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ABSTRACT 

The study of non-coding RNA genes has received 
increased attention in recent years fuelled by accu­
mulating evidence that larger portions of genomes 
than previously acknowledged are transcribed into 
RNA molecules of mostly unknown function, as well 
as the discovery of novel non-coding RNA types and 
functional RNA elements. Here, we demonstrate 
that specific properties of graphs that represent 
the predicted RNA secondary structure reflect 
functional information. We introduce a computa­
tional algorithm and an associated web-based tool 
(GraPPLE) for classifying non-coding RNA mole­
cules as functional and, furthermore, into Rfam 
families based on their graph properties. Unlike 
sequence-similarity-based methods and covariance 
models, GraPPLE is demonstrated to be more 
robust with regard to increasing sequence diver­
gence, and when combined with existing methods, 
leads to a significant improvement of prediction 
accuracy. Furthermore, graph properties identified 
as most informative are shown to provide an under­
standing as to what particular structural features 
render RNA molecules functional. Thus, GraPPLE 
may offer a valuable computational filtering tool 
to identify potentially interesting RNA molecules 
among large candidate datasets. 

INTRODUCTION 

Non-coding RNA genes (ncRNA) are integral compo­
nents of many biological processes including translation 
(tRNA, rRNA), RNA splicing (ribozymes) , gene regula­
tion through mRNA hybridisation (miRNA, piRNA), 
gene regulation through metabolite binding (riboswitches) 
and RNA methylation and pseudouridylation (snoRNA) 
(1). Functions such as translation and RNA splicing 
have long been considered to be the sole role of ncRNA. 
However, new and unexpected functions have been 

discovered recently, revealing that RNA molecules 
assume highly diverse functions and are more actively 
involved in biological processes than previously thought 
(2). The intensified study of ncRNA and search for 
new functional roles of RNA is further propelled by the 
realisation that a larger portion of intergenic space than 
previously acknowledged is actually transcribed. For 
instance, 85% of the fruit fly genome (3), 62% of the 
mouse genome (4) and a staggering 93% of the human 
genome (5 ,6) have been reported as transcribed. 
Understanding the functional role of this otherwise see­
mingly wasteful transcription requires the analysis of large 
amounts of genomic sequence data . Thus, computational 
methods have a great potential to contribute significantly 
toward this goal by predicting potentially functional non­
coding regions and their respective function. 

The structure of ncRNA is thought to provide insight 
into the biological function (7). In the folding process, 
characteristic nucleotide base-pairing and stacking inter­
actions play significant roles and are governed by molec­
ular forces acting on and within any molecule in aqueous 
solutions (e .g. electrostatic interactions) (8). The adopted 
shapes or folds can be highly complex and are capable 
of carrying out a variety of molecular functions , such 
as binding metabolites and proteins with high specificity 
(9- 14). RNA is particularly suited for hybridizing with 
nucleotide sequences allowing for highly specific targeting 
of genes and genomic regions (15- 17). Furthermore, it is 
conceivable that two ncRNA molecules with completely 
different nucleotide compositions would still fold to form 
the same structure and have the same function. For exam­
ple, the secondary structure of tRNA has a characteristic 
cloverleaf shape; however, the nucleotide composition of 
tRNA can vary to the degree that two tRNAs can have 
completely different sequences. Thus, methods that incor­
porate ncRNA structural, and not just sequence, informa­
tion are required for an accurate prediction of function. 

Due to the importance of RNA structure, several com­
putational RNA folding tools have been developed , such 
as: mfold (18), RNAfold (19), vsfold (20) , evofold (21) and 
sfold (22). The majority of these algorithms work on 
an input sequence to determine the folded secondary 
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Figure 1. Representations of RNA structure using graphs. (A) A typical tRNA structure represented using the bracketed graph representation. 
Nucleotides are represented as nodes (open circles) and bonds (both base-base hydrogen bonds and backbone ester bonds) as edges. The secondary 
structure of the tRNA is reminiscent in the shape of the graph. This is the chosen graph representation in the current article. The values for the 20 
chosen graph properties for this graph are shown in Table I. (B) The dual-edge graph for the same tRNA is shown. Stems are converted to nodes 
and loops to edges. Information about dangling ends is lost in this representation. (C) Planar tree representation uses a special node for the root 
(5' -/3'-end of the structure) depicted here as an open square. Base pairs are converted to 'stem' nodes (closed circles) and loop nucleotides are 
converted to 'loop' nodes (open circles). The tree is built by following the strand from 5' to 3' and the order of children is important. Information 
about dangling ends is also lost in this representation. 

structure that minimizes the free energy by optimizing the 
intramolecular base pairing. The input sequence may 
come from publicly available repositories, e.g. Rfam (23) 
which currently contains 636 138 sequences, grouped in 
603 ncRNA families, that are largely computationally 
annotated (24). 

The listed structure prediction tools are fast and accu­
rate when operating on sequences of less than 200 bp; 
however, they are not suitable for longer sequences (25). 
The accuracy of the predicted structure has been improved 
by algorithms that use multiple sequence alignments to 
produce a consensus structure. Another, relatively recent 
class of algorithms are designed to fold pseudoknots­
structures where each bonded base pair is not required 
to be bounded by another bonded pair of bases that are 
closer to the ends of the molecule. An example of a pseu­
doknot is the 'kissing hairpin' where the loops of two 
hairpins are bound to each other. The problem of folding 
pseudoknots was shown to be NP-complete and many 
tools do not attempt to fold them (26). There is also an 
algorithm that predicts the 3D structure (as opposed to 
secondary and pseudoknotted structures) of RNA mole­
cules (27). This method involves using fragments of RNA 
whose 3D structure has been experimentally determined as 
building blocks to assemble the shape of an investigated 
molecule. Any methods developed to predict ncRNA 
function are fully reliant on the ability for these tools to 
predict the structure accurately. 

There are very few tools that deal with the classification 
of functional versus non-functional RNA sequences. One 
attempt to develop such a tool investigated the idea that 
the minimum free energy (MFE) of functional RNA 
sequences should be lower than that of random, shuffled 
and non-functional genomic sequences (28) . In the study, 
MFE was identified to be largely unhelpful except in a 
later study, which discovered that MFE can be used to 
identify miRNA (29) . Other studies calculated the thermo­
dynamic stability of multiply aligned structures as a means 

of identifying functional RNA (30) and have been applied 
to the genomes of Saccharomyces cerevisiae (31) and 
Plasmodium Jalciparum (32) . 

Assigning unannotated RNA sequences to an Rfam 
family is better investigated and there are a wide variety 
of ncRNA family specific predictors, most of which focus 
on miRNA (33- 36). Covariance models, as general pre­
dictors, are used to identify nucleotide pairs which vary 
together across multiple alignments and are thus likely 
to be bonded in secondary structure (37). Such models 
require multiple alignments and are computationally 
time consuming, limiting the number and type of 
sequences that can be processed. 

A large portion of recent RNA-related research applies 
concepts developed in graph theory to the analysis of 
RNA structure (38-40). A graph is an abstraction of the 
relationship among objects, which uses nodes to represent 
the objects and edges to represent the relationship between 
two objects. There are many ways to represent RNA 
structure with graphs (Figure 1), including the bracketed 
(where nucleotides a converted to nodes and bonds to 
edges), planar tree (where base pairs are converted 
to 'stem' nodes and loop nucleotides are converted to 
'loop' nodes, while following the molecule from 5' to 3') 
and dual graph representations (where stems are con­
verted to nodes, while loops to edges) , each with different 
advantages and disadvantages including information 
loss and complexity of calculation (38). Graph topology 
derived from RNA structure has also been used to assign 
Rfam family (41) . Although the ability to discriminate 
between functional and non-functional genes was not 
demonstrated, this approach appears quite successful in 
terms of classification. 

The structure of a graph can be employed to define 
and analyse different properties that could reflect the char­
acteristics of the process or entity modelled by the graph 
(Table 1; Supplementary Material, Section 1). A property 
can be defined on the level of graph constituents 
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Table 1. Graph properties calculated for a typica l tRNA depicted in 
Figure I 

Number of articulation points 3 Average Burt's 0.4234 
constraint 

Average path length 9.577 Variance of Burt's 0.0161 
constraint 

Average vertex betweenness 313.1 Average degree 2.514 
Variance of vertex betweenness 54817.6 Diameter 22 
Average edge betweenness 278.2 Girth 4 
Variance of edge betweenness 40784.5 Average coreness 1.959 
Average cocitation coupling 0.0555 Variance of coreness 0.0394 
Average bibliographic coupling 0.0555 Maximum coreness 2 
Average closeness centrality 0.1088 Graph density 0.0344 

index 
Variance of closeness 0.00048 Transitivity 0 

centrality index 

We have chosen 20 graph properties to calculate a nd train the SVMs. 
These properties were chosen by considering the following criteria 
(i) polynomial-time computation, (ii) relevance to local and globa l 
levels of the graph and (iii) usage in complex network research. 
The va lues shown beside each property are the graph properties as 
calculated for the graph shown in Figure I. 

(i .e. nodes and edges) or on the level of the graph itself. 
Furthermore, computing a property may require limited 
or full knowledge of the graph. Based on these two criteria 
(level of detail and required knowledge of the graph), 
graph-theoretic properties may be classified into local 
(using limited knowledge of the graph and referring to a 
graph's constituent), local- global (using full knowledge of 
the graph and referring to a graph's constituent), and 
global (using full knowledge of the graph and referring 
to the graph itself). Thus, graph representations of RNA 
molecules offer a means to capture both local- global and 
global structural properties that can be used to deduce the 
large- and small-scale structural, and therefore functional , 
differences between molecules. 

Here, we go another level of abstraction higher than 
previous methods and address the question of how a 
set of selected graph-theoretic properties derived from 
a graph representation for predicted RNA secondary 
structures can be used as characteristic features for the 
classification of RNA molecules . Among the immense 
number of existing graph-theoretic properties, we select 
several representatives based on the following three cri­
teria: (i) polynomial-time computation, (ii) relevance 
to local and global levels of the graph and (iii) usage in 
complex network research. As a means of exploring the 
relationship between graph properties and Rfam families, 
we attempt to recall the Rfam families of ncRNA 
sequences using support vector machines (SVMs) trained 
on the selected graph properties. Furthermore, we show 
that graph properties can be employed to differentiate 
between functional and non-functional sequences as well 
as predict a likely function . In this study, a small number 
of graph properties are identified as most relevant for the 
correct classification of ncRNAs and their interpretation 
is demonstrated to shed light on structural properties that 
may render RNA molecules functional compared to their 
non-functional counterparts. 
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MATERIALS AND METHODS 

The data set 

Seed and full RNA sequence alignment datasets were 
obtained from Rfam release 9.0 (23) (http://www.sanger. 
ac.uk/Software/Rfam) and all redundant identical 
sequences were removed using CD-HIT (42) (http: //bioin­
formatics.ljcrf.edu/cd-hi/), yielding 52 855 (full) and 18 
974 (seed) unique sequences for analysis. These sequences 
were split into 210 Rfam and 8 compound families , which 
were formed out of several smaller related Rfam families 
(CD-box, HACA-box, internal ribosome entry sites , 
leader sequences, miRNA, riboswitches, ribozymes and 
scaRNA). All RNA sequences were folded into their pre­
dicted secondary structures using RNAfold (19) . 

Calculating graph properties 

The bracketed graph representation was used to represent 
the predicted structure (Figure 1). It was calculated by 
converting all nucleotides to nodes and all bonds between 
nucleotides (both ester and hydrogen) to edges. 

From the three different ways in which a property can 
be defined and calculated, here we used the summary sta­
tistics for the local- global properties, since they provide 
insight not only on the global level of the graph itself, but 
also on the level of its nodes and edges. The employed 
statistics (mean and variance) allow for a uniform way 
of summarizing the distribution of values an investigated 
local property may assume. For instance, the node­
betweenness used in our analysis is given by the mean 
and variance of the distribution of node-betweenness 
values over all nodes of a graph. Similarly, we used bib­
liographic coupling as given by the mean and variance of 
bibliographic couplings over all pairs of nodes. 

All properties were calculated using the igraph R 
package (43) (http: //cneurocvs.rmki.kfki.hu/igraph) for 
complex networks with our own extensions to the pres­
ently implemented algorithms that facilitate the extraction 
of the graph representation and calculation of the neces­
sary summary statistics. We focused on the following 
global properties: number of articulation points, diameter, 
girth, density and transitivity, together with the local­
global properties (given by the mean and variance): 
Burfs constraint, path length, node betweenness, edge 
betweenness, degree , co-citation coupling, bibliographic 
coupling, coreness and closeness (a brief definition of all 
graph properties used in this study is provided in the 
Supplementary Material, Section 1). 

SVM training and testing 

We used the following procedure for training and testing 
all SVMs: First, we produced matched training/testing sets 
with randomly selected, but non-overlapping sequences 
and matching graph property sets . SVMs were then cre­
ated from the training sets using libSVM software (44). 
All graph properties for the training sets were initially 
scaled between -1 and 1 to prevent graph properties 
with larger numerical ranges from dominating those 
with smaller ranges. A 10-fold cross validated grid 
search, based on the training set, was used to optimize 
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the initial parameters C (the cost parameter) and y (the 
kernel width). In addition, the SVM was trained on the 
full training set using the optimised values . The radial 
basis function (RBF) kernel was employed as it is able 
to identify non-linear relationships between class-labels 
and features (graph properties), requires fewer hyper­
parameters, and presents fewer numerical difficulties 
than other kernels . The testing sequences were in turn 
submitted to test the SVMs, and results are reported in 
the Results section. Each SVM was trained 100 times with 
different sets of random sequences. 

The importance of the graph properties was calculated 
using the F-score (45). The F-score is a simple measure 
that discriminates between two sets of real numbers. 
Given m training vectors, x , and n+ positive and n_ neg­
ative instances, then the F-score of the i-th feature is 
defined as: 

F(i) == ( xi X, 1/++ Xi X, 2) ' 
I j (n+ -1) L (X~~: - i;+)) 

+l j (n_ - l ;t. '~ (xt: _ i;-))2 
k= l 

1 

where Xi, x ;+), x;-) are the average of the i-th feature of 
the whole, positive and negative data sets , respectively; 
x~+: is the i-th feature of the k-th positive instance, 
and x~-: is the i-th feature of the k-th negative instance. 
The numerator indicates the discrimination between the 
positive and negative sets, and the denominator indicates 
the one within each of the two sets. The larger the F-score, 
the more likely it is that this feature is more discriminative. 
This algorithm is available usingfselect which is available 
on the libSVM internet site . 

Functional versus non-functional RNA sequence prediction 

SVMs were trained to differentiate functional from non­
functional RNA using graph properties. Sequences avail­
able from Rfam are considered functional and comprise 
the set of all functional sequences (here , mRNA is consid­
ered non-functional) . A non-functional set was created 
by shuffling each Rfam sequence once while preserving 
dinucleotide content using uShuffle (46). A 200 functional 
and 200 non-functional sequences were randomly chosen 
for the training and testing sets with each family having 
an equal chance of being chosen, yielding 400 sequences 
for each set. After classification, the important graph 
properties were determined by calcula ting the F-score . 

Predictive power of graph properties 

We attempted to determine whether graph properties 
alone can be used to recall Rfam families . To remove 
the influence of sequence similarity and length, we filtered 
the training and testing sequences in two ways. 

First, to account for sequence similarity, we created 
diverging testing and training sets . A distance matrix for 
each family was created by an all-against-all comparison 
of sequences within a family using the similarity score 
provided by CLUSTALW pairwise alignments (47) 

PAGE 4 OF 12 

(http://www.clustal.org/). Each family was then divided 
into diverging training and testing sets , where the greatest 
similarity between a member picked from a training set 
and a member chosen from the paired testing set would be 
less than or equal to a given threshold . We set the initial 
threshold to give a maximum similarity between the two 
sets of 90 percent identity (%id) to allow the training and 
testing sets to become highly similar but not identical. 
We then decreased this threshold in steps of 10%id. As 
any two completely random RNA sequences are expected 
to have 25%id due to random chance, we set the lower 
bound to 20%id, thus creating a total of eight sets (20, 30, 
40, 50, 60, 70, 80, 90%id). 

Second , graph properties were calibrated for the poten­
tial bias introduced by length and GC content (%G + C). 
A set of random sequences was generated, in which all 
combina tions of the lengths 50- 1000 nt (in steps of 50) 
and the %G + C 10- 100% (in steps of 10) were repre­
sented 100 times, producing a matrix for each graph prop­
erty with 10000 entries. The graph properties of each 
sequence were then calibrated by dividing by the entry 
with the closest length and %G + C in the corresponding 
calibration matrix. The F-score was also used here to 
calculate the predictive power of each graph property. 

As the maximum similarity between the training 
and testing set decreases, the number of available 
sequences also decreased and many families became too 
small to be used leaving, finally , 18 families for analysis 
(Supplementary Material, Section 2) . Training sets were 
restricted to 50 random members , while testing sets were 
restricted to 20 from each family. 

The sensitivity (QD) and specificity (QM) of SVM-based 
predictions for each individual family were calculated 
using the following equations: 

2 

and 

QM = Zjj 
} L Zij' 

3 

j 

where Z ij is an entry in a confusion matrix, i is an index 
for the actual family and j is an index for the predicted 
family . 

We also investigated the possibility of combining the 
results of the SVM with the sequence-based assignment 
of Rfam family using BLAST in order to improve accu­
racy. For each sequence, the SVM produces probabilities 
(pscoreSYM) that the sequence belongs to each ncRNA 
family . The sum of the pscoreSSVM totals to 1. Similarly, 
for each sequence, we produced an E-value for each family 
using BLAST. This E-value was adjusted to the same scale 
as the SVM pscore by calculating the inverse E-value as 
a fraction of the total inverse E-values: 

I jei 
pscoreBLAST = - 1/- ' 

Lt 
k=O 

4 



PAGE 5 OF 12 

where e, the E-value obtained for an individual family and 
ek is the sum of E-values over all families . The two values 
were then combined linearly using a weighting factor, CL, as 
follows: 

pscoreMERGE = (l - ex) x pscoreSVM + ex x pscoreBLAST 5 

As a result, we obtained for each sequence a merged 
p-score for each family that, although not considered a 
probability, indicates how likely the sequence belongs to 
that family . The family with the highest pscoreMERGE was 
assigned to the sequence. 

Stand alone WUBLAST (48) (http://blast. wustl.edu), 
the INFERNAL package (37) (http://infernal.janelia.org) 
and HMMER (49) package (http://hmmer.janelia.org/) 
were used to provide references to methods which are 
expected to perform either poorly and well on the diver­
ging training sets. As the sets diverge, the performance of 
sequence comparison based methods, such as WUBLAST, 
should degrade, whereas structure based methods would 
ideally remain stable. The comparison was performed 
using the same training and testing sets. A description of 
how these methods were applied can be found in the next 
section. 

COMPARISON TO OTHER METHODS 

To compare our method to existing tools , we a chose rep­
resentative method from each class of classifier presented 
in a previous study used to benchmark a number of other 
tools (50). We chose WUBLAST from the homology­
based methods, HMMER from the Hidden Markov 
Model-based methods and INFERNAL from the covar­
iance model-based methods. Training sets of 50, 100 and 
200 seed sequences per Rfam family were generated, which 
resulted in 25, 8 and 3 Rfam families of sufficient size for 
each training set, respectively. All tools were used with the 
default settings following the same procedure described 
in the previous section. 

For comparison with WUBLAST, each training set 
was split into the constituent Rfam families and converted 
into blastable data bases. The testing set was then blasted 
against each database, using an E-value threshold of 100, 
resulting in a set of E-values for each sequence that mea­
sures how well it matched each Rfam family. Sequences 
were then classified according to the family with the 
lowest E-value. 

A similar procedure was followed using INFERNAL 
and HMMER. Training sets were split into constituent 
Rfam families and aligned using MUSCLE (51) (http:;/ 
www.drive5.com/muscle). From each family alignment, 
covariance and Hidden Markov models were built. The 
testing set was then searched using each of the models 
and each sequence was scored on how well it matched a 
given family . Sequences were classified according to the 
best identified matching family . 

Performance measures 

Prediction performances of classifiers was assessed using 
the Matthew's correlation coefficient (MCC) (Equation 6), 
and Receiver Operating Characteristic (ROC) and 
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associated area under the ROC (AUC) reported in the 
Supplementary Material. 

TP x TN-FP x FN 6 MIT= , 
J(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

where TP is the number of true positives, TN the number 
of true negatives, FP the number of false positives, and 
FN the number of false negatives. 

RESULTS 

In this work, we developed three approaches to invest.igate 
graph properties and their ability to reflect the functIOnal 
information of RNA molecules. In the first approach, 
we tested the ability of graph properties to discriminate 
between functional and non-functional RNA molecules. 
In the second, we removed any bias that may be intro­
duced through sequence similarity, length and GC content 
(%G + C) by using calibrated and diverging training 
and testing sets to test the predictive power of the graph 
properties alone when predicting the Rfam fa~il~ o~ an 
ncRNA sequence. In the third, we removed the lImItatIOns 
imposed in the second approach and compared the ability 
for the developed method to predict Rfam family to other 
established tools . 

In the first approach, the classifier based on SVM 
and using graph properties as features was able to classify 
RNA sequences into functional and non-functional classes 
with Matthew's Correlation Coefficients (M CC) ranging 
between 0.61 and 0.98 with an average MCC of 0.87, 
and sensitivity and specificity of 0.73, respectively 
(Supplementary Material, Section 4). This indicates that 
graph properties can be used to identify functional RNA 
sequences and performs significantly better than random 
assignment (MCC = 0). The discriminatory power of each 
graph property was then calculated using a measure c~lled 
the F-score (see Materials and Methods sectIOn) 
(Figure 2). This score revealed that the 'number of artic­
ulation points' possessed the most discriminatory power 
with an average F-score of 0.094 followed by the 'variance 
of coreness' (0.080), 'average coreness' (0.062) , 'average 
Burt's constraint' (0.062) and 'average degree' (0 .056). 
The F-score decreased significantly for the remainder of 
the graph properties along with the minimum free energy 
(MFE). 'Girth' , 'maximum coreness' and ' tran~itivity' had 
little or no discriminatory power and were mcluded to 
provide baseline support for high-scoring graph 
properties. 

The second approach explored the idea that graph 
properties are able to reflect RNA structure and function 
in greater detail by attempting to recall th~ ~or~ect 
Rfam family without the influence of sequence sImIlarIty, 
length and %G + C. To control for sequence similarity 
we created diverging testing and training sets. To control 
for sequence length and %G + C, we performed a calibra­
tion using generated random sequences of various lengths 
and %G + C (see Materials and Methods section). SVMs 
trained on calibrated graph properties classify RNA 
sequences with an average MCC of 0.32 (Figure 3); 
i.e. substantially above the expected rate when guessing. 
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Figure 2. Graph property discriminatory power for functional vs. non-functional classification. The discriminatory power of each graph property was 
determined by calculating the F-score (Equation I) with larger F-scores indicating more relevant properties. The distribution of F-scores is shown for 
each graph property as a box plot where the middle bar is the median, the outer edges are the 10 and 90 percentiles and the edges of the box are the 
25 and 75 percentiles. Outliers are shown as circles. When classifying functional versus non-function RNA, we find that the 'number of articulation 
points' , 'variance of coreness', 'average coreness ', 'average Burt's constraint' and 'average degree ' consistently have significantly higher F-scores than 
the other graph properties. 

This value is relatively stable at all eight selected thresh­
olds of sequence divergence as it varies between 0.29 and 
0.37, and shows that the method is robust at all levels of 
sequence divergence. 

To test whether purely sequence-homology-based 
methods can correctly identify family members under 
conditions of increasing sequence divergence, we ran 
WUBLAST on datasets of increasing sequence divergence 
as well. When using WUBLAST to classify the sequences 
based on sequence similarity, there is a significant drop 
in the average MCC from 0.48, obtained for sets with 
90% maximum similarity between training and testing 
sets, to only 0.08 (20% maximum similarity) (Figure 3). 
Thus, sequence-based methods alone appear insufficient 
to correctly detect family members that have diverged at 
the sequence level. Such remote family members are likely 
to be identified by methods relying on structural 
aspects such as INFERNAL. Unexpectedly, and similar 
to WUBLAST, we observed a drop in the average MCC 
from 0.49 to 0.12 as the sets diverge (Figure 3) implying 
that within Rfam families, the structures predicted by 
RNAfold may not have sufficient similarity to each 
other be detected by INFERNAL. HMMER, a method 
based on Hidden Markov Models, was also used on the 
diverging training and testing sets and performs signifi­
cantly worse at all levels of divergence than the other 
methods (Figure 3). While WUBLAST and INFERNAL 

q 
o 

. svm 

.hom 
[]cvm 
. hmm 

90 80 70 60 50 40 30 20 
Identity (%) 

Figure 3. Rfam family classification results for calibra ted , diverging 
RNA sequence sets. At high levels of sequence identity, the perfor­
mance- as judged by the MCC- of the graph-property-based SVM 
method (svm) is worse than the other tested methods when classifying 
sequences calibrated for length and %G + C indicating that RNA 
families have distinct lengths and %G + C that affect the graph proper­
ties. However, the performance remains stable as the sequences diverge, 
whereas the performance of homology methods (hom), covariance 
models (cvm) and Hidden Markov Models (hmm) degrades sufficiently 
that SVMs still outperforms them at maximum similarities of 50% and 
below. In this performance comparison, 18 sufficiently large Rfam 
families were included in the training and testing protocol. 
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Figure 4. Graph property discriminatory power for Rfam family assignment. The discriminatory power as measured by the F-score (see Materials 
and Methods section) of each graph property was calculated to identify the important graph properties, When discriminating among the 18 Rfam 
families used in this analysis, the most important properties are the 'average Burt's constraint' , 'average degree' and 'average coreness ' , 

performed better when applied to very sequence-similar 
sequences than our graph-property-based SVM method, 
they performed worse at greater sequence divergence with 
the SVM method displaying greater robustness with 
regard to increasing sequence separation. 

In the cases, where the training and testing sets have at 
most 20% similarity, the F-scores of the graph properties 
signifying their predictive power, fall into four broad cate­
gories (Figure 4). The 'average Burt's constraint', 'average 
degree' and 'average coreness' have the highest F-scores; 
i.e. have greatest predictive power, while 'girth', 'max­
imum coreness' and 'transitivity' do not contribute at all 
to the SVM. The remaining graph properties fall into two, 
roughly equal groups that have average F-scores around 
0.6 and 0.4. Thus, the important graph properties 
which determine functional versus non-functional RNA 
sequences (Figure 2) and those that determine the Rfam 
family (Figure 4) differ slightly. While the 'average Burfs 
constraint', 'average degree' and 'average coreness' remain 
among the most important, the 'number of articulation 
points' and the 'variance of coreness', which were impor­
tant for functional versus non-functional classification, 
are ranked among the least important for assigning 
Rfam families . 

The SVM method does not work evenly across all 
Rfam families (Table 2). When the sets are maximally 
divergent, the families SECIS (0.96 sensitivity, 0.58 
specificity), Intron gp Il (0.72, 0.73), SS rRNA (0.63, 
0.70), tRNA (0.42, 0.83) and MIRNA (0.79, 0.46) all 

perform well with high specificity, high sensItIVIty 
or both. IRES, LEADER and SRP are associated with 
the worst sensitivity and perform only slightly better 
than random assignment of Rfam families; 0.07 versus 
0.05 for random predictions. 

As the graph-property-based prediction approach 
may capture relevant aspects of RNA molecules that are 
not properly reflected by sequence similarity searches 
alone (as demonstrated by the more robust behaviour of 
our graph-based method when tested on diverging 
sequence sets; Figure 3), combining both methods may 
result in increased prediction performance compared to 
each individual approach. By combining a P-value calcu­
lated from the WUBLAST E-value to capture a sequences 
based score, and the SVM P-value to reflect graph-proper­
ties in a linear fashion with a properly chosen weighting 
factor, Cl, with Cl = 0.5, MCC values higher than those 
produced by each method individually (Figure 5) were 
obtained. The average MCC for the combined methods 
is 0.446 and ranges from 0.313 in sets that are 20% similar 
to 0.567 in sets that are 90% similar. 

Although we applied rigorous calibration to the 
sequences to identify whether the graph properties them­
selves were responsible for prediction or the influences 
from sequence similarities and length, it would be impru­
dent not to use this information when constructing an 
SVM intended for actual classification of RNA sequences 
outside the testing protocol. Thus, for comparison with 
other methods, the third approach used non-calibrated 
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Table 2. Confusion matrix for most divergent calibra ted sets 

Predicted family 
:>< on u CI.l 
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:>< 0:1 0:: « Z « Cl. Cl. 

~ ~ >--
0 .d: CI.l « z c;:: « on on r/l N 
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Cl « CI.l CI.l 00 ~ 0:: § l:l l:l CI.l r/l 

.D E9 E9 QD e1 ~ 
r/l r/l ..:i ..:i ~ u ::c: ...J on or) \0 r/l r/l r/l o::::c: 0:: 

CD-BOX 242 149 80 416 52 5 21 161 74 40 14 23 209 298 47 0.12 
HACA-BOX 114 886 47 247 125 4 73 55 14 80 3 88 115 18 0.45 
IRES 76 41 145 86 130 1 83 57 173 185 159 336 150 329 0.07 
LEADER 264 222 10 132 911 0 0 0 0 32 0 133 20 0 0.07 
MIRNA 117 16 51 0 35 38 2 8 2 2 4 4 28 2 0.79 .... SS rRNA 481 25 1 10 78 13 1 0 0 0 0 26 73 8 0.63 ] 5.8S rRNA 11 6 142 14 247 0 16 11 40 539 82 234 115 510 0.12 

oS tRNA 28 0 0 0 11 831 0 0 0 0 0 0 0 0 0.42 Q,j 

:= 6SRNA 106 31 490 1 5 0 768 57 20 52 50 336 12 43 0.39 ... 
E-< SRP 21 1 1 51 17 4 8 0 4 141 0 0 0 0 2 0 0.07 

tmRNA 10 9 128 15 0 23 0 163 41 890 251 83 53 9 303 0.45 
Intron gp I 42 41 174 46 0 54 2 18 196 307 384 125 188 105 286 0.19 
Intron gp II 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0.72 
SECIS 2 0 0 0 9 0 30 0 0 0 0 0 0 0 0 0.96 
SSU rRNA5 28 64 94 32 0 204 1 50 53 456 308 227 60 39 362 0.11 
T-box 29 97 247 36 0 70 0 49 94 205 437 143 290 43 200 0.15 
RffiOZYME 104 60 135 17 0 168 22 73 15 124 319 124 186 206 311 0.10 
RffiOSWITCH 48 47 102 19 0 86 4 151 92 439 234 120 176 96 363 0.18 
QM 0.14 0.52 0.08 0.12 0.46 0.70 0.11 0.83 0.52 0.14 0.32 0.13 0.73 0.20 0.13 0.16 0.13 0.33 

For each Rfam family, the classification of each RNA sequence from their actual class (y-axis) into their predicted classes (x-axis) is shown. QM is 
the specificity of the method and QD the sensitivity (see Materials a nd Methods section for definition). This confusion matrix was calculated from 
training and testing sets that were at most 20% similar and used calibrated graph properties. We observed that the chosen graph properties 
calculated for the chosen graph representation a re best able to reflect the Rfam families SECIS, Intron gp 11 , SS rRNA, tRNA, MIRNA and 
HACA-BOX. Entries are coloured by number classified starting from 0 (white) to 2000 (green). 

Identity (%) 

Figure 5. Linear combination of graph-property-based SVM a nd 
BLAST for calibrated, diverging RNA sequence sets. By merging the 
results of the WUBLAST (horn) and SVM (svm) methods, improved 
classifica tion at a ll thresholds of divergence (mrg) were obtained. This 
indicates that both methods capture independent information that 
allows more accurate classification when combined. As in Figure 3, 
18 Rfam families were considered. 

graph properties and imposed no similarity restrictions 
between the training and testing sets. 

Having established that graph properties have predic­
tive value to correctly distinguish between Rfam families, 
we took a third approach that compared the performance 
of the graph-property-based SVM method to BLAST, 
INFERNAL and HMMER using training sets with 50, 
100 and 200 sequences per Rfam family (Supplementary 
Material, Section 3). In the previous two approaches 
reported above, we used the full sets of Rfam family align­
ments. While this provided the largest possible as well as 
most diverse training sets, these sets can also be expected 
to include wrongly annotated RNA sequences. Therefore, 
for a fair and rigorous comparison to other methods, in 
the third approach we only included the seed-alignments 
associated with each Rfam family that can be assumed to 
constitute curated and more accurate datasets . The size of 
the training set and the number of families to be classified 
has a significant impact on the performance of the tested 
method (Figure 6). The SVM-based method shows perfor­
mance increase from a median MCC of 0.88 for training 
sets of size 50 to 0.96 for training sets of size 100 and 0.98 
for training sets of size 200. INFERNAL also show an 
increase (0.96, 0.99, 0.99) , whereas WUBLAST remains 
stable (0.97, 0.95, 0.96) and HMMER shows a decrease 
(0.97, 0.94; 0.88). The results indicate that SVMs trained 
on graph properties are able to perform slightly better 
than homology-based methods and slightly worse than 
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Figure 6. Comparison of graph-property-based SVMs to other 
methods. Four different classes of methods (50) were compared; 
SVM- (svm). homology- (horn. using WUBLAST), covariance model­
(cvm, using INFERNAL), and Hidden Markov Model-based (hmm, 
HMMER). Performances vary depending upon the size of the training 
set. The SVM-based method performs with a median MCC of 0. 88 
when trained with sets of 50 sequences. The median MCC increases 
considerably for training sets with 100 and 200 sequences to 0.96 and 
0.98, respectively. With larger training sets, SVMs compare favourably 
with the other methods such as homology methods, which had median 
MCC values of 0.97, 0.95 and 0.96, cova riance models (0.96, 0.99, 
0.99) , and Hidden Markov Models (0.97, 0.94, 0. 88) for the training 
sets of increasing sizes. Training sets of different sizes corresponded to 
sets of 50, 100 or 200 RNA sequences derived from 28, 8 and 3 Rfam 
families, respectively, with a t least that many corresponding member 
sequences . Sequences were randomly sampled and the procedure was 
repeated 100 times. 

covanance model-based methods when trained on suffi­
ciently large datasets. The decreasing performance of 
Hidden Markov Models with increasing training set size 
may be explained by the impact that the increased vari­
ability may have on the transitional probabilities or 
decreasing quality of multiple sequence alignments used 
to derive the HMM. This illustrates the need for methods 
to detect different aspects of conservation than at the 
sequence level alone as attempted in this study. 

DISCUSSION 

Currently, there exist few predictors capable of 
assigning function to uncharacterised ncRNA molecules 
and even fewer that can predict whether or not an 
ncRNA molecule is functional. Available methods are 
based on sequence comparison (52) , covariance models 
(53), graph topology (41) and structural alignments (30). 
However, the disadvantages of existing methods limit their 
application. Here, we present a novel method for de novo 
ncRNA and Rfam family prediction, which is based on a 
higher level of structural abstraction by using properties 
associated with RNA molecules when treating them as 
graphs, thereby addressing some of the problems of the 
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eXlstmg methods, expanding the repertoire of available 
methods and, hopefully, contributing to the understand­
ing of the RNA world. 

By analysing the manner in which the graph properties 
are calculated, we may gain insight into how functional 
RNA is formed and what topological features render 
functional RNA molecules unique compared to their 
non-functional counterparts. Analysing the 'number 
of articulation points' may serve as an example as it is 
relatively easy to interpret. In graphs representing RNA 
secondary structure, there are only two situations, where 
removing a node in the graph can disconnect the graph: 
when a node is removed from the dangling 5' - or 3/-end, or 
when a node is removed from a bridge connecting poten­
tially separable structures (Figure 7). From this study, we 
find that graphs with more articulation points are more 
likely to represent non-functional structures, indicating 
that functional structures minimize the length of the 
dangling ends and, in addition , either minimise the 
length of the bridges between separable structures or the 
number of separable structures. The remaining graph 
properties that were determined as important are calcu­
lated using more complex algorithms and a structural 
interpretation is more complex (54). Further biological 
interpretations of some of the other graph properties can 
be found in the Supplementary Material. 

When using graph properties, it is important to remove 
factors that may obscure the attempt to determine 
whether they reflect sufficient information about Rfam 
family to make a prediction; otherwise, simpler methods 
such as sequence alignment or predictions based on just 
the sequence length would suffice. After removing these 
confounding factors, the graph properties themselves are 
shown to maintain the predictive power. As a result, we 
gain insight into structurally important properties for 
functional RNA by interpreting the way graph properties 
are calculated in a biological context (demonstrated here 
with the number of articulation points) . The graph prop­
erties also provide sufficient information for Rfam family 
prediction on highly divergent sequences. Combined with 
the aforementioned sequence properties, the accuracy of 
the method improves significantly. 

ncRNA exhibits greater conservation on the secondary 
structure level than the primary structure (53) , as is 
demonstrated by the large variety of tRNA molecules, 
and thus sequence similarity is a potentially suboptimal 
choice of a classification criterion. In many cases, the 
sequences are sufficiently dissimilar at the sequence- and 
even the secondary-structure (inferred from covariation) 
level that neither sequence alignment nor covariance 
models are able to recall the function , and yet a classifier 
built on the graph properties; i.e. based on a higher level 
of abstraction, still manages to perform accurately. This 
finding indicates that, to a certain degree, our method is 
sequence independent and that there are properties inher­
ent in the structure of ncRNA indicative of function . 

Of the many graph representations available , such as 
dual graph and planar tree representation, we chose 
bracketed graph representation. This representation was 
chosen over the others as it is more sensitive to small 
changes in the underlying RNA structure due to the 
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Figure 7. Structural relevance of articulation points. Articulation points are nodes that, if removed, will disconnect the graph. In a structural sense, 
these are either 'dangling' nucleotides at the 5'- and 3'-ends of a molecule or ' bridge' nucleotides that connect potentially separable structures. A 
tRNA molecule (A) and a shuffled counterpart (8) are shown. The red nucleotides are articulation points in the graph representation and the 
structures within each blue box are potentially separable secondary structures. Ester bonds are shown in grey and hydrogen bonds are coloured in 
green. If graphs with fewer articulation points tend to represent functional ncRNA, then functional RNA molecules are more likely to have fewer 
dangling/bridge nodes and potentially separable structures than non-function RNA molecules. The tRNA graph contains five articulation points and 
not separable structures, whereas the shuffled counterpart contains 10 articulation points and two separable structures. 

greater number of nodes and edges. The graph space 
of the other representations is far smaller, potentially 
reducing the predictive power of the derived graph proper­
ties. This representation also minimizes information loss 
(e .g. dangling ends and, in dual graph representation, the 
length of the stems and loops) and is simpler to calculate. 
On the other hand, there are several potential disadvan­
tages of our proposed method: (i) usage of sequences 
biased toward certain species, (ii) dependence on one fold­
ing algorithm of choice and (iii) usage of secondary struc­
ture prediction, thus neglecting pseudoknots and tertiary 
structures. Note that all of the identified issues are exog­
enous to our method, and one can account for them 
by conducting comparison tests- a task beyond the 
scope of this article. 

The sequences available in Rfam are largely bacterial 
and viral, and thus the method we have developed will 
be biased towards the prediction of purely bacterial and 
viral Rfam families or, where the family occurs in several 
kingdoms, higher accuracy prediction in bacterial and 
viral sequences. When more ncRNA sequences become 
available, our method will benefit from being trained 
upon a more specific choice of sequences, e.g. purely 
plant or animal sequences. 

Often the predicted structure of an ncRNA sequence is 
quite different from the experimentally determined struc­
ture. As we obtained all secondary structure assignments 
using RNAfold (19), our method is reliant on RNAfold 
producing consistent predictions. As the tools for RNA 
folding prediction improve, we plan to upgrade the folding 
algorithms, hopefully yielding higher accuracies and better 
understanding of the biological and structural relevance of 
graph properties. An immediate possible improvement is 
the use of multiple alignments which improves the accu­
racy of the predicted secondary structure (55). 

We chose to calculate graph properties from secondary 
structure, rather than pseudoknots or predicted 3D RNA 

structure, which potentially limits the predictive power 
of the graph properties. By using secondary structure, 
the maximum degree (number of connected edges) for 
any node is limited to three; i.e. two ester bonds and a 
hydrogen bond. With pseudoknots and 3D structure, the 
possibility for much more complex graphs emerges with 
significant consequences on the graph properties. Such 
graphs are likely to better reflect functional information, 
which is a point for further study. 

We expect further improvement through careful selec­
tion of the graph properties as potential discriminatory 
features. Of the current graph properties, we would ideally 
use only those that are most informative and perhaps 
more biologically relevant. There are also many more 
properties that can be calculated than the 20 chosen and 
experimentation with new graph properties may lead 
to improved accuracy and greater insight into ncRNA 
functionality. Including properties such as minimal free 
energy (which has been shown to be informative for 
miRNA), %G+ C and perhaps dinucleotide frequencies 
in SVM training should provide a significant boost to 
the accuracy of the described method. 

Many of the existing methods have shortcomings limit­
ing their application. As many ncRNA families show lit­
tle sequence homology, but high degree of structural 
conservation, homology-based methods would be unable 
to correctly identify all members of the family. Co variance 
models, although highly accurate, require long computa­
tion times and neither method are able to discriminate 
between functional and non-functional ncRNA sequences. 
The method developed in the current article, can cover 
more sequences than homology-based methods at quick 
speeds typical of SVM-based methods, which provides a 
good compromise between the two methods. Our method 
was shown to be robust with regard to increasing sequence 
divergence and performed at high accuracy levels when 
tested on both curated data sets (Rfam seed alignments) 
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and data sets based on electronic annotation (Rfam full 
alignments). It also exhibits the ability to identify func­
tional RNA sequences. Finally, combining graph proper­
ties with other methods provides a significant boost to 
performance. 

In conclusion, ncRNA is not simply a primitive form of 
molecule as it is active in a wide variety of roles not typical 
for proteins. We developed a computational method that 
represents a necessary first step for future ncRNA inves­
tigation tools. With a plethora of potential functions still 
undiscovered and many more molecules whose functional 
role is still unassigned, we believe that higher level struc­
tural abstraction and their respective properties will play a 
key role in discovering new ncRNAs and their plausible 
biological role. 

Availability 

The graph-property-based methods developed here 
has been made available as a web-based tool called 
the GRAph Property based Predictor and Likelihood 
Estimator (GraPPLE) at: http: //grapple.mpimp-golm. 
mpg.de 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR Online. 

FUNDING 

BMBF-funded GoFORSYS project (to Z.N. and P.M.). 
Funding for open access charge: Max-Planck Society. 

Conflict of interest statement. None declared . 

REFERENCES 

I. Meyers,B.e. , Matzke,M. and Sundaresan,V. (2008) The RNA 
wo rld is a live and well. Trends Plant Sci., 13, 3 11 - 3 13. 

2. Mattick,1.S. (2007) A new paradigm fo r developmenta l bio logy . 
J. Exp. Bioi., 210, 1526- 1547. 

3. Manak,1.R. , Dike,S. , Sementchenko,V. , K apranov,P. , Biema r,F. , 
Long,1. , Cheng,1. , Bell ,I. , Ghosh,S. , Piccolboni,A . et 01. (2006) 
Bio logica l function of unanno ta ted transcription during the ea rly 
development o f Drosophila melanogaster. Not . Genet ., 38, 
11 5 1- 11 58 . 

4. C laverie,1.M. (2005) Fewer genes , more noncoding RNA. Science, 
309, 1529- 1530. 

5. Birney,E. , Stamatoyannopoulos ,1.A. , Dutta ,A. , Guigo,R. , 
Gingeras,T.R. , Margulies,E.H. , Weng,Z. , Snyder,M. , 
D ermitzakis,E.T. , Thurma n,R.E. et al. (2007) Identification and 
ana lysis of functional elements in I % of the human genome by the 
ENCODE pilo t project. Nat ure, 447, 799- 8 16. 

6. Weinstock,G.M. (2007) ENCODE: more genomic empowerment. 
Genome Res., 17, 667- 668 . 

7. Mathews,D.H. and Turner,D.H. (2006) Prediction of RNA 
secondary structure by free energy minimization. CUlT. Opin. S tru ct . 
Bioi., 16, 270- 278 . 

8. Tinoco ,I. Jr, U hlenbeck,O.e. a nd Levine,M.D. (1 97 1) Estima tion of 
secondary structure in ribonucleic acids. Nature, 230, 362- 367. 

9. Lee,R.e. , Feinbaum,R.L. and Ambros,V. ( 1993) The e. elegans 
heterochronic gene lin-4 encodes small RNAs with antisense 
complementa rity to lin-14. Cell, 75, 843- 854. 

10. Mironov,A.S. , Gusarov,I. , Rafikov,R. , Lopez,L.E. , Shata lin ,K. , 
Kreneva,R.A. , Perumov,DA. and Nudler,E. (2002) Sensing small 

Nucleic Acids Research, 2009, Vo!. 37, No. 9 e66 

molecules by nascent RNA: a mechanism to control transcription 
in bacteria . Cell, 111, 747- 756. 

11. N ahvi,A., Sudarsan,N. , Ebert,M.S. , Zou,X. , Brown,K.L. and 
Breaker,R.R. (2002) Genetic control by a metabolite binding 
mRNA. Chem. Bioi., 9, 1043. 

12. Schilling,O. , Langbein ,I. , Muller,M. , Schmalisch,M.H. and Stulke,1. 
(2004) A pro tein-dependent riboswitch contro lling ptsGHI 
operon expression in Bacillus subtilis: RNA structure rather tha n 
sequence provides interaction specificity. N ucleic Acids Res., 32, 
2853- 2864. 

13. Winkler,W. , Na hvi,A. and Breaker,R.R. (2002) Thiamine deriva­
tives bind messenger RNAs directly to regula te bacteria l gene 
expression. Natu re, 419, 952- 956. 

14. Winkler,W.e., Cohen-C halamish,S. and Breaker,R.R. (2002) An 
mRNA structure tha t controls gene expression by binding FMN. 
Proc. Natl Acad. Sci . USA , 99, 15908- 159 13. 

15. Kurihara,Y. , Matsui ,A. , K awashima,M. , K aminuma,E. , Ishida ,1. , 
Morosawa,T. , Mochizuki ,Y. , Ko bayashi,N. , Toyoda,T. , 
Shinozaki ,K. et al. (2008) Identifica tion o f the candidate genes 
regula ted by RNA-directed D NA methyla tion in Arabidopsis. 
Biochem. Biophys . Res. Commun., 376, 553- 557. 

16. Brouns,S.1. , Jo re,M.M. , Lundgren,M. , Westra ,E.R. , Slijkhuis, R.J. , 
Snijders,A.P. , Dickman,M.1. , Maka rova,K.S. , K oonin,E.V. and van 
der Oost,1. (2008) Small C RISPR RN As guide antivira l defense in 
prokaryotes . Science, 321 , 960- 964. 

17. N akashima,A. , Takaku ,H. , Shibata ,H.S. , Negishi, Y. , Takagi,M. , 
Tamura,M. and Nas himo to ,M. (2007) G ene silencing by the tRNA 
maturase tRNase ZL under the direction o f small-guide RN A. Gene 
Ther. , 14, 78- 85 . 

18. Zuker,M. (2003) Mfold we b server for nucleic acid folding and 
hybridization prediction. N ucleic Acids Res., 31 , 3406-3415. 

19. Hofacker,I.L. (2003) Vienna RNA secondary structure server. 
N ucleic Acids Res., 31 , 3429- 343 1. 

20. D awson,W. , Fujiwa ra ,K. , Kawai,G. , Futamura,Y. and 
Yamamoto,K. (2006) A method fo r finding optimal rna secondary 
structures using a new entropy model (vsfold). N ucleosides 
N ucleotides N ucleic Acids , 25, 171- 189. 

21. Pedersen,1.S. , Bejerano,G. , Siepel,A. , Rosenbloom,K. , 
Lindblad-Toh,K. , Lander,E.S. , K ent,1. , Miller,W. and Haussler,D. 
(2006) Identifica tion a nd classifica tion o f conserved RNA 
secondary structures in the human genome. PLoS Comput. Bioi., 
2, e33. 

22. Ding,Y. a nd Lawrence,e. E. (1 999) A bayesian stati stica l a lgorithm 
fo r RNA secondary structure prediction. Comput . Chem., 23, 
387-400. 

23. Griffiths-Jones,S. , Bateman,A. , Ma rsha ll ,M. , Kha nna,A. and 
Eddy,S.R. (2003) Rfam: an RNA family da tabase . N ucleic Acids 
Res., 31 , 439-441. 

24. Griffiths-Jones,S. , Moxon,S. , Marsha ll,M. , Khanna,A ., Eddy,S.R. 
and Bateman,A. (2005) Rfam: anno tating non-coding RNAs in 
complete genomes. N ucleic Acids Res ., 33, DI21 - DI24. 

25. Freyhult,E., Gardner,P.P. and Moulton,V. (2005) A compari son o f 
RN A fo lding measures . BMC Bioinformatics, 6, 241. 

26. Lyngso ,R.B. and Pedersen,e.N. (2000) RN A pseudoknot prediction 
in energy-based models. J. Comp ut . BioI., 7, 409-427. 

27. D as, R. and Baker,D. (2007) Automated de novo prediction o f 
native-like RNA tertia ry structures . Proc. Natl Acad. Sci. USA , 104, 
14664- 14669. 

28. Rivas,E. and Eddy,S.R. (2000) Secondary structure alone is 
genera lly not sta ti stica lly significant fo r the detection o f noncoding 
RN As. Bioinformatics, 16, 583- 605. 

29. Bonnet,E. , Wuyts,1. , Rouze,P. and Van de Peer,Y. (2004) 
Evidence that micro RNA precursors, unlike other non-coding 
RN As, have lower fo lding free energies tha n random sequences. 
Bioinformatics, 20, 29 11 - 29 17. 

30. Was hietl ,S. , Hofacker,I.L. and Stadler,P.F. (2005) Fast a nd relia ble 
prediction o f noncoding RNAs. Proc. Nat l Acad. Sci . USA, 102, 
2454-2459. 

31. Steigele,S. , Huber,W. , Stocsits,e. , Stadler,P.F. and Nieselt,K. (2007) 
Comparative ana lysis of structured RNAs in S. cerevisiae indicates 
a multitude o f different functions. BMC Bio I. , 5, 25. 

32. Mourier,T. , Ca rret,e. , Kyes ,S. , Chri stodoulou ,Z. , Gardner,P.P. , 
Jeffa res,D.e. , Pinches,R. , Barrell ,B. , Berriman,M. , Griffiths-Jones ,S. 
et al. (2008) Genome-wide discovery and verifica tion o f novel 



e66 Nucleic Acids Research, 2009, Vol . 37, No. 9 

structured RNAs in Plasmodium fa lcipa rum. Genome Res ., 18 , 
28 1- 292. 

33 . Cao,S. a nd Chen,S.J. (2006) Predicting R NA pseudokno t folding 
thermodynamics. N ucleic Acids Res., 34, 2634-2652 . 

34. Lim,L.P. , Lau ,N .C. , Weinstein ,E .G ., A bdelha kim,A ., Yekta ,S. , 
Rhoades,M.W. , Burge,C.B. and Ba rtel,D.P. (2003) 
The micro RN As of Caenorha bditis elegans. Genes Dev., 17, 
99 1- 1008. 

35 . M ys lyuk,I. , D oniger,T. , H o resh,Y. , Hury,A. , H offer,R. , Zipo ren,Y. , 
Michaeli,S. and U nger,R. (2008) Psiscan: a computa tio na l 
app roach to identify H /ACA-like and AG A-like non-coding RNA 
in trypanosomatid genomes . BMC Bioin/ormalics, 9, 47 1. 

36. Zha ng,Y. (2005) miRU : an automa ted plant miRNA ta rget 
predictio n server. Nucleic A cids Res ., 33, W 701 - W 704. 

37. Eddy,S.R. (2002) A mem ory-effi cient dynamic programming 
a lgo rithm fo r optimal a lignment o f a sequence to an RNA 
seconda ry structure. BMC Bioin/ormalics, 3, 18. 

38 . F era,D. , Kim,N., Shiffeldrim,N ., Zo rn ,J ., Laserson,U ., Gan,H.H. 
and Schlick,T. (2004) RAG: RNA-As-G raphs web resource. BMC 
Bioin/ormalics, 5, 88 . 

39. Janssen,S. , Reeder,J. and Giegerich ,R. (2008) Shape based 
indexing fo r faster sea rch o f RNA family data bases . BMC 
Bioinformalics, 9, 13 1. 

40. Kim,N ., Shiffeldrim,N ., Gan,H.H. a nd Schlick,T. (2004) 
Candidates for novel RNA topologies . J . Mol. Bioi., 341 , 
11 29- 1144. 

41. K a rk lin ,Y. , Meraz,R.F. and H o lbrook,S.R. (2005) C lassifica tio n 
o f no n-coding RNA using graph representatio ns o f seconda ry 
structure. Pac. Symp . Biocompul., 10, 4- 15. 

42. Li,W. and Godzik,A. (2006) Cd-hit: a fast program fo r clustering 
and comparing la rge sets o f p ro tein o r nucleotide sequences . 
Bioin/ormalics, 22 , 1658- 1659 . 

43. Csardi ,G . and Nepusz,T. (2006) The igraph software package fo r 
complex netwo rk resea rch. In/er J. Complex Sys., 1695. 

PAGE 12 OF 12 

44. Chang, c.c. and Lin, c.J. (2001 ) LIBSVM: a libra ry fo r support 
vecto r machines. Availa ble at http ://www . csie . ntu. edu.tw/~cjlin/ 

libsvm/ 
45. Chen,Y.W. and Lin ,C.J. (2006) In Guyo n,I. , Gunn,S. , 

N ikraves h,M. and Zadeh,L.A. (eds), Fealw'e EXlract ion: 
Foundations and Applicalions. Vo l. I, Springer, New York . 

46. Jiang,M. , A nderson,J ., G illespie,J . and Mayne,M . (2008) uShuffle: 
a useful tool for shuffling biologica l sequences while preserving the 
k-Iet counts. BMC Bioin/ormalics, 9, 192. 

47. La rkin ,M.A ., Blackshields,G ., Brown,N .P. , C henna ,R. , 
McGettigan,P.A ., M cWilliam ,H. , Va lentin ,F. , Wa llace,I.M. , 
Wilm,A ., Lopez,R. el al. (2007) Clusta l W and C lusta l X versio n 
2.0. Bioin/ormalics, 23, 2947- 2948. 

48. Gish, W. ( 1996- 2003) . Ava ila ble a t: http://blast. wustl. edu 
49. Eddy,S.R. (1998) Profile hidden Markov models. Bioin/ormalics, 14, 

755- 763 . 
50. Freyhult,E.K. , Bo llback,J.P. and G ardner,P.P. (2007) Explo ring 

genomic da rk matter: a critica l assessment o f the perfo rmance o f 
homo logy sea rch methods on noncoding RNA. Genome Res ., 17, 
11 7- 125 . 

5 1. Edga r,R.C. (2004) M U SC LE : multiple sequence a lignment with 
high accuracy and high throughput. N ucleic Acids Res., 32, 
1792- 1797 . 

52. A ltschul,S.F. , Gish,W. , Miller,W. , M yers,E.W. and Lipman,D.J. 
( 1990) Basic loca l a lignment sea rch too l. J. Mol. Bioi., 215, 
403-4 10. 

53 . Yao ,Z. , Weinberg,Z. and Ruzzo,W.L. (2006) C Mfinder- a covar­
iance model based RNA motif finding a lgo rithm. Bioin/ormalics, 22, 
445-452. 

54. Gross, J.L. and Yellen, J. (2004) Handbook o/Graph TheO/y . C RC 
Press, Boca Rato n FL, U SA. 

55 . H ofacker,I.L. , Fekete,M. a nd Stadler,P. F . (2002) Secondary 
structure predictio n for a ligned RN A sequences. J . Mol. Bioi., 319 , 
1059- 1066 . 


	Title page
	Identification and classification of ncRNA molecules using graph properties
	Introduction
	Materials and methods
	The data set
	Calculating graph properties
	SVM training and testing
	Functional versus non-functional RNA sequence prediction
	Predictive power of graph properties

	Comparism to other methods
	Performance measures

	Results
	Discussion
	References


