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Abstract

The immense popularity of online communication services in the last decade has not only
upended our lives (with news spreading like wildfire on the Web, presidents announcing their
decisions on Twitter, and the outcome of political elections being determined on Facebook)
but also dramatically increased the amount of data exchanged on these platforms. Therefore,
if we wish to understand the needs of modern society better and want to protect it from new
threats, we urgently need more robust, higher-quality natural language processing (NLP)
applications that can recognize such necessities and menaces automatically, by analyzing
uncensored texts. Unfortunately, most NLP programs today have been created for standard
language, as we know it from newspapers, or, in the best case, adapted to the specifics of
English social media.

This thesis reduces the existing deficit by entering the new frontier of German online com-
munication and addressing one of its most prolific forms—users’ conversations on Twitter.
In particular, it explores the ways and means by how people express their opinions on this
service, examines current approaches to automatic mining of these feelings, and proposes
novel methods, which outperform state-of-the-art techniques. For this purpose, I intro-
duce a new corpus of German tweets that have been manually annotated with sentiments,
their targets and holders, as well as lexical polarity items and their contextual modifiers.
Using these data, I explore four major areas of sentiment research: (i) generation of senti-
ment lexicons, (ii) fine-grained opinion mining, (iii) message-level polarity classification, and
(iv) discourse-aware sentiment analysis. In the first task, I compare three popular groups of
lexicon generation methods: dictionary-, corpus-, and word-embedding–based ones, finding
that dictionary-based systems generally yield better polarity lists than the last two groups.
Apart from this, I propose a linear projection algorithm, whose results surpass many existing
automatically-generated lexicons. Afterwords, in the second task, I examine two common
approaches to automatic prediction of sentiment spans, their sources, and targets: condi-
tional random fields (CRFs) and recurrent neural networks, obtaining higher scores with the
former model and improving these results even further by redefining the structure of CRF
graphs. When dealing with message-level polarity classification, I juxtapose three major
sentiment paradigms: lexicon-, machine-learning–, and deep-learning–based systems, and
try to unite the first and last of these method groups by introducing a bidirectional neural
network with lexicon-based attention. Finally, in order to make the new classifier aware of
microblogs’ discourse structure, I let it separately analyze the elementary discourse units of
each tweet and infer the overall polarity of a message from the scores of its EDUs with the
help of two new approaches: latent-marginalized CRFs and Recursive Dirichlet Process.
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Foreword

Das Internet ist für uns alle Neuland.

—Angela Merkel, 2013

As social media become more and more popular, the need for automatic analysis of their
data rises. This analysis, however, is greatly complicated by the fact that the language
style used on the Web is fundamentally different from the style of official documents and
newspaper articles. Indeed, sentences like the ones shown in Example 0.0.1 (provided by Han
and Baldwin, 2011) are very unlikely to appear in the transcript of an Oval Office address
or in an editorial of The New York Times, even though such wording is commonplace on
English Twitter.

Example 0.0.1

u must be talkin bout the paper but I was thinkin movies
. . . so hw many time remaining so I can calculate it?

These differences become even more marked when it comes to emotional speech, where
people express their excitement, sadness, happiness, approval or disapproval. Compare, for
instance, the following passages from Example 0.0.2, in which a Telegraph reporter and
a Twitter user describe their feelings about the resignation of Boris Johnson, UK Foreign
Secretary, who gave up his office in criticism of the government’s Brexit plan.

Example 0.0.2

Je regrette. I cannot express how horrified I am that Boris Johnson stepped
down. He was the standard-bearer of those who wanted not to get out of
the single market, but to curtail the move to political union in a federal
state run by the likes of Juncker. (Ayesha Vardag, The Telegraph)

That muffled sound is Boris Johnson kicking himself that he didn’t resign
before David Davis. Two down and he’s the second (@Kevin_Maguire,

1



FOREWORD

Twitter)

As you can see, not only the ways of expression are different, but the attitudes of the
authors are contradictory as well. And nowadays it is the domain of social media that is
steadily gaining popularity, and that wields more and more influence on the opinions of
common people, predetermining their preferences, choices, and political views. This trend
is inexorable; this trend is global; and, unfortunately, this trend opens up new possibilities
for misuse of online services as an instrument of political deception.

One way to avert the looming danger of deliberate manipulation of public opinion is to
monitor social networks in real time in order to discover suspicious activities or unexplain-
able fluctuations of people’s attitudes. A crucial prerequisite for such monitoring though is
reliable, high-quality NLP tools that can analyze users’ dispositions automatically in a split
second.

Motivation

Automatic mining of people’s opinions from text is exactly what the field of knowledge called
sentiment analysis or opinion mining1 is concerned with, and what we2 will work on in this
dissertation. In particular, we are going to analyze users’ attitudes on German Twitter—a
linguistic register whose natural language processing is aggravated not only by the specifics
of social media but also by the scarceness of resources, systems, and established baselines.
Nevertheless, we decided to address precisely this domain because:

• German is the most spoken first language in the European Union, being the mother-
tongue for 18% of EU citizens;3

• Germany has traditionally played a major role in the European Government, and, as
such, it was one of the main driving forces in solving several European crises, including
the Ukrainian conflict, the prevention of Greek sovereign default, and Brexit;

• Numerous internal problems (refugee crisis, rise of right-wing populism, and unstable
ratings of political parties) make German politics susceptible to external influence.

Our choice of the Twitter platform was motivated by the following factors:
1Following Liu (2012), I consider the terms sentiment analysis and opinion mining as synonyms.
2Throughout this dissertation, I will use the pronoun “we” in recognition of the efforts made by all people

mentioned in the acknowledgments, and in recognition of your efforts as a reader who will struggle with me
through the pages of this work. This usage, however, does not imply that either you or any of my supporters
share the same opinions or are responsible for any of the claims.

3https://en.wikipedia.org/wiki/Languages_of_the_European_Union
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• First of all, Twitter is the second most popular social network in Germany,4 with 4.9
million monthly active users (as of 2017);5

• Second, Twitter’s sociolect is at the cutting edge of modern language development, and
new linguistic phenomena introduced on this service are likely to percolate into other
social media and might even find their way into the standard language as well;

• Finally, the abundance and accessibility of data on this platform allows the researchers
to analyze virtually any topic, from North Korean nuclear weapons to Lady Gaga’s
dress, getting messages (and opinions) from users of different income, gender, and age.

Research Questions

Unfortunately, despite its popularity and social importance, German Twitter has largely
been ignored by computational linguistics in general, and in particular by its opinion mining
branch. With this dissertation, we hope to make up this leeway by presenting a new sentiment
corpus of German microblogs and conducting an extensive study of existing and novel opinion
mining methods on these data. By doing so, we want to answer the following questions:

• Can we apply opinion mining methods devised for standard English to

German Twitter?

Since there had been literally no attempts to analyze sentiments in German social
media when we started working on this thesis, as a first step, we decided to check
whether we could reuse existing English solutions without further ado.

• Which groups of approaches are best suited for which sentiment tasks?

Because sentiment analysis is a wide research field, which operates on various linguistic
levels and addresses many different problems with their own approaches and evaluation
metrics, we want to know which approaches (rule-based or machine-learning ones,
systems that operate on lexical taxonomies or those that utilize corpus data) work
best for specific sentiment tasks;

• How much do word- and discourse-level analyses affect message-level sen-

timent classification?

Despite the wide variety of problems addressed by opinion mining, one of them—
message-level polarity classification—is commonly considered as the central task in
sentiment analysis of social media. Due to its importance and central role, we would

4https://digiday.com/marketing/state-social-platform-use-germany-5-charts/
5https://luckyshareman.com/blog/die-twitter-nutzung-in-deutschland/
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like to see which linguistic level (subsentential [i.e., the level of word] or suprasentential
[i.e., the level of discourse]) contributes more to determining the overall polarity of a
microblog.

• Does text normalization help analyze sentiments?

Although many NLP researchers consider social media specifics as a hindrance and
suggest converting them to the standard-language form, other scientists object that
a straightforward conversion might loose many important details and consequently
worsen classification. Brody and Diakopoulos (2011), for instance, claim that inten-
tional prosodic lengthening of words, such as “sooooooo strong” or “coooolllllll ”, serves
as a vivid indicator of opinionated sentences, so that keeping these elongations in text
would result in better predictions. Eisenstein (2013), in part, agrees with these claims
by noting that a straightforward replacement of colloquial variants with their standard-
language equivalents can considerably shift the original meaning. We admit that the
arguments of these authors are correct, but it apparently depends on the magnitude
by which non-standard language helps or hampers NLP applications. So, in this work,
we would like to test whether text normalization does more harm than good to the
analysis of opinions.

• Can we do better than existing approaches?

Of course, simply evaluating existing methods on a new dataset would not be of much
novelty and would not accelerate the progress of the research field, therefore, we are go-
ing to improve on existing results by suggesting our own solutions to various sentiment
objectives.

Outline of this Work

We will answer these questions by proceeding in the following way:

• In Chapter 1, we will give a short introduction to sentiment analysis and make a
digression into the history of this field;

• In Chapter 2, we will present the Potsdam Twitter Sentiment Corpus (PotTS), define
selection criteria that we used in order to collect tweets for this dataset, describe
its annotation scheme and labeling procedure, and also conduct an extensive inter-
annotator agreement study, looking for messages that were most difficult to analyze
for human experts;
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• Afterwards, in Chapter 3, we will turn our attention to the first subsentential sentiment
task—sentiment lexicon generation—in which we will compare three major paradigms:
dictionary-, corpus-, and word-embedding–based methods, and also propose our own
linear-projection solution;

• Chapter 4 will address the problem of fine-grained opinion mining, whose goal is to
predict text spans of sentiments, sources, and targets. In particular, we will evaluate
three popular approaches to this challenging task: conditional random fields (CRFs),
long-short term memory (LSTM), and gated recurrent unit (GRU), checking the effect
of various features on the first classifier and estimating the results of the last two
systems with different word-embedding types;

• In Chapter 5, we will deal with one of the most prominent sentiment analysis tasks—
message-level polarity classification. This time, again, we will juxtapose three main
classes of methods: lexicon-based, machine-learning–based, and deep-learning ones,
and will try to unite the first and the last of these groups by devising a recurrent
neural network with lexicon-based attention;

• Finally, in Chapter 6, we will enhance the proposed system by making it aware of the
microblogs’ discourse structure. For this purpose, we will let the classifier predict the
polarity scores of the elementary discourse units of each tweet and will then unite these
scores using novel techniques: latent conditional and conditional-marginalized random
fields and Recursive Dirichlet Process.
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Chapter 1

Introduction to Sentiment Analysis

Interpersonal communication is not only a way to share objective information with other
people but also a vibrant channel to convey one’s subjective feelings, impressions, and at-
titudes. It is, in fact, this latter use that provides a personal touch to our conversations,
making them more grasping, more entertaining, and more living. And it is often this use that
significantly influences our preferences, decisions, and choices in everyday life. Therefore, a
high-quality mining of people’s opinions is often as important as retrieval of objective facts.

The field of knowledge that deals with the analysis of emotions, sentiments, evaluations,
and attitudes is called sentiment analysis (SA) (Liu, 2012). The definition of this discipline,
however, much like the definition of the term sentiment itself, is neither complete nor uni-
versally accepted. The main reasons for this are (i) a frequently blurred boundary between
subjective and objective parts of information and (ii) the heterogeneity of the language
system itself, to which the SA methods are applied.

The first factor, for instance, makes it difficult to delimit which statements actually belong
to the jurisdiction of opinion mining and which ones should be ignored by its systems.
A prominent example of such borderline cases are the so-called subjective facts, such as
“terrorist attacks” or “anti-cancer drugs,” which some people consider as polar terms, while
others regard them as objective expressions.

The second factor complicates a precise definition of sentiment analysis because different
language levels have their own notions of subjectivity (e.g., a positive word is not the same as
a positive text), which in turn necessitate different approaches. Depending on the analyzed
linguistic level, researchers typically distinguish three main types of SA:

• subsentential, whose task is to determine polarities of single words and find opinions
within a sentence,

• sentential, which tries to predict the semantic orientation of a statement,
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• and, finally, suprasentential, which analyzes the polarity of the whole text.

Each of these types has its own specifics, and each of them needs to be addressed with its
unique methods. Therefore, speaking of general difficulty of opinion mining for a specific
domain is in the same way wrong as judging about the amenability of this domain to the
whole natural language processing: one needs to specify a particular task and evaluate it
with its own metrics. Thus, to estimate the complexity of sentiment analysis for German
Twitter, we will address all three levels of SA: subsentential, sentential, and suprasentential.

1.1 Prehistory of the Field

But before we delve into the depths of contemporary sentiment research, let us first make a
digression into the history of this field in order to understand its modern trends and theories
better.

Like many other scientific disciplines, opinion mining has emerged from several other areas
of research including philosophy, psychology, cognitive sciences, narratology, and linguistics.
In philosophy, the questions about the nature of emotions, their interaction with human
consciousness, and the influence on people’s deeds have occupied the minds of many great
scholars, starting from Plato and Aristotle. Plato, for instance, argued that the human soul
consists of three fundamental parts: the rational, the appetitive, and the passionate (see
Plato and Bloom, 1991, Book IV). The last part (the one by which we become angry or
fly into a temper) determines our notion of justice by favoring either the rational or the
appetitive aspect. Aristotle (1954), the most prominent student of Plato, extended this idea
by providing a precise taxonomy of feelings that, in his opinion, constitute the passionate
part of the mind.

As noted by de Sousa (2014), the variety and complexity of phenomena covered by the
term “emotion” discouraged tidy philosophical ideas and was daunting the researchers for
many hundred years since antiquity. A real renaissance of emotional studies happened in the
late 19-th century in psychology with the introduction of the James-Lange theory (James,
1884; Lange, 2010), which argued that biological processes were the main and only reason
for people’s subjective opinions. This theory, however, was later criticized by Schachter and
Singer (1962), who objected that bodily means alone were insufficient to express the full
range of possible feelings, and that cognitive factors were a key determinant of emotional
states.

These advances in psychology, reinforced by the nascent appraisal theory (Arnold, 1960),
have significantly influenced many other scientific fields including literary studies and lin-
guistics. Among the most prominent representatives of this direction in the former discipline
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were Rorty (1980) and Banfield (1982), who analyzed how opinions were expressed by direct
and indirect speech. Wiebe (1990, 1994) adapted Banfield’s theory to the needs of computa-
tional linguistics by proposing an algorithm that identified subjective sentences in text and
inferred the main characters of a narrative from such sentences. This work was presumably
the first attempt to automatically detect sentiments on the sentential level.

A real breakthrough in the opinion mining field, however, happened with the introduction
of the first sufficiently big corpora. Important contributions in this regard were made by
Pang and Lee (2004, 2005), who released a dataset of ≈ 2, 000 movie reviews with their
star ratings; Hu and Liu (2004), who presented a manually labeled set of Amazon and
C|Net product comments; Thomas et al. (2006), who automatically labeled a collection of
congressional debates; and, finally, Wiebe et al. (2005), who developed a manually annotated
sentiment corpus of 535 news articles.

The availability of these resources has given rise to a plethora of new methods for both
subsentential and sentential SA, making opinion mining one of the most challenging and
competitive branches of computational linguistics. Fundamental cornerstones in this field
have already been set by the works of Pang et al. (2002), Wiebe et al. (2005), Wilson et al.
(2005), Breck et al. (2007), Choi and Cardie (2009, 2010), and Socher et al. (2011, 2012).
Nevertheless, many challenges of sentiment research, such as domain adaptation or analysis
of non-English texts, still pose considerable difficulties.

1.2 Sentiment Analysis of Social Media

One of the main problems that people working on opinion mining are usually confronted
with in the first place is the choice of the domain to deal with. Since sentiment analysis
is a highly domain-dependent task (see Aue and Gamon, 2005; Blitzer et al., 2007; Li and
Zong, 2008)—i.e., systems trained on one text genre can hardly generalize to other linguistic
variations—a natural question that arises in this context is which of the domains should be
addressed first in this case.

While earlier sentiment works were primarily concerned with narratives (Wiebe, 1990,
1994) or newspaper texts (Wiebe et al., 2003, 2005; Bautin et al., 2008), it soon became
clear that social media provide a much more fertile ground for mining people’s attitudes.
Among the first who tried to extract users’ opinions from online forums were Das and Chen
(2001). For this purpose, they manually annotated a collection of 500 messages from an
economic chat board with three polarity classes (buy, sell, and null) and then trained five
different classifiers on these data. Using the trained systems, the authors classified the
semantic orientation of the remaining 25,000 forum posts, trying to predict stock prices
based on the polarities of these snippets.
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Automatic business intelligence has rapidly won the ground in the opinion mining field,
with further notable works introduced by Glance et al. (2005), who analyzed users’ opinions
on Usenet with hand-crafted rules; Antweiler and Frank (2004), who investigated how post-
ings on message boards correlated with stock volatility; Ghose et al. (2007), who examined
the effect of opinions on pricing in online marketplaces; and, finally, Turney (2002), who
classified Epinions reviews into recommended (thumbs up) and not recommended (thumbs
down) ones based on the pointwise mutual information of their adjectives.

Due to its high commercial impact, sentiment analysis of customer feedback soon became
one of the most popular topics in natural language processing. Dave et al. (2003), for
example, classified users’ comments on Amazon as positive or negative with the help of
SVM and Naïve Bayes systems. Hu and Liu (2004) developed a three-stage application that
produced concise summaries of positive and negative opinions about each particular product
feature. Funk et al. (2008) proposed a supervised SVM classifier that predicted the polarity
of product reviews and then used these results in a business intelligence application. Other
important contributions were made Popescu and Etzioni (2005), Ding et al. (2009), Wei and
Gulla (2010), Mukherjee and Bhattacharyya (2012), etc.

Although opinion analysis of product reviews still plays an important role in e-commerce,
the increased popularity of the blogosphere and social networks has motivated many sen-
timent researchers to shift the focus of their work to these new Web genres. Among the
first who followed the new trend were Mishne (2005) and Mishne et al. (2007), who tried
to predict the moods of LiveJournal blogs (e.g., amused, tired, happy), achieving 58% accu-
racy with an SVM classifier. Another SVM system was used by Chesley et al. (2006), who
classified users’ blogs into positive, negative, and objective ones, outperforming the majority
class baseline by 15% with this method. Drawing on these works, Gill et al. (2008) analyzed
the agreement of human experts on blogs’ moods, finding that the annotators had a much
better consensus about feelings that were described in longer blogs.

Speaking of text length, we should certainly say that the inception of the micro-blogging
service Twitter in 2006 was a real game changer to the whole opinion mining field. The
sudden availability of huge amounts of data, the presence of all possible social and national
groups, combined with the uniqueness of the language on this service, have given rise to
numerous scientific projects, studies, and publications, which we will briefly summarize in
the next section.

1.3 Sentiment Analysis of Twitter

One of the first attempts to automatically classify users’ opinions on Twitter was made by Go
et al. (2009), who collected a set of 1.6 M microblogs containing emoticons. Considering these
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smileys as noisy labels (positive or negative), the authors trained three different classifiers
(Naïve Bayes, Maximum Entropy, and SVM), obtaining the best results (0.82 F1) with the
SVM system. Similar approaches were taken by Pak and Paroubek (2010), who performed
a three-class prediction with a Naïve Bayes system, and Davidov et al. (2010), who trained
a k-NN–like classifier on weakly supervised data. Another way to create a sentiment corpus
was proposed by Barbosa and Feng (2010), who analyzed a set of 200,000 microblogs with
three publicly available opinion mining services and then used the majority votes of these
systems as silver labels for their dataset.

Some time later, Kouloumpis et al. (2011) experimented with the AdaBoost classifier on
the noisy collection of Go et al. (2009) and the Edinburgh Twitter corpus of Petrović et al.
(2010), coming to the conclusion that microblog-specific features (such as presence of inten-
sifiers, abbreviations, or emoticons) were the most reliable attributes for this classification.
Agarwal et al. (2011), however, questioned this finding, arguing that POS-specific polarity
features were a better alternative.

As in the case of opinion mining of product reviews, sentiment analysis of Twitter could
not go unnoticed by the economic and sociological communities. An attempt to address
political issues using this platform was made by Tumasjan et al. (2010), who analyzed
users’ opinions about German federal elections in 2009 by automatically translating 100,000
tweets into English and subsequently classifying these messages with the proprietary LIWC
software (Pennebaker et al., 2007). This study showed that not only sentiments but even the
mere numbers of microblogs mentioning political parties strongly correlated with the results
of election polls.

Nevertheless, the real rise of interest in this domain happened with the release of the
SemEval corpus (Nakov et al., 2013), a collection of 15,000 tweets that have been manually
annotated by Amazon mechanical turkers with their message-level polarities and contextual
semantic orientations of their polar terms. The best performing system in the first run of
the SemEval competition was a supervised SVM classifier of Mohammad et al. (2013), which
won three out of four subtasks (message-level classification of SMSs and tweets and contex-
tual polarity prediction of polar terms in Twitter). This solution relied on an extensive set
of hand-crafted features, powered by multiple manually- and automatically-generated senti-
ment lexicons. The authors emphasized the crucial importance of lexical resources, which
increased the classification scores by almost 8.5%. Other competing submissions (Becker
et al., 2013; Günther and Furrer, 2013; Kökciyan et al., 2013) used a similar approach, but
had considerably fewer feature attributes.

The success of this shared task, which had more than 40 participants, motivated the
organizers to continue the competition. With slight modifications (addition of new tweets,
inclusion of sarcastic microblogs and LiveJournal sentences), they rerun both subtasks in
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the following four years (Rosenthal et al., 2014, 2015; Nakov et al., 2016; Rosenthal et al.,
2017), attracting more and more competitors every time.1

As you can see, despite its relatively short history, sentiment analysis of Twitter has
already received much attention from NLP researchers. But, with a few exceptions (e.g.,
Basile and Nissim, 2013; Bosco et al., 2013; Araque et al., 2015; Cesteros et al., 2015), most of
existing works were primarily concerned either with English messages or with automatically
translated microblogs. In the following chapters, we will explore whether conclusions that
have been drawn from English data (the difficulty of the Twitter domain for automatic SA,
the utility of sentiment lexicons, and the need to normalize the text input) apply to German
tweets as well.

1A detailed overview of these iterations is provided in Chapter 5.
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Chapter 2

Sentiment Corpus

A crucial prerequisite for proving any hypotheses in computational linguistics is the existence
of sufficiently big manually annotated datasets, on which these conjectures could be tested.
Since there were no human-labeled sentiment data for German Twitter that we were aware
of at the time of writing this chapter, we decided to create our own corpus, which we will
introduce in this part of the thesis.

We begin our introduction by describing the selection criteria and tracking procedure
that we used to collect the initial corpus data. After presenting the annotation scheme,
we perform an extensive analysis of the inter-annotator agreement. For this purpose, we
introduce two new versions of the popular κ metric (Cohen, 1960)—binary and proportional
kappa—which have been specifically adjusted to the peculiarities of our annotation task.
Using these measures, we check the inter-coder reliability of annotated sentiments, their
targets and sources, polar terms and their modifying elements (intensifiers, diminishers, and
negations). In the final step, we estimate the correlation between the initial selection rules
and the number of labeled elements as well as the difficulty of their annotation.

2.1 Data Collection

A common question that typically arises first when one starts creating a new dataset is which
selection criteria should be used in order to collect the initial data. Whereas for low-level
NLP applications, such as part-of-speech tagging or syntactic parsing, it typically suffices
to define the language domain to sample from (since the phenomena of interest are usually
frequent and uniformly spread), for semantically demanding tasks with many diverse ways
of expression one also needs to consider various in-domain factors, which might significantly
affect the final distribution, making the resulting corpus either utterly sparse or excessively
biased.

12



CHAPTER 2. SENTIMENT CORPUS

In order to minimize both of these risks (sparseness and bias), we decided to use a
compromise approach by gathering one part of the new dataset from microblogs that were
a priori more likely to have sentiments (thus increasing the recall) and sampling the rest of
the corpus uniformly at random (thus reducing the bias).

As criteria that could help us get more opinions, we considered topic and form of the
tweets, assuming that some subjects, especially social or political issues, would be more
amenable to subjective statements. Because we started creating the corpus in spring 2013,
obvious choices of opinion-rich topics to us were the papal conclave, which took place in
March of that year, and the German federal elections, which were held in autumn. Since
both of these events implied some form of voting, we decided to counterbalance the election
specifics by including general political discussions as the third subject in our dataset. Finally,
to obey the second principle, i.e., to keep the corpus bias low, we sampled the rest of the
data from casual everyday conversations without any prefiltering.

We collected messages for the first and third groups by tracking German microblogs
between March and September 2013 via the public Twitter API1 with the help of extensive
keyword lists describing these topics.2 Tweets for the second topic (German federal elections)
were provided to us by a research group of communication scientists from the University of
Münster, who were our cooperation partner in a joint BMBF project “Discourse Analysis in
Social Media.” Finally, for the fourth category (casual everyday conversations), we used the
complete German Twitter snapshot of Scheffler (2014), which includes ≈ 97% of all German
microblogs posted in April 2013. This way, we obtained a total of 27.4 M messages, with
the snapshot corpus being by far the most prolific source of the data.

In the next step, we divided all tweets of the same topic into three groups based on the
following formal criteria:

• We put all messages that contained at least one polar term from the sentiment lexicon
of Remus et al. (2010) into the first group;

• Microblogs that did not satisfy the first condition, but had at least one exclamation
mark or emoticon were allocated to the second group;

• All remaining microblogs were assigned to the third category.

A detailed breakdown of the resulting distribution across topics and formal groups is given
in Table 2.1.

1https://pypi.python.org/pypi/tweetstream
2A full list of tracking keywords is available at https://github.com/WladimirSidorenko/PotTS/blob/

master/docs/tracking_keywords.pdf.
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Formal Criterion
Topic

Polar Terms Emoticons Remaining Tweets Total
Sample

Keywords

Federal Elections 537,083 (22.38%) 50,567 (2.1%) 1,811,742 (75.5%) 2,399,392 Abgeordnete
(representative),

Regierung
(government)

Papal Conclave 7,859 (15.11%) 1,260 (2.42%) 42,879 (82.46%) 51,998 Papst (pope), Pabst
(pobe)

Political Discussions 10,552 (25.8%) 777 (1.9%) 29,555 (72.29%) 40,884 Politik (politics),
Minister (minister)

General Conversations 3,201,847 (18.7%) 813,478 (4.7%) 13,088,008 (76.5%) 17,103,333 den (the), sie (she)

Table 2.1: Distribution of downloaded messages across topics and formal groups

(percentages are given with respect to the total number of tweets pertaining to the given topic)

To create the final corpus, we randomly sampled 666 tweets from each of the three for-
mal classes for each of the four topics, getting a total of 7,992 messages (666 microblogs ×
3 formal criteria× 4 topics).

2.2 Annotation Scheme

In the next step, we devised an annotation scheme for our data. To maximally cover all
relevant sentiment aspects, we came up with an extensive list of elements that had to be
annotated by our experts. This list included:

• sentiments, which were defined as polar subjective evaluative opinions about people,
entities, or events. According to our definition, a sentiment always had to evaluate
an entity that was explicitly mentioned in text—the target; and the annotators had to
label both the target and its respective evaluative expression with the sentiment tag.
Apart from tagging the text span, they also had to specify the following attributes of
opinions:

– polarity, which reflected the attitude of opinion’s holder to the evaluated entity.
Following Jindal and Liu (2006a,b), we distinguished between positive, negative,
and comparative sentiments;

– intensity, which showed the emotional strength of an opinion. Possible values
for this attribute were: weak, medium, and strong ;

– finally, drawing on the works of Bosco et al. (2013) and Rosenthal et al. (2014),
we introduced a special boolean attribute sarcasm in order to distinguish sarcas-
tically meant statements;
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• we specified targets as (real, hypothetical, or collective) entities, properties, or propo-
sitions (states or events) evaluated by opinions. For this item, we introduced the
following three attributes:

– a boolean property preferred, which distinguished entities that were favored in
comparisons;

– a link attribute anaphref, which had to point to the antecedent of a pronominal
target;

– and, finally, another edge feature, sentiment-ref, which had to link targets to
their respective sentiments in the cases when the target span was located at
intersection of two opinions;

• another important component of sentiments were sources, which denoted the im-
mediate author(s) or holder(s) of opinions. The only property associated with this
element was sentiment-ref, which was defined the same way as for targets.

To help our annotators identify exact boundaries of these elements, we explicitly asked
them to annotate smallest complete syntactic or discourse-level units, i.e., noun phrases or
sentences with all their grammatical dependents.

A sample tweet analyzed according to this rule is shown in Example 2.2.1.

Example 2.2.1

[[Diese Milliardeneinnahmen]target sind selbst [Schäuble]source peinlich]sentiment

[[These billions of revenue]target are embarrassing even for
[Schäuble]source ]sentiment

In this message, we assigned the sentiment tag to the complete sentence because this gram-
matical unit is the smallest syntactic constituent that simultaneously includes both the tar-
get of the opinion (“Milliardeneinnahmen” [billions of revenue]) and its evaluation (“peinlich”
[embarrassing ]). Furthermore, we also labeled the whole noun phrase “diese Milliardenein-
nahmen” (these billions of revenue), including the demonstrative pronoun “diese” (these), as
target, since this pronoun syntactically depends on the main target word “Milliardenein-
nahmen” (billions of revenue).

Apart from sentiments, targets, sources, we also asked the annotators to label elements
that could significantly affect the intensity and polarity of an opinion. These elements were:

• polar terms, which we defined as words or idioms that had a distinguishable evaluative
lexical meaning. Typical examples of such terms were lexemes or set phrases such as
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“ekelhaft” (disgusting), “lieben” (to love), “Held” (hero), “wie die Pest meiden” (to
avoid like the pest). In contrast to targets and sources, which only could occur in
the presence of a sentiment, polar terms were independent of other tags and always
had to be labeled in the corpus.

The main attributes of this element (polarity, intensity, and sarcasm ) largely
coincided with the corresponding properties of sentiments, with the only difference
that, in the case of polar terms, these features had to reflect the lexical meaning
of a word without taking into account its context (i.e., prior polarity and intensity),
whereas for sentiments, they had to show the compositional meaning of the whole
opinion (i.e., its contextual polarity and intensity).

Besides these common properties, polar terms also had their specific attributes: two
boolean features (subjective-fact and uncertain ) and a link attribute (senti-
ment-ref ). The first feature showed whether a polar term denoted a factual entity
with a clear emotional connotation, e.g., “Atombombe” (A-bomb) or “Naturschutz”
(nature protection); the second property signified cases in which the annotators were
unsure about their decisions; finally, the last attribute was defined in the same way as
it was previously specified for targets and sources;

• elements that increased the expressivity and subjective sense of polar terms had to
be labeled as intensifiers. Typical examples of such expressions were adverbial
modifiers such as “sehr” (very), “super” (super), “stark” (strongly);

• diminishers, on the contrary, were words or phrases that reduced the strength of a
polar term. Like intensifiers, these elements were usually expressed by adverbs,
e.g., “weniger” (less), “kaum” (hardly), “fast” (almost).

Both of these tags (intensifiers and diminishers) only had two attributes: a binary
feature degree with two possible values: medium and strong ; and a link attribute
polar-term-ref, which connected the modifier to its polar-term;

• the final element, negations, was defined as grammatical or lexical means that reversed
the semantic orientation of a polar term. These were typically represented by the
negative particle “nicht” (not) or indefinite pronoun “keine” (no). The only attribute
associated with this tag was a mandatory link polar-term-ref.

In contrast to sentiment-level tags, which had to be assigned to syntactic or discourse-
level units, polar terms and their modifiers were defined as lexemes and, correspondingly,
had to mark only single words or set phrases without their grammatical dependents.

A complete tweet annotated with sentiment- and term-level elements is shown in Exam-
ple 2.2.2. In this case, we again labeled the whole sentence as sentiment because only the
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main verb-phrase simultaneously covers both the evaluated target (“Die Nazi-Vergangenheit”
[The Nazi history ]) and its respective polar expression (“nicht sehr rühmlich” [not very laud-
able]). The boundaries of sentiment and target are determined on the syntactic level,
spanning the whole clause in the former case and including the complete noun phrase in the
latter. The polarity of the opinion is set to negative. The polar term “rühmlich” (laudable),
its intensifier “sehr” (very), and negation “nicht” (not), on the other hand, only mark single
words. The polarity of the term, i.e., its primary semantic orientation without the context,
is positive.

Example 2.2.2

[[Die Nazi-Vergangenheit]target ist [nicht]negation [sehr]intensifier [rühmlich]polar-term ]sentiment

[[The Nazi history]target is [not]negation [very]intensifier [laudable]polar-term ]sentiment

polar-term-ref

polar-term-ref

polar-term-ref

polar-term-ref

A more detailed description of all annotation elements and their possible attributes is given
in the original annotation guidelines in Appendix A of this thesis.

2.3 Annotation Tool and Format

For annotating the collected data, we used MMAX2, a freely available text-markup tool.3

Because this program uses a token-oriented stand-off format, where all annotated spans are
stored in a separate file and only refer to the ids of words in the original text, we first
had to split all corpus messages into tokens. To this end, we applied a minimally modified
version of Christopher Potts’ social media tokenizer,4 which had been slightly adjusted to
the peculiarities of the German spelling (we allowed for the capitalized form of common
nouns, e.g., “Freude” [joy ], and the period at the end of ordinal numbers, e.g., “7.” [7th]).

To ease the annotation process and minimize possible data loss, we split the corpus into 80
smaller project files with 99–109 tweets each. In each such file, we put microblogs pertaining
to the same topic, ensuring an equal proportion of formal groups.

3http://mmax2.sourceforge.net/
4http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
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2.4 Inter-Annotator Agreement Metrics

For estimating the inter-annotator agreement (IAA), we adopted the popular κ metric (Co-
hen, 1960). Following the standard practice, we computed this term as:

κ =
po − pc
1− pc

,

where po denotes the observed agreement, and pc stands for the agreement by chance. We
estimated the observed reliability in the normal way as the ratio of tokens with matching
annotations to the total number of tokens:

po =
T − A1 +M1 − A2 +M2

T
,

where T represents the total token count, A1 and A2 are the numbers of tokens annotated
with the given class by the first and second annotators respectively, and the M terms mean
the numbers of tokens with matching annotations. As usual, we computed the chance
agreement pc as:

pc = c1 × c2 + (1.0− c1)× (1.0− c2).

where c1 and c2 are the proportions of tokens annotated with the given class in the first and
second annotations, respectively, i.e., c1 = A1

T
and c2 = A2

T
.

Two questions that arose during this computation though were (i) whether tokens be-
longing to multiple overlapping annotation spans of the same class had to be counted several
times in one annotation when computing the A scores (for instance, whether we had to count
the words “dieses” [this ], “schöne” [nice], and “Buch” [book ] in Example 2.4.1 twice as senti-
ments when computing A1 and A2), and (ii) whether we had to assume that two annotated
spans from different experts agreed on all of their tokens if these spans had at least one word
in common (e.g., whether we had to consider the annotation of the token “Mein” [My ] in the
example as matching, regarding that the rest of the corresponding sentiments agreed).

Example 2.4.1

Annotation 1:

[Mein Vater hasst [dieses schöne Buch]sentiment .]sentiment

[My father hates [this nice book]sentiment .]sentiment

Annotation 2:

Mein [Vater hasst [dieses schöne Buch]sentiment .]sentiment

My [father hates [this nice book]sentiment .]sentiment

To address these issues, we introduced two different agreement metrics—binary and pro-
portional kappa. With the former variant, we counted tokens belonging to overlapping
annotation spans of the same class multiple times (i.e., A1 and A2 would amount to 10 and
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9, respectively, in the above tweet) and considered all tokens belonging to the given anno-
tated element as matching if this span agreed with the annotation from the other expert
on at least one token (i.e., M1 and M2 would have the same values as A1 and A2 in this
case). With the latter metric, every labeled token was counted only once (i.e., the numbers
of labeled words in the first and second annotations would be 7 and 6, respectively), and we
only calculated the actual number of tokens with matching labels when computing the M
scores (i.e., both M1 and M2 would be equal to 6). The final value of the binary kappa in
Example 2.4.1 would consequently run up to 1.0 because this metric would consider both
annotations as perfectly matching, since every labeled sentiment agreed with the other an-
notation on at least one token. The proportional kappa, however, would be equal to 0.0,
since this metric would emphasize the fact that the observed reliability po is the same as the
agreement by chance pc, and would therefore deem both labelings as fortuitous.

2.5 Annotation Procedure

After defining the agreement metrics, we finally let our experts annotate the data. The
annotation procedure was performed in three steps:

• At the beginning, both annotators labeled one half of the corpus after only minimal
training. Unfortunately, their mutual agreement at this stage was relatively low, reach-
ing only 31.21% proportional-κ for sentiments;

• In the second step, in order to improve the inter-rater reliability, we automatically
determined all differences between the two annotations and highlighted non-matching
tokens with a separate class of tags. Then, we let the experts resolve these discrepancies
by either correcting their own decisions or rejecting the variants of the other coder. As
in the previous stage, we allowed the annotators to consult their supervisor (the author
of this thesis), also updating the FAQ section of the guidelines based on their questions,
but did not let them communicate with each other directly. This adjudication step
significantly improved all annotations: The agreement on sentiments increased by
30.73%, reaching 61.94%. Similar effects were observed for targets, sources, polar
terms, and their modifiers;

• After resolving all differences, our assistants proceeded with the annotation of remain-
ing files. Working completely independently, one of the experts has annotated 78.8%
of the corpus, whereas the second annotator has labeled the complete dataset.
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2.6 Evaluation

2.6.1 Initial Annotation Stage

The agreement results of the initial annotation stage are shown in Table 2.2.

Element
Binary κ Proportional κ

M1 A1 M2 A2 κ M1 A1 M2 A2 κ

Sentiment 4,215 7,070 3,484 9,827 38.05 3,269 6,812 3,269 9,796 31.21
Target 1,103 1,943 1,217 4,162 35.48 898 1,905 898 4,148 26.85
Source 159 445 156 456 34.53 153 439 153 456 33.75
Polar Term 1,951 2,854 2,029 3,188 64.29 1,902 2,851 1,902 3,180 61.36
Intensifier 57 101 59 123 51.71 57 101 57 123 50.81
Diminisher 3 10 3 8 33.32 3 10 3 8 33.32
Negation 21 63 21 83 28.69 21 63 21 83 28.69

Table 2.2: Inter-annotator agreement after the initial annotation stage

(M1 – number of tokens with matching labels in the first annotation, A1 – total number of tokens

labeled with that class in the first annotation, M2 – number of tokens with matching labels in the

second annotation, A2 – total number of tokens labeled with that class in the second annotation)

As we can see from the table, the inter-rater reliability of sentiments strongly correlates
with the inter-annotator agreement on targets and sources, setting an upper bound for
these elements in the binary-κ case. With the proportional metric, however, both sentiments
and targets show worse results than sources: 31.21% and 26.85% versus 33.75%. We
explain this difference by the fact, that sentiments and targets are typically represented
by syntactic or discourse-level constituents (noun phrases or clauses) and, even though the
experts agreed on the presence of these elements more often (as suggested by the binary-
κ metric), reaching a consensus about the exact boundaries of these elements was still a
challenging task for them despite an explicit clarification of this problem in the annotation
guidelines; sources, on the other hand, are usually expressed by pronouns, which rarely
accept syntactic attributes, so that their boundaries were easier to determine. Nevertheless,
even with the binary metric, the agreement of all sentiment-level elements is significantly
below the 40% threshold, which means only a slight reliability according to the Landis and
Koch scale (Landis and Koch, 1977).

A different situation is observed for polar terms and intensifiers. The inter-annotator
agreement of these elements is above 50%, for both κ-measures. Obviously, defining these
entities as lexical units has significantly eased the detection of their boundaries. This effect
becomes even more evident if we look at diminishers and negations, where the A and M
scores are absolutely identical for both metrics. It means that both annotators always agreed
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on the boundaries of these elements when they agreed on their presence. Unfortunately, due
to a rather small number of these tags in the corpus (with only 3 cases of diminishers
and 21 cases of negations), the overall agreement on these labels is relatively small too,
amounting to 33.32% and 28.69%, respectively.

2.6.2 Adjudication Step

Since these scores were unacceptable for running further experiments, we decided to revise
diverging annotations by letting our experts recheck each other’s decisions. As we can

Element
Binary κ Proportional κ

M1 A1 M2 A2 κ M1 A1 M2 A2 κ

Sentiment 8,198 8,530 8,260 14,034 67.92 7,435 8,243 7,435 13,714 61.94
Target 3,088 3,407 2,814 5,303 65.66 2,554 3,326 2,554 5,212 57.27
Source 573 690 545 837 72.91 539 676 539 833 71.12
Polar Term 3,164 3,298 3,261 4,134 85.68 3,097 3,290 3,097 4,121 82.64
Intensifier 111 219 113 180 56.01 111 219 111 180 55.51
Diminisher 9 16 10 16 59.37 9 16 9 15 58.05
Negation 68 84 67 140 60.21 67 83 67 140 60.03

Table 2.3: Inter-annotator agreement after the adjudication step

(M1 – number of tokens with matching labels in the first annotation, A1 – total number of labeled

tokens in the first annotation, M2 – number of tokens with matching labels in the second

annotation, A2 – total number of labeled tokens in the second annotation)

see from the results in Table 2.3, this procedure has significantly improved the inter-rater
reliability of all annotated elements: the binary scores of sentiments and targets increased
by 29.87% and 30.18%, respectively. An even greater improvement is observed for sources,
whose binary kappa improved by remarkable 38.38%. A similar tendency applies to the
proportional metric, where the agreement of sentiments gained 30.73%, reaching 61.94%.
Likewise, the reliability of opinion targets and holders improved by 30.42% and 37.37%,
running up to 57.27% and 71.12%.

As in the previous step, the highest agreement scores are attained by polar terms, whose
reliability notably surpasses the 80% benchmark, which means an almost perfect agreement.
Interestingly enough, only 193 out of 3,290 terms annotated by the first expert did not
match the labelings of the second annotator. Another interesting observation is that the
difference between the binary and proportional scores of polar terms only amounts to
3.04%, which implies that the assistants could unproblematically determine the boundaries
of these elements in most of the cases.

Somewhat surprisingly, the agreement of intensifiers improved notably less. A closer
look at the annotated cases revealed that the majority of their disagreements stemmed from
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different takes of exclamation marks: the first expert ignored these punctuation marks,
whereas the second annotator considered them as valid intensifying elements. Nevertheless,
even despite these diverging interpretations, the reliability of intensifiers is above 55%,
which means a moderate level.

2.6.3 Final Annotation Stage

After ensuring that our annotators could reach an acceptable quality of annotation, we
eventually let them label the remaining part of the data. The agreement results of the final
stage computed on the files annotated by both experts are given in Table 2.4.

Element
Binary κ Proportional κ

M1 A1 M2 A2 κ M1 A1 M2 A2 κ

Sentiment 14,748 15,929 14,969 26,047 65.03 13,316 15,375 13,316 25,352 58.82
Target 5,765 6,629 5,292 9,852 64.76 4,789 6,462 4,789 9,659 56.61
Source 966 1,207 910 1,619 65.99 898 1,180 898 1,604 64.1
Polar Term 5,574 5,989 5,659 7,419 82.83 5,441 5,977 5,441 7,395 80.29
Intensifier 192 432 194 338 49.97 192 432 192 338 49.71
Diminisher 16 30 17 34 51.55 16 30 16 33 50.78
Negation 111 132 110 243 58.87 110 131 110 242 58.92

Table 2.4: Inter-annotator agreement of the final corpus

(M1 – number of tokens with matching labels in the first annotation, A1 – total number of labeled

tokens in the first annotation, M2 – number of tokens with matching labels in the second

annotation, A2 – total number of labeled tokens in the second annotation)

This time, we can observe a slight decrease of the results: the proportional score for
sentiments dropped by 3.12%, whereas the agreement on targets was more persistent and
lost only 0.66%, going down to 56.61%. The most dramatic changes occurred for sources,
whose proportional value deteriorated by notable 7.02%, sinking to 64.1%. Nonetheless, the
average proportional agreement of all these elements is around 60.5%, which is almost twice
as high as the mean reliability achieved in the first stage.

As before, the scores of polar terms are in the ballpark of almost perfect results. Their
modifying elements, however, show a decrease: the agreement of intensifiers deterio-
rated by 5.8%, sinking to 49.71% proportional kappa. A similar situation is observed for
diminishers, whose kappa worsened from 58.05% to 50.78%. The best persistence in this
regard is shown by negations, where the quality dropped by only 1.11%, which can be con-
sidered as a very good result, regarding the small number of these elements in the corpus.

In general, we can see that the reliability of all elements in the final dataset is at least
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moderate, with polar terms being the most reliably annotated elements (κp = 80.29%),
and intensifiers setting a lower bound on the agreement (κp = 49.71%).

2.6.4 Qualitative Analysis

In order to understand the reasons for remaining conflicts, we decided to have a closer look
at the diverging cases. A sample sentence with different analyses of sentiments is shown in
Example 2.6.1:

Example 2.6.1

Annotation 1:

@TinaPannes immerhin ist die #afd nicht dabei ,

Annotation 2:

@TinaPannes [[immerhin ist die #afd nicht dabei]target ,]sentiment

@TinaPannes [[anyway the #afd is not there]target ,]sentiment

In this tweet, the first annotator obviously overlooked the emoticon , at the end of the
message, whereas the second expert correctly recognized it as an evaluation of the previous
sentence. Because the first assistant did not label any sentiment at all, she also automati-
cally disagreed on the target of this opinion.

A much rarer case of diverging target annotations was when both experts actually
marked a sentiment span. An example of such situation is shown in the following mes-
sage:

Example 2.6.2

Annotation 1:

[Koalition wirft der SPD [Blockadehaltung]target vor]sentiment

[Coalition accuses the SPD of [blocking politics]target ]sentiment

Annotation 2:

[Koalition wirft [der SPD]target Blockadehaltung vor]sentiment

[Coalition accuses [the SPD]target of blocking politics]sentiment

In this sentence, the first expert considered blocking politics as the main object of criti-
cism, whereas the second annotator regarded the political party accused of such behavior
as sentiment’s target. In our opinion, both of these interpretations are correct and, ideally,
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two sentiments had to be labeled in this message: one with the target “Blockadehaltung”
(blocking politics) and another one with the target “die SPD” (the SPD).

Although our annotators were much more consistent about the analysis of polar terms,
we still decided to have a look at disagreeing labels of these elements. A sample case of
differently annotated polar terms is given in Example 2.6.3

Example 2.6.3

Annotation 1:

Syrien vor dem Angriff—bringen diese Bomben den Frieden?

Syria facing an attack—will these bombs bring peace?

Annotation 2:

Syrien vor dem [Angriff]polar-term—bringen diese [Bomben]polar-term den
[Frieden]polar-term?

Syria facing an [attack]polar-term—will these [bombs]polar-term bring [peace]polar-term?

The obvious reason for the misclassifications in this message is the notorious subjective facts:
As you can see, the first assistant ignored the words “Angriff” (attack), “Bombe” (bomb), and
“Frieden” (peace), while the second annotator considered them as polar items. We should,
however, admit that this difference is partially due to the adjudication procedure that we
used in step two; because at the initial stage, our experts had had opposite preferences
regarding these entities: the first annotator had labeled these terms, whereas the second
assistant had usually skipped them. During the revision, however, both assistants have
changed their minds after looking at the decisions of the other linguist. Therefore, one needs
to keep in mind the risk of mutual concession when applying the adjudication method in the
future.

2.6.5 Attributes Agreement

In order to see whether our annotators also agreed on the attributes of the tags, we esti-
mated the Cohen’s kappa for the polarity and the Krippendorff’s alpha (Krippendorff, 2007)
for the intensity of matching sentiments and polar terms. The reason for choosing two
different metrics in this case is that polarity is a categorical feature, whose value takes
on one of the predefined classes (positive, negative, or comparison), whereas intensity is
an ordinal attribute, whose value can range on a scale from zero (weak) to two (strong).
Since disagreements that are further apart on the scale need to be penalized more strongly
than small divergences, we decided to use the α-measure for this attribute, as it explicitly
addresses this problem.
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Element Polarity κ Intensity α

Sentiment 58.8 73.54
Polar Term 87.12 78.79

Table 2.5: Inter-annotator agreement on polarity and intensity of sentiments and polar terms

As we can see from the results in Table 2.5, reaching a consensus about the polarities of
polar terms is a much easier task than agreeing on the semantic orientation of sentiments.
As in Example 2.6.1, one of the main reasons for these disagreements is opinions containing
emoticons, especially in the cases when the polarity of the smiley contradicts the polarity of
the preceding text, e.g., “Ich hasse die Piratenpartei ,” (I hate the Pirate Party ,).

Interestingly enough, the inter-rater agreement on the intensity of sentiments (α =

73.54) is notably higher than the corresponding score for their polarity (κ = 58.8), although
the opposite situation is observed for polar terms, whose α-value (78.79) is almost ten
percent lower than κ (87.12). This means that the annotators could easily determine the
semantic orientation of a single word, but had difficulties with agreeing on the strength of its
meaning. Vice versa, when dealing with targeted opinions, they usually assigned the medium
intensity to most sentiments, but could disagree on the polarity of these statements.

For the sake of completeness, we compared these results with the scores obtained on the
MPQA dataset (see Wilson, 2007, pp. 38, 80). The average α-agreement on the intensity of
direct subjective and objective speech events (a rough counterpart of our sentiments) in this
corpus was around 79%; the corresponding results for the intensity of expressive subjective
elements (polar terms in our case), however, were much worse, amounting to only 46%,
even though the κ-value for their polarity run up to 72%. Hence, the reliability of annotated
attributes in our corpus still outperforms the respective agreement in MPQA on almost all
aspects except for sentiment intensity.

2.6.6 Effect of the Selection Criteria

Finally, in order to check how the selection criteria that we applied initially when sampling
the corpus data affected the resulting distribution of sentiments and polar terms in the
final dataset, we plotted the frequencies and agreement scores of these elements across topics
and formal groups, and present these statistics in Figures 2.1 and 2.2.

As we can see from the plots, topics and form clearly affect both the number of opinions
and the difficulty of their interpretation. According to Figure 2.1, the greatest number of
sentiments occur in tweets pertaining to the federal elections and in messages representing
casual everyday conversations. A similar tendency is observed for polar terms, but in this
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(a) Sentiments (b) Polar Terms

Figure 2.1: Distribution of sentiments and polar terms across topics and formal groups

(a) Sentiments (b) Polar Terms

Figure 2.2: Inter-annotator agreement on sentiments and polar terms across topics and formal

groups
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case, the form of the microblogs seems to have more impact on the elements’ distribution
than their topics.

Regarding the inter-annotator agreement, we can see that sentiments and polar terms
are most reliably annotated in messages from the German Twitter Snapshot. Moreover, the
former elements are apparently easiest to annotate in tweets that were preselected using a
sentiment lexicon, whereas polar terms are easiest to analyze in microblogs that contain
emoticons.

To confirm the correlation between the topics and formal groups on the one hand and
the number and reliability of sentiments and polar terms on the other hand, we computed
the correlation coefficients (ρ) of these factors, considering each particular topic and formal
group as a binary variable and measuring the association of this variable with the number
and agreement of annotated elements.

Selection Criteria
Correlation Coefficients

Sentiment Polar Term

# of elements agreement # of elements agreement

Topical Groups
Federal Elections 0.312 0.169 0.356 0.289
Papal Conclave 0.149 0.124 0.182 0.264
Political Discussions 0.195 0.148 0.218 0.244
General Conversations 0.183 0.19 0.372 0.452

Formal Categories
Polar Terms 0.445 0.352 0.38 0.301
Emoticons 0.127 0.096 0.47 0.615
Random 0.216 0.134 0.143 0.138

Table 2.6: Correlation coefficients of topics and formal selection criteria with the number and

agreement scores of sentiments and polar terms

As we can see from the results in Table 2.6, both criteria (topics and form) have a positive
correlation with the number of annotated elements and their reliability. The highest ρ-score
for sentiments is achieved by tweets describing federal elections and messages containing
polar terms, where it amounts to 0.312 and 0.445, respectively. A slightly different situation
is observed for polar terms: the highest scores for this element both in terms of the number
of annotated items and their reliability are achieved by casual everyday conversations and
tweets that contain emoticons.
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2.7 Summary and Conclusions

Now that we have reached the end of the second chapter, we would like to remind the reader
that in this part of the thesis we have presented the Potsdam Twitter Sentiment Corpus
(PotTS), a collection of 7,992 German microblogs that had been manually annotated by two
human experts with sentiments, targets, sources, polar terms, and their modifying elements.

We obtained initial data for this corpus by tracking tweets about German federal elections,
papal conclave, discussions of general political topics, and casual everyday conversations
between spring and autumn 2013. Afterwards, we grouped these messages into three classes
(tweets containing polar terms, microblogs containing exclamation marks or emoticons, and
the rest of the messages) and randomly sampled 666 posts from each of these classes for each
topic.

The annotation process was performed in three steps: first, the annotators labeled one
half of the data after minimal training; then, we automatically highlighted their divergent
analyses and asked them to resolve these differences; finally, our assistants continued with
the analysis of the remaining files.

To estimate the inter-rater reliability, we introduced two modified versions of the estab-
lished κ-metric—binary and proportional kappa—which differ in the way how they treat
overlapping annotations and partial matches. Using these measures, we estimated the inter-
annotator agreement of our experts at different stages of their work. This study showed
that, initially, our assistants could hardly agree on the mere notion of targeted opinions, but
their disagreements could be resolved with the help of the adjudication procedure that we
applied in step two. Despite a small drop of the IAA scores in the final stage, all κ-values
still remained at the level of at least moderate reliability.

Finally, we demonstrated that our initial selection criteria had a strong impact on the
number and agreement of annotated sentiments and polar terms, with tweets about federal
elections and messages without prefiltered topics being the most prolific sources of these
elements.

That way, we not only contributed to the inventory of available sentiment and social-
media resources for German but also provided new insights into different sampling methods
that could be used to create an opinion dataset and described the consequences of applying
these methods in practice. A detailed inter-annotator agreement study showed precisely
which topics yield most subjective opinions (elections and casual conversations) and which
groups of messages are especially difficult to annotate (tweets containing emoticons and
microblogs without polar terms or emoticons). In the next step, we are going to check
whether our dataset can also serve as a basis for building and evaluating automatic opinion
mining applications.
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Sentiment Lexicons

The first avenue that we are going to explore using the obtained data is automatic prediction
of polar terms. For this purpose, we will first evaluate existing German sentiment lexicons
on our corpus. Since most of these resources, however, were created semi-automatically
by translating English polarity lists and then manually post-editing and expanding these
translations, we will also look whether methods that were used to produce original English
lexicons would yield comparable results when applied to German data directly. Finally, we
will analyze whether one of the most popular areas of research in contemporary compu-
tational linguistics, distributed vector representations of words (Mikolov et al., 2013), can
produce better polarity lists than previous approaches. In the concluding step, we will inves-
tigate the effect of different hyper-parameters and seed sets on these systems, summarizing
and concluding our findings in the last part of this chapter.

3.1 Data

As development set for our experiments, we will use 400 randomly selected tweets annotated
by the first expert. As gold test set for evaluating the lexicons, we will utilize the complete
corpus labeled by the second linguist. These test data comprise a total of 6,040 positive and
3,055 negative terms. But because many of these expressions represent emoticons, which, on
the one hand, are a priori absent in common lexical taxonomies such as WordNet (Miller,
1995; Miller and Fellbaum, 2007) or GermaNet (Hamp and Feldweg, 1997) and therefore
not amenable to methods that rely on these resources, but on the other hand, can be easily
captured by regular expressions, we decided to exclude non-alphabetic smileys altogether
from our study. This left us with a set of 3,459 positive and 2,755 negative labeled terms
(1,738 and 1,943 unique expressions, respectively), whose κ-agreement run up to 59%.
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3.2 Evaluation Metrics

An important question that needs to be addressed before we proceed with the experiments is
which evaluation metrics we should use to measure the quality of sentiment lexicons. Usually,
this quality is estimated either intrinsically (by taking a lexicon in isolation and immediately
assessing its accuracy) or extrinsically (by considering the lexicon within the scope of a bigger
application, e.g., a supervised classifier that uses lexicon’s entries as features).

Traditionally, intrinsic evaluation of English polarity lists amounts to comparing these
resources with the General Inquirer lexicon (GI; Stone et al., 1966), a manually compiled
list of 11,895 words annotated with their semantic categories. For this purpose, researchers
usually take the intersection of the two sets and estimate the percentage of matches in which
automatically induced polar terms have the same polarity as corresponding GI entries. This
evaluation, however, is somewhat problematic: First of all, it is not easily transferable
to other languages because even a manual translation of GI is not guaranteed to cover
all language- and domain-specific polar expressions. Second, since it only considers the
intersection of the two sets, it does not penalize for low recall, so that a polarity list that
consists of just two terms good+ and bad− will always have the highest possible score, often
surpassing other lexicons with a greater number of entries. Finally, such comparison does
not account for polysemy. As a result, an ambiguous word only one of whose (possibly rare)
senses is subjective will always be ranked the same as an obvious polar term.

Unfortunately, an extrinsic evaluation does not always provide a remedy in this case
because different extrinsic applications might yield different results, and a polarity list that
performs best with one system can produce fairly low scores with another application.

Instead of using these methods, we decided to evaluate sentiment lexicons directly on
our corpus by comparing their entries with the annotated polar terms, since such approach
would allow us to solve at least three of the aforementioned problems, namely, (i) it would
account for recall, (ii) it would distinguish between different senses of polysemous words,1

and (iii) it would preclude intermediate modules that could artificially improve or worsen
the results.

In particular, in order to evaluate a lexicon on our dataset, we represent this polarity list
as a case-insensitive trie (Knuth, 1998, pp. 492–512) and compare this trie with the original
and lemmatized2 corpus tokens, successively matching them from left to right. We consider a
match as correct if a lexicon term completely agrees with the (original or lemmatized) tokens
of an annotated polar term and has the same polarity as the labeled element. All corpus

1The annotators of our corpus were asked to label a polar term iff the actual sense of this term in the
given context was polar.

2All lemmatizations in our experiments were performed using the TreeTagger of Schmid (1995).
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tokens that are not marked as polar terms in the corpus are considered as gold neutral
words; similarly, all terms that are absent from the lexicon, but present in the corpus are
assumed to have a predicted neutral polarity.

3.3 Semi-Automatic Lexicons

Using this metric, we first estimated the quality of existing German polarity lists:

• German Polarity Clues (GPC; Waltinger, 2010), which contains 10,141 polar terms
from the English sentiment lexicons Subjectivity Clues (Wilson et al., 2005) and Sen-
tiSpin (Takamura et al., 2005) that were automatically translated into German and
then manually revised by the author. Apart from that, Waltinger also manually en-
riched these translations with their frequent synonyms and 290 negated phrases;3

• SentiWS (SWS; Remus et al., 2010), which includes 1,818 positively and 1,650 nega-
tively connoted terms along with their part-of-speech tags and inflections, which results
in a total of 32,734 word forms. As in the previous case, the authors obtained the initial
entries for their resource by translating an English polarity list (the General Inquirer
lexicon) and then manually correcting these translations. In addition to this, they
expanded the translated set with words and phrases that frequently co-occurred with
positive and negative seed terms in a corpus of 10,200 customer reviews or in the
German Collocation Dictionary (Quasthoff, 2010);4

• and, finally, the only the lexicon that was not obtained through translation—the
Zurich Polarity List (ZPL; Clematide and Klenner, 2010), which features 8,000 sub-
jective entries extracted from GermaNet synsets (Hamp and Feldweg, 1997). These
synsets had been manually annotated by human experts with their prior polarities.
Since the authors, however, found the number of polar adjectives obtained this way
to be insufficient for their classification experiments, they automatically enriched this
lexicon with more attributive terms, using the collocation method of Hatzivassiloglou
and McKeown (1997).

For our evaluation, we tested each of the three lexicons in isolation, and also evaluated
their union and intersection in order to check for possible “synergy” effects. The results of
this computation are shown in Table 3.1.

3In our experiments, we excluded the auxiliary words “aus” (from), “der” (the), “keine” (no), “nicht” (not),
“sein” (to be), “was” (what), and “wer” (who) with their inflection forms from the German Polarity Clues,
because these entries significantly worsened the evaluation results.

4Unfortunately, the authors do not provide a breakdown of how many terms were obtained through
translation and how many of them were added during the expansion.
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Lexicon
Positive Expressions Negative Expressions Neutral Terms Macro

F1

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

GPC 0.209 0.535 0.301 0.195 0.466 0.275 0.983 0.923 0.952 0.509 0.906
SWS 0.335 0.435 0.379 0.484 0.344 0.402 0.977 0.975 0.976 0.586 0.952
ZPL 0.411 0.424 0.417 0.38 0.352 0.366 0.977 0.979 0.978 0.587 0.955
GPC ∩ SWS ∩ ZPL 0.527 0.372 0.436 0.618 0.244 0.35 0.973 0.99 0.982 0.589 0.964
GPC ∪ SWS ∪ ZPL 0.202 0.562 0.297 0.195 0.532 0.286 0.985 0.917 0.95 0.51 0.901

Table 3.1: Evaluation of semi-automatic German sentiment lexicons

GPC — German Polarity Clues, SWS — SentiWS, ZPL — Zurich Polarity List

As we can see from the table, the intersection of all three polarity lists achieves the best
results for the positive and neutral classes, and also attains the highest macro- and micro-
averaged F1-scores. One of the main reasons for this success is a relatively high precision of
this set for all polarities except neutral, where the intersection is outperformed by the union
of three lexicons. The last fact is also not surprising, as the union has the highest recall of
positive and negative terms. Among all compared lexicons, the results of the Zurich Polarity
List come closest to the scores of the intersected set: its macro-F1 is lower by 0.002, and
its micro-average is less by 0.009. The second-best lexicon is SentiWS, which reaches the
highest F1-score for the negative class, but has a lower precision of positive entries. Finally,
German Polarity Clues is the least reliable sentiment resource, which is also mainly due to
the low precision of its polar terms.

3.4 Automatic Lexicons

A natural question that arises upon evaluation of existing semi-automatic lexicons is how
well fully automatic methods can perform in comparison with these resources. According
to Liu (2012, p. 79), most automatic sentiment lexicon generation (SLG) algorithms can
be grouped into two main classes: dictionary- and corpus-based ones. The former systems
induce polarity lists from monolingual thesauri or lexical databases such as the Macquarie
Dictionary (Bernard, 1986) or WordNet (Miller, 1995). A clear advantage of these methods
is their relatively high precision, as they operate on manually annotated, carefully verified
data. At the same time, this precision might come at the price of reduced recall, especially
in domains whose language changes very rapidly and where new terms are coined in a flash.
In contrast to this, corpus-based systems operate directly on unlabeled in-domain texts and,
consequently, have access to all neologisms; but the downside of these approaches is that
they often have to deal with extremely noisy input and might therefore have low accuracy.
Since it was unclear to us which of these pros and cons would have a stronger influence on
the net results, we decided to reimplement the most popular algorithms from both of these
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groups and evaluate them on our corpus.

3.4.1 Dictionary-Based Methods

The presumably first SLG system that inferred a sentiment lexicon from a lexical database
was proposed by Hu and Liu (2004). In their work on automatic classification of customer
reviews, the authors automatically compiled a list of polar adjectives (which were supposed
to be the most relevant part of speech for mining people’s opinions) by taking a set of seed
terms with known semantic orientations and propagating the polarity scores of these seeds
to their WordNet synonyms. A similar procedure was also applied to antonyms, but the
polarity values were reversed in this case. This expansion continued until no more adjectives
could be reached via synonymy-antonymy links.

Blair-Goldensohn et al. (2008) refined this approach by considering polarity scores of all
WordNet terms as a single vector ~v; the values of all negative seeds in this vector were set
to −1, and the scores of all positive seed terms were fixed to +1. To derive their polarity
list, the authors multiplied ~v with an adjacency matrix A. Each cell aij in this matrix was
set to λ = 0.2, if there was a synonymy link between synsets i and j, and to −λ, if these
synsets were antonymous to each other. By performing this multiplication multiple times
and storing the results of the previous iterations in the ~v vector, the authors ensured that
all polarity scores were propagated transitively through the network, decaying by a constant
factor (λ) as the length of the paths starting from the original seeds increased.

With various modifications, the core idea of Hu and Liu (2004) was adopted by almost all
dictionary-based works: For example, Kim and Hovy (2004, 2006) estimated the probability
of word w belonging to polarity class c ∈ {positive, negative, neutral} as:

P (c|w) = P (c)P (w|c) = P (c)

n∑
i=1

count(syni, c)

count(c)
,

where P (c) is the prior probability of that class (estimated as the number of words belonging
to class c divided by the total number of words); count(syni, c) denotes the number of times
a seed term with polarity c appeared in a synset of w; and count(c) means the total number
of synsets that contain seeds with this polarity. Using this formula, the authors successively
expanded their initial set of 34 adjectives and 44 verbs to a list of 18,192 polar terms.

Another popular dictionary-based resource, SentiWordNet, was created by Esuli and
Sebastiani (2006a), who enriched a small set of positive and negative seed adjectives with
their WordNet synonyms and antonyms in k ∈ {0, 2, 4, 6} iterations, considering the rest
of the terms as neutral if they did not have a subjective tag in the General Inquirer lexicon.
In each of these k steps, the authors optimized two ternary classifiers (Rocchio and SVM)
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that used tf-idf–vectors of synset glosses as features. Afterwards, they predicted polarity
scores for all WordNet synsets using an ensemble of all trained classifiers.

Graph-based SLG algorithms were proposed by Rao and Ravichandran (2009), who ex-
perimented with three different methods:

• deterministic min-cut, in which the authors propagated the polarity values of seeds
to their WordNet synonyms and hypernyms and then determined a minimum cut
between the polarity clusters using the algorithm of Blum and Chawla (2001);

• since this approach, however, always partitioned the graph in the same way even if
there were multiple possible splits with the same cost, the authors also proposed a
randomized version of this method, in which they randomly perturbed edge weights;

• finally, they compared both min-cut systems with the label propagation algorithm
of Zhu and Ghahramani (2002), which can be considered as a probabilistic variant
of Blair-Goldensohn et al.’s approach.

Further notable contributions to dictionary-based methods were made by Mohammad
et al. (2009), who compiled an initial set of polar terms by using antonymous morphological
patterns (e.g., logical — illogical, honest — dishonest, happy — unhappy) and then expanded
this set with the help of the Macquarie Thesaurus (Bernard, 1986); Awadallah and Radev
(2010), who adopted a random walk approach, estimating word’s polarity as a difference
between the average number of steps a random walker had to make in order to reach a
seed term from the positive or negative set; and Dragut et al. (2010), who computed words’
polarities using manually specified inference rules.

For our experiments, we reimplemented the approaches of Hu and Liu (2004), Blair-
Goldensohn et al. (2008), Kim and Hovy (2004, 2006), Esuli and Sebastiani (2006a), Rao
and Ravichandran (2009), and Awadallah and Radev (2010), and applied these methods to
GermaNet5 (Hamp and Feldweg, 1997), the German equivalent of the WordNet taxon-
omy.

In order to make this comparison more fair, we used the same set of initial seeds for
all tested methods. For this purpose, we translated the list of 14 polar English adjectives
proposed by Turney and Littman (2003) (good+, nice+, excellent+, positive+, fortunate+,
correct+, superior+, bad−, nasty−, poor−, negative−, unfortunate−, wrong−, and inferior−)
into German, getting a total of 20 terms (10 positive and 10 negative adjectives) due to
multiple possible translations of the same words. Furthermore, to settle the differences be-
tween binary and ternary approaches (i.e., methods that only distinguished between positive

5Throughout our experiments, we will use GermaNet Version 9.
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and negative terms and systems that could also predict the neutral class), we extended the
translated seeds with 10 neutral adjectives (neutral0, objective0, technical0, chemical0, phys-
ical0, material0, bodily0, financial0, theoretical0, and practical0), letting all classifiers work in
the ternary mode. Finally, since several algorithms had different takes of synonymous rela-
tions (e.g., Hu and Liu only considered two words as synonyms if they appeared in the same
synset, whereas Esuli and Sebastiani, Rao and Ravichandran, and Awadallah and Radev also
considered hypernyms and hyponyms as valid links for polarity propagation), we decided to
unify this aspect as well. To this end, we established an edge between any two terms that
appeared in the same synset, and also linked all words whose synsets were connected via
has_participle, has_pertainym, has_hyponym, entails, or is_entailed_by relations.
We intentionally ignored relations has_hypernym and is_related_to, because hypernyms
were not guaranteed to preserve the polarity of their children (e.g., “bewertungsspezifisch”
[appraisal-specific] is a neutral term in contrast to its immediate hyponyms “gut” [good ]
and “schlecht” [bad ]), and is_related_to could connect both synonyms and antonyms of
the same term (e.g., this relation holds between words “Form” [shape] and “unförmig” [mis-
shapen], but at the same time, it also connects noun “Dame” [lady ] to its derived adjective
“damenhaft” [ladylike]).

We fine-tuned the hyper-parameters of all approaches by using grid search and optimizing
the macro-averaged F1-score on the development set. In particular, instead of waiting for
the full convergence of the eigenvector in the approach of Blair-Goldensohn et al. (2008), we
constrained the maximum number of multiplications to five. Our experiments showed that
this limitation had a crucial impact on the quality of the resulting polarity list (e.g., after
five multiplications, the average precision of its positive terms amounted to 0.499, reaching
an average F1-score of 0.26 for this class; after ten more iterations though, this precision de-
creased dramatically to 0.043, pulling the F1-score down to 0.078). Furthermore, we limited
the maximum number of iterations in the label-propagation method of Rao and Ravichan-
dran (2009) to 300, although the effect of this setting was much weaker than in the previous
case (by comparison, the scores achieved after 30 runs differed only by a few hundredths
from the results obtained after 300 iterations). Finally, in the method of Awadallah and
Radev (2010), we allowed for seven simultaneous walkers with a maximum number of 17
steps each, considering a word as polar if more than a half of these walkers agreed on the
same polarity class.

As we can see from the results in Table 3.2, the scores of all automatic systems are
significantly lower than the values achieved by semi-automatic lexicons. The best macro-
averaged F1-result for all three classes (0.479) is attained by the method of Blair-Goldensohn
et al. (2008), which is still 0.11 points below the highest score obtained by the intersection
of GPC, SentiWS, and the Zurich Polarity List. Moreover, in general, the situation with
dictionary-based lexicons is more complicated than in the case of manually curated polarity
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Lexicon
# of
Terms

Positive Expressions Negative Expressions Neutral Terms Macro
F1

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

Seed Set 20 0.771 0.102 0.18 0.568 0.017 0.033 0.963 0.999 0.981 0.398 0.962
HL 5,745 0.161 0.266 0.2 0.2 0.133 0.16 0.969 0.96 0.965 0.442 0.93
BG 1,895 0.503 0.232 0.318 0.285 0.093 0.14 0.968 0.991 0.979 0.479 0.959
KH 356 0.716 0.159 0.261 0.269 0.044 0.076 0.965 0.997 0.981 0.439 0.962
ES 39,181 0.042 0.564 0.078 0.033 0.255 0.059 0.981 0.689 0.81 0.315 0.644
RRmincut 8,060 0.07 0.422 0.12 0.216 0.073 0.109 0.972 0.873 0.92 0.383 0.849
RRlbl-prop 1,105 0.567 0.176 0.269 0.571 0.046 0.085 0.965 0.997 0.981 0.445 0.962
AR 23 0.768 0.1 0.176 0.568 0.017 0.033 0.963 0.999 0.981 0.397 0.962
HL ∩ BG ∩ RRlbl 752 0.601 0.165 0.259 0.567 0.045 0.084 0.965 0.997 0.981 0.441 0.962
HL ∪ BG ∪ RRlbl 6,258 0.166 0.288 0.21 0.191 0.146 0.165 0.97 0.958 0.964 0.446 0.929

Table 3.2: Results of dictionary-based approaches

HL — Hu and Liu (2004), BG — Blair-Goldensohn et al. (2008), KH — Kim and Hovy (2004),

ES — Esuli and Sebastiani (2006a), RR — Rao and Ravichandran (2009), AR — Awadallah and

Radev (2010)

lists, as every system demonstrates a better score on only one metric, but fails to convincingly
outperform its competitors on several (let alone all) aspects. Nevertheless, we still can notice
at least the following main trends:

• the method of Esuli and Sebastiani (2006a) achieves the highest recall of positive and
negative terms, but these entries have a very low precision;

• simultaneously five approaches attain the same best F1-results for the neutral class,
which, in turn, leads to the best micro-averaged F1-scores for these systems;

• and, finally, the solution of Blair-Goldensohn et al. (2008) achieves the highest macro-
averaged F1 despite a rather low recall of negative expressions.

3.4.2 Corpus-Based Methods

An alternative way of generating polarity lists is provided by corpus-based approaches. In
contrast to dictionary-based methods, these systems operate immediately on raw texts and
are therefore virtually independent of any manually annotated resources.

A pioneering work on these algorithms was done by Hatzivassiloglou and McKeown (1997).
Assuming that coordinately conjoined attributes would typically have the same semantic
orientation, these authors trained a supervised logistic classifier that predicted the degree
of dissimilarity between two co-occurring adjectives. Afterwards, they constructed a word
collocation graph, drawing a link between any two adjectives that appeared in the same
coordinate pair, and using predicted dissimilarity score between these words as the respective
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edge weight. In the final stage, Hatzivassiloglou and McKeown (1997) partitioned this graph
into two clusters and assigned the positive label to the bigger part.

An attempt to unite dictionary- and corpus-based methods was made by Takamura et al.
(2005), who adopted the Ising spin model from statistical mechanics, considering words found
in WordNet, the Wall Street Journal, and the Brown corpus as electrons in a ferromagnetic
lattice. The authors established a link between any two electrons whose terms appeared in
the same WordNet synset or coordinately conjoined pair in the corpora. In the final step,
they approximated the most probable orientation of all spins in this graph, considering these
orientations as polarity scores of the respective terms.

Another way of creating a sentiment lexicon was proposed by Turney and Littman (2003),
who induced a list of polar terms by computing the difference between their point-wise mutual
information (PMI) with the positive and negative seeds. In particular, the authors estimated
the polarity score of word w as:

SO-A(w) =
∑
wp∈P

PMI(w,wp)−
∑
wn∈N

PMI(w,wn),

where P represents the set of all positive seeds; N denotes the collection of known negative
words; and PMI is computed as a log-ratio PMI(w,wx) = log2

p(w,wx)
p(w)p(wx)

. The joint probabil-
ity p(w,wx) in the last term was calculated as the number of hits returned by the AltaVista
search engine for the query “w NEAR wx” divided by the total number of documents in the
search index.

This method was later successfully adapted to Twitter by Kiritchenko et al. (2014), who
harnessed the corpus of Go et al. (2009) and an additional set of 775,000 tweets to create
two sentiment lexicons, Sentiment140 and Hashtag Sentiment Base, using frequent emoti-
cons as seeds for the first lexicons and taking common emotional hashtags such as “#joy”,
“#excitement”, “#fear” as seed terms for the second list.

Another Twitter-specific approach, which also relied on the corpus of Go et al. (2009),
was presented by Severyn and Moschitti (2015a). To derive their lexicon, the authors trained
an SVM classifier that used token n-grams as features and then included n-grams with the
greatest learned feature weights into their final polarity list.

Graphical methods for corpus-based SLG were advocated by Velikovich et al. (2010) and
Feng et al. (2011). The former work adapted the label-propagation algorithm of Rao and
Ravichandran (2009) by replacing the average of all incident scores for a potential subjective
term with their maximum value. The latter approach induced a sentiment lexicon using
two popular techniques from information retrieval, PageRank (Brin and Page, 1998) and
HITS (Kleinberg, 1999).
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For our experiments, we reimplemented the approaches of Takamura et al. (2005), Ve-
likovich et al. (2010), Kiritchenko et al. (2014) and Severyn and Moschitti (2015b), and
applied these methods to the German Twitter Snapshot (Scheffler, 2014), a collection of
24 M German microblogs, which we previously used for sampling one part of our sentiment
corpus.

We normalized all messages of this snapshot with the rule-based normalization pipeline
of Sidarenka et al. (2013), which will be described in more detail in the next chapter, and
lemmatized all tokens with the TreeTagger of Schmid (1995). Afterwards, we constructed
a collocation graph from all normalized lemmas that appeared at least four times in the
snapshot. For the method of Takamura et al. (2005), we additionally used GermaNet

in order to add more links between electrons. As in the previous experiments, all hyper-
parameters (including the size of the lexicons) were fine-tuned on the development set by
maximizing the macro-averaged F1-score on these data.

The results of this evaluation are presented in Table 3.3.

Lexicon
# of
Terms

Positive Expressions Negative Expressions Neutral Terms Macro
F1

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

Seed Set 20 0.771 0.102 0.18 0.568 0.017 0.033 0.963 0.999 0.981 0.398 0.962
TKM 920 0.646 0.134 0.221 0.565 0.029 0.055 0.964 0.998 0.981 0.419 0.962
VEL 60 0.764 0.102 0.18 0.568 0.017 0.033 0.963 0.999 0.98 0.398 0.962
KIR 320 0.386 0.106 0.166 0.568 0.017 0.033 0.963 0.996 0.979 0.393 0.959
SEV 60 0.68 0.102 0.177 0.568 0.017 0.033 0.963 0.999 0.981 0.397 0.962
TKM ∩ VEL ∩ SEV 20 0.771 0.102 0.18 0.568 0.017 0.033 0.963 0.999 0.981 0.398 0.962
TKM ∪ VEL ∪ SEV 1,020 0.593 0.134 0.218 0.565 0.029 0.055 0.964 0.998 0.98 0.418 0.962

Table 3.3: Results of corpus-based approaches

TKM — Takamura et al. (2005), VEL — Velikovich et al. (2010), KIR — Kiritchenko et al.

(2014), SEV — Severyn and Moschitti (2015b)

This time, we can observe a clear superiority of the system of Takamura et al. (2005),
which not only achieves the best recall and F1 for the positive and negative classes but also
yields the highest micro- and macro-averaged results for all three polarities. The sizes and
the scores of other lexicons, however, are much smaller than the cardinalities and the results
of the Takamura et al.’s polarity list. Moreover, these lexicons can hardly outperform the
original seed set on the negative class.

Because the last result was somewhat unexpected, we decided to investigate the reasons
for potential problems in these systems. A closer look at their learning curves revealed
that the macro-averaged F1-values on the development data rapidly decreased from the very
beginning of their work. Since we considered the lexicon size as one of the parameters, we
rapidly stopped populating these lists. As a consequence, only few highest ranked terms
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(all of which were positive) were included into the final resource. As it turned out the main
reason for this degradation was the ambiguity of the seed terms: While adapting the original
seed list of Turney and Littman (2003) to German, we translated the English word “correct”
as “richtig.” This German word, however, also has another reading—real (as in “ein richtiges
Spiel” [a real game] or “ein richtiger Rennwagen” [a real sports car ]), which was much more
frequent in the analyzed snapshot and typically appeared in a negative context, e.g., “ein
richtiger Bombenanschlag” (a real bomb attack) or “ein richtiger Terrorist” (a real terrorist).
As a consequence, methods that relied on weak supervision had to deal with extremely
unbalanced training data (716,210 positive instances versus 92,592 negative ones) and got
stuck in a local optimum from the very beginning of their training.

3.4.3 NWE-Based Methods

Finally, the last group of methods that we are going to explore in this chapter are algo-
rithms that operate on distributed vector representations of words (neural word embeddings
[NWEs]). First introduced by Bengio et al. (2003) and significantly improved by Collobert
et al. (2011) and Mikolov et al. (2013), NWEs had a great “tsunami”-like effect on many
downstream NLP applications (Manning, 2015). Unfortunately, these advances have largely
bypassed the generation of sentiment lexicons, up to a few exceptions introduced by the
works of Tang et al. (2014a) and Vo and Zhang (2016). In the former approach, the authors
used a large collection of weakly labeled tweets in order to learn hybrid word embeddings.
In contrast to standard word2vec vectors (Mikolov et al., 2013) and purely task-specific rep-
resentations (Collobert et al., 2011), such embeddings were optimized with respect to both
objectives—predicting the occurrence of nearby words and classifying the overall polarity of
a message. Using these hybrid vectors, Tang et al. trained a one-layer feed-forward neural
network that predicted the polarity of a microblog, and subsequently applied this classifier
separately to each word embedding, considering the predicted value as polarity score for
the respective term. In contrast to this approach, Vo and Zhang immediately optimized
two-dimensional task-specific embeddings, and regarded the two dimensions of these learned
vectors as positive and negative scores of corresponding words.

In order to evaluate these systems, we reimplemented both methods, extending them to
three-way classification (positive, negative, and neutral), and applied them to weakly labeled
snapshot tweets.

Apart from these solutions, we also came up with the following alternative ways of gen-
erating polarity lists from neural word embeddings:

• the method of the nearest centroids,
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• k-NN clustering;

• principal component analysis (PCA),

• and a new linear-projection algorithm.

In the first method, we computed the centroids of the positive, negative, and neutral
clusters by taking the arithmetic mean of the respective seed-term vectors and then assigned
word w to the polarity group whose centroid was closest to the embedding of that word. We
considered the distance to the cluster center as the respective polarity score for that word
and sorted the resulting sentiment lexicon in ascending order of these values.

A similar procedure was used in k-NN, where we first determined k seed vectors that were
closest to the embedding of word w and then allocated this word to the polarity class whose
seeds were nearest and appeared most frequently in w’s neighborhood.

A different technique was used for the principal component analysis. After normally
decomposing the embedding matrix E ∈ Rd×|V | (with d = 300 denoting the dimension of
word vectors, and |V | representing the vocabulary size) into singular components:

E = UΣV T ,

we looked for a row axis usubj ∈ U that maximized the distance between the embeddings of
polar (positive or negative) and neutral seeds projected on that line. In the same way, we
determined a polarity axis upol that maximized the distance between projected positive and
negative embeddings. After finding both axes, we projected all word vectors on these two
lines, considering the distances between these projections and lines’ origins as the respective
subjectivity and polarity scores. The pseudo-code of this approach is shown in Algorithm 1.

Since PCA, however, was not guaranteed to find the optimum projection axes (the or-
thogonal bases U and V in SVD are typically computed using the covariance matrix of E,
and might therefore not reflect semantic orientations of words, if terms with opposite po-
larities occur in similar contexts), we devised our own linear projection method, in which
we explicitly encoded the above objective: Namely, given two sets of vectors with opposite
semantic orientations (let us denote the set of positive vectors as P = {~p+1 , . . . , ~p+m} and
the set of negative embeddings as N = {~p−1 , . . . , ~p−n}), we were looking for a line ~b that
maximized the distance between the projections of embeddings from these sets on that line,
i.e.:

~b = argmax
1

2

∑
~p+

∑
~p−

∥∥∥∥∥~b · ~p+~b2
~b−

~b · ~p−
~b2

~b

∥∥∥∥∥
2

= argmax
1

2

∑
~p+

∑
~p−

∥∥∥∥∥~b · (~p+ − ~p−)

~b2
~b

∥∥∥∥∥
2

,

(3.1)
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Algorithm 1 Sentiment lexicon generation with the PCA algorithm
1: function ExpandPCA(P ,N ,O, E) . P – indices of positive terms,

. N – indices of negative terms,
. O – indices of objective terms, E – embedding matrix

2: U,Σ, V> ← SVD(E); . obtain singular components of E
3: E′ ←

(
E> · U

)>; . project E onto the eigenvectors of its row space
4: S ← P ∪N ; . get the set of subjective terms
5: usubj, µS , µO ← FindMeanAxis(E′,S,O); . find subjectivity axis
6: upol, µP , µN ← FindAxis(E′,P ,N ); . find polarity axis
7: return ComputePolScores(E′,S ∪ O, usubj, upol, µS , µO, µP , µN );
8: end function

9: function FindMeanAxis(E,S1,S2)
10: µ1 ← 0; µ2 ← 0; axis ← 0; max_dist ← 0;
11: for i← 1; i <= nrows(E); i← i + 1 do

12: e ←M[i];
13: dist ←

∑
j1∈S1,j2∈S2 |e[j1]− e[j2]|;

14: if dist > max_dist then

15: axis ←i; max_dist ← dist;
16: µ1 ←

∑
j1∈S1

e[j1]

|S1| ; µ2 ←
∑

j2∈S2
e[j2]

|S2| ;
17: end if

18: end for

19: return axis, µ1, µ2;
20: end function

21: function ComputePolScores(E,S, usubj, upol, µS , µO, µP , µN )
22: scores ← [];
23: Osubj ← µO + µS−µO

2
; . Compute the origin of the subjectivity axis.

24: max_scoresubj ← max ({|n[usubj]− Osubj||∀n ∈ cols(E)});
25: Opol ← µN + µP−µN

2
; . Compute the origin of the polarity axis.

26: max_scorepol ← max ({|n[upol]− Opol||∀n ∈ cols(M)});
27: for i← 1; i <= ncols(M); i← i + 1 do

28: if i ∈ S then

29: continue; . known seeds will be added later by default
30: end if

31: n←M[:, i]>; . assign i-th column to n

32: if |n[usubj]− µO| > |n[usubj]− µS | then . if the i-th word is subjective
33: scoresubj ← 1 +

|n[usubj ]−Osubj |
max_scoresubj

;
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34: else

35: scoresubj ← 1− |n[usubj ]−Osubj |max_scoresubj
;

36: end if

37: if |n[upol]− µN | > |n[upol]− µP | then . if the i-th word is positive
38: polarity← positive;
39: else

40: polarity← negative;
41: end if

42: scorepol ← |n[upol]−Opol|
max_scorepol

;
43: append(scores, (i, polarity, 1

scoresubj+scorepol
)); . The total score is inversed

. as we sort the resulting polarity list in the ascending order.
44: end for

45: return scores;
46: end function

where
~b·~p+
~b2
~b is the projection of a word embedding with the positive polarity on line ~b, and

~b·~p−
~b2
~b is the respective projection of a negative seed term. Considering the argmax argument

in Expression 3.1 as our objective function f , we computed the gradient of f with respect
to ~b as follows:

∇~bf =
∑
~p+

∑
~p−

γ
(

∆− γ~b
)
, (3.2)

where ∆ stands for the difference between the positive and negative vectors ~p+ and ~p−:
∆ := ~p+ − ~p−; and γ denotes the dot product of this difference with vector ~b: γ := ∆ ·~b.6

With this gradient, we then optimized ~b using gradient ascent until we reached a maximum
of function f .7

As in PCA, we first used this approach to determine an optimal subjectivity axis ~bsubj,
which maximized the distance between the sets of polar and neutral embeddings. After
finding this axis and projecting on it all remaining word vectors, we classified all words
into polar and neutral ones, depending on whether their projections appeared closer to the
mean of the former or latter set. We then computed the subjectivity score for polar terms
as spolsubj = 1 +

δisubj
δmax
subj

, where δisubj stands for the distance between the projection of the i-th
term and the origin Osubj, and δmax

subj means the maximum such distance observed in the data.

Similarly, we estimated these values for neutral items as sneutsubj = 1− δisubj
δmax
subj

.

6The details of this gradient computation are given in Appendix B.
7Since function f is neither convex nor concave, we can only speak about a maximum. We hypothesize,

however, based on our experiments and preliminary calculations, that this local maximum will simultaneously
be the global one because the optimized projection vector will have two possible solutions, which will lie on
the same line, but point to the opposite directions.
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(a) Subjectivity line (b) Polarity line

Figure 3.1: Visualization of the linear projection method in the two-dimensional vector space with

unnormalized vectors

(~b0subj and ~b
0
pol – initial guesses of the subjectivity and polarity lines; ~bsubj and ~bpol – optimal

projection vectors; the distances between the projections of sample seeds with opposite semantic

orientations (~pS vs. ~pO and ~p+ vs. ~p_ respectively) on these lines are highlighted in green)

In the same way, we estimated the polarity score for the i-th word by first finding a
polarity line ~bpol and then computing the respective score as spol = 1 +

δipol
δmax
pol

.

In the final step, we united both values ssubj and spol into a single score s = 1
ssubj+spol

and
sorted the resulting polarity list in ascending order of these unified scores. The pseudo-code
of our approach is given in Algorithm 2, and a visualization of the line optimization step (in
the two-dimensional vector space) is shown in Figure 3.1.

We applied all methods to word2vec embeddings, which had been previously learned on
the snapshot data, normalizing the length and scaling the means of these vectors before
passing them to our algorithms. The results of all systems are shown in Table 3.4.

As we can see from the table, linear projection not only outperforms all other NWE-
based systems in terms of the micro-averaged F1-score but also surpasses the results of
dictionary-, corpus-based, and semi-automatic lexicons, being only 0.1 percent below the
overall best F1-value achieved by the intersection of SentiWS, German Polarity Clues, and
Zurich Polarity List. Our method also achieves the second-best macro-averaged F1-result,
being outmatched by k-NN. The third-best micro-averaged F1 is attained by the approach
of Tang et al. (2014a), which, however, suffers from low precision of its positive entries. The
results of the remaining systems are, unfortunately, even lower and hardly improve on the
scores of the initial seed set.
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Algorithm 2 Sentiment lexicon generation with the linear projection algorithm
1: function ExpandLinProj(P ,N ,O, E) . P – indices of positive terms,

. N – indices of negative terms,
. O – indices of objective terms, E – embedding matrix

2: S ← P ∪N ; . get the set of subjective terms
3: projsubj, µS , µO ← Project(S,O, E);
4: projpol, µP , µN ← Project(P ,N , E);
5: return ComputePolScores(E,S ∪ O, projsubj, projpol, µS , µO, µP , µN );
6: end function

7: function Project(S1,S2, E)
8: projs← [], µ1 ← ~0; µ2 ← ~0;
9: ~b← FindAxis(S1,S2); . Determine the optimum polarity/subjectivity axis
10: for i← 1; i <= nrows(E); i← i + 1 do

11: ~p← ~b ∗ E[i]·~b; . Project i-th embedding onto the axis
12: append(projs, ~p);
13: if j ∈ S1 then . Update means of the polarity/subjectivity classes
14: µ1 ← µ1 + ~p;
15: else

16: if k ∈ S2 then
17: µ2 ← µ2 + ~p;
18: end if

19: end if

20: end for

21: return projs, µ1
|S1| ;

µ2
|S2| ;

22: end function

23: function FindAxis(S1,S2, E)
24: ~b← ~1; prev_dist←∞;
25: for i← 1; i 6 MAX_ITERS; i← i + 1 do

26: ~b← ~b

‖~b‖ ; . Ensure the projection line has a unit length
27: dist← 0;
28: for j ∈ S1 do
29: ~p1 ← ~b ∗ E[j]·~b; . Project a seed term from the first set
30: for k ∈ S2 do
31: ~p2 ← ~b ∗ E[k]·~b; . Project a seed term from the second set
32: dist← dist + ‖~p1 − ~p2‖; . Accumulate the distance

. between the two projections
33: end for

34: end for
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35: if prev_dist 6=∞ and dist− prev_dist < ε then

36: break; . Break if the convergence criterion was reached
37: end if

38: prev_dist← dist;
39: ~b← ~b+ α ∗ ∇~b; . Optimize the projection line
40: end for

41: return ~b;
42: end function

43: functionComputePolScores(E,S, projectionssubj, projectionspol, µS , µO, µP , µN )
44: scores ← [];
45: Osubj ← µO + µS−µO

2
; . Compute the origin of the subjectivity axis.

46: max_scoresubj ← max
(
{|psubj − Osubj||∀psubj ∈ projectionssubj}

)
;

47: Opol ← µN + µP−µN
2

; . Compute the origin of the polarity axis.
48: max_scorepol ← max

(
{|ppol − Opol||∀ppol ∈ projectionspol}

)
;

49: for i← 1; i <= ncols(M); i← i + 1 do

50: if i ∈ S then

51: continue; . known seeds will be added later by default
52: end if

53: psubj←projectionssubj[i];
54: if |psubj − µO| > |psubj − µS | then . if the i-th word is subjective
55: scoresubj ← 1 +

|psubj−Osubj |
max_scoresubj

;
56: else

57: scoresubj ← 1− |psubj−Osubj |
max_scoresubj

;
58: end if

59: ppol ← projectionspol[i];
60: if |ppol − µN | > |ppol − µP | then . if the i-th word is positive
61: polarity← positive;
62: else

63: polarity← negative;
64: end if

65: scorepol ← 1 +
|ppol−Opol|
max_scorepol

;
66: append(scores, (i, polarity, 1

scoresubj+scorepol
));

67: end for

68: return scores;
69: end function
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Lexicon
# of
Terms

Positive Expressions Negative Expressions Neutral Terms Macro
F1

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

Seed Set 20 0.771 0.102 0.18 0.568 0.017 0.033 0.963 0.999 0.981 0.398 0.962
TNG 1,600 0.088 0.153 0.112 0.193 0.155 0.172 0.966 0.953 0.959 0.414 0.921
VO 40 0.117 0.115 0.116 0.541 0.017 0.033 0.963 0.98 0.971 0.374 0.944
NC 5,200 0.771 0.102 0.18 0.568 0.017 0.033 0.963 0.999 0.981 0.398 0.962
k-NN 420 0.486 0.182 0.265 0.65 0.091 0.16 0.966 0.995 0.98 0.468 0.961
PCA 40 0.771 0.102 0.18 0.529 0.017 0.033 0.963 0.999 0.981 0.398 0.962
LP 6,340 0.741 0.156 0.257 0.436 0.088 0.147 0.966 0.998 0.982 0.462 0.963

Table 3.4: Results of NWE-based approaches

TNG – Tang et al. (2014a), VO – Vo and Zhang (2016), NC – nearest centroids,

k-NN – k-nearest neighbors, PCA – principal component analysis, LP – linear projection

Word Embeddings

An important aspect that could significantly affect the results of NWE-algorithms was the
type of word embeddings that we provided to these systems as input. As we already noted at
the beginning of this section, two most common kinds of such representations are standard
word2vec and task-specific vectors (Mikolov et al., 2013; Collobert et al., 2011). The former
type seeks to find a word representation that maximizes the probability of other tokens
appearing in the nearby context, whereas the latter type optimizes these representations
with respect to a specific custom task, such as polarity prediction of the whole text.

In order to see how these differences could affect the results of our approaches, we have
trained task-specific embeddings on snapshot tweets, considering positive and negative emoti-
cons that appeared in these messages as their noisy polarity labels, and re-evaluated our
methods using these vectors. Apart from that, we additionally explored two in-between
solutions:

• hybrid embeddings, which were trained by simultaneously optimizing two objectives—
predicting the surrounding context and classifying the polarity of the tweet;

• and least-squares embeddings, for which we first obtained both embedding types, word2vec
(VW2V ) and task-specific ones (VTS). Since task-specific vectors, however, could only
be learned on messages that contained emoticons or neutral seeds, many terms that
had a word2vec representation did not have a task-specific counterpart. To derive these
missing embeddings, we computed a transformation matrixW using the method of the
ordinary least squares:

W = argmin
W
‖VTS −W T · V ∗W2V ‖F , (3.3)

where V ∗W2V represents a matrix of word2vec vectors whose words have both representa-
tions, and ‖·‖F means the Frobenius norm. Afterwards, we approximated task-specific
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representations for all terms that were missing in VTS by multiplying their word2vec
vectors with matrix W .

As we can see from the results in Table 3.5, k-NN and linear projection work best with the
standard word2vec embeddings (with the overall best score [0.468] achieved by k-NN), but
their performance degrades as the input vectors become more and more aware of the polarity-
prediction task. An opposite situation is observed for the nearest centroids and PCA, which
show an improvement in combination with task-specific and least-squares vectors.

Lexicon
Embedding Type

word2vec task-specific + word2vec task-specific + least
squares

task-specific

NC 0.398 0.398 0.401 0.399
k-NN 0.468 0.43 0.398 0.392
PCA 0.398 0.398 0.404 0.409
LP 0.462 0.441 0.398 0.399

Table 3.5: Macro-averaged F1-scores of NWE-based methods with different embedding types

In order to understand the reasons for these differences, we projected the embeddings of
all tokens that appeared in our corpus onto the two-dimensional vector space using the t-SNE
method of van der Maaten and Hinton (2008), and visualized these vectors, highlighting polar
terms from the Turney and Littman’s seed set. Following the recommended practices for
analyzing t-SNE (Wattenberg et al., 2016), we generated these lower-dimensional projections
for different perplexity values: p ∈ {5, 30, 50}; and present the results of this visualization
in Figure 3.2.

As we can see from the right column of the figure, task-specific representations of polar
terms tend to appear close to each other, but apart from the rest of the vectors. Consequently,
the centroids of these terms will be far away from the center of neutral words, which partially
explains better results of the nearest centroids achieved with this embedding type. At the
same time, because polar terms are far away from the majority of embeddings, only few
of them will appear in the neighborhood of other words, which causes the k-NN classifier
to consider most terms as neutral. Similarly, in the linear projection method, the optimal
polarity line will run parallel to both polar and neutral lexemes, assigning high scores to both
of these classes. Unfortunately, the subjectivity axis, which is supposed to help distinguish
between subjective and objective instances, is apparently not strong enough to overcome
this confusion.

Vector Normalization

Another factor that influenced the quality of NWE-induced polarity lists was length nor-
malization and mean scaling of input vectors, which we applied at the very beginning of the
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Figure 3.2: t-SNE visualization of PotTS’ tokens and Turney and Littman’s seed set with different

embedding types

training.

To check the effect of this procedure, we reran our algorithms without vector normaliza-
tion, and present the results of our evaluation in Table 3.6.

As we can see from the scores, nearest centroids are almost indifferent to this preprocess-
ing, showing the same scores for all settings. But the remaining three approaches (k-NN,
PCA, and linear projection) achieve their best results when both normalization steps are
used. We should, however, admit that this success is mostly due to the length normalization
rather than mean scaling. We can recognize this by comparing the scores in the first and
third columns of the table, where PCA shows identical results, and the scores of k-NN and
linear projection differ by only 0.001. We also can observe that mean-scaling alone has a
strong negative effect on the linear projection system, pulling its scores down by 0.026 in
comparison with unnormalized vectors.
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SLG Method
Vector Normalization

mean normalization +
length normalization

mean normalization length normalization no normalization

NC 0.398 0.398 0.398 0.398
k-NN 0.468 0.418 0.467 0.417
PCA 0.398 0.396 0.398 0.396
LP 0.462 0.416 0.461 0.442

Table 3.6: Macro-averaged F1-scores of NWE-based methods with different vector normalizations

3.5 Seed Sets

Finally, the presumably most important factor that significantly affected the quality of all
sentiment lexicons was the set of seed terms that we used to initialize these polarity lists. In
order to estimate the impact of this setting, we rerun our experiments using the seed sets
proposed by Hu and Liu (2004), Kim and Hovy (2004), Esuli and Sebastiani (2006a), and
Remus et al. (2010). Since Hu and Liu (2004), however, only provided a few examples from
their initial polarity list, and Kim and Hovy (2004) did not specify any seeds at all, we filled
missing entries in these resources with common polar German words that we came up with
in order to match the reported cardinalities of these sets. Moreover, in the cases where the
above seed lists were missing the neutral category, we explicitly added a number of objective
terms proportional to the number of their polar entries. Furthermore, because the seed set
of Esuli and Sebastiani (2006a) had a total of 4,122 neutral terms,8 which were difficult to
translate manually, we automatically translated these entries by using a publicly available
online dictionary9 and taking the first suggested German translation for each neutral entry.10

A short statistics on the cardinalities and compositions of the resulting seed sets is presented
in Table 3.7.

The results of dictionary-based approaches obtained with these seeds are shown in Fig-
ure 3.3. This time, we again can notice better scores achieved by the method of Blair-
Goldensohn et al. (2008), which not only outperforms other systems on average but is also
less susceptible to the varying quality and cardinalities of different sets. The remaining
methods typically achieve their best macro-averaged F1-results with the polarity list of Kim
and Hovy (2004) or seed set of Esuli and Sebastiani (2006a). The former option works
best for the label-propagation approach of Rao and Ravichandran (2009) and the random
walk algorithm of Awadallah and Radev (2010). The latter seeds yield best results for the
approach of Hu and Liu (2004) and the SentiWordNet system of Esuli and Sebastiani

8The authors considered as neutral all terms from the General Inquirer lexicon (Stone et al., 1966) that
were not marked there as either positive or negative.

9http://www.dict.cc
10We also tried using all possible translations of original terms, but it considerably increased the number

of neutral items (45,252 words) and lead to a substantial decrease of the final system scores.
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Seed Set Cardinality Part of
Speech

Examples Comments

Hu and Liu (2004) 14 positive, 15 negative,
and 10 neutral terms

adjectives fantastisch, lieb, sympathisch,
böse, dumm, schwierig

polar terms translated from
the original paper (Hu and
Liu, 2004); neutral terms

added by us;
Kim and Hovy (2004) 60 positive, 60 negative,

and 60 neutral terms
any fabelhaft, Hoffnung, lieben,

hässlich, Missbrauch, töten
devised by us to match the
cardinality of the original set
with neutral terms added

extra;
Esuli and Sebastiani

(2006a)
16 positive, 35 negative,
and 4,122 neutral terms

any angenehm, ausgezeichnet,
freundlich, arm,

bedauernswert, dürftig

polar terms translated from
the seed set of Turney and

Littman (2003); neutral terms
automatically translated from

objective entries in the
General Inquirer lexicon
(Stone et al., 1966);

Remus et al. (2010) 12 positive, 12 negative,
and 10 neutral terms

adjectives gut, schön, richtig, schlecht,
unschön, falsch

polar terms translated from
the seed set of Turney and

Littman (2003); neutral terms
added by us;

Table 3.7: Overview of alternative seed sets

(all cardinalities are given with respect to the resulting German translations)

(2006a).

A different situation is observed for corpus-based methods, whose results are shown in
Figure 3.4. Except for the approach of Takamura et al. (2005), which achieves its best score
with the seed set of Hu and Liu (2004), all other systems (VEL, KIR, and SEV) show very
similar (though not identical) scores as the ones reached with the seed set of Turney and
Littman (2003) in our initial experiments. The primary reason for this is again the ambiguity
of translated seeds, which leads to an early stopping of these algorithms.

As to NWE-based methods, whose scores are presented in Figure 3.5, we again can notice

Figure 3.3: Macro-averaged F1-scores of dictionary-based approaches with different seed sets
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Figure 3.4: Macro-averaged F1-scores of corpus-based approaches with different seed sets

Figure 3.5: Macro-averaged F1-scores of NWE-based approaches with different seed sets

the superior results of k-NN and linear projection, which both obtain their best macro-
averages (0.508 for k-NN and 0.513 for the linear projection) with the seed set of Kim and
Hovy (2004). Moreover, the F1-score of the linear projection system achieved with these
seeds outperforms the results of all other SLG approaches, setting a new state of the art on
our corpus. The remaining NWE-based systems also attain their best scores with this seed
list, which is not surprising regarding the much bigger number of polar terms in this set.

3.6 Analysis of Entries

Besides investigating the effects of different hyper-parameters and seed sets, we also decided
to have a closer look at the actual results produced by the tested methods. For this purpose,
we extracted ten highest-scored entries (not counting the seed terms) from each dictionary-
based automatic lexicon and present them in Table 3.8.

As we can see from the table, the approaches of Hu and Liu (2004), Blair-Goldensohn et al.
(2008), Kim and Hovy (2004), and the label-propagation algorithm of Rao and Ravichandran
(2009) produce almost perfect polarity lists. The SentiWordNet approach of Esuli and Se-
bastiani (2006a), however, already features some spurious terms among its top-scored entries
(e.g., “absichtslos” [unintentional ]). Finally, the min-cut approach of Rao and Ravichandran
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Rank HL BG KH ES RR∗∗mincut RRlbl-prop

1 perfekt
perfect

fleißig
diligent

anrüchig
indecent

namenlos
nameless

planieren
to plane

prunkvoll
splendid

2 mustergültig
immaculate

böse
evil

unecht
artificial

ruhelos
restless

Erdschicht
stratum

sinnlich
sensual

3 vorbildlich
commendable

beispielhaft
exemplary

irregulär
irregular

unbewaffnet
unarmed

gefallen
please

pompös
ostentatious

4 beispielhaft
exemplary

edel
noble

drittklassig
third-class

interesselos
indifferent

Zeiteinheit
time unit

unappetitlich
unsavory

5 exzellent
excellent

tüchtig
proficient

sinnlich
sensual

reizlos
unattractive

Derivat
derivate

befehlsgemäß
as ordered

6 exzeptionell
exceptional

emsig
busy

unprofessionell
unprofessional

würdelos
undignified

Oberfläche
surface

vierschrötig
beefy

7 außergewöhnlich
extraordinary

eifrig
eager

abgeschlagen
exhausted

absichtslos
unintentional

Essbesteck
cutlery

regelgemäß
regularly

8 außerordentlich
exceptionally

arbeitsam
hardworking

gefällig
pleasing

ereignislos
uneventful

ablösen
to displace

wahrheitsgemäß
true

9 viertklassig
fourth-class

mustergültig
exemplary

mustergültig
exemplary

regellos
irregular

Musikveranstaltung
music event

fettig
greasy

10 sinnreich
ingenious

vorbildlich
commendable

unrecht
wrong

fehlerfrei
accurate

Gebrechen
afflictions

lumpig
shabby

Table 3.8: Top-10 polar terms produced by dictionary-based methods

** – the min-cut method of Rao and Ravichandran (2009) returns an unsorted set

(2009) returns mostly objective terms, which, however, is due to the fact that this method
performs a cluster-like partitioning of the lexical graph without actually ranking the words
assigned to the clusters.

A different situation is observed with corpus-based systems as shown in Table 3.9: The
top-scoring polarity lists returned by all of these approaches not only include many appar-
ently neutral terms but are also difficult to interpret in general, as they contain a substan-
tial number of slang and advertising expressions (e.g., “BMKS65,” “#gameinsight,” “#an-
droidgames”).

We can also observe a similar trend for the most NWE-based methods, whose results are
presented in Table 3.10. As we can see from the examples, many of these systems obviously
overrate Internet-specific terms (e.g., “%user-playlist,” “%user-video,” “www.op”), and assign
higher weights to foreign words (e.g., “nerelere,” “good,” “nativepride”) and interjections (e.g.,
“niedlichgähn” [cuteyawn], “vrrrum”). Two notable exceptions from this trend are k-NN and
linear projection, whose top-scoring entries contain exclusively polar terms. At the same
time, we can notice a slight susceptibility of these approaches to the negative polarity class as
eight out of ten highest ranked words in their results have negative semantic orientation. One
possible explanation for this could be a more pronounced distribution of negative expressions,
which pushes the vectors of these terms to more distinguishable regions than in the case of
positive lexemes.
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Rank TKM VEL KIR SEV

1 Stockfotos
stock photos

Wahlkampfgeschenk
election gift

Suchmaschinen
search engines

Scherwey
Scherwey

2 BMKS65
BMKS65

Ordensgeschichte
order history

#gameinsight
#gameinsight

krebsen
to crawl

3 Ziya
Ziya

Indologica
Indologica

#androidgames
#androidgames

kaschieren
to conceal

4 Shoafoundation
shoah found.

Indologie
Indology

Selamat
selamat

Davis
Davis

5 T1199
T1199

Energieverbrauch
energy consumption

Pagi
Pagi

#Klassiker
#classics

6 Emilay55
Emilay55

Schimmelbildung
mold formation

#Sparwelt
#savingsworld

Nationalismus
nationalism

7 Eneramo
Eneramo

Hygiene
hygiene

#Seittest
#Seittest

Kraftstoff
fuel

8 GotzeID
GotzeID

wasserd
waterp

Gameinsight
Gameinsight

inaktiv
idle

9 BSH65
BSH65

heizkostensparen
saving heating costs

#ipadgames
#ipadgames

8DD
8DD

10 Saymak.
Saymak.

Referenzarchitekturen
reference architectures

Fitnesstraining
fitness training

Mailadresse
mail address

Table 3.9: Top-10 polar terms produced by corpus-based methods

Rank TNG VO NC k-NN PCA LinProj

1 internetvorräte
Internet

inventories

guz
guz

paion
paion

eklig
yukky

gwiyomi.
gwiyomi.

dumm
stupid

2 %user-playlist
%user playlist

nerelere
nerelere

aufy
ony

ätzend
lousy

seitens
on the part of

eklig
yukky

3 dumm
stupid

www.op
www.op

folgen!
follow!

lächerlich
ridiculous

kritisieren
to criticize

fies
nasty

4 wunderschön
gorgeous

fernsehfestival
TV festival

teil8
part8

doof
dumb

nanda
nanda

doof
dumb

5 ölgemälde
oil painting

positip
positip

stanzmesser
punch knife

dumm
stupid

@deinskysport
@deinskysport

blöd
stupid

6 %user-video
%user video

arn
arn

niedlichgähn
cuteyawn

wunderbar
winderful

doubts
doubts

komisch
funny

7 verlosen
to raffle

asri
asri

vrrrum
vrrrum

toll
great

temos
temos

traurig
sad

8 wünschen
to wish

bewerten
to rate

goody
goody

widerlich
disgusting

temas
temas

dämlich
silly

9 dämlich
silly

nacht
night

nativepride
nativepride

nervig
annoying

balas
balas

peinlich
embarrassing

10 peinlich
embarrassing

morgen
morning

pwhistley
pwhistley

schrecklich
awful

hepi
hepi

scheißen
to crap

Table 3.10: Top-10 polar terms produced by NWE-based methods
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3.7 Summary and Conclusions

Concluding this chapter, we would like to recapitulate that, in this part, we have presented a
thorough review of the most popular sentiment lexicon generation methods. For this purpose,
we first revised existing lexicon evaluation techniques and suggested our own (stricter) metric,
in which we explicitly counted all false positive, false negative, and true positive occurrences
of positive, negative, and neutral terms on a real-life sentiment corpus, and also computed
the macro- and micro-averaged F1-results of these polarity classes. Using our procedure, we
first evaluated the most popular semi-automatic German lexicons: German Polarity Clues
(Waltinger, 2010), SentiWS (Remus et al., 2010), and the Zurich Polarity List (Clematide
and Klenner, 2010), finding the last resource working best in terms of the macro-F1–score.
Afterwards, we estimated the quality of automatic polarity lists that were created with
dictionary- and corpus-based methods, coming to the conclusion that the former group
generally produced better lexicons and was less susceptible to noisy Twitter domain. In the
next step, we introduced several novel SLG approaches that operate on neural embeddings
of words, showing that at least two of them (k-nearest neighbors and linear projection)
outperformed all other compared automatic SLG algorithms. Last but not least, we explored
the effect of different hyper-parameters and settings on the net results of these methods,
rerunning them with alternative sets of initial seed terms, checking their performance on
different kinds of embeddings, and estimating the impact of various vector normalization
techniques.

Based on these observations and experiments, we can formulate the main conclusions of
this chapter as follows:

• semi-automatic translations of common English polarity lists notably outperform purely
automatic SLG methods, which are applied to German data directly;

• despite their allegedly worse ability to accommodate new domains, dictionary-based
approaches are still better than corpus-based systems (at least in terms of our intrinsic
metric);

• a potential weakness of these algorithms though is their dependence on various types
of hyper-parameters and manually annotated linguistic resources, which might not
necessarily be present for every language;

• in this regard, a viable alternative to dictionary-based methods are SLG systems that
induce polar lexicons from neural word embeddings, which not only avoid the above
limitations but also yield competitive (or even better) results;

54



CHAPTER 3. SENTIMENT LEXICONS

• with at least two of such methods (k-NN and linear projection), we were able to estab-
lish a new state of the art for the macro- and micro-averaged F1-scores of automatically
induced sentiment lexicons;

• we also checked how different types of embeddings affected the performance of NWE-
based SLG systems, noticing that the k-NN and linear projection methods worked
best with standard word2vec vectors, while nearest centroids and PCA yielded better
results when using task-specific representations;

• furthermore, we saw that all NWE-based approaches benefited from mean-scaling and
length normalization of input vectors, improving by up to 5% on their macro-averaged
F1-scores;

• finally, an extensive evaluation of various sets of seed terms revealed that the results of
almost all tested SLG algorithms crucially depend on the quality of their initial seeds,
with larger and more balanced seed sets, e.g., like the one proposed by Kim and Hovy
(2004), typically leading to much higher scores.

Bearing this knowledge in mind, we will now move on to exploring further opinion-mining
fields: fine-grained and message-level sentiment analysis, in which sentiment lexicons are
traditionally considered as one of the most valuable building blocks.
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Fine-Grained Sentiment Analysis

The task of fine-grained sentiment analysis (FGSA) is to automatically recognize subjective
evaluative opinions (sentiments), holders of these opinions (sources), and their respective
evaluated entities (targets) in text. Since an accurate automatic prediction of these elements
would allow us to track public’s attitude towards literally any object (e.g., a product, a
service, or a political decision), FGSA is traditionally considered as one of the most attractive,
necessary, but, unfortunately, also challenging objectives in the opinion-mining field.

Researchers usually interpret this goal as a sequence labeling (SL) objective, and ad-
dress it with one of two most popular SL techniques: conditional random fields (CRFs) or
recurrent neural networks (RNNs). The former approach represents a discriminative prob-
abilistic graphical model, which relies on an extensive set of hand-crafted features, whereas
the latter methods use a recursive computational loop and learn their feature representations
completely automatically. In this chapter, we are going to evaluate each of these solutions
in detail in order to find out which of these algorithms is better suited for the domain of
German Twitter. But before we proceed with our experiments, we should first briefly discuss
evaluation metrics that we are going to use to estimate the quality of these systems.

4.1 Evaluation Metrics

Because fine-grained sentiment analysis operates on spans of sentiment labels, which typically
consist of multiple contiguous tags, we cannot straightforwardly apply metrics that are used
for evaluation of single independent instances to this objective, as it is unclear which instances
should be measured—single tokens or complete spans—and how partial matches should be
counted in the latter case.

One possibility to estimate the quality of FGSA prediction is to compute precision, recall,
and F1-scores of predicted spans by using binary-overlap or exact-match metrics (see Choi
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et al., 2006; Breck et al., 2007). The first method considers an automatically labeled span as
correct if it has at least one token in common with a labeled element from the gold annotation.
The second metric only regards an automatic span as true positive if its boundaries are
absolutely identical with the span annotated by the human expert. Unfortunately, both of
these approaches are problematic to a certain extent: While binary overlap might be overly
optimistic, always assigning perfect scores to automatic spans that cover the whole sentence;
exact match might, vice versa, be too drastic, considering the whole assignment as false if
only one (possibly irrelevant) token is classified incorrectly.

Instead of relying on these measures, we decided to use a “golden mean” solution proposed
by Johansson and Moschitti (2010), in which they penalize predicted spans proportionally
to the number of tokens whose labels are different from the gold annotation. More pre-
cisely, given two sets of manually and automatically tagged spans (S and Ŝ, respectively),
Johansson and Moschitti estimate the precision of automatic assignment as:

P (S, Ŝ) =
C(S, Ŝ)

|Ŝ|
, (4.1)

where C(S, Ŝ) stands for the proportion of overlapping tokens across all pairs of manually
(si) and automatically (sj) annotated spans:

C(S, Ŝ) =
∑
si∈S

∑
sj∈Ŝ

c(si, sj),

and the |Ŝ| term denotes the total number of spans automatically labeled with the given
tag.

Similarly, the recall of this assignment is estimated as:

R(S, Ŝ) =
C(S, Ŝ)

|S|
.

Using these two values, one can normally compute the F1-measure as:

F1 = 2× P ×R
P +R

.

Because this estimation adequately accommodates both extrema of automatic annotation
(too long and too short spans) and also penalizes erroneous labels, we will rely on this measure
throughout our subsequent experiments.

4.2 Data Preparation

In order to evaluate CRFs and RNNs on our dataset, we split the complete corpus annotated
by the second annotator, which we will henceforth consider as gold standard in all subsequent
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experiments, into three parts, using 70% of it for training, 10% as development data, and the
remaining 20% as a test set. We tokenized all tweets with the same adjusted version of Potts’
tokenizer that we used previously while creating the initial corpus files, and preprocessed
these microblogs with the rule-based normalization pipeline of Sidarenka et al. (2013). In
this procedure, we:

• unified Twitter-specific phenomena such as @-mentions, hyperlinks, and e-mail ad-
dresses by replacing these entities with special tokens that represented their semantic
classes (e.g., “%Username” for @-mentions, “%URI” for hyperlinks). We removed these
elements from the input, if they were grammatically independent from the rest of
the tweet and did not play a potential role for the expression of sentiments (e.g., we
stripped off all retweet mentions and hyperlinks appearing at the very end of the mi-
croblog if they were not preceded by a preposition). Furthermore, we substituted all
emoticons with special placeholders representing their semantic orientation (e.g., ,→
“%PosSmiley,” /→ “%NegSmiley,” :-O→ “%Smiley”), and removed the hash sign (#)
from all hashtags (e.g., “#glücklich” → “glücklich”);

• In addition to this, we restored frequent misspellings (e.g., “zuguckn” → “zugucken” [to
watch], “Tach” → “Tag” [day ]), using a set of manually-defined heuristic rules;

• and, finally, replaced frequent slang terms and abbrebiations with their standard-language
equivalents (e.g., “n bissl” → “ein bisschen” [a bit of ], “iwie” → “irgendwie” [somehow ],
“nix” → “nichts” [nothing ]).

Afterwards, we labeled all normalized sentences with part-of-speech tags using Tree-

Tagger1 (Schmid, 1995), and parsed them with the Mate dependency parser2 (Bohnet
et al., 2013).3 Finally, since MMAX2 did not provide a straightforward support for character
offsets of annotated tokens and because automatically tokenized data could disagree with the
original corpus tokenization, we aligned manual annotation with automatically split words
with the help of the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).

4.3 Conditional Random Fields

The first method that we evaluated using the obtained data was conditional random fields.
First introduced by Lafferty et al. (2001), CRFs have rapidly grown in popularity, turning

1In particular, we used TreeTagger Version 3.2 with the German parameter file UTF-8.
2We used Mate Version 3.61 with the German parameter model 3.6.
3The choice of these tools was motivated by their better results in our evaluation study, which we con-

ducted while working on the normalization module (Sidarenka et al., 2013).
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into one of the most widely used probabilistic frameworks, which was dominating the NLP
field for almost a decade.

The main reasons for the success of this model are:

1) the structural nature of CRFs, which, in contrast to single-entity classifiers, such as logistic
regression or SVM, make their predictions over structured input, trying to find the most
likely label assignment to the whole structure (typically a chain or a tree) and not only
its individual elements;

2) the discriminative power of this framework, which, in contrast to generative probabilistic
models such as HMMs (Rabiner and Juang, 1986), optimizes conditional probability
P (Y |X) instead of joint distribution P (X,Y ) and consequently can efficiently deal with
overlapping and correlated features;

3) and, finally, the avoidance of the label bias problem, which other discriminative classifiers,
such as maximum entropy Markov networks (McCallum et al., 2000), are known to be
susceptible to.

Example 4.3.1 (Label Bias Problem)

The label bias problem arises in the cases where a locally optimal deci-
sion outweighs globally superior solutions. Consider, for example, the
sentence “Aber gerade Erwachsene haben damit Schwierigkeiten.” (But
especially adults have difficulties with it.), for which we need to compute
the most probable sequence of part-of-speech tags.

Aber

KON
1.

gerade

ADJA
.5

ADV
.5

Erwachsene

ADJA
.5

NN
.5

haben

VA
1.

. . .

.5

.5

.3

.7

.8

.2

.1

.9

Figure 4.1: Example of a CRF graph

Using features weights shown in Figure 4.1, we will first estimate the
probability of the correct label sequence for the initial part of this sen-
tence using the Maximum Entropy Markov Model (MEMM)—the pre-
decessor of the Conditional Random Fields. According to the MEMM’s
definition, the probability of correct labeling (KON−ADV −NN−V A)
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is equal to:

P (KON,ADV,NN, V A) = P (KON)× P (ADV |KON)

× P (NN |ADV )× P (V A|NN)

=
exp(1)

exp(1)
× exp(0.5 + 0.5)

exp(0.5 + 0.5) + exp(0.5 + 0.5)

× exp(0.2 + 0.5)

exp(0.2 + 0.5) + exp(0.8 + 0.5)

× exp(0.9 + 1.)

exp(0.9 + 1.)
≈ 0.177

At the same time, the probability of the wrong variant (KON−ADV −
ADJA − V A) amounts to ≈ 0.323 and will therefore be preferred by
the automatic tagger.

A different situation is observed with CRFs, where the normalizing fac-
tor in the denominator is computed over the whole input sequence with-
out factorizing into individual terms for each transition as it is done in
MEMM. This way, the probability of correct labels will run up to:

P (KON,ADV,NN, V A) =P (KON)× P (ADV |KON)× P (NN |ADV )

× P (V A|NN)

=
exp(1 + 0.5× 3 + 0.2 + 0.9 + 1)

Z
≈ 0.252,

where Z = exp(1 + 0.5×3 + 0.2 + 0.9 + 1) + exp(1 + 0.5×3 + 0.8 + 0.1 +

1) + exp(1 + 0.5× 3 + 0.7 + 0.9 + 1) + exp(1 + 0.5× 3 + 0.3 + 0.1 + 1) is
the total score of all possible label assignments; the incorrect alternative
(KON −ADV −ADJA−V A), however, will get a probability score of
≈ 0.207, which is less than the score of the correct labeling.

Training. CRFs have these useful properties due to a neatly formulated objective function
in which they seek to optimize the global log-likelihood of gold labels Y conditioned on
training data X. In particular, given a set of training instances D = {(x(n),y(n))}Nn=1, where
x(n) stands for the covariates of the n-th instance, and y(n) denotes its respective gold labels,
CRFs try to find feature coefficients w that maximize the log-probabilities ` of y(i) given x(i)

over the whole corpus:

w = argmax
w

N∑
n=1

`
(
y(n)|x(n)

)
. (4.2)
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The log-likelihood `(y(n)|x(n)) in this equation is commonly estimated as the logarithm of
globally (i.e., w.r.t. to the whole instance) normalized softmax function:

`
(
y(n)|x(n)

)
= ln

(
P (y(n)|x(n))

)
= ln

exp
(∑M

m=1

∑
j wj · fj(xm, ym−1, ym)

)
Z

 , (4.3)

in which M means the length of the n-th training example; fj(xm, ym−1, ym) denotes the
value of the j-th feature function f at position m; wj represents the corresponding weight of
this feature; and Z is a normalization factor calculated over all possible label assignments:

Z :=
∑

y′∈Y,y′′∈Y

exp

(
M∑
m=1

∑
j

wj · fj(xm, y′m−1, y′′m)

)
.

Since this normalizing term appears in the denominator and couples together all feature
weights that need to be optimized, it becomes prohibitively expensive to find the best solution
to Equation 4.2 analytically, with a single shot. A possible remedy to this problem is to
resort to other optimization techniques, such as gradient descent, where feature weights are
successively changed in the direction of their gradient until they reach the minimum of the
loss function.

From Equation 4.3, we can see that the partial derivative of log-likelihood w.r.t. a single
feature weight wj is:

∂

∂wj
` =

N∑
n=1

M∑
m=1

fj(xm, ym−1, ym)−
N∑
n=1

M∑
m=1

∑
y′∈Y,y′′∈Y

fj(xm, y
′
m−1, y

′′
m)P (y′, y′′|x(n)),

which, after dividing both parts of the equation by the constant term N (the size of the
corpus) can be transformed into:

1

N

∂

∂wj
` = E[fj(x,y)]− Ew[fj(x,y)],

where the first term (E[fj(x,y)]) is the expectation of feature fj under empirical distribution,
and the second term (Ew[fj(x,y)]) is the same expectation under model’s parameters w. In
other words, the optimal solution to the log-likelihood objective in Equation 4.3 is achieved
when model’s expectation of features matches their (true) empirical expectation on the
corpus.

The marginal probabilities of these features, which are required for computing their expec-
tations, can be estimated dynamically using the forward-backward (FB) algorithm (Rabiner,
1990), which is a particular case of the more general belief-propagation method (see Barber,
2012, p. 81).

The only modification that one usually makes to Equation 4.2 in practice, before applying
it the the provided training set, is the addition of so-called regularization terms (L1 and L2),
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which penalize excessively high feature weights, thus preventing the model from overfitting
the training data, i.e., we no longer seek feature weights that simply maximize the probability
of observed data, but we also want these weights to be as small as possible:

w = argmax
w

N∑
n=1

`
(
y(n)|x(n)

)
− λ1‖w‖1 − λ2‖w‖2, (4.4)

where λ1 and λ2 are manually set hyper-parameters, which control the amount of penalty
that we want impose on the L1 and L2 norms of the weights.

In our experiments, we also adopted this enhanced objective, picking hyper-parameter
values that yielded the best results on the held-out development set. Furthermore, in order
to reduce the noise that is typically introduced by rare, sporadic features, we only optimized
the weights of features that occurred two or more times in the training corpus, ignoring all
singleton attributes from these data.

Inference. Once optimal feature weights have been learned, one can unproblematically
compute the most likely label assignment for a new instance by using the Viterbi algo-
rithm (Viterbi, 1967), which effectively corresponds to the forward pass of the FB method
with the summation over the alternative preceding states replaced by the maximum operator
(hence the other name for this algorithm, “max-product”).

Features. A crucial component that accounts for a huge part of the success (or failure) of
CRFs is features that are provided to this classifier as input.

Traditionally, feature functions in CRFs are divided into transition- and state-based ones.
Transition features represent real- or binary-valued functions f(x, y′′, y′) → R associated
with some data predicate φ(x) → R and two labels y′′ (typically the label of the previous
token) and y′ (usually the label of the current word). The value of this function at position
m in sequence x is then defined as:

f(xm, y
′′, y′) =

φ(xm), if ym−1 = y′′ and ym = y′

0, otherwise;

where predicate φ usually represents a simple unit function: φ(xm) 7→ 1, ∀xm.

In contrast to ternary transition features, state attributes are typically associated with
binary predicates, whose output depends on the input data at the given position and label
y′ at the respective state:

f(xm, y
′) =

φ(xm), if ym = y′

0, otherwise.
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This time, predicate φ is usually much more sophisticated and reflects various properties
of the input, such as whether the current token is capitalized or whether it begins with a
specific prefix or ends with a certain suffix. This type of features commonly accounts for the
overwhelming majority of all attributes in CRFs.

As state attributes in our experiments, we used the following features, which, for simplic-
ity, are listed in groups:

• formal, which included the initial three characters of each token (e.g., φabc(xm) =

1 if xm ∼ /^abc/ else 0), its last three characters, and the spelling class of that word
(e.g., alphanumeric, digit, or punctuation);

• morphological, which encompassed part-of-speech tags of analyzed tokens, grammatical
case and gender of inflectable PoS types, degree of comparison for adjectives, as well
as mood, tense, and person forms for verbs;

• lexical, which comprised the actual lemma and form of the analyzed token (using one-
hot encoding), its polarity class (positive, negative, or neutral), which we obtained
from the Zurich Polarity Lexicon (Clematide and Klenner, 2010);

• and, finally, syntactic features, which reflected the dependency relation via which token
xm was connected to its parent. In addition to this, we also used two binary attributes
that showed whether the previous token in the sentence was the parent (first feature)
or a child (second feature) of the current word. Apart from that, we devised two more
features, one of which encoded the dependency relation of the previous token in the
sentence to its parent + the dependency relation of the current token to its ancestor;
another feature reflected the dependency link of the next token + the dependency
relation of the current token to its parent.

Besides the above attributes, we also introduced a set of complex lexico-syntactic features,
which simultaneously reflected several semantic and syntactic traits. These were:

• the lemma of the syntactic parent;

• the part-of-speech tag and polarity class of the grandparent in the syntactic tree;

• the lemma of the child node + the dependency relation between the current token and
its child;

• the PoS tag of the child node + its dependency relation + the PoS tag of the current
token;
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Data Set
Sentiment Source Target Macro

F1Precision Recall F1 Precision Recall F1 Precision Recall F1

Training Set 0.949 0.908 0.928 0.903 0.87 0.886 0.933 0.865 0.898 0.904
Test Set 0.37 0.28 0.319 0.305 0.244 0.271 0.304 0.244 0.271 0.287

Table 4.1: Results of fine-grained sentiment analysis with the first-order linear-chain CRFs

• the lemma of the child node + its dependency relation + the lemma of the current
token;

• the overall polarity of syntactic children, which was computed by summing up the
polarity scores of all immediate dependents, and checking whether the resulting value
was greater, less than, or equal to zero.4

Results. The results of our experiments are shown in Table 4.1. As we can see from the
table, with the given set of features, CRF can perfectly well fit the training data, achieving
a macro-averaged F1-score of 0.904. This model, however, can only partially generalize to
unseen messages, where its macro-F1 reaches merely 0.287, despite the fact that the size of
the training corpus is almost 3.5 times bigger than the size of the test set (5,616 versus 1,584
tweets).

4.3.1 Feature Analysis

To estimate the effect of different features on the net results of the CRF system, we per-
formed an ablation test, removing one group of state attributes at a time and rechecking the
performance of the model on the development data.

Element
Original
F1-Score

F1-Score after Feature Removal
Formal Morphological Lexical Syntactic Complex

Sentiment 0.346 0.343-0.003 0.344-0.002 0.326-0.02 0.345-0.001 0.324-0.022

Source 0.309 0.321+0.012 0.313+0.004 0.265-0.044 0.359+0.05 0.271-0.038

Target 0.26 0.282+0.022 0.252-0.008 0.263+0.003 0.233-0.027 0.263+0.003

Table 4.2: Results of the feature ablation tests for the CRF model

(negative changes w.r.t. the original scores on the development set are shown in red; positive

changes are depicted in green superscripts)5

As we can see from the results in Table 4.2, all feature groups are useful for predicting
4We again used the Zurich Polarity Lexicon of Clematide and Klenner (2010) for computing these scores.
5Negative changes indicate good features in this context, since their removal leads to a degradation of

the results.
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sentiments, as their removal leads to a degradation of its scores. This quality drop, however,
is usually quite small, suggesting that other features can easily make up for the removed
attributes. A different situation is observed with sources and targets though. In the former
case, removing formal, morphological, and syntactic features shows a strong positive effect,
improving the F1-scores for sources by up to five percent. Removing lexical and lexico-
syntactic features, on the contrary, worsens these results, tearing the F1-measure down by
4.4%. Except for the formal group, all these attributes behave completely differently when
applied to targets, which benefit from morphological and syntactic features, but apparently
get confused by lexical and complex attributes.

Rank
State Features Transition Features

Feature Score Feature Score

1 prntLemma=meiste → TRG 18.68 NON → TRG -7.01
2 prntLemma=rettungsschirme →

TRG
18.3 NON → SRC -6.85

3 initChar=sty → NON -16.04 NON → SNT -5.39
4 form=meisten → NON 15.99 TRG → SRC -2.99
5 prntLemma=urlauberin → SNT 14.74 NON → NON 2.69
6 lemma=anfechten → SNT 14.07 SRC → NON -2.59
7 form=thomasoppermann → TRG 13.44 SNT → SNT 2.54
8 form=bezeichnete → SNT 13.25 TRG → TRG 2.31
9 deprel[0]|deprel[1]=NK|AMS → NON 12.92 SRC → SRC 2.19
10 trailChar=te. → NON 12.77 SRC → TRG -2.07

Table 4.3: Top-10 state and transition features learned by the CRF model

(sorted by the absolute values of their weights)

In order to get a better insight into the learned model’s parameters, we additionally
extracted top-ten state and transition features, ranked by the absolute values of their weights.
As we can see from the statistics in Table 4.3, three of five top-ranked state attributes
(“meiste” [most ], “rettungsschirme” [bailout ], and “urlauberin”) are complex features that
reflect the lemma of the syntactic parent. Another common group of features is lemma
and form of the current token: here, we again encounter the word “meisten” (most), which,
however, indicates the absence of any sentiments this time, and we also can see two other
attributes (“anfechten” [doubt ] and “bezeichnete” [called ]) that represent the so-called direct
speech events and correlate with sentiments. The remaining feature (“thomasopperman”)
is a person name, which frequently appears as sentiment’s target in our corpus.

An interesting pattern can be observed with transition features: As we can see from the
results, top three of these attributes indicate a strong belief in that an objective token is very
unlikely to be followed by a target, source, or sentiment tag (hence, the high negative
weights of transitions emanating from NON). It is, however, quite common that a NON

tag will precede another NON (as we can see from line 5 of the table). Other transitions
also mainly reflect plausible regularities: It is, for instance, uncommon that a target of an
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opinion will appear immediately before a source (TRG→SRC = −2.99); in the same vein,
it is fairly improbable that an SRC tag will precede a TRG element (SRC→TRG = −2.07);
nonetheless, is is perfectly acceptable that the same tag will continue over multiple words
(e.g., SNT→SNT = 2.54, TRG→TRG = 2.31).

In order to better understand the reason for the observed overfitting of the weights to
the training data, we also compared all features that appeared in the training set with the
attributes that occurred in the test part of the corpus. As it turned out, more than two
thirds of all unique test features (34,186 out of 49,626) have never been observed during the
training and consequently had no meaningful model weights.

(a) λ1 (b) λ2

Figure 4.2: Results of the linear-chain CRFs with different values of regularization parameters

Another factor that could significantly affect the generalization of the CRF system was
the regularization parameters λ1 and λ2, which controlled the amount of penalty imposed
on too big learned feature weights (see Equation 4.4). Because we chose these parameters
based on the model’s results on the held-out development data, a possible reason for rather
low scores on the test set could be a considerable difference between the distribution of
sentiments, sources, and targets in the development and test parts of the corpus. To see
whether it indeed was the case, we recomputed the F1-scores on the development and test
data, using different λ values, and present the results of this computation in Figure 4.2. As
is evident from the figure, model’s F1-measure on the development set largely correlates with
its performance on the test corpus, and almost monotonically decreases with larger λs.

4.3.2 Error Analysis

Besides looking into model’s parameters, we also decided to analyze some errors made by
the CRF system in order to understand the reasons for its misclassifications.
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Example 4.3.2 (An Error Made by the CRF System)

Gold Labels: Überall/TRG NPD/TRG Plakate/TRG %NegSmiley/SNT
Everywhere/TRG NPD/TRG posters/TRG %NegSmiley/SNT

Predicted Labels: Überall/NON NPD/NON Plakate/NON %NegSmi-
ley/NON
Everywhere/NON NPD/NON posters/NON %NegSmiley/NON

One such error is shown in Example 4.3.2. In this case, the classifier has erroneously
overlooked a negative emoticon, which expresses author’s attitude to election posters of the
National Democratic Party of Germany (NPD), and assigned the NON (none) tags to all
tokens of the tweet. As it turns out, despite this incorrect assignment, the state potentials of
the smiley still achieve their highest scores with the correct SNT (sentiment) tag. Moreover,
the state scores of the word “Plakate” (posters) also reach their maximum value (0.13 in the
logarithmic domain) with the correct TRG (target) label. Unfortunately, these good guesses
of single tags are overruled by the extremely high score of the NON label (6.515) that is
assigned to the first word of this message (“überall” [everywhere]) and is reinforced by the
transition features, which prefer contiguous runs of NONs.

This kind of mistakes is by far the most common type of errors that we have observed on
the development set, followed by spans with different boundaries and invalid label sequences
similar to the one shown Example 4.3.3, where the classifier assigned only SNT tags to all
input tokens, although a sentiment in our original corpus annotation could only appear in
the presence of a target element.

Example 4.3.3 (An Error Made by the CRF System)

Gold Labels: So/SNT muss/SNT das/SNT sein/SNT %PosSmiley/SNT
piraten+/TRG
That/SNT ’s/SNT the/SNT way/SNT how/SNT it/SNT ’s/SNT
supposed/SNT to/SNT be/SNT %PosSmiley/SNT piraten+/TRG

Predicted Labels: So/SNT muss/SNT das/SNT sein/SNT %PosSmi-
ley/SNT piraten+/SNT
That/SNT ’s/SNT the/SNT way/SNT how/SNT it/SNT ’s/SNT
supposed/SNT to/SNT be/SNT %PosSmiley/SNT piraten+/TRG
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4.4 Recurrent Neural Networks

A competitive alternative to CRFs is deep recurrent neural networks (RNNs). Introduced in
the mid-nineties (Hochreiter and Schmidhuber, 1997), RNNs have become one of the most
popular trends in the raging tsunami of deep learning applications, demonstrating superior
results on many important NLP tasks including part-of-speech tagging (Wang et al., 2015a),
dependency parsing (Kiperwasser and Goldberg, 2016), and machine translation (Kalch-
brenner and Blunsom, 2013; Bahdanau et al., 2014; Sutskever et al., 2014). Key factors that
account for this success are

1) the ability of RNN systems to learn optimal feature representations automatically, which
favorably sets them apart from traditional supervised machine-learning frameworks, such
as SVMs or CRFs, where all features need to be defined by the user; and

2) the ability to deal with arbitrary sequence lengths, which advantageously distinguishes
these methods from other NN architectures, such as plain feed-forward networks or con-
volutional systems without pooling, where the size of the input layer has to be constant.

The main component that underlies any modern RNN approach is a fixed-size hidden
vector ~h, which is recurrently updated during the analysis of an input sequence x and is
meant to encode the meaning of that sequence. The general form of this vector at input
state t is usually defined as:

~h(t) = f(~h(t−1),x(t));

where f represents some non-linear transformation function, ~h(t−1) denotes the state of the
hidden vector at the previous time step, and x(t) is the input vector at position t.

LSTM. A fundamental problem that arises from the above definition is that the gradients
of model’s parameters rapidly vanish to zero or explode to infinity (depending on whether
the absolute values of ~h are less or greater than one) as the length of the input sequence
increases. In order to solve this issue, Hochreiter and Schmidhuber (1997) proposed the long
short-term memory mechanism (LSTM), in which they explicitly incorporated the goal of
keeping the gradients within an appropriate range. In particular, given an input sequence
x, they introduced a special activation unit ~i(t):

~i(t) = σ
(
Wi · x(t) + Ui · ~h(t−1) +~bi

)
;

where σ denotes the sigmoid function; Wi, Ui, and ~bi represent model’s parameters; x(t)

stands for the input state; and ~h(t−1) means the previous hidden state. In addition to the
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activation unit, the authors also estimated a dedicated forget gate ~f (t):

~f (t) = σ
(
Wf · x(t) + Uf · ~h(t−1) +~bf

)
,

which is used to erase parts of the previous input that appear to be irrelevant.

After computing an intermediate update state c̃(t) for the current time step t:

c̃(t) = tanh
(
Wc · x(t) + Uc · ~h(t−1) +~bc

)
,

they estimated the final update ~c(t) by taking a weighted sum of the candidate update
vector c̃(t) and the previous update value ~c(t−1):

~c(t) =~i(t) � c̃(t) + ~f (t) � ~c(t−1);

from which, they finally computed the output vector ~o(t) and the new value of the hidden
state ~h(t):

~o(t) = σ
(
Wo · x(t) + Uo · ~h(t−1) + Vo · ~c(t) +~bo

)
,

~h(t) = ~o(t) � tanh(~c(t)).

GRU. Despite their enormous popularity (e.g., Filippova et al., 2015; Ghosh et al., 2016;
Rao et al., 2016), LSTMs have been criticized for the high complexity of their recurrent unit.
In order to overcome this deficiency, while still keeping the gradients within an acceptable
range, Cho et al. (2014) proposed an alternative architecture called Gated Recurrent Units
(GRU). In this framework, the authors also used activation and forget gates (~i(t) and ~f (t))
similar to the ones defined by Hochreiter and Schmidhuber (1997):

~i(t) = σ
(
Wi · x(t) + Ui · ~h(t−1) +~bi

)
,

~f (t) = σ
(
Wf · x(t) + Uf · ~h(t−1) +~bf

)
.

With the help of these gates, they estimated the candidate activation c̃(t) as:

c̃(t) = tanh
(
Wc · x(t) + Uc ·

(
~f (t) � ~h(t−1)

)
+~bc

)
,

and computed the hidden state ~h(t) as:

~h(t) =~i(t) � ~h(t−1) +
(
~1−~i(t)

)
� c̃(t).

Final Layer. Because the output vectors of these recurrences (~o(t) in the LSTM case, and
~h(t) in the case of GRU) do not strictly represent label probabilities (since elements of these
vectors can also be negative and typically do not sum to one), and, moreover, because the
size of our tagset (four tags: SNT, SRC, TRG, and NON) was obviously too small for the
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size of the hidden unit, we set the dimensionality of the intermediate RNN vectors to 100,
and apply a linear transformation matrix O ∈ R4×100 to the final output of the recursion
loop, computing the softmax of their dot product:

~p(t) = softmax
(
O · ~o(t)

)
.

and considering the greatest value in the resulting vector as the probability of the most likely
tag.

Training. A neat property of LSTM and GRU is that the final equation, which is obtained
after unrolling the recurrence loop, is differentiable with respect to all of its parameters, and
can therefore be optimized with standard gradient update techniques. Since most of these
parameters, however, represent high-dimensional matrices or vectors, finding an optimal
learning rate (i.e., the size of the update step taken in the direction of the gradient) might
pose considerable difficulties, leading either to prohibitively large training times (if the steps
are too small) or complete divergence of the trained model (if the steps are too large).

Several algorithms have been proposed for solving this problem, including the method of
momentum (Rumelhart et al., 1988), AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSProp (Tieleman and Hinton, 2012), etc. In our experiments, we used the last of these
options—RMSProp (Tieleman and Hinton, 2012)—as this algorithm showed both a faster
convergence and better classification results.

Another important factor that could significantly influence the results were initial values
of models’ parameters. As shown by He et al. (2015), an inappropriate initialization of
neural network might lead to a complete stalling of the whole learning process. Following
recommended practices (Saxe et al., 2013), we used orthogonal initialization for all linear
transformation matrices, and applied uniform He sampling (He et al., 2015) for setting the
initial values of bias vectors.

Finally, due to a high imbalance of the target classes in the training set (where most of
the instances represent objective statements without any sentiment tags), we “upsampled”
sentiment tweets (i.e., we randomly repeated microblogs containing sentiments until we
reached an equal proportion of subjective and objective messages), and chose the hinge-loss
as the optimized objective function L:6

L =
N∑
i

|xi|∑
t=0

max

(
0, c+ max

y′ 6=y
~pt,y′ − ~pt,y

)
+ α ‖O‖22 , (4.5)

6Since most of the tokens in the over-sampled training set still have the NON tag, the easiest way for a
classifier to minimize the objective function is to always predict this tag with a very high confidence. We
hoped to mitigate this effect by using the hinge-loss, since this function only penalizes incorrectly predicted
labels or correct tags whose probability is insufficiently high (less than c), but does not reward any over-
confident decisions.
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Data Set
Sentiment Source Target Macro

F1Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM
Training Set 0.49±0.16 0.75±0.01 0.58±0.13 0.45±0.05 0.63±0.12 0.52±0.08 0.41±0.11 0.73±0.06 0.52±0.11 0.54±0.11

Test Set 0.29±0.03 0.31±0.110.29±0.030.25±0.02 0.31±0.0 0.27±0.010.23±0.020.25±0.050.24±0.01 0.27±0.02

GRU
Training Set 0.51±0.08 0.66±0.05 0.57±0.03 0.42±0.03 0.62±0.05 0.5±0.03 0.47±0.11 0.63±0.11 0.52±0.04 0.53±0.03

Test Set 0.3±0.01 0.26±0.06 0.28±0.03 0.22±0.03 0.28±0.02 0.24±0.02 0.24±0.03 0.21±0.07 0.22±0.03 0.25±0.01

Table 4.4: Results of fine-grained sentiment analysis with recurrent neural networks

where ~pt,y′ stands for the probability of the most likely wrong tag y′ at position t in the
training instance xi, ~pt,y represents the probability of the gold label, and ‖O‖22 stands for
the L2-norm of the O matrix.

We optimized the scalar hyper-parameters c and α on the development set, and trained the
final model for 256 epochs, choosing parameter values that maximized the macro-averaged
F1-score on the development set.

Inference. Since each of the above approaches (LSTM and GRU) explicitly defines an
output unit, the inference of the most likely label assignment for an input instance x is
straightforward and amounts to finding the argmax value of the output vector at each time
step of the recurrence:

ŷ = argmax ~p(1), argmax ~p(2), . . . , argmax ~p(|x|).

Results. To account for the random factors in the initialization, we repeated each training
experiment three times, and show the mean and the standard deviation of these results in
Table 4.4.

As we can see from the table, the LSTM model shows generally better scores than the
GRU system on both training and test sets. The only aspect at which it yields slightly worse
results than the latter approach is precision of sentiments, which, however, is more than
compensated for by a much higher recall. Moreover, the overfitting effect is significantly
less pronounced than in the CRF case (where the F1-scores on the training and test data
differed by a factor of three). Nonetheless, both RNN systems achieve lower results than the
linear-chain CRFs, which indicates the fact that the learned features still cannot capture the
full extent of information that a human expert can encode with manually defined attributes.
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RNN
Sentiment Source Target Macro

F1Precision Recall F1 Precision Recall F1 Precision Recall F1

Task-Specific Embeddings
LSTM 0.283 0.288 0.278 0.293 0.372 0.328 0.254 0.27 0.259 0.288
GRU 0.287 0.246 0.263 0.287 0.405 0.335 0.252 0.205 0.216 0.271

Least-Squares Embeddings
LSTM 0.268 0.37 0.307 0.261 0.414 0.314 0.223 0.275 0.245 0.289
GRU 0.256 0.341 0.291 0.267 0.395 0.318 0.229 0.262 0.245 0.285

word2vec Embeddings
LSTM 0.291 0.329 0.309 0.2 0.311 0.244 0.221 0.219 0.22 0.257
GRU 0.273 0.355 0.301 0.207 0.353 0.257 0.213 0.26 0.233 0.264

Table 4.5: Results of fine-grained sentiment analysis with different word embeddings

4.4.1 Word Embeddings

To see whether using different embeddings would improve the results of the tested methods,
we reran our experiments with two alternative embedding types:

• word2vec vectors (Mikolov et al., 2013), which had been pretrained on the German
Twitter snapshot (Scheffler, 2014) and were kept fixed during the RNN optimization;

• and least-squares embeddings, which were previously described in Chapter 3;

subsequently evaluating all systems on the development set.

The results of this evaluation are shown in Table 4.5. As we can see from the scores, least-
squares representations significantly improve the recall of all classes, which, in turn, leads
to much higher macro-averaged F1-measures in comparison with other embeddings. The
task-specific variant shows second-best results, mainly due to a higher precision of targets
and sources. Finally, word2vec vectors also improve the prediction of sentiment spans, but
otherwise cause a notable degradation of literally every other aspect.

4.4.2 Error Analysis

As in the previous case, we also decided to have a closer look at some sample errors, which
were committed by the tested systems. As it turned out, the most common type of mistakes
made by both classifiers was confusion of NON labels with other tags, which we also can see
in Examples 4.4.1 and 4.4.2.

Example 4.4.1 (An Error Made by the LSTM System)

Gold Labels: Meine/NONMama/NON liest/NON bei/NON Twitter/NON
mit/NON
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My/NON mom/NON is/NON reading/NON Twitter/NON together/NON
with/NON me/NON

Predicted Labels: Meine/TRG Mama/NON liest/NON bei/NON Twit-
ter/NON mit/NON
My/TRG mom/NON is/NON reading/NON Twitter/NON together/NON
with/NON me/NON

The obvious reason for these wrong predictions was the upsampling of sentiment tweets
that we used to balance the class distribution in the training data. Unfortunately, switching
this component off caused all classifiers to always predict only the NON tag and significantly
worsened the scores of these approaches in comparison with our initial experiments.

Example 4.4.2 (An Error Made by the GRU System)

Gold Labels: Ich/NON habe/NON das/NON “noch”/NON
vergessen/NON
I/NON have/NON forgotten/NON the/NON “still”/NON

Predicted Labels: Ich/SRC habe/NON das/TRG “noch”/NON
vergessen/NON
I/SRC have/NON forgotten/NON the/TRG “still”/NON

4.5 Evaluation

After estimating the results of popular FGSA approaches with their (mostly) standard set-
tings, evaluating their specific components (features and word embeddings), and looking
at their sample errors, we also decided to investigate the impact of common factors, such
as annotation scheme, graph structure, and text normalization on the net results of these
methods. For this purpose, we reran the evaluation, changing one aspect of the training
procedure at a time, and re-estimated the scores of these systems on the development set.
The results of these experiments are presented below.

4.5.1 Annotation Scheme

As the first factor that could affect the quality of automatic FGSA methods, we considered
the annotation scheme that we used to create the corpus. As described in Section 2.2, we ini-
tially asked our experts to assign the sentiment label to complete syntactic or discourse-level
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units that included both the target of an opinion and its immediate evaluative expression.
Even though this decision was linguistically plausible and helpful for determining the bound-
aries of sentiments and their relevant components, it also posed considerable difficulties for
sequence labeling techniques, since sentiment tags were assigned not only to the immediate
polar terms but also to neutral words that occurred within the same syntactic constituent
as the polar item and its target. Since none of the tested methods could explicitly incorpo-
rate this logic, we decided to check whether an alternative interpretation of the annotation
scheme could alleviate their inference.

In particular, instead of unconditionally labeling all words belonging to a sentiment span
in the original annotation with the SNT tag as we did previously (which we call a broad
interpretation of the annotation scheme), we only assigned this label to the polar terms
found in the corpus (which we call a narrow interpretation). The difference between these
two takes is shown in Examples 4.5.1 and 4.5.2.

Example 4.5.1 (Broad Sentiment Interpretation)

[[Francis]target makes a [very]intensifier [good]polar-term impression on
[me]source! [:)]polar-term ]sentiment

→

Francis/TRG makes/SNT a/SNT very/SNT good/SNT impression/SNT
on/SNT
me/SRC !/SNT :)/SNT

Example 4.5.2 (Narrow Sentiment Interpretation)

[[Francis]target makes a [very]intensifier [good]polar-term impression on
[me]source! [:)]polar-term ]sentiment

→

Francis/TRG makes/NON a/NON very/NON good/SNT impression/NON
on/NON
me/SRC !/NON :)/SNT

In the former (broad) case, we labeled the whole subjective sentence with the SNT tag
except for the words that denoted the target and source of the opinion. In the latter (narrow)
case, we only assigned the SNT tag to the polar term “good” and the emoticon “:),” which,
however, were expressive enough to convey the main evaluative sense of the whole subjective
statement.

The results of the automatic systems with these two approaches are given in Table 4.6.
As we can see from the table, the broad interpretation generally leads to notably lower
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Method
Sentiment Source Target Macro

F1Precision Recall F1 Precision Recall F1 Precision Recall F1

Broad Interpretation
CRF 0.38 0.32 0.34 0.3 0.33 0.31 0.29 0.23 0.26 0.31
LSTM 0.28 0.29 0.28 0.29 0.37 0.33 0.25 0.27 0.26 0.29
GRU 0.29 0.25 0.26 0.29 0.4 0.34 0.25 0.21 0.22 0.27

Narrow Interpretation
CRF 0.59 0.64 0.62 0.26 0.23 0.24 0.22 0.20 0.21 0.36
LSTM 0.62 0.65 0.63 0.3 0.35 0.32 0.26 0.14 0.18 0.38
GRU 0.62 0.63 0.62 0.28 0.33 0.3 0.23 0.24 0.23 0.38

Table 4.6: Results of fine-grained analysis with broad and narrow sentiment interpretations

scores for sentiment spans, but yields much better results for their sources and targets.
An opposite situation is observed with the narrow scheme: even though the F1-values for
sentiments are twice as high as in the broad case, the scores for the remaining elements are
up to seven percent lower.

An obvious explanation for these results is the expected better amenability of the narrow
scheme to the prediction of sentiment labels: since sentiment tags are only assigned to
obvious polar terms, it becomes easier for the models to infer this class using their state
features, especially morphological or lexical ones, or word embeddings. But, on the other
hand, such short spans lead to disrupted label chains for other opinion-related elements,
setting sentiment tags far apart from the spans of their respective sources and targets.
As a consequence, these classes suffer from the lack of context and become heavily dependent
on the state attributes as well. But, this time, the effect of state features is rather negative,
because in contrast to polar terms, being a source or a target of an opinion is not an
inherent property of the lexical term, but arises solely from the context which this term
appears in.

Consider, for instance, the name “Silvio Berlusconi” in Example 4.5.3, where it appears
as the target of a sentiment in the first sentence (which expresses author’s hope that Silvio
Berlusconi will not be the new Pope), but serves as a normal subject of an objective clause
in the second case. The decision about the role of this name depends primarily on the
sense of the whole statement rather than the name itself. Consequently, state attributes
might only increase our prior belief that certain words would rather appear in a subjective
context, but cannot tell for sure whether they actually do so or not.7 As a consequence,
prediction of sources and targets becomes much harder when they do not have enough
context information.

7The negative effect of state features on prediction of sources and targets was actually observed in our
corpus, where one of the most frequently made mistakes was the unconditional assignment of the TRG tag
to the word “Nordkorea” (North Korea) regardless of its surrounding context.
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Example 4.5.3 (Contextual Dependence of Target Elements)

Hoffentlich ist es nicht [Silvio Berlusconi]target . #Papst

Hopefully, this won’t be [Silvio Berlusconi]target . #Pope

Silvio Berlusconi ist ein italienischer Medienmagnat und Politiker.

Silvio Berlusconi is an Italian media tycoon and politician.

4.5.2 Graph Structure

Since the lack of contextual links played an important role for prediction of sources and
targets, we decided to investigate whether redefining the way these links were established
in the models would improve the results. For this purpose, we implemented three possible
extensions to the traditional first-order linear-chain CRFs, which are shown in Figure 4.3:

• higher-order linear-chain CRFs,

• first- and higher-order semi-Markov models, and

• tree-structured CRFs.8

The results of these systems on the training and development sets are shown in Table 4.7.

Element
Structure

lcCRF1 lcCRF2 lcCRF3 lcCRF4 smCRF1 smCRF2 smCRF3 smCRF4 trCRF1

Training Set
Sentiment 0.928 0.919 0.922 0.925 0.931 0.931 0.933 0.931 0.906
Source 0.887 0.876 0.89 0.901 0.869 0.886 0.874 0.878 0.881
Target 0.898 0.811 0.816 0.827 0.813 0.827 0.815 0.817 0.876

Development Set
Sentiment 0.345 0.334 0.332 0.335 0.395 0.385 0.389 0.378 0.331
Source 0.313 0.32 0.272 0.304 0.298 0.282 0.287 0.291 0.223
Target 0.258 0.235 0.24 0.229 0.287 0.309 0.301 0.292 0.243

Table 4.7: Results of fine-grained sentiment analysis with different CRF topologies

lcCRF—linear-chain CRFs, smCRF—semi-Markov CRFs, trCRF—tree-structured CRFs;

1, 2, 3, and 4 in the superscripts denote the order

As we can see from the scores, semi-Markov CRFs achieve better results at predicting
sentiments and targets, but show a degradation when classifying sources of sentiments.

8The training and inference algorithms of these CRF variants are described in Appendix C.
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Figure 4.3: Factor graphs of different CRF structures

(circles represent random variables; gray boxes denote observed input; factors [i.e., feature

functions] are shown as tiny black squares)

Furthermore, second-order semi-Markov and linear-chain structures outperform the first-
order models at classifying targets and sources, but further increasing the order of these
structures does not bring about any improvements. Somewhat surprisingly, tree-structured
CRFs show even worse scores than their linear counterparts.

In order to see whether the same tendencies would hold for deep-learning methods, we
also implemented higher-order and tree-structured extensions of LSTM and GRU. In the
former case, we passed a concatenation of n preceding ~h vectors (where n is the order of the
model) as input to the recurrence loop. In the tree-structure modification, we followed the

77



CHAPTER 4. FINE-GRAINED SENTIMENT ANALYSIS

approach of Tai et al. (2015) and defined the LSTM unit as follows:

h̃(t) =
∑
k∈C(t)

~h(k),

~i(t) = σ
(
Wi · ~x(t) + Ui · h̃(t) +~bi

)
,

~o(t) = σ
(
Wo · ~x(t) + Uo · h̃(t) +~bo

)
,

~u(t) = σ
(
Wo · ~x(t) + Uo · h̃(t) +~bu

)
,

~f (t,k) = σ
(
Wf · ~x(t) + Uf · ~h(k) +~bf

)
,

~c(t) =~i(t) � ~u(t) +
∑
k∈C(t)

f (t,k) � c(k),

~h(t) = ~o(t) � tanh
(
~c(t)
)

;

where C (t) stands for the indices of all child nodes of the token t.

In a similar way, we also redefined the GRU unit to the following solutions:

h̃(t) =
∑
k∈C(t)

~h(k),

~i(t) = σ
(
Wi · x(t) + Ui · h̃(t)

)
,

~f (t,k) = σ
(
Wf · x(t) + Uf · ~h(t,k)

)
,

c̃(t) = tanh

Wc · x(t) + Uc ·
∑
k∈C(t)

(
~f (t,k) � ~h(k)

) ,

~h(t) =~i(t) � h̃(t) +
(
~1−~i(t)

)
� c̃(t).

The results of these modifications are shown in Table 4.8, from which we can see that
first-order LSTM still outperforms all higher-order LSTM and GRU variants at predicting
targets and sources of opinions. Furthermore, first-order GRU also achieves the best
scores on predicting sentiment spans among all compared models. This time, again, none
of the tree-structured extensions can outperform the linear-chain systems, which might be
partially explained by the errors produced by the parser, whose original target domain is
standard-language news texts.

4.5.3 Text Normalization

Another question that remained open in the previous experiments was whether the input
passed to the models actually had to be normalized or not. As mentioned in Section 4.2, when
preparing the data, we preprocessed all corpus tweets using the rule-based normalization
procedure of Sidarenka et al. (2013).
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Element
Structure

lcLSTM1 lcLSTM2 lcLSTM3 lcGRU1 lcGRU2 lcGRU3 trLSTM1 trGRU1

Training Set
Sentiment 0.584 0.559 0.54 0.57 0.587 0.606 0.43 0.518
Source 0.525 0.458 0.424 0.503 0.546 0.548 0.317 0.372
Target 0.521 0.513 0.501 0.519 0.544 0.605 0.305 0.425

Development Set
Sentiment 0.278 0.285 0.281 0.335 0.252 0.253 0.314 0.292
Source 0.328 0.314 0.303 0.263 0.298 0.306 0.256 0.262
Target 0.259 0.218 0.222 0.216 0.219 0.188 0.205 0.193

Table 4.8: Results of fine-grained sentiment analysis with different neural network topologies

lcLSTM—linear-chain LSTM, lcGRU—linear-chain GRU, trLSTM—tree-structured LSTM,

trGRU—tree-structured GRU;

1, 2, and 3 in the superscripts denote the order

Even though these transformations were supposed to improve the grammaticality of sen-
tences, an opposite consequence of this normalization was the loss of (potentially valuable)
surface features. In order to check which of these effects had a stronger influence on the
FGSA results, we repeated the evaluation once again, turning the preprocessing pipeline off
this time.

Data Set
Sentiment Source Target Macro

F1Precision Recall F1 Precision Recall F1 Precision Recall F1

w Normalization
CRF 0.376 0.319 0.345 0.298 0.33 0.313 0.293 0.231 0.258 0.305
LSTM 0.283 0.288 0.278 0.293 0.372 0.328 0.254 0.27 0.259 0.288
GRU 0.287 0.246 0.263 0.287 0.405 0.335 0.252 0.205 0.216 0.271

w/o Normalization
CRF 0.301 0.278 0.289 0.276 0.3 0.287 0.255 0.23 0.242 0.273
LSTM 0.274 0.252 0.261 0.284 0.367 0.32 0.237 0.241 0.237 0.273
GRU 0.266 0.245 0.252 0.296 0.369 0.328 0.232 0.268 0.245 0.275

Table 4.9: Results of fine-grained sentiment analysis with (w) and without (w/o) text normalization

As we can see from the results in Table 4.9, text preprocessing clearly helps sentiment
classification, as all of the best observed results are achieved exclusively with normalized
text. The only aspect that benefits from keeping the input unchanged is precision of target
classification with GRU, which, in turn, leads to a slightly higher (+0.004) macro-averaged
F1-score for this system. Apart from that, all other aspects and classifiers show a notable
degradation when the preprocessing module is switched off.
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4.6 Summary and Conclusions

Summarizing these findings, we would like to remind the reader that in this chapter we have
evaluated two most common approaches to fine-grained sentiment analysis: conditional ran-
dom fields and recurrent neural networks. Our experiments showed that CRFs with manually
defined features outperform both recurrent neural networks (LSTM and GRU), reaching a
macro-averaged F1-score of 0.287 on predicting sentiments, sources, and targets.

Furthermore, a closer look at these systems revealed that:

• CRFs can learn meaningful weights for state- and transition-features, although dif-
ferent features types might have different effects on classification of opinion elements:
whereas sentiments benefited from all features used in our experiments, sources prof-
ited most from lexical and complex attributes, and targets were positively influenced
by morphological and syntactic features only;

• Apart from that, we analyzed the effect of different embedding types on the net results
of RNN systems, finding that least-squares embeddings yield the best overall scores for
these methods;

• Furthermore, even higher prediction scores for sentiments can be achieved by narrow-
ing the spans of these elements to polar terms. This, however, might negatively affect
the classification of sources and targets;

• Even though context seems to play an important role, redefining models’ structures by
increasing the order of their dependencies or performing inference over trees instead of
linear chains does not bring much improvement. We could, however, still outperform
the results of traditional first-order linear-chain CRFs with their first- and second-order
semi-Markov modifications;

• In the final step, we estimated the effect of text normalization by rerunning all exper-
iments with original (unnormalized) tweets. This test showed that preprocessing is an
extremely helpful procedure, which might improve the results of FGSA methods by up
to 3%.
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Chapter 5

Message-Level Sentiment Analysis

Having familiarized ourselves with the peculiarities of the creation of a sentiment corpus, the
different ways to automatically induce new polarity lists, and the difficulties of fine-grained
opinion mining, we now move on to the presumably most popular sentiment analysis task—
message-level sentiment analysis or MLSA, in which we need to determine the overall polarity
of a message.

Traditionally, this objective is addressed with either of the three popular method groups:

• lexicon-based approaches,

• machine-learning–based (ML) techniques,

• and deep-learning–based (DL) systems.

In this chapter, we are going to scrutinize the most successful representatives of each of
these paradigms, propose our own solution, and also analyze errors, the utility of single
components, and the effect of additional training factors on the net results of these methods.

We begin our comparison by first presenting two metrics that we will use in our subsequent
evaluation. After briefly describing the data preparation step, we proceed to the actual
estimation of popular lexicon-, ML-, and DL-based approaches, explaining and evaluating
them in Sections 5.3, 5.4, and 5.5. Finally, we conclude with an extensive evaluation of
different hyperparameters and settings (including the impact of additional noisily labeled
training data, various types of sentiment lexicons, and text normalization), summarizing our
results and recapping our findings at the end of this part.
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5.1 Evaluation Metrics

To estimate the quality of compared systems, we will rely on two established evaluation
metrics that are commonly used to measure MLSA results: The first of these metrics is the
macro-averaged F1-score over two main polarity classes (positive and negative):

F1 =
Fpos + Fneg

2
.

This measure was first introduced by the organizers of the SemEval competition (Nakov
et al., 2013; Rosenthal et al., 2014, 2015) and has become a de facto standard not only
for the SemEval dataset but virtually for all related message-level sentiment corpora and
tasks. This score is supposed to emphasize the ability of a classifier to distinguish between
opposite semantic orientations. Although it seemingly ignores the neutral class, this type
of misclassifications is indirectly taken into account as well, because confusing the neutral
label with another polarity will automatically pull down the values of Fpos or Fneg.

The second metric, micro-averaged F1-score, explicitly considers all three semantic ori-
entations (positive, negative, and neutral) and essentially corresponds to the prediction
accuracy on the complete dataset (see Manning and Schütze, 1999, p. 577). This measure
both predates and supersedes the SemEval evaluation as it had already been used in the
very first works on sentence-level opinion mining (Wiebe et al., 1999; Das and Chen, 2001;
Read, 2005; Kennedy and Inkpen, 2006; Go et al., 2009) and was reintroduced again at the
GermEval shared task in 2017 (Wojatzki et al., 2017).

Besides these two metrics, we will also give a detailed information about precision, recall,
and F1-scores for each particular polarity class.

5.2 Data Preparation

As in the previous experiments, we preprocessed all tweets labeled by the second annotator
with the text normalization system of Sidarenka et al. (2013), tokenized them using the same
adjusted version of Potts’ tokenizer,1 lemmatized and assigned part-of-speech tags to these
tokens with the TreeTagger of Schmid (1995), and obtained morphological features and
syntactic analyses with the Mate dependency parser (Bohnet et al., 2013).

We again divided our corpus into training, development, and test sets, using 70% of the
tweets for learning, 10% for tuning and picking optimal model parameters, and the remaining
20% for evaluating the results. Drawing on the work of Wiebe and Riloff (2005), we inferred
the polarity of these microblogs, which we will consider as gold labels in our experiments,

1http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
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using a simple heuristic rule in which we assigned the positive (negative) class to the messages
that had exclusively positive (negative) annotated sentiments, skipping all microblogs that
simultaneously contained multiple labeled opinions with different semantic orientations (178
tweets). In the cases when there was no sentiment, we recoursed to a fallback strategy by
considering all tweets that contained exclusively positive (negative) annotated polar terms
as positive (negative), and ignoring all messages that featured polar elements from both
polarity classes (335 messages).2 Finally, all microblogs without any sentiments or polar
terms were regarded as neutral.

A few examples of such heuristically inferred labels are provided below:

Example 5.2.1 (Message-Level Sentiment Annotations)

Tweet: [Ich finde den Papst [putzig]polar-term:polarity=positive

[,]polar-term:polarity=positive ]sentiment:polarity=positive

[I find the Pope [cute]polar-term:polarity=positive

[,]polar-term:polarity=positive.]sentiment:polarity=positive

Label: positive

Tweet: [typisch]polar-term:polarity=negative Bayern kaum ist der neue Papst da
und schon haben sie ihn [in der Tasche]polar-term:polarity=negative . . .
[Typical]polar-term:polarity=negative Bavaria The new Pope is hardly there, as they
already have him [in their pocket]polar-term:polarity=negative

Label: negative

As we can see from the examples, our simple rule makes fairly reasonable decisions, assigning
the positive class to the first tweet, which also expresses a positive sentiment, and labeling
the second message as negative, since it contains two negative polar terms (“typisch” [typical ]
and “in der Tasche haben” [to have sb. in one’s pocket ]).

But because our approach is still an approximation and consequently prone to errors
(especially in the cases where the polarity of the whole microblog differs from the semantic
orientation of its polar terms, as in the first tweet in Example 5.2.2, or when it is ex-
pressed without any explicit polar terms at all, as in the second microblog of this exam-
ple), we decided to evaluate all MLSA methods also on another German Twitter corpus,
SB10k (Cieliebak et al., 2017), which was introduced when we already started working on
this chapter and which had been explicitly annotated with message-level polarities of the
tweets.

2Note that we inferred all message-level labels based on annotated sentiments and polar terms and did
not rely on the mere occurrence of positive or negative smileys, which not necessarily implied an expression
of polarity.
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Example 5.2.2 (Erroneous Sentiment Annotations)

Tweet: Unser Park, unser Geld, unsere Stadt! -NICHT unser Finanzmin-
ister! [,]polar-term:polarity=positive #schmid #spd #s21 #btw13
Our park, our money, our city! -NOT our Finance Minister!
[,]polar-term:polarity=positive #schmid #spd #s21 #btw13
Label: positive*

Tweet: Auf die Lobby-FDP von heute kann Deutschland verzichten . . .
Germany can go without today’s lobby FDP
Label: neutral*

The SB10k dataset comprises a total of 9,738 microblogs, which were sampled from a
larger snapshot of 5M German tweets gathered between August and November 2013. To
ensure lexical diversity and proportional polarity distribution in this corpus, the authors
first grouped all posts of this snapshot into 2,500 clusters using the k-means algorithm with
unigram features. Afterwards, from each of these groups, they selected tweets that contained
at least one positive or one negative term from the German Polarity Clues lexicon (Waltinger,
2010). Each message was subsequently annotated by at least three human experts from a
pool of 34 different annotators. The resulting inter-rater reliability (IRR) of this annotation
run up to 0.39 Krippendorff’s α (Krippendorff, 2007). Unfortunately, due to the restrictions
of Twitter’s terms of use, which only allow to distribute the ids of the microblogs and their
labels, we could only retrieve 7,476 tweets of this collection, which, however, still represents
a substantial part of the original dataset.

In addition to the aforementioned two corpora (PotTS and SB10k), we also automatically
annotated all microblogs of the German Twitter Snapshot (Scheffler, 2014) by following the
procedure of Read (2005) and Go et al. (2009) and assigning the positive (negative) class
to the tweets that contained respective emoticons, regarding the rest of the microblogs as
neutral. In contrast to the previous two datasets, whose labels were inferred or directly
obtained from manual annotations, we will not use this automatically tagged corpus for
evaluation, but will only harness it for training in our later weak-supervision experiments.

The resulting statistics on the number of messages and polarity class distribution in these
data are shown in Table 5.1.

As we can see, each dataset has its own unique composition of polar tweets: The PotTS
corpus, for example, shows a conspicuous bias towards the positive class, with 42% of its
microblogs belonging to this polarity. We can partially explain this skewness by the selection
criteria that we used to compile the initial data for this collection: Because a big part of this
dataset was composed from tweets that contained smileys, and most of these emoticons were
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Dataset Polarity Class Label Agreement

Positive Negative Neutral Mixed* α κ

PotTS 3,380 1,541 2,558 513 0.66 0.4
SB10k 1,717 1,130 4,629 0 0.39 NA
GTS 3,326,829 350,775 19,453,669 73,776 NA NA

Table 5.1: Polarity class distribution in PotTS, SB10k, and the German Twitter Snapshot (GTS)

(* — the mixed polarity was excluded from our experiments)

positive, which is evident from the statistics of the German Twitter snapshot, the selected
microblogs also got biased towards this semantic orientation.

The second most frequent group in the PotTS corpus are neutral tweets, which account for
32% of the data. Negative messages, vice versa, represent a clear minority in this collection
(only 19%), which, however, is less surprising as the same tendency can be observed for
SB10k and the German Twitter Snapshot too.

Regarding the last two corpora, we can observe a more uniform (though not identical)
behavior, where both datasets are dominated by neutral posts, which constitute 62% of
SB10k and 84% of all snapshot tweets. The positive class, again, makes up a big part of
these data (23% of the former corpus and 14% of the latter dataset), but its influence this
time is much less pronounced than in the PotTS case. Finally, negative tweets are again the
least represented semantic orientation. The only group that has even less instances than this
class is the Mixed polarity. We, however, will skip the mixed orientation in our experiments
for the sake of simplicity and uniformity of evaluation.

5.3 Lexicon-Based Methods

The first group of approaches that we are going to explore in this chapter using the afore-
mentioned data are lexicon-based (LB) systems. Just like sentiment lexicons themselves, LB
methods for message-level opinion mining have attracted a lot of attention from the very
inception of the sentiment analysis field. Starting from the work of Hatzivassiloglou and
Wiebe (2000), who gave a statistical proof that the mere occurrence of a subjective adjective
from an automatically compiled polarity list was a sufficiently reliable indicator that the
whole sentence was subjective, more and more researchers started using lexicons in order to
estimate the overall polarity of a text.

One of the first notable steps in this direction was made by Das and Chen (2001), who
proposed an ensemble of five classifiers (two of which were purely lexicon-based and the other
three heavily relied on lexicon features) to predict the polarity of stock messages, achieving
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an accuracy of 62% on a corpus of several hundreds stock board messages. A much simpler
method for a related task was suggested by Turney (2002), who determined the semantic
orientation (SO) of reviews by averaging the PMI scores of their terms, getting these scores
from an automatically generated sentiment lexicon. With this approach, the author could
reach an accuracy of 74% on a corpus of 410 manually labeled Epinions comments. In the
same vein, Hu and Liu (2004) computed the overall polarity of a sentence by comparing the
numbers of its positive and negative terms, reversing their orientation if they appeared in a
negated context.

In 2006, Polanyi and Zaenen presented an extensive overview and analysis of common
lexicon-based sentiment methods that existed at that time, arguing that besides considering
the lexical valence (i.e., semantic orientation) of polar expressions, it was also important
to incorporate syntactic, discourse-level, and extra-linguistic factors such as negations, in-
tensifiers, modal operators (e.g., could or might), presuppositional items (e.g., barely or
failure), irony, reported speech, discourse connectors, genre, attitude assessment, reported
speech, and multi-entity evaluation. This theoretical hypothesis was also proven empirically
by Kennedy and Inkpen (2006), who investigated two ways to determine the polarity of a
customer review: In the first approach, the authors simply compared the numbers of positive
and negative terms in the text, assigning the review to the class with the greater number of
items. In the second attempt, they enhanced the original system with an additional infor-
mation about contextual valence shifters, increasing or decreasing the sentiment score of a
term if it was preceded by an intensifier or downtoner, and changing the polarity sign of this
score to the opposite in case of a negation.

Finally, a seminal work on lexicon-based techniques was presented by Taboada et al.
(2011), who introduced a manually compiled polarity list3 and used this resource to estimate
the overall semantic orientation of texts. Drawing on the ideas of Polanyi and Zaenen
(2006), the authors incorporated a set of additional heuristic rules into their computation
by changing the prior SO values of negated, intensified, and downtoned terms, ignoring
irrealis and interrogative sentences, and adjusting the weights of specific document sections.
An extensive evaluation of this approach showed that the manual lexicon performed much
better than automatically generated polarity lists, such as Subjectivity Dictionary (Wilson
et al., 2005), Maryland Polarity Set (Mohammad et al., 2009), and SentiWordNet of Esuli
and Sebastiani (2006a). Moreover, the authors also demonstrated that their method could be
successfully applied to other topics and genres, hypothesizing that lexicon-based approaches
were in general more amenable to domain shifts than traditional supervised machine-learning
techniques.

3The authors hand-annotated all occurrences of adjectives, nouns, and verbs found in a corpus of 400
Epinions reviews with ordinal categories ranging from -5 to 5 that reflected the semantic orientation of a
term (positive vs. negative) and its polar strength (weak vs. strong).
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It is therefore not surprising that lexicon-based systems have also quickly found their
way into the sentiment analysis of social media: For example, one such approach, explic-
itly tailored to Twitter specifics, was proposed by Musto et al. (2014), who examined four
different ways to compute the overall polarity scores of microblogs: basic, normalized, em-
phasized, and normalized-emphasized. In each of these methods, the authors first split the
input message into a list of micro-phrases based on the occurrence of punctuation marks
and conjunctions. Afterwards, they calculated the polarity score for each of these segments
and finally estimated the overall polarity of the whole tweet by uniting the scores of its
micro-phrases. Musto et al. obtained their best results (58.99% accuracy on the SemEval-
2013 dataset) with the normalized-emphasized approach, in which they averaged the polarity
scores of segments’ tokens, boosting these values by 50% for adjectives, adverbs, nouns, and
verbs; and computed the final overall polarity of the microblog by taking the sum of all
micro-phrase scores.

Another Twitter-aware system was presented by Jurek et al. (2015), who computed the
negative and positive polarity of a message (Fp and Fn respectively) as:

FP = min

(
AP

2− log(3.5×WP + IP )
, 100

)
,

FN = max

(
AN

2− log(3.5×WN + IN )
,−100

)
;

(5.1)

where AP and AN represent the average scores of positive and negative lexicon terms found
in the tweet; WP and WN stand for the raw counts of polar tokens; and IP and IN denote
the number of intensifiers preceding these words. In addition to that, before estimating the
average values, the authors modified the polarity scores sw of all negated words w using the
following rule:

neg(sw) =

min
(
sw−100

2 ,−10
)

if sw > 0,

max
(
sw+100

2 , 10
)
, if sw < 0.

Furthermore, besides computing the polarity scores Fp and Fn, Jurek et al. also determined
the subjectivity degree of the message by replacing the AP and AN terms in Equation 5.1 with
the average of conditional probabilities of the tweet being subjective given the occurrences
of the respective polar terms.4 The authors considered a microblog as neutral if its absolute
polarity was less than 25, and the subjectivity value was not greater than 0.5. Otherwise,
they assigned a positive or negative label to this message depending on the sign of the
polarity score. With this approach, Jurek et al. achieved an accuracy of 77.3% on the
manually annotated subset of the Go et al.’s corpus and reached 74.2% on the IMDB review
dataset (Maas et al., 2011).

Finally, Kolchyna et al. (2015) also explored two different ways of computing the overall
polarity of a microblog: (i) by simply averaging the scores of all lexicon terms found in the

4These probabilities were calculated automatically on the noisily labeled data set of Go et al. (2009).
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message and (ii) by taking a signed logarithm of this average:

Scorelog =

sign(ScoreAVG) log10(|ScoreAVG|) if |ScoreAVG| > 0.1,

0, otherwise;

The authors determined the final polarity of a tweet by using k-means clustering, which
utilized both of the above polarity values as features. They showed that the logarithmic
strategy performed better than the simple average solution, yielding an accuracy of 61.74%
on the SemEval-2013 corpus (Nakov et al., 2013).

As it was unclear how each of these methods would perform on PotTS and SB10k, we reim-
plemented the approaches of Hu and Liu (2004) (as a relatively simple baseline), Taboada
et al. (2011), Musto et al. (2014), Jurek et al. (2015), and Kolchyna et al. (2015), and applied
these systems to the test sets of these corpora.

Based on our comparison in Chapter 3, we chose the Zurich Polarity List (Clematide
and Klenner, 2010) as the primary sentiment lexicon for the tested methods. However, a
significant drawback of this resource is that most of its entries have uniform weights, with
their polarity scores being either 0.7 or 1. We decided to keep the original values as is,
and only multiplied the scores of negative terms by -1, since all of the tested approaches
presupposed different signs for the terms with opposite semantic orientations.5 Moreover,
because some analyzers (e.g., Taboada et al. [2011] and Musto et al. [2014]) required part-
of-speech tags of lexicon entries, we automatically tagged all terms in this polarity list with
the TreeTagger (Schmid, 1995), choosing the most probable part-of-speech tag for each
entry and also using the tag sequences whose probabilities were at least two times lower than
the likelihood of the best assignment, duplicating the lexicon entries in the second case.

Furthermore, since all of the systems except for that of Kolchyna et al. (2015) by default
returned continuous real values, but our evaluation required discrete polarity labels (positive,
negative, or neutral), we discretized the results of these approaches using the following simple
procedure: We first determined the optimal threshold values for each particular polar class
on the training and development sets,6 and then derived polarity labels for the test messages
by comparing their predicted SO scores with these thresholds. To achieve the former goal
(i.e., to find the optimal thresholds), we exhaustively searched through all unique polarity
values assigned to the training and development instances and checked whether using these
values as a boundary between two adjacent polarity classes (sorted in ascending order of
their positivity) would increase the overall macro-F1 on the training and development sets.

The final results of this evaluation are shown in Table 5.2.
5We will investigate the impact of other lexicons with presumably better scoring later in Section 5.6.2.
6Since none of the methods required training or involved any sophisticated hyper-parameters, we used

both training and development data to optimize the threshold scores.
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Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
HL 0.75 0.76 0.76 0.53 0.43 0.47 0.67 0.73 0.69 0.615 0.685
TBD 0.77 0.71 0.74 0.54 0.39 0.45 0.63 0.77 0.69 0.597 0.674
MST 0.75 0.72 0.74 0.48 0.47 0.48 0.68 0.72 0.7 0.606 0.675
JRK 0.6 0.31 0.41 0.42 0.2 0.27 0.43 0.8 0.56 0.339 0.467
KLCH 0.71 0.72 0.71 0.34 0.17 0.22 0.66 0.82 0.73 0.468 0.651

SB10k
HL 0.49 0.62 0.55 0.27 0.33 0.3 0.73 0.62 0.67 0.421 0.577
TBD 0.48 0.6 0.53 0.24 0.27 0.25 0.72 0.63 0.67 0.393 0.57
MST 0.45 0.49 0.47 0.29 0.35 0.32 0.7 0.64 0.67 0.395 0.568
JRK 0.41 0.39 0.4 0.36 0.26 0.3 0.69 0.75 0.72 0.351 0.592
KLCH 0.39 0.22 0.28 0.34 0.13 0.19 0.66 0.86 0.75 0.235 0.606

Table 5.2: Results of lexicon-based MLSA methods

HL – Hu and Liu (2004), TBD – Taboada et al. (2011), MST – Musto et al. (2014), JRK – Jurek

et al. (2015), KLCH – Kolchyna et al. (2015)

As we can see, the performance of the tested methods significantly varies across different
polarity classes, but follows more or less the same pattern on both datasets: For example, the
most simple approach of Hu and Liu (2004) achieves surprisingly good quality at predicting
positive tweets, showing the highest recall and F1-measure on the PotTS corpus and yielding
the best overall scores for this polarity class on the SB10k set. Moreover, on the latter
data, it also outperforms all other systems in terms of the precision of neutral microblogs.
Combined with its generally good results on other metrics, this classifier attains the highest
macro-averaged F1-result for all classes and sets up a new benchmark for the micro-F1 on
the PotTS test set.

The approach of Taboada et al. (2011), which can be viewed as an extension of the
previous method, only surpasses the HL classifier w.r.t. the precision of positive and negative
messages, but still loses more than 0.02 macro-F1 due to a lower recall of the neutral class.
A better performance in this regard is shown by the analyzer of Musto et al. (2014), which
shows a fairly strong recall of negative tweets, which in turn leads to the best F1-score for
this polarity. Unfortunately, since this semantic orientation is the most underrepresented one
in both corpora, this success is not reflected in the overall statistics: Although this methods
ranks second in terms of the macro-averaged F1, it lags behind its competitors with regard
to the micro-averaged value on the SB10k corpus.

Finally, the system of Kolchyna et al. (2015) shows very strong recall and F1-scores for
the neutral class on both sets and also achieves the best accuracy (0.606) on the SB10k data,
but its quality for the remaining two polarities is fairly suboptimal, with the F1-scores for
these semantic orientations ranking last or second to last in both cases.
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5.3.1 Polarity-Changing Factors

Since the analysis of context factors is commonly considered to be one of the most important
components of any lexicon-based MLSA system, and because the method with the simplest
approach to this task achieved surprisingly good results, outperforming other more sophis-
ticated competitors, we decided to recheck the utility of this module for all classifiers. In
order to do so, we successively deactivated, one by one, parts of the classifiers that analyzed
the surrounding context of polar terms and recomputed the F1-scores of all systems after
these changes.

Polarity-
Changing
Factors

System Scores
HL TBD MST JRK KLCH

Macro
F1

+/−
Micro
F1

Macro
F1

+/−
Micro
F1

Macro
F1

+/−
Micro
F1

Macro
F1

+/−
Micro
F1

Macro
F1

+/−
Micro
F1

PotTS
All 0.615 0.685 0.593 0.671 0.606 0.675 0.339 0.467 0.468 0.651
–Negation 0.622 0.691 0.596 0.672 0.641 0.7 0.357 0.473 0.298 0.463
–Intensification NA NA 0.595 0.672 NA NA 0.339 0.467 NA NA
–Other Modifiers NA NA 0.613 0.684 NA NA NA NA NA NA

SB10k
All 0.421 0.577 0.392 0.569 0.395 0.568 0.351 0.592 0.235 0.606
–Negation 0.415 0.576 0.395 0.572 0.381 0.559 0.316 0.586 0.218 0.609
–Intensification NA NA 0.4 0.576 NA NA 0.352 0.59 NA NA
–Other Modifiers NA NA 0.406 0.566 NA NA NA NA NA NA

Table 5.3: Effect of polarity-changing factors on lexicon-based MLSA methods

As we can see from the results in Table 5.3, various methods respond in different ways
to this ablation: For example, the scores of the Hu and Liu system improve on the PotTS
corpus, but degrade on the SB10k dataset after switching off the negation handling. The
same situation can also be observed with the analyzers of Musto et al. (2014) and Jurek et al.
(2015). The classifier of Taboada et al. (2011), however, benefits from this deactivation in
both cases, and the approach of Kolchyna et al. (2015) vice versa shows a performance drop
on either dataset with the only exception being the micro-averaged F1 on the SB10k data,
which unexpectedly improves from 0.606 to 0.609.

As to the intensification handling, we can see that only two approaches (TBD and JRK)
have this component at all. As in the previous case, the Taboada system profits from its
deactivation, with the macro- and micro-averaged F1-scores going up by 0.002 on PotTS
and 0.008 on the SB10k corpus. A more varied situation is observed with the analyzer
of Jurek et al. (2015), whose PotTS results are virtually unaffected by these changes, but
the macro-averaged F1 slightly increases and the micro-averaged score slightly decreases on
the Cieliebak et al.’s dataset.
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Finally, “other modifiers” (such as irrealis and interrogative clauses) only play a role as
a polarity-changing factor in the system of Taboada et al. (2011) and, as we can see from
the figures, do there rather more harm than good: deactivating this part boosts the macro-
averaged F1-scores on PotTS and SB10k by 0.02 and 0.014 respectively. At the same time,
the micro-averaged result of this system climbs up from 0.671 to 0.684 on the former dataset,
but drops from 0.569 to 0.566 on the latter corpus.

5.3.2 Error Analysis

In order to get a better intuition about the strengths and weaknesses of each particular
classifier, we additionally collected a set of errors that were specific to only one of above the
systems and will discuss some of these cases here in detail.

The first such error, which was made by the system of Taboada et al. (2011), is shown in
Example 5.3.1. Here, a strongly positive tweet describing one’s excitement about a technical
report was erroneously classified as neutral despite the presence of the prototypical positive
term “gut” (good) in its superlative form “beste” (best). Unfortunately, it is the degree of
comparison which becomes fatal in this case: According to the implementation of Taboada
et al. (2011), any superlative adjective has to be preceded by the definite article and a verb in
order to be considered as a polar term for the final SO computation. Although the adjective
“beste” (best) can fulfill the first criterion (it immediately follows the determiner “der” [the]),
the lack of the preceding verb nullifies its effect.

Example 5.3.1 (An Error Made by the System of Taboada et al.)

Tweet: Der beste Microsoft Knowledgebase-Artikel, den ich je gelesen
habe.
The best Microsoft-Knowledgebase article I’ve ever read.

Gold Label: positive

Predicted Label: neutral*

Another error of this method is shown in Example 5.3.2. This time, the presence of the
colloquial term “verarschen” (to hoax ) suggests that the tweet at hand is negative. Alas, the
occurrence of another verb (“wollt” [wanna]) is interpreted as an irrealis clue, which prevents
further SO computation and leads to a zero score to the whole message.7

Example 5.3.2 (An Error Made by the System of Taboada et al.)

Tweet: Die Konklave wählt den Papst und dann sagen sie Gott war es —
Wollt ihr mich verarschen ?!

7Please note that the occurrence of the question mark does not affect the sentiment score because “?!” is
not included in the list of valid punctuation marks in the original implementation.
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The conclave elects the Pope and then they say it was God — do you wanna
hoax me ?!

Gold Label: negative

Predicted Label: neutral*

At this point, we already can see that the main flaws of the TBD approach apparently
stem from its overly coarse rules, which, in addition, are not always valid in German, whose
word order is significantly laxer than English syntax.8

Returning back to our error analysis, let us look at another erroneous case shown in
Example 5.3.3. This time, the system of Musto et al. (2014) incorrectly assigned the neutral
label to a positive tweet even though the positive term “gut” (good) again appears in this
message. As it turns out, the occurrence of this word is still insufficient for the classifier to
predict the positive class although this term has the highest possible positive score in the
lexicon (1.0), which is additionally boosted by a factor of 1.5, since this word is an adjective.
But the crushing factor in this case is the length of the tweet: since this approach relies
on the average SO-score for all words in a sentence, the value 1.5 of the only positive term
is divided by 7 (the length of the sentence) and drops down to 0.214, which is below the
threshold for the positive class (0.267).

Example 5.3.3 (An Error Made by the System of Musto et al.)

Tweet: Mensch Meier, Mensch Meier! Das sieht gut aus für die %User:
Gosh Meier, Gosh Meier! It looks good for the %User:

Gold Label: positive

Predicted Label: neutral*

As it turns out, this kind of mistakes is by far the most common type of errors charac-
teristic to the MST system. Further examples of such incorrect decisions are provided in
Example 5.3.4:

Example 5.3.4 (Errors Made by the System of Musto et al.)

Tweet: Der %User tut echt geile musik machen. Nichts mit Boyband hier.
The %User is making really great music. Nothing with Boyband here.

Gold Label: positive

Predicted Label: neutral*

Tweet: Diese S5E5 Episode mit den Zugüberfall war wieder genial! Break-
ingBad

8In order to check this claim, we tried to temporarily deactivate the above two heuristics (predicate check
for superlative adjectives and irrealis blocking by model verbs) and recomputed the scores of this system,
getting in both cases an improvement by almost one percent on either corpus.
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This S5E5 episode with train robbery was brilliant again! BreakingBad

Gold Label: positive

Predicted Label: neutral*

A different kind of problems is experienced by the approach of Jurek et al. (2015), which
apparently has difficulties with correctly predicting the positive class. A deeper analysis of
its misclassifications revealed that the reason for it is relatively simple: Because this classifier
uses conditional probabilities of polar terms instead of their original lexicon scores, and we
have estimated these probabilities on the noisily labeled German Twitter Snapshot, which
was extremely biased towards the positive class (see Table 5.1), all positive lexicon entries
received extremely high scores. As a consequence, even a single occurrence of a positive
term in a message outweighed the effect of any negative expressions, even if they were more
frequent in that tweet. This is, for instance, the case in Example 5.3.5 where the score of the
(questionable) positive expression “Normal” (normally) is greater than the absolute sum of
two negative values for the terms “sich beschweren” (to complain) and “ekelhaft” (disgusting).

Example 5.3.5 (An Error Made by the System of Jurek et al.)

Tweet: Normal bin ich ja nicht der mensch dwer sich beschwert wegen
dem essen aber diese Pizza von Joeys. . . boah wie ekelhaft
Normally I’m not a person who complains about food but this pizza from
Joeys. . . Boah it’s so disgusting

Gold Label: negative

Predicted Label: positive*

The same problem also afflicts the system of Kolchyna et al., whose error example is given
in 5.3.6. In contrast to the previous approaches, which mainly rely on manually designed
heuristic rules, this method makes its decisions using a trained k-NN classifier. Nevertheless,
its prediction in the provided case is still incorrect as it evidently confuses the positive class
with the neutral polarity.

Example 5.3.6 (An Error Made by the System of Kolchyna et al.)

Tweet: das Hört sich echt Super an! %PosSmiley macht sami nicht auch
so ein Video? Noah süsse beste Freunde! ♥ %User isilie saminator
It sounds really fantastic! %PosSmiley won’t sami also make such a video?
Noah’s sweet best friends! ♥ %User isilie saminator

Gold Label: positive

Predicted Label: neutral*
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In order to understand the reason for this misclassification, we first looked at the initial SO
scores computed by the Kolchyna analyzer. As it turned out, both values that were used by
the internal k-NN predictor of this system as features (the average SO score of all polar terms
found in the message and the logarithm of this average) were relatively high, amounting to
33.42 and 2.52 respectively. But a closer look at the selected nearest neighbors revealed that
even despite such high SO values, top three of the closest neighbors of this microblog were
indeed neutral, as we can see from the list below:

1. Tweet: “Not in my backyard” -Mentalität dt. Politik: “Nächster Castor geht wohl
doch nach Gorleben. . . -%Link antiatom”
“Not in my backyard” -Mentality of German politics: “Next Castor will probably still
got to Gorleben. . . -%Link antiatom”
Label: neutral
Distance: 6.83e−03;

2. Tweet: Kanzlerin im Google-Hangout: “Die Technik soll sich mal bemühen”
Chancellor in Google-Hangout: “The technology should make an effort”
Label: neutral
Distance: 1.6e−02;

3. Tweet: Kanzlerin im Google-Hangout: “Die Technik soll sich mal bemühen”
Chancellor in Google-Hangout: “The technology should make an effort”
Label: neutral
Distance: 1.6e−02;9

4. Tweet: Wünsche mir ein Format wie zdflogin auch für das %User. Viele Themen,
klare Aussagen. Schönes Special %User zur Landtagswahl! %PosSmiley
Wish %User had a format like zdflogin. Many topics, clear statements. Nice Special
%User zur Landtagswahl! %PosSmiley
Label: positive
Distance: 2.1e−02;

5. Tweet: Ich bin ja so gespannt ob die FDP im September erst den Zahnärzten und
dann den Apothekern mit Geschenken dankt, oder anders rum. . .
I’m so curious whether FDP will first give gifts to dentists and then to pharmacists in
September, or whether it’ll be vice versa
Label: positive
Distance: 4.12e−02;

9Please note that this tweet is not a duplicate of the previous microblog, but a different message (with
its distinct message id), which, however, has the same wording.
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Even more surprisingly, the SO scores of the neighboring neutral instances were indeed
also relatively high: In the first microblog, for example, the system recognized two polar
terms: the English word “Not”, which was confused with the German term “Not” (distress),
and “nächster” (next). Another polar expression (“sich bemühen” [to make an effort ]) was
found in messages 2 and 3. Although two of these terms (“Not” and “sich bemühen”) had
a negative label in the sentiment lexicon, their conditional probability of being associated
with the positive class was more than ten times bigger than the chance to appear in a
negative microblog (according to the computed statistics). As a consequence of this positive
probability bias, many neutral tweets from the training set ended up in close vicinity to
actual positive examples.

As we can see, lexicon-based methods experience various kinds of problems with predicting
the polarity of short casually written microblogs: Some of these systems apply rules that
are too specific to a particular language and domain, so that they do not generalize well
to German tweets; others rely on noisy statistics, which might be extraordinarily skewed
towards just one polarity. Now, we should check whether other approaches to the message-
level sentiment analysis (which rely on completely different principles and paradigms) will
also be susceptible to these kinds of errors.

5.4 Machine-Learning Methods

Despite their immense popularity, linguistic plausibility, and simplicity to implement, lexicon-
based approaches often have been criticized for the rigidness of their classification10 and the
inability to incorporate additional, non-lexical attributes into their final decisions. Moreover,
as noted by Pang et al. (2002) and also confirmed empirically by Riloff et al. (2003) and
Gamon (2004), many linguistic expressions that actually correlate with the subjectivity and
polarity of a sentence (e.g., exclamation marks or spelling variations) are very unlikely to be
included into a sentiment lexicon even by a human expert. As a consequence of this, with
the emergence of manually annotated corpora, lexicon-based systems have been gradually
superseded by supervised machine-learning techniques.

One of the first steps in this direction was taken by Wiebe et al. (1999), who used a Naïve
Bayes classifier to differentiate between subjective and objective statements. Using binary
features that reflected the presence of a pronoun, an adjective, a cardinal number, or a modal
verb in the analyzed sentence, the authors achieved an accuracy of 72.17% on the two-class
prediction task (differentiating between positive and negative classes), outperforming the

10Since these systems only rely on the precomputed weights of lexicon entries, considering these coefficients
as constant, their decision boundaries frequently appear to be suboptimal as many terms might have different
polarity and intensity values depending on the domain (see Eisenstein, 2017; Yang and Eisenstein, 2017).
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majority class baseline by more than 20%. An even better result (81.5%) could be reached
when the dataset was restricted only to the examples with the most confident annotation.

Inspired by this success, Yu and Hatzivassiloglou (2003) presented a more elaborated
system in which they first distinguished between subjective and objective documents, then
differentiated between polar and neutral sentences, and, finally, determined the polarity of
that clauses. As in the previous case, the authors used a Naïve Bayes predictor for the
document-level task, reaching a remarkable F1-score of 0.96 on this objective; and applied
an ensemble of NB systems to predict the subjectivity of single sentences. To determine
the semantic orientation of subjective clauses, Yu and Hatzivassiloglou averaged the polarity
scores of their tokens, obtaining these scores from an automatically constructed sentiment
lexicon (Hatzivassiloglou and McKeown, 1997). This way, they attained an accuracy of 91%
on a set of 38 sentences that had a perfect inter-annotator agreement.

In order to check the effectiveness of the Naïve Bayes approach, Pang et al. (2002) com-
pared the results of NB, MaxEnt, and SVM systems on the movie review classification task,
trying to predict whether a review was perceived as thumbs up or thumbs down. In con-
trast to the previous works, they found the SVM classifier working best for this objective,
yielding 82.9% accuracy when used with unigram features only. This conclusion paved the
way for the following triumph of the support-vector approach, which was dominating the
whole sentiment research field for almost a decade ever since. For example, Gamon (2004)
also trained an SVM predictor using a set of linguistic and surface-level features (including
part-of-speech trigrams, context-free phrase-structure patterns, and part-of-speech informa-
tion coupled with syntactic relations) to distinguish between positive and negative customer
feedback, achieving 77.5% accuracy and ≈0.77 F1 by using only top 2,000 attributes that had
the highest log-likelihood ratio with the target class. Furthermore, Pang and Lee (2005) ad-
dressed the problem of multi-class rating, attempting to predict the number of stars assigned
to a review. For this purpose, they compared three different SVM types: (i) one-versus-all
SVM (OVA-SVM), (ii) SVM regression, (iii) and OVA-SVM with metric labeling; getting
their best results (≈52% accuracy) with the last option. Finally, Ng et al. (2006) proposed
a multi-stage SVM system, in which they first classified whether the given text was a review
or not and then tried to predict its polarity. Due to a better usage of higher-order n-grams
(where, instead of naïvely considering all token sequences up to length n as new features, the
authors only took 5,000 most useful ones), Ng et al. (2006) even improved the state of the
art on the Pang and Lee’s corpus, boosting the classification accuracy from 87.1 to 90.5%.

But a real game change in the MLSA research field happened with the introduction of the
SemEval shared task on sentiment analysis in Twitter (Nakov et al., 2013). Starting from
its inaugural run in 2013, this competition has rapidly caught the attention of the broader
NLP community and has been rerun five times, attracting more than 40 active participants
every year.
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It is not surprising that the first winning systems in this task closely followed in the
footsteps of the advances in the general opinion mining at that time. For example, the
two top-scoring submissions in the initial iteration (Mohammad et al., 2013; Günther and
Furrer, 2013) both relied on the SVM algorithm: The first of these approaches, an analyzer
developed by Mohammad et al. (2013), was the absolute winner of SemEval 2013, scoring
impressive 0.69 macro-averaged two-class F1 on the provided Twitter corpus. The key to
the success of this method was an extensive set of linguistic features devised by the authors,
which included character and token n-grams, Brown clusters (Brown et al., 1992), statistics
on part-of-speech tags, punctuation marks, elongated words etc. But the most useful type of
attributes according to the feature ablation test turned out to be the features that reflected
information from various sentiment lexicons. In particular, depending on the type of the
polarity list from which such information was extracted, Mohammad et al. introduced two
types of lexicon attributes: manual and automatic ones. The former group was computed
with the help of the NRC emotion lexicon (Mohammad and Turney, 2010), MPQA polarity
list (Wilson et al., 2005), and Bing Liu’s manually compiled polarity set (Hu and Liu, 2004).
For each of these resources and for each of the non-neutral polarity classes (positive and
negative), the authors estimated the total sum of the lexicon scores for all message tokens and
also separately calculated these statistics for each particular part-of-speech tag, considering
them as additional attributes. Automatic features were obtained using the Sentiment140 and
Hashtag Sentiment Base polarity lists (Kiritchenko et al., 2014). Again, for each of these
lexicons, for each of the two polarity classes, the authors produced four features representing
the number of tokens with non-zero scores, the sum and the maximum of all respective
lexicon values for all words, and the score of the last term in the tweet. These two feature
groups (manual and automatic lexicon attributes) improved the macro-averaged F1

+/−-score
by almost five percent, outperforming in this regard all other traits.

Another notable submission, the system of Günther and Furrer (2013), also relied on a
linear SVM predictor with a rich set of features. Like Mohammad et al. (2013), the authors
used original and lemmatized unigrams, word clusters, and lexicon features. But in contrast
to the previous approach, this application utilized only one polarity list—that of Esuli and
Sebastiani (2005). Partially due to this fact, Günther and Furrer found the word clusters
working best among all features. This method also yielded competitive results (0.653 F1

+/−)
on the message-level polarity task, attaining second place in that year.

Later on, Günther et al. (2014) further improved their results (from 0.653 to 0.691 two-
class F1) by extending the original system with a Twitter-aware tokenizer (Owoputi et al.,
2013), spelling normalization module, and a significantly increased set of lexicon-based fea-
tures. In particular, instead of simply relying on SentiWordNet (Esuli and Sebastiani,
2005), Günther et al. applied a whole ensemble of various polarity lists including Liu’s opin-
ion lexicon, MPQA subjectivity list, and TwittrAttr polarity resource. As mentioned by the
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authors, the last change was of particular use to the classification accuracy, improving the
macro-F1

+/− by almost four percent.

An even better score on this task, could be attained with the approach of Miura et al.
(2014), who also utilized a supervised ML classifier with character and word n-grams, word
clusters, disambiguated senses, and lexicon scores of message tokens as features. Similarly to
the systems of Mohammad et al. (2013) and Günther et al. (2014), the authors made heavy
use of various kinds of polarity lists including AFINN-111 (Nielsen, 2011), Liu’s Opinion Lex-
icon (Hu and Liu, 2004), General Inquirer (Stone et al., 1966), MPQA Polarity List (Wiebe
and Riloff, 2005), NRC Hashtag and Sentiment140 Lexicon (Mohammad et al., 2013), as
well as SentiWordNet (Esuli and Sebastiani, 2006b), additionally applying a whole set of
preprocessing steps such as spelling correction, part-of-speech tagging with lemmatization,
and a special weighting scheme for underrepresented classes. Due to these enhancements,
combined with a carefully tuned LogLinear classifier, Miura et al. (2014) were able to boost
the sentiment classification results on the SemEval 2014 test set to 0.71 F1

+/−.

In order to see how this family of methods would perform on our Twitter corpora, we
have reimplemented the approaches of Gamon (2004), Mohammad et al. (2013), and Günther
et al. (2014) with the following modifications: In the system of Gamon (2004), we used the
available dependency analyses from the MateParser (Bohnet, 2009) instead of constituency
trees, considering each node of the dependency tree as a syntactic constituent and regarding
the two-tuple (dependency-link-to-the-parent, node’s-PoS-tag) as the name of that
constituent (for example, a finite verb at the root of the tree was mapped to the constituent
(–, VVFIN), where – is the name of the root relation). Furthermore, because the Brown
clusters were not available for German, we had to remove this attribute altogether from
the feature sets of Mohammad et al.’s and Günther et al.’s methods. Moreover, because
the former system relied on two types of lexicon attributes—manual and automatic ones,
we used two polarity lists for these approaches: the Zurich Sentiment Lexicon of Clematide
and Klenner (2010) as a manual resource and our Linear Projection Lexicon, which was
introduced in Chapter 3, as an automatically generated polarity list. All remaining attributes
and training specifics were kept maximally close to their original descriptions.

The results of our reimplementations are shown in Table 5.4. As we can see from the
scores, the system of Mohammad et al. (2013) clearly dominates its competitors on both
corpora. This holds for all presented metrics except for the recall of positive tweets on
the PotTS dataset and neutral messages on the SB10k data, where it is outperformed by
the analyzers of Günther et al. (2014) and Gamon (2004) respectively. In any other respect,
however, the results of the MHM classifier are notably higher than those of the GNT method,
sometimes surpassing it by up to 12% (this is, for instance, the case for the recall of negative
microblogs on the SB10k corpus). This margin becomes even larger if we compare the scores
of Mohammad’s system with the performance of Gamon’s predictor, which is by far the
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Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
GMN 0.67 0.73 0.7 0.35 0.15 0.21 0.6 0.72 0.66 0.453 0.617
MHM 0.79 0.77 0.78 0.58 0.56 0.57 0.73 0.76 0.74 0.674 0.727
GNT 0.71 0.8 0.75 0.55 0.45 0.5 0.68 0.63 0.65 0.624 0.673

SB10k
GMN 0.65 0.45 0.53 0.38 0.08 0.13 0.72 0.93 0.81 0.329 0.699
MHM 0.71 0.65 0.68 0.51 0.4 0.45 0.8 0.87 0.84 0.564 0.752
GNT 0.67 0.62 0.64 0.44 0.28 0.34 0.78 0.87 0.82 0.491 0.724

Table 5.4: Results of machine-learning–based MLSA methods

GMN – Gamon (2004), MHM – Mohammad et al. (2013), GNT – Günther et al. (2014)

weakest ML method in this survey. This weakness, however, is less surprising regarding the
fact that Gamon’s approach is purely grammar-based and relies only on information about
part-of-speech tags and constituency parses without any lexicon traits or even plain n-gram
features. Partially due to these limited input attributes, the results of this analyzer are even
worse than the average scores of lexicon-based methods.

5.4.1 Feature Analysis

Because input features appeared to play a crucial role for the success of ML-based systems,
we decided to investigate the impact of this factor in more detail and performed an ablation
test for each of the tested classifiers, removing one of their feature groups at a time and
recomputing their scores.

As we can see from the results in Table 5.5, the approach of Gamon (2004) typically
achieves its best performance when all of the input attributes (PoS tags and syntactic con-
stituents) are active. This is for example the case for the micro- and macro-averaged F1 on
the PotTS corpus, and also holds for the two-class macro-F1 on the SB10k data. The only
exception to this tendency is the micro-averaged F1-score on the latter dataset, which shows
a slight improvement (from 0.699 to 0.7) after the removal of part-of-speech features.

Similarly, the analyzer of Mohammad et al. (2013) seems to rather suffer than benefit
from the part-of-speech attributes, which decrease its micro-averaged scores by almost 0.07
points on PotTS and 0.05 F1 on SB10k. One possible explanation for this degradation could
be the differences in the utilized PoS taggers and tagsets: Whereas the original Mohammad
et al.’s classifier relied on a special Twitter-aware tagger (Owoputi et al., 2013), whose
tags were explicitly adjusted to the peculiarities of social media texts (including special
labels for the @-mentions and #hashtags), we instead used the output of the standard
TreeTagger (Schmid, 1995), which, apart from lacking any Twitter-specific information,
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Features
System Scores

GMN MHM GNT

Macro
F1

+/−
Micro

F1

Macro
F1

+/−
Micro

F1

Macro
F1

+/−
Micro

F1

PotTS
All 0.453 0.617 0.674 0.727 0.624 0.673
–Constituents 0.388 0.545 NA NA NA NA
–PoS Tags 0.417 0.607 0.669 0.721 NA NA
–Character Features NA NA 0.671 0.734 NA NA
–Token Features NA NA 0.659 0.704 0.0 0.366
–Automatic Lexicons NA NA 0.667 0.717 0.613 0.666
–Manual Lexicons NA NA 0.665 0.715 0.617 0.675

SB10k
All 0.329 0.699 0.564 0.752 0.491 0.724
–Constituents 0.127 0.646 NA NA NA NA
–PoS Tags 0.301 0.7 0.57 0.757 NA NA
–Character Features NA NA 0.546 0.753 NA NA
–Token Features NA NA 0.559 0.741 0.046 0.62
–Automatic Lexicons NA NA 0.54 0.753 0.517 0.735
–Manual Lexicons NA NA 0.553 0.751 0.51 0.739

Table 5.5: Results of the feature-ablation test for ML-based MLSA methods

was also trained on a completely different text genre (newspaper articles) and therefore a
priori produced unreliable output. As a consequence, the effect of part-of-speech information
is rather harmful, and the only aspect where it comes in handy is the macro-averaged F1 on
the PotTS corpus, which improves by 0.003 when these features are used. A better alternative
in this regard could be the Twitter-specific tagger for German developed by Rehbein (2013),
we could not, however, find this tagger in the public domain, and, moreover, its usage would
preclude the following Mate analysis due to the difference in the tagsets.

An even more controversial situation is observed with the classifier of Günther et al.
(2014). Although this system lacks any part-of-speech attributes, its reaction to the deletion
of other features (first of all token and lexicon traits) is quite unexpected. For example, the
macro-averaged F1-scores on both corpora drop almost to zero when the information about
tokens is excluded. On the other hand, the deactivation of manual lexicons surprisingly
improves the micro-averaged results on both datasets and also increases the macro-F1

+/− on
the SB10k data. We also notice a similar (though less pronounced) trend with automatic
lexicons: the ablation of these features lowers the scores on PotTS, but improves both results
on SB10k. We can partially explain this negative effect of polarity lists by the coarseness of
lexicon features: This classifier uses only binary attributes, which reflect whether the given
tweet has more positive or more negative lexicon items, but it does not distinguish between
the scores or intensities of these terms.

Besides analyzing the utility of each particular feature group, we also decided to have
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a look at the top-10 most relevant attributes learned by each system. The summarized
overview in Table 5.6 partially confirms our previous findings: For example, the most useful
traits for the analyzer of Gamon (2004) are attributes reflecting the information about both
constituents and part-of-speech tags, with five of its ten entries featuring the interjection
tag, which appears to be especially important for predicting the positive class. On the other
hand, the system of Mohammad et al. (2013) seems to rely more on token and character
n-grams, as nine out of ten attributes belong to either of these two categories. The only
outlier in this respect is the Last%QMarkCnt attribute (line 2), which denotes the presence of
a question mark and is apparently a good clue of neutral microblogs. Finally, the classifier
of Günther et al. (2014) almost exclusively prefers lexical n-grams, as it has nine unigrams
and one bigram among its top-ten entries.

Rank
GMN MHM GNT

Feature Label Weight Feature Label Weight Feature Label Weight

1 NK-ITJ| POS 0.457 * NEUT 0.131 hate NEG 1.86
2 DM-ITJ| POS 0.334 Last-

%QMark-
Cnt

NEUT 0.088 sick NEG 1.7

3 V-DM-I POS 0.244 s-c NEG 0.079 kahretsinn NEG 1.69
4 N-NK-I POS 0.24 *-

%possmiley
POS 0.067 dasisaberschade NEG 1.69

5 MO-ITJ| POS 0.211 c-h-e-i-s NEG 0.064 Anziehen POS 1.67
6 A-DM-I POS 0.196 h-a-h POS 0.064 \x016434 POS 1.65
7 A-MO-I POS 0.191 t-␣-. NEG 0.064 pärchenabend POS 1.65
8 NK-ITJ POS 0.165 geil POS 0.062 derien♥♥ POS 1.65
9 NK-$. NEUT 0.16 *-? NEUT 0.062 schön-nicht POS 1.56
10 DM-ITJ POS 0.157 ? NEUT 0.061 applause POS 1.5

Table 5.6: Top-10 features learned by ML-based MLSA methods

(sorted by the absolute values of their weights)

5.4.2 Classifiers

Another important factor that could significantly affect the quality of ML-based approaches
was the underlying classification method, which was used to optimize the feature weights
and make the final predictions. Although most of the previous studies agree on the superior
performance of support vector machines for this task (see Pang et al., 2002; Gamon, 2004;
Mohammad et al., 2013), we decided to question these conclusions as well and reran our ex-
periments, replacing the linear SVC predictor with the Naïve Bayes and Logistic Regression
algorithms.

Somewhat surprisingly, these changes indeed resulted in an improvement, especially in
the case of the logistic classifier, which yielded the best macro- and micro-averaged scores
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for the systems of Mohammad et al. (2013) and Günther et al. (2014) on the PotTS corpus
(see Table 5.7) and also produced the highest micro-F1 results for these two approaches on
the SB10k dataset. Nevertheless, the SVM algorithm still remains a competitive option,
in particular for the feature-sparse method of Gamon (2004), but also with respect to the
macro-F1 of Mohammmad’s and Günther’s analyzers.

Classifier
System Scores

GMN MHM GNT

Macro
F1

+/−
Micro

F1

Macro
F1

+/−
Micro

F1

Macro
F1

+/−
Micro

F1

PotTS
SVM 0.453 0.617 0.674 0.727 0.624 0.673
Naïve Bayes 0.432 0.577 0.635 0.675 0.567 0.59
Logistic Regression 0.431 0.612 0.677 0.741 0.624 0.688

SB10k
SVM 0.329 0.699 0.564 0.752 0.491 0.724
Naïve Bayes 0.351 0.637 0.516 0.755 0.453 0.675
Logistic Regression 0.309 0.693 0.553 0.772 0.512 0.75

Table 5.7: Results of ML-based MLSA methods with different classifiers

Even though our results contradict previous claims in the literature, we would advise
against premature conclusions at this point and stress the fact that different classifiers might
have fairly varying results on different datasets. Therefore, higher scores of the logistic
regression on our corpora do not preclude better SVM results on the official SemEval data.

5.4.3 Error Analysis

As in our previous experiments, we also decided to have a closer look at errors produced by
each tested system. For this purpose, we again collected misclassifications that were unique
to only one of the classifiers, and provide some examples of these errors below.

The first wrong result shown in Example 5.4.1 was produced by the system of Gamon
(2004).

Example 5.4.1 (An Error Made by the System of Gamon)

Tweet: Das ist das zynische. Über Themen labern, Leute schlecht machen.
Wenn nicht der Papst damit Thema wäre, kein Wort. Ich hasse das.
It’s cynical. To babble about topics, to talk people down. If the topic
wouldn’t be the Pope, no word. I hate this.

Gold Label: negative

Predicted Label: positive*
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In this case, the classifier incorrectly assigned the positive label to a clearly negative mi-
croblog despite the presence of multiple negatively connoted terms (“zynische” [cynical ],
“labern” [to babble], “schlecht machen” [to talk down], and “hasse” [to hate]). The reason for
this decision is quite simple: As we already noted in the foregoing description, this method
is completely unlexicalized and relies only on grammatical information while making its pre-
dictions. In particular, for this microblog, the top-5 most important features (ranked by the
absolute values of their coefficients) are:

1. PD-ADJA (neutral): -0.62896911412,

2. –-VVINF (negative): 0.517300341184,

3. PD-ADJA (positive): 0.505413668274,

4. –-VVINF (positive): -0.346990702756,

5. CJ-VVINF (positive): 0.303311030403.

As we can see, none of these attributes reflects any information about the lexical terms
appearing in the message, and the system simply prefers the positive class based on the
presence of a predicate adjective (PD-ADJA) and coordinately conjoined infinitive (CJ-VVINF).

Another error shown in Example 5.4.2 was made by the system of Mohammad et al.
(2013). This time, a positive tweet was misclassified as neutral. But the reason for this
erroneous decision is completely different. As we can see from the list of the highest ranked
features given below:

1. * (neutral): 0.131225868029,

2. * (negative): -0.0840804221845,

3. %PoS-CARD (neutral): 0.0833658576233,

4. %PoS-ADJD (neutral): -0.069745190018,

5. t-␣-n (positive): 0.0556721202587;

this analyzer makes its decision based on rather general, but extremely heavy-weighted
features, such as placeholder token * or the PoS-tag features (%PoS-CARD and %PoS-ADJD).
As a result, its prediction succumbs to the neutral bias of these general attributes.

Example 5.4.2 (An Error Made by the System of Mohammad et al.)

Tweet: das klingt richtig gut! Was für eine hast du denn? (uvu) %PosS-
miley3
It sounds really great. Which one do you have? (uvu) %PosSmiley3
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Gold Label: positive

Predicted Label: neutral*

Finally, the last example (5.4.3) shows another wrong decision, where a negative microblog
was incorrectly analyzed as positive by the method of Günther et al. (2014), even though the
polar term “borniert” (narrow-minded) was present in both utilized sentiment lexicons (ZPL
and Linear Projection) as a negative item. This again can be explained by the prevalence of
general features (e.g., 8, nicht-nur_NEG, nur_NEG, etc.) and their strong bias towards the
majority class in the PotTS dataset.

Example 5.4.3 (An Error Made by the System of Günther et al.)

Tweet: Den CDU-Wählern traue ich durchaus zu der FDP 8 bis 9% zu
bescheren! Die sind so borniert, nicht nur in Niedersachsen!
I don’t put giving 8 to 9% to the FDP past the CDU-voters! They are so
narrow-minded, not only in Lower Saxony!

Gold Label: negative

Predicted Label: positive

5.5 Deep-Learning Methods

Even though traditional ML-based approaches still show competitive results and play an
important role in the sentiment analysis of social media, they are gradually giving place to
allegedly more powerful and in a certain sense more intuitive deep learning (DL) methods.
As we already mentioned in the previous chapter, in contrast to the standard supervised
techniques with human-engineered features, DL systems induce the best feature representa-
tion completely automatically, and in some cases might produce even better features than
the ones devised by human experts. Another important advantage of this paradigm is its
more straightforward way to implement the “compositionality” of language (Frege, 1892):
Whereas conventional classifiers usually consider each instance as a bag of features and pre-
dict its label based on the sum of these features’ values multiplied with their respective
weights, DL approaches try to combine the representation of each part of that instance (be
it tokens or sentences) into a single whole and then deduce the final class from this joint
embedding.

Among the first who explicitly incorporated the compositionality principle into a DL-
based sentiment application were Yessenalina and Cardie (2011). In their proposed matrix-
space approach, the authors represented each word w of an input phrase xi = wi1, w

i
2, . . . , w

i
|xi|

as a matrix Ww ∈ Rm×m and computed the sentiment score ξi of this phrase as the product
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of its token matrices, multiplying the final result with two auxiliary model parameters ~u and
~v ∈ Rm to get a scalar value:

ξi =~u>

 |xi|∏
j=1

Wwi
j

~v.

After computing this term, they predicted the intensity and polarity of the phrase on a
five-level sentiment scale (ranging from very negative to very positive) by comparing ξi

with automatically derived thresholds. With this system, Yessenalina and Cardie attained
a ranking loss of 0.6375 on the MPQA corpus (Wiebe et al., 2005), outperforming the
traditional PRank algorithm (Crammer and Singer, 2001) and bag-of-words ordered logistic
regression.

Almost simultaneously with this work, Socher et al. (2011) introduced a deep recursive
autoencoder (RAE), in which they obtained a fixed-width vector representation for a complex
phrases ~wp by recursively merging the vectors of its tokens over a binarized dependency tree,
first multiplying these vectors with a compositional matrixW and then applying a non-linear
function (softmax) to the resulting product:

~wp = softmax

(
W

[
~wl

~wr

])
, (5.2)

where ~wl and ~wr represent the embeddings of the left and right dependents respectively. By
applying a max-margin classifier to the final phrase vector, the authors could improve the
state of the art on predicting sentence-level polarity of user’s blog posts (Potts, 2010) and
also outperformed the system of Nasukawa and Yi (2003) on the MPQA dataset (Wiebe
et al., 2005), achieving 86.4% accuracy on predicting contextual polarity of opinionated
expressions.

Later on, Socher et al. (2012) further improved this approach by associating an additional
matrix Ww with each vocabulary word w and performing the inference simultaneously over
both vector and matrix representations:

~wp = tanh

(
Wv

[
Wr ~wl

Wl ~wr

])
,

Wp = Wm

[
Wl;

Wr

]
;

where ~wp ∈ Rn stands for the embedding of the parent node, ~wl and ~wr represent the
embeddings of its left and right dependents, and Wp,Wl,Wr ∈ Rn×n denote the respective
matrices associated with these vertices. The compositionality matrices Wv ∈ Rn×2n and
Wm ∈ Rn×2n were shared across all instances and learned along with the vector embeddings.
This model, called Matrix-Vector Recursive Neural Network (MVRNN), surpassed the RAE
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system on the IMDB movie review dataset (Pang and Lee, 2005), attaining 0.91 Kullback-
Leibler divergence between the assigned scores and probabilities of correct labels.

Yet another improvement, a Recursive Neural Tensor Network (RNTN), was presented
by Socher et al. (2013). In this system, the authors again opted for a vector representation of
words, but enhanced the original matrix-vector product from Equation 5.2 with an additional
tensor multiplication:

~wp = softmax

[ ~wl
~wr

]>
V [1:d]

[
~wl

~wr

]
+W

[
~wl

~wr

] ,

where ~wp, ~wl, ~wr ∈ Rn, andW ∈ Rn×2n are defined as before; and V represents a 2n×2n×n-
dimensional tensor. By increasing this way the number of parameters in comparison with
the RAE approach, but significantly reducing it with respect to the MVRNN method, the
authors gained a significant improvement of the results, boosting the classification accuracy
on their own Stanford Sentiment Treebank from 82.9 to 85.4%.

A real breakthrough in the use of deep learning methods for sentiment analysis of Twitter
happened with the work Severyn and Moschitti (2015b), whose proposed feed-forward DL
system ranked first in SemEval-2015 Subtask 10 A (phrase-level polarity prediction) (Rosen-
thal et al., 2015) and achieved second place (0.6459 F1

+/−) in Subtask 10 B (message-level
classification) of this competition. Drawing on the ideas of Kalchbrenner et al. (2014), the
authors devised a simple convolutional network in which they multiplied pretrained word
embeddings with 300 distinct convolutional kernels each of width 5, pooled the maximum
value of this multiplication for each kernel, and then passed the results of this pooling to a
piecewise linear ReLU filter with a densely connected softmax layer. An important aspect of
this approach, which accounted for a huge part of its success, was a special multi-stage train-
ing scheme that was used to optimize the parameters: In the initial stage of this scheme,
Severyn and Moschitti first computed Twitter-specific word embeddings by applying the
word2vec algorithm to a large Twitter corpus. Afterwards, they pretrained the complete
system including the word vectors, convolutional filters, and inter-layer matrices on a big set
of noisily labeled microblogs from this collection, and, finally, fine-tuned the parameters of
the model on the official SemEval dataset.

Later on, this system was further improved by Deriu et al. (2016), who increased the num-
ber of convolutional layers (applying two layers instead of one) and simultaneously trained
two such models (using word2vec vectors as input for the first one and passing GloVe embed-
dings to the second), joining their output at the end and achieving this way 0.671 F1

+/− on
the SemEval-2015 test set. A similar enhancement was also proposed by Rouvier and Favre
(2016), who used three different types of embeddings (word2vec, word2vec specific to partic-
ular parts of speech, and sentiment-tailored vectors), training separate sets of convolutions
for each of these types.
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Although convolutional approaches still show competitive scores and are hard to outper-
form in practice, in recent time, they are gradually being superseded by recurrent neural
networks (Xu et al., 2016; Wang et al., 2015b). One of the most prominent such systems has
been recently proposed by Baziotis et al. (2017). In their submission to SemEval 2017 (Rosen-
thal et al., 2017), the authors used two successive bidirectional LSTM units (BiLSTMs). In
each of these units, they concatenated the results of the left-to-right recurrence (~h(l)i→ ∈ R150)
with the respective outputs of the right-to-left loop (~h(l)i← ∈ R150) and then passed the result
of this concatenation (~h(l)i = [~h

(l)
i→ ,

~h
(l)
i← ] ∈ R300) to the next layer of the network. After getting

the output of the second BiLSTM, they united the states of this unit from all time steps
i into a single vector ~a with the help of a special attention mechanism, in which they first
multiplied each BiLSTM state ~hi with the respective globally normalized attention score ai
and then took the sum of these weighted vectors over all i positions:

~a =

|x|∑
i=1

ai~h
(2)
i ,

where ai =
exp(ei)∑|x|
j=1 exp(ej)

,

s.t. ei = tanh
(
~α~h

(2)
i + βi

)
. (5.3)

The ~α and β terms in the above equations denote the attention parameters (score and bias),
which are optimized during the training process. To make the final prediction, Baziotis et al.
multiplied the attention vector ~a with matrix W and computed element-wise softmax of this
product, getting probability scores for each of the three polarity classes and choosing the
label with the maximum score:

ŷ = argmax
(
softmax(W>~a)

)
. (5.4)

With this approach, the authors attained the first first place in Task 4 of SemEval-2017
(0.675 F1

+/−), being on a par with the system of Cliche (2017) and even outperforming the
method of Rouvier (2017) despite the fact that both of these competitors used ensembles of
LSTMs and convolutional networks.

5.5.1 Lexicon-Based Attention

Even though the approach of Baziotis et al. (2017) represents the current state of the art
in sentiment analysis of Twitter and yields extraordinarily good results, in our opinion, this
method has yet some potential for improvements. This, first of all, concerns the way how
attention coefficients are computed. As we can see from Equation 5.5, the magnitude of the
attention score ai primarily depends on the absolute value of the BiLSTM outputs and the
bias term at the i-th position. Albeit this strategy is definitely plausible, assuming the fact
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Figure 5.1: Architecture of the neural network proposed by Baziotis et al. (2017)

that LSTMs shall produce higher scores for polar tokens and presupposing that polar terms
near the end of the message will usually have a greater influence on the net polarity of the
tweet than subjective words at its beginning, a crucial prerequisite for this strategy to work
is (i) that the LSTM layer can already provide sufficiently reliable results and (ii) that the
bias terms do not overly boost the importance of irrelevant tokens that just accidentally
appeared at favored positions. Unfortunately, both of these prerequisites are rarely fulfilled
in practice.

In order to overcome these deficiencies, we augmented the original architecture of Baziotis
et al. (2017) shown in Figure 5.1 with two additional types of attention: lexicon- and context-
based one. In the former type, we estimated the importance weight bi for position i as the
polarity score of the word wi, obtaining this value from our Linear Projection lexicon and
normalizing it by the sum of polarity scores for all tweet tokens:

~b =

|x|∑
i=1

bi~hi,

bi =
exp(fi)∑|x|
j=1 exp(fj)

,

s.t. fi =

{
tanh(abs(V [wi]) + ε) if wi ∈ V
tanh(ε) otherwise.

This way, we hoped to force the network to pay more attention to the BiLSTM outputs that
were produced at the positions of polar terms rather than favoring arbitrary words in the
message.

Another important factor that could notably affect the polarity of a microblog were the
so-called valence shifters (Polanyi and Zaenen, 2006)—words and phrases such as “kaum”
(hardly) or “nicht” (not) that could significantly change (or even reverse) the semantic orien-
tation of polar terms. To account for these phenomena, we added another type of attention—
a context-based one, whose goal was to identify such shifters in the message and give them
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bigger weights in the recursion. To discern these elements, we introduced a linear classifier
that had to predict the modifying power of a token wi, given its original word embedding ~wi
and the LSTM output of its parent in the dependency tree times the lexicon-based attention
score of that parent (~bp := bp~hp). To keep the resulting attention scores within an appro-
priate range, we again used the same tanh transformation and global normalization over all
positions as we did in the previous two types:

~c =

|x|∑
i=1

ci~hi,

ci =
exp(gi)∑|x|
j=1 exp(gj)

,

gi = tanh
(
C[~wi,~bp]

>
)
.

The C term in the above equation represents a context-based attention matrix R200×100; the
~wi variable denotes the word embedding of the i-th token; and the ~bp term stands for the
value of vector~b (the result of lexicon-based attention from Equation 5.5.1) at position p (the
index of syntactic parent of wi). With this classifier, we hoped to amplify the importance of
shifting words in the cases when the immediate syntactic ancestors of these tokens were highly
subjective expressions (e.g., “Er hat die Prüfung kaum bestanden” [He hardly passed the
exam] or “Ich mag den neuen Bundesminister nicht” [I do not like the new federal minister ]),
but ignore them when they did not relate to any subjective term.

At last, to make the final prediction, we concatenated the outputs of the three attention
layers into a single matrix A ∈ R3×100 and multiplied it with a vector ~w ∈ R1×100, applying
softmax normalization at the end:

~o =softmax
(
A~w>

)
, where

A =


~a

~b

~c

 .

Since introducing additional attention types increased the number of model parameters,
we removed one of the intermediate Bi-LSTM layers in the network to counterbalance this
effect and report our results for both settings: using one and two Bi-LSTM units (denoted
as LBA(1) and LBA(2), respectively). The final architecture of our approach is shown in
Figure 5.2.

To evaluate the performance of the previously presented methods and to compare our
lexicon-based attention system with these solutions, we reimplemented the approaches of Yesse-
nalina and Cardie (2011), Socher et al. (2011, 2012, 2013), Severyn and Moschitti (2015b),
and Baziotis et al. (2017). For the sake of uniformity and simplicity, we used task-specific
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Figure 5.2: Architecture of the neural network with lexicon- and context-based attention

word embeddings of size R100 in all systems, optimizing these vectors along with other net-
work parameters during the training. Moreover, we also unified the final activation parts
and cost functions of all networks, using a densely connected softmax layer as the last com-
ponent of each classifier and optimizing their weights w.r.t. the categorical hinge loss on the
training data, picking the values that yielded the highest accuracy on the development set.

The results of this evaluation are shown in Table 5.8. As we can see from the figures,
the LBA method performs fairly well, especially on the positive and neutral classes where
it achieves the best F1-benchmarks on both datasets and also attains the highest overall
micro-averaged F1-scores on all test samples (0.662 on PotTS and 0.737 on SB10k). Even
though our approach also yields the best macro-averaged result on the SB10k set (0.321 F1),
it seems to face a major difficulty with the extreme label skewness of this corpus, failing
to predict any negative tweet in the test set. This problem, in general, appears to be an
insurmountable hurdle for almost all other compared systems, especially the matrix-space,
MVRNN, and convolutional approaches, which eventually end up predicting only the most
common neutral label for all messages in this dataset. A single notable exception to this
tendency is the recursive neural tensor approach of Socher et al. (2013), which succeeds in
classifying some of the negative instances and also predicts positive and neutral labels, but
whose precision and recall are still far below an acceptable level.

A similar, though less severe situation is also observed on the PotTS corpus. This time,
the Y&C, MVRNN, BAZ, and LBA(2) methods lapse into always predicting only the most fre-
quent positive class. Other systems, however, perform much better, especially the approach
of Severyn and Moschitti (2015b), which does an extraordinarily good job at classifying
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Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
Y&C 0.45 1.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.308 0.446
RAE 0.64 0.78 0.7 0.38 0.04 0.08 0.57 0.68 0.62 0.389 0.605
MVRNN 0.45 1.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.308 0.446
RNTN 0.45 0.87 0.59 0.19 0.02 0.03 0.32 0.1 0.15 0.312 0.428
SEV 0.73 0.79 0.76 0.41 0.52 0.46 0.72 0.55 0.62 0.608 0.651
BAZ 0.45 1.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.308 0.446
LBA(1) 0.82 0.73 0.77 0.0 0.0 0.0 0.56 0.92 0.69 0.387 0.662
LBA(2) 0.45 1.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.308 0.446

SB10k
Y&C 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.0 0.77 0.0 0.622
RAE 0.63 0.57 0.6 0.0 0.0 0.0 0.75 0.94 0.83 0.299 0.721
MVRNN 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.0 0.77 0.0 0.622
RNTN 0.2 0.03 0.05 0.07 0.01 0.02 0.62 0.94 0.75 0.033 0.594
SEV 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.0 0.77 0.0 0.622
BAZ 0.75 0.47 0.58 0.0 0.0 0.0 0.71 0.98 0.83 0.291 0.72
LBA(1) 0.72 0.58 0.64 0.0 0.0 0.0 0.74 0.97 0.84 0.321 0.737
LBA(2) 0.76 0.49 0.6 0.0 0.0 0.0 0.72 0.98 0.83 0.298 0.723

Table 5.8: Results of deep-learning–based MLSA methods

Y&C – Yessenalina and Cardie (2011), RAE – Recursive Auto-Encoder (Socher et al., 2011),

MVRNN – Matrix-Vector RNN (Socher et al., 2012), RNTN – Recursive Neural-Tensor Network

(Socher et al., 2013), SEV – Severyn and Moschitti (2015b), BAZ – Baziotis et al. (2017),

LBA(1) – lexicon-based attention with one Bi-LSTM layer, LBA(2) – lexicon-based attention with

two Bi-LSTM layers

negative messages, reaching remarkable 0.46 F1 on this subset and also attaining the best
macro-average score (0.608) on all tweets due to its competitive performance on positive and
neutral microblogs. Nevertheless, even the best-performing DL systems (SEV and LBA) lag
far behind the traditional supervised machine-learning method of Mohammad et al. (2013),
and barely outperform the lexicon-based approach of Hu and Liu (2004) in terms of the
micro-averaged F1 on SB10k. Two possible explanations for these mediocre scores could be
a bad starting point of the parameters, which prevented the optimizers from finding the
optimal solution to the optimization objective, or an insufficient amount of training data,
which caused an extreme overfitting of the training set, but poor generalization to unseen
examples. We will now investigate both of these factors in detail.

5.5.2 Word Embeddings

As in the previous chapters, we decided to replace randomly initialized word vectors in
the very first layer of vector-based neural networks with pretrained word2vec embeddings,
keeping this parameter fixed during the optimization. As we can see from the figures in

111



CHAPTER 5. MESSAGE-LEVEL SENTIMENT ANALYSIS

Table 5.9, this operation leads to a significant improvement of the results for almost all
classifiers except for the recursive auto-encoder and convolutional approach of Severyn and
Moschitti (2015b), where it slightly lowers the micro-averaged F1-score in the former case
(from 0.605 to 0.55) and considerably worsens the macro-averaged F1 (from 0.608 to 0.36 F1)
of the latter system. Nonetheless, even despite these exceptional setbacks, the best observed
macro-score increases from 0.608 to 0.64 on the PotTS dataset and almost doubles from
0.321 to 0.53 on the SB10k data. A similar situation is observed with the micro-averaged
F1, which rises from 0.662 to 0.69 on PotTS and also improves from 0.737 to 0.75 on the
SB10k corpus. Unfortunately, these improvements usually come at the expense of a lower
recall of the majority classes (positive and neutral respectively), but the gains in the overall
metrics are generally much higher and, first of all, more important than the losses in these
single aspects.

Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
RAE 0.58-0.06 0.74-0.04 0.65-0.05 0.34-0.04 0.26+0.22 0.29+0.21 0.59+0.02 0.46-0.22 0.52-0.1 0.47+0.080.55-0.06

RNTN 0.48+0.03 0.77-0.1 0.59 0.33+0.14 0.03+0.01 0.06+0.03 0.46+0.14 0.33+0.23 0.38+0.01 0.33+0.020.47+0.04

SEV 0.69-0.04 0.74-0.05 0.72-0.04 0.0-0.41 0.0-0.52 0.0-0.46 0.58-0.14 0.84+0.29 0.69+0.07 0.36-0.25 0.64-0.01

BAZ 0.85+0.4 0.61-0.39 0.71+0.09 0.57+0.57 0.32+0.32 0.41+0.41 0.55+0.55 0.87+0.87 0.68+0.68 0.56+0.250.65+0.2

LBA(1) 0.86+0.04 0.6-0.13 0.71-0.06 0.61+0.61 0.46+0.46 0.53+0.53 0.6+0.04 0.89-0.03 0.72+0.03 0.62+0.230.68+0.02

LBA(2) 0.84+0.39 0.65-0.35 0.73+0.11 0.57+0.57 0.54+0.54 0.55+0.55 0.63+0.63 0.82+0.82 0.72+0.72 0.64+0.330.69+0.24

SB10k
RAE 0.61-0.02 0.56-0.01 0.58-0.02 0.29+0.29 0.01+0.01 0.02+0.02 0.74-0.01 0.92-0.02 0.82-0.01 0.3 0.71-0.01

RNTN 0.54+0.34 0.02-0.01 0.04-0.01 0.0-0.07 0.0-0.01 0.0-0.02 0.63+0.01 1.0+0.06 0.77+0.02 0.02-0.01 0.62+0.03

SEV 0.72+0.72 0.5+0.5 0.59+0.59 0.49+0.49 0.27+0.27 0.35+0.35 0.75-0.13 0.92-0.08 0.82+0.05 0.47+0.470.73+0.11

BAZ 0.78+0.03 0.51+0.04 0.61+0.03 0.49+0.49 0.42+0.42 0.45+0.45 0.78+0.07 0.91-0.07 0.84+0.01 0.53+0.240.75+0.03

LBA(1) 0.84+0.12 0.42-0.16 0.56-0.08 0.5+0.5 0.28+0.28 0.36+0.36 0.74 0.96-0.01 0.84 0.46+0.140.73+0.01

LBA(2) 0.79+0.03 0.45-0.04 0.57-0.03 0.57+0.57 0.23+0.23 0.33+0.33 0.74+0.02 0.96-0.02 0.84+0.01 0.45+0.150.74+0.02

Table 5.9: Results of deep-learning–based MLSA methods with pretrained word2vec vectors

In order to see whether these changes would be different if we optimized word representa-
tions as well, we reran our experiments once again, initializing word vectors with word2vec
embeddings as before, but allowing them to be updated during the training. Moreover, to
approximate task-specific representations of words that were missing from the training set,
we also computed the optimal transformation matrix for converting the original word2vec
vectors into optimized sentiment embeddings using the method of the ordinary least squares,
as we did in the previous chapters, and used this matrix to derive task-specific vectors during
the testing.

As suggested by the results in Table 5.10, these modifications improve the results even
further, setting a new record of the macro-averaged F1-scores on the PotTS corpus (0.69 F1),
and pushing our LBA(1) system even above its most challenging competitors. A similar
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effect is also observed with other systems, first of all BAZ and LBA(2), which yield similarly
good results for all polarities. Nevertheless, like in the previous case, these improvements
usually cause a drop in the recall for the most frequent class of the respective dataset,
which is especially severe for the system of Baziotis et al. on the PotTS data (-0.28 on
positive messages) and the LBA(1) approach on the SB10k test set (-0.17 on neutral tweets).
Furthermore, the convolutional system of Severyn and Moschitti and recursive neural tensor
approach of Socher et al. (2013) fail to predict any negative tweet on PotTS and SB10k,
respectively, which also leads to a notable drop of their overall macro-F1–values. These
drops, however, are rather exceptional, as the same system of Severyn and Moschitti shows
an extraordinary big boost of the results on the SB10k corpus (+0.45 macro-F1 and +0.1
micro-F1–score), and the macro-averaged F1-values of all recurrent methods also become
twice as high as in the case of randomly initialized word vectors.

Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
RAE 0.61-0.03 0.61-0.17 0.61-0.09 0.22-0.16 0.01-0.03 0.03-0.05 0.48-0.09 0.72-0.04 0.57-0.05 0.32-0.07 0.54-0.07

RNTN 0.45 0.82-0.05 0.59 0.24+0.05 0.06-0.04 0.1-0.07 0.43+0.09 0.17+0.07 0.24+0.09 0.34+0.030.44-0.01

SEV 0.73 0.74-0.05 0.74-0.02 0.0-0.41 0.0-0.52 0.0-0.46 0.56-0.16 0.84+0.29 0.68+0.06 0.37-0.24 0.64-0.01

BAZ 0.82+0.37 0.72-0.28 0.77+0.15 0.62+0.62 0.49+0.49 0.55+0.55 0.68+0.68 0.85+0.85 0.76+0.76 0.66+0.350.73+0.28

LBA(1) 0.76-0.06 0.84+0.11 0.79+0.02 0.6+0.6 0.56+0.56 0.58+0.58 0.75+0.19 0.68-0.24 0.72+0.03 0.69+0.3 0.73+0.07

LBA(2) 0.84+0.39 0.73-0.27 0.78+0.16 0.57+0.57 0.48+0.48 0.53+0.53 0.66+0.66 0.82+0.82 0.73+0.73 0.65+0.340.72+0.27

SB10k
RAE 0.5-0.13 0.73+0.16 0.59-0.01 0.35+0.35 0.06+0.06 0.1+0.1 0.8+0.05 0.8-0.14 0.8-0.03 0.35+0.150.68-0.04

RNTN 0.0-0.02 0.0-0.03 0.0-0.05 0.0-0.07 0.0-0.01 0.0-0.02 0.62 1.0-0.06 0.77-0.02 0.0-0.03 0.62+0.03

SEV 0.64+0.64 0.58+0.58 0.61+0.61 0.51+0.51 0.21+0.21 0.3+0.3 0.76+0.14 0.89-0.11 0.82+0.05 0.45+0.450.72+0.1

BAZ 0.72+0.03 0.59+0.12 0.65+0.07 0.53+0.53 0.33+0.33 0.41+0.41 0.79+0.08 0.91-0.07 0.84+0.01 0.53+0.240.75+0.03

LBA(1) 0.6-0.12 0.72+0.14 0.66+0.02 0.47+0.47 0.42+0.42 0.44+0.44 0.84+0.1 0.8-0.17 0.82+0.02 0.55+0.230.73-0.01

LBA(2) 0.72-0.04 0.57+0.08 0.64+0.04 0.55+0.55 0.39+0.39 0.46+0.46 0.79+0.07 0.9-0.08 0.84+0.01 0.55+0.250.75+0.03

Table 5.10: Results of deep-learning–based MLSA methods with least-squares embeddings

5.5.3 Error Analysis

Before we proceed with the evaluation of the second factor (larger training set), let us first
analyze some errors that were specific to each of the classifiers trained with the least-squares
embeddings.

Since interpreting and understanding the results of deep learning systems is a complex
task due to a big number of model parameters and unobvious correlations between them, we
decided to use the Lime package (Ribeiro et al., 2016), a recently proposed model-agnostic
interpretation tool, to get a better intuition about the reasons of the classifiers’ decisions. To
derive an explanation for a particular prediction, Lime randomly removes or perturbs parts
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of the input (in our case, tokens), estimating which of these modifications lead to the biggest
changes in the output, and assigns corresponding class-specific association scores to each of
the changed parts. The higher this score, the more predictive is the given feature for that
particular label. For the sake of vividness, we have highlighted all tokens that, according
to Lime, were associated with the neutral class as white, marked negative attributes with
the blue background, and highlighted positively connoted words in green , reflecting the
respective association strength with a higher color brightness.

The first incorrect prediction shown in Example 5.5.1 was made by the RAE system
of Socher et al. (2011). As we can see from the visualization, the model correctly recognized
the positive term “gefällt” (to like), but, unfortunately, this word is the only one which
contributes to the right decision, and its learned weight is obviously not enough to outdo the
effect of multiple neutral and negative items, such as “Grün” (green), “Schwarz” (black), and
most surprisingly “PosSmiley%” (PosSmiley% ), which unexpectedly is stronger associated
with the negative semantic orientation than with the positive class. As a consequence of this,
the classifier erroneously predicts the neutral label for the whole message, falling against
the prevalence of allegedly objective terms.

Example 5.5.1 (An Error Made by the RAE System)

Tweet: Grün - Schwarz in meinem Bundesland. Gefällt mir doch
sehr %PosSmiley
Green - Black in my state. Yet , I like it so much %PosSmiley

Gold Label: positive

Predicted Label: neutral*

A similar situation is also observed with the recurrent neural tensor, whose sample error is
shown in Example 5.5.2. As we can see from the analysis, the bias towards the neutral class
is even more pronounced this time, as virtually all of the terms in the tweet are highlighted in
white. The only word which shows a minimal negative connotation is “tumblr,” which indeed
appeared twice in a negative tweet, two times in neutral messages, and once in a positive
microblog in the training corpus. Nonetheless, even for this term the skewness towards the
neutral orientation is still ten times bigger than its association with the negative polarity
(1.4e−4 versus 1.5e−5), which can be explained by the general prevalence of neutral messages
in SB10k.

Example 5.5.2 (An Error Made by the RNTN System)

Tweet: tumblr people sind meine lieblings people %PosSmiley
tumblr people are my favorite people %PosSmiley
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Gold Label: positive

Predicted Label: neutral*

A slightly different behavior is shown by the method of Severyn and Moschitti (2015b)
on the PotTS corpus. This time, we can see at least two clearly positive words (“ist” [is ]
and “Freund” [friend ]). However, the former of these terms is an auxiliary copular verb,
which can hardly express any polarity, since it usually plays an auxiliary role and lacks any
distinct lexical meaning. Nevertheless, the latter word (“Freund” [friend ]) indeed conveys
a positive feeling of its prepositional argument (“Iran”) towards the subject of the sentence
(“Syrien” [Syria]), but this positive effect is nullified by the author’s statement that this
friendship poses a problem. Unfortunately, the word “Problem” (problem) is recognized only
as a neutral marker, just like many other terms in this microblog.

Example 5.5.3 (An Error Made by the SEV System)

Tweet: Syrien ist Freund von Iran , das ist das Problem ! annewill
Syria is a friend of Iran . That ’s the problem ! annewill

Gold Label: negative

Predicted Label: neutral*

In Example 5.5.4, we can see another error made by the system of Baziotis et al. (2017).
This time, again, we observe the prevalence of positive and neutral items, with the only
exception being the possessive pronoun “meinen” (my), which, according to the classifier,
indicates negative polarity. Apart from this term, we also can notice several inaccuracies
at recognizing positive and neutral features: For example, the pronominal adverb “darin”
(in it) is the strongest positive trait, whose predictiveness is even higher than the scores
of the words “singen” (to sing) and “Liebeslied” (love song). This contradicts the fact that
pronominal adverbs by themselves do not express any semantic orientation, all the more as in
this case the antecedent of the adverb (the noun “Kleiderschrank” [wardrobe]) is recognized
as a neutral item. On the other hand, the modal verb “wollte” (wanted) is considered as an
objective term, although it has a slight positive connotation as it expresses a wish of the
author.

Example 5.5.4 (An Error Made by the BAZ System)

Tweet: Wollte meinen Kleiderschrank aufräumen . . . sitze nun darin
und singe Liebeslieder . . .
Wanted to clean up my wardrobe . . . Now sitting in it and singing
love songs . . .

Gold Label: neutral

Predicted Label: positive*
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Finally, Example 5.5.5 shows an incorrect prediction of our lexicon-based attention sys-
tem. In contrast to the previous two methods, the positive information is much more con-
densed in this case and represented by a single term “super.” Surprisingly, this term outweighs
a whole bunch of neutral features such as “gerade” (right now), “Lust haben” (to be up to),
“was” (something) etc. Admittedly, the first part of this message indeed expresses a positive
attitude of the author, but this effect is invalidated by the second clause, which shows the
impossibility of that wish.

Example 5.5.5 (An Error Made by the LBA System)

Tweet: Gerade super Lust , mit Carls Haaren was zu machen aber
ca 300 km Distanz halten mich davon ab .
Super up to do something with Carl ’s hair right now , but ca. 300
km distance keep me off from this.

Gold Label: neutral

Predicted Label: positive*

5.6 Evaluation

Now that we have familiarized ourselves with the peculiarities and results of the most promi-
nent sentiment analysis approaches from all method groups (lexicon-, machine-learning– and
deep-learning–based ones), let us have a closer look at how changing different common pa-
rameters of these methods might affect their performance. In particular, we would like to
see whether increasing the amount of the training data, switching to a different type of sen-
timent lexicon, or using unnormalized text as input would improve or, vice versa, lower the
classification scores.

5.6.1 Weak Supervision

The first avenue that we are going to explore in this evaluation is the effect of weakly
supervised data—an additional collection of training tweets that have been automatically
labeled with sentiment tags based on the occurrence of some sufficiently reliable formal
criteria, such as emoticons or hashtags.

Among the first who proposed the idea of training a sentiment classifier on a larger corpus
of automatically annotated messages was Read (2005), who gathered a set of 766,000 Usenet
posts containing frownies or smileys, assigned a polarity label to each of these posts, judging
by the type of the emoticons, and subsequently used a subset of these documents (22,000
posts) to optimize a Naïve Bayes and SVM system. Even though these classifiers could
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achieve a considerable accuracy (up to 70%) on predicting noisy labels of the remaining
posts, they could not generalize to texts from other genres (movie reviews and newswire
articles) where they hardly outperformed the random-chance baseline. With the onset of
the Twitter era, this idea of weak supervision has experienced its renaissance with the works
of Go et al. (2009), Pak and Paroubek (2010), and Barbosa and Feng (2010).

In order to check the effect of such noisily annotated data on our tested methods, we
also automatically labeled all messages from the German Twitter Snapshot (Scheffler, 2014)
based on the occurrences of smileys: In particular, we considered a microblog as positive if
its normalized version contained the token %PositiveSmiley with no other facial expres-
sions. Likewise, we regarded a message as negative if the only emoticon in this tweet was
%NegativeSmiley. We skipped all posts that contained both types of smileys, and assigned
the rest of the messages to the neutral class. (A detailed breakdown of the final distribution
is given in Table 5.1 at the beginning of this chapter.)

Since it was impossible to utilize the whole snapshot for the training due to limited
computational resources (only reading the dataset into memory would require 9.3Gb RAM,
not to mention the space required for storing the embeddings and features), we confined
ourselves to one sixth of these data, which still resulted in 4 M messages. Furthermore, to
mitigate the extreme skewness of this corpus, we downsampled positive and neutral tweets
to get an equal number of instances for all classes (59,000 microblogs for each polarity) and
used these examples in addition to the manually analyzed PotTS and SB10k tweets.

Since lexicon-based approaches were mostly independent of the training set, we decided
to rerun our experiments only with ML- and fastest DL-based methods (RNN, SEV, BAZ,
and LBA),11 which still incurred running times up to five days for some systems. The results
of this evaluation are shown in Table 5.11.

As we can see from the scores, apart from improved precision of positive tweets and higher
recall of negative microblogs, adding noisily labeled messages to the training set has a strong
negative effect on the results of all methods, with the biggest drops demonstrated by the
approach of Baziotis et al. (−0.5 macro-F1 and −0.43 micro-F1 on the PotTS corpus; −0.34

macro-F1 and −0.51 micro-F1 on the SB10k dataset) and our own LBA(2) solution (−0.42

macro-F1-score and −0.5 micro-F1 on the PotTS test set; −0.43 macro-F1 and −0.61 micro-
F1 on the SB10k data), which both fail to predict any neutral message on PotTS and always
assign the same polarity to all SB10k tweets. Less severe, but still substantial degradation
is also observed with the machine-learning systems of Mohammad et al. and Günther and
Furrer as well as our DL-based LBA(1) method, whose macro-averaged F1-scores go down by

11In all subsequent evaluation experiments with DL-based systems, we will use pre-trained word2vec
vectors (if applicable) with the least-squares fallback, and compare the results of these approaches to the
respective scores in Table 5.10.
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Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
GMN 0.8+0.13 0.34-0.39 0.48-0.22 0.2-0.15 0.29+0.14 0.24-0.03 0.53-0.07 0.79+0.07 0.63-0.03 0.36-0.01 0.49-0.12

MHM 0.86+0.07 0.59-0.18 0.7-0.08 0.31-0.27 0.39-0.17 0.35-0.22 0.55-0.18 0.68-0.08 0.61-0.13 0.52-0.15 0.59-0.14

GNT 0.86+0.15 0.6-0.2 0.71-0.04 0.26-0.29 0.31-0.14 0.28-0.22 0.53-0.15 0.68-0.05 0.59-0.06 0.5-0.12 0.57-0.1

RAE 0.68+0.07 0.31-0.3 0.43-0.18 0.25+0.03 0.46+0.45 0.32+0.29 0.49+0.01 0.61-0.11 0.54-0.03 0.38+0.060.45-0.09

SEV 0.87+0.14 0.51-0.23 0.64-0.1 0.27+0.27 0.49+0.49 0.35+0.35 0.55-0.01 0.58-0.26 0.56-0.12 0.49+0.120.53-0.11

BAZ 0.0-0.82 0.0-0.72 0.0-0.77 0.19-0.43 1.0+0.51 0.32-0.23 0.0-0.68 0.0-0.85 0.0-0.76 0.16-0.5 0.19-0.43

LBA(1) 0.48-0.28 0.88+0.04 0.62-0.17 0.25-0.35 0.23-0.33 0.24-0.34 0.0-0.75 0.0-0.68 0.0-0.72 0.43-0.26 0.44-0.29

LBA(2) 0.91+0.07 0.08-0.65 0.14-0.64 0.19-0.38 0.99+0.51 0.32-0.21 0.0-0.66 0.0-0.82 0.0-0.73 0.23-0.42 0.22-0.5

SB10k
GMN 0.71+0.06 0.27-0.18 0.4-0.13 0.24-0.14 0.11+0.03 0.15+0.02 0.71-0.01 0.96+0.03 0.82-0.01 0.27-0.06 0.68-0.02

MHM 0.77+0.06 0.4-0.25 0.53-0.15 0.61-0.1 0.1-0.3 0.18-0.27 0.71-0.09 0.97-0.1 0.82-0.02 0.35-0.21 0.71-0.04

GNT 0.77+0.1 0.39-0.23 0.52-0.12 0.25-0.19 0.13-0.15 0.17-0.17 0.71-0.07 0.92+0.05 0.8-0.02 0.34-0.15 0.68-0.04

RAE 0.44-0.06 0.27-0.51 0.34-0.25 0.24-0.11 0.59+0.53 0.34+0.24 0.78-0.02 0.62-0.18 0.69-0.11 0.34-0.01 0.54-0.14

SEV 0.64 0.39-0.19 0.49-0.12 0.34-0.17 0.12-0.09 0.18-0.12 0.7-0.06 0.9+0.01 0.78-0.04 0.33-0.12 0.69-0.03

BAZ 0.24-0.48 1.0+0.41 0.38-0.27 0.0-0.53 0.0-0.33 0.0-0.41 0.0-0.79 0.0-0.91 0.0-0.84 0.19-0.34 0.24-0.51

LBA(1) 0.64+0.04 0.43-0.29 0.52-0.14 0.59+0.12 0.09-0.33 0.16-0.28 0.71-0.13 0.93+0.13 0.8-0.02 0.34-0.21 0.69-0.04

LBA(2) 0.0-0.72 0.0-0.57 0.0-0.64 0.14-0.41 1.0+0.61 0.25-0.21 0.0-0.79 0.0-0.9 0.0-0.84 0.12-0.43 0.14-0.61

Table 5.11: Results of MLSA methods with weakly supervised data

0.15, 0.12, and 0.26 points on the former corpus and sink by 0.21, 0.15, 0.21, respectively,
on the latter dataset. The micro-averaged F1-results of these methods, however, decrease
to a much smaller degree, since the main drops happen on the negative class, which is by
far the least represented polarity in both corpora. The micro-averages of the remaining
systems seem to be affected even less, but are still worse than the results obtained without
the snapshot data. We hypothesize that the main reason for this decrease is a substantial
difference between the class distributions in noisily annotated training tweets and manually
labeled test sets, which overly bias classifiers’ predictions.

5.6.2 Lexicons

Another factor that could significantly affect the results of some systems was the sentiment
lexicon that these systems used either directly, for computing the polarity of a message
(e.g., lexicon-based approaches), or indirectly, as features or attention scores (e.g., ML- and
DL-based techniques). To estimate the effect of this resource, we successively replaced the
lexicons that we used in our previous experiments with other polarity lists presented in
Chapter 3, and recomputed the scores of the tested systems.

As we can see in Figure 5.3, the system of Mohammad et al. (2013) and our own lexicon-
based attention approach clearly outperform all other competitors on the PotTS corpus
independent of the lexicon they use. The only method that comes at least close to their
results is the ML-based classifier of Günther et al. (2014), which is still almost 5% below
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(a) Macro-F1 (b) Micro-F1

Figure 5.3: Results of MLSA methods with different lexicons on the PotTS corpus

the average macro-F1 of these two classifiers. The same also applies to the micro-F1-scores,
where the solution of Günther et al. (2014) loses almost 3% on average to the two top
performers. Regarding the differences between the MHM and LBA themselves, we can
observe a rather mixed relation: The approach of Mohammad et al. (2013) yields better
macro-averaged F1-results with the lexicons of Esuli and Sebastiani (2005), Vo and Zhang
(2016), and Clematide and Klenner (2010), but falls against LBA when used with the polarity
lists of Blair-Goldensohn et al. (2008), Waltinger (2010), Hu and Liu (2004), Kiritchenko
et al. (2014), Rao and Ravichandran (2009), Takamura et al. (2005), Tang et al. (2014b), and
Velikovich et al. (2010) as well as the NWE-based LinProj and PCA lexicons. Moreover,
when trained with the polarity list of Tang et al. and our LinProj lexicon, the LBA system
achieves the best overall macro-F1 on this corpus.

These results, however, look slightly differently when we consider the micro-averaged
scores. This time, the system of Mohammad et al. outperforms our solution in eight out
of twenty cases, but performs worse than LBA with four other polarity lists (GPC, KIR,
RRmincut, and VEL). Nevertheless, our approach still reaches the best overall observed score
(0.73) with three tested resources (GPC, LinProj, and VEL).

Regarding the performance of single lexicons, we can see that the best results are achieved
with the manually curated SentiWS (Remus et al., 2010) and Zurich Polarity List (Clematide
and Klenner, 2010), followed by the dictionary-based approaches of Blair-Goldensohn et al.
(2008) and Rao and Ravichandran (2009). The method of the nearest centroids vice versa
appears to be of the lowest utility for almost all systems, even though it demonstrated quite
acceptable scores in our initial intrinsic evaluation.

A similar situation also holds for the SB10k corpus, where the ML-based approaches
of Mohammad et al. (2013) and Günther et al. (2014) and our proposed LBA system out-
perform all other methods in terms of both macro- and micro-averaged F1-scores. This time,
however, the average difference between the macro-results of LBA and GNT is much smaller

119



CHAPTER 5. MESSAGE-LEVEL SENTIMENT ANALYSIS

(a) Macro-F1 (b) Micro-F1

Figure 5.4: Results of MLSA methods with different lexicons on the SB10k corpus

and amounts to only 0.02% in favor of LBA, which again achieves the best overall macro-F1

(0.58) in combination with the min-cut lexicon of Rao and Ravichandran (2009). Unfortu-
nately, our system clearly falls against the latter classifier with respect to the micro-averaged
scores, performing worse than it in 16 out of 20 experiments.

The effect of single lexicons is also less pronounced than in the PotTS case, as all of the
tested polarity lists show a more or less similar behavior, especially regarding the macro-
averaged F1-score. In terms of the micro-F1, however, we can observe that dictionary-based
lists, especially those of Awadallah and Radev (2010), Blair-Goldensohn et al. (2008), Hu
and Liu (2004), and Kim and Hovy (2004), lead to generally better scores than corpus- and
NWE-based resources.

5.6.3 Text Normalization

Finally, the last aspect that we are going to analyze in this evaluation is the effect of the text
normalization, which we applied to the input messages before passing them to the classifiers.
To verify the utility of this step, we rerun all experiments from the initial sections, using the
original Twitter messages instead of their preprocessed forms, and recalculated the results
of the tested systems.

As we can see from the figures in Table 5.12, switching off the normalization has a strong
negative effect on the scores of almost all approaches except for the methods of Yessenalina
et al. (2010) and Socher et al. (2012, 2013), which notoriously keep predicting the majority
class in most of the cases in the same way as they did before. Apart from this, we can notice
that the lexicon-based systems (HL, JRK, KLCH, MST, and TBD) suffer the greatest loss in
terms of both macro- and micro-averaged F1-scores on the PotTS corpus (up to −0.25 macro-
and and −0.22 micro-F1). A closer look at their errors revealed that this deterioration is
mostly due to the increased variety of different emoticons in the dataset (which were typically
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unified during the preprocessing) and the absence of these forms in the utilized polarity list.
The second biggest quality drop is demonstrated by the DL-based approaches BAZ, LBA(1),
and LBA(2), which apparently also got confused by the higher lexical variety of the input and
failed to optimize all their internal parameters to properly fit this diversity. The remaining
DL- and ML-based classifiers (especially those of MHM, GNT, and RNTN) seem to be
more resistant to the introduced changes, but still show a decrease by up to 0.04 macro-
and 0.08 micro-F1. The only exception in this case is the MVRNN system of Socher et al.
(2012), which slightly improves on the negative and neutral classes, leaving the majority
class pitfall. Unfortunately, this increase appears to be too small to positively influence the
overall statistics of this method.

Regarding the breakdown of single polarity classes, we can see that most of the rare im-
provements affect the recall of positive and neutral messages, with the biggest gains demon-
strated by the RAE and RNTN approaches (+0.37 and +0.11, respectively). Other positive
changes are fairly sporadic and produced by only few classifiers (first of all, MVRNN). Nev-
ertheless, even in these exceptional cases, the improvements are typically so small that they
hardly outweigh the decreased scores on other aspects and have virtually no effect on the
net results for all classes.

A similar situation also happens on the SB10k corpus, where we can see even fewer
improvements (in 10 out of 176 cases). The biggest increase this time (+0.16 recall) is
demonstrated by the approach of Baziotis et al. (2017) on the negative class. The remaining
growths, however, are much smaller and typically range between one and seven percent. On
the other hand, three of the tested methods (Y&C, MVRNN, and RNTN) have exactly the
same results as they did previously with normalized messages, although, most of the time,
these classifiers only predict the majority label anyway. As to the rest of the systems, we can
see that their scores are notably lower than in our initial experiments, but the decrease is
much smaller in comparison with the PotTS corpus. A sad exception in this case is a major
drop of the recall of neutral messages (−0.79) demonstrated by our LBA(1) system, which,
in turn, results in a significant decrease of its macro- and micro-averaged F1-scores (−0.14

and −0.46, respectively). Other approaches (including the sibling method LBA(2)) behave
much more stable in this regard and their average decrease amounts to −0.06 macro- and
−0.03 micro-F1.

Similar to the results on the PotTS data, most of the gains are concentrated at the recall
of the neutral class (four out of ten improvements), with the other positive changes being
rather sporadic and affecting only a few classifiers. Nevertheless, unlike in the previous case,
this time, we can even observe a slight improvement of the macro-averaged F1-measure for
one of the systems (the lexicon-based approach of Jurek et al.), but its micro-averaged metric
remains mainly unaffected by this increase. In general, however, the vast majority of macro-

121



CHAPTER 5. MESSAGE-LEVEL SENTIMENT ANALYSIS

Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
HL 0.63-0.12 0.3-0.46 0.4-0.36 0.46-0.07 0.29-0.14 0.36-0.11 0.41-0.26 0.77+0.04 0.54-0.15 0.38-0.24 0.464-0.22

TBD 0.65-0.12 0.24-0.47 0.36-0.38 0.46-0.08 0.27-0.12 0.34-0.11 0.41-0.22 0.83+0.06 0.55-0.14 0.348-0.250.457-0.22

MST 0.63-0.12 0.29-0.43 0.4-0.34 0.47-0.01 0.34-0.13 0.39-0.09 0.42-0.26 0.77+0.05 0.54-0.16 0.4-0.21 0.47-0.21

JRK 0.44-0.16 0.22-0.09 0.29-0.12 0.14-0.28 0.06-0.14 0.08-0.19 0.36-0.07 0.7-0.1 0.47-0.09 0.19-0.15 0.36-0.11

KLCH 0.61-0.1 0.23-0.49 0.33-0.38 0.33-0.01 0.21+0.04 0.26+0.04 0.41-0.25 0.82 0.55-0.18 0.3-0.17 0.44-0.21

GMN 0.59-0.08 0.77+0.04 0.66-0.04 0.37-0.02 0.14-0.01 0.2-0.01 0.57-0.03 0.55-0.17 0.56-0.1 0.43-0.02 0.57-0.05

MHM 0.78-0.01 0.76-0.01 0.77-0.01 0.59+0.01 0.54-0.02 0.56-0.01 0.7-0.03 0.74-0.02 0.72-0.02 0.67-0.0060.71-0.007

GNT 0.68-0.03 0.8 0.73-0.02 0.55 0.43-0.02 0.48-0.02 0.67-0.01 0.59-0.04 0.62-0.03 0.61-0.0170.65-0.02

Y&C 0.45 1.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.31 0.45
RAE 0.46-0.15 0.98+0.37 0.62+0.01 0.0-0.22 0.0-0.01 0.0-0.03 0.63+0.15 0.05-0.67 0.09-0.48 0.31-0.01 0.46-0.08

MVRNN 0.45 0.92-0.08 0.6-0.02 0.08+0.08 0.01+0.01 0.01+0.01 0.26+0.26 0.03+0.03 0.06+0.06 0.31 0.43-0.02

RNTN 0.45 0.93+0.11 0.61+0.02 0.29+0.05 0.01-0.05 0.01-0.09 0.4-0.03 0.07-0.1 0.12-0.12 0.31-0.03 0.45-0.01

SEV 0.56-0.17 0.79+0.05 0.66-0.08 0.0 0.0 0.0 0.57+0.01 0.57-0.27 0.57-0.11 0.33-0.04 0.56-0.08

BAZ 0.65-0.17 0.59-0.13 0.62-0.15 0.62 0.22-0.27 0.32-0.23 0.5-0.18 0.74-0.11 0.6-0.16 0.47-0.19 0.57-0.16

LBA(1) 0.58-0.18 0.77-0.07 0.66-0.13 0.54-0.06 0.53-0.03 0.54-0.04 0.63-0.12 0.37-0.31 0.46-0.26 0.6-0.09 0.58-0.15

LBA(2) 0.67-0.17 0.52-0.21 0.59-0.19 0.51-0.06 0.44-0.04 0.47-0.06 0.52-0.14 0.7-0.12 0.6-0.13 0.53-0.12 0.57-0.15

SB10k
HL 0.41-0.08 0.42-0.2 0.42-0.13 0.24-0.03 0.28-0.06 0.26-0.04 0.66-0.07 0.63-0.01 0.65-0.02 0.34-0.08 0.53-0.05

TBD 0.41-0.07 0.37-0.23 0.39-0.14 0.21-0.03 0.24-0.03 0.22-0.03 0.65-0.07 0.66+0.03 0.66-0.01 0.31-0.08 0.53-0.04

MST 0.4-0.05 0.32-0.17 0.35-0.12 0.26-0.03 0.3-0.05 0.28-0.04 0.65-0.05 0.68-0.04 0.67 0.32-0.08 0.54-0.03

JRK 0.4-0.01 0.42-0.03 0.41-0.01 0.36 0.26 0.3 0.69 0.72-0.03 0.71-0.01 0.36+0.010.59-0.006

KLCH 0.42+0.03 0.21-0.01 0.28 0.25-0.09 0.13 0.17-0.02 0.66 0.86 0.75 0.23-0.0050.6-0.002

GMN 0.48-0.17 0.31-0.14 0.37-0.16 0.27-0.11 0.07-0.01 0.11-0.02 0.69-0.03 0.9-0.03 0.78-0.03 0.24-0.09 0.64-0.06

MHM 0.67-0.04 0.62-0.03 0.65-0.03 0.59-0.08 0.42-0.02 0.49-0.04 0.8 0.88-0.01 0.84 0.56-0.0020.75-0.001

GNT 0.42-0.25 0.21-0.41 0.28-0.36 0.25-0.19 0.13-0.15 0.17-0.17 0.66-0.12 0.86-0.01 0.75-0.07 0.22-0.2 0.604-0.12

Y&C 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.0 0.77 0.0 0.62
RAE 0.46-0.04 0.62-0.11 0.53-0.06 0.18-0.17 0.02-0.04 0.03-0.07 0.77-0.03 0.82+0.02 0.79-0.01 0.28-0.07 0.66-0.02

MVRNN 0.19 0.01 0.03 0.0 0.0 0.0 0.62 0.97 0.76 0.01 0.61
RNTN 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.0 0.77 0.0 0.62
SEV 0.58-0.06 0.39-0.19 0.47-0.14 0.23-0.28 0.05-0.16 0.08-0.22 0.7-0.06 0.92+0.03 0.8-0.02 0.27-0.18 0.67-0.05

BAZ 0.69-0.03 0.54-0.16 0.6-0.05 0.36-0.17 0.49+0.16 0.41 0.79 0.79-0.12 0.79-0.05 0.51-0.02 0.69-0.06

LBA(1) 0.24-0.36 0.86+0.14 0.38-0.28 0.45-0.02 0.45+0.03 0.45+0.01 0.69-0.15 0.01-0.79 0.02-0.8 0.41-0.14 0.27-0.46

LBA(2) 0.74-0.02 0.42-0.15 0.54-0.1 0.62+0.07 0.25-0.14 0.35-0.11 0.73-0.06 0.95+0.05 0.82-0.02 0.45-0.1 0.72-0.03

Table 5.12: Results of MLSA methods without text normalization

and micro-F1-scores show an obvious decline on both datasets, which once again proves the
advantage of preprocessing.

5.7 Summary and Conclusions

Now the we have reached the end of the chapter, we would like to remind the reader that in
this part of the thesis we have made the following findings and contributions:

• we have compared three major families of message-level sentiment analysis methods:
lexicon-, machine-learning– and deep-learning–based ones, finding that the last two
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groups significantly outperform lexicon-driven systems;

• surprisingly, among all compared lexicon methods, the most simple one (the classifier
of Hu and Liu [2004]) produced the best macro- and micro-averaged F1-results on the
PotTS corpus (0.615 and 0.685, respectively) and also yielded the highest macro F1-
measure on the SB10k dataset (0.421). Other systems, however, could have improved
their scores if they better handled the negation of polar terms (after switching off the
negation component in the method of Musto et al., its macro-F1 on the PotTS corpus
increased to 0.641, surpassing the benchmark of Hu and Liu);

• as expected, the ML-based system of Mohammad et al. (2013)—the winner of the in-
augural run of SemEval task in sentiment analysis of Twitter (Nakov et al., 2013)—also
surpassed other ML competitors, achieving highly competitive results: 0.674 macro-
and 0.727 micro-F1 on the PotTS data, and 0.564 macro- and 0.752 micro-averaged
F1-measure on the SB10k test set;

• as in the previous case, however, these results could have been improved if the classifier
dispensed with character-level and part-of-speech features and used logistic regression
instead of SVM;

• a much more varied situation was observed with deep-learning–based systems, which
frequently simply fell into always predicting the majority class for all tweets, but
sometimes yielded extraordinarily good results as it was the case with our proposed
lexicon-based attention system, which attained 0.69 macro-F1 on the PotTS corpus
and 0.55 macro F1-score on the SB10k dataset (0.73 and 0.75 micro-F1, respectively),
setting a new state of the art for the former data;

• speaking of word embeddings, we should note that almost all DL-based approaches
showed fairly low scores when they used randomly initialized task-specific embeddings,
but notably improved their results after switching to pre-trained word2vec vectors, and
benefited even more from the least-squares fallback;

• against our expectations, we could not overcome the majority class pitfall of DL-based
systems after adding more weakly supervised training data, which, in general, only
lowered the scores of both ML- and DL-based methods. Since this result contradicts
the findings of other authors, we hypothesize that this degradation is primarily due to
the differences in the class distributions between automatically and manually labeled
tweets;

• on the other hand, we could see that using more qualitative sentiment lexicons (espe-
cially manually curated and dictionary-based ones) resulted in further improvements
for the systems that relied on this lexical resource;
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• last but not least, we proved the utility of the text normalization step, which brought
about significant improvements for all tested methods, as confirmed by our last ablation
test.
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Chapter 6

Discourse-Aware Sentiment Analysis

Although message-level sentiment analysis methods do a fairly good job at classifying the
overall polarity of a message, a crucial limitation of all these systems is that they completely
overlook the structural nature of their input by either considering it as a single whole (e.g.,
bag-of-features approaches) or analyzing it as a monotone sequence of equally important
elements (e.g., recurrent neural methods). Unfortunately, both of these solutions violate the
hierarchical principle of language (de Saussure and Engler, 1990; Hjelmslev, 1970), which
states that complex linguistic units are formed from smaller language elements in the bottom-
up way, e.g., words are created by putting together morphemes, sentences are made of several
words, and discourses are composed of multiple coherent sentences. Moreover, apart from
this inherent structural heterogeneity, even units of the same linguistic level might play a
different role and be of unequal importance when joined syntagmatically into the higher-
level whole. For example, in words, the root morpheme typically conveys more lexical
meaning than the affixes; in sentences, the syntactic head usually dominates its grammatical
dependents; and, in discourse, one of the sentences frequently expresses more relevant ideas
than the rest of the text.

Exactly the lack of discourse information was one of the main reasons for the misclassi-
fications made by the systems of Severyn and Moschitti (2015b), Baziotis et al. (2017), and
our own LBA method in Examples 5.5.3, 5.5.4, and 5.5.5. Since none of these approaches
explicitly took discourse structure into account, we decided to check whether making the
last of these solutions (the LBA classifier) aware of discourse phenomena would improve its
results. But before we present these experiments, we first would like to make a short digres-
sion into the theory of discourse and give an overview of the most popular approaches to
text-level analysis that exist in the literature nowadays. Afterwards, in Section 6.2, we will
describe the way how we inferred discourse information for PotTS and SB10k tweets. Then,
in Section 6.3, we will summarize the current state of the art in discourse-aware sentiment
analysis (DASA) and also present our own methods, evaluating them on the aforementioned
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datasets. After analyzing the effects of various common factors (such as the impact of the
underlying sentiment classifier and the amenability of various discourse relation schemes to
different DASA approaches), we will recap the results and summarize our findings in the last
part of this chapter.

6.1 Discourse Analysis

Since the main focus of our experiments will be on discourse analysis, we first need to clarify
what discourse analysis actually means and which common ways there are to represent and
analyze discourse automatically.

In a nutshell, discourse analysis is an area of research which explores and analyzes lan-
guage phenomena beyond the sentence level (Stede, 2011). Although the scope of this
research can be quite large, ranging from the use of pronouns in a sentence to the logical
composition of the whole document, in our work we will primarily concentrate on the co-
herence structure of a text, i.e., its segmentation into elementary discourse units (typically
single propositions) and induction of hierarchical coherence relations (semantic or pragmatic
links) between these EDUs.

Although the idea of splitting the text into smaller meaningful pieces and inferring seman-
tic relationships between these parts is anything but new, dating back to the very origins of
general linguistics (Aristotle, 2010) and in particular its structuralism branch (de Saussure
and Engler, 1990), an especially big surge of interest in this field happened in the 1970-s with
the fundamental works of van Dijk (1972) and van Dijk and Kintsch (1983), who introduced
the notion of local and global coherence, defining the former as a set of “rules and conditions
for the well-formed concatenation of pairs of sentences in a linearly ordered sequence” and
specifying the latter as constraints on the macro-structure of the narrative (see Hoey, 1983).
Similar ideas were also proposed by Longacre (1979, 1996), who considered the paragraph as
a unit of tagmemic grammar that was composed of multiple sentences according to a prede-
fined set of compositional principles. Almost contemporary with these works, Winter (1977)
presented an extensive study of various lexical means that could connect two sentences and
grouped these means into two major categories: Matching and Logical Sequence, de-
pending on whether they introduced sentences that were giving more details on the preceding
content (Matching) or adding new information to the narrative (Logical Sequence).

The increased interest of traditional linguistics in text-level analysis has rapidly spurred
the attention of the broader NLP community. Among the first who stressed the importance of
discourse phenomena for automatic generation and understanding of texts was Hobbs (1979),
who argued that semantic ties between sentences were one the most important component
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for building a coherent discourse. Similarly to Winter, Hobbs also proposed a classification
of inter-sentence relations, dividing them into Elaboration, Parallel, and Contrast.
Albeit this taxonomy was obviously too small to accommodate all possible semantic and
pragmatic relationships that could exist between two clauses, this division had laid the
foundations for many successful approaches to automatic discourse analysis that appeared
in the following decades.

RST. One of the best-known such approaches, Rhetorical Structure Theory or RST, was
presented by Mann and Thompson (1988). Besides revising Hobbs’ inventory of discourse
relations and expanding it to 23 elements (including new items such as Antithesis, Cir-

cumstance, Evidence, and Elaboration), the authors also grouped all coherence links
into nucleus-satellite (hypotactic) and multinuclear (paratactic) ones, depending on whether
the arguments of these edges were of different or equal importance to the content of the
whole text. Based on this grouping, they formally described each relation as a set of con-
straints on the Nucleus (N), Satellite (S), the N+S combination, and the effect of the whole
combination on the reader (R). An excerpt from the original description of the Antithesis

relation is given in Example 6.1.1

Example 6.1.1 (Definition of the Antithesis Relation)

Relation Name: Antithesis

Constraints on N: W has positive regard for the situation presented
in N

Constraints on S: None

Constraints on the N+S Combination: the situations presented in
N and S are in contrast (i.e., are (a) comprehended as the same in many
respects, (b) comprehended as differing in a few respects and (c) compared
with respect to one or more of these differences ); because of an incompati-
bility that arises from the contrast, one cannot have positive regard for both
the situations presented in N and S; comprehending S and the incompat-
ibility between the situations presented in N and S increases R’s positive
regard for the situation presented in N

Effect: R’s positive regard for N is increased

Locus of the Effect: N

The authors then defined the general structure of discourse as a projective (constituency)
tree whose nodes were either elementary discourse units or subtrees, which were connected
to each other via discourse relations.
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You can see an example of such a discourse tree from the original Rhetorical Structure
Treebank (Carlson et al., 2001) in Figure 6.1.

	

Interpretation-S

R

Attribution

2A 2B
R

Antithesis

2C

R

Attribution

1D
	

Condition

	
Comparison

1E 1F

1G

[Analysts said,]1A [profit for the dozen or so big drug makers, as a group, is estimated to have climbed

between 11% and 14%.]1B [While that’s not spectacular,]1C [Neil Sweig, an analyst with Prudential

Bache, said]1D [that the rate of growth will “look especially good]1E [as compared to other

companies]1F [if the economy turns downward.”]1G (WSJ-2341; Carlson et al., 2001)

Figure 6.1: Example of an RST-tree

Despite its immense popularity and practical utility (see Marcu, 1998; Yoshida et al.,
2014; Bhatia et al., 2015; Goyal and Eisenstein, 2016), RST has often been criticized for
the rigidness of the imposed tree structure (Wolf and Gibson, 2005) and unclear distinction
between discourse relations (Nicholas, 1994; Miltsakaki et al., 2004a). As a result of this
criticism, two alternative approaches to automatic discourse analysis were proposed in later
works.

PDTB. One of these approaches, PDTB (named so after the Penn Discourse Treebank
[Prasad et al., 2004]), was developed by a research group at University of Pennsylvania (Milt-
sakaki et al., 2004a,b; Prasad et al., 2008). Instead of fully specifying the hierarchical struc-
ture of the whole text and providing an all-embracing set of discourse relations, the authors
of this theory mainly focused on the grammatical and lexical means that could connect two
sentences (connectives) and express a semantic relationship (sense) between these predicates.
Typical such means are coordinating or subordinating conjunctions (e.g., and, because, since)
and discourse adverbials (e.g., however, otherwise, as a result), which can denote a Com-
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parison, a Contingency, or some other sense1 between two sentential arguments (Arg1

and Arg2).

Apart from explicitly mentioned connectives, Prasad et al. (2004) also allowed for situa-
tions where a connective was missing but could be easily inferred from the text. They called
such cases implicit discourse relations and demanded the arguments of such structures be
determined as well. Furthermore, if there was no connective at all, the authors of PDTB
distinguished three different possibilities:

• the coherence relation was either expressed by an alternative lexical means, which
made the connective redundant (AltLex),

• or it was achieved by referring to the same entities in both arguments (EntRel),

• or there was no coherence relation at all (NoRel);

and also provided a special Attribution label for marking the authors of reported speech.

Example 6.1.2 shows the previous fragment of the Rhetorical Treebank now annotated
according to the PDTB scheme.

As we can see from the analysis, PDTB is indeed more flexible than RST, as it allows its
discourse units (arguments) to overlap, be disjoint or even embedded into other segments.
The assignment of sense relations is also more straightforward and mainly determined by the
connectives that link the arguments. But, at the same time, the structure of this annotation
is completely flat so that we can neither infer which of the sentences plays a more prominent
role nor see the modification scope of other supplementary statements.

Example 6.1.2 (Example of PDTB Analysis)

Analysts said, [profit for the dozen or so big drug makers, as a group,
is estimated to have climbed between 11% and 14%.]rel1:arg1 [implicit:=in
fact]rel1:connective [[explicit:=While]rel2:connective [that’s not spectacular]rel2:arg2 ]rel1:arg2 ,
Neil Sweig, an analyst with Prudential Bache, said [[[that the rate of growth
will “look especially good as compared to other companies]rel3:arg1 [explicit:
if]rel3:connective [the economy turns downward]rel3:arg2 ]rel2:arg1 ]rel1:arg2 .”

1In particular, the authors of PDTB distinguished four major senses (Comparison, Contingency, Ex-

pansion, and Temporal), and subdivided each of these categories into further subtypes, e.g., Comparison

included Concession and Contrast, whereas Contingency sense was further divided into Cause and
Condition.
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SDRT. Another alternative to RST, Segmented Discourse Representation Theory or SDRT,
was proposed by Lascarides and Asher (2001). Although developed from a completely dif-
ferent angle of view (the authors of SDRT mainly drew their inspiration from predicate
logic, dynamic semantics, and anaphora theory), this theory shares many of its features
with Rhetorical Structure Theory, as it also assumes a graph-like structure of text and
distinguishes between coordinating and subordinating relations. However, unlike RST, Seg-
mented Discourse Representation explicitly allows the text structure to be a multigraph and
not only tree (i.e., a discourse node can have multiple parents and can also be connected
via multiple links to the same vertex), provided that it does not have crossing dependencies
(i.e., does not violate the right-frontier constraint).

We can also notice the relatedness of the two theories by looking at the SDRT analysis
of the previous RST fragment in Example 6.2. Although the names of the relations in the
presented graph differ from those used in Rhetorical Structure Theory, many of these links
have the same (or at least similar) meaning as the respective edges in the first analysis: for
example, the Source relation in SDRT almost completely corresponds to the Attribution

edge in Example 6.1, and the Contrast link is similar to the Comparison relation defined
by Carlson and Marcu (2001).

π1a

π1b

π′′

π′ π1g

π1e π1f

π1c π1d

Source

Narration

Precondition

Contrast

CommentarySource

Figure 6.2: Example of an SDRT graph

Final choice. Because it was unclear which of these approaches (RST, PDTB, or SDRT)
would be more amenable to our sentiment experiments, we have made our decision by con-
sidering the following theoretical and practical aspects: From theoretical perspective, we
wanted to have a strictly hierarchical discourse structure for each analyzed tweet so that we
could infer the semantic orientation of that message by recursively accumulating polarity
scores of its elementary discourse segments. From practical point of view, since there was
no discourse parser readily available for German, we wanted to have a maximal assortment
of such systems available for English so that we could pick one that would be easiest to
retrain on German data. Fortunately, both of these concerns have lead us to the same
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solution—Rhetorical Structure Theory, which was the only formalism that explicitly guar-
anteed a single root for each analyzed text and also offered a wide variety of open-source
parsing systems (e.g., Hernault et al., 2010; Feng and Hirst, 2014; Ji and Eisenstein, 2014;
Yoshida et al., 2014; Joty et al., 2015).

6.2 Data Preparation

To prepare the data for our experiments, we split all microblogs from

(a) PotTS

(b) SB10k

Figure 6.3: Distribution of elementary discourse units and polarity classes in the training and

development sets of PotTS and SB10k

the PotTS and SB10k corpora into elementary discourse units using the ML-based dis-
course segmenter of Sidarenka et al. (2015b), which had been previously trained on the
Potsdam Commentary Corpus (PCC 2.0; Stede and Neumann, 2014). After filtering out all
tweets that had only one EDU,2 we obtained 4,771 messages (12,137 segments) for PotTS

2Since the focus of this chapter is mainly on discourse phenomena, we skip all messages that consist of a
single discourse segment, because their overall polarity is unaffected by the discourse structure and can be
normally determined with the standard discourse-unaware sentiment techniques.
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and 3,763 posts (9,625 segments) for the SB10k corpus. In the next step, we assigned polar-
ity scores to the segments of these microblogs with the help of our lexicon-based attention
classifier, analyzing each elementary unit in isolation, independently of the rest of the tweet.
We again used the same 70–10–20 split into training, development, and test sets as we did in
the previous chapters, considering message-level labels inferred from the annotation of the
second expert as gold standard for the PotTS corpus and using provided manual sentiment
labels for tweets as reference for the SB10k data.

As we can see from the statistics in Figure 6.3, most tweets that consist of multiple EDUs
typically have two or three segments, whereas messages with more than three discourse
units are extremely rare. This is also not surprising regarding that the maximum length
of a microblog is constrained to 140 characters. Nonetheless, even with this severe length
restriction, there still are a few messages that have up to 13 EDUs. Since it was somewhat
surprising for us to see that many segments in a single tweet, we decided to have a closer
look at these cases. As it turned out, such high number of discourse units typically resulted
from spurious punctuation marks, which were carelessly used by Twitter users and evidently
confused the segmenter (see Example 6.2.1).

Example 6.2.1 (SB10k Tweet with 13 EDUs)

Tweet: [Guinness on Wheelchairs :]1 [Das .]2 [Ist .]3 [Verdammt .]4 [Noch
.]5 [Mal .]6 [Einer .]7 [Der .]8 [Besten .]9 [Werbespots .]10 [Des .]11 [Jahrzehnts
.]12 [( Auch ...]13
[Guinness on Wheelchairs :]1 [This .]2 [Is .]3 [Gosh .]4 [Darn .]5 [It .]6 [One
.]7 [Of .]8 [The best .]9 [Commercials .]10 [Of .]11 [The Decade .]12 [( Also
...]13

Another noticeable trend that we can see in the data is that the distribution of polar
classes in messages with multiple segments largely corresponds to the frequencies of these
polarities in the complete datasets: For example, the positive semantic orientation still
dominates the PotTS corpus, whereas the neutral polarity constitutes the vast majority of
the SB10k set. At the same time, negative microblogs again are the least represented class
in both cases and account for only 22% of the former corpus and for 16% of the latter data.

To obtain RST trees for these messages, we retrained the DPLP discourse parser of Ji
and Eisenstein (2014) on PCC, after converting all discourse relations to the binary scheme
{Contrastive, Non-Contrastive} as suggested by Bhatia et al. (2015).3 In contrast
to the original DPLP implementation though, we did not use Brown clusters (Brown et al.,
1992), because this resource was not available for German, nor did we apply the linear
projection of the features, because the released parser code was missing this component

3See Table 6.3 for more details regarding this mapping.
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either. In part due to these modifications, but mostly because of the specifics of the German
language (richer morphology, higher lexical variety, and syntactic ambiguity) and a skewed
distribution of discourse relation, the results of the retrained model were considerably lower
than the figures reported for the English treebank, amounting to 0.777, 0.512, and 0.396 F1

for span, nuclearity, and relation classification on PCC 2.0 versus corresponding 82.08, 71.13,
and 61.63 F1 on the RST Treebank.4

	

Non-Contrastive

2A
R

Contrastive

2B 2C

[Mooooiiinn.]2A [Gegen solche Nächte hilft die beste Kur nicht.]2B [Aber Kaffee!]2C (PotTS;

Sidarenka, 2016b)

[Hellloooo!]2A [Even the best cure won’t help against such nights.]2B [But coffee!]2C

Figure 6.4: Example of an automatically constructed RST-tree for a Twitter message

An example of an automatically induced RST tree is shown in Figure 6.4. As we can
see from this picture, the adapted parser can correctly distinguish between contrastive and
non-contrastive relations in the analyzed tweet (even though it only predicts the former class
for two percent of all edges on the PotTS and SB10k data [see Figure 6.5]), but apparently
struggles with the disambiguation of the nuclearity status, assigning the highest importance
in this example to the initial discourse segment (“Mooooiiinn.” [Hellloooo! ]), which is merely
a greeting, and weighing the second EDU (“Gegen solche Nächte hilft die beste Kur nicht.”
[Even the best cure won’t help against such nights.]) less than the third one (“Aber Kaffee!”
[But coffee! ]), although traditional RST would rather consider both units as equally relevant
and join them via the multi-nuclear Contrast link.

6.3 Discourse-Aware Sentiment Analysis

Now before we use these data in our sentiment experiments, let us first revise the most promi-
nent approaches to discourse-aware sentiment analysis that exist in the literature nowadays.

As it turns out, even the very first works on opinion mining already pointed out the
importance of discourse phenomena for classification of the overall polarity of a text. For
example, in the seminal paper of Pang et al. (2002), where the authors tried to predict the

4Following Ji and Eisenstein (2014), we use the span-based evaluation metric of Marcu (2000).
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(a) PotTS

(b) SB10k

Figure 6.5: Distribution of discourse relations in the training and development sets of PotTS and

SB10k

semantic orientation of movie reviews, they quickly realized the fact that it was insufficient to
rely on the mere presence or even the majority of polarity clues in the text, because these clues
could any time be reversed by a single counter-argument of the critic (see Example 6.3.1).
This observation was also confirmed by Polanyi and Zaenen (2006), who ranked discourse
relations among the most important factors that could significantly affect the intensity and
polarity of a sentiment. To prove this claim, they gave several convincing examples, where a
concessive statement considerably weakened the strength of a polar opinion, and vice versa,
an elaboration notably increased its persuasiveness.

Pang and Lee (2004) were also among the first who incorporated a discourse-aware compo-
nent into a document-level sentiment classifier. For this purpose, they developed a two-stage
system in which the first predictor distinguished between subjective and objective statements
by constructing a graph of all sentences (linking each sentence to its neighbors and also con-
necting it to two abstract polarity nodes) and then partitioning this graph into two clusters
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(subjective and objective) based on its minimum cut; the second classifier then inferred the
overall polarity of the text by only looking at the sentences from the first (subjective) group.
With this method, Pang and Lee achieved a statistically significant improvement (86.2% ver-
sus 85.2% for the Naïve Bayes system and 86.15% versus 85.45% for SVM) over classifiers
that analyzed all text sentences at once, without any filtering.

Example 6.3.1 (Polarity reversal via discourse antithesis)

This film should be brilliant. It sounds like a great plot, the actors are first
grade, and the supporting cast is good as well, and Stallone is attempting
to deliver a good performance. However, it can’t hold up. (Pang et al.,
2002)

Although an oversimplification, the core idea that locally adjacent sentences are likely to
share the same subjective orientation (local coherence) was dominating the following DASA
research for almost a decade. For example, Riloff et al. (2003) also improved the accuracy of
their Naïve Bayes predictor of subjective expressions by almost two percent after adding a set
of local coherence features. Similarly, Hu and Liu (2004) could better disambiguate users’
attitudes to particular product attributes by taking the semantic orientation of previous
sentences into account.

At the same time, another line of discourse-aware sentiment research concentrated on the
joint classification of all opinions in the text, where in addition to predicting each sentiment
in isolation, the authors also sought to maximize the “total happiness” (global coherence)
of these assignments, ensuring that related subjective statements received agreeing polarity
scores. Notable works in this direction were done by Snyder and Barzilay (2007), who
proposed the Good Grief algorithm for predicting users’ satisfaction with different restaurant
aspects, and Somasundaran et al. (2008a,b), who introduced the concept of opinion frames
(OF), a special data structure for capturing the relations between opinions in discourse.
Depending on the type of these opinions (arguing [A] or sentiment [S ]), their polarity towards
the target (positive [P ] or negative [N ]), and semantic relationship between these targets
(alternative [Alt ] or the same [same]), the authors distinguished 32 types of possible frames
(SPSPsame, SPSNsame, APAPalt, etc.), dividing them into reinforcing and non-reinforcing
ones. In later works, Somasundaran et al. (2009b,a) also presented two joint inference
frameworks (one based on the iterative classification and another one relying on integer
linear programming) for determining the best configuration of all frames in text, achieving
77.72% accuracy on frame prediction in the AMI meeting corpus (Carletta et al., 2005).

An attempt to unite local and global coherence was made by McDonald et al. (2007), who
tried to simultaneously predict the polarity of a document and classify semantic orientations
of its sentences. For this purpose, the authors devised an undirected probabilistic graphical
model based on the structured linear classifier (Collins, 2002). Similarly to Pang and Lee
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(2004), they connected the label nodes of each sentence to the labels of its neighboring
clauses and also linked these nodes to the overarching vertex representing the polarity of the
text. After optimizing this model with the MIRA learning algorithm (Crammer and Singer,
2003), McDonald et al. achieved an accuracy of 82.2% for document-level classification and
62.6% for sentence-level prediction on a corpus of online product reviews, outperforming pure
document and sentence classifiers by up to four percent. A crucial limitation of this system
though was that its optimization required the gold labels of sentences and documents to be
known at the training time, which considerably limited its applicability to other domains
with no such data.

Another significant drawback of all previous approaches is that they completely ignored
traditional discourse theory and, as a result, severely oversimplified discourse structure.
Among the first who tried to overcome this omission were Voll and Taboada (2007), who
proposed two discourse-aware enhancements of their lexicon-based sentiment calculator (SO-
CAL). In the first method, the authors let the SO-CAL analyze only the topmost nucleus
EDU of each sentence, whereas in the second approach, they expanded its input to all clauses
that another classifier had considered as relevant to the main topic of the document. Unfor-
tunately, the former solution did not work out as well as expected, yielding 69% accuracy on
the corpus of Epinion reviews (Taboada et al., 2006), but the latter system could perform
much better, achieving 73% on this two-class prediction task.

Other ways of adding discourse information to a sentiment system were explored by
Heerschop et al. (2011), who experimented with three different approaches: (i) increasing
the polarity scores of words that appeared near the end of the document, (ii) assigning higher
weights to nucleus tokens, and finally (iii) learning separate scores for nuclei and satellites
using a genetic algorithm. An evaluation of these methods on the movie review corpus
of Pang and Lee (2004) showed better performance of the first option (60.8% accuracy and
0.597 macro-F1), but the authors could significantly improve the results of the last classifier
at the end by adding an offset to the decision boundary of this method, which increased
both its accuracy and macro-averaged F1 to 0.72.

Further notable contributions to RST-based sentiment analysis were made by Zhou et al.
(2011), who used a set of heuristic rules to infer polarity shifts of discourse units based on
their nuclearity status and outgoing relation links; Zirn et al. (2011), who used a lexicon-
based sentiment system to predict the polarity scores of elementary discourse units and then
enforced consistency of these assignments over the RST tree with the help of Markov logic
constraints; and, finally, Wang and Wu (2013), who determined the semantic orientation of a
document by taking a linear combination of the polarity scores of its EDUs and multiplying
these scores with automatically learned coefficients.

Among the most recent advances in RST-aware sentiment research, we should especially
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emphasize the work of Bhatia et al. (2015), who proposed two different DASA systems:

• discourse-depth reweighting (DDR)

• and rhetorical recursive neural network (R2N2).

In the former approach, the authors estimated the relevance λi of each elementary discourse
unit i as:

λi = max (0.5, 1− di/6) ,

where di stands for the depth of the i-th EDU in the document’s discourse tree. Afterwards,
they computed the sentiment score σi of that unit by taking the dot product of its binary
feature vector wi (token unigrams) with polarity scores θ of these unigrams:

σi = θ>wi;

and then calculated the overall semantic orientation of the document Ψ as the sum of senti-
ment scores for all units, multiplying these scores by their respective discourse-depth factors:

Ψ =
∑
i

λiθ
Twi = θT

∑
i

λiwi,

In the R2N2 system, the authors largely adopted the RNN method of Socher et al. (2013)
by recursively computing the polarity scores of discourse units as:

ψi = tanh
(
K(ri)
n ψn(i) +K(ri)

s ψs(i)
)
,

where K(ri)
n and K

(ri)
s stand for the nucleus and satellite coefficients associated with the

rhetorical relation ri, and ψn(i) and ψs(i) represent sentiment scores of the nucleus and satellite
of the i-th vertex. This approach achieved 84.1% two-class accuracy on the movie review
corpus of Pang and Lee (2004) and reached 85.6% on the dataset of Socher et al. (2013).

For the sake of completeness, we should also note that there exist discourse-aware sen-
timent approaches that build upon PDTB and SDRT. For example, Trivedi and Eisen-
stein (2013) proposed a method based on latent structural SVM (Yu and Joachims, 2009),
where they represented each sentence as a vector of features produced by a feature function
f(y,xi, hi), in which y ∈ {−1,+1} denotes the potential polarity of the whole document,
hi ∈ {0, 1} stands for the assumed subjectivity class of sentence i, and xi represents the
surface form of that sentence; and then tried to infer the most likely semantic orientation of
the document ŷ over all possible assignments h, i.e.,:

ŷ = argmax
y

(
max

h
w>f(y,x,h)

)
.

To ensure that these assignments were still coherent, the authors additionally extended their
feature space with special transitional attributes, which indicated whether two adjacent
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sentences were likely to share the same subjectivity given the discourse connective between
them. With the help of these features, Trivedi and Eisenstein could improve the accuracy of
the connector-unaware model on the movie review corpus of Maas et al. (2011) from 88.21
to 91.36%.

The first step towards an SDRT-based sentiment approach was made by Asher et al.
(2008), who presented an annotation scheme and a pilot corpus of English and French texts
that were analyzed according to the SDRT theory and enriched with additional sentiment
information. Specifically, the authors asked the annotators to ascribe one of four opinion cat-
egories (reporting, judgment, advice, or sentiment) along with their subclasses (e.g., inform,
assert, blame, recommend) to each discourse unit that had at least one opinionated word
from a sentiment lexicon. Afterwards, they showed that with a simple set of rules, one could
easily propagate opinions through SDRT graphs, increasing the strengths or reversing the
polarity of the sentiments, depending on the type of the discourse relation that was linking
two segments.

In general, however, PDTB- and SDRT-based sentiment systems are much less common
than RST-inspired solutions. Because of this fact and due to the reasons described in
Section 6.1, we will primarily concentrate on the RST-based of methods. In particular, for the
sake of comparison, we replicated the linear combination approach of Wang and Wu (2013)
and also reimplemented the DDR and R2N2 systems of Bhatia et al. (2015). Furthermore,
to see how these techniques would perform in comparison with much simpler baselines, we
additionally created two methods that predicted the polarity of a message by only considering
its last or topmost nucleus EDU (henceforth Last and Root), and also estimated the results
of our original LBA classifier without any discourse-related modifications (henceforth No-

Discourse).

Apart from the above baselines and existing methods, we propose several novel DASA
solutions, which will be briefly described below.

6.3.1 Latent CRF

In the first of these solutions, called Latent Conditional Random Fields or LCRFs, we con-
sider the problem of message-level sentiment analysis as an inference task over an undirected
graphical model, where the nodes of the model represent polarity probabilities of elemen-
tary discourse units and the structure of the graph reflects the RST dependency tree of the
message.5 In particular, we define CRF graph G = (V , E) as a set of vertices V = Y ∪ X ,

5Drawing on the work of Bhatia et al. (2015), we obtain this representation using the DEP-DT algorithm
of Hirao et al. (2013) with a minor modification that we do not follow any satellite branches while computing
the heads of abstract RST nodes in Step 1 of this procedure (see Hirao et al., 2013, pp. 1516–1517).
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in which Y = {y(i,j) | i ∈ {Root, 1, 2, . . . , T}, j ∈ {Negative, Neutral, Positive}} rep-
resents (partially observed) random variables (with T standing for the number of EDUs in
the tweet), and X = {x(i,j) | i ∈ {Root, 1, 2, . . . , T}, j ∈ [0, . . . , 3]} denotes the respective
features of these nodes (three polarity scores returned by the LBA classifier plus an addi-
tional offset feature whose value is always 1 irrespectively of the input). Since the Root

vertex, however, does not have a corresponding discourse segment in the RST tree, we use
the polarity scores predicted by the LBA classifier for the whole message as features for this
node.

Graph edges E connect random variables to their corresponding features and also link
every pair of vertices (v(k,·), v(i,·)) if node k appears as the parent of node i in the RST
dependencies.6 You can see an example of such automatically induced CRF tree in Figure 6.6.

Root

EDU 3

EDU 1 EDU 2 EDU 4

Neg Neut Pos

0.541 0.39 0.07 1.

Neg Neut Pos

0.538 0.219 0.243 1.

Neg Neut Pos

0.149 0.447 0.403 1.

Neg Neut Pos

0.142 0.424 0.433 1.

Neg Neut Pos

0.182 0.404 0.413 1.

[Gucke Lost]1 [und esse Obst .]2 [Fühlt sich fast an ,]3 [als wäre das mein Leben .]4

[Watching Lost]1 [and eating fruits .]2 [Almost feels]3 [as if it were my life .]4

Figure 6.6: Example of an automatically constructed RST-based latent-CRF tree

(random variables are shown as circles, fixed input parameters appear as rectangles, and observed

values are displayed in gray)

Now before we describe the training of our model, let us briefly recall that in the standard
CRF optimization we typically try to find optimal parameters θ∗ that maximize the log-
likelihood of all label sequences y(i) on the training set D =

{(
x(i),y(i)

)}N
i=1

, i.e.:

θ∗ = argmax
θ

`(θ) =
N∑
i=1

log
(
p
(
y(i)|x(i);θ

))
,

where the conditional likelihood is normally estimated as:

p
(
y(i)|x(i);θ

)
=

exp
(∑Ti

t=1

∑
k θkfk

(
x
(i)
t ,y

(i)
t−t,y

(i)
t

))
Z

.

6In fact, we use two edges to connect each child to its parent: one for the Contrastive relation and
another one for the Non-Contrastive link.
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Adapting this equation to our RST-based CRF structures, we obtain:

p
(
y(i)|x(i);θ

)
=

exp
(∑Ti

t=0

[∑
v θvfv

(
x
(i)
t ,y

(i)
t

)
+
∑

c∈ch(t)
∑

e θefe

(
y
(i)
t ,y

(i)
c

)])
Z

, (6.1)

where ch(t) denotes the children of node t, v stands for the indices of node features, and e
represents the indices of edge attributes.

A crucial problem with this formulation though is that in our task, only a small subset of
labels from y(i) (namely those of the root node) are actually observed at the training time,
whereas the rest of the tags (those which pertain to EDUs) are unknown. We will denote
these observed and hidden subsets as y

(i)
o and y

(i)
h respectively. Using this notation, we can

redefine the training objective of our model as finding such parameters θ∗ that maximize
the log-likelihood of observed labels, i.e.:

θ∗ = argmax
θ

N∑
i=1

log
(
p
(
y(i)
o |x(i);θ

))
.

With this formulation, however, it is still unclear what we should do with hidden tags y
(i)
h ,

because the values of their features remain undefined.

One possible way to approach the problem of unobserved states in the input is to assume
that any label sequence y

(i)
h might be true, and then try to maximize the parameters along

the path that leads to the maximum probability of the correct observed tag, i.e.:

y(i) = [y(i)
o ,y

∗(i)
h ], where

y
∗(i)
h = argmax

y
(i)
h

p
(
y(i)
o |x(i)

)
, (6.2)

and which we can easily find using standard Viterbi decoding.

Unfortunately, if we simply consider label sequence y(i) from Equation 6.2 as the ground
truth and penalize all labels that disagree with this sequence, we might overly commit our-
selves to the model’s guess of unknown tags and unduly discriminate against other possible
hidden label assignments. To mitigate this effect, we can instead penalize only one other se-
quence, namely the one that maximizes the probability of an incorrect label at the observed
state:

y
′(i) = argmax

y
′(i)
o 6=y

(i)
o

p
(

[y
′(i)
o ,y

∗(i)
h ]|x(i)

)
, where

y
∗(i)
h = argmax

y
(i)
h

p
(
y
′(i)
o |x(i)

)
.

Correspondingly, we reformulate our objective and instead of maximizing the log-likelihood
of the training set will now maximize the difference between the log-probabilities of the
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correct and most likely wrong assignments:

θ∗ = argmax
θ

N∑
i=1

log
(
p
(
y(i)
))
− log

(
p
(
y
′(i)
))

= argmax
θ

N∑
i=1

log
(
exp

(
θ>f(x(i),y(i))

))
− log

(
exp

(
θ>f(x(i),y

′(i))
))

= argmax
θ

N∑
i=1

θ>
(
f(x(i),y(i))− f(x(i),y

′(i))
)
,

(6.3)

where f(x(i),y(i)) and f(x(i),y
′(i)) mean all features associated with label sequences y(i) and

y
′(i) respectively.

The only thing that we now need to do to the above objective is to introduce a regulariza-
tion term 1

2
‖θ‖2 in order to prevent its divergence to infinity in the cases when f(x(i),y(i))

and f(x(i),y
′(i)) are perfectly separable. This brings us to the final formulation:

θ∗ = argmin
θ

1

2
‖θ‖2 −

N∑
i=1

θ>
(
f(x(i),y(i))− f(x(i),y

′(i))
)

(6.4)

At this point, we can notice that the resulting function is identical to the unconstrained
minimization problem of structural SVM (Taskar et al., 2003), and we indeed can piggyback
on one of the many efficient SVM-optimization techniques to learn the parameters of our
model. In particular, we use the block-coordinate Frank-Wolfe algorithm (Lacoste-Julien
et al., 2013), running it for 1,000 epochs or until convergence, whichever of these events
occurs first.

6.3.2 Latent-Marginalized CRF

Another way to tackle unobserved labels is to estimate the probability of observed tags by
marginalizing (summing) out hidden variables from the joint distribution, i.e.:

p (Yo=yo) =
∑
yh

p (Yo=yo,Yh=yh) .

Applying this formula to Equation 6.1, we get:

p
(
y(i)
o |x(i);θ

)
=
∑
y
(i)
h

p
(

[y(i)
o ,y

(i)
h ]|x(i);θ

)

=

∑
y
(i)
h

exp
(∑Ti

t=0

[∑
v θvfv

(
x
(i)
t ,y

(i)
t

)
+
∑

c∈ch(t)
∑

e θefe

(
y
(i)
t ,y

(i)
c

)])
Z

,

where y(i) in the numerator is defined as before: y(i) = [y
(i)
o ,y

(i)
h ].

This time again, we would like to maximize the probability of the correct assignment,
setting it apart from its closest competitor by some margin. Unfortunately, due to the
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summation over all y
(i)
h , we cannot avail ourselves of the log-exp cancellation trick, which

we used previously in Equation 6.3. Instead of this, we replace the difference of the log-
likelihoods by the ratio of marginal probabilities:

θ∗ = argmax
θ

N∑
i=1

p(y(i))

p(y′(i))

= argmax
θ

N∑
i=1

∑
y
(i)
h

exp
(∑Ti

t=0

[∑
v θvfv

(
x
(i)
t ,y

(i)
t

)
+
∑

c∈ch(t)
∑

e θefe

(
y
(i)
t ,y

(i)
c

)])
∑

y
(i)
h

exp
(∑Ti

t=0

[∑
v θvfv

(
x
(i)
t ,y

′(i)
t

)
+
∑

c∈ch(t)
∑

e θefe

(
y
′(i)
t ,y

′(i)
c

)])
(6.5)

To simplify this expression, we can introduce the following abbreviations:

a := exp

 Ti∑
t=0

∑
v

θvfv

(
x
(i)
t ,y

(i)
t

)
+
∑
c∈ch(t)

∑
e

θefe

(
y
(i)
t ,y

(i)
c

) ,

b := exp

 Ti∑
t=0

∑
v

θvfv

(
x
(i)
t ,y

′(i)
t

)
+
∑
c∈ch(t)

∑
e

θefe

(
y
′(i)
t ,y

′(i)
c

) .

Now we estimate the derivatives of functions a and b w.r.t. a single parameter θv as:

∂a

∂θv
= a

Ti∑
t=0

fv

(
x
(i)
t ,y

(i)
t

)
∝ Ey(i) [fv] ,

∂b

∂θv
= b

Ti∑
t=0

fv

(
x
(i)
t ,y

(i)
t

)
∝ Ey

′(i) [fv] ;

and analogously obtain:

∂a

∂θe
= a

Ti∑
t=0

∑
c∈ch(t)

fe

(
y
(i)
t ,y

(i)
c

)
∝ Ey(i) [fe] ,

∂b

∂θe
= b

Ti∑
t=0

∑
c∈ch(t)

fe

(
y
′(i)
t ,y

′(i)
c

)
∝ Ey

′(i) [fe] .

With the help of these expressions, we can easily compute the gradient of the objective
function w.r.t. θ by observing that:

∇θ =
N∑
i=1

∑
y
(i)
h
∇θa

∑
y
(i)
h
b−

∑
y
(i)
h
a
∑

y
(i)
h
∇θb(∑

y
(i)
h
b
)2 . (6.6)

We again use the block-coordinate Frank-Wolfe algorithm to optimize the parameters of our
model, but instead of pushing these parameters in the direction ψ = f(x(i),y(i))−f(x(i),y

′(i))

(which is the derivative of latent CRFs, see Algorithm 2 in [Lacoste-Julien et al., 2013]), we
now maximize them along the gradient from Equation 6.6.

It is probably easier to realize the difference between the two CRF methods (latent and
latent-marginalized CRFs) more vividly by looking at Figure 6.7, in which we highlighted
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the paths that are used to compute the probabilities of correct and wrong labels in both
systems. As we can see from this picture, LCRF only considers one label sequence that
leads to the maximum probability of the correct tag (Neut) at the single observed Root

node and then compares this sequence with the path that maximizes the probability of an
incorrect tag (in this case NEG) at the same node. In contrast to this, LMCRF considers
all possible label configurations of elementary discourse units and uses this total cumulative
mass to estimate the probability of both (correct and wrong) observed tags.

Root

EDU 3

EDU 1 EDU 2 EDU 4

Neg Neut Pos

0.54 0.39 0.07 1.

Neg Neut Pos

0.54 0.22 0.24 1.

Neg Neut Pos

0.15 0.45 0.4 1.

Neg Neut Pos

0.14 0.42 0.43 1.

Neg Neut Pos

0.18 0.4 0.41 1.

(a) Computational path of the

probability of the correct label in latent

CRF
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(c) Computational path of the

probability of the correct label in

latent-marginalized CRF

Root

EDU 3

EDU 1 EDU 2 EDU 4

Neg Neut Pos

0.54 0.39 0.07 1.

Neg Neut Pos

0.54 0.22 0.24 1.

Neg Neut Pos

0.15 0.45 0.4 1.

Neg Neut Pos

0.14 0.42 0.43 1.

Neg Neut Pos

0.18 0.4 0.41 1.

(d) Computational path of the

probability of a wrong label in

latent-marginalized CRF

Figure 6.7: Confronted computational paths in latent and latent-marginalized conditional random

fields

6.3.3 Recursive Dirichlet Process

Finally, the last method that we present in this chapter, Recursive Dirichlet Process or RDP,
goes a further step in the probabilistic direction by assuming that not only the probabilities of
discourse units but also the parameters via which these probabilities are computed represent
random variables.

In particular, we associate a variable zj ∈ R3
+, s.t. ‖z‖1 = 1, with every RST node j

(which in this case can be either an elementary discourse segment or an abstract span).7 This
7In contrast to the previous CRF approaches, this time, we depart from the dependency tree represen-
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variable specifies the multivariate probability of the three polarities (Negative, Neutral,
and Positive) for the j-th node. Since every element of zj has to be non-negative and their
total sum must add up to one, it is natural to assume that the value of this variable is drawn
from a Dirichlet distribution:

zj ∼ Dir(α).

The only parameter accepted by this distribution, which simultaneously controls both the
mean and the variance of its outcomes, is vector α. Consequently, our primary goal in this
method is to find a way how to compute this parameter automatically for each node.

An obvious starting point for this computation is the polarity scores predicted by the base
classifier for every elementary discourse unit, which we will henceforth denote as zj0 ∈ R3

+.
Since these scores, however, are only available for elementary segments, we initialize the
corresponding variables of the abstract spans to zeroes with the only exception being the
root node, to which we again assign the scores returned by the LBA classifier for the whole
message.

To compute the posterior distribution of the root (zRoot), we sort all nodes of the RST
tree in reverse topological order and estimate the polarities of the spans from the bottom
up by joining the z-scores of their children. But before we do this joining, we multiply the
z-vector of each child k with a special matrix Mr, where r ∈ {{Nucleus, Satellite} ×
{Contrastive, Non-Contrastive}} is the discourse relation holding between that child
and its parent, and project the result of this multiplication back to the probability simplex
using the sparsemax operation (Martins and Astudillo, 2016):

z∗k = sparsemax
(
Mrz

>
k

)
. (6.7)

The main goal of matrix Mr is to reflect contextual polarity changes that might be
conveyed by discourse relations: for example, a contrastive link might stronger affect the
polarity of the parent than a non-contrastive one (compare, for instance, the contrastive
Many people support Trump, but he behaves like an alpha male with the non-contrastive
Many people support Trump, because he behaves like an alpha male). Because this parameter
also represents a random variable, we sample it from a multivariate normal distribution:

Mr ∼ N3×3(µr,Σr),

tation and adopt the discourse tree structure proposed by Bhatia et al. (2015) for their R2N2 method. In
this structure, we keep all abstract nodes from the original RST tree, but relink all satellites to the abstract
parents of their nuclei.
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setting the mean of this distribution to:8

µr =


1 0 0

0 0.3 0

0 0 1

 ,
and initializing its covariance matrix to all ones:

Σr =


1 1 1

1 1 1

1 1 1

 .
With this choice of parameters, we hope to dampen the effect of neutral EDUs9 in order to
prevent situations where multiple objective segments vanquish the meaning of a single polar
discourse unit.

Afterwards, when seeing the k-th child of the j-th node in the RST tree, we compute the
α parameter of this node as follows:

αjk = β � z∗k + (1− β)� zjk−1
, (6.8)

where β ∈ R3 is another multivariate random variable sampled from the Beta distribution
B(5., 5.), which controls the amount of information we want to pass from child to its parent;
zjk−1

is the value of the z-vector for the j-th node after seeing its previous (k − 1-th) child;
and � means elementwise multiplication.

The only thing that we now need to do to the above αjk term before drawing the actual
probability zjk is to scale this vector by a certain amount in order to reduce the variance of
the resulting Dirichlet distribution.10 In particular, we compute this scaling factor as follows:

scale =
ξ ×

(
0.1 + cos

(
z∗k, zjk−1

))
H (αjk)

;

where ξ is a model parameter sampled from a χ2-distribution: ξ ∼ χ2(34); 0.1 is a constant
used to prevent zero scales in the cases when cos

(
z∗k, zjk−1

)
is zero; and H (αjk) stands for

the entropy of the αjk vector. Although this expression looks somewhat complicated, the
intuition behind it is very simple: The ξ term encodes our prior belief in the correctness of
model’s prediction (the higher its value, the more we trust the model); the cosine measures

8Before we do the actual sampling, we unroll this parameter to a vector and then reshape the sampled
value back to a 3× 3 matrix.

9As you can see from Equation 6.7, the middle row of the Mr matrix is responsible for propagating the
neutral score of the j-the node, and by setting this row to [0, 0.3, 0] we effectively reduce the neutral polarity
by two thirds.

10Because if we keep the αjk vector from Equation 6.8 unchanged, most of its values will be in the range
[0, . . . , 1] which will lead to an extremely high variance of the Dirichlet distribution.
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the similarity between the probabilities of parent and child (the more similar these proba-
bilities, the greater will be the scale); and, finally, the entropy in the denominator tells us
how uniform the vector αjk is (the more equal its scores, the less confident we will be in the
final outcome).

Figure 6.8: Probability distributions of polar classes computed by the Recursive Dirichlet Process

(higher probability regions are highlighted in red; pprnt means the probability of the parent node [the

values in the vector represent the scores for the negative, neutral, and positive polarities

respectively]; pchld denotes the probability of the child; and α, µ, and σ2 represent the parameters

of the resulting joint distribution shown in the simplices)

With the scale and αjk terms at hand, we are all set to compute the updated probability
of polar classes for the j-th node after considering its k-th child:

zjk ∼ Dir(scale×αjk).

You can see some examples of this computation in Figure 6.8, where we plotted different
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configurations of parent and child probabilities (zjk−1
and zk, shown to the right of each pic-

ture) and the resulting Dirichlet distributions (represented as simplices). For instance, in the
top-left figure, we show a situation where the parent has a very strong probability of the neg-
ative class ([1, 0, 0]), but the probability of the child is absolutely uniform ([0.33, 0.33, 0.33]);
in this case, the model keeps to the negative polarity, heaping almost all probability mass
in this corner. At the same, to account for the uncertainty about the child, RDP slightly
moves the crest of the probability hill (i.e., its mean) towards the positive class and makes
the slopes of this hill lower along all three axes (i.e., increases its variance). On the other
hand, if parent and child have completely opposite semantic orientations (say Positive

and Negative), which the base classifier is perfectly sure about, as shown in Subfigure b,
RDP uniformly distributes the whole probability just along the Positive–Negative edge.
Another situation is depicted in the middle row, where parent and child again have opposite
polarities, but the base predictor is less sure about its decisions and also admits a small
chance that either of these nodes is neutral. In this case, RDP still spreads most probability
along the main polar edge, but places the mean of this distribution right in-between the two
polar corners and also screeds some part of that mass towards the center of the simplex.
Finally, in the last row, we can see our intended discrimination of the neutral orientation:
This time, the parent node is strictly polar (negative on the left and positive on the right),
whereas its child is neutral. In contrast to the previous two examples, the mean of the result-
ing distribution is located closer to the polar corner and not in-between the two juxtaposed
classes as before.

Figure 6.9: A plate diagram of the Recursive Dirichlet Process

(without the final categorical draw)

Returning back to our model, after processing all K children of the j-th node, we regard
the last outcome zjK as the final polarity distribution of that node and use this value to
estimate the probabilities of the remaining ancestors in the RST tree. Finally, after finishing
processing all descendants of the root, we use the resulting zRootK

vector as a parameter of
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a categorical distribution from which we draw the final prediction label y:

y ∼ Cat(zRoot).

Using this manually defined model as a starting point, we can estimate our prior belief in
the joint probability of hidden and observed variables p(y, z). As it turns out, knowing this
belief is enough to derive another probability q(z), which best approximates the distribution
of only the latent nodes. In particular, we define the structure of q(z) to be the same as
in p(y, z), but deprive it of the last step (drawing of the observed label) and optimize the
parameters θ of this model (µr, Σr, and the parameters of the Beta and χ2 distributions) by
maximizing the evidence lower bound between p and q, using stochastic gradient descent(see
Ranganath et al., 2014):

L (θ) = Eqθ(z) [log (p(y, z))− log (q(z))] .

We perform this optimization for 100 epochs, picking the parameters that yield the best
macro-averaged F1-score on the set-aside development data.

The results of our proposed and baseline methods are shown in Table 6.1.

As we can see from the table, our approaches perform fairly well in comparison with other
systems, outperforming them in terms of macro- and macro-averaged F1 on both datasets.
Especially the latent-marginalized CRF shows fairly strong scores, yielding the best F1-
results for the positive and neutral classes on the PotTS and SB10k data, which in turn
leads to the highest overall micro-averaged F1-measure on these corpora. This solution is
closely followed by the Recursive Dirichlet Process, whose F1 for the positive class on the
PotTS test set is identical to that attained by LMCRF and the F -score for the negative class
is even one percent higher, which allows it to reach the best macro-average on this test set.

As it turns out, the strongest competitors to our systems are the No-Discourse approach
and the R2N2 method by Bhatia et al. (2015). The former solution outperforms the latter on
the PotTS corpus on both metrics (macro- and micro-F1), but falls against it with respect to
the macro-F1 on the SB10k set. The DDR and WNG methods get sixth and seventh places
respectively, followed by the simplest solutions, Last and Root. Interestingly enough, the
Last approach beats the Root method on the SB10k data, but shows worse scores on the
PotTS corpus, which is mostly due to the lower recall of the negative class.

6.3.4 Error Analysis

Although our methods performed quite competitive, we decided to still look at their remain-
ing errors in order to understand the reasons for their potential weaknesses.
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Method
Positive Negative Neutral Macro

F1

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
LCRF 0.76 0.79 0.77 0.61 0.53 0.56 0.7 0.71 0.71 0.67 0.709
LMCRF 0.77 0.77 0.77 0.61 0.54 0.57 0.69 0.74 0.72 0.671 0.712
RDP 0.73 0.82 0.77 0.61 0.56 0.58 0.73 0.65 0.69 0.678 0.706
DDR 0.73 0.77 0.75 0.54 0.59 0.56 0.69 0.61 0.65 0.655 0.674
R2N2 0.74 0.78 0.76 0.59 0.53 0.56 0.68 0.68 0.68 0.657 0.692
WNG 0.58 0.79 0.67 0.61 0.21 0.31 0.61 0.57 0.59 0.487 0.59
Last 0.52 0.83 0.64 0.57 0.17 0.26 0.61 0.43 0.5 0.453 0.549
Root 0.56 0.73 0.64 0.58 0.22 0.32 0.55 0.54 0.54 0.481 0.56
No-Discourse 0.73 0.82 0.77 0.61 0.56 0.58 0.72 0.66 0.69 0.677 0.706

SB10k
LCRF 0.64 0.69 0.66 0.45 0.45 0.45 0.82 0.79 0.8 0.557 0.713
LMCRF 0.64 0.69 0.67 0.45 0.45 0.45 0.82 0.79 0.8 0.56 0.715
RDP 0.64 0.69 0.66 0.45 0.45 0.45 0.82 0.79 0.8 0.557 0.713
DDR 0.59 0.63 0.61 0.48 0.44 0.46 0.77 0.76 0.77 0.534 0.681
R2N2 0.64 0.69 0.66 0.46 0.45 0.45 0.81 0.79 0.8 0.559 0.713
WNG 0.61 0.63 0.62 0.46 0.29 0.36 0.76 0.82 0.79 0.488 0.693
Last 0.56 0.55 0.56 0.46 0.29 0.36 0.73 0.8 0.76 0.459 0.661
Root 0.51 0.55 0.53 0.4 0.3 0.35 0.74 0.76 0.75 0.438 0.64
No-Discourse 0.64 0.69 0.66 0.45 0.45 0.45 0.82 0.79 0.8 0.557 0.713

Table 6.1: Results of discourse-aware sentiment analysis methods

LCRF – latent conditional random fields, LMCRF – latent-marginalized conditional random fields,

RDP – recursive Dirichlet process, DDR – discourse-depth reweighting (Bhatia et al., 2015),

R2N2 – rhetorical recursive neural network (Bhatia et al., 2015), WNG – Wang and Wu (2013),

Last – polarity determined by the last EDU, Root – polarity determined by the root EDU(s),

No-Discourse – discourse-unaware classifier

The first such error shown in Example 6.3.2 was made by the latent CRF system, which
erroneously considered a negative tweet as neutral. But as we can see from the picture of
the automatic RST tree in this example, we can hardly expect the right decision in this case
anyway, because neither EDUs nor the root node of this message were correctly classified
as negative by the LBA classifier. Nevertheless, even in this apparently hopeless situation,
messages propagated from leaves to the root during the max-product inference still tell the
latter node that the predicted class better be negative. (We inspected the belief propagation
messages passed in the forward direction and found that the total score for the negative
class amounts to 0.597, whereas the belief in the positive class [its closest rival] only runs
up to 0.462.) Unfortunately, these messages cannot outweigh the high score of the neutral
class that results from the node features (the state score for this polarity is equal to 0.524,
whereas the negative class only obtains a score of -0.118).11

11All scores for this example are given in the logarithm domain.
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Example 6.3.2 (An Error Made by the LCRF System)

Tweet: [Boah , also doch wieder ein Mann , oder ?]1 [ODER ?]2 [papst]3
[Boah, a man again, isn’t it ?]1 [ISN’T ?]2 [pope]3

Gold Label: negative

Predicted Label: neutral*

Root

EDU 3EDU 1 EDU 2

Neg Neut Pos

0.352 0.474 0.174 1.

Neg Neut Pos

0.158 0.39 0.452 1.

Neg Neut Pos

0.398 0.421 0.181 1.

Neg Neut Pos

0.155 0.338 0.507 1.

As it turns out, high neutral node scores of the root are also the main reason for the
misclassification in Example 6.3.3, where the LMCRF system also confuses the negative
polarity with the neutral class. This time, however, messages coming from the leaves suggest
almost equal probabilities for both semantic orientations, so that feature scores of the root
completely call the shots in the final decision.

Example 6.3.3 (An Error Made by the LMCRF System)

Tweet: ’ [Wissen ?]1 [Igitt geh weg damit !]2
[Knowledge ?]1 [Yuck , go away with it]2

Gold Label: negative

Predicted Label: neutral*

Root

EDU 1 EDU 2

Neg Neut Pos

0.001 0.997 0.001 1.

Neg Neut Pos

0.001 0.997 0.001 1.

Neg Neut Pos

0.999 0.001 0.0 1.

Unfortunately, the recursive Dirichlet process cannot withstand the erroneous predictions
of the base classifier either. For instance, in Example 6.3.4, LBA assigns the highest scores
to the positive class in three out of four EDUs, even though each of these units by itself
expresses a negative attitude of the author. Alas, the only case where the base classifier
correctly predicts the negative label (“Das is noch lange nicht ausdiskutiert !” [It’s no way
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been talked out ! ]) drowns at the very beginning of the score propagation. (As it turned out,
the learned β parameter, which controls the amount of information passed from child to its
parent in Equation 6.8, is extremely low for the negative class, amounting to only 0.097,
whereas for the positive and negative polarities it runs up to 0.212 and 0.279. Due to this
low value, only one tenth of the negative score from the third EDU arrives at the parent
when the model computes the polarity scores of the abstract span 2.)

Example 6.3.4 (An Error Made by the RDP System)

Tweet: [Prima , was sind das für Idioten im DFB ?]1 [Das is eine Mup-
petsshow auf LSD !]2 [Das is noch lange nicht ausdiskutiert !]3 [Kiessling
ist ein Depp !]4
[Great, who are these idiots in the DFB ? ]1 [It is a muppet show on LSD]2

[It’s no way been talked out !]3 [Kiessling is a goof !]4

Gold Label: negative

Predicted Label: positive*

Root

EDU 1 Span 1

EDU 2 Span 2

EDU 3 EDU 4

Neg Neut Pos

0.003 0.0 0.997

Neg Neut Pos

0.0 0.001 0.999

Neg Neut Pos

Neg Neut Pos

0.001 0.0 0.999

Neg Neut Pos

Neg Neut Pos

1. 0. 0.

Neg Neut Pos

0. 0. 1.

Another interesting error shown in Example 6.3.5 was made by the baseline Root sys-
tem, which similarly to CRF-based approaches confused the negative class with the neutral
polarity. This time, however, the misclassification is due to the discourse structure itself
rather than wrong predictions of the underlying sentiment method. Because LBA correctly
recognizes that the negative smiley at the end of tweet has a strictly negative semantic ori-
entation, but the discourse-aware baseline does not see this EDU at all, as it only considers
the segment at the top of the tree, which merely expresses a factual hypothesis, free of any
polar connotation.

Example 6.3.5 (An Error Made by the Root System)

Tweet: [Die NSA weiss auch von dir . . . ]1 [Nützt uns auch nichts .]2 [

%NegSmiley]3
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[The NSA also knows about you . . . ]1 [It doesn’t help us either]2 [ %NegSmiley]3

Gold Label: negative

Predicted Label: neutral*

EDU 1

EDU 2 EDU 3

Neg Neut Pos

0.007 0.985 0.007

Neg Neut Pos

0.001 0.998 0.001

Neg Neut Pos

1. 0. 0.

Finally, the last example (6.3.6) shows an error made by the Last baseline system, which
predicts the neutral label for a negative tweet based on the polarity of its right-most EDU.
This unit indeed admits some positive moments with regard to the sad news expressed in the
first segment, but in contrast to the movie description from Example 6.3.1, where the last
sentence completely overturned the polarity of the whole text, this time, the final opinion
does not alter the general negative mood of the message, but only dampens its effect.

Example 6.3.6 (An Error Made by the Last System)

Tweet: [’ ( :’( :’( Die letzte Aussprache war wohl das schwerste Telefonat
meines gesamten Lebens :’( :’( :’(]1 [Aber wir gehen friedlich und als F . . .]2
[’ ( :’( :’( The last talk was probably the most difficult call in my entire life
:’( :’( :’(]1 [But we go apart peacefully and as f . . .]1

Gold Label: negative

Predicted Label: neutral*

6.4 Evaluation

As we could see from the examples in Section 6.3, the results of our proposed methods were
significantly limited by two key factors: (i) scores predicted by the base sentiment system for
tweets and EDUs and (ii) the structure of RST trees constructed for these messages. In order
to estimate the effect of these factors more precisely, we decided to rerun our experiments,
trying alternative solutions for each of these aspects.
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(a) Macro-F1

(b) Micro-F1

Figure 6.10: Results of discourse-aware sentiment analysis methods with different base classifiers

on the PotTS corpus

6.4.1 Base Classifier

To assess the impact of the former factor (the quality of the base sentiment classifier), we
replaced all polarity scores produced by the LBA system with the respective values predicted
by the best lexicon- and machine-learning–based MLSA methods (the systems of Hu and
Liu [2004] and Mohammad et al. [2013] respectively) and retrained all DASA approaches
on the updated data, subsequently evaluating them on the PotTS and SB10k test sets. The
results of this evaluation are shown in Figures 6.10 and 6.11.

As we can see from the first figure, our initially chosen LBA approach is indeed a more
amenable basis to almost all discourse-aware sentiment methods on the PotTS corpus. A
few exceptions to this general rule are the macro-averaged F1-score of the Last baseline,
which surprisingly improves in combination with the lexicon-based system, and the micro-
average of the RDP and Last methods, which attain their best results (0.713 and 0.582) in
conjunction with the SVM classifier of Mohammad et al. (2013).

A slightly different situation is observed on the SB10k corpus though. On this dataset,
LBA still leads to higher macro-F1–scores for DDR, R2N2, WNG, Last, and Root; but
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(a) Macro-F1

(b) Micro-F1

Figure 6.11: Results of discourse-aware sentiment analysis methods with different base classifiers

on the SB10k corpus

the approach of Mohammad et al. (2013) improves the results of LCRF, LMCRF, RDP, and
No-Discourse. The SVM classifier is also the unequivocal leader in terms of the micro-
averaged F1, yielding the highest scores for all systems except WNG. Unfortunately, the
lexicon-based predictor of Hu and Liu (2004) performs much weaker than SVM and LBA:
the highest macro- and micro-averaged F1-scores achieved with this approach run up to
0.422 (RDP) and 0.625 (Last) respectively. The most disappointing result for us, however,
is that the LMCRF system completely fails to predict any polar class except Neutral on
the SB10k test set when trained with the scores of this method (see Figure 6.11a). Similarly,
LCRF yields considerably lower scores in combination with this solution, reaching only 0.239
macro-F1.

6.4.2 Parsing Quality and Relation Scheme

Another factor that could significantly influence the results of discourse-aware methods was
the quality of automatic RST parsing and the set of discourse relations distinguished by the
parser system. Although improving the results of DPLP let alone manually annotating the
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complete PotTS and SB10k datasets was beyond the scope of our dissertation (even though
we have made such attempt, see [Sidarenka et al., 2015a]), we decided to check whether at
least evaluating the DASA methods on manually annotated data would improve their results.
For this purpose, we asked a student assistant to segment and parse 88% of the tweets from
the PotTS test set12 and tested all DASA approaches on these hand-crafted RST data.

Method
Positive Negative Neutral Macro

F1

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
LCRF 0.82 0.82 0.82 0.66 0.55 0.6 0.69 0.75 0.72 0.71 0.747
LMCRF 0.83 0.81 0.82 0.65 0.55 0.6 0.69 0.78 0.73 0.709 0.749
RDP 0.8 0.84 0.82 0.64 0.58 0.61 0.72 0.71 0.72 0.718 0.751
DDR 0.78 0.75 0.77 0.58 0.66 0.62 0.66 0.63 0.64 0.693 0.698
R2N2 0.81 0.82 0.81 0.64 0.53 0.58 0.68 0.74 0.71 0.697 0.737
WNG 0.58 0.74 0.65 0.63 0.19 0.29 0.51 0.51 0.51 0.47 0.558
Last 0.55 0.86 0.67 0.51 0.11 0.18 0.56 0.35 0.43 0.426 0.55
Root 0.58 0.56 0.57 0.58 0.25 0.35 0.43 0.6 0.5 0.46 0.513
No-Discourse 0.81 0.84 0.82 0.65 0.57 0.61 0.72 0.73 0.73 0.716 0.753

Table 6.2: Results of discourse-aware sentiment analysis methods on the PotTS corpus with

manually annotated RST trees

As we can see from the results in Table 6.2, the scores of all systems except WNG, Last,
and Root increase by three to four percent. Even the macro-averaged F1-measure of the
discourse-unaware classifier improves from 0.677 to 0.716, as does its micro-F1–score, which
rises from 0.706 to 0.753 F1. These last changes, however, are exclusively due to the reduced
size of the test data (on which the base classifier performs better than on the full test set),
since the discourse-unaware method does not take RST trees into account. Unfortunately,
this time, No-Discourse also outperforms all discourse-aware approaches in terms of the
micro-averaged F1, achieving an accuracy of 75,3%, although it still loses to the Recursive
Dirichlet Process on the macro-averaged metric, yielding a 0.2% worse result than RDP
(0.716 versus 0.718 macro-F1). Another surprising finding for us is that in the gold discourse
annotation, EDUs that determine the actual polarity of the tweet are unlikely to appear
either at the end of a message or at the top of its RST tree, which leads to the degradation
of the scores for the Last and Root baselines.

Although manually annotated RST trees do improve the results of most discourse-aware
sentiment methods, this fact is of little help to us if we are bound to the output of an
automatic parser. A common way to improve the quality of automatic RST analysis and
ease the task of DASA methods is to reduce the number of discourse relations distinguished
by the parsing system. Drawing on the work of Bhatia et al. (2015), we also used this

12Unfortunately, due to the limited availability of the student, we could not annotate the whole test set.
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approach, projecting all discourse relations from the Potsdam Commentary Corpus (Stede
and Neumann, 2014) to the binary set of Contrastive and Non-Contrastive ones.
Although similar approximations were made in almost all other discourse-aware solutions (cf.
Chenlo et al., 2013; Heerschop et al., 2011; Zhou et al., 2011), we were not sure whether
the subset that we used was indeed optimal and sufficient to reflect all possible discourse
interactions that could play an important role in sentiment composition.

To answer this question, we retrained the DPLP parser on the PCC, using the subsets of
relations proposed by Chenlo et al. (2013), Heerschop et al. (2011), and Zhou et al. (2011),
and also tried the original set of all RST links from the Potsdam Commentary Corpus. A
detailed overview of these sets is given in Table 6.3.

Scheme Relation Set Equivalence Classes

Bhatia et al. {Contrastive, Non-Contrastive} Contrastive := {Antithesis, Antithesis-E,
Comparison, Concession, Consequence-S,
Contrast, Problem-Solution}.

Chenlo et al. {Attribution, Background, Cause,
Comparison, Condition, Consequence,
Contrast, Elaboration, Enablement,

Evaluation, Explanation, Joint, Otherwise,
Temporal, Other}

Heerschop et al. {Attribution, Background, Cause,
Condition, Contrast, Elaboration,
Enablement, Explanation, Other}

PCC {Antithesis, Background, Cause,
Circumstance, Concession, Condition,
Conjunction, Contrast, Disjunction,

E-Elaboration, Elaboration, Enablement,
Evaluation-N, Evaluation-S, Evidence,

Interpretation, Joint, Justify, List, Means,
Motivation, Otherwise, Preparation,

Purpose, Reason, Restatement,
Restatement-MN, Result, Sequence,

Solutionhood, Summary, Unconditional,
Unless, Unstated-Relation}

Zhou et al. {Contrast, Condition, Continuation, Cause,
Purpose, Other}

Contrast := {Antithesis, Concession, Con-

trast, Otherwise};
Continuation := {Continuation, Parallel};
Cause := {Evidence, Nonvolitional-Cause,
Nonvolitional-Result, Volitional Cause,
Volitional-Result};

Table 6.3: RST relations used in the original Potsdam Commentary Corpus and different

discourse-aware sentiment methods

(default relation, which subsumes the rest of the links, is shown in boldface)

To check whether cardinalities of these sets indeed correlated with the quality of automatic
RST parsing, we evaluated each retrained system on the held-out PCC test data and present
the results of this evaluation in Table 6.4. As is evident from the scores, coarser relation
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schemes in fact improve parsing quality, especially in terms of relation F1. In the most
extreme case (e.g., Bhatia et al., which has only two links, versus PCC, which comprises 34
relations), these gains can reach up to seven percent. However, with respect to other metrics
(span and nuclearity F1), the gaps are notably smaller and might even be in favor of the
richer relation set (cf. nuclearity F1 for PCC).

Relation Scheme Span F1 Nuclearity F1 Relation F1

Bhatia et al. 0.777 0.512 0.396
Chenlo et al. 0.769 0.505 0.362
Heerschop et al. 0.774 0.51 0.361
PCC 0.776 0.534 0.326
Zhou et al. 0.776 0.501 0.388

Table 6.4: Results of the DPLP parser on PCC 2.0 with different relation schemes

To see how this varying quality affected the net results of discourse-aware sentiment
methods, we re-evaluated all DASA approaches on the updated automatic RST trees and
show the results of this evaluation in Figures 6.12 and 6.13.

(a) Macro-F1

(b) Micro-F1

Figure 6.12: Results of discourse-aware sentiment classifiers for different relation schemes on the

PotTS corpus
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As it turns out, latent-marginalized CRF can still hold the overall record in both macro-
and micro-averaged F1 on the PotTS corpus, although its margin to the closest competitor
(R2N2) is relatively small, amounting to only 0.1 percent. Interestingly enough, both top-
performing methods (LMCRF and R2N2) achieve their best results with richer relation sets
than the one we used in our initial experiment: For example, LMCRF attains its highest
macro-score in combination with the relation scheme of Heerschop et al. (2011) and yields the
best micro-F1 when used with the scheme of Chenlo et al. (2014). The rhetorical recursive
neural network, vice versa, attains its highest macro-average with the latter relation set and
reaches its best micro-F1 in conjunction with the former subset.

A different situation is observed with other DASA approaches though. For example,
LCRF and RDP perform best when used with the initially chosen set of Bhatia et al. (2015).
On the other hand, discourse-depth reweighting strongly benefits from the full unconstrained
set of PCC relations, which is probably due to the better nuclearity classification achieved
with this scheme. Finally, WNG and Root reach their best results with the relation subsets
proposed by Chenlo et al. and Heerschop et al., respectively.

(a) Macro-F1

(b) Micro-F1

Figure 6.13: Results of discourse-aware sentiment classifiers for different relation schemes on the

SB10k corpus

A much more uniform situation is observed on the SB10k corpus (see Figure 6.13), where
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the F1-scores of our methods vary only slightly across different relation schemes. The only
significant improvements that we can notice this time are higher macro- and micro-averaged
F1s achieved by the RDP approach in combination with the Heerschop et al.’s subset. This
subset is also most amenable to the Root baseline, which reaches 0.488 macro-F1 and 0.663
micro-F1, significantly improving on its initial results. At the same time, discourse-depth
reweighting and the approach of Wang and Wu capitalize on the relations defined by Chenlo
et al. so much that the former system even achieves the highest overall macro-F1–score
(0.572), being on a par with the R2N2 system.

6.5 Summary and Conclusions

At this point, our chapter has come to an end and, concluding it, we would like to recap
that in this part of the thesis:

• we have presented an overview of the most popular approaches to automatic discourse
analysis (RST, PDTB, and SDRT) and explained why we think that one of these
frameworks (Rhetorical Structure Theory) would be more amenable to the purposes
of discourse-aware sentiment analysis than the others;

• to substantiate our claims and to see whether the lexicon-based attention system in-
troduced in the previous chapter would indeed benefit from information on discourse
structure, we segmented all microblogs from the PotTS and SB10k corpora into ele-
mentary discourse units using the SVM-based segmenter of Sidarenka et al. (2015b)
and parsed these messages with the RST parser of Ji and Eisenstein (2014), which had
been previously retrained on the Potsdam Commentary Corpus (Stede and Neumann,
2014);

• afterwards, we estimated the results of existing discourse-aware sentiment methods
(the systems of Wang et al. [2015b] and Bhatia et al. [2015]) and also evaluated two
simpler baselines (in which we the predicted semantic orientation of a tweet by taking
the polarity of its last and root EDUs), getting the best results with the R2N2 solution
of Bhatia et al. (2015) (0.657 and 0.559 macro-F1 on PotTS and SB10k respectively);

• we could, however, improve on these scores and also outperform the plain LBA sys-
tem (although by a not very large margin) with our three proposed discourse-aware
sentiment solutions: latent and latent-marginalized conditional random fields and Re-
cursive Dirichlet Process; pushing the macro-averaged F1-score on PotTS up to 0.678
and increasing the result on SB10k to 0.56 macro-F1;
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• a subsequent evaluation of these approaches with different settings showed that the
results of all discourse-aware methods largely correlated with the scores of the base
sentiment classifier and also revealed an important drawback of the latent-marginalized
CRFs, which failed to predict any positive or negative instance on the test set of the
SB10k corpus when trained in combination with the lexicon-based approach of Hu and
Liu (2004);

• nevertheless, almost all DASA solutions could improve their scores when tested on
manually annotated RST trees or used with a richer set of discourse relations.
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It is hard to believe, but at this point we have finally reached the home stretch of our 161-
page long marathon and, preparing the final spurt, we should first recall the main milestones
that we have seen along this way:

• As you might remember, we started off by summarizing the history of sentiment anal-
ysis, going back to its very origins in the ancient Greek philosophy and tracing its
development to the present day;

• Afterwards, to see what the current state of the art in opinion mining would yield
on German Twitter, we created a corpus of ≈ 8, 000 German tweets, collecting these
messages for four different topics (federal elections, papal conclave, general political
discussions, and casual everyday conversations). To ensure a good recall of opinion-
ated statements in the resulting dataset, we grouped all microblogs into three formal
categories (tweets with a polar term from the SentiWS lexicon, messages containing a
smiley, and all remaining microblogs) and sampled an equal number of tweets (666)
for each of the four topics from each of these three categories. After annotating the
corpus in three steps (initial, adjudication, and final), we attained a reliable level of
inter-annotator agreement for all elements (sentiments, sources, targets, polar terms,
downtoners, negations, and intensifiers), finding that both selection criteria (topics and
formal traits) significantly affected the distribution of sentiments and polar terms and
the reliability of their annotation;

• Then, at the first checkpoint, we compared existing German sentiment lexicons, which
were translated from English resources and revised by human experts, with lexi-
cons that were generated automatically from scratch with the help of state-of-the-art
dictionary-, corpus-, and word-embedding–based methods. An evaluation of these ap-
proaches on our corpus showed that semi-automatically translated polarity lists were
generally better than the automatically induced ones, reaching 0.587 macro-F1 and
attaining 0.955 micro-F1–score on the prediction of polar terms. Furthermore, among
fully automatic methods, dictionary-based systems showed stronger results than their
corpus- and word-embedding–based competitors, yielding 0.479 macro-F1 and 0.962
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micro-F1. We could, however, improve on the latter metric (pushing it to 0.963) with
our proposed linear projection solution, in which we first found a line that maximized
the mutual distance between the projections of seed vectors with opposite semantic
orientations and then projected the embeddings of all remaining words on that line,
considering the distance of these projections to the median as polarity scores of respec-
tive terms;

• In Chapter 4, we turned our attention to the fine-grained sentiment analysis, in which
we tried to predict the spans of sentiments, targets, and holders of opinions using two
most popular approaches to this task: conditional random fields and recurrent neural
networks. We obtained our best results (0.287 macro-F1) with the first-order linear-
chain CRFs. We could, however, increase these scores by using alternative topologies
of CRFs (second-order linear-chain and semi-Markov CRFs) and also boost the macro-
averaged F1 to 0.38 by taking a narrower interpretation of sentiment spans (in which
we only assigned the Sentiment tag to polar terms). Further evaluation of these
methods proved the utility of the text normalization step (which raised the macro-F1

of the CRF-method by almost 3%) and task-specific word embeddings with the least-
squares fallback (which improved the macro-F1–score of the GRU system by 1.4%);

• Afterwards, in Chapter 5, we addressed one of the most popular objective in contem-
porary sentiment analysis—message-level sentiment analysis (MLSA). To get a better
overview of the numerous existing systems, we compared three larger families of MLSA
methods: dictionary-, machine-learning–, and deep-learning–based ones; finding that
the last two groups performed significantly better than the lexicon-based approaches
(the best macro-F1–scores of machine- and deep-learning methods run up to 0.677
and 0.69 respectively, whereas the best lexicon-based solution [Hu and Liu, 2004] only
reached 0.641 macro-F1). Apart from this, we improved the results of many reimple-
mented approaches by changing their default configuration (e.g., abandoning polarity
changing rules of lexicon-based systems, using alternative classifiers in ML-based sys-
tems, or taking the least-squares embeddings for DL-based methods). In addition to
the numerous reimplementations of popular existing algorithms, we also proposed our
own solution—lexicon-based attention (LBA), in which we tried to unite the lexicon
and deep-learning paradigms by taking a bidirectional LSTM network and explicitly
pointing its attention to polar terms that appeared in the analyzed messages. With
this solution, we not only outperformed all alternative DL systems but also improved
on the scores of ML-based classifiers, attaining 0.69 macro-F1 and 0.73 micro-F1 on
the PotTS corpus. Similarly to our findings of the previous chapter, we observed
a strong positive effect of text normalization and task-specific embeddings with the
least-squares approximation;
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• Finally, in the last part, we tried to improve the results of the proposed LBA method
by making it aware of the discourse structure. For this purpose, we segmented all
microblogs from the PotTS and SB10k corpora into elementary discourse units, in-
dividually analyzing each of these segments with our MLSA classifier, and then esti-
mated the overall polarity of a tweet by joining the polarity scores of its EDUs over
the RST tree. We proposed three different ways of doing this joining: latent CRFs,
latent-marginalized CRFs, and Recursive Dirichlet Process; obtaining better results
than existing discourse-aware sentiment methods and also outperforming the original
discourse-unaware baseline. In the concluding experiments, we further improved these
scores by using manually annotated RST trees and richer subsets of discourse relations.

Conclusions

Now that we have gone past all these landmarks, it is time to unbag the questions which
we had asked ourselves at the beginning of this endeavor, and try to answer them again,
equipped with all knowledge that we have acquired during our run. Here we go:

• Can we apply opinion mining methods devised for standard English to

German Twitter?

Yes, we can, but the success of these approaches might significantly vary depending
on the task, the size, and the reliability of the training data, as well as the evaluation
metric that we use. For example, dictionary-based lexicon methods achieved fairly
good results on their objective, but this success was mostly due to the high quality of
the GermaNet annotation. On the other hand, our manually labeled PotTS corpus
was evidently too small for fine-grained sentiment systems, which failed to generalize to
unseen tweets despite their very high scores on the training set. Message-level sentiment
approaches, vice versa, seemed to be quite happy with the size of the training dataset,
attaining good results on both corpora (PotTS and SB10k). Nevertheless, we again
experienced a lack of data while working on discourse-aware enhancements, many of
which hit the same ceiling of the macro-averaged F1-scores.

Apart from these difficulties arising from insufficient data, we also noticed a significant
degradation of the scores for systems whose original tasks and evaluation metrics were
different from ours. For example, the lexicon generation method of Esuli and Sebastiani
(2005) was originally designed to assign polarity scores to all synsets found in the
WordNet and not to produce a list of polar words. Similarly, the RNTN approach of
Socher et al. (2013) was trained and evaluated on all syntactic subtrees of a document
and not only at the top text level. Likewise, the system of Yessenalina and Cardie
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(2011) was devised for doing ordinal logistic regression and not polarity classification, as
in our case. As a result, all these approaches showed lower scores than their competitors
in our evaluation, even though they are undoubtedly well suited for their original data
and tasks.

Due to the high diversity of methods, metrics, and tasks, it is difficult to provide a
general recipe for transferring existing English sentiment systems to German Twitter,
but we still would like to formulate at least a few rules of thumb, which came up during
our experiments:

– Prefer methods that are closest to your training objective and that were
trained under similar conditions w.r.t. the amount of data, their class distribution
and domain;

– Put every single setting of these methods into question—bear in mind
that things that work well in the original cases are not guaranteed to work in your
situation.13 The more options you try, the better will be your results;

– Try using manually labeled resources for your target domain, if they are
available, but pay attention to the quality of their annotation—it often matters
more than the corpus size;

– If there are manually annotated data, prefer machine-learning methods to

hard-coded rules—they will penalize their bad components automatically by
themselves;

– Do not use randomly initialized word embeddings for deep-learning sys-

tems—initialize them with language-model vectors (which are cheap to obtain).
Otherwise, your model might get stuck in a very bad local optimum.

• Which groups of approaches are best suited for which sentiment tasks?

Based on our evaluation, we answer this question as follows:

– Sentiment lexicon generation is more amenable to dictionary-based solutions, pro-
vided that there exists a sufficiently big, reliably annotated lexical taxonomy for
these systems. If there is no such resource, one should better resort to word-
embedding–based algorithms;

– With a limited amount of training data, fine-grained sentiment analysis can be
better addressed with probabilistic graphical models, such as conditional random
fields with hand-crafted features;

13In this respect, it is important to realize that every classification task is merely an attempt to solve a
system of equations, so that methods that are good at solving one system might completely fail to solve
another set of equations.
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– On the other hand, plain message-level sentiment analysis can be efficiently tack-
led with both machine- and deep-learning algorithms, such as SVM, logistic re-
gression, or RNN;

– But probabilistic graphical models strike back at discourse-aware sentiment meth-
ods, where they might even outperform pure neural-network solutions, although
the margin of these improvements is not that large.

Thus, probabilistic model can still hold their ground when it comes to structured
prediction, but the difference of these algorithms from and their improvements upon
neural networks are gradually vanishing.

• How much do word- and discourse-level analyses affect message-level sen-

timent classification?

Our evaluation in Section 5.6.2 showed that the macro-averaged F1-scores of our pro-
posed lexicon-based attention system varied by up to 14% (from 0.64 to 0.69 macro-F1

on the PotTS corpus, and from 0.44 to 0.58 on SB10k) depending on the lexicon used
by this approach. At the same, discourse enhancements could only improve the results
of LBA by at most 1.5% percent (from 0.677 to 0.678 on PotTS, and from 0.557 to
0.572 on SB10k). Although it appears as if the lexicon component were more im-
portant to a sentiment system, we would like to preclude such incorrect conclusion,
because (a) a full-fledged sentiment solution should take into account both linguistic
levels (words and discourse) and (b) these relative results might look different if we
expand the analyzed domain to longer documents or apply discourse-aware methods
to complete discussion threads.

• Does text normalization help analyze sentiments?

Yes, it definitely does. As we could see in Chapters 4 and 5, normalization significantly
improves the quality of fine-grained and message-level sentiment analyses, boosting
the results on the former task by up to 4% (see Table 4.9) and improving the macro-
averaged F1-measure of message-level sentiment methods by up to 25% (see Table 5.12).

The only question that remained unanswered in this context is which normalization
steps exactly improve the scores of sentiment systems. To make up for this omission,
we separately deactivated each individual step of our text normalization pipeline (uni-
fication of Twitter phenomena, spelling correction, and normalization of slang terms)
and rerun our message-level classification experiments using the lexicon-based atten-
tion system. As we can see from the results in Table 6.5, the micro-averaged F1-scores
on both datasets benefit most from the unification of Twitter-specific phenomena, sink-
ing by almost 19% when this component is deactivated. This step is also most useful
for the macro-F1 on the SB10k corpus, whereas the macro-average on PotTS mostly
capitalizes on the normalization of slang terms.
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Method
Positive Negative Neutral Macro

F1
+/−

Micro
F1Precision Recall F1 Precision Recall F1 Precision Recall F1

PotTS
with normalization 0.76 0.84 0.79 0.6 0.56 0.58 0.75 0.68 0.72 0.69 0.73
w/o unification of
Twitter phenomena

0.51-0.25 0.87+0.03 0.64-0.05 0.57-0.03 0.4-0.16 0.47-0.11 0.68-0.07 0.22-0.46 0.34-0.38 0.56-0.13 0.54-0.19

w/o spelling correc-
tion

0.67-0.09 0.84 0.74-0.05 0.61+0.01 0.34-0.22 0.44-0.14 0.74-0.01 0.68 0.71-0.01 0.59-0.1 0.69-0.04

w/o slang normal-
ization

0.59-0.17 0.87+0.03 0.7-0.09 0.6 0.17-0.39 0.26-0.32 0.72-0.03 0.6-0.08 0.65-0.07 0.48-0.21 0.64-0.09

SB10k
with normalization 0.6 0.72 0.66 0.47 0.42 0.44 0.84 0.8 0.82 0.55 0.73
w/o unification of
Twitter phenomena

0.36-0.24 0.85+0.13 0.5-0.16 0.6+0.13 0.25-0.17 0.35-0.09 0.84 0.51-0.29 0.63-0.19 0.43-0.12 0.55-0.18

w/o spelling correc-
tion

0.54-0.06 0.71-0.01 0.61-0.05 0.54+0.07 0.26-0.16 0.35-0.09 0.79-0.05 0.79-0.01 0.79-0.03 0.48-0.07 0.7-0.03

w/o slang normal-
ization

0.55-0.05 0.71-0.01 0.62-0.04 0.64+0.17 0.2-0.22 0.3-0.14 0.78-0.06 0.82+0.02 0.8-0.02 0.46-0.09 0.7-0.03

Table 6.5: LBA(1) results without single text normalization steps

• Can we do better than existing approaches?

Yes, we can:

– we improved the macro-averaged results of existing lexicon-generation methods
with our proposed linear-projection algorithm;

– we increased the scores of fine-grained analysis by redefining the topologies of
CRFs;

– our lexicon-based attention network outperformed many of its competitors on
message-level classification;

– and, finally, we surpassed the discourse-unware baseline and other existing discourse-
aware sentiment solutions with the proposed latent-marginalized CRFs and Re-
cursive Dirichlet Process.

Contributions

Apart from answering the above questions and pushing the state of the art for several major
sentiment tasks on the PotTS and SB10k corpora, we have also paved the way for other
researchers who want to work on the same topics by releasing the data and the code that
we used in our experiments:

• the Potsdam Twitter Sentiment (PotTS) corpus is available at:
https://github.com/WladimirSidorenko/PotTS;
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• scripts and executables used in our lexicon generation chapter can be downloaded from:
https://github.com/WladimirSidorenko/SentiLex;

• for our text normalization pipeline and fine-grained sentiment methods, please refer
to:
https://github.com/WladimirSidorenko/TextNormalization;

• furthermore, you can find our MLSA approaches at:
https://github.com/WladimirSidorenko/CGSA;

• and get all discourse-aware solutions from:
https://github.com/WladimirSidorenko/DASA;

• last but not least, we have released the discourse segmenter, the adapted DPLP parser,
and our modified version of RST-Tool, which was adjusted to the annotation of
multilogues, at:

– https://github.com/WladimirSidorenko/DiscourseSegmenter,

– https://github.com/WladimirSidorenko/RSTParser, and

– https://github.com/WladimirSidorenko/RSTTool, respectively.

In addition to open-sourcing all projects, we have also made a few attempts to increase
the visibility of our research with the following publications:

• the rule-based text normalization was described in (Sidarenka et al., 2013);

• the PotTS corpus was presented in (Sidarenka, 2016b);

• in (Sidarenka and Stede, 2016), we summarized the evaluation of existing sentiment
lexicons (a separate paper on the linear projection algorithm was withdrawn due to a
mistake in the initial implementation);

• in (Sidarenka, 2016a) and (Sidarenka, 2017), we described our initial experiments on
message-level classification;

• furthermore, we introduced the SVM-based discourse segmenter in (Sidarenka et al.,
2015b);

• and sketched our pilot study of discourse annotation in Twitter in (Sidarenka et al.,
2015a).

Unfortunately, due to the lack of experience at the initial stage of working on this dissertation
and limited time at the concluding stage, I14 was not able to publish more or at higher-level
venues. I apologize for that.

14Throughout this work we have been using the scientific “we,” considering the reader as a companion in
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Limitations

Much to my regret, the initial lack of academic expertise has also prevented me from running
this scientific marathon faster, better, and, most sadly, along more exciting places. Alas, in
the “Sentiment Analysis of German Twitter”, I have concentrated more on the “Sentiment
Analysis” part, much at the cost of “German Twitter”. I wish I had tried out more sophis-
ticated cross-lingual methods for adapting English methods to German, elaborated more
on linguistic traits of microblogs, and addressed the social aspect of the Twitter network.
The main reason why I have not done all these things is that, six years ago, when I started
working on this dissertation completely from scratch, with neither code, nor data, nor any
proper plan in my head, I was so overwhelmed by the abundance of works on opinion mining
and text normalization that I decided to answer the questions whether existing sentiment
methods work, whether text normalization helps, and whether I could improve on these
methods, first. Regrettably, these questions have pretty much preoccupied me since then.
Another reason why I refrained from addressing certain topics (why, for example, I did not
extend the Rhetorical Structure Theory to multilogues) is because properly handling these
problems would require another dissertation and would certainly first need to be done for
English in order to get any international attention.

Final Remarks

Nevertheless, I believe that with this thesis I have basically built a theme park on the moon.
Although this park is still missing a slot machine and a few carousels, it does have a nice
card table and many other kinds of funny amusements. Another good thing about it is that
new carousels are now easier to build; existing amusement rides work for free and better than
in many other places; and, finally, the park itself might still entertain its occasional guests.
You might have enjoyed this theme park as well, or you might have not—I appreciate either
of your decisions and would like to thank you in any case for your visit.

our marathon. But because at this point I start describing the limitations of this work, which I am the only
person responsible for, I would like to exclude the reader from this criticism by switching to the solitary “I”.
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Appendix A

Annotation Guidelines of the Sentiment

Corpus

A.1 Introduction

In this assignment, your task is to annotate sentiments in a corpus of Twitter messages.
We define sentiments as polar (either positive or negative) evaluative opinions about some
persons, entities, or events. Your goal is to annotate both: text spans denoting the opinions
(sentiments) and text spans signifying the evaluated entities and events (sentiment targets).
In addition to that, you also have to label opinions’ holders (sentiment sources) and lexical
elements that might significantly affect the polarity or the intensity of a sentiment. These
elements are:

• polar terms, which are words or phrases that unequivocally possess an evaluative lexical
meaning in and of themselves (these are typically words like hassen [hate], bewundern
[admire], schön [nice] etc.);

• intensifiers and diminishers (or downtoners), which are words and expressions that
increase or decrease the evaluative sense of a polar term. Examples of intensifiers are
words like sehr (very), besonders (especially), or insbesondere (particularly). Typical
examples of diminishers are ein wenig (a little), ein bisschen (a bit), gewissermaßen
(to a certain degree), etc.;

• and, finally, negations, which are words or expressions that completely flip the polarity
of a polar term or sentiment to the opposite (e.g., nicht gut [not good] or kein Talent
[not a talent]).
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A.2 Annotation Tool

For annotating this corpus, you need to install MMAX2, a freely available annotation tool,
which you can download at:

http://sourceforge.net/projects/mmax2/files/mmax2/mmax2_1.13.003/MMAX2_1.13.003b.zip/

download

After you have downloaded this file, unzip the received archive, change to the newly created directory

1.13.003/MMAX2 in your shell and execute the following commands:

chmod u+x ./mmax2.sh

nohup ./mmax2.sh &

An MMAX2 window will then appear on your screen. If you have never used MMAX2 before, please

read its user manual mmax2quickstart.pdf, which you can find in the subdirectory MMAX2/Docs of

the downloaded archive.

A.3 Corpus Files

You should also have received a copy of corpus files either as a tar-gzipped archive or via a version

control system. In the former case, you need to unpack the downloaded .tgz file using the following

command:

tar -xzf archive-name.tgz

After that, a directory called PotTS will appear in your current folder.

You can find your annotation files in the subdirectory PotTS/corpus/annotator-ANNOTATOR_ID,

where ANNOTATOR_ID is the ID number that has been previously assigned to you by the su-

pervisor. In order to load an annotation file into your MMAX2 program, click on the menu File ->

Load. In the displayed pop-up window, select the path to the PotTS/annotator-ANNOTATOR_ID

directory, and click on one of the *.mmax files in this folder.

A.4 Tags and Attributes

Below, you can find a short list of all labels and their possible attributes that will be used in this

assignment:

1. sentiments with the attributes:

(a) polarity,

(b) intensity,

(c) sarcasm;

2. targets with the attributes:

(a) preferred,
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(b) anaph-ref,

(c) sentiment-ref;

3. sources with the attributes:

(a) anaph-ref,

(b) sentiment-ref;

4. polar-terms with the attributes:

(a) polarity,

(b) intensity,

(c) sarcasm,

(d) sentiment-ref;

5. intensifiers with the attributes:

(a) degree,

(b) polar-term-ref;

6. diminishers with the attributes:

(a) degree,

(b) polar-term-ref;

7. and, finally, negations with the single at-

tribute:

(a) polar-term-ref.

A more detailed description of these attributes is given in the following sections.

A.4.1 sentiment

Definition. Sentiments are polar subjective evaluative opinions about people, entities, or events.

According to this definition, a sentiment must always fulfill the following three criteria:

• it has to be polar, i.e., it must always reflect either positive or negative attitude to its

respective target. Neutral, non-evaluative statements such as Ich glaube, er wird heute früher

kommen (I think he will be earlier today) must not be marked as sentiments;

• it has to be subjective, i.e., you must not assign this tag to statements of objective facts,

such as Beim Angriff wurden 14 Glasscheiben beschädigt (14 glass plates were broken during

the attack), even if you have a personal polar attitude to such events. Sentiments should

always reflect the personal opinion of their holder, not yours;

• a sentiment has to be evaluative, which means that it must always refer to an explicit target

and judge about its properties. You should not regard cases like Ich bin heute so glücklich

(I am so happy today) as sentiments, because such statements do not evaluate anything in

particular, but only express general mood of the author.

Example. Typical examples of sentiments are evaluative sentences similar to the one shown

below.

Example A.4.1

[Ich mag den neuen James Bond Film nicht.]sentiment
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([I don’t like the new James Bond movie.]sentiment)

This example expresses a personal subjective evaluation; the opinion is strictly negative; and it also

has an explicit evaluation target—the movie. Therefore, we enclose this sentence in the sentiment

tags.

We also consider contrastive comparisons as a special type of evaluations. But unlike other sen-

timents, comparisons typically express a relative subjective judgment, i.e., an object is regarded

as better or worse than another, but we usually do not know whether the author actually likes or

dislikes any of them. To distinguish such cases, we have introduced a special comparison value for

the polarity attribute of this element, which you should use to distinguish such cases.

You should not label as sentiments polar opinions whose truth status is unknown. These are

sentences like Ich weiß nicht, ob ich meinen Bruder mag (I don’t know whether I like my brother),

where neither we nor the author actually know whether the author likes or dislikes her brother.

Exceptions from this rule are cases like Ich zweifle, dass er ein guter Mensch ist (I doubt that he is

a good man) or Ich glaube nicht, dass er diesen Preis verdient hat (I don’t think that he has deserved

this award), which express author’s disagreement with positive evaluations and, consequently, acts

as a negative judgment. Special care should be taken when dealing with questions and subjunctive

sentences though (see FAQ Section in the extended version1 of these guidelines).

Boundaries. sentiment tags should enclose both the evaluated object (target) and the evalua-

tive expression (typically a polar-term), i.e., you should put these tags around the minimal complete

syntactic or discourse-level unit in which both (target and evaluation expression) appear together.

In Example A.4.2, for instance, the evaluated object is Buch (book), the evaluative expression is

langweiliges (boring), and the minimal syntactic unit that simultaneously comprises both of these

elements is the noun phrase ein langweiliges Buch (a boring book). Therefore, we annotate the noun

phrase with the sentiment tags, but do not enclose anything else inside these labels.

Example A.4.2

Auf dem Tisch lag [ein langweiliges Buch]sentiment .

(There was [a boring book]sentiment on the table.)

Sentiments are not restricted to just noun phrases, they can also be expressed by complete clauses or

even multiple sentences (discourse units). In these cases, a sentiment span still has to be complete,

i.e., it should capture the common syntactic or discourse-level ancestor of the evaluative expression

and its target, as well as all other descendents of that common ancestor element; and it has to be

minimal, i.e., it should only enclose the closest possible ancestor, without including its parent or

sibling elements.

Example A.4.3 demonstrates a sentiment expressed by a clause:

1https://github.com/WladimirSidorenko/PotTS/blob/master/docs/annotation_guidelines.pdf
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Example A.4.3

Wir akzeptieren das, weil [wir alle ein bisschen in Petterson verliebt sind]sentiment .

(We accept this because [we all are a little bit in love with Petterson]sentiment .)

In this sentence, the evaluative statement is made about Petterson, who acts as sentiment’s target;

the author says that they all in ihn verliebt sind (are in love with him), which is a subjective

evaluation. Both (target and evaluative expression) appear in one verb phrase, whose head is the

link verb sein (to be). Consequently, we enclose the complete verb phrase including its grammatical

subject wir (we) in the sentiment tags.

Attributes. After you have annotated the sentiment span, you should next set the values of its

attributes, which are summarized in Table A.1.

A.4.2 target

Definition. Targets are objects or events that are evaluated by a sentiment.

Because sentiments are required to be evaluative, there always must be at least one target for each

sentiment element.

Example. An example of a sentiment target is given in sentence A.4.4:

Example A.4.4

Mein Bruder ist nicht begeistert von [dem neuen Call of Duty]target .

(My brother is not impressed by [the new Call of Duty]target .)

In this message, the author tells us about the opinion of her brother regarding the new version of

a computer game. The computer game is the object of this evaluation, so you shall label it as a

target.

Boundaries. As for sentiments, you have to put the target tags around the minimal complete

syntactic or discourse-level unit that denotes the evaluated entity or event. These are usually noun

phrases (e.g., Mir wird’s schlecht, wenn ich [diese Werbung]target im Fernsehen sehe [I feel sick when

I see this [ad]target on TV ]) or clauses (e.g., Ich hasse wenn [Voldemort mein Shampoo benutzt]target .

[I hate when [Voldemort is using my shampoo]target ]).

If a sentiment has multiple targets, you shall label each one of them separately (see Example A.4.5).
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Attribute Value Meaning

polarity

positive
sentiment expresses a positive attitude to its respective
target, e.g., Es war ein fantastischer Abend (It was a
fantastic evening);

negative
(default)

sentiment expresses a negative attitude to its respective
target, e.g., Seine Schwester ist einfach unausstehlich
(His sister is simply obnoxious)

comparison

sentiment expresses a comparison of two objects with
preference given to one of them, e.g., Mir gefällt das
rote Kleid mehr als das blaue (I like the red dress more
than the blue one)

intensity

weak
sentiment expresses a weak evaluative opinion, e.g., Der
Auftritt war mehr oder weniger gut (The appearance
was more or less good)

medium
(default)

sentiment has a middle emotional expressivity, e.g., Mir
hat das neue Album gut gefallen (I enjoyed the new al-
bum)

strong
sentiment expresses a very emotional polar statement,
e.g., Dieses Festival war einfach umwerfend!!! (This
festival was simply terrific!!!)

true

the opinion is derisive, i.e., its actual polarity is the
opposite of its literal meaning, although there are no
immediate modifiers in the nearby context. An example
of a sarcastic sentiment is the following passage: Mein
Jüngerer ist in der Prüfung durchgefallen. Klasse! (My
youngest has failed his exam. Well done!) In this case,
you should set the polarity attribute of the sentiment
to negative and the value of the sarcasm attribute to
true.

sarcasm

false
(default)

no sarcasm is present—polar attitude has its literal
meaning.

Table A.1: Attributes of sentiments

174



APPENDIX A. ANNOTATION GUIDELINES OF THE SENTIMENT CORPUS

Example A.4.5

Meiner Mutter haben [Nelken]target und [Dahlien]target immer gefallen.

(My mother has always liked [carnations]target and [dahlias]target .)

Similarly, in comparisons, you have to annotate each compared object with a separate tag. In

addition to that, you should also set the value of the preferred attribute to false for the object

that is dispreferred in the comparison (see Example A.4.6).

Example A.4.6

Ich mag [Domino-Eis]target:preferred=true mehr als [Magnum]target:preferred=false .

(I like [Domino ice cream]target:preferred=true more than [Magnum]target:preferred=false .)

Attributes. Further possible attributes of targets are given in Table A.2.

A.4.3 source

Definition. Sentiment sources are immediate author(s) or holder(s) of evaluative opinions. These

are typically the author of a message, or officials whose opinion is cited.

If sentiment’s holder is not explicitly mentioned in the tweet, it is implicitly assumed that it is the

user who wrote that microblog, and you need not annotate anything as a source in this case.

Example. An example of an explicitly mentioned source is the pronoun Sie (she) in the following

sentence.

Example A.4.7

[Sie]source mag die neue Farbe nicht

([She]source doesn’t like the new color)

Note that in citations you should only label the immediate person or the institution whose original

opinion is cited, but should not annotate the citing person as a source (see Example A.4.8).

Example A.4.8

Laut Staatsanwalt soll die [Angeklagte]source sich missbilligend über ihren Vorge-

setzten geäußert haben.

(According to the attorney, the [defendant]source had made disapproving remarks

about her boss.)
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Attribute Value Meaning

preferred

true
(default)

in comparisons, this value means that the respective
target is considered better than another compared ob-
ject, e.g., Die neue Frisur passt ihr garantiert besser als
die alte (The new hairstyle suits her definitely better
than the old one);

false

in comparisons, this value signifies the target element
that is considered worse than its counterpart, e.g., Die
zweite Saison von Breaking Bad war viel spannender
als die dritte (The second season of Breaking Bad was
much more exciting than the third one);

sentiment-ref
−→

(directed edge)

a directed edge pointing from target to its respective
sentiment. You need to draw this edge in two cases:
• when the target is located at intersection of two

different sentiments (in this case, you should
draw an edge from target to sentiment, which
this target actually belongs to),

• when the target of an opinion is expressed outside
the sentiment span;

anaph-ref
−→

(directed edge)

a directed edge pointing from target expressed by a
pronoun or pronominal adverb to its respective non-
pronominal antecedent (in order to draw this edge, you
also need to annotate the antecedent as target)

Table A.2: Attributes of targets

Boundaries. For determining the boundaries of sources, you should proceed in a similar way as

you did for targets and sentiments, i.e., only annotate complete minimal syntactic units. Sources

are most commonly expressed by noun phrases. As with targets, if the source of a sentiment

is expressed by multiple separate noun phrases, you should label each of them separately (see

Example A.4.9).

Example A.4.9

[Ihr]source und [ihrer Mutter]source gefällt die neue Farbe nicht.

(Neither [she]source and [her mother]source likes the new color)
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Attributes. The attributes of the source tag are fully identical to the attributes of the target

elements and are recapped in Table A.3.

Attribute Value Meaning

sentiment-ref
−→

(directed edge) see Table A.2

anaph-ref
−→

(directed edge) see Table A.2

Table A.3: Attributes of sources

A.4.4 polar-term

Definition. polar-terms are words or phrases that have an inherent evaluative meaning.

Example. An example of a polar-term is the word ekelhaft (disgusting) in sentence A.4.10.

Example A.4.10

Beim Aufräumen des Zimmers haben wir einen [ekelhaften]polar-term Teller mit

verschimmeltem Essen unter dem Bett gefunden.

(When we cleaned the room, we found a [disgusting]polar-term plate with moldy

food under the bed.)

In contrast to sources and targets, which should only be annotated in the presence of a sentiment,

you always have to label polar terms in the text irrespective of any other tags.

Note, however, that because many words and idioms are ambiguous and can have several different

meanings, it can often be the case that only some of these meanings are evaluative and subjective.

In such cases, you should only label such words if their actual sense in the given context is polar.

If these words denote an objective entity or fact, you must not use this tag.

Example A.4.11

Dieser Wein ist ein echtes [Juwel]polar-term in meiner Kollektion.

(This wine is a real [jewel]polar-term in my collection.)

Koh-i-Noor ist das teuerste Juwel heutzutage.

(Koh-i-Noor is the most expensive jewel nowadays.)

In Example A.4.11, for instance, the meaning of the word Juwel (jewel) is metaphoric and subjective

in the first sentence, but literal and objective in the second statement. So you should only annotate

this word as polar-term in the former case, but disregard it in the latter.
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Boundaries. polar-terms are typically expressed by:

• nouns, e.g., Held (hero), Ideal (ideal), Betrüger (fraudster);

• adjectives or adverbs, e.g., schön (nice), zuverlässig (reliably), hinterhältig (devious), heimtück-

isch (insidiously);

• verbs, e.g., lieben (to love), bewundern (to admire), hassen (to hate);

• idioms, e.g., auf die Nerven gehen (to get on one’s nerves);

• smileys, e.g., :), :-(, ,, /.

If a polar-term represents an idiomatic phrase, you shall always annotate the complete idiom. If

a verb has an evaluative sense only in conjunction with certain prepositions (e.g., to go for sth. in

the sense of to like), you shall annotate both the verb and the preposition with a single pair of tags

(check the MMAX manual to see how to annotate discontinuous spans).

Attributes. When determining the polarity of a polar-term, you should disregard any possible

contextual modifiers such as intensifiers or negations and set the value of this attribute to the lexical

(i.e., prior) polarity of that term (see Example A.4.12).

Example A.4.12

Es war keine [gute]polar-term:polarity=positive Idee.

(It was not a [good]polar-term:polarity=positive idea.)

Apart from that, when determining the value of the polarity attribute of a polar-term, you should

analyze its polarity from the perspective of the holder of the opinion towards the evaluated object.

This means that in cases like Ich vermisse meine Freundin (I miss my girlfriend), the polarity of

the polar-term vermissen (to miss) is still positive because the author has a positive attitude to his

girlfriend, and consequently feels sad about of her absence.

Further attributes of polar-terms include intensity, sarcasm, and sentiment-ref; their possible

values are summarized in Table A.4.

A.4.5 intensifier

Definition. Intensifiers are elements that increase the expressivity or the evaluative sense of a

polar term.

Example. An example of intensifier is the word sehr (very) in sentence A.4.13.
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Attribute Value Meaning

polarity

positive
polar term has a positive evaluative meaning, e.g., gut
(good), verhimmeln (to ensky), Prachtkerl (corker) etc.

negative
(default)

polar term expresses a negative evaluation of its target,
e.g., versauen (to botch up), rotzig (snotty), Dreckskerl
(scum) etc.

intensity

weak
polar-term has a weak evaluative sense, e.g., so-
lala (so-so), nullachtfünfzehn (vanilla), durchschnit-
tlich (mediocre) etc.

medium
(default)

polar-term has middle stylistic expressivity, e.g., gut
(good), schlecht (bad), robust (tough) etc.

strong
polar-term expresses a very strong positive or negative
evaluation, e.g., allerbeste (bettermost), zum Kotzen (to
make one puke), Kacke (shit) etc.

sarcasm

true
polar-term is derisive, i.e., its actual polarity is the op-
posite of its primary lexical sense even though there are
no negations in the surrounding context

false
(default)

no sarcasm is present—the term has its literal polar
meaning; this is the default

sentiment-ref
−→

(directed edge)

an arrow pointing to the sentiment that this
polar-term belongs to. You should only draw this
edge if a polar-term is located at an intersection of
two sentiments or outside of the sentiment span that
it belongs to

Table A.4: Attributes of polar-terms

Example A.4.13

Wir suchen eine [sehr]intensifier zuverlässige Polin als Haushaltshilfe.

(We are looking for a [very]intensifier reliable Polish woman as domestic help.)

Boundaries. Intensifiers are usually expressed by adverbs or adjectives such as sehr (very) or

sicherlich (certainly), but other ways of intensification are still possible (see Example A.4.14).

Example A.4.14

Dieser Junge ist stark [wie ein Pferd]intensifier .
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(This boy is strong [as a horse]intensifier .)

Attributes. An intensifier must always relate to some polar-term, and you always have

to explicitly show this relation by drawing a polar-term-ref edge from the intensifier to its

modified polar expression.

Further possible attributes of intensifiers are shown in Table A.5.

Attribute Value Meaning

degree

medium
(default)

the intensifier moderately increases the polar sense of
the polar term, e.g., ziemlich (quite), recht (fairly) etc.

strong
the intensifier strongly increases the polar sense and
stylistic markedness of the polar term, e.g., sehr (very),
super (super), stark (strongly) etc.

polar-term-ref
−→

(directed edge)
a directed edge pointing from the intensifier to the
polar-term whose meaning is being intensified

Table A.5: Attributes of intensifiers

A.4.6 diminisher

Definition. Diminishers or downtoners are words or phrases that decrease the polar lexical sense

of a polar-term.

Example. In Example A.4.15, the diminisher is expressed by the adverb weniger (less).

Example A.4.15

[Weniger]diminisher erfolgreiche Unternehmen verzichten auf externe Berater.

The [less]diminisher successful companies do not use external consultants.

Attributes. Like intensifiers, diminishers must always relate to a polar term, and you also have to

explicitly show this relation by using the polar-term-ref attribute; other attributes of diminishers

mainly coincide with those of intensifiers and are summarized in Table A.6.

180



APPENDIX A. ANNOTATION GUIDELINES OF THE SENTIMENT CORPUS

A.4.7 negation

Definition. Negations are elements that turn the polarity of a polar-term to the opposite.

Example. In Example A.4.16, for instance, the negative article kein (not) makes the contextual

polarity of the word interessant (interesting) negative, even though the prior semantic orientation

of this term is positive.

Example A.4.16

Diese Geschichte war überhaupt nicht [interessant]negation !

This story was [not]negation interesting at all!

The role of negations is closely related to that of diminishers. In order to help you better distinguish

between these entities, we have listed the most obvious differences between the two elements:

• Semantic differences: diminishers only decrease the lexical sense of an polar-term, a but

part of its original sense still remains active (i.e., a hardly understandable speech is still

understandable); negations, on the other hand, fully deny that meaning and turn it to the

complete opposite (a not understandable speech is absolutely unintelligible);

• Part-of-speech differences: diminishers are usually expressed by adjectives or adverbs, whereas

negations are typically represented by the negative article kein (no), the negation particle

nicht (not), or verbs or adjectives, e.g., Es ist sehr zweifelhaft, dass die neue Version von

Windows besser wird (It is very doubtful that the new Windows version will be any better)

Attributes. The only attribute of negations is the mandatory edge polar-term-ref. You have

to draw this edge from the negation to that polar-term that is negated. Like intensifiers and

diminishers, negations must always refer to at least one polar item.

Attribute Value Meaning

degree

medium
(default)

diminisher moderately decreases the polar sense of its
respective polar-term, e.g., wenig (few), bisschen (lit-
tle) etc.

strong
diminisher strongly decreases the polar sense of the
polar-term, e.g., kaum (hardly) etc.

polar-term-ref
−→

(directed edge) see Table A.5

Table A.6: Attributes of diminishers
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Attribute Value Meaning

polar-term-ref
−→

(directed edge)
an edge from negation to the polar-term being
negated

Table A.7: Attributes of negations

A.5 Summary

Summarizing all of the above, your task in this assignment is to find subjective evaluative opinions

about some entities or events. You need to annotate these opinions with the sentiment tags and also

determine the polarity and the intensity of the expressed attitudes. After that, you should assign

the target tags to objects or events that are evaluated, and label the holders of these attitudes as

sources. Both, sources and targets, can only exist in the presence of a sentiment.

Another important task is to annotate words and phrases that have a polar evaluative meaning. We

call these words polar-terms, and you need to annotate them always, regardless of whether there

is a targeted sentiment or not. If a polar-term is intensified, diminished, or negated by another

word or phrase, you should also annotate the modifying element as well.

A.6 Examples

We conclude these guidelines with a couple of real-world annotation examples from our corpus,

explaining our decisions for these annotations.
Example A.6.1

WAS HABEN ALLE MIT [IHREN
[VERF*CKTEN]polar-term:polarity=negative,intensity=strong,sarcasm=false

[GRÜNEN AUGEN]target ]sentiment:polarity=negative,intensity=strong,sarcasm=false

(WHAT DO THEY ALL HAVE WITH [THEIR

[F*CKED]polar-term:polarity=negative,intensity=strong,sarcasm=false

[GREEN EYES]target ]sentiment:polarity=negative,intensity=strong,sarcasm=false )

Explanation: In this case, there is an evaluative opinion about the green eyes of some persons. It

is, however, unclear what is the author’s attitude to the people themselves, we only can see that she

thinks that the eyes of these people are verf*ckt (f*cked). Therefore, the target of this sentiment

is the word Augen (eyes), and the sentiment span should enclose the noun phrase comprising that

target and its evaluative term f*cked. Since the polar term is an intense abusive word, we set the

polarity of this word and its enclosing sentiment to negative and the intensity of both tags to

strong.2

2In the cases where we do not specify an attribute in the example, this attribute is assumed to have the
default value.
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Example A.6.2

[Wo ist der [#Jubel]polar-term:polarity=positive,intensity=strong,sarcasm=true von [#CDU]target
[#CSU]target & [#FDP]target über den Tod der Mieterin nach
#Zwangsräumung?]sentiment:polarity=negative,intensity=medium,sarcasm=true

[Where is the [#exultation]polar-term:polarity=positive,intensity=strong,sarcasm=true of [#CDU]target

[#CSU]target & [#FDP]target about the death of the renter after forced

#eviction?]sentiment:polarity=negative,intensity=medium,sarcasm=true

Explanation: In Example A.6.2, we have not labeled Jubel von #CDU . . . über den Tod von . . .

(the exultation of the #CDU . . . about the death of . . . ) as sentiment, because the truth status

of this statement is unknown. But, on the other hand, the mere hypothesis that a political party

could experience a glee feeling because of a renter’s death is sarcastic. We can recognize it from the

polar-term #Jubel (#exultation), whose prior semantic orientation is positive, but which suggests

a negative attitude to the CSU party in this context, without any explicit contextual modifiers.

Accordingly, we set the (prior) polarity of the term to positive, the polarity of its sentiment to

negative, and the sarcasm attribute of both labels to true. Apart from having different polarities,

sentiment and polar-term also have different intensities: since #Jubel (#exultation) expresses a

higher degree of excitement than the word Freude (joy), we set its intensity to high. On the

other hand, the overall sentiment expression is rather subtle and does not show high exaggeration

of the author. So, we set the intensity of the sentiment to medium rather than high.

Another non-trivial case is shown in Example A.6.3, which we will analyze step by step:

Example A.6.3

RT @JochenFlasbarth : Guter #Spiegel-Titel , wie Welzer , Sloterdijk und andere Promi
#Nichtwähler die Demokratie verspielen : Träge , frustriert

(RT @JochenFlasbarth : A good #Spiegel title , how Welzer , Sloterdijk, and other celebrity non-voters

squander the democracy : Sluggish , frustrated)

Explanation: First of all, we have to look at words with unambiguous lexical polarity (polar-

terms), as they are our primary cues for detecting sentiments. This tweet features one positive

terms, guter (good), and there negative polar items, verspielen (to squander), träge (sluggish),

and frustriert (frustrated). Since we have two sets of polar-terms with contradicting polarities,

it is most likely that there also are two sentiments—one positive and one negative. The positive

evaluation obviously pertains to the suggested #Spiegel title “wie Welzer , Sloterdijk und andere

Promi #Nichtwähler die Demokratie verspielen: Träge , frustriert” (“how Welzer , Sloterdijk, and

other celebrity non-voters squander the democracy: Sluggish , frustrated ”). The author finds this

title good, and the annotation of this sentiment then looks as follows:

Example A.6.4

[RT [@JochenFlasbarth]source:sentiment_ref=1 :

[Guter]polar-term:polarity=positive,intensity=medium,sarcasm=false, sentiment_ref=1 #Spiegel-Titel ,

[wie Welzer , Sloterdijk und andere Promi #Nichtwähler die Demokratie verspie-
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len : Träge ,

frustriert]target:sentiment_ref=1 ]sentiment:polarity=positive,intensity=medium,sarcasm=false,id=1

([RT [@JochenFlasbarth]source:sentiment_ref=1 : A

[good]polar-term:polarity=positive,intensity=medium,sarcasm=false, sentiment_ref=1 #Spiegel title ,

[how Welzer , Sloterdijk, and other celebrity non-voters squander the democracy :

Sluggish ,

frustrated]target:sentiment_ref=1 ]sentiment:polarity=positive,intensity=medium,sarcasm=false,id=1)

The negative opinion, which is expressed by the terms verspielen (to squander), träge (sluggish),

and frustriert (frustrated), obviously relates to the celebrity non-voters, Welzer and Sloterdijk ; so,

we annotate this evaluation as:

Example A.6.5

[RT [@JochenFlasbarth]source:sentiment_ref=2 : Guter #Spiegel-Titel , wie
[Welzer]target:sentiment_ref=2 , [Sloterdijk]target:sentiment_ref=2

und [andere Promi #Nichtwähler]target:sentiment_ref=2 die Demokratie
[verspielen]polar-term:polarity=negative,intensity=medium,sarcasm=false,sentiment_ref=2 :
[Träge]polar-term:polarity=negative,intensity=medium,sarcasm=false,sentiment_ref=2 ,
[frustriert]polar-term:polarity=negative,intensity=medium,sarcasm=false,sentiment_ref=2

]sentiment:polarity=negative,intensity=medium,sarcasm=false,id=2

([RT [@JochenFlasbarth]source:sentiment_ref=2 : A good #Spiegel title , how
[Welzer]target:sentiment_ref=2 , [Sloterdijk]target:sentiment_ref=2 ,
and [other celebrity non-voters]target:sentiment_ref=2

[squander]polar-term:polarity=negative,intensity=medium,sarcasm=false,sentiment_ref=2 the democracy :
[Sluggishly]polar-term:polarity=negative,intensity=medium,sarcasm=false, sentiment_ref=2 ,
[frustrated]polar-term:polarity=negative,intensity=medium,sarcasm=false, sentiment_ref=2

]sentiment:polarity=negative,intensity=medium,sarcasm=false,id=2 )

In both cases, @JochenFlasbarth is the original author of the cited opinion, so we should label it as

a source. But since there are two sentiment relations, we assign this tag twice, drawing an edge

(in our example denoted by attribute sentiment_ref) to the respective sentiment element in each

case.
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Gradient Computation of the Optimized

Projection Line

In order to prove the correctness of the gradient shown in Equation 3.2, let us first compute

the partial derivative of the optimized distance function f =
∑

~p+

∑
~p−

1
2

(
~b·(~p+−~p−)

~b2
~b
)2

w.r.t.

to a single element ~bj of the projection vector ~b. Assuming that the length of this vector is
normalized at each iteration step prior to calculating the derivative, we obtain:

∂

∂~bj
f =

∂

∂~bj

∑
~p+

∑
~p−

1

2

(
~b · (~p+ − ~p−)

~b2
~bj

)2

=
∑
~p+

∑
~p−

γ~bj
∂

∂~bj

~b · (~p+ − ~p−)

~b2
~bj

=
∑
~p+

∑
~p−

γ~bj

(
(~p+ − ~p−)j

~b2 − 2γ~bj

~b4
~bj +

γ

~b2

)

=
∑
~p+

∑
~p−

γ~bj

(
(~p+ − ~p−)j

~bj − 2γ~b2j + γ
)

=
∑
~p+

∑
~p−

γ
(

(~p+ − ~p−)j
~b2j − 2γ~bj~b

2
j + γ~bj

)
,

(B.1)

where γ is defined as previously:

γ = ~b · (~p+ − ~p−) .

Since Expression B.1 is identical for all j, we can estimate the final form of the gradient as:

∇f =
∑
~p+

∑
~p−

γ
(

(~p+ − ~p−)~b2 − 2γ~b~b2 + γ~b
)

(B.2)

=
∑
~p+

∑
~p−

γ
(

∆− γ~b
)
, (B.3)

which is exactly the solution we provide in Equation 3.2.
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Appendix C

CRF Training and Inference

C.1 Training

Traditionally, the main objective of CRF’s training consists in finding such feature param-
eters Θ that maximize the log-likelihood of a training set D = {(x[m],y[m])}Mm=1 (where
M represents the total number of training examples, x[m] denotes the feature vector of the
m-th example, and y[m] stands for the vector of its gold labels):

Θ = argmax
Θ

M∑
m=1

`Y |X = argmax
Θ

M∑
m=1

ln pΘ(y[m]|x[m]). (C.1)

The conditional probability of gold labels for the m-th training instance (pΘ(y[m]|x[m])) is
typically computed as:

pΘ(y[m]|x[m]) =

exp
( n∑
i=1

∑
k

θkfk(y[m],x, i)
)

Zx
,

where n represents the total length of that instance (in the case of sentences, n is usually
the number of tokens); θk and fk are the weight and the value of the k-th feature; and Zx is
a normalization factor, which is estimated over all possible features f and label assignments
Yn:

Zx :=
∑
y′∈Yn

exp
( n∑
i=1

∑
k

θkfk(y
′,x[m], i)

)
.

The partial derivatives of feature weights, which are needed for optimizing the log-likelihood
in Equation C.1, are known to be equal to the difference between the empirical and model’s
expectation of features over the whole training corpus:

∂

∂θk
`Y |X =

M∑
m=1

n∑
i=1

(
fk(y[m],x[m], i)−EΘ[fk(Yn,x, i)]

)
(C.2)
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C.1.1 Linear-chain CRFs

In the case of first-order linear-chain CRFs, these derivatives are usually estimated with the
help of the forward-backward algorithm (a specific case of the belief-propagation method [Pearl,
1982]), which can be briefly described as follows.

For each position i of training instance x[m] and for each label y of tagset Y , one first
computes the forward score α[y][i] as:

α[y][i] =
∑
y′∈Y

α[y′][i− 1]t(y′, y, i− 1, i)s(y, i) (C.3)

where t(y′, y, i−1, i) is the exponentiated sum of transition features ft(y′, y,x, i−1, i) (which
denote the transition from label y′ at position i− 1 to label y at position i) multiplied with
their respective weights θt:

t(y′, y, i− 1, i) := exp
(∑

t

θtft(y
′, y,x, i− 1, i)

)
.

Similarly, s(y, i) denotes the exponent of the sum of state features fs times their weights θs:

s(y, i) := exp
(∑

s

θsfs(y,x, i)
)
.

The normalizing factor Zx is then easily estimated as the sum of all values from the last
column of matrix α:

Zx =
∑
y∈Y

α[y][n].

After estimating the forward scores, one compute the backward scores β by applying the
same procedure in reverse—from right to left:

β[y][i] =
∑
y′∈Y

β[y′][i+ 1]t(y, y′, i, i+ 1)s(y′, i+ 1). (C.4)

The marginal probabilities pm of state and transition features are then estimated as:

pm(fs(y,x, i)) =
1

Zx
α[y][i]β[y][i];

pm(ft(y
′, y,x, i− 1, i)) =

1

Zx
α[y′][i− 1]β[y][i]s(y, i).

Knowing these probabilities, one can easily obtain the gradient of feature weights using
Equation C.2.
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C.1.2 Semi-Markov CRFs

In contrast to linear-chain CRFs, semi-Markov conditional random fields do not model
transitions between identical labels (e.g., Source → Source), but instead try to partition
the input into contiguous spans of identical tags and infer the most likely label assignment
for these spans.

In order to do so, the model first determines the maximum possible length (L) of a
segment with identical labels that exists in the training set. The forward and backward
scores are then calculated as:

α[y][i] =

L−1∑
d=0

∑
{y′∈Y|y′ 6=y}

α[y′][i− d− 1]

× t(y′, y, i− d− 1, i− d)s(y, [i− d, i]);

(C.5)

β[y][i] =

L−1∑
d=0

∑
{y′∈Y|y′ 6=y}

β[y′][i+ d+ 1]

× t(y, y′,x, i+ d, i+ d+ 1)s(y, [i, i+ d]);

(C.6)

where s(y, [i, i + d]) is the exponentiated sum of all state features s(y, j) that are activated
on the interval [i, . . . , i+ d].

The marginal probabilities of state and transition features are then computed as:

pm(fs(y,x, [i− d, i])) =
1

Zx
s(y, [i− d, i])

×
∑

{y′∈Y|y′ 6=y}

α[i− d− 1][y′]t(y′, y, i− d− 1, i− d)

×
∑

{y′′∈Y|y′′ 6=y}

β[i+ 1][y′′]t(y, y′′, i, i+ 1);

and

pm(ft(y
′, y,x, [i− d, i])) =

1

Zx
α[y′][i− 1]β[y][i]

× t(y′, y, i− 1, i).

C.1.3 Higher-order CRFs

In contrast to first-order models, which only consider the scores of one immediate label to
the left when computing the α values or one immediate label to the right when estimating
the β scores, higher-order CRFs keep separate track of each sequence of labels that might
precede or follow the currently analyzed token.
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In particular, instead of simply computing the scores for each tagset label y ∈ Y at each
sentence position i, higher-order conditional random fields estimate these values for complete
sequence of tags y1, . . . , yd, where d is the order of the model.

This extension is possible for both linear-chain- and semi-Markov CRFs, and the way
of estimating forward and backward scores as well as computing marginal probabilities pm
is almost identical to the respective original implementations. The only differences in the
higher-order case are that

• it now becomes possible to use state and transition features that are associated with
label chains up to length d and not only single tags (e.g., instead of using a state feature
which tells that verbs starting with “mis” are likely to be sentiments, one can refine the
feature function and say that such words very probably represent sentiments preceded
by sources, i.e., are associated with the label sequence <source, sentiment>);

• secondly, when estimating the scores α[y1, . . . , yd][i] and β[y1, . . . , yd][i], one does not
simply iterate over all cells of the previous or next column of the corresponding matrix,
but only considers those preceding or following states that allow the label sequence
y1, . . . , yd at the i-th position. That is, Equations C.3 and C.4 become:

α[y1, . . . , yd][i] =
∑

{y′1,...,y′d∈Yd|y′2,...,y′d=y1,...,yd−1}

α[y′1, . . . , y
′
d][i− 1]

× t ((y′1, . . . , y
′
d) , (y1, . . . , yd) , i− 1, i) s ((y1, . . . , yd), i)

and

β[y1, . . . , yd][i] =
∑

{y′1,...,y′d∈Yd|y2,...,yd=y′1,...,y′d−1}

β[y′1, . . . , y
′
d][i+ 1]

× t ((y1, . . . , yd) , (y
′
1, . . . , y

′
d) , i, i+ 1) s ((y′1, . . . , y

′
d), i+ 1) ,

respectively. The same change also applies to Equations C.5 and C.6 in the case of
semi-Markov models.

C.1.4 Tree-structured CRFs

The main difference between applying the belief-propagation algorithm to trees instead
of linear chains is that the inference flow happens in a “vertical” way—from tree’s leaves
to its root and vice versa—whereas in the standard forward-backward setting, we typically
compute the scores “horizontally”—from the left-most word of a sequence to the right-most
one and then in the opposite direction.
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More precisely, the α and β scores for trees are estimated as:

α[y][p] =
∏

c∈children(p)

∑
y′∈Y

α[y′][c]t(y′, y,x, c, p)

 s(y, p);

β[y][c] =
∑
y′∈Y

α[y′][p]β[y′][p]

αc→p
t(y, y′,x, c, p);

where p is the index of the parent node of token c, and αc→p is the part of the α score of
token p that has been previously propagated to it from its child c:

αc→p :=
∑
y′′∈Y

α[y′′][c]t(y′′, y,x, c, p)

The normalizing factor Zx and marginal probabilities of state features are calculated in
the same way as for the linear-chain models with the only difference that the partition factor
Z is computed as the sum of the α-scores of the root word r and not of the last word n of
the instance.

The marginal probabilities of transition features are computed using the following equa-
tion:

pm(ft(y
′, y,x, c, p)) =

α[y′][c]t(y′, y, c, p)α[y][p]β[y][p]

αc→pZx
.

C.2 Inference

Once model parameters have been learned, one applies the optimized model to new,
unseen instances in order to predict their most probable labels—a task which is commonly
refered to as inference.

For CRFs, inference actually boils down to computing the matrix α with the following
minor modifications:

• First of all, instead of taking the sum over all previous labels y′ ∈ Y when computing
α[y][i], one only estimates the maximum possible score for that cell that is possible
w.r.t. the probabilities of its preceding labels;

• Second, apart from storing the maximum (unnormalized) probability of label y at the
i-th position, one also stores the label at the previous position (i− 1) that has lead to
the maximum value of α[y][i].

In other words, in the case of linear-chain CRFs, we transform Equation C.3 into:

α[y][i] = < max
y′∈Y

(
a(y′, y, i− 1, i)

)
, argmax

y′∈Y

(
a(y′, y, i− 1, i)

)
> (C.7)
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where

a(y′, y, i− 1, i) := α[y′][i− 1][0]t(y′, y, i− 1, i)s(y, i).

We similarly modify the α-computation in the semi-Markov case, but this time, apart
from remembering the highest possible probability of the y-th label at the i-th position and
its most likely predecessor, we also need to store the most probable length of the tag span
y, i.e.,:

α[y][i] = < max
y′∈Y,d∈[1,...,L]

(
a(y′, y, d, i)

)
, argmax
y′∈Y,d∈[1,...,L]

(
a(y′, y, d, i)

)
>

with a now defined as:

a(y′, y, d, i) := α[y′][i− d− 1][0]t(y′, y, i− d− 1, i− d)s(y, [i− d, i]).

Finally, in the case of tree-structured CRFs, we could have basically completely re-used
the formula from Equation C.7 if each tree node only had one child. But since, most of
the time, this is rarely the case, we need to circumvent the need for storing multiple child
labels in a single α cell because this significantly slows down the inference due to additional
memory allocation on the fly. The way we do that is by applying the following trick: instead
of storing in each cell α[y][i] the maximum possible score for the y-th tag at the i-th position
and the labels of its children that have lead to this score, we store the score and the most
likely tag of the i-th node that yielded the maximum possible value for the y-th tag at the
parent position, i.e.,:

α[y][c] = < max
y′∈Y

(
a(y′, y, c, p)

)
, argmax

y′∈Y

(
a(y′, y, c, p)

)
> (C.8)

where

a(y′, y, i− 1, i) := α[y′][c][0]t(y′, y, c, p)s(y, p).

with c denoting the index of the child, and p standing for the index of the parent.

After computing the scores for the final node, we scan the last (root) column of the α
matrix for the maximum value and trace back the complete sequence of labels that has
yielded this score—a procedure which is commonly known as the Viterbi algorithm.
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