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Abstract
Many studies on biological and softmatter systems report the joint presence of a linearmean-squared
displacement and a non-Gaussian probability density exhibiting, for instance, exponential or
stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of themedium and is
captured by randomparametermodels such as ‘superstatistics’ or ‘diffusing diffusivity’. Indepen-
dently, scientists working in the area of time series analysis and statistics have studied a class of
discrete-time processes with similar properties, namely, random coefficient autoregressivemodels. In
this workwe try to reconcile these two approaches and thus provide a bridge between physical
stochastic processes and autoregressivemodels.We start from the basic Langevin equation ofmotion
with time-varying damping or diffusion coefficients and establish the link to random coefficient
autoregressive processes. By exploring that linkwe gain access to efficient statisticalmethods which
can help to identify data exhibiting Brownian yet non-Gaussian diffusion.

1. Introduction

Brownianmotion, one of themost fundamental processes in non-equilibrium statistical physics, describes the
motion of a passive colloidal particle in a thermal fluid environment. It was observed even in ancient times, for
instance, by Romanphilosopher Lucretius [1]. Themodern scientific interest was started by botanist Brown [2];
it was later studied theoretically by Einstein, Sutherland, Smoluchowski, and Langevin between 1905 and 1908
[3–6]. Two fundamental properties are typically associatedwith Brownianmotion, namely, the linear growth

d =( ) ≔ [ ( ) ] ( )t X t Dt2 1X
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in time of themean-squared displacement (MSD)with the diffusion coefficientD, and theGaussian probability
density function (PDF)

p
= -

⎛
⎝⎜

⎞
⎠⎟( ) ( )p x t

Dt

x

Dt
;

1

4
exp

4
. 2X

2

Alternatively to theMSD (1)Brownianmotion is characterised by a 1/f 2 frequency dependence of the associated
ensemble and single trajectory power spectra [7, 8].

Deviations from the linear time dependence (1) of theMSDare observed routinely in a large variety of
systems, in particular, in the power-law form

d ~ a
a( ) ( )t D t 3X

2

with the anomalous diffusion coefficientDα [9–11]. In biological cells or other complex liquids both
subdiffusionwith 0<α<1 [12–17] and superdiffusionwith 1<α<2 [18–20] aremeasured, see the recent
reviews [21, 22]. Anomalous diffusion are effectedwhen the increments of the stochastic process are no longer
independent, when the variance of the step length or themean-step time diverges, as well as due to the tortuosity
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of the embedding space. The associated PDF of these processesmay have bothGaussian andnon-Gaussian
shapes [9–11].

Of late, a new class of diffusive dynamics has come into focus, following numerous reports in softmatter,
biological and other complex systems: in these systems theMSD is normal of the form (1)with invariable
coefficientD, however, the PDF is non-Gaussian and often found to be of the distinct exponential shape
(‘Laplace distribution’)
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see [23–27] aswell as the extensive list of references in [28]. These ‘Brownian yet non-Gaussian’ processes along
with amore general class of non-Gaussian PDFs, discussed inmore detail below, are in the focus of this study.

Our goal here is, however, different from the previousmodelling approaches. Namely, herewe try to
establish a direct connection of the physicalmodels for Brownian yet non-Gaussian diffusion and a class of
processes ubiquitously used in time series analysis, the so-called autoregressivemodels with random coefficients
[29–31].

Thus, we introduce dedicated time seriesmethods to themodelling of non-Gaussian diffusionwhich enables
us to provide information about the distribution of the process and thus showing the influence of some effective
properties of the heterogeneousmedium. In particular this approach allows one to distinguish between locally
homogeneous (‘superstastics’ type) and rapidly varying (‘diffusing diffusivity’ type) environments (see, for
instance, figure 2). It alsomakes it possible to showhow the heterogeneity of the original Langevinmodel
induces the nonlinearmemory structure of the studied process, which is visible in the simulated data.

Thework is structured as follows: in section 2we providemore information on the process of Brownian yet
non-Gaussian diffusion alongwith a primer to autoregressivemodels. Section 3 then introduces an intuitive
physical derivation of the autoregressivemodel. The situationwhen the correlation times of the random
diffusion coefficients is comparatively short is then considered in detail in section 4. In section 5we showhow
the statisticalmethods of time series can be used to qualify and quantify the non-Gaussianity of a time series.
There, we also use the analytical formulae for themoments of the process, to detect the nonlinearmemory
structure specific to the consideredmodel.We summarise our results and discuss their utility in section 6. The
paper closes with an appendix, inwhich the derivation of themoments is presented.

2. Physical stochasticmodelling and autoregressivemodels

2.1. Brownian yet non-Gaussian diffusion
In the original works onBrownian yet non-Gaussian diffusion the linearMSD (1)was observed alongwith the
Laplace shape (4) of the PDF.Other findings suggest the presence ofmore general stretchedGaussian tails

µ -
a

d
⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ∣ ∣ ( )p x t

x

ct
; exp , 5X 2

with the stretching parameter d ¹ 2. PDFs of this type describe diffusion that can be normal (α=1) or
anomalous of the form (3)with a ¹ 1. It was found that δ=1 andα between 0.75 and 0.25 for tracer diffusion
in living bacteria and eukaryotic cells [32]. Similarly, in simulations of crowdedmembranes it was shown that δ
is between 1.3 and 1.6, andα below 1 [33]4.

This behaviour can be explained by the fact that the consideredmedium is spatially or temporally
heterogeneous [23, 24, 28, 35–37]. In such a system the thermalfluctuations are still Gaussian but the observed
displacements aremixtures of theseGaussian contributions with randomweights, effecting the non-Gaussian
outcome. In practice, this is commonly realised by two classes of diffusionmodels, namely by so-called
‘superstatistics’ and ‘diffusing diffusivity’models.

Superstatistics is a termproposed byCohen andBeck [38–40] and stands for superposition of statistics. It
refers to amodel with randomparameters, that arefixed for each trajectory. This is a formof hierarchical or
multilevelmodelling [41], which is also close to the Bayesian inferencemethod. The distributionswhich arise
this way are called compound ormixture [42]. In the context of diffusion thismixture approach can be
explained in the followingway: each observed trajectory eithermoves in its ownneighbourhood, that has
distinct properties affecting themotion. These features are supposed to not vary significantly at temporal and
spatial scales specific to the observed trajectories. If themotion is not confined, this assumptionmust be viewed
as a short-time approximation. Another possible origin is the situationwhen the diffusion characteristics of the
observed particles vary fromone to another, for instance, the radius of different tracer beads. In this case the

4
Gammadistributionswere found in [26], see themodelling in [34].
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compound distributions are observed at long times, as well, but this possibility can be excluded for experiments
inwhich the type of the diffusing object is precisely controlled.

The simplest type of amixturemodel is Brownian diffusionwith a randomised but global diffusion
coefficientD. In thismodel the infinitesimal increments of the position process are given by

=( ) ( ) ( )X t D B td d , 6

whereB represents standard Brownianmotion. If we assume thatD has an exponential distribution, the
emerging process is characterised by the Laplace PDF (4). Similarly, a stretched exponential PDF ofD leads to
relation (5)5. The randomness ofDwas confirmed inmany experiments [26, 32, 37] and also in numerical
studies [33]. Since there is no fundamental reason to pinpoint the diffusion coefficient as the only heterogeneous
property of the system, other parameters can also bemade superstatistical. For example, a randomviscosity or
memory kernel in the Langevin equation also lead to non-Gaussian PDFs and generally nonlinearMSD [43]. It
must be stressed that by introducing a parameter which is random andfixed trajectory-wise, we break not only
homogeneity, but also locality and independence. By sharing the same randomparameter, thememory structure
of the process becomes nonlinear and non-Gaussian [43]. This dependence is strong enough to render the
resultingmotion non-ergodic.

This non-ergodic property is not always desired and can be avoidedwhen the systemparameters are allowed
to be both randomand time-dependent, as in the diffusing diffusivitymodel. Fixed, deterministic values are
replaced by a stochastic variation of the parameter, and for this reason the resultingmodels are called doubly
stochastic [44]. If the introduced parameter evolution is ergodic, the resultingmodel will be ergodic, but still
non-Gaussian. For example, one can consider a time-varying diffusion coefficient leading to the diffusing
diffusivity approach proposed byChubinsky and Slater [45]6. In thismodel small Brownian displacements

( )B td are assumed to be randomly rescaled by randomD(t), such that the resultingmotion is described by the
stochastic equation7

ò= =( ) ( ) ( ) ( ) ( ) ( ) ( )X t D t B t X t D s B sd d or equivalently d . 7
t

0

Further details of the process depend on the specific choice ofD(t)—the analysis is often complicated.However,
an important case was solved byCox et al [49]whoproposed a stochastic differential equationwith suitable
mean-reverting property that leads toD(t)with exponential type ofmemory. Their workwasmotivated by
financial applications andwas expressed in the language of option prices and volatilitymodelling.More recently,
this approachwas applied to physically relevant quantities in [28, 35, 50–52], in particular, for non-stationary
initial conditions [34].

2.2. Autoregressivemodels
In contrast tomodels originating fromphysics, autoregressivemodels have their roots infiltering, optimal
control theory, and economics [29]. In this context themeasured sequence of observationsVk is assumed to be
an output of a system,which is linked linearly to thewhiteGaussian noise input sequenceZk. The classical
autoregressivemoving average (ARMA) processes [30, 31] are defined by the recursive relation

f f f q q q- - - ¼ = + + +¼+- - - - - - ( )V V V V Z Z Z Z . 8k k k
p

k p k k k
q

k q
1

1
2

2
1
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2

2

This process is denoted byARMA(p, q) and thus explicitly contains the range parameters p and q. The term
autoregressive AR(p) reflects the linear dependence of the observedVk on p past values ¼- -V V, ,k k p1 , and the
moving averageMA(q) represents a linear combination of the last value of the noiseZk and q previous values

¼- -Z Z, ,k k q1 . The admissible coefficientsf i and θ j are chosen such that the sequenceVk is stationary,
resembling the physical velocity process (hence the choice of notation ‘V’) or highly confinedmotion8.

Inmost of the literature themodel (8)was notmeant to explain the behaviour of the system. Rather, the
philosophywas concentrated on controlling the data. This can be achieved byfinding a reasonably small set off i

and θ j that sufficiently well describe the observedmemory structure in the data. The procedure typically
employsmethods based onmean-square optimisation and information theory [30, 31]. Given the estimates of
thef i and θ j the future behaviour can be predicted (in the sense of the least square error or similar), which is a
crucial element, for instance, in financial forecasting. Additionally, by inverting relation (8), theZk can be
estimated from theVk, therefore variouswhite noise tests can be used to verify the goodness offit of the
model [31].

5
Of course, other formsmay also emerge from such an approach, for instance, Gamma [34] or stable [28] distributions.

6
In this sense the diffusing diffusivity approach is similar in kind to the diffusing waiting times in correlated continuous time random

walks [47, 48].
7
Here and below such formulae should be understood as stochastic L2 integrals and equations [46].

8
For non-stationary processes the ARIMAmodel (‘I’ stands for ‘integrated’)may be used: for ARIMA(p,1, q) the differences

D = - -V V Vk k k 1 are assumed to beARMA(p, q), for ARIMA(p, n, q) the nth differences are ARMA(p, q).

3

New J. Phys. 21 (2019) 073056 JŚlęzak et al



It is in fact remarkable howmany concepts of non-equilibrium and biological physics have their
independent counterparts in time series analysis. For example, the study of anomalous diffusion and long-range
dependence can be performed by using autoregressive fractionally integrated (ARFIMA)models where thewhite
noise sequenceZk is replaced by the fractional noise Zk

d [53, 54]with a power-law covariance structure
determined by the parameter d,  µ+

-[ ]Z Z jk
d

k j
d d2 1 (one can think of d as theHurst exponentminus 1/2). It can

be explicitly defined as the result of the power-lawfilter applied toZk,
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ForARMAprocesses, the left hand side of (8)—the ARpart—is responsible formodelling an exponential decay
of the covariance, whereas theMApart introduces short,finite time corrections. Additional filtering of thewhite
noise presented in (9) extends the ARMAmodel to the ARFIMAwith power-lawmemory, whichwas very
successfully applied to various anomalous diffusion phenomena encoded in biological data [55]. An analogue of
Lévyflights and diffusionwith a power-law PDF is the ARMAmodel with stable noise, where theGaussianZk are
replaced by non-Gaussian stable random variables [56]. Similarly, fractional Lévy stablemotion corresponds to
ARFIMAwith stable noise [57, 54].

Another line of development in time series analysis, originating fromBox–Jenkinsmodels, are nonlinear
generalisations,mainly the so-called autoregressive conditional heteroscedasticity (ARCH) [58] and generalised
ARCH (GARCH)models [59]9. These allow for the parameterisation and prediction of a non-constant variance
and proved to be very useful forfinancial time series; their invention prompted the bestowal of theNobel
Memorial Prize in Economic Sciences in 2003 toGranger and Engle.When integrated ARCH-type processes
exhibit non-Gaussian distributions for short times alongwith a linear time dependence of theMSD. Precisely
this observation leads us to pursue the questionwhether there is a fundamental connection between the two
worlds of time series analysis using autoregressivemethods and physicalmodels of Brownian yet non-
Gaussian type.

The aforementioned notion of heteroscedasticity is related to the time-dependence of the conditional
variance [60, 61]. The basic ARCH(q)model is defined as

a a a a= S S = + + +¼+- - - ( )V Z V V V, . 10k k k k k k q k q
2

0 1 1
2

2 2
2 2

If anARMAmodel is assumed for the noise variance, themodel becomes aGARCH(p, q)model,
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AGARCHmodel has anARMA-type representation, so thatmany of its properties are similar to those of ARMA
models, for instance, we can estimate theGARCHparameters by the same technique as for ARMAprocesses
[29]. Inmost applications it is enough to consider the order of themodel as (1, 1). ARFIMA combinedwith
GARCHdescribes both power-law decay of the correlation functionwithfinite-lag effects (ARFIMApart) and
varying diffusion parameter (GARCHpart) [62]. For example, it can describe inhomogeneous diffusion in the
cellmembrane [63] or solar x-ray variability [64].While the resemblance to diffusing diffusivitymodels (7) is
indisputable:Vkmodels velocity andΣkmodels the evolving diffusion coefficient, there is to date no physical
derivation of relations (10) and (11).

Another approach related to heteroscedasticity, non-Gaussianity and linearMSD is themain point of
interest in this work: we assume that the linear coefficientsf i and θ j in the definition of ARMA (8) are replaced
by random variables Fk

i andQk
j that are independent of the noiseZk:

- F - F - ¼ F = Q + Q + Q +¼+ Q- - - - - - ( )V V V V Z Z Z Z . 12k k k k k k
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2

2
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This is the class of doubly stochasticmodels, random coefficient ARMA (rcARMA) [65, 66].

3. Physical derivation of the autoregressivemodel

Let us start with the classical Langevin equation for the velocity of a diffusing particle,

b= - +
( ) ( ) ( ) ( )m

V t

t
V t F t

d

d
, 13

which isNewton’s second lawwith the Stokes dissipative force−βV and the stochastic force F. In the classical
setting F is given bywhite Gaussian noise with amplitude kBTβ determined by thefluctuation-dissipation
relation [67, 68]. Heterogeneity of themedium can bemodelled bymaking the parameters of equation (13)

9
A set of randomvariables is heteroscedastic—as opposed to homoscedastic—if there is at least one sub-population that has different

variability from the rest, where ‘variability’ could bemeasured in terms of the variance or other dispersionmeasures.
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time-dependent and random—then they describe the local state of the environment of the diffusing particle. All
possible correlation effects caused by the particle repeatedly visiting the same areas of the phase space are
assumed to be reflected by thememory structure of random functionsmodelling these local parameters. Starting
from the next sectionwewill neglect this dependence entirely, which corresponds to an annealed picture that is
also inherent in the current physical diffusing diffusivitymodels.This assumption can be also justifiedwhen the
environment changes continuously. The resulting equation can then bewritten in the form

= -L +( ) ( ) ( ) ( ) ( ) ( )V t t V t t D t B td d d . 14

Wedonot provide anymore fundamental derivation behind this formula, for usΛ(t) andD(t) are effective
parameters whose physicalmeaning is determined by equation (14) alone:D(t) describes the local effective
amplitude of velocity gains andΛ(t) the local effective linear damping or relaxation of the velocity. Infinancial
language these parameters would be called stochastic return rate and stochastic volatility.We note that this class
ofmodels differs from the superstatistical approach of Beck andCohen [38], who assume that the Langevin
dynamics and th stochasticity of the environment can be considered separately. In equation (30) belowwe
consider a particular case leading to superstatistics.

Formula (14) resembles the rcARMA. Indeed, in the standard Euler scheme of numerical simulations, one
fixes a time delayΔt between observations, denotesVk=V(kΔt) and approximates » - -( )V t V Vd k k 1,
which results in

- - L D = D-( ) ( )V t V D B1 . 15k k k k k1

This is an rcAR(1) process withAR coefficient 1−ΛkΔt. It is easy to see that the same reasoning applies to any
linear stochastic differential equation and thus the classical schemes of discrete-time simulations return
rcARMAprocesses approximating the continuous-time solutions.

In fact, the connections between rcARMA andmodels of diffusing diffusivity reach deeper than that.
Classical results from the theory of time series analysis establish that there is an exact correspondence between
ARMAand solutions of linear stochastic equations with constant coefficients—no approximation is needed
[69]. The classical Langevin equation for a position of a particle confined in an harmonic potential,

k b= - - +
( ) ( ) ( ) ( ) ( )m

X t

t
X t

X t

t
F t

d

d

d

d
16

2

2

fits into this category. The resulting discretemotion is the ARMA(2, 1) process
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TheMA(1) coefficient θ can be easily calculated numerically or expressed by a somewhat complicated but
elementary formula [70]. This class of relations has direct application to the statistical analysis of the data and can
be used, for instance, to calculate the exact discrete-time power spectral density (the spectrum given by the
Fourier series ofXk)without the need of the commonly used approximation òå D »( ) ( ( ))f X t f X t tdk k [71].

The core of the physical interpretationwe propose in this work is that the derivation used to obtain (16) and
(17) can be generalised for the case of linear equationswith time-dependent coefficients. Namely, wemultiply
(14) by the integrating factor ò L( ( ) )t texp d and integrate from (k−1)Δt to kΔt, obtaining

òò ò ò- =L L
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- D

D L ¢ ¢
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After rearrangement (division by the exponential prefactor ofVk) this relation takes the sleek form

- F =- ( )V V Z 20k k k k1
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The randomcoefficient AR formof the left hand side is clearly present, but it is not immediately clearwhat is the
structure ofZk on the right. DifferentZk use increments ( )B sd fromdisjoint intervals [(k−1)Δ t, kΔt]. The
Gaussian increments ( )B sd are stationary and do not depend on k but they are rescaled byD(t) and the exponent
ofΛ(t), whichmakes their conditional variances a sequence of randomvariables,
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Conditioned onΛ andD the variablesZk areGaussian, independent, and have the variance specified above. Thus

theZk can be decomposed asZk=ΘkWk for aGaussianwhite noiseWk and coefficients Q = L[ ∣ ]Z D,k k
2 ,

which is a function of randomΛ(t) andD(t). This is but exactly the rcARMA

- F = Q- ( )V V W , 23k k k k k1

inwhich the regressive coefficients  F0 1k model the local return or relaxation rates, and the amplitude
coefficients Q 0k describe the heteroscedasticity offluctuations, that is the variability of the fluctuations’
dispersion. An illustration how the changes ofΦk are visible in the data can be seen infigure 1.

EachΦk is a decreasing functional of the valuesΛ(t) from the interval [(k−1)Δ t, kΔt]. SimilarlyΘk is
increasingwithD(t) and decreasingwithΛ(t). ThereforeΦk andΘk are two sequences which shouldmirror the
memory structure ofΛ(t) andD(t). They are dependent, because they both are functionals of the same range of
valuesΛ(t). In general the formof this dependence is highly nonlinear.When the parameters can be assumed to
not vary significantly in the intervalΔt,Λ(t)≈Λk andD(t)≈Dk, the approximate relation reads

F » Q »
L

- »
D

- F
- F-D L - D L

( )
( )D tD

e ,
2

1 e
2 ln

1 . 24k
t

k
k

k

t k

k
k

2 2k k

In practical applications this formula can be further simplified.Namely, the function - -( ) ( ( ))x x1 ln2 is
approximately linear on the interval [0, 1], thus a reasonable approximation isQ » FDk k k .

Nomatter what is the distribution of theΦk andΘk, the solution of (23) itself can be expressed in a simple
manner. Repeating the recursive relation betweenVk and -Vk 1we canwrite the explicit formula linkingVk and

-Vk n for any n in the form

= F F F + Q + F Q + F F Q +¼
+ F F Q

- - + - - - - - -

- + - + - +
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Away from the degenerate caseΛ(t)≡0 it is true thatΦk<1, therefore when  ¥n the series converges
towards

å = F Q
=

¥
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We see that eachVk is amixture ofGaussian variablesWkwith randomweights. The result is notGaussian, but
can be characterised as conditionally Gaussian ( )S0, 2 with conditional variance

 å F Q = F Q
=

¥
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⎠
⎟⎟≔ [ ∣ ] ( )S V , . 27k
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2 2
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The distribution of S2 determines the non-Gaussianity: themore spread out S2 is, themore the PDFs of the
velocity and displacement differ from theGaussian shape. This property can be expressed in terms of the excess
kurtosis, which is directly related to the relative standard deviation (RSD) of S2. Namely,

Figure 1.TrajectoryVk inwhichΦk changes in 3 intervals from0.5 to 0.1, and finally 0.9, whileΘk=1 is kept constant. For smallΦk

themotion resembles white noise, larger values result in longer Brownian excursions away from0.Note that for better visibility very
long excursion are cut off.
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is three times the RSD squared. Different variants of the excess kurtosis or the RSDof S2 are sometimes called
‘non-Gaussianity parameter’ [72, 73], but herewewill usemore precise terminology. Because both are positive,
the distribution ofV is always leptokurtic, that is, it has tails thicker than aGaussian. It is worth stressing that the
kurtosis is only one ofmany possiblemeasures of non-Gaussianity, but it is a convenient one because of the easy
estimation.

The distribution of S2 is, in general, hard to analyse even for simplemodels ofΦ andΘ. One exception is
encounteredwhen the coefficients stay constant for long intervals of timeTα (precisely,  a[ ]T larger than the
mean relaxation time  F[ ]1 ). In such a situation S2 spends short times transitioning between these periods and
therefore in themajority they attain an equilibrium value obtained from taking the coefficients in (27) constant,
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whereα is an identification of the interval. The resulting distribution of S2 is thus

»
Q

- F

~


( )S

1
, 302

2

2

withQ
~
and F being randomvariables constructed from the valuesΘα,Φα,Θβ,Φβ,Θγ,Φγ,Kwith probabilities

weighted by the relativemean lengths of the intervalsTα,Tβ,Tγ,K. In this approximation one trajectory is
effectively the same as an ensemble of equal-length trajectories, eachwith its ownQ F

~ , , which are glued together
at the ends,merging into a single trajectory. (This is essentially a formof superstatistics.) For a simple
demonstration see figure 2. There one of the limiting cases are long periods of constant coefficients, as in (30),
but one can also observe the second limit of rapidly varying coefficients. This is the subject of the next section.

4. Shortmemory random coefficient AR(1)

When the correlation timeofΛ(t) andD(t) ismuch smaller than the observation time, Dt tc , the integrals
defining F F +,k k 1 andQ Q +,k k 1 contain only the ratio tc/Δtof the totalmass corresponding to dependent values
ofΛ(t),D(t). Thus,Φk andΘk can be assumed to be sequences of independent and identically distributed (i.i.d.)
variables.Note that forfixed k the pairΦk,Θkmay, andgenerallywill bedependent. Averaging (27) yields
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Figure 2.PDFof the rcARprocessVwith randomperiodsTα of constant coefficientsΦα andΘα=1. The dashed lines represent rcAR
simulations, the solid lines correspond to theoretical predictions for the limiting cases. The distributionwas chosen to be the simple

geometric distribution  ( ))eo q ,  = =( ( )) )P eo q k qk, and the two types of periods are chosen as F = =a a( ( ))P T eo q0.1,
d

= 1/2

and  F = = +a a( ( )) ( ))P T eo q eo q0.9,
d

=1/2. The periods ofΦα=0.9 are on average twice longer, thus the effective
distribution is F =( )P 0.1 =1/3, and F = =( )P 0.9 2 3. The prediction q→1 from (27)with independent coefficients
distributed like F . The prediction q→0 comes from (30), in the latter case the PDF is just a superposition of twoGaussians.
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Similarly, [ ]S4 can be calculated, as detailed in the appendix. Themoments [ ]S2 and [ ]S4 together
determine the kurtosis ofV. Accordingly, themotion is again non-Gaussian. The covariance also has a simple
form: from the recursive formula (25)we can easily derive the geometric decay

  j j= F+( ) ≔ [ ] [ ] ≔ [ ] ( )r j V V S , . 32V k k j
j

k
2

The formof the covariance also determines theMSD: for the velocity it converges exponentially to a constant

d = -( ) ( ( ))j r j2 1V V
2 and for the position ò t t
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it is linear for j 1,

d
j j

j=
-

+ - D( ) ( ) ≔ [ ] ( )j
c

j
c

c t S
ln ln

1 , 2 . 33X
j2

2 2

2
2 2 2

A similar formula can be obtained if one tries to recreate displacements givenVk: then D å
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A small error in determining the slope of the trueX(t) ismade in this procedure, but the general behaviour of the
MSD is the same.Note that the shapes of all the above functions depend only on themean value ofΦk, this is a
diffusionwith covariance andMSD (up to a scaling factor) as if the systemwere homogenised—however, at the
same time it is non-Gaussian, see figure 3.

As a concrete example of a physicalmodel which leads to this type of process let us assume that the diffusivity
is constant (with no loss of generality we takeD(t)=1). Thenwe consider a diffusing particle interacting with
high viscosity traps distributed in a Poissonianmanner, that is, thewaiting time between subsequent trapping
events have the exponential distribution  r( ). By a high-viscosity trapwemean a short-time interval when
L = ¥( )t , which immediately kills themomentumof the particle—this is a formof stochastic resetting [74].
Outside of these events the damping rate is constantΛ(t)=λ. The probability that the particle does notmeet
any traps between times (k−1)Δt and kΔt is r- D( )texp : in this case lF = - D( )texpk and

l lQ = - - D( ( )) ( )t1 exp 2 2k . The probability that the particlemeets at least one trap in an interval
[(k−1)Δt, kΔt] is of probability r- - D( )t1 exp , and the corresponding AR(1) coefficientΦk becomes 0. The
discrete noiseZk for this k has amore complex structure. All Gaussian fluctuations before the last trapping event
are erased, which is visible from (21). However the remaining fluctuations still count. Denoting byTk the
difference between the last trapping event and kΔtwe obtain the formula forQ¢k corresponding to the event
Φk=0,

ò l
Q¢ = =

-
»l
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D
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( )( ) s Te d

1 e

2
. 35k

k t T

k t
k t s
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k
2
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k

This corresponds to a small correction D( )t , whichmakes the resulting PDF smooth (otherwise the trapping
events would be visible as aDirac delta at x=0). The approximation on the right holds for lD t 1. The
relation betweenΛ(t) andΦk,Θk is shown in figure 4 using an exemplary trajectory.

VariablesTkwhich determineΘk have the distribution of an exponential variable conditioned by the
requirement that it has value lower thanΔt (that is, the trapping event occurred in the considered interval). It
has the PDF

Figure 3.PDF andMSD estimated from the rcARprocessV. HereUk are independent and uniformly distributed, ( )0, 1 , and
Q = Fk k . Different transformations ofUk correspond to different power laws ofΦk around 0

+ and 1−.
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Aswe determined the exact distribution ofΦk andΘk, the formula for the covariance (32) can bemade
completely explicit, namely
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The variance [ ]S2 has a complicated form, but the geometric decay rate is given by (ρ+λ)Δt. It is an intuitive
result:meeting a trap erases themomentumof the particle, which thus loses all connection to its history at a
frequency proportional to the density of traps.

Studying the distribution ofVk in general is hard, even for i.i.d. coefficients, because the conditional variance
(27) is given by an infinite sumwith termswhich are dependent, as the same F -k i reappear in them. In the
studied example the situation is specific and simpler, because the sum is actually finite. The coefficients F -k i are
a series of Bernoulli trials—after a series of j−1 non-zero ones appearingwith probability r- D( )texp j thefirst
zero occurs with probability r- - D( )t1 exp and the summation stops. Conditioned by this event the first j− 1
valuesQ -k i are deterministic, but the last term in the sum,Q¢-k j has the conditional distribution (35). This leads
to the formula for characteristic function,

q
q

= -
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )p Sexp

2
38V

2
2





å å

å

q

q
l

q

= - Q + Q¢ ´ -

= - - Q¢

l l r r

r q
l l r l

=

¥

=

-
- D

-
- D

-
- D - D

- D -

=

¥
- D - D - D

-

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( ) ( )

exp
2

e e e 1 e

1 e e exp
4

e e exp
2

e . 39

j i

j
i t

k i
j t

k j
j t t

t

j

j t j t j t
k j

0

2

0

1
2 2 2 2

4

1

2
2

2
2 2

2

Here the Laplace transformof the conditionalQ¢ = Q F =- - -∣{ }0k j
d

k j k j is given by
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The last approximationworks forlD t 1which follows from (35). The limiting caseλΔt≈0 is also interesting:
thenΦk are i.i.d. variableswithBernoulli distribution rF = = - D = - F =( ) ( ) ( )tP 1 exp 1 P 0k k , as usual
Q = Fk k—for simplicitywemay neglect thefluctuations counted in the next interval after the trapping events.
Directly from (27)we see that S2 has a geometric distribution. Any suchvariable canbe expressed as an integer part
of someexponentially distributed variable,E say, and therefore it has values betweenE andE−1.Asmentioned in

Figure 4.Damping rate L( )t and correspondingΦk,Θk. HereΔt=1 and, outside of the short impulses,Λ(t) = 1/4. To better
highlight different values of the coefficients, the diffusion coefficient was taken to beD(t)=4.
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the introduction, themixture ofGaussian variableswith varianceEhas exponential tails [75], so this is the case for
S2, aswell. This also provides an intuitive argument for the presence of the tailswith thickness betweenGaussian
andLaplace in the general case considered in this section (seefigure 3). As theΦk are bounded by 1, the tails of S

2

correspond to long stretches ofΦk close to 1, and as they are i.i.d. the probability of such an event decays
geometricallywith thenumber ofΦk.

5. Statistical analysis

Wenow address the statistical procedures in the context of stochastic processes with random coefficients.

5.1.Memory
In (32)we showed that the covariance of i.i.d. rcAR(1) is, up to a scale factor, the same as for the AR(1)with
coefficient f = F[ ]k . The same is also true for general i.i.d. rcARMA, it can be demonstrated bymultiplying
both sides of the equation by past values of the process and deriving the recursive formulas for the covariance
(these are called Yule–Walker equations)—they differ from the non-random coefficient case only by the single
equationwhich determines the variance [76]. On the one hand itmakes the additional randomness harder to
detect, but on the other hand it allows to use powerful ARMAbasedmethods of analysis. Aswementioned in
section 2.2, AR (thus also rcAR)have a covariance function that is amixture of exponentials, and theMApart is
responsible for short time corrections. For the continuous-time processes the only option of statistical
verificationwould seem to befitting the estimated covariance function and checking the validity of the result.
For rcARMA amore intuitive tool is available: the partial autocorrelation function. Given a stationary time series
Xk itmeasures the linear dependence betweenXk and -Xk j when an in-between set of variables
 ¼- - +≔ X X X, ,k j k k k j, 1 12

is removed. Denoting the least-squares projection operator by  it can be defined as

   a - --
- -( ) ≔ [ ] [( )( )] ( )j X X X X X . 41X k k k k j k j

2 1
k j k j, ,

The partial autocorrelation can be effectively estimated using standardmethods implemented in the popular
statistical packages (such as PythonStatsmodels, Rtseries, JuliaStatsBase, orMatlab Econometrics
Toolbox)—the usual command is the standard abbreviationpacf. It is intuitively clear thatαXmeasures the
‘direct’ dependence betweenXk and -Xk j which for AR(p) and rcAR(p), given their recursive definition, should
be non-zero for thefirst p values and zero further on. For theMApart one can reverse the definition and express
the noiseZk as the geometrical sumofXk, hence, the partial autocorrelation decays geometrically [30, 31]. For
the full ARMAmodel the two effects are additive.

For the i.i.d. rcAR(1) the statistical procedure becomes very simple: just estimateαX and check if it has a
significant non-zero value only for j=1. This value is simply a = F( ) [ ]1X k . For an illustration see figure 5.
For higher order ARprocesses there are also exact equations linking the values of partial autocorrelation,
covariance and coefficients of themodel [30, 31].

We nowproceed to show that there actually is a way to detect differences between the dependence structure
of ARMAand rcARMA. First, we estimate themean rcAR(1) coefficient j = F[ ]k , for instance, by using the
partial autocorrelation. Next, the typicalmethod of statistical verification for ARprocesses is to consider

j-~
-≔ ( )Z V V . 42k k k 1

For the AR(1)with deterministic coefficientf=j this would be an estimate of the noiseZk. Therefore, one
could then usemany of the testingmethods if the series is i.i.d. However, for the rcAR(1),

j= F - +~
-( ) ( )Z V Z . 43k k k k1

As  jF - =[ ] 0k the series is still uncorrelated,  =
~ ~

+[ ]Z Z 0k k 1 . It is a natural consequence of the applied

procedure, which fits the systemby removing the linear dependence. But the series
~
Zk remains nonlinearly

dependent. The value
~
Zk still depends on -Vk 1 and consequently also on F -k 1 appearing in the expression for~

-Zk 1. This purely nonlinear dependence can be detected only using nonlinearmeasures ofmemory. The
codifference function (see [77] for a detailed discussion) is one possible choice. It was proposed as a tool to study
α-stable variables, because it isfinite even for variables with no second, or even lower,moments [78]—however
its usefulness is by nomeans limited to this class. One of the few possible close definitions is the formula
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For anyGaussian process the codifference equals the covariance, so the difference between the two indicate any
non-Gaussianity of the PDFand,what is important here, of thememory structure. For i.i.d. rcAR it can be
expressed as a function of coefficients, and it canbe analytically approximated, see (A.4) and the derivation below.
As a simple example let us take the uniformly distributed F = ( )0, 1k

d
and Q = F = ( )D D, 0, 1k k k k

d
. The
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covariance is zero as  =
~ ~

+[ ]Z Z 0k 1 , but the simulation yields t »( )˜ 1 0.0023
Z
1 , in goodagreementwith the

analytic approximation is close »/412 170535 0.0024 . Twomore examples of rcAR(1)with higher dispersion of
i.i.d. coefficients and evenmore prominent nonlinearmemory are shown infigure 6.

5.2. Non-Gaussianity
One possible approach of visualising the non-Gaussian behaviour of a diffusive process is to quantify the non-
Gaussian nature of its dispersion in amanner similar to howwe quantified non-Gaussianmemory in the last
section.We propose to use the nonlinearmeasure of dispersion [77]

Figure 5.Partial autocorrelation estimated from i.i.d. rcAR(1)with F = ( )0, 1k
d

, rcAR(2)with  F = F =( ) ( )0, 1 , 0, 3 4k
d

k
d1 2 ,

rcMA(1)with Q = ( )0, 2k
d

, and rcARMA(2, 1)with F = ( )0, 1k
d1 , F = -( )1 2, 0k

d2 , Q = ( )0, 2k
d

. Blue areas are 95%confidence
intervals around 0. Thememory function nicely fits the predictions, in particular one can easily distinguish the simplest rcAR(1)
model. The choice of the presented rcARMA(2,1)wasmotivated by the Langevin equation (16). Here we used a 500 point trajectory—
to observe only the characteristic rcAR(1) behaviour even shorter, 200–300 point trajectories are sufficient.

Figure 6.Comparison of the covariance and codifference for the series = - F
~

-[ ]Z V Vk k k k 1 generatedwith two different i.i.d.Φk

obtained from = ( )U 0, 1k
d

andQ = Fk k . Blue areas are 95% confidence intervals around 0. The covariance is statistically zero for
j>0, the codifference exhibits an exponential decay.Weused two extremely long 107-point trajectories in order to present a long
range of j and veryweak dependence (statistically significant even around 10−3).Much shorter trajectories are sufficient for less
extreme cases, the requirements in general are similar to those for the covariance estimation.
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q

q-q ( ) ≔ ( [ ( )]) ( )j X
2

ln cos , 45X j2

which is called log-characteristic function (LCF). It has the property that if the process is Gaussian it equals the
MSD for any θ. Therefore estimating it and plotting it together with theMSD reveals the non-Gaussian nature of
the observed process. As theMSD averages over squares of the data, small values become even smaller and larger
values become evenmore emphasised. Thus theMSD gives a large importance to the spread of extremal values.
Conversely, for the LCF large values are translated into rapid oscillations of the cosine function and cancel each
other, the LCFmeasuresmainly the spread of the bulk.

For the classical case of non-Gaussian normal diffusion (4) the LCF is linear for small times, but logarithmic
for large times, so it gets dominated by the linearMSD. This insight ismore general. Random coefficientmodels
discussed in this work can only describe diffusion processes with tails thicker thanGaussian. Thismeans that
compared toGaussian diffusionwith the sameMSDmoremass is located in the tails than in the bulk, and the
LCFmust be smaller than theMSD.

To use the LCF in practice one needs tofix the parameter θ. For too small values the LCF converges to the
MSDbecause q q» -( )x xcos 1 1

2
2 2, for too large values the estimation becomes challenging, because ( )ln 0

diverges. In a typical case reasonable values are those forwhich q p»[∣ ( )∣]X t so thatX(t) exploresmainly the
first period of the cosine function. Infigure 7we show a practical application of this technique performed using a
relatively small sample of 500 integrated rcAR trajectories.

For rigorous statistical testing of theGaussianity we propose to use the standard Jarque–Bera (JB) test [79]. It
is a goodness offit test of whether sample data have skewness and kurtosis thatmatch a normal distribution. For
the sample {x1,K, xn} of observation the JB statistic is defined as

k
= +

⎛
⎝⎜

⎞
⎠⎟¯ ¯ ( )J

n
s

6 4
, 462

2

where s̄ is the sample skewness and k̄ is the sample excess kurtosis. Samples fromanormal distributionhave an
expected skewness of 0 and an expected kurtosis of 3 (excess kurtosis 0). Anydeviation fromthis increases the JB
statistic. The test is considered as standard and is implemented in variousnumerical packages, such asRtseries,
PythonSciPy.stats, JuliaHypothesisTests, orMatlab.

Figure 7. LCF andMSD calculated from500 samples of the integrated rcARprocesses. Semi-transparent lines are the individual
estimated LCFs andMSDs, solid lines are the averaged ones, dashed lines denote 90% confidence intervals. Case (a) is

F = Q = F( )0, 1 , ;k
d

k k case (b) is F = = = F = Q = F( ) ( )P 0 1 2 P 1 , ;k k k k case (c) is F = Q = ´ ( )1 2, 1 2 1k k
d

, where
 is an exponential distribution. Cases (a) and (b) are based on variants of i.i.d. rcAR considered before, case (c) is an example of a
motionwith varying diffusivity strongly concentrated at 0.
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This test is considered as one of themost powerful tests on normality but, if non-Gaussianity is detected, it
does provide information on the origins of this behaviour. However, the idea of observing the kurtosis leads to
an algorithm to distinguish betweenGaussian and non-Gaussian (in particular, Lévy stable) distributions [80]. It
is based on the empirical cumulative excess kurtosis (ECEK)which is defined as follows,
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where x̄ is an arithmeticmean of the random sample. This simple statistic serves as an indicator for whether
there is a noticeable difference betweenGaussian and non-Gaussian distributions. For theGaussian case, for
large numbers of observations it converges to the theoretical excess kurtosis 0, while for the non-Gaussian case
the ECEKdoes not tend to 0with increasing number k of observations and,moreover, for distributions that do
not have afinite forthmoment it does not converge at all and behaves chaotically [80].

To distinguish betweenGaussian and non-Gaussian distributions we also advocate the application of the
discrimination algorithmbased on examining the rate of convergence to theGaussian law bymeans of the
central limit theorem [81]. The idea of the algorithm is to analyse the convergence of the estimated indexα of
stability for sequential bootstrapped samples from the analysed data. If the estimated values converge to 2, then
the data are light-tailed and belong to the domain of attraction of theGaussian law. In particular, if the data are
Gaussian, the estimated values should be equal to 2 formost of the cases. If the data belong to the domain of
attraction of a non-Gaussian Lévy stable law, then the values should converge to a constant less than 2.

To illustrate the usefulness of the above statistical tools we consider an rcARprocess for which theΦk are
independent uniformly distributed on the interval (0, 0.95) andQ = Fk k . In the left panel offigure 8we can
see a simulated trajectory ofVk of length 1000 points. In themiddle panel we display a plot of the ECEK for the
simulated trajectory.We can see that the function converges to a constant close to 2which clearly indicates a
non-Gaussian behaviour and a finite positive excess kurtosis of the underlying distribution (a leptokurtic
distribution).We also calculated analytically the exact value of the excess kurtosis (equations (28) and (A.3)) and
obtained the value 1.83, which coincides with the final values of the ECEK function. Finally, in the right panel of
figure 8we show the estimated values of the stability indexα, for different non-overlapping consecutive blocks
of lengthM. For the first sample (M=1; corresponding to thewhole trajectory), the value is significantly lower
than 2, but for the otherM the values increase and tend to 2. This suggests that the simulated trajectory exhibits a
non-Gaussian behaviour but its distribution belongs to the normal domain of attraction. The obtained results
clearly suggest that the simulated trajectory exhibits a non-Gaussian behaviour and the underlying distribution
is heavier-tailed thanGaussian (is leptokurtic) but belongs to the normal domain of attraction. The non-
Gaussianity is also confirmed by the JB test which returns a p-value less than 0.001.

5.3. Parameter estimation for rcARprocesses
Finding reliable estimators of the parameters of the rcARMAmodels is a very important challenge. In this
sectionwe present preliminary ideas for some special cases of themodels.

Figure 8. Left: Trajectory ofVk forwhich F = ( )0, 0.95k
d

andQ = Fk k .Middle: Empirical cumulative excess kurtosis for the
simulated trajectory. The solid black line represents the true kurtosis valuewhich is equal to 1.83. Right: Estimated values of the index
of stabilityα. The boxplots (for block lengthsMä [1, 10]) constructed from 100 bootstrapped samples each of length 1000. The
obtained results clearly suggest that the simulated trajectory exhibits a non-Gaussian behaviour and its distribution is leptokurtic but
belongs to the normal domain of attraction.
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For an rcARprocess withΦ being a simple function one can estimate its parameters either by extracting the
constant periods ofΦ and applying classical fitting techniques for the autoregressive processes to the extracted
parts, or to consider amethodwhich directly incorporates the information on switching between different
autoregressive processes.

We now follow the latter idea and apply an algorithmbased onhiddenMarkovModels (HMMs) [64, 82, 83].
This algorithm assumes that the trajectories switch among discrete diffusive states according to a stochastic
(Markov)process.We consider amodification of the classical HMM,where theMarkov regime switching is
combinedwithAR(1) processes [84]. To show the usefulness of this techniquewe take into account a two-
regime parameter switchingmodel, that is, amodel with both regimes driven byAR(1) processes with the
autoregressive parametersf1 andf2. Infigure 9we present a simulated trajectory ofVk of length 1000 forwhich
Φα changes from0.2 to 0.8 at point 400. The estimated regime switching point is 399which is very close to the
true value, and the estimatedf1 andf2 coefficients are 0.17, 0.79which confirms the usefulness of the
procedure.

6.Discussion

Asmodern experiments such as single particle tracking routinely produce large amounts of data for the
thermally and actively drivenmotion of test particles, the extraction of physical information from the garnered
data becomes evermore important. On the one hand, this ismet by the analysis of a growing number of
complementary observables such as time averagedMSD [85, 86], higher ordermoments ormeanmaximal
statistics [87], p-variationmethods [88],first-passagemethods [89], or single trajectory power spectra [8, 90].
On the other hand objectivemethods such asmaximum likelihood approaches [91–94] ormachine learning
[95] are being recognised as useful tools. Here the goal is to identify the physicalmodel giving rise to the observed
motion and estimate the involved parameters.

An alternativemethod, well established infinancialmarket studies, is time series analysis. The latter
seemingly does not share a lot with the physical approach ofmodelling. It puts the emphasis not on explaining
the observed systems, but instead concentrates onfitting and prediction. Given a class of discrete linearfilters
suited to describe the general features of the data (for us the non-Gaussianity and linearMSD) it offers awide
choice of powerfulmethods for finding the optimalmodel and validating it. In otherwords by design it
concentrates on the phenomenological description.

While a pure time series analysis approach initiallymay be discouraging for physically-minded researchers,
the undeniable effectiveness of the time seriesmethodsmake any connections to the framework of physics
interesting and important. As noted in section 3 the correspondence between theGaussian Langevin equation
and theARMAprocess is known (in fact, it was established as early as in 1959 [96]), but it never seemed to have
gained awidespread appeal in the physical or biological physics community. Nevertheless, some recent progress
wasmade, especially in topics related to the identification of fractional dynamics [63, 97] and accounting for the
distortionsmade bymeasurement devices [71, 98].

Figure 9.Two regimes identified byHiddenMarkovModelmethodology for a trajectory ofVk forwhichΦα changes from0.2 to 0.8 at
point 400. The estimated regime switching point is 399which is very close to the true value.
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Thispaper continues this lineof research andaims at promoting to sample thebest ofbothworlds.This is hard to
achieveonageneral level, butwe studyhere important caseswhena fruitful compromise canbemade, andnew
informationprovided in the challenginganalysis ofnon-Gaussiandiffusion.Omitting thedynamics at time scales
significantly shorter thanwhat is available fromobservation (shorter than the sampling timeΔt) leads to conceptually
simple autoregressivemodels.These are straightforwardandquick to simulate (using amediumclass computerwewere
generating tenmillionvalues inunder2 s) and theyprovide awide choiceof statisticalmethods. Someof those, suchas
thepartial autocorrelation, are intrinsically linked todiscretedynamics andhavenocontinuous-timecounterpart.
Others, suchas thekurtosis andcodifference, profit fromtheanalyticmethods available fordiscrete variables.

In section 5we illustrated important properties of the rcARMAprocesses and provided a list of statistical
tools that can be useful in their identification and validation. In particular we showed that the codifference
function can be used to distinguish betweenARMAand rcARMAprocesses. To illustrate the non-Gaussianity of
the rcARMAmodels we considered a nonlinearmeasure of dispersion, namely the LCF and the ECEK, and
studied the domain of attraction of the underlying distribution. Finally, we presented aHMMmethodology
which can be useful infitting the process parameters.We also stress that the presented tools can be successfully
applied for quitemoderate lengths of the trajectories.

Our considerations are general and not limited to any particular system, aswe discuss for relatedmodels
based on randomcoefficient autoregression, which stem from awidely used formof the Langevin equation and
reasonablemodels of heterogeneous environment. Thus, the providedmethods are also universal.We hope that
this studywill promote the use of autoregressivemodels inmodern data analysis, as well as prompt further
studies into the physicalmeaning of thesemodels.
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Appendix.Moments of S and the approximation of codifference

Herewe show the calculation of [ ]S4 and the approximation of the codifference for an rcARwith i.i.d.
coefficients. Starting with (27)wewrite
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Weexpress this square as the sumof the elements squared plus twice the sumof each elementmultiplied by all
elements to the right of it. The sumof squares is simply  Q - F[ ] ( [ ])1k k
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We recognise the product of two geometric series in the above. Finally, the fourthmoment becomes
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Given thesemoments, one can easily calculate the kurtosis. It alsomakes it possible to obtain an analytic

approximation of the codifference of the estimated noise j j- = F
~

-≔ [ ]Z V V ,k k k k1 .We show the
procedure for tq~( )1

Z
. Themethod for other t >q~( )j j, 1

Z
would be the same.We denote jF F - ≔k k and

start with a straightforward conditioningwhich yields
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where S2 is assumed tohave thedistribution as in (27) andbe independent fromF Q F Q- -, , ,k k k k1 1. Expanding the
exponents in aTaylor series yields an approximation for the codifferencewhichdependsonly on themoments ofΦk

andΘk. Expansionup tofirst order, » -- xe 1x , is equivalent to calculating the covariance, so it is zero. The second
order, » - +- x xe 1 2x 2 in general alreadyprovides quite goodnon-zero estimate. For thenumerator it is

  

 

 


q

q

» - F F - F + F - Q + Q

+ F F - F

+ F F - F F - Q + Q

+ F - Q + Q

- - -

- -

- - -

-

  

 

  


( [( ) ] [ ] [( ) ])

( [( ) ] [ ]

[( ) (( ) )] [ ]
[(( ) ) ]) ( )

S

S

S

1
2

1

8

2 1

1 . A.5

k k k k k k

k k k

k k k k k k

k k k

2

1 1
2 2 2

1
2 2

4

1 1
4 4

1 1
2 2

1
2 2 2

2
1

2 2 2

The corresponding denominator is expanded into
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The expected values that appear in this formulas are just linear combinations of the first fourmoments ofΦk,Θk

and their products. For variables generated as powers of a uniform distribution these are just integrals over
polynomials. Also, without significant change the logarithm can be replaced by the fraction » -( )x xln 1,
which leads to a formula being a fraction of coefficientmoments up to the fourth order.
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