
Mathematisch-Naturwissenschaftliche Fakultät

Abdelhalim Larhlimi | Laszlo David | Joachim Selbig | 
Alexander Bockmayr 

F2C2

a fast tool for the computation of flux coupling in genome-scale        
metabolic networks

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 921
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-432431
DOI https://doi.org/10.25932/publishup-43243

Suggested citation referring to the original publication:
BMC Bioinformatics 13 (2012) 57 
DOI https://doi.org/10.1186/1471-2105-13-57
ISSN (online) 1471-2105





Larhlimi et al. BMC Bioinformatics 2012, 13:57
http://www.biomedcentral.com/1471-2105/13/57

METHODOLOGY ARTICLE Open Access

F2C2: a fast tool for the computation of flux
coupling in genome-scale metabolic networks
Abdelhalim Larhlimi1,2*†, Laszlo David3,4,5*†, Joachim Selbig1,2 and Alexander Bockmayr3,4

Abstract

Background: Flux coupling analysis (FCA) has become a useful tool in the constraint-based analysis of genome-scale
metabolic networks. FCA allows detecting dependencies between reaction fluxes of metabolic networks at
steady-state. On the one hand, this can help in the curation of reconstructed metabolic networks by verifying whether
the coupling between reactions is in agreement with the experimental findings. On the other hand, FCA can aid in
defining intervention strategies to knock out target reactions.

Results: We present a new method F2C2 for FCA, which is orders of magnitude faster than previous approaches. As a
consequence, FCA of genome-scale metabolic networks can now be performed in a routine manner.

Conclusions: We propose F2C2 as a fast tool for the computation of flux coupling in genome-scale metabolic
networks. F2C2 is freely available for non-commercial use at https://sourceforge.net/projects/f2c2/files/.

Background
The huge amount of genomic, transcriptomic and related
data has allowed for a fast reconstruction of an increasing
number of genome-scale metabolic networks, e.g. [1-7].
In the absence of detailed kinetic information, constraint-
based modeling and analysis has recently attracted
ample interest due to its ability to analyze genome-scale
metabolic networks using very few information [8-10].
Constraint-based analysis is based on the application of
a series of constraints that govern the operation of a
metabolic network at steady state. This includes the sto-
ichiometric and thermodynamic constraints, which limit
the range of possible behaviors of the metabolic network,
corresponding to different metabolic phenotypes. Apply-
ing these constraints leads to the definition of the solution
space, called the steady-state flux cone [11]:

C = {v ∈ R
n | Sv = 0, vi ≥ 0, for all i ∈ Irr}, (1)

where S is the m × n stoichiometric matrix of the net-
work, with m internal metabolites (rows) and n reactions
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(columns), and the vector v ∈ R
n gives a flux distribution.

Furthermore, Irr ⊆ {1, . . . , n} denotes the set of irre-
versible reactions in the network, and Rev = {1, . . . , n}\Irr
denotes the set of reversible reactions.
The flux cone contains the full range of achievable

behaviors of the metabolic network at steady state. Var-
ious approaches have been proposed either to search
for single optimal behaviors using optimization-based
methods [12-16] or to assess the whole capabilities of a
metabolic network by means of network-based pathway
analysis [11,17-20].
Flux coupling analysis (FCA) is concerned with describ-

ing dependencies between reactions [21]. The stoi-
chiometric and thermodynamic constraints not only
determine all possible steady-state flux distributions over
a network, they also induce coupling relations between
the reactions. For instance, some reactions may be unable
to carry flux under steady-state conditions. If a non-zero
flux through a reaction in steady-state implies a non-zero
flux through another reaction, then the two reactions are
said to be coupled (see Def. 2 for a formal definition). FCA
has been used for exploring various biological questions
such as network evolution [22-24], gene essentiality [22],
gene regulation [25-27], analysis of experimentally mea-
sured fluxes [28,29], or implications of the structure of
the human metabolic network for disease co-occurrences
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[30]. Having a time efficient implementation of FCA is
important in such studies.
After introducing the main existing algorithms for flux

coupling analysis, we propose in this paper a new algo-
rithm which significantly speeds up the calculation of
flux coupling. Our algorithm is based on two main
principles. First, we reduce the stoichiometric model
as much as possible when parsing the stoichiomet-
ric matrix. Second, we use inference rules to mini-
mize the number of linear programming problems that
have to be solved. We prove the efficiency of our algo-
rithm by successfully competing with the most recent
approach [31]. We show that FCA can now be quickly
performed even for very large genome-scale metabolic
networks.

Approaches for flux coupling analysis
Several algorithms were developed to calculate flux cou-
pling between reactions. For a comparison among the
existing approaches, the reader may refer to [31,32]. In the
following, we focus on flux coupling methods based on
solving a sequence of linear programming (LP) problems.
These methods have proved to be significantly faster than
other algorithms.

Definitions
We give a short overview of the important concepts we
will use throughout this paper. First, we formally define
blocked reactions in a metabolic network.
Definition 1 (Blocked reaction). Given the steady-state
flux cone C, let i ∈ {1, . . . , n} be a reaction. If vi =
0, for all v ∈ C, reaction i is called blocked, otherwise i is
unblocked.
In the following, we assume that the flux cone is not triv-

ial, i.e., not all reactions are blocked. Next, we define the
(un)coupling relationships between reactions.
Definition 2 (Coupling relations). Let i, j be two
unblocked reactions. The (un)coupling relationships
=0→, =0↔,� and �→ are defined in the following way:

• i =0→ j if for all v ∈ C, vi = 0 implies vj = 0.
• i =0↔ j if for all v ∈ C, vi = 0 is equivalent to vj = 0.
• i � j

if there exists λ �= 0 such that for all v ∈ C, vj = λvi.
• i �→ j if there exists v ∈ C such that vi = 0 and vj �= 0.

Reactions i and j are fully (resp. partially, directionally)
coupled if the relation i � j (resp. i =0↔ j, i =0→ j) holds.
Otherwise, i and j are uncoupled.
Note that i � j (resp. i =0↔ j) is equivalent to j � i (resp.

j =0↔ i). In addition, i � j implies i =0↔ j, which in turn is
equivalent to (i =0→ j and j =0→ i).

As shown in [33] the reversibility type of reactions is a
key concept in flux coupling analysis.
Definition 3 (Reversibility types). A reversible reaction
i ∈ Rev is called fully reversible if there exists a flux vector
v ∈ C such that vi �= 0 and vj = 0 for all j ∈ Irr. Otherwise,
reaction i is called pseudo-irreversible.
Using the reversibility type of reactions, we define the

following reaction sets which will be used to determine
the cases where flux coupling can occur between reac-
tions.

• Frev = {i | i is fully reversible},
• Prev = {i | i is pseudo-irreversible and there exist

v+, v− ∈ C such that v+
i > 0, v−

i < 0},
• Irev = {i | i /∈ Frev ∪ Prev and vi �= 0 for some v ∈

C},
• Blk = {i | i is blocked}.

Note that the above reaction sets are disjoint and their
union is equal to the set of all reactions, i.e., Blk ∪ Irev ∪
Prev ∪ Frev = {1, . . . , n}.
As the classification of reactions according to their

reversibility types has been treated elsewhere [31,33,34],
we focus on calculating the flux coupling between reac-
tions given the reaction setsBlk, Irev, Prev and Frev. First,
we briefly review the main existing flux coupling methods
based on linear programming. Afterwards, we present our
new method to speed up the flux coupling analysis.

Flux coupling finder
The Flux Coupling Finder (FCF) algorithm [21] deter-
mines blocked reactions as well as coupled reactions by
solving a sequence of linear programming (LP) problems.
The FCF algorithm requires that each reversible reac-
tion is split into two irreversible reactions, one forward
and one backward. This may hamper the application of
FCF to determine flux coupling in large genome-scale
metabolic networks. Indeed, splitting reversible reactions
results in an increase in the number of variables (resp.
constraints) by |Rev| (resp. 2|Rev|). Since the FCF algo-
rithm solves four LP problems to identify the maximum
and minimum flux ratios for every pair of reactions, the
total number of LP problems that have to be solved
is very large. Furthermore, the FCF algorithm does not
compute directly coupling relationships between reac-
tions. A post-processing step is needed to deduce cou-
plings between reactions (in the original network) from
those between reaction directions (in the reconfigured
network). More importantly, the FCF algorithm explores
exhaustively all possible reaction pairs. This leads to a very
big number of LP problems that have to be solved. This
strategy may not scale well for genome-scale models of
complex microorganisms which involve a large number
of reactions.
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Reversibility-based flux coupling analysis
To cope with the drawbacks of the FCF algorithm, we used
the reversibility type of reactions to develop an improved
version (WRP-FCF) of the original FCF method [31,34].
When looking for coupled reactions, WRP-FCF applies
linear programming only in those cases where coupling
relationships can occur [33]. Namely, given two unblocked
reactions i and j, we have exactly three cases where a flux
coupling is possible between i and j:

Flux coupling between reversible reactions

If i, j ∈ Prev or i, j ∈ Frev, i =0→ j, i =0↔ j and i � j
are equivalent. More importantly, only the stoichiometric
constraints determine whether i =0→ j holds, indepen-
dently of the thermodynamic constraints.
Assume that blocked reactions have been identified

beforehand and their respective columns in the stoichio-
metric matrix have been removed. Consider the following
LP problem

max{vj : Sv = 0, vi = 0, 0 ≤ vj ≤ 1}, (2)

and let v∗ be an optimal solution. According to Proposi-
tion 6.13 in [34], i =0→ j if and only if v∗

j = 0.

Flux coupling between (pseudo-)irreversible reactions
If i ∈ Irev and j ∈ Prev, we only have to check whether
i =0→ j. The other coupling relationships cannot occur. Let
v1 resp. v2 be optimal solutions of the two LP problems

max{vj : Sv = 0, vk ≥ 0, k ∈ Irr, vi = 0, vj ≤ 1},
min{vj : Sv = 0, vk ≥ 0, k ∈ Irr, vi = 0, vj ≥ −1}.

(3)

Then i =0→ j if and only if v1j = v2j = 0.

Flux coupling between irreversible reactions
If i, j ∈ Irev, in analogy with the FCF algorithm, we
determine upper and lower bounds Uij and Lij such that
0 ≤ Lijvj ≤ vi ≤ Uijvj for all v ∈ C by solving the LP
problems

Lij = min {vi: Sv = 0, vj = 1, vk ≥ 0, k ∈ Irr},
Uij = max {vi: Sv = 0, vj = 1, vk ≥ 0, k ∈ Irr}. (4)

Comparison of Lij and Uij allows us to determine
whether reactions i and j are coupled using the following
rules:

• i =0→ j (resp. j =0→ i) if and only if Lij �= 0 (resp.
Uij �= +∞),

• j � i if and only if Lij �= 0, Uij �= 0 and Lij = Uij.

The improved version WRP-FCF does not make an
exhaustive computation for all pairs of reactions and does
not require a reconfiguration of the metabolic network.

Accordingly, not only is the number of LP problems used
by WRP-FCF smaller than the number solved by FCF,
but also the LP problems used by WRP-FCF are simpler
than those employed by FCF. Formathematical proofs, the
reader may refer to [31,34].

Feasibility-based flux coupling analysis
Linear programming can be solved by enumerating a set
of adjacent feasible solutions such that at each solution the
objective function improves or is unchanged. Accordingly,
searching for a feasible solution can be faster than com-
puting an optimal solution [35]. Based on this observation,
[31] proposed the FFCA approach for flux coupling anal-
ysis transforming the optimization-based LP problems
used in the WRP-FCF method into feasibility-based LP
problems. The authors compared FFCA with other avail-
able flux coupling algorithms, and showed that FFCA is
slightly faster than WRP-FCF.

Methods
Before using linear programming to calculate flux cou-
pling between reactions, we preprocess the metabolic
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Figure 1 Exemplary metabolic network MetNet before and after
preprocessing. (a) MetNet consists of eight metabolites (A, . . . ,H),
and thirteen reactions (1, . . . , 13), whereof six reactions are
irreversible. Metabolites are depicted as nodes while reactions are
depicted as arrows. Reversible reactions are indicated by double
arrowheads. (b) MetNet after preprocessing where dead-end
metabolites and blocked reactions were removed and fully coupled
reactions were merged iteratively. This resulted in the removal of the
blocked reaction 13 and the merging of the pairs of equivalent
reactions (1, 2), (8, 9) and(11, 12)).
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Table 1 Main steps of the preprocessing procedure

Step Rule

1. Identify dead-end metabolites and the corresponding blocked reactions.

2. Apply Reduction Rule 1 to remove the rows (resp. columns) corresponding to dead-end metabolites (resp. blocked reactions) from the
stoichiometric matrix.

3. Apply the TFC rule to determine reactions which are proportional to each other and update their reversibility type.

4. Apply Reduction Rule 2 to keep only one column for each set of reactions which are proportional to each other.

5. Repeat Steps 1-4 until neither a dead-end metabolite nor a pair of fully coupled reactions can be identified.

6. Update the reversibility type of each reaction and remove the columns corresponding to blocked reactions from the stoichiometric
matrix.

7. Use a basis of the kernel of the stoichiometric matrix to identify fully coupled reactions. This step is optional as the kernel computation
may lead to numerical problems.

8. Classify reactions according to their reversibility type.

network in order to i) reduce the number of variables and
constraints of the subsequent LP problems and ii) classify
reactions according to their reversibility type. The net-
work reduction is mainly based on the removal of trivially
blocked reactions and the merging of the stoichiomet-
ric columns corresponding to trivially coupled reactions
[36-39]. For this, one can use the kernel of the stoichio-
metric matrix. Alternatively, we can apply the following
reduction rules which require a simple parsing of the
stoichiometric matrix and are not time consuming. This
strategy allows avoiding potential numerical instabilities
related to the computation of a basis of the kernel.

Preprocessing
Certain metabolites, called dead-end metabolites [37], are
produced (resp. consumed) by some reactions without
being consumed (resp. produced) by other reactions. This
concept is illustrated in Figure 1(a) where the dead-end
metabolite H is produced by reaction 13 without being
consumed by any of the remaining reactions.
As stated below, reactions which are consuming or pro-

ducing dead-end metabolites are blocked.
Observation 1 (Dead-endMetabolite). Let k ∈ {1, . . . ,m}
be a metabolite. Then, the following hold:

• If there exists a reaction i such that Ski �= 0 and
Skj = 0 for all j �= i, then reaction i is blocked.

Table 2 Transitivity inferred flux (un)coupling

Known flux coupling i � j i =0↔ j i =0→ j j =0→ i

k � i k � j i
=0↔ j k

=0→ j j
=0→ k

k � j

k
=0↔ i k

=0↔ j k
=0↔ j k

=0→ j j
=0→ k

k
=0→ i k

=0→ j k
=0→ j k

=0→ j

k �→ i k �→ j k �→ j k �→ j

i �→ k j �→ k j �→ k j �→ k

• If there exists a set of reactions I ⊆ Irr such that
Ski > 0 (resp. Ski < 0) for all i ∈ I and Skj = 0 for all
j /∈ I, then all reactions i ∈ I are blocked.

In each of these cases, k is called a dead-end metabolite.
Certain metabolites are involved in exactly two reac-

tions. For instance, in the network MetNet depicted in
Figure 1(a), metabolite E is produced/consumed only by
reactions 8 and 9. The following observation states that
the fluxes through reactions involving such metabolites
are proportional to each other.
Observation 2 (Trivial Full Coupling (TFC)). Let i and
j be two reactions such that, for some metabolite k ∈
{1, . . . ,m}, Ski �= 0, Skj �= 0 and Skl = 0 for all l �= i, j.
Then, reactions i and j are either blocked or fully coupled.
The identification of dead-end metabolites and their

corresponding blocked reactions allows us to reduce the
number of metabolites and reactions that matter for
identifying coupled reactions. As stated in the follow-
ing observation, the removal of the rows (resp. columns)
in the stoichiometric matrix corresponding to dead-end
metabolites (resp. blocked reactions) does not influence
the flux coupling between reactions.
Observation 3 (Reduction Rule 1). Let D be a set of dead-
end metabolites and let B be a set of blocked reactions. For
convenience, suppose B = {s + 1, . . . , n}. Let S′ be the sub-
matrix of S formed by the rows Sk∗ with k /∈ D and the
columns S∗l with l /∈ B. Let Irr′ = Irr\B. Then, for all pairs
of reactions i /∈ B and j /∈ B,

• i =0→ j if and only if v′
i = 0 implies v′

j = 0, for all
v′ ∈ R

s such that S′v′ = 0 and v′
p ≥ 0 for all p ∈ Irr′.

• i � j if and only if there exists λ′ �= 0 such that
v′
j = λ′v′

i, for all v′ ∈ R
s with S′v′ = 0 and

v′
p ≥ 0 for all p ∈ Irr′.

The next observation shows that two fully coupled reac-
tions can be represented by only one column in the
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Table 3 Themain steps of the F2C2 algorithm

Step Rule

1. Apply the preprocessing procedure shown in Table 1.

2. Apply the feasibility rule using the feasible solutions obtained when solving the LP problems used in Step 1.

3. Apply the TDC and TUC rules to determine trivially (un)coupled reactions.

4. Identify fully coupled reversible reactions by solving the LP problems (2). This is not necessary if the kernel of the stoichiometric matrix is
used in Step 1.

5. Determine the dimension t of kern(S∗Rev) and remove t independent fully reversible reactions and their coupled reactions. This step is
optional since t is often small.

6. Determine the flux coupling between (pseudo-)irreversible reactions by solving the LP problems (3) and (5).

7. For each LP problem solved in Step 6, use the inference rules in Table 2 in combination with the feasibility rule.

stoichiometric matrix, without altering the flux coupling
between reactions.
Observation 4 (Reduction Rule 2). Let k, l be two reac-
tions such that for all v ∈ C, vl = λvk for some λ �= 0.
For convenience, suppose l = n and λ > 0. Let S′ be the
m×(n−1)matrix defined by S′∗p = S∗p for all p �= k, l and
S′
∗k = S∗k + λS∗l . Let Irr′ = (Irr ∪ {k}) \ {l} if l ∈ Irr, and
Irr′ = Irr otherwise. Then, for all pairs of reactions i �= l
and j �= l,

• i =0→ j if and only if v′
i = 0 implies v′

j = 0, for all
v′ ∈ R

n−1 such that S′v′ = 0 and
v′
p ≥ 0 for all p ∈ Irr′.

• i � j if and only if there exists λ′ �= 0 such that
v′
j = λ′v′

i, for all v′ ∈ R
n−1 with S′v′ = 0 and

v′
p ≥ 0 for all p ∈ Irr′.

Note that when applying the reduction rules of Obser-
vations 3 and 4, further metabolites and reactions may
fulfill the conditions of Observations 1 and 2. Accord-
ingly, we apply these reduction rules in an iterative way.
As an illustration, the reduction of the network Met-
Net depicted in Figure 1(a) involves two iterations. In
the first one, metabolite H and reaction 13 are removed,
the pairs of reactions (1, 2) and (8, 9) are merged and
metabolites A and E are removed. In the second iteration,
the equivalent reactions (11, 12) are merged and metabo-
lite G is removed. The preprocessed network depicted
in Figure 1(b) contains only four metabolites and nine
reactions.
Certain fully coupled reactions could not be identified

using Observation 2. The following lemma proves that all
fully coupled reaction pairs can be deduced from the ker-
nel kern(S) = {v ∈ R

n | Sv = 0} of the stoichiometric
matrix after the removal of all blocked reactions.
Lemma 1. Let (S, Irr) be a metabolic network with n
unblocked reactions. For a pair of reactions (i, j) the follow-
ing are equivalent:

• i � j.

• there exists λ ∈ R \ {0} such that vi = λvj, for all
v ∈ kern(S).

Proof. ⇐” Immediate.
“⇒” Since i � j, there exists λ �= 0 such that vi = λvj

for all v ∈ C. Assume by contradiction that there is v ∈
kern(S) such that vi �= λvj and let L = {l ∈ Irr | vl < 0}.
Since every reaction is unblocked, for every l ∈ L there
exists g(l) ∈ C with g(l)

l = 1. Let w = v − ∑
l∈L vlg(l).

Clearly, w ∈ kern(S) and wl > 0 for all l ∈ Irr, thus w ∈
C. However, wi �= λwj, contradicting i � j. The required
statement follows.

In analogy with the WRP-FCF and FFCA approaches,
we identify the reversibility type of reactions in order
to apply linear programming only in those cases where
coupling relationships can occur [33]. Here, we use the
procedure for reaction classification described in [31,34].
Note that applying the above reduction rules beforehand
reduces the number of variables and constraints in the LP
problems used for the classification of reactions.
Based on the results above, we propose to apply the pre-

processing procedure given in Table 1 before identifying
coupled reactions using linear programming. We show

Table 4 Genome-scale metabolic networks with the
number of metabolites (�met.) and reactions (�reac.)
before and after applying the preprocessing steps

Original size Prepr. size

Network name �met. �reac. �met. �reac.

M. barkeri, iAF692 628 690 149 221

S. cerevisiae, iND750 1061 1266 248 446

M. tuberculosis, iNJ661 826 1025 240 418

E. coli, iJR904 761 1075 269 565

E. coli, iAF1260 1668 2382 604 1272

E. coli, iJO1366 1805 2582 651 1376

H. sapiens, Recon1 2766 3742 725 1573
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Table 5 Performance comparison between the FFCA and F2C2 algorithms in terms of the number of LP problems solved
(�LPs) and their total running times (TRT)

FFCA F2C2

Network �LPs TRT �LPs TRT Prepr. RT

M. barkeri, iAF692 301975 59 m 40 s 774 7 s 5 s

S. cerevisiae, iND750 472629 1 h 50 m 17s 1280 21 s 15 s

M. tuberculosis, iNJ661 556504 3 h 5 m 36 s 1506 22 s 16 s

E. coli, iJR904 655437 2 h 40 m 33 s 1580 26 s 18 s

E. coli, iAF1260 4256786 4 d 31 m 26 s 3309 2 m 47 s 2 m

E. coli, iJO1366 4877262 4 d 5 h 30 m 46 s 3955 3 m 55 s 2 m 45 s

H. sapiens, Recon1 4566304 4 d 18 h 3 m 37 s 3903 5 m 20 s 4 m 9 s

For the F2C2 algorithm, TRT includes the time (Prepr. RT) required for the preprocessing step. Computation times are given in days (d), hours (h), minutes (m) and
seconds (s).

later that the preprocessing step turns out to be crucial for
obtaining an efficient flux coupling algorithm.

Algorithmic improvements
In certain metabolic networks, the conversion of a set
of substrates into a set of products can be made by dif-
ferent reactions having the same stoichiometry. A sim-
ple example of such reactions are isoenzymes which
make the same conversion of substrates into prod-
ucts. This concept is illustrated in Figure 1(a) where
both reactions 4 and 5 convert C into D in the same
way. This holds also for reaction 7 and the merged
equivalent reactions (8, 9) in Figure 1(b) showing that
the network preprocessing may simplify the identifi-
cation of such alternative conversions. The flux cou-
pling of such reactions is trivial using the following
lemma.
Lemma 2 (Trivial Uncoupling (TUC)). Let i, j ∈ Irev and
k, l ∈ Prev ∪ Frev be four reactions. Then, the following
holds:

• If S∗i = αS∗j for some α > 0, then i �→ p and j �→ p
for all p /∈ Blk.

• If S∗i = αS∗j for some α < 0, then p �→ i (resp.
p �→ j) for all p /∈ Blk ∪ {j} (resp. p /∈ Blk ∪ {i}).

• If S∗i = αS∗k for some α �= 0, then i �→ p and p �→ i
for all p /∈ Blk and q �→ k for all q /∈ Blk ∪ {i}.

• If S∗k = αS∗l for some α �= 0, then k �→ p and p �→ k
for all p /∈ Blk ∪ {l} and l �→ q and q �→ l for all
q /∈ Blk ∪ {k}.

Proof. The proofs of the four statements are similar. We
only consider the first one. Suppose S∗i = αS∗j for some
α > 0 and let us prove i �→ p. Let p /∈ Blk. There exists
v ∈ C such that vp �= 0. Let w ∈ R

n such that wi = 0,
wj = αvi + vj and wq = vq for all q �= i, j. We have w ∈ C,
wi = 0, wp �= 0 and so the claim follows.

The next observation states that metabolites which are
involved only in irreversible reactions and consumed or
produced by exactly one reaction define trivial directional
couplings between these reactions.
Observation 5 (Trivial Directional Coupling (TDC)). Let
k be some metabolite such that Skl = 0 for all l ∈ Frev ∪
Prev. Let P = {i | Ski > 0} and N = {j | Skj < 0}. If
card(P) = 1 (resp. card(N) = 1), then i =0→ j (resp. j =0→ i)
for all (i, j) ∈ P × N.
Since directional flux coupling is a transitive relation,

the flux (un)coupling between many reactions can simply
be deduced from dependencies between reactions whose
flux (un)coupling has been determined beforehand. This
allows us to significantly reduce the total number of LP
problems to be solved. Examples of such inferred flux
(un)couplings are given in Figure 1(b). According to the
TDC rule, we have (1, 2) =0→ (8, 9). By solving the LP prob-
lems (4), we obtain 10 �→ (8, 9). We can easily conclude
that 10 �→ (1, 2).
Table 2 shows the inferred flux (un)coupling relations

we can deduce from known relationships between reac-
tions.
For some pairs of reactions, we need to solve at least one

LP problem. The optimal solution not only determines the
flux coupling between the considered pair of reactions,
but also allows one to determine many other uncoupled
reactions.
Observation 6 (Feasibility Rule). Let v ∈ C be a steady
state flux vector and let I = {i | vi = 0} and J = {j | vj �=
0}. Then i �→ j for all (i, j) ∈ I × J .
In general, most irreversible reactions are uncoupled

to each other. Accordingly, the LP problems (4) used
to determine coupled irreversible reactions are often
unbounded. This limits the use of the feasibility rule,
which requires the calculation of a feasible flux vector. In
order to optimally use the feasibility rule, instead of solv-
ing the LP problems (4) to decide whether two irreversible
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Figure 2 Visualization of the LP problems solved using different
algorithms. (a) The FFCA algorithm, (b) the FFCA algorithm after
applying the preprocessing procedure given in Table 1 without
kernel computation (Step 7), (c) the FFCA algorithm after applying the
preprocessing procedure and using the kernel of the stoichiometric
matrix to identify fully coupled reactions and (d) the F2C2 algorithm
given in Table 3. The dashed lines mark the boundary of the Irev, Prev
and Frev regions. Colors: Black - an LP problem is solved for the
corresponding (ordered) pair of reactions; Gray - the corresponding
LP problem is not solved due to one (or both) reactions being
eliminated from the network (a preprocessing improvement); White -
corresponding LP problem does not get solved due to an algorithmic
improvement.

reactions i, j ∈ Irev are coupled, we propose to solve the
bounded LP problems

Lij = min{vi : Sv = 0, vj = 1, vk ≥ 0, k ∈ Irr},
Lji = min{vj : Sv = 0, vi = 1, vk ≥ 0, k ∈ Irr}, (5)

and to use the following scheme:

• i =0→ j (resp. j =0→ i) if and only if Lij �= 0 (resp. Lji �= 0),
• j � i if and only if Lij �= 0, Lji �= 0 and Lij = 1/Lji.

The following observation states that removing a fully
reversible reaction does not alter the flux coupling
between (pseudo-)irreversible reactions.
Observation 7. Let k ∈ Frev be a fully reversible reaction.
For convenience, suppose k = n. Let S′ be the m × (n − 1)
matrix defined by S′∗p = S∗p for all p �= k and let Irr′ = Irr.
Then, for all pairs of reactions i /∈ Frev and j /∈ Frev,

• i =0→ j if and only if v′
i = 0 implies v′

j = 0, for all
v′ ∈ R

n−1 with S′v′ = 0 and v′
p ≥ 0 for all p ∈ Irr′.

• i � j if and only if there exists λ′ �= 0 such that
v′
j = λ′v′

i, for all v′ ∈ R
n−1 with S′v′ = 0 and

v′
p ≥ 0 for all p ∈ Irr′.

Let S∗Rev be the submatrix defined by the columns in
S corresponding to the reversible reactions and let t be
the dimension of kern(S∗Rev). Based on Observation 7, we
can remove up to t independent fully reversible reactions
without altering the flux coupling between (pseudo-)-
irreversible reactions. Since certain fully reversible reac-
tions may change their reversibility type after the deletion
of a fully reversible reaction, we first remove a randomly
chosen reaction i ∈ Frev together with the coupled reac-
tions with i. We calculate the impact of this deletion on
the dimension of kern(S∗Rev). If this dimension decreases
by 1, the deletion is maintained; otherwise the removed
reactions are restored to the network. This is repeated
until t independent fully reversible reactions and their
coupled reactions are removed. We assume that the flux
coupling between fully reversible reactions is determined
beforehand.



Larhlimi et al. BMC Bioinformatics 2012, 13:57 Page 8 of 9
http://www.biomedcentral.com/1471-2105/13/57

Based on the above results, we propose the Fast Flux
Coupling Calculator (F2C2) to determine coupled reac-
tions. The main steps of the F2C2 algorithm are given in
Table 3.

Results and discussion
The F2C2 algorithm has been implemented within the
MATLAB environment, using CLP (via the Mexclp
[40] interface) as the underlying linear programming
solver. For benchmarking, we analyzed the following
genome-scale metabolic networks: Escherichia coli,
iJR904 [1], Saccharomyces cerevisiae, iND750 [2],
Methanosarcina barkeri, iAF692 [3], Mycobacterium
tuberculosis, iNJ661 [4], Escherichia coli, iAF1260 [5],
Homo sapiens, Recon1 [6] and Escherichia coli, iJO1366
[7]. For the numerically sensitive parts, a tolerance level of
10e-6 was set. All computations were performed using
a single Intel Xeon 5160 (3.0 GHz) processor on a 64-bit
Debian Linux 6.0 system.
As pointed out in the previous section, part of the per-

formance gain of F2C2 over previous FCA algorithms
stems from the fact that the preprocessing steps reduce
the network size. This affects the running time on two lev-
els: there are fewer reaction pairs and the LP problems to
be solved have reduced size. The dramatic effect of the
preprocessing steps on the network size is presented in
Table 4.
The algorithmic improvements further reduce the num-

ber of LP problems to be solved. A direct performance
comparison between the FFCA and F2C2 algorithms
(including the running times and number of LP prob-
lems solved) is summarized in Table 5. In all cases, F2C2
outperformed FFCA by several orders of magnitude. In
[31] it has been shown that FFCA is more efficient on
genome-scale metabolic networks than other flux cou-
pling algorithms.
For an intuitive, visual representation of the individual

improvements’ impact on the algorithm’s performance,
a more in-depth analysis has been performed on the
recent metabolic network of E. coli, iJO1366. Four differ-
ent sets of improvements were cumulatively switched on,
and the linear programs solved were plotted for each case
(Figure 2). To better highlight the relevant differences, the
following modifications were applied to the results. First,
249 (out of 2582) reactions identified as blocked were
removed from the images. This is a common preprocess-
ing step in most FCA algorithms. Secondly, the order of
reactions was permuted such that the reactions in Irev,
Prev and Frev are clustered together. Additionally, in each
of these three clusters, the fully coupled reactions were
moved towards the end of the segment.
Figure 2(a) plots the LP problems solved in the FFCA

algorithm. Applying the simple preprocessing steps with-
out using the kernel (Figure 2(b)), several reactions are

found to be fully coupled with others, and as such can be
merged together. When Lemma 1 is applied (Figure 2(c)),
all fully coupled sets are detected. As a consequence
the gray stripes get thicker and the LP problems corre-
sponding to (Prev,Prev) and (Frev, Frev) pairs need not be
solved anymore. The use of the algorithmic improvements
(Figure 2(d)) filters the pairs in (Irev, Irev) and (Irev,Prev)
blocks, greatly reducing the total number of LP problems
solved.

Conclusions
We have presented the new flux coupling algorithm F2C2,
which outperforms previous methods by orders of mag-
nitude. Flux coupling analysis of genome-scale metabolic
networks can now be performed in a routine manner. A
software tool F2C2 is freely available for non-commercial
use at https://sourceforge.net/projects/f2c2/files/.
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