revocation Unicast,
to every node in the IEEE 802.15.4 network, one after another. A Revocation

unicast contains, on the one hand, the MAC address of the node that is being
evicted and, optionally, new keying material. After processing a Revocation
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unicast, a CoAP response is sent back to the base station. A major benefit of
his solution compared to current solutions for key revocation and rekeying is that
his solution provides feedback on the progress of key revocation and rekeying to
the user. In particular, the base station can report to the user whether certain
nodes could not be reached. A problem with his solution, however, arises when
the node being evicted is controlled by an attacker and may hence deny to
forward specific CoAP messages, particularly Revocation unicasts.

We addressed the problem with Daniel Werner’s solution in [11]. Basically,
our approach is to implement key revocation and rekeying at the MAC layer,
without involving upper layers. At the MAC layer, we perform key revocation
and rekeying in a breadth-first manner. That is, we first reach out to IEEE
802.15.4 nodes at the edge of the network and ask them to report back on
their MAC layer neighbors. Subsequently, we reach out to these MAC layer
neighbors via source routing and also ask them to report back on their MAC
layer neighbors, and so on. Thanks to source routing, we can avoid paths via
nodes that are being evicted and can even try alternative paths if necessary.

8.2.3 Denial-of-Sleep-Resilient Opportunistic Routing

“ORPL” can be thought of as a cross-layer optimization between RPL and Con-
tikiMAC [80]. The approach of ORPL consists in forwarding an IPv6 packet
to the hop that wakes up next, rather than forwarding an IPv6 packet to a
specific hop as RPL does it now. ORPL implements this by disabling Contiki-
MAC’s phase-lock optimization and instead strobing an IPv6 packet until an
acknowledgment frame comes back. Furthermore, receivers only reply with an
acknowledgment frame if they are willing to forward a received IPv6 packet.
In comparison to RPL, ORPL features lower latencies, higher delivery ratios,
lower energy consumption, as well as less RAM consumption [80].

Unfortunately, our denial-of-sleep-protected version of ContikiMAC conflicts
with ORPL’s “anycasts”. Recall that POTR’s unicast OTPs only wake up a spe-
cific neighbor, whereas POTR’s broadcast OTPs wake up all neighbors. Thus,
when embedding a unicast OTP in an anycast, only a specific node will wake
up, whereas when embedding a broadcast OTP in an anycast, attackers can
replay the broadcast OTP to wake up uninvolved nodes within a short time
window. Moreover, ILOS requires delaying broadcast OTPs so that receivers
can correctly restore the wake-up counter from which a broadcast OTP was
derived. Apart from this conflict, another problem with ORPL is that jam-
ming acknowledgment frames can lead to a duplication of IPv6 packets because
multiple nodes may then decide to forward an IPv6 packet.

Felix Wolff considered two solutions to these issues in his master’s thesis
[190]. On the one hand, he evolved our broadcast OTPs into anycast OTPs. The
main advantage of anycast OTPs is that they do not require delaying anycasts.
Yet, anycast OTPs do neither help against the duplication of IPv6 packets nor
prevent attackers from waking up uninvolved nodes within a short time window.
On the other hand, he considers adapting RPL to forward IPv6 packets to any
possible hop that wakes up next according to the wake-up times maintained
by SPLO. This approach leaves no window for attack, prevents the duplication
of IPv6 packets, and still brings advantages concerning delivery ratios, energy
consumption, and reliability according to his experimental results.
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8.3 Topics for Future Research

While our denial-of-sleep-resilient MAC layer provides a basis for detecting and
evicting chatty nodes, the actual detection and eviction of chatty nodes is not
performed, yet. A logical next step is thus to take advantage of the fact that a
node that sends plenty of frames with valid OTPs or authentic CCM MICs can
be considered compromised, provided that the underlying key predistribution
scheme is inoculated and opaque. One possible reaction to such an occasion is to
evict the chatty node via key revocation and rekeying. Another possible reaction
is to ignore further frames from the chatty node temporarily or permanently.

Furthermore, numerous countermeasures against collision attacks and deaf
nodes remain to be explored. For example, to further reduce the energy con-
sumption of retransmissions, IEEE 802.15.4 nodes can adjust their transmission
power according to the intended receiver. Such power control techniques al-
ready exist and can be tailored to our denial-of-sleep-protected version of CSL
[191, 192]. A synergistic effect of doing so will be that the energy consump-
tion of sending broadcast frames as unicast frames to each permanent neighbor,
one after another, decreases. Another countermeasure is to detect anomalous
amounts of retransmissions like suggested by Ren et al. [41], but to react differ-
ently than suggested by Ren et al. by cancelling further retransmissions. Finally,
cross-layer countermeasures against collision attacks and deaf nodes could be
considered. For instance, if a 6LoWPAN fragment could not be forwarded, it
is pointless to try forwarding pending fragments. As a result of not sending
pending fragments when a fragment could not be conveyed, there will be less
opportunities for collision attacks and deaf nodes.

Apart from transmission powers, three other parameters of our denial-of-
sleep-protected version of CSL could be autoconfigured, too. First, the selection
of channels could be autotuned via reinforcement learning [193]. Second, CSL’s
wake-up interval could be adapted dynamically at runtime [86, 87]. Third, PAN
identifiers are currently preloaded, but could be autoconfigured so as to avoid
overhearing HELLOs and HELLOACKs from co-located IEEE 802.15.4 networks [29].

A last suggested topic for future research concerns the integration of AKES
with the upper-layer routing protocol. Presently, the coupling between AKES
and the upper-layer routing protocol is loose. In fact, AKES operates inde-
pendently from the upper-layer routing protocol. However, it may be advan-
tageous to, e.g., let AKES and RPL cooperate on discovering adjacent IEEE
802.15.4 nodes. In this regard, it is also worthwhile to consider implementing a
mesh-under routing protocol instead of sticking with RPL so as to avoid cross-
layer dependencies. Actually, a standardized mesh-under version of RPL exists
already, namely IEEE 802.15.10 [62]. Alternatively, Deng et al.’s INtrusion-
tolerant routing protocol for wireless SEnsor NetworkS (INSENS) may lead to
synergies with our denial-of-sleep-resilient MAC layer [194]. INSENS collects
neighborhood information, which can be provided by AKES, at a central node.
This central node then distributes ready-to-use routing tables in the network.
A synergistic effect of INSENS is that key revocation and rekeying can be per-
formed like we proposed [11], but without having to collect topology information
in this process. Another synergistic effect is that routing then works without
broadcast transmissions, which are much more energy consuming than unicast
transmissions when using our denial-of-sleep-resilient MAC layer.
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8.4 General Observations

Regardless of using public- or symmetric-key cryptography, IoT devices have
to be preloaded with cryptographic material in addition to other configuration
settings. Our denial-of-sleep-resilient MAC layer is no exception in this regard
since it, e.g., requires preloading IoT devices with keying material for use by
the underlying key predistribution scheme. Yet, preloading cryptographic ma-
terial via cables is not user-friendly, and preloading cryptographic material via
radio often raises a chicken-and-egg problem since cryptographic material needs
to be conveyed securely via cryptographic material. Our self-seeding CSPRNG
resolves this chicken-and-egg problem by enabling IoT devices to generate cryp-
tographic random numbers entirely by themselves. This, in turn, enables the use
of secure wireless preloading schemes [8, 115, 116]. For example, in our 6doku
[8], cryptographic random numbers are needed for generating hash chains, which
are then used for mutual authentication between an IoT device and the own-
ers’s smartphone. Subsequently, 6doku generates a pairwise key between the
IoT device and the owners’s smartphone via PHY key generation, and finally
uses the pairwise key for securing the wireless preloading process.

Another observation is a dependency of asynchronous MAC protocols on
session keys. Since asynchronous MAC protocols neither use network-wide nor
cluster-wide time synchronization, they are typically combined with a frame
counter-based replay protection instead of a timeslot index-based replay pro-
tection. However, a frame counter-based replay protection seems only practical
when establishing session keys. Otherwise, when using predistributed keys un-
changed, it becomes, e.g., necessary to persist anti-replay data across reboots
so as to prevent replay attacks after reboots. This is problematic since the only
non-volatile memory on most IoT devices is flash memory, which is slow, energy
consuming, as well as prone to wear. As a result, there is a dependency of
asynchronous MAC protocols on session keys. This dependency does not vanish
completely when switching to a wake-up counter-based replay protection. When
using wake-up counters, we found session keys still useful in two regards. First,
for avoiding nonce reuses without storing data in non-volatile memory. Second,
for handling the case when a wake-up counter is about to reach its maximum
value. In such an occasion, we simply issue a reboot, which causes the wake-up
counter to start over from zero and new session keys to be established.

Though this dissertation has focused on IEEE 802.15.4, patterns emerged
that may help in securing other radio technologies against denial-of-sleep at-
tacks, too. One of these patterns certainly is the use of OTPs, which serve well
in countering broadcast, unicast, and droplet attacks. Admittedly, retrofitting
OTPs into an existing radio technology is difficult because it necessitates
changes to frame formats and because transceivers have to support validating
OTPs during reception. But, this pattern can be adopted in future versions of
radio technologies, brand new radio technologies, and in proprietary systems.
A complementary pattern is to derive OTPs from wake-up counters, which is
applicable when an asynchronous MAC protocol is used. Furthermore, syn-
ergies arise when the asynchronous MAC protocol learns the wake-up times
of neighboring nodes anyway. Finally, a third pattern that emerged is the
use of LBCs. LBCs enable enforcing a maximum long-term rate of incoming
and outgoing messages, while permitting the rate of incoming and outgoing
messages to overshoot temporarily, respectively.
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