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Integral Equations
and Operator Theory

A Lefschetz Fixed Point Formula
for Elliptic Quasicomplexes

D. Wallenta

Abstract. In a recent paper, the Lefschetz number for endomorphisms
(modulo trace class operators) of sequences of trace class curvature was
introduced. We show that this is a well defined, canonical extension of
the classical Lefschetz number and establish the homotopy invariance of
this number. Moreover, we apply the results to show that the Lefschetz
fixed point formula holds for geometric quasiendomorphisms of elliptic
quasicomplexes.

Keywords. Elliptic complexes, Fredholm complexes, Lefschetz number.

1. Introduction

The concept of quasicomplexes goes back at least as far as the early 1980s,
when those objects were introduced as essential complexes in [7]. These are
sequences of bounded linear operators on Banach spaces whose curvature is
compact. So they generalise the concept of complexes which have vanish-
ing curvature. A main result was the fact that Fredholm quasicomplexes of
Hilbert spaces are compact perturbations of Fredholm complexes. This was
the base for the definition of Euler characteristic of Fredholm quasicomplexes
in [9]. In the sequel these ideas were used to introduce elliptic quasicomplexes
on compact manifolds with boundary [5] and compact closed manifolds [11].
As described in [11], it was an open question how the concept of Lefschetz
number can be extended to quasicomplexes. The main idea how this problem
can be solved is given in [10].

In the present paper we show that the main result of [10] can be obtained
with a weaker definition of Fredholm property along more classical lines. In
the third section we show that the definition of Lefschetz number is cor-
rect and prove some properties of this number. Note that these results were
proved independently in [2] in the more general context of Banach spaces.
Our method based on Hilbert space techniques has the advantage of providing
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explicit formulas. Finally, we prove that the Lefschetz fixed point formula is
still valid for geometric quasiendomorphisms of elliptic quasicomplexes. This
generalises the classical result of [1] for geometric endomorphisms of elliptic
complexes.

2. I-Quasicomplexes

In this paper we consider sequences of the form

(V ·, A) : 0→ V 0 A0

→ V 1 A1

→ · · · AN−1

→ V N → 0

where V i are Hilbert spaces and Ai are linear bounded operators. Such a
sequence is called complex if its curvature Ai+1Ai vanishes and it is called
quasicomplex if its curvature is compact.

As is shown in [10], it also makes sense to consider sequences whose
curvatures belong to some operator ideal I ⊂ K, where K is the class of all
compact operators. We will write F for the class of operators of finite rank
and Sp, with p ≥ 1, for the Schatten classes. Note that F ⊂ I holds, if I �= 0
(cf. [6]).

Definition 2.1. A sequence (V ·, A) of operators Ai ∈ L(V i, V i+1) is called
I-quasicomplex if Ai+1Ai ∈ I(V i, V i+2) holds for all i = 0, 1, . . . , N − 2.

A 0-quasicomplex is obviously a complex and a K-quasicomplex is just
called quasicomplex.

Definition 2.2. Let (V ·, A) be a quasicomplex. By an I-parametrix of this
quasicomplex is meant any sequence of operators P i ∈ L(V i, V i−1) which
satisfy

P i+1Ai +Ai−1P i = IdV i −Ri

for all i = 0, 1, . . . , N , with Ri ∈ I(V i).

With this definition, aK-parametix is a parametrix in the classical sense,
i.e. there are operators Ki ∈ K(V i), such that P i+1Ai +Ai−1P i = IdV i −Ki

for all i = 0, 1, . . . , N .
It is well known that a complex (V ·,D) of Hilbert spaces is Fredholm

(i.e. the cohomology Hi(V ·,D) := kerDi/imDi−1 is finite dimensional at
each step i = 0, 1, . . . , N) if and only if it has a parametrix. For this reason a
quasicomplex is said to be Fredholm if it possesses a parametrix. An equiv-
alent definition of the Fredholm property can be given using the notion of
Calkin algebra.

Let (V ·, A) be an I-quasicomplex. The so-called adjoint quasicomplex
is given by

(V ·, A∗) : 0 ← V 0 A0∗
← V 1 A1∗

← · · · AN−1∗
← V N ← 0,

where Ai∗ ∈ L(V i+1, V i) stands for the adjoint of Ai in the sense of Hilbert
spaces. Obviously the operators Ai∗Ai+1∗ are compact again. The operators

Δi = Ai−1Ai−1∗ +Ai∗Ai
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are called the Laplacians of the quasicomplex. As mentioned in [11], (V ·, A)
is Fredholm if and only if all Laplacians Δi of (V ·, A) are Fredholm. In this
case, we denote by Hi ∈ F(V i) the orthogonal projection of V i onto the
null-space of Δi and introduce the Green operator

Gi := (Δi �(kerΔi)⊥)−1(IdV i −Hi).

Then IdV i = Hi + ΔiGi holds. It is easy to see that the Laplacians fulfill

AiΔi −Δi+1Ai ∈ I(V i, V i+1).

Multiplying this operator by Gi+1 from the left and by Gi from the right we
obtain

AiGi −Gi+1Ai ∈ I(V i, V i+1),

since Hi+1Ai = AiHi = 0, if I = 0, and Hi ∈ I(V i), if I �= 0. Hence it
follows that the operators

P i := Ai−1∗Gi

yield a parametrix P for (V ·, A).
If I = 0, this is a special F-parametrix of the (quasi-)complex. If I �= 0,

then F ⊂ I implies that P is a special I-parametrix in this case.
Obviously, when perturbing the operators of a Fredholm complex by

operators of I, we obtain a Fredholm I-quasicomplex. It turns out that the
inverse theorem is also true. This follows from the main theorem in [10]
and the fact that each Fredholm I-quasicomplex possesses an I-parametrix,
provided that I �= 0.

Theorem 2.3. Let (V ·, A) be a Fredholm I-quasicomplex. Then there exist
operators Di ∈ L(V i, V i+1), such that Di−Ai ∈ I(V i, V i+1) and Di+1Di =
0.

An I-quasiendomorphism of a quasicomplex (V ·, A) is a sequence of
linear maps Ei ∈ L(V i) which makes the diagram

0→ V 0 A0

→ V 1 A1

→ · · · AN−1

→ V N → 0
↓ E0 ↓ E1 ↓ EN

0→ V 0 A0

→ V 1 A1

→ · · · AN−1

→ V N → 0

commutative modulo operators of I, i.e. Ei+1Ai − AiEi ∈ I(V i, V i+1) for
all i = 0, 1, . . . , N − 1.

As above, K-quasiendomorphisms are called quasiendomorphisms and
0-quasiendomorphisms are endomorphisms.

Theorem 2.4. Let (V ·, A) be a Fredholm I-quasicomplex, E an I-quasiendomo
rphism of this quasicomplex and (V ·,D) any complex with the property that
Di −Ai ∈ I(V i, V i+1). Then, there is an endomorphism Ẽ of (V ·,D) satis-
fying Ẽi − Ei ∈ I(V i).
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Proof. The case I = 0 is trivial. For I �= 0, let P be an I-parametrix of
(V ·, A), i.e. P i+1Ai + Ai−1P i = IdV i − Ri with Ri ∈ I(V i). Now it is easy
to see that

Ẽi := Di−1Ei−1P i + EiP i+1Di

is an endomorphism of (V ·,D).
Setting

T i := Ei+1Di −DiEi

= Ei+1Ai −AiEi + Ei+1(Di −Ai)− (Di −Ai)Ei

∈ I(V i, V i+1)

we obtain

Ei − Ẽi = Ei − (Di−1Ei−1P i + EiP i+1Di)

= Ei − Ei(Di−1P i + P i+1Di) + T i−1P i

= EiRi + T i−1P i

∈ I(V i),

as desired. �
Two quasiendomorphisms E and F of (V ·, A) are said to be homotopic

if there exists a sequence of bounded linear operators hi : V i → V i−1 with
the property that

Ei − F i = Ai−1hi + hi+1Ai

for all i = 0, 1, . . . , N .

3. Lefschetz Number

Suppose E = {Ei} is an endomorphism of a Fredholm complex (V ·,D). Then
the mapping

HEi : Hi(V ·,D)→ Hi(V ·,D),

given by [v] 	→ [Eiv], is an endomorphism of the finite-dimensional space
Hi(V ·,D), and so the trace trHEi is well defined, for each i. The alternating
sum

L(E,D) :=
∑

i

(−1)i trHEi

is called the Lefschetz number of the endomorphism.
If Ei = IdV i are the identity maps, then the trace trHEi just

amounts to the dimension ofHi(V ·,D) whence L(IdV · ,D) = χ(V ·,D), where
χ(V ·,D) is the Euler characteristic of the complex.

If E and F are homotopic endomorphisms of a Fredholm complex
(V ·,D) then L(E,D) = L(F,D) holds, as is easy to check.

The elements of the Schatten class S1 are called trace class operators.
Such operators possess a trace, if they are selfmappings. This trace has the
following important property which is a consequence of a well-known theorem
of V. B. Lidskii.
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Theorem 3.1. Let V, W be Hilbert spaces and A ∈ L(V,W ), B ∈ L(W,V ) be
such that BA ∈ S1(V ) and AB ∈ S1(W ). Then tr (AB) = tr (BA) holds.

It turns out that the Lefschetz number can be extended to S1-
quasiendomorphisms of S1-quasicomplexes. To show this we need an auxil-
iary result which is usually referred to as Euler’s identity, see [1] or Theorem
19.1.15 in [4].

Lemma 3.2. Let E be an endomorphism of a Fredholm complex (V ·,D), such
that Ei ∈ S1(V i) for all i = 0, 1, . . . , N . Then

L(E,D) =
N∑

i=0

(−1)i trEi.

Note that Lemma 3.2 is valid not only for trace class operators Ei

but also for all operators Ei, for which the wave front calculus allows one
to define the trace by restricting the Schwartz kernel to the diagonal, see
Theorem 19.4.1 of [4].

The following definition is of crucial importance in this paper. As men-
tioned, it stems from [10] by direct calculation.

Definition 3.3. Let (V ·, A) be a Fredholm S1-quasicomplex and E an S1-
quasiendomorphisms of this quasicomplex. Then the Lefschetz number is
defined as

L(E,A) = L(Ẽ,D) +
N∑

i=0

(−1)i tr (Ei − Ẽi),

where (V ·,D) is a complex, such that Di − Ai ∈ S1(V i, V i+1), and Ẽ is an
endomorphism of (V ·,D), such that Ẽi − Ei ∈ S1(V i).

Obviously, L(E,A) coincides with the classical Lefschetz number, if
(V ·, A) is a Fredholm complex and E is an endomorphism of (V ·, A).

We have to show that the definition is independent of the particular
choice of D and Ẽ. For this purpose we choose an arbitrary S1-parametrix
P . Then Ẽ and

Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di ∈ S1(V i)

are homotopic endomorphisms of (V ·,D). By Lemma 3.2,

L(Ẽ,D) =
N∑

i=0

(−1)i tr (Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di)
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and therefore

L(E,A) =
N∑

i=0

(−1)i tr (Ei −Di−1Ẽi−1P i − ẼiP i+1Di)

=
N∑

i=0

(−1)i tr (Ei −Di−1Ei−1P i − EiP i+1Di)

=
N∑

i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai),

the second and third equalities being due to Theorem 3.1. Indeed, the differ-
ences of the right-hand sides and the left-hand sides of these equalities just
amount to

N−1∑

i=0

(−1)i tr ((Ei − Ẽi)P i+1Di −Di(Ei − Ẽi)P i+1),

N−1∑

i=0

(−1)i tr (EiP i+1(Ai −Di)− (Ai −Di)EiP i+1),

respectively, where each summand vanishes by Theorem 3.1. This shows the
independence of Ẽ and D.

Definition 3.3 implies in particular that L(E,A) = L(E,D), and so we
obtain immediately

L(IdV · , A) = L(IdV · ,D) = χ(V ·,D) =: χ(V ·, A),

cf. [9].

Corollary 3.4. Let (V ·, A) be a Fredholm S1-quasicomplex and E an S1-
quasiendomorphism of this quasicomplex. Then

L(E,A) =
N∑

i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)

for each S1-parametrix P of (V ·, A).

The corollary above can also be used as a definition of Lefschetz number.
This was precisely our approach in [10].

Choosing Ẽi := Di−1Ei−1P i+EiP i+1Di as in the proof of Theorem 2.4,
we get L(Ẽ,D) = 0, for Ẽ and 0 are homotopic endomorphisms of (V ·,D).
Hence it follows that

L(E,A) =
N∑

i=0

(−1)i tr (Ei − Ẽi)

in this special case.

Theorem 3.5. Let (V ·, A) be a Fredholm S1-quasicomplex and E, F homo-
topic S1-quasiendomorphisms of this quasicomplex. Then L(E,A) = L(F,A)
holds.
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Proof. Choose a complex (V ·,D), such that T i := Ai −Di ∈ S1(V i, V i+1).
Set

Gi := Ei − F i − T i−1hi − hi+1T i

= Di−1hi + hi+1Di.

Then G is an endomorphism of the complex (V ·,D) homotopic to 0, and we
find

L(E,A)− L(F,A) = L(E,D)− L(F,D)

=
N∑

i=0

(−1)i tr (Ei − F i −Di−1(Ei−1 − F i−1)P i − (Ei − F i)P i+1Di)

=
N∑

i=0

(−1)i tr (Gi −Di−1Gi−1P i −GiP i+1Di)

= L(G,D)
= 0,

the third equation being a consequence of Theorem 3.1. �

Remark 3.6. The equivalence of Definition 3.3 and Corollary 3.4 was shown
recently by Eschmeier in [2]. Moreover, he proved Theorem 2.4 in the case of
Sp-quasicomplexes in Banach spaces.

4. Fixed Point Formula

Let X be a C∞ compact closed manifold of dimension n and F i smooth
vector bundles over X.

By a quasicomplex of pseudodifferential operators on X is meant any
sequence of the form

(C∞(X,F ·), A) : 0→C∞(X,F 0) A0

→ C∞(X,F 1) A1

→ · · · AN−1

→ C∞(X,FN )→0

with Ai ∈ Ψmi

cl (X;F i, F i+1) satisfying Ai+1Ai ∈ Ψ−∞(X;F i, F i+2). In
other words, the curvature of C∞(X,F ·) is a smoothing operator in the oper-
ator algebra under study. The quasicomplex is called elliptic if the complex
of principal symbols

π∗F · : 0 → π∗F 0 σm0 (A0)→ π∗F 1 σm1 (A1)→ · · · σmN−1 (AN−1)→ π∗FN → 0

is exact away from the zero section of T ∗X.
By a parametrix of a quasicomplex C∞(X,F ·) is meant any sequence of

pseudodifferential operators P i ∈ Ψ−mi−1
cl (X;F i, F i−1) satisfying the homo-

topy equations

Ai−1P i + P i+1Ai = IdF i − Si

with smoothing operators Si ∈ Ψ−∞(X;F i) for all i = 0, 1, . . . , N .

Theorem 4.1. For a quasicomplex (C∞(X,F ·), A) to possess a parametrix it
is necessary and sufficient that it is elliptic.
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Proof. See [11]. �

Let s ∈ R. We may extend the quasicomplex C∞(X,F ·) to a quasicom-
plex of Sobolev spaces, i.e.

(Hs·(X,F ·), A) : 0→Hs0(X,F 0) A0

→ Hs1(X,F 1)A1

→· · ·A
N−1

→ HsN (X,FN )→0

where si are given by s0 := s and si+1 := si −mi. This is a quasicomplex
in the context of Hilbert spaces. More precisely, it is an Sp-quasicomplex for
all p ≥ 1.

Theorem 4.2. Assume that (C∞(X,F ·), A) is an elliptic quasicomplex. Then
the extended quasicomplex (Hs·(X,F ·), A) is Fredholm.

Proof. See [11]. �

A quasiendomorphism of (C∞(X,F ·), A) is a family E = {Ei} of
bounded linear selfmaps Ei of C∞(X,F i), such that Ei+1Ai = AiEi modulo
smoothing operators Ψ−∞(X;F i, F i+1) for all i = 0, 1, . . . , N − 1. By Theo-
rem 7.6 of [11] there is a perturbation D of the differential A by smoothing
operators, such that (C∞(X,F ·),D) is a complex. Moreover, a slight change
in the proof of Lemma 2.4 shows that there is an endomorphism Ẽ = {Ẽi}
of (C∞(X,F ·),D), such that Ẽi − Ei ∈ Ψ−∞(X;F i) for all i = 0, 1, . . . , N .
Note that each smoothing operator S ∈ Ψ−∞(X;F i) belongs to the ideal
S1(Hs(X,F )) for each s ∈ R and its trace in the sense of Sobolev spaces just
amounts to the trace obtained by restricting the (smooth) Schwartz kernel of
S to the diagonal of X×X, evaluating the matrix trace of the restriction and
integrating it over the diagonal. For a quasiendomorphism E of an elliptic
quasicomplex (C∞(X,F ·), A) we introduce the Lefschetz number L(E,A) by
Definition 3.3, i.e.

L(E,A) = L(Ẽ,D) +
N∑

i=0

(−1)i tr (Ei − Ẽi),

where the traces are evaluated in Sobolev spaces. Clearly, this definition
is independent of the particular choice of s. The cohomology of the Fred-
holm complex (Hs·(X,F ·),D) does not depend on the particular choice of
s, too, and just amounts to that of (C∞(X,F ·),D). Hence, if every map
Ei ∈ L(C∞(X,F i)) extends to a bounded linear selfmap of Hsi(X,F i) for
s large enough, then the same is true for Ẽi and so the Lefschetz number
L(Ẽ,D) can be also evaluated for the complex (Hs·(X,F ·),D) of Hilbert
spaces. However, the geometric quasiendomorphisms E to be considered fail
to be of trace class, hence the Euler identity of Lemma 3.2 no longer applies.
Even so, using the facts that Ẽi and

Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di ∈ L(C∞(X,F i))
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are homotopic and Id − Di−1P i − P i+1Di ∈ Ψ−∞(X;F i) holds, we can
exploit Theorem 19.4.1 of [4] and obtain

L(Ẽ,D) = L(Ẽ −DẼP − ẼPD,D)

=
N∑

i=0

(−1)i tr (Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di)

=
N∑

i=0

(−1)i tr (Ẽi −Ai−1Ei−1P i − EiP i+1Ai),

where the traces are evaluated by restricting the (not necessarily smooth)
kernels. Hence, we can compute the Lefschetz number by the explicit formula
of Corollary 3.4

L(E,A) :=
N∑

i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)

where P is a parametrix of the quasicomplex (C∞(X,F ·), A), cf. Lemma 7.2
of [8].

Let f be a smooth selfmap of the manifold X and f∗F i the induced
bundles. The maps f∗ : C∞(X,F i) → C∞(X, f∗F i) given by (f∗u)(x) =
u(f(x)) are linear. Moreover, we consider smooth bundle homomorphisms
hi : f∗F i → F i. For the induced maps hi : C∞(X, f∗F i) → C∞(X,F i) we
also write hi. Then the compositions Ei := hi ◦ f∗ are obviously selfmaps of
C∞(X,F i). More precisely, we define

Eiu(x) = hi(x)u(f(x))

for u ∈ C∞(X,F i).

Definition 4.3. The family E = {hi ◦ f∗} is called geometric quasiendomor-
phism of (C∞(X,F ·), A) if AiEi = Ei+1Ai holds modulo smoothing opera-
tors for all i = 0, 1, . . . , N − 1.

The following theorem presents a natural generalisation of the Lefschetz
fixed point formula for elliptic complexes on a compact closed manifold due
to [1].

Theorem 4.4. Assume E = {hi◦f∗}i=0,1,... is a geometric quasiendomorphism
of an elliptic quasicomplex (C∞(X,F ·), A) and f has only simple fixed points.
Then

L(E,A) =
∑

p∈Fix(f)

ν(p)

with

ν(p) =
∑

(−1)i trhi(p)
|det(1− df(p))| .

Proof. The proof follows the scheme suggested by Fedosov in [3]. We pick a
partition of unity (φν) on X with the property that each φν either vanishes
or is equal to 1 in a neighbourhood of any fixed point of f . Let further ψ0 be
a function of compact support on T ∗X such that ψ0(ξ) ≡ 1 near ξ = 0, and
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let ψ∞ = 1−ψ0. In local coordinates on X, we introduce operators Ψ0,ν and
Ψ∞,ν by

Ψ0,νu = F−1
ξ �→xψ0(hξ)Fx�→ξ(φνu),

Ψ∞,νu = F−1
ξ �→xψ∞(hξ)Fx�→ξ(φνu),

F being the Fourier transform and h a positive number. These operators
decompose the identity operator; moreover, the operators Ψ0,ν are smoothing
and hence of trace class on each Sobolev space. We can assert, by the Lidskii
theorem, that

trAiEiP i+1Ψ0,ν = trEiP i+1Ψ0,νA
i

whence
N∑

i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)

=
∑

ν

N∑

i=0

(−1)i trEiΨ0,ν

+
∑

ν

N∑

i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)Ψ∞,ν

−
∑

ν

N−1∑

i=0

(−1)i trEiP i+1[Ai,Ψ0,ν ], (1)

[Ai,Ψ0,ν ] being the commutator of Ai and Ψ0,ν .
In a local chart close to a fixed point of f , the operator EiΨ0,ν is given

by the iterated integral

EiΨ0,νu (x) =
1

(2πh)n

∫ ∫
eı(ξ/h)(fM (x)−y) hi(x)ψ0(ξ)φν(y)u(y) dydξ,

and consequently

trEiΨ0,ν =
1

(2πh)n

∫ ∫
eı(ξ/h)(fM (x)−x) trhi(x)ψ0(ξ)φν(x) dξdx.

For h→ 0, the limit of the integral on the right-hand side of this equality
can be evaluated by the method of stationary phase. Moreover, the stationary
points are just the points where ξ = 0 and f(x)−x = 0. In the principal part
independent of h the contribution of a fixed point p is equal to

trhi(p)
|det(Id − df(p))| .

On the other hand, the remaining terms on the right side of (1) are oscillatory
integrals whose exponent has no critical points. Indeed,

[Ai,Ψ0,ν ] = [Ai,Ψ0,ν − Id ]

= −[Ai,Ψ∞,ν ]

close to each fixed point and the function ψ∞ vanishes in a neighbourhood
of ξ = 0. Hence it follows that the remaining summands in (1) are rapidly



Vol. 78 (2014) A Lefschetz Fixed Point Formula 587

decreasing as h → 0. Since the left-hand side of (1) is actually independent
of h, we arrive at the desired formula. �
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