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Abstract

Data assimilation has been an active area of research in recent years, owing to its wide utility.
At the core of data assimilation are filtering, prediction, and smoothing procedures. Filter-
ing entails incorporation of measurements’ information into the model to gain more insight
into a given state governed by a noisy state space model. Most natural laws are governed by
time-continuous nonlinear models. For the most part, the knowledge available about a model
is incomplete; and hence uncertainties are approximated by means of probabilities. Time-
continuous filtering, therefore, holds promise for wider usefulness, for it offers a means of
combining noisy measurements with imperfect model to provide more insight on a given state.

The solution to time-continuous nonlinear Gaussian filtering problem is provided for by
the Kushner-Stratonovich equation. Unfortunately, the Kushner-Stratonovich equation lacks
a closed-form solution. Moreover, the numerical approximations based on Taylor expansion
above third order are fraught with computational complications. For this reason, numerical
methods based on Monte Carlo methods have been resorted to. Chief among these methods
are sequential Monte-Carlo methods (or particle filters), for they allow for online assimilation
of data. Particle filters are not without challenges: they suffer from particle degeneracy, sample
impoverishment, and computational costs arising from resampling.

The goal of this thesis is to:— i) Review the derivation of Kushner-Stratonovich equation
from first principles and its extant numerical approximation methods, ii) Study the feedback
particle filters as a way of avoiding resampling in particle filters, iii) Study joint state and param-
eter estimation in time-continuous settings, iv) Apply the notions studied to linear hyperbolic
stochastic differential equations.

The interconnection between Itô integrals and stochastic partial differential equations and
those of Stratonovich is introduced in anticipation of feedback particle filters. With these ideas
and motivated by the variants of ensemble Kalman-Bucy filters founded on the structure of the
innovation process, a feedback particle filter with randomly perturbed innovation is proposed.
Moreover, feedback particle filters based on coupling of prediction and analysis measures are
proposed. They register a better performance than the bootstrap particle filter at lower ensem-
ble sizes.

We study joint state and parameter estimation, both by means of extended state spaces and
by use of dual filters. Feedback particle filters seem to perform well in both cases. Finally, we
apply joint state and parameter estimation in the advection and wave equation, whose velocity
is spatially varying. Two methods are employed: Metropolis Hastings with filter likelihood and
a dual filter comprising of Kalman-Bucy filter and ensemble Kalman-Bucy filter. The former
performs better than the latter.
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Zusammenfassung

Die Datenassimilation war in den letzten Jahren aufgrund ihres breiten Nutzens ein aktives
Forschungsgebiet. Im Zentrum der Datenassimilation stehen Filter-, Vorhersage- und Glät-
tungsverfahren. Die Filterung beinhaltet die Einbeziehung von Messinformationen in das
Modell, um einen besseren Einblick in einen gegebenen Zustand zu erhalten, der durch ein ver-
rauschtes Zustandsraummodell gesteuert wird. Die meisten Naturgesetze werden von zeitkon-
tinuierlichen nichtlinearen Modellen bestimmt. Das verfügbare Wissen über ein Modell ist
größtenteils unvollständig; und daher werden Unsicherheiten mittels Wahrscheinlichkeiten
angenähert. Die zeitkontinuierliche Filterung verspricht daher eine größere Nützlichkeit, denn
sie bietet die Möglichkeit, verrauschte Messungen mit einem unvollkommenen Modell zu
kombinieren, um mehr Einblick in einen bestimmten Zustand zu erhalten.

Das Problem der zeitkontinuierlichen nichtlinearen Gaußschen Filterung wird durch die
Kushner-Stratonovich-Gleichung gelöst. Leider fehlt der Kushner-Stratonovich-Gleichung
eine geschlossene Lösung. Darüber hinaus sind die numerischen Näherungen, die auf der
Taylor-Erweiterung über der dritten Ordnung basieren, mit rechnerischen Komplikationen be-
haftet. Aus diesem Grund wurde auf numerische Methoden zurückgegriffen, die auf Monte-
Carlo-Methoden basieren. Die wichtigsten dieser Methoden sind sequentielle Monte-Carlo-
Methoden (oder Partikelfilter), da sie die Online-Assimilation von Daten ermöglichen. Par-
tikelfilter sind nicht unproblematisch: Sie leiden unter Partikelentartung, Probenverarmung
und Rechenkosten, die sich aus der Neuabtastung ergeben.

Das Ziel dieser Arbeit ist es, i) die Ableitung der Kushner-Stratonovich-Gleichung aus den
ersten Prinzipien und ihre vorhandenen numerischen Approximationsmethoden zu über-
prüfen, ii) die Rückkopplungs-Partikelfilter zu untersuchen, um eine Neuabtastung in Par-
tikelfiltern zu vermeiden, iii) Studieren Sie die Zustands- und Parameterschätzung in zeitkon-
tinuierlichen Einstellungen, iv) Wenden Sie die untersuchten Begriffe auf lineare hyperbolische
stochastische Differentialgleichungen an.

Die Verbindung zwischen Itô Integralen und stochastischen partiellen Differentialgle-
ichungen und denen von Stratonovich wird in Erwartung von Rückkopplungs-Partikelfiltern
eingeführt. Mit diesen Ideen und motiviert durch die Varianten von Kalman-Bucy-Filtern,
die auf der Struktur des Innovationsprozesses gegründet, wird ein Feedback-Partikelfilter
mit zufällig gestörter Innovation vorgeschlagen. Darüber hinaus werden Rückkopplungspar-
tikelfilter basierend auf der Kopplung von Vorhersage- und Analysemaßnahmen vorgeschla-
gen. Diese Feedback-Partikelfiltern haben eine bessere Leistung als der Bootstrap-Partikelfilter
bei niedrigeren Ensemble-Größen.

Wir untersuchen gemeinsame Zustands- und Parameterschätzungen, sowohl durch er-
weiterte Zustandsräume als auch durch Verwendung von Doppelfiltern. Rückkopplungs-
Partikelfilter scheinen in beiden Fällen gut zu funktionieren. Schließlich wenden wir eine
gemeinsame Zustands- und Parameterschätzung in der Advektions-und Wellengleichung an,
deren Geschwindigkeit räumlich variiert. Es werden zwei Verfahren verwendet: Metropolis-
Hastings mit Filterwahrscheinlichkeit und ein Doppelfilter bestehend aus Kalman-Bucy-Filter
und Ensemble-Kalman-Bucy-Filter. Ersteres schneidet besser ab als letzteres.
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CHAPTER 1

INTRODUCTION

1.1 Overview of the thesis

This thesis concerns the twin problems of state and parameter inference in time-continuous
state space models (SSMs). From the outset, this study acknowledges the subdivision of SSMs
into four parts: linear Gaussian state space models, linear non-Gaussian state space models,
non-linear Gaussian state-space models and non-linear non-Gaussian state space models. We
restrict ourselves to both linear and nonlinear models with an assumption that probability
densities and conditional probability densities are Gaussian. Problems lacking closed-form
solutions, which is the case when treating nonlinear models, are considered. We make approx-
imations based on Taylor series expansion and Monte-Carlo methods.

In this introduction, we give a cursory view of the thesis and motivate the problem to be
studied in the rest of this thesis. The achievements of the thesis and results are highlighted.
Chapter 2 treats time-continuous SSMs. The setting is that of stochastic differential equations.
We review the Itô and Stratonovich integrals and their interconversion, both integrals being
useful in subsequent chapters. The notion of evolution of probability density and conditional
probability densities is introduced, which comprises the forward Kolmogorov equation (also
known as Fokker-Planck equation). Furthermore, the equations of evolution of moments is
derived—which, in fact, arises naturally from weak formulation of the Fokker-Planck equation.
It turns out that the equation of evolution of moments, in the nonlinear SSM, lack closed-form
solution, except, perhaps in very few cases. For this reason, and in anticipation of applications
in later chapters, we introduce numerical solutions for stochastic differential equations. An
application to the Geometric Brownian motion forms the closing part of the chapter.

Introduction of the measurements to the equation of evolution of the state is handled in
Chapter 3. This paves way to the definition of the filtering problem. We introduce the equa-
tion of evolution of the probability density of the state given all available measurements, which
equation is called Kushner-Statonovich equation [Kushner (1962)]. The equation of evolution
of moments—which is known as Kushner-Zakai equation—is derived by obtaining the weak
formulation of the Kushner-Stratonovich equation. From the Kushner-Zakai equation, we ob-
tain the equation of evolution of the mean and covariance—both for nonlinear scalar and vec-
tor signal and measurements equations. Now the equations governing the evolution of first
and second moments—that is, the mean and covariance, respectively—in nonlinear settings
depend on infinite higher moments, hence they are intractable. Which is why approximations
are inevitable. We therefore review the derivation of the second and first order direct approxi-
mations to the equation of evolution of the mean and covariance using Taylor series expansion
about the mean [Jazwinski (1970); Bass et al. (1966)]. What is more, we derive sequential Monte
Carlo approximation to the solution to the nonlinear filtering problem. To conclude the chap-
ter, we make applications to the Lorentz-63 model and offer critique to the numerical solution

1
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of nonlinear filtering problem.

Time-continuous linear filtering comprises Chapter 4, where we introduce the model equa-
tions by specialising the nonlinear model equations to linear settings. We then arrive at the
Kalman-Bucy filter (KBF) by substituting linear terms for the nonlinear terms in the equation
of evolution of the mean and covariance obtained in Chapter 3. What follows is an introduc-
tion of two formulations of Ensemble Kalman Bucy filter (EnKBF), viz., the Ensemble Kalman
Bucy filter with a randomly perturbed innovation and that with deterministically perturbed
innovation. The extensions to nonlinear setting, of both the KBF and the EnKBF to extended
Kalman-Bucy filter (EKBF) and the extended ensemble Kalman-Bucy filter (EEnKBF), are spelt
out. Thereafter, we demonstrate the consistency of EnKBF with KBF. An application example is
supplied at the end of the chapter.

It is in Chapter 5 that we treat the feedback particle filter (FPF), in the most general nonlin-
ear setting [Yang et al. (2013)]. For the first time, FPF with stochastically perturbed innovation
is introduced. We show that the evolution of the density of each ensemble member given the
measurements’ history is consistent with the evolution of the true posterior under certain con-
ditions. It turns out that the elliptic equation, the solving of which we obtain the gain, is the
same in the FPF with stochastically perturbed innovation as that in the FPF with determin-
istically perturbed innovation. What follows is the numerical solution of the boundary value
problem from which we obtain the gain. We then, for the first time, introduce two variants of
FPF using the ideas of optimal transportation of measures as defined by Schrödinger. Finally,
we close the chapter with a heuristic analysis of the performance of the filters.

Now thus far pertains state estimation. Parameter estimation is introduced in Chapter 6.
We consider static, constant parameters, and describe statistical methods for parameter infer-
ence; that is, Maximum likelihood (ML) and maximum a posteriori (MAP) methods. The use of
filters for parameter estimation is then described. We introduce for the first time the use of se-
quential Monte Carlo method paired with EnKBF and EnKBF paired with ensemble transform
particle filter (ETPF) for simultaneous estimation of model state and parameters. Examples are
used to illustrate the performance of the algorithms.

Chapter 7 comprises application of state and parameter estimation to stochastic partial
differential equations (SPDEs). Two equations are considered: advection and wave equations
with space-time white noise as the forcing term. The velocity is allowed to vary in time; so
that the equations can be used to model waves travelling in heterogeneous media. To allow
parameter estimation, we approximate the time varying velocity using a fourier series with a
finite number of modes. For then estimation of spatially varying velocity reduces to estimation
of static coefficients of the fourier series. Now to insure stability of the equation solutions, we
use upwind discretisation in space for the advection equation and Störmer-Verlet discretisation
method for the wave equation. We obtain results for parameter estimates using the likelihood
method with Metropolis-Hastings steps. What is more, we obtain parameter estimates, and
their respective errors, using EnKBF-KBF dual filters.

1.2 Motivation

The question of state—and parameter—estimation is, in many fields, very important and has a
long history [Särkkä (2013); Bar-Shalom et al. (2001); Lewis et al. (2006)]. The central field that
investigates and offers solution to this problem is data assimilation [Reich and Cotter (2015);
Law et al. (2015)]. To describe it briefly, data assimilation is concerned with the incorporation
of measurements of the state—which, mostly, come with measurement errors—into a model
to improve the model’s approximation of a given state. This can be accomplished by a number
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of ways: least squares approach, statistical approach and by Bayesian inference. In this thesis,
we take up the Bayesian inference approach to data assimilation.

The flourishing of data assimilation in recent years is informed by its wide, practical util-
ity. Some of the areas which employ data assimilation include surveillance—detection, iden-
tification and tracking of, say, astrological objects; navigation which comprises dead reckon-
ing, radio and celestial navigation; numerical weather prediction; robotics and in other con-
trol systems [Mohinder and Angus (2001); Tomera (2011); Lewis et al. (2006); Jazwinski (1970);
Bar-Shalom et al. (2001)]. Most of these application areas have time-continuous, nonlinear,
non-Gaussian governing equations.

The linear, Gaussian model equations have optimal estimates, thanks to the celebrated
Kalman filter. The optimal performance of the Kalman filter has prompted extensions to non-
linear settings. These extensions, however, are not optimal and the user incurs extra computa-
tional costs owing to linearisation. Other exact filters for nonlinear setting have been proposed,
although they are limited to certain model equations, hence they have a restricted use. Fil-
ter estimates—which are consistent, unbiased, efficient, robust and of minimal variance—for
nonlinear models are highly required.

Sequential Monte-Carlo methods and ensemble-based filters have obtained prominence in
recent years, owing to their better performance in nonlinear settings. Among these filters are
the ensemble Kalman-Bucy filter and the feedback particle filters. Theoretical underpinnings
of these filters are minimal [de Wiljes et al. (2016)]. Ensemble-based filters involving optimal
coupling, for example, the ensemble transform particle filter, have been shown to perform well
heuristically.

Whereas discrete filters have had a wide-spread treatment and application in data assimi-
lation, their theoretical bases depend on the corresponding time-continuous counterparts. In
time-continuous setting, for instance, the equation of evolution of the posterior density has
been derived from first principles [Jazwinski (1970); Kushner (1962)]. To insure exactness of a
filter, therefore, one has to check whether the filter posterior density matches the true posterior
at all times.

Now this thesis is cast in time-continuous, nonlinear setting. Our guiding purpose is to
study filtering in nonlinear systems and its application to state and parameter estimation. We
treat linear filtering as a special case of nonlinear filtering. From the outset, we use limit in the
mean convergence, which allows us to avoid technical measure theoretic terms.

1.3 Main achievements

In this section, we present, briefly, what has been attained in this thesis.

• A feedback particle filter with stochastically perturbed innovation is proposed. The ex-
actness of this filter is demonstrated by showing that the filter posterior density evolves
as the true posterior when the initial filter posterior is chosen to be the same as the initial
true posterior. We show the performance of this filter with the use of the, highly nonlin-
ear, Lorentz 63 model.

• We propose, for the first time, two formulations of feedback particle filters—the Sinkhorn
particle filter (SPF) and the resampling Sinkhorn particle filter (RSPF)—where the con-
trolled feedback is obtained by solving an optimal transport problem—the so-called
Schrödinger problem. The optimal transport problem arising from the filter is solved
iteratively using Sinkhorn method [Cuturi (2013)].

• The dual filter comprising of ensemble Kalman-Bucy filter and ensemble transform par-
ticle filter (EnKBF-ETPF), and bootstrap particle filter and ensemble Kalman-Bucy filter
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(BPF-EnKBF) are proposed for the first time in this thesis. A portion of the work, which is
part of this thesis, appears in [Angwenyi et al. (2017)]. The performance of the two dual
filters is compared by means of a scalar example.

• Application of state and parameter estimation is done on the advection and wave equa-
tions driven by space-time white noise. We let the velocity be spatially varying—as would
be the case when modelling a wave travelling in a heterogeneous media. To facilitate es-
timation of the wave, we approximate the velocity function by means of a Fourier series
of finite modes. For then we obtain the approximation of the velocity function by esti-
mating the static coefficients of the series.

1.4 Numerical findings

This study leads to following findings

? The Sinkhorn particle filter and the resampling Sinkhorn particle filter are numerically
shown to outperform the classic bootstrap particle filter at low ensemble sizes (see Fig-
ure 5.1).

? EnKBF-ETPF dual filter yields a faster converging parameter estimates as compared to
BPF-EnKBF dual filter in a scalar linear model (see Figure 6.3).

? On the estimation of the spatially varying velocity, the use of the filter likelihood with
Metropolis Hastings steps elicits a better performance as compared to the use of KBF-
EnKBF dual filter in the wave equation (cref. Figures 7.10 and 7.14). Both methods seem
to work well when applied to the advection equation (cref. Figures 7.8 and 7.12).



CHAPTER 2

STATE-SPACE MODELS

2.1 Introduction

Most models, which are evolutionary in nature, are fashioned in such a way that one can obtain
an estimate of the state at a given time. It is also possible to obtain future estimates of the state
by running the models forward in time. This is fine—in so far as the models are perfectly rep-
resenting the desired dynamics, which, unfortunately, is not often the case. This imperfection
of the models can be dealt with by quantifying the uncertainty. The uncertainties in the model
are mostly represented as random variables, and are referred to as noise in the model. To be
precise, a dynamical model in this context is as follows.

d xt = f (xt , t )d t + g (xt , t )dβt ; t0 ≤ t , (2.1.1)

where:

Term Name Dimension
xt state vector n ×1
f (xt , t ) drift function n ×1
g (xt , t ) diffusion function n ×m
{βt , t > t0} Brownian motion process m ×1

The state vector, xt , at a given time, t , evolves in time according to a function, f , of the
state vector, xt . The uncertainties and imperfections of the model are—as much as possible—
captured in the additive term, g (xt , t )dβt , where {βt , t > t0} is standard Brownian motion pro-
cess. The model equation, eq. (2.1.1), is an expression of a continuous state space model.
Equation (2.1.1) is said to be linear if the drift function, f (xt , t ), and the diffusion function,
g (xt , t ), can be expressed as F (t )xt and G(t )xt , respectively, where the n ×n matrix function,
F (t ), and the n ×m matrix function, G(t ), are not functions of xt ; otherwise, eq. (2.1.1) is said
to be nonlinear. Given the initial value of the state, xt0 , the subsequent states in the model can
be obtained by formal integration. This involves solving the model equation each time. That
is to say, the state at a given time depends on the state at the previous time—and nothing else
about the past states. Models whose states at a given time can be obtained this way are referred
to as Markov models.

The model is said to be deterministic if it does not include randomness in any of its terms;
otherwise, it is said to be stochastic. Generally, stochasticity in a model is induced through the
forcing term, g (xt , t )dβt , or the parameters, or the initial conditions, or the boundary terms.
The models studied in this thesis are stochastic. It is quite convenient to study various aspects
of Markov models using probabilities. The reason for this, and this will become apparent in
subsequent sections, is that probabilities, in some cases, summarise a lot of information about
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the model using very few terms. Take Gaussian distribution for example. For a linear model
equation, it is enough to know the evolution of the mean and the covariances of the model of
interest; that is to say, the mean of the states and respective covariance are sufficient statistics
for inferring the state of the system at a given time. It is partly for the ease and elegance in
manipulations where Gaussian distributions are involved that we have Gaussian state space
models. Furthermore, we are able, by means of probabilities, to make inferences about param-
eters given the states or observations.

We now introduce some well known terms and results of stochastic processes and proba-
bility theory, which will be useful in this study.

2.2 Stochastic Integral

Suppose, for the moment, that we would obtain a solution to eq. (2.1.1); which, in fact, is found
by integrating both sides of eq. (2.1.1):

xt = xt0 +
∫t

t0

f (xτ,τ)dτ+
∫t

t0

g (xτ,τ)dβτ. (2.2.1)

The first integral on the right-hand-side of eq. (2.2.1) is the common integral in Calculus—the
Riemann integral. Now the second integral is riddled with technicalities which arise from the
fact that Brownian motion process, {βt , t > t0}, is of unbounded variation. The implication is
that Brownian motion process is nowhere differentiable. Such integrals as this require a special
treatment, due to inherent stochasticity, which is why they are known as stochastic integrals.
Interpretation of these integrals began with the works of Norbert Wiener, in 1940s, on scalar
stochastic differential equations and were later generalized by Kiyoshi Itô [Itô (1951)]. Ruslan
Stratonovich, in 1960s, obtained another formulation of stochastic integrals giving rise to two
ways of looking at stochastic differential equations [Stratonovich (1966); Schaffter (2010)].

Consider the stochastic integral (in scalar form)∫b

a
g (xτ,τ)dβτ. (2.2.2)

In Itô’s formulation, the stochastic integral, eq. (2.2.2), is defined by (see Jazwinski (1970);
Schaffter (2010) for details)∫b

a
g (xτ,τ)dβτ = l.i.m.

δt→0

n∑
k=1

g (xtk , tk )(βtk+1 −βtk ), (2.2.3)

where δt = tk+1 − tk and the terms to be summed are evaluated at discretised times a = t0 <
t1 < ... < tk < tk+1 < ... < tn = b. l.i.m. is limit-in-the-mean convergence1 (see Doob (1953) for
more details and for other forms of convergence).

The following interpretation of eq. (2.2.2) is also possible, and is due to Stratonovich:∫b

a
g (xτ,τ)◦dβτ = l.i.m.

δt→0

n∑
k=1

g (
xtk +xtk+1

2
, tk )(βtk+1 −βtk ), (2.2.6)

1Let {xtk ,k = 1, 2, 3, ...} be a random sequence. Suppose a random sequence {xtk ,k = 1, 2, 3, ...} is such that
E
[
xtk

]<∞ and that there exists x such that E [x] <∞. Then the sequence is said to converge in mean square to x if

lim
k→∞

E
[
|xtk −x|2

]
= 0. (2.2.4)

x is then referred to as the limit in the mean of the random sequence {xtk ,k = 1, 2, 3, ...}; that is,

l.i.m.
k→∞

xtk = x. (2.2.5)
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where ◦ is used to indicate a different formulation than that due to Itô. Equation (2.2.6) is
known as Stratonovich stochastic integral.

In the following, we introduce an already established relationship between stochas-
tic integral—and, subsequently, the stochastic differential equation—of Itô and that of
Stratonovich; which is as follows:∫b

a
g (xτ,τ)◦dβτ =

∫b

a
g (xτ,τ)dβτ+ 1

2

∫b

a
∂x [g (xτ,τ)]g (xτ,τ)dτ, (2.2.7)

where ∂x [g ] = ∂g

∂x
. The integral in the left-hand-side of the equal sign is the Stratonovich

integral; the first on the right-hand-side is the Itô integral; the last is a Riemann integral.
From eq. (2.2.7), the relationships between Itô stochastic differential equation and Stratanovich
stochastic differential equation is straightforward.

The scalar Itô stochastic differential equation

d xt = f (xt , t )d t + g (xt , t )dβt ; t0 ≤ t , (2.2.8a)

based on (2.2.7), has its Stratonovich equivalent

d xt = f (xt , t )d t − 1

2
g (xt , t )∂x [g (xt , t )]d t + g (xt , t )◦dβt ; t0 ≤ t . (2.2.8b)

Now we turn to the vector form. The vector Itô SDE, eq. (2.1.1), has an equivalent vector
Stratonovich SDE:

d xt = q(xt , t )d t + g (xt , t )◦dβt ; t0 ≤ t , (2.2.9a)

where the n ×1 vector q has elements given by

qk (x, t ) = fk (x, t )− 1

2

n∑
i=1

m∑
j=1

gi j (x, t )∂xi [gk j (x, t )]. (2.2.9b)

The import of these two different formulations will become apparent in later chapters. For the
moment, however, we restrict ourselves to the Itô form.

2.3 Itô’s formula

Consider the scalar differential form, eq. (2.2.8a), of the Itô stochastic differential equation,
eq. (2.1.1). Let h(xt , t ) be a function that is at least twice differentiable in both its arguments
and has mixed derivatives. By xt is meant that x is a function of time. Taylor expansion of
h(xt+δt , t +δt ) about (xt , t ) yields

h(xt+δt , t +δt ) = h(xt , t )+∂t [h(xt , t )]δt +∂x [h(xt , t )]δxt

+ 1

2

(
∂t t [h(xt , t )]δt 2 +2∂t x [h(xt , t )]δtδxt +∂xx [h(xt , t )]δx2

t

)+ ...,
(2.3.1)

where
xt+δt := xt +δxt .

From eq. (2.2.8a) we have

δxt = f (xt , t )δt + g (xt , t )δβt , (2.3.2a)
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from which we get

δx2
t = f 2(xt , t )δt 2 +2 f (xt , t )δt g (xt , t )δβt + g 2(xt , t )δβ2

t . (2.3.2b)

Note that E[δx2
t ] = g 2(xt , t )δt + o(δt ), where o(δt ) represents terms containing second and

higher order terms in δt . As δt → 0, δx2
t attains its expected value, E[δx2

t ] (see Appendix 1
of Kushner (1962))—where E[.] stands for expectation operation. Substituting E[δx2

t ] for δx2
t

and writing h in its differential form, gives

δh(xt , t ) = ∂t [h(xt , t )]δt +∂x [h(xt , t )]δxt + 1

2
∂xx [h(xt , t )]g 2(xt , t )δt +o(δt ). (2.3.3)

We substitute eq. (2.3.2a) into eq. (2.3.3) and, assuming higher order terms to be negligible,
obtain

δh(xt , t ) = ∂t [h(xt , t )]δt +∂x [h(xt , t )]
(

f (xt , t )δt + g (xt , t )δβt
)

+ 1

2
∂xx [h(xt , t )]g 2(xt , t )δt

= ∂t [h(xt , t )]δt +∂x [h(xt , t )] f (xt , t )δt + 1

2
∂xx [h(xt , t )]g 2(xt , t )δt

+∂x [h(xt , t )]g (xt , t )δβt .

(2.3.4)

Extension of eq. (2.3.4) to vector form follows from substituting an n-dimensional column vec-
tor, xt , in the place of the scalar, xt , and using the differential operators

∇ :=


∂

∂x1
...
∂

∂xn

 , and 4 :=


∂2

∂x2
1

,
∂2

∂x1∂x2
, · · · ,

∂2

∂x1∂xn
...

...
. . .

...
∂2

∂xn∂x1
,

∂2

∂xn∂x2
, · · · ,

∂2

∂x2
n

 ; (2.3.5)

which yields

δh = ∂t [h]δt +∇[h]T f (xt , t )δt + 1

2
tr[g (xt , t )g T(xt , t )]4 [h]δt

+ (∇[h]Tg (xt , t ))δβt ;
(2.3.6)

whereupon taking the limit-in-the-mean of δh as δt and δx tend to zero, we obtain

dh = ∂t [h]d t +∇[h]Td xt + 1

2
tr[g (xt , t )g T(xt , t )]4 [h]d t . (2.3.7)

Equation (2.3.7) is known as Itô’s formula or Itô’s Lemma. It is useful in stochastic calculus.

2.4 Fokker-Planck Equation

Consider the scalar Itô stochastic differential equation, eq. (2.2.8a). It can be shown [Jazwin-
ski (1970)] that the process {xt , t ∈ [t0, T ]}, generated by eq. (2.2.8a), is a Markov process. Of
interest in Markov processes is the density function

πt (x) =π(x, t ), ∀t ∈ [t0, T ], (2.4.1a)

together with the transition probability density function

πt |τ(x | z) =π(x, t | z,τ), ∀τ< t ∈ [t0, T ], (2.4.1b)
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which both characterise the process {xt , t ∈ [t0, T ]}.

The Fokker-Planck equation is the equation of evolution of the density function, πt (x), and
the conditional density, πt |τ(x | z), for all t > τ ∈ [t0,T ]. Since the process {xt , t > 0} generated
by eq. (2.2.8a) is a Markov process, then, given t1 < t2 < t3,

πt3|t1,t2 (x | z, y) =πt3|t2 (x | y), (2.4.2)

and the following equation is satisfied,

πt3|t1 (x | z) =
∫
πt3|t2 (x | y)πt2|t1 (y | z)d y. (2.4.3)

Equation (2.4.3) is known as the Chapman-Kolmogorov equation, and it applies to every
Markov process. Using Chapman-Kolmogorov equation and Taylor expansion, an equation for
evolution of transition probability density function, πt |τ(x | y) = π(x, t | y,τ), can be obtained
(see Jazwinski (1970) for the derivation), which equation is as follows.

∂πt |τ(x | y)

∂t
=−∂(πt |τ(x | y) f (x, t ))

∂x
+ 1

2

∂2(πt |τ(x | y)g 2(x, t ))

∂x2 , (2.4.4)

which is the Fokker-Planck equation or the Kolmogorov’s forward equation. Taking expectation
in eq. (2.4.4) with respect to πt (y) and noting that,

Eτ[πt |τ(x | y)] =
∫
πt |τ(x | y)πτ(y)d y =πt (x), (2.4.5)

we obtain an equation for evolution of the probability density function, πt (x), that is,

∂πt (x)

∂t
=−∂(πt (x) f (x, t ))

∂x
+ 1

2

∂2(πt (xt )g 2(x, t ))

∂x2 . (2.4.6)

For the vector equation, eq. (2.1.1), the corresponding Fokker-Planck equation is obtained
by evolving each element according to eq. (2.4.6). This leads to

∂πt (x, t )

∂t
=−

n∑
k=1

∂(πt (x, t ) fk (x, t ))

∂xk
+ 1

2

n∑
k,l=1

∂2(πt (x, t )(g (x, t )g T(x, t ))kl )

∂xk∂xl

=Lπt (x, t ),

(2.4.7)

where

Lπt (x, t ) =−
n∑

k=1

∂(πt (x, t ) fk (x, t ))

∂xk
+ 1

2

n∑
k,l=1

∂2(πt (x, t )(g (x, t )g T(x, t ))kl )

∂xk∂xl
. (2.4.8)

Solving the Fokker-Planck equation, eq. (2.4.7), yields the probability density function,
πt (x). Analytical solutions have been provided for simple scalar systems [Spencer and Bergman
(1993)], but most SDEs, especially those whose drift terms are nonlinear, are cumbersome to
solve analytically. For this reason, numerical solutions are preferred. Finite element and finite
difference methods, for example, have been used to solve the Fokker-Planck equation [Spencer
and Bergman (1993); Kumar and Narayanan (2006)]. In the following, we outline the variational
form of the Fokker-Planck equation; which forms the basis of a variety of numerical methods.
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2.4.1 Weak form of the Fokker-Planck equation

For simplicity, consider the scalar Fokker-Planck equation, eq. (2.4.6), on the real line. Let
φ(x) ∈ C∞

c (R, R); which is to say that φ(x) is an infinitely differentiable function from R to R,
whose compact support is the set R.

Let the value of πt (x) at initial time, t0, be given by

πt0 (x) =π0(x). (2.4.9)

Now multiplying eq. (2.4.6) by φ(x) and integrating over the domain yields∫
∂πt (x)

∂t
φ(x)d x =−

∫
∂(πt (x) f (x, t ))

∂x
φ(x)d x + 1

2

∫
∂2(πt (x)g 2(x, t ))

∂x2 φ(x)d x. (2.4.10)

Integrating eq. (2.4.10) by parts gives∫
∂πt (x)

∂t
φ(x)d x =

∫
πt (x) f (x, t )

∂φ(x)

∂x
d x − 1

2

∫
∂(πt (x)g 2(x, t ))

∂x

∂φ(x)

∂x
d x

=
∫
∂φ(x)

∂x

(
πt (x) f (x, t )− 1

2

∂(πt (x)g 2(x, t ))

∂x

)
d x.

(2.4.11)

Upon integrating the last term in the right-hand side of eq. (2.4.11) by parts we obtain,∫
∂πt (x)

∂t
φ(x)d x =

∫
∂φ(x)

∂x
πt (x) f (x, t )d x + 1

2

∫
∂2φ(x)

∂x2 πt (x)g 2(x, t )d x. (2.4.12)

Finally, expressing eq. (2.4.12) using expected values,

∂Et [φ(x)]

∂t
= Et

[
∂φ(x)

∂x
f (x, t )

]
+ 1

2
Et

[
∂2φ(x)

∂x2 g 2(x, t )

]
. (2.4.13)

Now defining Et [φ] as

Et [φ] :=πt [φ]

=
∫
πt (x)φ(x)d x,

(2.4.14)

we then have
dπt [φ] =πt [L ∗φ]d t , (2.4.15)

where the operator

L ∗ := f
∂

∂x
+ 1

2
g 2 ∂2

∂x2 , (2.4.16)

is expressible in vector form as follows

L ∗ := f T∇+ 1

2
tr[g g T]4, (2.4.17)

where∇ and4 are as defined in eq. (2.3.5). Equation (2.4.15) is the weak form or the variational
form of the Fokker-Planck equation. Different numerical methods arise from the choice of the
test function, φ(x).

By definition, the operator L ∗ has an adjoint, L , satisfying

〈L ∗φ,πt 〉 = 〈φ,Lπt 〉, (2.4.18)

where 〈·, ·〉 is the inner product. From eqs. (2.4.14) and (2.4.15),

d

d t

∫
πt (x)φ(x)d x =

∫
πt L

∗φ(x)d x

=
∫
φ(x)Lπt d x,

(2.4.19)

which, upon dividing through by φ, integrals being common, yields the Fokker-Planck equa-
tion, eq. (2.4.7).
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2.4.2 Equation of evolution of mean and covariance

The weak form of the Fokker-Planck equation, eq. (2.4.15), is the equation of evolution of mo-
ments, φ(x), with respect to the density, π(x). By definition, the mean is given by the first mo-
ment and the covariance is given by the second central moment, respectively. We first consider
the scalar forms of the mean and variance for ease in manipulation. To obtain the equation of
evolution of the mean, x̂t , we substitute xt in the place of φ(x) in the scalar form of eq. (2.4.15);
which, in scalar form, is

d x̂t = f̂t d t , (2.4.20)

where we have used the notation x̂t = πt [x] := ∫
xπt (x)d x and f̂t = πt [ f (x, t )] :=∫

f (x, t )πt (x)d x.
Let pt denote the variance of the mean x̂t at time t ; that is,

pt =πt [x2
t ]− x̂2

t , (2.4.21)

whence

d pt = dπt [x2
t ]−d x̂2

t . (2.4.22)

Substituting x2
t in the place of φ(x) in the scalar form of eq. (2.4.15) yields

dπt [x2
t ] = 2πt [x f ]d t +πt [g 2]d t . (2.4.23)

Note that by differentiation and the use of eq. (2.4.20)

d x̂2
t = 2x̂t d x̂t = 2x̂t f̂t d t . (2.4.24)

Rewriting eq. (2.4.22) with substitutions in eqs. (2.4.23) and (2.4.24) gives

d pt = 2x̂t f̂t d t +2πt [x f ]d t +πt [g 2]d t , (2.4.25)

which is the equation of evolution of the variance.
Now we extend the scalar forms of the mean and variance to vector form by noting that

each element in the mean vector and covariance matrix will evolve according to eqs. (2.4.20)
and (2.4.25), respectively. Therefore, the equations of evolution of mean vector, x̂t , and covari-
ance matrix, Pt , are, respectively,

d x̂t = f̂t d t , (2.4.26a)

dPtkl = (πt
[
xk fk

]− x̂kt f̂kt )d t + (πt
[

fl xl
]− f̂l t x̂l )d t +πt

[
(g g T)kl

]
d t , (2.4.26b)

where by the subscripts kl is signified an element in kth row and l th column, respectively.
In the next section, we briefly review some numerical methods for solving stochastic dif-

ferential equations. An example is supplied at the end of the section.

2.5 Numerical Solution Methods for SDEs

Most SDEs do not have analytical solutions owing to the stochastic integrals involved and the
nonlinearity of the drift and the diffusion functions. For this reason, numerical approxima-
tions provide estimates of the solutions. In this thesis, we shall consider numerical methods
obtained by Taylor’s series expansion, namely, Euler-Maruyama method, Milstein method, to-
gether with their variants.
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2.5.1 Euler-Maruyama method

Consider the one-dimensional Itô stochastic differential equation

d xt = f (xt , t )d t + g (xt , t )dβt ; t0 ≤ t , (2.5.1a)

whose solution is

xt = xt0 +
∫t

t0

f (xτ,τ)dτ+
∫t

t0

g (xτ,τ)dβτ; t ∈ [t0,T ]. (2.5.1b)

Named after Leonard Euler and Gisiro Maruyama, Euler-Maruyama method is an exten-
sion of Euler method for approximating ordinary differential equations to stochastic differ-
ential equations. Euler-Maruyama approximation for eq. (2.5.1b) is obtained by first parti-
tioning the time domain into, say, N subintervals [tn , tn+1] of equal length, δt = tn+1 − tn ,
n = 0, 1, 2, 3, ..., N , and then by approximating the functions f and g by using Taylor series
expansion upto a constant term. The recursion

x̃tn+1 = x̃tn + f (x̃tn , tn)δt + g (x̃tn , tn)δβtn , (2.5.2)

where δβtn = ∫tn+1
tn

dβτ = βtn+1 − βtn ≈ N (0, δt ) and x̃tn approximates xtn is called Euler-
Maruyama method for eq. (2.5.1b).

It is of much interest to ascertain how best x̃tn approximates xtn and, since this depends on
the time step, convergence of x̃tn to xtn . Note that {x̃tn } is a random process. There are two ways
of investigating convergence: strong convergence and weak convergence. Strong convergence
is obtained by calculating the root-mean-square error (RMSE)

sup
0≤tn≤T

E
[‖xtn − x̃tn‖2]1/2 ≤ Kδt p , (2.5.3)

where K > 0 is a constant and p is the order of convergence.
Weak convergence, on the other hand, is obtained by means of distributions; that is, we

obtain, say, M-sized ensemble {x̃i
tN

}M
i=1 of x̃tN , which is an approximation of xtN . Weak conver-

gence is then ascertained by

|E[
φ(x̃tN )

]−E[
φ(xtN )

] | ≤ Kδt p , (2.5.4)

where, as before, K > 0 is a constant, φ is a smooth test function, and p is the order of conver-
gence. We approximate E

[
φ(xtN )

]
by

E
[
φ(xtN )

]≈ 1

M

M∑
i=1

φ(xi
tN

). (2.5.5)

Euler-Maruyama method has p = 0.5 strong order of convergence and p = 1 weak order of
convergence [Lord et al. (2014); Schaffter (2010)].

2.5.2 Milstein method

Milstein method is a modification of the Euler-Maruyama method and is obtained by adding
one more term in the Taylor series expansion of the function g . It is named after Grigori N.
Milstein. Milstein method recursively approximates eq. (2.5.1b) as follows

x̃tn+1 = x̃tn + f (x̃tn , tn)δt + g (x̃tn , tn)δβtn +
1

2

∂g (x̃tn , tn)

∂x
g (x̃tn , tn)(δβ2

tn
−δt ), (2.5.6)

whereδβtn =βtn+1−βtn ≈N (0, δt ). With p = 1 strong and weak orders of convergence, Milstein
method converges faster in the strong sense than Euler-Maruyama method.
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2.5.3 θ-Euler-Maruyama method

This is an implicit variant of Euler-Maruyama method, obtained by introducing an implicitness
parameter, θ ∈ [0, 1], in the drift term. The θ-Euler-Maruyama scheme is given by:

x̃tn+1 = x̃tn +
(
θ f (x̃tn+1 , tn+1)+ (1−θ) f (x̃tn , tn)

)
δt + g (x̃tn , tn)δβtn . (2.5.7)

When θ = 0, then θ−Euler-Maruyama scheme becomes Euler-Maruyama scheme. The weak
and strong orders of convergence of the θ−Euler-Maruyama scheme when θ = 0.5 are, respec-
tively, p = 1.0 and p = 0.5 [Kloeden and Platen (1992); Kloeden et al. (1994)].

2.5.4 Stratonovich-Milstein method

The methods described heretofore pertain to the Itô stochastic differential equation,
eq. (2.5.1a). In the following, extension of Euler-Maruyama and Milstein methods to the
Stratonovich stochastic differential equation

d xt = f (xt , t )d t + g (xt , t )◦dβt ; t0 ≤ t , (2.5.8a)

whose Itô equivalent is

d xt = f (xt )d t + 1

2
g (xt )∂x [g (xt )]d t + g (xt )dβt , (2.5.8b)

the solution of which is

xt = xt0 +
∫t

t0

(
f (xτ,τ)+ 1

2
g (xτ,τ)∂x [g (xτ,τ)]

)
dτ+

∫t

t0

g (xτ,τ)dβτ, (2.5.8c)

are introduced.

The Stratonovich- Milstein method is obtained by using f (x̃tn , tn)+ 1

2
g (x̃tn , tn)∂x [g (x̃tn , tn)]

in the place of f (x̃tn , tn) in Milstein method above. The iterative equation becomes

x̃tn+1 = x̃tn +
(

f (x̃tn , tn)+ g (x̃tn , tn)δβtn +
1

2

∂g (x̃tn , tn)

∂x
g (x̃tn , tn)

)
δt

+ 1

2

∂g (x̃tn , tn)

∂x
g (x̃tn , tn)(δβ2 −δt )

= x̃tn + f (x̃tn , tn)δt + g (x̃tn , tn)δβtn +
1

2

∂g (x̃tn , tn)

∂x
g (x̃tn , tn)δβ2

tn
.

(2.5.9)

Just like the Milstein method, the Stratonovich-Milstein method has p = 1 strong and weak
orders of convergence.

2.5.5 Heun’s method

Heun’s approximation is an extension of Euler-Maruyama method to Stratonovich SDEs. It is
obtained by replacing the last term in the Euler-Maruyama scheme—thus

x̃tn+1 = x̃tn + f (x̃tn , tn)δt + 1

2

(
g (x̄tn+1 , tn+1)+ g (x̃tn , tn)

)
δβtn , (2.5.10a)

with x̄tn+1 precomputed as follows:

x̄tn+1 = x̃tn + g (x̃tn , tn)δβtn . (2.5.10b)

Heun’s method has p = 0.5 strong order of convergence. It is computationally more efficient
compared to Milstein method because it does not involve computation of the derivative of the
diffusion term.
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Example 2.5.1: Geometric Brownian motion

Geometric Brownian motion is a continuous-time SDE used to model stock prices, de-
noted by xt at a given time t . It is in the form of eq. (2.1.1) where, in the scalar case, the
drift term is µxt and the diffusion term is σxt ; that is to say,

d xt =µxt d t +σxt dβt , t ≥ 0, (2.5.11a)

in which case µ is the interest rate of an asset and σ is its volatility. By volatility is meant
the measure of variability of returns of a given stock or security; so that higher volatility
figures are indicative of a riskier return. The Itô equation, eq. (2.5.11a), has an analytical
solution, (see Øksendal (2005) for details)

xt = xt0 exp
(
(µ−σ2/2)t +σβt

)
, (2.5.11b)

where β(t ) is Brownian motion process. The Stratonovich equation

d xt =µxt d t +σxt ◦dβt , t ≥ 0, (2.5.11c)

has an equivalent Itô representation

d xt =
(
µ+ 1

2
σ2

)
xt d t +σxt dβt , (2.5.11d)

and its analytical solution is

xt = xt0 exp
(
µt +σβt

)
. (2.5.11e)

The integral equation for eq. (2.5.11d), after dividing through by xt , is∫t

t0

d xt

xt
=

(
µ+ 1

2
σ2

)∫t

t0

d t +σ
∫t

t0

dβt

=
(
µ+ 1

2
σ2

)
t +σβt ,

(2.5.12)

where t0 = 0 and βt0 = 0. By Itô’s formula,

d(ln xt ) = d

d x
(ln xt )d xt + 1

2

d 2

d x2 (ln xt )(d xt )2. (2.5.13)

Now, in the limit δt → 0 [Kushner (1962)],

(d xt )2 =σ2x2
t d t , (2.5.14)

and we then, from eq. (2.5.13), have

d(ln xt ) = d xt

xt
− σ2x2

t

2x2
t

d t

= d xt

xt
− σ2

2
d t ,

(2.5.15)

and hence
d xt

xt
= d(ln xt )+ σ2

2
d t . (2.5.16)
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Substituting eq. (2.5.16) in eq. (2.5.12), we get∫t

t0

d(ln xt )+
∫t

t0

σ2

2
d t =

(
µ+ 1

2
σ2

)
t +σβt , (2.5.17)

from which we obtain

ln

(
xt

xt0

)
+ 1

2
σ2t =

(
µ+ 1

2
σ2

)
t +σβt , (2.5.18)

and hence eq. (2.5.11e). Obtaining eq. (2.5.11b) from eq. (2.5.11a) follows the same argument.
In the following, we approximate strong convergence of the numerical methods described

heretofore using the geometric Brownian motion. The approximation is done as follows:

sup
0≤tn≤T

E
[‖xtn − x̃tn‖2]1/2 ≈

(
1

M

M∑
k=1

‖xk
tn
− x̃k

tn
‖2

)1/2

, (2.5.19)

where M is the number of samples. We obtain the root mean square errors for different time-
steps, for different methods, and plot the results.

10−3 10−2 10−1

10−3

10−2

10−1

δt

R
M

SE

RMSE for different methods

Order-one

Order-one-half

Euler-Maruyama

Milstein

Heun

Strat-Milstein

Figure 2.1: Loglog plot showing numerical approximation of strong order of convergence for
different methods. The theoretical results are indicated by o(δt ) and o(δt 1/2), respectively.
In each of the plots, M = 10000 samples are used. The reference solution is obtained with
δt = 0.0001 while the approximate solutions are obtained with time steps 0.0005, 0.001, 0.005,
0.01 and 0.1, respectively. The numerically approximated errors agree remarkably with the the-
oretical values for all the methods considered.



CHAPTER 3

FILTERING PROBLEM

3.1 Introduction

As has been indicated in Chapter 2, the model equations, in so far as they are formulated to
reflect the reality, usually fall short of this intended purpose on account of uncertainties. The
implication is that the models cannot be entirely relied upon to give estimates of the state for all
time—mainly because of the accumulation of model errors which eventually lead to unreliable
estimates of the state. It is natural, therefore, to put in place a corrective mechanism to stem the
accumulation of model errors. One of the ways of achieving this is by means of measurements
of the state; that is, measurement implements are employed to collect data of the state and use
this data, in one way or other, to check the findings from model dynamics. It would be hoped
that the tools used for measuring the state are perfect, but this is unrealistic: the measuring skill
is, as the model, subject to errors. The measurement model, thus, consists of a function of the
state and time, say h(xt , t ), and a quantification of the errors in measurements, say ηt —and this
at any given time, t . This gives a time-continuous system comprising of the model dynamics,
eq. (2.1.1), and that of measurements, both of which we now write for the convenience of the
reader.

Signal: d xt = f (xt , t )d t + g (xt , t )dβt ; t0 ≤ t , (3.1.1a)

Measurement: d yt = h(xt , t )d t +R1/2(t )dηt ; t0 ≤ t , (3.1.1b)

where:

Term Name Dimension
yt output vector r ×1
h(xt , t ) sensor function r ×1
R(t ) time-function matrix r × r
{ηt , t > t0} standard Brownian motion process r ×1

The terms appearing in the signal equation retain the same meaning and dimensions as indi-
cated in Section 2.1.

This chapter is devoted to describing the procedure for combining the noisy measurements
with the noisy dynamics with a view of obtaining the best estimate, x̂t , of the state, xt , at any
given time, t . A number of techniques have been proposed for doing this: the least squares ap-
proach [Lewis et al. (2006)], the variational approach [Mitter and Newton (2003)], and, among
others, the Bayesian approach [Reich and Cotter (2015); Law et al. (2015)]. In this thesis, we
take up the Bayesian approach.

16
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3.2 Statement of the problem

Consider the signal process, which is obtained by integrating eq. (3.1.1a); that is,

xt = xt0 +
∫t

t0

f (xτ,τ)dτ+
∫t

t0

g (xτ,τ)dβτ; t0 ≤ τ≤ t . (3.2.1a)

It turns out, however, that we do not fully acces the signal. Suppose, instead, we can take
measurements, the output of which is obtained by integrating (3.1.1b), that is,

yt = yt0 +
∫t

t0

h(xτ,τ)dτ+
∫t

t0

R1/2(τ)dητ; t0 ≤ τ≤ t . (3.2.1b)

Then the filtering problem is defined as follows:

Definition 3.2.1. Time-continuous filtering problem:— What is the current best estimate of the
state, xt , given measurements Yt := y[t0,t ]?

By y[t0,t ] we denote the continuum of measurements from the initial time t0 to the time of
interest t . The filtering problem is best solved by considering the conditional density of the
state, xt , given the measurements, Yt ; that is, πt (x | Yt ). Better still, it is preferable to consider
the evolution of the conditional density, πt (x | Yt ). The evolution of the conditional density
is provided for in the Kushner-Stratonovich equation, which we consider in the next section,
together with a sketch of its proof.

Closely related to the filtering problem are the prediction and smoothing problems, the
difference being the time reference of the estimate in question. We now state the prediction
and smoothing problems.

Definition 3.2.2. Time-continuous prediction problem:— What is the future best estimate of
the state, xt , given measurements Yτ := y[t0,τ<t ]? The prediction problem is characterised by
finding the conditional density πt (x | Yτ), τ< t .

Definition 3.2.3. Time-continuous smoothing problem:— What is the past best estimate of the
state, xt , given measurements Yτ := y[t0,τ>t ]? The conditional density πt (x | Yτ), τ > t , is called
the smoothing density.

By the best estimate, we understand the estimate whose variance with the true value is
minimal.

3.3 Kushner-Stratonovich Equation

The Kushner-Stratonovich equation can be intuitively comprehended as an additive perturba-
tion of the Fokker-Planck equation, eq. (2.4.7), which perturbation consists of contributions
arising from knowledge obtained from measurements. Use is made of Bayes’ rule to quantify
the additional information resulting from measurements.

Theorem 3.3.1. Suppose that the functions f , g and h are real and that they have finite lower
and upper bounds for finite values of x. Suppose, moreover, that the functions f , g and h satisfy
uniform Lipschitz condition in x and t ∈ [t0, T ]. Finally, suppose that xt0 is finite in the mean
square sense and that it is independent of {dβt }. For the system of eqs. (3.1.1a) and (3.1.1b), the
conditional density evolves as follows.

πt (x | Yt ) =πt0 (x)+
∫t

t0

L (πτ(x | Yτ))dτ

+
∫t

t0

πτ(x | Yτ)(h − ĥτ)TR−1(τ)(d yτ− ĥτdτ),

(3.3.1)
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where the operator L is the adjoint of L ∗, defined in eq. (2.4.17), and

ĥt =
∫

h(x, t )πt (x | Yt )d x.

Equation (3.3.1) is called Kushner-Stratonovich equation2. In the absence of observations,
that is, when R−1(t ) ≡ 0, we obtain the Fokker-Planck equation.

Proof. We do not intend to give a complete proof; instead, we only provide here a sketch of the
proof, and suggest Kushner (1962); Jazwinski (1970) for the full proofs. Now for convenience,
we rewrite eq. (3.3.1) in its differential form—thus:

dπt =L (πt )d t +πt (h − ĥt )TR−1(t )(d yt − ĥt d t ), (3.3.2)

and recall that the conditional density, πt , is the notationally convenient way of writing πt (x |
Yt ) — by which is meant the conditional probability density function of the state, xt , at time, t ,
given all the measurements from initial time, t0, to the time of interest, t . After an infinitesimal
change in time, δt , a corresponding infinitesimal measurement, δyt , is acquired according to
the measurements equation, eq. (3.1.1b); similarly, an infinitesimal change in the state, δxt , is
realised.

The idea of the proof, then, is to consider the infinitesimal change in the conditional den-
sity function, δπt , as a result of the new information on both the signal and the measurements,
which can be expressed as follows:

δπt = [δπt ]signal + [δπt ]measurement,

= [πt+δt (x | Yt +δyt )−πt (x | Yt +δyt )]+ [πt (x | Yt +δyt )−πt (x | Yt )].
(3.3.3)

We notice that taking limits in eq. (3.3.3) as δt → 0 yields

[dπt ]signal =L (πt )d t , (3.3.4a)

and

[dπt ]measurement = [πt (x | Yt +d yt )−πt (x | Yt )]

=πt (h − ĥt )TR−1(t )(d yt − ĥt d t ).
(3.3.4b)

Since eq. (3.3.4a) is already provided for by the Fokker-Planck equation, it only remains to es-
tablish eq. (3.3.4b).

From the measurement’s equation, eq. (3.1.1b), we have an expression for an infinitesimal
measurement

δyt = h(xt )δt +R1/2(t )δηt , t0 ≤ t , (3.3.5a)

and notice that

E
[
δytδyT

t

]= R(t )δt +o(δt ). (3.3.5b)

At the availability of infinitesimal measurement, δyt , we get a new value for the transition den-
sity, πt (x | Yt +δyt ), which is given by [Kushner (1962)]

πt (x | Yt +δyt ) = πt (δy | xt )πt (x | Yt )∫
πt (δy | xt )πt (x | Yt )d x

, (3.3.6a)

2It is named after the Mathematicians Harold J. Kushner and Ruslan Stratonovich.
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where

πt (δy | xt ) ∼N (h(xt )δt , R(t )δt ) . (3.3.6b)

We define a function q(δt ,δyt ) as follows

q(δt ,δyt ) := πt (x | Yt +δyt )

πt (x | Yt )
. (3.3.7)

Then, we approximate q(δt ,δyt ) by Taylor series expansion, about (0,0), up to the first deriva-
tive with respect to δt and the second derivative with respect to δyt and neglect terms involving
mixed derivatives. The terms δytδyT

t are replaced with their expectation, which yields

q(δt ,δyt ) = 1+ (h − ĥt )TR−1(δyt − ĥtδt )+o(δt ). (3.3.8)

From eqs. (3.3.7) and (3.3.8),

πt (x | Yt +δyt ) =πt (x | Yt )+ (h − ĥt )TR−1(δyt − ĥtδt )πt (x | Yt )+o(δt ). (3.3.9)

By passing to the formal limit as δt → 0 yields eq. (3.3.4b) as desired.

3.3.1 Weak form of Kushner-Stratonovich Equation

Letφ(x) take up the assumptions of Section 2.4.1. By integration by parts, following the deriva-
tion of the weak formulation of the Fokker-Planck equation in Section 2.4.1, the variational
form of the scalar Kushner-Stratonovich equation (henceforth K-S equation) is

∫
∂πtφ(x)∂x =−

∫
∂(πt f (x, t ))

∂x
φ(x)∂t∂x + 1

2

∂2(πt g 2(x, t ))

∂x2 φ(x)∂t∂x

+
∫
φ(x)πt (h − ĥt )R−1(t )(∂yt − ĥt∂t )∂x.

(3.3.10)

Integrating eq. (3.3.10) by parts, we get

∫
∂πtφ(x)∂x =

∫
∂φ(x)

∂x
πt f (x, t )∂t∂x + 1

2

∫
∂2φ(x)

∂x
πt g 2(x, t )∂t∂x

+
∫
πt (h − ĥt )R−1(t )(∂yt − ĥt∂t )φ(x)∂x.

(3.3.11)

Expressing eq. (3.3.11) in terms of expectation yields

dE[φ(x)] = E
[
∂φ(x)

∂x
f (x, t )

]
d t + 1

2
E

[
∂2φ(x)

∂x
g 2(x, t )

]
d t

+ (
E[φ(x)h]− φ̂ĥt )R−1(t )(d yt − ĥt d t

)
.

(3.3.12)

To obtain the vector form of eq. (3.3.12) we use the notations introduced in eqs. (2.4.15)
to (2.4.17) and get

dπt [φ] =πt [L ∗φ]d t + (πt [φ(x)h]− φ̂ĥt )TR−1(t )(d yt − ĥt d t )], (3.3.13)

which is the weak form of K-S equation.



3.4. Evolution of conditional mean and covariance 20

3.4 Evolution of conditional mean and covariance

Mean and covariance correspond to the first and second moments, respectively. A moment, by
definition, is the expectation of a function, say,φ(x), with respect to a given probability density.
To specialise this to our scalar case, letφ(x) be scalar function of the state x ∈R, which function
is twice differentiable with respect to the elements of the state vector. The moment with respect
to the conditional density πt (x | Yt ) is

πt [φ(x)] =
∫
φ(x)πt (x | Yt )d x, (3.4.1)

whose evolution equation is given by the weak form of the K-S equation, eq. (3.3.13).
For convenience in deriving the equations of evolution of conditional mean and covari-

ance, we use the scalar case of eq. (3.3.2); that is,

dφ̂t (x) =πt

[
f
∂φ

∂x

]
d t + 1

2
πt

[
g 2 ∂

2φ

∂x2

]
d t + (πt [φh]− φ̂t ĥt )R−1(t )(d yt − ĥt d t ), (3.4.2)

where we have used the notation φ̂t (x) = πt [φ(x)]. Now to obtain the evolution equation for
the mean, we substitute φ(x) = x in eq. (3.4.2), which yields

d x̂t = f̂t d t + (πt [xh]− x̂t ĥt )R−1(t )(d yt − ĥt d t ). (3.4.3)

With the mean at hand, we define conditional variance as follows [Jazwinski (1970)]

pt = E
[
(x − x̂t )2 | Yt

]
=πt [x2]− x̂2

t .
(3.4.4a)

It immediately follows that

d pt = dπt [x2]−d x̂2
t . (3.4.4b)

Now it remains to find the expressions for dπt [x2] and d x̂2
t . Substitutingφ(x) = x2 in eq. (3.4.2)

yields

dπt [x2] = 2πt
[
x f

]
d t +πt

[
g 2]d t

+ (πt [x2h]−πt [x2]ĥt )R−1(t )(d yt − ĥt d t ).
(3.4.5a)

Note that eq. (3.4.3) is stochastic, because of d yt —which is given by the scalar form of
eq. (3.1.1b). By inspection, the stochastic term in eq. (3.4.3) is

(πt [xh]− x̂t ĥt )R−1/2(t )dηt .

We now use Itô’s formula, eq. (2.3.7), to find the expression for d x̂2
t ; that is

d x̂2
t = 2x̂t d x̂t + (πt [xh]− x̂t ĥt )2R−1(t )d t

= 2x̂t f̂ d t + (2x̂tπt [xh]−2x̂2
t ĥt )R−1(t )(d yt − ĥt d t )

+ (πt [xh]− x̂t ĥt )2R−1(t )d t ,

(3.4.5b)

where d x̂t has been substituted according to eq. (3.4.3). Substituting eqs. (3.4.5a) and (3.4.5b)
in eq. (3.4.4b) gives

d pt = (2πt
[
x f

]−2x̂t f̂t )d t +πt
[
g 2]d t − (πt [xh]− x̂t ĥt )2R−1(t )d t

+ (πt [x2h]−2x̂tπt [xh]−πt [x2]ĥt +2x̂2
t ĥt )R−1(t )(d yt − ĥt d t ).

(3.4.6)
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Equations (3.4.3) and (3.4.6) are the evolution equations for the conditional mean and variance,
respectively, for the scalar time-continuous nonlinear model. To obtain the corresponding vec-
tor equations, we consider each element and notice that all the elements evolve according to
eqs. (3.4.3) and (3.4.6). This gives

d x̂t = f̂t d t + (πt [xhT]− x̂t ĥT
t )R−1(t )(d yt − ĥt d t ), (3.4.7a)

dPtkl = (πt
[
xk fk

]− x̂kt f̂kt )d t + (πt
[

fl xl
]− f̂l t x̂l )d t +πt

[
(g g T)kl

]
d t

− (πt [xk h]− x̂kt ĥt )TR−1(t )(πt [hxl ]− ĥt x̂l t )d t

+ (πt [xk xl h]− x̂ktπt [xl h]− x̂l tπt [xk h]−πt [xk xl ]ĥt

+2x̂kt x̂l t ĥt )TR−1(t )(d yt − ĥt d t ),

(3.4.7b)

where the subscripts kl are understood to mean an element in kth row and l th column, re-
spectively. The computation of expected values in eqs. (3.4.7a) and (3.4.7b) depends on higher
order moments, and for this reason the exact solution to these equations is highly intractable.
One can only approximate the solution by means of Taylor series expansion, with some restric-
tive assumptions—one of which is Gaussianity; for then, all odd central moments are zero. In
the linear case, as shall be seen in the next chapter, however, eqs. (3.4.7a) and (3.4.7b) have a
closed form solution.

3.5 Numerical Solution to the filtering problem

As we have noted above, the K-S equation provides a law for the evolution of the probability
density function of the state conditioned on the available measurements. In essence, the so-
lution of K-S equation is the solution to the filtering problem. The K-S equation, eq. (3.3.1), is
an integro-differential equation whose solution is highly dependent on the dimension of the
state variable. Solving the K-S equation requires the propagation of a conditional probability
density, πt (xt | Yt ), which is, in most cases, of infinite dimension. This phenomenon is called
the curse of dimensionality. It has been established [Jazwinski (1970); Kushner (1962); Bain and
Crisan (2009)] that the solution to the K-S equation is, generally, infinite—with an exception of
the linear model and certain highly restrictive conditions. For the linear model scenario, the
solution to the filtering problem is expressible in closed form. This, as is detailed in Chapter 4,
is completely characterised by the evolution of the mean vector, x̂t , of the state and that of the
covariance matrix, Pt ; both of which equations can easily be computed. In other words, the
mean and the covariance are sufficient statistics in linear filtering.

Nonlinear filtering, however, is riddled with difficulties, one of them being the involvement
of higher order moments in the equation of evolution of the first and second order moments.
It turns out, however, that there are attempts to obtain approximations to the nonlinear filter,
which attempts involve making assumptions on the drift term and the sensor function. A very
good example of a nonlinear filter is the Benes̆’ filter [Bain and Crisan (2009); Benes̆ (1981)],
in which the sensor function is required linear, and the drift term is constrained to obey the
so-called Benes̆’ conditions. The Benes̆’ filter gives an exact solution to the filtering problem.
However, the Benes̆’ conditions are very limiting so that the Benes̆’ filter cannot be applied to
many practical problems.

With the success and simplicity of application of the linear filter, extensions of the linear
filter have been made to nonlinear filtering. This is the basis of the extended Kalman Bucy filter
[Särkkä (2013)], more of which hereafter. Other numerical approximation methods used in
nonlinear filtering include the partial differential method, the projection filter, and the particle
method [Bain and Crisan (2009)].
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3.5.1 Monte Carlo Methods

The filtering problem, as has heretofore been established, entails calculation of the posterior
density, πt (x | Yt ), which turns out to be equivalent to obtaining a solution to the K-S equa-
tion, eq. (3.3.1). Monte Carlo methods provide an approximation to the conditional density by
means of empirical averages of, say, M ensembles. To be precise, Monte Carlo methods provide
an estimate, π̃t , of the posterior density, πt (x | Yt ), at time t—which density, in the parlance of
Monte Carlo methods, is known as the target density—as follows

πt (x | Yt ) ≈ π̃t (x) =
M∑

i=1
w i

tδ(xt −xi
t ). (3.5.1)

{xi
t }M

i=1 are mutually independent and identically distributed point masses or particles and
{w i

t }M
i=1 are associated weights.

To illustrate the power of Monte Carlo methods, suppose we seek the expected value,

E
[
ψ(x)

]=∫
ψ(x)π(x)d x, (3.5.2)

with respect to a target distribution π(x) for some function ψ. Furthermore, let {xi }M
i=1 be M

samples identically distributed according to the target density π(x). We can obtain an approx-
imation of eq. (3.5.2) by sample average

ψ̂=
∫
ψ(x)

M∑
i=1

w iδ(x −xi )d x,

= 1

M

M∑
i=1

ψ(xi ),

(3.5.3a)

where

1

M

M∑
i=1

δ(x −xi ) = π̂, (3.5.3b)

is an empirical approximation of the target density π(x) with uniform weights {w i = 1/M }M
i=1.

For all practical purposes, especially when the integral in eq. (3.5.2) are intractable, the Monte
Carlo approximation, eq. (3.5.3a), is very convenient. Monte Carlo approximation, ψ̂, is an
unbiased estimate of E

[
ψ(x)

]
. What is more, the strong law of large numbers indicates that ψ̂

converges almost surely to E
[
ψ(x)

]
as N →∞. It has been shown, by means of Central Limit

Theorem, that the order of convergence of Monte Carlo methods is O (M−1/2); which applies in
spite of the dimension of x. For proofs of convergence, see, for example, del Moral (2004) and
Bain and Crisan (2009).

It is a common occurrence, however, that drawing independent and identically distributed
samples from the target distribution, π(x), is difficult. The target distribution may be known up
to a normalizing constant. Samples drawn from such a distribution, which is not fully known,
would potentially lead to an erroneous estimate. It is for this reason that sampling techniques
have been developed, among which are rejection sampling and importance sampling [Robert
and Casella (2004)].

While the sampling techniques are important and useful, they are limited to low dimen-
sional integration. A very good example is in integrals with respect to time, which are common
in state space models. In this context, techniques that involve updating the particles sequen-
tially are highly desired. Two techniques useful to this end are particle methods—also known
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as Sequential Monte Carlo (SMC) methods—and Markov Chain Monte Carlo (MCMC) methods.
We now outline an approximate particle filter for time-continuous models.

Partition the time domain [t0,T ] into, say, N subintervals, [tn , tn+1], each of equal length,
δt = tn+1−tn , n = 0, 1, 2, 3, ..., N . Let {xi

t0:tN
, w i

tN
}M
i=1 be a particle-weight system which we want

to use to characterise the full posterior density

πt0:tN

(
xt0:tN | δyt1:tN

)
,

where xt0:tN = (xT
t0

, xT
t1

, ... xT
tN

)T and δyt0:tN = (δyT
t0

, δyT
t1

, ...δyT
tN

)T. We assume that we have in-
crements of observations, δytn , at any time tn obtained from eq. (3.1.1b); that is,

δytn = h(xtn )δt +R1/2(tn)δηtn , n = 0, 1, 2, ..., N . (3.5.4)

The state, xtn , at each time, tn , is drawn from a transition density πtn (xtn | xtn−1 ), that is, accord-
ing to

xi
tn+1

= xi
tn
+ f (xi

tn
)δt + g (xi

tn
)δβi

tn
, (3.5.5)

where δβi
tn
≈N (0, δt ).

The weighted approximation of the true posterior is then given by

πt0:tN

(
xt0:tN | δyt0:tN

)≈ M∑
i=1

w i
tN
δ(xt0:tN −xi

t0:tN
). (3.5.6)

Suppose we cannot draw samples, {xi
t0:tN

}M
i=1, from the target distribution,πt0:tN

(
xt0:tN | δyt0:tN

)
,

with any convenience. Let γt0:tN

(
xt0:tN | δyt0:tN

)
be a density—with semblance to the tar-

get density—from which we can conveniently draw samples. Furthermore, let the samples,
{xi

t0:tN
}M
i=1, have weights

w i
tN

∝
πt0:tN

(
xi

t0:tN
| δyt0:tN

)
γt0:tN

(
xi

t0:tN
| δyt0:tN

) ; i = 1, 2, 3, ..., M . (3.5.7)

The computation of weights, w i
tN

, as shown in eq. (3.5.7) requires the entire posterior,

πt0:tN (xi
t0:tN

| δyt0:tN ), and a whole set of measurements, δyt0:tN . To necessitate online (that
is to say, at the receipt of each measurement) computation of weights, we take up a sequential
approach in which, firstly, we so assemble the proposal that it factorizes as follows

γt0:tN

(
xi

t0:tN
| δyt0:tN

)
= γtN

(
xi

tN
| xi

tN−1
, δytN

)
γt0:tN−1

(
xi

t0:tN−1
| δyt0:tN−1

)
,

= γt0

(
xi

t0
| δyt0

) N∏
n=1

γtn

(
xi

tn
| xi

n−1, δytn

)
.

(3.5.8a)

Notice that the weights can now be expressed as follows

w i
tN

∝
πt0:tN

(
xi

t0:tN
| δyt0:tN

)
γt0:tN

(
xi

t0:tN
| δyt0:tN

) ; i = 1, 2, 3, ..., M

=
πtN

(
δytN | xi

tN

)
πtN

(
xi

tN
| xi

tN−1

)
γtN

(
xi

tN
| xi

tN−1
, δytN

) πt0:tN−1

(
xi

t0:tN−1
| δyt0:tN−1

)
γt0:tN−1

(
xi

t0:tN−1
| δyt0:tN−1

)
=
πtN

(
δytN | xi

tN

)
πtN

(
xi

tN
| xi

tN−1

)
γtN

(
xi

tN
| xi

tN−1
, δytN

) w i
tN−1

= w i
t0

N∏
n=1

w i
tn

,

(3.5.8b)
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where

w i
tn
∝

πtn

(
δytn | xi

tn

)
πtn

(
xi

tn
| xi

tn−1

)
γtn

(
xi

tn
| xi

tn−1
, δytn

) w i
tn−1

. (3.5.8c)

Interestingly, if we choose a proposal density

γtn

(
xi

tn
| xi

tn−1
, δytn

)
=πtn

(
xi

tn
| xi

tn−1

)
,

we obtain

w i
tn
=πtn

(
δytn | xi

tn

)
w i

tn−1
,

∝ exp

(
− 1

2δt

[
δytn −h(xi

tn
)δt

]T
R−1(tn)

[
δytn −h(xi

tn
)δt

])
w i

tn−1

= exp

(
− 1

2δt
δyT

tn
R−1(tn)δytn

)
×exp

(
− 1

2δt
(−δyT

tn
R−1(tn)h(xi

tn
)δt

−hT(xi
tn

)R−1(tn)δytnδt +hT(xi
tn

)R−1(tn)h(xi
tn

)δt 2)
)
w i

tn−1

∝ exp
(
− 1

2δt
(−2δyT

tn
R−1(tn)h(xi

tn
)δt +hT(xi

tn
)R−1(tn)h(xi

tn
)δt 2)

)
w i

tn−1
,

(3.5.9)

which forms the weights of the most basic particle filter known as the Bootstrap particle filter.

It turns out, however, that the weight particle system, {w i
tn

, xi
tn

}, generated from the densi-

ties, πtn

(
ytn | xi

tn

)
and πtn

(
xi

tn
| xi

tn−1

)
, respectively, have a drawback arising from deterioration

of importance weights after a few iterations. Before long, the system is sustained by only one
particle, or a few, leading to an exponential increase in variance [Doucet and Johansen (2011);
Lindsten (2013)]. This is mitigated by use of resampling techniques, among which are multino-
mial resampling, systematic resampling and residual resampling (see, for example, Doucet and
Johansen (2011) for description). The idea behind resampling is to revive the particles by repli-
cating those of appreciable weights and culling off those of relatively lesser weight. Resampling
is achieved by drawing a set {xi a

tn
} from the discrete approximation of the posterior

πtn (xtn | ytn :t0 ) ≈
M∑

i=1
w i

tn
δ(xtn −xi

tn
), (3.5.10)

such that P(xi a
tn

= xi
tn

) = w i
tn

[Arulampalam et al. (2002)].

The demerit of resampling, which is explained in more detail in Section 3.5.6.1, is that—
useful as it is—it introduces additional covariances into the estimate thus undermining the
accuracy of the filter; especially when resampling is applied frequently. To lessen this effect,
resampling is applied only when weights deteriorate to a certain threshold. One common mea-
sure of deterioration of the weights is the effective sample size (ESS) approximated as follows

ESStn =
1∑M

i=1(w̃ i
tn

)2
, (3.5.11)

where {w̃ i
tn

}M
i=1 are normalized weights.
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Algorithm 3.5.1 Bootstrap particle filter

Input: δt , α, M , N , πt0 , πtn and xt0 .
Output: {xi

tn
}N ,M
n,i=1.

1: Draw xi
t0
∼πt0

(
xi

t0
| xt0

)
2: Compute initial weights w i

t0
= 1

M
3: for n = 1 to N , δt > 0 do
4: Draw xi

tn
∼πtn

(
xi

tn
| xi

tn−1

)
5: Compute weights w i

tn
∼πtn

(
δytn | xi

tn

)
w i

tn−1

6: Normalise the weights to obtain {w̃ i
tn

}M
i=1

7: Compute ESStn =
1∑M

i=1(w̃ i
tn

)2

8: if ESStn ≤α then
9: Resample the particles

10: Set the weights to w i
tn
= 1

M
11: end if
12: end for

3

3.5.2 Second-order approximate nonlinear filter (SoAF)

The aim of approximate filters is to provide an approximation to the equations of evolution of
mean, eq. (3.4.7a), and covariance, eq. (3.4.7b), by means of Taylor series expansion—about
the conditional mean, x̂t —of the conditional expectation of functions on the right-hand-side
of eqs. (3.4.7a) and (3.4.7b), respectively. What is more, an assumption is made—a Gaussian
assumption—which eliminates all odd central moments, for then the approximation is sim-
plified a great deal. In a more general way, we begin with a second-order approximation of
the equations of evolution of conditional mean and covariance by Taylor series expansion of
nonlinear terms about the mean estimate, x̂t . By second order approximation we mean ap-
proximation involving at most second order terms in the Taylor series expansion of functions
about the mean estimate. Terms containing third order derivatives and above are eliminated.
This leads to second-order approximate nonlinear filter (SoAF) equations. Then we shall only
eliminate all the terms with second order derivatives from the second-order approximation
equations to arrive at the first-order approximate filter equations. To simplify the exposition,
use is made of the scalar case of the system of eqs. (3.1.1a) and (3.1.1b),

Signal: d xt = f (xt )d t + g (xt )dβt ; xt0 = x(0), t0 ≤ t , (3.5.12a)

Measurement: d yt = h(xt )d t +R1/2(t )dηt ; t0 ≤ t , (3.5.12b)

and the scalar equations of evolution of conditional mean and covariance, eqs. (3.4.3)
and (3.4.6), respectively.

We summarise the result below and proceed to show how we arrived at it.

Theorem 3.5.1 (Second-order approximate nonlinear filter (SoAF)). Suppose f (x) and h(x) are
continuous functions, whose first and second order derivatives, ∂x [ f ], ∂xx [ f ], ∂x [h], ∂xx [h], re-
spectively, exist. Then the second-order approximation equations for the exact filter equations,

3α is a threshold to be chosen by the user. The precise value of the threshold is still an open question.
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eqs. (3.4.3) and (3.4.6), neglecting the third- and higher–order derivatives and moments, are:

d x̂t = f (x̂t )d t + 1

2
pt∂xx [ f ](x̂t )d t

+pt∂x [h](x̂t )R−1(t )(d yt − (h(x̂t )+ 1

2
pt∂xx [h](x̂t ))d t ),

(3.5.13a)

d pt = 2pt∂x [ f ](x̂t )d t + g 2(x̂t )d t +pt∂x [g ]2(x̂t )d t

+ g (x̂t )∂xx [g ](x̂t )pt d t − (pt∂x [h](x̂t ))2R−1(t )d t

+ 1

2
p2

t ∂xx [h](x̂t )R−1(t )(d yt − (h(x̂t )+ 1

2
pt∂xx [h](x̂t ))d t ).

(3.5.13b)

See Appendix A for the proof. Second-order approximate filter for the vector case have
been developed in Bass et al. (1966); Jazwinski (1970). They are obtained by extending the
scalar equations, eqs. (3.5.13a) and (3.5.13b), into the vector form by considering the evolution
of each element. We first introduce notations, following Bass et al. (1966).

We recall that the dimensions for the function vectors f (x̂t ) and h(x̂t ) are, respectively, n×1
and r ×1. The term g (x̂t ) is of dimension n ×m. Besides, x̂t is of dimension n ×1. R−1(t ) is

an r ×1 positive definite matrix. By ∇[h] = ∂hi

∂x j
is signified the Jacobian of the vector function

h(x), and is of dimension r × r . Similarly, ∇[
f
] = ∂ fi

∂x j
is an n ×n-dimensional Jacobian of the

vector function f (x). The Hessian of an i th function of the vector function f (x̂t ) is denoted by

4[ fi ] = ∂2 fi

∂xi∂x j
, an n ×n matrix, so that 4[ f ] = ∂2 f

∂xi∂x j
is an n ×n ×n whilst 4[h] = ∂2h

∂xi∂x j
is

an n ×n × r . The covariance of the n ×1 vector, xt − x̂t , is denoted by an n ×n matrix

Pt = (xt − x̂t )(xt − x̂t )T. (3.5.14)

By 4[ f ] : P we signify an n ×1 vector with elements

(4[ f ] : P )i = tr(4[ fi ]P ), (3.5.15)

and whose transpose is P : 4[ f ]. Similarly, 4[h] : P is an r × 1 vector whose transpose is P :
4[h]. Moreover, for any matrix A(x), 4[A(x)] : P signifies a matrix with elements

(4[A(x)] : P )i j = tr(4[Ai j ] : P ). (3.5.16)

Considering each element in an n−dimensional vector, x̂t , and allowing it to evolve according
to eqs. (3.5.13a) and (3.5.13b), aided by the just defined notations, we get

d x̂t = f (x̂t )d t + 1

2
4 [ f ](x̂t ) : Pt d t

+Pt∇[h]T(x̂t )R−1(t )(d yt − (h(x̂t )+ 1

2
4 [h](x̂t ) : Pt )d t ),

(3.5.17a)

dPt = Pt∇
[

f
]T(x̂t )d t +∇[

f
]
(x̂t )Pt d t

+ g (x̂t )g T(x̂t )d t +∇[
g (x̂t )

]∇[
g (x̂t )

]TPt d t

+ (4[g ](x̂t ) : Pt )g T(x̂t )d t −Pt∇[h]T(x̂t )R−1∇[h](x̂t )Pt d t

+ 1

2
Pt : 4[h]T(x̂t )R−1(t )

(
d yt − (h(x̂t )+ 1

2
4 [h](x̂t ) : Pt )d t

)
Pt .

(3.5.17b)
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3.5.3 Second-order extended Kalman-Bucy filter (SoEKBF)

In a similar manner, as in the derivation of the SoAF, we can obtain the second order extended
Kalman-Bucy filter (SoEKBF) by substituting g (x, t ) with g (t ) in the derivation of the second
order approximate filter discussed in Section 3.5.2. This yields

d x̂t = f (x̂t )d t + 1

2
4 [ f ](x̂t ) : Pt d t

+Pt∇[h]T(x̂t )R−1(t )(d yt − (h(x̂t )+ 1

2
4 [h](x̂t ) : Pt )d t ),

(3.5.18a)

dPt = Pt∇
[

f
]T(x̂t )d t +∇[

f
]
(x̂t )Pt d t

+ g (t )g T(t )d t +−Pt∇[h]T(x̂t )R−1∇[h](x̂t )Pt d t

+ 1

2
Pt : 4[h]T(x̂t )R−1(t )

(
d yt − (h(x̂t )+ 1

2
4 [h](x̂t ) : Pt )d t

)
Pt .

(3.5.18b)

Although the SoAF is more accurate compared to the first order approximate filter, it uti-
lizing second order terms in the Taylor expansion, the additional complexity hampers its use-
fulness. For this reason, higher order approximate filters are seldom used and the first order
approximate filter—more of which presently—has been extensively used.

3.5.4 First-order approximate nonlinear filter (FoAF)

The equations for the first-order approximation of the exact filter are summarised in the fol-
lowing Theorem.

Theorem 3.5.2 (First-order approximate filter (FoAF)). Suppose f (x), h(x) and g (x) are con-
tinuous functions whose first order derivatives, ∂x [ f ], ∂x [h] and ∂x [g ], respectively, exist. Then
the first-order approximation equations for the exact filter equations, eqs. (3.4.3) and (3.4.6),
omitting the second and higher central moments, are:

d x̂t = f (x̂t )d t +pt∂x [h](x̂t )R−1(t )(d yt −h(x̂t )d t ), (3.5.19a)

d pt = 2pt∂x [ f ](x̂t )d t + (g 2(x̂t )+pt∂x [g ]2(x̂t ))d t − (pt∂x [h](x̂t ))2R−1(t )d t . (3.5.19b)

Proof. Set to zero the second order derivatives of f (x), h(x) and g (x) in the equations for
second-order approximate filter.

The equations

d x̂t = f (x̂t )d t +Pt∇[h](x̂t )R−1(t )(d yt −h(x̂t )d t ), (3.5.20a)

dPt = Pt∇
[

f
]T(x̂t )d t +∇[

f
]
(x̂t )Pt d t + g (x̂t )g T(x̂t )d t

+∇[
g (x̂t )

]∇[
g (x̂t )

]TPt d t −Pt∇[h]T(x̂t )R−1∇[h](x̂t )Pt d t ,
(3.5.20b)

constitute the vector form of the first-order approximate nonlinear filter.

3.5.5 First-order extended Kalman-Bucy filter (FoEKBF)

The first-order extended Kalman-Bucy filter (FoEKBF) can also be arrived at by setting the dif-
fusion term to be only a function of time in the derivation of first-order approximate filter. The
FoEKBF equations,—obtained by substituting g (x, t ) and its derivative with respect to x with
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g (t ) and its corresponding derivatives with respect to x being zero, respectively,—are [Jazwin-
ski (1970)]:

d x̂t = f (x̂t )d t +Pt∇[h](x̂t )R−1(t )(d yt −h(x̂t )d t ), (3.5.21a)

dPt = Pt∇
[

f
]T(x̂t )d t +∇[

f
]
(x̂t )Pt d t + g (t )g T(t )d t

−Pt∇[h]T(x̂t )R−1∇[h](x̂t )Pt d t .
(3.5.21b)

The approximate filters discussed heretofore approximate the posterior πt (x | Yt ) to be
Gaussian. If the true posterior is Gaussian, then the approximate filters return a fairly good
approximation. If, however, the true posterior is skewed or bimodal or multi-modal, the ap-
proximate filters give an approximation that does not match well with the truth. For this rea-
son, particle filters present a better alternative [Arulampalam et al. (2002)].

Let us now consider an application example with nonlinear signal and measurements.

Example 3.5.1: Lorenz 63 model

Named after Edward Lorenz, Lorenz 63 model [Lorentz (1963)] is a system of determin-
istic equations which are idealizations of hydrodynamical equations. Such a system of
equations is peculiar in that it has nonperiodic solutions—solutions which do not repeat
their past history and, if any, approximate repetitions are transient. The stochastic Lorenz
63 model, obtained by adding noise to the deterministic Lorenz 63 model, is given by

d xt = f (xt )d t +G1/2dβt ; t ∈ [t0,T ], (3.5.22)

where x is a 3-dimensional column vector [x1, x2, x3]T, G = αI3×3, α is a constant, I3×3 is
a 3-dimensional identity matrix,

f (x) =
 a(x2 −x1)

bx1 −x1x3 −x2

x1x2 − cx3

 ,

with a = 10, b = 8/3 and c = 28. {βt , t ≥ t0} is a 3-dimensional standard Brownian motion
process. We use the following initial values

xt0 = [−5.91652, −5.52332, 24.5723]T. (3.5.23)

For the purpose of this study, we introduce synthetic measurements

d yt = h(xt )d t +R1/2dηt , (3.5.24)

where {ηt , t ≥ t0} is a 3-dimensional standard Brownian motion process, R =σI3×3, σ is a
constant,

h(x) =
 a(x2 −x1)

bx1 −x1x3 −x2

x1x2 − cx3

 .

The implementation of FoAF in Example (3.5.1) requires the computation of ∇[h](x̂t ) and
∇[

f
]
(x̂t ) in eq. (3.5.20a):

∇[h](x̂t ) =∇[
f
]
(x̂t ) =

 −a a 0
b −x3 −1 −x1

x2 x1 −c

 .
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Similarly, to implement the SoAF requires the computation of the Hessians of the functions f
and h, which are

4[ f1] =4[h1] =
0 0 0

0 0 0
0 0 0

 ,

4[ f2] =4[h2] =
 0 0 −1

0 0 0
−1 0 0

 ,

and

4[ f3] =4[h3] =
0 1 0

1 0 0
0 0 0

 ;

which can then be used in eqs. (3.5.17a) and (3.5.17b).
The following plots show filter results.
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Figure 3.1: (a) is solution plot for Bootstrap particle filter estimates with M = 1000 of the first
variable in the stochastic Lorenz 63 model. The time-step used is δt = 0.01. Used also are the
constants α= 0.20 and σ= 0.17. Multinomial resampling is done when ESS≤ 0.7M and the fil-
ter ran for 5000 iterations. Below the filter estimate is shown the absolute error of the estimate
with respect to the true values obtained from Euler-Maruyama approximation of the stochastic
Lorenz 63 model. Alongside are plotted the FoEKBF and SoEKBF estimates and their respec-
tive estimate errors. (b) is a plot of the root mean square errors of the Bootstrap particle filter
estimate for the ensemble sizes M = 10, 15, 22, 26, 29, 34, 41, 46 and 49 against the reciprocal
of ensemble sizes for 15000 iterations. The root mean square errors for FoEKBF and SoEKBF
are, respectively, 0.0017 and 0.0016.

3.5.6 Critique of nonlinear filters

The EKBF and its discrete variant—the Extended Kalman Filter (EKF)—have been extensively
used in application areas such as weather prediction, communication, financial engineering,
navigation, tracking, multisensor data fusion and robotics. Their application, however, come
with the cost of computing the Jacobians of the nonlinear parts in the model. The fact that the
EKBF requires Gaussian assumption greatly hampers its application: the assumption is quite
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restrictive. Integration of the Riccati equation to get covariances is costly especially with the
increase in the dimension of the model. The EKBF, however, performs comparatively better
than the particle filter.

The particle filters, on the other hand, have been used in simultaneous localisation and
mapping (SLAM), tracking, and, among others, robotics. The application of particle filters is,
however, hampered by a number of challenges which we now consider in turn.

3.5.6.1 Particle degeneracy

Degeneracy is a term used to describe the loss of weights of particles. It is common for some
particles to occupy places in the state space where their contribution to the posterior is negli-
gible. This leads to wastage. This well-known problem is called particle degeneracy. A litany of
remedial measures have been proposed in literature [Daum and Huang (2011); Rebeschini and
van Handel (2015); Reich and Cotter (2015); van Leeuwen (2015)]:

1. Resampling. This is an artificial way of culling away particles with less weights and sup-
plying the loss by replicating particles with appreciable weights. This process renders the
particle filter unparallelizable owing to the fact that all particles are resampled jointly.
Repeated replication of particles with more weights during resampling occasions lack of
diversity of the samples leading to the so-called sample impoverishment. What is more,
resampling introduces extraneous covariances into the filter, thus undermining the ac-
curacy of the filter.

2. Localization. Spatial correlations in high dimensional models, for example, those used
in numerical weather prediction (of order 107) have been found to hinder application of
particle filters. The error bound is well known to increase exponentially with the increase
in the dimension of the model [Rebeschini and van Handel (2015)]; which phenomenon
is called curse of dimensionality. Although finding out how to cure the curse of dimen-
sionality is an open problem, initial studies suggest controlling the influence of neigh-
bouring grid points on a reference grid points—a process called localization [Reich and
Cotter (2015)]. The idea is to allow those grid points closer to the reference grid point in
a state space have the most influence whilst the influence of those that are further away
is rendered negligible. This way, the spatial correlations are minimized and, as a result,
the performance of particle filters in high dimensional models is improved.

3. Sampling new particles from the likelihood. In most filters, the prior is assigned to
represent the importance density. However, it may chance that the posterior is closely
similar to the likelihood than the prior. The importance density can be chosen to be
represented by the likelihood. This has been shown to improve filter performance [Aru-
lampalam et al. (2002)].

4. Sampling from a good proposal. By a good proposal, we mean an optimal one; that
is, a proposal which is a minimal variance estimate of the posterior density. This can
be attained, in the linear Gaussian setting, by using the Kalman Bucy filter (KBF). This
defeats the purpose of the particle filter because the KBF can be used instead. It is quite
difficult to construct a good proposal [van Leeuwen (2015)].

5. Moving the particles to a desired position in the state space. This is the basis of exact
nonlinear filters which include the Daum’s filter [Daum and Huang (2011)], ensemble
transform particle filter (ETPF) [Reich (2013, 2011)], the square root filter and the feed-
back particle filter [Yang et al. (2011a); Amirhossein et al. (2016)]. The latter will be stud-
ied extensively in Chapter 4.



CHAPTER 4

ENSEMBLE KALMAN-BUCY FILTER

4.1 Kalman-Bucy Filter

With the equations of evolution of the mean and covariance for the nonlinear case in hand, the
corresponding equations for the linear case only require specializing. To do this, we begin with
the linear model equation corresponding to the nonlinear equations, eqs. (3.1.1a) and (3.1.1b).
To specialize nonlinear state space model to a linear one, we substitute as follows: the drift
function f (xt ) = F (t )xt , where F (t ) is an n×n time function valued matrix, and we let g (xt ) be
independent of the state variable, xt . Then from eq. (3.1.1a),

Signal: d xt = F (t )xt d t +G(t )dβt ; t0 ≤ t , (4.1.1a)

where G(t ) is an n×m continuous time-function matrix. {βt , t0 ≤ t } is an m−dimensional stan-
dard Brownian motion vector process. Furthermore, let h(xt , t ) = H(t )xt , an r ×n continuous
time-function matrix. From (3.1.1b),

Measurement: d yt = H(t )xt d t +R1/2(t )dηt ; t0 ≤ t , (4.1.1b)

where {ηt , t0 ≤ t } is an r−dimensional standard Brownian motion vector process and R(t ), as
before, is an r × r time-continuous matrix valued function.

Note that the expected values in eqs. (3.4.7a) and (3.4.7b) now take a simplified form; that
is,

f̂t = F (t )x̂t , (4.1.2a)

ĥt = H(t )x̂t , (4.1.2b)

πt [xt f T] =πt [xt xT
t ]F T(t ), (4.1.2c)

πt [xt hT] =πt [xt xT
t ]H T(t ), (4.1.2d)

x̂t f̂ T
t = (x̂t x̂T

t )F T(t ), (4.1.2e)

x̂t ĥT
t = (x̂t x̂T

t )H T(t ). (4.1.2f)

The conditional density for the linear case is Gausssian. Therefore, all the odd central moments
are zero. Substituting eqs. (4.1.2a) to (4.1.2f) in eqs. (3.4.7a) and (3.4.7b) and noting that the odd
central moments are zero, yields

d x̂t = F (t )x̂t d t +Pt H T(t )R−1(t )(d yt −H(t )x̂t d t ), (4.1.3a)

dPt = F (t )Pt d t +Pt F T(t )d t +G(t )GT(t )d t −Pt H T(t )R−1(t )H(t )Pt d t . (4.1.3b)

31
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The system of eqs. (4.1.3a) and (4.1.3b) are the continuous time linear filtering equations, and
constitute the Kalman-Bucy filter.4 The theory of the Kalman-Bucy filter was first documented
in an article by Kalman and Bucy (1961). A comprehensive coverage of various aspects of linear
filtering are found in a book by Kailath et al. (2000). Equation (4.1.3a) is the evolution equation
for the mean while eq. (4.1.3b) is for the covariance. The covariance equation is a matrix Riccati
equation. The Kalman-Bucy filter gives the minimum variance estimate, x̂t , at a time, t , and
the error covariance in the estimate. The Kalman-Bucy filter, hereafter KBF, gives the optimal
estimate of the state given the measurements, Yt := {yτ; t0 ≤ τ≤ t }.

With meaningless measurements, that is, when R−1(t ) ≡ 0,

d x̂t = F (t )x̂t d t , (4.1.4a)

dPt = F (t )Pt d t +Pt F T(t )d t +G(t )GT(t )d t . (4.1.4b)

This, in geoscience, is known as the prediction step. Integration of eq. (4.1.4a) gives a predicted
estimate of the state—also called the a priori estimate or, simply, the prior—at time t , whilst
eq. (4.1.4b) provides the error in that estimate. The additive term

Pt H T(t )R−1(t )(d yt −H(t )x̂t d t ),

summarises the contribution of the new measurement in the predicted estimate, leading to
an analysed estimate of the state—also known as the a posteriori estimate or the posterior—at
time t , and hence the procedure that adds this term into the predicted outcome is known as
the analysis step. The analysis step can be interpreted as a weighted linear addition of the new
measurement to the predicted estimate. The weight,

Pt H T(t )R−1(t ),

is called the Kalman gain. The term

d yt −H(t )x̂t d t ,

is commonly referred to as the innovation. The innovation is the residual in the measurement
equation, eq. (4.1.1b), and is equivalent to the measurement noise. Although KBF is easy to im-
plement in a digital computer, and has elegant features such as stability and optimality, it how-
ever comes with a computational cost especially when the dimension of the state is high. The
reason for this is mainly in the computation of the covariance matrix. Ensemble Kalman Fil-
ters attempt to circumvent this challenge by way of approximating the covariance using Monte
Carlo methods. What is more, KBF is limited to linear models and hence has a limited practi-
cal utility, seeing that most practical models are nonlinear. There have been studies to extend
KBF to nonlinear models in what is commonly referred to as the extended Kalman-Bucy filters
introduced in Chapter 3.

4.2 Ensemble Kalman-Bucy Filter

Solving matrix Riccati equation, eq. (4.1.3b), is increasingly made costly with the increase in
the dimension of the state. Ensemble Kalman-Bucy filter, and almost all the ensemble filters,
are designed to mitigate this challenge. Like the particle filters introduced in Section 3.5.1 en-
semble filters use Monte Carlo techniques. Ensemble filters, however, use uniform weights
and the covariance is estimated using Monte Carlo methods. Ensemble Kalman Filter, hence-
forth EnKF, which is the first ensemble filter designed for discrete models, was introduced by

4The Kalman-Bucy filter is named after Rudolf Emil Kálmán (1930-2016) and Richard Snowden Bucy (1935-)
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Evensen in 1994 [Evensen (1994, 2006); Burgers et al. (1998)]. Ensemble Kalman-Bucy filter,
hereafter EnKBF, designed for time-continuous state space models, was introduced much later.
The underlying ideas, however, are the same.

To begin with, EnKBF involves drawing, say, M independent and identically distributed en-
semble members {xi

t0
}M
i=1 according to the initial probability density, πt0 . This forms an initial

ensemble, which is an M-columned matrix. Each ensemble member, xi , is propagated accord-
ing to the equation of evolution of the mean, eq. (4.1.3a), in the KBF:

d xi
t = F (t )xi

t d t +G(t )dβi
t +P M

t H T(t )R−1(t )(d yt +R1/2(t )ηi
t −H(t )xi

t d t ), (4.2.1)

where {ηt , t0 ≤ t } and {βt , t0 ≤ t } are, respectively, r−dimensional and m−dimensional stan-
dard Brownian motion vector processes. This leads to an EnKBF with stochastically perturbed
innovation [Law et al. (2015); Reich and Cotter (2015); Bergemann and Reich (2012)]. The en-
semble average,

x̄t = 1

M

M∑
i=1

xi
t , (4.2.2)

gives a Monte Carlo estimate of the conditional mean, x̂t , at an arbitrary time, t . The covari-
ance, P M

t , is estimated thus:

P M
t = 1

M −1

M∑
i=1

(xi
t − x̄t )(xi

t − x̄t )T. (4.2.3)

The division by M −1 is to ensure that the Monte Carlo approximation of covariance is unbi-
ased. Equation (4.2.1) has an associated mean-field continuous time equation, of the interact-
ing process {x̃i

t }M
i=1, given by

d x̄t = F (t )x̄t d t +G(t )d β̄t +P t H T(t )R−1(t )(d yt +R1/2(t )η̄t −H(t )x̃t d t ), (4.2.4)

where x̄t is a mean-field process whose posterior distribution given Yt is equal to the posterior
distribution of xt , β̄t and η̄t are, respectively, independent copies of βt and ηt . Moreover,

x̃t = π̄t [x], (4.2.5a)

and

P t = π̄t [(x − x̃)(x − x̃)T], (4.2.5b)

where π̄t denotes the probability density of x̄t given Yt [del Moral (2013); de Wiljes et al. (2016);
Taghvaei and Mehta (2018)].

Another variant of EnKBF—with deterministically pertubed innovation [Bergemann and
Reich (2012)]—is

d xi
t = F (t )xi

t d t +G(t )dβi
t +P M

t H T(t )R−1(t )(d yt − 1

2
H(t )(xi

t + x̄t )d t ), (4.2.6)

where x̄t is the ensemble mean, obtained by eq. (4.2.2). The covariance matrix is approximated
by means of eq. (4.2.3). In anticipation of the analysis of the consistency of EnKBF, we replace
the noise term in eq. (4.2.6) with the term

1

2
G(t )GT(t )(P M

t )−1(xi
t − x̄t )d t ; (4.2.7)
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and hence eq. (4.2.6) becomes

d xi
t = F (t )xi

t d t + 1

2
G(t )GT(t )(P M

t )−1(xi
t − x̄t )d t

+P M
t H T(t )R−1(t )(d yt − 1

2
H(t )(xi

t + x̄t )d t ).
(4.2.8)

Notice that
1

2M

M∑
i

G(t )GT(t )(P M
t )−1(xi

t − x̄t )d t = 0

and
1

M −1

M∑
i

G(t )GT(t )(P M
t )−1(xi

t − x̄t )(xi
t − x̄t )Td t = 2G(t )GT(t )d t , (4.2.9)

where we have supposed that P M
t is invertible. Let {x̃i

t }M
i=1 be M independent solutions to which

the ensemble {xi
t }M

i=1 converges. Then the mean-field equation associated to eq. (4.2.8) is

d x̄t = F (t )x̄i
t d t + 1

2
G(t )G(t )TP t (x̄i

t − π̄t [x])d t

+P t H T(t )R−1(t )(d yt − 1

2
H(t )(x̄i

t + π̄t [x])d t ),
(4.2.10)

where π̄t = Law(x̄t ) and P t is given by eq. (4.2.5b) .

4.3 Extension of EnKBF to nonlinear filtering

Seldom are linear models to be met with in nature. To expand the utility of linear filters in
solving practical nonlinear problems, therefore, modifications of the filters is inevitable. As
has been indicated in the foregoing discussion, the KBF offers a closed form solution to the
filtering problem. The EnKBF, on the other hand, is consistent with the KBF at the limit M →
∞. Extension of the KBF to nonlinear filtering problem involves certain approximations that
render the resultant filter, albeit useful, sub-optimal (see the discussion in Chapter 3). The
extension of EnKBF to nonlinear filtering takes the following form: Each particle of the state,
xi

t , is propagated and updated, all at once, as follows.

d xi
t = f (xi

t , t )d t +G(t )dβi
t +DM

t R−1(t )

(
d yt − 1

2
(h(xi

t )+ h̄t )d t

)
, (4.3.1)

where

DM
t = 1

M −1

M∑
i=1

(xi
t − x̄t )(h(xi

t )− h̄t )T,

h̄t = 1

M

M∑
i=1

h(xi
t ), and x̄t = 1

M

M∑
i=1

xi
t .

The mean field equation for the EnKBF extended to nonlinear dynamics, eq. (4.3.1), is

d x̃i
t = f (x̃i

t , t )d t +G(t )dβi
t +Dt R−1

t

(
d yt − 1

2
(h(x̃i

t )+ ĥt )d t

)
, (4.3.2)

where {x̃i
t }M

i=1 are M independent solutions to which {xi
t }M

i=1 converge as M →∞,

Dt = π̃t [(x − π̃t [x])(h(x)− ĥt )T]
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and

ĥt = π̃t [h].

Similarly, the extension of EnKBF with stochastically perturbed innovation to nonlinear
filtering is expressed as follows:

d xi
t = f (xi

t , t )d t +G(t )dβi
t +DM

t R−1
t

(
d yt +R1/2(t )ηi

t −h(xi
t ))d t

)
, (4.3.3)

4.3.1 Consistency of the EnKB filter

We now show the properties of ensemble Kalman-Bucy filter. The ensemble Kalman-Bucy filter
can be extended to correspond to the nonlinear system, and this is given by

d xi
t = f (xi

t )d t + 1

2
G(t )GT (t )(P M

t )−1(xi
t − x̄t )d t

+DM
t R−1(t )(d yt − 1

2
(h(xi

t )+ h̄t )d t ); t > t0,
(4.3.4)

Notice that eq. (4.3.4) is a stochastic differential equation, owing to the term d yt .

The equation of evolution of ensemble mean is obtained empirically from eq. (4.3.4); that
is,

d x̄t = f̄t d t +DM
t R−1(t )(d yt − h̄t d t ); t > t0, (4.3.5)

where

f̄t = 1

M

M∑
i=1

f (xi
t ). (4.3.6)

Similarly, the equation of evolution of covariance is

dP M
t = 1

M −1

M∑
i=1

( f (xi
t )− f̄t )(xi

t − x̄t )T + 1

M −1

M∑
i=1

(xi
t − x̄t )( f (xi

t )− f̄t )T

+ 1

2
G(t )GT (t )(P M

t )−1P M
t d t +P M

t (P M
t )−1 1

2
G(t )GT (t )d t +DM

t (DM
t )T.

(4.3.7)

We recover the linear ensemble Kalman-Bucy equation, eq. (4.2.6), by substituting F (t )xi
t and

H(t )xi
t in the place of f (xi

t ) and h(xi
t ), respectively, in eq. (4.3.4). This is evident by inspection.

The equations of evolution of the empirical mean and covariance in the linear case then are

d x̄t = F (t )x̄t d t +P M
t H T(t )R−1(t )(d yt −H(t )x̄t d t ), (4.3.8a)

dP M
t = F (t )P M

t d t +P M
t F T(t )d t +G(t )GT(t )d t −P M

t H T(t )R−1H(t )P M
t d t ; (4.3.8b)

which equations are in the form of the Kalman-Bucy filter equations, eqs. (4.1.3a) and (4.1.3b).

It can be shown that the ensemble Kalman Bucy filter converges to a Kalman Bucy filter,
in the linear setting, as the ensemble size attains a high value. This we now demonstrate (see
de Wiljes et al. (2016) for the full proof from which we obtain a summary).

Let x̂t and Pt be the solutions of the Kalman-Bucy eqs. (4.1.3a) and (4.1.3b), respectively.
Let, moreover, {xi

t0
}M
i=1 ∼ πt0 be an initial ensemble in the ensemble Kalman-Bucy filter. We

now show that

l.i.p.
M→∞

x̄t = x̂t , (4.3.9)
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where x̄t is the solution to the ensemble Kalman-Bucy filter equation, eq. (4.3.8a). By l.i.p.5 is
signified limit in probability. The following relation follows from eqs. (4.1.3a) and (4.3.8a).

d(x̄t −xt ) = F (t )(x̄t −xt )d t −P M
t H T(t )R−1(t )H(t )x̄t d t

+Pt H T(t )R−1(t )H(t )xt d t + (P M
t −Pt )H T(t )R−1(t )d yt .

(4.3.12)

Taking integrals yields,

x̄t −xt = x̄t0 −xt0 +
∫t

t0

F (τ)(x̄τ−xτ)dτ−
∫t

t0

P M
τ H T(τ)R−1(s)H(τ)x̄sdτ

+
∫t

t0

PτH T(τ)R−1(τ)H(τ)xτdτ+
∫t

to

(P M
τ −Pτ)H T(τ)R−1(τ)d yτ.

(4.3.13)

Taking the norm of the vectors and matrices results in the following

‖x̄t −xt‖ = ‖x̄t0 −xt0‖+
∫t

t0

‖F (τ)‖‖(x̄τ−xτ)‖dτ

−
∫t

t0

‖P M
τ ‖‖H(τ)‖2‖R−1(τ)‖‖x̄s‖dτ

+
∫t

t0

‖Pτ‖‖H(τ)‖2‖R−1(τ)‖‖xτ‖dτ

+‖
∫t

to

(P M
τ −Pτ)H T(τ)R−1(τ)d yτ‖

≤ ‖x̄t0 −xt0‖+
∫t

t0

(‖F (τ)‖+‖H(τ)‖2‖R−1(τ)Pτ)‖(x̄τ−xτ)‖dτ

−
∫t

t0

‖P M
τ −Pτ‖‖H(τ)‖2‖R−1(s)‖‖x̄s‖dτ

+‖
∫t

to

(P M
τ −Pτ)H T(τ)R−1(τ)d yτ‖.

(4.3.14a)

We now take expectation with respect to the distribution πt and get

πt [‖x̄t −xt‖] ≤πt [‖x̄t0 −xt0‖]+
∫t

t0

(‖F (τ)‖+‖H(τ)‖2‖R−1(τ)Pτ)πt [‖(x̄τ−xτ)‖]dτ

−
∫t

t0

πt [‖P M
τ −Pτ‖]‖H(τ)‖2‖R−1(s)‖‖x̄s‖dτ

+πt [‖
∫t

to

(P M
τ −Pτ)H T(τ)R−1(τ)d yτ‖].

(4.3.15)

By almost sure convergence of P M
t to Pt as M →∞

lim
M→∞

πt [‖P M
t −Pt‖] = 0, (4.3.16)

5Let {xtn ,n = 1, 2, 3, ...} be a random sequence and P(x > 0) = a denote a probability that x > 0, whose realisa-
tion is a. If

lim
n→∞P(|xtn −x|2 ≥ ε) = 0 (4.3.10)

then the random sequence {xtn ,n = 1, 2, 3, ...} is said to converge to x in probability. This is precisely written as

π lim xtn = x. (4.3.11)
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from which we have that the limit of the last term in eq. (4.3.15) as M →∞ is zero. With these
considerations, eq. (4.3.15) becomes

πt [‖x̄t −xt‖] ≤πt [‖x̄t0 −xt0‖]+
∫t

t0

(‖F (τ)‖+‖H(τ)‖2‖R−1(τ)Pτ)πt [‖(x̄τ−xτ)‖]dτ. (4.3.17)

Finally, we invoke Gronwall’s Lemma to attain

lim
M→∞

πt [‖x̄t −xt‖] = 0. (4.3.18)

Almost sure convergence of ensemble covariance to the optimal covariance, eq. (4.3.16), re-
mains to be shown. From eqs. (4.1.3b) and (4.3.8b),

d‖P M
t −Pt‖2 ≤ 2〈F (t )(P M

t −Pt ),P M
t −Pt 〉d t +2〈P M

t −Pt , (P M
t −Pt )F T

t 〉d t

+2〈G(t )GT(t )(P M
t −Pt ),P M

t −Pt 〉d t

−2〈P M
t H T(t )R−1H(t )P M

t −Pt H T(t )R−1H(t )Pt ,P M
t −Pt 〉d t

= 2〈F (t )(P M
t −Pt ),P M

t −Pt 〉d t +2〈P M
t −Pt , (P M

t −Pt )F T
t 〉d t

+2〈G(t )GT(t )(P M
t −Pt ),P M

t −Pt 〉d t

−2〈P M
t H T(t )R−1H(t )(P M

t −Pt ),P M
t −Pt 〉d t

−2〈(P M
t −Pt )H T(t )R−1H(t )Pt ,P M

t −Pt 〉d t

≤ (
4‖F (t )‖+2‖G(t )GT(t )‖+2‖R−1‖‖H(t )‖2(‖P M

t ‖+‖Pt‖)
)‖P M

t −Pt‖2d t .

(4.3.19)

By separation of variables,

d‖P M
t −Pt‖2

‖P M
t −Pt‖2

≤ (
4‖F (t )‖+2‖G(t )GT(t )‖+2‖R−1‖‖H(t )‖2(‖P M

t ‖+‖Pt‖)
)

d t . (4.3.20)

Integrating both sides of eq. (4.3.20) yields

‖P M
t −Pt‖2 ≤ exp

(
(2‖F (t )‖+‖G(t )GT(t )‖)2t

)‖P M
t0

−Pt0‖2

×exp

(
2t‖R−1‖‖H(t )‖2

∫t

t0

(‖P M
τ ‖+‖Pτ‖)dτ

)
.

(4.3.21)

It remains to obtain a uniform in M upper bound on ‖P M
t ‖ [de Wiljes et al. (2016)]. This requires

a bound on the deviation of the ensemble, xi
t , from the mean estimate, x̄t , which deviation we

define as follows:

et := 1

M −1

M∑
i=1

‖xi
t − x̄t‖2. (4.3.22)

To obtain the equation of evolution of et , we make the following simplifications: assume, in
eq. (4.3.4), that h(x) = x, R = σIr×r , where σ is a constant and that G(t )GT (t ) = 2Π(t ) is of full
rank. Then the equation of evolution of the ensembles becomes

d xi
t = F (t )xi

t d t +Π(t )(P M
t )−1(xi

t − x̄t )d t

+ DM
t

σ
(d yt − 1

2
(xi

t + x̄t )d t ); t > t0.
(4.3.23)
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From eq. (4.3.22) and eqs. (4.3.4) and (4.3.5), we obtain that

det = 2

M −1

M∑
i=1

〈xi
t − x̄t ,F (t )(xi

t − x̄t )〉d t

+ 1

M −1

M∑
i=1

2〈xi
t − x̄t ,Π(P M

t )−1(xi
t − x̄t )〉d t

− 1

σ(M −1)

M∑
i=1

〈xi
t − x̄t ,P M

t (xi
t − x̄t )〉d t

= 2tr(F (t )P M
t )d t +2tr(Π)d t − tr([P M

t ]2))

σ
d t .

(4.3.24)

Now the second term on the right hand side of eq. (4.3.24) has the bounds

2dmind t ≤ 2tr(Π)d t ≤ 2dsumd t , (4.3.25)

where dmin denotes the minimum element in the diagonal of Π whilst dsum is the sum of all
diagonal elements of Π.

The term,

tr([P M
t ]2)

σ
= ‖P M

t ‖2

σ

= 1

σ(M −1)2

M∑
i , j

〈xi
t − x̄t , x j

t − x̄t 〉2,
(4.3.26)

has bounds
e2

t

σM
≤ tr([P M

t ]2)

σ
≤ e2

t

σ
. (4.3.27)

To see this, notice that

1

σ(M −1)2

M∑
i , j

〈xi
t − x̄t , x j

t − x̄t 〉2 ≤ 1

σ(M −1)2

M∑
i , j

‖xi
t − x̄t‖2‖x j

t − x̄t‖2

= 1

σ

[
1

M −1

M∑
i=1

‖xi
t − x̄t‖

]2

= e2
t

σ
;

(4.3.28a)

and that

1

σ(M −1)2

M∑
i , j

〈xi
t − x̄t , x j

t − x̄t 〉2 ≥ 1

σ(M −1)2

M∑
i=1

‖xi
t − x̄t‖4

≥ 1

σM

[
1

M −1

M∑
i=1

‖xi
t − x̄t‖2

]2

= e2
t

σM
.

(4.3.28b)

From eq. (4.3.27), and taking fmin and fsum to be, respectively, the minimum element in the
diagonal of F and the sum of all the diagonal elements of F , it follows that

2 fmin
etp
M

d t ≤ 2tr(F (t )P M
t )d t ≤ 2 fsumet d t , (4.3.29)
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which gives the bounds for the first term on the right-hand-side of eq. (4.3.24).
Equations (4.3.25), (4.3.27) and (4.3.29) substituted in eq. (4.3.24) yield

det ≥
(

2 fmin
etp
M

+2dmin −
e2

t

σ

)
d t (4.3.30a)

for the lower bound and

det ≤
(

2 fsumet +2dsum − e2
t

σM

)
d t (4.3.30b)

for the upper bound. As M →∞ the last term on the right hand side of eq. (4.3.30b) becomes
negligible. Then the upper bound can be approximated by

det ≤
(
2 fsumet +dsum

)
d t (4.3.31)

which yields

et ≤ (et0 +
dsum

2 fsum
)exp

(
2 fsumt

)
. (4.3.32)

From eqs. (4.3.27) and (4.3.32), we obtain

‖P M
t ‖ ≤ et ≤ (et0 +

dsum

2‖F‖ )exp(2‖F‖t ), (4.3.33)

where we have used fsum ≤ ‖F‖. Finally, we note that the solution, Pt , of eq. (4.1.3b) is contin-
uous and hence locally bounded. Equation (4.3.21) can then be approximated by

‖P M
t −Pt‖2 ≤ exp

(
(2‖F (t )‖+‖G(t )GT(t )‖)2t

)
×exp

(
2t‖R−1‖‖H(t )‖2

(
(et0 +

dsum

2‖F‖ )exp(2t‖F‖)+ max
t0<τ<t

‖Pτ‖
))

,
(4.3.34)

which completes the assertion that

lim
M→∞

P M
t = Pt a. s. for t > 0. (4.3.35)

As mentioned in Section 3.5.6, one of the challenges affecting particle filters, of which be-
longs EnKBF, is the presence of spurious correlations evident especially when treating spatio-
temporal models. The remedy to this undesirable effect is ensemble inflation and localization,
which we now outline.

4.3.2 Ensemble inflation and covariance localisation

Particle filters, among which is EnKBF, are known to be afflicted with spurious correlations, a
phenomenon common with spatial-temporal models, arising from undersampling. This has
been addressed extensively (e.g. in Reich and Cotter (2015) p. 242-257). To circumvent this
challenge, covariance localisation has been proposed, the leading idea of which is as follows:
the effect of observations at a grid point is limited to contributions from few neighbouring
grid points. On the other hand, there is a possibility, in the course of running the filter, for
ensemble members to drastically reduce the essential correlation, which process dramatically
affects the performance of the filter. The counter-measure is to increase the sample spread, a
phenomenon called ensemble inflation.
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We now describe, in the briefest manner, these two phenomena after which we shall im-
plement them. In the first place, inflation: we require that each ensemble xi

t i = 1, 2, 3, ..., M
be inflated as follows

xi
t := x̂M

t +ρ(xi
t − x̂M

t ) (4.3.36)

where the inflation factor ρ ≥ 1.
In the second place, we describe localisation. We require that each grid point be influenced

by information from other grid points, say, within a radius r . We further require that those grid
points closer to the reference point provide more influence than those geographically further
away. This necessitates the following criteria. We define a matrix L whose entries are given by

Li j = f (
| xi −x j |

r
), (4.3.37)

where i , j represent the i th and j th gridpoints, f (s) is a funtion describing the degree of in-
fluence of the neighbouring grid points. How to derive these functions is described in Cohn
(1999). For example, use can be made of the following tapered function.

f (s) =
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(4.3.38)

We then have a modified Kalman gain; that is,

K loc
t = (L ◦P M

t )H T (t )R−1(t ), (4.3.39)

where ◦ denotes the Schur product.

4.4 Time-continuous linear smoother

For the purpose of the following example, and to illustrate prediction, smoothing and filtering,
we briefly introduce time-continuous linear smoothing. The derivation can be found in Rauch
et al. (1965); Einicke (2012).

For a linear system governed by eqs. (4.1.1a) and (4.1.1b), the smoothed estimate, x̂s
t , and

the smoothed covariance, P s
t , satisfy the following equations.

d x̂s
t = F (t )x̂s

t d t +G(t )GT(t )P−1
t (x̂s

t d t − x̂t d t ), (4.4.1a)

dP s
t /d t = (F (t )+G(t )GT(t )P−1

t )P s
t +P s

t (F T(t )+P−1
t GGT)−G(t )GT(t ). (4.4.1b)

The system of eqs. (4.4.1a) and (4.4.1b)—known as the Rauch-Tung-Striebel smoother—is
the equation of evolution of the first and second moments under the smoothing distribution
πt (x | Yτ), τ> t . The Rauch-Tung-Striebel smoother is a backward recursion beginning with an
initial smoothed estimate set equal to the filter estimate; that is,

x̂s
T = x̂T . (4.4.2)

We now turn to a simple scalar example.
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Example 4.4.1: Scalar SDE

Consider the following linear Gaussian Itô state space model.

d xt = (0.2−0.2xt )d t +Q1/2d vt ; t0 ≤ t , (4.4.3a)

d yt = 1.01xt d t +R1/2d wt ; t0 ≤ t , (4.4.3b)

where {vt } and {wt } are Brownian motion processes with, respectively, E{d vt d vT
t } = d t

and E{d wt d wT
t } = d t . Let the xt at time t0 be xt0 ∼N (0,0.001). Let, moreover, xt0 , {vt , t ≥

t0} and {vt , t ≥ t0} be uncorrelated. Set Q = 0.001 and R = 0.0001. We seek an estimate of
xt .

The following panels show the results.
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Figure 4.1: Filtering, prediction and smoothing estimates for Example (4.4.1). The ensemble
size used in both the EnKBF and the BPF is M = 1000. Prediction is shown beyond T = 40. A
uniform time step-size of δt = 0.02 is used. The prior used is πt0 =N (0, 0.001).

KBF pred. KBF est. RTS est. EnKBF est. BPF est.
Time-averaged RMSE 0.0129 0.0127 0.0104 0.0127 0.0131

Table 4.1: A table showing time-averaged RMSE for the prediction and estimate of KBF, the
RTS smoother estimate, EnKBF and BPF estimates shown in Figure 4.1 after a burn-in of 1000
iterations.

The RMSE for the smoother is obtained by

RMSEt =
√

(x̂s
t −xt )2. (4.4.4)
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From Figure 4.1, the prediction, filtering and smoothing estimates have no wide excursions
from the truth. In fact, the errors of the smoother, prediction and filter estimates do not grow
with change in t . And so are the errors in the EnKBF estimate, the ensemble size being large
(M = 1000). The EnKBF registers a stable outcome in this setting; that is, the estimate forgets
the error due to the initial condition before long. As is evident from Table 4.1, EnKBF filter es-
timate has the same accuracy as the KBF filter estimate, both of which estimates are of a lesser
accuracy than the RTS smoother estimate—as anticipated. That the error of EnKBF matches
that of the optimal filter (KBF) indicates that EnKBF is consistent with KBF at high ensemble
sizes, which corroborates the theoretical results discussed and obtained in Section 4.3.1. What
is more, that the error in the EnKBF remains bounded and does not grow indicates that EnKBF
gives a robust filter estimate; that is, the small excursions from the optimal filter values are
cancelled off and do not build up over time to compromise filter performance.



CHAPTER 5

FEEDBACK PARTICLE FILTER

5.1 Motivation

The feedback particle filter (FPF) [Yang et al. (2011a,b, 2012, 2013); Yang (2014); Amirhossein
et al. (2016); Taghvaei and Mehta (2018)] arose from the need to overcome the challenges that
come with application of existing filters to nonlinear state-space models. Extended Kalman
filters, although meant to exploit the optimal performance of the Kalman filters in nonlinear
systems, are greatly hampered by the need to compute the Jacobians. This challenge is more
prevalent in approximate second-order filters, what with the need to compute the Hessians
besides. Moreover, the computational cost in the aforementioned filters is compounded by
the need to integrate the equation for evolution of covariance. Whereas particle filters hold
promise for overcoming the challenge faced in using approximate filters in nonlinear settings,
they, too, have their own challenges. As was indicated in Chapter 3, particle filters are sequen-
tial sampling Monte Carlo methods with particle degeneracy mitigating resampling steps. Al-
though they are easy to implement, they suffer from the so-called sample impoverishment ow-
ing to frequent resampling—which is why resampling is done when the effective sample size
has deteriorated to a given threshold. Despite the improvisations tending to the improvement
of particle filters, the particle filters retain a comparatively high error covariance.

The idea behind feedback particle filters is designing the posterior density of each particle
so that it matches, optimally, the true posterior. As will be seen in the ensuing argument, if one
begins by setting the prior density of each particle to be the same as the true prior density, FPF
yields the same posterior density as the true posterior at all subsequent times. This matching
of the posterior density of the particles with the true posterior is arrived at by minimizing a
cost function. To the present time, the cost function used is the Kullback-Leibler divergence
between the two posteriors. Minimization of the cost function, in the first variation, yields a
Poisson equation, the solution of which results in an optimal control input. The FPF is charac-
terized by a controlled innovation process and the gain. It turns out, and this will be apparent
shortly, that the FPF gain is obtained by differentiating the optimal control input with respect
to the particles.

Much like in the deterministic variant of the EnKBF, the FPF—for the vector nonlinear sys-
tem, eqs. (3.1.1a) and (3.1.1b),

Signal: d xt = f (xt , t )d t + g (xt , t )dβt ; t0 ≤ t , (5.1.1a)

Measurement: d yt = h(xt , t )d t +R1/2(t )dηt , t0 ≤ t , (5.1.1b)

—consists of the evolution of a mean-field process, x̄t , whose posterior distribution (given the
measurements’ history) is the same as the true posterior, which mean-field process evolves as

43
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follows.

d x̄t = f (x̄t , t )d t + g (x̄t , t )d β̄t +K (x̄t , t )◦ (d yt −0.5[h(x̄t , t )+ π̄t [h]]d t ). (5.1.2)

where π̄t = Law(x̄t ) and β̄t is an independent copy of βt . Then a batch of hypotheses of the
state, X t := {xi

t }M
i=1, each propagated using the controlled Stratonovich SDE

d xi
t = f (xi

t , t )d t + g (xi
t , t )dβi

t +K (xi
t , t )◦ (d yt −0.5[h(xi

t , t )+ ĥt ]d t ), (5.1.3)

—where {βi
t }M

i=1 are the independent copies of the process noise βt and ĥt = 1

M

∑M
i=1 h(xi

t )—

is used to empirically estimate the distribution of x̄t . Equations (5.1.2) and (5.1.3) are called
McKean-Vlasov stochastic differential equations and their analysis is known as propagation
of chaos [Taghvaei and Mehta (2018)]. For ease in subsequent analyses we assume that the
measurements equation, eq. (5.1.1b), is scalar. Equation (5.1.3), dropping the notation of the
particles for convenience, has an equivalent vector Itô form:

d xt = f (xt , t )d t + g (xt , t )dβt +q(xt , t )d t +K (xt , t )(d yt −0.5[h(xt , t )+ ĥt ]d t ), (5.1.4)

where

q j (xt , t ) = R

2

n∑
k=1

Kk (x, t )
∂K j

∂xk
, (5.1.5)

and K =∇φ, the gain, where φ(x) satisfies the following Poisson equation

∇· (πt (x | Yt )∇φ(x)
)=−(h(xt , t )− ĥ)πt (x | Yt )R−1(t ), (5.1.6a)∫

φ(xt )πt (x | Yt )d x = 0, (5.1.6b)

whereπt (x | Yt ) is the conditional density of the particle, xi
t , given measurements Yτ = {yτ : t0 ≤

τ≤ t }.
We recall that the equation of evolution of the conditional density, π∗

t (x | Yt ), for the state-
space model governed by eqs. (3.1.1a) and (3.1.1b), is given by the K-S equation,

dπ∗
t =L (π∗

t )d t +π∗
t (h − ĥt )TR−1(t )(d yt − ĥt d t ), (5.1.7)

where L is as expressed in eq. (2.4.8). The FPF establishes an optimal control on the equa-
tion of evolution of the particles, eq. (5.1.3), via a cost function defined by the Kullback-Leibler
divergence between π∗

t (x | Yt ) and πt (x | Yt ), thus yielding an exact filter when the prior filter
density is chosen equal to the prior true density. This renders the FPF robust in that, choosing
πt0 = π∗

t0
at initial time, t = t0, the estimated posterior density remains the same as the true

posterior at all times; that is,

πt (x | Yt ) =π∗
t (x | Yt ), t ≥ t0. (5.1.8)

Notice that eq. (5.1.4) is an SDE comprising of the signal equation and the control terms
where

q(xt , t )d t +K (xt , t )d yt −0.5K (xt , t )[h(xt , t )+ ĥt ]d t

forms the drift and R1/2K (xt , t ) forms the diffusion term—as a result of the noise in the mea-
surements. We then apply the Fokker-Planck equation, eq. (2.4.7), to obtain the equation of
evolution of the filtering density. The conditional density of each particle, given the measure-
ments Yτ = {yτ : t0 ≤ τ≤ t }, evolves as follows [Yang et al. (2012)]:

dπt =L (πt )d t −∇· (πt K )d yt −∇· (πtψ
)
d t

+ R

2

n∑
k,l=1

∂2

∂xk∂xl
(πt (K K T)kl )d t ,

(5.1.9)
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where K is a solution of
∇· (πt K ) =−πt (h − ĥt )TR−1(t ) (5.1.10)

and ψ is given by

ψ=−1

2
K (xt , t )(h + ĥt )+q(xt , t ). (5.1.11)

5.2 Exactness of the FPF

The FPF is an exact filter under certain conditions. To demonstrate this, it is enough to show
that the equation of evolution of the posterior density of the particles given measurements’
history and the equation of evolution of the true posterior are the same—when the prior den-
sities are the same. In other words, the exactness of the FPF is demonstrated by showing that
eqs. (5.1.7) and (5.1.9), are equivalent. This has been done in Amirhossein et al. (2016); Yang
et al. (2012); we only repeat it here for completeness. The gain function, we recall, is

K (x) =∇φ(x), (5.2.1)

where φ(x) is the solution of eqs. (5.1.6a) and (5.1.6b). The task at hand is executed sufficiently
should it be shown that dπt = dπ∗

t given eqs. (5.1.10) and (5.1.11), the solution of which yield
K .

The product of eq. (5.1.11) with −π is

−πψ=π1

2
K (h + ĥt )−πq(xt , t )

=π1

2
K (h − ĥt )+πK ĥt −πq(xt , t ),

(5.2.2a)

whereupon substituting eq. (5.1.10) we get

−πψ=−1

2
K R [∇· (πt K )]+πK ĥt −πq(xt , t ). (5.2.2b)

Notice, by product rule, that

∇· (π[
K RK T])=πK R∇· (K )+K R∇· (πK ) . (5.2.3)

Substituting eq. (5.2.3) in eq. (5.2.2b) and using eq. (5.1.5), we get

−πψ=−1

2
∇· (π[

K RK T])+πK ĥt , (5.2.4)

whereupon taking divergence on both sides yields

−∇· (πψ)=−1

2

n∑
l ,k=1

∂2

∂xl∂xk

(
π

[
K RK T]

lk

)+∇· (πK ĥt
)
. (5.2.5)

Finally, we substitute eqs. (5.1.10) and (5.2.5) in eq. (5.1.9), yielding

dπt =L (πt )d t −∇· (πK )d yt +∇· (πK )ĥt d t ,

=L (πt )d t +πt (h − ĥt )TR−1(t )(d yt − ĥt d t ),
(5.2.6)

as desired.
The FPF comes with many advantages: that it is exact when initialized with the true prior

ensures optimal estimates; that the FPF does not require resampling, which is characteristic of
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importance sampling filters, makes the FPF parallelizable and hence can be used in scenarios
involving models of high dimensions; and, that the FPF has a controlled gain insures robust-
ness. The downside of the FPF, however, is that a boundary value problem (BVP), eq. (5.1.10),
needs to be solved at every time to obtain the gain, K . It turns out that an analytical solution for
the BVP does not, as yet, exist. Numerical methods are resorted to to obtain an estimate of the
gain. This forms the subject of the next section. But before that, we introduce the stochastic
feedback particle filter.

5.3 FPF with stochastically perturbed innovation

Motivated by the two variants of EnKBF based on the perturbation of the innovation process,
we obtain a stochastically-perturbed-innovation variant of the feedback particle filter by re-
placing the deterministic perturbation term to the innovation in eq. (5.1.3) with a stochastic
term. The McKean-Vlasov stochastic differential equations for the proposed feedback parti-
cle filter, for the state-space model eqs. (5.1.1a) and (5.1.1b), consists of the equation of the
mean-field process,

d x̄t = f (x̄t )d t + g (x̄t )d β̄t +K (x̄t )◦ (d yt +R1/2(t )d η̄t −h(x̄t )d t ), (5.3.1)

and the finite M system of equations for the evolution of interacting hypotheses of the state,
X t := {xi

t }M
i=1; that is,

d xi
t = f (xi

t )d t + g (xi
t )dβi

t +K (xi
t )◦ (d yt +R1/2(t )dηi

t −h(xi
t )d t ), (5.3.2)

where β̄t and {βt }M
i=1 are independent copies of βt and η̄t and {ηt }M

i=1 are independent copies
of ηt ; such that, for a given function q(x),

πt [q(x) | Yt ] = π̄t [q(x) | Yt ] ≈ 1

M

M∑
i=1

q(xi
t ),

where πt = Law(xt ) and πt = Law(x̄t ).
For notational convenience, we rewrite the controlled Stratonovich SDE eq. (5.3.2) as

d xt = f (xt )d t + g (xt )dβt +K (xt )◦ (d yt +R1/2(t )dηt −h(xt )d t ), (5.3.3)

where K =∇φ(x) is the gain and φ(x) satisfies the Poisson equation, eqs. (5.1.6a) and (5.1.6b).
{ηt } is an r -dimensional vector standard Brownian motion process.

Written in Itô form, eq. (5.3.3) becomes

d xt = f (xt , t )d t + g (xt , t )dβt +2q(xt , t )d t

+K (xt , t )(d yt +R1/2(t )dηt −h(xt , t )d t ),
(5.3.4)

where q(xt , t ) is given by eq. (5.1.5). As in the FPF with a deterministically perturbed innova-
tion, the equation of evolution of the filtering density π(xt | Yt ) in the FPF with stochastically
perturbed innovation is given by the Fokker-Planck equation to the SDE, eq. (5.3.4); that is,

dπt =L (πt )d t −∇· (πt K )d yt −∇· (πtU )d t

+
n∑

k,l=1

∂2

∂xk∂xl
(πt (K RK T)kl )d t ,

(5.3.5)

where K =∇φ is the solution of

∇· (πt K ) =−πt (h − ĥt )R−1(t ) (5.3.6)

and U is then defined by
U =−K h +2q. (5.3.7)
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5.3.1 Exactness of FPF with stochastically perturbed innovation

We now show, that beginning with the filter posterior

πt0 (x | Yt0 ) =π∗
t0

(x | Yt0 ), (5.3.8)

where π∗
t0

(x | Yt0 ) is the true posterior at initial time, t0, the filter posterior matches the true
posterior at all times, t ; for then we demonstrate that the filter defined by eq. (5.3.3) is exact. It
suffices to show that the equations of evolution of the true posterior and filter posterior are the
same; that is, eq. (5.3.5) and eq. (5.1.7) are the same.

Multiplying U in eq. (5.3.7) with −πt yields

−πtU =−πt K h +2πt q

=−πt K (h − ĥt )−πt K ĥt +2πt q,
(5.3.9)

where in the second equality we introduce πt K ĥt −πt K ĥt . From eq. (5.3.6) we have

−πt (h − ĥt ) = R(t )∇· (πt Kk ). (5.3.10)

Substituting eq. (5.3.10) in eq. (5.3.9) gives

−πtU = K R(t )∇· (πt K )−πt K ĥt +2πt q. (5.3.11)

Using eq. (5.2.3) in eq. (5.3.11) and noting the expression of q(xt , t ) in eq. (5.1.5), we get

−πU =−∇· (π[
K RK T])+πK ĥt . (5.3.12)

whereupon taking divergence on both sides of eq. (5.3.12) yields

−∇· (πU ) =−
n∑

l ,k=1

∂2

∂xl∂xk

(
π

[
K RK T]

l k

)+∇· (πK ĥt
)
. (5.3.13)

Finally, we substitute eqs. (5.3.6) and (5.3.13) for

−∇· (πtU )+
n∑

l ,k=1

∂2

∂xl∂xk

(
π

[
K RK T]

l k

)
and ∇· (πt K ) in eq. (5.3.5) to obtain

dπt =L (πt )d t +πt (h − ĥt )TR−1(t )(d yt − ĥt d t ), (5.3.14)

which proves exactness. We now summarise the result from the preceding discussion in the
following Theorem.

Theorem 5.3.1 (Exactness of FPF with stochastic innovation). Let initial filter posterior, πt0 , be
equal to the true posterior π∗

t0
at time t0. Then the filter governed by eq. (5.3.3) is exact.

Remark 5.3.1 (The gain). The equation from which the gain is obtained is the same for both FPF
with deterministically perturbed innovation and that with stochastically perturbed innovation.
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5.4 Approximation of the gain function

The gain, K , is obtained by solving eq. (5.3.6), with boundary condition

lim
xk→±∞Kklπt = 0. (5.4.1)

The scalar form of eq. (5.3.6) is

∂

∂x
(πt K ) =− 1

R(t )
πt (h − ĥt ), (5.4.2)

the integration of which yields

K =− 1

πt R(t )

∫x

−∞
πt (h − ĥt )d z. (5.4.3)

Extension of the integration in eq. (5.4.3) is involving [Sahoo (2010)]. A number of approxi-
mation methods have been developed. We introduce a few here.

5.4.1 Direct approximation

For a scalar signal, the gain as expressed in eq. (5.4.3) can be estimated by means of empirical
estimate [Yang (2014)],

K ≈− 1

MR(t )π̃t

M∑
i=1

(h(xi
t )− ĥt )H(x −xi

t ), (5.4.4)

where

ĥt ≈ 1

M

M∑
i=1

h(xi
t ), (5.4.5)

H(.) is the Heaviside function and

π̃t = 1

M

M∑
i=1

πi
t (5.4.6)

where

πi
t =

1p
2πσ2

exp

(
− 1

2σ2 (x −xi
t )T(x −xi

t )

)
,

and σ can be chosen such that σ→ 0 as M →∞. The following algorithm gives a summary of
the approximation.

Algorithm 5.4.1 Direct approximation of the gain

1: Approximate ĥt as follows: ĥt ≈ 1

M

∑M
i=1 h(xi

t )

2: Approximate the mean posterior: π̃t = 1

M

∑M
i=1π

i
t

3: Compute the gain: K =− 1

MR(t )π̃t

∑M
i=1(h(xi

t )− ĥt )H(x −xi
t )

5.4.2 Weak formulation of the Poisson BVP

Consider the Poisson equation, eqs. (5.1.6a) and (5.1.6b), which we rewrite here for conve-
nience,

∇· (πt∇φ(x)
)=− 1

R
(h(x)− ĥt )πt , (5.4.7a)∫

φ(x)πt d x = 0, (5.4.7b)
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with homogenous boundary condition

lim
x→±∞φ(x)πt = 0. (5.4.7c)

Let ψ ∈ C∞
c ([−∞,∞]); that is, ψ(x) is an infinitely differentiable function with a compact

support in R. Upon multiplying eq. (5.4.7a) with ψ(x) and integrating, we get∫∞

−∞
ψ(x)∇· (πt∇φ(x)

)
d x =− 1

R

∫∞

−∞
ψ(x)(h(x)− ĥt )πt d x, (5.4.8)

Integrating eq. (5.4.8) by parts yields[
ψ(x)πt∇φ(x))

]∞
−∞−

∫∞

−∞
∇ψ(x)πt∇φ(x)d x =− 1

R

∫∞

−∞
ψ(x)(h(x)− ĥt )πt d x. (5.4.9)

From the boundary condition eq. (5.4.7c), the first term in eq. (5.4.9) is zero, and so we have∫∞

−∞
∇ψ(x)πt∇φ(x)d x = 1

R

∫∞

−∞
ψ(x)(h(x)− ĥt )πt d x, (5.4.10)

which we can rewrite, by means of expectation, as

πt
[∇ψ(x)∇φ(x)

]= 1

R
πt

[
ψ(x)(h(x)− ĥt )

]
. (5.4.11)

Therefore, any solution φ to eqs. (5.4.7a) to (5.4.7c) satisfies the weak formulation

a(ψ,φ) = l (ψ), (5.4.12a)

where

a(ψ,φ) :=πt
[∇ψ(x)∇xφ(xt )

]
, (5.4.12b)

and

l (ψ) := 1

R
πt

[
ψ(x)(h(x)− ĥt )

]
. (5.4.12c)

The gain term is obtained from eq. (5.4.11) by substituting K =∇φ(x).

5.4.2.1 Constant gain approximation

Choosing the basis functions to be the canonical coordinate vectors, then the test function
becomes ψ(x) = x. Substituting this in eq. (5.4.11) yields

πt [K ] = 1

R
πt

[
x(h(x)− ĥt )

]
. (5.4.13)

Supposing that we approximate the gain, K , empirically,

K̃ =πt [K ]

≈ 1

R

1

M

M∑
i=1

xi (h(xi )− ĥt ),
(5.4.14)

we obtain the constant approximation of the gain. Recall that the two formulations of the
EnKBF, eqs. (4.3.1) and (4.3.3), have a gain

K = R−1 1

M −1

M∑
i=1

(xi − x̄)(h(xi )− ĥt )T

≈ R−1 1

M

M∑
i=1

xi (h(xi )− ĥt )T,

(5.4.15)
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which is equivalent to eq. (5.4.14); and hence EnKBF is a FPF with the gain obtained by constant
approximation.

Constant approximation of the gain is a popular method in practice [Amirhossein et al.
(2016)]. The summary of constant gain approximation is given in the following algorithm

Algorithm 5.4.2 Constant gain approximation

1: Approximate ĥt as follows: ĥt ≈ 1

M

∑M
i=1 h(xi )

2: Compute the gain: K = 1

R

1

M

∑M
i=1 xi (h(xi

t )− ĥt )

5.4.2.2 Galerkin approximation

In the Galerkin approximation approach, the solution to the gain, K , is approximated using
basis functions {ψl }L

l=1 as [Amirhossein et al. (2016); Yang et al. (2012)]

K̃ (x) =
L∑

l=1
cl∇ψl (x), (5.4.16)

where {cl }L
l=1 are constants chosen such that

πt
[∇ψ(x)K̃ (x)

]= 1

R
πt

[
ψ(x)(h(x)− ĥt )

]
. (5.4.17)

Galerkin approximation entails solving an algebraic equation,

Ac = b, (5.4.18a)

for a vector of constants, c = [c1, c2, c3, ..., cn]T. A is an n ×n matrix, whose components are
approximated as

Akl ≈
1

M

M∑
i=1

∇ψk (xi ).∇ψl (xi ); (5.4.18b)

b, on the other hand, is a vector of length n, and whose components are approximated as

bl ≈
1

R

1

M

M∑
i=1

ψk (xi )(h(xi )− ĥt ). (5.4.18c)

With the vector of constants, c, at hand, we can now obtain an approximation of the gain by
means of eq. (5.4.16). Galerkin approximation is summarised in the following algorithm.

Algorithm 5.4.3 Galerkin approximation of the gain

1: Approximate ĥt as follows: ĥt ≈ 1

M

∑M
i=1 h(xi )

2: for l = 1 to n do

3: Compute the components of b: bl ≈
1

R

1

M

∑M
i=1ψk (xi )(h(xi )− ĥt )

4: for k = 1 to n do

5: Compute the components of A: Akl ≈
1

M

∑M
i=1∇ψk (xi ).∇ψl (xi )

6: end for
7: end for
8: Solve for c in Ac = b
9: Compute the gain K ≈∑L

l=1 cl∇ψl (x)

The disadvantage of Galerkin approximation is the need to invert an n ×n matrix, A, in
eq. (5.4.18a) every time in solving for c. It is for this reason that data based methods—for ex-
ample semigroup method and Karhunen Loeve expansion method—are preferred.
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5.4.3 Kernel-based approximation

Consider the Poisson equation, eq. (5.4.7a), whose solution, for any fixed ε> 0, is given by the
fixed-point representation [Amirhossein et al. (2016)],

φ= exp

(
− ε

πt
∇· (πt∇)

)
φ+

∫ε

0
exp

(
− s

πt
∇· (πt∇)

)
1

R
(h − ĥt )d s, (5.4.19)

where exp

(
− ε

πt
∇· (πt∇)

)
is a Markov semigroup generated by the linear operator, − 1

πt
∇·(πt∇).

Approximation of eq. (5.4.19) is necessitated by an approximation of the Markov semigroup,

exp

(
− ε

πt
∇· (πt∇)

)
, using an operator

Tε f (x) :=
N∑

i=1
kε(x, xi ) f (xi ), (5.4.20)

where

kε(x, y) = n−1
ε gε(x − y)√

1

M

∑M
i=1 gε(x −xi )

√
1

M

∑M
i=1 gε(y −xi )

, (5.4.21)

gε is an n-dimensional Gaussian function and nε is a normalization factor, chosen so that Tε1 =
1.

For small ε, ∫ε

0
exp

(
− s

πt
∇· (πt∇)

)
d s ≈ ε 1

R
(h − ĥt ). (5.4.22)

This leads to an approximation of φ; that is,

φε = Tεφε+ε 1

R
(h − ĥt ). (5.4.23)

It now remains to obtain the gradient ofφε, yielding an approximation of the gain. The gain
is approximated as follows:

K =∇Tεφε+ε 1

R
∇Tε(h − ĥ), (5.4.24)

where the operator ∇Tε is approximated as follows

∇Tε f (x) :=
N∑

i=1
∇kε(x, xi ) f (xi )

= 1

2ε

M∑
i=1

kε(x, xi ) f (xi )

(
xi −

M∑
j=1

kε(x, xi )x j

)
.

(5.4.25)

From eq. (5.4.24), K (xi ) can be written as

K (xi ) =
M∑

j=1
ai j x j , (5.4.26)

where

ai j := 1

2ε
kε(xi , x j )

(
r j −

M∑
l=1

kε(xi , x l )rl

)
, (5.4.27a)

and

ri :=φε(xi )+ε 1

R
(h(xi )− ĥt ). (5.4.27b)
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Algorithm 5.4.4 Kernel-based gain approximation

1: for i = 1 to M do
2: for j = 1 to M do

3: Compute gi j := exp

(−|xi −x j |2
4ε

)
4: Compute ki j := gi j√∑M

l=1 gi l

√∑M
l=1 g j l

5: Compute Ti j := ki j√∑M
l=1 ki l

6: end for

7: Approximate ĥt as follows: ĥt ≈ 1

M

∑M
i=1 h(xi

t )

8: Compute φi =∑M
j=1 Ti jφ j +ε 1

R
(h(xi )− ĥ)

9: Compute φi =φi − 1

M

∑M
j=1φ j

10: Compute ri =φi +ε 1

R
(h(xi )− ĥ)

11: Compute ai j = 1

2ε
Ti j (r j −∑M

l=1 Ti l rl )

12: Compute K i =∑M
j=1 ai j x j

13: end for

5.4.4 Gain approximation based on optimal coupling

Consider two marginal distributions, say, π and πε. It concerns optimal coupling to obtain a
joint distribution of the two distributions. Optimal coupling entails obtaining an optimal trans-
port map, Tε, by solving the following optimal transport problem [Amirhossein et al. (2016);
Reich and Cotter (2015)]

Objective: min
Tε

E
[|Tε(x)−x|2] (5.4.28a)

Constraints: x ∼π, Tε(x) ∼πε, (5.4.28b)

where

πε(x) :=π(x)(1+ε 1

R
(h(x)− ĥ)) (5.4.29)

is a family of densities parametrized by ε> 0 sufficiently small.
The ensemble transform algorithm [Reich and Cotter (2015)] provides an approximation

to Tε given an ensemble {xi }M
i=1 drawn from π. In the framework of ensemble transform, the

optimal transport problem, eqs. (5.4.28a) and (5.4.28b), is recast as follows:

Objective: min
ti j

M∑
i=1

M∑
j=1

ti j |xi −x j |2 (5.4.30a)

Constraints:
M∑

i=1
ti j = 1

M
,

M∑
j=1

ti j = R +ε(h(x j )− ĥ)

RM
, ti j ≥ 0 ∀i 6= j , (5.4.30b)

the solution, t∗i j , of which is called the optimal coupling. The objective to be minimized can,
for example, be the distance between the two measures,π andπε—the well-known Wasserstein
distance.

Let

ai j =
M t∗i j −δi j

ε
,
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where δi j is the Kronecker delta. Then, the gain

K (xi ) :=
M∑

j=1
ai j x j

t . (5.4.31)

The following algorithm summarises the foregoing discussion.

Algorithm 5.4.5 Optimal coupling-based gain approximation

1: for i = 1 to M do

2: Approximate ĥt as follows: ĥt ≈ 1

M

∑M
i=1 h(xi

t )

3: Compute πi = 1

M
and πεi = R +ε(h(xi )− ĥt )

RM
4: for j = 1 to M do
5: Compute di j := |xi −x j |2
6: Solve for t∗i j in eqs. (5.4.30a) and (5.4.30b)

7: Compute ai j =
M t∗i j −δi j

ε
8: end for
9: Compute K (xi ) =∑M

j=1 ai j x j
t

10: end for

We now turn to feedback particle filters whose feedback structure is obtained using optimal
transport algorithms.

5.5 Ensemble Transform Particle Filter

The ensemble transform particle filter (ETPF) [Reich (2013); Reich and Cotter (2015)] is, as the
FPF, characterised by a control law, in the sense of optimal transportation, which moves the
particles to the convenient position in the state space, thus improving upon the performance of
the filter. The notable distinction between ETPF and particle filters with resampling is that the
resampling step is replaced with a linear transformation. The transformation seeks to establish
an optimal coupling between the prior ensemble and the posterior ensemble.

Most precisely, the linear transport problem is as follows:

T ∗ = arg min
T∈RM×M

M∑
i , j=1

ti j‖xi
tn
−x j

tn
‖2, (5.5.1)

under the constraints
M∑

i=1
ti j = 1

M
,

M∑
j=1

ti j = w i
tn

, and ti j > 0, (5.5.2)

where {w i
tn

}M
i=1 are weights at time tn = nδt and ti j represents the element in row i and column

j of the M ×M matrix T . The weights are propagated as follows:

d wt = 1

R
w i

t (h(xi
t )− ĥt )T(d yt − ĥt d t ), (5.5.3)

where

ĥt = 1

M

M∑
i=1

h(xi
t ).

To avoid negative weights, eq. (5.5.3) is approximated by

w i
tn+1

≈ w i
tn

exp

(
− 1

2R
(h(xi

tn
))T h(xi

tn
)δt − (h(xi

tn
))Tδytn

)
, (5.5.4)
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and initialized with

w i
t0
= 1

M
.

For the ETPF, the importance weights of the prior samples {xi }M
i=1 are given by W1 = {w i

1}M
i=1

and W2 = {w i
2 = 1/M }M

i=1. Moreover, X1 = X2 = {xi }M
i=1. The posterior samples are given by

x̃ j
tn
= 1

M

M∑
i=1

xi
tn

t∗i j . (5.5.5)

5.6 Feedback formulation based on the Schrödinger problem

The Schrödinger problem [Schrödinger (1931)] arises in the context of boundary value prob-
lems involving stochastic differential equations. Filtering problem can be cast as a Schrödinger
problem, by means of Bayes’ rule, and in the space of probability measures. In the ensuing ar-
gument, we invoke the algorithms used in optimal transportation [Peyré and Cuturi (2018)] to
solve the Schrödinger problem, which solution provides the estimates of the filtering distribu-
tion.

Definition 5.6.1. Schrödinger problem:— Find two functions φ̂tn (xtn ) and φtn+1 (xtn+1 ), satisfy-
ing the following equations

πtn (xtn | Ytn ) =πφtn
(xtn | Ytn )φ̂tn (xtn ), (5.6.1a)

πtn+1 (xtn+1 | Ytn+1 ) =πφtn+1
(xtn+1 | Ytn+1 )φtn+1 (xtn+1 ), (5.6.1b)

π
φ
tn+1

(xtn+1 | Ytn+1 ) =
∫
πtn+1 (xtn+1 | xtn )πφtn

(xtn | Ytn )d xtn , (5.6.1c)

φ̂tn (xtn ) =
∫
πtn+1 (xtn+1 | xtn )φtn+1 (xtn+1 )d xtn+1 , (5.6.1d)

where πtn (xtn | Ytn ) and πtn+1 (xtn+1 | Ytn+1 ) are the marginal filtering distributions at time tn and
tn+1, respectively.

When solved, eqs. (5.6.1a) to (5.6.1d) yield transition density

π
φ
tn+1

(xtn+1 | xtn ) := φtn+1 (xtn+1 )

φ̂tn (xtn )
πtn+1 (xtn+1 | xtn ), (5.6.2)

such that

πtn+1 (xtn+1 | Ytn+1 ) :=
∫
π
φ
tn+1

(xtn+1 | xtn )πtn (xtn | Ytn )d xtn , (5.6.3)

where πφtn+1
(xtn+1 | xtn ) can be intuitively understood to define a coupling between the proba-

bility density function at time tn , πtn (xtn | Ytn ), and the filtering density function at time tn+1,
πtn+1 (xtn+1 | Ytn+1 ).

How do these notions fit in to filtering? Recall that, in the discrete setting, Bayes’ Theorem
gives an expression of the filtering density, πtn+1 (xtn+1 | Ytn+1 ), at time tn+1 as

πtn+1 (xtn+1 | Ytn+1 ) = πtn+1 (ytn+1 | xtn+1 )πtn+1 (xtn+1 | Ytn )∫
πtn+1 (ytn+1 | xtn+1 )πtn+1 (xtn+1 | Ytn )d xtn

, (5.6.4)

where

πtn+1 (xtn+1 | Ytn ) =
∫
πtn+1 (xtn+1 | xtn )πtn (xtn | Ytn )d xtn (5.6.5)
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is the prediction density at time tn+1 [Särkkä (2013); Jazwinski (1970)]. It then becomes ap-
parent that eqs. (5.6.3) and (5.6.4) are equivalent. Notice that the Schrödinger problem re-
duces to eq. (5.6.3) where, beginning with the filtering distribution πtn (xtn | Ytn ), we directly
obtain the filtering distribution πtn+1 (xtn+1 | Ytn+1 ) at time tn+1 via the twisted transition density

π
φ
tn+1

(xtn+1 | xtn ).
We use empirical estimates of the densities to solve eqs. (5.6.1a) to (5.6.1d) governing the

Schrödinger problem; that is, given an ensemble {xi
tn

}M
i=1 at time tn , we obtain an estimate of

the prediction density, eq. (5.6.5), by

πtn+1 (xtn+1 | Ytn ) = 1

M

M∑
i=1

πtn+1 (xtn+1 | xi
tn

). (5.6.6)

The filtering density, eq. (5.6.5), is then empirically estimated as follows:

πtn+1 (xtn+1 | Ytn+1 ) =
1

M

∑M
i=1πtn+1 (ytn+1 | xtn+1 )πtn+1 (xtn+1 | xi

tn
)∫

πtn+1 (ytn+1 | xtn+1 )πtn+1 (xtn+1 | Ytn )d xtn

. (5.6.7)

To solve the Schrödinger problem, eqs. (5.6.1a) to (5.6.1d), we make the following proposition

π
φ
tn

(xtn | Ytn ) = 1

M

M∑
i=1

αiδ(xtn −xi
tn

), (5.6.8a)

φ̂tn (xtn ) = 1

M

M∑
i=1

1

αi
, (5.6.8b)

where

1

M

M∑
i=1

αi = 1. (5.6.8c)

Substituting eqs. (5.6.8a) and (5.6.8b) in to eqs. (5.6.1a) to (5.6.1d) yields,

πtn (xtn | Ytn ) = 1

M

M∑
i=1

δ(xtn −xi
tn

), (5.6.9a)

π
φ
tn+1

(xtn+1 | Ytn+1 ) = 1

M

M∑
i=1

αiπtn+1 (xtn+1 | xi
tn

), (5.6.9b)

φtn+1 (xtn+1 ) = N∫
(N )d xtn

1

M

∑M
i=1α

iπtn+1 (xtn+1 | xi
tn

)
, (5.6.9c)

where

N =πtn+1 (ytn+1 | xtn+1 )
M∑

i=1
πtn+1 (xtn+1 | xi

tn
).

Therefore, one sets φ̂tn (xtn ) = 1

M

∑M
i=1

1

αi
and definesφtn+1 (xtn+1 ) by eq. (5.6.9c) in order to solve

the Schrödinger problem; for then, given a twisted prediction density

π
φ
tn+1

(xtn+1 | Ytn ) = 1

M

M∑
i=1

π
φ
tn+1

(xtn+1 | xi
tn

)

= 1

M

M∑
i=1

φtn+1 (xtn+1 )

φ̂tn (xi
tn

)
πtn+1 (xtn+1 | xi

tn
),

(5.6.10)
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by eq. (5.6.2), the relationship between the prediction density, πφtn+1
(xtn+1 | Ytn ), and the twisted

prediction density, πφtn+1
(xtn+1 | Ytn ), is

πtn+1 (xtn+1 | Ytn )

π
φ
tn+1

(xtn+1 | Ytn )
=

1

M

∑M
i=1πtn+1 (xtn+1 | xi

tn
)

1

M

∑M
i=1

φtn+1 (xtn+1 )

φ̂tn (xi
tn

)
πtn+1 (xtn+1 | xi

tn
)

; (5.6.11)

from which, if we draw samples from the twisted distribution

xi
tn
∼πφtn+1

(xtn+1 | xi
tn

), (5.6.12)

then we can approximate the prediction density, πφtn+1
(xtn+1 | Ytn ), by

π
φ
tn+1

(xtn+1 | Ytn ) ≈ 1

M
w iδ(xtn −xtn ), (5.6.13a)

where

w i = πtn+1 (xtn+1 | Ytn )

π
φ
tn+1

(xtn+1 | Ytn )
. (5.6.13b)

Now, suppose that we have L = kM , where k ∈N, samples {x j
tn

}L
j=1 drawn fromπtn (xtn | Ytn ).

We obtain a bi-stochastic matrix Q ∈RL×M , which approximates the Markov process defined by
π(xtn+1 | xtn ). The Schrödinger problem, eqs. (5.6.1a) to (5.6.1d), can then be recast as follows:
Find two non-negative vectors u ∈RL and v ∈RM so that,

P∗ = diag(u)Qdiag(v)−1, (5.6.14)

given that P∗ belong to a polytope

U :=
{

P ∈RL×M : P ≥ 0,
L∑

j=1
p j i = p1,

M∑
i=1

p j i = p0

}
.

P∗ is also a solution to the optimization problem defined by minimizing the distance between
all possible bi-stochastic matrices P and Q; that is,

P∗ = arg min
P∈U

KL(P‖Q), (5.6.15)

where KL is the Kullback Leibler divergence between P ∈U and Q; that is,

KL(P‖Q) :=
L,M∑
j ,i=1

p j i log
p j i

q j i
, (5.6.16)

where p j i and q j i are the elements of, respectively, matrices P and Q in row j and column i .
Now the feedback particle filter in the Schrödinger formulation is as follows: we first ob-

tain an M-sized ensemble of states {x̄i
tn

}M
i=1 using a forecast distribution, πtn (x̄i

tn
| Ytn ), with

respect to which each particle evolves according to the weak form of the Fokker-Planck equa-
tion, eq. (2.4.15); that is

x̄i
tn
= x̄i

tn−1
+ f (x̄i

tn−1
)δt . (5.6.17)

Secondly, L = kM ensembles are obtained as follows:

x j
tn
= x̄ j

tn
+ g (tn)dβ j

tn
, (5.6.18)
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where {x̄ j
tn

}L
j=1 are obtained by replicating each particle x̄i

tn
k times. The weights are obtained

using

w j
tn
= exp

(
− 1

2δt
(−2δyT

tn
h(x j

tn
)δt +hT(x j

tn
)h(x j

tn
)δt 2)

)
w j

tn−1
. (5.6.19)

This gives a particle weight system, {x j
tn

, w̃ j
tn

}L
j=1, where w̃ j

tn
signifies the normalised w j

tn
—

normalisation done according to

w̃ j
tn
=

w j
tn∑L

j=1 w j
tn

.

By Q ∈RL×M , we denote and understand a matrix whose elements are

q j i = exp

(
− 1

2g 2δt
‖x j

tn
− x̄i

tn
‖2

)
. (5.6.20)

Then we solve the Schrödinger problem defined by eq. (5.6.15), from whence we obtain P∗.
P∗ can be obtained, iteratively, by means of the Sinkhorn scheme stipulated in the following
algorithm, whose implementation details are stipulated in [Cuturi (2013)].

Algorithm 5.6.1 Sinkhorn iteration

Input: p0 and p1.
Output: P .

1: Compute Q and set P 0 =Q
2: while k > 1 do
3: Compute: uk+1 = diag(

∑M
m=1 P k )−1p1.

4: Compute: vk+1 = diag(
∑M

m=1 p0)−1 ∑L
l=1(diag(uk+1)P k )T.

5: Compute: P k+1 = diag(uk+1)P k diag(vk+1)−1.
6: end while

Filtered particles are eventually obtained thus

x̃i
tn
=

L∑
j=1

x j
tn

p∗
j i + g (δt )1/2ξi

tn
, ξi

tn
∼N (0̄n×1, In×n), (5.6.21)

where 0̄n×1 and In×n are, respectively, the null vector and the identity matrix of sizes as indi-
cated in the subscripts. This yields the proposed Sinkhorn particle filter (SPF), whose summary
is in Algorithm 5.6.2.

Alternatively to obtaining the particles by means of eq. (5.6.21), we can resample {x j
tn

}L
j=1

such that

P(xi
tn
= x j

tn
) = p∗

j i , ∀i = 1, 2, ..., M . (5.6.22)

This results in the resampling Sinkhorn Particle filter (RSPF), the summary of which is in Algo-
rithm 5.6.3.

Notice that all these formulations in this section are done on a discrete setting. Time-
continuous settings are arrived at by passing to the formal limit as δt → 0. We now consider an
example to test the performance of the SPF and RSPF in comparison to the BPF.

Example 5.6.1: Lorentz 63 model

We return to the stochastic Lorentz 63 model introduced in Example (3.5.1), but with G =
0.1I3×3 and R = I3×3, where I3×3 is an identity matrix of order 3.
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Algorithm 5.6.2 Sinkhorn particle filter

Input: xi
t0

, w i
t0
= 1/M ∀i ∈ {1, 2, ..., M }, k, and δy[t0,tT ].

Output: x̂[t0,tT ].
1: for n = 1 to N , δt > 0 do
2: for i = 1 to M do
3: Obtain x̄i

tn
using eq. (5.6.17)

4: for j = 1 to L do

5: Replicate x̄i
tn

k times and obtain x j
tn

using eq. (5.6.17)

6: Compute weights w j
tn

using eq. (5.6.19)
7: Compute q j i using eq. (5.6.20)
8: end for
9: Calculate P∗ by solving the the Schrödinger problem via Algorithm 5.6.1

10: Compute the filtered particles x̃i
tn

using eq. (5.6.21)
11: end for

12: Compute x̂tn =
1

M

∑M
i=1 x̃i

tn

13: end for

Algorithm 5.6.3 Resampling Sinkhorn particle filter

Input: xi
t0

, w i
t0
= 1/M ∀i ∈ {1, 2, ..., M }, k, and δy[t0,tT ].

Output: x̂[t0,tT ].
1: for n = 1 to N , δt > 0 do
2: for i = 1 to M do
3: Obtain x̄i

tn
using eq. (5.6.17)

4: for j = 1 to L do

5: Replicate x̄i
tn

k times and obtain x j
tn

using eq. (5.6.17)

6: Compute weights w j
tn

using eq. (5.6.19)
7: Compute q j i using eq. (5.6.20)
8: end for
9: Calculate P∗ by solving the the Schrödinger problem via Algorithm 5.6.1

10: Resample the particles according to eq. (5.6.22) to obtain the filtered particles x̃i
tn

11: end for

12: Compute x̂tn =
1

M

∑M
i=1 x̃i

tn

13: end for
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Figure 5.1: Plot of RMSE resulting from the estimates of Lorentz 63 using optimal filters. The
settings are:– d t = 0.01, Pt0 = I3×3 and T = 4,000,000. The experiment is repeated for different
ensemble member, viz., M = 5, 7, 10, 12, 15, 17, 20.
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The plot Figure 5.1 on shows the errors due to the filter estimates obtained using optimal parti-
cle filters and that of Bootstrap particle filter. The performance of the optimal filters, as shown
in Figure 5.1, is better than that of BPF, when a small ensemble size is used. All the three fil-
ters show an improvement in performance with the increase in ensemble size. Whereas RSPF
registers a better performance for all the ensemble sizes used, SPF elicits a better performance
than the BPF only when the ensemble sizes are small. SPF and RSPF could be good candidate
filters when ensemble sizes are small.



CHAPTER 6

COMBINED STATE AND PARAMETER ESTIMATION

6.1 Introduction

Most state-space models are characterized by, among other things, parameters—which can
be constant or varying. By a parameter is comprehended and signified a measurable factor
which defines a model and influences its operation. As the parameter changes, so does the
model; expressed differently, a parameter is unique to a model it characterises. The choice of
a certain model, therefore, is achieved by choosing the right parameters. It occurs more often
than not—in hidden Markov models, for instance—that measurements are available but the
underlying signal is not readily apparent. This forms an example where parameter estimation
is paramount: measurements are used to learn the model parameters, which, in turn, are used
to fit the model.

For the ensuing discussion, we modify the signal and measurement equations, eqs. (3.1.1a)
and (3.1.1b) of Section 3.1, to include parameters, now and henceforth signified by a
d−dimensional vector, θ, thus

Signal: d xt = f (xt ,θ)d t + g (xt )dβt ; t0 ≤ t , (6.1.1a)

Measurement: d yt = h(xt ,θ)d t +R1/2(t )dηt ; t0 ≤ t , (6.1.1b)

where the dimensions and nomenclature of other terms remain as indicated in Section 3.1.
Parameter estimation problem concerns finding the optimal parameter so that the signal

best fits the data [Einicke (2012); Särkkä (2013)]. This is, classically, achieved by optimization
procedure where a cost function is minimized [Lewis et al. (2006)]. The cost function mostly de-
fines the discrepancy between the state and the measurements. Intuitively, parameter estima-
tion can be seen as a procedure for seeking a parameter value that gives the least discrepancy
between the state and the corresponding measurements (also known as the algebraic distance
or the residual). The method of least squares has been extensively used to define an objective
function. Given the increment in measurement, d yt , of the state, xt , at time t , the objective
function, J (θ), in the least squares sense, is given by

J (θ) =
∫t

t0

wt‖d yt −h(xt ,θ)d t‖2, (6.1.2)

where wt is the weighting function.
Most commonly used procedures in the framework of least-squares include: linear least-

squares, orthogonal least-squares, gradient weighted least-squares, bias corrected renormal-
ization. This thesis, however, attends not to the study of least-squares approaches. Suffice
it to only direct the interested reader to the article Zhang (1997) for an elaborate explanation
and application of least-squares methods in computer vision. Instead, we study parameter

60
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estimation by means of filtering. But before that, we mention a few merits and demerits of
least-squares and other methods defined by algebraic distances.

The use of algebraic distances in defining a cost function is computationally efficient and
closed-form solutions are possible. The end result, however, is not satisfactory. This is due, in
one part, to the fact that the objective function is mostly not invariant with respect to Euclidean
transformations, for example, translation. This limits the coordinates systems to be used. In
the other part, outliers may not contribute to the parameters the same way as inliers [Zhang
(1997)]. Other more satisfactory parameter estimation methodologies are highly desired. We
consider, in this thesis, the use of Bayesian inference techniques.

Estimation of parameters by means of a filter can be achieved in a number of ways; one of
them being the use of the filter evidence, or its near approximation, and selection criteria for
parameters which give a reasonable estimate of the evidence. The second method involves up-
dating the parameters and the state at the same time. This is known as dual estimation, which
further subdivides into joint estimation and a dual filter. Joint estimation entails subjoining
the vector of parameters to the state vector to form an extended state-space. The filter is then
implemented and run forward in time with the hope of filter convergence to the optimal state
and parameter values. A dual filter, on the other hand, involves implementing a filter for the
state and that of parameters simultaneously. The filter provides a self-correcting mechanism
which may lead to convergence of state and parameter estimates.

The rest of this chapter is arranged as follows. We first consider the evidence-based pa-
rameter estimation approach, in which we define the evidence approximations for different
filters in time-continuous framework. The second part is devoted to dual estimation where ex-
tended state-space formulation and the dual filter mechanism are elaborated. Application of
the foregoing ideas to estimating constant parameters forms the closing part of this chapter.

6.2 Bayesian parameter inference

In Bayesian inference of parameters, the parameters are treated as a random variable. The pa-
rameter is assigned a prior, πt0 (θ), based on some initial belief. Let tn such that tn+1 > tn ∀n =
0, 1, 2, ... N be a partition of the interval [t0,T ] and let δt = tn+1 − tn . Bayes’ rule gives the joint
posterior of parameters and the states;

π[t0,T ](x, θ | YT ) ≈ l.i.m.
δt→0
N→∞

πt0:tN (xt0:tN , θ | yt0:tN )

= l.i.m.
δt→0
N→∞

πt0:tN (yt0:tN | xt0:tN , θ)πt0:tN (xt0:tN | θ)πt0 (θ)

πt0:tN (yt0:tN )
,

(6.2.1a)

where YT = y[t0,T ],

πt0:tN (yt0:tN | xt0:tN , θ) =
N∏

n=1
πtn (ytn | xtn , θ), (6.2.1b)

and

πt0:tN (xt0:tN | θ) =πt0 (xt0 | θ)
N∏

n=1
πtn (xtn | xtn−1 , θ). (6.2.1c)

Now to arrive at the marginal posterior of parameters, we integrate out the states from the joint
posterior of states and parameters, eq. (6.2.1a):

πt0:tN (θ | yt0:tN ) =
∫
πt0:tN (yt0:tN | xt0:tN , θ)πt0:tN (xt0:tN | θ)πt0 (θ)

πt0:tN (yt0:tN )
d xt0:tN . (6.2.2)
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It turns out that direct computation of the integral in eq. (6.2.2) is difficult, especially with the
increase in measurements [Särkkä (2013)]. This challenge is circumvented through the use of
recursive techniques which include the use of filters and smoothers, maximum a posteriori
(MAP) estimates, and drawing samples from the posterior using Markov Chain Monte Carlo
(MCMC) methods.

To use recursive methods, we begin with the following parameter posterior

π(θ | YT ) ≈ l.i.m.
δt→0
N→∞

π(θ | yt0:tN ) ∝ l.i.m.
δt→0
N→∞

πt0:tN (yt0:tN | θ)πt0 (θ). (6.2.3a)

where

πt0:tN (yt0:tN | θ) =
N∏

n=1
πtn (ytn | yt1:tn−1 , θ)

=
N∏

n=1
πtn (ytn | xtn , θ)πtn (xtn | yt1:tn−1 , θ)d xtn

(6.2.3b)

The state’s predictive distribution, πtn (xtn | yt1:tn−1 , θ), can be computed recursively as fol-
lows [Särkkä (2013)]:

πtn (xtn | yt1:tn−1 , θ) =
∫
πtn (xtn | xtn−1 , θ)πtn−1 (xtn−1 | yt1:tn−1 , θ)d xtn−1 . (6.2.4a)

Instead of working with the posterior, π(θ | YT ), it is quite convenient to use the negative
log-posterior obtained by expressing the posterior as follows

π(θ | YT ) ≈ l.i.m.
δt→0
N→∞

π(θ | yt0:tN ) ∝ l.i.m.
δt→0
N→∞

exp
(−ψT (θ)

)
, (6.2.5)

where the energy function, ψT (θ), is given by

ψT (θ) =− log
(
πt0:tN (yt0:tN | θ)

)− log
(
πt0 (θ)

)
. (6.2.6)

The maximum a posteriori estimate (MAP) can then be obtained by the mode of the pos-
terior distribution, or, equivalently, the minimum of the energy function, the latter of which is
easier to compute; that is,

θ̂MAP = arg max
θ

π(θ | YT )

= arg min
θ

ψT (θ).
(6.2.7)

One demerit of MAP estimate is that it yields a point estimate of the parameter posterior, and
therefore ignores the dispersion of the estimate. Setting the prior, πt0 (θ), to be a uniform den-
sity then eq. (6.2.7) yields a Maximum Likelihood estimate.

6.3 Metropolis-Hastings method

Metropolis-Hastings6 [Robert and Casella (2004)] is a Markov-Chain Monte Carlo sampling al-
gorithm with optimal convergence. It is premised on detailed balance and ergodicity. Given a

6Named after Nicholas Constantine Metropolis (1915-1999) and Wilfred Keith Hastings (1930-2016)
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probability density, say, π(θ), from which it is difficult to sample—for instance if the said distri-
bution is known to a normalisation constant—, and given another distribution ρ(θ), say, from
which it is easy to sample, then detailed balance is the condition

π(θk )ρ(θk | θk+1) =π(θk+1)ρ(θk+1 | θk ), (6.3.1)

where ρ(θk | θk+1) is a transition distribution. The detailed balance condition is necessary
for any random walk to asymptotically converge to a stationary distribution. By ergodicity
is meant that there is a non-zero probability in moving from a state to any other state in a
Markov-Chain.

The following algorithm summarises the Metropolis-Hastings procedure

Algorithm 6.3.1 Metropolis-Hastings

1: Draw θ̃ from ρ(θ̃ | θk )

2: Set θk+1 ← θ̃ with probability α= min

(
1,

π(θ̃)ρ(θk | θ̃)

π(θk )ρ(θ̃ | θk )

)
3: Otherwise set θk+1 ← θk

6.4 Dual estimation

Dual estimation comprehends simultaneous estimation of state and parameters by means of
an appropriate filter. The self-correcting mechanism of the filter is taken advantage of to con-
verge to both the true state and the true parameters. Depending on the initial parameter, the
filter sooner or later converges to the true parameter value. Dual estimation can be achieved
in two ways: joint estimation and by a dual filter [Lü et al. (2011); Lint et al. (2008); Moradkhani
et al. (2005b)]. In this section, and the rest of the thesis, we shall assume that the parameters
are static; that is, time-invariant.

6.4.1 Joint estimation (augmented state-space)

In joint estimation, the state vector is augmented with the vector of parameters to form an ex-
tended state-space and then the filter is run forward in time for an update of both the state and
the parameters. The parameters are induced with artificial dynamics, or are made to assume a
random walk; that is, respectively,

d zt = ζt ; t0 ≤ t , (6.4.1)

where

d zt =
(
d xt

dθt

)
and ζt =

(
f (xt ,θ)d t + g (xt )dβt

0

)
, (6.4.2a)

or where

ζt =
(

f (xt ,θ)d t + g (xt )dβt

σdχt

)
, (6.4.2b)

in which {χt , t > t0} is a d−dimensional standard Brownian motion vector process and σ is
a small constant. A filter is then implemented with the augmented state zt in the place of
xt . The demerit of this method is that the extended state-space has an increased degree of
freedom owing to many unknowns, of both the state and the parameters, which renders the
filter unstable and intractable, especially in nonlinear models [Moradkhani et al. (2005a)].
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Example 6.4.1: Scalar SDE

Consider the following linear Gaussian Itô state space model.

d xt = (axt +b)d t +Q1/2d vt ; t0 ≤ t , (6.4.3a)

d yt = cxt d t +R1/2d wt ; t0 ≤ t , (6.4.3b)

where {vt } and {wt } are standard Brownian motion processes with, respectively,

E{d vt d vT
t } = d t and E{d wt d wT

t } = d t .

Let the state, xt , at time t0 be xt0 ∼ N (0,0.001). Let, moreover, xt0 , {vt , t ≥ t0} and
{vt , t ≥ t0} be uncorrelated. We take a = −0.2, b = 0.2, c = 1.01, Q = 0.001, R = 0.0001
and proceed to simultaneously estimate the state, xt , and the parameters, a and b using
different filters.

The following panels show the results obtained using EnKBF, BPF, FPF (feedback particle
filter with kernel-based gain approximation), ETPF—ensemble transform particle filter [Reich
and Cotter (2015)] (introduced in Section 6.4.2.2) and RSPF.
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Figure 6.1: Plots showing:- (a) estimates of parameter a and (b) estimates of parameter b over
time using EnKBF, BPF, FPF, ETPF and RSPF. The true parameter values are, respectively, a =
−0.2 and b = 0.2. The plots indicate that all the filters converge to the true parameter values.
The time step used is δt = 0.02.

The EnKBF, BPF, FPF, ETPF and RSPF yield converging results to the true parameter values
but with some margin of error. From Figures 6.1(a) and 6.1(b), it is evident that the ETPF yields
a faster converging results compared to the other filters. Furthermore, the FPF takes more time
before a steady value is obtained as compared to other filters.

We now plot the box-plots, the better to see the distribution of parameter estimates in the
results shown in Figure 6.1, beyond time 30.

From Table 6.1, the BPF is faster compared to other methods. FPF is slower whilst ETPF
is the slowest, seeing that the number of particles used is 100. The gain in the FPF is com-
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Figure 6.2: Box-plots (a) and (b) showing, respectively, the distribution of estimates of parame-
ters a and b obtained using EnKBF, BPF, FPF, ETPF and RSPF. The gain in the FPF is computed
using the kernel based gain approximation method, Algorithm 5.4.4. In both cases, the EnKBF
and FPF register more dispersive results with more outliers than the BPF, ETPF and RSPF.

EnKBF BPF FPF ETPF RSPF
M 1000 1000 1000 100 1000
Time in seconds 16.00 2.40 194.60 139.59 569.90

Table 6.1: A table showing run-time and number of particles for results shown in Figure 6.2 for
different filters. This is an output of 2.3 GHz Intel Core i5 processor.

puted using the kernel based gain approximation method, Algorithm 5.4.4. The reason for this
is that FPF involves a lengthy procedure for gain computation, Algorithm 5.4.4, at each itera-
tion. On the other hand, The ETPF involves frequent solution of optimal transport problem.
In this example, earth movers distance (EMD) algorithms were used in the ETPF. As a remedy,
faster optimal transport algorithms, for example the Sinkhorn iteration, Algorithm 5.6.1, can
be viable [Cuturi (2013)]. Although the RSPF takes much time, the result, as seen in Figure 6.2,
is more accurate compared to that obtained from other methods.

6.4.2 Dual filter

Dual filtering of the state and parameters is attained by use of two filters, one for state update
and another for updating parameters, both run simultaneously. The two filters interact sym-
biotically in that one provides the update of the state to be used by the other, while the other
provides an update of the parameters to be used by the former. A very good example in liter-
ature is the dual extended Kalman filter [Wan and Nelson (1997)] used for estimating neural
network models and the weights. In this case, the state is the model signal and the weights are
parameters. Another example appears in Angwenyi et al. (2017) where a dual filter comprising
of the ensemble transform particle filter (ETPF) and the feedback particle filter (FPF) is used for
simultaneous estimation of the state of a wave equation and its speed. This latter work forms
part of this thesis. We intend to enlarge upon the arguments set forth in Angwenyi et al. (2017)
and include other formulations of a dual filter and make comparisons.

The model for the dual filter of our consideration comprises of a d−dimensional vec-
tor equation of artificial dynamics of parameters together with the state space model of Sec-
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tion 3.1:

Parameter: dθt = 0, t0 ≤ t , (6.4.4a)

Signal: d xt = f (xt ,θt )d t + g (xt )dβt , t0 ≤ t , (6.4.4b)

Measurement: d yt = h(xt )d t +R1/2(t )dηt , t0 ≤ t , (6.4.4c)

where the nomenclature and dimensions remain as stipulated in Section 3.1.
In the following, we propose different formulations of a dual filter.

6.4.2.1 Sequential Monte Carlo Methods and EnKBF

In this ansatz, the state is propagated using sequential Monte Carlo methods and the parame-
ters are updated using the EnKBF.

Propagation and update of the state. We recall, from Chapter 3, that sequential Monte
Carlo methods—or, to use another name, particle filters—involve propagation of, say M , hy-
potheses of the state, which we denote as

X j
t := {xi , j

t }M
i=1,

at a given time, t . For optimal solutions, the hypotheses or particles are drawn from the poste-
rior distribution. It turns out, however, that the full posterior is—in most cases, especially for
nonlinear and high-dimensional models—inaccessible. The posterior might be known up to
a normalising constant, which constant may involve intractable integrals. To circumvent this
problem, the particles are drawn from a distribution—known as the importance distribution—
with highest semblance to the posterior. The estimate of the state, x̂t , at a time, t , is obtained
by means of a weighted mean of the particles.

Commonly, a simple filter involves drawing hypotheses from the model signal; that is, each

particle, xi , j
t , for every parameter θ j

t ∈ {θ j
t }L

j=1, is drawn and propagated as follows.

d xi , j
t = f (xi , j

t ,θ j
t )d t + g (xi , j

t )dβi , j
t ; t0 ≤ t . (6.4.5a)

The normalized weights,
Wt := {w i

t }M
i=1,

on the other hand, are propagated thus.

d w i
t = (h(xi , j

t )− ĥ j
t )R−1(t )(d yt − ĥ j

t d t )w i
t ; t0 ≤ t , (6.4.5b)

where

ĥ j
t =

M∑
i=1

h(xi , j
t ). (6.4.6)

Notice that the parameter vector, θ j
t , is now time dependent and evolves according to the arti-

ficial dynamics, eq. (6.4.4a). It happens, however, that this leads to a circumstance where most
of the particles bear almost negligible weights—hence undermining the performance of the
filter. To correct this anomaly, resampling—in which the particles with more weights are repli-
cated to make up for those of small weights—is carried out. This helps, albeit with additional
covariances and high computational costs as trade-offs. More discussions on this are found,
for example, in Reich and Cotter (2015); Carrassi et al. (2016).

Given the complications that come with resampling, we propose resampling to be carried
out only when necessary; or, as it has been proposed in literature, when the effective sample
size, ESSt = (

∑M
i=1(w i

t )2)−1, surpasses a given threshold.
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The estimate of the state, x̂ j
t , at time t is obtained by:

x̂ j
t =

M∑
i=1

xi , j
t w i

t . (6.4.7)

Update of the parameters. This is accomplished by means of an EnKBF. The idea behind
ensemble filters, in this formulation, as we now recall from Chapter 4, is to propagate, say L,

hypotheses of the parameters, Θt := {θ j
t }L

j=1. Since the parameter dynamics, eq. (6.4.4a), are
artificial, the prediction step is static; that is to say, forward propagation in time leaves the

parameters as before. In the prediction step, each parameter hypothesis, θ j
t , is updated with

the innovation process from the propagation of the state; that is.

dθ j
t = DL

t R−1(t )(d yt −0.5(h(x̂ j
t )+ ĥt )d t ); t0 ≤ t , (6.4.8)

where x̂ j
t is the sequential Monte Carlo state estimate, eq. (6.4.7), obtained for each parameter

particle, θ j
t . Moreover,

θ̂t = 1

L

L∑
j=1

θ
j
t ; t0 ≤ t , (6.4.9a)

DL
t = 1

L−1

L∑
i=1

(θ j
t − θ̂t )(h(x̂ j

t )− ĥt )T; t0 ≤ t , (6.4.9b)

where

x̂ j
t = 1

M

M∑
i=1

xi , j
t and ĥt = 1

L

L∑
j=1

h(x̂ j
t ). (6.4.9c)

For the purpose of computation using a digital computer, the gain term in eq. (6.4.8) is
computed as follows.

DL
t R−1(t ) ≈ lim

d t→0

DL
t

(Dt +R(t )/δt )δt
, (6.4.10)

where δt is the time step and

Dt = 1

L−1

L∑
i=1

(h(x̂ j
t )− ĥt )(h(x̂ j

t )− ĥt )T; t0 ≤ t . (6.4.11)

6.4.2.2 EnKBF and ETPF

In this formulation, the state is propagated and updated using the EnKBF whilst the parame-
ters are updated using the ETPF, which we shall describe here briefly—as an adaptation of the
discussion introduced in Section 5.5—and direct the reader to Reich and Cotter (2015) for an
extensive explanation.
Propagation and update of the state. This is accomplished by means of EnKBF introduced
in Section 4.2. We now specialize it to attain our intended end. Each particle of the state,
xi , j

t ∈ {xi , j
t }M ,L

i , j , for every parameter θ j
t ∈ {θ j

t }L
j=1, is propagated and updated, all at once, as

follows.

d xi , j
t = f (xi , j

t ,θ j
t , t )d t + g (xi , j

t , t )dβi
t +P i

t R−1
t

(
d yt − 1

2
(h(xi , j

t , t )+ ĥ j
t )d t

)
(6.4.12)
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Algorithm 6.4.1 BPF-EnKBF dual filter

Input: xi , j
t0

, θ j
t0

, w i
t0
= 1/M ∀i ∈ {1, 2, ..., M } j ∈ {1, 2, ..., L}, Pt0 and δy[t0,tT ].

Output: x̂[t0,tT ], θ̂[t0,tT ].
1: for n = 1 to N , δt > 0 do
2: for j = 1 to L do
3: for i = 1 to M do
4: Calculate xi , j

tn
using eq. (6.4.5a)

5: Compute weights w i
tn

using eq. (6.4.5b)
6: if ESStn ≤α then
7: Resample the particles
8: Set weights w i

tn
:= 1/M

9: end if
10: end for
11: Update x̂ j

tn
using eq. (6.4.7)

12: Update parameters θ j
tn

using eq. (6.4.8)
13: end for

14: Compute θ̂tn =
1

L

∑L
j=1θ

j
tn

15: Compute x̂tn =
1

L

∑L
i=1 x̂ j

tn

16: end for

where

P i
t =

1

M −1

M∑
i=1

(xi , j
t − x̂ j

t )(h(xi , j
t )− ĥ j

t )T,

ĥ j
t =

1

M

M∑
i=1

h(xi , j
t ), and x̂ j

t = 1

M

M∑
i=1

xi , j
t .

Update of the parameters. This is achieved via the ETPF. The ETPF is characterised by a con-
trol law, in the sense of optimal transportation, which moves the particles to the convenient
position in the state space, thus improving upon the performance of the filter. The notable
distinction between ETPF and particle filters with resampling is that the resampling step is re-
placed with a linear transformation. The transformation seeks to establish an optimal coupling
between the prior ensemble and the posterior ensemble.

Most precisely, the linear transport problem, in which parameters play a part, is as follows.

T ∗ = arg min
T∈RL×L

L∑
i , j=1

ti j‖θi
t −θ j

t ‖2 (6.4.13)

under the constraints
L∑

i=1
ti j = 1

M
,

M∑
j=1

ti j = w j
tn

, and ti j > 0, (6.4.14)

where {w j
tn

}L
j=1 are weights at time tn = nδt . The weights are propagated as follows

d w j
t = 1

R
w j

t (ĥ j
t − ĥt )T(d yt − ĥt d t ), (6.4.15)

where

ĥ j
t =

1

M

M∑
i=1

h(xi , j
t ), ĥt = 1

L

L∑
i=1

ĥ j
t .
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To avoid negative weights, eq. (6.4.15) is approximated by

w j
tn+1

≈ w j
tn

exp

(
− 1

2R
(ĥ j

tn
)T ĥ j

tn
δt − (ĥ j

tn
)Tδytn

)
(6.4.16)

and initialized with

w j
t0
= 1

L
.

The parameters are updated as follows

θ̂
j
tn
=

M∑
i=1

θ
j
tn

t∗i j . (6.4.17)

Finally, the state and parameter estimates are obtained empirically by

x̂tn =
1

L

L∑
j=1

x̂ j
tn

, (6.4.18a)

θ̂tn =
1

L

L∑
j=1

θ̂
j
tn

, (6.4.18b)

respectively. The following algorithm gives a summary of the dual filter.

Algorithm 6.4.2 EnKBF-ETPF dual filter

Input: xi , j
t0

, θ j
t0

, w j
t0
= 1/L ∀i ∈ {1, 2, ..., M } j ∈ {1, 2, ..., L}, Pt0 and δy[t0,tT ].

Output: x̂[t0,tT ], θ̂[t0,tT ].
1: for n = 1 to N , δt > 0 do
2: for j = 1 to L do
3: for i = 1 to M do
4: Calculate xi , j

tn
using eq. (6.4.12)

5: end for
6: Compute weights w j

tn
using eq. (6.4.16)

7: if ESStn ≤α then
8: Compute T ∗ by solving the optimal transports problem eq. (6.4.13)

9: Update parameters: θ̂ j
tn
=∑M

i=1θ
j
tn

t∗i j

10: Set weights w j
tn

:= 1/L
11: end if

12: Compute: x̂ j
tn
= 1

M

∑M
i=1 xi , j

tn

13: end for

14: Compute θ̂tn =
1

L

∑L
i=1 θ̂

j
tn

15: Compute x̂tn =
1

L

∑L
j=1 x̂ j

tn

16: end for

We implement the BPF-EnKBF and EnKBF-ETPF dual filters on Example (6.4.1) with the
aim of estimating parameters a and b. The results are shown in the following panels.
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Figure 6.3: Plots showing:- (a) top, the box-plot of parameters a and b obtained with the BPF-
EnKBF dual filter; (a) bottom—the plots of a and b with time using BPF-EnKBF dual filter;
(b) top, the box-plot of parameters a and b obtained by means of EnKBF-ETPF dual filter; (b)
bottom—the plots of parameters a and b with time using EnKBF-ETPF dual filter. Both dual
filters are run with 1000 state ensembles, 120 parameter ensembles and time-step δt = 0.02.
The plots indicate that EnKBF-ETPF filter performs better than the BPF-EnKBF—based on the
many outliers in the output of BPF-EnKBF and the faster convergence of the EnKBF-ETPF.



CHAPTER 7

APPLICATION TO HYPERBOLIC SPDES

7.1 Introduction

In the following we introduce the equations to which we later apply concepts derived in the
preceding chapters.

7.1.1 Advection Equation

We take up an advection equation, excited with space-time white noise process, with some
diffusion term added to it, and on a periodic spatial domain of length L, which equation we
write as follows:

∂u

∂t
= ∂(C (x)u)

∂x
+µ∂

2u

∂x2 +σβ̇x,t , 0 ≤ t ≤ Tt ×0 ≤ x ≤ L, (7.1.1)

where C (x) is a spatially varying velocity (of which constant velocity is a special case), σ is a
constant, and u(x, t ) is the function to be obtained, which function describes the state of the
signal. µ is a constant whilst β̇x,t is space-time white noise process where the dot denotes the
singularity of the noise process.

Equation (7.1.1) needs a remark owing to the roughness of the stochastic forcing term β̇x,t ,
which is a mixed distributional derivative of Brownian sheet. As is well known (see Stuart (2007)
for details), the Brownian sheet is nowhere differentiable. We, however, use the method intro-
duced in Allen et al. (1998); that is, we approximate the noise term as follows. Let the domain
0 ≤ t ≤ Tt ×0 ≤ x ≤ L be tessellated into rectangles [tn , tn+1]× [xi , xi+1] of dimensions δt ×δx
each, for n = 1, 2, 3, ..., T and i = 1, 2, 3, ..., N so that δt = Tt /T and δx = L/N . Then,

β̇x,t ≈ 1

δxδt

N∑
i=1

T∑
n=1

ωi ,n(δxδt )1/2χi (x)χn(t ), (7.1.2)

where {ωi ,n}N
i=1 are independent and identically distributed random variables of mean 0 and

unit variance. χi (x) and χn(t ) are characteristic functions, and are given by

χn(t ) =
{

1, if tn ≤ t ≤ tn+1,

0, otherwise,

χi (x) =
{

1, if xi ≤ x ≤ xi+1,

0, otherwise.

71
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By three-point upwind scheme in space [Courant et al. (1952)], we discretise eq. (7.1.1) and
arrive at the following

dui

d t
≈ 3Ci ui −4Ci−1ui−1 +Ci−2ui−2

2δx

+µ3ui+2 −16ui+1 +26ui −16ui−1 +3ui−2

4δx2 +σ 1p
δx

ω̇i ,
(7.1.3)

where δx is the spatial step size and {ωi ,t , t > t0} is standard Brownian motion process. The i th
grid point is represented by xi = iδx. With this notation, ui ,n is understood to mean the value
of u at the i th grid point at time tn .

Time discretisation, by means of Euler-Maruyama scheme, leads to

ui ,tn+1 = ui ,tn +
3Ci ui ,tn −4Ci−1ui−1,tn +Ci−2ui−2,tn

2δx
δt

+µ3ui+2,tn −16ui+1,tn +26ui ,tn −16ui−1,tn +3ui−2,tn

4δx2 δt +σδt 1/2

p
δx

ωi ,tn ,
(7.1.4)

where ωi ,tn is a random variable of mean 0 and variance 1. The time increment, δt > 0, is such
that the limit of δui as δt → 0 is dui . Furthermore, n = 1, 2, 3, ..., T . We use the following initial
value.

u(x, t0) = sin(x). (7.1.5)

Moreover, C (x) = eλ(x) where
λ(x) = sin(2πx).

Considering every grid point in eq. (7.1.4) leads to a vector representation of the signal u.
To do so requires the following shorthand definition of operations,

(D1u)i := 3ui −4ui−1 +ui−2

2δx
, ∀i = 1, 2, 3, ..., N ,

and

(DT
1 u)i := ui+2 −4ui+1 +3ui

2δx
, ∀i = 1, 2, 3, ..., N ,

so that

(D1DT
1 u)i := 3ui+2 −12ui+1 +9ui

4δx2 + −4ui+1 +16ui −12ui−1

4δx2

+ ui −4ui−1 +3ui−2

4δx2

= 3ui+2 −16ui+1 +26ui −16ui−1 +3ui−2

4δx2 , ∀i = 1, 2, 3, ..., N .

(7.1.6)

We finally have
utn+1 = utn +F (tn)utnδt +G(tn)ωtn , (7.1.7)

where utn is an N−dimensional column vector at time tn comprising of elements ui ,tn , i =
1, 2, 3, ..., N and

F (tn) = [
D1Cdiag −µD1DT

1

]
, G(tn) =

[
σ
δt 1/2

p
δx

IN×N

]
,

in which Cdiag is a diagonal matrix made of the elements of C , and IN×N is the N th order iden-
tity matrix.

The surface and contour plots for the advection equation are shown below when σ = 0;
that is, without noise. This is to show the underlying dynamics against which we shall com-
pare the numerical solution to the stochastic advection equation. Of note in Figure 7.1 is the
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Figure 7.1: Contour and surface plots for the solution to the deterministic advection equation.
This is under the following setting: L = 2π, N = 100, δx = L/N , δt = 0.007, T = 1000, σ = 0,
µ= 0.01, C (x) = eλ(x) where λ(x) = sin(2πx), and ut0 = sin(x).

smoothness of the solution of advection equation—both in contours and in the surface plot.
This is contrasted with the solution of the stochastic advection equation where noise is added.
The surface and contour plots for the stochastic advection equation are shown below; that is,
when σ= 0.1. The ruggedness evident in Figure 7.2 as opposed to the smoothness manifest in
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Figure 7.2: Contour and surface plots for a single realisation of the stochastic advection equa-
tion under the following setting: L = 2π, N = 100, δx = L/N , δt = 0.007, T = 1000, σ = 0.1,
µ= 0.01, C (x) = eλ(x) where λ(x) = sin(2πx), and ut0 = sin(x).

Figure 7.1 is consequent upon the addition of noise to the underlying dynamics.

The mean of, say, M , realizations of the stochastic advection equation should match the
solution of the deterministic advection equation [Tuckwell (2015)]. This is because the noise
term is Gaussian, that is, of mean zero. The surface and the contour plots for the the average
of M = 1000 realizations of the stochastic advection equation are shown below. As was antici-
pated, the realisation of the mean of a fairly large ensemble of solution paths is smooth, as seen
in Figure 7.3—and is as if noise was not added to the dynamics.

In the next subsection, we introduce the wave equation.
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Figure 7.3: Plots for the average of the realizations of the advection equation. This is under the
following setting: L = 2π, N = 100, δx = L/N , δt = 0.007, T = 1000,σ= 0.1,µ= 0.01, C (x) = eλ(x)

where λ(x) = sin(2πx) and ut0 = sin(x).

7.1.2 Wave Equation

The wave equation—for our consideration—is given by:

∂2u

∂t 2 = ∂(C (x)∂u/∂x)

∂x
+µ ∂3u

∂x2∂t
+σβ̇x,t , 0 ≤ t ≤ Tt ×0 ≤ x ≤ L, (7.1.8)

where C (x) = eλ(x) is the wave velocity—and is for a wave travelling in a heterogeneous
medium—, and u(x, t ) is the function to be obtained, which function, as in the previous sub-
section, describes the state of the signal. Moreover, σ is a constant and β̇x,t , as before, is the
space-time white noise.

We employ mixed difference schemes to discretise eq. (7.1.8) in space, so that we have:

dui

d t
≈ pi , (7.1.9a)

d pi

d t
≈ Ci+1wi+1 −Ci wi

δx
+µpi+1 −2pi +pi−1

δx2 + 1p
δx

ω̇i , (7.1.9b)

where wi := ui −ui−1

δx
, and δx is the spatial step size. For time integration we use Verlet’s

method, because of its geometric properties; namely, volume preservation, symplecticity, con-
servation of first integrals and reversibility [Hairer et al. (2003); Reich (1999)]—which method,
applied to the deterministic part of eqs. (7.1.9a) and (7.1.9b), yields

ui ,tn+1 = ui ,tn +pi ,tn+1/2δt , (7.1.10a)

pi ,tn+1/2 = pi ,tn +
Ci+1wi+1,tn −Ci wi ,tn

δx

δt

2
+µpi+1,tn −2pi ,tn +pi−1,tn

δx2

δt

2
, (7.1.10b)

pi ,tn+1 = pi ,tn+1/2 +
Ci+1wi+1,tn+1 −Ci wi ,tn+1

δx

δt

2

+µpi+1,tn+1 −2pi ,tn+1 +pi−1,tn+1

δx2

δt

2
+σδt 1/2

p
δx

ωi ,tn ,
(7.1.10c)

whereδt is the time step and wi ,tn := ui ,tn −ui−1,tn

δx
. Substituting eq. (7.1.10b) into eqs. (7.1.10a)
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and (7.1.10c), we get

ui ,tn+1 = ui ,tn +pi ,tn +
Ci+1wi+1,tn −Ci wi ,tn

δx

δt

2

+µpi+1,tn −2pi ,tn +pi−1,tn

δx2

δt

2
,

(7.1.11a)

pi ,tn+1 = pi ,tn +
Ci+1wi+1,tn −Ci wi ,tn

δx

δt

2

+µpi+1,tn −2pi ,tn +pi−1,tn

δx2

δt

2
+ Ci+1wi+1,tn+1 −Ci wi ,tn+1

δx

δt

2

+µpi+1,tn+1 −2pi ,tn+1 +pi−1,tn+1

δx2

δt

2
+σδt 1/2

p
δx

ωi ,tn .

(7.1.11b)

We use the following initial values:

u(x,0) = exp
(−4(x −0.5L).2

)
, (7.1.12a)

p(x,0) = 0, (7.1.12b)

where L is the length of the domain. Now C (x) = eλ(x) where

λ(x) = sin(x).

Considering every grid point leads to a vector representation of the signal u. To do so requires
the following shorthand definition of operations,

(D2u)i := ui −ui−1

δx
, ∀i = 1, 2, 3, ..., N .

Equations (7.1.11a) and (7.1.11b) then become

utn+1
= utn

+F tnutn
+G(tn)ωtn

, (7.1.13)

where

F (tn) =−I2N×2N +

IN×N − δt 2

2
D2(Cdiag(x)DT

2 δt IN×N − δt 2

2
µD2DT

2

−δt

2
D2(Cdiag(x)DT

2 IN×N − δt

2
µD2DT

2


×

 IN×N 0N×N
δt

2
D2(Cdiag(x)DT

2 ) IN×N − δt

2
µD2DT

2

−1

,

u =
(

p
u

)
, G(tn) =

0N×N 0N×N

0N×N σ
δt 1/2

p
δx

IN×N

 , and ω=
(
ω

ω

)
,

where I2N×2N is the identity matrix of order 2N while 0N×N is an N th order null matrix. 0N is
an N th dimensional null vector. F (tn) ∈R2N×2N , G(tn) ∈R2N×2N and ω ∈RN .

The contour and surface plots for the deterministic wave equation are shown below. The
solution for the deterministic wave equation, Figure 7.4, is smooth. We next add a Gaussian
noise and obtain a realisation of stochastic wave equation. The contour and surface plots for a
single realisation of stochastic wave equation are shown below. Although the realisation in Fig-
ure 7.5 is rugged, owing to the addition of randomness, the form of the underlying dynamics—
shown in Figure 7.4—is preserved. To see this more evidently, we now obtain an ensemble of
realisations of stochastic wave equation and obtain an average. The surface and the contour
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Figure 7.4: Plots for the solution to the deterministic wave equation. The settings are: L = 2π,
N = 100, δx = L/N , δt = 0.005, and T = 1000, µ = 0.01, σ = 0, C (x) = eλ(x) where λ(x) = sin(x)
and ut0 = exp

(−4(x −0.5L).2
)
.
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Figure 7.5: Plots for a single realisation of the stochastic wave equation. The settings are: L =
2π, N = 100, δx = L/N , δt = 0.005, and T = 1000, µ = 0.01, σ = 0.2, C (x) = eλ(x) where λ(x) =
sin(x) and ut0 = exp

(−4(x −0.5L).2
)
.

plots for the average of 1000 realizations of the stochastic wave equation are shown in Fig-
ure 7.6. The smoothness in the average of the realisation, as shown in Figure 7.6, compared
with the dynamics without noise—Figure 7.4(b)—shows that averaging "eliminates" the noise,
it being Gaussian.

For the purpose of estimating the speed of the wave, which varies spatially, we give a little
prelude to estimation of spatially varying parameters in the next section.

7.2 Estimating spatially varying parameters

Varying parameters exist naturally, an example being in the speed of a wave moving in a hetero-
geneous media. Varying parameters present a challenge owing to their varying nature as op-
posed to static (in time) parameters. There are three broad categories of varying parameters:
spatially varying parameters, parameters that vary with time and parameters that vary both
with time and space. Estimation of time-varying parameters, albeit for deterministic mod-
els, and application to estimation of parameters in HIV/AIDS model, appears in Chen and Wu
(2008)—in which least-squares methods have been used. Although consistent estimates are
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Figure 7.6: Plots for the solution to the wave equation. The settings are: L = 2π, N = 100,
δx = L/N , δt = 0.005, and T = 1000, µ = 0.01, σ = 0.2, C (x) = eλ(x) where λ(x) = sin(x) and
ut0 = exp

(−4(x −0.5L).2
)
.

realized, extension to non-linear models remains to be realised. In this chapter, we study spa-
tially varying parameters using filtering algorithms. We also provide applications in order to
evaluate the performance of the algorithms introduced here.

The strategy employed in this study comprises of three steps:

Step 1: Express the parameter θ(x) as a Fourier series with a given number of modes, say, Nm

and collect all the coefficients in a vector λ.

Step 2: By means of an appropriate filtering algorithm, estimate the vector of hyper-
parameters, λ.

Step 3: Substitute the estimated constant coefficients back in the Fourier series to obtain an
estimate of the parameter θ(x).

To illustrate this method, we employ it to estimate the velocity of a wave travelling in a
heterogeneous media. Let the parameter, C (x), x ∈RN , where N is the number of dimensions,
be given by

C (x) = exp
(

f (x)
)
, (7.2.1)

where

f (x) = a0 +
Nm∑
k=1

ak

k2 sin(kx)+
Nm∑
k=1

bk

k2 cos(kx), k = 1, 2, 3, ..., Nm , (7.2.2)

where the coefficients a0, ak and bk are drawn randomly from a normal distribution of mean 0
and variance 1. This way, the parameter C (x) will be positive for all values of x. The aim of this
section is to obtain an estimate C (x)est of the wave velocity C (x) by means of KBF and EnKBF.
To this end, we use a function

g (x) = A0 +
ℵm∑

k=1

Ak

k2 sin(kx)+
ℵm∑

k=1

Bk

k2 cos(kx), k = 1, 2, 3, ..., ℵm , (7.2.3)

where ℵm ≤ Nm so that

C (x)est = exp
(
g (x)

)
. (7.2.4)
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Let λ ∈R2ℵm+1 be a vector whose elements are the coefficients of the function g (x). That is,

λ=



A0

A1

B1

A2

B2
...

Aℵm

Bℵm


. (7.2.5)

Estimation of the spatially varying parameter, C (x), is equivalent to estimating the parame-
ters that form the vector λ. We consider two methods: using the likelihood with Metropolis-
Hastings method and using a dual filter. Let us now consider each method in turn.

7.3 Using the Likelihood with Metropolis-Hastings method

We now adapt Algorithm 6.3.1 to estimating the vector of parameters, λ. We let each parameter
λi have artificial dynamics with the transition density

ζk+1(λi ,k+1 |λi ,k ) =N
(
λi ,k cos

(
φ

)
,
ω

ℵ sin
(
φ

))
, (7.3.1)

where ℵ is the mode number and the constants φ and ω are to be chosen. The density π is
defined by the filter likelihood,

π(δy[t0,T ] | ũ[t0,T ],λk ) = l.i.m.
δt→0
N→∞

πt0:tN (δyt0:tN | ũt0:tN ,λk ),

where ũtn is the filter prediction of the state at time tn . Notice that the parameters, λ, are
implicitly contained in the dynamics.

Example 7.3.1: Advection Equation

We take the advection equation, of Section 7.1.1, and the given initial conditions. Fur-
thermore, let there be time-continuous measurements of the state, u, given by,

d yt = H(t )u(x, t )d t +Q(t )dηx,t , (7.3.2)

where {ηt ,x } is standard space-time Brownian motion process. The initial value of ut , {βt }
and {ηt ,x } are uncorrelated. The aim is to estimate the spatially varying velocity, C (x), by
means of filter likelihood and Metropolis-Hastings algorithm.

We follow the discretisation described in Section 7.1.1 for the advection equation.
The measurements’ equation, eq. (7.3.2), is discretised in time using Euler-Maruyama

scheme to yield
δytn = H(tn)u(x, tn)δt +R1/2(tn)δηtn , (7.3.3)

upon substituting R =QQT/δx and where E[δηtnδη
T
tn

] = Ir×rδt .

Remark 7.3.1. The observation likelihood pdf for the KBF is Gaussian since the initial condition
and the observation errors are Gaussian. So is the posterior pdf. With observation increments
expressed as in eq. (7.3.3), the observation increment likelihood pdf is

π(δyt0:tN |ũtN ,λk ) ∝
N∏

n=0
exp

(
−1

2
∥ δytn −H(tn)ũtnδt ∥2

δtR(tn )

)
. (7.3.4)
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Similarly, the filter forecast pdf is

π(utN |δytN−1:t0 ) ∝
N∏

n=0
exp

(
−1

2
∥ utn − ũtn ∥2

Ptn

)
. (7.3.5)

The next step is to implement a KBF and EnKBF and to obtain the likelihood at each time
steps. This is followed by implementing a Metropolis-Hastings algorithm.

Algorithm 7.3.1 KBF likelihood with MH

Input: δt , ℵm , N , ut0 , πtn and λk .
Output: {λk }T

k=1.
1: for k = 1 to N do

2: Draw λ̃∼N

(
λi ,k cos

(
φ

)
,
ω

ℵm
sin

(
φ

)) ∀i = 1, 2, ..., 2ℵm +1.

3: Compute Ck (x) = exp
(
g (x,λk )

)
.

4: for n = 1 to T , δt > 0 do
5: Run a single step KBF prediction mean ũtn+1 = utn +F (tn ,λk )utnδt
6: Run a single step KBF prediction covariance P̃tn+1 = Ptn + F (tn ,λk )Ptnδt +

Ptn F T(tn ,λk )δt +G(tn)GT(tn)δt
7: Run a single step KBF analysis mean utn+1 = ũtn+1 + Ptn H T(tn)R−1(tn)(d ytn −

H(tn ,λk )ũtnδt )
8: Run a single step KBF analysis covariance Ptn+1 = P̃tn+1 + G(tn)GT(tn)δt −

P̃tn H T(tn)R−1(tn)H(tn)Ptnδt
9: end for

10: Metropolis Hastings

11: Compute αratio = π(δytN :t0 |ũtN ,λk )

π(δytN :t0 |ũtN ,λk−1)

ρλ(λ̃)

ρλ(λk )
12: Compute α= min(1,αratio)
13: if α>U (0,1) then
14: λ̃=λk

15: else
16: λk = λ̃
17: end if
18: end for

The same is repeated but with EnKBF in the place of KBF. The following pseudo code shows
the basic steps.

Results for the first 2 parameters are shown in Figure 7.7. The results in Figure 7.7 show
that the EnKBF performs like the KBF filter. This agrees with the theory (see the findings of
Section 4.3.1), that the EnKBF yields optimal results in the limit M →∞. It is also noteworthy
that Metropolis-Hastings algorithm converges to the true parameter estimate. This can be seen
in Figure 7.7(a), for example, where the filter estimate converges after about 100 parameter
draws.

We now look at the errors in the parameter estimates, the better to see the performance of
the filters for the 21 hyper-parameters.

In Figure 7.8(b) panels are plotted the box-plots showing the dispersion of parameter esti-
mates resulting from the use of EnKBF and the root mean square errors for parameter estimates
for both the EnKBF and KBF. The RMSE values are computed as follows.

RMSE =
√√√√ 1

N

N∑
k=1

(λi ,k −λtrue
i )2, (7.3.6)
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Algorithm 7.3.2 EnKBF likelihood with MH

Input: δt , ℵm , M , N , {ui
t0

}M
i=1, πtn and λ0.

Output: {λk }T
k=1.

1: for k = 1 to N do

2: Draw λ̃∼N

(
λi ,k cos

(
φ

)
,
ω

ℵm
sin

(
φ

)) ∀i = 1, 2, ..., 2ℵm +1.

3: Compute Ck (x) = exp
(
g (x,λk )

)
.

4: for n = 1 to T , δt > 0 do
5: for i = 1 to M do
6: Run a single step EnKBF prediction ensemble ũi

tn+1
= ui

tn
+F (tn ,λk )ui

tn
δt

7: Run a single step EnKBF analysis ensemble ui
tn+1

= ũi
tn+1

+Ptn H T(tn)R−1(tn)(d ytn +
εi −H(tn)ũi

tn
δt )

8: end for

9: Compute prediction ensemble mean: ūtn =
1

M

∑M
i=1 ũi

tn
.

10: Compute analysis ensemble mean: ûtn =
1

M

∑M
i=1 ui

tn
.

11: Compute covariance: Ptn =
1

M −1

∑M
i=1(ui

tn
− ûtn )(ui

tn
− ûtn )T.

12: end for
13: Metropolis Hastings

14: Compute αratio = π(δytN :t0 |ūtN ,λk )

π(δytN :t0 |ūtN ,λk−1)

ρλ(λ̃)

ρλ(λk )
15: Compute α= min(1,αratio)
16: if α>U (0,1) then
17: λ̃=λk

18: else
19: λk = λ̃
20: end if
21: end for
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Figure 7.7: Plots for velocity parameters for the first three parameters in λ obtained using KBF
and EnKBF and run for 1000 time steps and for 1000 Metropolis-Hastings cycles. The number
of particles used for EnKBF is M = 1000, the time step size used in both filters is d t = 0.01,
µ = 0.001 and 100 grid points are used. The plots indicate that the estimates, for both filters,
converge after about 100 iterations.
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where λi ,k is the estimate of the i th parameter at Metropolis-Hastings cycle k and λtrue
i the

true i th parameter. The RMSE for both the KBF and EnKBF, as shown in Figure 7.8(b), indicate
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Figure 7.8: (a) Box plot for the 21 velocity parameters for the EnKBF run for 1000 time steps
with 1000 Metropolis-Hastings cycles. A burn-in of 500 parameter draws is discarded. The
stochastic advection equation model is used with the following settings: L = 2π, 100 grid points,
δt = 0.01, M = 1000 particles, µ = 0.001 and localization radius of 10 grid points. (b) A plot of
the root mean square error for the 21 hyper-parameter estimates obtained using EnKBF and
KBF, respectively. The plot indicates that the performance of EnKBF matches that of KBF in
this setting.

that the performance of EnKBF matches that of the KBF for the 21 parameters. These heuristic
results corroborate the theoretical findings. The boxplot, Figure 7.8(a), shows the dispersion
of parameter samples in the case when EnKBF is used. The result indicates that the estimates
matches the true parameter values, with not so many outliers. This is indicative not only of the
performance of EnKBF but also the Metropolis-Hastings procedure in locating the true param-
eter values and ensuring that no large excursions are made from the true parameter values.

We now implement Algorithms 7.3.1 and 7.3.2 for the discretised wave equation,
eq. (7.1.13).

Example 7.3.2: Wave Equation

We take the wave equation of Section 7.1.2 and the associated initial conditions,
eqs. (7.1.12a) and (7.1.12b). The measurements are given by eq. (7.3.2). The initial value
of ut , {βt } and {ηt } are uncorrelated. The aim is to estimate the spatially varying velocity,
C (x), by means of filter likelihood and Metropolis-Hastings algorithm.

The discretisation of the wave equation is as shown in Section 7.1.2. The panels in Figure 7.9
show the results.

The results in Figure 7.9 indicate a close match in the performance of the EnKBF and KBF.
This is as was anticipated in the theoretical findings of Section 4.3.1. Notice also the the two
filters converge to the true parameter values after a few parameter draws (about 50 in Fig-
ure 7.9(a) and 100 in Figure 7.9(b))—which is indicative of the robustness of the Metropolis-
Hastings algorithm atop the EnKBF and KBF filters. The results also show that there are no
wide excursions from the true parameter values, which testifies of the good performance of
Algorithms 7.3.1 and 7.3.2.
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Figure 7.9: Plots for velocity parameters for the first three parameters in λ obtained using KBF
and EnKBF and run for 1000 time steps and 1000 Metropolis-Hastings cycles. The number
of particles used for EnKBF is M = 1000, the time step size used in both filters is d t = 0.01,
µ = 0.001 and 100 grid points are used. The plots indicate that the estimates, for both filters,
converge after about 100 iterations.

In Figure 7.10 are plotted the box-plots showing the dispersion of the 21 hyper-parameter
estimates resulting from the use of EnKBF and the root mean square errors for parameter esti-
mates for both the EnKBF and KBF. The EnKBF elicits an optimal performance as can be seen

-6
.4

9
0
1
3
8
e-

0
2

1
.1

8
1
1
6
6
e-

0
1

-7
.5

8
4
5
3
3
e-

0
2

-2
.7

7
4
0
3
3
e-

0
2

-2
.1

1
3
8
7
8
e-

0
2

-6
.3

6
2
9
4
3
e-

0
3

-6
.2

0
7
5
6
4
e-

0
3

1
.1

1
4
8
7
6
e-

0
3

-1
.2

3
0
3
8
4
e-

0
3

2
.3

4
5
7
7
0
e-

0
3

-3
.4

0
7
5
4
8
e-

0
3

2
.2

2
3
1
1
3
e-

0
3

-4
.1

9
2
7
9
1
e-

0
3

1
.7

8
7
4
9
8
e-

0
3

-4
.9

5
4
8
8
8
e-

0
4

2
.6

0
6
4
6
0
e-

0
4

-3
.0

7
0
9
6
7
e-

0
3

-1
.5

6
7
9
8
9
e-

0
3

1
.4

5
0
8
2
9
e-

0
3

2
.0

2
9
1
6
0
e-

0
3

-2
.7

5
1
5
7
2
e-

0
4

True Parameter Values

-0.1

-0.05

0

0.05

0.1

0.15

Boxplots of Parameter Estimates: Metropolis Hastings

(a)

0 5 10 15 20 25

Parameter number

0

0.01

0.02

0.03

0.04

0.05

0.06

R
M

S
E

Parameter Estimation Error: Metropolis Hastings

KBF Error

EnKBF Error

(b)

Figure 7.10: (a) Box plot for velocity parameters for the EnKBF run for 1000 time steps and 1000
Metropolis-Hastings cycles. A burn-in of 500 parameter draws is discarded. The stochastic
wave equation model is used with the following settings: L = 2π, 100 grid-points, δt = 0.01,
M = 1000 particles, µ = 0.001 and localization radius of 10 grid points. (b) A plot of the root
mean square error for the parameter estimates obtained using EnKBF and KBF, respectively.
The plot indicates that the performance of EnKBF matches that of KBF in this setting.

in Figure 7.10(b) where the RMSEs for both the EnKBF and the optimal filter (KBF) match for
all the 21 hyper-parameters. This also, as in the advection equation above, is in agreement with
the theoretical findings that the EnKBF attains an optimal estimate in the limit M →∞. The
boxplot, Figure 7.10(a), shows that the mean of EnKBF parameter estimates matches the true
parameter values. What is more, there are not many outliers in the estimates. All this show that
the EnKBF-Metropolis-Hastings algorithm is robust.
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In the next section, we apply the concepts on dual estimation of Chapter 6 to stochastic
hyperbolic PDEs, which, in this case, are the advection and the wave equations.

7.4 Simultaneous estimation of the state and spatially varying
parameters

The dual filter (see Section 6.4.2 for details) can be adapted to allow for estimating both the
state and spatially varying parameters, contemporaneously. The idea here is to replace the
parameters in the dual filter with hyper-parameters of the varying parameters to be approxi-
mated. The hyper-parameters are then updated simultaneously, and in parallel, with the state
at each iteration, where one filter estimates the state and the other filter updates the hyper-
parameters—with each filters making use of the outcome of the other. To illustrate this ar-
gument, we turn to the advection and wave equation described in Examples 7.3.1 and 7.3.2,
respectively, and use the KBF-EnKBF dual filter—in which the state is propagated and updated
by means of the KBF whilst the hyper-parameters are updated using EnKBF—and ENKBF dual
filter—where both the state and the hyper-parameters are propagated and updated using two
EnKBFs running in parallel. The spatially varying velocity is as shown in Section 7.2.

In the KBF-EnKBF dual filter, we update, for every j th parameter particle λ j
t ∈ {λ j

t }L
j=1 the

state estimate, û j
t , using the KBF equations, eqs. (4.1.3a) and (4.1.3b); that is,

dû j
t = F (t )û j

t d t +Pt H T(t )R−1(t )(d yt −H(t )û j
t d t ), (7.4.1a)

dPt = F (t )Pt d t +Pt F T(t )d t +G(t )GT(t )d t −Pt H T(t )R−1(t )H(t )Pt d t . (7.4.1b)

The parameters are updated using the EnKBF as described in Section 6.4.2.1, which we now

adapt to suit the settings in this chapter; that is, each parameter hypothesis, λ j
t , is updated

using

dλ j
t = DL

t H(t )R−1(t )(d yt −0.5(H(t )x̂ j
t +H(t )x̂t )d t ); t0 ≤ t , (7.4.2)

where

λ̂t = 1

L

L∑
j=1

λ
j
t ; t0 ≤ t , (7.4.3a)

DL
t = 1

L−1

L∑
i=1

(λ j
t − λ̂t )(û j

t − ût )T; t0 ≤ t , (7.4.3b)

where

û j
t =

1

M

M∑
i=1

ui , j
t , (7.4.3c)

ût = 1

L

L∑
i=1

û j
t . (7.4.3d)

Algorithm 7.4.1 gives a summary of the KBF-EnKBF dual filter.

The EnKBF dual filter consists of an update of M particles of the state, ui , j
t ∈ {ui , j

t }M ,L
i , j=1, for

every parameter particle, λ j
t ∈ {λ j

t }L
j=1, using the EnKBF, eq. (4.2.1); that is,

dui , j
t = F (t )ui , j

t d t +G(t )dβi , j
t +P M

t H T(t )R−1(t )(d yt +R1/2(t )ηi , j
t −H(t )ui , j

t d t ), (7.4.4)

where {ηi , j
t , t0 ≤ t } and {βi , j

t , t0 ≤ t } are, respectively, standard Brownian motion vector pro-
cesses. The parameters are updated using the EnKBF given by eq. (7.4.2). The summary of the
EnKBF dual filter is given in Algorithm 7.4.2.
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Algorithm 7.4.1 KBF-EnKBF dual filter

Input: u j
t0

, λ j
t0

, w j
t0
= 1/L ∀ j ∈ {1, 2, ..., L}, Pt0 and δy[t0,tT ].

Output: û[t0,tN ], λ̂[t0,tN ].
1: for n = 1 to N , δt > 0 do
2: for j = 1 to L do

3: Update û j
tn

using eqs. (7.4.1a) and (7.4.1b)

4: Update parameters λ j
tn

using eq. (7.4.2)
5: end for

6: Compute λ̂tn =
1

L

∑L
j=1λ

j
tn

7: Compute ûtn =
1

L

∑L
i=1 û j

tn

8: end for

Algorithm 7.4.2 EnKBF dual filter

Input: ui , j
t0

, λ j
t0

, w j
t0
= 1/L ∀i ∈ {1, 2, ..., M } j ∈ {1, 2, ..., L}, Pt0 and δy[t0,tT ].

Output: û[t0,tN ], λ̂[t0,tN ].
1: for n = 1 to N , δt > 0 do
2: for j = 1 to L do
3: for i = 1 to M do
4: Calculate ui , j

tn
using eq. (7.4.4)

5: end for
6: Update û j

tn
using eq. (7.4.3c)

7: Update parameters λ j
tn

using eq. (7.4.2)
8: end for

9: Compute λ̂tn =
1

L

∑L
j=1λ

j
tn

10: Compute ûtn =
1

L

∑L
i=1 û j

tn

11: end for

The panels in Figure 7.11 show the results for the first two parameters in eq. (7.2.5) when
the dual filters are applied to the advection equation.

Evidently, from Figure 7.11, the performance of the EnKBF and KBF-EnKBF dual filters
almost match. Both filters converge to the true estimate after a few iterations (about 100 in
Figure 7.11(a)). This is another testament to the fact that EnKBF attains optimal estimates at
high ensemble values. Moreover, both the EnKBF and KBF-EnKBF parameter estimates are not
much spread as compared to the previous case where Metropolis-Hastings was used. This is
more evident in the following results for the 21 hyper-parameters estimated.

In the following panels are plotted the root mean square errors for parameter estimates for
both the EnKBF and KBF-EnKBF dual filters and the box-plots showing the dispersion of pa-
rameter estimates resulting from the use of EnKBF dual filter applied to the advection equation.

That the boxplots of EnKBF dual filter parameter estimates have short whiskers (see Fig-
ure 7.12(a)) and few outliers and that the estimates match the true parameter values indicates
that EnKBF dual filter is robust in this setting. The EnKBF dual filter registers a slight variation
in RMSE from that of the KBF-EnKBF dual filter. This indicates that the EnKBF, in this setting,
performs optimally.

We now repeat the same procedure but with the wave equation described in Section 7.1.2 in
the place of the advection equation. The following panels show the results. The results shown
in Figure 7.13 are indicative of a dismal performance of the two dual filters—KBF-EnKBF and
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Figure 7.11: (a), (b) and (c) are plots for velocity parameters for the first three parameters in
λ obtained using KBF-EnKBF and EnKBF dual filters, applied to the advection equation, both
run for 1000 time steps. The number of particles, for the state and hyper-parameters, used in
EnKBF is M = 1000 and L = 1000; the time step size used in both filters is d t = 0.01. µ = 0.001
and 100 grid points are used. Compared to the results obtained using Metropolis-Hastings
algorithm (Section 7.3), the dual filters register a better performance, at least in this example.
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Figure 7.12: (a) and (b) are, respectively, the box-plots showing the distribution of hyper-
parameter estimates of EnKBF dual filter, applied to the advection equation, after a burn-in
of 500 iterations and the plots of the root mean square error for the hyper-parameter estimates
obtained using KBF-EnKBF and EnKBF (with different ensemble sizes) dual filters.

EnKBF dual filters—when applied to the wave equation as compared to the results obtained
when the dual filters are applied to the advection equation (see Figure 7.11). We note that the
wave equation is partially observed; that is, u only is observed in the discretised wave equation,
eq. (7.1.13), whereas the advection equation is fully observed. Furthermore, the number of un-
knowns in the state-parameter system of the wave equation is 300 whilst that in the advection
equation is 200. These account for the dismal performance of the KBF-EnKBF and EnKBF dual
filters when applied to the wave equation.

In Figure 7.14 are plotted the root mean square errors for parameter estimates for both the
EnKBF and KBF and the box-plots showing the dispersion of parameter estimates resulting
from the use of EnKBF.
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Figure 7.13: (a), (b) and (c) are plots for velocity parameters for the first three parameters in
λ obtained using KBF-EnKBF and EnKBF dual filters, applied to the wave equation (Example
7.3.1), both filters run for 1000 time steps. The number of particles, for the state and hyper-
parameters, used in EnKBF filter is M = 1000; the time step size used in both filters is d t = 0.01.
µ = 0.001 and 100 grid points are used. Compared to the results obtained using Metropolis-
Hastings algorithm (Section 7.3), the dual filters register a dismal performance, at least in this
example.
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Figure 7.14: (a) and (b) are, respectively, the box-plots showing the distribution of the 21 hyper-
parameter estimates of EnKBF dual filter after a burn-in of 500 iterations and plots of the root
mean square error for the hyper-parameter estimates obtained using KBF-EnKBF and EnKBF
(with different ensemble sizes) dual filters, applied to the wave equation (Example (7.3.2)).

From the foregoing, Metropolis-Hastings with the filter evidence performs well in estima-
tion of parameters compared to the dual filters—especially when the number of unknowns is
large. This is is indicative of the robustness of the Metropolis-Hastings algorithm in searching,
and remaining in the, high probability region of the state-space.



CHAPTER 8

CONCLUSION

8.1 Summary and discussion

This thesis is established on time-continuous setting, where both the signal and measurements
evolve in a temporal continuum. This is motivated by the fact that the time-continuous setting,
as opposed to the discrete setting, offers a good basis for studying the filtering problem espe-
cially when nonlinear state space models are involved, because the equation of evolution of
probability densities is already established. For the most part, the filter variants studied in this
thesis obtain inspiration from the Kushner-Stratonovich equation, which equation is a solution
to the filtering problem—assuming that the true posterior density is Gaussian.

The solution to the filtering problem lacks closure in most nonlinear state space models,
for the Taylor series expansion of expected values of functions involve infinitely many higher-
order moments. What is more, the Gaussian assumption both in the derivation of the Kushner-
Sratonovich equation and in Taylor expansion of nonlinear functions renders the solution to
the filtering problem highly restrictive. The Gaussian assumption presupposes that the true
posterior is Gaussian. In the likely case where the true posterior is non-Gaussian, or multi-
modal, then Kushner-Stratonovich equation underestimates the solution to the filtering prob-
lem.

In this thesis, a review is made of the first and second order approximations to the equa-
tions of evolution of mean and covariance with the Gaussian assumption. The first order ap-
proximate filter, second order approximate filter, first order extended Kalman-Bucy filter and
the second order extended Kalman-Bucy filter arise naturally from these approximations. Al-
though higher order approximate filters and extensions of Kalman-Bucy filters are promising
more accuracy, they are, however, accompanied with the problem of complexity—which ren-
ders them unfavourable for practical applications. For this reason, filters based on Monte Carlo
methods have gained prominence—among them being the particle filters.

The sampling importance resampling variant of particle filters, as is well known, is charac-
terised by a resampling step equivalent to the analysis step where information from measure-
ments is assimilated. Now the information coming from the measurements is incorporated
into the dynamics by drawing from an empirical approximation of the true posterior where the
measurements contribute to the weights used. Useful as it is, the resampling step in particle
filters comes with the challenge of rendering the filter unfit for parallel operations; for the par-
ticles are resampled jointly. Moreover, resampling is known to induce a lack of variability of the
particles, it being the case that particles of more weight are chosen and multiplied frequently to
replace those of lesser weights. This undermines filter performance. Partly as a result, filtering
algorithms that utilize Monte Carlo methods but avoid resampling are being sought for, which
filters include feedback particle filters.

What sets feedback particle filters apart is the control structure at the measurements’ as-
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similation step. One variant of the feedback particle filters establishes a control in the calcu-
lation of the gain, which determines the weights given to the innovation process. This variant
of feedback particle filters proposes Stratonovich stochastic differential equation for the evo-
lution of the particles. The SDE comprises of the signal equation and a linearly added control
characterised by an innovation process and the gain. Now the gain is obtained by solving an el-
liptic boundary value problem arising from an underlying optimization problem. The problem
to be optimized is defined by Kullback-Leibler divergence between the density of the particles
conditioned on all available measurements and the true posterior. The feedback particle filter
is shown to be exact when the initial conditional density is exactly known.

The boundary value problem, the solving of which yields the gain, lacks analytical solution.
A number of numerical methods have been devised to solve for the gain, among which is the
constant gain approximation. It turns out that the constant gain approximated feedback parti-
cle filter is equivalent to the ensemble Kalman-Bucy filter. Feedback particle filters, therefore,
can be considered as a large class of filters where ensemble Kalman-Bucy filter falls under.

Inspired by the two formulations of the ensemble Kalman-Bucy filter, viz., with determin-
istically perturbed innovation and that with stochastically perturbed innovation, this thesis
proposes a feedback particle filter with randomly perturbed innovation. A feedback particle
filter with deterministically perturbed innovation is well known. It turns out, as is demon-
strated in Chapter 5, that both formulations of the feedback particle filter are exact and have
the same boundary value problem to be solved for the gain. The ensemble Kalman-Bucy fil-
ter with stochastically perturbed innovation is a consequent of the feedback particle filter with
randomly perturbed innovation and with constant approximation of the gain. We show that,
setting the initial probability density of the particles equal to the initial true posterior, the feed-
back particle filter with randomly perturbed innovation is exact.

We also propose feedback particle filters based on optimal transport of measures. The idea
behind these filters is establishment of an optimal coupling between the probability density of
the predicted particles and the density of the particles after assimilation step. The underlying
optimal control problem is analogous to the Schrödinger problem. For practical implemen-
tation of the numerical control problem, we use Sinkhorn iteration as opposed to the earth
movers distance algorithms—the former being faster and robust. For this cause, we call the
resulting filter Sinkhorn particle filter (SPF). Another filter is proposed in which the ensemble
transformation step is replace by drawing particles from an discretely approximated posterior
where the weights are given by the solution to the Schrödinger problem defined by the predic-
tion and analysis measures. This filter we call it resampling Sinkhorn particle filter (RSPF). The
performance of the two filters are heuristically investigated by means of the stochastic Lorentz
equation. It turns out that the two filters perform better than the bootstrap particle filter in
the lower ensemble sizes. As the ensemble size increases, the RSPF elicits a continued better
performance compared to the bootstrap particle filter. On the other hand, the SPF registers a
better performance compared to the bootstrap particle filter but only for lower ensemble sizes.

This study also attends to the question of parameter estimation. We review the least
squares, maximum a posteriori (MAP) and maximum likelihood (ML) methods of parameter
estimation. Dual estimation approaches, which involve extended state space and use of dual
filters for state and parameter estimation are also reviewed. We propose sequential Monte
Carlo cum ensemble Kalman-Bucy dual filter and ensemble Kalman-Bucy filter cum ensemble
transform particle filter dual filter. The latter filter is heuristically shown to perform better than
the former. This is done in Chapter 6 of this thesis.

In Chapter 7, application of joint state and parameter estimation to advection and wave
equation is done. We consider a special case of parameter estimation where the parameter to
be estimated is spatially varying. Such a case arises, for example, in the velocity of a wave trav-
elling through an inhomogeneous media. We propose and study two approaches: the use of
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filter likelihood and Metropolis Hastings procedure and joint estimation of state and parame-
ters. The parameter is expressed as a Fourier series with constant coefficients. The coefficients
are approximated and then substituted back to the Fourier series to obtain an approximation
of the velocity. Kalman-Bucy filter and the ensemble Kalman-Bucy filter are used. The filter
likelihood with Metropolis Hastings procedure register a better performance compared to the
joint estimation procedure in both advection and wave equations.

Overally, feedback particle filters offer a promising competence in solving the nonlinear
filtering problem. The reason for this is that the feedback particle filters are shown to be exact
under certain conditions. The downside is that the boundary value problem need to be solved
for the gain each time. With the development of faster optimal control algorithms, feedback
particle filters will be the filters of choice where robust filters are needed for practical use.

8.2 Future directions

The performance of the filters reviewed and proposed in this thesis can be enhanced in several
ways. The following is a listing of possible directions to take in bolstering the performance of
the feedback particle filters both for state and parameter estimation.

? Study of the theoretical underpinnings of the SPF and the RSPF would be useful in show-
ing why the filters work. This far, we have only shown the numerical performance of the
SPF and RSPF filter as applied to stochastic Lorentz 63 model. The theory behind the
local and global convergence of these filters forms part of our future study.

? With the proposed feedback particle filters at hand, one would want to extend the idea
behind their derivation to solving the smoothing problem. In future we shall study feed-
back particle smoothers and their applications.

? It would be also interesting to study the forward-backward feedback particle filters,
where the forward move is accomplished by means of a feedback particle filter, and a
backward move is attained via a feedback particle smoother; for then are obtained accu-
rate approximations for both state and parameter estimation.

? Application of proposed filters in high-dimensional nonlinear practical problems is yet
to be done. We would like to investigate how the feedback particle filter fare when ap-
plied to problems in which curse of dimensionality has been an hindrance.

? With the successful application of filter likelihood with Metropolis Hastings procedure
in estimating spatially varying parameters as done in Chapter 7 of this thesis, albeit in
the linear hyperbolic pdes, we would, in future, consider extending this notion to high-
dimensional nonlinear problems.
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APPENDIX A

ADDENDUM TO CHAPTER 3

A.1 Proof of Theorem 3.5.1

We follow the proof in Bass et al. (1966); Jazwinski (1970) and specialize to the scalar case.

Proof. By Taylor expansion about x̂t , we have:

f (x) ≈ f (x̂t )+ (x − x̂t )∂x [ f ](x̂t )+ 1

2
(x − x̂t )2∂xx [ f ](x̂t ), (A.1.1a)

h(x) ≈ h(x̂t )+ (x − x̂t )∂x [h](x̂t )+ 1

2
(x − x̂t )2∂xx [h](x̂t ), (A.1.1b)

g 2(x) ≈
(

g (x̂t )+ (x − x̂t )∂x [g ](x̂t )+ 1

2
(x − x̂t )2∂xx [g ](x̂t )

)2

. (A.1.1c)

Taking expectations and noticing that p =πt [(x − x̂t )2] =πt [x(x − x̂t )], and that πt [(x − x̂t )] = 0
leads to

f̂ ≈ f (x̂t )+ 1

2
p∂xx [ f ](x̂t ), (A.1.2a)

ĥ ≈ h(x̂t )+ 1

2
p∂xx [h](x̂t ), (A.1.2b)

πt [g 2] ≈ g 2(x̂t )+p∂x [g ]2(x̂t )+ g (x̂t )∂xx [g ](x̂t )p, (A.1.2c)

πt [x f ]− x̂t f̂t ≈ x̂t f (x̂t )+p∂x [ f ](x̂t )+ 1

2
x̂t p∂xx [ f ](x̂t )

− x̂t f (x̂t )− 1

2
x̂t p∂xx [ f ](x̂t )

= p∂x [ f ](x̂t ).

(A.1.2d)

It now remains to obtain the approximation of the term

πt [x2h]−πt [x2]ĥt −2x̂tπt [xh]+2x̂2
t ĥt .

By Taylor expansion
πt [x2] ≈ x̂2

t + (x − x̂t )2x̂t + (x − x̂t )2. (A.1.3)

Using eq. (A.1.1b) and eq. (A.1.3),

πt [x2h] ≈πt [(x̂2
t + (x − x̂t )2x̂t + (x − x̂t )2)(h(x̂t )]

+πt [(x − x̂t )∂x [h](x̂t )+ 1

2
(x − x̂t )2∂xx [h](x̂t ))]

= x̂2
t h(x̂t )+ 1

2
x̂2

t pt∂xx [h](x̂t )+2x̂t pt∂x [h](x̂t )+pt h(x̂t ).

(A.1.4)
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Similarly,

πt [x2]ĥt ≈πt [(x̂2
t + (x − x̂t )2x̂t + (x − x̂t )2)]

×πt [h(x̂t )+ (x − x̂t )∂x [h](x̂t )+ 1

2
(x − x̂t )2∂xx [h](x̂t )]

= (x̂2
t +pt )(h(x̂t )+ (x − x̂t )∂x [h](x̂t )+ 1

2
(x − x̂t )2∂xx [h](x̂t ))

= x̂2
t h(x̂t )+ 1

2
x̂2

t pt∂xx [h](x̂t )+pt h(x̂t )+ 1

2
p2

t ∂xx [h](x̂t ).

(A.1.5)

The remaining term, −2x̂π[xh]+ 2x̂2
t ĥt , can be written in the form of eq. (A.1.2d), with h re-

placing f , which simplifies it a great deal. That is,

−2x̂tπt [xh]+2x̂2
t ĥt =−2x̂t (πt [xh]− x̂t ĥt )

≈−2x̂t pt∂x [h](x̂t ).
(A.1.6)

Now collecting like terms together in eqs. (A.1.4) to (A.1.6), we get:

πt [x2h]−πt [x2]ĥt −2x̂tπt [xh]+2x̂2
t ĥt = 1

2
p2

t ∂xx [h](x̂t ). (A.1.7)

The approximate filter for the exact filter eqs. (3.4.6) and (4.2.6) is obtained by replacing the
expected values of the terms with their approximations, which have been developed above.



APPENDIX B

ADDENDUM TO CHAPTER 4

B.1 Derivation of the KBF: minimum variance method

Given the Ito differential equations for the state and the observations; that is,

d x = F (t )xd t +G1/2(t )dβt , t ≥ t0, xt0 ∼ N (x̂t0 ,Pt0 ), (4.1.1a revisited)

d y = H(t )xd t +R1/2(t )dηt , t ≥ t0, (4.1.1b revisited)

where the input dβ and the observation error dη are white noise processes with statistics
Brown and Hwang (1997)

E{dβ} = 0, (B.1.2a)

E{dβdβT} = Iδ(t −τ), (B.1.2b)

E{dη} = 0, (B.1.2c)

E{dηdηT} = Iδ(t −τ), (B.1.2d)

we can now proceed to derive the equations governing the evolution of the state estimate and
the error covariance matrix.

The solution to 4.1.1a is given by

x = exp(F (t0)(t − t0))xt0 +
∫t

t0

exp(F (τ)(t −τ))G1/2(τ)dβdτ. (B.1.3)

At time tn+1 we have,

xtn+1 ≈ (I +F (tn)δt )xtn +
∫tn+1

tn

(I +F (τ)(tn+1 −τ))G1/2(τ)dβdτ. (B.1.4)

Next, we derive the discrete Kalman Filter with equivalent dynamics.

B.1.1 Kalman filter

suppose we have a discrete model for the evolution of an N -dimensional state, x, given by

xtn+1 =Π(tn)xtn +G1/2(tn)vtn , (B.1.5)

and increments observations given by

δytn = H(tn)xtnδt +δt 1/2R1/2(tn)wtn , (B.1.6)
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with the following statistics

E{vtn } = 0, (B.1.7a)

E{vtn vT
tn

} = I , (B.1.7b)

E{wtn } = 0, (B.1.7c)

E{wtn wT
tn

} = I ; (B.1.7d)

that is to say, vtn and wtn are i.i.d sequences of zero mean and identity covariances. Let x̄tn be
the state estimate before assimilation of data. The corresponding error, ẽtn , is given by

ẽtn = xtn − x̄tn . (B.1.8)

Similarly, let x̂tn be the state estimate after incorporating observations, and let the observations
be incorporated thus

x̂tn = x̄tn +Ktn (δytn −H(tn)x̄tnδt ). (B.1.9)

The error at time tn is given by
en = xtn − x̂tn . (B.1.10)

The error covariance matrices before and after incorporation of observation are, respectively,

P̄tn = E{ẽtn ẽT
tn

}, (B.1.11a)

Ptn = E{eneT
n} = E{[xtn − x̂tn ][xtn − x̂tn ]T}

= E{[xtn − x̄tn −Ktn (δytn −H(tn)x̄tnδt )x̄tn )]

× [xtn − x̄tn −Ktn (δytn −H(tn)x̄tnδt ]T}

= E{[xtn − x̄tn −Ktn (H(tn)xtnδt +δt 1/2R1/2(tn)wtn −H(tn)x̄tnδt )]

× [xtn − x̄tn −Ktn (H(tn)xtnδt +δt 1/2R1/2(tn)wtn −H(tn)x̄tnδt )]T}

= E{[xtn − x̄tn −δtKtn H(tn)(xtn − x̄tn )−δt 1/2Ktn R1/2(tn)wtn ]

× [xtn − x̄tn −δtKtn H(tn)(xtn − x̄tn )−δt 1/2Ktn R1/2(tn)wtn ]T}

= E{[xtn − x̄tn ][xtn − x̄tn ]T}−δtKtn H(tn)E{[xtn − x̄tn ][xtn − x̄tn ]T}

−δtE{[xtn − x̄tn ][xtn − x̄tn ]T}H(tn)TK T
tn

+δt 2Ktn H(tn)E{[xtn − x̄tn ][xtn − x̄tn ]T}H(tn)TK T
tn

+δt 3/2Ktn H(tn)E{[xtn − x̄tn ]wT
tn

}R1/2(tn)TK T
tn

−δt 1/2Ktn R1/2(tn)E{wtn [xtn − x̄tn ]T}

+δt 3/2Ktn R1/2(tn)E{wtn [xtn − x̄tn ]TH(tn)TK T
tn

}

−δt 1/2E{[xtn − x̄tn ]wT
tn

}R1/2(tn)TK T
tn

+δtKtn R1/2(tn)E{wtn wT
tn

}R1/2(tn)TK T
tn

= P̄tn −δtKtn H(tn)P̄tn −δt P̄tn H(tn)TK T
tn
+δt 2Ktn H(tn)P̄tn H(tn)TK T

tn

+δtKtn R1/2(tn)R1/2(tn)TK T
tn

;

(B.1.11b)

where we have assumed that the filter errors and the observation errors are uncorrelated. To
realise an optimal filter, we need a value of Ktn that will minimise the error covariance, Ptn .
This is obtained by differentiating the trace of Ptn with respect to Ktn and solve the resultant
derivative after equating it to zero. More formally,

dtr(Ptn )

dKtn

= 0 =−δt [H(tn)P̄tn ]T −δt P̄tn H(tn)T

+2δt 2Ktn H(tn)P̄tn H(tn)T +2δtKtn R(tn)

=−2δt P̄tn H(tn)T +2δt 2Ktn H(tn)P̄k H(tn)T +2δtKtn R(tn),

(B.1.12)
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in which case we have used the fact that P̄tn is symmetric. Solving for Ktn in eq. (B.1.12) yields

Ktn = P̄tn H(tn)T[H(tn)P̄tn H(tn)T +R(tn)/δt ]−1/δt . (B.1.13)

We revert back to eq. (B.1.9) and, for an optimal filter, substitute eq. (B.1.13) to obtain

x̂tn = x̄tn + P̄tn H(tn)T[H(tn)P̄tn H(tn)T

+R(tn)/δt ]−1(δytn −H(tn)x̄tnδt )/δt .
(B.1.14)

Similarly, substituting the value of Ktn in the error covariance equation, eq. (B.1.11b), which we
rewrite as

Ptn = P̄tn −δtKtn H(tn)P̄tn −δt P̄tn H(tn)TK T
tn

+δt 2Ktn [H(tn)P̄tn H(tn)T +R(tn)/δt ]K T
tn

,
(B.1.15)

gives
Ptn = P̄tn − P̄tn H(tn)T[H(tn)P̄tn H(tn)T +R(tn)/δt ]−1H(tn)P̄tn . (B.1.16)

Equations (B.1.14) and (B.1.16) are, collectively, the equations for the classic Kalman filter.

B.1.2 Extension to the continuous case

In the next time step, the estimate before assimilation is given by

x̄n+1 =Π(tn)x̂tn . (B.1.17)

The corresponding error covariance matrix, then, is

P̄n+1 = E{[xtn+1 − x̄n+1][xtn+1 − x̄n+1]T}

= E{[Π(tn)xtn +G1/2(tn)vtn −Π(tn)x̂tn ]

× [Π(tn)xtn +G1/2(tn)vtn −Π(tn)x̂tn ]T}

= E{[Π(tn)(xtn − x̂tn )+G1/2(tn)vtn ][Π(tn)(xtn − x̂tn )+G1/2(tn)vtn ]T}

=Π(tn)E{[xtn − x̂tn ][xtn − x̂tn ]T}+Π(tn)E{[xtn − x̂tn ]vT
n}G1/2(tn)T

+G1/2(tn)E{vtn (xtn − x̂tn )T}Π(tn)T +G1/2(tn)E{vtn vT
tn

}G1/2(tn)T

=Π(tn)PtnΠ(tn)T +G(tn).

(B.1.18)

We now seek to link eqs. (B.1.5) and (B.1.6) with eqs. (3.1.1a) and (3.1.1b), respectively, and their
noise statistics. With a small increment in time, δt = tn+1 − tn , we have, from eq. (B.1.5),

δxtn = xtn+1 −xtn

= [Π(tn)− I ]xtn +G1/2(tn)vtn ,
(B.1.19)

whose limit, as δt → 0, is
d xtn = [Π(tn)− I ]xtn +G1/2(tn)vtn . (B.1.20)

Comparing equations eq. (B.1.20) and eq. (4.1.1a) it is evident that

Π(tn) ≈ I +F (tn)δt . (B.1.21)

Moreover, from eq. (B.1.4)

G1/2(tn)vtn ≈
∫tn+1

tn

(I +F (τ)(tn+1 −τ))G1/2(τ)dβdτ

=
∫tn+1

tn

Π(τ)G1/2(τ)dβdτ.

(B.1.22)
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Furthermore, we have the following expression for the model noise.

E{[G1/2(tn)vtn ][G1/2(tn)vtn ]T} = E{[
∫tn+1

tn

Π(τ)G1/2(τ)dβdτ]

× [
∫tn+1

tn

Π(τ)G1/2(τ)dβdτ]T},

(B.1.23)

which we simplify further as follows, noting that Π(τ) ≈ I for very small δt ,

G1/2(tn)E{vtn vT
tn

}G1/2(tn)T =
∫ ∫

G1/2(τ1)E{dβτ1 dβT
τ2

}G1/2(τ2)Tδ(τ1 −τ2)dτ1dτ2

=
∫

G1/2(τ1)E{dβτ1 dβT
τ1

}G1/2(τ1)Tdτ1

=G1/2(t )E{dβdβT}G1/2(t )Tδt ,

(B.1.24)

whence we get
E{vtn vT

tn
} = E{dβdβT}δt . (B.1.25)

Next, we consider the observation equation, eq. (B.1.6). The increment in observations,
δytn is given by

δytn = H(tn)xtnδt +δt 1/2R1/2(tn)wtn , (B.1.6 revisited)

Taking the limit of δytn as δt → 0 gives

d ytn =
∫tn+δt

tn

H(τ)xδtdτ+
∫tk+δt

tk

δt 1/2R1/2(τ)wdτ; (B.1.26)

which, when compared with eq. (4.1.1b), shows that

R1/2(tn)dηtn ≈
∫tn+δt

tn

δt 1/2R1/2(τ)wdτ. (B.1.27)

The covariances are then given by

E{[R1/2(tn)dηtn ][R1/2(tn)dηtn ]T ≈ δtE{[
∫tn+δt

tn

R1/2(τ)wdτ]

× [
∫tn+δt

tn

R1/2(τ)wdτ]T}.

(B.1.28)

Following the same argument as in the model noise covariance equation above leads to

R1/2(t )E{dηtn dηT
tn

}R1/2(t )T = R1/2(tn)E{wtn wT
tn

}δt 2R1/2(tn). (B.1.29)

We now revert back to the classic Kalman filter equations. subtracting x̂tn−1 from eq. (B.1.14)
and using the equivalent values of x̄tn as indicated in eq. (B.1.17) gives

x̂tn − x̂tn−1 =Π(tn−1)x̂tn−1 − x̂tn−1 + P̄tn H(tn)T[H(tn)P̄tn H(tn)T +R(tn)/δt ]−1

× (δytn −H(tn)Π(tn−1)x̂tn−1δt )/δt .
(B.1.30)

Using the approximation eq. (B.1.21) we get

x̂tn − x̂tn−1 = F (tn−1)x̂tn−1δt + P̄tn H(tn)T[H(tn)P̄tn H(tn)T +R(tn)/δt ]−1

× (δytn −H(tn)x̂tn−1δt −F (tn−1)x̂tn−1δt 2)/δt .
(B.1.31)
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We drop the values of order O(δt 2) and get

δx̂tn−1 = F (tn−1)x̂tn−1δt + P̄tn H(tn)T[H(tn)P̄tn H(tn)T

+R(tn)/δt ]−1(δytn −H(tn)x̂tn−1δt )/δt .
(B.1.32)

From eqs. (B.1.13) and (B.1.29) we get

P̄tn H(tn)T[H(tn)P̄tn H(tn)T +R(tn)/δt ]−1/δt ≈ P̄tn H(tn)TR(t )−1δt , (B.1.33)

we take the limit as δt → 0, which leads to

d x̂ = F (t )x̂d t +PH(t )TR(t )−1(d y −H(t )x̂d t )d t . (B.1.34)

For the error covariance matrix, we begin with eq. (B.1.18). substituting Ptn with its expression
in eq. (B.1.16) and then using the discrete form of eq. (B.1.21), we obtain

P̄n+1 =Π(tn)P̄tnΠ(tn)T −Π(tn)P̄tn H(tn)T[H(tn)P̄k H(tn)T

+R(tn)/δt ]−1H(tn)P̄tnΠ(tn)T +G(tn)

= [I +F (tn)δt ]P̄tn [I +F (tn)δt ]T

− [I +F (tn)δt ]δtKtn H(tn)P̄tn [I +F (tn)δt ]T +G(tn).

(B.1.35)

Expanding and neglecting O(δt 2) terms yields

P̄n+1 = P̄tn +F (tn)δt P̄tn + P̄tn F (tn)Tδt −δtKtn H(tn)P̄tn +G(tn). (B.1.36)

Next, we use eqs. (B.1.25) and (B.1.33) and get

δP̄tn = F (tn)δt P̄tn + P̄tn F (tn)Tδt −Ktn H(tn)P̄tnδt +G(t )δt . (B.1.37)

Finally, we take the limits as δt → 0 to obtain

dP = F (t )d tP +PF (t )Td t −K H(t )Pd t +G(t )d t . (B.1.38)

Equations (B.1.34) and (B.1.38) are the equations for the Kalman-Bucy filter.
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