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The problem of describing the linear second order hyperbolic equations, satisfying the Huygens’ principle,
is known as the Hadamards’ problem [1], [2], [3]. Ch. Huygens [4] formulated this principle as a geometrical
method for constructing the wave front, and it was used for explaining the main properties of light propagation.
Its mathematical formulation within the theory of Cauchy problem for hyperbolic partial differential equations has
been given by well-known French mathematician J. Hadamard in his 1923 Yale lectures [1]. It has received a good
deal of attention and nowadays is a classical problem in mathematical physics, but is has turned out to be very
difficult and, at present it is still far from its complete solution.

Let us consider the Cauchy problem for hyperbolic second order differential equations

n
∑

i,j=1

gij(x)uxixj +

n
∑

i=1

bi(x)uxi + c(x)u = 0, (1)

u|S = f,
∂u

∂ν
|S = g. (2)

Here S is a space-like manifold of the dimension n − 1 and ∂u
∂ν

is a derivative with respect to the normal ν to S.
DEFINITION 1. Equation (1) satisfies the Huygens’ principle when the value of the solution of the Cauchy

problem (1), (2) for any point P = (x1
0, . . . , x

n
0 ) is determined by the Cauchy data given in the intersection of the

initial manifold S and the characteristic conoid with vertex at P .
It should be noted that the Huygens’ principle is invariant relative to the following, so-called elemtary trans-

formations:
(a) non-degenerate coordinant transformation;
(b) transformation of the unknown function u → λu, λ(x) 6= 0;
(c) multiplication of the equation by the function λ(x) 6= 0.

Two equations are called equivalent when one of them is derived from the other by means of elementary
transformations. In our further considerations, these elementary transformations are necessarily taken into account.

Papers [5] and [6] contain descriptions of all the Huygens’ equations of the type

L(k)
n [u] ≡ utt − uxx −

n−2
∑

i=1

ai(x − t)uyiyi + ak(x − t)b(yk)u = 0, (3)

k = 1, . . . , n − 2, where n ≥ 4 is an even number, and ai > 0, i = 1, . . . , n − 2.

We briefly describe these results assuming k = 1 for definiteness.
We denote

lµ =
∂

∂y1
− µ′(y1)

µ(y1)
, l∗µ = − ∂

∂y1
− µ′(y1)

µ(y1)
,

where µ(y1) is an arbitrary solution of the equation1

µ′′ − b(y1)µ = 0. (4)
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Then the L
(1)
n may be written in the form

L(1)
n = P + a1(x − t)l∗µlµ,

where

P =
∂2

∂t2
− ∂2

∂x2
−

n−2
∑

i=2

ai(x − t)
∂2

∂(yi)2
.

We define the operator

L̃(1)
n = P + a1(x − t)lµl∗µ (5)

and call it lµ−transform of the operator L
(1)
n . It is clear that the equality

lµL(1)
n = L̃(1)

n lµ (6)

takes place.

THEOREM 1. If L
(1)
n satisfies the Huygens’ principle, then L̃

(1)
n+2 also satisfies the Huygens’ principle.

We denote the operator L
(1)
n with b(y1) ≡ 0 as L0

n. From [2] it is known that the equation

L0
n[u] = 0

satisfies the Huygens’ princple for any even n ≥ 4. Making use of the operator L04, theorem 1 allows to construct
Huygens’ operators for n ≥ 6 variables.

There arises a natural question: whether all the Huygens’ operators of the type (3) may be obtained through
the described construction basing on L0

4. A positive answer to this question is given in [6].

THEOREM 2. Let the operator L
(1)
n satisfy the Huygens’ princple. Then it may be derived from the operator

L0n through lµ−transforms applied no more than n−4
2 times.

The aim of the present paper is to show how helpful the described algorithm for constructing the Huygens’ equations
is and to investigate the equation (4) in detals. Taking account of the equality (6) and equation (4), it follows from
theorem 2 that there are operators

lµk =
∂

∂y1
− µk

′
µk

, k = 0, 1, . . . , m − 1, m ≤ n − 4

2

such that
lµm−1

· · · lµ0
L0n = L(1)

n lµm−1
· · · lµ0

, (7)

where
µ0 = αy1 + β, (α, β = const),

(lµk
l∗µk

)µk+1 = 0, k = 0, . . . , m − 2. (8)

If m is the minimum number of transformations which transform the operator L0n into L
(1)
n , then the functions µk

(k = 0, . . . , m − 1) is uniquely determined with the accuracy up to a constant factor [6].
The following reccurent relation is easily obtained from (8):

µk+1 =
ak

µk

+
bk

µk

∫

µ2
k(y1)dy1.

However, it is not always convenient to use this formula because of the necessity to find the indefinite integral of µ2
k.

Therefor, further we study properties of the function b(y1) which allow as to determine conditions, easily checked
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and necessary for equation (3) to acquire Huygens’ properties, and which may indicate us some other method to
find functions µk.

First, we give the known results [7].
THEOREM 3. We assume that the operator has Huygens’ properties for even values n ≥ N, m = N−4

2 and

{lµk}m−1
k=0 is a unique sequence of operators determined by the formula (8), so that the equality (7) takes place.

Then

(a) b(y1) = −2
d2

d(y1)2

[

ln

m−1
∏

k=0

µk(y1)

]

,

(b)

l
∏

k=0

µk(y1) = Pl(y
1)

is a polynomial of degree 1
2 (l + 1)(l + 2), 0 ≤ l ≥ m − 1.

Point (a) is proved by direct computations and point (b) through the following important result.
THEOREM 4. If the sequance of functions {µk(y1)}m−1

k=0 satisfies the conditions of (8), then each of µk(y1) is
a rational function.
Using these results, we shall prove some properties of the function b(y1).

Let the polynomial Pm−1(y
1) has the form

Pm−1(y
1) = (y1 − a1)

k1 · · · (y1 − as)
ks , (k1 + · · · + ks =

1

2
m(m + 1)).

Then from point (a) of theorem 3 we obtain:

b(y1) = 2

s
∑

q=1

∏

i6=q

(y1 − ai)
2kq

s
∏

i=1

(y1 − ai)2
.

Hence, singularities of the function b(y1) are poles of the second order and (4) is a Funchian equation.
We separate one of the poles, e.g. aj , 1 ≤ j ≤ s, and write the function b(y1) in the form

b(y1) =
bj(y

1)

(y1 − aj)2,

where

bj(y
1) = 2kj + 2

s
∑

q=1

∏

i6=q

(y1 − ai)
2kq

s
∏

i6=j

(y1 − ai)2
. (9)

It immediately follows from this formula that b′(aj) = 0. Let L̃
(1)
n be the lµm

−transform of the operator L
(1)
n . Then

µm is the solution of equation (4). According to theorem 4, µm is a rational fuction. We study its behavior in the
neighborhood singular point aj 1 ≤ j ≤ s. With this purpose we write equation (4) as

µ′′
m − bj(y

1)

(y1 − aj)2
= 0.
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Solution µm is found in the form of

µm = (y1 − aj)
ρ

[

1 +

∞
∑

k=1

µk
m(y1 − aj)

k

]

where ρ is the root of the defining equation

ρ2 − ρ − bj(aj) = 0. (10)

Hence

ρ1,2 =
1

2
±
√

1

4
+ bj(aj).

As µs is a rational function, then ρ1 and ρ2 must be integers

1

2
±
√

1 + 4bj(aj)

2
= qj + 1, qj = 0,±1, . . . .

Hence
bj(aj) = qj(qj + 1). (11)

As the negative values qj do not suggest new values for bj(aj), it may be assumed that qj = 0, 1, . . . .

We obtain from formula (9) that
bj(aj) = 2kj .

Therefore, multiplicity of the root aj of the polynomial Pm−1 may assume the following values:

kj =
qj(qj + 1)

2
, j = 1, 2, . . . , s.

As the order of the polynomial Pm−1 is 1
2m(m + 1) and m ≤ n−4

2 we obtain

s
∑

j=1

qj(qj + 1) ≤ n − 4

2
· n − 2

2
.

If s = 1, then

q ≤ n − 4

2

which is in agreement with the known result [2].
Roots of equation(10) are

ρ1 = qj + 1, ρ2 = −qj.

Therefore, signularity of the rational function µm in the point aj may have only the form (y1 − aj)
−qj . Since µm is

the solution of a linear equation, its singularities may appear only in the points where singularities of the equation
coefficients are. Therefore the function µm may be found as

µm =
Tr(y

1)

(y1 − a1)q1 · · · (y1 − as)qs
, (12)

where Tr(y
1) is a polynomial of the order r. Acording to theorem 3 the polynomial

Pm =

m
∏

k=0

µk = Pm−1µm
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has the order 1
2 (m − 1)(m + 2), and the order of Pm−1 is 1

2m(m + 1), accordingly.
Therefore,

r = m + 1 +

s
∑

k=1

qk.

Writing Tr(y
1) with indefinite coefficients and substituting µm into the equation, it is possible to determine these

coefficients, and hence, to find µm.

The facts, proved above, may be presented as the following result.
THEOREM 5. Let equation (3) satisfy the Huygens’ principle and let b(y1) 6= 0.

Then
(a) singularities if the function b(y1) a1, . . . , as are poles of the second order, being s ≤ 1

2m(m+1) ≤ (n−2)(n−4)
8 .

(b) if the function b(y1) is presented in the neighbourhood of a singular point aj 1 ≤ j ≤ s as

b(y1) =
bj(y

1)

(y1 − aj)2
,

then bj(aj) may assume only one of the following values

bj(aj) = qj(qj + 1), qj = 0, 1, . . . ,

where
s
∑

j=1

qj(qj + 1) ≤ (n − 4)(n − 2)

4

and b′j(aj) = 0.

(c) solution of equation (4) has the form of (12).
Let us consider the Huygens’ equation [5], [6]

L8[u] ≡ utt − uxx −
∑

ai(x − t)uyiyi + a1(x − t)
6y1[(y1)3 + 2]

[(y1)3 − 1]2
u = 0.

The function

b(y1) =
6y1[(y1)3 + 2]

[(y1)3 − 1]2

has the singularities in the points a1 = 1, a2 = − 1
2 + i

√
3

2 , a3 = − 1
2 − i

√
3

2 . For the bj(y
1), i = 1, 2, 3 we have

b1(1) = 1 · 2, q1 = 1,

b1

(

− 1

2
+ i

√
3

2

)

= 1 · 2, q2 = 1,

b1

(

− 1

2
− i

√
3

2

)

= 1 · 2, q2 = 1.

Operator L8 is obtained from the operator L0
8

L0
8 =

∂2

∂t2
− ∂2

∂x2
−
∑

ai(x − t)
∂2

∂yi2
(13)

with the operators lµ0
, lµ, where

µ0 = y1
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and µ1 is a solution of the equation

µ′′ − 2

yi2
µ = 0

and has the form

µ1 =
(y1)3 − 1

y1
.

Then
P0 = µ0 = y1,

P1 = µ0µ1 = (y1)3 − 1.

The solution of equation

µ′′ − 6y1[(y1)3 + 2]

[(y1)3 − 1]2
µ = 0 (14)

according to the (12) can be find in the form

µ2 =
T2(y

1)

(y1)3 − 1
=

6
∑

i=1

αi(y
1)i

(y1)3 − 1
.

Substituding this function in (14) we obtain

30α6 − 36α6 + 6α6 = 0,

20α5 − 30α5 + 6α5 = 0,

12α4 − 24α4 + 6α4 = 0,

6α3 − 30α6 − 18α3 + 6α3 = 0,

2α2 − 20α5 − 12α2 + 6α2 = 0,

−12α4 − 6α1 + 6α1 = 0,

−6α3 + α0 = 0,

−2α2 = 0.

From here we have
α5 = α4 = α2 = 0,

α0 = α3 = −5α6

and α1, α6 are any numbers. If we take α6 = 0, α1 = 1, then

µ2 =
y1

(y1)3 − 1
.

If α6 = −1, α1 = 0

µ2 =
5 + 5(y1)3 − (y1)6

(y1)3 − 1
.

Therefore, the common solution of the equation (14) has the form

µ2 = C1
y1

(y1)3 − 1
+ C2

5 + 5(y1)3 − (y1)6

(y1)3 − 1
. (15)
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For C1 = 1, C2 = 0 we have

P2 = y1, b(y1) =
2

(y1)2

and we obtain the known Huygens’ equation

utt − uxx −
8
∑

i=1

ai(x − t)uyiyi + a1(x − t)
2

(y1)2
u = 0.

If C1 = 0, C2 = 1, then
P2 = 5 + 5(y1)3 − (y1)6

utt − uxx −
8
∑

i=1

ai(x − t)uyiyi + a1(x − t)
2[6(y1)10 + 225(y1)4 − 150y1]

[(y1)6 − 5(y1)3 − 5]2
u = 0.

In the case C1 6= 0, C2 6= 0, it is follow that

P2 = y1 + γ[5 + 5(y1)3 − (y1)6]

and the following Huygens’ equation

utt − uxx −
8
∑

i=1

ai(x − t)uyiyi + a1(x − t)
2 + 36γ(y1)5 + 6γ2y1[2(y1)9 + 75(y1)3 − 50]

{y1 + γ[5 + 5(y1)3 − (y1)6]}2
u = 0. (16)

The solution of the equation (14) can be find in the form

µ2 =
(y1 − 1)2T3(t

1)

(y1)3 + y1 + 1

too, where

T3(y
1) =

3
∑

i=0

αi(y
1)i.

Substituding this function in the equation () gives

µ2 =
(y1 − 1)2[(y1)3 + 3(y1)2 + 61 + 5]

(y1)2 + y1 + 1
. (17)

Using this solution it is possible to find the common solution of the equation (14). The function (17) can be find
from (15) if we take C1 = 9, C2 = −1

(

γ = − 1
9

)

. In this case the equation (16) can be written in the form

utt − uxx −
8
∑

i=1

ai(x − t)uyiyi + a1(x − t)

[

6

(y1 − 1)2
+

6
[

(y1)4 + 4(y1)3 − 6(y1)2 + 2y1 + 2
]

[

(y1)3 + 3(y1)2 + 6(y1)1 + 5
]2

]

u = 0.

To constuct the new Huygens’ equation, we have to know the factorization of the denominator of the function b(y1).
However using the fact, that P3 = P2µ3 is the polynomial of degree 10, it is possible to assume, that the equation

µ′′
3 − 2 + 36γ(y1)5 + 6γ2y1[2(y1)9 + 75(y1)3 − 50]

{y1 + γ[5 + 5(y1)3 − (y1)6]}2
µ3 = 0 (18)

has the solution of the form

µ3 =
T10(y

1)

y1 + γ[5 + 5(y1)3 − (y1)6]
.
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Easy to see that substitution of the function

µ =
Tr(y

1)

Qs(y1)
,

in the equation

µ′′ − R

Q2
s

= 0

lead to expresion
Q2

sT
′′
r − 2QsQ

′
sT

′
r + [2(Q′

s)
2 − QsQ

′′
s − R]Tr = 0. (19)

For µ3 we have

Tr = T10 =

10
∑

i=0

αi(y
1)i,

Qs = Q6 = y1 + γ[5 + 5(y1)3 − (y1)6],

R = 2 + 36γ(y1)5 + 6γ2y1[2(y1)9 + 75(y1)3 − 50].

Substituding these functions in (19) we can find the common solution of the equation (18)

µ3 = C1µ
(1)
3 + C2µ

(2)
3 ,

where

µ
(1)
3 =

3γ2(y1)10 − 45γ2(y1)7 − 21γ(y1)5 − 105γ(y1)2 − 525γ2y1 − 7

y1 + γ[5 + 5(y1)3 − (y1)6]

and

µ
(2)
3 =

(y1)3 − 1

y1 + γ[5 + 5(y1)3 − (y1)6]
.

Now let us consider the following Huygens’ equation

L8[u] ≡ utt − uxx −
6
∑

i=1

ai(x − t)uyiyi +
6a1(x − t)

(y1)2
u = 0 (20)

Operator L8 can be obtained from L0
8 (13) by the transformations with operators lµ0

and lµ0
, µ0 = y1, µ1 = (y1)2.

To construct the next Huygens’ equation we have to solve

µ′′
2 − 6

(y1)2
µ2 = 0.

Then

µ2 =
(y1)5 + γ

(y1)2

and
P2 = µ0µ1µ2 = y1[(y1)5 + γ].

The coresponding Huygens’ equation has the form

utt − uxx −
6
∑

i=1

ai(x − t)uyiyi + a1(x − t)
12(y1)10 − 36γ(y1)5 + 2γ2

(y1)2[(y1)5 + γ]2
u = 0. (21)
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Note that in spite of the fact that in the equation (20) q = 2, nevertheless in (21) qi = 1, i = 1, . . . , 6. Therefor
the solution of the equation

µ′′ − 12(y1)10 − 36γ(y1)5 + 2γ2

(y1)2[(y1)5 + γ]2
µ3 = 0 (22)

can be find in the form

µ3 =
T10

y1[(y1)5 + γ]
.

Substuding of this function in (22) gives

µ
(1)
3 =

3(y1)10 + 21γ(y1)5 − 7γ2

y1[(y1)5 + γ]

and the Huygens’ equation

utt − uxx −
10
∑

i=1

ai(x − t)uyiyi + a1(x − t)
180(y1)18 − 1260γ(y1)13 + 8190γ2(y1)8 − 5880γ3(y1)3

[3(y1)10 + 21γ(y1)5 − 7γ2]2
u = 0.

The second linear independent solution is

µ
(2)
3 =

(y1)2

[(y1)5 + γ]

and the corresponding Huygens’ equation

utt − uxx −
10
∑

i=1

ai(x − t)uyiyi + a1(x − t)
6

(y1)2
u = 0.

All these examples of the odinary differential equations of the form (4) conectes with Huygens’ principle can be
usefull for the investigating of the following problem.

Let us write the equation (4) with the coefficient (a) in theorem 3 in the form

µ′′ +

s
∑

i=1

2ki

(y1 − ai)2
µ = 0, (23)

where ai (i = 1, . . . , s) are the root of the polynomial Pm−1(y
1) in formula (b) and ki are there multiplicities. As it

was shown before for an equations, conected with Huygens’ equations 2ki = qi (qi + 1) with some positive integers
qi. The equations of the form (23) are known as Fuchs equations [9]. The arrising problem is to discribe the ai and
ki, i = 1, . . . , s such that the equation (23) will be conected with Huygens’ principle, in particular all the solutions
of (23) are rational functions. Below we give a necessary and suficient condition on ai and ki, i = 1, . . . , n for which
the solutions of the equation (23) do not consist the logarithmic singularities.

In the neighborhood of a singular point ar (r = 1, . . . , s) an equation (23) can be written in the form

(y1 − ar)
2µ′′ −

[

qr(qr + 1) +

s
∑

k=1

k 6=r

qk(qk + 1)
(y1 − ar)

2

(y1 − ak)2

]

µ = 0.

If we write
(

y1 − ar

y1 − ak

)2

=

∞
∑

n=2

(n − 1)
(y1 − ar)

n

(ak − ar)n
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and look for the solution in the form

µ(y1) = (y1 − ar)
q

∞
∑

m=0

αmr(y
1 − ar)

m

we obtain

∞
∑

m=0

αmr(m + q)(m + q − 1)(y1 − ar)
m −

[

qr(qr + 1) +

s
∑

k=1

k 6=r

qk(qk + 1)

∞
∑

n=2

(n − 1)

(ak − ar)n
(y1 − ar)

n
]

+

+

∞
∑

m=0

α(y1 − ar)
m = 0. (24)

For m = 0 we have

q1 = −qr, qr = qr + 1

and α0r an arbitrary number.
Let us consider q = −qr, when the solution has the singularity. In this case the equation (24) has the form

∞
∑

m=0

αmr(m−qr)(m−qr −1)(y1−ar)
m−

[

qr(qr +1)+

s
∑

k=1

k 6=r

qk(qk +1)

∞
∑

n=2

(n − 1)(y1 − ar)
n

(ak − ar)n

]

∞
∑

m=0

αmr(y
1−ar)

m = 0.

For m = 1 we obtain α1r = 0 and for m = p ≥ 2

αpr[p(p − 2qr − 1)] =

s
∑

k=1

k 6=r

qk(qk + 1)

p−2
∑

l=0

(p − l − 1)

(ak − ar)p−l
, r = 1, . . . , s. (25)

From (25) we obtain
THEOREM 6. The solutions of the equation (23) have not a logarithmic singularities if and only if

s
∑

k=1

k 6=r

qk(qk + 1)

2qr+1
∑

l=0

αlr

(2qr − l)

(ak − ar)2qr+1−l
= 0. (26)

If s = 1 the equation (23) is none other tahn Euler equation and has the common solution

µ = C1(y
1 − a1)

q1+1 + C2(y
1 − a1)

−q1 (q1 > 0 is integer)

which does not contain the logarithmic singularity for each value of a1.

For s = 2 it follows from (25) and (26), that the common solution of the equation (23) has the logarithmic
singularities for any values of a1 and a2.

If s > 2, as is shown in for example (14), there are some distribution of the roots ai, for which the common
solution of (23) has no the logarithmic singularities.
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