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Chapter 1

Introduction

1.1 GPR for environmental research

For matter which is opaque to look into with our eyes (such as subsurface en-

vironments), technical devices have to be used to gain information about inter-

nal structures and properties. Invasive or destructive methods like excavation,

drilling and soil sample analysis can be combined or replaced by non-destructive

geophysical methods to establish subsurface site expertises. How we will see in

the following, an elegant device is ground penetrating radar (GPR) method, that

offers the opportunity to explore near surface environments, fast and secure, with

electromagnetic waves with frequencies in the range of MHz (like a radio) to GHz.

Thus, GPR is a well established technique to obtain various informations for fur-

ther studies (e.g., geological, archaeological, mine/cable/pipe/boulder/rock de-

tection, concrete quality screening, environmental remediation evaluation). The

approved usage of GPR in glacial and permafrost explorations, for dike monitor-

ing or bathimetric mapping are not the last examples on the list of applications

from which our society can profit from this smart technical device. The variety

of applications in geotechnics, geoscience, geophysics, civil engineering and envi-

ronmental science are discussed in literature (e.g., Conyers & Goodman [1997],

Vereecken et al. [2006], Knödel et al. [2006], Allred et al. [2008], Annan [2009],

Jol [2009a], Miller et al. [2010]). According to this literature, GPR is one of the

most efficient techniques in near surface geophysics to image lateral and vertical
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1. Introduction

subsurface structures down to depths of several meters (e.g., sandy soils).

Due to fast data recordings thousands of measurements can be done at one day at

thousand different measuring points in survey areas extending over several tenth

of square meters. Thus, GPR fills the informational gap between remote sensing,

air borne explorations and point measurements like soil probing (Hillel [1998],

Butler [2005]). Those mappings can be done with rolling or sliding GPR systems

shown in Fig. 1.1.

1.2 Principle of GPR

Maxwell’s equations are the general mathematical formalism to calculate the

propagation of electromagnetic fields like GPR waves with coupled functions and

parameters (e.g., conductivity, dielectric permittivity) Maxwell [1891]. In the

high frequency range (MHz to GHz) of GPR, the electrical conductivity (σ) gov-

erns wave attenuation, whereas the dielectric permittivity (ε) controls the elec-

tromagnetic wave propagation influenced by material properties (e.g., grain size,

porosity, water content, mineralogical and chemical composition). The electro-

magnetic waves velocity in earth materials is in the range between the velocity in

water (∼0.033m/ns) and the velocity in air (i.e., in free space ∼0.2998m/ns). As

a detailed discussion of the fundamentals of electrodynamics (e.g., Lehner [2006],

Jackson & Fox [1999] and Fliesbach [2008]) is beyond the scope of this thesis, the

interested reader is referred to the literature where a number of excellent text-

books discuss the principles of GPR in detail (e.g., Daniels [2004], Butler [2005],

Knödel et al. [2006] and Jol [2009b]).

A standard cart-mounted GPR system, with a transmitting and receiving antenna

and batteries mounted under the cart and a control unit with a screen for direct

data visualization is shown in Fig. 1.1. On top of the cart a prism is mounted for

position tracking with a laser from a total station (Böniger & Tronicke [2010]).

A electronic device (digital video logger) controls the excitation and recording

of waves signals of the antennae. Spherical electromagnetic wave pulses (i.e.,

wave package, wavelet, short temporal variation of energy) are radiated from a

transmitter antenna and propagate through the environment. A wave spreading

from the antenna will be refracted and reflected by spatial matter variations that

2



1. Introduction

Figure 1.1: A common offset (CO) GPR, with red antennae under the cart, digital video logger with screen in
front of the operator and prism for position tracking mounted on top of the cart (standard measurements for
bathimetric mapping and sedimentation rate estimation on a frozen lake).

changes direction, velocity, amplitude and frequency content of the moving elec-

tromagnetic wave before they are received by the second antenna. The inducted

electrical potential in the receiving antenna is recorded by the digital control unit

as amplitude during a time (timewindow) of several hundreds of nano seconds

after the transmitting antenna was excited. Measurements of time series (traces)

at different spatial positions are composed as wiggle plots or images with columns

as color-coded amplitudes and a time scale as y-axes and measurement positions

as x-axes, formally known as radargram (see e.g., Bjelm et al. [1982]). Changes

of direction, traveltime, amplitude and frequency content between radiated and

received signal gives information about the environment. Objects which are on

or above the earth surface (e.g., field workers, fences, data-logger, cables) are also

spatial matter variations in terms of electromagnetic wave propagations behav-

ior variations. For example, this was observed during test measurements on a

frozen lake (Fig. 1.1) where reflections from a person on the ice surface appeared

in the data. Even with shielded antennae problematic reflection patterns from

above-surface objects (fences, trees) were observed which interfered with the tar-

get signals originating from the subsurface. Thus, GPR data requires a visual

data inspections before applying automated data analysis sequences such as those

presented in this thesis.
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1. Introduction

Electromagnetic waves can be approximated as rays with the consequence of in-

finitesimal wavelength (see optics, seismics), what can be achieved with consistent

phase picking of a wave event over different traces recorded with varying antennae

positions (see for example Fig. 3.6b)).

Fig. 1.2 illustrates schematically the ray paths of different wave types of two

antennae placed on the surface of a stratified ground. The light blue half cir-

cles (Fig. 1.2) represents a schematic wavefront emitted by the transmitting

antenna. Ray paths and their reflection and refraction points at ground strata

interfaces are labeled. Multiple reflections between strata boundaries are not

shown. More complete full wave simulations of GPR wave propagation can be

done with finite-difference time-domain (FDTD) solution of Maxwell’s equations

(e.g., Giannopoulos [2005]), but requires extensive computation effort. For this

introduction, I used this program to give here an illustration of GPR data gath-

ers of different antenna geometries with synthetic examples (see real data in the

following chapters, e.g. Figs. 2.4a, 3.6b and 4.3).

Air

Transmitting 

Antenna

Receiving 

Antenna

Wavefront

Ray Paths

Reflections Points

Refraction Points

Direct Ground Wave

Direct Air Wave

Critically Refracted Waves

Subsurface interface

Subsurface interface

Subsurface interface

Figure 1.2: Schematic sketch of different wave types (in terms of ray paths) observed in GPR wave propagation
in a layered subsurface environment and their reflection and refraction points (only two indicated for simplicity)
at the interfaces, with two antennae (yellow) and schematic wavefronts emitted by the transmitting antenna.
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1. Introduction

1.3 Antenna survey arrangements

From the sens of sight or photography it is known, that a good illumination and

different points of view are necessary to see or to obtain nice pictures. This is

transferable to GPR measurements, where the number of transmission points, re-

ceiving points (i.e., antennae positions) have to be effectively arranged for optimal

ray coverage. Therefore different GPR antenna survey geometries are commonly

applied. The standard on-ground antenna survey geometries are the common

offset (CO) and the common mid point (CMP) methods introduced for example

by Annan & Cosway [1992]. Arrangements in boreholes like crosshole geometries

are also commonly used (e.g., Olsson et al. [1992]). The vertical radar profiling

(VRP) technique is a combination of on- and in-ground antenna configuration

(e.g., Zhou & Sato [2000]) and is not yet established as standard method. This

thesis focuses on data analysis for CMP and VRP antenna survey arrangements.

In practice, the most common antenna configuration is the common offset (CO)

antennae configuration with one transmitter and one receiver pulled over the

ground with constant offset, enabling the recording of waves reflected at bound-

ing layers in the subsurface (see Fig. 1.2). The direct air and ground wave

interfere if antennae offset is small (i.e., about one dipole antenna length). Fig.

1.1 shows a conventional CO GPR survey setup during field measurements and

the processed data are presented in the appendix (Figs. 2 and 3). Radargrams

measured in CO configurations are interpreted in terms of a structural model

of the subsurface. One has to consider that for time-to-depth conversion of a

radargram the subsurface velocity field has to be known. Thus, the accuracy and

reliability of the final structural model depends on the accuracy of the velocity

model and methods are needed to explore subsurface velocity variations in detail.

To obtain a common mid point (CMP) data gather like in Fig. 1.3, the dis-

tance between the antennae is successively increased (see Fig. 1.2). Commonly,

subsurface velocities are estimated with CMP surveys with hyperbolic move-out

analysis (also known as normal move-out, NMO), what allows the generation of

1D subsurface velocity model (Yilmaz [2001]). Fig. 1.3 shows a synthetic CMP

gather recorded across a five layer ground, computed with the program of Gi-

annopoulos [2005]. In Fig. 1.2 we see the direct air wave (cyan), which is the
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1. Introduction

Direct Air Wave

Critically
Refracted Wave

Direct Ground Wave
Reflected Wave

Reflected Wave

Reflected Wave

Reflected Wave

Reflected Wave

Figure 1.3: Major velocity variations of the subsurface visible in a) correspond to labeled reflection events in
FDTD modeled CMP gather b)

fastest (traveling with speed of light) and the direct ground wave (blue). Due to

larger and multible offsets we can follow with our eyes the direct air and ground

wave in a CMP gather like in Fig. (1.3), in contrast to CO profiles (transfer-

able from Fig. 1.2). Direct air and ground waves appear as linear events in Fig.

1.3. The reflection (black, in Fig. 1.2) of the interface between first and second

layer appears as a hyperbole in Fig. 1.3 (first from top). Challenging are the

waves reflected at deeper interfaces (refracted black lines in Fig. 1.2) resulting

as features which only can be approximated by hyperboles in Fig. 1.3. Waves

that are reflected two or more times between deeper layers (multiple reflections)

appear also as hyperbola-like features (not labeled in Fig. 1.3). In the second and

third chapter of this thesis, CMP gathers are used to introduce new approaches

to analyze ground wave velocity and to derive 1D velocity models from reflected

events, respectively.

To obtain vertical radar profiling (VRP) data gather like in Fig. 1.5 the trans-

mitting antenna is positioned in a borehole at varying depths and the receiver is

located on the earth surface with an offset in the vicinity of the borehole. Verti-

cal radar profile (VRP) is very advantageous due to shorter ray paths and better

signal transmission into the ground, in contrast to the previously described on-

6
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Air
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Antenna

Ray Paths

Transmitting Antenna in Borehole

Refraction

Direct Waves

Critically Refracted 

Waves

Wave Fronts

Reflected  Waves

Subsurface interface

Subsurface interface

Figure 1.4: Schematic sketch of VRP GPR gather, with one antenna at the earth surface and positions of
transmitter in the borehole, schematic wavefront at transmitting antenna, ray paths and reflected, direct and
critically refracted waves at ground strata interfaces.

ground antennae arrangements. Fig. 1.4 sketches schematically a VRP antennae

arrangement with three depths of the transmitting antenna and with ray paths

of direct waves including refraction phenomena denoted by black lines, critically

refracted waves as pink lines and reflected waves as blue lines. Fig. 1.5 shows a

synthetic FDTD VRP gather for a five layer ground computed with the program

of Giannopoulos [2005] and the different wave types are labeled. The multiple

reflected wave is not sketched in Fig. 1.4, for simplicity. VRP is also used to de-

rive 1D velocity profiles in the vicinity of a borehole, by inverting the traveltimes

of direct arrivals. A global inversion approach of VRP traveltimes is presented in

chapter four of this thesis.

1.4 Water content and material parameters from

accurate GPR velocities

From comparison of GPR data recorded under changing conditions of soil water

content at the same site, we know that GPR is sensitive to soil water content.

The explanation for this sensitivity is the dependence of electromagnetic velocity

7
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Figure 1.5: Velocity variations visible in ground model a) correspond to labeled wave type events in FDTD
modeled VRP gather b)

on soil water content; i.e., slow velocities are observed in wet soil while faster ve-

locities are observed in dry soil. Electrodynamic theory introduces the complex

dielectric permittivity (ε = ε′ + iε′′), where ε′ is the real part, ε′′ the imaginary

part, and i =
√
−1. The first summand ε′ expresses the ability of matter to

transport electromagnetic waves and the second summand ε′′, which have to be

small for successful applications of GPR, associates dissipative (stretching, mut-

ing) effects of matter to electromagnetic waves. If the second summand converges

to zero, a frequency independent effective dielectric permittivity called here the

relative permittivity εr = ε′/8.854× 10−12 is used.

Under the assumption of low-loss, non-magnetic media, GPR velocities can be

converted to relative permittivity values εr = c2

v2
, with c as electromagnetic ve-

locity in free space (e.g., Jol [2009b]).

Then, water content or porosity (i.e. for water saturated soils) can be estimated

from relative permittivity values using an appropriate petrophysical translation.

A number of different petrophysical models have been proposed in the literature

(for a recent review see Steelman & Endres [2011]). In general, petrophysical

models are functions following the tendencies between water content values de-

termined from gravimetric soil sampling and relative permittivity values calcu-

lated from GPR or time domain reflectometry (TDR) measurements. Different

authors use different functions for different soils, to optimize the accordance of

8
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Figure 1.6: Two polynomial functions (Topp, Roth) and the complex refractive index model (CRIM) with
variable permittivities of dry soil (4,6) and water (82.232, 80) as examples of petrophysical models to translate
permittivities into volumetric water content.

petrophysical laws to observations (e.g., Knight & Endres [2005], Knoll [1996]).

The most commonly used empirical relationship to estimate volumetric water con-

tent in the water-saturated zone (i.e., porosity) are the equation of Topp et al.

[1980]; equation 1.1) and the complex refractive index model (CRIM; Wharton &

Best [1980]; equation 1.2), which is a volumetric mixing model. Like Topp, other

authors (e.g., Roth et al. [1992]) used also third order polynomials (like equa-

tion 1.1) with other coefficients to explain petrophysical relationships. Topp’s

equation gives the volumetric water content as

Φ = 5.3× 10−2 + 2.92× 10−2ε− 5.5−4ε2 + 4.3−6ε3. (1.1)

The CRIM mixes volumetric the permittivity of dry soil εmr and permittivity of

water εwr to calculate the volumetric water content as

Φ =

√
εr − εmr

εwr + εmr
. (1.2)

Fig. 1.6 shows examples of empirical relationships between relative permittivity

(εr) and volumetric water content (Φ) as two polynomial functions (Topp, Roth;

9
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Figure 1.7: Exemplary illustration of the varying petrophysical relations to convert GPR velocities into volu-
metric water content, with two examples of polynomial laws (Topp, Roth) and CRIM with permittivities of dry
soil (4,6) and water (82.232, 80).

equation 1.1) and a volumetric mixing model (CRIM; equation 1.2) with permit-

tivities of dry soil (4,6) and water (82.232, 80). Fig. 1.7 shows the corresponding

empirical translations from GPR velocities (v) into volumetric water content (Φ),

using v =
√

c2

εr
and the polynomial laws (Topp, Roth; equation 1.1) and the com-

plex refractive index method (CRIM; equation 1.2). More advanced effective

medium theory, have to be enhanced, regarding soil texture matrix, such as grain

size, shape and orientation, with methods that interconnect micro quantities to

bulk quantities (e.g., Sen [1984]).

1.5 Research question

The general question of this work is: Are there quantitative and reproducible

approaches to get GPR wave velocities including uncertainties, to determine ac-

curate depths and material parameters?

Due to the fact that measurements from GPR give only information in form of

distorted images of subsurface structures those images have to be combined and

compared with additional information from boreholes or excavations, to achieve

correct length-scales (e.g., layer thickness) or soil parameters (e.g., water content,

10



1. Introduction

grain size) over finite volumes. Thus, the following chapters will demonstrate that

there are other possibilities to analyze GPR data from CMP and VRP data gath-

ers, with a minimum of additional a-priori informations. Velocity results of those

methods will be improved with other data such as existing GPR data analysis

strategies and other more reliable data like time-domain reflectometry (TDR)

and borehole logging data.

1.6 Thesis content

In the second chapter I develop a new direct ground wave velocity analysis ap-

proach based on linear moveout spectra to find the optimum ground wave velocity

including uncertainties from multi-offset data gathers. I use synthetic data to il-

lustrate the principles of the method and to investigate uncertainties in ground

wave velocity estimates. To demonstrate the applicability of the approach to

real data, I analyze GPR data sets recorded at field sites in Canada over an an-

nual cycle from Steelman & Endres [2010]. My results obtained by this efficient

and largely automated procedure agree well with the manual achieved results of

Steelman & Endres [2010], derived by a more laborious largely manual analysis

strategy.

In the third chapter I develop a new methodology to invert reflection traveltimes

with a global optimization approach as an alternative to conventional spectral

NMO-based velocity analysis (e.g., Greaves et al. [1996]). For global optimiza-

tion, I use particle swarm optimization (PSO; Kennedy & Eberhart [1995]) in the

combination with a fast eikonal solver as forward solver (Sethian [1996]; Fomel

[1997a]; Sethian & Popovici [1999]). This methodology allows me to generate re-

liability CMP derived models of subsurface velocities and water content including

uncertainties. I test this method with synthetic data to study the behavior of the

PSO algorithm. Afterward, I use this method to analyze my field data from a

well constrained test site in Horstwalde, Germany. The achieved velocity models

from field data showed good agreement to borehole logging and direct-push data

(Schmelzbach et al. [2011]) at the same site position.

For the fourth chapter I implement a global optimization approach also based on

11



1. Introduction

PSO to invert direct-arrival traveltimes of VRP data to obtain high resolution

1D velocity models including quantitative estimates of uncertainty. My intensive

tests with several traveltime data sets helped to understand the behavior of PSO

algorithm for inversion. Integration of the velocity model to VRP reflection imag-

ing and attenuation model improved the potential of VRP surveying. Using field

data, I examine this novel analysis strategy for the development of petrophysi-

cal models and the linking between my GPR borehole and other logging data to

surface GPR reflection data.

12



Chapter 2

Spectral velocity analysis for

determination of ground wave

velocities and their uncertainties

in multi-offset GPR data

Göran Hamann, Jens Tronicke, Colby M. Steelman and Anthony L. Endres

Near Surface Geophysics, 2013, 11, 167-176

2.1 Abstract

In many hydrological applications, ground wave velocity measurements are in-

creasingly used to map and monitor shallow soil water content. In this study,

we propose an automated spectral velocity analysis method to determine the di-

rect ground wave (DGW) velocity from common midpoint (CMP) or multi-offset

ground-penetrating radar (GPR) data. The method introduced in this paper

is a variation of the well-known spectral velocity analysis for seismic and GPR

reflection events where velocity spectra are computed using different coherency

measures along hyperbolas following the normal moveout model. Here, the un-

normalized crosscorrelation is computed between waveforms across data gathers

which are corrected with a linear moveout equation using a predefined range of

13



2. Spectral velocity analysis for determination of ground wave
velocities and their uncertainties in multi-offset GPR data

velocities. Peaks in the resulting velocity spectra identify linear events in the

GPR data gathers like DGW events and allow for estimating the corresponding

velocities. In addition to obtaining a DGW velocity measurement, we propose

a robust method to estimate the associated velocity uncertainties based on the

width of the peak in the calculated velocity spectrum. Our proposed method

is tested on synthetic data examples to evaluate the influence of subsurface ve-

locity, surveying geometry, and signal frequency on the accuracy of estimated

ground wave velocities and subsequent soil water content estimates based on an

established petrophysical relationship. Furthermore, we apply our approach to

analyze field data, which have been collected across a test site in Canada to mon-

itor a wide range of seasonal soil moisture variations. A comparison between our

spectral velocity estimates and results derived from manually picked ground-wave

arrivals shows good agreement, which illustrates that our spectral velocity anal-

ysis is a feasible tool to analyze DGW arrivals in multi-offset GPR data gathers

in an objective and more automated manner.

2.2 Introduction

Many hydrological applications require detailed information about spatial and

temporal variations of soil water content, which is controlled by soil composi-

tion, precipitation, evaporation, and temperature. Typical field techniques, such

as gravimetric sampling, time-domain reflectometry (TDR) and neutron probing

Hillel [1998], are point measurement techniques, and thus, are not efficient to

investigate soil water content and its variability at the field scale. On the other

hand, remote sensing approaches often do not provide the spatial resolution re-

quired for a detailed understanding of near-surface hydrological processes, espe-

cially in catchments characterized by heterogeneous soil conditions. Geophysical

techniques including different GPR methodologies (Huisman et al. [2003]) have

been shown to be more efficient at monitoring soil water content at the field scale.

As such, GPR soil moisture monitoring techniques close the scaling gap between

point measurements and remote sensing technologies (e.g., Vereecken et al. [2006];

Allred et al. [2008]).

When using GPR to estimate soil water content, we typically analyze variations in

14



2. Spectral velocity analysis for determination of ground wave
velocities and their uncertainties in multi-offset GPR data

the propagation velocity of GPR waves because the amount of water in a porous

medium strongly controls the electromagnetic wave velocity. To determine sub-

surface velocity variations, different GPR surveying approaches including cross-

hole tomography (e.g., Binley et al. [2001]), multi-offset reflection profiling (e.g.,

Greaves et al. [1996]; Brosten et al. [2009]; Turesson [2007]; Booth et al. [2010]),

and direct ground wave (DGW) velocity surveying (e.g., Galagedara et al. [2005a];

Huisman et al. [2001]; Huisman et al. [2003]) can be used. DGW velocity sur-

veying employing either constant or multi-offset acquisition techniques focus on

integrative velocity estimation within the upper half meter of soil. For overview

about penetration depth estimation by different models of DGW for GPR data

the reader is referred to literature Grote et al. [2010]. In such surveys, the DGW

velocity is usually determined by analyzing their manually determined arrival

times. The translation of GPR velocities into soil water content is typically a

two-step procedure. First, GPR velocities are converted to dielectric permittiv-

ities assuming low loss media (i.e., permittivities are calculated by squaring the

ratio between speed of light and GPR velocity). Then, permittivities are trans-

lated into soil water content using an appropriate petrophysical model. Different

models have been proposed in the literature (Steelman & Endres [2011]) and the

most popular ones rely on empirical relations or mixing models. It should be

noted that these relationships are generally non-linear. For example, the popular

Topp equation is a third order polynomial derived from laboratory measurements

(Topp et al. [1980]). From a practical point of view, site-specific calibration data

should be taken into account to check the applicability of a certain model or

for developing site-specific relations and, thus, to minimize uncertainties when

translating velocities into water content (e.g., Heimovaara et al. [1994]; Steelman

& Endres [2011]).

Another source of uncertainty, which is difficult to quantify and often ignored,

arises from the straight-forward procedure of direct ground wave velocity deter-

mination. For example, in multi-offset or common midpoint (CMP) data gath-

ers, DGW velocities are usually determined by fitting a straight line through

the interpreted ground wave arrivals (e.g., Greaves et al. [1996]; Huisman et al.

[2003]). However, the procedure of picking DGW arrival times and fitting a linear

model are often performed in a manual fashion and, thus, this procedure is rather
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subjective, often not reproducible, and provides no information on the inherent

uncertainties. These uncertainties can be related to survey geometry (i.e., min-

imum and maximum offsets as well as trace spacing), frequency content of the

data, complexity of the recorded wavefield and the subsurface velocity structure,

data quality, and subjective interpretations. Another source of uncertainties are

interference phenomena of direct ground wave events with shallow reflected, lat-

eral, critically refracted and air wave events, as demonstrated with field data

by Grote et al. [2010] and Steelman & Endres [2010], and model simulations by

Galagedara et al. [2005b] and Yi & Endres [2006]. Thus, we beware of under-

standing the introduced method as over all solution for analyzing every ground

wave CMP GPR data without looking on it, especially in extraordinary cases like

dispersive media van der Kruk et al. [2009]).

In this study, we propose a DGW velocity analysis approach based on velocity

spectra calculated using a linear moveout model. In addition to finding an op-

timum ground wave velocity from multi-offset data gathers, our method can be

used to estimate the associated uncertainties. After introducing the methodolog-

ical background, we use simple synthetic data to illustrate the principles of our

method and investigate uncertainties in ground wave velocity estimates, including

their impact on derived values of soil water content for different surveying geome-

tries and antenna frequencies. To demonstrate the applicability of our approach

to real data, we analyze GPR data sets collected at field site in Canada moni-

toring seasonal variations in soil water content across a wide range of nature soil

moisture dynamics Steelman & Endres [2010]. Given that these field data show

significant variations in DGW response using different antenna frequencies (i.e.,

225, 450 and 900MHz), and have been previously interpreted using a conven-

tional manual analysis, these data represent an excellent opportunity to validate

our spectral velocity analysis approach.

2.3 Methodology

Velocity spectra are standard tools in reflection seismic and GPR surveying to

extract velocity information from reflected events observed in CMP data gath-

ers (Yilmaz [2001];Annan [2005]). Here, normal moveout (NMO) based analyses
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are used to test different predefined velocity values. The final velocity spectrum

is calculated using different measures of coherency across the data gather in a

predefined time window centered on hyperbolic trajectories modeled with the

NMO equation. The optimum stacking or root-mean square (RMS) velocities are

then selected by analyzing the maxima in the resulting velocity spectrum (i.e.,

calculated coherency values as a function of tested velocities and traveltime) cor-

responding to primary reflection events in the analyzed CMP gather, how it was

done by Booth et al. [2011] for hyperbolic events in GPR CMP data, includ-

ing Monte Carlo simulation based velocity precision establishment. However, we

implement a linear moveout (LMO) model using a spectral velocity analysis ap-

proach to describe the linear dependency of direct ground wave arrival times td

on antenna offset x in a medium characterized by a constant velocity v:

td =
x

v
(2.1)

To calculate the velocity spectrum, we use the unnormalized crosscorrelation CC

as measure of coherency. Following Yilmaz [2001], CC is calculated by:

CC =
1
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(2.2)

fi,t(i) is the amplitude of the i-th trace at time t(i) andM is the number of traces in

the analyzed data gather. Using equation (2.1), t(i) is calculated for each trace at

a predefined velocity. The outer summation encompasses the time samples within

a pre-defined time gate. The edges of this correlation gate are tapered using a

Hamming window and the length of the gate is chosen to be in the range of the

wavelet period (comparable to NMO based analyses; Sheriff & Geldart [1999]).

This procedure is repeated for each time sample and a user specified testing

velocities resulting in CC as a matrix depending on time and velocity. In the

resulting velocity spectrum, peak values indicate optimum velocities describing

the corresponding linear events in the analyzed CMP gather. Sharp maxima

are associated with well-defined velocity values, while smeared and flat maxima

indicate that a range of tested velocities similarly fit the data. The shape of those
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maxima is governed by the fitting quality of the applied moveout function to the

actual trajectory but is also influenced by wavelet shape, which is disturbed by

noise and other interference with other events not corresponding to the applied

moveout (e. g. NMO moveout shows smeared maxima for linear events and

LMO moveout shows smeared maxima hyperbolic events). This observation offers

the opportunity to derive velocity uncertainties from the calculated map of CC

values and to evaluate different factors influencing uncertainty. This implies that

CC has enough elements in the velocity dimension to resolve different shapes of

maxima and not only maxima as pixels in the spectra. We measure the width of

the maxima at 90% of the observed peak CC value and define the corresponding

velocity range to quantify the uncertainties. This measure of uncertainty has been

chosen to achieve reasonable water content errors as maximal limit. Thus errors

can be minimized by reducing this threshold, what is a case specific decision,

respecting data quality, prevalent velocity range, water content and water content

model.

2.4 Synthetic examples

To further illustrate our approach, we generated synthetic CMP gathers using

time-shifted Ricker wavelets with a centre frequency of 450Hz (Fig. 2.1a); this

synthetic example is calculated using a spatial and temporal sampling of 0.02m

and 0.1 ns, respectively. The offset range is limited to 0.3m to 1.5m. The syn-

thetic data gather shows two linear events with velocities of 0.1m/ns and 0.3m/ns

simulating direct ground and air wave arrivals, respectively. Fig. 2.1b illustrates

the result of our LMO based velocity analysis. Maximum CC values are found

around 0.1m/ns and 0.3m/ns corresponding to the velocities of the two linear

events in Fig. 2.1a. Furthermore, we see that the CC maximum associated with

the steep ground wave event (0.1m/ns) is significantly sharper compared to the

maximum associated with the relatively flat air wave event (0.3m/ns). Using

the defined uncertainty criterion (90% of the peak CC values associated with

the velocity of a certain event), we obtained a velocity error of ∼0.006m/ns and

0.05m/ns for the ground and air wave velocity, respectively. From this simple

example, we found that the velocity step size used in the analysis should be suf-
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Figure 2.1: (a) Synthetic 450MHz CMP gather with two linear events simulating direct ground and air wave
arrivals. (b) Corresponding velocity spectrum calculated using our LMO based velocity analysis approach. In
(b), the correct velocity values of 0.1m/ns and 0.3m/ns are indicated by maximum CC values.

ficiently small (<10-4m/ns) to adequately sample the shape of the maxima and,

thus, to reliably estimate the uncertainty. If velocity step size is too large (e.g.,

5 velocities) no differences of errors will be detected because the 90% thresh-

old has the size of a velocity step (fifths of velocity range) for any velocity. In

Fig.2.1b the lower velocity is sampled with a view velocity steps (∼5), and the

corresponding error resulting from the threshold of 90% maximum width of this

peak is one velocity sample, consequently lower velocity errors are equal and no

error behavior is detectable. Thus velocity range has to be sufficiently sampled to

see the shape of maxima in the spectra even when they are very thin and sharp,

especially in the case of low velocities. Furthermore, Fig. 2.1 indicates that for

a given CMP survey geometry (defined by the trace spacing as well as the min-

imum and maximum offset within a data gather) the uncertainty of the velocity

estimate depends on the steepness (i.e., velocity) of the analyzed direct event.

To systematically analyze ground wave velocity uncertainties and the influence of

subsurface velocity, data frequency and surveying geometry, we have generated a

variety of synthetic CMP gathers (comparable to Fig. 2.1a) and have analyzed

these gathers using our spectral velocity analysis technique. Using the procedure

outlined above, we have determined the best-fitting velocity including an estimate

of uncertainty (absolute and relative error) for each synthetic CMP gather. Fur-

thermore, we have investigated the impact of this velocity error on water content
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Figure 2.2: Errors derived from analyzing synthetic CMP gathers generated using a fixed wavelet frequency
(450MHz), a fixed maximum offset (1.5m), a fixed antenna step-size increment (0.01m) and varying DGW
velocities between 0.05m/ns and 0.2m/ns. (a) Absolute, (b) relative error of velocity, (c) absolute, and (d)
relative error of derived water content values.

estimates derived from ground wave velocities using a standard two-step trans-

formation. Here, we assume low loss media and the validity of Topp’s equation

(Topp et al. 1980) to compute the range of water contents corresponding to the

velocity values derived from our above defined uncertainty criterion. Fig.2.2 il-

lustrates the results of this procedure for synthetic CMP gathers generated using

a fixed wavelet frequency (450MHz), a fixed offset range (0.3m to 1.5m), a fixed

trace spacing interval (0.02m), and DGW velocities varying between 0.05m/ns

and 0.2m/ns. Fig.2.2a shows the absolute velocity errors derived from the veloc-

ity spectra, while Fig.2.2b shows the corresponding relative errors. These plots

illustrate increasing uncertainty with increasing DGW velocity and demonstrate

that the relative errors show a linear dependency on velocity. In Fig.2.2c and Fig.

2.2d, we show the absolute and relative errors of water content. While the abso-
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Figure 2.3: Relative errors in velocity derived from analyzing synthetic CMP gathers generated (a) using a fixed
survey geometry (maximum offset 2.0m, trace spacing 0.01m) and four different wavelet frequencies, and (b)
using a fixed frequency (250MHz), a fixed antenna step-size increment (0.01m) and four different maximum
offsets. (c) Relative errors of water content derived from relative velocity errors shown in (a). (d) Relative errors
of water content derived from relative velocity errors shown in (b).

lute error in water content shows a clear maximum around 0.2, the relative error

shows an exponential-like decrease with increasing velocity. These observations

are related to the non-linear, two-step procedure used to calculate water content

from DGW velocity measurements. The offset range is chosen for this example,

because it will reveal in the field data example to be sufficient for reasonable

results and reduces measuring effort.

We also systematically investigated the influence of varying survey parameters

on the accuracy of DGW velocity estimates. In Fig.2.3a, we illustrate the influ-

ence of wavelet frequency on the accuracy of derived ground wave velocity values

(relative error) using a fixed survey geometry with an antenna offset range 0.3m

to 2.0m and trace spacing interval of 0.02m. Again, subsurface velocities are

varied between 0.05m/ns and 0.2m/ns while wavelet frequency is varied between
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250MHz and 1GHz. For each frequency, the relative errors are smaller due to

lower velocities following a linear relation (comparable to Fig.2.2b). Furthermore,

we observe a clear dependency on wavelet frequency, whereby smaller uncertain-

ties result from higher wavelet frequencies. The influence of the maximum offset

recorded in a CMP gather on the relative velocity error is illustrated in Fig.2.3b.

Here, a fixed wavelet frequency of 250MHz and a fixed trace spacing of 0.02m

have been used, while the maximum offsets considered for velocity analysis are

varied between 0.5m and 2.0m. Comparable to Fig.2.3a, a linear decrease in the

relative velocity errors with decreasing subsurface velocities is observed for each

maximum offset. Furthermore, increasing the maximum offset will decreases the

relative error in measured DGW velocity. Figures 2.3c and 2.3d illustrate the cor-

responding relative errors in water content showing an exponential-like decrease

with increasing velocity for all frequencies and maximum offsets, respectively

(comparable to Fig. 2.2d). Similar tendencies for velocity precision for NMO

analysis for reflected events were described by Booth et al. [2011]. In Fig. 2.3c,

we observe increasing errors with decreasing frequency, while in Fig. 2.3d we see

that increasing the maximum offset resulted in decreased relative errors in water

content.

2.5 Field data examples

To evaluate the applicability of our method to real data, LMO based velocity

spectra are computed for CMP data gathers collected at a field site near Wood-

stock, Ontario, Canada (Steelman & Endres [2010]). Core and borehole data

collected at the site shows that the upper 0.5 to 0.7m is composed of silt loam

soil with a water table that varies between 2m and 3m below ground surface

(Steelman & Endres [2010]). CMP data were recorded between May 2006 and

September 2007 with intervals on the order of a few weeks to analyze seasonal

variations in soil moisture. During this time period, precipitation, freezing and

melting events caused major variations in soil conditions and, thus, the GPR data

are well suited to performed in an automated fashion.

Using three different frequencies (225 MHz, 450 MHz, 900MHz), the data sets

were recorded with a total time window of 100 ns, a sampling interval of 0.1 ns,
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Figure 2.4: (a) Example of pre-processed 450MHz CMP gather recorded on May 25, 2007 and (b) the velocity
spectrum resulting from LMO based velocity analysis. In (b) the crosses identify the best-fit velocity while the
triangles indicate estimated velocity uncertainties (i.e., minimum and maximum velocities). In (a) the same
symbols are used to illustrate the slope of the corresponding linear events.

and 64 stacks per trace. CMP offsets range between 0.3 and 3.0m, 0.2 and 2.5m,

and 0.2 and 2.0 m for the 225, 450, and 900MHz data, respectively, with an

antenna step-size of 0.02m for all data sets. In this study, we limit the max-

imum offset to 1.5m to improve the quality of the computed velocity spectra

(i.e., avoid potential interference with shallow reflections that may smear out

peaks in the spectrum). Pre-processing of the CMP data includes zero-time cor-

rection. It should be noted that this correction does not alter the results of

LMO based velocity analysis. Then, we apply a dewow and a low-pass filter

(using a cutoff-frequency of about four times the antenna working frequency) to

suppress low and high-frequency noise. To attenuate unwanted events (such as

shallow reflections) the data gathers are muted using a cone shaped muting win-

dow. Considering the first arrivals and the frequency content of the data, this

window is designed to focus on DGW events with typically observed velocities

(∼0.05m/ns to ∼0.2m/ns). Furthermore, an offset-dependent amplitude scaling

is applied to balance the amplitudes over the analyzed offset range. After ap-

plying this pre-processing sequence (an example of a pre-processed CMP gather

is illustrated in Fig. 2.4a), we calculate velocity spectra using our LMO based

approach. Three hundred equally spaced velocity values ranging from 0.04m/ns

to 0.22m/ns are tested in the spectral velocity analysis procedure. Comparable
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Figure 2.5: (a) Example of pre-processed 900MHz CMP gather recorded on October 22, 2006, (b) the velocity
spectrum resulting from LMO based velocity analysis, and (c) the same as (b) after identifying and isolating
the corresponding DGW event. In (b) the symbols identify two local maxima corresponding to the linear DGW
event (star) and an interference event mainly associated with a strong shallow reflection (cross). In (a) the same
symbols are used to illustrate the slope of the corresponding linear events.

to the synthetic examples, maxima in the spectra are interpreted as optimum

velocities, while uncertainties are estimated from the velocities measured at 90%

of the peak CC value. In Fig. 2.4b, we illustrate the outcome of this analysis

using the example CMP gather shown in Fig. 2.4a where we also overlay direct

ground wave arrivals calculated using the derived best fit velocity value and its

estimated uncertainty. In this example, the maximum in the calculated spectrum

is well defined, although some interference phenomena of the ground wave ar-

rivals with a shallow reflection event are visible around 1m offset. For such data

gathers where the ground wave arrivals are well defined by an isolated maximum

in the corresponding velocity spectrum, the entire analysis can be performed in

an automated fashion.

In Fig. 2.5, we illustrate a second example of a pre-processed CMP gather includ-

ing the results of spectral velocity analysis. In this example, interference of the

DGW event with a strong shallow reflection event is obvious (Fig. 2.5a), result-

ing in two local maxima in the corresponding velocity spectrum (Fig. 2.5b). In

such cases, the user must select and isolate the maximum CC value correspond-

ing to the ground wave event (Fig. 2.5c) to avoid erroneous DGW velocity and

uncertainty estimates. In the Woodstock data, such phenomena are evident and

related to highly dynamic freezing and thawing events (Steelman & Endres [2009];

Steelman & Endres [2010]). The two examples (Figs. 2.4 and 2.5) illustrate that
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Figure 2.6: Field example illustrating temporal variations in DGW velocity between May 2006 and September
2007 for GPR data recorded using (a) 225MHz, (b) 450MHz and (c) 900MHz antennae. The red symbols
identify the best-fit velocities and error bounds derived from manual picks of DGW arrival times, while the
black symbols identify the corresponding values derived from LMO based spectral velocity analysis. CMP data
recorded on January 31, 2007 did not show any clear maximum in the velocity spectrum and, thus, are excluded
from further analyses.

under favorable conditions (clear ground wave events, i.e., no dispersion or in-

terferences) the proposed method can be implemented in a largely automated

fashion. However, a re-examination of the results, especially in the presence of

strong interference phenomena, is advisable to ensure that the spectral maxima

corresponding to DGW arrivals are appropriately identified.

Using the procedure outlined above, we have analyzed all available CMP gathers

collected at the Woodstock field site. In Fig. 2.6a, Fig. 2.6b, and Fig. 2.6c, we

show the results as time series for the 225MHz, 450MHz, and 900MHz antennae,

respectively. Furthermore, we compare the DGW velocities and uncertainties de-
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rived from spectral velocity analysis (black symbols) with the results obtained by

Steelman & Endres [2010] based on a manual linear least squares traveltime pick-

ing analysis including standard errors (red symbols). In such a manual analysis,

the user specifies the optimum offset range for each individual CMP gather to

obtain an optimum result. When comparing the results, we see that both analysis

methods show the same time-dependent trends for all frequencies; for example,

the effects of soil freezing (increasing velocities) and thawing (decreasing veloc-

ities) during winter 2007 or the increasing velocities during spring and summer

2007. Furthermore, the derived velocity values are in good agreement for all an-

alyzed frequencies; however, some discrepancies are observed in late January and

early February 2007 (data point from our method is ejected). Such discrepancies

might be related to relatively thin layers developing during freezing and thaw-

ing events that could lead to ambiguous or dispersive ground wave arrivals (e.g.,

van der Kruk et al. [2009]). In addition, we notice that the estimated uncertainties

are significantly larger for the error bars derived from velocity spectra compared

to those resulting from least squares fitting of manually picked arrival times. In

addition to the conceptual differences between the two analysis methods, the dif-

ferent offset ranges used for the analyses may also be considered to explain these

differences in uncertainty estimates. While a fixed offset range (0.3m to 1.5m) is

used to calculate the velocity spectra, a user-specified optimum window has been

subjectively identified for each individual CMP gather during manual analyses.

Thus subsurface heterogeneities might have different influences on the derived

velocity values and uncertainties. Finally, we interpret the uncertainties from the

spectral analyses as upper ‘conservative’ error bars, and the uncertainties from

manual analyses as optimum ‘idealized’ error bounds and conclude that the ve-

locity spectra are powerful tool to analyze large data sets in an objective and

time efficient manner.

To further analyze and evaluate the uncertainties estimated from the velocity

spectra, we now compare the estimates from field data to estimates derived from

synthetic examples. In Fig. 2.7, we plot the relative velocity error versus the

derived best matching velocity value for all CMP gathers (Figs. 2.6a-c). In Fig.

2.7, we show data points from synthetic examples (comparable to Fig. 2.3), which

have been computed using the offset range and data frequency content of our field
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Figure 2.7: Comparison of relative uncertainties of velocities derived from field experiments (Fig. 2.6ac) to
uncertainties derived from synthetic CMP calculated using the same dominant frequencies and offset ranges.

examples. Although some discrepancies are visible (due to noise, subsurface het-

erogeneities, data scaling), the observed trends (increasing error with increasing

velocity) and magnitude of the uncertainties are comparable for all frequencies.

In Fig. 2.8 we show the results for water content derived with the Topp’s equa-

tion from the time series of the DGW velocities shown in Fig. 2.6a-c. In Fig. 2.9

Figure 2.8: Temporal water content and uncertainties variation derived with Topp’s equation from the velocities
of the field examples from Fig. 2.6(ac), between May 2006 and September 2007.

we compare the uncertainty behaviour of the relative water content of all data

points from Fig. 2.8 with synthetic results generated with the same frequencies

and offset ranges. Water content uncertainties from real data follow the trend of

the synthetic values (see Fig. 2.3). Uncertainties increase with decreasing water

content but are <30% for water contents >0.15 l/l. These uncertainties can again

be regarded as an upper limit and absolute values may change when choosing a
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Figure 2.9: Comparison of relative uncertainties of water content derived from the field examples (Fig. 2.6a-c)
with Topp’s equation to uncertainties derived from synthetic CMP data similar to Figs 2.2 and 2.3 by using the
dominant frequencies and offset ranges from field examples.

different threshold for measuring velocity uncertainties. These results readily

illustrate the overall applicability of our spectral velocity analysis approach to

measuring DGW velocities from multi-offset GPR data sets.

2.6 Conclusions

A LMO based spectral velocity analysis method has been proposed to estimate

DGW velocities from multi-offset GPR data. In contrast to common practice,

which is largely based on manually fitting DGW arrivals, our method allows a

more objective and reproducible analysis of DGW velocity. Furthermore, it can

be used to quantify uncertainties in determining DGW velocities by measuring

the width of the maxima in the calculated velocity spectra. This allows us to

analyze uncertainties related to survey design and subsurface conditions in a sys-

tematic manner.

The shown synthetic examples have demonstrated that the accuracy of DGW

velocity determination depends on the true subsurface velocity, the antenna fre-

quency, and the survey geometry (offset range and maximum offset used in the

analysis). For typical surveying parameters and signal frequencies, our examples

demonstrate that relative errors in velocities can be greater than 5%. These find-

ings have important implications for survey design and might be critical when

DGW velocities are translated into water content. Assuming low loss soil con-
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ditions where Topp’s equation is valid, our synthetic studies have demonstrated

that the relative error in water content increases exponentially with decreasing

water content. To demonstrate the applicability of our approach to real data,

LMO based velocity spectra have been calculated for field data collected across a

silt loam soil at a well-constrained field site in Canada. We found that when us-

ing a well-adapted pre-processing sequence the spectral velocity analyses can be

performed in a largely automated manner, thus, allowing us to effectively analyze

large data sets in an efficient manner. Comparing our results to a detailed manual

analysis of the available CMP gathers illustrates that the detected velocity val-

ues and seasonal variations largely coincide. As the influence of the interpreter is

minimized, we believe that spectral velocity analysis is a rather objective tool to

derive and analyze DGW velocities including the associated uncertainties. This

point is supported by a comparison of uncertainties derived from spectral anal-

yses of field data to those of synthetic data gathers where we found comparable

behavior under varying ground velocity conditions, antennae frequency measure-

ments, and antenna offset ranges. Thus, we believe that LMO based spectral

velocity analysis is a feasible tool to derive ground wave velocities from CMP

data, and would be a valuable method in the analysis of multi-offset GPR data

collected with modern multi-channel GPR systems.
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3.1 Abstract

Velocity models are essential to process two- and three-dimensional ground- pen-

etrating radar (GPR) data. Furthermore, velocity information aids the inter-

pretation of such data sets because velocity variations reflect important material

properties such as water content. In many GPR applications, common mid-

point (CMP) surveys are routinely collected to determine one-dimensional veloc-

ity models at selected locations. To analyze CMP data gathers, spectral velocity

analyzes relying on the normal-moveout (NMO) model are commonly employed.

Using Dix’s formula, the derived NMO velocities can be further converted to in-

terval velocities which are needed for processing and interpretation. Because of

the inherent assumptions and limitations of such approaches, we investigate and

propose an alternative procedure based on the global inversion of reflection travel-
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times. We use a finite-difference solver of the Eikonal equation to accurately solve

the forward problem in combination with particle swarm optimization (PSO) to

find one-dimensional GPR velocity models explaining our data. Because PSO is

a robust and efficient global optimization tool, our inversion approach includes

generating an ensemble of representative solutions that allows us to analyze uncer-

tainties in the model space. Using synthetic data examples, we test and evaluate

our inversion approach to analyze CMP data collected across typical near-surface

environments. Application to a field data set recorded at a well-constrained test

site including a comparison to independent borehole and direct-push data, fur-

ther illustrates the potential of the proposed approach, which includes a straight-

forward and understandable appraisal of nonuniqueness and uncertainty issues,

respectively. We conclude that our methodology is a feasible and powerful tool

to analyze GPR CMP data and allows practitioners and researchers to evaluate

the reliability of CMP derived velocity models.

3.2 Introduction

In many archaeological, engineering, environmental, and geological applications,

ground-penetration radar (GPR) is an important geophysical tool to investigate

near- surface environments (e.g., Davis & Annan [1989]; Jol [2009b]). To accu-

rately image subsurface structures such as geological layering or man-made ob-

jects with GPR, information regarding GPR velocity and its variations is crucial

(Tillard & Dubois [1995]). For example, migration routines require an accu-

rate velocity model to move dipping reflections to their correct position, unravel

crossing events, and collapse diffractions (Yilmaz [2001]). Further processing

steps whose success is closely related to the accuracy of the available velocity

information include time-to-depth conversions and elevation corrections (Annan

[2005]; Cassidy [2009b]). In addition, GPR velocity is increasingly used to aid the

interpretation of reflection images and to quantitatively characterize the subsur-

face; i.e., to estimate petrophysical properties such as water content or porosity

(e.g., Greaves et al. [1996]; Van Overmeeren et al. [1997]; Huisman et al. [2003a];

Tronicke et al. [2004]; Steelman & Endres [2012]; Hamann et al. [2013]).

To determine a GPR velocity model, different surveying approaches can be em-
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ployed. Cross-hole tomography (e.g.,Binley et al. [2001]; Tronicke et al. [2002])

and vertical radar profiling (e.g., Cassiani et al. [2004]; Tronicke & Knoll [2005])

can provide detailed information regarding subsurface velocity variations. How-

ever, the feasibility of such borehole-based techniques is often limited due the

limited number of available boreholes. Thus, the most common surveying strate-

gies to obtain velocity information rely on surface-based common-offset (CO) or

multi-offset survey geometries. When using CO data, hyperbola-shaped diffrac-

tion events, associated with isolated objects or sharp discontinuities, can be an-

alyzed because the geometry of these events depends on the subsurface velocity

distribution (e.g., Moore et al. [1999]; Bradford & Harper [2005];Porsani & Sauck

[2007]). However, when the number and/or distribution of diffraction events is

limited, the results of such analyses may not provide sufficient detail regarding ve-

locity variations. Thus, a limited number of multi-offset CMP gathers is typically

recorded to obtain one-dimensional (1D) velocity models at selected locations in

the surveyed area (Annan [2005]). The analysis of such CMP data is commonly

performed using reflection seismic processing tools based on the normal-moveout

(NMO) model (e.g., spectral velocity analysis; Yilmaz [2001]). Here, we have

to consider the fundamental assumptions of such NMO based velocity analysis,

which include small offset-to-depth ratios, small velocity gradients, and plane

horizontal reflectors (Al-Chalabi [1973]). Considering these assumptions, vari-

ous studies have investigated the influence of different sources of errors on the

derived GPR velocity estimates (Tillard & Dubois [1995]; Jacob & Hermance

[2004]; Becht et al. [2006]; Booth et al. [2010]; Booth et al. [2011]) also consid-

ering the relevant seismic literature (e.g., Taner & Koehler [1969]; Levin [1971];

Hajnal & Sereda [1981]; Alkhalifah [1997]). For example, Booth et al. [2010] in-

vestigated timing errors associated with the finite duration of the GPR wavelet

and their influence on the derived velocity model while Becht et al. [2006] stud-

ied the influence of layer dip and velocity contrast (spatial velocity changes that

causes reflection and refraction). Summarizing the findings of the above cited

publications illustrates that GPR interval velocity models derived from NMO

based analyses may show significant errors hindering a detailed interpretation

of the derived velocity variations (e.g., in terms of different petrophysical pa-

rameters). As an alternative, Harper & Bradford [2003] used the least-squares
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inversion approach of Zelt & Smith [1992] to reconstruct a 1D velocity model

from manually picked reflection traveltimes. Although the assumptions inherent

in NMO based velocity analyses are avoided by this approach, we have to consider

the limitations of applying such a linearized inversion strategy to the non-linear

problem of reflected traveltime inversion (e.g., Sen & Stoffa [1995]). We desist

from local optimization approaches, where a modification of an initial model is

taken as result with the consequence that already a small variation of an initial

model will reveal a fatal change of the result (Menke [1989]; Aster et al. [2013]).

There is also a growing interest in multi-offset GPR surveying strategies adapting

multi-fold acquisition geometries known from reflection seismics. The resulting

data sets allow for generating densely-sampled, continues 2D or even 3D velocity

models using techniques adapted from seismic data processing (Greaves et al.

[1996]; Cai & McMechan [1999]; Pipan et al. [1999]; Becht et al. [2006]; Bradford

et al. [2009]). In addition to NMO based workflows, this also includes the ap-

plication of techniques known from seismic prestack migration velocity analysis

which, for example, also allow for considering dipping reflectors and lateral veloc-

ity variations (Leparoux et al. [2001]; Bradford [2006]). Although the advantages

of multi-fold data acquisition and analysis are well documented (see references

above), the increased field and processing effort is often considered as a major

limitation (e.g., Booth et al. [2008]) and, thus, also today the analysis of indi-

vidual CMP gathers is crucial for extracting velocity information from surface-

based GPR data.

In this study, we propose a novel workflow to analyze GPR CMP data. Our

methodology is based on inverting reflection traveltimes using a global optimiza-

tion approach known as particle swarm optimization (PSO). Combined with an

accurate forward modeling procedure based on a fast marching eikonal solver

(Sethian [1996]; Fomel [1997a]; Sethian & Popovici [1999]), our methodology

avoids the fundamental assumptions of NMO based analyses and allows to di-

rectly invert for interval velocity models. We also generate representative en-

sembles of acceptable solutions which allows us to appraise uncertainties in the

model space and, thus, to evaluate the reliability of CMP velocity models. In

the following, we start by reviewing NMO based spectral velocity analysis. After

that, we introduce the fundamentals of our PSO based inversion scheme which,
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then, is tested and evaluated using synthetic data examples. Finally, we apply our

method to GPR field data recorded across sand and gravel dominated deposits.

Comparing the resulting velocity models to velocity models derived from NMO

based analysis and to independent direct-push and borehole data, respectively,

allows for evaluating our results including the derived uncertainty estimates.

3.3 Spectral velocity analysis

One of the standard tools for analyzing individual CMP gathers is spectral ve-

locity analysis (Taner & Koehler [1969]; Yilmaz [2001]; Annan [2005]). Assuming

a layered subsurface consisting of isotropic and homogeneous layers separated by

plane interfaces, NMO based analyses are used to test a set of expected veloc-

ity values. The velocity spectrum is generated using a predefined measure of

coherency (such as semblance or unnormalized cross-correlation) across the data

gather in a predefined time window centered on hyperbolic trajectories calculated

by

tNMO(x) =

√

t20 +
x2

v2NMO

(3.1)

where x is the transmitter-receiver offset, t0 the zero-offset traveltime, and vNMO

the normal-moveout velocity. The optimum stacking velocities are then selected

by analyzing the maxima in the resulting velocity spectrum (i.e., calculated co-

herency values as a function of tested velocities and traveltimes) corresponding to

primary reflection events in the analyzed CMP gather. Assuming horizontal in-

terfaces and small transmitter- receiver offsets (compared to the reflector depth),

the derived stacking velocities can be approximated by root-mean square (RMS)

velocities which, then, can be converted to interval velocities using the classical

equation developed by Dix [1955]. Dix’s formulas accounts, but approximates the

refracted ray paths across layer boundaries, what is valid with the small offset

assumption.

To illustrate the traveltime errors associated with equation 3.1, we present a

modeling example employing typical GPR offset ranges and velocity distribu-

tions (i.e., decreasing velocity with increasing depth). We compare tNMO (equa-

34



3. Global inversion of GPR traveltimes to assess uncertainties in
CMP velocity models

Figure 3.1: Relative errors associated with the NMO model (equation 3.1) for horizontally layered velocity
models consisting of two interfaces (at Depth1 and Depth2) defining two homogenous layers with velocities v1
and v2. (a) Relative errors as a function of the offset-to-depth ratio and the velocity ratio between the upper
and the lower layer for a fixed ratio of one between the thickness of the first and the second layer. (b) Relative
errors as a function of the offset-to-depth ratio and the depth ratio between the upper and the lower layer for a
fixed velocity ratio of v1/v2 = 3. For details see text.

tion 3.1) with traveltimes computed using a fast marching eikonal solver (tmod),

which is known as an accurate, stable, and computational efficient method for

traveltime modeling (Sethian [1996]; Fomel [1997a]; Sethian & Popovici [1999]).

For horizontally layered velocity models consisting of two interfaces, we compare

the traveltime differences for the deeper reflector using relative errors calculated

as (tNMO − tmod)/tNMO. In Fig. 3.1a, we show the resulting errors as a function

of the offset-to-depth ratio (considering the depth of lowermost layer noted by

Depth2) and the velocity ratio between the upper and the lower layer (v1/v2).

Here, the ratio between the thickness of the first and the second layer is fixed to

one. The errors increase for increasing velocity contrasts and increasing offset-to-

depth ratios and can be easily in the order of 5% to 10% and more. In Fig. 3.1b,

we illustrate the relative errors as a function of the offset-to-depth ratio and the

depth ratio between the upper and the lower layer (Depth1/Depth2) while the

velocity ratio is fixed to v1/v2 = 3. Again, errors increase with increasing offset-

to-depth ratios while the influence of the depth ratio between the two interfaces

is more pronounced for larger values of the offset-to-depth ratio. Exemplary, we

set now the depth of the second layer equal to one, what is a description for the

case of a CMP gather taken with 10 m offset over a two layer case, where the

second layer reaches the depth of on meter with lower end. For this case, in Fig.

3.1a) the first layer has a thickness of an half a meter and one velocity have to be
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fixed an the other varied. In Fig. 3.1b) we my proceed respectively for the layer

thicknesses and we set the velocities to constant.

The presented modeling exercise demonstrates the limitations of the NMO model

for rather typical GPR situations and indicates that the procedure of deriving 1D

velocity models from individual GPR CMP gathers using NMO based analyses is

prone to errors. Especially, if we are interested in an interval velocity model, for

example, to aid GPR data interpretation, we should employ techniques avoiding

the assumptions inherent in NMO based approaches. Furthermore, an appropri-

ate velocity analysis tool should allow for appraising resolution, and nonunique-

ness issues and, thus, to quantify the uncertainties expected for a CMP based

velocity model. With this motivation, we now introduce our methodology based

on the global inversion of reflection traveltimes.

3.4 Global inversion of CMP traveltimes

In this section, we describe the methodological basics of our global inversion

approach which is outlined in Fig. 3.2. We introduce the employed global opti-

mization method which is known as particle swarm optimization (PSO) including

the necessary details of our implementation to invert GPR traveltime data ob-

served in CMP data sets.

Inspired by the social behavior of birds and fishes, PSO has been introduced

by Kennedy & Eberhart [1995] as a tool to globally solve optimization problems.

Due to its flexibility and computational efficiency the method has been recognized

as a feasible tool in a variety of applications (Poli [2008]). PSO based inver-

sion method is rigorous in terms implementation and shows faster convergence

compared in contrast to other global optimization approaches (e.g., simulated

annealing approaches), we will show that the PSO method is an elegant, fast

and promising way to describe GPR CMP traveltime data plausible with more

precise and completely initial state independent optimized, statistically represen-

tative subsurface velocity models with uncertainties and allows further quanti-

tative soil parameter predictions. More recently, there is also a growing interest

in using PSO to solve typical inverse geophysical problems (Shaw & Srivastava

[2007]; Fernández Mart́ınez et al. [2010]; Monteiro Santos [2010]; Tronicke et al.
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Figure 3.2: Flow diagram illustrating the key proposed PSO-based global inversion procedure of CMP reflection
traveltimes. For details see text.

[2012]; Wilken & Rabbel [2012]). Here, we use PSO to globally invert traveltimes

determined from GPR CMP surveys and our implementation basically follows

Tronicke et al. [2012] who employed PSO to invert crosshole seimic traveltime

data. A standard personal machine with quart core and 6 GB RAM was used to

achieve results like demonstrated in this paper.

In PSO, the swarm consists of a number of particles which explore a predefined

model space. The location of the i-th particle in the model space is represented

by a model vector mi. Here, we invert for a 1D velocity model parameterized

using a predefined number of layers and, thus, mi is defined by layer (interval)

velocities and layer thicknesses. The fitness of a particle at its current location

in the model space is evaluated using an objective function Li which we define as

Li =
1

N

N
∑

j=1

√

(tobs,j − tmod)2, (3.2)

where tobs and tmod are observed and forward modeled traveltimes of primary

reflections, respectively, and N represents the total number of traveltimes used

37



3. Global inversion of GPR traveltimes to assess uncertainties in
CMP velocity models

for the inversion. We calculate tmod using a fast marching eikonal solver because

this technique is accurate (e.g., accounts for refraction across layer boundaries)

and computational efficient (Sethian [1996]; Fomel [1997a]; Sethian & Popovici

[1999]).

In PSO, to ensure information exchange within the swarm, the movement of

an individual particle through the model space is determined by combining the

history of its own fitness (cognitive component) with those of the entire swarm

(social component). Combining these components with some random perturba-

tions results in a vector Φ (known as the velocity vector in PSO terminology)

that controls the movement of the particles during the iterative optimization

procedure. At iteration k + 1, the new location of the i-th particle is calculated

by

Φk+1
i = wΦk

i + c1r
k+1
1 (ml

i −mk
i ) + c2r

k+1
2 (mg −mk

i ),

mk+1
i = mk

i + Φk+1
i , (3.3)

where mi is the personal best position of the i-th particle, mg is the global best

position of the entire swarm, r1 and r2 are randomly drawn form a uniform distri-

bution in [0,1], w = 0.7298 is the inertia weight serving as a memory of previous

velocities, and c1 = c2 = 1.4962 are the acceleration constants controlling the

relative proportion of cognition and social interaction within the swarm. These

unphysical parameters were introduced generally by Eberhart & Shi [2000] and

Clerk & Kennedy [2002], to ensure efficient convergence of the algorithm. The

best positions are determined in both cases with the stored best objective func-

tions of the particles, with comparison of personal history or swarm community,

respectively.

When starting the PSO optimization procedure, Φ is set to zero and the par-

ticles are randomly initialized in the predefined model space. Constraining the

model space to value ranges of layer velocities for unsaturated or saturated sed-

iment sand reasonable (to time window corresponding) thicknesses as a priori

information helps to speed up the convergence behavior of the algorithm. After

this initialization, the forward problem is solved for each particle, the objective

function (equation 3.2) is evaluated, and ml
i and mg are stored. In the following
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iterations, the model vectors are updated (equation 3.3) and compared to ml
i and

mg. If the new model of the i-th particle is better than the current personal best

model and the best global model, ml
i and mg are updated. This procedure is

repeated until a predefined stopping criterion is reached (inner loop in Fig. 3.2).

The final mg represents the optimum solution; i.e., a 1D velocity model explain-

ing our traveltime data set.

Before starting the PSO optimization procedure, we have to define the number of

particles and reasonable stopping criteria (maximum number of iterations and/or

acceptable value of the objective function). To find optimum parameters in terms

of desired error level as well as computational effort for a specific problem, some

initial parameter testing is required. For the CMP examples presented in this

study, generally 20 particles and 300 iterations are sufficient to explain our data.

Furthermore, our parameter tests have shown that not to strong variations (i.e.,

one digit) of these PSO parameters (e.g., number of particles) have no critical

impact on the obtained results, but on computation time. The number of layers

for the searched subsurface solution, is achieved by inspection of the presence of

picked reflection events in the CMP gather.

3.5 Generating a Representative Ensemble

As indicated by the outer loop in Fig. 3.2, we repeat the above described PSO

optimization procedure with different randomly generated starting models and

different seeds of the random number generator. Herewith, we generate an en-

semble of models explaining the data equally well (Fernández Mart́ınez et al.

[2010]; Tronicke et al. [2012]). Analyzing such an ensemble allows us to assess

uncertainty and nonuniqueness issues in the formulated inverse problem; for ex-

ample, to appraise how well a layer boundary or the velocity of a certain layer is

resolved. To evaluate the representativeness of the generated ensemble, we follow

Sen & Stoffa [1995] and compute the elements Mij of the posterior correlation

matrix M by

Mij =
Cij

√

CiiCjj

(3.4)
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where Cij is an element of the posterior covariance matrix C. The matrix C is

calculated from the ensemble of accepted solutions mg by

C =
1

M

M
∑

j=1

(mg
j − 〈mg〉)(mg

j − 〈mg〉)T (3.5)

where M is number of models within the ensemble and

〈mg〉 = 1

M

M
∑

j=1

mg
j (3.6)

By analyzing changes in M during the inversion procedure (i.e., ensemble gener-

ation) allows us to evaluate the representativeness of the ensemble (Sen & Stoffa

[1995]). If no significant variations in M are detected when new models are added

to the ensemble, we assume that the ensemble is representative and allows for

reliable posterior statistical analyses. For our inversion problem, we found that

an ensemble consisting of 100 models characterized by an acceptable data fit can

typically be regarded as representative. Because the found empirical distribu-

tions of the model parameters are typically not following a normal distribution,

we use robust statistical measures to analyze the distributions in more detail.

For our synthetic and field examples, we compute the median, the 5th to 95th

percentile, and the 25th to 75th percentile to characterize the central tendency

and the spread of the underlying parameter distributions. In addition, the ma-

trix M (equation 3.4) can be used to analyze correlations between the individual

model parameters providing further insights into the formulated inverse problem

and employed model parameterization, respectively.

3.6 Synthetic Examples

In this section, we test and evaluate the proposed workflow using synthetic ex-

amples. We generate synthetic traveltime data sets simulating traveltimes from

reflected events as observed in GPR CMP surveys and invert these data using

our PSO based inversion procedure. Furthermore, such synthetic examples allow

us to analyze ensemble characteristics and uncertainties which can be expected
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Figure 3.3: Results of globally inverting a synthetic reflection traveltime data set (example 1) including a
comparison to the input model parameters. For (a) layer velocities and (b) layer thicknesses the median, the
25th to 75th, and the 5th to 95th percentile calculated from the ensemble of models are shown. Layer number
increases with increasing depth; i.e., number one represents the uppermost layer.

for typical CMP data sets recorded across typical subsurface environments.

Example 1

The first synthetic example represents a CMP survey recorded with a trace spac-

ing of 0.1m and maximum offset of 15m across a ten-layer case where each layer

is characterized by a constant interval velocity of 100m/µs and a thickness of 1m

(i.e., the deepest layer boundary is found at 10m depth). With this model we

want to investigate depth dependent model characteristics which might be related

to decreasing moveout with increasing interface depth for a fixed CMP geometry.

The results of globally inverting the corresponding noise-free traveltime data set

are presented in Fig. 3.3. For thiscase thicknesses varies between 0.5 to 1.5m

and velocities varies between 0.08 to 0.12m/µs, as PSO search space limits. We

show the median, the 25th to 75th, and the 5th to 95th percentile calculated from
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Figure 3.4: Model parameter correlation matrix calculated from the final ensemble of accepted models. Model
parameters 1-10 correspond to the thicknesses of layers 1- 10 while parameters 11-20 represent the corresponding
layer velocities.

the ensemble of model parameter distributions (interval velocity and thickness of

layers number one to ten where layer number one corresponds to the uppermost

layer) and compare it to the corresponding input values. The input values of

velocity and thickness are well recovered by the median values of the parameter

distributions (maximum discrepancies <2%). In Fig. 3.3a, the 25th to 75th and

the 5th to 95th percentile values indicate maximum uncertainties of ∼7% and

∼15%, respectively, with a trend of increasing uncertainty with increasing depth

(i.e., increasing layer number). For the thicknesses (Fig. 3.3b), we observe no

characteristic trend with depth and the 25th to 75th and the 5th to 95th per-

centile values indicate uncertainties of ∼5-8% and ∼13-22%, respectively. The

observation of increasing uncertainties in velocity with increasing depth can be

related to the lower moveout observed for the deeper reflection events in compari-

son to shallow reflections at the same offset; i.e., shallow events are more sensitive

to a certain variation in velocity than deeper events.

In Fig. 3.4, we show the posterior correlation matrix calculated from the final

ensemble of accepted solutions. This matrix can be used to analyze the interde-

pendence between different model parameters. In Fig. 3.4, model parameters one

to ten correspond to the layer thicknesses of layer number one to ten while param-
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eters eleven to twenty represent the corresponding layer velocities. We observe

high positive correlations between the thickness and the velocity of a specific layer

while high negative correlations are observed between thickness and velocity of a

specific layer and the thicknesses and velocities of the neighboring layers. These

observations illustrate that the uncertainties associated with the corresponding

pairs of model parameters are highly correlated and anticorrelated, respectively,

and that the corresponding parameters can not be independently resolved by

the data set; i.e., only some linear combination of the parameters are resolved

Tarantola [2005]. For example, due to the high positive correlations (close to one)

between layer thickness and velocity we can not expect to accurately resolve both

parameters for a specific layer; i.e., if one of the parameters is estimated too high

or to low this can be easily compensated by increasing or decreasing the other

corresponding parameter (e.g., layer five in Fig. 3.3). Thus, there is an inherent

nonuniqueness in the formulated inverse problem which we have to be aware of

when analyzing the inversion results. Our experience with a number of different

synthetic and field CMP data sets shows that we always observe similar patterns

and correlations in the resulting posterior correlation matrices and, thus, these

matrices will not be shown for the following examples.

Example 2

Our second synthetic example simulates a rather typical hydrogeological situation

where a shallow groundwater table results in a sharp velocity decrease. In such

situations, we might be interested in resolving rather small velocity variations

in the water saturated zone which, for example, could be interpreted in terms

of porosity variations. Therefore, the input five-layer velocity model comprises

a 2m thick top layer with a velocity of 100m/µs followed by a sequence of four

2m thick layers characterized by velocities of 50m/µs and 60m/µs, respectively.

The CMP survey geometry is identical to the first example; i.e., the trace spacing

is 0.1m and the maximum offset is 15m. This second synthetic example was

achieved with PSO parameter boundaries for the unsaturated first layer from

0.08m/ns to 0.15m/ns and for the saturated deeper layers from 0.09m/ns to

0.04m/ns, thickness range was kept in the range 0.2m to 10m for all layers.
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Figure 3.5: Results of globally inverting a synthetic reflection traveltime data set (example 2) including a
comparison to the input model parameters and the results of NMO based analysis relying on Dix’s equation.
For (a) layer velocities and (b) layer thicknesses the median, the 25th to 75th, and the 5th to 95th percentile
calculated from the ensemble of models are shown. Layer number increases with increasing depth; i.e., number
one represents the uppermost layer.

Thus we adapted search space boundaries, to ground water table expectation, for

faster convergence and for more sensitivity for velocities changes between deeper

layer in the water saturated zone and we will proceeded similar with the field

example.

The results of globally inverting the corresponding noise-free traveltime data

set are presented in Fig. 3.5, where we visualize the median, the 25th to 75th,

and the 5th to 95th percentile calculated from the final ensemble of model pa-

rameters. The input and the achieved medians of the results are indicated in the

figures with circles and cross symbols, respectively. Comparing the input model

parameters to the median layer velocities and thicknesses from our PSO based

inversion illustrates that the input model is accurately reconstructed (maximum

discrepancies <5 %) including the velocity variations in the saturated zone (lay-

ers two to five). However, the 25th to 75th and the 5th to 95th percentile values

indicate uncertainties in the underlying parameter distributions in the order of

10% and 20%, respectively. While the velocity of the first layer is well resolved,
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the estimated uncertainties for the velocities of layers two to four indicate re-

duced confidence in resolving this alternating sequence with velocity contrasts of

10m/µs. For comparison, we also show the results of NMO based spectral veloc-

ity analysis including a transformation into interval velocity using Dix’s equation

(blue symbols in Fig. 3.5). Although this analysis provides an impression on

subsurface velocity variations which can be used to aid traveltime picking and

defining a reasonable parameter constraints for fast convergence of the global

inversion. The sharp velocity contrast between layers 1 and 2 causes an overesti-

mation of the parameters of layer 2 in the order of 30%, which clearly illustrates

the limitation of NMO based velocity analyses.

In conclusion, the discussed and further synthetic examples (not shown here)

demonstrate that our PSO based global inversion is a feasible tool to reconstruct

1D velocity models from typical CMP traveltime data even in the presence of

sharp velocity contrasts. Furthermore, our approach provides reliable estimates

of uncertainty, which, for example, show the challenge in resolving minor veloc-

ity variations underneath a shallow groundwater table using surface-based CMP

data.

3.7 Field Example

To demonstrate the applicability of our global inversion approach to field data,

we use it to invert reflection traveltimes manually picked from a CMP data set

recorded at a well constrained test site in Horstwalde, Germany. This site has

been installed by the University of Potsdam and the German Federal Institute

for Materials Research and Testing (BAM). As known from a variety of available

borehole, direct-push, and geophysical data, the shallow geology is characterized

by layered sequences of sand and gravel dominated glaciofluvial deposits showing

only minor inclusions of clay, lignite, and organic material (Linder et al. [2010];

Schmelzbach et al. [2011]; Tronicke et al. [2012]). Here, we focus on a single GPR

CMP data set recorded close to borehole B1/09, where different borehole and

direct-push logs are available (Tronicke et al. [2012]). The data were recorded

using 100 MHz antennae, a sampling interval of 0.1 ns, minimum and maximum

source-receiver offsets of 0.4m and 14.7m, respectively, and stepwise offset incre-
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Figure 3.6: CMP field data example recorded at the Horstwalde test site, Germany. (a) NMO based velocity
spectrum calculated from (b) the processed CMP data gather. In (a), yellow to red colors indicate maximum
coherency values. In (b), the hyperbolic NMO events calculated using equation 3.1 and the picked values from
(a) are indicated by red symbols while the green lines represent the traveltimes picked in the raw data section
(not shown) which are used as input for our global inversion scheme.

ments of 0.1m.

In Fig. 3.6, we present the CMP data section after amplitude scaling and

bandpass filtering as well as the result of NMO based spectral velocity analysis

calculated using the un-normalized cross-correlation as coherency measure. Five

reflection events can be clearly identified by their hyperbolic moveout in the data

section (Fig. 3.6b) and by the corresponding maximum values in the velocity

spectrum (Fig. 3.6a). Inverting the picked values from the velocity spectrum

using Dix’s equation provides a first impression on subsurface velocity variations

(blue symbols in Fig. 3.7).

From this analysis, we learn that the first reflection characterizes the transi-

tion from unsaturated to water saturated sediments while the deeper reflections

are associated with sedimentary structures in the saturated zone. While the

unsaturated sediments up to a depth of ∼3m are characterized by velocities of

∼100m/µs, the results of NMO based analysis indicate velocities of ∼60m/µs
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Figure 3.7: Results of globally inverting reflection traveltimes from the field data set including a comparison to
the results of NMO based analysis relying on Dix’s equation. For (a) layer velocities and (b) layer thicknesses
the median, the 25th to 75th, and the 5th to 95th percentile calculated from the ensemble of models are shown.
Layer number increases with increasing depth; i.e., number one represents the uppermost layer.

for the saturated sediments up to a depth of ∼12m. Guided by the results of

NMO based analysis we have manually picked the arrival times of the identified

reflection events (Fig. 3.6b) in the raw data section (not shown). Furthermore,

we have used the NMO based velocity model to constrain the model space in our

global inversion approach to reasonable values of the individual model parameter.

In Fig. 3.7, we illustrate the results of globally inverting the reflection traveltime

data set. We show the median, the 25th to 75th, and the 5th to 95th percentile

calculated from the ensemble of model parameter distributions (interval velocity

and thickness of layers number one to five where layer number one corresponds

to the uppermost layer) and also compare these values to the result of NMO

based analysis. Comparable to our second synthetic example, the velocity and

the thickness of the first layer are well resolved and we observe only minor dif-

ferences between the results of global inversion and NMO based analysis. The

thickness of the first layer is also in excellent agreement with the depth of the

groundwater table measured during our GPR measurements at a depth of 2.73m

with a water level meter in the borehole. Also similar to our synthetic exam-
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Figure 3.8: Comparison of global inversion results of the field data example to selected logs available at the CMP
location at the test site. (a) CMP derived layer velocities as a function of depth, (b) friction ratio as function
of depth as calculated from CPT logging data, and (c) natural gamma activity as derived from borehole GR
logging data. In (a) to (c), gray boxes indicate depth uncertainties as estimated by the 25th to 75th percentile
values from the global inversion result (Fig. 3.7). In (a), the green boxes indicate velocity uncertainties as
estimated by the 25th to 75th percentile values from the global inversion result (Fig. 3.7), while in (b) and
(c) the green boxes characterize the variability (25th to 75th percentile) of friction ratio and gamma activity,
respectively, calculated from the logging data in the depth intervals defined by the median model in (a).

ple, we notice increased uncertainties in the saturated zone (layers 2 to 5) and

some significant differences (up to ∼30%) between the global inversion result and

the NMO based analysis. Again, these discrepancies are associated with the as-

sumptions inherent in NMO based approaches; i.e., small offset-to-depth ratios

and small velocity gradients across layer boundaries. Uncertainties of PSO are

widened in contrast to the shown synthetic examples, what indicates the quality

of the picked traveltimes, in terms of noise, sampling precision and offset errors.

To further check the consistency of our derived velocity model including the

derived estimates of uncertainty (Fig. 3.8a) with independent data, we compare

it to two selected direct-push and borehole logs (Fig. 3.8b and 3.8c). The shown

friction ratio log was measured using a standard cone-penetration test tool and is
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indicative for different soil types (Lunne et al. [1997]). The log of natural gamma-

ray (GR) activity was recorded with a constant logging speed using a standard

borehole tool measuring activity in counts per second (cps). For each of the lay-

ers identified by our global traveltime inversion procedure, we have calculated the

median and the 25th to 75th percentile values to characterize the central tendency

and the variability of the two logging parameters within individual layers. In do-

ing so, we basically upscale the core and logging data to the spatial scale of the

structures imaged by our CMP data set. When comparing the parameter-depth

models in Fig. 3.8, we see that the imaged velocity variations and depths of the

interfaces, respectively, largely correspond to compositional changes indicated by

the logging data. For example, for the GR data (Fig. 3.8c) in the saturated

zone (below depths of ∼3m) we notice increasing GR median and 25th to 75th

percentile values with depth (layers 2 to 4) while the lowermost layer (layer 5)

is characterized by minimum median values and minimum variability. As similar

observation can be made for the friction ratio log (Fig. 3.8b), we conclude that

the derived 1D GPR velocity model is largely consistent with independent logging

data.

3.8 Conclusion

In GPR surveying, CMP surveys are routinely employed to determine 1D veloc-

ity models collected at selected locations across a field site. We have presented a

global inversion approach based on PSO to analyze reflection traveltimes observed

in such CMP data sets. As our approach employs an accurate forward modeling

routine which accounts for refraction effects, our methodology avoids the inherent

assumptions of NMO based velocity analysis and, thus, provides more accurate

velocity estimates than these standard analysis tools. Furthermore, our inversion

approach can be used to generate an ensemble of acceptable solutions. Analyz-

ing a representative ensemble allows for analyzing the interdependence between

different model parameters. The observed correlations between layer thicknesses

and velocities within individual layers as well as with neighboring layers illustrate

the fundamental limitations of deriving accurate velocity estimates from a single

CMP gather. From the generated ensemble of solutions, we also calculate different
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statistical measure to characterize the central tendency as well as the variability

of the individual model parameters. For our synthetic and field examples, we

have used the median, the 25th to 75th, and the 5th to 95th percentile to char-

acterize the underlying parameter distributions and to provide reliable estimates

of uncertainty. We found that great changes of velocity, such as those associated

with a shallow groundwater table, decrease our ability to accurately resolve the

model parameters for deeper layers. Because our PSO based inversion approach is

easy to implement, needs less parameter adjustments, and provides faster conver-

gence compared with other more common global optimization approaches (e.g.,

simulated annealing methods), we believe that the presented methodology is a

feasible and powerful tool to analyze GPR CMP data and allows practitioners

and researchers to evaluate the uncertainties of CMP derived velocity models.
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Chapter 4

Vertical radar profiling:

combined analysis of traveltimes,

amplitudes, and reflections

Jens Tronicke and Göran Hamann

Submitted to Geophysics, November 15, 2013

4.1 Abstract

Vertical radar profiling (VRP) is a single-borehole geophysical technique, where

the receiver antenna is located within a borehole while the transmitter antenna is

placed at one or various offsets from the borehole. Today, VRP surveying is pri-

marily used to derive 1D velocity models by inverting the arrival times of direct

waves. Using field data collected at a well-constrained test site in Germany, we

present a VRP workflow relying on the analysis of direct-arrival traveltimes and

amplitudes as well as on imaging reflection events. To invert our VRP traveltime

data, we use a global inversion strategy resulting in an ensemble of acceptable ve-

locity models and, thus, allows us to appraise uncertainty issues in the estimated

velocities as well as in porosity models derived via petrophysical translations. In

addition to traveltime inversion, the analysis of direct-wave amplitudes and reflec-

tion events provides further valuable information regarding subsurface properties
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and architecture. The employed VRP amplitude pre-processing and inversion

procedures are adapted from crosshole ground-penetrating radar (GPR) atten-

uation tomography and result in an attenuation model, which can be used to

estimate variations in electrical resistivity. Our VRP reflection imaging approach

relies on corridor stacking, which is a well-established processing sequence in ver-

tical seismic profiling. The resulting reflection image outlines bounding layers

and can be directly compared to surface-based GPR reflection profiling. In our

case study, the results of combined analysis of VRP, traveltimes, amplitudes, and

reflections are consistent with independent core and borehole logs as well as GPR

reflection profiles, which enables us to derive a high-resolution hydrostratigraphic

model as needed, for example, to understand and model groundwater flow and

transport.

4.2 Indroduction

Ground-penetrating radar (GPR) is a widely used geophysical technique to in-

vestigate the shallow subsurface. Most GPR surveys are employed using surface-

based antenna configurations to collect common-offset reflection profiles (Davis &

Annan [1989]; Jol [2009b]). Although such reflection profiles can provide valuable

information regarding subsurface structures and architecture (e.g., Schmelzbach

et al. [2011]), they usually not provide direct information on subsurface mate-

rial properties such as dielectric or hydrological parameter values. In addition,

for migration, topographic correction, and time-to-depth conversion of GPR re-

flection data, information regarding GPR velocities is required (Cassidy [2009b]).

Typically, common-midpoint (CMP) surveys are used to obtain the velocity infor-

mation required for processing surface-based reflection data. Such CMP-derived

velocity estimates, which typically rely on a normal moveout (NMO) based anal-

ysis strategy, have also been used for a more quantitative characterization of the

subsurface (e.g., to estimate water content; Greaves et al., 1996). However, it is

well known that the resolution capabilities of such CMP-based velocity estimates

are limited and that these estimates are often characterized by high uncertainties

(Tillard & Dubois [1995]; Hamann et al. [2013]).

As an alternative to CMP surveying, borehole-based GPR techniques have been
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proposed because we generally can expect an increased resolution compared to

surface- based techniques. For example, in environmental and hydrological ap-

plications crosshole GPR tomography is increasingly used because the resulting

tomographic images allow for a detailed characterization of the subsurface be-

tween pairs of boreholes ( Binley et al. [2001]; Allumbaugh et al. [2002]; Tronicke

et al. [2002]; Tronicke et al. [2004]; Becht et al. [2004]; Clement & Barrash [2006];

Gloaguen et al. [2007]; Looms et al. [2008]). However, in many near-surface

environments successful application of crosshole imaging requires closely spaced

boreholes with lateral distances of ∼ 10m or less. In addition, the resolution

of the inverted tomographic parameter models depends on the geometry of the

experiment, the employed inversion strategy, and on the true subsurface param-

eter variations to be imaged (e.g., Rector & Washbourne [1994]; Day-Lewis et al.

[2005]). In crosshole traveltime tomography, we generally expect the best reso-

lution in the central part of the model and poorer resolution paired with high

uncertainties in the reconstructed parameter values close to the boreholes. This

often hinders the development of site- specific petrophysical models linking, for

example, tomographic properties with other material properties such as porosity

or hydraulic conductivity as derived, for example, from logging data (Day-Lewis

et al. [2005]).

In contrast to crosshole GPR surveying, vertical radar profiling (VRP) is a single-

borehole technique to investigate the subsurface close to one borehole (Knoll

[1996]). The VRP technique can be employed for reflection imaging (Zhou & Sato

[2000]; Böniger et al. [2006]) and might also be considered for 1D attenuation to-

mography. However, today it is primarily used to derive 1D velocity models by

inverting the traveltimes of direct arrivals typically employing a linearized inver-

sion scheme. Within the past decade, a number of successful applications indicate

the potential of the method, especially, to obtain high-resolution velocity models

in the vicinity of a borehole. Such velocity models have been used to process and

calibrate surface-based GPR reflection data and also to estimate hydrological and

engineering material properties (Knoll & Clement [1999]; Murray et al. [2000];

Hammon et al. [2002]; Pringle et al. [2003]; Cassiani et al. [2004]; Böniger et al.

[2006]; Spillmann et al. [2006]; Cassiani et al. [2008]; Harbi. & McMechan [2011];

Schmelzbach et al. [2011]; Vignoli et al. [2012]; Igel et al. [2013]).
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In this study, we want to promote a more profound analysis of VRP data. In ad-

dition to inverting direct-arrival traveltimes using a global optimization approach,

our strategy includes the inversion of direct-arrival amplitudes as well as VRP

reflection imaging. Thereby, we obtain a 1D velocity model including some quan-

titative estimates of uncertainty, an attenuation model primarily reflecting varia-

tions in electrical resistivity, and a reflection image enhancing our understanding

of subsurface architecture. By using field data from a well constrained test in

Germany, we illustrate the benefit of such an advanced analysis strategy, which

includes improved abilities to develop a site-specific petrophysical understanding

and linking borehole data to surface GPR reflection data. In the following, we

present our methodology by reviewing some important VRP data characteristics,

by introducing our traveltime and amplitude inversion approaches, and by pro-

viding details regarding the employed reflection imaging approach. After that, we

analyze VRP field data collected within a shallow sedimentary aquifer to improve

our hydrological understanding of the system. As our field data base also includes

surface GPR reflection data, natural gamma activity logs, electrical conductivity

logs, and grain size information obtained by sieve analysis of core material, we

can compare our VRP results to independent data and develop an integrated

analysis strategy to characterize subsurface architecture and material properties

in detail.

4.3 Methodology

4.3.1 Vertical radar profiling (VRP)

In VRP surveying, the transmitter antenna is placed at one or several fixed off-

sets from the borehole on the ground and the receiver antenna is lowered down

a borehole (Fig. 4.1a). Thus, VRP is conceptually similar to the better-known

vertical seismic profiling (VSP) technique (Hardage [2000]). However, as pointed

out and analyzed in detail by Tronicke & Knoll [2005], there are some differences

to VSP, which have to be considered when acquiring and analyzing VRP data.

First, in addition to direct and reflected events we have to consider waves crit-

ically refracted at the earth surface (Fig. 4.1). These refracted waves can be a
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Figure 4.1: (a) Sketch illustrating VRP survey geometry (transmitter antenna at ground surface and receiver
antenna in a borehole) and major travelpaths of direct, reflected, and critically refracted events. (b) Traveltime
curves for direct, reflected, and critically refracted events. In (a), αc is the critical angle at the groundair
interface and c and v are GPR velocities in air and in a homogenous, isotropic subsurface. Both the travelpaths
in (a) and the traveltime curves in (b) are calculated using a subsurface velocity of 0.1m/ns and a horizontal
reflecting interface at 7.0m depth (modified after Tronicke & Knoll [2005]).

major limiting factor in VRP surveying because they are likely to interfere with

the direct arrivals (as demonstrated by the example in Fig. 4.1b) and, thus, re-

duce the reliability of picking direct-arrival traveltimes and amplitudes. To avoid

recording critically refracted waves, relatively short transmitter-borehole offsets

are required. Second, we have to consider the influence of the radiation patterns of

typical VRP antenna configurations on data quality. Typically, the transmitting

antenna is oriented radially from the borehole resulting in a co-polarized antenna

configuration. Tronicke & Knoll [2005] analyzed the resulting co-polarized VRP

radiation patterns by numerical modeling and by combining the analytical far-

field patterns of an infinitesimal horizontal dipole with that of an infinitesimal

vertical dipole. They found minimum amplitude sensitivity for near-vertical ray

paths and best signal-to- noise ratios for medium to far offsets between the trans-

mitter and the borehole. Thus, there is a trade-off between the quest to record

data with optimum data quality and the requirement to avoid waves critically

refracted at the earth’s surface. As a consequence, when acquiring VRP data at

a given field site, multiple lateral offsets should be recorded to ensure optimum

data quality and information content.
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4.3.2 Traveltime inversion

Today, VRP data are primarily used to derive 1D velocity models close to a bore-

hole by inverting the traveltimes of direct arrivals. Traveltime picking is usually

performed in a manual or semi-automated fashion after minor data processing

typically including time-zero corrections, dc bias removal, careful bandpass filter-

ing, as well as amplitude scaling and balancing (e.g., Clement & Knoll [2006]).

Traveltime inversion is typically performed using some kind of regularized, lin-

earized inversion scheme (e.g., Cassiani et al. [2004]; Tronicke & Knoll [2005];

Clement & Knoll [2006]; Vignoli et al. [2012]); i.e., a local optimization approach

is used to iteratively modify a user-specified initial model and smoothness (or

other) regularizations are used to stabilize the inversion. The model parame-

terization usually relies on constant velocity layers with fixed layer thicknesses

typically in the order of a few decimeters. Often, these inversion approaches also

involve the assumption of straight ray paths which, comparable VSP data, might

however be critical if major velocity contrasts are present and medium to far

offset data are included in the inversion (e.g., Schuster et al. [1988]; Moret et al.

[2004] ).

In this study, we use a different approach for traveltime inversion. Our approach

relies on combining an efficient global optimization algorithm known as particle

swarm optimization (PSO; Kennedy & Eberhart [1995]) with a forward model-

ing procedure based on a fast marching eikonal solver, which has proven to be

efficient and accurate also in the presence of sharp velocity contrasts (Sethian

[1996]; Fomel [1997b]; Sethian & Popovici [1999]). Compared to linearized (lo-

cal) inversion approaches, the chosen PSO- based global optimization approach

allows for generating results independent of the starting model and for exploring

the model space in more detail, which in turn provides a better chance to find

the global minimum (Sen & Stoffa [1995]). Furthermore, such global approaches

enable us to generate an ensemble of models that explain the data equally well

and, thus, can be used to assess uncertainty and nonuniqueness issues in the

formulated inverse problem. As a detailed description of PSO and its applica-

tion to inverse geophysical problems is beyond the scope of this paper, interested

readers are referred to the literature where a number of recent studies provide
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details regarding implementation and illustrate a variety of possible geophysical

applications (Shaw & Srivastava [2007]; Fernández Mart́ınez et al. [2010]; Mon-

teiro Santos [2010]; Tronicke et al. [2012]; Wilken & Rabbel [2012]; Hamann et al.

[2013]). Here, we employ the PSO-based traveltime inversion approach described

in detail by Tronicke et al. [2012]. This approach has been originally developed

to invert traveltime data from crosshole seismic experiments but can easily be

modified to invert other traveltime data sets such as those derived from VRP

surveying.

For inverting our VRP traveltime data, we use a model parameterization rely-

ing on a fixed number of constant velocity layers describing a 1D velocity model

around the borehole. After some initial parameter testing, we found that 19

constant-velocity layers with variable thicknesses (resulting in 37 model parame-

ter) provide enough flexibility to explain our VRP traveltime data set. We also

found that this parameterization provides more flexibility and more stable re-

sults compared to a model parameterization relying on constant-thickness layers.

Further parameter tests were performed to select the PSO parameters number

of particles and number of iterations. Here, we found that a swarm consisting of

50 particles and 300 iterations are sufficient to fit our traveltime data. Within

the optimization procedure, we use the root-mean-square (rms) error between

calculated and measured traveltimes as objective function, i.e., to evaluate the

fitness of the current model. Using this strategy, we repeatedly inverted our data

set using different seeds of the random number generator to obtain an ensemble

of 210 velocity models explaining our data equally well.

4.3.3 Amplitude inversion

In different applications of crosshole GPR, ray-based amplitude inversion (atten-

uation tomography) has proven to be a valuable tool to image subsurface features

not detectable by travel time tomography alone (e.g., Olsson et al. [1992]; Valle

et al. [1999]; Peterson [2001]; Zhou & Fullagar [2001]; Chen et al. [2001]; Tronicke

et al. [2004]; Paasche et al. [2006]). However, to the best of our knowledge at-

tenuation tomography has yet not been applied to VRP data, although crosshole

and VRP surveying are conceptually identical and the same physical principles
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Submitted to Geophysics, November 15, 2013

apply. As noted by Tronicke et al. [2004], the most important limitation of GPR

attenuation tomography is clearly rooted in its inherent assumption of weak het-

erogeneity, which implies negligible ray bending, no scattering, reflection or re-

fraction effects, and largely undistorted full-space antenna radiation patterns. As

these assumptions are rarely fulfilled, the absolute values of the inferred electrical

conductivity may differ substantially from the actual values, but the method has

nevertheless been proven to be useful and reliable for outlining the larger- scale

conductivity structure as well as for constraining relative changes in conductivity

(Holliger et al. [2001]).

Here, we invert maximum first-cycle amplitudes picked from one selected common

transmitter gathers using a linearized inversion approach under the assumption

of straight ray paths to obtain a first-order guess of the attenuation and electrical

resistivity structure, respectively. Prior to inversion, we correct the picked am-

plitudes for geometrical spreading, the source strength (estimated amplitude of

transmitted wavelet), and the angular sensitivity of the transmitting and receiv-

ing antenna (assuming a co-polarized VRP radiation pattern; Tronicke & Knoll

[2005]). This data pre-processing follows the standard data reduction procedure

known from crosshole GPR attenuation tomography (Olsson et al. [1992]; Holliger

et al. [2001]; Peterson [2001]; Zhou & Fullagar [2001]). The result of inversion is

a 1D model of the attenuation of electromagnetic waves, which can be used to

estimate electrical resistivity.

4.3.4 Reflection imaging

In addition to inverting direct arrival traveltimes and amplitudes, we may also

analyze primary reflections recorded in VRP data as up-going events; i.e., the

taveltime of these events decreases with increasing receiver depth (see also Fig.

4.1). Although the principles and the basic processing flows for VRP reflection

imaging can largely be adapted from VSP surveying (Böniger et al. [2006]), reflec-

tion events are often ignored in VRP applications. Here, we use a basic processing

flow well known from VSP reflection imaging (e.g., Hardage [2000]) to obtain a

1D reflection image from a single offset data gather. In this flow, after aligning

the data (flattening on picked first arrival times) and amplitude scaling, the up-
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and down-going wavefields are separated using median filtering or other wave

separation techniques such as f − k or Karhunen-Loève filtering. The separated

up-going events are shifted back using the doubled first-arrival times resulting in

a section where the up-going events are imaged as a function of two-way travel-

time (comparable to surface GPR reflection data). Finally, a so-called corridor

stack is performed; i.e., the traces are summed in a user-specified corridor placed

immediately behind the first arrivals. In doing so, a narrow corridor focusing

on reflected signals just behind the direct arrivals helps to suppress multiple re-

flections. The resulting corridor stack is a single-trace VRP reflection section

outlining subsurface boundary layers close to the borehole, which can be used as

a direct link to surface-based GPR reflection data.

4.4 Field data

4.4.1 Site description and borehole data

VRP and surface-based GPR reflection data have been acquired at the Horstwalde

test site, which is located ∼30 km south of Berlin, Germany, and covers area of

∼70×80m. The site has been installed by the University of Potsdam in coop-

eration with the Federal Institute for Materials Research and Testing (BAM)

and the Helmholtz Center for Environmental Research (UFZ) to develop tech-

niques for characterizing near- surface sedimentary environments (Tronicke et al.

[2012]). As known from various boreholes, direct-push soundings, and geophys-

ical surveys, the local, near-surface geology is dominated by layered sequences

of mainly sand- and gravel-dominated glaciofluvial material (Linder et al. [2010];

Schmelzbach et al. [2011]; Tronicke et al. [2012]).

In this study, we focus on one ∼18m deep, PVC-cased borehole in the southern

part of test site, where, as known from water leveling, the groundwater table was

located at a depth of ∼2.75m during the time of our VRP and GPR surveys.

Furthermore, the results of sieve analyses of core material are available (Fig.

4.2a) and the borehole has been logged using standard geophysical borehole tools

including a deviation (DEV), a natural gamma ray (GR), and an induction tool

(IND). From the DEV log (not shown here), we know that the borehole is almost
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Figure 4.2: Available borehole data at our field site. (a) Characteristic grain sizes d10, d50, and d90 derived from
sieve analyses of core material, (b) natural gamma activity, and (c) apparent electrical conductivity recorded
using standard gamma ray (GR) and induction (IND) tools. In (a), the characteristic grain sizes are plotted in
phi-units, where d(phi) = −log2[d(mm)] (e.g., Schön [1998]). In (b), GR raw (black line) and smoothed data
(gray line) are shown to highlight major parameter variations.

vertical because the maximum total deviations from verticality are ∼0.1m. The

GR and IND logs (Fig. 4.2b and Fig. 4.2c) measuring natural gamma activity

and apparent electrical conductivity, respectively, are standard tools to explore

sedimentary units around a borehole (Hearst et al. [2000]). Our GR and IND logs

as well as the results of grain size analyses indicate different sedimentary units

varying in physical properties and composition, respectively. Later on, we use

these data to evaluate and to interpret the results of VRP and GPR surveying in

more detail.

4.4.2 VRP data

VRP data have been acquired employing two dipole borehole antennas with a

nominal center frequency of 100MHz. The dominant frequencies of the data

recorded using a sampling interval of 0.19 ns and 16 vertical stacks were ∼80MHz.

Following the recommendations of Tronicke & Knoll [2005], we recorded multi-

offset data with borehole offsets ranging between 1.5m and 12.0m with a receiver
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Figure 4.3: Two common transmitter gathers of the Horstwalde VRP field data set recorded at transmitter offsets
of (a) 1.5m and (b) 4.5m. Offsets are measured between the borehole head and the feedpoint of the antenna.
Overlain red curves show picked traveltimes of direct arrivals used as input data for traveltime inversion. The
groundwater table measured by water leveling is at a depth of ∼2.75m and related to a distinct change in the
slope of first arrivals. In both transmitter gathers, also numerous reflected (up-going) events can be recognized
(see also Fig. 4.1). Both gathers are plotted using the same amplitude scaling.

station spacing in the borehole of 0.1m.

For traveltime inversion, we restrict our analyses to two common transmitter

gathers recorded at offsets of 1.5m and 4.5m because the quality of these rather

near- offset data gathers allows us to reliably pick traveltimes across the entire

depth range of the borehole. In Fig. 4.3, these transmitter gathers are plotted

after some fundamental processing together with the picked first arrival travel-

times. Processing included zero- time correction, gentle high-pass filtering (for

DC removal and dewowing), amplitude scaling (using the scaling function t1.2,

where t is traveltime), and amplitude balancing (division of each trace by the

root-mean-square amplitude value of the trace to account for amplitude decay

with depth). In the 1.5m offset gather, data quality allows for picking arrival

times up to a depth of 12.6m while in the 4.5m gather we were able to pick
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Figure 4.4: First arrival maximum-cycle amplitudes picked from the 1.5m offset VRP transmitter gather (Fig.
4.2a). Plotted amplitudes are corrected for geometrical spreading, source strength, and the angular sensitivity
of the transmitting and receiving antenna.

arrival times up to the maximum receiver depth of 17.6m. We excluded picks

from traces recorded at depths <1.9m (1.5m offset) and <10.9m (4.5m offset),

because in the corresponding depth ranges critically refracted arrivals are likely

to interfere with the direct arrivals (see also Tronicke & Knoll [2005]). The time

picks visualized in Fig. 4.3 are the input data for our global traveltime inversion

approach outlined above; i.e., from these data we calculate an ensemble of possi-

ble solutions (1D velocity models) explaining our traveltime data equally well.

To extract further information regarding subsurface properties and architecture

from our VRP data set, we also analyze direct-arrival amplitudes and primary

reflection events. For the amplitude inversion, we focus on the 1.5m offset gather

(Fig. 4.3a). For receiver depths between 3.4m and 16m, amplitudes were picked

after applying a gentle bandpass filter (passband between 50 and 225MHz) to the

raw data. As the groundwater table (located at a depth of ∼2.75m) causes major

distortions of the recorded signals, we restrict our analysis to traces recorded in

the saturated zone. In Fig. 4.4, we show the picked amplitudes after geometri-

cal spreading, source strength, and radiation pattern corrections. Characteristic

changes in the slope of this plot already indicate different regimes of amplitude

losses which can be related to changes in electrical conductivity in the corre-

sponding depth intervals. To quantify attenuation and to estimate changes in

electrical resistivity, respectively, we invert the plotted amplitude values using

the inversion strategy outline above.

For reflection imaging, we also focus on the 1.5m offset gather (Fig. 4.3a), where
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a number of reflection events are clearly visible as up-going events over the entire

depth range. Using a standard VSP corridor stack processing flow (as discussed

above) with a corridor window length of 95 ns, allows us to derive a single-trace

reflection image in the immediate vicinity of the borehole. The resulting VRP

derived reflection image can be compared to surface-based GPR reflection data

and, thus, provides a direct link between borehole- and surface-based geophysical

surveying.

4.4.3 Surface-based GPR data

In addition to borehole-based geophysical data, also surface-based GPR reflection

data are available. These constant-offset 2D GPR data have been recorded em-

ploying a kinematic surveying strategy (relying on the combination of a standard

GPR instrument with an auto-tracking total station; Böniger & Tronicke [2010]),

using a sampling interval of 0.2 ns, and standard dipole antennas with a nominal

center frequency of 100MHz. The data are processed applying a standard flow

including dewow and bandpass filtering, amplitude scaling (relying on a combi-

nation of a t2 and an exponential scaling function), and f − k filtering applied to

suppress steep events associated with the tails of diffraction hyperbolas caused

by buried pipes and other near-surface scatterers. Finally, the data are migrated

using a velocity model as derived from VRP data analysis. In Fig. 4.5, we show

the processed data. The profile illustrates that the subsurface around the bore-

hole is characterized by horizontal to sub-horizontal layering with some major,

continuous reflection events at ∼50 ns, ∼150 ns, ∼230 ns, and ∼370 ns.

4.5 Results and interpretation

4.5.1 Velocity models

In Fig. 4.6, we show the results of globally inverting our VRP traveltime data

(Fig. 4.6) and compare them to one selected independent borehole log (GR log).

Before analyzing these results in more detail, we evaluate the chosen model pa-

rameterization and the representativeness of the final ensemble by performing an
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Figure 4.5: Processed 2D GPR profile recorded using a pair of 100MHz antenna. The transparent rectangle
in the center of the profile indicates the position of the borehole where borehole logs (Fig. 4.2) and VRP data
(Fig. 4.3) are available.

Figure 4.6: Results of globally inverting VRP traveltime data. (a) Median velocity and (b) interquartile range
model both calculated from the final ensemble consisting of 210 1D velocity models. (c) Smoothed natural
gamma activity log (Fig. 4.2b) for comparison. In (a), (b), and (c), the gray horizontal lines indicate the
position of the groundwater table as measured by water leveling in the borehole.

a posteriori correlation analysis of the model parameters following Sen & Stoffa

[1995]. In Fig. 4.7a, we illustrate the posterior correlation matrix (P) of the

model parameters calculated from the final ensemble consisting of 210 velocity
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Figure 4.7: (a) Posterior model parameter correlation matrix calculated from the final ensemble consisting of
210 velocity models. Parameters 1 to 18 correspond to depths of interfaces and 19 to 37 to layer velocities.
(b) Standard deviation of the differences of correlation matrices (∆P) when increasing the number of models.
Symbols indicate computed differences each time five new models are added to the ensemble.

models. Here, values close to unity, indicate that the corresponding model pa-

rameters are strongly correlated and nearly linearly dependent, whereas values

close to zero indicate weak linear dependencies. Some higher absolute values in

P (between ∼0.3 and ∼0.6) are observed between the velocities of neighboring

layers (higher values around the main diagonal for parameters 19 to 37) as well

as between the depths of interfaces and the velocities of neighboring layers (di-

agonal patterns parallel to the main diagonal in Fig. 4.7a). This indicates that

the corresponding model parameters are not fully resolved; i.e., we only resolve

some linear combinations of these parameters and we have to be aware of some

nonuniqueness in our results. To evaluate the representativeness of our final en-

semble, we analyze differences in P at different stages of the ensemble generation.

In Fig. 4.7b, we show the standard deviations of the calculated differences each

time five models are added to the ensemble. In this plot, the convergence to a low

value indicates that only minor variations in the correlation matrix are expected

when further models are added to the ensemble. Thus, we assume that our final

ensemble is representative and allows for reliable posterior statistical analyses.

In Fig. 4.6a and Fig. 4.6b, we show the median and the interquartile range

(IQR) calculated from the generated ensemble of 210 velocity models. These two

robust statistical measures are used to reduce the ensemble information to two

statistical parameters characterizing the central tendency and the spread of the

underlying velocity distributions. The median velocity model (Fig. 4.6a) shows
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velocity variations between ∼0.06m/ns (for the water-saturated sediments) and

∼0.13m/ns (for the unsaturated sediments). The groundwater table is associ-

ated with a sharp decrease in velocity at a depth of ∼2.8m, which corresponds

well to the depth of 2.75m as measured by water leveling in the borehole. In the

saturated zone, further characteristic velocity variations between ∼0.05m/ns and

∼0.07m/ns are evident. When comparing these variations to the available bore-

hole logs (Fig. 4.2 and Fig. 4.6c), we notice that the derived velocity variations

largely coincide with characteristic changes in grain size, apparent conductiv-

ity, and gamma activity. This indicates that the inverted GPR velocities reflect

changes in the composition and the physical properties of the sediments, respec-

tively. The IQR of the velocity ensemble (Fig. 4.6b) can be interpreted as an

estimate of uncertainty; i.e., increased IQR values identify depth ranges where

we have lower confidence in the inverted velocity values. This plot illustrates

that maximum uncertainties are found around the groundwater table and the

average uncertainties in the unsaturated zone are higher than in the saturated

zone (∼0.012m/ns compared to ∼0.003m/ns). Focusing on the saturated zone,

we further recognize that all major velocity variations (associated with bounding

surfaces) show local maxima in the IQR values, which provides some insights

into resolution capabilities of our data set. In conclusion, our global traveltime

inversion approach results in detailed information regarding subsurface velocity

variations including quantitative estimates of uncertainty. In the following, we use

the entire ensemble of velocity models in a petrophysical translation framework,

which allows us to evaluate the uncertainties in estimated porosities.

4.5.2 Porosity estimation

In hydrological applications, one major purpose of GPR surveying is to estimate

water content and porosity for the unsaturated and saturated zone, respectively.

Generally, this is done by employing a two-step procedure. First, under the

assumption of low-loss, non-magnetic media GPR velocities v are converted to

relative permittivity εr values using

εr =
c2

v2
, (4.1)
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where c is the electromagnetic velocity in free space. Second, water content or

porosity are estimated from εr values using an appropriate petrophysical transla-

tion. A number the of different petrophysical models have been proposed in the

literature (for a recent review see Steelman & Endres [2011]). Here, we use two

of the most commonly applied relationships to estimate porosity in the water-

saturated zone; i.e., the empirical equation of Topp et al. [1980] and the complex

refractive index model (CRIM; Wharton & Best [1980]). For a fully saturated

medium, Topp’s equation can be written as

Φ = 5.3× 10−2 + 2.92× 10−2ε− 5.5−4ε2 + 4.3−6ε3, (4.2)

where Φ is the porosity of the medium. For a two-phase system consisting of a

solid and a water phase, the CRIM model reduces to

Φ =

√
εr − εmr

εwr + εmr
, (4.3)

where εmr and εwr are the relative permittivity values of the dry matrix and water,

respectively. While equation 4.2 assumes that changes in permittivity are only

related to changes in the amount of water, equation 4.3 explicitly considers the

permittivity of the matrix material.

To estimate Φ from VRP velocity, we use the entire ensemble of possible veloc-

ity models found by our global inversion approach; i.e., each velocity model is

translated using the above outlined procedure resulting in an ensemble of possi-

ble porosity distributions. While equation 4.2 is a unique translation, we have

to specify an appropriate value when using equation 4.3. At our field site, we

may use εmr = 4.6 , which is a typically used value for clay-free sand and gravel

deposits (e.g., Knoll & Clement [1999]). However, due to changes in the miner-

alogical composition or minor fractions of clay εmr may vary. To investigate the

impact of uncertainties in a priori specifying εmr , we also translate our velocity

models using a reasonable range of possible εmr values ( 3< εmr <6 ; e.g., Cas-

sidy [2009a]). We generate an ensemble of 1000 porosity models where, for each

porosity model, we randomly select one of the 210 velocity models and combine

it with a randomly selected εmr value. In this procedure, both sets of random
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Figure 4.8: Results of estimating porosity for the saturated zone from the VRP velocity model ensemble using
different petrophysical models and comparison to independent grain-size based data. (a) Median porosity and
(b) interquartile range (IQR) models calculated from the final ensemble of porosity models estimated using the
CRIM model (with a fixed εmr value and a variable range of εmr values) and the model of Topp et al. [1980].
(c) Coefficient of uniformity (U =d60 / d10) representing grain size data (Fig. 2a) for comparison. In (a),
a grain-size based estimate of porosity (gray line) is shown for comparison (calculated after Vukovic & Soro
[1992]).

numbers are drawn independently from a uniform distribution. The results of

porosity estimation are shown in Fig. 4.8.

In Fig. 4.8a and Fig. 4.8b, we show the median models and the IQR values

calculated from the generated ensembles consisting of 210 (Topp and CRIM with

εmr = 4.6 ) and 1000 (CRIM with 3< εmr <6 ) porosity models, respectively. All

median models indicate the same structures; i.e., a layered subsurface with major

porosity variations (> 0.15) at depths of ∼8m and ∼15.5m, which corresponds

to areas of major parameter variations also found in the core and logging data

(Fig. 4.2). A comparison of the absolute values estimated with equations (4.2)

and (4.3) illustrates a good agreement in the lower porosity units (up to ∼8m

and below ∼15.5m), while major discrepancies up to ∼0.06 are found in the high

porosity unit between ∼8m and ∼15.5m. Here, maximum porosities predicted

by the CRIM model (>0.5) seem to overestimate porosity. Similar observations

have been reported in the literature (e.g., Loeffler & Bano [2004]) and might be

related to the fact that the CRIM model relies only on the volume fractions of the

constituents without accounting for the geometry of the grains and the pore space,

respectively (Endres & Knight [1992]). The IQR porosity values (Fig. 4.8b) can
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again be interpreted as estimates of uncertainty. The observed variations are sim-

ilar to those observed for the IQR velocity values (Fig. 4.6b), where local maxima

are found across layer boundaries. When comparing the different petrophysical

translations, we notice that the mean uncertainties for Topp’s equation (∼0.030)

are lower compared to the CRIM-based estimates showing mean IQR values of

∼0.046 (for εmr = 4.6 ) and ∼0.055 (for 3< εmr <6 ). The differences in uncer-

tainty between the two CRIM-based porosity estimates are related to the a priori

guesses of εmr , where a fixed εmr = value reduces the degrees of freedom in the

petrophysical translation and, thus, results in decreased uncertainty estimates.

For comparison, we also show the coefficient of uniformity U =d60 / d10 (Fig.

4.8c) calculated from the available grain size data (Fig. 4.2a). The higher U the

more poorly sorted the sediment is and, thus, we expect decreasing porosity Φ

with increasing U . Based on literature data, Vukovic & Soro [1992] developed

the empirical relationship Φ = 0.255(1 + 0.83)U , which can be used to roughly

estimate Φ from U (gray line in Fig. 4.8a). When comparing this grain-size based

estimate of Φ and also Fig. 4.8c with our VRP based models of Φ, we notice an

at least qualitative good agreement although the range of the grain-size based Φ

values is lower and some major discrepancies are found at depths >∼13m. Here,

we have to consider that the used empirical relationship of Vukovic & Soro [1992]

only accounts for variations in the characteristic grain sizes d10 and d60 and ig-

nores other controlling factors such as grain packing, grain shape, or compaction.

In conclusion, our VRP velocity ensemble allows for deriving detailed porosity

models including quantitative estimates of uncertainty which are consistent with

the available background information from coring and logging.

4.5.3 Attenuation and electrical resistivity

In Fig. 4.9, we show the results of inverting our VRP amplitude data (Fig. 4.4)

and compare them to the IND borehole log. Inverted attenuation values (Fig.

4.9a) range between ∼0.12m−1 (in the unsaturated zone) and ∼0.56m−1 (in the

saturated zone), which is consistent with literature values reported for sandy sed-

iments (e.g., Cassidy [2009a]). In the following, we restrict our analyses to the

saturated zone where amplitude data have been picked. Comparing attenuation
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Figure 4.9: (a) 1D attenuation model obtained from inverting VRP amplitudes (Fig. 4.4), (b) apparent electrical
conductivity as obtained by induction logging (Fig. 4.2c), and (c) electrical resistivity estimated from (a) and
(b). In (a) to (c), the gray horizontal lines indicate the position of the groundwater table as measured by water
leveling in the borehole. Note, that apparent conductivity values from (b) have been shifted by minus 16mS/m
before translation to be in the same resistivity range (below the groundwater table) as the resistivity values
estimated from VRP results.

to apparent conductivities from the IND log (Fig. 4.9b) illustrates a consistent

behavior; e.g., increasing attenuation is paired with increasing conductivities and

maximum attenuation is found in depth intervals of maximum conductivity. Un-

der the assumption of low loss and non-magnetic media, attenuation α can be

approximated by

α =
194.5

ρ
√
εr
, (4.4)

where ρ is the electrical resistivity (Davis & Annan [1989]). Using equation

(4.4), we estimate ρ from our VRP derived attenuation model and compare it

to ρ values derived from IND apparent conductivities. It should be emphasized

again that the VRP derived values rely on the inherent assumption of weak

heterogeneity and, thus, we do not expect accurate estimates of ρ. Furthermore,

the absolute values of IND apparent conductivity should be handled with care

(e.g., because they depend on tool calibration). To ensure that both ρ estimates

are in the same range (in the saturated zone), we subtracted 16mS/m from

the measured IND values before calculating the reciprocal of IND conductivity.

The resulting resistivity models (Fig. 4.8c) are in good agreement because they
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Figure 4.10: Results of reflection imaging after time-to-depth conversion using the median VRP velocity model
(Fig. 4.6a). (a) GPR reflection profile around the VRP borehole located at a horizontal distance of 21 m (Fig.
4.5), (b) VRP corridor stack, and (c) smoothed natural gamma activity log (Fig. 4.2b) shown for comparison.
In (c), the gray horizontal line indicates the position of the groundwater table as measured by water leveling in
the borehole. In (a), the four sets of blue curves represent time-to- depth conversions for four selected reflections
using the entire ensemble of VRP velocity models while the dashed red lines represent the conversion using the
median model (Fig. 4.6a).

show the same relative resistivity variations. Thus, we can conclude that VRP

amplitude inversion can be used for outlining the larger-scale resistivity structure

and for constraining relative changes in resistivity, respectively.

4.5.4 Reflection imaging

In Fig. 4.10, we show the surface-based GPR reflection image (Fig. 4.5) and the

VRP corridor stack (single-trace reflection image at the borehole) and compare

these images to one selected independent borehole log ( GR log). The reflection

images are depth converted using the median velocity model shown in Fig. 4.6a.

First, we want to evaluate the influence of the velocity model on time-to-depth

conversion using four distinct, continuous reflection events picked in the GPR time

section (Fig. 4.5). In Fig. 4.10a, the results of converting the time picks using

the VRP median model are illustrated by red lines, while the results using the

entire ensemble of 210 velocity models are represented by the four sets of blue
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lines. Comparing all of these depth estimates illustrates maximum differences

of ∼0.15m, which demonstrates the consistency and representativeness of the

velocity ensemble and the median model, respectively, and also illustrates that

only minor uncertainties in depth imaging are expected.

Comparing the reflection images in Fig. 4.10a and Fig. 4.10b demonstrates

that both images outline similar subsurface structures. In addition to the four

major continuous events highlighted in the surface data (Fig. 4.10a), also some

minor, lower-amplitude reflections (such as those at depths of ∼4.5m and ∼8m)

are found in both images. In addition, the VRP corridor stack shows reflection

events at depths >15m (i.e., beyond the penetration depth of our surface data),

which can be explained by the shorter travel paths (lower attenuation) of VRP

reflection events compared to the corresponding events in the surface data. When

comparing Fig. 4.10a and Fig. 4.10b with the available borehole logs (Fig.

4.10 and Fig. 4.10c), we notice that the imaged structures largely coincide with

characteristic changes in grain size, apparent conductivity, and gamma activity.

4.6 Integrated interpretation and discussion

Our VRP results (Fig. 4.6, Fig. 4.8, Fig. 4.9 and Fig. 4.10) can be interpreted

in an integrated fashion to develop a detailed understanding of the subsurface

in the vicinity of the borehole. While the VRP corridor stack (Fig. 4.10,b) de-

picts subsurface structures in terms of bounding surfaces, VRP derived estimates

of GPR velocity, porosity, and electrical resistivity can be used (in combination

with other available borehole data) to characterize the subsurface using a va-

riety of physical properties. Here, we focus on interpreting the structures and

parameters below the groundwater table (at depths >2.75m) as needed for a hy-

drogeological characterization. In Fig. 4.11a to Fig. 4.11e, we compile our VRP

results and compare them to a grain-size based hydraulic conductivity estimate

and the available GR log (Fig. 4.11f and Fig. 4.11g). To roughly estimate hy-

draulic conductivity kf from our grain-size data, we employ the empirical model

kf = 0.0045log10(500/U) d10
2 (Beyer [1964]), which, in hydrogeology, represents

one popular approach to roughly estimate kf from grain size data (e.g., Vienken

& Dietrich [2011]).
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Figure 4.11: Integrated interpretation of VRP results (color coded units 1 to 8) and comparison to selected
independent logs for the water-saturated zone (depths >2.75m). (a) VRP corridor stack (Fig. 4.10b), (b) VRP
median velocity model (Fig. 4.6a) including (c) IQR uncertainty estimate (Fig. 4.6b), (d) VRP resistivity
model (Fig. 4.9c), (e) VRP median porosity model (calculated using Topp’s equation; Fig. 4.8a), (f) hydraulic
conductivity estimated from grain-size data (Fig. 4.2a), and (g) smoothed natural gamma activity log (Fig.
4.2b). Parameter models plotted using black lines (b-e) represent VRP derived parameters while gray lines (f-g)
refer to independent data logs.

Using our VRP results (including VRP derived parameter models and uncer-

tainty estimates; Fig. 4.11a to Fig. 4.11e), we interpret eight characteristic units

(Fig. 4.11h). As illustrated, these units are characterized by distinct param-

eter combinations and can be distinguished by major changes in VRP derived

parameters and reflection events, respectively. For example, units 1 to 3, are

characterized by steadily decreasing electrical resistivities paired with changing

layer velocities and porosities (ranging from ∼0.061m/ns to ∼0.066m/ns and

∼0.35 to ∼0.39, respectively), while the underlying unit 4 is characterized by

almost constant resistivities and only minor fluctuation in velocity and porosity.

Here, we notice, that the reflection event at a depth of ∼9.5m is not associated

with a major change in velocity, resistivity or porosity. This event, which is also

recognized in the surface-based reflection data (Fig. 4.10a), might be related to

a thin layer beyond the resolution capabilities of our traveltime and amplitude

VRP data. When interpreting the depth ranges of the individual units (Fig.

4.10), we also consider the available uncertainty estimates; i.e., depth intervals
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Figure 4.12: Crossplot of porosity versus hydraulic conductivity kf for the interpreted units (Fig. 11). Porosities
are derived from the VRP results (median porosity model calculated using Topp’s equation; Fig. 8a) and kf
values are estimated using the empirical model of Beyer [1964]. Color coding corresponds to Fig. 4.11.

between individual units, which show increased IQR values for velocity (and also

porosity, Fig. 4.8b) are excluded from the interpretation. In these areas, we have

low confidence in our results and can not identify accurately the depths of the

corresponding bounding surface.

In Fig. 4.12, we analyze the hydrogeological relevance of the interpreted units

in more detail. The shown cross-plot of VRP derived porosity Φ versus hydraulic

conductivity kf illustrates that variations in the grain-size based kf values are

around four orders of magnitude and that we can not expect a general, unique

relation between Φ and kf (e.g., a linear relation between log(kf) and Φ) at our

field site. However, we notice that the interpreted units are characterized by dis-

tinct combinations of Φ and kf . Thus, our VRP based interpretation may serve

as a hydrostratigraphic zonation at the borehole location. Furthermore, we can

interpret our surface based GPR data considering this zonation. Such an inter-

pretation is shown in Fig. 4.13, where we develop a 2D hydrostratigraphic model

around the borehole by extrapolating the borehole-based interpretation on the

basis of the structures imaged by surface-based GPR. In doing so, we realize the

importance of our VRP results to interpret the rather complex GPR reflection

patterns in view of a detailed and meaningful hydrostratigraphic model.
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Figure 4.13: Hydrostratigraphic interpretation of processed GPR reflection data (Fig. 4.5) based on the inte-
grated interpretation of VRP results (Fig. 4.11). The borehole is located at a horizontal distance of 21m the
where we also show the units interpreted from VRP results (Fig. 4.11) as well as the VRP median porosity
model (Fig. 4.8a). Color coding corresponds to Fig. 4.11 and Fig. 4.12.

4.7 Conclusions

Using field data from a well-constrained test site, we demonstrated the potential

of VRP surveying in view of developing a detailed understanding of subsurface

architecture and properties. We presented a workflow combining the analysis of

VRP traveltimes, amplitudes, and reflections. Inversion of traveltimes and ampli-

tudes allows us to derive models of velocity and attenuation, which can be used

to estimate further material properties such as porosity and electrical resistiv-

ity. Analyzing VRP reflection events using a standard corridor-stack processing

flow adapted from VSP imaging, allows for generating a single-trace reflection

image, which highlights bounding surfaces in the studied sedimentary aquifer.

Our case study illustrates the benefit of our workflow in view of developing a de-

tailed and meaningful hydrogeological model and interpreting our surface-based

GPR reflection profile. All presented VRP based results are consistent with inde-

pendent core, logging, and surface-based GPR data, which stresses the value of

VRP surveying; especially, at field sites where no borehole logs and coring data
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are available. As the employed inversion and processing approaches are readily

available, the outlined data acquisition, inversion, processing, and interpreta-

tion approaches can be easily implemented in near-surface geophysical surveying

whenever boreholes are available. In conclusion, this study demonstrates that

more than a single velocity profile can be extracted from VRP data and that the

derived VRP results can play an important role in linking borehole and surface-

based geophysical data sets. Thus, we expect increasing interest and effort of

researchers and practitioners towards the usage of VRP surveys and towards the

integration of VRP results into multi-method site-characterization studies.

76



Chapter 5

Thesis Discussion

This chapter is a final discussion related to the entire content of all manuscripts

presented in this work and interconnects their individual results to the overall

topic of this thesis: Ground-penetrating radar wave velocities and their uncer-

tainties. Different methods are developed and applied to GPR ground waves and

reflected waves as measured with CMP data gathers (second and third chapter),

and direct waves from VRP data gathers (fourth chapter) to derive subsurface

velocity models including robust estimates of uncertainty.

In the three manuscripts (chapter 2-4), velocities are derived with statistical meth-

ods and a global optimization method (swarm intelligence; PSO). Semi automated

velocity analysis methods are introduced, as variations, combinations and exten-

sions of existing statistical methods to simplify geophysicists work. Thus in the

second chapter (surface-based GPR), the statistical coherency measure of sem-

blances is computed between waveforms across data gathers which are corrected

with a moveout operation to detect velocity. In the third and fourth chapter global

optimization approaches are introduced and successfully used for GPR velocity

analysis. In all three published studies, more correct velocities with quantitative

uncertainties achieved with statistical methods from distributions are the answer

to open research question. Consequently, we give an answer beyond the common

understanding of GPR subsurface velocities as discrete values because results are

presented as distributions. The resulting distributions will involve information

of continues spatial property changes of subsurface. Thus, continues spatial ma-

terial changes will be reflected in higher uncertainties in all three studies. The
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discussions about uncertainties in geophysics continues, but we suggest new prac-

tical and robust approaches to do it more quantitatively and objectively.

As it is shown in Figure 1.6 and Figure 1.7 petrophysical laws have different results

due to the use of variable formulas and parameters (Jackson et al. [1978],Jacob-

sen & Schjønning [1993], Malicki et al. [1996] ). In contrast to common cali-

bration of empirical relationships with additional site specific soil sampling the

presented quantitative velocity distributions is proposed to be used to optimize

petrophysical relationships and further soil information can be extracted (e.g.

clay content), as it has been outlined in the integrated interpretation in chapter

five. Enhancements of effective medium approximations Sen [1984] with variable

shaped grain packings and resulting water and air volumes may be improved with

the presented reliable velocities to give the desired understanding of subsurface

parameter changes and soil compositions.

Bellow I integrate the presented work into the currant state of the knowledge of

the subject of GPR velocity determination. For environmental, archaeological,

engineering, and geological applications, GPR is promoted as the adequate tool

to image near- surface environments (e.g., Jol [2009b]). GPR surveying combines

the advantages of point measurements and remote sensing technologies (e.g., Hil-

lel [1998], Allred et al. [2008]), but the resulting increased field data amount is

often announced as major limitation and, thus, fast analysis (like ours) of GPR

data gathers is needed. To image subsurface structures accurate GPR veloci-

ties and uncertainties are required, for migration routines (Greaves et al. [1996];

Tillard & Dubois [1995]) and for time-to-depth conversions and elevation cor-

rections (Annan [2005]; Cassidy [2009b]). To obtain velocities from GPR CO

gathers isolated objects in the subsurface are needed (e.g., Moore et al. [1999];

Bradford & Harper [2005]; Porsani & Sauck [2007]; Schmelzbach et al. [2011]),

thus we use CMP and VRP.

Multi-offset reflection profiling or common midpoint (CMP) profiling are used

to achieve velocity models with methods often adapted from seismic data pro-

cessing (e.g., Greaves et al. [1996]; Brosten et al. [2009]; Turesson [2007]; Booth

et al. [2010]); (Greaves et al. [1996]; Cai & McMechan [1999]; Pipan et al. [1999];

Becht et al. [2006]; Bradford et al. [2009]), with critical consequences (chapter 2).

Analysis of CMP data is often performed with reflection seismic processing tools

78



5. Thesis Discussion

based on the normal-moveout (NMO) model (e.g., spectral velocity analysis; Yil-

maz [2001]) assuming small offset-to-depth ratios, small velocity gradients, and

plane horizontal reflectors (Al-Chalabi [1973]), what is often not the case in GPR

applications. Such CMP-derived velocity estimates have been used for a straight

forward characterization of the subsurface and to estimate water content (Greaves

et al. [1996]). Various studies have elaborated different sources of errors of these

velocity estimates for GPR (e.g., Tillard & Dubois [1995]; Jacob & Hermance

[2004]; Becht et al. [2006]; Booth et al. [2010]; Booth et al. [2011]) and for seismic

processing (e.g., Taner & Koehler [1969]; Levin [1971]; Hajnal & Sereda [1981];

Alkhalifah [1997]; Leparoux et al. [2001]; Bradford [2006]). Alternatively, Harper

& Bradford [2003] used the least-squares inversion method of Zelt & Smith [1992]

to achieve a 1D velocity model from reflection traveltimes, with strong relations

of the results to an initial model. Consequently, traveltimes are inverted with

swarm intelligence algorithms (PSO) introduced by Kennedy & Eberhart [1995]

to solve global optimization problems in various applications (Poli [2008]) and

in geophysics (Shaw & Srivastava [2007]; Fernández Mart́ınez et al. [2010]; Mon-

teiro Santos [2010]; Tronicke et al. [2012]; Wilken & Rabbel [2012]). For this

work PSO is combined with a fast marching eikonal solver (Sethian [1996]; Fomel

[1997a]; Sethian & Popovici [1999]). What is only a ray-tracing approaches in con-

trast to FDTD Giannopoulos [2005], but sufficient fast for required high amount

model generation for PSO. We only consider planar layer models to demonstrate

feasibility of PSO.

Direct ground wave (DGW) velocity can be estimated for the uppermost soil layer

from the steepness of manually fitted straight line through interpreted ground

wave arrivals in CMP data gathers (e.g., Huisman et al. [2001]; Huisman et al.

[2003]; Galagedara et al. [2005a]; Steelman & Endres [2010]). For this problem

we developed and succeeded with the application of an objective, reproducible

and fast method based on moveout semblance analysis. The presented method is

not able to detect ground wave events in the case of perturbing phenomena, like

interferences with other waves (shallow reflected, lateral, critically refracted and

air) and dispersive behavior of material (Grote et al. [2010]); Galagedara et al.

[2005b]; Yi & Endres [2006] and van der Kruk et al. [2009]).

Crosshole imaging (Binley et al. [2001]; Allumbaugh et al. [2002]; Tronicke et al.
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5. Thesis Discussion

[2002]; Tronicke et al. [2004]; Becht et al. [2004]; Clement & Barrash [2006];

Gloaguen et al. [2007]; Looms et al. [2008]) requires typically small lateral dis-

tances of boreholes (∼ 10m). The best resolution can be expected in the center

between the boreholes (e.g., Rector &Washbourne [1994]; Day-Lewis et al. [2005])

which hinders the linking of petrophysical models to material properties derived

from logging data form the boreholes.

Thus, we analysis vertical radar profiling data which can provide more infor-

mation about subsurface velocity variations in the vicinity of a borehole (Knoll

[1996]). Furthermore, we use VRP technique in Chapter 5 for reflection imag-

ing (Zhou & Sato [2000]; Böniger et al. [2006]) and 1D attenuation tomography,

what can not be done with crosshole imaging. In contrast to linearized inversion

schemes of direct traveltimes of VRP (Knoll & Clement [1999]; Murray et al.

[2000]; Hammon et al. [2002]; Pringle et al. [2003]; Cassiani et al. [2004]; Böniger

et al. [2006]; Spillmann et al. [2006]; Cassiani et al. [2008]; Harbi. & McMechan

[2011]; Schmelzbach et al. [2011]; Vignoli et al. [2012]; Igel et al. [2013]). we

use PSO, to be independent from initial parameter models, be able to achieve

multiple solutions and to generate representative ensembles of solutions.

Many hydrological applications require detailed information about spatial and

temporal variations of soil water content and it has been shown that GPR sur-

veying is highly efficient to monitor soil water content at the field scale (e.g.

Huisman et al. [2003]). We developed precise and fast methods to derive veloci-

ties from GPR to enhance the estimation of water content, porosity or other soil

parameters (e.g.,Topp et al. [1980]; Heimovaara et al. [1994]; Greaves et al. [1996];

Van Overmeeren et al. [1997]; Huisman et al. [2003a]; Tronicke et al. [2004]; Steel-

man & Endres [2012]; Hamann et al. [2013]). The permittivities in volumetric

mixing models introduced in the petrophysical relationships, normally taken from

soil probing, or literature, may be optimized with the velocities determined with

presented methods to obtain information of the dry matrix.
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Chapter 6

Overall Summary and

Conclusions

All three proposed methods are tested on synthetic data examples to evaluate

influence of different kind of waves and antenna setups on the accuracy of esti-

mated wave velocities and subsequent soil water content estimates from estab-

lished petrophysical relationships. Furthermore, successful analysis of field data

are presented from different test sites in Canada and Germany to observe spa-

tial and temporal soil moisture variations. A comparison between our velocity

estimates and independent data shows good agreement, which illustrates that

the proposed methods for velocity analysis are feasible tools to analyze velocities

from GPR data gathers in objective and reproducible ways.

The second chapter (first manuscript) deals with the examination of a direct

ground wave (DGW) velocity analysis approach based on velocity spectra com-

puted using a linear moveout model (LMO). The use of such an approach is

reasonable because velocity spectra analyses are well established for reflection

hyperbola detection using the normal moveout method (NMO). The LMO based

spectral velocity analysis method is proposed to estimate DGW velocities from

multi-offset GPR data. In contrast, common practice is typically based on man-

ually fitting DGW arrivals, our method represents an objective and reproducible

approach of DGW velocity analysis. Furthermore, it can be used to quantify un-

certainties in determining DGW velocities by measuring the width of the maxima
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in the calculated velocity spectra. This allows us to analyze uncertainties related

to survey design and subsurface conditions. The results from synthetic models

have demonstrated that the DGW velocity and their uncertainty determination

depends on the real subsurface velocity distribution, the antenna frequency, the

offset range and the maximum offset used in the analysis. Typical surveying pa-

rameters and signal frequencies, resulted in relative errors in velocities of more

than 5%, resulting from the evaluation of corresponding uncertainties from peak

widths at 90% of maximal coherence value in velocity spectra. Thus, I point

out that this method allows a more objective and reproducible analysis of DGW

velocity in contrast to common practice, which is largely based on manually fit-

ting DGW arrivals. This is of major importance for field applications and has

to be considered when DGW velocities are translated into water content. The

results from synthetic data indicated additionally that the relative error in water

content increases exponentially with decreasing water content when Topp’s equa-

tion is used under the assumption of low loss soil conditions. To demonstrate

the applicability of our approach to real data, LMO based velocity spectra have

been calculated for field data collected across a silt loam soil at a well-constrained

field site in Canada. It was shown, that the estimated velocities produce shows

similar water content results compared to the common analysis practice. With

this proposed processing sequence the spectral velocity analyses can be performed

in a largely automated and reproducible manner. This automated procedure al-

lows the effective analysis of large data sets which is of great value, especially,

for long-term monitoring experiments. The comparability of the results to man-

ual analyses of the available CMP gathers illustrates that the detected velocity

values and seasonal variations are reasonable. Because of eliminating the in-

fluence of a manual data analysis procedure, the spectral velocity method is a

rather objective tool to derive and analyze DGW velocities including quantita-

tive uncertainties. This is supported by a similar behavior of derived velocity

uncertainties from spectral analyses of field and synthetic data gathers, where

comparable tendencies are observable under varying soil velocities, antenna fre-

quencies, and maximum antenna offsets. Thus, the feasibility of deriving ground

wave velocities from CMP gathers is improved, and the proposed strategy can be

readily applied in various GPR application including the time-lapse monitoring
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of soil water content.

For processing of GPR common offset data, CMP surveys are often acquired to

obtain 1D velocity models at selected locations across a field site. For such CMP

application a global inversion approach based on particle swarm optimizarions

(PSO) is proposed to analyze reflection traveltimes using a layer-based model

parametrization. The developed global inversion strategy employs a forward

modeling routine which accounts refraction effects and, thus, avoids the inherent

assumptions of NMO based velocity analysis. The velocities show different results

to conventional technique because we avoid the small offset approximation. In

contrast to local (linearized) inversion approaches, the used global optimization

approach generates results independent of an initial model, allows for a lager

model space and the algorithm to converge to multiple solutions of an ill-posed

problem. Furthermore, such global approaches enable us to generate a representa-

tive ensemble of models that explain the data equally well and, thus, can be used

to assess uncertainty and non-uniqueness issues in the formulated inverse problem.

Such representative ensembles allow the analysis of the interdependency between

different model parameters. Correlations are observed within neighboring pa-

rameters (layer thicknesses and velocities) which are the limitations to accurately

estimate velocity and depth of the corresponding interface. Different statistics of

the generated ensemble can be used to evaluate the tendency and the variability

of the individual model parameters. The median, the 25th to 75th, and the 5th

to 95th percentile of the parameter distributions are chosen after tests to charac-

terize the resulting parameter distributions and to estimate reliable uncertainties.

Decreasing velocities with increasing depth, which, for example, are typical for

GPR CMP gathers recorded across the groundwater table, decrease the accuracy

of the model parameters for deeper layers. PSO based inversion approaches are

easy to implement, needs minimal effort of parameter tuning, and provide faster

convergence compared with other global optimization approaches (e.g., simulated

annealing methods). Thus, the presented methodology is promoted as a feasible

and powerful instrument to analyze GPR CMP data. Furthermore, such ap-

proaches allow for a quantitative evaluation of uncertainties which is important

for successful CO data processing and for establishing a reliable, meaningful and

successful connection to borehole logging data. In the shown field data example
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velocities values agree with structures from independent data such as direct push

friction ratio and natural gamma activity borehole logging data.

The field study shown in the last chapter, demonstrates the possibility to de-

velop a detailed understanding of subsurface architecture and properties from

VRP surveying. The proposed workflow is a combination of the analysis of VRP

traveltimes, amplitudes, and reflections. Inversion of traveltimes and amplitudes

allows the derivation of models for velocity and attenuation, which can be used

to estimate further material properties such as porosity and electrical resistivity.

The global optimization approach of chapter three is modified to invert direct-

arrival traveltimes from VRP surveys to continuous 1D velocity models including

quantitative uncertainty estimates. Analyzing VRP reflection events using a stan-

dard corridor-stack processing flow adapted from VSP imaging, allows to obtain

the reconstruction of a single-trace reflection image, which indicates sedimentary

bounding surfaces in the studied saturated zone. This exemplary study illustrates

the advantage of the proposed analysis and processing strategy concerning the

development of a detailed and reliable hydrogeological model regarding the in-

terpretation of surface-based GPR reflection profiles. All presented results from

VRP data are comparable with independent borehole logging and surface-based

GPR data, what motivates the use of VRP surveying as a valuable exploration

tool even if no borehole logs and core data are available. Whenever boreholes are

available the outlined data acquisition, inversion, processing, and interpretation

approaches are an enhancement of geophysical surveying. Other parameter pro-

files than a single velocity model can be extracted from VRP data and derived

VRP results can be the linkage of borehole and surface- based geophysical data

sets. Hence, integration of VRP results into multi-method site-characterization

studies and an increasing interest and effort of scientists and applicators towards

the usage of VRP surveys is desired.

In this thesis, three methods are developed which show improved results for elec-

tromagnetic propagation velocities and their uncertainties from GPR data.

Comparison of results from tests on synthetic and real GPR field data to results

of standard approaches for velocity and soil parameter estimations approve their

accuracy. Velocities are subsequently usable for soil water content estimates with

established petrophysical relationships. Field data are analyzed, from different
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test sites in Canada and Germany to detect realistic variations of soil moisture

and other parameters and, thus, our results underline the advantage of the three

new presented strategies to investigate velocities from GPR data.
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Sanden aus der Kornverteilungskurve. Wasserwirtschaft Wassertechnik , 14,

165–168. 72, 74

Binley, A., Winship, P., Middleton, R., Pokar, M. & West, J. (2001).

High-resolution characterization of vadose zone dynamics using cross-borehole

radar. Water Resources Research, 37, 2639–2652. 15, 32, 53, 79

Bjelm, L., Follin, S. & Svenssoni, C. (1982). A radar in geological sub-

surface investigation. Bulletin of the International Association of Engineering

Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur , 26,
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The artificial water catchment ’chicken creek’ as an observatory for critical zone

processes and structures. Hydrology and Earth System Sciences Discussions , 6,

1769–1795. 101

Gerwin, W., Schaaf, W., Biemelt, D., Elmer, M., Maurer, T. &

Schneider, A. (2010). The artificial catchment Hühnerwasser (chicken creek):

Construction and initial properties. Ecosystem development , 1, 4–50. 101

Giannopoulos, A. (2005). Modelling ground penetrating radar by gprmax.

Construction and building materials , 19, 755–762. 4, 5, 7, 79

Gloaguen, E., Marcotte, D., Giroux, D., Dubreuil-Boisclair, C.,

Chouteau, M. & Aubertin, M. (2007). Stochastic borehole radar velocity

and attenuation tomographies using cokriging and cosimulation. Journal of

Applied Geophysics , 62, 141–157. 53, 80

Greaves, R., Lesmes, D., Lee, J. & Toksöz, M. (1996). Velocity varia-
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Introduction

In 2004 and 2005, the artificial water catchment Hühnerwasser (“chicken creek”)

was established in the post-mining landscape of the opencast mine Welzow-Süd

in Germany Gerwin et al. [2010]. Until today, numerous research groups use this

catchment as a field laboratory to study structures and processes of the initial

development phase of an ecosystem. The catchment covers an area of ca. 6 ha

with maximum elevation changes around 15 m (Fig. 1) and has been shaped to

form an inclined basin. The uppermost subsurface layers are ca. 3-4 m thick,

consist of sandy material and are underlain by a ca. 1-2 m thick clay layer acting

as a hydrological barrier. In the lowermost part of the site, an artificial lake cov-

ering an area of ca. 0.6 ha and an original maximum depth of about three meters

was established to study the water balance of the entire system including surface

runoff and subsurface discharge Gerwin et al. [2009]. Furthermore, investigating
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and monitoring lake-bottom topography is used to quantify the sedimentary in-

put and, thus, to study fluvial erosion processes in the catchment Schneider et al.

[2011]. In 2008, first attempts to quantify the sedimentary input have been made

by point measurements of water depths using rods and shallow drillings Kleeberg

et al. [2010] observing a maximum lake depth of ca. 2.4 m and a sedimentation

rate of ca. 1280 m3 in the period of August 2005 to October 2008.

Ground-penetrating radar (GPR) is a widley used geophysical technique to ex-

plore sedimentary environments also underneath water bodies [e.g., Bradford

et al., 2007; Moorman & Michel, 1997; Sambuelli & Bava, 2011]. In this study, we

use 3D GPR surveying across the artificial lake in the Hühnerwasser catchment

to investigate lake bottom topography and sedimentary structures beneath the

water body. Using a repetitive surveying strategy (i.e., two 3D surveys recorded

in two consecutive winters), we also evaluate the potential of the GPR technique

to monitor the evolution of sedimentary structures in detail. In the following,

we first describe our 3D GPR data acquisition and processing strategy. Then,

we discuss the processed GPR images and interpret them in terms of the rele-

vant sedimentary structures. This also includes a comparison between the two

3D data sets collected at different times including a GPR derived estimate of

sedimentation rate.

Data acquisition and processing

In February 2011 and 2012, we have collected two 3D GPR data sets across the

artificial lake at the Hühnerwasser catchment to study the feasibility of the GPR

technique to image subsurface structures relevant for analyzing fluvial erosion

processes within the catchment. During our surveys, the lake was frozen (ice

thickness ca. 10 cm) and, thus, we were able to employ a conventional GPR sur-

veying approach based on cart-mounted 100 MHz antennae and a combination

of the GPR instrument with a self-tracking total station (Böniger & Tronicke

[2010]), to achieve accurate positioning of measured traces. We applied a stan-

dard processing flow including de-wow filtering, time-zero corrections, band-pass

filtering, exponential amplitude scaling and migration. After applying this pro-

cessing sequence, the raw data were stacked and interpolated on to a 0.125 ×
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Figure 1: Digital elevation model from Schneider et al. [2011] of the Hühnerwasser catchment illustrating
erosion structures three years after construction phase. Magenta area indicates the survey from 2012. Vectors
represent the grid applied to GPR survey, green in northeast direction (inline) and red in northwest direction
(crossline).

0.125 m grid (indicated with vectors and white rectangel in Fig. 1) using a nat-

ural neighbor based interpolation scheme. For migration, we used a 3D Stolt

migration algorythm [Stolt, 1978] with a constant velocity of 0.04 m/ns. This

velocity value has been chosen because it provided the best migration results

for our data sets. The migrated data are shown in Fig. 2 and Fig. 3. Fig. 2

illustrates a part of the migrated data in terms of a crossline section extracted

from the data cube recorded in 2012. Some minor migration artifacts are visible

(e.g., between 0 and 10 m distance between 0 and 100 ns). These artifacts are

related to minor velocity errors introduced by not explicitely considering the 2D

nature of the velocity field (ice, water body, saturated sediments). However, for

the purpose of this study migration using a constant velocity of 0.04 m/ns is

sufficient as it provides well-focused images of the target sedimentary structures.

To visualize the lake bottom the picked traveltimes of events reflected at the lake

bottom were interpolated (Fig. 4). The difference of the traveltimes between two

different years was used to calculate the sedimentation rate and to achive a map

showing quantities in wave traveltimes proportional to spatial lake depth changes

from sedimentation (Fig. 5).
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visible from the lake bottom, from sedimentary structures beneath the lake bottom (e.g., at 20-35 m and ca.
140 ns) and in the area of the alluvial fan (between 60-100 ns and 40-50 m). Amplitudes changes at 21 m caused
by different ice conditions during two days of measurements.
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Figure 3: Migrated timeslice at 100 ns extracted from the GPR data cube recorded in 2012. Showing a circular
structure with a diameter of ca.30 m from reflections at the lake bottom and structures beneath the lake bottom
in the area of the alluvial fan (between 20-40 m northeast distance and 35-45 m northwest distance).

Results and interpretation

The final processed data are visualized in Fig. 2 and Fig. 3. In Fig. 2, we show a

crossline section extracted at 29 m of the northeast distance from the data cube

from 2012, with clear reflections from the lake bottom, from sedimentary struc-

tures beneath the lake bottom (e.g., at 20-35 m and ca. 140 ns) and in the area of

the alluvial fan (between 60-100 ns and 40-50 m). This data were collected within
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Figure 4: Picked and triangulated traveltimes of events reflected at the lake bottom of the Hühnerwasser lake
in 2011. Colorcoding represents lake bottom dephts calculated with a constant velocity of 0.038 m/ns.
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Figure 5: Map of sedimentation rate derived from the difference of picked and triangulated traveltimes of events
reflected at the lake bottom of the Hühnerwasser lake from the years of 2011 and 2012. Highest sedimentation
rates are visible at the alluvial fan (at 35 m of northwest distance).

two days under different snow and ice condition (freezing/melting), what results

in amplitude changes and different ringing character (at ca. 21 m and at times

up to ca. 45 ns). A time slice extracted at 100 ns from the cube recorded in 2012

is shown in Fig. 3 . This slice indicates that the lake bottom reflection can be

followed throughout the entire data cube (circular structure with a diameter of

ca. 30 m). The structure visible around 20-40 m northeast distance and around

40 m northwest distance is interpreted as alluvial fan deposits associated with

fluvial sedimentary input into the lake.

In addition to detailed 3D images of sedimentary structures, our GPR data allow

to quantify the amount of deposited material and sedimentation rates, respec-
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tively, by picking the lake bottom reflection in both 3D data sets and subtracting

the resulting traveltime maps from each other. In Fig. 4, the picked and triangu-

lated traveltimes of events reflected at lake bottom are shown exemplary for the

year 2011. Fig. 5 shows the traveltime differences (2011 minus 2012). Minimum

differences are observed in the central part of the lake whereas maximum values

are found at edges of the lake, especially, in the northwest part of the lake, where

maximum sedimentary input associated with fluvial erosion from the catchment

occures. Assuming a velocity of 0.038 m/ns, we estimate a difference of ca. 0.8 m

between the lake bottom in 2011 and 2012. In a similar manner, we can estimate

the total volume of sediment input for one year to be ca. 394 m3.

Conclusions

We have collected 3D GPR data across the artificial lake at the Hühnerwasser

field laboratory. Our GPR data provide detailed images of the lake bottom

topography and sedimentary structures beneath the water body. Furthermore,

repetitive surveys in February 2011 and 2012 can be used to visualize changes in

lake bottom topography associated with sedimentary input. Our findings are in

reasonable agreement with previous studies based on point measurements and,

thus, we conclude that the GPR technique is capable to provide important data

to study and understand erosional processes at the Hühnerwasser field laboratory.
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