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* Dipartimento di Fisica, Universita di Firenze, Italy
* Department of Physics and Astronomy, University of Potsdam, Karl-Libknecht-Strasse 24/25, D-14476 Potsdam, Germany

In the body of the paper we have spotted three minor errors that do not affect the overall results and have to be
corrected as follows:

(A) Z,,, as defined in equations (10) and (12) coincide with the usual Kuramoto—Daido order parameters (see
equation (3)), only once they have been multiplied by 27r. All formulas concerning the stability of SCPS remain
unchanged, while the expression of the exponent 61, controlling the stability of the splay state (see equation (6))
must be divided by 2, i.e.

= %(cos Y + isinyy).

(B) The stability of the splay state, besides being determined by the exponent §; (see the above equation), is
controlled also by the exponent

6, = a(cosy, + isin~y,)

which has a positive real part for v, < 7/2and «y, > 37/2. Asaresult, the caption of figure 1 is to be modified,
stating that the splay state is stable only in the central (cyan) square region (7/2 < 7, , < 37/2). The entire
analysis performed in the paper remains unaffected, since it refers to the eyelet e;.

(C) The equation at the end of page 9 has to be changed to v = Q0 — 27w

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Abstract

We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general
phenomenon. We analyze in detail appearance and stability properties of this state in possibly the
simplest setup of a biharmonic Kuramoto—Daido phase model as well as demonstrate the effect in
limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a
uniform distribution of phases to an oscillating one. Suitable collective observables such as the
Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The
characteristic and most peculiar property of self-consistent partial synchrony is the difference between
the frequency of single units and that of the macroscopic field.

1. Introduction

Many physical systems can be represented as networks of oscillators, different examples ranging from the
mammalian brain [1], to power grids [2], out-of-equilibrium chemical reactions [3], spin-torque nanoscale
oscillators [4-6], gene-controlled clocks in bacteria [7], and so on. A large number of books, chapters, and
reviews devoted to the topic testify to the importance of this subject [8—17].

A general theory of oscillatory ensembles has not yet been developed. Indeed, such a theory requires taking
into account many different features, such as the structure of the single units and their heterogeneity, as well as
the topology and properties of the connections. Even in the simple context of globally coupled identical phase
oscillators, it is not generally known what a kind of stationary regimes are to be expected. Roughly speaking, they
can be classified by referring to the distribution of phases in the limit of a large number of oscillators (the so-
called thermodynamic limit). If the mutual interaction leads to phase attraction (at least below a certain
distance), the distribution of phases converges to a set of Dirac §’s which correspond to different clusters. Full
synchrony is the extreme case, where all oscillators converge to the same trajectory, i.e. to a single cluster. In the
presence of a mutual repulsion, a smooth phase distribution is observed instead. The splay state (or,
equivalently, the asynchronous regime) is a prototypical example, characterized by a flat distribution of the
phases and absence of a collective mode. Finally, one can encounter chimeras, where a big cluster coexists with a
group of non-synchronized units [ 18]. Interestingly, in this state, the frequency of the cluster elements differs
from the frequencies of asynchronous ones.

Most of the efforts have been devoted to the study of clustered [19] and chimera states [20, 21] and much less
to the identification and analysis of regimes characterized by a smooth but non-uniform distribution of phases.
Such regimes, typically characterized by a periodic collective evolution, are herein referred to as self-consistent
partial synchrony (SCPS). The simplest form of SCPS is a ‘rigid’ rotation of the distribution, i.e. a regime where
the instantaneous frequency of the oscillators coincides with that of the collective mode. Such a regime can
emerge if the coupling strength vanishes for some finite value of the order parameter [22—24]. In a less trivial
form of SCPS (of primary interest here) the (average) frequency of the single units and that of the mean field
differ from each other. Moreover, the two frequencies are generally mutually incommensurate, i.e. no locking

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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phenomena are observed, when a control parameter is continuously varied. Thus, the microscopic dynamics is
quasiperiodic. Examples of such dynamics are: integrate-and-fire (IF) neurons interacting through finite-width
pulses (the so-called a-functions) [25]; nonlinearly coupled Stuart—Landau systems [26]; a Kuramoto-like
model obtained via phase reduction from the above mentioned Stuart-Landau ensemble. A variant of
quasiperiodic partially synchronous dynamics has been detected in models beyond phase approximation, i.e. in
globally coupled Hindmarsh—Rose neurons and Stuart-Landau oscillators; here the macroscopic and
microscopic frequencies are equal only on average, but the motion of oscillators is additionally modulated by a
generally incommensurate frequency [26, 27].

In the weak-coupling limit oscillators are effectively described by a Kuramoto—Daido phase model [28—-31]
with a suitable coupling function G (A¢), where A¢ is the phase difference between any two interacting
oscillators. In the standard, widely used, Kuramoto-Sakaguchi model [9, 32, 33] the coupling function G is
assumed to be perfectly sinusoidal. In the last years it has become increasingly clear that this is quite a special
case: e.g., multiple clusters in this setup are not possible [17, 34]. A much richer dynamics, including formation
of clusters [19] and of heteroclinic cycles (HCs) [35], is observed as soon as just one additional harmonic is added
to G.

In this paper we further illustrate the richness of the Kuramoto—Daido model, by showing that SCPS
spontaneously emerges in a minimal extension of the Kuramoto setup to a biharmonic model, where G is
composed of just two harmonics. To further explore the ubiquity of SCPS, we study its emergence in an
ensemble of linearly coupled Rayleigh oscillators. They are two-dimensional limit-cycle oscillators; performing
numerically the reduction to a Kuramoto—Daido phase model, we reconstruct the coupling function which
turns out to contain a few harmonics. The Kuramoto—Daido setup is shown to reproduce the dynamics of the
original system.

The simplicity of the biharmonic model allows for a detailed analysis of SCPS, which can be seen as a
stationary solution of a continuity equation in a suitably rotating frame. Accordingly, the phase-distribution can
be accurately determined from the emergence of SCPS out of the splay state—through a Hopf bifurcation—to
its collapse onto full synchrony as in [24, 36]. The additional stability analysis confirms the numerical evidence of
the onset of an instability and allows identifying the unstable direction.

As SCPS in the biharmonic model coexists with two-cluster states, we revisit their stability properties, to
understand under which conditions trajectories converge towards an HC [35, 37]. We find that more harmonics
are needed to ensure that two-cluster states and the corresponding HCs are both unstable. Moreover, we find
that HCs can be viewed at as a kind of quasiperiodic partial synchrony.

The paper is organized as follows. In section 2 the model is briefly introduced and the conditions for the
stability of the fully synchronous and asynchronous regimes are recalled. The corresponding phase-diagram is
thereby presented for a fixed amplitude of the second harmonic. In section 3, we analyze the occurrence of SCPS,
show how it can be treated and finally develop the formalism needed to perform the stability analysis. Section 4 is
devoted to a discussion of two-cluster states and HC analyzed in [35, 37]. Here, after briefly recalling some
known properties, we present a general analysis of the stability properties of two-cluster states, in the perspective
of shedding light on the general conditions under which such states can be effectively unstable (this is, for
instance the case of the LIF model proposed in [25]). The theoretical predictions are then extensively tested in
section 5. There we find that the mean-field frequency is not necessarily smaller than the frequency of the splay
state as in the LIF model. Additionally we discover that SCPS can lose stability (through a Hopf bifurcation) and
therebylead to a collapse onto HCs. Actually, in order to avoid spurious effects due to finite computer accuracy,
aminimal heterogeneity is added which makes the oscillators slightly different from one another. As a result, we
find a bistable regime, where SCPS coexists with stable HC. In section 6, we discuss SCPS in two other setups that
can be effectively described by a suitable Kuramoto—Daido model: a set of LIF neurons, and an ensemble of
Rayleigh oscillators. A Kuramoto—Daido description of the former model was already presented in [38] where
the validity of the approximation was investigated. Here we analyze two-cluster states verifying their instability.
As for the Rayleigh oscillators, we reduce their description to a Kuramoto—Daido phase model and show that, at
variance with the other setups formerly considered, here instability of the splay state is due to harmonics higher
than the second one. The main results and the still open problems are summarized in the last section.

2. The model

We hereby consider the Kuramoto—Daido type model of identical all-to-all coupled phase oscillators.
Performing a transformation to the co-rotating coordinate frame we set the frequency to zero, so that the model
reads
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Figure 1. Stability diagram of the biharmonic model (4) for a = 0.2. The splay state is stable in the rectangular region

m/2 < 7, < 3m/2 (cyan and green areas); the fully synchronous solution is stable above the upper and below the lower solid curves
(yellow and green areas); two-cluster (anti-phase) states are stable inside the area delimited by the purple curve (i.e. below 7, = 7/2
and above vy, = 37/2). I'; and I'_ identify two pairs of sinusoidal curves where the synchronous state and the antiphase two-cluster
states solution lose stability, respectively. e; and e, denote two pairs of eyelets (bounded by I'; and I') where non-trivial dynamics
between synchrony and asynchrony can be expected. The box identifies the parameter region numerically investigated in this paper,
see figure 2.

. 1
& = szjc(céj ~ &), M)

where the coupling constant has been eliminated by performing a suitable rescaling of time. In most of the paper
we consider the biharmonic coupling function

G(¢) = sin(¢ + ) + asin(2¢ + 72). (2)

A standard way to classify the configurations of an ensemble of oscillators is via the set of complex order
parameters

. 1 .
Zmy = Ryelfn = — Ze"’“"j, 3)
N7
where R is the famous Kuramoto order parameter [9, 32], which is equal to 1 in the case of full synchrony and is
equal to 0 in splay states.
By making use of this definition, equation (1) can be rewritten as

¢p = Risin(By — ¢y + 1) + aRysin(By — 26, + 72). 4

This model was already considered in [35, 37] with an emphasis on analysis of clustered states (see the next
section) and has recently attracted a growing interest, especially in the presence of a distribution of oscillator
frequencies [39, 40].

Fora = 0 equations (1) and (2) reduce to the famous Kuramoto—Sakaguchi model. In this case it is known
that the fully synchronous solution ¢, = ¢ is stableifand onlyif |y,| < /2, while the stability condition of the
splay state is exactly opposite: asynchrony is stable for /2 < || < 37/2 and unstable otherwise. An SCPS
solution can arise only at the border between stability and instability of the two regimes.

This pointwise region can be made structurally stable by assuming that ~, is a function of the order
parameter R; and of the coupling strength € [24, 36] (such phase model can be obtained in the process of phase
reduction of a system of nonlinearly coupled Stuart-Landau oscillators [26]). The resulting regime was called
self-organized quasiperiodic dynamics.

In this paper we show that adding a second harmonic is yet a simpler way to generate SCPS. In the presence
of anon-zero g, the stability of the fully synchronous state is determined by the condition

G'(0) = —cosy; — 2acosy, < 0. 5)

The marginal stability line is composed of two sinusoidal curves Iy, shown in the stability diagram in figure 1.
Altogether, the synchronous state is stable in the two yellow and green regions of the diagram.

3
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On the other hand, the stability of the asynchronous state can be assessed by linearizing the continuity
equation for the probability density of the phases. As shown in [38], the evolution is diagonal in Fourier space
and the leading eivengalue ¢, is that one characterizing the stability of the first Fourier mode of the perturbation.
In the present setup

6, = m[cosy + isiny], 6)
so that 0; depends only on +,. As aresult, the splay state is stable in a rectangular region where cosy, < 0 (see the
cyan and green areas in figure 1). In the green areas, both the splay and the synchronous states are simultaneously
stable, while in the white areas both of them are unstable.

Altogether, the diagram in figure 1 has a reflectional symmetry with respect to both the horizontal and
vertical semi axes. Physically, there is only one symmetry: if p — — ¢, the same dynamics is found upon
mapping 7, — 2m — ~,and vy, — 27 — +,. The additional symmetry is, therefore, only accidental.

3. Self-consistent partial synchronization

In the thermodynamic limit one can investigate the various regimes by studying the evolution of the probability
density P (¢, t) of oscillators with phase ¢ at time . It satisfies the continuity equation

opr 0 [ ( f ) ]

— = dyG () — O)P (Y, 1) )P (o, 1) | 7
o 96 VG — Q)P W, 1) )P (o, 1) )
The splay state corresponds to a flat and constant density P = 1/(2). As already illustrated in [38], SCPS
typically manifests itself as a rotating non-uniform density, which emerges past a Hopf bifurcation. It is therefore
convenient to perform a change of variables, introducing the angle = ¢ — Qtand Q (6, t) = P (¢, t). The
corresponding evolution equation takes the form

o ol o]
=== |dyGw — 0 ,t 0, 1) | 8
= | (2 Jawsw - 0w, n)e@. v ®)
For a suitably chosen €2 there exists a stationary time-independent solution Q, (), which satisfies the equation
2~ [av6w - naw |®) = ©

where 7is the probability flux. Notice that 277 can be interpreted as the average microscopic frequency of the
single oscillators in the moving frame. Qg (¢/) can be expanded in Fourier modes, (the harmonics coincide with
the generalized order parameters defined in equation (3) for a finite ensemble of oscillators)

Q@) =>""  Zye i, (10)
where Z_,, = Z. The stationary solution can be obtained by solving equation (9)
Qo) = . (11)

7i[Ze 0= 4+ g7, 10— _cc ]+ Q

Since the phase of the solution is arbitrary, we are free to fix it by imposing that Z, is real. By considering that 7
can be determined by imposing a normalization on Qy, the above equation contains four unknowns: €2, Z;, and
Z, (the last variable is complex). They can be determined self-consistently by imposing

_ 1 ik
L= [ averrQuw) (12)

fork = 1, 2. The solution can be found by searching for a fixed point in a four-dimensional space.

3.1. Stability analysis
Consider an infinitesimal perturbation q (6, t) of Q, () and linearize equation (8), making use of equation (9).
One obtains

990,01 9| q, 1)
o 00| Q)

By expanding the perturbation in Fourier series

~ 1 ik
4= o [duge, e

~ Qo) [dG W — Haw, r)]. (13)
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one can rewrite the integral in the previous equation as

JawG@w — 0q@, © =—riGe O+ Gae @~ cc) =B(O)

so that
0q(0, t 3] 0, t
990,80 nq( ) 9y ®B® | (14)
ot 901  Qu(0)
This equation can be expressed as a Fourier series. With the help of equation (11), itis found
dg . S R . R R
% = m{—iQ4,, + 7€ [Zidy, | + Zw 18] — 7€ Z Gy + Zrd ]

+ ame2 (224, 5+ Zw—24,) — ame (254, 5 + Zni2d 5]} (15)

The mth Fourier mode of the perturbation is coupled with the four nearest neighbor modes (m — 2, m — 1,

m + 1,and m + 2)as well as with the first two modes; the latter coupling is mediated by the amplitude of higher
components of the stationary solution Q. In other words, the corresponding matrix is sparse: it is pentadiagonal
with two full rows. As each derivative is multiplied by 11, §, = 0. This is a straightforward consequence of the
conservation of the total probability; therefore 4, can be eliminated as it does not contribute to the eigenvalues.
By further looking at the evolution equation for 4,, we see that it involves 4_,, so that the negative modes must be
included as well. Since §_,, = qA::, it is convenient to separate g, into real and imaginary part (§,, = U, + %),
so that we can exploit the relationships u_,, = t,,, v_,, = —¥, and thereby get rid of the negative m
components. The relevant eigenvalues 1y + i, of the resulting matrix can be then computed by considering a
sufficiently large number of Fourier modes.

4, Clusters and HCs

Clustered states represent another class of stationary solutions. In the biharmonic model such states have been
already investigated in [35, 37]. Here below we summarize those results that are necessary to proceed ahead with
our general considerations.

A two-cluster state consists of two families of oscillators with phases o and v, respectively. Both for the sake
of simplicity and since they are the most widely observed, here, we mostly focus on the symmetric case of equal-
size clusters. The phases of the two families follow the differential equations

a=(GO) +GW—m)/2, ¥=(G(a—1)+ G(0)/2. (16)
The separation § = o — 1 satisfies the equation
§=(G(=6) — G()/2= -G (9), 17)

where G, is the anti-symmetric component of G. Two-cluster solutions are identified by the zeros of G5; 6 = 0
is always a solution which corresponds to a single cluster (vanishing distance between the two clusters).
In the biharmonic model, the symmetric and anti-symmetric component of the coupling function are

G (6) = sin 6 (cosy; + 2a cosy; cos ), (18)
Gs(6) = sin~y; cosd + a sin -y, cos 26. (19)

There are various solutions of the equation G, (6) = 0 besides 6y = 0: §y = 7 corresponds to an antiphase two-
cluster state. Two further solutions can be found by setting to zero the expression in parentheses in equation (18);
however, these solutions represent only one physically meaningful state. Indeed, given a two-cluster state
characterized by a separation 0, the same state can be seen as characterized by a separation 2 — &y, if the two
clusters are exchanged. These states exist only in the parameter region delimited by the curves where

cosy; & 2acosy, = 0. (20)

This equation with a plus sign defines the curve I'; which coincides with the bifurcation line where the
synchronous state loses stability, see figure 1. (In fact, cos §y = 1means §, = 0, i.e. the two-cluster solution
bifurcates from the fully synchronous one.) The minus sign, instead, corresponds to the curve I'_ where the two-
cluster state becomes the antiphase one. As a result, non-trivial clustered solutions with 6 = 7 exist only in the
regions delimited by I', and I'_ (see the two pairs of eyelets ¢, and e, in figure 1).

The stability of a two-cluster state is determined by the value of the inter- and intra-cluster exponents. The
inter-cluster exponent )\ measures the stability against perturbation of the phase-separation between the two
clusters. From equation (17) it follows

N = — G (80). 1)
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In the biharmonic model, GJ (6,) = cos 7 €088y + 2a cos 7y, cos 20y The intra-cluster exponents A} measure
the stability of the width of each cluster. From the equations of motion it is readily found that

Af = —[G4(0) + G (60) & GL(60)]. (22)

The solution with the plus (minus) sign refers to the cluster that is lagging behind (leading) by 6o. The maximal
eigenvalue is therefore

A = —[Gy(0) + GA(60) — IG¢(60)11/2. (23)

The inter-cluster exponent of the antiphase solution, Gy (1) = —cos~, + 2a cos",, is negative in between the
upper and lower branch of I'_ and vanishes along I"_, confirming that the clustered solutions bifurcate out of the
antiphase state. This region is almost complementary to the stability area of the synchronous state, since
G'(m)G’(0) < 01in the region where other clusters do not exist. The stability of the antiphase state to intra-
cluster perturbations is controlled by (see equation (23))

AM = —2a cos 7z, (24)

so that this state is stable within the region delimited by the purple curve in figure 1.

The non-trivial two-cluster state (6y = ) is unstable against inter-cluster perturbations within the eyelets e,
(because of the one-dimensional nature of the equation for 6, it has opposite stability with respect to that of the
synchronous solution), while it is stable within e;. Its intra-cluster stability can be determined from
equation (23). By taking into account that Gy (6y) = 0, we find that

22 = —cosy (1 — cosdp) + |sin bg(siny; + 4a siny, cos dp)|. (25)
Therefore, such a two-cluster state is unstable for 7/2 < 7, < 37 /2. A detailed analysis for a = 0.2 reveals that
the solution is unstable also within the eyelet e; .

This is not yet the end of the story. The opposite sign of the two exponents i implies that, while the width of
one cluster decreases, that of the other one diverges. However, as already discussed in [35], once the width of the
‘exploding’ cluster becomes of order 1, nonlinear effects (not captured by a linear stability analysis) induce a
relative phase shift of the two clusters, so that the leading cluster becomes the lagging one: this implies a stability
‘exchange’. As a consequence, the long term behavior can be assessed after averaging over the alternating periods
of stability and instability. Symmetry reasons imply that the time duration of such two periods are equal to one
another, so that the average exponent is, in general

Aa = —[G'a(0) + G'a(60)]/2. (26)

In the biharmonic model
Aa = —cosy (1 — cos dy)/2. 27

In the region of interest, A, < 0if cos7; > 0,i.e the fluctuations of the cluster widths on average decrease,
without ever collapsing onto it. This is nothing but an attracting HC. Because of the finite computer accuracy,
these oscillations necessarily collapse on the otherwise unstable two-cluster state.

5. Numerical simulations

5.1. Microscopic analysis

We start by exploring the parameter region identified by the rectangle in figure 1, which includes the area where
highly symmetric synchronous and asynchronous states and two-cluster states are all unstable. (Because of the
above mentioned symmetry, the upper eyelet is characterized by an equivalent dynamics.)

The outcome of a direct integration of equations (1) and (2) (starting from an initial condition close to the
splay state) is summarized in figure 2: the symbols identify the different asymptotic states, while the curves
correspond to the marginal stability lines (determined theoretically, see figure 1). The simulation of
equations (1) and (2) was performed for N = 1000; larger ensemble-size have been considered for several points
without observing any essential difference. The transient time was 2 x 10* time units.

In order to avoid the spurious formation of clusters in the HC states, we made the oscillators slightly
heterogeneous. Namely, their frequencies (all equal to zero in equations (1) and (2)) have been taken as
uniformly distributed in the interval [—0.5 x 1072, 0.5 x 107'2]. This diversity, which is crucial for the
detection of HCs, had no influence on the other dynamical states. It has been checked that variation of the
inhomogeneity in the range 107!° — 107!* has no essential effect on the parameters of the HC. For an automatic
detection of the states, all oscillators characterized by phase differences smaller than 10~ % have been identified as
belonging to the same cluster (this threshold was chosen by trial and error, after a visual inspection of the
observed regimes). By monitoring the number of clusters, we have found that their number varies in time only in
the case of HCs. This is due to the fact that the two cluster-widths greatly change over time, as illustrated in
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Figure 2. Map of dynamical regimes of the system (1) and (2), obtained via a direct numerical simulation, starting from a slightly
perturbed splay state. The explored area corresponds to the rectangle in figure 1. Notations are as follows. Black crosses: asynchronous
solutions, blue pluses: synchrony, green square: two-cluster states, red circles: SCPS, magenta stars: heteroclinic cycles. Cyan triangle
at 7, = 2.7, v, = 1.2 marks a three-cluster state. Black theoretical curves are the same as in figure 1. The map has been computed for
1000 oscillators, with the transient time 2 x 10*. The three black triangles correspond to points where SCPS is marginally stable as
obtained from equation (15).

0 200 400 600
time

Figure 3. Dynamics of the heteroclinic cycle. (a) Time variation of R reflects the so-called slow switching. (b) Evolution of the phases
of all oscillators (black) and of the mean field (red)—after subtracting the average growth. For rather long epochs oscillators are
grouped into two clusters with almost identical phases. However, these states are unstable and alternately each group widens until its
width becomes of order one, and then shrinks again. Notice, that there is no transfer of elements between the two groups, but the
mean field frequency is larger than that of oscillators. Indeed, we see that in the coordinate frame co-rotating with the frequency w, the
phase (; drifts away. Parameters are v, = 7, 7, = 1.35, N = 1000 (the dynamics is preserved for the ensemble size as large as

N = 5000). The initial conditions are a perturbed splay state. Size of the two groups is close but not equal to N /2.

figure 3(b), where the phase of each oscillator is plotted versus time in a co-rotating frame. There we see that time
intervals where the cluster amplitude is of order one alternate with relatively long periods where the width is
extremely small, thus yielding spuriously detected clusters. The asymmetry between the behavior of the two
clusters (one of them splits into two parts) follows from the non-perfectly equal size of the two clusters. The
periodic variation of the cluster-width is reflected in periodic variation of the order parameter R, (figure 3(a)).
Furthermore, the average frequency of the mean field is larger than that of oscillators, as can be appreciated from
the plot of the mean-field phase (figure 3(b)); this difference emerges due to a permanent interchange of the
leading and lagging clusters, discussed in the previous section. Thus, the HC state can be interpreted as a special
form of quasiperiodic SCPS dynamics, with a smooth but non-stationary distribution. A movie showing the
time evolution of HCs is included in the supplementary data (see supplementary movie 1).

Furthermore, we noticed that some regimes are approached after a very long transient. This is particularly
true close to the stability border of different states. The points that appear as SCPS for y, ~ 4.75, v, = 7/2,
converge to two-cluster states if the transient time is increased. Next, consider the thin ‘belt’ of SCPS states close
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Figure 4. Numerical results for -, = 7 upon varying +,. The initial conditions for each point are perturbed splay states (one
oscillator-phase being slightly displaced). Panel (a) shows the resulting state after a transient 5 x 10, coded by an integer. Heteroclinic
cycles are coded by —1; for the other states, the code equals the number of clusters. Panels (b) and (c) exhibit the first and the second
order parameters, respectively. Black circles correspond to numerical simulations; red lines are the results obtained by solving
equation (11). Macroscopic and microscopic frequencies are shown in (d): black circles and green squares are the frequencies of the
mean field and of the oscillators, respectively, determined numerically (since the oscillators are slightly non-identical, the oscillator
frequency is obtained by averaging over all units). Red and blue curves correspond to the analytical solution. The vertical dotted lines
mark o Vo and ~, respectively (see text).

to the theoretical curve, which denotes the border of stability of full synchrony. Computations show that upon
increasing the transient time, some points that appear as SCPS states in figure 2 progressively converge towards
an HC. Thus, the SCPS in the ‘belt’ domain is probably a very long transient regime. However, for the points in
the main domain of SCPS, e.g. for v, = 7, 7, = 1.5, the SCPS dynamics seems to be the asymptotic state, at least
it survives for 107 time units.

Further states have been occasionally detected (see the cyan symbol in figure 2). In particular three-cluster
states are found for -y, = 4.75and 1.58 < 7, < 1.66, where the degree of synchronization may even oscillate in
time (three-cluster states had been already observed in [35] for a slightly different amplitude of the second
harmonic).

A detailed quantitative analysis has been performed along theline , =  in the parameter space. The results
are shown in figure 4, where one can recognize three critical points: (i) 7, = /2 signals the loss of stability of the
splay state; (ii) 7y = arccos(2a) ~ 1.159 signals the loss of stability of the fully synchronous state; (iii)

7, &~ 1.401 signals the loss of stability of SCPS.

Upon decreasing -, from ~,, SCPS is first born through a Hopf bifurcation from the splay state; R; and R,
become strictly larger than zero and a finite mean-field frequency €2, which corresponds to the frequency of the
Hopfbifurcation, appears discontinuously. Simultaneously, the microscopic frequency w deviates from zero
because of the macroscopic modulation, without revealing any locking with €.

Interestingly, €2 is positive and always larger than w: this is at variance with the scenario observed in [38],
where the opposite was found. However, we should also recall that an equivalent scenario is observed in the
upper eyelet, once the transformation ¢ — — ¢ has been performed. In fact, such a change of variable would
lead to the scenario observed in LIF neurons. Notice that for Kuramoto-like model of nonlinearly coupled
oscillators [24, 36] both cases (2 > wand ) < w) are possible. Altogether, the existence of a finite difference
between microscopic and macroscopic frequencies is a key signature of a quasiperiodic SCPS.

Upon further decreasing ;, we enter a region where the dynamics converges to HCs which are characterized
by asudden increase of the (average) R;, while no discontinuity is exhibited by R, (;). When, finally, Yy is
approached, unsurprisingly R, and R, converge to 1, while both €2 and w converge to the frequency of the fully
synchronous state. The nature of the bifurcation is not clear. We briefly comment in the next section, while
discussing the stability of SCPS.
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Figure 5. [llustration of the multistability in the collective dynamics, for v, = m upon varying +,. Black symbols correspond to
perturbed splay initial conditions (see also figure 4); red curves correspond to slow increase of +y,. Panels (a)-(c) are similar to those in
figure 4, panel (d) shows the frequency difference. Computations with slow decrease of -, are not shown because their results coincide
with the black symbols.
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Figure 6. Eigenvalues of SCPS for v, = 7 and «, = 1.45. Circles and crosses correspond to a truncation after 100 and 500 modes,
respectively.

The sudden jump observed for v, = 7, suggests the possible existence of multistability. Accordingly, we

have performed two additional series of simulations, by progressively increasing (decreasing) ,, and choosing
the new initial condition as a slightly perturbed version of the final configuration for the previous value of ;. As
shown in figure 5, a bistability region is indeed found where HCs and SCPS are simultaneously stable.

5.2. Macroscopic analysis

For amore detailed characterization of SCPS, we have determined the corresponding probability distribution by
solving equation (11), as discussed in section 3. This method allows to obtain the phase distribution even when it
is unstable. As it can be seen in figure 4 (see the thin solid lines), the results are consistent with the direct
numerical simulations wherever SCPS is stable. Moreover, it is found that SCPS exists also in the interval ['yf, 'yp]
and it reconnects to the fully synchronous state. As for the microscopic frequency w, given by

w=Q + 27,

italso agrees with the numerical simulations.

The stability analysis carried out in section 3 allows determining -, by solving the eigenvalue problem (15). A
typical spectrum is plotted in figure 6. There we see that, with a few exceptions, the eigenvalues tend to align
along the imaginary axis. Besides the zero associated to the conservation of the total probability, there exists a
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Figure 7. Evolution of an initially flat distribution with a gap A (0) for v, = 1.5and 7, = 7, where SCPS is stable. The inverse
gap-width 1/A is shown as a function of time, for A(0) = 7/7 and 7 /5, (black and red lines, respectively).
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Figure 8. Stability analysis of the splay state for the biharmonic model. Real and imaginary part of the eigenvalues for the maximally
unstable direction for v, = 7 are shown versus ;. The left (right) scale refers to the real (imaginary) part. The solid and dashed lines
correspond to the real and imaginary components, respectively. The full circle identifies the point where the fully synchronous
solution changes stability.

second zero eigenvalue which follows from the invariance under phase-translation of the probability density. In
panel (b) we see that the real part of the eigenvalues decreases exponentially with their imaginary component.
The plateau seen for large 1, is a consequence of the finite numerical accuracy of the simulations. Interestingly,
finite-size effects are practically absent (at least in this parameter region): a larger number of Fourier modes leads
to eigenvalues with a larger frequency (imaginary component) and an exponentially small real part.

In practice, SCPS is marginally stable, as there is an infinite number of eigenvalues with a practically
vanishing real part. The evolution of a uniform distribution initially confined to an interval of size 27w — A,
offers the chance to appreciate the role of the weakly attracting directions. As seen in figure 7, the gap size goes to
zero, but it does so in an extremely slow way, namelyas 1 /In ¢.

In the past, the evidence of a similarly slow convergence was found for the splay state itself. In the context of
pulse-coupled oscillators with an analytic velocity field a similar set of exponentially decreasing real parts had
been observed [41, 42]. In the context of Kuramoto—Daido models, the strength of the real part is directly
proportional to the amplitude of the Fourier component of the coupling function (see equation (C2) in [38]), so
that, when the number of Fourier modes is finite, infinitely many strictly marginal directions are present (in the
thermodynamic limit). This is reminiscent of the Watanabe—Strogatz theorem [43, 44] which implies that (for a
strictly mono-harmonic coupling function) infinitely many directions are not only linearly marginally stable but
actually correspond to conservation laws. Our results show that the existence of conservation laws breaks down
already when two harmonics are considered. In fact, although exactly marginally stable directions are detected in
the analysis of the splay state (here only two Fourier modes are present, so that only two directions can be strictly
(un)stable), the same is no longer true for SCPS, as all modes have a weak but finite stability.

In figure 8 we plot the real and imaginary part of the most unstable eigenvalue versus +;. The data confirms
that linear instability occurs below 7,: the bifurcation is of Hopf type. SCPS is maximally unstable around
7, ~ 1.33. By further decreasing ;, both the real and the imaginary parts decrease to zero, while approaching V-
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From the dependence of the real part, it seems that the scaling behavior is quadratic in the distance from the
critical point. The nature of the bifurcation is unclear: simulations close to 7, arenot reliable. It is nevertheless
instructive to notice that the weak instability is consistent with the observation of SCPS over extremely long time
scales mentioned in the beginning of this section. The correct identification of the critical point is further
confirmed in figure 2, where the triangles are the outcome of the stability analysis for three different choices

of v,.

6. Other setups

So far, we have discussed the occurrence of SCPS in a simple Kuramoto—Daido setup where the coupling
function is composed of just two Fourier harmonics. The Kuramoto—Daido representation generally holds in
the weak coupling limit; however, the bi-harmonic coupling function may be too simple a model and it is
therefore worth comparing with other setups. As recalled in the introduction, SCPS was first observed in pulse-
coupled LIF neurons [25]. In [38], it has been shown that the system can be effectively described by a Kuramoto—
Daido model with a coupling function containing several non-negligible harmonics. In the first subsection we
show that such harmonics contribute to destabilizing the two-cluster states that are, in fact, never observed. In
the second subsection we discuss an ensemble of two-dimensional Rayleigh oscillators each described by two
variables, showing that SCPS can be generated in this case as well. A phase reduction works also in this latter case,
where the higher harmonics play a different role: they are responsible for the destabilization of the splay state,
giving rise to more structured cluster states.

6.1. LIF neurons

One of the important open questions in the study of ensembles of phase-oscillators is that of determining a priori
whether a given coupling function G gives rise to either smooth distributions, or macroscopic clusters, or both.
In this perspective it is instructive to explore the difference between the scenario seen in the biharmonic model
and that observed in an ensemble of LIF neurons. In such a case the model can be reduced to a Kuramoto—Daido
setup with

G(p) = g1(gz -1+ (p)ea'(l—sa)/v + g3e(1"*’)/” -4, (28)

(see [38] for a precise definition of the various parameters—notice that here we are using a different notation
— instead of p—since in the above equation the phase is normalized between 0 and 1). Correspondingly we
change notations in this paragraph. Straightforward calculations reveal that two-cluster states exist also in the
above model, the main difference being, however, that now (for « = 6), the average exponent \, > 0, so that
two-cluster states are effectively unstable, i.e. no any spurious cluster is appearing due to the finite precision of
computations. This explains why they have never been seen in numerical simulations.

Itis natural to ask whether this holds true for arbitrarily large «, when the SCPS becomes increasingly close
to full synchrony. We proceed by expanding G, around 0 in the limit of large cv. One first finds

Gr(O) = ———

(eT - 1)1
a—+ gv

which is negative and finite. Comparison with equation (17), implies that the synchronous solution is always
unstable. As for the second derivative, the leading order

e —1

Gl(0)=aP——
A0 2v(a + gv)

is positive and increasingly large. As a result, on the basis of the first two polynomial terms of G, (), one finds
that it vanishes also for
2
6= 22, (29)
!
This phase shift identifies a two-cluster state; its value decreases as the cubic power of the pulse-width (equal to
1/«). Under this quadratic approximation, the slope of G, in 0 and ¢, are equal and opposite to one another, so
that Ay = 0. This marginal value requires going one order beyond in the perturbation analysis. The computation
of the third derivative shows that it is negative and of order a*. As a result its contribution to the derivative in &,
is of order a8 ~ 1/a?. This makes the sum of the derivatives in 0 and & slightly negative and proves that the
two-cluster state is always effectively unstable.
If we recall the definition of G, one might be surprised to see that its expansion around 0 contains the

second, even, power of . One should however remember that the original function G is continuous but not
even of class CV; s0 it is not unnatural to expect a discontinuity of some derivative in zero.
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0.2

Figure 9. Self-consistent partial synchrony is observed in model (32) for a rather broad range of -y values. Panel (a) shows the final state:
the y variable corresponds to the number of clusters, if it does not vary within a long time interval, or to —1, otherwise (such a regime
appears at the border between the synchronous and two-cluster states and between SCPS and nine-cluster states; possibly these states
simply suggest the presence of very long transients). Thus, the state coded by zero corresponds to SCPS. Panel (b) shows the order
parameter. In the two-cluster states it is almost one, because the clusters are close to each other. In the SCPS state it varies between
~0.4 and ~0.8. Finally, panel (c) shows the frequency difference between microscopic and macroscopic dynamics, which differs from
zero in SCPS.

In smooth models, in the vicinity of the bifurcation where the synchronized solution loses its stability (e.g.,
for the biharmonic model) one can write

Ga(p) = —cp + Ay’ (30)

If A > 0and & > 0, then there exists a second zero 6y = /¢/A, which corresponds to the clustered solution.
Therefore

A =2e — 3Ap; = —£ <0, (31)

so that smooth interaction functions necessarily lead to effectively stable two-cluster states (at least with respect
to intracluster perturbations).

Even more, equation (27) yields that in the biharmonic model no effectively unstable cluster may exist: only
HC:s. For these clusters to exist, higher harmonics are needed.

6.2. Rayleigh oscillators
In order to provide further evidence on the ubiquity of SCPS, we present a numerical study of globally coupled
identical Rayleigh oscillators*. The equations are

K — C(1 — %) x% + wh = eRe[e(X + iV)], (32)

where X = N™I37, xpand Y = N!37, %; are two mean fields, while € is the coupling strength. Finally, the
control parameter y accounts for a phase shift of the coupling term: it determines whether the interaction is
attractive or repulsive.

It is well-known that uncoupled units in equation (32) exhibit limit-cycle oscillations, while the nonlinearity
parameter ¢ determines the stability of the limit cycle. Below we consider { = 5; for this parameter the
transversal Lyapunov exponent is —7.358. Therefore, adiabatic elimination of the amplitude is rather
meaningful.

An appropriate order parameter is

p = rms(X)/rms(x), (33)

This system is equivalent to the van der Pol equation; they are related via the variable substitution x — x/+/3 . We prefer this formulation
of the model for technical reasons.
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Figure 10. Phase response curve I' (red dashed line), the forcing function Z (blue dotted) of the Winfree model equation (34), and the
coupling function Gy of the Kuramoto—Daido reduction (black) for v = —0.4.

where ‘rms’ means root mean square of the time evolution. The splay state is characterized by a constant mean
field and thereby p = 0.1In the fully synchronous state, for identical oscillators, the microscopic and
macroscopic dynamics are equivalent to one another so that p = 1.

The scenario resulting for N = 1000, ¢ = 0.05, ( = 5, and transient time 7.5 x 10° is reported in figure 9.
It is reminiscent of that observed in the biharmonic model, with some differences. SCPS establishes itself in
between the parameter range where full synchrony is stable (below v ~ —0.6) and the region where pis
negligible (above v &~ 0.05). In this case, the mean field is slower than the individual oscillators, as in the upper
eyelet of the biharmonic model, see figure 2. The regime characterized by a vanishing p is not asynchronous buta
symmetric nine-cluster state (see also below). In fact, the splay state turns out to be unstable in the full range of y
values that we have explored. Finally, in the interval [—0.6, —0.2] we see a slow convergence towards a two-
cluster state (the large value of the order parameter pis due to the closeness between the two clusters).

The dynamics of the coupled system equation (32) can be better understood by performing a phase
reduction. This can be done by introducing a phase variable for each individual oscillator, making reference to
the uncoupled limit (i.e. € = 0): ¢, = 27t/ T, where t; is the time elapsed from the passage through a chosen
originx = 0, x > 0, while T'is the oscillation period.

In the weak coupling limit, the original Rayleigh oscillators (32) can be mapped onto a Winfree model

b= w0+ T @)Y Z(), (34)
j

where I'(¢) is the phase response curve (PRC), while Z (¢) is the forcing function. I'(¢) can be obtained by
following a standard approach: it corresponds to the phase shift imposed by an infinitesimal kick when the phase
of the oscillator is ¢. The resulting PRC is reported in figure 10 (see the red dotted curve). The forcing function Z
is instead obtained by expressing the coupling term due to the jth oscillator Re [e" (x; + ix;)] asa function of ¢,
(see the blue dotted curve in figure 10). Finally, following [12, 38], one can further map the Winfree model (34)
onto a Kuramoto—Daido model, by computing the convolution of I and Z, i.e.

Ga(@) = [T(6 —¥)Z@W)dv. (35

The resulting coupling function corresponds to the black curve in figure 10. Fourier analysis shows that even
modes are absent: this follows from the symmetry of the limit cycle: adding 7 to the phase results in changing the
sign of both the PRC and forcing term.

In order to test the validity of the Kuramoto—Daido reduction, it has been simulated for eight harmonics.
The resulting scenario is in close agreement with that one exhibited by the original ensemble of Rayleigh
oscillators, including the observation of nine-cluster states. Within the Kuramoto—Daido representation, one
can easily perform a stability analysis of both the splay and synchronous state. As discussed in [38], the stability of
the splay state is determined by the imaginary components of the Fourier modes of Gg. In table 1 we show the
contribution of the first eight non-vanishing components for v = 0.2, where a zero order parameter is
observed. In fact, the splay state turns out to be unstable because of the contribution of the 7th and higher
harmonics. This is at variance with the biharmonic model, where the stability was determined by the first
Fourier mode.

As for the fully synchronous state, its stability is determined by the sign of G, (0). The bifurcation point
where it changes stability is y ~ —0.573 in agreement with the numerical simulations of the original model (32).
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Table 1. Eigenvalues associated to the stability
of the splay state for v = 0.2. The index
refers to the Fourier mode which they are

associated with.

Index Real part Imaginary part
1 —1.6 x 1072 21 x10°"
3 —5.6 x 1072 1.5 x 1072
5 —1.6 x 1072 1.9 x 102
7 3.0 x 1072 1.0 x 1072
9 4.0 x 107 1.7 x 107
11 1.5 x 1077 5.0 x 107*
13 3.8 x 10°* 43 % 107*
15 7.9 x 107° 1.8 x 107*

For larger values of yand below —0.2, the Kuramoto—Daido model possesses two-cluster states. Following
the analysis outlined in section 4, we conclude that two-cluster states are effectively stable. In fact, for vy = —0.4,
the inter-cluster exponent \; = —Gj (§) = —0.0669 is negative, while \j = 0.0869,and \; = —0.1146.
Accordingly the average exponent A\, = —0.01385 is negative, in spite of one of the two intra-cluster exponents
being positive. Altogether, the scenario is similar to that observed in the biharmonic model.

7. Conclusions

In this paper we have shown that SCPS is a general phenomenon, arising in many setups of globally coupled
oscillators. This regime naturally emerges if the system is close to the border between full synchrony and
asynchrony. In fact, the minimal requirement for SCPS to arise is the presence of two harmonics in the coupling
function G (¢). This condition is naturally fulfilled in weakly coupled oscillators away from the Hopf
bifurcation. As an example we have indeed verified that SCPS arises also in an ensemble of Rayleigh oscillators,
where an approximate coupling function containing eight Fourier modes suffices to quantitatively reproduce
the dynamics of the original model. Altogether, SCPS is yet another dynamical regime that cannot be produced
by the standard Kuramoto—Sakaguchi model. In fact, both SCPS with and without frequency difference can be
obtained in a model, based on strictly sinusoidal coupling function, but it requires a dependence on the coupling
strength and/or the phase shift of the sine-function on the order parameter, i.e. SCPS can be observed in case of
nonlinear coupling only. This limitation disappears for our minimal Kuramoto—Daido model.

The mathematical structure of Kuramoto—Daido models allows for a semi-analytic treatment: it is not only
possible to determine the probability distribution of the phases, but also to perform a linear stability analysis and
thereby determine the parameter range, where SCPS can be effectively observed. In the biharmonic model and
the Rayleigh oscillators, the loss of stability of SCPS drives the system towards a HC, which can itself be
interpreted as a (more structured) form of SCPS: here, besides a difference between the microscopic and mean
field frequencies, a pulsation of the amplitude is present. In LIF neurons, instead, SCPS is always stable, while
two-cluster states are always unstable.

It would be interesting to discover whether and under which conditions other kinds of bifurcation can drive
SCPS towards more complex forms of collective dynamics. This question is related to that of identifying the
number of relevant collective variables. A fairly trivial answer can be given in the case of perfect clusters, as it
boils down to studying low-dimensional networks composed of a few ‘supernodes’ (the clusters themselves).
The question is much less trivial in the context of smooth distributions such as those associated to SCPS.
Possibly, the first example of a complex behavior in a globally coupled partially synchronized system was given in
[45], where the Morris—Lecar neuronal oscillators were analyzed numerically. However, this is a setup where
phase-reduction is not globally possible. More recently, evidence of a chaotic collective behavior has been found
in a population of quadratic IF neurons [46], where, however, the higher dynamical complexity is triggered by
the presence of delayed interactions. So the question whether identical phase-oscillators can lead to collective
chaos s still open.

Another open general problem is that of using the information encoded in the coupling function to predict
whether SCPS and/or cluster states can be generated. In the case of a sinusoidal coupling, the situation is
simplified by the fact that clusters are not possible: their existence is excluded by the Watanabe—Strogatz theory
[43,44], see also [17, 34]. Thus, when the splay and synchronous states are both unstable, SCPS is the only
possible solution. In more general contexts cluster states sometimes coexist with SCPS, as well as with chimera-
like solutions.
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