
R E S T F U L C H O R E O G R A P H I E S

adriatik nikaj

business process technology group

hasso plattner institute

digital engineering faculty

university of potsdam

potsdam , germany

dissertation

zur erlangung des akademischen grades eines

“doctor rerum naturalium”
– dr . rer . nat. –

date of defense : 15/11/2019

June, 2019

This work is licensed under a Creative Commons License:
Attribution International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/

Supervisor: Prof. Dr. Mathias Weske, University of Potsdam
Reviewers: Prof. Dr. Gregor Engels, University of Paderborn, and
Prof. Dr. Cesare Pautasso, University of Lugano (USI)

Adriatik Nikaj: RESTful Choreographies,
© November 2019

Published online at the
Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-43890
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-438903

A B S T R A C T

Business process management has become a key instrument to organize
work as many companies represent their operations in business process
models. Recently, business process choreography diagrams have been
introduced as part of the Business Process Model and Notation stan-
dard to represent interactions between business processes, run by dif-
ferent partners. When it comes to the interactions between services on
the Web, Representational State Transfer (REST) is one of the primary
architectural styles employed by web services today. Ideally, the REST-
ful interactions between participants should implement the interactions
defined at the business choreography level.

The problem, however, is the conceptual gap between the business
process choreography diagrams and RESTful interactions. Choreogra-
phy diagrams, on the one hand, are modeled from business domain ex-
perts with the purpose of capturing, communicating and, ideally, driv-
ing the business interactions. RESTful interactions, on the other hand,
depend on RESTful interfaces that are designed by web engineers with
the purpose of facilitating the interaction between participants on the
internet. In most cases however, business domain experts are unaware
of the technology behind web service interfaces and web engineers tend
to overlook the overall business goals of web services. While there is
considerable work on using process models during process implemen-
tation, there is little work on using choreography models to implement
interactions between business processes. This thesis addresses this re-
search gap by raising the following research question: How to close
the conceptual gap between business process choreographies and REST-
ful interactions? This thesis offers several research contributions that
jointly answer the research question.

The main research contribution is the design of a language that cap-
tures RESTful interactions between participants—RESTful choreogra-
phy modeling language. Formal completeness properties (with respect
to REST) are introduced to validate its instances, called RESTful chore-
ographies. A systematic semi-automatic method for deriving RESTful
choreographies from business process choreographies is proposed. The
method employs natural language processing techniques to translate
business interactions into RESTful interactions. The effectiveness of the
approach is shown by developing a prototypical tool that evaluates the
derivation method over a large number of choreography models.

In addition, the thesis proposes solutions towards implementing REST-
ful choreographies. In particular, two RESTful service specifications
are introduced for aiding, respectively, the execution of choreographies’
exclusive gateways and the guidance of RESTful interactions.

iii

Z U S A M M E N FA S S U N G

Das Prozessmanagement hat sich zu einer wichtigen Methode zur Or-
ganisation von Arbeitsabläufen entwickelt, sodass viele Unternehmen
ihre Tätigkeiten mittlerweile in Prozessmodellen darstellen. Unlängst
wurden zudem im Kontext der Business Process Model and Notati-
on Choreographiediagramme eingeführt, um Interaktionen zwischen
Prozessen verschiedener Partner zu beschreiben. Im Web nutzen in-
teragierende Dienste heutzutage den Representational State Transfer
(REST) als primären Architekturstil. Idealerweise implementieren die
REST-Interaktionen der Dienste also die Interaktionen, die im Choreo-
graphiediagramm definiert wurden.

Allerdings besteht zwischen Choreographiediagrammen und REST-
Interaktionen eine konzeptuelle Diskrepanz. Auf der einen Seite wer-
den Choreographiediagramme von Domänenexperten mit dem Ziel mo-
delliert, die Interaktionen zu erfassen, zu kommunizieren und, idealer-
weise, voranzutreiben. Auf der anderen Seite sind REST-Interaktionen
abhängig von REST-Schnittstellen, welche von Web-Entwicklern mit
dem Ziel entworfen werden, Interaktionen zwischen Diensten im In-
ternet zu erleichtern. In den meisten Fällen sind sich Domänenexper-
ten jedoch der Technologien, die Web-Schnittstellen zu Grunde liegen,
nicht bewusst, wohingegen Web-Entwickler die Unternehmensziele der
Web-Dienste nicht kennen. Während es umfangreiche Arbeiten zur Im-
plementierung von Prozessmodellen gibt, existieren nur wenige Un-
tersuchungen zur Implementierung von interagierenden Prozessen auf
Basis von Choreographiemodellen. Die vorliegende Dissertation adres-
siert diese Forschungslücke, indem sie die folgende Forschungsfrage
aufwirft: Wie kann die konzeptuelle Diskrepanz zwischen Choreogra-
phiediagrammen und REST-Interaktionen beseitigt werden? Somit ent-
hält diese Arbeit mehrere Forschungsbeiträge, um diese Frage zu adres-
sieren.

Der primäre Beitrag besteht in dem Design einer Modellierungsspra-
che, um REST-Interaktionen zwischen Diensten zu erfassen—der REST-
ful Choreography Modeling Language. Formale Vollständigkeitseigen-
schaften (in Bezug auf REST) werden eingeführt, um Instanzen dieser
Modelle, sogennante REST-Choreographien, zu validieren. Ferner wird
eine systematische, halb-automatische Methode vorgestellt, um REST-
Choreographien von Choreographiediagrammen abzuleiten. Diese Me-
thode setzt Techniken des Natural Language Processing ein, um In-
teraktionen in REST-Interaktionen zu übersetzen. Die Wirksamkeit des
Ansatzes wird durch die Entwicklung eines prototypischen Werkzeugs
demonstriert, welches die Ableitungsmethode anhand einer großen An-
zahl von Choreographiediagrammen evaluiert.

v

Darüber hinaus stellt diese Arbeit Lösungen zur Implementierung
von REST-Choreographien bereit. Insbesondere werden zwei REST-Dienst-
spezifikationen vorgestellt, welche die korrekte Ausführung von exklu-
siven Gateways eines Choreographiediagramms und die Führung der
REST-Interaktionen unterstützen.

vi

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following pub-
lications:

• A. Nikaj, S. Mandal, C. Pautasso, and M.Weske. “From Chore-
ography Diagrams to RESTful Interactions”. In: Service-Oriented
Computing ICSOC 2015 Workshops. Ed. by A. Norta, W. Gaaloul,
G. R. Gangadharan, and H. K. Dam. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 3-14.isbn: 978-3-662-50539-7.

• A. Nikaj and M. Weske. “Formal Specification of RESTful Chore-
ography Properties”. In: Web Engineering. Ed. by A. Bozzon, P.
Cudre-Maroux, and C. Pautasso. Cham: Springer International
Publishing, 2016, pp. 365-372. isbn: 978-3-319-38791-8.

• A. Nikaj, F. Pittke, M. Weske, and J. Mendling. “Semi-automatic
Derivation of RESTful Interactions from Choreography Diagrams”.
In: Enterprise, Business-Process and Information Systems Model-
ing. Ed. by R. Schmidt, W. Guedria, I. Bider, and S. Guerreiro.
Cham: Springer International Publishing, 2016, pp. 141-156. isbn:
978-3-319-39429-9.

• A. Nikaj, K. Batoulis, and M. Weske. “REST-Enabled Decision
Making in Business Process Choreographies”. In: Service-Oriented
Computing. Ed. by Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri.
Cham: Springer International Publishing, 2016, pp. 547-554. isbn:
978-3-319-46295-0.

• A. Nikaj, M.Weske, and J. Mendling. “Semi-automatic deriva-
tion of RESTful choreographies from business process choreogra-
phies”. In: Software & Systems Modeling 18.2 (Apr. 2019), pp.
1195-1208. issn: 1619-1374.

• A. Nikaj, M. Hewelt, and M.Weske. “Towards Implementing REST-
Enabled Business Process Choreographies”. In: Business Informa-
tion Systems. Ed. by W. Abramowicz and A. Paschke. Cham:
Springer International Publishing, 2018, pp. 223-235. isbn: 978-3-
319-93931-5.

vii

In addition to above publications as part of this thesis, I was also
involved in the following research indirectly contributing to this thesis:

• S. Haarmann, K. Batoulis, A. Nikaj, and M. Weske. “DMN Deci-
sion Execution on the Ethereum Blockchain”. In: Advanced Infor-
mation Systems Engineering. Ed. by J. Krogstie and H. A. Reijers.
Cham: Springer International Publishing, 2018, pp. 327-341. isbn:
978-3-319-91563-0.

• S. Haarmann, K. Batoulis, A. Nikaj, and M. Weske. “Executing
Collaborative Decisions Con˛dentially On Blockchains”. In: Ac-
cepted for Publication in BPM 2019 - Blockchain Forum. Springer
International Publishing, 2019.

viii

A C K N O W L E D G M E N T S

I am very grateful to have written this dissertation under the super-
vision of Mathias Weske. Not only did he provide a clear guidance
throughout this PhD journey, but he was actively involved in discussing
with me the intricacies of business process choreographies from the
very beginning. Moreover, I consider myself lucky to be part of his re-
search group as I have spent the last 4 years working in a great scientific
environment and gaining a wide range of experiences.

I would like to thank Gregor Engels and Cesare Pautasso for review-
ing my thesis. Gregor Engels has played an important role in shaping
my scientific research interests during my master’s studies at his chair
and has inspired me to follow the PhD studies. Cesare Pautasso is the
main reason this thesis is about REST. I am very thankful to him for the
early discussions that triggered the stream of research presented in this
thesis.

I would like to express my gratitude to all the coauthors of our
published research contributions: Sankalita Mandal, Cesare Pautasso,
Fabian Pittke, Jan Mendling, Kimon Batoulis, Marcin Hewelt, and Stephan
Haarmann. Special thanks go to Kimon and Stephan, Kimon for engag-
ing in fruitful and enjoyable logical discourse and Stephan as a great
sparring partner when it comes to quasi-philosophical discussion about
choreographies and blockchains.

I thank all my colleagues for making BPT a great place to be and
work; the colleagues who proofread my thesis Kimon Batoulis, Simon
Remy, Sven Ihde, Sankalita Mandal, Stephan Haarmann, and Fabian
Pittke; Jan Ladleif for designing the thesis cover; Kimon and Sankalita
for sharing the difficulties of writing a PhD thesis.

Finally, I want to express my gratitude to my parents for their invest-
ment and love and in particular to my wife for her continuous support
and push towards this major goal.

ix

C O N T E N T S

I background 1

1 introduction 3

1.1 Research Goal 4

1.2 Contributions 4

1.3 Structure of the thesis 5

2 foundations 7

2.1 Business Process Management 7

2.2 Service Oriented Architecture 9

2.3 BPMN business process models and collaborations 10

2.4 Process choreographies 13

2.5 Petri nets 18

2.6 Representational state transfer architectural style 21

3 related work 27

3.1 Process Choreography Implementation 27

3.2 Modeling RESTful interactions 30

3.3 BPM and REST 31

II restful choreography language 33

4 research questions and requirements analysis 35

4.1 Research questions 35

4.2 Requirements 37

5 restful choreographies 39

5.1 Main design decisions 41

5.2 RESTful choreography language specification 42

5.2.1 Metamodel 42

5.2.2 Formal specification 46

5.2.3 Graphical annotation 48

5.3 Derivation guidelines and design patterns 50

5.4 Conclusion 54

6 semi-automatic derivation of restful choreogra-
phies 57

6.1 Problem statement 58

6.2 Preliminaries 60

6.3 Core derivation of REST tasks 62

6.3.1 Derivation of the REST verb 64

6.3.2 Generation of the request URI 67

6.3.3 Generation of the REST response 68

6.4 Advanced derivation of REST tasks 71

6.4.1 Choreography-specific labels 72

6.4.2 POST versus PUT 73

6.5 Application to Use Case 74

xi

xii contents

6.6 Summary and Discussion 76

7 restful choreography completeness properties 79

7.1 Motivation 80

7.2 Hyperlink Completeness 83

7.2.1 Structural hyperlink completeness 84

7.2.2 Checking hyperlink completeness 84

7.3 Correct Resource Behavior 87

7.4 Application to use case 88

7.5 Summary 90

III from restful choreographies towards restful in-
teractions 93

8 rest-enabled decision making in business process

choreographies 95

8.1 Problem statement 96

8.1.1 Choreographies’ exclusive gateway constraints 96

8.1.2 Decision Model and Notation 98

8.2 RESTful decision service for choreographies 99

8.2.1 REST interface of decision services 100

8.2.2 Integrating RESTful decision services into chore-
ographies 102

8.3 Conclusions 105

9 restful choreography guide 107

9.1 Problem Statement 108

9.2 RESTful Choreography Guide 111

9.2.1 Choreography Resource Model 112

9.2.2 From RESTful Choreography to Process Model 114

9.3 Implementation Architecture 119

9.4 Conclusions 120

IV evaluation and conclusions 123

10 evaluation of restful choreography derivation 125

10.1 REST Annotator implementation 125

10.2 Evaluation setup 126

10.3 Evaluation Results 127

10.4 Discussion 130

11 conclusions 133

11.1 Summary 133

11.2 Limitations and future work 135

bibliography 137

L I S T O F F I G U R E S

Figure 1 The BPM lifecycle [99] 8

Figure 2 Service oriented architecture roles and their rela-
tions [26] 10

Figure 3 A BPMN business process collaboration model
for ARS and its participants 12

Figure 4 A BPMN business process choreography model
of ARS, host, guest and payment organization 15

Figure 5 An example of a choreography parallel gateway
and its corresponding collaboration diagram 17

Figure 6 An example of a choreography exclusive gate-
way and its corresponding collaboration diagram 18

Figure 7 An example of a choreography event-based gate-
way and its corresponding collaboration diagram 19

Figure 8 Petri net of the ARS business process 20

Figure 9 Null-Style 21

Figure 10 Client-Server 22

Figure 11 Stateless interaction 22

Figure 12 Cache 23

Figure 13 Uniform Interface 23

Figure 14 Layered System 24

Figure 15 Code-On-Demand 24

Figure 16 Overview of the research questions 36

Figure 17 Overarching approach 38

Figure 18 RESTful choreography language and RESTful chore-
ographies 39

Figure 19 The choreography diagram of an Accommodation
Reservation Service (ARS) without sub-choreographies 40

Figure 20 The extension of BPMN 2.0 choreography meta-
model for modeling RESTful choreographies (new
elements are drawn in red). 43

Figure 21 Enriching choreography tasks by REST-specific
annotations 49

Figure 22 The modeling construct for the case of a server
multiple response (two responses in this case) 50

Figure 23 An alternative solution for modeling the way the
Guest is informed about the reservation 53

xiii

xiv List of Figures

Figure 24 RESTful choreography diagram of the motivat-
ing example 55

Figure 25 Semi-automatic generation of RESTful choreogra-
phies 57

Figure 26 Choreography diagram for paper submission and
review management 59

Figure 27 Overview of the core approach for deriving REST
tasks 63

Figure 28 Overview of the semi-automatic derivation (ad-
vanced approach) 71

Figure 29 RESTful choreography for paper submission and
review management 75

Figure 30 RESTful choreography completeness properties 79

Figure 31 RESTful choreography of a MOOC exam 81

Figure 32 Mapping of a REST task (REST request plus REST
response) to Petri net 86

Figure 33 Mapping of a email task (email request) to Petri
net 86

Figure 34 Correct resource behavior 88

Figure 35 The generated Petri net from the RESTful chore-
ography of online exam 89

Figure 36 Exam lifecycle derived from the RESTful chore-
ography in Figure 31 91

Figure 37 REST-enabled decisions in business process chore-
ographies 95

Figure 38 A business process choreography model for or-
ganizing a tender 97

Figure 39 Decision model used by the manufacturer to de-
cide on a supplier (the right-most gateway in Fig-
ure 38) 98

Figure 40 A partial RESTful choreography model for or-
ganizing a tender with the assist of a RESTful
decision service 104

Figure 41 ChoreoGuide 107

Figure 42 RESTful choreography for the purchase of ball
bearings 109

Figure 43 Approach overview 112

Figure 44 Choreography Resource Model (static model) 113

Figure 45 Business process construct for POST and PUT (in
brackets) REST tasks 115

List of Figures xv

Figure 46 Business process construct for GET and DELETE
(in brackets) REST tasks followed by the con-
struct for exclusive gateway 117

Figure 47 ChoreoGuide excerpt sample of the running ex-
ample 118

Figure 48 Architecture of ChoreoGuide 119

Figure 49 The REST Annotator architecture 126

Figure 50 A part of the generated RESTful Choreography
of RMS 131

Figure 51 A concrete skeleton instance of RMS implemen-
tation 132

L I S T O F TA B L E S

Table 1 REST verbs 25

Table 2 Synonym Word Sets of the REST Verbs 65

Table 3 URI Templates for REST Requests 67

Table 4 REST response generation 69

Table 5 The interface of a RESTful decision service 101

Table 6 Quantitative Results of the User Evaluation 127

Table 7 REST request results for the corresponding REST-
ful tasks from Figure 26 129

xvii

A C R O N Y M S

API application programming interface

ARS accommodation reservation service

BPEL Business Process Execution Language

BPM business process management

BPMN Business Process Model and Notation

BPMS business process management system

CFP call for papers

DMN Decision Model and Notation

FEEL Friendly Enough Expression Language

HATEOAS hypermedia as the engine of the application state

MOOC massive open online course

NLP natural language processing

OCL Object Constraint Language

REST REpresentational State Transfer

RMS review management system

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

WS-CDL Web Services Choreography Description Lan-
guage

xix

Part I

B A C K G R O U N D

1
I N T R O D U C T I O N

Today, enterprises interact with each other and their customers to bring
common value to the market. Enabled by Internet and its trailing tech-
nologies, business process interactions around the world are made eas-
ier. Business process management (BPM) [99] is the discipline of model-
ing, analyzing, and executing business processes. To adopt the current
trends in common value creation, BPM treats business to business inter-
actions as first class citizens. To this end, business process choreogra-
phy models are introduced as part of the Business Process Model and
Notation (BPMN) standard [65]. They model the interacting processes
between two or more business actors from a global perspective. Pro-
cess choreography models serve as contracts that describe the message
exchanges between participants and their behavior, in that who sends
what messages in which order.

Business process choreographies originate from work on service in-
teraction in the context of Service Oriented Architecture (SOA) [26] and
Simple Object Access Protocol (SOAP) [100]. However, it is widely ac-
cepted that one of the most adopted paradigm for designing Web appli-
cation programming interfaces (APIs) is REpresentational State Transfer
(REST). Despite SOAP and REST being not comparable per se (the for-
mer is a protocol and the latter is an architectural style), comparison be-
tween SOAP- and REST-based solutions can be drawn [75, 107]. In this
thesis, we investigate the conceptual relation between BPMN business
process choreographies and RESTful interactions—interactions that obey
to the REST principles.

Business process choreography models are designed by business do-
main experts to capture the interactions between the participants for
reaching a specific mutual goal, e.g., booking an accommodation, or-
ganizing a scientific conference, or purchasing specific parts for man-
ufacturing a certain product. Enacting a choreography model means
to enable the individual participants to exchange the messages in the
order defined by the choreography model. When it comes to RESTful
interactions on the internet, Web engineers design REST interfaces that
facilitate the business interaction specified by the choreography model.
However, there is a conceptual gap between process choreography mod-
els and their RESTful interactions. Business domain experts are mostly
not aware of the underlying information technology (IT) infrastructure
and Web engineers tend to overlook the overall business goals of the
Web services, leading to a misalignment between the two. This consti-
tutes a problem as business processes are an important vessel for the
overall alignment between the business strategy and IT [88].

3

4 introduction

While there is work on investigating the relation between BPMN and
REST [30, 76, 77, 78, 103], there exists a research gap in enacting busi-
ness process choreographies as RESTful interactions. Addressing this
gap is very relevant because BPMN process choreographies are the stan-
dard language, when it comes to modeling business interactions, and
REST is the dominant architectural style, when it comes to executing
business interactions on the Web.

1.1 research goal

This thesis’ goal is to address the following main research question:
How to enact business process choreography models as RESTful inter-
actions on the Web? To address this question we decompose it into
questions of finer granularity that aim at several relevant aspects. Even-
tually, we derive a set of objectives that, when fulfilled, jointly address
the main goal:

• The first objective is about designing a language for capturing
RESTful interactions into models as well as be conceptually close
to business process choreography language. This language shall
serve as a conceptual bridge between process choreography mod-
els and RESTful interaction models.

• The second objective revolves around designing an automatic
method for deriving RESTful interaction models from business
processes choreography models. The automation is required be-
cause we want to keep a clear separation of concerns between the
domain experts and Web engineers.

• The third objective is to design completeness properties, with re-
spect to REST, for validating the behavior of RESTful interaction
models.

• The fourth and final objective is to design solutions that facilitate
the enactment of RESTful interaction models.

1.2 contributions

This thesis contributes with several artifacts that are designed for reach-
ing the research objectives listed above. These contributions collectively
serve the thesis goal. Nevertheless, some contributions can be used as
exaptation for similar problem spaces (e.g., implementing choreogra-
phies on the blockchain [54]). The list of this thesis’ main contributions
is provided below:

restful choreographies . RESTful choreography modeling
language is introduced for capturing RESTful interactions into

1.3 structure of the thesis 5

models. RESTful choreography models, or simply RESTful chore-
ographies, constitute the main contribution of this thesis (hence,
the thesis title) as they are our prime designed artifact for aligning
business process choreographies to their RESTful execution.

semi-automatic derivation. A systematic method is introduced
to derive RESTful choreographies from process choreographies in
a semi-automatic fashion. This is achieved by employing natural
language processing techniques that harvest the business infor-
mation embedded in the process choreography to generate REST
interfaces. This preservers the separation of concerns between
business domain experts and Web engineers. This contribution
addresses the second research objective.

completeness properties . REST-specific formal properties are in-
troduced to guarantee the lack of REST-induced deadlocks in
the RESTful choreographies that are derived from correct process
choreographies. These properties, if satisfied, render a RESTful
choreography complete with respect to REST constraints. This
contribution addresses the third research objective.

restful decision service . A RESTful-decision service is introdu-
ced to facilitate the implementation of RESTful choreographies.
It contributes towards the fourth research objective stated above
and it is concerned specifically with the execution of the chore-
ographies’ peculiar exclusive gateways.

choreoguide . The RESTful choreography guide (ChoreoGuide) also
contributes to the fourth research objective to facilitate the im-
plementation of RESTful choreographies. It represents a central
RESTful service that takes the participants "by the hand" and
guides them towards a successful RESTful choreography execu-
tion.

1.3 structure of the thesis

This thesis is structured in four parts, shown as follows:

part i . This introduction chapter provides the context, problem, and
the proposed contributions treated in this thesis. Chapter 2 presents
the main concepts that are necessary for following the rest of the
thesis. Chapter 3 concludes this part by listing relevant related
work that helps the positioning of this thesis’ contribution in the
body of existing knowledge in this particular research area.

part ii . This part constitutes the first main part of the thesis. The
research questions and requirements are specified in Chapter 4.
The thesis’ big picture is first introduced in this chapter and later
updated with the actual contributions on the consecutive main

6 introduction

chapters. The rest of this part is dedicated exclusively to the spec-
ification (Chapter 5), derivation (Chapter 6), and completeness
properties (Chapter 7) of RESTful choreographies.

part iii . This part constitutes the second main part of the thesis and
it focuses on facilitating the enactment of RESTful choreographies.
The concept of RESTful decision service is presented in Chapter 8,
while ChoreoGuide is introduced in Chapter 9.

part iv. The last part of this thesis provides a comprehensive eval-
uation of deriving RESTful choreographies from business pro-
cess choreographies in Chapter 10 before concluding the thesis
in Chapter 11.

2
F O U N D AT I O N S

This chapter presents existing main concepts that set the stage for in-
troducing our main contribution in the consecutive chapters. Due to
business process choreographies being the major concept that this the-
sis is revolved around, this chapter motivates and elaborates concepts
through the lens of business to business interaction or inter-organiza-
tional setting. This helps the reader to always see the relevance of the
concepts at hand.

Since this thesis is situated in the area of Business Process Manage-
ment (BPM) and Service Oriented Architecture (SOA), a short descrip-
tion of BPM and its lifecycle is provided in Section 2.1 followed by an
introduction to service oriented architecture in Section 2.2. Section 2.3
introduces the BPMN business process model and collaboration model
before Section 2.4 provides an overview of BPMN business process
choreographies. For checking formal properties for some of our solu-
tions, Petri nets are introduced in Section 2.5. The other main concept
treated in this thesis is REpresentational State Transfer (REST) architec-
tural style, which is introduced in Section 2.6.

2.1 business process management

The ultimate goal of any enterprise is exchanging value with its cus-
tomers and business partners. To achieve this goal, an enterprise has
to perform: core activities, which directly impact the creation of the
value proposition [70]; and supporting activities, which are performed
to improve the quality of customer service, delivery channels, relations
with business partners etc. Whether in an organizational or technical
setting, enterprises perform these activities to reach intermediate or end
goals. The activities and the order they are performed constitute the en-
terprise’s business processes [99]. The discipline studying business pro-
cesses is Business Process Management (BPM). BPM is concerned with
several aspects of business processes. Specifically it encompasses the de-
sign, configuration, enactment and analysis of business processes [93].

BPM lifecycle represents (see Figure 1) an overview of the creation
and evolution of business processes inside an organization. The evolu-
tion of business processes (once these are identified and modeled) goes
through the cycle of analysis, configuration, enactment, evaluation and
redesign. Although there is a logical flow to the cycle phases, they can
be visited independently where possible.

7

8 foundations

Evaluation

Configuration

Design &
Analysis

Enactment

Figure 1: The BPM lifecycle [99]

design and analysis . This phase is about identifying occurring
processes in the organization and capturing them into models. Business
process models are used as a mean of communication among process
stakeholders about the as-is processes that are present in an enterprise.
By analyzing them, important information can be derived about the
state of the running processes in an organization, e.g., the existence of
deadlocks, unfinished or unreachable activities, or activities that take
longer than expected. Depending on the type of analysis, like structure
or behavioral analysis, efforts of different complexity can be applied
(ranging from simple validation with domain experts to verification
of formal properties to very complex simulations) to retrieve insights
about possible process improvement in terms of cost, efficiency and
effectiveness. The improvement information is incorporated in the re-
design phase of the process model.

configuration. In the presence of a business process management
system (BPMS), business processes need to be configured before being
enacted. Depending on the BPMS technology, the process models are
enriched adequately with technical details that allow their deployment
and execution. This is an important phase because even well modeled
business processes can be subject to bad deployment and execution due
to wrong configuration.

enactment. During this phases, business processes are initiated
and run continuously to serve their business goal. Their executions
spans from fully-automatized scripts to process tasks that require users
inputs. Depending on the BPMS features, different types of stakehold-
ers can monitor the execution of the processes for different purposes.
Such purposes include but are not limited to: having an overview of the
state of particular instances; being prompted to enabled activities that
need to be executed; detecting anomalies that need intervention like

2.2 service oriented architecture 9

activities that are taking too long to be finished; or, having an overview
of the process resources and their distribution. The latter is a typical
subject to the field of operational management [87]. In case of processes
that interact with other organizations (business partners or costumers),
their execution is also dependent from them.

evaluation. In this last phase of the BPM lifecycle, process models
undergo scrutiny from process experts. By monitoring and analyzing
execution information (usually captured into so-called process logs),
business process experts evaluate the process quality based on certain
metrics. Process mining [92] is a prominent research area that is con-
cerned with the discovery, conformance and improvement of process
models based on real execution logs. The outputs of the evaluation
phase are inputs to the recurring cycle starting with the phase of pro-
cess re-design and analysis.

2.2 service oriented architecture

SOA is a software design paradigm that is centered around the con-
cept of service—an independent software entity that satisfies a specific
business goal. A service has four properties [26]:

• it represents a business activity that has a specific purpose, e.g.,
submit payment, request reservation.

• it is self-contained.

• it maybe composed of other services to offer complex business
solutions.

• it is seen as a black-box from the service requester perspective.

Figure 2 depicts the three main roles of SOA. The service provider
role represents companies or other business actors that design services
and publish them on the service market. The service repository rep-
resents a service market or broker where services are published and
made available for discovery by service requesters. The role of a ser-
vice requester encompasses business actors that have specific business
needs, which can be satisfied by certain services. Once the service re-
quester has discovered the right service, it binds to the service provider
in order to invoke the service. SOA is a design paradigm and does not
make any assumptions on the Web technology used to implement such
interactions.

However, the binding of the service provider and requester can be
made possible by employing Web services [1] that are based on SOAP [100]
or REpresentational State Transfer (REST) [23]. The work by Pautasso
in [75] provides an extensive framework for deciding on SOAP-based

10 foundations

Service Oriented Architecture (SOA)

Word of the day – Service

Service
Repository

Service

Requester

Service
Provider

PublishDiscover

Invoke

Chris Peltz. Web service
orchestration and choreography.

(2003)

Figure 2: Service oriented architecture roles and their relations [26]

versus REST-based Web service solutions depending on specifics archi-
tectural choices. While there exist work in the SOAP-based implemen-
tation of business processes (see Chapter 3) in this thesis we inves-
tigate the REST-based implementation of business process choreogra-
phies. Hence, REST is described in details in the last section of this
chapter.

2.3 bpmn business process models and collaborations

BPMN 2.0 [65] is the lingua franca for modeling business processes. In
this section we provide a brief description of the BPMN 2.0 business
process modeling language aided by an example of accommodation
reservation service (ARS), which is inspired by airbnb1. Figure 3 mod-
els the process of dealing with an accommodation request that leads to
either a successful reservation or to a failed reservation. The activities,
events and gateways are ordered via sequence flows, which specify the
causal relation between the source flow object and the target flow ob-
ject (the target cannot start without the source being executed). Upon
receiving a request for reservation (message start event), ARS checks
automatically (script task) whether the guest request fits the host calen-
dar, given the host has already provided his calender to ARS. In case of
unavailability, ARS sends a reservation not possible message to the guest.
Otherwise, it informs the host and the guest about the availability of
the reservation.

1 www.airbnb.com

www.airbnb.com

2.3 bpmn business process models and collaborations 11

The action of sending a message is represented by the sent task (an
activity with the filled message icon on the top left). The exclusive split
of the control flow in the process is captured by the data-based exclu-
sive gateway. This gateway validates the Boolean expressions of the
outgoing branches, based on the process data, to decide which branch
to activate. The parallel activities of informing the host and the guest
are captured by a parallel block between the parallel split and the par-
allel join gateways. The former branches the control flow into different
paths by activating all outgoing sequence flows while the latter signals
the outgoing sequence flow only when all the incoming sequence flows
are signaled.

The event-based gateway is similar to the data-based gateway, but the
choice of the outgoing sequence flow is determined but external events
and not by the local process data. Hence, this gateway must always
be directly followed by catching intermediate events. In the example
from Figure 3, once the host has been notified the process waits for three
possible events to occur: the host does not respond for 24 hours and the
reservation expires; a decline message from the host is received, which
leads to informing back the guest about the unsuccessful reservation;
or, the host accepts the reservation, the payment is processed and the
confirmation is sent to the parties about the successful reservation. The
end events capture the possible ways the process can come to an end.

Besides the activity-centric view of the process model, there are also
constructs for describing the data that is read or written by the pro-
cess activities. Data objects are the main artifact for capturing the data
that is relevant to the business process. The state of the data (writ-
ten in squared brackets at the bottom of the data object representation)
provides a snapshot of the data objects at different points during the
process execution, hence, describing how the data objects behave with
the execution of the process model. An unidirectional or bidirectional
association is used for connecting an activity with the data object (for
the visual depiction refer to the legend in Figure 3).

Thus far, we described a set of basic elements that comprise an or-
ganization’s business process model. However, an organization’s end
goal per se (value exchange) implies always the existence of business
processes that communicate with the outside world. These processes,
altogether, cover partially or fully the exchange of value and other in-
teractions (with customers and business partners) that the enterprise
undertakes. To capture these interactions, a process model is geared
up with constructs that express the implicit or explicit information cap-
tured from or sent to the outside world.

First, in order to show the boundary of the organization with the
outer environment the concept of pool is introduced. Collaboration
models capture the interactions of at least two pools. A business pro-
cess’ sequence flow together with the flow objects they connect are con-
tained inside a pool (a sequence flow cannot reach outside the pool).

12 foundations

AirbnbBPM
N

ARS

ARS

Reservation
Request
Received

Send "N
ot

Possible"
M

essage

N
otify H

ost

24 H
ours

A
cceptance
Received

D
ecline M

essage
Received

Send
'D

ecline'
M

essage
Reservation

Failed

Reservation
Successful

Charge
Paym

ent

Send
Reservation
Confirm

ati
on

Send
'Expired'

N
otification

Reservation

[created]

Reservation
[not_possible]

Reservation
[accepted]

Reservation
[expired]

Reservation
[declined]

Reservation
[successful]

Check
availability

Reservation
[possible]

A
ctivity

Sub-process

Exclusive G
atew

ay

Parallel G
atew

ay

Event-based G
atew

ay

Pool

Collapsed Pool

D
ata

O
bject

[State]

M
essage

End Event

Start Event

Interm
ediate Event

Legend

Paym
ent O

rganization

A
ssociation

(unidirectional)

Not possible Available

M
essage Flow

Sequence Flow

Paym
ent request

Paym
ent confirm

ation

Figure
3:A

BPM
N

business
process

collaboration
m

odelfor
A

R
S

and
its

participants

2.4 process choreographies 13

Inversely, a pool does not have to show a business process, e.g., col-
lapsed pools are pools that hide the internal business process model
(black box) from the collaboration view, like the Payment Organization
in Figure 3.

The flow objects that talk to the outside world are the events (catch-
ing and throwing) and the send/receive tasks. The explicit information
flow between two participants is captured by the message flow, which
connects: two pools; two flow objects belonging to separate pools re-
spectively; or, a pool and a flow object from a different pool. The
message flow refers to a single specific message. Graphically, a labeled
message icon can be appended to the message flow (see Figure 3).

2.4 process choreographies

Business process choreography models, differently from the business
process models, abstract from internal process activities and model the
interaction between organizations from a global perspective with no
bias towards any of the involved participants. The perspective, in this
case, is that of an absolute observer that is aware of all the interac-
tions that take place between the participants. The observer, however,
is not aware of the activities performed locally by each participant. The
participants, on the other hand, are only aware of the interactions in
which they partake. Nevertheless, the actuation of the choreography
model depends solely on the participants actuating their interaction ac-
tivities in coordination as prescribed in the choreography model. In
short, when it comes to deriving an implementation model from a
choreography model, there is a paradigm shift from the global view
to the local view. This paradigm shift makes the implementation of the
choreography models rather complex.

Before we describe the BPMN 2.0 choreography modeling standard,
we provide a short list of languages which are designed to model busi-
ness to business interactions. This helps the reader getting an overview
of the historical reasons that lead to the creation of the business process
choreography standard. A comprehensive comparison of the languages
in the following list is provided in [17].

bpel . Business Process Execution Language (BPEL) [25] focuses on the
activities that are responsible for sending and receiving messages.
These activities are ordered via different control patterns, How-
ever, BPEL does not provide a standard graphical notation like
BPMN. It is, however, very good at message correlation.

ws-cdl [32] Web Services Choreography Description Language (WS-
CDL) is an XML-based language that specifies the interaction be-
tween different services that interact to reach a common goal. WS-
CDL provides a global view of the interaction where each service
is treated the same and there is no central mechanism that orches-

14 foundations

trates the interactions. The main idea behind business process
choreographies’ tasks come from WS-CDL where each task repre-
sents either a request from the initiator or a request followed by a
response.

bpel
light . It [61] extends BPEL by abstracting from the WSDL infor-
mation.

wsfl [41] stands for Web Services Flow Language and combined to-
gether with XLANG [89] lead to the creation of BPEL [25].

let’s dance [104] A visual language tailored to business users. It
does not provide technology specific information. Like business
process choreography and WS-CDL, Let’s Dance specifies the global
interaction between services or participants.

ibpmn [13] is an extension of BPMN that orders the interaction be-
tween collapsed pools (hence abstracting from internal activities)
using BPMN control flow syntax and events.

Some of the concepts introduced by these languages were later incor-
porated in the BPMN 2.0 choreography model [4]. In this thesis, we
use the BPMN 2.0 choreography modeling language as a standard for
modeling cross-organizational interactions.

Figure 4 provides the BPMN 2.0 choreography diagram of ARS, which
corresponds to the collaboration diagram of ARS from Figure 3. As ob-
served, the choreography diagram models the causality relationships
between the participants’ interactions from the perspective of a global
observer, e.g., after the host accepts the reservation request, ARS sends
the payment request to the payment organization. The main composing
unit here is the choreography task. A single choreography task models
a message that is sent from one participant to another and, optionally,
the message that is replied as a response (see Request reservation task
from Figure 4). Hence, it contains two participant bands, one message
or two messages (in case of a reply), and a textual label that describes
the interaction. To visually distinguish the initiating message from the
response message the latter has to be depicted with a dark shade. In the
same fashion, the initiating participant must have a white background
and the recipient of the initiating message must have a shaded back-
ground. This is needed to distinguish the initiating message from the
reply message or the initiating participant from the other participant
in case when the messages are graphically not present in the diagram
(which is allowed by the standard).

Similarly to the business process diagram, the choreography tasks
can be sequenced together via sequence flows, the semantic of which
stands for: the sequence flow target can only happen after the sequence
flow source has happened. However, this statement is provided from
a global perspective. It may happen that the initiator of the target

2.4 process choreographies 15
T_

AR
SC

ho
re

og
ra

ph
y

Re
qu

es
t

Re
se

rv
at

io
n

G
ue

st

A
RS

N
ot

if
y

A
RS

H
os

t

Se
nd

 'N
ot

 P
os

si
bl

e'
M

es
sa

ge

A
RS

G
ue

st

A
cc

ep
t

Re
qu

es
t

H
os

t

A
RS

Re
se

rv
at

io
n

Su
cc

es
sf

ul

D
ec

lin
e

Re
qu

es
t

H
os

t

A
RS

Se
nd

 D
ec

lin
e

M
es

sa
ge

A
RS

G
ue

st
Re

se
rv

at
io

n
Fa

ile
d

24
 H

ou
rs

Se
nd

 R
es

er
va

ti
on

Co
nf

ir
m

at
io

n

A
RS

G
ue

st
H

os
t

Se
nd

 'E
xp

ir
ed

'
N

ot
if

ic
at

io
n

A
RS

G
ue

st
H

os
t

Ch
ar

ge
 P

ay
m

en
t

A
RS

Pa
ym

en
t

O
rg

Re
se

rv
at

io
n

N
ot

if
ic

at
io

n

A
cc

ep
ta

nc
e

Re
je

ct
io

n

Pa
ym

en
t

re
qu

es
t

Re
je

ct
io

n
N

ot
if

ic
at

io
n

Re
se

rv
at

io
n

re
ce

iv
ed

no
ti

fi
ca

ti
on

Le
ge

nd

Ch
or

eo
gr

ap
hy

Ta
sk

In
it

ia
to

r

Pa
rt

ic
ip

an
t

2

Su
b-

ch
or

eo
gr

ap
hy

In
it

ia
to

r

Pa
rt

ic
ip

an
t

3
Pa

rt
ic

ip
an

t
2

Ex
cl

us
iv

e
G

at
ew

ay

Pa
ra

lle
l G

at
ew

ay

Ev
en

t-
ba

se
d

G
at

ew
ay

In
it

ia
ti

ng
 M

es
sa

ge

Re
sp

on
se

 M
es

sa
ge

St
ar

t
Ev

en
t

In
te

rm
ed

ia
te

 E
ve

nt

En
d

Ev
en

t

A
ss

oc
ia

ti
on

(u
nd

ir
ec

te
d)

Se
qu

en
ce

 F
lo

w

Fi
gu

re
4
:A

BP
M

N
bu

si
ne

ss
pr

oc
es

s
ch

or
eo

gr
ap

hy
m

od
el

of
A

R
S,

ho
st

,g
ue

st
an

d
pa

ym
en

t
or

ga
ni

za
ti

on

16 foundations

choreography task is not involved in the source choreography task and
cannot possibly know whether the first task has been executed or not.
In this case we say that such a choreography is not enforceable [105].
This is a fundamental difference between a choreography and an or-
chestration, where the process tasks connected by a sequence flow are
actuated by a single entity that is aware of the state of the process at
any given time and can enforce the order between its elements. To
avoid designing an unenforceable choreography model the property of
activity sequencing is introduced. The property states that for every
choreography task, the initiator of the task must be involved in the
directly preceding tasks. This must hold also in cases of sequence flow
splits and joins. An exception are, of course, the choreography tasks
that are at the beginning of the choreography diagram and have no
other choreography tasks as predecessors.

In addition to sequence flows, business process choreography sup-
port other control flow patterns like parallel and exclusive control flows.
As in business processes, control flow branching is expressed via gate-
ways. However, the use of gateways in a choreography model comes
with a set of limitations and assumptions. In this thesis we look at three
most frequently used, from our experience, choreography gateways, i.e.,
parallel, exclusive and event-based gateways.

Parallel gateways split the control flow into two or more branches
that are signaled simultaneously upon the gateway actuation. For an
enforceable parallel split, the respective initiator of each directly follow-
ing task must be a participant in all choreography task that directly
precede the gateway. If there is no task that directly precedes the gate-
way but rather a chain of gateways, the choreography task that precedes
the chain of gateways must follow the above constraint. The same must
hold true for join parallel gateways. Figure 5 provides an excerpt from
a choreography diagram with a parallel gateway and the corresponding
business process collaboration diagram.

In choreography diagrams, exclusive gateways model alternative paths
(see Figure 6). However, choreographies’ exclusive gateways are con-
strained in their usage compared to their respective counterparts in
business processes. In order for the choreography to be enforceable
the following constraints should hold: The data used for the gateway
conditions must have been in a message sent at some point in the chore-
ography before the gateway. The message(s) containing the data is sent
or received by all participants that are affected by the gateway and any
change of the data must be visible to all these participants. And lastly,
every participant must interpret the data in the same way. Applying
these constraints to the example from Figure 6, ARS must include in the
Reservation Response message the decision of asking for the payment or
requesting additional details. The guest should be able to understand
such decision and proceed accordingly. Meanwhile, ARS should not
change his decision.

2.4 process choreographies 17

Figure 5: An example of a choreography parallel gateway and its correspond-
ing collaboration diagram

However, there is a problem in implementing such constraints when
it comes to the interaction of participants whose role can be filled by
many possible business actors. The problem consists in that these dif-
ferent business actors can have different understandings of the data
used for the decision making, leading the choreography to be out of
synchronization. This is due to the fact that the business actors might
be very diverse in terms of, e.g., domain and country. To ensure the
enforceability of the choreography, we need to go a level closer towards
the implementation level. To this end, in Chapter 8 we propose an
approach on how to enforce choreographies’ exclusive gateways in a
Web service setting that employs REST.

Event-based gateways, like data-based exclusive gateways, model al-
ternative paths in a process choreography. However, differently from
exclusive gateways, not all participants take a decision. Some partici-

18 foundations

Figure 6: An example of a choreography exclusive gateway and its correspond-
ing collaboration diagram

pants wait for exclusive messages to arrive, which determine the activa-
tion of the alternative paths. That means that at least one participant is
not concerned with the decision making. From a collaboration perspec-
tive, the choreography event-based gateway is decomposed Figure 7.

Last, business process choreographies support events (like the timer
intermediate event in Figure 4), but, compared to process models, they
are limited in number and use. For a full list of allowed events in a
BPMN choreography model, the reader is invited to consult chapter
10.5 in [65].

2.5 petri nets

BPMN business processes are well-suited for modeling business pro-
cesses at an abstraction level understandable by business process ex-

2.5 petri nets 19

Figure 7: An example of a choreography event-based gateway and its corre-
sponding collaboration diagram

perts. However, they lack proper formal semantics, hence, hampering
their use for formal analysis. In order to apply formal analysis to
business process choreographies several approaches can be followed,
including: enriching business processes with more precise semantics;
applying operational semantics; or, applying translational semantics.
In this thesis we use the last approach.

Applying translational semantics means to translate one language to
another by assigning new semantics with the aim of reaching a cer-
tain goal. In our case, the goal is to apply formal correctness check
on business processes in general and business process choreographies
in particular. In this thesis we use the translation of business process
choreographies to Petri nets [80] for formally checking choreography

20 foundations

properties in Chapter 5. The use of Petri nets for formally analyzing
workflows and business processes is well-researched [94, 95].

Petri nets are directed bipartite graphs that are abstract and unam-
biguous in their semantics.

Definition 2.1.
Petri net is a triple (P, T , F) where:

• P is a finite set of places
• T is a finite set of transitions
• F ⊆ (P× T)∪ (T × P) is a set of flow relations

J

The Petri net in Figure 8 is derived from the ARS business process
from Figure 3. The derivation is achieved by applying transformation
rules from Dijkman et al. [45].

Pe
tr

iN
et

AR
S

Ch
ec

k
Av

ai
la

bi
l

ity

N
ot

ify
H

os
t

N
ot

Po
ss

ib
le

Ac
ce

pt
ed 24

H
ou

rs

D
ec

lin
e

Ch
ar

ge
Pa

ym
e

nt

Se
nd

N
ot

ifi
ca

tio
n

Se
nd

D
ec

lin
e

XO
R

Jo
in

 1

XO
R

Jo
in

 2

XO
R

Jo
in

 3

Se
nd

Co
nf

ir
m

at
io

n

Figure 8: Petri net of the ARS business process

2.6 representational state transfer architectural style 21

A place p is an input place of transition t iff ∃ f ∈ F | f = (p× t).
Correspondingly, a place p is an output place of transition t iff ∃ f ∈ F |
f = (t× p). The set of all input places and output places of transition t
are denoted respectively with •t and t•. In the same fashion we denote
p• and •p the set of all transitions who have p as respectively an input
place and output place.

Definition 2.2.
The marking of Petri net (P, T , F) is the function M : P → N0 that
assigns a natural number of tokens n ∈N0 = {0, 1, 2, ...} to places. J

The marking of the Petri net represent the state of the net at a given
moment, i.e., the token distribution over the Petri net’s places. The
state of the net can change by firing transitions which displace tokens
from input places to output places. More precisely, firing a transition
t ∈ T means consuming exactly one token from each place p1 ∈ •t and
produces exactly one token on each place p2 ∈ t•. This means that a
transition cannot fire if a place p ∈ •t contains no token. If all input
places contain at least one token the transition is enabled and can fire.

2.6 representational state transfer architectural style

The Representational State Transfer (REST) architectural style [23] is
increasingly used for the development of Web services. Its architectural
constraints contribute to among others, better scalability and portabil-
ity. In virtually all cases, REST uses the HTTP protocol as a means of
interactions between different participants.

REST consists of a set of five mandatory constraints plus an optional
one. Fielding starts with an empty set of constraints (see Figure 9) and
applies consecutively to the Web the following constrains:

Figure 9: Null-Style

1. Client-Server. This constraint ensures a separation of concerns be-
tween the user interface and the data storage (see Figure 10). This
improves the portability (the client software component can run
on different devices) and scalability due to the server side becom-
ing less complex. In addition, the client and server components
can evolve independently as long as the interaction interfaces do
not change.

2. Stateless. This constraint requires from the clients to always send
self-contained requests, i.e., each request must hold sufficient in-
formation for the server to understand it (see Figure 11). This

22 foundations

Figure 10: Client-Server

means that the server shall not hold any session state, but rather
it is client’s responsibility to keep the session state.

Figure 11: Stateless interaction

This constraint impacts positively the visibility, reliability and scal-
ability properties. Visibility is improved because one does not
need to look further than a single request to understand it. Like-
wise, it is easier to recover from partial failures, hence, improving
reliability. Scalability is improved because the server does not
invest resources for keeping the session state.

The trade-off of consist in that many repetitive requests may de-
crease the network performance because the server does not keep
the session state and, therefore, reducing the amount of data sent
on each request. Moreover, the server has less control over the
state of the overall interaction because part of the control is given
to the clients, who, might run in different machines and under
different circumstances.

3. Cache. This constraint allows for responses to be marked as
cacheable or not. In Figure 12, the client cache is represented
by the small circle inside the client. Cacheable responses can be
reused by the clients for the same requests without the need to re-
send them to the server. Thus, some interactions with the server
are totally avoided.

This leads to improved user-perceived performance (due to lower
latency) and scalability. However, reliability is affected negatively
because the cached response might not be up do date with the
actual response.

2.6 representational state transfer architectural style 23

Figure 12: Cache

4. Uniform Interface. This constraint, which identifies REST archi-
tectural style, enforces the same interface between components on
the Web (see Figure 13). The general interface simplifies the over-
all architecture with a cost on efficiency due to the generalization
of, otherwise, specific requests. The uniform interface is realized
by the following four constraints: identification of resources, ma-
nipulation of resources through representations, self-descriptive
messages, and hypermedia as the engine of the application state
(HATEOAS).

Figure 13: Uniform Interface

The resources resting on the server are globally and uniquely
identified via a uniform resource identifier (URI). The interac-
tion is achieved by using standard HTTP verbs (GET, POST, PUT,
DELETE) on resources (see Table 1). Their state can be changed by
the client through these REST verbs. Due to messages being self-
descriptive, the server has sufficient information to process the
messages. HATEOAS property enables clients to discover new
resources by following URIs embedded into resources’ bodies.

5. Layered System. This constraint allows for an hierarchical layer
by limiting components’ awareness to only the immediate layers
that the components are interacting with (Figure 14). This allows

24 foundations

for a less complex system. Intermediaries can be used for load
balancing or encapsulating legacy services. Due to the overhead
added for each layer, the user-perceived performance is reduced.

Figure 14: Layered System

6. Code-On-Demand. This constraint is about enabling clients to
request and download executable code like scripts (Figure 15).
On one hand this improves the system extensiblity. On the other
hand, it reduces visibility as the server has no control over the exe-
cution of the application on the client side. Hence, this constrains
is the only optional constraint in REST.

Figure 15: Code-On-Demand

To summarize, when two participants engage in a RESTful interac-
tion they have to position themselves in the roles of client and server.
A client is always the initiator of the interaction and the server follows
always with a reply. The request, sent to the server, is self-contained,
i.e., it contains sufficient information for the server to process it. The
client uses a limited set of methods to access the resources that lie on
the server side. The client uses the REST verbs from Table 1 to create a
resource, read its latest state, update or delete it. This is done by using
resource representations and not having direct access to the resource
itself.

2.6 representational state transfer architectural style 25

Table 1: REST verbs

REST
Verb

Description Request and response
example

POST Creates a new re-
source
(not safe,
not idempotent)

POST /reservations
HTTP/1.1

HTTP/1.1 201 Created
Location: /reservations/42

GET Reads the represen-
tation of a resource
(safe, idempotent)

GET /reservations/42

HTTP/1.1

HTTP/1.1 200 OK
Hyperlink: /reserva-
tions/42/details

PUT Updates an existing
resource or creates a
new one
(not safe,
idempotent)

PUT /reservations/42

HTTP/1.1

HTTP/1.1 200 OK
Hyperlink: /reservations/42

DELETE Removes a resource
(not safe,
idempotent)

DELETE /reservations/42

HTTP/1.1

HTTP/1.1 204 No Content

With every reply, the server presents the client with possible future
interactions depending on the goal of the interaction. Future interac-
tions are provided in the form of hyperlinks, which represent URIs of
different resources that clients can follow to progress the overall inter-
action. For example, the guest (client) sends a request for creating a
new reservation on ARS (server). If the reservation is accepted ARS
replies with a link for paying the reservation. Otherwise, it replies with
a hyperlink that provides details of the rejected reservation.

There are cases when the server needs to notify the client about a
change of the resource state. To avoid the server asking frequently
about the updated state of the resource, other solutions have been in-
vestigated [77]. One example is that the client-server roles are switched
so that the participant who played the role of the client can also pro-
vide a service as a server in order to get requests that inform him/her
about the updated resources. However, easier solutions can be used,

26 foundations

i.e., emails. For example, ARS can send an email to the host informing
him about the reservation request. The email content can provide hy-
perlinks that the host can follow to either reject or decline the request.

3
R E L AT E D W O R K

This chapter provides an overview of related work in the area of busi-
ness process choreographies and their implementation. In addition, it
highlights the positioning of this thesis’ contribution in the body of cur-
rent research by identifying and targeting the research gap in the said
area. The individual contributions of related work presented in this
section pertain to one of the following three groups (not necessarily
mutually exclusive): process choreography implementation; modeling
of RESTful interactions; and, BPM and REST. Following this categoriza-
tion, the first group of related work considers behavioral analysis and
implementation of process choreographies encompassing concepts like
enforceability, deadlock freedom, instance correlation etc. The second
group of related work is about capturing and modeling RESTful inter-
actions (REST API) between services. In the third group, we zoom in at
the solutions that investigate the BPM-REST relation in particular.

3.1 process choreography implementation

In this section we look at related work that bridges the gap between
choreography models and their implementation. As argued in Chap-
ter 1, implementing choreographies translates to enabling the involved
participants to execute correct message exchanges in the order pre-
scribed by the choreography. Enabling, in this case, means to equip
each individual participant with methods and tools that ensure a cor-
rect execution of the choreography.

First work on bridging the choreographies global view and the par-
ticipants local view is provided by Zaha et al. in [105]. The authors use
Let’s Dance [104] (see Section 2.4) as a modeling languages for captur-
ing process choreographies. They argue that a choreography model
cannot be locally enforced unless certain properties are met on the
global model. Specifically, if the sender of a message is not involved
in the preceding interaction (either as a sender or receiver) the order
of the interactions cannot be enforced locally because the sender is not
aware of the preceding interaction occurrence. This property should
hold true even in cases of control flow forks like exclusive, inclusive
or parallel splits. For example in the previous chapter, the Host has
the choice to accept or decline the reservation request. In order to do
so, the Host has to be aware of the preceding activity. In the BPMN
2.0 standard [65] this property is referred to as the activity sequencing
property (see Section 2.4).

27

28 related work

The authors describe the property on example bases (concrete Let’s
Dance choreography models) and provide no formal definition nor au-
tomatic check. These are, however, addressed in [14] by Decker and
Weske. The authors introduce interaction Petri nets to formally express
and automatically check the enforceability property, nevertheless, not
without introducing a trade-off. Interaction Petri nets, which is an ex-
tension of Petri nets (see Section 2.5), is a low-level language which
provides formal correctness but it is not suited for business users, like
Let’s Dance or BPMN process choreographies are. Hence, a mapping
from a high level choreography language to interaction Petri nets would
be required.

In [15], BPEL4Chor is introduced as an alternative to WS-CDL [7]
for capturing choreographies. BPEL4Chor is an extension of BPEL [25]
(Business Process Execution Language, see Section 2.4), based on Sim-
ple Object Access Protocol (SOAP) [100]. It contributes in bridging
choreographies and their implementation, albeit, upward wise, i.e., the
choreography is described as a composition of orchestration-level con-
structs. The implementation of the choreography is achieved by execut-
ing all the individual services described in BPEL. BPEL4Chor does not
provide a graphical notation, hence, making it difficult for non-technical
users to have a holistic overview of the choreography.

To counter this drawback, the authors propose in [16] a derivation
method that takes as input a BPMN collaboration model (see Section 2.4)
and outputs a BPEL4Chor model. The mapping is not straightforward
as the modeling paradigms differ utterly, i.e., BPMN is a graph-based
language while BPEL is a block-based language. Several other related
work focus on translating BPMN to BPEL, like the work in [72] and
[71], which [16] extends upon. Similarly, Mendling et al. [48] show
how BPEL process definitions can be derived from a global WS-CDL
[31] model for each participant of the choreography. This derivation
is fully-automatized for certain blocks and semi-automatized for those
blocks whose context plays an important role. Likewise, transforma-
tions to BPEL also exist from other graph-based process modeling lan-
guages [49, 106].

Recently with the surge of blockchain technology [54], new possi-
bilities for implementing process choreographies have emerged. One
notable work that makes use of blockchain for enforcing and monitor-
ing choreographies is presented in [97]. The authors use Ethereum
blockchain [11] as an intermediary platform that enforces the execu-
tion of the choreography by employing smart contracts [69]—Turing-
complete programs that run on the Ethereum blockchain. Using blockchain
technology is particularly beneficial in an environment where there is
a lack of trust between business partners. However, choreography dia-
grams intrinsically lack a central system (i.e. a system shared between
the business participants) that manages the common data and enforces
the interaction behaviour. These are rather properties of an orchestra-

3.1 process choreography implementation 29

tion setting, which a choreography language like BPMN process chore-
ography does not capture. This requires a systematic approach to in-
vestigate the appropriateness of choreography languages for capturing
the interactions that are performed via the blockchain. Despite some
initial contributions on the relation between BPM and blockchains (like
in [51]), we argue that work on the choreography-blockchain relation is
still in its infancy. In comparison, this thesis proposes a hybrid model
(semi-orchestration service that guides the choreography) for execut-
ing RESTful choreographies in the context of RESTful services, but an
additional resource data model is used to capture complementary in-
formation to the choreography model, e.g., the shared data and condi-
tions on their state (see Chapter 9). Similar work shows that blockchain
can replace traditional shared data storage [102] in the context of in-
teracting software components. Moreover, it is shown that using cloud
services for orchestrating choreography diagrams is cheaper than using
Ethereum blockchain [84].

Enforceability is a necessary condition for a correct choreography
implementation but not a sufficient one. A key aspect for ensuring
a correct process execution consist in the data exchanged between par-
ticipants. The participants need to have a common understanding of
the data they share during the enactment of the process choreography.
In case the participants have already a system in place, there is the
need for data integration. Meyer et al. [52] provide a model-driven ap-
proach for describing and automating the data exchange between busi-
ness processes belonging to choreography’s participants respectively
(see business process collaboration in Section 2.4). The authors pro-
pose a global data model as an agreement between participants on the
shared data. The global data model is then matched individually to
each participant’s local data model via schema matching. Nevertheless,
despite having a common agreement on the global model, there is yet
the possibility of wrong message content. E.g., the payed amount is
not equal to the billed amount. This thesis addresses these types of
problems in Chapter 9.

Engels et al. propose in [20] an approach to transform collaboration
diagrams to Java [2]. Collaboration diagrams in UML 1.1 [62] (known as
UML communication diagram in UML 2.0 [63]) are used to model the
interaction between different objects (akin to sequence diagrams but
with no timeline segments involved). Collaboration diagrams can be
considered a choreography language because the modeling perspective
is a global one. They model the messages between objects and the
order the messages are sent. In this approach, the execution of the
collaborations diagram as Java code is considered an orchestration of
the interactions between the objects. In this thesis, we propose a semi-
orchestration service (see Chapter 9) that guides the RESTful execution
of a given choreography.

30 related work

Lastly in this section, we cover related work on choreography in-
stance correlation. Since a single choreography model is instantiated
many times (otherwise, there is hardly the need to create the model), ev-
ery participant needs to correlate the messages that belong to the same
local instance. In [3], the authors provide a framework which consist
of correlation patterns for grouping messages together in the context
of service oriented architecture. They show that BPEL provides good
support for most of the correlation patterns. The work on [12] provides
a more formal approach for isolating interaction instances belonging
to the same choreography instance. The authors introduce ν*-nets as
a Petri net extension which captures names creation and passing. In
addition, [52] addresses the correlation between messages in a BPMN
collaboration diagram by correlating messages spawn from local pro-
cess instances via the aforementioned (previous paragraph) global data
model.

3.2 modeling restful interactions

In this section we consider related work that investigate different ways
of capturing RESTful interactions into models. REST is an architectural
style that is built upon restrictions, which simplify the interaction on
the Web in exchange for portability, scalability, evolvability etc. Thereby,
REST mainly defines what is not allowed rather than what is allowed.
To counter that, scholars and industry members alike have proposed
several languages that enables the service developers to correctly model
and implement REST-compliant interactions.

Valverde and Pastor [90] introduce a REST metamodel to counter the
lack of a formal specification for RESTful Services. The metamodel en-
ables a model-driven engineering approach to derive machine-readable
formats that implement RESTful services. Similarly, Laikorpi et al. [36]
propose a step-wise procedure, consisting of model-to-model transfor-
mations, to arrive from a REST API specification to a software artifact.
Schreier [85] provides a more extensive technology-agnostic REST meta-
model that has a special focus on the behavioral aspect. The ultimate
goal of proposed work is to provide a high-level abstraction language
which can be transformed to low-level technical models. The drawback
of these meta-models is that they have no graphical representations
the REST API developers can make use of. Our approach uses an es-
tablished BPMN standard to specify the RESTful interactions from a
global perspective.

Haupt et al. [28], differently from the aforementioned approaches,
uses UML sequence diagram [63] (a graphical language). The authors
take a conversation based perspective for capturing interactions of a
single clients with RESTful services. Several REST interacting patterns
are modeled to demonstrate the appropriateness of the approach. In
addition a model driven approach is sketched for deriving the services’

3.3 bpm and rest 31

RESTful APIs. The limitation of this work is that it captures only the
interaction of a single client with one ore more servers. However, one
important aspects of Web services is connecting many clients (humans
or machines) like Airbnb, Facebook, Easychair, Google etc. Another
drawback is that UML sequence diagrams are not suited for branching
interactions (parallel or exclusive).

Some of these approaches lose the information that holds the Web ser-
vice business goal, e.g., whether a specific URI is intuitive enough and
relays its purpose to the client. In this thesis, URI are used to convey
the business goal of the interactions, hence, increasing the understand-
ability and facilitating the development of client-side applications.

3.3 bpm and rest

Since this thesis is situated between the area of BPM and REST, in this
section we look particularly at related work covering the relation be-
tween the two. One of the earlier work, which provides a closer look
into BPMN and REST, is that of Pautasso in [76]. The BPMN process di-
agram is enriched with a light-weight notation to express REST notions
in conjunction with business processes. The author proposes several
ways for combining processes and REST: process tasks can interact with
external REST resources via REST methods; a process, a sub-processs,
or a task can constitute a REST resource per se. Pautasso and Wilde [77]
extend the previous work by offering a catalog of technical solutions
for addressing the problem of notification push to the client. Therefore,
clients can be notified whenever there is a task or process state change
without having to send several GET requests before the new state is
reached. Another work in the same direction is presented by Xu et al.
in [103]. The authors, propose an architectural style where processes el-
ements are considered as REST resources and are managed using REST
methods. These contributions, however, do not cover concrete (formal)
properties for checking the correctness of the RESTful interactions. In
addition, they provide an activity-centric perspective where data objects
are ignored. The choreography perspective is not taken into account as
the notation is based on the business process level. In short, the main
difference consists in that, in this thesis, we use choreography diagrams
to describe or prescribe RESTful interactions, while the related work
uses REST to allow the management of business process models and
their instances in a Web setting.

Cesare et al. propose an extension of BPMN choreography diagrams
to model RESTful conversations in [78]. The extension, named RESTalk,
is elaborated further and evaluated in [30]. RESTalk is simplified to
only focus at the interactions that the server conducts with its client.
We argue that this setting is more akin to an orchestration setting from
the server’s local point of view since the proposed language models
only a single server and its behavior with the client. Furthermore, the

32 related work

labels, which describe the interaction, are omitted. In this thesis, we
use the business information embedded in the choreography diagram,
especially in the labels, to derive better REST APIs following quality
guidelines. Moreover, we argue that modeling RESTful interfaces from
a global perspective (no bias towards and REST server) is important for
capturing the state of common resources and the allowed interactions
via interfaces that are derived from a global logic (see Chapter 6).

Part II

R E S T F U L C H O R E O G R A P H Y L A N G U A G E

4
R E S E A R C H Q U E S T I O N S A N D R E Q U I R E M E N T S
A N A LY S I S

In this chapter, we focus on formulating the research questions that are
addressed by this thesis. Consequently a set of requirements are speci-
fied for designing artifacts that (partially) solve the research questions.
The requirements are, then, treated in the subsequent five chapters con-
stituting this thesis’ main contribution.

4.1 research questions

The observation is that, on the one hand, REST architectural style is
widespread and is one of the most preferred styles among Web designer.
On the other hand, business process choreography is the standard for
modeling business to business interactions. Ideally, RESTful Web ser-
vice interactions should implement the interactions defined at the busi-
ness process choreography level, albeit, at a more technical level. This
observation leads to the research question: How to close the concep-
tual gap between business process choreographies and RESTful inter-
actions? We tackle this research question in a top-down fashion. Thus,
the main research question is reformulated as follows: How to enact
business process choreography models as RESTful interactions on the
Web? The main research question (MRQ) is decomposed into three fine-
grained research questions (RQ) that, when addressed properly, lead to
the answer of the MRQ. This is visually represented in Figure 16.

mrq . How to enact business process choreography models as RESTful
interactions on the Web?

rq1 . How to capture RESTful interactions?

The MRQ revolves around two entities: business process
choreography models and concrete RESTful interactions. The
choreography models are situated at the MOF’s M1 level [68]
(see Figure 16) while RESTful interactions belong to the M0

level. To narrow down the conceptual gap, we first need
to know how to capture RESTful interactions into models
(M1 level). This enables us to argue on the relation between
models that are on the same abstraction level.

rq2 . How to derive RESTful interaction models from business
process choreographies in an automatic fashion?

Choreography diagrams, on one hand, are modeled from
business domain experts with the purpose of capturing, com-
municating, and, ideally, driving the business interactions.

35

36 research questions and requirements analysis

RESTful interactions models, on the other hand, reflect the
RESTful interfaces that are designed by Web engineers with
the purpose of facilitating the interactions between partici-
pants on the Web. In most cases, business domain experts are
unaware of the technology behind Web service interfaces and
Web engineers tend to overlook the overall business goals
of Web services. We need to know how to transform the
information that is provided in process choreographies into
REST-specific information needed to design RESTful interac-
tions models, while preserving the separation of concerns
between the choreography modelers and the Web service en-
gineers. That is why this research question emphasizes the
automatic part of the derivation.

rq3 . How to facilitate the enactment of RESTful interaction mod-
els?

Enacting a RESTful interaction model means to make sure
that the RESTful interactions between the participants are
performed according to the specified model. Since partici-
pants are independent and act autonomously, it is important
to build systems that guide the participants through correct
interactions with respect to REST principles.

Overview (Requirements Chapter RQ)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

RQ1

RESTful
Interactions

M0

M1

M2

RQ2

RQ3
MRQ

Figure 16: Overview of the research questions

4.2 requirements 37

4.2 requirements

By addressing these three research questions, we should be able to an-
swer the main research question, at least partially. In sum, in order to
derive RESTful interactions from process choreography models, the fol-
lowing artifacts are needed: models for capturing RESTful interactions;
an automatic method for deriving these models; and, approaches that
facilitate the enactment of such models. Hence for designing these ar-
tifacts, the following high level requirements are specified accordingly
(see Figure 17):

r1 . Design a modeling language for capturing RESTful interactions.

This requirement addresses the research question RQ1. In order
to capture RESTful interactions in models, a language for design-
ing said models needs to be specified at the meta-model level
(M2 level). Hence, R1 is concerned with the design of a model-
ing language that expresses RESTful interactions, but also a lan-
guage that is conceptually close to BPMN process choreography
language.

r2 . Design an automatic method for deriving RESTful interaction
models from business process choreography models.

This requirement addresses the research question RQ2. Given a
business process choreography model, we want to generate in an
automatic fashion a RESTful interaction model that implements
the choreography model. The automation is desired because we
want to preserve a clear separation of concerns between the busi-
ness process choreography modeler and the Web service engineer.
Naturally, this derivation has to be specified at the language and
model levels (M2 and M1 levels) (see Figure 17).

r3 . Define completeness properties for RESTful interaction models.

Given a RESTful interaction model that can be derived automati-
cally or designed manually, we have to make sure that the model
is complete with respect to REST constraints. These properties
should be defined at the language level (M2 level in Figure 17).
This requirement addresses research question RQ1 because it makes
sure that the RESTful interaction model is complete and correct,
i.e., enforceable [99] and deadlock-free.

r4 . Design a supporting system for enacting RESTful interaction mod-
els.

The enactment of the interactions is met with problems like mis-
interpretation of the data being exchanged or wrong order of in-
teraction. Therefore a supporting system is needed for guiding
the concrete RESTful interactions between the choreography par-
ticipants. This requirement addresses research question RQ3.

38 research questions and requirements analysis

Overview (Requirements Chapter)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

R1+R3

R1+R3

RESTful
Interactions

M0

M1

M2

R2

R4

R2

Figure 17: Overarching approach

Figure 17 depicts this thesis’ overarching approach. The requirements
are positions accordingly to the artifacts that need to be designed or
specified. For the coming five chapters, each requirement is replaced
with a specific artifact that fulfills that specific requirement. Hence, this
figure reappears in an updated form at the beginning of each chapter to
show how the chapter’s specific contribution is positioned in the thesis’
total contribution.

5
R E S T F U L C H O R E O G R A P H I E S

Overview (RESTful Choreography Chapter)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

R1: RESTful
Choreography

Language

R1: RESTful
Choreography

Model

RESTful
Interactions

M0

M1

M2

R2

R4

R2

Figure 18: RESTful choreography language and RESTful choreographies

This chapter addresses requirement R1. As argued in the previous
chapter, requirement R1 states the need of capturing RESTful interac-
tions in RESTful interaction models. Hence, we specify a language that
allows the design of said models—RESTful Choreography Language,
the thesis’ first main contribution. Throughout the rest of the the-
sis, we refer to RESTful interaction models as RESTful choreography
models, or simply RESTful choreographies. RESTful interactions are in-
stances of RESTful choreographies. First we provide the reasons behind
the main design decision of specifying RESTful Choreographies Lan-
guage as an extension of BPMN 2.0 Process Choreography Language.
Then, we provide the formal specification of RESTful Choreography
Language followed by the visual annotation. This chapter’s running ex-
ample is the ARS choreography which is introduced in Section 2.4 and
depicted again for convenience (without the legend) in Figure 19. This
chapter concludes with RESTful choreographies derivation guidelines
and design patterns. The contributions presented here are partially
based on [57], where RESTful choreographies are first introduced by
Nikaj et al.

39

40 restful choreographies T_ARSChoreography_noLegend

Request
Reservation

G
uest

A
RS

N
otify

A
RS

H
ost

Send 'N
ot Possible'

M
essage

A
RS

G
uest

A
ccept

Request

H
ost

A
RS

Reservation
Successful

D
ecline

Request

H
ost

A
RS

Send D
ecline

M
essage

A
RS

G
uest

Reservation
Failed

24 H
ours

Charge Paym
ent

A
RS

Paym
ent O

rg

Reservation
N

otification

A
cceptanceRejection

Paym
ent request

Rejection N
otification

Reservation received
notification

Send Reservation
Confirm

ation

A
RS

G
uest

Send Reservation
Confirm

ation

A
RS

H
ost

Confirm
ation

Confirm
ation

Send 'Expired'
N

otification

A
RS

G
uest

Send 'Expired'
N

otification

A
RS

H
ost

Expiration

Expiration

Figure
1

9:The
choreography

diagram
of

an
A

ccom
m

odation
R

eservation
Service

(A
R

S)
w

ithout
sub-choreographies

5.1 main design decisions 41

5.1 main design decisions

We discuss the main design choice behind extending the BPMN 2.0
Choreography Modeling Language [65] to capture RESTful interactions.
There are three main arguments for such a decision: a) orchestration
versus choreography; b) two-way synchronous choreography task; c)
native derivation from business process choreographies.

a) orchestration versus choreography. RESTful interactions are interac-
tions among participants that individually obey to the REST architec-
tural style constraints (see Section 2.6). Considering the client-server
constraint, if two or more participants engage into a business to busi-
ness interaction, they have to take the client and server roles depend-
ing on the domain context. Usually the server role is played by ser-
vice providers on the Web (e.g., www.airbnb.com, open.hpi.de, https:
//easychair.org/ and www.idealo.de) and the client role is mostly
played by the customers who visit these Web services (most often via a
browser). However, there are cases where two or more service providers
engage with each other to reach a common business goal, for example,
ARS charges the Guest via a Payment Organization (Figure 19). Since
REST requires a client-server relation, the client and the server roles
need to be switched between participants based on who initiates the
interaction. For example, ARS takes the role of the server for the Host
and the Guest (both being clients), but it takes the role of the client when
it requests the payment to the Payment Organization (the server). Let us
call this notion dynamic client-server role assignment.

One solution for capturing the RESTful interactions is to consider
the perspective of each service provider and capture the behavior of
incoming requests (from the clients) and outgoing responses (from the
server). This behavior can be modeled by orchestration models, for ex-
ample, BPMN process models as in [76, 77] or UML sequence diagrams
as in [28]. We would need to model the respective orchestration for
each server and, in addition, the way the servers communicate with
one another. For example, using BPMN process collaboration diagrams
the individual behavior of the servers can be captured in process pools
and their interaction via messages exchanged between the pools (see
section Section 2.3).

We argue that modeling the behavior from the local view without
the global view has limitations. Representational State Transfer (REST)
revolves around the concept of the resource. A resource is stored and
managed by a server and a client interacts with resources via resource
representations. Due to the dynamic client-server role assignment, ex-
plained above, it becomes hard to manage the resources from the local
point of view. When it comes to interactions between multiple partici-
pants, it is important to focus on a global perspective in order to capture
the state of common resources and the allowed interactions with these
resources at any point in the interaction. Especially when common

www.airbnb.com
open.hpi.de
https://easychair.org/
https://easychair.org/
www.idealo.de

42 restful choreographies

resources concern multiple non-human systems, the systems need to
agree and coordinate on how to manage the resources at design time
(for example the reservation or payment resource).

Therefore, we decided to use a choreography language for capturing
RESTful interactions. After reviewing several choreography languages
(listed in Section 2.4) we opted for the BPMN choreographies, despite
its limitations [10].

b) two-way synchronous choreography task. Another reason is that chore-
ography diagrams are synchronous ([99]) in that a sent message is al-
ways received and the sender waits for the receive confirmation before
it continues. This fits well for modeling RESTful HTTP interactions
because for every request there is a response that confirms the message
being received. Moreover, the choreography task (the main composing
unit of the a choreography model) can model two-way communications
allowing HTTP request and response to be captured in a single chore-
ography task.

c) native derivation from business process choreographies. Extending BPMN
business process choreographies to model RESTful interactions facili-
tates the derivation of the latter from the former (Requirement 2). The
global perspective is kept unchanged and the derived REST interfaces
can directly reflect the business intent expressed by the business process
choreography. We are of the firm belief that the REST interfaces should
not be designed in a bottom-up fashion in such a way that they reflect
the IT system behavior. Rather, the behavior of the IT system should
enable the REST interfaces to support a specific real world scenario.
“REST interfaces should be designed and configured, not coded”[46].

5.2 restful choreography language specification

The RESTful choreography modeling language is an enhancement of
BPMN choreography modeling language with REST-specific informa-
tion. To express the enhancement, we provide a metamodel extension
of BPMN 2.0 choreographies, a formal mathematical specification and
a graphical annotation, each of which is described in details in the fol-
lowing subsections respectively.

5.2.1 Metamodel

Business process choreographies capture the interaction between par-
ticipant from the global perspective. In case of RESTful interactions we
want to capture REST-specific interactions between participants. The
choreography task is the smallest unit for composing a choreography
model. It expresses an initiating message sent from one participant (the
initiator) to another (the recipient) and, optionally, a respond message
sent in the opposite direction. Based on the BPMN 2.0 choreography
metamodel, every choreography task is related to one or two message
flows, where each message flow is concerned with exactly one message,

5.2 restful choreography language specification 43

Message

name : String

RESTrequest RESTresponse

responseCode : ResponseCode

Email

method : RESTmethod

<<Enumeration>>

RESTmethod

- POST
- PUT
- GET
- DELETE

URI

0..*

hyperlink

0..*hyperlink

0..*

hyperlink

MessageFlow

name : String

0..*

0..1messageRef

ChoreographyTask

name : String

0..*

1..2messageFlowRef

Participant

name : String

0..* 2..2

participantRefs
0..* 1

initiatingParticipantRef

0..* 0..1

server

1..1

requestURI

requestHeader : String
requestBody : String

responseHeader: String
responseBody : String

emailBody : String

Figure 20: The extension of BPMN 2.0 choreography metamodel for modeling
RESTful choreographies (new elements are drawn in red).

as shown in Figure 20. To capture the REST-specific messages we pro-
pose a specialization of the Message entity into three types of messages
(depicted in red in Figure 20):

• RESTrequest. A REST request message consist of an HTTP request
that must contain a REST method/verb, i.e., POST, GET, PUT
and DELETE, and it must contain a request URI. In addition, it
contains the header and the body of the request, where more hy-
perlinks can be embedded. The header and the body are option-
ally modeled, i.e., they can be empty strings. However, if there
are embedded hyperlinks they must be specified accordingly via
the hyperlink association to the URI class. The REST verb deter-
mines the method applied to the resource that is identified in the
requestURI. We use HTTP [22], because virtually all the cases of

44 restful choreographies

RESTful interactions on the Web take place over HTTP. However,
REST is an architectural style and it is decoupled from the under-
lying protocol.

The REST verbs intrinsically are insufficient for relying domain
specific information beyond their simple semantics (Table 1). For
example, there exist no REST request such as DECLINE /reserva-
tion/id for the Host to sent to ARS in order to decline the reserva-
tion. We want to allow the participants to read and understand
the progress of a given REST resource without having to access it
for retrieving detailed information. To this end, we propose a spe-
cific schema for the URI, namely domain/resource/id/state. The par-
ticipants can read the details about the resource’s current state by
retrieving a resource representation via GET domain/resource/id/s-
tate. They, then, can propose a new state by sending a new re-
source representation via PUT domain/resource/id/newState. For ex-
ample, the Host can read details of the reservation and declining
it by sending the respective REST requests to ARS: GET /reser-
vation/id and PUT /reservation/id/declined. The behavior of the re-
sources is managed in a similar fashion as the behavior of data
objects in a BPMN 2.0 business process model, albeit, data objects
are managed only locally despite being share-able via messages.

• RESTresponse. A REST response message must contain an HTTP
status code that informs the requester about the effect of his re-
quest on the server, e.g., 200 OK, 201 Created, 404 Not Found, 204

No Content. Depending on the answer, a URI can be embedded
in the response body. Same as in the REST request case, only the
hyperlinks are required to be modeled.

• Email. In an interaction on the Web, the recipient may not always
provide a RESTful API, e.g., the Guest and the Host. The problem
of notifying such kind of a participant can be solved, besides other
means [77], via an email-based approach. In this case, the service
provider plays the role of the initiator, whereas the customer plays
the role of the recipient. As initiating message, we use an email
message that might contain further links for the client to follow
in the forthcoming choreography tasks. In this case, there is no
need to model a return message. We use the email message type
as a placeholder for all kind of information passed that is not
a REST request, for example, a bank sends a post message that
contains instructions including hyperlinks, which the customer
can follow in order to use the online banking services. As with the
previous two message types, the hyperlinks (if any) are required
to be modeled.

A choreography task has exactly two participants, one of which is
the initiator (see initiatingParticipantRef association in Figure 20). From

5.2 restful choreography language specification 45

this information alone, the participant’s client and server roles, in terms
of the client-server REST constraint, are not always obvious. The roles
can, however, be derived by identifying the sender and the recipient of
the REST request message. Nevertheless in order to enforce consistency
between the server role and the REST request, the server association is
added from ChoreographyTask to Participant. A choreography task can
have up to one participant that plays the role of the server. Every time
a choreography tasks references a REST request, response or both there
must be a participant that plays the role of the server. On contrary, no
server role is played by the task’s participants in the case of a choreog-
raphy task that references an email message.

For the remainder of this section we focus on the relations among
the REST request message, REST response message and email message
with respect to the choreography tasks. If a choreography task refers to
a REST request message, then the REST request message must always
be the initiating message of the task at hand. If the same choreogra-
phy task refers also to a REST response message, we call it a REST
task. In sum, a REST task encompasses a full RESTful HTTP request
and response. For example , the Guest sends to ARS the request POST
/reservation HTTP/1.1 and ARS responds with the response HTTP/1.1
201 Created Location: /reservation/id/details. Likewise, if a choreography
task refers to an email message the email message must be the initiating
message. We call this task, naturally, an email task.

In a REST task, the initiator plays the role of the client and the re-
cipient the role of the server. However, there is a case where the REST
request and response can be captured by more than a single two-way
choreography task. Depending on the scenario, it might be useful to
model different server responses for the same client request. For ex-
ample, when the Guest sends a reservation request to ARS, ARS might
have enough information about the availability calendar of the Host
to respond whether the request will be forwarded to the Host or will
be rejected due to unavailability. Since the server can send only one
response per request, the possible responses are all mutually exclusive.
In addition, the client does not know the response until it arrives. Thus,
we are under the exact conditions of using a choreography event-based
gateway for modeling said behavior. Figure 22 depicts this particular
case. The REST request message is captured as an initiating message
by a choreography task that is immediately followed by an event-based
gateway. The gateway is directly followed by as many choreography
tasks as the possible number of answers from the server. 1 The response
tasks must each reference only a single message—an initiating message
that captures the REST response from the server to the client. This is

1 Note that we model alternative responses that are relevant from the business logic
point of view. We normally discard HTTP level responses that describe unsuccessful
requests and rather assume the happy case of all requests being successfully addressed.

46 restful choreographies

the only case where the REST request-response pairs are not modeled
by a single two-way choreography task (REST task).

In sum, a REST task models a RESTful request and response between
the client (initiating participant) and the server (receiving participant)
as shown in Figure 21 a). In a multiple response case by the server,
an event-based gateway splits the request task from the responds tasks,
as depicted in Figure 22 for the case of two responses. For every non-
RESTful interaction we use the email task, as shown in Figure 21 b).

5.2.2 Formal specification

In this section we, first, introduce a formal definition of the business
process choreography, over which the RESTful choreography diagram
is subsequently defined. The formalization of the business process
choreography is not a complete one to one mapping of the BPMN
2.0 choreography specification [65] but is limited to only the concepts
needed for our extension, e.g., we do not define the call choreography
or the sub-choreography.

Definition 5.1 (Business Process Choreography).
A Business Process Choreography is a tuple C = (N,S,P,M, etype,
gtype, init, recip, initm, retm) where:

• N = T ∪ E∪G is a finite set of nodes where:
– T is a non-empty finite set of choreography tasks.
– E a is finite set of events.
– G is a finite set of gateways and the sets T ,E,G ⊆ N are all

pairwise disjoint.
• S ⊆ N×N is a set of sequence flows.
• P is a set of participants.
• M is a set of messages.
• etype : E → {start, intermediate, end} assigns an event type to

each event.
• gtype : G→ {xor, ebased,or,and} assigns a gateway type to each

gateway.
• init : T → P assigns a participant as initiator to each choreogra-

phy task.
• recip : T → P assigns a participant as recipient to each choreogra-

phy task.
• initm : T → M assigns a message as initiating message to each

choreography task.
• retm : T →M ∪ nil assigns a message as return message to each

task. nil stands for no return message.
J

Then we have:

5.2 restful choreography language specification 47

Definition 5.2 (RESTful choreography).
RESTful choreography CR = (N,S,P,M,U,V , etype,gtype, init, recip,
initm, retm,mtype, verb, reqURI, server,hyperlink) is an extension of
business process choreography C with the following additional con-
cepts:

• U is a set of URIs.
• V = {POST ,PUT ,GET ,DELETE} is a set of the most commonly

used REST verbs.
• mtype : M → {req, res, email} maps any message exchanged in

a RESTful choreography to one of three message types: request;
response; and, email.

• verb :Mreq → V assigns a REST verb to every rest request, where
Mreq = {m ∈M | mtype (m) = req} is the set of all REST request
messages.

• reqURI :Mreq → U assigns a request URI to every REST request.
• server : T → P ∪ nil assigns a participant as a RESTful server to

each choreography task.
• hyperlink :M→ 2U maps each message of the RESTful choreog-

raphy to a set of URIs that can be used by the clients as hyperlinks
in order to continue the interaction with the server.

J

A choreography task has a (RESTful) server participant iff it models a
REST request or a REST response or both. Formally, ∀ t ∈ T , server (t)��=
nil ⇔ (mtype (initm (t)) = req∨mtype (initm (t)) = res). Note that,
in an email task, an initiating participant is not assigned as a server,
despite of being able to provide a RESTful API, because it does not
make use of its server capabilities when sending an email. For example,
ARS does not play the role of the server in the tasks that send email
notifications to the Guest or the Host. However, it plays the roles of the
server in all tasks where the Guest or the Host send a REST request.

Request messages can only be used as initiating messages. Formally,
m ∈Mreq ⇒ @ t ∈ T | retm (t) = m. Likewise, email messages can only
be used as initiating messages: m ∈ Memail ⇒ @ t ∈ T | retm (t) = m,
where Memail = {m ∈ M | mtype (m) = email}. Response messages
can be return messages (in case of a REST task) or initiating messages
in aforementioned case of the server multiple response.

Definition 5.3 (REST task).
A REST task is a task t ∈ T such that mtype (initm (t)) = req ∧

mtype (retm (t)) = res. J

Likewise:

48 restful choreographies

Definition 5.4 (email task).
An email task is a task t ∈ T such that mtype (initm (t)) = email∧

retm (t) = nil. J

As described previously, the only way a REST request-response pair
can be split from a single task is by introducing an event-based gateway
between the REST request and the multiple alternative REST responses.
To formally express this property we first need the following notations.

Let pa = (n1,n2, ...,nk) be a path in CR such that
∀ i = 1..k− 1, (ni,ni+1) ∈ S of CR. Then, we denote with t� = {t ′ ∈ T
| ((t, t ′) ∈ S)∨ (∃pa = (t,n1...nk, t ′)∧ ∀ i = 1..k,ni ∈ N \ T)} the set of
all choreography tasks that directly succeed t (gateways and events are
excluded). Meanwhile, we denote n• = {n ′ ∈ N | (n,n ′) ∈ S} the set
of all nodes that directly succeed node n. Since task t ∈ T ⊆ N, t• is
the set of all nodes that directly succeed task t. In a similar fashion we
denote •n and •t as the set of all direct preceding nodes of respectively
node n ∈ N and task t ∈ T .

At this point, we can express formally the case of the server multiple
response (see Figure 22):
∀ t ∈ T , (mtype (initm (t)) = req∧ retm (t) = nil)⇒
|t�| > 2∧ ∀ t ′ ∈ t�, init (t ′) = recip (t)∧ recip (t ′) = init (t)∧
mtype (init (t ′)) = res∧ retm (t ′) = nil∧

∃g ∈ G | •g = {t} ∧ g• = t�∧ gtype (g) = ebased.

5.2.3 Graphical annotation

Graphically, RESTful choreographies are an enhancement of BPMN pro-
cess choreographies with REST-specific annotations. To visually en-
rich the choreography diagram with REST information, we annotate
the messages associated to choreography tasks. REST-annotated mes-
sages are sufficient for reliably expressing REST specific information—a
proposition that will be clear in the first part of the thesis main contribu-
tion (Chapter 5, Chapter 6 and Chapter 7). The annotation of messages
spares the introduction of entirely new graphical modeling elements,
and hence, avoids requiring a new underlying metamodel for design-
ing RESTful choreography diagrams. The main drive for this decision
is that we want the Web engineers to be able to model and use RESTful
choreographies with existing modeling tools and technologies that al-
ready support BPMN 2.0 process choreographies, e.g., Eclipse BPMN2

Modeler 2 and Signavio Process Editor 3. Nevertheless, an instance of
the RESTful choreography metamodel (introduced in subsection 5.2.1)
can be generated by parsing the annotated messages and retrieving the
REST-specific information, for example, an XML Metadata Interchange
(XMI) file [66] can be created based on the RESTful choreography meta-
model.

2 https://www.eclipse.org/bpmn2-modeler/

3 https://www.signavio.com/

https://www.eclipse.org/bpmn2-modeler/
https://www.signavio.com/

5.2 restful choreography language specification 49

A REST task is annotated with a REST request message and a REST
response message like shown in Figure 21 a). The request message
is composed of a concrete REST verb followed by the URI that identi-
fies the resource on which the REST method is applied. In this thesis,
we use the four most used REST verbs/methods: GET; POST; PUT;
DELETE. The request message is always drawn with a clear white fill-
ing because it is always a initiating message (see Section 2.4). The re-
sponse message starts with an HTTP response status code based on the
HTTP/1.1 standard [29]. Both request and response messages might
contain hyperlinks in their body. The response message icon is shaded
because, in a REST task, the response message is always a return mes-
sage. Otherwise, a response message can be an initiating message only
in the case of multiple responses from the server as depicted in Fig-
ure 22.

T_ChoreographyTaskExample1and2

Email task

Initiator

Recipient

email
<email body>

REST task

Initiator

Recipient

<VERB> <URI> <HTTP Version>
<Request Header>

<Request Body>

<HTTP Version> <Response Code>
<Response Header>

<Response Body>

a) b)

Figure 21: Enriching choreography tasks by REST-specific annotations

Figure 21 b) depicts an email task. In an email task, the email mes-
sage is an initiating message and there are no return messages. If
the body of the email (the one that the choreography describes or pre-
scribes) contains hyperlinks, they have to be explicitly reflected in the
choreography diagram.

The information in the HTTP requests/responses or email messages
does not need to be at the same level of detail as that of the imple-
mentation, which might include, for instance, text fragments. However,
it is essential to include the hyperlinks that eventually determine the
behavior of the entire interaction modeled in a RESTful choreography
diagram. In the ARS scenario, for example, it is essential to include
links in the email messaged to the Host allowing him/her to accept or
decline the reservation request by following those hyperlinks. There-
fore when modeling a RESTful choreography diagram, all hyperlinks
must be reflected in the model allowing us to capture one of the main
properties of REST—hypermedia as the engine of the application state

50 restful choreographies

(see Section 2.6). This makes hyperlinks very important for analyzing
the behavior of a RESTful choreographies as it is shown later in Chap-
ter 7.

T_ChoreographyTaskExample3

REST response task A

Participant P2

Participant P1

<HTTP Version> <Response Code>
<Response Header>

<Response Body>

REST request task

Participant P1

Participant P2

<VERB> <URI> <HTTP Version>
<Request Header>

<Request Body>

REST response task B

Participant P2

Participant P1

<HTTP Version> <Response Code>
<Response Header>

<Response Body>

Figure 22: The modeling construct for the case of a server multiple response
(two responses in this case)

In general, choreography gateways are used in a RESTful choreogra-
phies in a similar manner as in BPMN choreographies. No special en-
hancement is required. Nevertheless, hyperlink can be used on condi-
tional flows that follow a choreography exclusive or inclusive gateway.
Following the choreography gateways rules, the hyperlinks have to be
shared among the gateway-affected participants upfront. In this the-
sis we tackle the delicate case of executing choreographies’ exclusive
gateways. Please refer to Chapter 8 for more details.

5.3 derivation guidelines and design patterns

Having introduced the RESTful Choreography Language, we provide
some derivation guidelines and design patterns that we have encoun-
tered during the design of several RESTful choreographies spanning
different application domains. For illustration, we transform the ARS
choreography diagram from Figure 19 into the RESTful choreography
depicted in Figure 24.

In the following, we introduce a step-by-step guide on how to enrich
a choreography diagram with REST annotation exemplified with the
ARS choreography:

5.3 derivation guidelines and design patterns 51

1. Identify the REST Servers. Given a choreography diagram, we first
have to identify the participants who play the role of the server in
terms of REST. This is crucial for determining the type of RESTful
interactions between the participants in the following steps.

In the ARS choreography from Figure 19, the ARS and the Pay-
ment Org. are the only two participants who provide a RESTful
API. Hence, the rest of the participants, namely the Host and the
Guest, can only play the role of the REST client.

2. Designate the REST and email tasks. Knowing which participant
provides a REST API (is a REST server) allows us to transform the
choreography tasks into REST tasks or email tasks. If the recipient
of the initiating message provides a REST API than the task is des-
ignated as a REST task. Otherwise, if the participant who receives
the initiating message does not provide a REST API, we are un-
der the conditions of an email task. The case in which the server
may directly reply with alternative responses can be modeled by
either a REST task that is followed by mutually exclusive email
tasks (which represent respectively the different responses) or by
the construct introduced above in Figure 22. The choice between
the two depends on the domain context or on the preferences of
the REST API designer.

In the ARS choreography there are different tasks between the
four participants. The Guest and the Host interact only with ARS.
Since ARS is a REST server, they send REST requests to ARS and
receive information either as part of the REST responses or via
emails. Despite the ARS providing a REST API, it has to play the
role of the REST client when it sends a payment request to the Pay-
ment Org. Hence, the task that models this interaction is a REST
task as shown in Figure 24. The figure considers the case where
the ARS confirms the reservation request and either continues the
interaction (by forwarding the reservation request to the Host) or
it sends a “Not-possible” email to the Guest. An alternative solu-
tion is depicted in Figure 23, where the ARS replies to the Guest
via the two alternative HTTP responses: HTTP/1.1 201 Created link:
/reservation/id/details (the request is accepted); and, HTTP/1.1 201
Created link: /reservation/id/not-possible (the request is not possible).

3. Identify the main REST request URIs. In order to identify the main
request URIs (see metamodel in Figure 20), we have to identify
the main REST resources. In a similar fashion that we follow to
identify data objects in a process model, we need to identify re-
sources in a RESTful choreography. Of course, the REST designer
must have some domain-specific information to identify the REST
resource and model its behavior. The REST resources always lie
on the server side, and, hence, the servers responsible for the re-

52 restful choreographies

sources have to be identified. Last, the resource states and the way
they change during the choreography run have to be specified.

For example, the ARS choreography is revolved around the reser-
vation of an accommodation place. That means that the reservation
is a prime candidate for being a REST resource. Since the ARS is
responsible for the reservation, the Guest and the Host can access
and modify it by sending REST requests to ARS. The reservation
resource goes throw different states in the choreography, i.e., cre-
ated, not-possible, accepted, confirmed, declined, and expired. As
for the Payment Org., it is only concerned about the payment. Thus,
the payment is a REST resource that is managed by this particular
server.

4. Complete the hyperlinks The information determined in the previ-
ous steps, are sufficient for specializing all the messages to ac-
cordingly REST request, REST response and email messages as
specified in the RESTful Choreography Language. Last but not
least, the designer of the RESTful choreography has to make sure
that all the REST clients are, at any point in the choreography, in
possession of the hyperlinks that will allow them to successfully
continue the interaction with the servers (see HATEOS principle
in Section 2.4).

In Figure 24, the Host is provided with three hyperlinks for check-
ing the requested reservation in details and for directly stating his
choice on the reservation.

We have observed several patterns that reoccur in RESTful choreogra-
phies concerning the relation between the content of the messages ex-
changed and the ordering of choreography tasks. Since the hyperlinks
sent between participants pave the way for upcoming interactions we
focus on how the number of hyperlinks referred in the task impacts
the consecutive tasks of the RESTful choreography. The presented de-
signed patterns can be taken into consideration when modeling a REST-
ful choreography, but they should not be necessarily enforced because
they make no claim on the correctness of the model. We introduce
formal properties later in the thesis to enforce certain relation between
hyperlinks and tasks that must hold in order for a RESTful choreogra-
phy to be correct (see Chapter 7).

• no-hyperlink pattern. In case of the no-hyperlink pattern, the chore-
ography task incorporates a REST response message or an email
message without any hyperlink. This can be a simple notifica-
tion, e.g., the information about a resource being deleted. This
choreography task is usually followed by an end event or by a
choreography task that does not involve the original recipient. In
any case, the missing hyperlink hints to a lack of future conver-
sation between these two particular participants. Theoretically,

5.3 derivation guidelines and design patterns 53
T_ChoreographyTaskEventARS

Reservation Request
Created

ARS

Guest

HTTP/1.1 201 Created
link: /reservation/id/details

Request Reservation

Guest

ARS

POST /reservation HTTP/1.1

Reservation Request not
Possible

ARS

Guest

HTTP/1.1 201 Created
link: /reservation/id/not-possible

Figure 23: An alternative solution for modeling the way the Guest is informed
about the reservation

however, the recipient might initiate the direct succeeding REST
task by using a hyperlink that it received earlier in the choreog-
raphy. However, we have not encounter such a case during our
practice of modeling RESTful choreographies.

• multi-hyperlink pattern. In case of the multi-hyperlink pattern, the
choreography task incorporates a HTTP response message or an
email message with multiple hyperlinks. This task usually repre-
sents a set of choices (not necessarily mutually exclusive) given to
the recipient. In that case, the task is followed by an event-based
gateway or parallel gateway that represents the possible future in-
teractions (alternative or parallel) the recipient can follow through
the hyperlinks. If the hyperlinks refer to the same REST resource
with different states then the hyperlinks lead to mutually exclu-
sive requests. Otherwise, it depends on the context and the do-
main whether there is a upcoming parallel split or not. Note that
such behavior can be captured also with inclusive gateways but
we try to avoid them due to their complex semantics [8, 19, 96].

• single-hyperlink pattern. In the single-hyperlink pattern, the chore-
ography task incorporates a REST response message or an email
message with a single hyperlink. This kind of message, generally,
is a notification, which can link to additional information to what
is originally included in the message body. Typical examples are
a HTTP response informing about the effect of the REST request
on the resource, or an email linking to a new resource or the state

54 restful choreographies

of a recently changed one. This kind of REST task is the most
commonly encountered task in RESTful choreographies and not
much can be inferred about the follow-up tasks.

Applying the derivation design guidelines and patterns to the ARS
choreography yields the RESTful choreography in Figure 24. The in-
teraction starts by the Guest, who creates the resource reservation via
a POST verb to the ARS. Presuming that the ARS knows some details
about the availability of the Host, it can either send back an email stating
the unavailability of the Host or it can forward the reservation request
to the Host via email. In the case of the latter, the Host is provided with
three links: a link to which the Host can send a GET /reservation/id/details
request for further reservation details; two links which allow the Host
to respectively decline or accept the reservation request.

In case of acceptance, the Host sends a PUT request to change the
state of the reservation resource to accepted. The ARS, then, sends a
payment request to the Payment Org. (here it is assumed that the Host
payment address is already known by the ARS). If the payment is suc-
cessful, the ARS informs the Host and the Guest via an email, which
it embeds the hyperlink /reservation/id/confirmed for retrieving the new
state of the reservation via a PUT verb.

Contrarily, the Host sends a PUT request for changing the state of
reservation resource to declined. The ARS, then, informs the Guest via an
email like in the previous case. The email contains an hyperlink for the
Guest to send a GET request for retrieving further details that, perhaps,
describe the reason for the declination.

In case 24 hours have passed, the ARS changes the state of the reser-
vation resource internally to expired and sends the corresponding link
/reservation/id/expired to the Guest and the Host via emails. They can, at
any time, send a PUT request with the link to obtain details around
expired reservation request.

5.4 conclusion

We showed how a business process choreography model can be en-
riched step-wise with REST-specific annotation to finally attain a REST-
ful choreography. However, there is a conceptual gab between the busi-
ness process choreography diagrams and RESTful interactions. Chore-
ography diagrams are normally modeled from business domain ex-
perts while REST interfaces are designed by Web engineers. Deciding
on which REST resources are important, the right hyperlink structure,
REST versus email tasks, and refinement at the RESTful interaction
level still require manual work and REST expertise from the RESTful
choreography designer. In order to mitigate these problems and facil-
itate the work of the RESTful choreography designer, we provide an
approach that aids and expedites the creation of RESTful choreogra-
phies by reducing greatly the manual work. The approach, presented

5.4 conclusion 55

T_
AR

SC
ho

re
og

ra
ph

yR
ES

Tf
ul

 (n
o_

su
bC

ho
r)

Re
qu

es
t

Re
se

rv
at

io
n

G
ue

st

A
RS

N
ot

if
y

A
RS

H
os

t

Se
nd

 'N
ot

 P
os

si
bl

e'
M

es
sa

ge

A
RS

G
ue

st

A
cc

ep
t

Re
qu

es
t

H
os

t

A
RS

Re
se

rv
at

io
n

Su
cc

es
sf

ul

D
ec

lin
e

Re
qu

es
t

H
os

t

A
RS

Se
nd

 D
ec

lin
e

M
es

sa
ge

A
RS

G
ue

st
Re

se
rv

at
io

n
Fa

ile
d

24
 H

ou
rs

Ch
ar

ge
 P

ay
m

en
t

A
RS

Pa
ym

en
t

O
rg

PO
ST

 /r
es

er
va

ti
on

 H
TT

P/
1.

1

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
de

ta
ils

lin
k1

: /
re

se
rv

at
io

n/
id

/a
cc

ep
te

d
lin

k2
: /

re
se

rv
at

io
n/

id
/d

ec
lin

ed

PU
T

/r
es

er
va

ti
on

/i
d/

ac
ce

pt
ed

 H
TT

P/
1.

1

PU
T/

re
se

rv
at

io
n/

id
/d

ec
lin

ed
 H

TT
P/

1.
1

PO
ST

 /p
ay

m
en

t/
id

/a
m

ou
nt

 H
TT

P/
1.

1

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
de

cl
in

ed

H
TT

P/
1.

1
20

1
Cr

ea
te

d
Lo

ca
ti

on
: /

re
se

rv
at

io
n/

id
/d

et
ai

ls

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
no

t-
po

ss
ib

le

H
TT

P/
1.

1
20

0
O

K
lin

k:
 /r

es
er

va
ti

on
/i

d/
ac

ce
pt

ed
H

TT
P/

1.
1

20
1

Cr
ea

te
d

Lo
ca

ti
on

: /
pa

ym
en

t/
id

/b
al

an
ce

H
TT

P/
1.

1
20

0
O

K
lin

k:
 /r

es
er

va
ti

on
/i

d/
de

cl
in

ed

Se
nd

 'E
xp

ir
ed

'
N

ot
if

ic
at

io
n

A
RS

G
ue

st

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
ex

pi
re

d

Se
nd

 'E
xp

ir
ed

'
N

ot
if

ic
at

io
n

A
RS

H
os

t

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
ex

pi
re

d

Se
nd

 R
es

er
va

ti
on

Co
nf

ir
m

at
io

n

A
RS

G
ue

st

Se
nd

 R
es

er
va

ti
on

Co
nf

ir
m

at
io

n

A
RS

H
os

t

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
co

nf
ir

m
ed

em
ai

l
lin

k:
 /r

es
er

va
ti

on
/i

d/
co

nf
ir

m
ed

Fi
gu

re
2

4
:R

ES
Tf

ul
ch

or
eo

gr
ap

hy
di

ag
ra

m
of

th
e

m
ot

iv
at

in
g

ex
am

pl
e

56 restful choreographies

in the next chapter, provides a semi-automatic method that employs
natural language processing techniques for extracting domain specific
information from existing business process choreographies.

Whether the RESTful choreography is manually or semi-automatically
derived, we still have no completeness criteria with respect to REST,
e.g., do the introduced hyperlinks induce deadlocks or are the REST re-
sources properly accessed and modified? To answer these questions we
introduce in Chapter 7 formal completeness properties that guarantee
the lack of REST-induced deadlocks in a RESTful choreography.

6
S E M I - A U T O M AT I C D E R I VAT I O N O F R E S T F U L
C H O R E O G R A P H I E S

Overview (Derivation Chapter)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

RESTful
Choreography

Language

RESTful
Choreography

Model

RESTful
Interactions

M0

M1

M2

R2

R4

R2

Derivation

Derivation

Figure 25: Semi-automatic generation of RESTful choreographies

In the previous chapter we introduced RESTful choreography lan-
guage for capturing RESTful interactions among Web services and their
customers into models. The language can be used prescriptively or
descriptively. In addition, we provided guidelines for the top-down ap-
proach of arriving from a business process choreography to a RESTful
choreography. However, this includes manual work and requires ex-
pertise in both business process management (BPM) and RESTful API
design. Ideally, we would like to have a clear separation of concerns
between business process choreography modelers and Web engineers.

In this chapter we address requirement R2 for automating the deriva-
tion of RESTful choreography diagram from business process diagrams.
One key challenge is the identification of the REST resources and the
REST methods that access and manage these resources. Usually this
requires knowledge about the contextual domain where the choreogra-
phy is situated. In a business process choreography model, the contex-
tual domain knowledge is expressed in the labeling of the choreogra-
phy tasks. For example, the choreography task with the label Accept
Reservation hints at the modification of reservation, which can be seen as
a REST resource, to the state accepted, which can be implemented via

57

58 semi-automatic derivation of restful choreographies

the REST verb PUT. If this particular choreography task needs to be
implemented as a REST task on the Web, the request and the response
messages would be specified as respectively PUT /reservation/id/accepted
HTTP/1.1 and HTTP/1.1 200 OK hyperlink: /reservation/id/accepted.

We employ natural language processing (NLP) techniques to gener-
ate the REST-specific information from the business contextual informa-
tion in process choreography tasks. The proposed method is evaluated
in terms of effectiveness resulting in the intervention of Web engineers
in only about 10% of the all generated REST tasks. The comprehensive
evaluation is presented in Chapter 10. This chapter is based for the
most part on our published papers [58] and [60].

6.1 problem statement

The business process choreography diagram introduced in BPMN 2.0
[65] is a modeling language that focuses on the specification of the in-
teractions between two or more participants, who, in general, are busi-
ness actors, e.g., enterprises, customers, or organizations. Compared
to business process models, the choreography diagram abstracts from
the participants’ internal processes and specifies the order in which the
messages are exchanged between the participants.

Figure 26 depicts an example of a choreography diagram. This dia-
gram describes the interaction between different participants involved
in the submission, review, and organization processes regarding the
arrangement of a scientific conference. Some of the main stakeholders
in a conference include the organizers, authors, and reviewers. The
choreography diagram depicts the interactions between these three par-
ticipants starting from issuing a call for papers (CFP) and ending, in the
best case, with the confirmation of the paper publication. To facilitate
these interactions, the participants make use of a review management sys-
tem (RMS) that, in our case, is inspired by http://easychair.org. The
RMS is responsible for coordinating these three participants throughout
the entire collaboration.

As explained in Section 2.4, the main composing element of a chore-
ography diagram is the choreography task, which is our main object of
concern for this chapter. It represents message exchanges between the
initiator and the recipient. The return message is optional and can be
sent from the recipient to the initiator. For example, the choreography
task Create CFP has only the initiating message, while the choreography
task Submit Paper has also a return message as a confirmation that the
paper submission has been successfully received. The messages are not
depicted visually in the diagram because they are not relevant to the
approach introduced in this chapter.

The choreography diagram in Figure 26 depicts the order of the in-
teractions in which the Organizer, RMS, Author, and Reviewer engage in
order to reach the final goals (see the end events): Paper rejected, Short

http://easychair.org

6.1 problem statement 59RMS_RESTful (SoSyM) (NoREST)

Create CFP

Organizer

RMS

Assign Paper Review

Organizer

RMS

Send Review Request

RMS

Reviewer

Enter Paper Review

Reviewer

RMS

Notify Paper
Acceptance

RMS

Author

Notify Paper Rejection

RMS

Author Paper rejected

Conference
Registration

Author

RMS

Camera Ready Paper
Submission

Author

RMS

Confirm Paper
Publication

RMS

Author Paper accepted
for publication

deadline

Publish CFP

RMS

Author

Start Review Process

RMS

Organizer

Finish Review Process

RMS

Organizer

Submit Paper
Decision

Organizer

RMS

Submit a Paper

Author

RMS

Notify Short Paper
Acceptance

RMS

Author

Short Paper
Declined

Confirm
Short Paper

Author

RMS

Cancel
Short Paper

Author

RMS

Figure 26: Choreography diagram for paper submission and review manage-
ment

paper declined, and, Paper accepted for publication. The interaction start
with the Organizer creating a CFP on the RMS. The RMS publish the
CFP in a way that prospective authors are made aware of. This marks
the beginning of the paper submission period until an absolute dead-
line (e.g. May 24th) has been reached. The choreography construct that
expresses such behavior is an event-base gateway that expects paper
submissions from the Authors until the intermediate timer event has
been signaled by the arrival of the deadline 1.

After the deadline has been reached, the RMS signals the Organizer
to start the reviewing process. The reviewing process encompasses

1 Please refer to the BPMN 2.0 specification for the peculiar assumptions of the choreog-
raphy timer events

60 semi-automatic derivation of restful choreographies

the following sequence of interactions: the Organizer assigns the pa-
per reviews to the Reviewers through RMS; upon receiving the review
requests, the Reviewers enter their reviews in the RMS; the RMS notifies
the Organizer about the end of the reviewing process.

Once all reviews are collected the Organizer makes a decision on
which papers to reject, accept as short papers or accept as full papers.
The decision activity is internal to the Organizer and is not reflected in
the choreography diagram per se. However, the results are sent to the
Authors respectively. This is expressed via an event-based gateway be-
cause the authors are not involved in the decision and are only waiting
for the results. In case of a paper rejection, the choreography reaches
the end event. In case of short paper acceptance, the Author has to
make a choice on whether to confirm the short paper or cancel it. In
case of the latter, the choreography reaches the next end event. In the
case a full paper acceptance or short paper confirmation, the Authors
have to submit the camera ready version of the paper and register to
the conference. Only once the two previous tasks are executed can the
paper publication be confirmed by the ARS leading to the final end
event.

Given the choreography example above, the goal is to derive a REST-
ful choreography diagram. Let’s assume that the RMS provides a REST-
ful API. This means that the ARS plays the role of the server (see sub-
section 5.2.1) and the rest of the participants play the role of the client.
In order to generate the REST interfaces of the RMS, a Web engineer
has to make sense of the domain-specific information because the REST
interfaces have to be clearly understood by all prospective REST clients.
For example a REST request like PUT paper/id/submitted shows clearly
the intent of the request, which is about submitting a specific paper.
This raises the question: where in a business process choreography is
the domain-specific information incorporated?

As can be observed in this running example, the contextual domain-
specific information in the choreography model is mediated, for the
most part, by the choreography tasks labels. From the choreography
labels we can tell that this choreography model is about the paper sub-
mission process of a certain conference. We can understand that papers
are submitted, reviewed and then accepted or rejected. In this partic-
ular example, we want to exploit each label in every task that has the
RMS as a recipient in order to generate the REST tasks that represent
the requests and responses sent between the client and the RMS. This
leads us to the next important question: how can we harvest the task
labels in an automatic fashion for generating the REST tasks?

6.2 preliminaries

This chapter explains how to semi-automatically derive REST tasks
from business process choreography tasks whose recipient provide a

6.2 preliminaries 61

RESTful API. The remaining choreography tasks, where this is not the
case, are mapped automatically to email tasks (see Definition 5.4).

In order to process the textual information of the labels, it is necessary
to access the information in a structured way. As a starting point, we
observed that choreography tasks are similarly labeled as process activi-
ties, namely to the corresponding send task in a business process model.
In Figure 7, for example, the choreography tasks Request Payment and
Send Payment (on the left) are labeled exactly as their respective send
tasks (on the right) despite belonging to opposite participants. We can
assume that the labeling of the choreography tasks does not exhibit a
global bias towards a particular participant but rather it manifests a
local bias towards its initiating participant.

The two-way task case This also means that the choreography task label
provides next to no information about the return message (if any). This
is the main reason why we map also a two-way task to a single REST
task. As pointed out in section Section 2.4, a choreography task can
represent either a single message exchange or two message exchanges
(i.e. a send message and a reply message). In both cases, we choose
to map the choreography task to a single REST task. The initiator
(client) makes a REST request to the recipient (server). Since the op-
tional second message, according to the BPMN specification [65], is a
return message, we do not consider it as a new REST request but rather
as a response from the the server, which can be embedded in the REST
response body (see Figure 21). However, in the special case where both
task participants are (REST) servers and there is the need to explicitly
map each message exchange to a REST task, the original two-way task
should be decomposed to a sequence of two one-way tasks before our
method is applied.

The similarity (often equality) between the labels of the choreography
task and the (process model) send task allows us to repurpose a set
of existing approaches and tools, developed originally in the context
of business process models, for analyzing process choreographies. In
particular we are interested in approaches that employ natural language
analysis. In our case, we are specifically interested in the approach
by Mendling et. al. in [50]. The authors show that the label of a
business process activity in general, including a send task 2, contains
the following components: an action and a business object on which
the action is applied. For our purpose, we can safely assume that a
choreography task contains the same components. For example, the
label Submit paper decision, from Figure 26, contains the action to submit
and the business object paper decision.

The action and business object are not always grammatically pre-
sented as a verb followed by a noun. They can be communicated in
different grammatical variations. For example, the label camera ready
paper submission communicates the action in a different grammatical

2 A send task is an instance of an activity in a business process model

62 semi-automatic derivation of restful choreographies

structure by using the noun submission, which, in this case, expresses
the same action to submit. To ensure the independence from the gram-
matical labeling structures, we rely on the label annotation approach of
Leopold et al. [39] which identifies actions and business objects with a
decent degree of accuracy (avg. precision: 91%, avg. recall: 90.6%).

The notions used throughout the rest of this chapter are introduced
formally in the following. Let C = (N,S,P,M, etype,gtype, init, recip,
initm, retm) be a choreography diagram according to Definition 5.1
and L a set of set the all natural language text labels used in the chore-
ography C. We denote with label : T → L the function that assigns a
text label to a choreography task. Considering l = label(t) ∈ L to be
the label of an arbitrary choreography task t and considering WV and
WN to describe the set of all verbs and nouns respectively, we refer to
the action and the business object of l as follows:

• α : L→WV is a function that assigns an action to a choreography
task label

• β : L→WN is a function that assigns a business object to a chore-
ography task label

As an example, consider the choreography task that is labeled Submit
paper decision from Figure 26. According to the prior conceptualization,
the action is given by α(Submit paper decision) = to submit and the busi-
ness object is given by β(Submit paper decision) = paper decision.

In the two succeeding sections we show how we make use of the
choreography tasks’ action and bushiness object to generate the REST
tasks of a RESTful choreography. Section 6.3 describes the core concept
for generating the REST tasks in a semi-automatic fashion while Sec-
tion 6.4 reuses this concept, in addition to new ones, in a more elaborate
way to produce better results.

6.3 core derivation of rest tasks

Based on Definition 5.3 a REST task represents a REST request as an
initiating message and a REST response as a return message. The for-
mer is composed of a REST verb and a request URI, while the latter
is composed of a response code and an optional hyperlink. In sum in
order to derive a REST task, we need to: derive the REST verb; generate
the request URI; and, insert the response code and optionally generate
the hyperlink.

Figure 27 depicts the overview of core approach. We start by ex-
tracting the labels of the choreography tasks whose recipient provides
(descriptive model), or wants to provide (prescriptive model), a REST
interface. Then, the NLP approach introduced above is applied to the
extracted label to retrieve the action and the business object compo-
nents.

6.3 core derivation of rest tasks 63

Figure 27: Overview of the core approach for deriving REST tasks

64 semi-automatic derivation of restful choreographies

The action is used to derive the REST verb. This is achieved by find-
ing the REST verb that is the closest to the action in terms of semantics
(subsection 6.3.1). Once the appropriate REST verb is selected, it is used
together with the business object to generate the request URI. The busi-
ness object determines the REST resource and the action determines
the requested resource state change. Together they form the request
URI (subsection 6.3.2). Last, the REST task is completed by generating
the REST response, which includes the insertion of the respective HTTP
response for the given REST verb (subsection 6.3.3). These derived com-
ponents suffice for the assemble the REST task.

6.3.1 Derivation of the REST verb

The general idea of deriving REST requests via natural language ana-
lysis is based on the observation that the REST resource represents the
label’s business object, e.g., CFP, paper, short paper, conference, reserva-
tion, payment. Consecutively, the REST verb/method represents the ac-
tion taken upon the business object, e.g., create, submit, confirm, register,
send. Therefore, we want to find the REST verb that conveys the same
meaning as the label’s action, or, in case we do not find an identical
meaning, we want to find the REST verb that has the closest meaning
to the action.

The REST verb derivation applies two steps. The first step compares
the action of the respective choreography task label with a set of syn-
onym words pertaining to a certain REST verb. More precisely, we look
at the inclusion relation. This is the case where a REST verb has a
synonym relation to the action. The second step involves a linguistic
similarity analysis of the label’s action and the synonym words, in case
the action of the label does not exactly match with any of the synonym
words. In the following, we discuss these two steps in further detail.

populating the set of rest verb synonyms . First, we require
a set of words that are synonyms to a given REST verb before we can
conduct the derivation. We have four sets in total as shown in Ta-
ble 2. We denote this sets accordingly: SynPOST; SynPUT; SynGET; and,
SynDELETE. The general case is denoted with Synv, v ∈ V , where V is
the set of all REST verbs as defined in Definition 5.2. The challenge of
populating these sets consists in that the REST verbs are semantically
associated with a specific technical meaning that does not necessarily
correspond with the original linguistic meaning of the verb. For ex-
ample, the REST verb POST instructs the server to create a new distin-
guishable resource, while the verb to post typically describes the act of
publicizing news on bulletin boards. Therefore, it is necessary to define
a set of synonym words that reflect the meaning of POST in a technical
sense. For this purpose, we asked REST experts for natural language
verbs that best resemble the meaning of the REST verbs. The result of
this process are the elements (not marked as derived) of the respective

6.3 core derivation of rest tasks 65

Table 2: Synonym Word Sets of the REST Verbs

Verb Description Synonym Word Sets

POST creation of a new
resource on the
server

SynPOST = {create, request,
produce, make, ...︸ ︷︷ ︸

derived

}

PUT editing an exist-
ing resource

SynPUT = {confirm, edit, accept,
send, support, redact, ...︸ ︷︷ ︸

derived

}

GET retrieving an
existing resource
from the server

SynGET = {retrieve, read,
get, find, recover, ...︸ ︷︷ ︸

derived

}

DELETE deleting an exist-
ing resource

SynDELETE = {cancel, delete,
erase, postpone, ...︸ ︷︷ ︸

derived

}

sets in the third column of Table 2. For example, the experts agreed that
the meaning of POST is best reflected by the verbs to create or to request.
As the identified verbs might not capture all the variation in language,
we further consider additional synonyms that may be extracted from
computational lexicons, such as WordNet [53]. For example, a POST
verb might also be related to the verbs to produce or to make. As result,
the synonym sets for each REST verb are populated with two kinds of
verbs: verbs that are entered by the REST experts; and, derived verbs
from computational lexicons that reflect the technical meaning of the
REST verb (marked as derived in Table 2).

synonym analysis . The synonym analysis step investigates whether
or not the action of a choreography task label equals one of the syn-
onym words of a certain REST verb. If this condition evaluates to true,
we have found the adequate REST verb for the REST request. Other-
wise, no REST verb has a synonym relation with the action. As an
example, consider the choreography tasks Create CFP and Confirm Short
Paper. The first task would map to POST because its action to create
is a member of the set SynPOST . The second task would map to PUT
since its action to confirm is a member of the set SynPUT . This logic is
expressed by the following function.

syn(l) =



POST , if α(l) ∈ SynPOST

PUT , if α(l) ∈ SynPUT

GET , if α(l) ∈ SynGET

DELETE , if α(l) ∈ SynDELETE

∅ , otherwise

(1)

66 semi-automatic derivation of restful choreographies

The function requires the synonym sets to be mutually exclusive.
This is indeed the case—verbs that initially belong to more than a single
set, in particular those that are derived automatically from computa-
tional lexicons, are disambiguated by the REST experts.

similarity analysis . The similarity analysis step serves as a fall-
back strategy in case the synonym analysis step fails to assign a REST
verb to a choreography task. In this case, it is necessary to find a REST
verb that is most closely related, in terms of semantics, to the action.
Therefore, it is necessary to determine the relatedness of an action with
the synonym words. In our approach, we use the notion of semantic
similarity (see e.g. [42, 83, 101]) to quantify this relatedness. We uti-
lize the distributional similarity of the DISCO word similarity tool [34],
denoted with simDISCO because it outperforms existing similarity mea-
sures [35]. Given a choreography task label l, its action α(l), and the
set of synonym words Synv of a REST verb v ∈ V , the relatedness of an
action of a choreography task label and a synonym REST verb set Synv

is given as follows:

rel(α(l),Synv) = max
w∈Synv

simDISCO(α(l),w) (2)

As an example, we consider the choreography task Enter paper re-
view from Figure 26. Since the action to enter is not a member of the
synonym sets of the REST verbs, we determine its relatedness to each
synonym set. Applying the formula above, we receive the following re-
latedness values: rel(enter,SynPOST) = 0.48; rel(enter,SynPUT)) = 0.92;
rel(enter,SynGET) = 0.92; and, rel(enter,
SynDELETE) = 0.55.

Finally, we consider all of the relatedness scores to derive the most
suitable REST verb for a given choreography task label. In this case,
we assume that the highest relatedness score reflects the most suitable
REST verb for a given choreography task. Accordingly, we assign this
REST verb to the highest relatedness score. However, it might be the
case that several relatedness scores are equal which consequently leads
to more than one assignment of a REST verb emphasizing the necessity
of a user to choose the correct REST verb. Formally, we describe the
similarity analysis step as follows:

sim (l) = {v ∈ V | max
v

(rel(α(l),Synv))} (3)

As an example, consider again the choreography task label Enter pa-
per review and its relatedness scores. Since rel(enter,SynPUT) = rel(enter,SynGET) =

6.3 core derivation of rest tasks 67

0.92, the similarity analysis step assigns both REST verbs PUT and GET
to the choreography task: sim (l) = {PUT, GET}.

The following section will explain how the request URIs are gener-
ated for the choreography tasks using the identified REST verb.

6.3.2 Generation of the request URI

The task of generating REST requests involves the generation of a unique
resource identifier (URI) explaining how the resource is addressed via
the HTTP protocol. In order to generate the request URI, we consider
its generation as a language generation problem that uses the available
information of the choreography task and the REST verb derivation
from the previous step. Many language generation systems take a
three-step pipeline approach that first determines the required infor-
mation of a sentence, second plans the expression of this information,
and third transforms them into correct sentences [82]. In contrast to
these systems, we do not require a fully flexible approach, since the
final links follow regular structures [57]. Therefore, we use a template-
based approach[18, 37, 40] to generate REST URIs. In particular, we
use the choreography task label together with the derived REST verb
from the previous step for selecting the respective URI template. Af-
terwards, we fill the template with the concrete information, i.e. the
action and business object of a choreography task label. It has to be
noted that this approach requires the correctly derived REST verb. A
wrongly derived REST verb leads to an incorrect URI prompting the
REST experts to intervene by selecting the right URI pertaining to the
correct REST verb.

Table 3: URI Templates for REST Requests

Request URI Template Example

POST /<β(l)> HTTP/1.1 POST /CFP HTTP/1.1

PUT /<β(l)>/id/<Past Partici-
ple of α(l)> HTTP/1.1

PUT /paper/id/
submitted HTTP/1.1

GET /<β(l)>/id HTTP/1.1 GET /paperReview/id
HTTP/1.1

DELETE /<β(l)>/id HTTP/1.1 DELETE /shortPaper/id
HTTP/1.1

Table 3 shows the link templates for the different REST verbs and
gives examples created from the choreography tasks of Figure 26. The
templates emphasize that the business object of a choreography task

68 semi-automatic derivation of restful choreographies

label (β(l)) plays an important role for the REST request URI since it
resembles the server’s resource that needs to be addressed by a REST
verb. We therefore map the business object to the REST resource and a
unique resource identifier, if the latter is known by the client. Only in
case of POST the identifier is unknown to the client. For the remaining
REST verbs the identifier is always present in the request URI. We need
the identifier for accessing a specific resource via GET or removing the
resource via DELETE.

In case the state of a specific resource has to be changed, the request
URI should also describes the desired state change. This change is ex-
pressed by using the REST verb PUT and generating the past participle
of the label’s action. For example, the label Submit a Paper is translated
to PUT /paper/id/submitted by identifying the label’s business object pa-
per as the main REST resource and requesting its state to change to
submitted, which is the label’s action past participle. The main reason
we follow this particular template consists in designing REST APIs that
convey the request intent clearly to the clients. For more details behind
this design decision please refer to the introduction of the RESTrequest
concept in subsection 5.2.1.

6.3.3 Generation of the REST response

The REST verb and URI constitute the REST request. With the gen-
eration of the REST response the REST task is considered complete.
According to the RESTful choreography metamodel a REST response is
composed of an HTTP response code and an optional hyperlink. The
HTTP response code is a standardized code [29] that is returned as a
part of the HTTP response for describing meta information about the
server’s reaction to the client’s request, e.g., the request was successful,
the resource is created, the resource is not found. In our approach
we consider every REST task to be successful in terms of technicalities.
Therefore we always assume the positive case where every request is
processed accordingly by the server. As for the alternative server re-
sponses that are relevant from the business logic point of view, they
are modeled as successful interactions from the REST perspective but
hold different payloads that capture the respective business informa-
tion (see Figure 23). Therefore, we consider only a subset of the HTTP
response codes as shown in the table below.

In case of a PUT or a GET request the response code is HTTP/1.1
200 OK. The optional hyperlink stating the location of the resource is
usually the same as the requested URI to show the client the updated
resource (after a PUT request) or the location of the same resource (af-
ter a GET request). In case of a DELETE request, the response code is
HTTP/1.1 204 No Content and there is no location hyperlink since the
resource is permanently removed from the server. In case of a POST re-
quest, the response code is HTTP/1.1 201 Created. The location hyperlink
of the POST request is generated similarly to the request of PUT. That

6.3 core derivation of rest tasks 69

Table 4: REST response generation

REST
Verb

REST Response REST Request and Response
Example

POST HTTP/1.1 201 Created
Location: <β(l)>/id/
<Past Participle of α(l)>

POST /CFP HTTP/1.1

HTTP/1.1 201 Created
Location: /CFP/id/created

PUT HTTP/1.1 200 OK
Hyperlink: <Request
URI>

PUT /paper/id/submitted
HTTP/1.1

HTTP/1.1 200 OK
Hyperlink: /paper/id/sub-
mitted

GET HTTP/1.1 200 OK
Hyperlink: <Request
URI>

GET /paperReview/id
HTTP/1.1

HTTP/1.1 200 OK
Hyperlink: /paperReview/id

DELETE HTTP/1.1 204

No Content
DELETE /shortPaper/id
HTTP/1.1

HTTP/1.1 204 No Content

is, the server creates the resource, assigns a resource identifier and an
initial state. Hence we apply the same URI generation as the one used
for generating the request URI for PUT (see Table 3). The difference is
that in a POST request the resource identifier and state is determined
by the server, while in a PUT request the resource identifier and state
are determined by the client. Therefore, the hyperlink (containing the
resource identifier) is requested in the PUT case and returned in the
POST case.

It is important to note that the return hyperlinks are optional. They
depend on the domain. For example, the reviewer can send a GET
request and receive several hyperlinks which redirect the reviewer to
each paper he or she needs to review. The exception is the Location
field, which is a HTTP/1.1 standard response field that is used in case
of a redirected resource (HTTP/1.1 301 Moved Permanently) or a newly
created one (HTTP/1.1 201 Created). Thus, we use it in the response
after a POST request, but it can also be used as a response of a PUT

70 semi-automatic derivation of restful choreographies

request when the request is used to create a new resource. Since we
generate a default response code and optional hyperlinks for each REST
request it is up to the Web engineer to make use of them or change them
according to the domain requirements. In Chapter 10, we evaluate only
the generation of the REST requests because its composing elements,
i.e. REST verb and request URI, are mandatory, and the generation of
the response code depends solely on the derived REST verb.

Applying the core derivation approach to all the choreography tasks
whose recipient provide a REST API gives us all the REST tasks of the
output RESTful choreography. This means that we are left with a set
of tasks that are not REST tasks. By definition of the RESTful choreog-
raphy language these tasks are automatically designated as email tasks
because we use email tasks as placeholders for every non RESTful in-
teraction. Email tasks are important because they contain hyperlinks
which participants can follow in order to perform RESTful interactions.
The hyperlinks have to be manually entered by Web engineers in order
to satisfy the HATEOAS principle (see Section 2.6) of RESTful interac-
tions, i.e., the hyperlinks provided to the clients pave the way for future
interactions with the servers. In the next chapter, we introduce formal
properties to automatically check whether a RESTful choreography is
enforceable in the presence of hyperlinks, i.e., the lack of an hyperlink
disallows the continuation of the choreography execution.

There is, however, an exception, in that a RESTful choreography is
not only composed of REST and email tasks. In Chapter 5 we specify
the special case of a server multiple response. This is the case where
a REST request is followed by multiple exclusive REST responses like
shown in Figure 22, for the general case, and in Figure 23, for a concrete
example. Alternatively this case can be modeled by a REST task that is
followed by exclusive email tasks. The email tasks are initiated by the
server to inform the client about the alternative resource state changes.
It is ultimately up to the Web engineer to make a choice between the two
representations as it do not change the business logic of the RESTful
choreography but it is rather a technical choice.

The core derivation approach presented in this section is first intro-
duced and evaluated in [58]. We developed a tool and applied it to
choreography diagrams from different domains. Three REST experts
assessed the output of the tool coming to the conclusion that the deriva-
tion of the REST verb is correct in 74.93% of the cases and the gener-
ation of the request URI is correct in 60.74% of the cases. In the next
section we enrich the core approach with few additional new concepts
to achieve better results. An elaborated evaluation of the advanced
derivation approach is provided in Chapter 10.

6.4 advanced derivation of rest tasks 71

Figure 28: Overview of the semi-automatic derivation (advanced approach)

6.4 advanced derivation of rest tasks

In this section we introduce a modification of the core derivation ap-
proach to achieve better results with respect to the accuracy of the fully
automatized derivation. The ultimate purpose is to have minimal inter-
vention from the Web engineer when modeling a RESTful choreogra-
phy. The advanced derivation approach is depicted in Figure 28.

Specifically we extend the core approach with two concepts. The first
concept revolves about a certain set of choreography task labels that
contain the action to send or a synonym thereof. As we will explain in

72 semi-automatic derivation of restful choreographies

the first subsection these kind of actions may conceal the true mean-
ingful action of the label. The second concept proposes a linguistic
take on the difference between POST and PUT. The semantic feature
definiteness of noun phrases [44] (commonly present in the family of
Indo-European languages such as English) is used to decide between a
POST or a PUT request. Namely, we show, in the second subsection,
how the definiteness of the business object helps deciding between the
two REST verbs.

6.4.1 Choreography-specific labels

With the introduction the label processing approach by Leopold et al.
[39] in Section 6.2, we considered the send task as an instance of a
activity task and applied the NLP approach to identify the action and
the business object of the send task’s label. However, we observed that
in a choreography setting, where the choreography tasks are labeled
based on their respective send tasks, the labeling style might conceal
the intended action and business object.

Since choreography tasks represent a message which is sent across
organizations, the labels tend to contain the action to send or a similar
one, like to enter, to submit, to mail. All these action describe the passing
of a message from one choreography participant to another. Putting
these action asides, the labels are left with a single or multiple words,
e.g., order, invoice, request, application request, paper submission, short paper
acceptance. These label remainders sometimes hold their own action and
business object, e.g., the remainder paper submission holds the action
to submit and the business object paper, or the remainder short paper
acceptance holds the action to accept and the business object short paper.
When it comes to identifying the REST verb and resource these action-
business object pairs are more insightful than the action to send or the
like.

After all, all choreography task represent messages being sent from
one participant to another. Even more, the action to send indicates no
semantic preference towards any specific REST verbs since all REST re-
quests are sent messages. For example, one can send a GET request for
retrieving a resource representation or a DELETE request for deleting
a resource. Therefore, we turn our focus on the remainder of the label
containing the word send (or a similar one) to look for the additional in-
formation that can indicate an inclination of the label towards a specific
REST verb.

Before checking whether the label contains the action send or the like
we need to identify the verbs which can be used in a choreography to
represent a message being sent. The set of synonym verbs of send is
created and populated in a similar fashion as the REST synonym sets
from Table 2. Hence, we have:

6.4 advanced derivation of rest tasks 73

SynSend = {send, enter, submit, notify, mail, transmit, ...︸ ︷︷ ︸
derived

} (4)

The first elements of the set are entered manually and the rest are auto-
matically generated from the computational lexicons like WordNet.

If the label has an action that is element of SynSend, we analyze
the remainder of the label as depicted in Figure 28. We re-apply the
NLP approach on the remainder to identify a new action and business
object. For example, the label send review request, notify paper rejection,
notify short paper acceptance are reanalyzed as review request, paper rejec-
tion and short paper acceptance. Applying the same NLP approach yields
the following action-business object pairs: (request,review); (reject,paper);
(accept,short paper).

If, however, the label’s remainder contains no new action and busi-
ness object, we reset and simply apply the core derivation approach
on the full label. For example in a label send review, we have α(send
review) = to send and β(send review) = review. The remainder of the
label is review after removing the action from the label. Applying the
NLP approach on the remainder does not yield an action-business ob-
ject pair. In this case, we consider send be the intended action and map
it to the REST verb PUT (because send is part of the SynPUT). Hence
the client sends a request to change the REST resource review to the
state sent. The remainder does not need to be a single word to yield
no action-business object pair. For example let us considering the label
send short paper. Analyzing the remainder short paper would yield no
new business object. In this case as well, we stick to the core derivation
approach and map send to the REST verb PUT resulting in the REST
request PUT /short-paper/id/sent HTTP/1.1.

6.4.2 POST versus PUT

We observed that the label’s action is not the sole entity that can define
the appropriate REST verb, especially when it comes to choosing be-
tween POST and PUT. Thus far we have considered PUT to be mainly
used for modifying existing resources. PUT can, nevertheless, be used
to create new resources as well, provided that the client “knows” the
identifier of the resource. We take a moment here and discuss about
what does it mean for the client to “know” about the identity of the
resource at hand? Can we infer from the choreography label whether
the client is familiar with the resource or not?

When we turn to linguistics, the answer to our questions can be found
in the concept of definiteness [44], which is mainly associated to the se-
mantic category of identifiability [6, 86]. Identifiability describes whether
an entity is already introduced or identifiable in a discourse. In English,
identifiability is usually (not always) expressed through determiners
like the definite and indefinite articles, i.e., “the” and “a” or “an”.

When we consider choreographies as a discourse/conversation be-
tween the participants we can infer from the task labels whether its

74 semi-automatic derivation of restful choreographies

business object, which we map to the REST resource, is identified or
familiar to the participants. We showed earlier in this chapter that the
choreography labeling style is biased towards the initiator of the chore-
ography task, i.e., the label expresses the action and the business object
from the initiator’s perspective. Therefore, we can conclude that the
definiteness of the business object implies whether or not the initiator,
or the client in REST terms, knows the REST resource identifier or not.

Due to the lack of a straightforward characterization of the definite-
ness [44], this thesis considers only the determiners. Although there are
other type of determiners (like demonstratives, possessive determiners,
quantifiers), we concentrate on the presence of the definite and indef-
inite articles that precede the label’s business object. More precisely,
we look at those cases where the label’s action is mapped to PUT after
applying our derivation approach. We perform a check for the presence
of the English indefinite article "a" or "an". If indefinite article is present,
we map the label’s action to POST because it shows that the client is not
aware of the resource identifier. For example, submit a paper task from
Figure 26 is mapped to POST /paper HTTP/1.1 since the client does not
refer to a specific paper that familiar to both client and server at that
point in the conversation.

In sum, our advanced derivation approach enhances the core deriva-
tion approach with an additional analysis of the choreography-specific
labeling style and a linguistic approach to differentiate the REST verb
POST from PUT. The former detects the presence of the action to send
(and its synonyms) and looks for a more meaningful action in the re-
mainder of the label in order to derive a more representative REST
verb. The latter determines whether the client and server have identi-
fied already the REST resource by checking the definite or indefinite
article of the data object from which the resource is generated. POST is
used when the resource is not previously identified. Otherwise, PUT is
chosen.

6.5 application to use case

The final output of the derivation approach is a RESTful choreography.
Figure 29 depicts the RESTful choreography diagram that is derived au-
tomatically by applying the advanced approach to RMS use case. The
RESTful choreography of RMS describes the RESTful interactions be-
tween the REST API provider RMS and its clients: Organizer, Author,
Reviewer. Therefore, all the choreography tasks whose recipient is RMS
are translated into REST tasks. The remaining tasks are designated
as email tasks. In our use case, out of 17 choreography tasks, 9 are
REST tasks and 8 are email tasks. From the 9 choreography tasks, we
encounter the following distribution of REST verbs: 2×POST; 5×PUT;
1×GET; and, 1×DELETE.

6.5 application to use case 75

RMS_RESTful_plus_email

Create CFP

Organizer

RMS

Assign Paper Review

Organizer

RMS

Send Review Request

RMS

Reviewer

Enter Paper Review

Reviewer

RMS

Notify Paper
Acceptance

RMS

Author

Notify Paper Rejection

RMS

Author Paper rejected

Conference
Registration

Author

RMS

Camera Ready Paper
Submission

Author

RMS

Confirm Paper
Publication

RMS

Author Paper accepted
for publication

POST /cfp HTTP/1.1

POST /paper HTTP/1.1

HTTP/1.1 200 OK
{Location: /paper/

id/submitted}

deadline

Publish CFP

RMS

Author

Start Review Process

RMS

Organizer

Finish Review Process

RMS

Organizer

Submit Paper
Decision

Organizer

RMS

Submit a Paper

Author

RMS

Notify Short Paper
Acceptance

RMS

Author

Short Paper
Declined

Confirm
Short Paper

Author

RMS

Cancel
Short Paper

Author

RMS

HTTP/1.1 201 Created
{Location: /cfp/id/created}

PUT /paperReview/id/assigned HTTP/1.1

HTTP/1.1 200 OK
{hyperlink: /paperReview/id/assigned }

PUT /paper/id/
reviewed HTTP/1.1

HTTP/1.1 200 OK
{hyperlink: /paper/id/reviewed}

PUT /paper/
id/decided HTTP/1.1

HTTP/1.1 200 OK
{hyperlink: /paper/id/decided}

DELETE /shortPaper/id HTTP/1.1

HTTP/1.1 204 No Content

PUT /shortPaper/id/confirmed HTTP/1.1

HTTP/1.1 200 OK
{hyperlink: /shortPaper/id/confirmed}

PUT /ready/id/papered HTTP/1.1

HTTP/1.1 200 OK
{hyperlink: /ready/id/papered}

GET /conference HTTP/1.1

HTTP/1.1 200 OK
{Hyperlink: /conference/id}

Email

Email

Email

EmailEmailEmail

Email

Email

Figure 29: RESTful choreography for paper submission and review manage-
ment

76 semi-automatic derivation of restful choreographies

Out of 9 REST tasks, 5 are obtained by the core derivation approach
and 4 by the advanced one. The labels Enter Paper Review, Submit
Paper Decision, and Camera ready paper Submission are subject of the
choreography-specific label analysis because their first acquired actions
(i.e., to enter,to submit,to submit respectively) are elements of the SynSend.
Their label’s remainders (after removing the action) contain the follo-
wing action-business object pair: (review,paper), (decide, paper), and (pa-
per, camera ready). The POST versus PUT linguistic comparison effects
only the derivation of the Submit a Paper label because of the presence
of the indefinite article “a”, which leads to the choice of using POST
over PUT.

If we observe Figure 29 closely, not all the REST tasks are derived
correctly. Two of the obtained REST verbs are the not desired output.
They belong to the last two REST tasks—Conference Registration and
Camera Ready Paper Submission. The derived REST request of the former
is GET /conference HTTP/1.1. That is due to the action to register being
an element of SynGET because it is considered a synonym of to read
from WordNet. The derived REST request from the latter is PUT /camer-
aReady/id/papered HTTP/1.1. Removing the first detected action to submit,
which is element of SynSend, leaves us with the remainder camera ready
paper. The application of the NLP approach on the remainder detects
to paper as an action and camera ready as a business object. The desired
action-business object pair would be (submit, camera ready paper) and the
REST request would obviously be PUT /cameraReadyPaper/id/submitted.

Therefore, the intervention of the Web engineer is required to adjust
or even re-specify the proper REST task. This is the reason the deriva-
tion approach presented in this chapter is considered a semi-automatic
approach. Moreover, the Web engineer needs to enrich the email tasks
with additional information, especially hyperlinks, to make the gener-
ated RESTful choreography complete with respect to REST specification
(see Chapter 7).

6.6 summary and discussion

The chapter defines a semi-automatic approach for deriving RESTful
choreographies from BPMN choreography diagrams. The proposed
approach is based on natural language analysis techniques to derive
the most suitable REST verb for the interaction and to generate a REST
request URI for the derived REST verb. Choreography-specific labeling
style is taken into account. Our approach is evaluated by developing a
REST Annotator tool and applying it to choreography diagrams from
different domains. The details and results of the evaluation are pre-
sented in Chapter 10. The output of the tool was assessed by a REST
expert. The verb identification is correct in 89.35% of cases, while the
URI is correct in 93.65% of cases. This work contributes an additional

6.6 summary and discussion 77

step towards the research gap between business process choreographies
and their implementation.

7
R E S T F U L C H O R E O G R A P H Y C O M P L E T E N E S S
P R O P E RT I E S

Overview (Formal Properties Chapter)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

RESTful
Choreography

Language

RESTful
Choreography

Model

RESTful
Interactions

R4

Derivation

Derivation

M0

M1

M2R3: Completeness
Properties

R3: Completeness
Properties

Figure 30: RESTful choreography completeness properties

In general, when models are refined towards the implementation
level, preserving the consistency between the models (the high level
model and the refined one) is mandatory for a successful mapping to
an eventual implementation [21]. Whether a RESTful choreography is
manually or semi-automatically derived from a process choreography,
there is no guarantee, as it is, that the adding of REST information
preserves the intended behavior of the choreography. More precisely
a RESTful choreography model that is derived from a deadlock-free
process choreography is not guaranteed to be deadlock-free. In this
chapter, we show, with the aid of a use case, that a RESTful choreog-
raphy can indeed reach a deadlock despite the process choreography
it was derived from does not. This is due to the implicit behavioral as-
pects injected with the REST information. This chapter shows how we
capture this REST-specific behavior explicitly in two formal properties
that, if satisfied, ensure the absence of REST-induced deadlocks. These
properties are hyperlink completeness and correct resource behavior.

In addition, the two proposed properties render a RESTful choreogra-
phy complete with respect to REST constraints, up to the extent allowed
by the the choreography’s level of abstraction. Concretely, there are

79

80 restful choreography completeness properties

REST constraints that are not fit for being considered in a choreogra-
phy model, e.g., layered systems and cache (see Section 2.6). Hence,
this chapter addresses requirement R3: Completeness Properties. The
contribution presented here is partially based on the work by Nikaj
and Weske [56].

7.1 motivation

To showcase the need for formal properties we introduce a RESTful
choreography diagram in Figure 31 that models the organization of an
online exam—from publishing to correction. The setting is that of a
massive open online course (MOOC). The choreography is designed
based on an interview with a lecture organizer in the openHPI1 plat-
form. We focus only on the online examination procedure taking place
after all lectures are published.

The main participants in this choreography are the teaching team, the
MOOC platform, and the students. The teaching team is responsible for
publishing the exam and correcting the completed exams that are sub-
mitted by the students. The MOOC platform is a system that facilitates
the interaction between the teaching team and the students by providing
a Web interface and sending emails to coordinate the activities of the
participants. Once the teaching team publishes the exam on the MOOC
platform, the students are reminded by the latter via email. The students,
then, may access the exam at any time before the deadline. In case the
students access the exam, they have to submit it. The teaching team fol-
lows up with the exam correction and submits two possible outcomes
into the MOOC platform. Either the exam is passed or not passed. If the
exam is passed a Record of Achievement is created for the students to be
accessed. Else, the students can retrieve a confirmation of participation,
which can also be retrieved in the case that the students fail to access
the exam before the deadline. As it can be observed from Figure 31,
the exam choreography is composed of 7 REST tasks and 4 email tasks.
The REST tasks represent requests sent by the students and the teaching
team to the MOOC platform, and email tasks capture the notifications
sent from MOOC platform to the teaching team and the students.

Judging from the control flow perspective, the presented RESTful
choreography model does not contain any deadlock. However, when it
comes to choreography models that is not sufficient for guaranteeing a
successful execution. The choreography has to be enforceable [99]. A
choreography cannot be enforced when the initiator of a choreography
task is not aware of the direct preceding tasks. This means that the se-
quence flow between two tasks cannot be enacted because the initiator
cannot know the right timing for executing the task. In the BPMN 2.0
standard this property is known as the choreography activity sequencing.
This rule applies also to RESTful choreographies as an extension of

1 https://open.hpi.de/

https://open.hpi.de/

7.1 motivation 81MOOC_exam-REST

t1: Notify about lecture
end

MOOC Platform

Teaching Team

t2: Publish Online Exam

Teaching Team

MOOC Platform

t3: Notify Online Exam

MOOC Platform

Student

m1: email
URI1: /course/id/exam m2: POST /course/id/exam HTTP/1.1

m3: HTTP/1.1 201 Created
{Location: /course/id/exam/published}

m4: email
URI2: /course/id/exam/published
URI3: /course/id/exam/accessed

t4: Access the exam

Student

MOOC Platform

m5: PUT /course/id/exam/accessed HTTP/1.1

m6: HTTP/1.1 200 OK
{URI4: course/id/exam/submitted}

t9: Records of
Achievement

Teaching Team

MOOC Platform

t11: Confirmation of
Participation

Teaching Team

MOOC Platform

e3: Exam passed

e4: Exam not passed

m14: PUT /course/id/exam/passed HTTP/1.1

m17: PUT /course/id/exam/notPassed HTTP/1.1

t5: Submit the exam

Student

MOOC Platform

m7: PUT /course/id/exam/submitted HTTP/1.1

m8: HTTP/1.1 200 OK

t6: Send exam submission
notification

MOOC Platform

Teaching Team

m9: email
hyperlink: /course/id/exam/submitted

t7: Read exams

Teaching Team

MOOC Platform

t8: Correct exam

Teaching Team

MOOC Platform

g1e2: Exam deadline

g3

m10: GET /course/id/exam/submitted HTTP/1.1

m11: HTTP/1.1 200 OK
{URI5: /course/id/exam/corrected}

m12:
PUT /course/id/exam/corrected HTTP/1.1

m13: HTTP/1.1 200 OK
{URI6: /course/id/exam/passed

URI7: /course/id/exam/notPassed}

e1

m15: HTTP/1.1 200 OK
{Location URI8: /course/id/records}

m18: HTTP/1.1 200 OK
{Location URI9: course/id/participation}

t10: Send deadline
reached notification

MOOC Platform

Teaching Team

m16: email
URI9: course/id/participation

Figure 31: RESTful choreography of a MOOC exam

82 restful choreography completeness properties

BPMN business process choreographies. Thus, it must hold true in
order to enforce the RESTful interactions.

Since in this thesis we consider only the choreography task as an
instance of a choreography activity2, we formalize the RESTful choreog-
raphy task sequencing property. First, we need to define a few helping
notations. In the same way we defined t� in subsection 5.2.2, we denote
with �t = {t ′ ∈ T | ((t ′, t) ∈ S)∨ (∃pa = (t ′,n1...nk, t)∧ ∀ i = 1..k,
ni ∈ N \ T)} the set of all choreography tasks that directly precede task
t. Path pa is defined in subsection 5.2.2. The gateways and events that
precede the task t are ignored. Let us denote with T0 = {t ∈ T | �t = φ}
the set of all starting choreography tasks—they have no preceding tasks.
Then, T∗ = T\T0 is the set of all non-starting choreography tasks. Using
these notations, the definition follows like this.

Definition 7.1 (RESTful choreography task sequencing).
Given a RESTful choreography diagram CR = (N,S,P,M,U,V , etype,
gtype, init, recip, initm, retm,mtype, verb, reqURI, server,hyperlink)
and a participant p ∈ P, the basic rule of choreography task sequencing
holds iff
∀ t ∈ T∗,p = init (t)⇒ ∀ t ′ ∈ �t,p = init(t ′)∨ p = recip(t ′)

J

The exam choreography from Figure 31 is enforceable because the task
sequencing holds true for every two consecutive tasks.

Nevertheless, enforceability does not suffice for a correct execution of
the RESTful choreography. The REST-specific information injected into
the choreography might lead to incorrect execution. For example, what
would happen if the students are informed about the exam in task t3 but
no link is sent along for accessing it? From the process choreography
perspective, this would not constitute a problem because neither the
control flow changes nor the task sequencing rule is contested. How-
ever, the students cannot execute task t4 because they miss the access
hyperlink. Another aspect related to REST-specific problems is when a
REST resource like the exam is addressed with the wrong verbs at the
wrong order. For example, assume that in a RESTful choreography the
exam is accessible via GET by the students after it can be removed from
the server via DELETE by the teaching team. This unwanted behavior
leads to a deadlock and goes against the REST principles defeating the
purpose of RESTful choreographies in the first place.

In sum, two things can go wrong while executing RESTful chore-
ographies: the hyperlinks needed for executing the REST requests are
not provided upfront to the respective participants; and, the REST re-
sources are addressed in an invalid manner or order. To avoid these
particular problems, we introduce two formal properties that, if satis-
fied, ensure the absence of REST-induced deadlocks. The properties

2 A choreography activity is an abstract concept and its concrete instances are: choreog-
raphy task, sub-choreography, and call choreography.

7.2 hyperlink completeness 83

are hyperlink completeness and correct resource behavior. Hyperlink
completeness asserts the HATEOAS principle of REST while correct
resource behavior asserts the correct manipulation of resources, in that
all REST methods/verbs are used accordingly.

When these two properties are satisfied, we consider the RESTful
choreography to be complete with respect to REST constraints. We ar-
gue that other REST constraints, like cache and layered systems (see Sec-
tion 2.6), are not appropriate for being represented at the level of ab-
straction and perspective that confine choreography models. The com-
pleteness property is defined as follows.

Definition 7.2 (RESTful Choreography Completeness).
A RESTful choreography CR is said to be complete, iff it is hyperlink

complete and manifests a correct resource behavior. J

The next sections define in detail hyperlink completeness and correct
resource behavior as well as methods for checking these properties.

7.2 hyperlink completeness

In RESTful interactions, hyperlink is the client’s main mean of naviga-
tion through communication with the server during the conversational
flow. The only way to communicate with the server is by sending a
request to a specific URI. As a response, the server provides the client
with additional hyperlinks for the client to follow in future commu-
nications. Hence hyperlinks can be considered as a steering tool for
guiding the RESTful interactions. For the server to client direction, an
email communication is assumed. We do not explicitly take into consid-
eration RESTful Push Interactions [77] because they are a special case
of the normal RESTful interactions, i.e., to notify the client about new
updates the role of server and clients are briefly exchanged.

A RESTful choreography is hyperlink complete if and only if all the
URIs used in the REST requests are introduced previously to the clients
in the form of hyperlinks. Naturally, the starting choreography tasks
are excluded from this criteria because they have no preceding tasks.
Hyperlink completeness also requires that all hyperlinks sent between
participants are modelled in the RESTful choreography. We define hy-
perlink completeness as follows:

Definition 7.3 (Hyperlink completeness).

A RESTful choreography is hyperlink complete iff ∀ t ∈ T∗ the initiating
participant p ∈ P sends a REST request via URI u ∈ U in task t, then
for all execution paths leading to task t the request URI u is passed to
participant p embedded in a response or email message.

J

84 restful choreography completeness properties

7.2.1 Structural hyperlink completeness

Tracking the execution paths in a choreography model becomes cum-
bersome in the presence of concurrent execution. For convenience, we
propose additionally a simpler version of the hyperlink completeness
property that is defined on the model structure and is only applicable
on models that contain no parallel tasks (or when the parallel tasks are
replaced with with a tree of exclusive paths that capture the same exact
behavior). In this case, we do not need the execution paths but just the
model paths that start at the beginning of the choreography. We define
this property formally as follows:

Definition 7.4 (Structural hyperlink completeness).

A RESTful choreography is structurally hyperlink complete iff
∀ t ∈ T∗,mtype (initm (t)) = req ⇒ ∀ t0 ∈ T0,∀pa = (t0, .., t),∃ t ′ ∈
pa(t

0, .., t) | (init (t) = init (t ′)∧ reqURI (req (t)) ∈ hyperlink (retm (t ′)))

∨ (init (t) = recip (t ′)∧ reqURI (req (t)) ∈ hyperlink (initm (t ′)))

J

This property should not be used for RESTful choreographies that
manifest concurrent execution because it is too strong, i.e., the hyper-
links are required to be passed in all parallel paths while, in reality, in
only one path is sufficient. The structural hyperlink completeness is
stronger than the hyperlink completeness because the latter implies the
former but not vice-versa.

7.2.2 Checking hyperlink completeness

Nevertheless, we propose a method for checking the hyperlink com-
pleteness of any RESTful choreography, including those who manifest
concurrency. The method is based on translating the RESTful choreog-
raphy into a Petri net model [80], which, due to its formal semantics, is
subject to a plethora of business process analysis [43]. The transforma-
tion to Petri nets follows a two step approach.

1. Generate the control flow. In this step we employ the derivation
rules from Dijkman et al. [45] to capture the control flow of the
choreography in a Petri net model. Although the derivation rules
are originally proposed for deriving Petri nets from business pro-
cess models, choreography diagrams use a subset of the process
diagram elements where process activities are replaced with chore-
ography activities. The output Petri net PN = (Pn, Tn, Fn)3 is com-
posed of: a set of control flow places Pcf ⊂ Pn; transitions that
represent choreography tasks Tt ⊂ Tn; and, silent transitions that
are used for implementing the behavior of certain choreography
gateways.

3 the subscript “n” is used to separate the Petri nets places from the participants

7.2 hyperlink completeness 85

2. Introduce information places. The information place stands for the
participant’s awareness of a certain URI. Given a Petri net PN, an
information place pi ∈ Pn,pi = (p,u) represents the pair of a
participant p ∈ P and a URI u ∈ U. If at least a single token is
present in the information place pi = (p,u), then the participant
p is aware of the URI’s u existence. The information places are
added to the Petri net Pn according to the following transforma-
tions:

• REST request message. For every REST request in the RESTful
choreography model, add the information place pi = (p,u),
as an input and output place of the respective transition
tn ∈ Tn, where p is the requesting participant and u is the
request URI like shown in Figure 32. The token in this in-
formation place is required for the transition to fire but it is
not ultimately consumed because the requesting participant
does not loose awareness of the request URI after the task t
is executed. When the request has m hyperlinks embedded
in its body (usually via a PUT or POST request), add m ∈N

number of information places pi = (p ′,uk) ,k = 1..m, as
output places of the respective transition tn ∈ Tn, where p ′

is the recipient of the REST request. When task t is executed,
the participant p ′ is made aware of all hyperlinks embedded
in the rest request message. This case is not depicted in Fig-
ure 32 to avoid clutter. However, it is very similar to the
email message explained above and depicted in Figure 33.

• REST response message. For every REST response in the REST-
ful choreography model, add n ∈ N number of information
places pi =

(
p,uj

)
, j = 1..n, as output places of the respec-

tive transition tn ∈ Tn, where n is the number of distinct
hyperlinks embedded in the response message and p is the
recipient of the response message (see Figure 32). When task
t is executed, the participant p is made aware of all hyper-
links embedded in the response message.

• Email message. For every email message in the RESTful chore-
ography model, add m ∈ N number of information places
pi = (p,uk) ,k = 1..m, as output places of the respective
transition tn ∈ Tn, where m is the number of distinct hyper-
links embedded in the email message and p is the recipient
of the email (see Figure 33). When task t is executed, the
participant p is made aware of all hyperlinks embedded in
the email message.

The resulting Petri net captures the choreography’s control flow and
hyperlink behavior. Therefore, assuming that the source RESTful chore-
ography is enforceable and there is no control-flow deadlock, we have:
The RESTful choreography is hyperlink complete iff the resulting Petri

86 restful choreography completeness properties

Figure 32: Mapping of a REST task (REST request plus REST response) to Petri
net

net is deadlock free. That is due to deadlocks being introduced by either
the control flow or the missing hyperlinks that block the choreography
tasks from being executed.

Figure 33: Mapping of a email task (email request) to Petri net

loops The resulting Petri net may be unbounded in the presence
of loops. When an URI is passed to a participant a token is added in
the respective information place. If the choreography task is part of
a loop than infinitely many tokens may be added to the information
place. The number of tokens will never be reduced because any time
the participants uses the token it writes it back (see Figure 32). This
does not constitute a problem for our approach but it makes the check
of deadlocks not straight forward, e.g., checking for soundness [91] via
recheability graphs on the resulting unbounded Petri net is not possi-
ble. However, the unboundedness problem can be solved by applying
the minimal coverability graph approach by Finkel [24] to the resulting
Petri net. The transformation to Petri net is applied to our online exam
use case below Section 7.4.

7.3 correct resource behavior 87

7.3 correct resource behavior

The second property is about checking the behavior of REST resources,
i.e., checking whether or not the resources involved in the choreogra-
phy behave as expected. Defining this property assures the users of
the RESTful choreography that each REST resource does not undergo
undesired behavior. This is particularly useful in the case of RESTful
choreographies due to many participants accessing common resources,
e.g., the resource exam is accessed by the teaching team and the students
multiple times in the choreography.

Definition 7.5 (Behavioral Correctness).
A RESTful choreography manifests a correct resource behavior if all

involved REST resources behave correctly. A resource is said to behave
correctly if it:

• is created with a POST /resources or PUT /resources/id
• changes its state with a PUT /resources/id/newState
• is accessed with a GET /resources/id/State yielding no state

change
• is deleted with a DELETE /resource/id
• can only be accessed or modified after it is created and before it

is deleted.

J

Notice that these conditions apply only when the change of the re-
source state is triggered by a REST request. The resource state can
also change internally by the server. In this case, we cannot enforce
rules as it is out of the interaction scope and it depends on the server’s
application logic.

To check the behavior of the resource, the resource states are derived
in the form of a UML state machine [63] from the RESTful choreog-
raphy. The derivation is performed for every REST resource found in
the choreography. The correctness of the resource behavior can than
be easily checked on the state transition model. If all transitions of the
derived state machine comply with the transitions from Figure 34 then
the resource behaves correctly. Figure 34 is the graphical representation
of resource correctness rules presented above.

The derivation procedure of the resource behavior starts with isolat-
ing a resource in the choreography diagram, e.g., the resource exam in
our running example. Then, the REST tasks that are irrelevant to the
chosen resource as well as email tasks are replaced with a sequence
flow. Same is done with all the intermediate events. The gateways are
kept untouched because they are needed to determine alternative paths
during state transitions of the resource. At last, we have a RESTful
choreography which contains only REST tasks addressing only a single
resource. Subsequently, we transform the RESTful choreography into

88 restful choreography completeness properties

Resource Behavioral Correctness

i Created
POST /resource

PUT /resource/id

oldState newState

PUT /resource/id/newState

State Get /resources/id/State

State d

Delete /resource/id

i d

Figure 34: Correct resource behavior

a state transition diagram. The state labeling is based on the state of
the REST resource, e.g., the exam is in the state published, accessed
or submitted. State changes inducted by the REST request are labeled
in the state transition diagram with the corresponding REST request
message like shown in Figure 34.

7.4 application to use case

In this section we check the defined formal properties on the RESTful
choreography depicted in Figure 31 and argue about its RESTful com-
pleteness.

checking hyperlink completeness . The hyperlink complete-
ness property of this choreography is checked by generating the re-
spective Petri net following the derivation rules introduced above. The
resulting Petri net is depicted in Figure 35. The participant names are
abbreviated to tt and s for the teaching team and students respectively.
Following the execution path where the students participate in the
exam we can observe that there are no deadlocks—neither concerning
the control flow, nor the passing of the hyperlinks. However, when
we observe the alternative execution path that models the case where
a student does not participate in the exam, we observe a deadlock in
task t11. The deadlock is not caused by the control flow because the
control flow place cf9 is reachable through any execution path starting
from place cf1. The deadlock is caused by the lack of token in place
tt:/course/id/exam/notPassed. This means that the teaching team is not

7.4 application to use case 89

MOOC exam PN 2

cf1
t1

cf2
t2

cf3

t3

cf4
t10 t4

cf5

t5

cf6

t6

cf7
t7

cf8
t8

cf9

t11

t9

tt: course/id/exam tt:course/id/exam/published

s: /course/id/exam/published

s: /course/id/exam/accessed

s: /course/id/exam/submitted

tt: /course/id/exam/submitted

tt: /course/id/exam/corected

tt: /course/id/exam/passed

tt: /course/id/records

tt: /course/id/exam/notPassed

tt: /course/id/participation

Figure 35: The generated Petri net from the RESTful choreography of online
exam

90 restful choreography completeness properties

aware of the hyperlink /course/id/exam/notPassed when the left branch
of the choreography is taken. Therefore, the RESTful choreography of
the online exam is not hyperlink complete. In order to fix the problem,
the hyperlink responsible for changing the exam state to not passed has
to be provided to the teaching team also in the case the students do not
participate in the exam.

checking resource behavior correctness . For checking the
resource behavioral correctness of the use case, we identify one REST
resource, i.e., the exam. Figure 36 depicts the lifecycle of the exam re-
source derived in the manner described in the previous section. Follow-
ing the definition of resource behavioral correctness we can conclude
from Figure 36 that the exam resource has a correct behavior because it
is: created via a POST; accessed via GET and no new states are intro-
duced; edited via PUT leading to a new states; and finally, all requests
are performed after the resource is created and before it is deleted (in
this example there is no DELETE request). Since the MOOC choreog-
raphy has only one main REST resource that has a correct behavior,
we conclude that the choreography manifests a correct resource behav-
ior. Additionally, deriving the state transition of the resources helps
the developers of RESTful APIs to understand the allowed interactions,
e.g., it is not allowed to have a PUT /course/id/exam/accessed after PUT
/course/id/exam/notPassed. GET requests can be easily checked if they are
safe (i.e., do not introduce side effects) by making sure that every GET
state transition is looped around a single state.

As conclusion, the RESTful choreography of the online exam mani-
fests a correct resource behavior but it is not hyperlink complete, thus,
making it not RESTful complete.

7.5 summary

In this chapter we propose formal properties of RESTful choreogra-
phies, namely: hyperlink completeness and behavioral correctness. The
former assures that all the hyperlinks used by the clients for sending
REST requests are provided to them prior to the request occurrences.
The latter makes sure that all REST resources behave as expected and
according to REST principles during their lifecycle. When both these
properties are satisfied we consider the RESTful choreography to be
complete with respect to REST constraints.

For checking hyperlink completeness, we translate RESTful choreog-
raphy models into hyperlink-aware Petri nets where we perform be-
havioral analysis for detecting deadlocks. While the resource behav-
ioral correctness is checked by making use of a different view—a state
transition diagram that is derived from the RESTful choreography for
each REST resource involved in the interaction. This view provides
to Web engineers a clearer perspective on each resource behavior by

7.5 summary 91

E
x
a
m

 R
e
s
o
u
rc

e
 B

e
h
a
v
io

r

i
p
u
b
li
s
h
e
d

a
c
c
e
s
s
e
d

s
u
b
m

it
te

d

c
o
rr

e
c
te

d

P
O

S
T
 /

c
o
u
rs

e
/

id
/e

x
a
m

 H
T
T
P
/1

.1
P
U

T
 c

o
u
rs

e
/i

d
/e

x
a
m

/a
c
c
e
s
s
e
d
 H

T
T
P
/1

.1

P
U

T
 c

o
u
rs

e
/i

d
/e

x
a
m

/s
u
b
m

it
te

d
 H

T
T
P
/1

.1

P
U

T
 /

c
o
u
rs

e
/i

d
/e

x
a
m

/c
o
rr

e
c
te

d
 H

T
T
P
/1

.1

G
E
T
 /

c
o
u
rs

e
/i

d
/e

x
a
m

/c
o
rr

e
c
te

d
 H

T
T
P
/1

.1

G
E
T
 /

c
o
u
rs

e
/i

d
/e

x
a
m

/s
u
b
m

it
te

d
 H

T
T
P
/1

.1

n
o
tP

a
s
s
e
d

P
U

T
 /

c
o
u
rs

e
/i

d
/e

x
a
m

/n
o
tP

a
s
s
e
d

H
T
T
P
/1

.1

p
a
s
s
e
d

P
U

T
 /

c
o
u
rs

e
/i

d
/e

x
a
m

/p
a
s
s
e
d
 H

T
T
P
/1

.1

Figure 36: Exam lifecycle derived from the RESTful choreography in Figure 31

emphasizing the state transitions induced by REST requests. This is
particularly useful because it provides an overview over the allowed
resource changes at any point during the RESTful interactions.

Part III

F R O M R E S T F U L C H O R E O G R A P H I E S T O WA R D S
R E S T F U L I N T E R A C T I O N S

8
R E S T- E N A B L E D D E C I S I O N M A K I N G I N B U S I N E S S
P R O C E S S C H O R E O G R A P H I E S

Overview (Decision Chapter)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

RESTful
Choreography

Language

RESTful
Choreography

Model

RESTful
Interactions

R4: Enactment

Derivation

Derivation

M0

M1

M2

Decision
Model

Decision
Model

Language

Integration

Integration

Support

Figure 37: REST-enabled decisions in business process choreographies

Implementing choreographies in general, and RESTful choreographies
in particular, remains a challenge due to the lack of a central locus of
control. The successful implementation of the choreographies, like with
any type of contract, depends solely on the fact that the involved partic-
ipants act as prescribed in the choreography (contract). In other words,
each participant has to autonomously execute their business processes
in a way that they jointly realize the choreography. Not only do the
participants have to execute their processes properly, but they also have
to have a similar understanding of the choreography in general and
the data that is being exchanged in particular—especially the data that
affect the choreography’s control flow. The control flow branching in
choreographies comes as a result of some decision making, which is
reflected in the choreographies’ exclusive gateways. The peculiar imple-
mentation of such gateways is the main subject of investigation in this
chapter, the contribution of which is considered as a partial fulfillment
of requirement R4: Facilitating the enactment of RESTful choreographies.

Since there is no central mechanism of control, participants may in-
terpret the data relevant for decision making and the decision making
itself differently. To tackle this problem, this chapter offers a solution

95

96 rest-enabled decision making in business process choreographies

that delegates the decision making to a decision service. The service is
provided to the choreography participants via a REST interface and
it is based on the recently published Decision Model and Notation
(DMN) standard [67], hence, making the decision unambiguous. We
introduce the concept of RESTful decision service and how this service
is used in conjunction with RESTful choreographies. The RESTful deci-
sion service assures a correct implementation of choreographies’ exclu-
sive gateways and provides a blueprint for RESTful services that offer
decision-making solutions based on the DMN standard. This chapter’s
contribution is, for the most part, based on our work in [56].

8.1 problem statement

BPMN 2.0 business process choreography models borrow the gateway
constructs from the process models. Gateways are used for modeling
alternative or parallel paths in the control flow. In process models, the
central orchestrator (e.g., a business process engine) is responsible for
evaluating the gateways and determining the execution path accord-
ingly. However, choreographies lack a central mechanism of control,
thus, allowing the use of gateways only under a set of constraints. Be-
low, we focus on the particular problem of implementing choreogra-
phies’ exclusive gateways.

8.1.1 Choreographies’ exclusive gateway constraints

Figure 38 depicts an example of a choreography diagram that describes
the interaction of a manufacturer with its customer and suppliers. A
customer sends an order request to the manufacturer. If the manufac-
turer has the necessary parts for manufacturing the product, it delivers
the product to the customer. Otherwise, the manufacturer makes a re-
quest for tender to different suppliers for the product part it needs. The
suppliers follow up by sending their offers. After receiving all offers,
the manufacturer announces the score which represents the level of
satisfaction for each supplier’s offer. If there is at least one single score
which passes a threshold then the supplier with the best score receives
the payment from the manufacturer and sends the product part. Oth-
erwise, the tender is not successful and the suppliers are asked to send
again their offers. The tender can be closed at anytime during this loop
but it is not shown explicitly in the choreography model for simplifica-
tion purposes. If there is a winning offer, the manufacturer receives the
product part that are necessary to manufacture the final product. The
final product is, then, delivered to the customer, who in turn sends the
payment. In this scenario, our point of interest is the exclusive gateway
that decides the winner of the tender or the lack thereof.

In choreography diagrams, exclusive split gateways model alterna-
tive paths. Exclusive join gateways are simply used to join the control
flow without any synchronization requirements. Therefore, they are

8.1 problem statement 97

Pa
rt

 p
ro

cu
re

m
en

t c
ho

re
og

ra
ph

y
C

(C
op

y)

O
rd

er
 p

ro
du

ct

Cu
st

om
er

M
an

uf
ac

tu
re

r

D
el

iv
er

 p
ro

du
ct

pa
rt

M
an

uf
ac

tu
re

r

Su
pp

lie
r

N
ew

 re
qu

es
t f

or
te

nd
er

M
an

uf
ac

tu
re

r

Su
pp

lie
r

D
el

iv
er

 p
ro

du
ct

M
an

uf
ac

tu
re

r

Cu
st

om
er

Pr
od

uc
t

de
liv

er
ed

Re
qu

es
t f

or
te

nd
er

M
an

uf
ac

tu
re

r

Su
pp

lie
r

An
no

un
ce

 th
e

sc
or

es

M
an

uf
ac

tu
re

r

Su
pp

lie
r

Pr
od

uc
t O

rd
er

Te
nd

er
 d

et
ai

ls
O

ff
er

Sc
or

es

Pa
ym

en
t

Pr
od

uc
t p

ar
t

N
ew

 te
nd

er
 d

et
ai

ls

Pr
od

uc
t

M
ak

e
of

fe
r

Su
pp

lie
r

M
an

uf
ac

tu
re

r

N
ot

 e
no

ug
h

pa
rt

s

Pa
ym

en
t

W
in

ni
ng

O
ff

er
 !=

 n
ul

l

Figure 38: A business process choreography model for organizing a tender

not the focus of our chapter. Here, by the term exclusive gateway we
refer to only the exclusive split gateway. Choreographies’ exclusive
gateways are constrained in their usage compared to their respective
counterparts in business processes. In order to implement a choreogra-
phy the following three constraints should hold [65].

• The data used as basis for the gateway conditions must have been
sent via a message at some point in the choreography before the
gateway. The message(s) containing the data is sent or received
by all participants that are affected by the gateway.

• Any change of the data must be visible to all the involved partici-
pants.

• Every participant must interpret the data in the same way.

98 rest-enabled decision making in business process choreographies

However, there is a problem in implementing such constraints when
it comes to the interaction of participants whose role can be filled by
many possible business actors. The problem consists in that diverse
business actors can have different understandings of the data used for
the decision making, leading the choreography to be out of sync. This
is due to the fact that the business actors might be very diverse in terms
of, e.g., domain, culture, and country. In the part procurement scenario
from Figure 38, let us consider the constraints related to the exclusive
gateway that leads to either repeating the tender or declaring the win-
ner. Two out of three constraints are considered to be satisfied. The
data used for the gateway conditions is sent from manufacturer to the
supplier (the participants that are affected by the gateway) via the Score
message. Moreover, the decision is executed immediately after the data
is shared. Therefore, it can be assumed that the data has not changed
between the moment it is shared and the moment the decision is made.
However, since the role of the supplier can be taken by a diverse number
of companies from different parts of the world we cannot ensure that all
the participants have the same understanding of the shared data and
the way the decision is made. Therefore, we need a precise way for
conveying the decision.

8.1.2 Decision Model and Notation

In order to make the decision less ambiguous for all participants we use
the DMN standard [67]. DMN provides two levels for capturing the de-
cision into models: the decision requirement level and the decision logic
level. The former provides an overview over the decisions’ relation to
their inputs and each other. The latter describes the exact decision logic
for each decision. For expressing the decision logic in a formal way,
DMN provides, among other ways, the Friendly Enough Expression
Language (FEEL). Figure 39 shows an example decision model: deci-
sions are rectangles; input data are ellipsis; information requirement edges
are solid; and knowledge sources are rectangles with a wavy bottom. The
decision element is associated with a FEEL expression displayed as an
annotation next to it.

Scoring Decision

Scoring
decision

Offers

Likert scale
bestOffer = min(Offers.score)
if (bestOffer.score) < 4
bestOffer.company
else null

Figure 39: Decision model used by the manufacturer to decide on a supplier
(the right-most gateway in Figure 38)

8.2 restful decision service for choreographies 99

The example from Figure 38 is based on the tender procedure chore-
ography. More particularly, this is the decision model employed by the
manufacturer to decide which supplier to choose from all the suppliers
that made an offer. The decision element is labeled Scoring decision
and takes as input data a list of Offers. The Offers have two attributes:
company and score, where company represents the name of the company
that made the offer and score represents the assigned score by manu-
facturer to the offer at hand. There are two possible outcomes: either
there is no winning offer such that a new tender is requested, or one
of the offers was chosen and the product parts are purchased from the
respective supplier. The fact whether or not there is a winning offer
depends on the scores, which can range from 1 to 5, according to the
well known Likert scale. This scale says that the lower the score, the
better. Therefore, the FEEL expression associated with the decision ele-
ment first determines the offer with the minimum score. Then it checks
if the score is less than four. If that is the case, the respective company’s
name is returned. Otherwise, the decision yields a null value.

As we can infer from above, the standard decision model leaves no
room for misinterpretation. Nevertheless, an additional problem arises:
the DMN model needs to be fully integrated into the choreography
model without introducing undesired side effects like, for example, ren-
dering the choreography unenforceable.

8.2 restful decision service for choreographies

At this point, where we showed that the choreography’s decision logic
can be captured to a DMN decision model, we need to integrate it with
the choreography diagram. We propose a solution for encapsulating
the decision model into a decision service that can be called by the
involved participants of the choreography diagram to aid the imple-
mentation of the exclusive gateway. We choose the REST architectural
style [23] due to its prominent presence when it comes to the design
of Web application interfaces. Our proposed solution is the design of
a RESTful decision services that is used in tandem with a choreogra-
phy model. This is where the RESTful choreographies come into play.
The RESTful service is integrated into a partial RESTful choreography
model to achieve a correct implementation of the choreography’s de-
cisions (exclusive gateway). It is called partial RESTful choreography
because we introduce REST elements only for the choreography part
that is concerned with the RESTful communication of the participants
with the decision service.

In the next subsection the interface of a DMN-based RESTful service
is specified. The integration of the service into a RESTful choreography
is described in the subsequent subsection.

100 rest-enabled decision making in business process choreographies

8.2.1 REST interface of decision services

To solve the problem of the data misinterpretation we propose a REST-
ful decision service that is built on the DMN standard. The RESTful
decision service provides a REST interface for creating, managing, and
executing shared decisions. The decision owner is responsible for creat-
ing the decision logic and providing it to the decision service. Thus, we
have a single decision for all the participants to execute. The decision
service is responsible for computing the decision each time it is called
from the participants who are affected by the exclusive gateway. The
output of the decision should comply to the conditions of the sequence
flows originating from the exclusive gateway, hence, making it trivial
for the other participants to relate the decision output with the correct
path in the choreography.

For creating the RESTful API of the decision service, we map a REST
interface to the main concepts of DMN. As explained in the previous
section, these main concepts are the decision logic, inputs, outputs and
execution. The REST interface is designed according to RESTful design
rules [46] and design patterns [73]. A RESTful decision service provides
the REST interface described in Table 5.

The creation of a new decision logic is the only action that is not
included in the choreography diagram because it is about deploying
the decision model on the server. The decision owner is the participant
of the choreography that is responsible for creating the decision logic
like the manufacturer in Figure 38. Nonetheless, the decision model,
similarly to the choreography model, can be designed in collaboration
with other participants. The RESTful choreography diagram models the
interaction that the participants have with a particular decision logic,
e.g., Scoring decision from Figure 39. Hence, deploying the decision
logic model via PUT /decisionName on the RESTful decision service is a
prerequisite for executing the choreography.

Anytime a new instance of the choreography gateway has to be ex-
ecuted, a new decision instance that corresponds to that gateway in-
stance should be created by the decision owner, e.g., a new scoring
decision id should be created for any tender that is requested and even-
tually decided at the gateway. It is important to distinguish between
different decision instances because the participants should have access
only to the decision instance that affects their behavior. The mapping is
not always one gateway instance to one decision model instance. In case
of a loop a new decision can be instantiated many times. For example,
when winningOffer = null a new tender is created and, therefore, a new
decision instance has to be created. In this case the participants should
distinguish the new tender from the old one from the change in the
decision URI.

The decision owner inserts the decision inputs after the decision in-
stance is created. Providing the decision inputs completes all the re-
quirements for the execution of the decision. This makes the decision

8.2 restful decision service for choreographies 101

Table 5: The interface of a RESTful decision service

Decision Action REST Request and Response

Create a new de-
cision (logic)

⇒ PUT /decisionName

⇐ HTTP/1.1 201 Created
{Location: /decisionName}

Create a decision
instance

⇒ POST /decisionName/

⇐ HTTP/1.1 201 Created
{Location: /decisionName/id
link: /decisionName/id/inputs
link: /decisionName/id/execute}

Insert the deci-
sion inputs

⇒ PUT /decisionName/id/
inputs/inputName

⇐ HTTP/1.1 200 OK
{link: /decisionName/id/
inputs/inputName}

Read the decision
inputs

⇒ GET /decisionName/id/
inputs/inputName

⇐ HTTP/1.1 200 OK
{link: /decisionName/id/
inputs/inputName}

Execute the deci-
sion

⇒ PUT /decisionName/id/execute

⇐ HTTP/1.1 200 OK
{link: /decisionName/id/output}

service available for execution by any participant that knows the deci-
sion URI. The participants can optionally read the inputs before execut-
ing the decision. However not every participant is allowed to change
the input. This would lead to unintended paths in the choreography.
The participants responsible for editing the input can be identified in
the choreography diagram because the input data originates from them.
For example, the choreography diagram in Figure 38 shows that the
manufacturer announces the scores and, hence, is responsible for creat-
ing or editing of the input data used in the decision. When a request is
sent for the execution of the decision, the response provides the output

102 rest-enabled decision making in business process choreographies

of the decision. The output of the decision should be consistent with
the conditional sequence flows that follow the exclusive gateway.

8.2.2 Integrating RESTful decision services into choreographies

Having a REST interface for the decision service is not sufficient. The
objective is to go from a business process choreography to a partial
RESTful choreography that solves the exclusive gateway problem by
incorporating the RESTful decision service. A RESTful choreography
fragment that secures the communication with the RESTful decision
service is inserted into the existing choreography. In this section, we
provide a stepwise method for embedding decision services into chore-
ographies.

Since a part of the choreography is transformed into a RESTful chore-
ography fragment, it must be guaranteed that the introduction of the
new elements does not impact the correct execution of the choreogra-
phy, assuming already that the initial business process choreography
is enforceable. To this end, we consider two main properties: the task
sequencing property stating that the initiator of each choreography task
is either initiator or recipient in the direct preceding tasks. The very
first choreography task is an exception since it does not have any pre-
ceding task (see Definition 7.1); Hyperlink completeness stating that all
REST request URIs used in the RESTful choreography are provided to
the initiator at some point upstream in the choreography. An exception
is made for the first occurring REST request (see Definition 7.3).

The decision service can be an external participant, i.e., an additional
business actor who provides decision services or hosted by one of the
participants. In terms of the REST interface, that is irrelevant because
only the Web domain would be different and the rest of the URI would
not change. For the remainder of this paper, we assume the more com-
plex and interesting case where the decision server is an external par-
ticipant in the RESTful choreography.

The stepwise method for embedding the RESTful decision service in
business process choreography is given below. As mentioned above,
the only requirement to start this method is the creation of the decision
logic by the decision owner. The method consists of the following 5

steps:

1. Locate the choreography task where the decision-relevant data
is passed for the first time. Add before the located task a new
RESTful task that creates a new decision instance. The response
should contain the location of the instance, the URI of the decision
input, and the URI of the decision execution. The initiator should
be the decision owner.

2. Next to the newly added task, add a new RESTful task that inserts
the decision inputs using the link passed from the previous task.
Again, the initiator should be the decision owner.

8.2 restful decision service for choreographies 103

3. Change to email task every task that models the passing of the
decision-relevant data. Replace the content of the email message
with information that describes the location of the decision to-
gether with the inputs and execution links.

4. Locate the exclusive gateway. Add before the gateway as many
RESTful tasks as participants (affected by the gateway) in parallel.
Each participant individually sends a request for executing the
decision to the decision service and receives the output of the
decision service as a response.

5. Between the exclusive gateway and each immediate following task
insert an email task, where the initiator is the decision service and
the recipient is the same as the initiator of the direct following
task. The role of this task is to inform each following participant
(the ones that directly follow the gateway) about the fact that all
the other involved participants have executed the decision and
that she or he should proceed accordingly.

Let us analyze whether the task sequencing properties is preserved
with every step taken:

• Step 1 The insertion of the new RESTful task does not break the
property because the initiator remains the same.

• Step 2 The subsequent RESTful task added has again the same
initiator. This means that the property is preserved because the
initiator is present in the direct preceding task.

• Step 3 In this step, there is no change in the participants of each
choreography task. Only the message content has been changed.

• Steps 4 and 5 The BPMN specification requires that the initiators of
the choreography task following the gateway have to part of the
choreography task that directly precedes the gateway. Adding
parallel REST request that execute the decision service in step 4

does not introduce any breach of the property because the ini-
tiators are those affected by the gateway. The recipient on each
REST task is the decision service. The decision service is also the
initiator of the email task added directly after the gateway in step
5. Hence, the requirement of the choreography exclusive gateway
is satisfied.

As a conclusion, the transition from a choreography diagram to a
partial RESTful choreography diagram (hosting a decision service) does
not break the task sequencing property of the diagram.

Regarding the hyperlink completeness property, we show that it is
preserved. The link used for the first time in step 1 is the first occurring
link. The concrete decision instance link, inputs link and execution link

104 rest-enabled decision making in business process choreographies

Part procurem
ent choreography D

 solution (cam
era-ready)

(Copy)

O
rder product

Custom
er

M
anufacturer

N
ew

 request for
tender

M
anufacturer

Supplier

D
eliver product

M
anufacturer

Custom
er

Product
delivered

Request for
Tender

M
anufacturer

Supplier

Announce the
scores

M
anufacturer

Supplier

Product O
rder

Tender details
O

ffer

N
ew

 tender details

Product

M
ake offer

Supplier

M
anufacturer

Purchase product
part

Supplier

M
anufacturer

Paym
ent

Product part

Create new
scoring decision

M
anufacturer

D
ecision Service

H
TTP/1.1 200 O

K
{link1: /scoringD

ecisions/id/execute
link2: /scoringD

ecisions/id/output}

D
ecide on w

inner

D
ecision Service

M
anufacturer

D
ecide on w

inner

D
ecision Service

Supplier

Provide offers

M
anufacturer

D
ecision Service

All relevant
participants

notified

D
ecision Service

M
anufacturer

Em
ail

All relevant
participants

notified

D
ecision Service

Supplier

Em
ail

N
ot enough parts

PO
ST /scoringD

ecisions H
TTP/1.1

H
TTP/1.1 201 Created

{Location : /scoringD
ecisions/id

link1: /scoringD
ecisions/id/inputs

link2: /scoringD
ecisions/id/execute}

PU
T /scoringD

ecisions/inputs/offers H
TTP/1.1

H
TTP/1.1 200 O

K
{link: /scoringD

ecisions/id/inputs/offers}

Em
ail

{D
ecision Location Link : /scoringD

ecisions/id
link1: /scoringD

ecisions/id/inputs
link2: /scoringD

ecisions/id/execute}

PU
T /scoringD

ecisions/id/execute H
TTP/1.1

PU
T /scoringD

ecisions/id/execute H
TTP/1.1

H
TTP/1.1 200 O

K
{link1: /scoringD

ecisions/id/execute
link2: /scoringD

ecisions/id/output}

Paym
ent

Step 1
Step 2

Step 3

Step 4

Step 5

W
inningO

ffer != null

Figure
4

0:A
partialR

ESTfulchoreography
m

odelfor
organizing

a
tender

w
ith

the
assist

of
a

R
ESTfuldecision

service

8.3 conclusions 105

are provided to the decision owner via the response of the REST call
from step 1. Then, the decision owner enters a new input using the
inputs link in step 2. In step 3, all links introduced before are provided
to the participants. Eventually, the participants use these links to exe-
cute the decision in step 4. Step 5 introduces only an email notification
message and contains no link. Concluding, all the links (except the
very first) are provided to the participants before being accessed by
them—making the inserted RESTful choreography fragment hyperlink
complete.

Figure 40 shows the output of our overall approach. It implements
unambiguously the parts procurement decision (modeled in Figure 39)
so that all suppliers take the correct path following the exclusive split
gateway. The derivation steps are annotated in red.

8.3 conclusions

This chapter tackles a problem related to the implementation of chore-
ographies’ exclusive gateways. We discuss the limitations of the BPMN
specification regarding the implementation of choreography’s exclusive
gateways and state the problem induced by these limitations. Once the
problem has been clearly stated, we suggest a solution by introducing
the RESTful decision service—a service that is based on the Decision
Model and Notation standard.

The RESTful decision service provides a REST interface to allow the
proper interaction of the participants with the decision service. Addi-
tionally, we provide a stepwise method for embedding such a service
in any choreography diagram. The result is a partial RESTful chore-
ography that describes the complete interaction. The RESTful decision
service makes the decision-relevant data visible and consistent assuring
that the decision is always executed on the same input data. Using the
DMN standard’s FEEL expressions eliminates the misinterpretation of
the decision logic and, hence, output. Moreover, using DMN we achieve
an increasing degree of separation of concerns between decision and
process logic, therefore, improving the choreography’s comprehensibil-
ity and maintainability [5].

Finally, we illustrated our approach with an example which repre-
sents the interaction of a single business actor with an undefined num-
ber of business partners. Future work will look at more complicated in-
teraction patterns with more complex decisions, where we believe that
the RESTful decision service will play even a larger role for facilitating
the implementation of decisions in choreographies. The idea presented
in this chapter—having a global decision model complementary to a
choreography model—has been further investigated in the context of
blockchains by Haarmann et al. in [27]. Instead of a RESTful service,

106 rest-enabled decision making in business process choreographies

the authors propose a service based on the Ethereum Blockchain1 to
deal with participants that do not necessarily trust one another.

1 https://ethereum.org

https://ethereum.org

9
R E S T F U L C H O R E O G R A P H Y G U I D E

Overview (ChoreoGuide Chapter)

Business Process
Choreography

Language

Business Process
Choreography

Model

Process
Interactions

RESTful
Choreography

Language

RESTful
Choreography

Model

RESTful
Interactions

R4: Enactment

Derivation

Derivation

M0

M1

M2

Resource
Model

Resource
Metamodel

Support

Figure 41: ChoreoGuide

In the previous chapter we proposed a solution for facilitating the
implementation of the choreography’s exclusive gateway. In this chap-
ter, we address the more general problem of implementing the whole
RESTful choreography. As with any choreography, we identify two cat-
egories of problems that might arise during the RESTful choreography
execution: invalid message, and a wrong order of interactions. Being
in a distributed setting, it is the responsibility of the task initiator to
send the correct message at the correct order, as it is up to task recipi-
ent to check the validity of the message and the order. In this chapter,
we leverage the validity checking on the global level by introducing
RESTful Choreography Guide (ChoreoGuide) - a central RESTful ser-
vice acting as an intermediary that guarantees the correct execution of
the choreography between the business actors. Like in with the previ-
ous contribution, also this chapter’s contribution is considered a partial
fulfillment of requirement R4: Facilitating the enactment of RESTful chore-
ographies.

ChoreoGuide is derived systematically from the RESTful choreogra-
phy and the Choreography Resource Model - a collectively agreed data
model with constraints on the exchange of REST resources. ChoreoGu-
ide per se is a business process model exposed via a REST interface and

107

108 restful choreography guide

can be deployed on a RESTful business process engine to be executable.
Hence, the choreography participants do not necessarily require a pro-
cess engine or a complex system in place to interact with it. We benefit
from the separation of concerns, i.e. all participants are clients (from
the REST perspective) to the same server (ChoreoGuide). This way the
Choreoguide can evolve independently from the clients underlying sys-
tems as long as the REST interface is kept unchanged. This is the case
when the service can be used by third parties as a starting point to cre-
ate new business models that bridge the interaction between business
actors and clients like Airbnb1 and Easychair2. This work is based on
our published paper in [59].

Before we describe in details what ChoreoGuide is, it is very impor-
tant to state what ChoreoGuide is not. ChoreoGuide is not a full orches-
tration of a choreography but rather an hybrid between a choreography
and orchestration. It is not an orchestration in a service context because,
by definition, an orchestrating service actively calls other different ser-
vices to reach its own goal and the services are, mostly, not aware of
that goal [79]. ChoreoGuide is a reactive service, in that it just checks
the request payload and answers whether it is correct and timely or not.
It is not concerned with the business logic and does not take an active
role in the interaction.

9.1 problem statement

This section formulates the problems addressed in the rest of the chap-
ter. To illustrate the problem, and consecutively the solution, an exam-
ple scenario is introduced. Figure 42 describes the interaction of three
participants involved in a purchase process. Each of the participants
provides its own RESTful API. The skateboard manufacturer sends an or-
der to the ball bearings supplier. The supplier can confirm the order or
reject it. In case of the former, the supplier sends the ball bearings to the
skateboard manufacturer as requested in the order. Once the ball bearings
are delivered, the skateboard manufacturer determines the percentage of
defective units over the total purchased amount. If the percentage is
lower than 5% the manufacturer initiates a payment request to the pay-
ment organization (the third participant). If the payment is accepted,
the payment organization confirms the payment to the skateboard manufac-
turer and notifies the supplier, thus successfully concluding the purchase.
Otherwise, the skateboard manufacture can initiate again a payment or
cancel the order. As in the case when the order is canceled due to
the high percentage of defective units, the skateboard manufacturer sends
back the ball bearings, thus, leading to an unsuccessful purchase.

1 https://www.airbnb.com/

2 http://www.easychair.org/

https://www.airbnb.com/
http://www.easychair.org/

9.1 problem statement 109

Ba
llB

ea
ri

ng
 R

ES
Tf

ul
 c

ho
re

og
ra

ph
y

(th
re

e
se

rv
er

s)

Co
nf

irm
 o

rd
er

Su
pp

lie
r

Sk
at

eb
oa

rd
 M

.

Pl
ac

e
or

de
r

Sk
at

eb
oa

rd
 M

.

Su
pp

lie
r

PO
ST

 s
up

pl
ie

r/
or

de
r

H
TT

P/
1.

1
{li

nk
: s

ka
te

bo
ar

d/
or

de
r/

id
/c

on
fir

m
ed

,
lin

k2
: s

ka
te

bo
ar

d/
or

de
r/

id
/r

ej
ec

te
d}

Se
nd

 b
al

l b
ea

rin
gs

Su
pp

lie
r

Sk
at

eb
oa

rd
 M

.

Re
je

ct
 o

rd
er

Su
pp

lie
r

Sk
at

eb
oa

rd
 M

.
Pu

rc
ha

se
 o

rd
er

un
su

cc
es

sf
ul

Se
nd

 b
al

l b
ea

rin
g

an
al

ys
is

Sk
at

eb
oa

rd
 M

.

Su
pp

lie
r

Ca
nc

el
 o

rd
er

Sk
at

eb
oa

rd
 M

.

Su
pp

lie
r

PU
T

su
pp

lie
r/

ba
llB

ea
rin

g/
id

/a
na

ly
ze

d
H

TT
P/

1.
1

Pa
y

or
de

r

Sk
at

eb
oa

rd
 M

.

Pa
ym

en
t O

rg
.

PO
ST

 p
ay

or
g/

pa
ym

en
t H

TT
P/

1.
1

{li
nk

: s
up

pl
ie

r/
or

de
r/

id
/f

ul
fil

le
d}

PU
T

su
pp

lie
r/

or
de

r/
id

/c
an

ce
lle

d
H

TT
P/

1.
1

Re
tu

rn
 b

al
l

be
ar

in
gs

Sk
at

eb
oa

rd
 M

.

Su
pp

lie
r

PU
T

su
pp

lie
r/

ba
llB

ea
rin

g/
id

/r
et

ur
ne

d
H

TT
P/

1.
1

Co
nf

irm
 p

ay
m

en
t

Pa
ym

en
t O

rg
.

Sk
at

eb
oa

rd
 M

.

Pu
rc

ha
se

 o
rd

er
su

cc
es

sf
ul

H
TT

P/
1.

1
20

1
Cr

ea
te

d
Lo

ca
tio

n:
 p

ay
or

g/
pa

ym
en

t/
id

/c
on

fir
m

ed

Fu
lfi

ll
or

de
r

Pa
ym

en
t O

rg
.

Su
pp

lie
r

PU
T

su
pp

lie
r/

or
de

r/
id

/f
ul

fil
le

d
H

TT
P/

1.
1

Se
nd

 "p
ay

m
en

t
fa

ile
d"

 m
es

sa
ge

Pa
ym

en
t O

rg
.

Sk
at

eb
oa

rd
 M

.

H
TT

P/
1.

1
20

1
Cr

ea
te

d
Lo

ca
tio

n:
 p

ay
or

g/
pa

ym
en

t/
id

/f
ai

le
d

H
TT

P/
1.

1
20

1
Cr

ea
te

d
Lo

ca
tio

n:
 s

up
pl

ie
r/

or
de

r/
id

/p
la

ce
d

H
TT

P/
1.

1
20

0
O

K
{li

nk
: s

up
pl

ie
r/

ba
llB

ea
rin

g/
id

/a
na

ly
ze

d,
lin

k2
: p

ay
or

g/
pa

ym
en

t,
lin

k3
: s

up
pl

ie
r/

or
de

r/
id

/f
ul

fil
le

d,
lin

k4
: s

up
pl

ie
r/

or
de

r/
id

/c
an

ce
lle

d}

H
TT

P/
1.

1
20

0
O

K
{li

nk
: s

up
pl

ie
r/

or
de

r/
id

/c
an

ce
lle

d
lin

k2
: s

up
pl

ie
r/

ba
llB

ea
rin

g/
id

/r
et

ur
ne

d}
H

TT
P/

1.
1

20
0

O
K

{li
nk

: s
up

pl
ie

r/
ba

llB
ea

rin
g/

id
/r

et
ur

ne
d}

PU
T

sk
at

eb
oa

rd
/o

rd
er

/
id

/c
on

fir
m

ed
 H

TT
P/

1.
1

H
TT

P/
1.

1
20

0
O

K
{li

nk
: s

ka
te

bo
ar

d/
or

de
r/

id
/c

on
fir

m
ed

lin
k2

: s
ka

te
bo

ar
d/

ba
llB

ea
rin

g/
id

/s
en

t}

PU
T

sk
at

eb
oa

rd
/o

rd
er

/
id

/r
ej

ec
te

d
H

TT
P/

1.
1

H
TT

P/
1.

1
20

0
O

K
Li

nk
: s

ka
te

bo
ar

d/
or

de
r/

id
/r

ej
ec

te
d

PU
T

sk
at

eb
oa

rd
/b

al
lB

ea
rin

g/
id

/s
en

t H
TT

P/
1.

1
{li

nk
: s

up
pl

ie
r/

ba
llB

ea
rin

g/
id

/a
na

ly
ze

d}

H
TT

P/
1.

1
20

0
O

K
{li

nk
: s

ka
te

bo
ar

d/
ba

llB
ea

rin
g/

id
/s

en
t}

H
TT

P/
1.

1
20

0
O

K
Li

nk
: s

up
pl

ie
r/

or
de

r/
id

/f
ul

fil
le

d

BallBearing.
defectiveUnits≥5%

Ba
llB

ea
ri

ng
.

de
fe

ct
iv

eU
ni

ts
<5

%

Fi
gu

re
4

2
:R

ES
Tf

ul
ch

or
eo

gr
ap

hy
fo

r
th

e
pu

rc
ha

se
of

ba
ll

be
ar

in
gs

110 restful choreography guide

In general, two things can go wrong during the execution of a chore-
ography: invalid message and wrong message exchange order. In a
RESTful choreography that translates to:

1. invalid REST request

2. wrong request order

Considering the first problem, RESTful choreographies that are com-
plete (see Definition 7.2) ensure the correctness of the REST interfaces.
Therefore during the execution, if an invalid REST request is encoun-
tered, the problem is caused by the request payload and not the REST
interface. The following two concepts briefly describe the nature of the
payload intricacies encountered in RESTful interactions that are likely
to be the cause of invalid request payload.

rest resource synchronization When more than one partici-
pant provides a REST API, there are REST resources that reside and are
managed by different participants concurrently but refer to the same
concrete concept, for example order and ball bearings. This means that
every resource state change needs to be propagated to all participants
containing and concerned with that particular resource. For example,
the ball bearing is a REST resource offered by the supplier and the skate-
board manufacturer with the respective resource URIs: supplier/ballBear-
ing/id and skateboard/ballBearing/id. Both resources represent the same
real object—the ball bearings. For every REST request the client has
to address the resource lying on the server side and, if the request has
been accepted, the client’s local resource needs to be matched. For ex-
ample, the supplier sends the request PUT skateboard/ballBearing/id/sent
HTTP/1.1 and has to make sure that its local supplier/ballBearing/id re-
source is synchronized with the state sent as well. In addition, hyper-
link completeness and correct resource behavior become complicated
to check because there are many internal changes that are not reflected
in the RESTful choreography.

resource representation matching In REST, resources are
manipulated through their representations. For a client to interact with
the resource, the resource representation has to be retrieved, manipu-
lated, and, then, submitted to the server. In a setting where the chore-
ography’s participant roles can be instantiated by a plethora of diverse
business actors, the resource representations have to be interpreted and
used correctly, as well as be matched with the local resource ad hoc for
every pair of participants.

Despite service matching being a well-researched topic in the area of
SOA [26], we propose a REST-based lightweight solution that provides
a single view on the involved resources. This allows the prospective
business actors to adapt their own local resources to a single global
resource representation model. Hence, the possible payload problem

9.2 restful choreography guide 111

caused by the resource representation matching is mitigated, i.e., all partic-
ipants have a resource reference model to match against. Moreover, if
the states of the dynamic resource instances are managed by a global
entity, the possible payload problem caused by resource synchronization
is eliminated, i.e., the participant can retrieve the up-to-date resource
state at any point during the choreography execution.

The second main problem—wrong request order—can be caused by
the initiators that sends their request in an order that is not prescribed
by the choreography. This can be particularly hard to detect from the
perspective of a recipient that is not involved in the previous interaction.
Therefore, having a choreography global state (accessible by the partic-
ipants) resolves the problem of enforcing the RESTful choreography’s
control flow.

Moreover, due to client-server REST constraint, the participants have
to switch between the client (sending the request) and server role (send-
ing the response). We argue that the continued role switching harms the
separation of concerns, which ultimately impacts the understandability,
development, maintenance and evolution of each participant’s RESTful
service.

As it can be already inferred, our solution revolves around a third
party entity that aides the RESTful choreography execution. Specifi-
cally, we propose a novel approach towards implementing choreogra-
phies by introducing RESTful Choreography Guide (ChoreoGuide)- a
central RESTful service that guides the participants along the chore-
ography and assures the proper exchange of resources between them.
This service acts as an intermediary between participants making sure
that the participants adhere to the choreography they agreed upon and
are sending valid requests to each other. All the participants are REST
clients who interact with each other through a central RESTful service
and, hence, are not required to provide RESTful APIs.

9.2 restful choreography guide

In this section we describe ChoreoGuide as a blueprint for develop-
ing RESTful services that guide choreographies. Since the approach
revolves around checking the order of message exchanges, i.e., their
causal dependencies, we specify ChoreoGuide as a BPMN 2.0 process
model enriched with REST-specific information that can be deployed in
any RESTful business process engine. A technology-agnostic approach
is purposely chosen so that it can be adopted and applied to different
technologies. Nevertheless, we discuss an implementation architecture
for deploying ChoreoGuide onto a concrete platform (see Section 9.3).

Given that the two main problems during the RESTful choreography
execution are the invalid REST request and the wrong request order,
the ChoreoGuide has two functional requirements:

1. Validate the REST request payload

112 restful choreography guide

2. Check the control flow of the request message exchanges

In a RESTful choreography, the REST requests contains a REST verb,
the resource and its state, e.g., PUT order/id/confirmed. In order to check
the validity of the resource and its state we need more information
about the data being exchanged than provided by the choreography.
For that, the participants need to agree on a common choreography
resource model (see Section 9.2.1). This model is required by ChoreoGu-
ide to check the validity of the resource and its state. The choreography
resource model is specified using two standards: UML class diagram
and Object Constraint Language (OCL) [64].

Regarding the second requirement, the control flow and the message
exchanges in a RESTful choreography are modeled from a global per-
spective. We provide a mapping, detailed in Section 9.2.2, of the chore-
ography control flow to business process control flow where message
exchanges are implemented by process activities.

Figure 43: Approach overview

Figure 43 provides the overview of our approach for implementing
the RESTful choreography via ChoreoGuide. The approach takes as in-
put a RESTful choreography and its resource model. The target model
is a BPMN [65] process model with embedded REST information that
can be deployed to a business process engine capable of providing a
RESTful API.

9.2.1 Choreography Resource Model

In this section, we describe the choreography resource model. The re-
source model is represented in part as an UML class diagram (see Fig-
ure 44) that serves the purpose of specifying the main REST resources,
their state and their relation to each other and to the choreography
participants as well. It is highly influenced by the domain area and
specified by the involved participants alongside the RESTful choreogra-
phy diagram at design time.

Figure 44 illustrates the static view of the choreography resource
model for our running example modeled in Eclipse Modeling Frame-
work3. Every ResourceModel, independently of the use case, is always
composed of at least two Participants and at least one RestResource. De-
pending on the use case, participants and REST resources are added
as classes that inherit the abstract classes Participant and RestResource

3 https://eclipse.org/modeling/emf/

https://eclipse.org/modeling/emf/

9.2 restful choreography guide 113

Pa
rt
ic
ip
an
t

na
m

e
: E

St
rin

g
ad

dr
es

s
: E

St
rin

g

Sk
at

eb
oa

rd
M

Su
pp

lie
r

Pa
ym

en
tO

rg

O
rd

er

cr
ea

tio
nD

at
e

: E
D

at
e

st
at

e
: O

rd
er

St
at

e
=

 P
LA

CE
D

Ba
llB

ea
rin

g

qu
an

tit
y

: E
D

ou
bl

e
=

 0
.0

de
fe

ct
iv

eU
ni

ts
 :

ED
ou

bl
e

=
 0

.0
st

at
e

: B
al

lB
ea

rin
gS

ta
te

 =
 S

EN
T

Pa
ym

en
t

st
at

e
: P

ay
m

en
tS

ta
te

 =
 IN

IT
IA

TE
D

O
rd

er
St

at
e

PL
AC

ED
CO

N
FI

RM
ED

RE
JE

CT
ED

CA
N

CE
LL

ED
FU

LF
IL

LE
D

Ba
llB

ea
rin

gS
ta

te

SE
N

T
AN

AL
YZ

ED
RE

TU
RN

ED

Pa
ym

en
tS

ta
te

IN
IT

IA
TE

D
CO

N
FI

RM
ED

FA
IL

ED

Re
so

ur
ce

M
od

el

N
am

e
: E

St
rin

g

Re
st
Re
so
ur
ce

na
m

e
: E

St
rin

g
id

 :
ED

ou
bl

e
=

 0
.0

[0
..*

] p
ay

m
en

ts

[1
..1

] i
te

m

[1
..1

] p
ay

m
en

t[1
..1

] r
ec

ep
ie

nt

[1
..1

] s
en

de
r

[2
..*

] p
ar

tic
ip

an
ts

[1
..*

] r
es

tr
es

ou
rc

es

[1
..1

] s
hi

pT
o

[0
..*

] o
rd

er
s

[1
..1

] b
ill

To

[0
..*

] o
rd

er
s

Fi
gu

re
4

4
:C

ho
re

og
ra

ph
y

R
es

ou
rc

e
M

od
el

(s
ta

ti
c

m
od

el
)

114 restful choreography guide

respectively. The attributes and the associations are specified according
to the use case domain. For example, Order has a creationDate and
BallBearing as an item.

However, a static model of the resources is not sufficient. Resource
states are not always mere attributes that can be directly assigned by
participants. The state represent certain conditions of the resource
which is aggregated from the concrete value assignment to the resource
attributes. For example, resource order is in the state placed only if the
quantity of the ball bearings is greater than 0. We use OCL [64] to
formally express such conditions that must hold during the entire exe-
cution of the choreography. Below is the respective OCL expression for
the aforementioned condition.

1 context order

inv nonEmptyOrder: self.state = OrderState : : PLACED

implies self.item.quantity > 0 �
The OCL expression refers to the UML class diagram. In this ex-

pression we look at the class Order. Then we identify an invariant
(nonEmptyOrder) that must hold during the instantiation of the order
objects. The invariant in this case is an implication where the premise
is the resource in state PLACED and the consequence is an expression
that must hold for that state. In fact, this is the general pattern we
propose to check the validity of the state for any resource object:

1 context <<resource>>

inv <<resource state>>

implies <<condition>> �
In order to use the OCL expression, each RESTResource child class

must have an attribute state of the type Enumeration that contains all
the possible states of that particular resource, e.g., Payment can be in
state initiated, confirmed, or failed. The condition of resource state
can be arbitrary complex and long (to the extend allowed by OCL).
OCL provides the possibility to navigate the class diagrams and express
complex relations between resources. Using a standard like OCL allows
the developers to choose the desired tools that support the evaluation
of OCL expressions. Another key benefit is that OCL is free from side
effects. This means that checking whether an OCL expression holds
does not affect the running program. When it comes to choreographies,
this is very useful because ChoreoGuide should only reply whether the
state change request is valid or not without interfering with the internal
logic of the participants’ process.

9.2.2 From RESTful Choreography to Process Model

In this section we present how the process model is systematically de-
rived from the RESTful choreography and the resource model. We con-
sider the translation of the two type of RESTful choreography’s tasks
(REST tasks and email tasks) as well as three types of gateways: parallel
gateway, data-based exclusive gateway and event-based gateway as the

9.2 restful choreography guide 115BallBearing RESTful orchestration POST/PUT

Ch
or

eo
G

ui
de

ChoreoGuide

Receive
Resource

Check
Resource

State
Forward
Resource

Resource State
Created(Updated)

Resource State
Not Accepted

context <<resource>>
inv <<resource state>>
implies <<condition>>

Resource

[State]

Participant 1

Participant 2

Link: /resource/id/state HTTP/1.1

HTTP/1.1 403 Forbidden

Correct resource state

POST /resource HTTP/1.1
(PUT /resource/id/state HTTP/1.1)

HTTP/1.1 201 Created
(HTTP/1.1 200 OK)
Location: /resource/id/state HTTP/1.1

Figure 45: Business process construct for POST and PUT (in brackets) REST
tasks

most commonly used choreography elements. In the following, these
choreography elements are mapped to business process constructs. Af-
ter that, all the individual derived constructs are concatenated to form
the whole target business process.

In a RESTful choreography, there are four types of REST Tasks: GET;
DELETE; POST; and PUT. The latter two represent a resource creation
or a resource state change. These two kinds of tasks are translated to
the following business process constructs (see Figure 45): a receive task;
a service task; an exclusive gateway which branches the control flow in
two parts; a "fail" message intermediate throwing event; a "successful"
message intermediate throwing event; and a send task that forwards the
initiator’s request. Specifically, as illustrated in Figure 45, the receiving
task is accessed from the participants by the REST request specified in
the REST task, e.g., POST /order/ HTTP/1.1. In case of a POST or PUT a
resource or a representation of it is delivered as a message payload to
the server. With POST, a new resource is created in an initial state and
PUT is used to update a resource with a new state. After the resource
is received from the server, an automatic check is performed in the sub-
sequent step by a service task. This task automatically checks whether
or not the state-change request is valid by evaluating the respective
OCL expression in the resource model. In case the OCL expression is
evaluated to false, the server replies to the client (the participant who
sent the request) with a HTTP/1.1 403 Forbidden status code. This status
codes is reserved for cases where the server understands the request
but refuses to process it and it replies with a payload that explains the

116 restful choreography guide

problem4. Otherwise, the server replies with a HTTP/1.1 201 Created (for
POST) or HTTP/1.1 200 OK (for PUT). RESTful choreography diagrams
model only the successful interaction between the client and the server.
Hence, the response of a valid request used in the process model is
derived from the choreography. Finally, the link for getting the new
resource state is forwarded to the recipient.

GET is used to read the state of the resource and DELETE to remove
the resource from the location specified in the URI. In case of GET task,
the state of the resource does not change and, therefore, there are no
conditions to be checked. The corresponding process model (see Fig-
ure 46) has three consecutive nodes connected by sequence flows: a
receiving task for the request, a message intermediate throwing event
for replying to the initiator by sending the resource; and, a send mes-
sage task for notifying the recipient that the resource has been read.

When a DELETE request is sent, there are no state conditions to be
checked (similarly to GET task) in terms of attribute values. Hence,
the corresponding process orchestration is the same as in the GET case
(see Figure 46), but a "resource deleted" message notification is sent
back in lieu of a reply containing the resource. It is worth mentioning
that the delete request is not forwarded to the participant for permis-
sion prior to the server reply because the delete request is part of the
intended behavior specified by the RESTful choreography. If any par-
ticipant would arbitrary request to delete a resource, ChoreoGuide will
not accept the request unless it is part of the designed behavior.

Choreography’s parallel gateway with m outgoing sequence flows is
mapped to the following business process construct: a send task that
sends a message containing n links where n is the number of chore-
ography tasks that immediately follow the parallel gateway. The send
task is followed by a process parallel gateway (same syntax with the
choreography’s parallel gateway) with the m outgoing sequence flows.
n equals m when the choreography parallel gateway is immediately
followed by only REST tasks.

Similarly to the parallel gateway, the choreography’s event-based
gateway with m outgoing sequence flows is mapped to a send task
followed by a process event-based gateway with m outgoing sequence
flows. The send task sends a message containing n links, where n is the
number of REST tasks that immediately follow the gateway. A concrete
example is depicted in Figure 47.

The choreography’s exclusive gateway follows the exact mapping as
event-based gateway - the target process construct consists of a send
task followed by process exclusive gateway (see Figure 46). However in
this case, the outgoing sequence flows are conditional sequence flows
which also need to be mapped accordingly. It means that the conditions
need to be evaluated from ChoreoGuide. As mentioned in the previous

4 If, due to security policies, the reason has be opaque, an HTTP/1.1 404 Not found re-
sponse code can be used instead

9.2 restful choreography guide 117

Ba
llB

ea
ri

ng
 R

ES
Tf

ul
 o

rc
he

st
ra

tio
n

G
ET

/D
EL

ET
E

ChoreoGuide

Ch
or
eo
G
ui
de

Re
ce

iv
e

Re
qu

es
t

Fo
rw

ar
d

N
ot

if
ic

at
io

n
Re

so
ur

ce
 S

en
t

(D
el

et
ed

)

Se
nd

A
lt

er
na

ti
ve

Li
nk

s

Re
ce

iv
e

Re
qu

es
t

Re
ce

iv
e

Re
qu

es
t

Pa
rt

ic
ip

an
t

1

Pa
rt

ic
ip

an
t

2

N
ot

if
y

G
ET

 /r
es

ou
rc

e/
id

/s
ta

te
 H

TT
P/

1.
1

(D
EL

ET
E

/r
es

ou
rc

e/
id

/s
ta

te
 H

TT
P/

1.
1)

Li
nk

1
Li

nk
2

H
TT

P/
1.

1
20

0
O

K
(H

TT
P/

1.
1

20
0

O
K)

Li
nk

1

Co
nd

it
io

n
2

Co
nd

it
io

n
1

Li
nk

2

Figure 46: Business process construct for GET and DELETE (in brackets) REST
tasks followed by the construct for exclusive gateway

chapter (see section 8.1.1), the data upon which the conditions are eval-
uated is passed previously to the participants affected by the gateway
(participants who immediately follow the gateway). For example, the
number of defective units is passed from the skateboard manufacturer
to the supplier via the ball bearings analysis. This value is found in
the instance of the resource model (see Figure 44). Since ChoreoGuide
manages the resource model, it has sufficient data to evaluate the con-
ditional flows. This constitutes a lightweight solution (compared to the
elaborated solution proposed in the previous chapter) that solves the
problem of implementing the choreography exclusive gateway. Never-
theless, a RESTful decision service may be integrated into the Choreo-
Guide for executing complex decisions.

Email tasks serve two purposes in a RESTful choreography: send an
hyperlink to the recipient for addressing certain resources; and, inform
the recipient about a resource state change. In this sense, email tasks are
not considered in this mapping because they are not needed in the orig-
inal RESTful choreography model when all interactions go through the

118 restful choreography guide

Ba
llB

ea
ri

ng
 R

ES
Tf

ul
 s

co
re

 o
rc

he
st

ra
tio

n
(C

op
y)

ChoreoGuide

Ch
or
eo
G
ui
de

Re
ce

iv
e

O
rd

er
Ch

ec
k

O
rd

er
Pl

ac
em

en
t

Fo
rw

ar
d

O
rd

er
O

rd
er

Cr
ea

te
d

O
rd

er
Cr

ea
ti

on
Fa

ile
d

co
nt

ex
t

or
de

r
in

v
no

nE
m

pt
yO

rd
er

:
se

lf
.s

ta
te

 =
 O

rd
er

St
at

e
: :

 P
LA

CE
D

 im
pl

ie
s

se
lf

.
it

em
.q

ua
nt

it
y

>
0

O
rd

er

[P
la

ce
d]

Re
ce

iv
e

O
rd

er
Co

nf
ir

m
at

i
on

Re
ce

iv
e

O
rd

er
Re

je
ct

io
n

Ch
ec

k
O

rd
er

Co
nf

ir
m

at
io

n

Ch
ec

k
O

rd
er

Re
je

ct
io

n

Sk
at

eb
oa

rd
 M

an
uf

ac
tu

re
r

Su
pp

lie
r

PO
ST

 /o
rd

er
 H

TT
P/

1.
1

Li
nk

1:
 /o

rd
er

/i
d/

pl
ac

ed
 H

TT
P/

1.
1

Li
nk

2:
 /o

rd
er

/i
d/

co
nf

ir
m

ed
 H

TT
P/

1.
1

Li
nk

3:
 /o

rd
er

/i
d/

re
je

ct
ed

 H
TT

P/
1.

1

H
TT

P/
1.

1
40

3
Fo

rb
id

de
n

H
TT

P/
1.

1
20

1
Cr

ea
te

d
Lo

ca
ti

on
: /

or
de

r/
id

/p
la

ce
d

no
nE

m
pt

yO
rd

er

PU
T

/o
rd

er
/

id
/r

ej
ec

te
d

H
TT

P/
1.

1
PU

T
/o

rd
er

/
id

/c
on

fi
rm

ed
H

TT
P/

1.
1

Figure 47: ChoreoGuide excerpt sample of the running example

ChoreoGuide. A participant does not need to inform directly another
participant by email because the ChoreoGuide can forward the hyper-
link or the notification that a certain REST resource has been changed.

Finally, the choreography start events, end events and join gateways
are mapped accordingly to ChoreoGuide’s business process. The con-
catenation of all generated business process constructs is realized by
connecting them with a single sequence flow as defined in the RESTful
choreography. After the concatenation, a single reduction rule is ap-
plied: For every gateway in the RESTful choreography that immediately
follows a REST task, the Forward Resource/Notification task is merged
with the send task preceding the gateway (the task sending the links) if
the message recipient is the same (like in Figure 46). The payloads of
the outgoing messages (of the send tasks before the merge) are added
up and form the new message’s payload. A snippet of the resulting

9.3 implementation architecture 119

mapping from our running example is depicted in Figure 47. The For-
ward Order send task is merged with the send task that immediately
precedes the event-based gateway. The resulting task, besides notify-
ing the supplier about the order placement, sends the links needed to
execute the upcoming event-based gateway.

9.3 implementation architecture

This section presents the architecture of the proposed approach and
discusses how the generated ChoreoGuide process can be deployed to
an existing process engine. Figure 48 shows the main components of
the architecture, 1) the parser responsible for parsing the RESTful chore-
ography and resource model, 2) the generator that derives the Chore-
oGuide orchestration process and deploys it, and 3) the process engine
Chimera5. Chimera is an academic process engine, developed to vali-
date research approaches in the field of BPMN and case management.
It is a good fit for RESTful choreographies, because it exposes running
processes via a RESTful API.

Figure 48: Architecture of ChoreoGuide

The Chimera engine requires process model to define the data classes
it operates on by providing a domain data model. For ChoreoGuide we
use the sub-classes of RESTResource class—the concrete resources. The
choreography resource model is used for defining the data objects and
their attributes. The data objects represent concrete resources, like order
and ball bearings, and their state. Below we discuss the peculiarities of
deploying ChoreoGuide into Chimera.

uri mapping . As part of the mapping to a concrete execution en-
gine the addressing of ChoreoGuide and participants has to be consid-
ered. Since participants will conduct a choreography multiple times,
the engine needs to ensure that messages are correlated to the correct
instances. Additionally, the Chimera RESTful API makes data objects
available only in the context of a process instance. Therefore the URI
annotations used in the RESTful choreography, e.g. /resource, need to
be prefixed by the following parts: 1) base URI where the engine is
reachable in the network, 2) identifier of the choreography, 3) identifier
of the choreography instance. The resulting URI for an order resource,

5 https://github.com/bptlab/chimera

https://github.com/bptlab/chimera

120 restful choreography guide

thus, might look like https://example.org/chimera/api/choreography/5/
instance/23/order. In case that one choreography instance handles multi-
ple resources of the same type, e.g., multiple orders, an identifier of the
concrete order needs to be appended to the URI.

notifications . Notifying the participant for any change in the
ChoreoGuide execution state can be achieved in different ways. Chimera
provides two methods: emails and service calls (when the participant
provide their own RESTful API). These have to be configured during the
deployment of ChoreoGuide on the Chimera engine. A simple email
suffices as vessel for hyperlinks. In our example the supplier receives an
email with a short order description and two hyperlinks (see Figure 47)
to either reject or confirm the order. Depending on the systems used by
the participants other push technologies could be used as well [77].

instantiating . When the initiator of a the first choreography task
sends the initial message no instance of the ChoreoGuide orchestration
exists yet. Therefore, the first message needs to be translated to a POST
to the Chimera engine for instantiating the ChoreoGuide instance.

resource state validation. At last, we discuss how the OCL
conditions are evaluated in the process engine. The OLC conditions
refer to attributes of resources defined in the resource model, which
corresponds to the data objects managed by the ChoreoGuide instance.
Hence, the conditions are used as annotations on the sequence flows
following the exclusive gateway that reflects the correctness of the re-
source state.

9.4 conclusions

In this chapter we introduce a novel approach towards implementing
business process choreographies. Existing work, focus on deriving pub-
lic processes for each participant and enforce their execution. We pro-
pose a central RESTful service that takes the participants "by the hand"
and guides them through every step along the choreography. The ser-
vice employs the REST architectural style to take advantage of the REST
constraints.

One key benefit of our approach is that the participants are not re-
quired to run a process engine or a complex system to interact with
each other. This is particularly important for the interaction with hu-
man clients that can participate in the choreography via a simple Web
browser. Our approach fully employs the principle of HATEOAS, i.e
hyperlinks are indeed the engine of the choreography state.

Another important benefit is that ChoreoGuide not only checks the
control flow but validates the correctness of the resource state changes
using the choreography resource model. In addition, having such a

9.4 conclusions 121

model helps the participant to agree on a common data structure and
avoid problems coming from the misinterpretation of the inter-organi-
zation data.

Part IV

E VA L U AT I O N A N D C O N C L U S I O N S

10
E VA L U AT I O N O F R E S T F U L C H O R E O G R A P H Y
D E R I VAT I O N

This chapter evaluates the derivation approach (Chapter 6) that takes as
input a business process model and outputs a RESTful choreography.
First, we explain the architecture of our prototypical implementation.
Then, we present the results on the accuracy of the derivation steps for
a set of 172 choreography diagrams from practice. We conclude with a
discussion over the evaluation results. The results of these evaluation
are published in [60].

10.1 rest annotator implementation

For evaluating our approach, we developed a tool, called REST Anno-
tator. Its architecture is depicted in Figure 49 as an FMC diagram [33].
The REST Annotator takes a set of business process choreography dia-
grams as an input and it outputs a set of RESTful choreography models.
The tool makes use of three external components: the Label Annotator by
Leopold et al. [39], WordNet [53], and the distributional similarity com-
ponent of the DISCO tool [34]. The main component that constitutes the
tool is composed of three sub-components: Label Analyzer, REST Verb
Identifier and REST Task Generator.

The Label Analyzer is responsible for extracting all the labels from
the model and analyzing them with the help of the Label Annotator.
The latter is used to notate the action and the business object of a
choreography task label. The Label Analyzer provides the action and
the business object for each label to the REST Verb Identifier and the
REST Task Generator components. The REST Verb Identifier component
requires the action provided by the Label Analyzer and the synonyms of
WordNet resembling the respective REST verb. If no synonym is found,
the component requires the semantic similarity score between the ac-
tion and the synonym sets of the REST verbs from the Disco Semantic
Similarity component. Once the semantic relation of the action with
each of the REST verbs is identified, the REST verb and its respective
score is passed to the REST Task Generator component. This compo-
nent has enough information to generate the REST request and hence
the REST task. The final output of REST Annotator the set of RESTful
choreographies.

Additionally, the Label Analyzer, before providing the final action
and business object, needs to apply the advanced derivation approach
described in section Section 6.4. To this end, it requires SynSend, which
is generated by the REST Verb Identifier. Moreover, the latter needs

125

126 evaluation of restful choreography derivation
RESTful Task Generator

Label
Analyzer

REST Verb
Identifier

R

REST Task
Generator

R

R

REST Annotator

R

WordNet

Disco
Semantic Similarity

Choreography
Diagram

R

R

RESTful Choreography

Action
+
Business Object

Business Object

REST verb

Label
Annotator

R

Send Synonyms

Figure 49: The REST Annotator architecture

from the former the business object to check for the presence of an
indefinite article. As explained in subsection 6.4.2, the presence of an
indefinite article can alter the output of the REST Verb Identifier from
PUT to POST.

10.2 evaluation setup

As evaluation data, we use choreography diagrams from the BPM Aca-
demic Initiative1. The initiative offers a rich set of process models from
different domains. Overall, we retrieve 424 BPMN choreography dia-
grams. Since these diagrams are created from experts and non experts
alike, it is necessary to clean the data. We apply the following cleaning
criteria:

1. English-only Diagrams. We include only diagrams with English
text labels. This criteria is necessary because our approach relies
on natural language analysis components that only support En-
glish.

2. Syntactically correct Diagrams. Diagrams which have syntax errors
with respect to the BPMN 2.0 choreography diagram specification
are excluded.

With regard to the evaluation procedure a REST expert had to perform
a three-step evaluation for each choreography task: a) the syntax cor-
rectness of a label, b) the adequate generation of the REST verb, and
c) the suitability of the generated REST URI. In case a) holds true, the

1 https://www.signavio.com/bpm-academic-initiative/

https://www.signavio.com/bpm-academic-initiative/

10.3 evaluation results 127

evaluator further has to check if the identified REST verb with the best
matching score is adequate. In case b) holds, the evaluator has to check
if the the generated URI is suitable.

The evaluation comes, however, with its own limitations. The exis-
tence of a single evaluator may impose subjectivity in determining the
correct match. To mitigate this issue, the evaluator repeated several
time the inspection procedure while consulting common practices in
developing RESTful APIs. This avoids errors like inconsistent verifica-
tion for the same label - RESTful request pairs and helps to resolve the
non-obvious pairs.

10.3 evaluation results

This section discusses the results which are summarized in Table 6. The
172 models contain 1213 choreography task labels in total. The models
size (in terms of choreography task count) ranges from 1 to 26 with an
average of about 7 choreography task per model. From these labels,
864 labels (71.14%) are syntactically correct labels. In the following dis-
cussion, we only focus on those labels that are syntactically correct and
discuss how the verb identification and the link generation performs in
these cases.

Table 6: Quantitative Results of the User Evaluation

Total No. of Labels 1213

No. of syntactically-correct Labels 864 (71.46%)

No. of syntactically-incorrect Labels 349

Total No. of Correctly Identified REST Verbs 772 (89.35%)

.. with the Synonym Identification Strategy 322

.. with the Similarity Identification Strategy 450

.. POST 139 (97,89%)

.. PUT 577 (88,36%)

.. GET 54 (80,60%)

.. DELETE 2 (100,00%)

Total No. of Incorrectly Identified REST Verbs 92 (10.65%)

Total No. of Correct Request URIs 723 (93.65%)

Total No. of Incorrect Request URIs 49 (6.35%)

128 evaluation of restful choreography derivation

The verb identification strategies have identified the correct REST verb
in 772 labels which amounts to 89,35% of all syntactically-correct labels.
Among these labels, we further distinguish between the verbs that have
been identified with the synonym strategy and the similarity strategy.
The synonym strategy is capable to derive the correct REST verb in 332

labels, while the similarity strategy derives the correct REST verb for
450 choreography labels. The results emphasize the need for the simi-
larity identification strategy of the REST verb. The most identified REST
verb is PUT as it is expected in a choreography context where partici-
pants change the state of business objects, e.g., order is sent, accepted,
delivered and payed. POST was identified in 139 cases, 8 of which were
identified using the presence of the indefinite article. The low number
of DELETE identifications reflects also the rare cases of using DELETE
in the REST context due to resources being often archived or saved in a
particular state rather than being deliberately deleted.

In total, 92 choreography labels (10.65%) have been annotated with
the wrong REST verb. We observe that GET is detected the least and
DELETE is always detected. We identify two classes of errors that
can lead to the wrong annotation, the first of which is fixed in the
context of this sample set and does not count towards the incorrect
REST verb identifications. This first class subsumes choreography la-
bels for which the similarity strategy revealed two or more equal simi-
larity scores. This has been the case for 101 choreography labels. After
identifying the list of these REST-ambiguous actions for this particular
sample set, a REST expert was asked to choose the most appropriate
mapping. The following non exhaustive list is disambiguated: {start-
PUT, pay-PUT, invoice-PUT, article-PUT, enter-PUT, publish-PUT, allocate-
PUT, explain-PUT, disburse-PUT, receipt-PUT, show-GET, book-PUT}. This
list can be used and enriched further with verbs that score equally in
the semantic similarity approach.

The second class covers such cases in which our approach identified
the wrong verb. The REST evaluation has revealed 92 choreography
labels for which our approach did not find the correct REST verb. These
cases have to be corrected by the user.

The approach for generating the request URIs has created 723 correct
and 49 incorrect URIs out of 772 correct verb identifications. We iden-
tified the labeling quality as a main cause for the incorrect URIs. For
example, we found choreography tasks that have not been specified
correctly by referring to a particular state, e.g. payment confirmed and
invoice sent are mapped to PUT /payment/id/confirmeded HTTP/1.1 and
PUT /invoice/id/sented HTTP/1.1 respectively. A correct result is gener-
ated for the labels confirm payment/payment confirmation and send invoice.
Another cause for the incorrect link generations is the misidentification
of the business object. For example, the label ship article is labeled as
α(ship article) = article (action) and β(ship article) = ship (business ob-
ject). The correct labeling would be to identify ship as the action and

10.3 evaluation results 129

article as the business object. Nevertheless, we conclude that the URI
generation works satisfactory and produces a large number of correct
REST URIs.

Table 7: REST request results for the corresponding RESTful tasks from Fig-
ure 26

RESTful Task REST Request

create CFP POST /cfp HTTP/1.1

publish CFP PUT /cfp/id/published HTTP/1.1

submit a paper POST /paper HTTP/1.1

start review pro-
cess

PUT /reviewProcess/id/started HTTP/1.1

assign paper re-
view

PUT /paperReview/id/assigned HTTP/1.1

send review
request

POST /review HTTP/1.1

enter paper review PUT /paper/id/reviewed HTTP/1.1

finish review pro-
cess

PUT /reviewProcess/id/finished
HTTP/1.1

submit paper deci-
sion

PUT /paper/id/decided HTTP/1.1

notify paper rejec-
tion

PUT /paper/id/rejected HTTP/1.1

notify short paper
acceptance

PUT /shortPaper/id/accepted HTTP/1.1

cancel short paper DELETE /shortPaper/id HTTP/1.1

confirm short pa-
per

PUT /shortPaper/id/confirmed HTTP/1.1

camera-ready pa-
per submission

PUT /cameraReady/id/papered HTTP/1.1

conference regis-
tration

GET /conference HTTP/1.1

confirm paper
publication

PUT /paperPublication/id/confirmed
HTTP/1.1

130 evaluation of restful choreography derivation

We also exemplify the results of our evaluation by applying our ap-
proach to the exemplary choreography diagram from Figure 26. Ta-
ble 7 shows the generated REST requests for the respective choreog-
raphy tasks. It is assumed for this purpose that in the RMS example
all participants are RESTful services, i.e., they interact with each other
by sending REST calls. In a simple browser settings, the organizer,
reviewer and author are users of RMS. In this example, we assume
that they also provide a RESTful API. Consider these services as RMS
mobile applications where RMS can push notifications [77] depending
on the user role, e.g, notifying the reviewers about the papers assigned
for review, sending the paper decision to the authors, informing the
organizer when all reviews are submitted.

Figure 50 is a mock-up that depicts an excerpt of the RESTful chore-
ography model generated by applying our approach to the running
example. In this figure we show how the REST engineer can interact
with the generated RESTful choreography. In this case, the REST engi-
neer is provided with all four generated REST requests (one for each
REST verb) ranked based on the matchmaking score (1 being the best
and 0 the worse). Depending on the selection the HTTP response is
generated automatically, assuming that the interaction is always valid.

10.4 discussion

Two main observations emerge from the quantitative evaluation results.
The first observation relates to the correct annotation of choreography
tasks with REST URIs. For example, it identifies PUT to be the correct
REST verb for the task confirm short paper and generates the URI PUT
/shortPaper/id/confirmed. However, we also encounter problems for cases,
in which the approach retrieves several possibilities for REST verbs and
fails to make a decision for one particular REST verb. In the example,
the choreography task enter paper review falls into this group. The ap-
proach identifies the REST verbs PUT and GET because the action to
enter is not a member of any REST verb synonym list and the seman-
tic similarity score is equal for both REST verbs. Based on this result,
the link generator component creates two possible links, among which
the user has to choose. Nevertheless, the links themselves have been
created correctly. As mentioned in the previous section, we solved this
problem for this particular test set by disambiguating the REST verb
mapping. However, the list of disambiguated verbs is not exhaustive
at its current form because there are other verbs which were not part
of the labels we used in our evaluation. The list can be used as input
when applying our approach to achieve better results for choreography
labels which contain such verbs.

The second observation covers REST requests that are incorrect and
that need to be manually corrected by the user. As an example, consider
the choreography task conference registration, for which our approach

10.4 discussion 131

Fi
gu

re
5

0
:A

pa
rt

of
th

e
ge

ne
ra

te
d

R
ES

Tf
ul

C
ho

re
og

ra
ph

y
of

R
M

S

132 evaluation of restful choreography derivation

creates a GET link. However, we would expect a POST or a PUT request.
Incorrect links of this type may have several error sources. On the one
hand, the Label Annotator component (see Figure 49) might have mis-
classified the choreography task and erroneously changed action and
business object. On the other hand, the REST Verb Identification com-
ponent might have caused the error because the action is either a direct
member of the synonym word lists or its similarity score with the syn-
onym words is highest for one of the other REST verbs. In our example,
the former applies. The REST verb GET has been identified, since the
action to register is a WordNet synonym of to read and thus a member
of the synonym word set SynGET . Hence, the other alternatives are not
considered so far, which finally requires the user to correct this REST
request.

→ POST /rms.example.org/CFP HTTP/1.1
{“OrganizerName” : ”John”,
“OrganizerId” : ”John42",
“ConferenceId” : ”cn16",
“PaperSubmissionDeadline” : 07-12-15,
“AcceptanceNotification” : 16-02-6,
“CameraReady” : 25-03-16,
“SubmissionLink” : “http://rms.example.org/
paper”}

←201 Created
Location : http://rms.example.org/CFP/42

→ POST /rms.example.org/paper HTTP/1.1
{“AuthorNames” : [
{“name” : ”Adriatik”,
“surname” : “Nikaj”},
{“name” : ”Fabian”,
“surname” : “Pittke”}]
“PaperTitle” : ”Semi-automatic Enrichment",
“SubmissionTime” : 01-12-15,
“NumberOfPages” : 15”}

←201 Created
Location: http://rms.example.org/paper/12

Figure 51: A concrete skeleton instance of RMS implementation

At last, Figure 51 depicts a concrete instance of the RMS RESTful
interaction. The part in bold and the order of REST interactions are gen-
erated by the REST Annotator tool and provided to the developer as a
skeleton to follow for developing the RESTful API. In the RSM context,
the two rectangles represent respectively the concrete instances of the
create CFP and submit a paper choreography tasks from Figure 50. The
dashed arrow expresses that the second instance can only be executed
only after the first one is executed. For a given RESTful choreogra-
phy, a skeleton diagram can be derived for each participant who offer
a RESTful API, like the RMS mobile app of the conference organizer
which receives notification from RMS about the status of the review-
ing process . Hence, we jump from a global choreography view, to at
least one orchestration view that focuses only on the REST behavioral
interface i.e. the order in which the REST requests and responses are
performed within a single participant application. The benefit of apply-
ing our approach is in that the same URI generation logic is used across
all participants contributing to a better understandability, maintenance
and evolution of REST APIs [74]. The automation of deriving skeletons
from a RESTful choreography is left as a future work.

11
C O N C L U S I O N S

This chapter concludes this thesis by summing up its main results in the
first section. The second section discusses the limitations and provides
an outlook of future work.

11.1 summary

In this thesis, we motivate and argue about the need and relevancy
of enacting business process choreographies in a RESTful setting (in
chapters 1, 2, and 3). To this end, the research questions are formulated
in Chapter 4, from which a set of high level requirements are derived.
These requirements are addressed in the main chapters by several re-
search contributions, which are summarized as follows:

• RESTful choreographies. The RESTful choreography modeling lan-
guage is designed to capture RESTful interactions into models.
Serving as a bridge between business process choreographies and
RESTful interactions, it is designed by extending the BPMN 2.0
process choreography language. RESTful choreographies repre-
sent refined contracts between business actors at a level of detail
that is suitable for implementing REST-specific interactions. Chap-
ter 5 provides a metamodel together with formal properties for
specifying RESTful choreographies. Moreover, derivation guide-
lines and design patterns are introduced to support their model-
ing.

• Semi-automatic derivation. To preserve the separation of concerns
between business process choreography designers and Web engi-
neers, a semi-automatic derivation approach is introduced in Chap-
ter 6. Natural language analysis techniques are used to extract
domain specific information from process choreography models
and use this information to specify REST interfaces among busi-
ness partners. The approach is estimated to generate correct REST
tasks in about 90% of the cases. In the remaining cases, Web engi-
neers have to manually choose the best match. Moreover, having a
unified derivation method for generating each participant’s REST-
ful API simplifies the API’s understanding and adoption by the
involved choreography’s participants.

• Completeness properties. Formal completeness properties, introdu-
ced in Chapter 7, guarantee that RESTful choreographies derived
from enforceable and deadlock free process choreographies pre-
server these qualities. The properties are hyperlink completeness

133

134 conclusions

and correct resource behavior. They capture the REST-specif behav-
ior induced by the REST information. In addition, we provide a
formal analysis solution for checking hyperlink completeness by
translating RESTful choreographies into Petri nets [80] that cap-
ture the REST’ HATEOAS principle (see Section 2.6).

• RESTful decision service. Chapter 8 brings forth the peculiarities of
implementing choreographies’ exclusive gateways before propos-
ing the Decision Model and Notation (DMN) standard [67] as a
solution for solving the problem of data misinterpretation. The
outcome is the introduction of a RESTful decision service that is
integrated with RESTful choreographies to eliminate the misinter-
pretation of the decision. Therefore, the involved participants are
driven to follow the right paths after exclusive gateways. In ad-
dition, using DMN alongside RESTful choreographies improves
their comprehensibility and maintainability [5].

• ChoreoGuide. RESTful choreography guide, presented in Chap-
ter 9 represents an hybrid service (a partial orchestration service)
that guides the choreography participants towards a successful
interaction. The ChoreoGuide includes a REST resource model
(collectively agreed by the involved participants) that is needed
for guiding the participants. The ChoreoGuide is not a full orches-
tration service because it does not call other services for reaching
its own goal [79]. It is a reactive service that checks the validity
of the requests (based on the REST resource state) and their order
before forwarding it to the original recipient. In the presence of
the ChoreoGuide, RESTful choreography participants do not have
to switch their client and server roles to send notifications to each
other. They are all clients with respect to the ChoreoGuide REST-
ful server. This also allows participants who do not have complex
systems in place to be involved in the choreography. ChoreoGu-
ides can be used as a starting point for designing third party Web
services that specialize in applying a platform business model,
like Airbnb1, Uber2, or Easychair3.

• REST Annotator tool and a comprehensive evaluation. Last but not
least, we developed a tool, called REST Annotator, that automati-
cally derives RESTful choreographies from business process chore-
ographies. The tool employees the advanced derivation approach
described in Chapter 6. The derivation approach is evaluated,
in Chapter 10, by using the REST Annotator tool on 172 chore-
ography models, containing 864 choreography tasks that have
syntactically-correct labels. The results show that 89.35% of the

1 https://www.airbnb.com/

2 https://www.uber.com/de/de/

3 http://www.easychair.org/

https://www.airbnb.com/
https://www.uber.com/de/de/
http://www.easychair.org/

11.2 limitations and future work 135

REST verbs are derived correctly, while the correctly derived REST
request URIs reach 93.65% of total derivations.

11.2 limitations and future work

In this thesis we address the conceptual gap between process choreogra-
phies and RESTful interactions. We argue that this thesis’ contributions
significantly narrow down this gap, but, however, the gap is not con-
sidered closed. In this section we list some limitations with respect to
some of our research contributions and propose future work to further
close the conceptual gap.

One particular limitation, when it comes to implement concrete in-
stances of a RESTful choreography model, is the instance correlation [12],
especially the correlation between the REST resources. This is compli-
cated as resource instances are reflected in their URIs. Future works
needs to investigate solutions that relate choreography instances with
resource instances and resource instances with each other.

Our derivation approach has also its limitations, which are grounded
in the imprecise nature of natural language and the capabilities of the
employed language processing tools. This imprecision is an impor-
tant cause for several incorrectly identified REST verbs and REST URIs,
which have to be corrected by REST experts. A particular limitation
is related to the labeling style. If too many nouns are used it is hard
to identify the intended action and business object. For example, the
label application letter submission would yield PUT letter/applied instead
of the more preferable PUT applicationLetter/submitted. Future work can
address these limitations by making use of word sense disambiguation
technology and the behavioral aspects of the choreography diagram.
Word sense disambiguation utilizes external knowledge repositories
such as WordNet [53] or BabelNet [55] together with contextual infor-
mation or speech acts [9, 47] in order to identify the correct interpreta-
tion of a word. Its usefulness has already been investigated for process
models in [81]. Behavioural aspects relate to the sequential order of
choreography tasks [98]. The fact that only certain sequences and com-
binations of messages make sense can be used to describe constraints
that restrict the number of potential interpretations [38]. For example,
if a POST and a GET request have been identified and the respective
choreography task is at the beginning of the interaction, then it is more
likely to be a POST request. Furthermore, the derivation approach does
not consider messages and their labeling. Including them may result in
an increase of the URI generation accuracy as the messages may help
to better identify the business object passed to the recipient.

Implementing RESTful choreographies by concrete services is not
fully investigated. The RESTful decision service and ChoreoGuide are
introduced as third party services that facilitates the enactment of REST-
ful choreographies. In an ideal setting, choreography participants have

136 conclusions

to autonomously interact with each other without the need of a third
party service. As future work we propose to consider the sixth and
the only optional REST constraint—code-on-demand (see Section 2.6).
This may allow the participants to share executable code between one
other with the purpose of enforcing the choreography’s control flow
and message payloads.

B I B L I O G R A P H Y

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
services. Springer, 2004. (Cited on page 9.)

[2] Ken Arnold, James Gosling, and David Holmes. The Java programming
language. Addison Wesley Professional, 2005. (Cited on page 29.)

[3] Alistair Barros, Gero Decker, Marlon Dumas, and Franz Weber. Fun-
damental Approaches to Software Engineering: 10th International Conference,
FASE 2007, Held as Part of the Joint European Conferences, on Theory and
Practice of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1,
2007. Proceedings, chapter Correlation Patterns in Service-Oriented Ar-
chitectures, pages 245–259. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2007. ISBN 978-3-540-71289-3. doi: 10.1007/978-3-540-71289-3_20.
URL http://dx.doi.org/10.1007/978-3-540-71289-3_20. (Cited on
page 30.)

[4] Alistair Barros, Thomas Hettel, and Christian Flender. Process choreog-
raphy modeling. In Handbook on Business Process Management 1, pages
257–277. Springer, 2010. (Cited on page 14.)

[5] Kimon Batoulis, Andreas Meyer, Ekaterina Bazhenova, Gero Decker,
and Mathias Weske. Extracting decision logic from process models.
In Jelena Zdravkovic, Marite Kirikova, and Paul Johannesson, editors,
Advanced Information Systems Engineering, pages 349–366, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-19069-3. (Cited on
pages 105 and 134.)

[6] Betty Birner and Gregory Ward. Uniqueness, familiarity, and the definite
article in english. In Annual Meeting of the Berkeley Linguistics Society,
volume 20, pages 93–102, 1994. (Cited on page 73.)

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web ser-
vices description language (WSDL) 1.1. W3c note, WWW Consortium,
March 2001. URL http://www.w3.org/TR/wsdl. (Cited on page 28.)

[8] David Raymond Christiansen, Marco Carbone, and Thomas Hilde-
brandt. Formal semantics and implementation of bpmn 2.0 inclusive
gateways. In Mario Bravetti and Tevfik Bultan, editors, Web Services and
Formal Methods, pages 146–160, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg. ISBN 978-3-642-19589-1. (Cited on page 53.)

[9] William W Cohen, Vitor R Carvalho, and Tom M Mitchell. Learning to
classify email into" speech acts". In EMNLP, volume 4, pages 309–316,
2004. (Cited on page 135.)

[10] Mario Cortes-Cornax, Sophie Dupuy-Chessa, Dominique Rieu, and Mar-
lon Dumas. Evaluating Choreographies in BPMN 2.0 Using an Ex-
tended Quality Framework. In Remco Dijkman, Jörg Hofstetter, and
Jana Koehler, editors, Business Process Model and Notation, pages 103–117,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-
25160-3. (Cited on page 42.)

137

http://dx.doi.org/10.1007/978-3-540-71289-3_20
http://www.w3.org/TR/wsdl

138 bibliography

[11] Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017. ISBN
978-1-484-22534-9. (Cited on page 28.)

[12] G. Decker and M. Weske. Instance isolation analysis for service-oriented
architectures. In 2008 IEEE International Conference on Services Computing,
volume 1, pages 249–256, July 2008. doi: 10.1109/SCC.2008.44. (Cited
on pages 30 and 135.)

[13] Gero Decker and Alistair Barros. Interaction modeling using bpmn. In
Arthur ter Hofstede, Boualem Benatallah, and Hye-Young Paik, editors,
Business Process Management Workshops, pages 208–219, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78238-4. (Cited
on page 14.)

[14] Gero Decker and Mathias Weske. Business Process Management: 5th
International Conference, BPM 2007, Brisbane, Australia, September 24-28,
2007. Proceedings, chapter Local Enforceability in Interaction Petri Nets,
pages 305–319. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
ISBN 978-3-540-75183-0. doi: 10.1007/978-3-540-75183-0_22. URL http:

//dx.doi.org/10.1007/978-3-540-75183-0_22. (Cited on page 28.)

[15] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske.
Bpel4chor: Extending bpel for modeling choreographies. In Web Ser-
vices, 2007. ICWS 2007. IEEE International Conference on, pages 296–303.
IEEE, 2007. (Cited on page 28.)

[16] Gero Decker, Oliver Kopp, Frank Leymann, Kerstin Pfitzner, and Math-
ias Weske. Modeling service choreographies using bpmn and bpel4chor.
In Zohra Bellahsène and Michel Léonard, editors, Advanced Informa-
tion Systems Engineering, pages 79–93, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg. ISBN 978-3-540-69534-9. (Cited on page 28.)

[17] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. In-
teracting services: From specification to execution. Data & Knowledge
Engineering, 68(10):946 – 972, 2009. ISSN 0169-023X. doi: https://doi.
org/10.1016/j.datak.2009.04.003. URL http://www.sciencedirect.com/

science/article/pii/S0169023X09000457. (Cited on page 13.)

[18] Christian Denger, Daniel M. Berry, and Erik Kamsties. Higher qual-
ity requirements specifications through natural language patterns. In
2003 IEEE Int. Conference on Software - Science, Technology and Engineering,
pages 80–90, 2003. (Cited on page 67.)

[19] Marlon Dumas, Alexander Grosskopf, Thomas Hettel, and Moe Wynn.
Semantics of standard process models with or-joins. In Robert Meers-
man and Zahir Tari, editors, On the Move to Meaningful Internet Systems
2007: CoopIS, DOA, ODBASE, GADA, and IS, pages 41–58, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-76848-7. (Cited
on page 53.)

[20] Gregor Engels, Roland Hücking, Stefan Sauer, and Annika Wagner.
UML Collaboration Diagrams and Their Transformation to Java. In
Robert France and Bernhard Rumpe, editors, «UML»’99 — The Unified
Modeling Language, pages 473–488, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg. ISBN 978-3-540-46852-3. (Cited on page 29.)

http://dx.doi.org/10.1007/978-3-540-75183-0_22
http://dx.doi.org/10.1007/978-3-540-75183-0_22
http://www.sciencedirect.com/science/article/pii/S0169023X09000457
http://www.sciencedirect.com/science/article/pii/S0169023X09000457

bibliography 139

[21] Gregor Engels, Reiko Heckel, Jochen M. Küster, and Luuk Groenewe-
gen. Consistency-preserving model evolution through transformations.
In Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen Cook, edi-
tors, UML 2002 — The Unified Modeling Language, pages 212–227, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-45800-5.
(Cited on page 79.)

[22] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1.
Technical report, 1999. (Cited on page 43.)

[23] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, 2000. (Cited on pages 9, 21, and 99.)

[24] Alain Finkel. The minimal coverability graph for petri nets. In Grzegorz
Rozenberg, editor, Advances in Petri Nets 1993, pages 210–243, Berlin,
Heidelberg, 1993. Springer Berlin Heidelberg. ISBN 978-3-540-47631-3.
(Cited on page 86.)

[25] Organization for the Advancement of Structured Information Stan-
dards (OASIS). Web services business process execution language (ws-
bpel) 2.0. OASIS Standards, 04 2007. (Cited on pages 13, 14, and 28.)

[26] The Open Group. Service-Oriented Architecture Ontology, Version
2.0. https://publications.opengroup.org/standards/soa/c144, April
2014. (Cited on pages xiii, 3, 9, 10, and 110.)

[27] Stephan Haarmann, Kimon Batoulis, Adriatik Nikaj, and Mathias
Weske. Dmn decision execution on the ethereum blockchain. In John
Krogstie and Hajo A. Reijers, editors, Advanced Information Systems En-
gineering, pages 327–341, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-91563-0. (Cited on page 105.)

[28] Florian Haupt, Frank Leymann, and Cesare Pautasso. A conversation
based approach for modeling REST APIs. In Proc. of the 12th Working
IEEE / IFIP Conference on Software Architecture (WICSA 2015), Montreal,
Canada, May 2015. (Cited on pages 30 and 41.)

[29] Internet Engineering Task Force (IETF). Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. https://tools.ietf.org/html/

rfc7231, June 2014. (Cited on pages 49 and 68.)

[30] Ana Ivanchikj, Cesare Pautasso, and Silvia Schreier. Visual model-
ing of restful conversations with restalk. Journal of Software & Sys-
tems Modeling, pages 1–21, May 2016. ISSN 1619-1366. doi: 10.1007/
s10270-016-0532-2. URL http://link.springer.com/article/10.1007/

s10270-016-0532-2. (Cited on pages 4 and 31.)

[31] Nickolaos Kavantzas. Web services choreography description language
(ws-cdf) version 1.0. http://www. w3. org/TR/ws-cdl-10/, 2004. (Cited on
page 28.)

[32] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography descrip-
tion language version 1.0. W3C candidate recommendation, 9:290–313, 2005.
(Cited on page 13.)

https://publications.opengroup.org/standards/soa/c144
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
http://link.springer.com/article/10.1007/s10270-016-0532-2
http://link.springer.com/article/10.1007/s10270-016-0532-2

140 bibliography

[33] Andres Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental
modeling concepts. Effective Communication of IT Systems, England, 2005.
(Cited on page 125.)

[34] Peter Kolb. Disco: A multilingual database of distributionally similar
words. Proceedings of KONVENS-2008, Berlin, 2008. (Cited on pages 66

and 125.)

[35] Peter Kolb. Experiments on the difference between semantic similarity
and relatedness. In Proc. of the 17th Nordic Conference on Comp. Linguistics,
2009. (Cited on page 66.)

[36] M. Laitkorpi, P. Selonen, and T. Systa. Towards a model-driven process
for designing restful web services. In 2009 IEEE International Conference
on Web Services, pages 173–180, July 2009. doi: 10.1109/ICWS.2009.63.
(Cited on page 30.)

[37] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. Generating nat-
ural language texts from business process models. In Proc. of the 24th
Int. Conference on Advanced Information Systems Engineering, pages 64–79,
2012. (Cited on page 67.)

[38] Henrik Leopold, Mathias Niepert, Matthias Weidlich, Jan Mendling,
Remco Dijkman, and Heiner Stuckenschmidt. Probabilistic optimiza-
tion of semantic process model matching. Business Process Management,
pages 319–334, 2012. (Cited on page 135.)

[39] Henrik Leopold, Rami-Habib Eid-Sabbagh, Jan Mendling,
Leonardo Guerreiro Azevedo, and Fernanda Araujo Baião. Detection of
naming convention violations in process models for different languages.
Decision Support Systems, 56:310–325, 2013. (Cited on pages 62, 72,
and 125.)

[40] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. Supporting pro-
cess model validation through natural language generation. IEEE Trans.
Software Eng., 40(8):818–840, 2014. (Cited on page 67.)

[41] Frank Leymann. Web Services Flow Language (WSFL 1.0). BM Software
Group, 05 2001. (Cited on page 14.)

[42] Dekang Lin. An information-theoretic definition of similarity. In ICML,
volume 98, pages 296–304, 1998. (Cited on page 66.)

[43] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Trans-
formations for Business Processes – A Survey, pages 46–63. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00899-
3. doi: 10.1007/978-3-642-00899-3_3. URL https://doi.org/10.1007/

978-3-642-00899-3_3. (Cited on page 84.)

[44] Christopher Lyons. Defining definiteness, page 253–281. Cambridge Text-
books in Linguistics. Cambridge University Press, 1999. doi: 10.1017/
CBO9780511605789.008. (Cited on pages 72, 73, and 74.)

[45] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal seman-
tics and analysis of bpmn process models using petri nets. 12 2018.
(Cited on pages 20 and 84.)

https://doi.org/10.1007/978-3-642-00899-3_3
https://doi.org/10.1007/978-3-642-00899-3_3

bibliography 141

[46] Mark Masse. REST API design rulebook. O’Reilly Media, Inc., 2011. (Cited
on pages 42 and 100.)

[47] Raul Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flo-
res. The action workflow approach to workflow management technol-
ogy. In Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, pages 281–288. ACM, 1992. (Cited on page 135.)

[48] Jan Mendling and Michael Hafner. From WS-CDL choreography to
BPEL process orchestration. Journal of Enterprise Information Management
(JEIM), pages 506–515, 2008. (Cited on page 28.)

[49] Jan Mendling, Kristian Bisgaard Lassen, and Uwe Zdun. On the
transformation of control flow between block-oriented and graph-
oriented process modelling languages. IJBPIM, 3(2):96–108, 2008. doi:
10.1504/IJBPIM.2008.020973. URL https://doi.org/10.1504/IJBPIM.

2008.020973. (Cited on page 28.)

[50] Jan Mendling, Hajo A. Reijers, and Jan Recker. Activity labeling in pro-
cess modeling: Empirical insights and recommendations. Inf. Syst., 35

(4):467–482, 2010. (Cited on page 61.)

[51] Jan Mendling, Ingo Weber, Wil Van Der Aalst, Jan Vom Brocke, Cristina
Cabanillas, Florian Daniel, Søren Debois, Claudio Di Ciccio, Marlon
Dumas, Schahram Dustdar, Avigdor Gal, Luciano García-Bañuelos,
Guido Governatori, Richard Hull, Marcello La Rosa, Henrik Leopold,
Frank Leymann, Jan Recker, Manfred Reichert, Hajo A. Reijers, Stefanie
Rinderle-Ma, Andreas Solti, Michael Rosemann, Stefan Schulte, Munin-
dar P. Singh, Tijs Slaats, Mark Staples, Barbara Weber, Matthias Wei-
dlich, Mathias Weske, Xiwei Xu, and Liming Zhu. Blockchains for busi-
ness process management - challenges and opportunities. ACM Trans.
Manage. Inf. Syst., 9(1):4:1–4:16, February 2018. ISSN 2158-656X. doi:
10.1145/3183367. URL http://doi.acm.org/10.1145/3183367. (Cited
on page 29.)

[52] Andreas Meyer, Luise Pufahl, Kimon Batoulis, Dirk Fahland,
and Mathias Weske. Automating Data Exchange in Pro-
cess Choreographies. Information Systems, 2015. URL http:

//bpt.hpi.uni-potsdam.de/pub/Public/AndreasMeyer/Automating_

Data_Exchange_in_Process_Choreographies_J.pdf. in press. (Cited on
pages 29 and 30.)

[53] G. A. Miller. WordNet: a Lexical Database for English. Communications
of the ACM, 38(11):39–41, 1995. (Cited on pages 65, 125, and 135.)

[54] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
2008. (Cited on pages 4 and 28.)

[55] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilin-
gual semantic network. Artificial Intelligence, 193:217–250, 2012. (Cited
on page 135.)

[56] Adriatik Nikaj and Mathias Weske. Formal specification of restful chore-
ography properties. In Alessandro Bozzon, Philippe Cudre-Maroux,
and Cesare Pautasso, editors, Web Engineering, pages 365–372, Cham,

https://doi.org/10.1504/IJBPIM.2008.020973
https://doi.org/10.1504/IJBPIM.2008.020973
http://doi.acm.org/10.1145/3183367
http://bpt.hpi.uni-potsdam.de/pub/Public/AndreasMeyer/Automating_Data_Exchange_in_Process_Choreographies_J.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/AndreasMeyer/Automating_Data_Exchange_in_Process_Choreographies_J.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/AndreasMeyer/Automating_Data_Exchange_in_Process_Choreographies_J.pdf

142 bibliography

2016. Springer International Publishing. ISBN 978-3-319-38791-8. (Cited
on pages 80 and 96.)

[57] Adriatik Nikaj, Sankalita Mandal, Cesare Pautasso, and Mathias Weske.
From choreography diagrams to restful interactions. In Engineering
Service Oriented Applications WESOA’15, co-located with ICSOC 2015,
Springer, 2015. Springer. (Cited on pages 39 and 67.)

[58] Adriatik Nikaj, Fabian Pittke, Mathias Weske, and Jan Mendling. Semi-
automatic derivation of restful interactions from choreography dia-
grams. In Rainer Schmidt, Wided Guédria, Ilia Bider, and Sérgio Guer-
reiro, editors, Enterprise, Business-Process and Information Systems Model-
ing, pages 141–156, Cham, 2016. Springer International Publishing. ISBN
978-3-319-39429-9. (Cited on pages 58 and 70.)

[59] Adriatik Nikaj, Marcin Hewelt, and Mathias Weske. Towards im-
plementing rest-enabled business process choreographies. In Witold
Abramowicz and Adrian Paschke, editors, Business Information Systems,
pages 223–235, Cham, 2018. Springer International Publishing. ISBN
978-3-319-93931-5. (Cited on page 108.)

[60] Adriatik Nikaj, Mathias Weske, and Jan Mendling. Semi-automatic
derivation of restful choreographies from business process choreogra-
phies. Software & Systems Modeling, 18(2):1195–1208, Apr 2019. ISSN
1619-1374. (Cited on pages 58 and 125.)

[61] Jörg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, and Frank
Leymann. Bpellight. In Gustavo Alonso, Peter Dadam, and Michael
Rosemann, editors, Business Process Management, pages 214–229, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-75183-0.
(Cited on page 14.)

[62] OMG. Unified Modeling Language (UML), Version 1.1. https://www.

omg.org/spec/UML/1.1/About-UML/, December 1997. (Cited on page 29.)

[63] OMG. Unified Modeling Language (UML), Version 2.0. http://www.

omg.org/spec/UML/2.0/, July 2005. (Cited on pages 29, 30, and 87.)

[64] OMG. Object Constraint Language (OCL), Version 2.0. http://www.omg.
org/spec/OCL/2.0/, May 2006. (Cited on pages 112 and 114.)

[65] OMG. Business Process Model and Notation (BPMN), Version 2.0. http:
//www.omg.org/spec/BPMN/2.0/, January 2011. (Cited on pages 3, 10, 18,
27, 41, 46, 58, 61, 97, and 112.)

[66] OMG. XML Metadata Interchange (XMI) Specification, Version 2.5.1.
https://www.omg.org/spec/XMI/2.5.1/, June 2015. (Cited on page 48.)

[67] OMG. Decision Model and Notation, Version 1.0, September 2015.
(Cited on pages 96, 98, and 134.)

[68] OMG. Meta Object Facility (MOF), Version 2.5.1. https://www.omg.org/
spec/MOF/2.5.1/, November 2016. (Cited on page 35.)

[69] Steve Omohundro. Cryptocurrencies, smart contracts, and artificial in-
telligence. AI Matters, 1(2):19–21, December 2014. ISSN 2372-3483. doi:
10.1145/2685328.2685334. URL http://doi.acm.org/10.1145/2685328.

2685334. (Cited on page 28.)

https://www.omg.org/spec/UML/1.1/About-UML/
https://www.omg.org/spec/UML/1.1/About-UML/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/XMI/2.5.1/
https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/MOF/2.5.1/
http://doi.acm.org/10.1145/2685328.2685334
http://doi.acm.org/10.1145/2685328.2685334

bibliography 143

[70] Alexander Osterwalder et al. The business model ontology: A proposi-
tion in a design science approach. 2004. (Cited on page 7.)

[71] Chun Ouyang, Marlon Dumas, HM Arthur, and Wil Mp Van Der Aalst.
Pattern-based translation of bpmn process models to bpel web services.
International Journal of Web Services Research (IJWSR), 5(1):42–62, 2008.
(Cited on page 28.)

[72] Chun Ouyang, Marlon Dumas, Wil M. P. Van Der Aalst, Arthur H.
M. Ter Hofstede, and Jan Mendling. From business process models to
process-oriented software systems. ACM Trans. Softw. Eng. Methodol.,
19(1):2:1–2:37, August 2009. ISSN 1049-331X. doi: 10.1145/1555392.
1555395. URL http://doi.acm.org/10.1145/1555392.1555395. (Cited
on page 28.)

[73] Francis Palma, Javier Gonzalez-Huerta, Naouel Moha, Yann-Gaël
Guéhéneuc, and Guy Tremblay. Service-Oriented Computing: 13th
International Conference, ICSOC 2015, Goa, India, November 16-19,
2015, Proceedings, chapter Are RESTful APIs Well-Designed? De-
tection of their Linguistic (Anti)Patterns, pages 171–187. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015. ISBN 978-3-662-48616-0.
doi: 10.1007/978-3-662-48616-0_11. URL http://dx.doi.org/10.1007/

978-3-662-48616-0_11. (Cited on page 100.)

[74] Francis Palma, Javier Gonzalez-Huerta, Naouel Moha, Yann-Gaël
Guéhéneuc, and Guy Tremblay. Are restful apis well-designed? de-
tection of their linguistic (anti)patterns. In Service-Oriented Computing,
Lecture Notes in Computer Science. Springer, 2015. ISBN 978-3-662-
48615-3. doi: 10.1007/978-3-662-48616-0_11. URL http://dx.doi.org/

10.1007/978-3-662-48616-0_11. (Cited on page 132.)

[75] Cesare Pautasso. Rest vs. ws-* comparison. 2009. (Cited on pages 3

and 9.)

[76] Cesare Pautasso. BPMN for REST. In Proc. of the 3rd International Business
Process Modeling Notation Workshop (BPMN 2011), pages 74–87, Lucerne,
Switzerland, November 2011. doi: 10.1007/978-3-642-25160-3_6. (Cited
on pages 4, 31, and 41.)

[77] Cesare Pautasso and Erik Wilde. Push-enabling restful business pro-
cesses. In International Conference on Service-Oriented Computing, pages
32–46. Springer, 2011. (Cited on pages 4, 25, 31, 41, 44, 83, 120, and 130.)

[78] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. Modeling RESTful
Conversations with extended BPMN Choreography diagrams. In ECSA
2015. Springer. (Cited on pages 4 and 31.)

[79] Chris Peltz. Web services orchestration and choreography. Computer,
(10):46–52, 2003. (Cited on pages 108 and 134.)

[80] Carl Adam Petri. Kommunikation mit automaten. 1962. (Cited on
pages 19, 84, and 134.)

[81] Fabian Pittke, Henrik Leopold, and Jan Mendling. Automatic detection
and resolution of lexical ambiguity in process models. IEEE Trans. Soft-
ware Eng., 41(6):526–544, 2015. doi: 10.1109/TSE.2015.2396895. URL
https://doi.org/10.1109/TSE.2015.2396895. (Cited on page 135.)

http://doi.acm.org/10.1145/1555392.1555395
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-662-48616-0_11
https://doi.org/10.1109/TSE.2015.2396895

144 bibliography

[82] Ehud Reiter and Robert Dale. Building applied natural language gener-
ation systems. Natural Language Engineering, 3(1):57–87, 1997. (Cited on
page 67.)

[83] Philip Resnik. Using information content to evaluate semantic similar-
ity in a taxonomy. In Proc. of the 14th Int. Joint Conference on Artificial
Intelligence, pages 448–453, 1995. (Cited on page 66.)

[84] Paul Rimba, An Binh Tran, Ingo Weber, Mark Staples, Alexander Pono-
marev, and Xiwei Xu. Comparing blockchain and cloud services for
business process execution. In 2017 IEEE International Conference on Soft-
ware Architecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, pages
257–260, 2017. doi: 10.1109/ICSA.2017.44. URL https://doi.org/10.

1109/ICSA.2017.44. (Cited on page 29.)

[85] Silvia Schreier. Modeling restful applications. In Proceedings of the second
international workshop on restful design, pages 15–21. ACM, 2011. (Cited
on page 30.)

[86] Christoph Schroeder. Articles and article systems in some areas of eu-
rope. EMPIRICAL APPROACHES TO LANGUAGE TYPOLOGY, 20(8):
545, 2006. (Cited on page 73.)

[87] Nigel Slack, Stuart Chambers, and Robert Johnston. Operations manage-
ment. Pearson education, 2010. (Cited on page 9.)

[88] Paul P. Tallon. A process-oriented perspective on the alignment of in-
formation technology and business strategy. Journal of Management Infor-
mation Systems, 24(3):227–268, 2007. doi: 10.2753/MIS0742-1222240308.
URL https://doi.org/10.2753/MIS0742-1222240308. (Cited on
page 3.)

[89] Satish Thatte. Xlang: Web services for business process design. Microsoft
Corporation, 2001, 2001. (Cited on page 14.)

[90] Francisco Valverde and Oscar Pastor. Dealing with rest services in
model-driven web engineering methods. V Jornadas Científico-Técnicas
en Servicios Web y SOA, JSWEB, 2009. (Cited on page 30.)

[91] Wil M. P. van der Aalst. The application of petri nets to workflow man-
agement. Journal of Circuits, Systems, and Computers, 8:21–66, 1998. (Cited
on page 86.)

[92] Wil M. P. van der Aalst. Process Discovery: An Introduction, pages 125–
156. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-
642-19345-3. doi: 10.1007/978-3-642-19345-3_5. URL https://doi.org/

10.1007/978-3-642-19345-3_5. (Cited on page 9.)

[93] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske.
Business process management: A survey. In Wil M. P. van der Aalst and
Mathias Weske, editors, Business Process Management, pages 1–12, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-44895-2.
(Cited on page 7.)

[94] Wil MP Van der Aalst. Verification of workflow nets. In International
Conference on Application and Theory of Petri Nets, pages 407–426. Springer,
1997. (Cited on page 20.)

https://doi.org/10.1109/ICSA.2017.44
https://doi.org/10.1109/ICSA.2017.44
https://doi.org/10.2753/MIS0742-1222240308
https://doi.org/10.1007/978-3-642-19345-3_5
https://doi.org/10.1007/978-3-642-19345-3_5

bibliography 145

[95] Wil MP Van der Aalst. The application of petri nets to workflow manage-
ment. Journal of circuits, systems, and computers, 8(01):21–66, 1998. (Cited
on page 20.)

[96] Hagen Völzer. A new semantics for the inclusive converging gateway in
safe processes. In Richard Hull, Jan Mendling, and Stefan Tai, editors,
Business Process Management, pages 294–309, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-15618-2. (Cited on page 53.)

[97] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexan-
der Ponomarev, and Jan Mendling. Untrusted Business Process Mon-
itoring and Execution Using Blockchain, pages 329–347. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-45348-4.
doi: 10.1007/978-3-319-45348-4_19. URL http://dx.doi.org/10.1007/

978-3-319-45348-4_19. (Cited on page 28.)

[98] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient con-
sistency measurement based on behavioral profiles of process models.
IEEE Trans. Software Eng., 37(3):410–429, 2011. doi: 10.1109/TSE.2010.96.
URL https://doi.org/10.1109/TSE.2010.96. (Cited on page 135.)

[99] Mathias Weske. Business Process Management - Concepts, Languages, Ar-
chitectures, 2nd Edition. Springer, 2012. ISBN 978-3-642-28615-5. (Cited
on pages xiii, 3, 7, 8, 37, 42, and 80.)

[100] W3C. Simple Object Access Protocol (SOAP) 1.2. World Wide Web Consor-
tium, 2003. (Cited on pages 3, 9, and 28.)

[101] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection.
In Proc. of the 32nd annual meeting on Association for Computational Linguis-
tics, pages 133–138, 1994. (Cited on page 66.)

[102] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran, and
S. Chen. The blockchain as a software connector. In 2016 13th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA), pages 182–191,
April 2016. doi: 10.1109/WICSA.2016.21. (Cited on page 29.)

[103] Xiwei Xu, Liming Zhu, Udo Kannengiesser, and Yan Liu. An architec-
tural style for process-intensive web information systems. In Lei Chen,
Peter Triantafillou, and Torsten Suel, editors, Web Information Systems En-
gineering – WISE 2010, pages 534–547, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. ISBN 978-3-642-17616-6. (Cited on pages 4 and 31.)

[104] Johannes Maria Zaha, Alistair Barros, Marlon Dumas, and Arthur ter
Hofstede. Let’s dance: A language for service behavior modeling. In
Robert Meersman and Zahir Tari, editors, On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, pages 145–
162, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-
540-48289-5. (Cited on pages 14 and 27.)

[105] Johannes Maria Zaha, Marlon Dumas, Arthur Ter Hofstede, Alistair Bar-
ros, and Gero Decker. Service interaction modeling: Bridging global and
local views. In Enterprise Distributed Object Computing Conference, 2006.
EDOC’06. 10th IEEE International, pages 45–55. IEEE, 2006. (Cited on
pages 16 and 27.)

http://dx.doi.org/10.1007/978-3-319-45348-4_19
http://dx.doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1109/TSE.2010.96

146 bibliography

[106] J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a
Pragmatic Transformation Approach. In International Conference "Modern
Information Technology in the Innovation Processes of the Industrial Enter-
prises, Genova, Italy, 2005. (Cited on page 28.)

[107] Michael zur Muehlen, Jeffrey V. Nickerson, and Keith D. Swenson. De-
veloping web services choreography standards—the case of rest vs. soap.
Decision Support Systems, 40(1):9 – 29, 2005. ISSN 0167-9236. doi: https:
//doi.org/10.1016/j.dss.2004.04.008. URL http://www.sciencedirect.

com/science/article/pii/S0167923604000612. Web services and pro-
cess management. (Cited on page 3.)

All links were last followed on June 12, 2019.

http://www.sciencedirect.com/science/article/pii/S0167923604000612
http://www.sciencedirect.com/science/article/pii/S0167923604000612

D E C L A R AT I O N

I hereby confirm that I have authored this thesis independently and
without use of others than the indicated sources. All passages which are
literally or in general matter taken out of publications or other sources
are marked as such. I am aware of the examination regulations and this
thesis has not been previously submitted elsewhere.

Potsdam, June, 2019

Adriatik Nikaj

	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Background
	1 Introduction
	1.1 Research Goal
	1.2 Contributions
	1.3 Structure of the thesis

	2 Foundations
	2.1 Business Process Management
	2.2 Service Oriented Architecture
	2.3 BPMN business process models and collaborations
	2.4 Process choreographies
	2.5 Petri nets
	2.6 Representational state transfer architectural style

	3 Related Work
	3.1 Process Choreography Implementation
	3.2 Modeling RESTful interactions
	3.3 BPM and REST

	RESTful Choreography Language
	4 Research Questions and Requirements Analysis
	4.1 Research questions
	4.2 Requirements

	5 RESTful choreographies
	5.1 Main design decisions
	5.2 RESTful choreography language specification
	5.2.1 Metamodel
	5.2.2 Formal specification
	5.2.3 Graphical annotation

	5.3 Derivation guidelines and design patterns
	5.4 Conclusion

	6 Semi-automatic Derivation of RESTful Choreographies
	6.1 Problem statement
	6.2 Preliminaries
	6.3 Core derivation of REST tasks
	6.3.1 Derivation of the REST verb
	6.3.2 Generation of the request URI
	6.3.3 Generation of the REST response

	6.4 Advanced derivation of REST tasks
	6.4.1 Choreography-specific labels
	6.4.2 POST versus PUT

	6.5 Application to Use Case
	6.6 Summary and Discussion

	7 RESTful Choreography Completeness Properties
	7.1 Motivation
	7.2 Hyperlink Completeness
	7.2.1 Structural hyperlink completeness
	7.2.2 Checking hyperlink completeness

	7.3 Correct Resource Behavior
	7.4 Application to use case
	7.5 Summary

	From RESTful choreographies towards RESTful interactions
	8 REST-enabled Decision Making in Business Process Choreographies
	8.1 Problem statement
	8.1.1 Choreographies' exclusive gateway constraints
	8.1.2 Decision Model and Notation

	8.2 RESTful decision service for choreographies
	8.2.1 REST interface of decision services
	8.2.2 Integrating RESTful decision services into choreographies

	8.3 Conclusions

	9 RESTful Choreography Guide
	9.1 Problem Statement
	9.2 RESTful Choreography Guide
	9.2.1 Choreography Resource Model
	9.2.2 From RESTful Choreography to Process Model

	9.3 Implementation Architecture
	9.4 Conclusions

	Evaluation and Conclusions
	10 Evaluation of RESTful choreography derivation
	10.1 REST Annotator implementation
	10.2 Evaluation setup
	10.3 Evaluation Results
	10.4 Discussion

	11 Conclusions
	11.1 Summary
	11.2 Limitations and future work

	Bibliography
	Declaration

