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1.  Introduction

Heart rate variability (HRV) is a non-invasive measure of autonomic nervous system function. Therefore, its 
analysis and quantification are increasingly used in physiological and medical research, as well as in clinical 
practice. Typically, HRV denotes variation of the inter-beat intervals—defined in most cases as the intervals 
between the well-pronounced R-peaks in an electrocardiogram (ECG), and therefore called RR-intervals. A 
particularly important component of HRV is a modulation of the RR-intervals by respiratory influence, called 
respiratory sinus arrhythmia (RSA) (Katona and Jih 1975, Hirsch and Bishop 1981, Moser et al 1994, Hayano et al 
1996, Billman 2011). RSA, the acceleration of heart rate during inspiration and deceleration during expiration, 
is thought to be a primarily vagally mediated oscillation originating from cardiovascular centers in the brain 
stem. These centers are in close proximity to respiratory centers and are synchronized with them (Lambertz and 
Langhorst 1998), especially during resting state, sleep and deep respiration. The physiological significance of 
RSA is, on one hand, in facilitating gas exchange between the lungs and the blood and thus helping the heart to 
do less work while maintaining optimal levels of blood gases (Larsen et al 2010, Ben-Tal et al 2012). On the other 
hand, another biological advantage of RSA is the stabilization of blood flow to the brain and the periphery by 
compensating arterial pressure changes arising from intrathoracic pressure changes due to ins- and expiration. 
It has been shown that blood pressure oscillations connected to respiration are reduced and the blood flow is 
thus stabilized by RSA (Elstad et al 2014). In medicine, the amplitude or the spectral power of RSA is used as a 
smart noninvasive measure for vagal tone (Moser et al 1994). The reason for this dominantly vagal origin of 
RSA can be found in the fast vagal synapses, able to quickly translate central respiratory oscillations present in 
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Abstract
Objective: Several different measures of heart rate variability, and particularly of respiratory sinus 
arrhythmia, are widely used in research and clinical applications. For many purposes it is important 
to know which features of heart rate variability are directly related to respiration and which are 
caused by other aspects of cardiac dynamics. Approach: Inspired by ideas from the theory of coupled 
oscillators, we use simultaneous measurements of respiratory and cardiac activity to perform a 
nonlinear disentanglement of the heart rate variability into the respiratory-related component 
and the rest. Main results: The theoretical consideration is illustrated by the analysis of 25 data sets 
from healthy subjects. In all cases we show how the disentanglement is manifested in the different 
measures of heart rate variability. Significance: The suggested technique can be exploited as a 
universal preprocessing tool, both for the analysis of respiratory influence on the heart rate and in 
cases when effects of other factors on the heart rate variability are in focus.
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the brainstem to changes of cardiac sinus node discharge rate, which is not the case for the slow sympathetic 
synapses (Moser et al 2017).

Vagal tone is gaining importance in preventive and aging medicine, as the tone decreases with age (Lehofer 
et al 1999, Baylis et al 2013) and also because of chronic diseases connected to decreased vagal tone (Lehofer et al 
1997). This understanding gained momentum when a vagal inflammatory reflex was discovered (Tracey 2002), 
indicating a close inverse connection between the available vagal tone and silent inflammation, a condition  
obviously resulting in chronic diseases like vascular sclerosis, Alzheimer’s disease and cancer (see Nathan (2002) 
for a comprehensive overview). Since the accuracy of vagal tone determination by common time or frequency 
domain methods of RSA quantification—especially under conditions of different respiratory patterns—has 
been questioned (Laborde et al 2017), it is highly important to improve the methods for separation of respiratory 
and other influences of the autonomic nervous system on HRV.

A variety of data analysis techniques quantifying RSA have been proposed in the literature; for a discussion 
of commonly used metrics and their advantages and drawbacks, see e.g. Lewis et al (2012). Examples of applica-
tion of RSA analysis include clinical psychology (Wielgus et al 2016), treatment of substance use disorder (Price 
and Crowell 2016), prediction of the course of depression (Panaite et al 2016), quantification of cardiac vagal 
tone and its relation to evolutionary and behavioral functions (Grossman and Taylor 2007) and quantification of 
vagal activity during stress in infants (Ritz et al 2012) and cancer patients (Moser et al 2006), to name just a few. 
On the other hand, quantification of the HRV component, not related to respiration, is important for the analysis 
of long-range and scaling properties of the cardiac dynamics (Ivanov et al 1999, Schmitt and Ivanov 2007).

In this paper, following our previous study (Kralemann et al 2013), we elaborate on a nonlinear technique 
that allows us to disentangle a respiratory-related component (R-HRV) from a component in which variabil-
ity is caused by all other sources; we denote the latter component as NR-HRV. After the disentanglement, both 
components can be subject to any existing analysis technique. Thus, the suggested disentanglement can serve as 
a universal preprocessing tool that allows a researcher to concentrate on particular aspects of HRV: if the interest 
is in a respiratorily caused modulation of the heart rate, then it makes sense to work with the R-HRV component. 
Conversely, if the variation of the heart rhythm due to perturbations other than respiration is important, then it 
makes sense to cleanse the data of the component caused by respiration first, and then to analyze the NR-HRV 
component.

Separation of respiratory influences from HRV records has also been treated previously by various ad hoc 
techniques (Widjaja et al 2014, Kuo and Kuo 2016) such as adaptive filtering, least-mean-error fitting of power 
spectra, and principal component analysis. Our approach is based on an idea from nonlinear dynamics and 
coupled oscillator theory (Winfree 1980, Glass 2001, Pikovsky et al 2001, Strogatz 2003). Within this framework, 
we treat cardiovascular and respiratory systems as two interacting endogenous, self-sustained oscillators, which 
allows for a low-dimensional description of their dynamics in terms of phases. This description, in turn, provides 
the desired disentanglement and better quantification of the corresponding HRV components, as described 
below.

2.  Methods

2.1.  Theoretical background
We start with a general theory, briefly presenting a phase-based description of the dynamics of interacting 
oscillators. In the simplest case of an autonomous noisy periodic or weakly chaotic oscillator, the phase dynamics 
obeys

ϕ̇ = ω + ζ(t),� (1)

where ϕ and ω  are the phase and the natural frequency of the system, and the noise term ζ(t) accounts for 
intrinsic fluctuations of the system parameters. If the system experiences influences from external sources (which 
may be either regular or not), then—according to dynamical perturbation theory (see e.g. Pikovsky et al (2001) 
for details)—the leading effect of the external forces ηs(t), where s = 1, 2, . . ., is in the modulation of the phase, 
which now obeys

ϕ̇ = ω +
∑

s

qs[ϕ, ηs(t)] + ζ(t).� (2)

Here, qs are coupling functions describing the response to the corresponding perturbations. These functions 
account for the property that the susceptibility of an oscillator to external perturbations generally depends on 
its phase. Notice that the forces ηs(t) can have arbitrarily complex time dependence—i.e. they can be periodic, 
chaotic or stochastic. We emphasize that equation (2) is valid for weak forcing, in the first approximation in ε, 
where small parameter ε is the characteristic amplitude of forcing. In the second approximation in ε, there may 
appear terms depending on several forces ηs .

Physiol. Meas. 39 (2018) 054002 (12pp)



3

Ç Topçu et al

Suppose now that one of the forces, say the first one, η1(t), and the corresponding coupling function q1, are 
known, and other forces ηs(t), s �= 1, are unknown. Then we can use equation (2) in order to represent the varia-
tions of the instantaneous frequency as a sum of two components,

ϕ̇ = ω + q1[ϕ, η1(t)] + ξ(t),� (3)

where q1[ϕ, η1(t)] describes solely the impact of the force η1(t) on the phase dynamics, while
ξ(t) = ϕ̇− q1[ϕ, η1(t)]− ω =

∑
s�=1

qs[ϕ(t), ηs(t)] + ζ(t)
� (4)

describes the cumulative effect of all other forces and of the intrinsic fluctuations. The representation by 
equation (3) plays a central role in our approach.

Now we specify the theory to cover the system of our interest—namely, the cardiovascular system. Schematic 
illustration of the approach is given in figure 1. In particular, we consider experiments where both cardiac and 
respiratory activities are monitored simultaneously, and the ECG and the respiratory signal—e.g. the air flow at 
the nose—are recorded. It is natural to represent these two endogenous rhythms as outputs of two interacting 
oscillatory systems, which can be characterized by their phases. As discussed in detail below, these phases can be 
estimated from data.

Denoting the phase and the natural frequency of the cardiac oscillator by ϕ and ω  respectively, we write, simi-
larly to (3):

ϕ̇ = ω + qR[ϕ, ηR(t)] + ξ(t),� (5)

where the subscript R  stands for respiration, and ηR describes the effect of the respiration on the cardiac frequency. 
The term ξ(t), like in equation (4), describes the effect on the cardiac phase of the physiological rhythms other 
than respiration, as well as of non-rhythmical, stochastic, external and intrinsic perturbations.

In practice, measurements of respiration rather often (and in our experiments, as well—see Kralemann et al 
(2013)) do not provide a proper magnitude of the corresponding force ηR, but only its phase ψ(t). Thus, we 
assume that the forcing term due to respiration is a 2π-periodic function of the time-dependent respiratory 
phase ψ. So, we write ηR(t) = S[ψ(t)] = S[ψ(t) + 2π], and replace the coupling function qR[ϕ, ηR(t)] in equa-
tion (5) with a phase-based coupling function QR(ϕ,ψ), thus obtaining

ϕ̇ = ω + QR(ϕ,ψ) + ξ(t).� (6)

In order to introduce the main idea of our paper, we postpone the discussion of how the terms in equa-
tion (6) can be obtained from data, and assume for the moment that they are already known. Next, we focus on a 
link between the phase dynamics description via equation (6) and the standard representation of the HRV via a 
sequence of the RR-intervals. We emphasize that the phase ϕ can be always introduced in such a way that

ϕ(tk) = 2πk,� (7)

where tk is the instant of the kth R-peak. If some other definition of the phase is used, rescaling and addition of 
a constant phase shift ensures property (7). Note also that the phase can equivalently be considered as a variable 
wrapped to the [0, 2π) interval; in this representation, the phase achieves the value 2π and is immediately reset to 
zero at the instant of an R-peak appearance. Thus, knowledge of the phase evolution ϕ(t) yields RR-intervals and 
thus fully determines the HRV.

Exploiting the representation (6), we now introduce two new phases. The first, ϕR, describes solely the effect 
of the respiration on the instantaneous cardiac frequency, and obeys

ϕ̇R = ω + QR(ϕR,ψ).� (8)

This equation is obtained from equation (6) by dropping the last term. Correspondingly, the other phase, ϕNR , 
where the index NR stands for ‘non-respiratory’, describes the effect of all forces except for respiration, and of 
internal fluctuations, on the heart rate. This phase is governed by

ϕ̇NR = ω + ξ(t).� (9)

In fact, because the time series ϕ(t), ψ(t), and ξ(t) are known from the processing of measured data, equations (8) 
and (9) can be straightforwardly integrated to yield time series ϕR(t) and ϕNR(t). (In practice, we used the Euler 
integration scheme with initial conditions ϕR(t1) = 0, ϕNR(t1) = 0.)

Knowing the phases ϕR, ϕNR , one can easily obtain the RR intervals via definition (7). The times at which 

the phase ϕR attains a value that is a multiple of 2π, i.e. when ϕR(tR
k ) = 2πk , yield a series of R-peaks, as it would 

appear in the presence of respiratory influence only (the superscript R  stands for respiration). Thus, this series 

tR
k  and the corresponding series of RR-intervals tR

k+1 − tR
k  represent the pure RSA-related component, R-HRV, 

of HRV. Conversely, if we are interested in the HRV due to all sources except for RSA, then we use the phase ϕNR  

to obtain the series of R-peaks, determined by the instants tNR
k , such that ϕNR(tNR

k ) = 2πk, and the RR-intervals 
which vary due to non-respiratory influences only. This completes disentanglement of the R-HRV component, 

Physiol. Meas. 39 (2018) 054002 (12pp)
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given by the series of R-peaks at tR
k  and the series of interbeat intervals (tachocardiogram) TR

k = tR
k+1 − tR

k , from 

the NR-HRV component (the series tNR
k  and the corresponding tachocardiogram TNR

k = tNR
k+1 − tNR

k ).

2.2.  Reconstruction of the phase dynamics from data
We analyze, below, the set of 25 records of 420 s long simultaneous measurements of respiratory flow and ECG, 
already explored for different purposes in a previous publication (Kralemann et al 2013). The experiments 
were performed on healthy adults at rest, in a relaxed supine position, i.e. lying down with face up. To keep the 
measuremental noise as low as possible, we used bipolar, high-resolution recordings of respiration and ECG. The 
details of the measurements, the preprocessing and the subjects are described in the supplementary information 
to this paper and to Kralemann et al (2013).

Now, we describe the particular steps behind the general disentanglement approach presented above. Since 
the representation of the cardiac dynamics via equation (6) has been derived in Kralemann et al (2013), we out-
line the main steps only briefly here.

	1.	�Recorded cardiac ECG signals and respiratory signals are embedded in a two-dimensional plane by virtue of 
the Hilbert transform. The protophase (phase-like variable) of the respiratory signal is obtained as an angle 
in this plane. The protophase of the ECG signal required an extended processing, because this signal has a 
complex form with several loops over a basic cycle. In fact, in these approaches, the details of parameterisation 
which may influence the definition of a protophase are not important, as is explained below.

	2.	�A transformation from the protophases to the phases is performed, according to the method suggested 
in Kralemann et al (2008). The main idea is that because the embedding and the parameterisation of 
the embedded trajectory by a 2π-periodic phase-like variable are not unique, neither is the protophase 
obtained. The true phase is determined to have the property of growing linearly in time in the absence 
of external forces (see equation (1)—which is written for the true phase, so that the deterministic part 
of the r.h.s. does not depend on ϕ). We have performed an invertible deterministic transformation from 
the protophase to the phase (equation (4) in Kralemann et al (2013)), based on the property that the 
probability distribution density of the phase should be uniform.

Figure 1.  The approach at a glance. In the first step, instantaneous phases, ϕ and ψ, are obtained from simultaneously measured 
ECG and respiratory signals. The cardiac phase ϕ is defined in such a way that values ϕ = 2πk  correspond to the R-peaks 
(wrapped definition of the phase is used here for better visibility). Next, the phase dynamics is reconstructed from data in the 
form of equation (6) with the coupling function QR and the rest term ξ. This equation yields equations for the instantaneous 
frequency of respiratory-related and non-respiratory-related components, i.e. for ϕ̇R and ϕ̇NR . Numerical integration of the latter 

equations provides the phases of these components, while the conditions ϕR(tR
k ) = 2π  and ϕNR(tNR

k ) = 2π determine the newly 

generated series of R-peaks. As a final result, we obtain tachocardiograms for both components.

Physiol. Meas. 39 (2018) 054002 (12pp)
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	3.	�Having, now, the time series of the true phases of the cardiac system, ϕ(t), and of the respiratory system, 
ψ(t), we calculate the time derivative ϕ̇ and fit it according to equation (6) with a function which is 
2π-periodic in arguments ϕ,ψ. Practically, a kernel estimation (equation (7) in Kralemann et al (2013)) is 
employed to obtain QR(ϕ,ψ), while the remaining terms of the fit provide time series ξ. As a result of this 
step, the basic equation (6) describing the cardiac phase dynamics is reconstructed.

2.3.  Characterization of original and disentangled HRV data
In order to quantify the original RR-intervals and the results of the disentanglement procedure, we computed 
for all 25 data sets several physiologically relevant measures that are commonly used in HRV analysis. The 
overview of the measures used is given in table 1. We emphasize that the goal of the present study is not to 
compare the efficiency of the various standard measures, but to demonstrate that their values are affected by our 
disentanglement procedure—or, in other words, to demonstrate the relevance of our tool. This is why we have 
tried to implement our tests with as many different measures as possible. As we show below, some measures are 
more sensitive to this preprocessing than others. High sensitivity means that computation of the corresponding 

quantity after disentanglement allows for an essentially improved focus on a particular component of HRV.
Fifteen subjects without any cardiorespiratory disorder (9 M, 6 F, age 34.7 ± 7.3 yr, average interbeat interval 

1027 ± 112 ms) participated in the experiments; for further details, see table I in the supplementary material 
(stacks.iop.org/PM/39/054002/mmedia). All subjects were presented with the detailed experimental protocol, 
which they had read and signed along with the informed consent approved by the research ethics committee of 
the Medical University of Graz and conforming to the Declaration of Helsinki.

2.3.1.  Time-domain measures
The statistical measure in time-domain that directly characterizes the variability of the sequence of RR intervals 
is root mean square of successive differences (RMSSD) (Malik 1996), defined as

RMSSD =
√
〈(Tk+1 − Tk)2〉k,

where 〈·〉k denotes averaging over k. Another measure is defined as the logarithm of the median of the distribution 
of the absolute values of successive differences (LogRSA) (Lehofer et al 1997), i.e.

LogRSA = log [median|Tk+1 − Tk|] .

LogRSA accounts for a nearly log-normal statistical distribution of the medians, so that by taking logarithm a 
nearly normal distribution is achieved. Several studies (Lehofer et al 1997, 1999, Moser et al 1998, Grote et al 2007) 
have proven the robustness of LogRSA and its ability to differentiate between vagal states. Another characteristic 
of variability of RR interval series, used especially in clinical settings, is the relative number of successive pairs of 
RR-intervals that differ by more than 50 ms, denoted by pNN50 (Malik 1996). (Here, NN stands for the interval 
between normal, non-ectopic beats.) It is computed as the number of intervals such that |Tk+1 − Tk| > 50 ms, 
divided by the total number of the RR intervals in the time series. Finally, we compute the standard deviation of 
RR intervals, SDNN.

2.3.2.  Frequency-domain measures
In the frequency domain methods based on the power spectral density of the time series of RR intervals, one 
commonly computes the power in three frequency bands: VLF (very low frequency, from 0.0033 to 0.04 Hz), LF 
(low frequency, from 0.04 to 0.15 Hz) and HF (high frequency, from 0.15 to 0.4 Hz), e.g. by Fourier analysis. We 

Table 1.  Summary of HRV measures and their descriptions.

Measures Description Reference

RMSSD (ms) Root mean square of successive differences Malik (1996)

logRSA Logarithm of the median of the distribution of the 

absolute values of successive differences

Lehofer et al (1997)

pNN50 Relative number of successive pairs of RR-intervals, 

that differ by more than 50 ms

Malik (1996)

SDNN (ms) Standard deviation of all (normal) RR intervals Malik (1996)

VLF (ms2) Power of very low-frequency band (0.0033–0.04 Hz) Malik (1996)

LF (ms2) Power of low-frequency band (0.04–0.15 Hz) Malik (1996)

HF (ms2) Power of high-frequency band (0.15–0.4 Hz) Malik (1996)

ApEn Approximate entropy, complexity of RR intervals Pincus et al (1991), Pincus (1991)

SampEn Sample entropy, complexity of RR intervals Richman and Moorman (2000), Chen et al (2009)

Physiol. Meas. 39 (2018) 054002 (12pp)
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exploited for this purpose the procedure described in Clifford and Tarassenko (2005). The series of unevenly 
sampled RR intervals were interpolated and resampled at even time intervals of 1/7 s. The spectra were estimated 
using the Welch approach. A fast Fourier transform (FFT) was done on two signal sections of 300 s length 
after applying a Hamming window. The resulting periodograms were averaged, and the spectrum estimate 
numerically integrated over the frequency ranges defined above.

2.3.3.  Nonlinear measures
Moreover, many nonlinear measures, mainly based on dynamical system approaches, have been applied to 
characterize HRV. Some of these measures require rather long time series, and are therefore not applicable to our 
relatively short observations. As appropriate indices, we have calculated the approximate entropy (ApEn) (Pincus 
et al 1991, Pincus 1991) and the sample entropy (SampEn) (Richman and Moorman 2000, Chen et al 2009) of the 
HRV time series. (The tolerance value was taken as 15% of the standard deviation and the embedding dimension 
was fixed at 2.) Summary of all HRV measures is given in table 1.

3.  Results

3.1.  Time series and spectra
First, we illustrate the method, presenting the original HRV series Tk along with the disentangled components 

TR
k , TNR

k  in figures 2(a), (c), (e) and (g). In each panel, these three series are shown by different colors and 
markers, and additionally shifted vertically for better visibility. We have chosen these four characteristic cases for 
presentation, while all cases studied are presented in the supplementary material. In all 25 cases, the original HRV 
time series show different extent of interval-to-interval variability. The R-HRV time series also show significant 
variability; these time series are, however, much more homogeneous just by their construction: the term QR in 
equation (8) has a definite constant amplitude which is reflected in the magnitude of the variations of the R-HRV 
component. However, one can see clear differences in the NR-HRV series obtained via equation (9).

Basically, we can distinguish two types of NR-HRV data: ‘smooth’ and ‘rough’. In the former case, the dif-
ferences between successive RR intervals are small, and the whole graph looks like a curve, possibly slightly per-
turbed. Figure 2(g) is of this type. In the ‘rough’ case, the differences between the subsequent intervals are large, 
and one does not see a curve, but rather a dispersed set of points (panel (a)). There are also intermediate cases, as 
in panel (e). Finally, in panel (c), we show a remarkable NR-HRV pattern, consisting of ‘smooth’ patches inter-
rupted nearly periodically (approx. at every 30th heart beat) by ‘rough’ bursts.

Complementary information is contained in the power spectra of the HRV records, shown in the right col-
umn of figure 2. One can clearly recognize several characteristic features:

	1.	�The respiratory-related R-HRV component has pronounced peaks. These peaks can be interpreted as the 
main frequency of respiration and its harmonics.

	2.	�The NR-HRV part contains no pronounced peak. This confirms that the main regular oscillatory 
contribution to the HRV is the respiration; all other perturbations are rather noisy, and do not exhibit 
noticable spectral peaks (for the case depicted in panels ((c),(d)), the low-frequency periodicity cannot be 
resolved in the power spectrum for such a short time series).

	3.	�The R-HRV component has low values at frequencies smaller than that of respiration. In fact, at these 
frequencies, the spectra of the original HRV and of the NR-HRV practically coincide. This means that 
the slow irregular variability of the heart rhythm is mainly caused not by respiration, but by other 
physiological processes. Our disentanglement allows one to study the time evolution of these slow 
components in a reliable way, by removing the respiratory component that may hide the interesting slow 
processes.

For another illustration of the disentanglement, we plot in figure 3 the original series and two constructed 

components versus time, i.e. Tk = tk+1 − tk versus tk+1, TR
k = tR

k+1 − tR
k  versus tR

k+1, and TNR
k = tNR

k+1 − tk versus 
tNR
k+1, for one data set. Here, we also show the time course of respiration, plotting cosψ versus time. First, we see 

that the R-peaks in the HRV (filled circles) and in R-HRV (triangles) series occur at different instants of time. 
This naturally happens in case of any decomposition of HRV (peaks at the same instants would mean no decom-
position at all). However, the overall pattern of the modulation by respiration, i.e. positions of peaks and troughs 
in the tachocardiograms, is preserved.

3.2.  Time-domain characterizations of HRV
We now go beyond visual inspection of data and quantify the components according to the measures outlined in 
table 1.

Physiol. Meas. 39 (2018) 054002 (12pp)
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Figure 4(a) shows the RMSSD measure for both disentangled components of all data sets. We see that the 
RMSSD values for both the respiratory RMSSDR  and non-respiratory RMSSDNR components are smaller than 
for the original one. We have found that in almost all cases, the reduction for the non-respiratory component 
is much stronger than for the respiratory one. One can see that the relative reduction of the RMSSD both for 
the R-HRV component (on average by factor 0.8) and NR-HRV component (on average by factor 0.5) does not 
depend on the RMSSD value for the original HRV series.

Panel (b) of the same figure presents the pNN50 measure of ‘non-smoothness’ of the RR interval series. One 
can see that this quantity is significantly reduced for the NR-HRV component, while its value for the R-HRV 
component is nearly the same as for the original data. (Excepted are cases where pNN50 in the original time series 

Figure 2.  HRV plots (left column) and corresponding power spectral densities (right column). Original tachocardiogram (red circles) 
is shown along with its R-HRV (blue triangles) and NR-HRV components (green squares). The corresponding spectra are given by 
solid red, bold-dotted blue, and dotted green lines respectively. Left, for better visibility, RR intervals for the R-HRV component and 
for the NR-HRV component are shifted vertically by 400 ms and 800 ms respectively. For the same reason, only 300 beats are shown 
in the tachocardiograms; full records are shown in the supplementary material. In panels ((b), (d), (f), (h)), the domains of very low 
frequencies (VLF), low frequencies (LF), and high frequencies (HF) are separated by vertical dashed lines. For discussion, see text.

Figure 3.  Example of the original HRV and its respiratory and non-respiratory related components. The latter two are shifted 
upwards for better visibility by 200 ms and 400 ms respectively. The black curve shows the respiratory signal with constant 
amplitude.
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is very small—here, the successive pairs with RR intervals larger than 50 ms are nearly eliminated both in the 
R-HRV and NR-HRV components.)

Panel (c) in figure 4 shows the values of the LogRSA measure. Reduction of this measure in the NR-HRV 
component is even more evident than in panels ((a), (b)).

Finally, panel (d) demonstrates that the two components of the SDNN measure (the standard deviation of 
RR intervals) are reduced similarly.

3.3.  Frequency-domain characterizations of HRV
The frequency-domain measures are plotted in figure 5. Here, we show the power in three frequency bands for 
R-HRV and NR-HRV series versus the corresponding powers of the original HRV (see dashed line which is the 
diagonal in the log–log representation). The VLF component (panel (a)) is strongly reduced in the R-HRV, while it 
is nearly the same as the original one in the NR-HRV. This is a clear indication that the VLF variability on time scales 
larger than 20 s is not due to respiration, but is caused by other physiological and external influences. However, the 
fine details of the VLF component are not very reliable, due to a shortness of the time series in our measurements.

In the LF range (time scales from roughly 25 to 6 s, panel (b)) the reduction in the R-HRV component is not 
so strong. In fact, for some subjects, the R-HRV component is even higher than the NR-HRV component. It is 
known from literature that slow respiration largely enhances HRV at six breaths per minute, where other LF 
rhythms coincide (Russo et al 2017). The HF range (panel (c), time scales from 6 to 2 s) includes a typical period 
of breathing. Therefore, here the situation is the opposite to the cases of lower frequencies: the respiration comp
onent is only slightly less than the original one, while the NR-HRV component is more reduced.

3.4.  Complexity measures
Finally, we present the results of the computation of the complexity measures approximate entropy (ApEn) and 
sample entropy (SampEn). Both entropies show similar behavior: their values for both R-HRV and NR-HRV are 
smaller than the entropy values of the original HRV signals, which means that the complexity of the total HRV is 

Figure 4.  (a) The values of root mean square successive differences RMSSDR  and RMSSDNR versus RMSSD. (b) The values of 
relative number of successive pairs of RR-intervals, that differ by more than 50 ms pNN50NR  and pNN50R  versus pNN50. (c) The 

values of logarithm of the median of the distribution of the absolute value of successive differences logRSANR  and logRSAR versus 

logRSA. (d) The values of standard deviation of all intervals SDNNNR  and SDNNR  versus SDNN. For clarity, the line of identity is 
shown by the red dashed line, while blue dashed-dotted and green dotted lines show linear fits for the respiratory-related and non-
respiratory-related components, respectively (the slopes and corresponding correlation coefficients are given in square brackets): 

RMSSDNR−HRV: [0.498, 0.90]; RMSSDR−HRV: [0.800, 0.99]; pNN50NR−HRV: [0.376, 0.72]; pNN50R−HRV : [1.03, 0.99]; logRSANR−HRV:  
[0.81, 0.85]; logRSAR−HRV : [1.09, 0.97]; SDNNNR−HRV: [0.568, 0.93]; SDNNR−HRV: [0.782, 0.96]. Notice that the results for the four data 
sets illustrated in figure 2 are marked by overlapping the data markers by special white signs: cross for record 8 (panel (a) in figure 2), 
star for record 18 (panel (b) in figure 2), dot for record 23 (panel (c) in figure 2), and plus for record 7 (panel (d) in figure 2).
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larger than that of its components. In almost all cases, the NR-HRV signal shows more regularity than the R-HRV 
component.

4.  Conclusions and discussion

We have presented and illustrated a nonlinear technique which enables disentanglement of the RR-interval 
series into the respiratory-related component, R-HRV, and the remaining component, NR-HRV. The procedure 
can be performed if simultaneous measurements of an ECG and of a respiratory signal are available. Our 
method is based on the coupled oscillators model, and thus is inherently nonlinear. In particular, this means 
that our procedure is not a simple decomposition (in the sense of signal decomposition techniques)—i.e. 
R-HRV + NR-HRV �= HRV . The spectral analysis confirms the methodological validity of our approach, 
demonstrating that the R-HRV component correctly describes peaks in the power spectra at the respiratory-
related frequencies. We suggest this approach be used as a universal preprocessing technique, allowing researchers 

Figure 5.  Spectral power in VLF (a), LF (b) and HF (b) spectral ranges. Here, the R-HRV and NR-HRV components are shown 
versus the value of the corresponding power in the original time series. The red dashed line shows the diagonal, i.e. the values 
for the original time series. Other dashed lines show the power law fits (the correlation coefficients for the fits are given in square 
brackets): VLFNR−HRV ≈ 0.93 · (VLF)1.013 [0.97]; VLFR−HRV ≈ 0.016 · (VLF)0.925 [0.58]; LFNR−HRV ≈ 0.6 · (LF)0.768 [0.84]; 
LFR−HRV ≈ 0.12 · (LF)1.40 [0.79]; HFNR−HRV ≈ 0.20 · (HF)1.024 [0.91]; HFR−HRV ≈ 0.70 · (HF)0.981 [0.99]. The results for the four 
data sets illustrated in Figure 2 are marked in the same way as in figure 4.

Figure 6.  Values of the approximate entropy (a) and of the sample entropy (b) for the R-HRV and NR-HRV components, versus 

the values of these quantities in the original time series (red dashed line is the diagonal). Other dashed lines show the power law fits 

(the correlation coefficients for the fits are given in square brackets): ApEnR ∼ (ApEn) 1.095 [0.98]; ApEnNR ∼ (ApEn) 0.898 [0.84]; 
SampEnR ∼ (SampEn) 1.15 [0.98]; SampEnNR ∼ (SampEn) 1.03 [0.82]. One can see that for originally more complex signals (large 

values of SampEn and ApEn), reduction of complexity in the R-HRV component is smaller (the corresponding powers are larger 

than 1), but reduction in complexity in the NR-HRV component is larger (the powers are closer to 1). The results for the four data 
sets illustrated in Figure 2 are marked in the same way as in figure 4.
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to concentrate on particular properties of the HRV data. Moreover, the technique can be used for investigation 
of other physiological rhythms if bivariate or multivariate measurements are available. We emphasize that 
equation (6) is also valid for nonstationary respiration or heart rate. However, the technique of coupling function 
reconstruction from data implies that this function remains unchanged within a certain time interval. Therefore, 
the disentanglement procedure will generally be performed in a running window. Numerical tests demonstrate 
that successful estimation of the coupling function is possible for data lengths of several hundred beats.

The results presented in figures 4–6 show that some HRV measures appear to be dominated by one of the 

components. So, figures 4(b) and (c) show that the values of LogRSAR and of pNN50R  are very close to LogRSA 
and pNN50 respectively. In particular, this indicates that logRSA and pNN50 may be more efficient for quantifi-
cation of the respiratory-related component than other measures, if no disentanglement is performed. However, 
pNN50 suffers from a saturation effect in subjects where HRV is generally low. Verification of this hypothesis 
requires further analysis with data from different groups of subjects. Moreover, figures 4–6 clearly demonstrate 
that computation of standard HRV measures from original data and its disentangled components generally yield 
different results, and this difference can be essential.

We summarize the results illustrated in figures 4–6 as follows. If a measure computed after disentanglement 
falls exactly on the line of identity, then the uncorrected measure truly reflects the respective component, i.e. in 
this particular case, the disentanglement can be omitted. Next, the respiratory component has been established 
as a reliable indicator of vagal tone, and it seems reasonable that the sympathetic activity is rather represented 
by the non-respiratory component of HRV. As the results show, the various time-domain, frequency domain 
and entropy measures reflect different components with a variable amount of inter-individual variance. This is 
reflected in different correlation coefficients. We consider a low inter-individual variance and a high correlation 
coefficient as indicators of a good representation of the respective components by the raw tachocardiogram. 
In contradistinction, a high variance and a low correlation coefficient would mark the measure based on raw 
data as less well suited to the representation of the respiratory or non-respiratory component of HRV. In this 
light, LogRSA and pNN50, as well as HF, most reliably represent the respiratory component and vagal tone, with 
pNN50 having the disadvantage of going into saturation at low values. The entropy measures in figure 6 give a 
less reliable representation of the respiratory component. On the other hand, VLF very closely represents the 
non-respiratory component, whereas LF does this only up to moderate values and with a much higher inter-
individual variability. This results encourage the use of LogRSA and HF to noninvasively estimate vagal tone, and 
VLF to estimate sympathetic tone, whereas other investigated measures appear to be less well suited to the separa-
tion of the two components of autonomic nervous system activity.

We note that the technique requires rather high-quality ECG recordings and quite demanding preprocessing, 
related to the phase estimation. Therefore, we consider the current results a ‘proof of principle’. A very useful 
practical improvement, now in progress, would be the development of an approximate disentanglement algo-
rithm that can be performed on the basis of RR-series only—the latter being obtainable with any standard equip-
ment. Another essential potential development would be to incorporate into the model the amplitude variations 
of the respiratory signal, modifying equation (6) to

ϕ̇ = ω + A(t)Q(ϕ,ψ) + ξ(ϕ, t),� (10)

where A(t) is the instantaneous amplitude, which can be extracted easily by means of the Hilbert transform. 
However, for this purpose, another type of measurement is required, in which the amplitude of the measured 
respiratory signal can be attributed to the true amplitude of the respiratory force affecting the cardiovascular 
system.

The new method promises an improved determination of vagal tone for medicine and prevention, based 
on an elaborated mathematical disentanglement of available data. It also allows for a better understanding of 
the non-respiratory components of HRV in general. The parasympathetic nervous system is an important 
part of our control center for silent inflammation (called the ‘secret killer’ in a Time Magazine communication  
(Gorman et al 2004) based on recent research (Das 2001, Tracey 2002, Nathan 2002, Baylis et al 2013)). Cellular 
receptors allowing communication between the autonomic nervous system and immune cells have been found 
in the past decade, and vagal activity has been proven to control immune activity (Tracey 2002, Nathan 2002). 
Therefore, a precise, noninvasive quantification of vagal tone will become important in several fields of medicine 
in the near future for diagnostic as well as therapeutic purposes. The method described in this paper might be 
a valuable contribution for such a highly desired accurate measurement tool. The level of vagal tone describes 
the ability of the organism to recover after inflammatory states, a property very important not only for our well-
being and healthy aging, but for the prevention of serious chronic diseases like atherosclerosis, neurodegenera-
tive diseases and cancer. Application of the method to medical diagnostics requires, however, future measure-
ments from the corresponding groups of patients.
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Finally, we mention that the suggested disentanglement technique can be used for other purposes, e.g. to 
quantify another manifestation of the cardio-respiratory interaction—namely, synchronization (Schäfer et al 
1998). It is now established that degree of cardio-respiratory synchrony changes across physiological condi-
tions, e.g. with age (Iatsenko et al 2013) or due to transition between different sleep states (Bartsch et al 2012). 
This measure has also been shown to be helpful in monitoring the transition between waking and anaesthetised 
states (Kenwright et al 2015). Furthermore, the disentanglement technique can be used as a universal preprocess-
ing technique for analysis of other physiological rhythms, provided they can be modeled by coupled oscillatory 
systems. Hence, dynamical disentanglement could become an important tool in the emerging field of network 

physiology (Ivanov et al 2016).
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