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Introduction

Partial differential equations arise in various branches of mathematics, physics, and
engineering in a natural way. They describe a large variety of different situations.
Elliptic equations are an important subclass with applications in almost all areas of
mathematics, from harmonic analysis to geometry, as well as in numerous fields of
physics. The standard example of an elliptic equation is Laplace’s equation, ∆u = 0,
its solutions describe the behaviour of electric, gravitational, and fluid potentials,
and are therefore significant in many applications, especially in electromagnetism,
astronomy, and fluid dynamics. An important method to express the solutions of
elliptic partial differential equations is to extend the class of the operators to the
so-called pseudo-differential operators. A basic reference is the work of Kohn and
Nirenberg [15] where pseudo-differential operators have been established as a calculus,
see also Hörmander [12], [11], Kumano-go [19], Shubin [46].

The analysis on manifolds with geometric singularities (such as conical points,
edges, or corners) is motivated by models of the applied sciences, especially of me-
chanics, elasticity theory, particle physics, and astronomy, as well as by pure mathe-
matics, such as geometry and topology. More information on the general role of the
singular analysis for models in mechanics may be found in [9]. The singularities can
arise either from the geometry of the underlying configuration or from the operator
itself. For example, the standard Laplacian in polar coordinates takes the form of a
singular operator, an example of a special class of differential operators, the so-called
Fuchs type operators.
The “traditional” analysis is based on adequate algebras of pseudo-differential oper-
ators that contain geometric differential operators, e.g., Laplacians, associated with
corresponding singular Riemannian metrics, together with the parametrices of elliptic
elements. This paper is aimed at studying pseudo-differential operators on configura-
tions with such singularities.

Our investigations are focused on new elements of the analysis on configurations
with higher singularities, especially on problems appearing on infinite cones which
require the development of pseudo-differential structures from the point of view of
conical exits to infinity. The new difficulty in the case of higher singularities comes
from singularities on cross sections of cones that generate non-compact edges going
to infinity with the new corner axis variable. To illustrate the idea, let us first con-
sider, for example, the Laplacian on a manifold with conical singularities (say, without
boundary). In this case the ellipticity does not only refer to the “standard” princi-
pal homogeneous symbol but also to the so-called conormal symbol. The latter one,
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iv INTRODUCTION

contributed by the conical point, is operator-valued and singles out the weights in
Sobolev spaces, where the operator has the Fredholm property.
Another example of ellipticity with different principal symbolic components is the
case of boundary value problems. The boundary, say smooth, interpreted as an edge,
contributes the operator-valued boundary (or edge) symbol which is responsible for
the nature of boundary conditions (for instance, of Dirichlet or Neumann type in the
case of the Laplacian). In general, if the configuration has polyhedral singularities
of order k, we have to expect a principal symbolic hierarchy of length k + 1, with
components contributed by the various strata. In order to characterise the solvability
of elliptic equations, especially, the regularity of solutions in suitable scales of spaces,
it is natural to embed the problem in a pseudo-differential calculus, and to construct
a parametrix. For higher singularities this is a program of tremendous complexity.
It is therefore advisable to organise the general elements of the calculus by means
of an axiomatic framework which contains the typical features, such as the cone- or
edge-degenerate behaviour of symbols but ignores the (in general) huge tail of k − 1
iterative steps to reach the singularity level k.

At present the analysis of PDEs on manifolds (or, more generally, stratified spaces)
with regular singularities is an important research field with many open problems and
new challenges. Moreover, there are traditional aspects with a long history, motivated
by applications to models in physics and other sciences. Let us give some references
on crucial results and recent development of the calculus.
The “concrete” (pseudo-differential) calculus of operators on manifolds with conical or
edge singularities may be found in several papers and monographs, see, for instance,
[32], [36], [35], [5]. Operators on manifolds of singularity order 2 are studied in [37],
[41], [20], [7]. Theories of that kind are also possible for boundary value problems with
the transmission property at the (smooth part of the) boundary, see, for instance, [31],
[14], [9]. This is useful in numerous applications, for instance, to models of elasticity
or crack theory, see [14], [10], [8]. Elements of operator structures on manifolds with
higher singularities are developed, for instance, in [40], [1]. The nature of such theories
depends very much on specific assumptions on the degeneracy of the involved symbols.
There are worldwide different schools studying operators on singular manifolds, partly
motivated by problems of geometry, index theory, and topology, see, for instance,
Melrose [21], Melrose and Piazza [22], Nistor [27], Nazaikinskij, Savin, Sternin [23],
[24], [25], and many others. We do not study here operators of “multi-Fuchs” type,
often associated with the notation “corner manifolds”. Our operators are of a rather
different behaviour with respect to the degeneracy of symbols. Nevertheless the various
theories have intersections and common sources, see the paper of Kondratyev [16] or
papers and monographs of other representatives of a corresponding Russian school,
see, for instance, [29], [30].

Tools and technical background

Among the tools used here to investigate elliptic partial differential equations are
pseudo-differential operators. They have the important property that they form an
algebra of operators, which contains the differential operators. In the classical frame-
work they are established as a well-developed theory. To each pseudo-differential op-
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erator one associates a symbolic structure; a chosen mapping in opposite direction
from symbols to operators is often called quantisation. This is a general idea, which
means that the quantisation process does not only make sense for elliptic operators,
but also for parabolic and hyperbolic ones. Symbols are much easier objects than
operators, and it may be very efficient to reduce questions on the nature of pseudo-
differential operators or on the solvability of equations to the level of symbols. For
example, when X is a smooth compact manifold, the standard notion of ellipticity
requires the invertibility of the associated homogeneous principal symbol σψ(·) which
is defined on the cotangent bundle T ∗X \ 0.
The calculus of pseudo-differential operators is motivated by the task of express-
ing parametrices of elliptic partial differential equations in terms of classical pseudo-
differential operators that invert the elliptic partial differential operators up to inte-
gral operators with smooth kernels. Based on such considerations, Schulze founded
and developed pseudo-differential theories for degenerate elliptic operators, where the
degeneracy reflects in a natural way the presence of singularities on the underlying
configuration. Recall that there are several pseudo-differential scenarios, adapted to
specific degenerate operators, and there are, of course, interactions between different
approaches. The desired algebras and the notion of ellipticity is not only governed by
the symbol coming from the interior part of the configuration, but every singularity
has its own precise contribution represented by a symbol which is now operator-valued.
In this new situation, ellipticity means the invertibility of all symbolic components.
This entails the existence of parametrices within each algebra and also the Fredholm
property in appropriate scales of weighted Sobolev spaces.

Singular operator calculus

Before we give an overview of the main content of the work let us here recall some
elements of the singular operator calculus.
Let M be a manifold with a conical singularity v ∈M , i.e., M \{v} is smooth, and M
is close to v modelled on a cone X∆ := (R+ ×X)/({0} ×X) with base X, where X
is a closed compact C∞ manifold. We then have differential operators of order µ ∈ N
on M \ {v}, locally near v in the splitting of variables (r, x) ∈ R+ ×X of the form

A := r−µ
µ∑
j=0

aj(r)
(
−r ∂

∂r

)j
(0.0.1)

with coefficients aj ∈ C∞(R+,Diffµ−j(X)) (here Diffν(·) denotes the space of all
differential operators of order ν on the manifold in parentheses, with smooth coeffi-
cients). Observe that when we consider a Riemannian metric on R+ × X := X∧ of
the form dr2 + r2gX , where gX is a Riemannian metric on X, then the associated
Laplace-Beltrami operator is just of the form (0.0.1) for µ = 2. For such operators we
have the homogeneous principal symbol σψ(A) ∈ C∞

(
T ∗(M \ {v}) \ 0

)
, and locally

near v in the variables (r, x) with covariables (ρ, ξ) the reduced symbol

σ̃ψ(A)(r, x, ρ, ξ) := rµσψ(A)(r, x, r−1ρ, ξ)

which is smooth up to r = 0. If a symbol (or an operator function) contains r and ρ
in the combination rρ we speak of degeneracy of Fuchs type. The ellipticity condition
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with respect to σψ is the usual one for the homogeneous principal symbol on the
main stratum of the configuration, plus an extra requirement for the reduced symbol,
namely,

σ̃ψ(A)(r, x, ρ, ξ) 6= 0 for (ρ, ξ) 6= 0.

We will then shortly speak about σψ-ellipticity.
It is interesting to ask the nature of an operator algebra that contains Fuchs type
differential operators of the from (0.0.1) on X∆, together with the parametrices of
elliptic elements. An analogous problem is meaningful on M . Answers may be found
in [36], including the tools of the resulting so-called cone algebra. As noted above
the ellipticity close to the tip r = 0 is connected with a second symbolic structure,
namely, the conormal symbol

σc(A)(w) :=
µ∑
j=0

aj(0)wj : Hs(X)→ Hs−µ(X) (0.0.2)

which is a family of operators, depending on w ∈ Γn+1
2 −γ

, Γβ := {w ∈ C : Rew = β},
n = dimX. Here Hs(X) is the standard Sobolev spaces of smoothness s ∈ R on
X. Ellipticity of A with respect to a weight γ ∈ R means that (0.0.2) is a family of
isomorphisms for all w ∈ Γn+1

2 −γ
. The bijectivity of (0.0.2) is a condition on a kind of

non-linear eigenvalues of a (in general) meromorphic operator function in the complex
plane.
On the infinite cone X∆ the ellipticity refers to a further principal symbolic structure,
to be observed when r → ∞. The behaviour in that respect is not symmetric under
the substitution r → r−1. The present axiomatic approach will refer to “abstract”
corners represented by r → 0. The considerations are based on specific insight on
families of reductions of orders in given scales of spaces (in the simplest case Hs(X),
s ∈ R, when the corner is a conical singularity). In order to motivate our general
constructions we briefly recall the form of corner operators of second generation.

First, a differential operator on an open stretched wedge R+ ×X × Ω 3 (r, x, y),
Ω ⊆ Rq open, is called edge-degenerate, if it has the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)
(
−r ∂

∂r

)j
(rDy)α, (0.0.3)

ajα ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)). Observe that (0.0.3) can be written in the
form A = r−µOpr,y(p) for an operator-valued symbol p of the form p(r, y, ρ, η) =
p̃(r, y, rρ, rη), p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X; R1+q

ρ̃,η̃ )), and

Opr,y(p)u(r, y) =
∫∫

ei(r−r
′)ρ+i(y−y′)ηp(r, y, ρ, η)u(r′, y′)dr′dy′d̄ρd̄η.

Here Lµcl(X; Rlλ) denotes the space of classical parameter-dependent pseudo-differen-
tial operators on X of order µ, with parameter λ ∈ Rl, that is, locally on X the
operators are given in terms of amplitude functions a(x, ξ, λ), where (ξ, λ) is treated
as an (n + l)-dimensional covariable, and we have L−∞(X; Rl) := S(Rl, L−∞(X))
with L−∞(X) being the (Fréchet) space of smoothing operators on X.
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Analogously as in the conical case the homogeneous principal symbol σψ(A) gives rise
to a reduced symbol σ̃ψ(A) close to r = 0 which is again smooth up to r = 0. Then
we define σψ-ellipticity in a similar manner as in the case of conical singularities. If
we assume σψ-ellipticity of the operator (0.0.3) then the values of the principal edge
symbol

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)
(
−r ∂

∂r

)j
(rη)α, (0.0.4)

(y, η) ∈ T ∗Y \ 0, consist of Fredholm operators

σ∧(A)(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧), (0.0.5)

however, only when their subordinate conormal symbol

σcσ∧(A)(y, z) =
µ∑
j=0

aj0(0, y)zj : Hs(X)→ Hs−µ(X) (0.0.6)

is a bijective family for all z ∈ Γn+1
2 −γ

(the spaces Ks,γ(X∧) here are explained in
Subsection 3.1.3). Clearly, a reasonable concept of ellipticity requires the bijectivity
of (0.0.5), not only the Fredholm property, since parametrices should be associated
with the tuple of inverse symbols. At this moment we see that, similarly as in the
calculus of boundary value problem, where ellipticity is connected with additional
elliptic boundary conditions, we need here elliptic edge conditions, characterised on
the level of symbols by additional entries of a family of block matrices

σ∧(A)(y, η) :=
(
σ∧(A) σ∧(K)
σ∧(T ) σ∧(Q)

)
(y, η) :

Ks,γ(X∧)
⊕

Cj−
−→
Ks−µ,γ−µ(X∧)

⊕
Cj+

which fill up the upper left corner σ∧(A) to a family of isomorphisms by suitable
finite-rank entries σ∧(T ), σ∧(K) and σ∧(Q), respectively. For the ellipticity, a first
essential question is what can be really said about the additional edge conditions,
especially about the dimensions j−, j+. By virtue of

j+ − j− = indσ∧(A)(y, η)

we have to answer an index question, and we even need more, namely the kernels and
cokernels of σ∧(A)(y, η) including their dimensions.

Now let Diffµdeg(M), for a manifold M with edge Y , denote the space of all dif-
ferential operators on M \ Y of order µ that are locally near Y in the splitting of
variables (r, x, y) ∈ R+ × X × Ω of the form (0.0.3). If we replace in the definition
the edge covariable η by (η, λ) ∈ Rq+l (q = dimY ) we obtain parameter-dependent
families of operators in Diffµdeg(M). Similarly as (0.0.1) an operator of the form

A := t−µ
µ∑
j=0

aj(t)
(
−t ∂
∂t

)j
is called corner-degenerate if aj ∈ C∞(R+,Diffµ−jdeg (M)), j = 0, 1, . . . , µ. The corner
conormal symbol σc(A)(z) =

∑µ
j=0 aj(0)zj , z ∈ Γ dim M+1

2 −δ for a corner weight δ ∈
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R, is just a parameter-dependent family in Diffµdeg(M) with parameter Imz on the
indicated weight line. The program to study such operators close to the tip t→ 0 (see
[1], [7]) is just a concrete realisation of the present theory.

Structure of the work and main results

This thesis is divided into three chapters. Chapter 1 is devoted to necessary ele-
ments of the analysis of pseudo-differential operators. In the first section we establish
basics on the calculus of pseudo-differential operators on open smooth manifolds, with
symbolic structures, distributional kernels, Sobolev spaces, operator algebra aspects,
and ellipticity. Here we recall the calculus in the scalar case, which can be generalised
to the operator valued case. Then we pass to material on operators on manifolds
with conical singularities, with tools such as Mellin transform, Mellin quantisation,
weighted spaces, and cone algebra.
In the second section we investigate a class of operators defined on manifolds with
conical exits to infinity. The manifold M with conical exits to infinity is here defined
in terms of free R+-actions, where the orbit space X is a smooth manifold and repre-
sents the base of the cone. In the general case it is not necessary that X is connected.
So the manifold M may have several exits to infinity, according to the finite number
of connected components of X. First we consider pseudo-differential operators defined
in the Euclidean space, as we see that the latter is an example of a manifold with exits
to infinity. Then we study the effect of changing the coordinates of the open conical
set, on which the operator is defined. In this respect we partly follow the approach
of Schrohe [33]. Finally we define the desired operators on M . Here we also address
some important results concerning the existence of a parametrix for elliptic operators
and the elliptic regularity.

In Chapter 2 we study operators on (infinite) cylindrical manifolds X� ∼= R×X,
with a closed compact manifold X as the base, from an alternative point of view.
First we consider families of parameter-dependent operator functions on X�, with
special degeneracy in the parameter and show that the push forward of the associated
operators from cylinders to cones forms a class of operators in the exit calculus on
infinite cones. Motivated by this, we develop a new calculus of pseudo-differential
operators on cylindrical manifolds with conical exits to infinity. The operator-valued
symbols studied here have two orders, one along the axial variable r and the other
on the inner base of the cone X. To start with we consider the operators on smooth
functions with compact support. Then, after characterising the smoothing elements
in the calculus, we prove the continuity between Schwartz spaces and extend them
to continuous operators between tempered distribution spaces. It seems in a way
astonishing that the smoothing operators within this calculus depend only on the
“inner” order, so they exist for any order along the axial variable. Actually, because
of the degeneracy of the parameters one can compensate the order along r. The bigger
the r-order is, the more times one needs to differentiate in order to make estimates as
in (2.2.34) possible. Finally we define a scale of Sobolev spaces on cylindrical spaces,
based on L2-norms, such that our new operators are continuous between them and
the elliptic ones are even isomorphisms when the parameter is large enough. It turned
out that this new calculus is a step for the iterative calculus which is the intention of
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this approach. The technique partly refers to Kumano-go’s formalism on oscillatory
integrals which is in its classical form very effective. In our case we are faced with
a new (very substantial) difficulty, namely, the degenerate behaviour of amplitude
functions near infinity. One of the main issues it to overcome this difficulty. We do
this in combination with interpreting the amplitude functions as operator families
globally acting on X, the cross section of the cylinder. This is also a very essential
element to make the iterative ideas of the corner theory work.

In Chapter 3 we study operators with certain degenerate operator-valued ampli-
tude functions, motivated by the iterative calculus of pseudo-differential operators on
manifolds with higher singularities. In the first section we introduce spaces of sym-
bols based on families of reductions of orders in given scales of (analogues of Sobolev)
spaces, followed by a standard example from the parameter-dependent cone calculus.
Here, in contrast to [41], [42], we develop the aspect of symbols, based on “abstract”
reductions of orders which makes the approach transparent from a new point of view.
A typical feature here are certain new estimates of norms in weighted spaces on the
base with respect to a growing parameter. In a similar case those were also observed
in Chapter 2. The second section is devoted to the specific effects of an axiomatic
calculus near the tip of the corner. The full calculus involves two separate theories,
one near the tip of the corner and the other at the conical exit to infinity. The corner
axis is represented by a real axis R 3 r, and the operators take values in vector-valued
analogues of Sobolev spaces in r. The solutions are expected to have asymptotics near
the tip of the corner determined by the non-bijectivity points of the Mellin symbol. In
this context, we prove the existence of a parametrix and show a continuity statement
between weighted spaces with asymptotics. Worth mentioning that here we only con-
sider scales of Hilbert spaces having the compact embedding property, although one
can sometimes drop this condition by imposing that the smoothing operators within
the calculus should be compact operators.
The theory presented in this chapter holds as an iterative calculus where the example
considered in Subsection 3.1.3 obeys it. In other words, if the manifold X has conical
singularities then the axiomatic calculus holds true with suitable scales of spaces and
reductions of order. However, when X has edges or higher singularities, it seems that
this approach is not so convenient for some aspects of the iterative calculus. There
is therefore another approach in preparation by my supervisor Schulze that is more
adapted to the case when X has higher singularities. The structures studied in the
second section of Chapter 2 are motivated by the iterative calculus in that way.
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Chapter 1

The pseudo-differential cone
calculus

1.1 Basics in pseudo-differential operators

1.1.1 Spaces of symbols

Definition 1.1.1. (i) The space of symbols Sµ(U × Rn) for an open set U ⊆ Rm
and an order µ ∈ R is defined to be the set of all a(x, ξ) ∈ C∞(U × Rn) such
that

sup
x∈K,ξ∈Rn

〈ξ〉−µ+|β||Dα
xD

β
ξ a(x, ξ)| (1.1.1)

is finite for all multi-indices α ∈ Nm, β ∈ Nn, and compact K ⊂ U . Here

Dα
x :=

(
−i ∂
∂x1

)α1

. . . . .

(
−i ∂

∂xm

)αm

, i :=
√
−1 and 〈ξ〉 := (1 + |ξ|2) 1

2 .

(ii) Let S(µ)
(
U × (Rn \ {0})

)
denote the space of all f(x, ξ) ∈ C∞

(
U × (Rn \ {0})

)
that are positive homogeneous in ξ of degree µ, i.e.,

f(x, λξ) = λµf(x, ξ)

for all λ ∈ R+ and all (x, ξ) ∈ U × (Rn \ {0}).

(iii) The space Sµcl(U×Rn) of so-called classical symbols is defined as the subspace of
all a(x, ξ) ∈ Sµ(U × Rn) for which there is a sequence of homogeneous compo-
nents a(µ−j)(x, ξ) ∈ S(µ−j)(U × (Rn \ {0})

)
, j ∈ N, such that for every excision

function χ(ξ) (i.e., χ ∈ C∞(Rn), χ(ξ) = 0 for |ξ| < c0, χ(ξ) = 1 for |ξ| > c1
for certain 0 < c0 < c1) we have

ord

a(x, ξ)− N∑
j=0

χ(ξ)a(µ−j)(x, ξ)

→ −∞
as N →∞.

1



2 THE PSEUDO-DIFFERENTIAL CONE CALCULUS

We call σµψ(x, ξ) := a(µ)(x, ξ) the homogeneous principal symbol of a of order µ. In
view of a(µ)(x, ξ) = limλ→∞ λ−µa(x, λξ) we can recover σµψ in a unique way. Applying
the same procedure to a1(x, ξ) := a(x, ξ)−χ(ξ)a(µ)(x, ξ) ∈ Sµ−1(U×Rn) for the order
µ − 1 we obtain a(µ−1)(x, ξ). Thus we obtain the unique homogeneous components
a(µ−j)(x, ξ), j ∈ N . Here we refer to the standard fact that

χS(µ)
(
U × (Rn \ {0})

)
⊂ Sµ(U × Rn)

for every excision function χ and any µ ∈ R. If a relation or an assertion is valid for
general and classical symbols we write “(cl)” as subscript.
Note that estimates with respect to 〈ξ〉 control growth properties for |ξ| → ∞. Later
on we also employ some function ξ → [ξ], [ξ] > c0 > 0 and [ξ] = |ξ| for |ξ| ≥ c1
for some fixed c1 > 0. The specific choice will be unimportant. Therefore, if we say
nothing else, from now on we assume c1 = 1.

Remark 1.1.2. All notions and constructions concerning symbols on U × Rn can
be generalised to symbols given in an open conic subset Γ ⊂ U × Rn. For instance,
a ∈ Sµ(Γ) means that a(x, ξ) ∈ C∞(Γ), and the condition (1.1.1) is replaced by

sup〈ξ〉−µ+|β||Dα
xD

β
ξ a(x, ξ)| <∞

for all (x, ξ) ∈ Γ, |ξ| ≥ 1, (x, ξ|ξ| ) varying over a compact subset of U × Sn−1.

Remark 1.1.3. The spaces Sµ(U ×Rn), Sµcl(U ×Rn) are Fréchet spaces in a natural
way. The expression (1.1.1) for α ∈ Nm, β ∈ Nn,K ⊂ U compact forms a semi-norm
system for the space Sµ(U × Rn). Moreover, on Sµcl(U × Rn) we have a system of
linear operators

ηj : Sµcl(U × Rn) −→ S(µ−j)(U × (Rn \ {0})
)
, j ∈ N, (1.1.2)

that determine the (unique)components of a(x, ξ) of homogeneities µ − j, for every
j ∈ N, and

ρN : Sµcl(U × Rn) −→ Sµ−(N+1)(U × Rn), N ∈ N (1.1.3)

where (ρNa)(x, ξ) := a(x, ξ)−
∑N
j=0 χ(ξ)ηj(a)(x, ξ). We then endow Sµcl(U ×Rn) with

the topology of the projective limit with respect to the mappings (1.1.2), j ∈ N and
(1.1.3), N ∈ N.

For future references let us recall here the definitions of the projective and inductive
limit topologies. Let E be a vector space and {Eα, α ∈ I} be a family of Fréchet spaces.

• Suppose that we are given, for each index α ∈ I, a linear map pα : E → Eα.
On E we define the weakest locally convex topology such that all the mappings
pα are continuous. Equipped with this topology, E is a Fréchet space, we call it
the projective limit of the spaces Eα with respect to the mappings pα, denoted
by lim←−α∈I Eα. A basis of neighbourhoods of zero in this topology is defined as
follows: in each Eα, we consider a basis of neighbourhoods of zero Uα,β(β ∈ Jα);
let Vα,β be the preimage of Uα,β under pα; then, all the finite intersections of sets
Vα,β , when α and β vary in all possible ways, form a basis of neighbourhoods
of zero in the projective topology on E.
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• Suppose now that we are given, for each index α ∈ I, a linear map qα : Eα → E,
such that E =

⋃
α qα(Eα). We may then define on E the strongest locally convex

topology such that all the mappings qα are continuous. A convex subset U of E
is a neighbourhood of zero in this topology if, for every α, U ∩ qα(Eα) is of the
form qα(Uα), where Uα is a neighbourhood of zero in Eα. We call E with this
topology the inductive limit of the spaces Eα with respect to the mappings qα
and we denote it by lim−→α∈I Eα.

Let us now fix some convenient notation. The subspace Sµcl(Rn) of all x-independent
symbols a(ξ) is closed in Sµcl(U × Rn), and we have

Sµcl(U × Rn) = C∞
(
U, Sµcl(R

n)
)
.

We now recall the following well known theorem.

Theorem 1.1.4. Let aj(x, ξ) ∈ S
µj

(cl)(U × Rn), j ∈ N, with µj → −∞ for j → ∞
(and µj := µ− j in the classical case for some µ ∈ R). Then there exists an a(x, ξ) ∈
Sµ(cl)(U × Rn), µ = max{µj : j ∈ N}, such that ord

(
a(x, ξ)−

∑N
j=0 aj(x, ξ)

)
−→ −∞

as N →∞, and a(x, ξ) is unique modulo S−∞(U × Rn).

An explicit proof may be found, for instance, in [39, Section 1.1.2]. As usual a(x, ξ)
is called an asymptotic sum of the symbols aj(x, ξ), j ∈ N, written

a(x, ξ) ∼
∞∑
j=0

aj(x, ξ).

We can construct a(x, ξ) as a convergent series

a(x, ξ) =
∞∑
j=0

χ

(
ξ

cj

)
aj(x, ξ)

in Sµ(U × Rn), with an excision function χ and constants cj > 0 tending to ∞
sufficiently fast as j → ∞, where for every M > 0 there exists an N = N(M) ∈ N
such that

∑∞
j=N+1 χ(ξ/cj)aj(x, ξ) converges in Sµ−M (U × Rn).

Example 1.1.5. Given a(x, ξ) ∈ Sµ(cl)(Ω × Rn), b(x, ξ) ∈ Sν(cl)(Ω × Rn) for open
Ω ⊆ Rn we have (

∂αξ a(x, ξ)
)
Dα
x b(x, ξ) ∈ S

µ+ν−|α|
(cl) (Ω× Rn)

for every α ∈ Nn. The asymptotic sum

(a#b)(x, ξ) :=
∑
α∈Nn

1
α!
(
∂αξ a(x, ξ)

)
Dα
x b(x, ξ) (1.1.4)

is called the Leibniz product of the symbols a(x, ξ) and b(x, ξ). In order to fix notation
by the Leibniz product we understand a choice of an element (a#b)(x, ξ) ∈ Sµ+ν

(cl) (Ω×
Rn) such that (a#b)(x, ξ) ∼

∑
α∈Nn

1
α!

(
∂αξ a(x, ξ)

)
Dα
x b(x, ξ).
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Remark 1.1.6. The Leibniz product defines an associative multiplication between
symbols (always modulo symbols of order −∞), i.e.,

a(x, ξ)#
(
b(x, ξ)#c(x, ξ)

)
=
(
a(x, ξ)#b(x, ξ)

)
#c(x, ξ).

In particular, parentheses may be omitted and for j ∈ N we may set

a#j := a(x, ξ)#a(x, ξ)# · · ·#a(x, ξ)︸ ︷︷ ︸
j factors

1.1.2 Pseudo-differential operators and distributional kernels

With symbols as in Definition 1.1.1 we associate operators as follows. For U := Ω×Ω
for an open set Ω ⊆ Rn we will mainly write (x, x′) ∈ Ω× Ω instead of x.

Definition 1.1.7. (i) For a(x, x′, ξ) ∈ Sµ(Ω× Ω× Rn) we set

Opx(a)u(x) :=
∫∫

ei(x−x
′)ξa(x, x′, ξ)u(x′)dx′d̄ξ

for d̄ξ := (2π)−ndξ, u ∈ C∞0 (Ω);

(ii) we set
Lµ(cl)(Ω) :=

{
Opx(a) : a(x, x′, ξ) ∈ Sµ(cl)(Ω× Ω× Rn)

}
.

The elements of Lµ(cl)(Ω) are called (classical) pseudo-differential operators in Ω of
order µ. Sometimes we omit the subscript x and simply write Op(a) if there is no
ambiguity.

Let us recall a few well known properties of pseudo-differential operators. First of
all every A ∈ Lµ(Ω) defines a continuous operator

A : C∞0 (Ω)→ C∞(Ω).

Let KA ∈ D′(Ω × Ω) denote the distributional kernel of A. We then have
sing supp KA ⊆ diag (Ω× Ω). We obtain KA in a unique way by forming

〈KA, u⊗ v〉 =
∫

(Au)(x)v(x)dx

for u, v ∈ C∞0 (Ω). Another representation of KA is

KA(x, x′) =
∫
ei(x−x

′)ξa(x, x′, ξ)d̄ξ.

In particular, taking a symbol a(ξ) ∈ Sµ(cl)(R
n) (with constant coefficients) and defin-

ing

k(a)(ζ) :=
∫
eiζξa(ξ)d̄ξ =

(
F−1
ξ→ζa

)
(ζ),
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F−1 is the inverse Fourier transform, we have

KA(x, x′) = k(a)(x− x′).

The operator A is called properly supported if for arbitrary compact K ⊂ Ω the
sets (K × Ω) ∩ suppKA and (Ω×K) ∩ suppKA are compact.

Proposition 1.1.8. Every A ∈ Lµ(Ω) can be written in the form A = A0 +C, where
A0 ∈ Lµ(Ω) is properly supported and C ∈ L−∞(Ω).

Proof. Let us choose an arbitrary function ω(x, x′) ∈ C∞(Ω×Ω) that equals 1 in an
open neighbourhood of diag (Ω×Ω) and such that both (Ω×M ′)

⋂
suppω and (M ×

Ω)
⋂

suppω are compact for arbitrary compactM,M ′ ⊂ Ω. Then, for A = Op(a) with
a(x, x′, ξ) ∈ Sµ(Ω×Ω×Rn) we can set A0 = Op(ωa) which is properly supported, and
C = Op

(
(1−ω)a

)
. The kernel of C is KC =

(
1−ω(x, x′)

)
KA(x, x′) ∈ C∞(Ω×Ω).

Remark 1.1.9. Every A ∈ Lµ(Ω) can be extended (in the distributional sense) to
an operator A : E ′(Ω)→ D′(Ω). If A is properly supported then A induces continuous
operators

A : C∞0 (Ω)→ C∞0 (Ω), A : C∞(Ω)→ C∞(Ω),

which extends to
A : E ′(Ω)→ E ′(Ω), A : D′(Ω)→ D′(Ω).

1.1.3 Kernel cut-off

In this section we outline some useful material on the so-called kernel cut-off operator,
first applied to symbols a(ξ) ∈ Sµ(cl)(R

n). Observe that for every µ ∈ R we have

Sµ(cl)(R
n) ⊂ S ′(Rn), S−∞(Rn) = S(Rn).

Recall that the Fourier transform Fu(ξ) :=
∫
e−ixξu(x)dx defines isomorphisms

F : S(Rn)→ S(Rn), S ′(Rn)→ S ′(Rn).

We then have the following important lemma.

Lemma 1.1.10. For every a(ξ) ∈ Sµ(Rn), µ ∈ R, the distribution k(a)(ζ) =
(F−1a)(ζ) ∈ S ′(Rn) has the following properties:

(i) sing supp k(a) ⊆ {0};

(ii) if ψ(ζ) is any cut-off function at 0 (i.e., ψ(ζ) ∈ C∞0 (Rn), ψ(ζ) = 1 for |ζ| < c0,
ψ(ζ) = 0 for |ζ| > c1 for certain 0 < c0 < c1), we have(

1− ψ(ζ)
)
k(a)(ζ) ∈ S(Rn).
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Proof. (i) The Fourier transform satisfies the identities

F−1
ξ→ζ(ξ

γDδ
ξa)(ζ) = (−ζ)δDγ

ζ (F
−1
ξ→ζa)(ζ)

for arbitrary a ∈ S ′(Rn), γ, δ ∈ Nn. In particular,

k
(
ξγ(−∆ξ)Na

)
(ζ) = |ζ|2NDγ

ζ k(a)(ζ), N ∈ N. (1.1.5)

From (−∆ξ)Na ∈ Sµ−2N (Rn) we obtain |ζ|2Nk(a)(ζ) = k
(
(−∆ξ)Na

)
(ζ) ∈ Cr(Rn)

for µ− 2N < −n− r. Since N is arbitrary, it follows that k(a)(ζ) ∈ C∞(Rn \ {0}).

(ii) We have ξγ(−∆ξ)Na(ξ) ∈ Sµ−2N+|γ|(Rn) for every γ ∈ Nn, N ∈ N. For
N satisfying µ − 2N + |γ| < −n we get |k

(
ξγ(−∆ξ)Na

)
(ζ)| < c with a constant

c = c(γ,N), for all ζ ∈ Rn. In other words (1.1.5) gives us

sup
ζ∈Rn

∣∣∣(1− ψ(ζ)) |ζ|2NDγ
ζ k(a)(ζ)

∣∣∣ <∞
for all γ and sufficiently large N = N(γ). This implies the same estimate for all N .
This means

(
1− ψ(ζ)

)
k(a)(ζ) ∈ S(Rn).

For every ϕ ∈ C∞0 (Rnζ ) we now define an operator

HF (ϕ) : Sµ(cl)(R
n)→ Sµ(cl)(R

n)

by setting
HF (ϕ)a(ξ) := Fζ→ξ {ϕ(ζ)k(a)(ζ)} . (1.1.6)

An important example is the case HF (ψ) for a cut-off function ψ as in Lemma 1.1.10.
In this case we have

HF (1− ψ)a(ξ) = a(ξ) mod S−∞(Rn).

Definition 1.1.11. Let Sµ(cl)(C
n) denotes the subspace of all h(z) ∈ A(Cn) such that

h(ξ + iη) ∈ Sµ(cl)(R
n
ξ )

for every η ∈ Rn, uniformly for η varying in compact sets.

The space Sµ(cl)(C
n) is Fréchet in a natural way.

Theorem 1.1.12. For every ϕ ∈ C∞0 (Rn) the function HF (ϕ)a(ξ) has an extension
as a holomorphic function in ξ + iη ∈ Cn, and we have

HF (ϕ)a(ξ + iη) ∈ Sµ(cl)(C
n). (1.1.7)

Proof. Let us first show that HF (ϕ)a ∈ Sµ(Rn), i.e., that |Dα
ξHF (ϕ)a(ξ)| ≤ c〈ξ〉µ−α

for every α ∈ Nn with some constant c = c(α) > 0, for all ξ ∈ Rn. We have

Dα
ξHF (ϕ)a(ξ) =

∫
e−iξζϕ(ζ)(−ζ)αk(a)(ζ)dζ =

∫
e−iξζϕ(ζ)k(Dα

ξ a)(ζ)dζ.
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Using F(uv) = (Fu) ∗ (Fv), it follows that

Dα
ξHF (ϕ)a(ξ) =

∫
ϕ̂(ξ − ξ̃)Dαa(ξ̃)dξ̃. (1.1.8)

Since ϕ̂ is a Schwartz function, we obtain

|Dα
ξHF (ϕ)a(ξ)| ≤

∫
|ϕ̂(ξ − ξ̃)||Dαa(ξ̃)|dξ̃ ≤ cN

∫
〈ξ − ξ̃〉−N 〈ξ̃〉µ−|α|dξ̃

for every N ∈ N, with a suitable constant cN = cN (ϕ, α). Applying Peetre’s inequality(
1 + |x|2

1 + |y|2

)s
≤ 2|s|

(
1 + |x− y|2

)|s| for every x, y ∈ Rn and s ∈ R, (1.1.9)

we get
〈ξ̃〉µ−|α| ≤ c〈ξ〉µ−|α|〈ξ − ξ̃〉|µ−|α||.

This gives us

Dα
ξHF (ϕ)a(ξ) ≤ cN 〈ξ〉µ−|α|

∫
〈ξ − ξ̃〉−N+|µ−|α||dξ̃.

Choosing N so large that −N + |µ− |α|| < −n we get the asserted estimates, namely
Dα
ξHF (ϕ)a(ξ) ≤ dN (ϕ, α)〈ξ〉µ−|α|, with constants dN (ϕ, α) that can be estimated by

a finite number of semi-norms with respect to ϕ in the Schwartz space.
Now HF (ϕ)a(ξ) extends to a function in A(Cn), since it is the Fourier transform of
a distribution with compact support in ξ. We have

HF (ϕ)a(ξ + iη) =
∫
e−iζ(ξ+iη)ϕ(ζ)k(a)(ζ)dζ = HF (ϕη)a(ξ)

for ϕη(ζ) := eζηϕ(ζ) ∈ C∞0 (Rn). To prove (1.1.7) notice first that from (1.1.8) it is
easy to prove that ϕ(ζ)→ (HF (ϕ)a) (ξ) is a continuous operator C∞0 (Rnζ )→ Sµ(Rnξ )
for every a(ξ) ∈ Sµ(Rn). Then the latter continuity yields the assertion.

Remark 1.1.13. For every ϕ ∈ C∞0 (Rn) the operator HF (ϕ) induces a continuous
map

HF (ϕ) : Sµ(cl)(R
n)→ Sµ(cl)(C

n)

for every µ ∈ R.

1.1.4 Elements of the calculus

Let A ∈ Lµ(Ω) be a pseudo-differential operator. Then we call an element σ(x, ξ) ∈
Sµ(Ω× Rn) a complete symbol of A if A−Op(σ) ∈ L−∞(Ω).

Theorem 1.1.14. To every a(x, x′, ξ) ∈ Sµ(Ω×Ω×Rn) there is a σ(x, ξ) ∈ Sµ(Ω×
Rn) with Op(a) = Op(σ) mod L−∞(Ω) and σ(x, ξ) admits the asymptotic sum

σ(x, ξ) ∼
∑
α

1
α!
Dα
ξ ∂

α
x′a(x, x

′, ξ)|x′=x. (1.1.10)
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Moreover, there is a σ̃(x′, ξ) ∈ Sµ(Ω × Rn) with Op(a) = Op(σ̃) mod L−∞(Ω) that
has the asymptotic expansion

σ̃(x′, ξ) ∼
∑
α

1
α!

(−Dξ)α∂αx a(x, x
′, ξ)|x=x′ . (1.1.11)

We call σ(x, ξ) a left symbol of the operator and σ̃(x′, ξ) a right symbol.

Proof. The proof basically follows from Taylor’s formula:

Let f ∈ C∞(Rn). Then for all positive integers N ,

f(ζ + η) =
∑
|α|<N

(∂αf)(ζ)
α!

ηα +N
∑
|γ|=N

ηγ

γ!

1∫
0

(1− θ)N−1(∂γf)(ζ + θη)dθ

(1.1.12)
for all ζ, η ∈ Rn.

Applying (1.1.12) on a(x, x′, ξ) with respect to the second variable we obtain

a(x, x′, ξ) =
∑
|α|≤M

1
α!

(x′ − x)α∂αx′a(x, x′, ξ)|x′=x + rM (x, x′, ξ) (1.1.13)

with a remainder rM (x, x′, ξ) ∈ Sµ(Ω × Ω × Rn). For every N we can choose M so
large that |x− x′|−2NrM (x, x′, ξ) ∈ Sµ(Ω×Ω×Rn). This means that we can find an
aN ∈ Sµ−2N (Ω× Ω× Rn) such that Op(rM ) = Op(aN ). Applying Op on both sides
of (1.1.13) we obtain

Op(a) =
∑
|α|≤M

1
α!

Op
(
Dα
ξ ∂

α
x′a(x, x

′, ξ)|x′=x
)

+ Op(aN ).

If we form (1.1.10) by carrying out the asymptotic sum we obtain immediately Op(a)−
Op(σ) = Op(ãN ) for another ãN ∈ Sµ−2N (Ω×Ω×Rn). This is true for every N and
hence Op(a)−Op(σ) ∈ L−∞(Ω). The second statement can be proved in an analogous
manner by interchanging the role of x and x′.
In other words, every A ∈ Lµ(Ω) has a complete symbol. Furthermore, the map

Op : Sµ(Ω× Rn)→ Lµ(Ω)

induces an (algebraic) isomorphism

Sµ(Ω× Rn)/S−∞(Ω× Rn) ∼= Lµ(Ω)/L−∞(Ω), (1.1.14)

and σµψ(A) gives us a linear mapping

σµψ : Lµcl(Ω)→ S(µ)
(
Ω× (Rn \ {0})

)
that is surjective, and kerσµψ = Lµ−1

cl (Ω).
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Theorem 1.1.15. Let A ∈ Lµ(Ω) and A∗ its formal adjoint, defined by

(Au, v) = (u,A∗v), u, v ∈ C∞0 (Ω)

with the L2-scalar product (·, ·). Then A∗ ∈ Lµ(Ω), and if A = Op(a) mod L−∞(Ω)
for some a(x, ξ) ∈ Sµ(Ω×Rn), we have A∗ = Op(a∗) mod L−∞(Ω) with an a∗(x, ξ) ∈
Sµ(Ω× Rn), and

a∗(x, ξ) ∼
∑
α

1
α!
Dα
ξ ∂

α
x a(x, ξ). (1.1.15)

Analogously, if tA is the formal transposed of A with respect to 〈·, ·〉 we have tA ∈
Lµ(Ω) and tA = Op(c) mod L−∞(Ω), with c(x, ξ) ∈ Sµ(Ω× Rn), and

c(x, ξ) ∼
∑
α

1
α!
Dα
ξ ∂

α
x a(x,−ξ). (1.1.16)

Theorem 1.1.16. Let A ∈ Lµ(Ω), B ∈ Lν(Ω) and A or B be properly supported.
Then AB ∈ Lµ+ν(Ω). If A = Op(a) mod L−∞(Ω), a(x, ξ) ∈ Sµ(Ω×Rn), B = Op(b)
mod L−∞(Ω), b(x, ξ) ∈ Sν(Ω × Rn), then AB = Op(c) mod L−∞(Ω) for a symbol
c(x, ξ) ∈ Sµ+ν(Ω× Rn) given by the formula (1.1.4).

The prove can be found in any basic book on pseudo-differential operators, for
example, in [46] or [39].

Remark 1.1.17. Let A ∈ Lµcl(Ω), B ∈ Lνcl(Ω). Then A∗ ∈ Lµcl(Ω), AB ∈ Lµ+ν
cl (Ω) (if

one factor is properly supported) and

σµψ(A∗) = σµψ(A), σµ+ν
ψ (AB) = σµψ(A)σνψ(B).

The Leibniz product c(x, ξ) = a(x, ξ)#b(x, ξ) of a and b is unique mod S−∞(Ω×
Rn). Let us set eξ(x) := eixξ and consider a properly supported A ∈ Lµ(Ω). Then

σA(x, ξ) := e−ξ(x)Aeξ (1.1.17)

is a C∞ function in (x, ξ). Moreover, (1.1.17) is a complete symbol of A satisfying
A = Op(σA). If the operator A is also given by A = Op(a) for an a(x, x′, ξ) ∈
Sµ(Ω× Ω× Rn), then (1.1.17) has the asymptotic sum (1.1.10).

1.1.5 Continuity in Sobolev spaces

As noted above every A ∈ Lµ(Ω) for open Ω ⊆ Rn can be regarded as a continuous
operator

A : C∞0 (Ω)→ C∞(Ω).

In this section we extend A to continuous operators between Sobolev spaces. The
Sobolev space Hs(Rn) of smoothness s ∈ R is defined as the closure of C∞0 (Rn) with
respect to the norm

‖u‖s :=
{∫

Rn

〈ξ〉2s|(Fu)(ξ)|2dξ
} 1

2

. (1.1.18)

In particular, H0(Rn) = L2(Rn). The operator norm in L
(
Hs(Rn),Hr(Rn)

)
will be

denoted by ‖ · ‖s,r.
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Proposition 1.1.18. Let a(ξ) ∈ Sµ(Rn), µ ∈ R, and A = Op(a). Then A extends
to a continuous operator A : Hs(Rn) → Hs−µ(Rn) and a → A induces a continuous
operator Sµ(Rn)→ L

(
Hs(Rn),Hs−µ(Rn)

)
for every s ∈ R.

Proof. Let u ∈ C∞0 (Rn). Then we have

‖Au‖2s−µ =
∫
〈ξ〉2(s−µ)|(FAu)(ξ)|2dξ

=
∫
〈ξ〉2(s−µ)|a(ξ)F(ξ)|2dξ

=
∫
〈ξ〉2(s−µ)|a(ξ)|2|F(ξ)|2dξ ≤ c2‖u‖2s

for c = supξ∈Rn〈ξ〉−µ|a(ξ)| <∞.

Theorem 1.1.19. Let a(x, ξ) ∈ Sµ(Rn×Rn) be a symbol with a(x, ξ) = 0 for x 6∈ K
for some compact set K ⊂ Rn. Then Op(a) has a continuous extension

A : Hs(Rn)→ Hs−µ(Rn)

for every s ∈ R and we have ‖A‖s,s−µ ≤ c̃cN for a constant c̃ > 0 and

cN = sup
ξ∈Rn

〈ξ〉−µ
∫ ∣∣(1−∆x)Na(x, ξ)

∣∣ dx
for any natural number N > n+|s−µ|

2 . Here ∆x :=
∑n
i=0

∂2

∂x2
i

is the Laplacian in Rn.

Proof. The function b(ζ, ξ) :=
∫
e−ixζa(x, ξ)dx satisfies

|b(ζ, ξ)| ≤ cN 〈ζ〉−2N 〈ξ〉µ (1.1.19)

for every N ∈ N with some constant cN > 0. In fact, we have ζαb(ζ, ξ) =∫
e−ixζDα

xa(x, ξ)dx for every α ∈ Nn which gives us for arbitrary N

|〈ζ〉2Nb(ζ, ξ)| =
∣∣∣∣∫ e−ixζ(1−∆x)Na(x, ξ)dx

∣∣∣∣ ≤ cN 〈ξ〉µ. (1.1.20)

Next we set K(ξ, η) := b(η − ξ, ξ)〈ξ〉−s〈η〉s−µ and observe that∫
|K(ξ, η)|dξ,

∫
|K(ξ, η)|dη ≤ c (1.1.21)

for all η, and ξ for some constant c > 0. In fact, (1.1.19) gives us together with Peetre’s
inequality

|K(ξ, η)| ≤ cN 〈ξ − η〉−2N

(
〈η〉
〈ξ〉

)s−µ
≤ cN 〈ξ − η〉|s−µ|−2N
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which yields (1.1.21) when we choose 2N > n + |s − µ|. Applying now the Fourier
transform Fx→η to Au(x), u ∈ C∞0 (Rn), we obtain

(Âu)(η) =
∫∫

e−ix(η−ξ)a(x, ξ)û(ξ)d̄ξdx =
∫
b(η − ξ, ξ)û(ξ)d̄ξ.

This yields for any v ∈ Hs−µ(Rn)∫
(Âu)(η)v̂(η)dη =

∫∫
b(η − ξ, ξ)v̂(η)û(ξ)d̄ξdη

=
∫∫

K(ξ, η)v̂(η)〈η〉µ−sû(ξ)〈ξ〉sd̄ξdη.

We then obtain

|〈Au, v〉| = |〈Âu, v̂〉| ≤

(2π)−n
(∫∫

|K(ξ, η)|〈η〉2(µ−s)|v̂(η)|2dξdη
) 1

2
(∫∫

|K(ξ, η)|〈ξ〉2s|û(ξ)|2dξdη
) 1

2

≤ c‖v‖µ−s‖u‖s.

In the latter estimate we have employed (1.1.21). Hence it follows that sup |〈Au,v〉|‖v‖µ−s
≤

c‖u‖s, where sup is taken over all v ∈ Hµ−s(Rn)\{0}. This yields ‖Au‖s−µ ≤ c‖u‖s for
some c > 0 (since supv∈Hµ−s(Rn)\{0}

|〈u,v〉|
‖v‖µ−s

defines an equivalent norm in Hs−µ(Rn)).
The latter constant is of the form c = c̃cN with c̃ > 0 and cN from (1.1.19). For cN
we have from (1.1.20)

cN = sup
ξ∈Rn

〈ξ〉−µ
∫
|(1−∆x)Na(x, ξ)|dx

for any N > n+|s−µ|
2 . This completes the proof.

Corollary 1.1.20. The operator Mϕ of multiplication by ϕ ∈ C∞0 (Rn) induces con-
tinuous operators

Mϕ : Hs(Rn)→ Hs(Rn) (1.1.22)

for all s ∈ R. Moreover, ϕ → Mϕ represents a continuous operator C∞0 (Rn) →
L(Hs(Rn)) for every s ∈ R.

In fact ϕ ∈ C∞0 (Rn) can be regarded as an element in S0(Rn ×Rn) with compact
support with respect to x. ThenMϕ corresponds to Op(ϕ), and we can apply Theorem
1.1.19 which shows at the same time the continuity C∞0 (Rn)→ L(Hs(Rn)).

Remark 1.1.21. Theorem 1.1.19 has an obvious generalisation to symbols a(x, ξ) ∈
S
(
Rnx , Sµ(Rnξ )

)
. Then, in particular, Mϕ for ϕ ∈ S(Rn) induces continuous operator

(1.1.22) and the corresponding mapping S(Rn)→ L(Hs(Rn)) is continuous for every
s ∈ R.
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For an open Ω ⊆ Rn we denote by Hs
loc(Ω) the subspace of all u ∈ D′(Ω) such

that ϕu ∈ Hs(Rn) for every ϕ ∈ C∞0 (Ω). Moreover, Hs
comp(Ω) denotes the subspace

of all u ∈ Hs(Rn) with compact support suppu ⊆ Ω. u → ‖ϕu‖s, ϕ ∈ C∞0 (Ω),
represents a semi-norm system on Hs

loc(Ω) which defines a Fréchet topology in the
space Hs

loc(Ω). Moreover, Hs
comp(Ω) may be regarded as the inductive limit of the

spaces Hs(K) := {u ∈ Hs
comp(Ω) : suppu ⊆ K} for compact K ⊂ Ω. Every Hs(K)

can be interpreted as a closed subspace of Hs(Rn). The following theorem is an easy
consequence of the above Theorem 1.1.19.

Theorem 1.1.22. Each A ∈ Lµ(Ω) induces continuous operators

A : Hs
comp(Ω)→ Hs−µ

loc (Ω)

for all s ∈ R. If A is properly supported the corresponding operators

A : Hs
comp(Ω)→ Hs−µ

comp(Ω), A : Hs
loc(Ω)→ Hs−µ

loc (Ω)

are continuous for all s ∈ R.

1.1.6 Ellipticity

In this section we study the ellipticity of pseudo-differential operators in any open set
Ω ⊆ Rn.

Definition 1.1.23. An operator A ∈ Lµ(cl)(Ω) is called elliptic (of order µ) if for any
left symbol a(x, ξ) ∈ Sµ(cl)(Ω× Rn) of A (i.e., A = Op(a) mod L−∞(Ω)) there exists

a p(x, ξ) ∈ S−µ(cl)(Ω× Rn) such that

1− p(x, ξ)a(x, ξ) ∈ S−1
(cl)(Ω× Rn). (1.1.23)

In this case we also say that the symbol a(x, ξ) is elliptic.

Remark 1.1.24. If a(x, ξ) ∈ Sµcl(Ω × Rn) is elliptic and σµψ(x, ξ) the homogeneous
principal symbol, then a(x, ξ) is elliptic if and only if σµψ(x, ξ) 6= 0 for all x ∈ Ω,
ξ ∈ Rn \ {0}. In this case we find a p(x, ξ) ∈ S−µcl (Ω×Rn) which satisfies the relation
(1.1.23).

In fact, we can set p(x, ξ) = χ(ξ)
(
σµψ(x, ξ)

)−1 for any excision function χ(ξ).

Theorem 1.1.25. If A ∈ Lµ(cl)(Ω) is elliptic there exists a properly supported operator

P ∈ L−µ(cl)(Ω) such that

I − PA, I −AP ∈ L−∞(Ω).

The operator P is called a parametrix of A.
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Proof. For the proof it is enough to find a p(x, ξ) ∈ S−µ(cl)(Ω × Rn) such that for any
left symbol a(x, ξ) ∈ Sµ(cl)(Ω× Rn) of the operator A we have

1− p(x, ξ)#a(x, ξ), 1− a(x, ξ)#p(x, ξ) ∈ S−∞(Ω× Rn).

In fact, it then suffices to define P as a properly supported representative (modulo
L−∞(Ω)) of Op(p). Let us construct p(x, ξ) in such a way that 1− p(x, ξ)#a(x, ξ) is
of order −∞. Then, in a similar manner we can construct another p̃(x, ξ) such that
1− a(x, ξ)#p̃(x, ξ) is of order −∞. A simple algebraic argument then gives us p = p̃
mod S−∞. In other words we will content ourselves with the multiplication from the
left. In this proof for abbreviation we omit (x, ξ) in the symbols and also write Sµ(cl)
rather than Sµ(cl)(Ω× Rn).

By assumption there is a p1 ∈ S−µ(cl) such that

1− p1a ∈ S−1
(cl).

By virtue of p1a− p1#a ∈ S−1
(cl) we also obtain

c := 1− p1#a ∈ S−1
(cl).

This gives us c#j ∈ S−j(cl), cf. the notation in Remark 1.1.6, i.e., we can form the
asymptotic sum

∞∑
j=0

c#j ∈ S0
(cl),

cf. Theorem 1.1.4. It easily follows that ∞∑
j=0

c#j

#(1− c) = 1.

This gives us together with p1#a = 1− c ∞∑
j=0

c#j

#p1#a = 1,

i.e., we may set p :=
(∑∞

j=0 c
#j
)

#p1, which is as desired.

1.1.7 Mellin pseudo-differential operators

In this section we introduce basic notations and observations about the Mellin trans-
form on R+, weighted Sobolev spaces and operators in those spaces.
The classical Mellin transform is defined by the formula

Mu(z) =

∞∫
0

rz−1u(r)dr, (1.1.24)
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first for u ∈ C∞0 (R+) and then extended to more general distribution spaces, espe-
cially, weighted Sobolev spaces, also vector-valued ones.
Let A(U), for some open U ⊆ C, denote the space of all holomorphic functions
in U (in the Fréchet topology of uniform convergence on compact subsets); more
generally, if E is a Fréchet space, A(U,E) will denote the space of all holomorphic
functions in U with values in E, with the topology of the projective tensor product
A(U,E) = A(U)⊗πE. Let us recall here that the topology of A(U)⊗πE is defined as
the strongest locally convex topology on the space A(U)⊗E for which the canonical
bilinear mapping (h, e)→ h⊗ e, A(U)×E → A(U)⊗E is continuous. A semi-norm
on the space A(U,E) can be defined as follows. Let p and q be semi-norms on A(U)
and E, respectively. Then for θ ∈ A(U)⊗ E we set

(p⊗ q)(θ) := inf
∑
j

p(hj)q(ej),

where the infimum is taken over all finite sets of pairs (hj , ej) such that θ =
∑
j hj⊗ej .

Let us now go back to the Mellin transform and recall thatM defines a continuous
operator

M : C∞0 (R+)→ A(C).

Let Γβ := {z ∈ C,Rez = β}. Then M composed with the restriction to Γβ gives rise
to a continuous operator C∞0 (R+) → S(Γβ) for every β. Moreover, it is well known
that the weighted Mellin transform

Mγu(z) :=Mu(z)|Γ 1
2−γ

,

Mγ : C∞0 (R+)→ S(Γ 1
2−γ

)

extends by continuity to an isomorphism

Mγ : rγL2(R+)→ L2(Γ 1
2−γ

)

for every γ ∈ R, and the identity

‖r−γu‖L2(R+) = (2π)−
1
2 ‖Mγu‖L2(Γ 1

2−γ
) (1.1.25)

holds. The inverse has the form(
M−1

γ g
)
(r) =

1
2πi

∫
Γ 1

2−γ

r−zg(z)dz.

We call Mγ the weighted Mellin transform (with the weight γ).

For u(r) ∈ C∞0 (R+) we set

(Sγu)(t) = e−( 1
2−γ)tu(e−t),

which induces an isomorphism Sγ : C∞0 (R+)→ C∞0 (R) and we have

(Mγu)(
1
2
− γ + iτ) = (FSγu)(τ).
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These relations allow us to define Mellin pseudo-differential operators. In the sim-
plest case we can take symbols f(z) ∈ Sµ(cl)(Γ 1

2−γ
) and then set

opγM (f)u(r) :=M−1
γ,z→r

{
f(z)(Mγ,r′→zu)(z)

}
, (1.1.26)

first for u ∈ C∞0 (R+). Using the identityM (r−γu) (z) =Mu(z−γ) we can also write

opγM (f)u(r) = rγopM
(
T−γf

)
r−γ

where (T−γf) (z) := f(z − γ) and opM := op0
M . Another interpretation of (1.1.26) is

opγM (f)u(r) =

∞∫
−∞

∞∫
0

( r
r′

)−( 1
2−γ+iρ)

f(
1
2
− γ + iρ)u(r′)

dr′

r′
d̄ρ

for d̄ρ = (2π)−1dρ. Writing x = − log r, x′ = − log r′ we obtain

opγM (f)u(r) =

∞∫
−∞

∞∫
−∞

ei(x−x
′)ρe(x−x

′)( 1
2−γ)f(

1
2
− γ + iρ)u(e−x

′
)dx′d̄ρ.

By virtue of

e(x−x
′)( 1

2−γ)f(
1
2
− γ + iρ) ∈ Sµ(cl)(Rx × Rx′ × Rρ)

it follows that
opγM (f) ∈ Lµ(cl)(R+)

with Lµ(cl)(R+) being defined as the space of pseudo-differential operators on R+,
based on the Fourier transform.

Definition 1.1.26. Let Σ ⊆ Rn be an open set, and µ ∈ R. Then Sµ(cl)(R+×Σ×C×
Rn)hol is defined to be the space of all h(r, x, z, ξ) ∈ A

(
C, Sµ(cl)(R+ × Σ × Rn)

)
such

that
h(r, x, β + iρ, ξ) ∈ Sµ(cl)(R+ × Σ× R1+n

ρ,ξ )

for every β ∈ R, uniformly in compact β-intervals.

Observe that the kernel cut-off procedure of Subsection 1.1.3 can be formulated in
terms of Mellin transform rather than the Fourier transform. More precisely, we have
the following result.
Let C∞B (R+) denote the subspace of all ϕ ∈ C∞(R+) such that

sup
t∈R+

|(t∂t)kϕ(t)| <∞ for all k ∈ N.

For every such ϕ ∈ C∞B (R+) and every β ∈ R we have a kernel cut-off operator

HM(ϕ) : f(r, x, β + iτ, ξ)→ h(r, x, β + iτ, ξ)
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given by HM(ϕ)f :=Mϕ(t)M−1f , which defines a bilinear continuous map

C∞B (R+)× Sµ(cl)(R+ × Σ× Γβ × Rn)→ Sµ(cl)(R+ × Σ× Γβ × Rn)

for every µ ∈ R. In particular, for suppϕ compact we obtain a bilinear continuous
operator

C∞0 (R+)× Sµ(cl)(R+ × Σ× Γβ × Rn)→ Sµ(cl)(R+ × Σ× Γβ × Rn).

Theorem 1.1.27 (Mellin quantisation). Let p̃(r, x, ρ̃, ξ) ∈ Sµcl(R+ × Σ × R1+n
ρ̃,ξ )

and

p(r, x, ρ, ξ) := p̃(r, x, rρ, ξ),

then there exists an h(r, x, z, ξ) ∈ Sµcl(R+ × Σ× C× Rn)hol such that

Opr,x(p) = opβMOpx(h) mod L−∞(R+ × Σ)

for every β ∈ R.

We now introduce weighted Sobolev spaces on R+ based on the Mellin transform.
They will contain the smoothness s ∈ R and in addition the weight γ ∈ R.

Definition 1.1.28. Hs,γ(R+) for s, γ ∈ R is the closure of C∞0 (R+) with respect to
the norm

‖u‖Hs,γ(R+) :=

{
1

2πi

∫
Γ 1

2−γ

(1 + |z|2)s|Mγu(z)|2dz

} 1
2

.

We set

Hs(R+) := Hs,0(R+).

In view of (1.1.25) we have

H0,γ(R+) = rγL2(R+), H0(R+) = L2(R+).

The transformation u(r)→ (Sγu)(t) extends to an isomorphism

Sγ : Hs,γ(R+)→ Hs(R)

for every s, γ ∈ R. In other words, we have

‖u‖Hs,γ(R+) ∼ ‖Sγu‖Hs(R)

in the sense of equivalence of norms.
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1.2 Operators on a manifold with conical exits to
infinity

1.2.1 Manifolds with conical exits to infinity

Let M be a C∞ manifold, m = dimM , equipped with a free R+-action z → δλz, λ ∈
R+, z ∈M . Then the orbit space X is a C∞ manifold, and we have a diffeomorphism

e : M → R+ ×X, e(z) =: (r, x), (1.2.1)

such that e(δλz) = (λr, x) for all λ ∈ R+, z ∈ M . We will say that M is endowed
with the structure of an infinite (straight) cone, if there is fixed an open covering V
of M by neighbourhoods of the form V = e−1(R+ × U), where U runs over an open
covering U of X by coordinate neighbourhoods, and charts

χ : V → Γ

for conical Γ ⊂ Rm (i.e., x ∈ Γ⇔ λx ∈ Γ for every λ ∈ R+), such that

χ(δλz) = λχ(z)

for every λ ∈ R+, z ∈M . The manifold X will also be called the base of the cone.

In this notation we mainly focus on what happens “at infinity”, i.e., over
e−1((R,∞)×X) for any R > 0.

Definition 1.2.1. A C∞ manifold M is said to be a manifold with conical exits (to
infinity), if M contains a submanifold M∞ endowed with the structure of an infinite
(straight) cone such that if X is the base of the cone and e : M∞ → R+ ×X a map
in the sense of (1.2.1) the set

M0 := M \ e−1((R,∞)×X) (1.2.2)

is a C∞ manifold with boundary ∂M0
∼= X, for a certain R > 0.

On M[R,∞) := M∞ \ e−1((0, R) × X) for some R ≥ 1 we can define dilations
δλ : M[R,∞) →M[R,∞) for λ ≥ 1.
By definition a manifold M with conical exit can be written as a union

M = M0 ∪M∞.

Let us fix a corresponding partition of unity {ϕ0, ϕ∞} in such a way that ϕ0 ∈
C∞0 (intM0) and ϕ∞ ∈ C∞0

(
e−1((R0,∞) × X)

)
for some 0 < R0 < R with R as in

(1.2.2).

Example 1.2.2. (i) M = Rm can be regarded as a manifold with conical exits
when we set M∞ := Rm \ {0}; then X = Sm−1 and M0 := {x ∈ Rm : |x| ≤ R}
for any R > 0.

(ii) The finite cone X∧ = R+ ×X for a C∞ manifold X has a conical exit. In this
case we can set M∞ = X∧, and M0 := (0, R]×X for any R > 0.
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Let us now endow M with a Riemannian metric g as follows. Choose any Rieman-
nian metric g0 onM0∪Cε, where Cε ∼= [R, ε)×X, for some ε > 0, is a collar neighbour-
hood of X in M∞, and a Riemannian metric g1 on M∞, and set g = ωg0 + (1−ω)g1,
where ω ∈ C∞(M0 ∪ Cε) is a function with 0 ≤ ω ≤ 1 and ω ≡ 1 in M0 ∪ Cε/2. We
define g1 as a conical metric by setting g1 = dr2 + r2gX for any Riemannian metric
gX on X.

In the following notation we assume, for simplicity, that the base X of the cone
is a compact closed C∞ manifold. Let Hs;g(M) for s, g ∈ R denote the space of all
u ∈ Hs

loc(M) such that

e∗(ϕ∞u)(r, x) ∈ Hs;g
cone(X

∧)(:= 〈r〉−gHs
cone(X

∧)). (1.2.3)

Here Hs
cone(X

∧) is the subspace of all f ∈ Hs
loc(R × X)|R+×X such that for every

coordinate neighbourhood U on X and every diffeomorphism κ : R+ × U → Γ to
an open conical subset Γ ∈ Rn+1

x̃ such that κ(λr, x) = λκ(r, x) for all λ ∈ R+,
(r, x) ∈ R+ × U , we have (

(1− ω)ϕu
)(
κ−1(x̃)

)
∈ Hs(Rn+1

x̃ )

for every cut-off function ω and ϕ ∈ C∞0 (U). We set

∥∥u∥∥
Hs;g(M)

=
{∥∥ϕ0u

∥∥2

Hs(intM0)
+
∥∥e∗(ϕ∞u)∥∥2

Hs;g
cone(X∧)

} 1
2
, (1.2.4)

where Hs(int·) means the standard Sobolev space of smoothness s on a compact C∞

manifold with boundary. The space Hs;g(M) can also be equipped with a Hilbert
space scalar product such that the associated norm is equivalent to (1.2.4).

By
S(M) := lim←−

k∈N
Hk;k(M)

we obtain an analogue of the Schwartz space on a manifold M with conical exits.
Furthermore, we need an analogue of the Schwartz space S(Rm × Rm) for the case
M ×M that we define to be the complete projective tensor product

S(M ×M) := S(M)⊗̂πS(M).

Concerning the complete projective tensor product see (1.2.10).

Remark 1.2.3. The spaces Hs;g(M) have similar properties as those in Rm. We have
continuous embeddings Hs′;g′(M) ↪→ Hs;g(M) for s′ ≥ s, g′ ≥ g that are compact for
s′ > s, g′ > g. Moreover, the scalar product (·, ·)L2(M), which we take linear in the
first and anti-linear in the second argument, induces a non-degenerate sesquilinear
pairing

Hs;g(M)×H−s;−g(M)→ C,

such that H−s;−g(M) can be identified with the dual of Hs;g(M).
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1.2.2 Calculus in the Euclidean space

According to Example 1.2.2 (i) we interpret the Euclidean space Rm as a manifold
with a conical exit. Pseudo-differential operators will refer to symbols in the sense of
the following definition.

Definition 1.2.4. (i) The space Sµ;ν(Rm × Rm) for µ, ν ∈ R is defined to be the
set of all a(x, ξ) ∈ C∞(Rmx × Rmξ ) such that

sup
x,ξ∈Rm

〈x〉−ν+|α|〈ξ〉−µ+|β|∣∣Dα
xD

β
ξ a(x, ξ)

∣∣ (1.2.5)

is finite for every α, β ∈ Nm.

(ii) The space Sµ;ν,ν′(Rm ×Rm ×Rm) for µ, ν, ν′ ∈ R is defined to be the set of all
a(x, x′, ξ) ∈ C∞(Rmx × Rmx′ × Rmξ ) such that

sup
x,x′,ξ∈Rm

〈x〉−ν+|α|〈x′〉−ν
′+|α′|〈ξ〉−µ+|β|∣∣Dα

xD
α′

x′D
β
ξ a(x, x

′, ξ)
∣∣ (1.2.6)

is finite for every α, α′, β ∈ Nm.

Remark 1.2.5. The expressions (1.2.5) for α, β ∈ Nm form a countable semi-norm
system that turns Sµ;ν(Rm×Rm) to a Fréchet space. A similar observation is true of
(1.2.6) in connection with the space Sµ;ν,ν′(Rm × Rm × Rm).

Theorem 1.2.6. Let aj(x, ξ) ∈ Sµj ;νj (Rm × Rm), j ∈ N, be an arbitrary sequence,
such that µj → −∞, νj → −∞ as j →∞. Then there exists an a(x, ξ) ∈ Sµ;ν(Rm ×
Rm) for µ = max{µj ; j ∈ N}, ν = max{νj ; j ∈ N}, such that for every N ∈ N there
is an M = M(N) ∈ N such that

a(x, ξ)−
M∑
j=0

aj(x, ξ) ∈ Sµ−(N+1);ν−(N+1)(Rm × Rm).

For any other ã(x, ξ) ∈ Sµ;ν(Rm × Rm) with this property we have

a(x, ξ)− ã(x, ξ) ∈ S−∞;−∞(Rm × Rm) :=
⋂
µ,ν

Sµ;ν(Rm × Rm).

Any choice of a as in Theorem 1.2.6 will be called an asymptotic sum of the aj ’s,
written a ∼

∑∞
j=0 aj . It can be proved that when χ(x, ξ) is an excision function in

(x, ξ) ∈ R2m, then there exists a sequence of constants cj > 0 such that a(x, ξ) :=∑∞
j=0 χ

(
x, ξ

cj

)
aj(x, ξ) converges in Sµ;ν(Rm × Rm).

Remark 1.2.7. Given a(x, ξ) ∈ Sµ;ν(Rm×Rm), b(x, ξ) ∈ Sσ;τ (Rm×Rm), µ, ν, σ, τ ∈
R, we can form the Leibniz product (a#b)(x, ξ) as the asymptotic sum

(a#b)(x, ξ) ∼
∑
α

1
α!
(
∂αξ a(x, ξ)

)
Dα
x b(x, ξ)

in the space Sµ+σ;ν+τ (Rm×Rm), taking into consideration that
(
∂αξ a(x, ξ)

)
Dα
x b(x, ξ)

belongs to Sµ+σ−|α|;ν+τ−|α|(Rm × Rm) and Theorem 1.2.6.
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Lemma 1.2.8. For ρ > 0 There is a function ω(x, x′) ∈ S0;0,0(Rm × Rm × Rm)
(independent of the covariable ξ) such that

ω(x, x′) =

{
1 |x− x′| ≤ ρ

2
〈x〉,

0 |x− x′| > ρ〈x〉.

Proof. Let ψ ∈ C∞(R) be a function such that ψ(t) = 1 for |t| ≤ 1
2 and ψ(t) = 0 for

|t| > 1; then it suffices to set ω(x, x′) := ψ(|x− x′|/ρ〈x〉).

Remark 1.2.9. a(x, ξ) ∈ Sµ;ν(Rm×Rm) implies ω(x, x′)a(x, ξ) ∈ Sµ;ν,0(Rm×Rm×
Rm) for any ω as in Lemma 1.2.8.

Let us set

Op(a)u(x) :=
∫∫

ei(x−x
′)ξa(x, x′, ξ)u(x′)dx′d̄ξ (1.2.7)

for an a(x, x′, ξ) ∈ Sµ;ν,ν′(Rm × Rm × Rm) and u ∈ S(Rm). Then, using standard
technique on pseudo-differential operators (especially, oscillatory integral arguments)
we obtain a continuous operator

Op(a) : S(Rm)→ S(Rm).

Remark 1.2.10. Operators (1.2.7) make sense for amplitude functions that may be
much more general than Sµ;ν,ν′(Rm ×Rm ×Rm), see, for instance, Kumano-go [19].
If necessary we will give more comments on possible specific properties of a(x, x′, ξ).

Let us set
Lµ;ν(Rm) := {Op(a) : a(x, ξ) ∈ Sµ;ν(Rm × Rm)},

and
L−∞;−∞(Rm) :=

⋂
µ,ν∈R

Lµ;ν(Rm).

We now formulate a number of properties of these spaces.

Theorem 1.2.11. (i) The space L−∞;−∞(Rm) coincides with the space of all inte-
gral operators of the form Cu(x) =

∫
c(x, x′)u(x′)dx′ for c(x, x′) ∈ S(Rm×Rm).

(ii) We have

Lµ;ν(Rm)={Op(a)+C : a(x, x′, ξ)∈Sµ;ν,0(Rm×Rm×Rm), C ∈ L−∞;−∞(Rm)}.

(iii) The map
Op : Sµ;ν(Rm × Rm)→ Lµ;ν(Rm) (1.2.8)

is an isomorphism.

Remark 1.2.12. Using Remark 1.2.5 and Theorem 1.2.11 (iii) we obtain a Fréchet
space structure in Lµ;ν(Rm).
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Theorem 1.2.13. Every A ∈ Lµ;ν(Rm) induces continuous operators

A : Hs;g(Rm)→ Hs−µ;g−ν(Rm)

for all s, g ∈ R. Here Hs;g(Rm) := 〈x〉−gHs(Rm).

Let us now consider classical symbols. First identify Sµ(Rm) with the set of all
a(ξ) ∈ Sµ;0(Rm×Rm) which are independent of x. Then we have the subclass Sµcl(Rm)
of classical symbols, its Fréchet topology is induced from the one on Sµ(Rm) plus the
Fréchet topology of the projective limit of the mappings

ηj : Sµcl(R
m)→ S(µ−j)(Rm \ {0}), j ∈ N

ρN : Sµcl(R
m)→ Sµ−(N+1)(Rm), N ∈ N

as in Remark 1.1.3. This turns Sµcl(Rm) to a nuclear Fréchet space.
We now consider the spaces Sµcl(Rmξ ) and Sνcl(Rmx ) with respect to the variables ξ and
x, respectively, and set

Sµ;ν
clξ;x

(Rm × Rm) := Sµcl(R
m
ξ )⊗̂πSνcl(Rmx ). (1.2.9)

We then obtain the subspace

Sµ;ν
clξ;x

(Rm × Rm) ⊂ Sµ;ν(Rm × Rm),

of so-called classical symbols (in ξ and x), and we set

Lµ;ν
cl (Rm) := {Op(a) : a(x, ξ) ∈ Sµ;ν

cl (Rm × Rm)}.

For brevity, we sometimes drop the subscripts ξ;x and write Sµ;ν
cl , Lµ;ν

cl instead of
Sµ;ν

clξ;x
and Lµ;ν

clξ;x
, respectively. If a consideration is valid both for classical and general

symbols or operators, we write subscripts (cl)ξ;x and (cl), respectively.
Recall that ⊗̂π stands for the complete projective tensor product. If E and F are two
Fréchet spaces, every element θ ∈ E⊗̂πF is the sum of an absolutely convergent series

θ =
∞∑
n=0

λnxn ⊗ yn, (1.2.10)

where (λn) is a sequence of complex numbers satisfying
∑∞
n=0 |λn| < ∞, and (xn)

(respectively (yn)) is a sequence converging to zero in E (respectively F ). For more
information about the projective tensor product and its completion see the book of
Treves [47] or Köthe [17]. If G is another Fréchet space and σ : E → G a continuous
map, we also obtain a continuous operator

σ ⊗ id : E⊗̂πF → G⊗̂πF.

A similar relation holds with respect to the second factor. In particular, let

σψ : Sµcl(R
m
ξ )→ S(µ)(Rmξ \ {0})
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and

σe : Sνcl(Rmx )→ S(ν)(Rmx \ {0})

denote the operators that map a symbol to its homogeneous principal components
of order µ and ν in the corresponding variables ξ and x, respectively. This induces
operators

σψ : Sµ;ν
clξ;x

(Rm × Rm)→ S(µ)(Rm \ {0})⊗̂πSνcl(Rm) (1.2.11)

and

σe : Sµ;ν
clξ;x

(Rm × Rm)→ Sµcl(R
m)⊗̂πS(ν)(Rm \ {0}) (1.2.12)

(here, for simplicity, we omitted corresponding identity maps for the other factors).
Now we can apply σe in (1.2.11) with respect to x and σψ in (1.2.12) with respect to
ξ. It is well known that the resulting maps coincide and define a map

σψ,e := σψ ⊗ σe : Sµ;ν
clξ;x

(Rm × Rm)→ S(µ)(Rm \ {0})⊗̂πS(ν)(Rm \ {0}).

We call
σ(a) := (σψ(a), σe(a), σψ,e(a))

the principal symbol of the classical symbol a(x, ξ) ∈ Sµ;ν
(cl)ξ;x

(Rm×Rm). ForA = Op(a)
we also write

σ(A) := σ(a),

and σψ(A) := σψ(a), σe(A) := σe(a), σψ,e(A) := σψ,e(a).

Remark 1.2.14. Let us consider arbitrary elements

pψ(x, ξ) ∈ S(µ)(Rmξ \ {0})⊗̂πSνcl(Rmx ),

pe(x, ξ) ∈ Sµcl(R
m
ξ )⊗̂πS(ν)(Rmx \ {0}),

pψ,e(x, ξ) ∈ S(µ)(Rmξ \ {0})⊗̂πS(ν)(Rmx \ {0}),

such that
σe(pψ)(x, ξ) = σψ(pe)(x, ξ) = pψ,e(x, ξ). (1.2.13)

Then there exists an element p(x, ξ) ∈ Sµ;ν
clξ;x

(Rm × Rm) such that

σψ(p) = pψ, σe(p) = pe, σψ,e(p) = pψ,e.

In fact, let χ be an excision function in Rm. Then it suffices to set

p(x, ξ) = χ(ξ)pψ(x, ξ) + χ(x){pe(x, ξ)− χ(ξ)pψ,e(x, ξ)}. (1.2.14)

Moreover, if a(x, ξ) ∈ Sµ;ν
clξ;x

(Rm × Rm) is an arbitrary symbol with

σψ(a) = pψ, σe(a) = pe, σψ,e(a) = pψ,e,

then we have
a(x, ξ)− p(x, ξ) ∈ Sµ−1,ν−1

clξ;x
(Rm × Rm).
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Definition 1.2.15. An operator A ∈ Lµ;ν(Rm) is called elliptic of order (µ, ν) if for
the symbol a(x, ξ) ∈ Sµ;ν(Rm × Rm) in the representation A = Op(a), (cf. Theorem
1.2.11 (iii)), there is a p(x, ξ) ∈ S−µ;−ν(Rm × Rm) such that

1− p(x, ξ)a(x, ξ) ∈ S−1;−1(Rm × Rm). (1.2.15)

Remark 1.2.16. An Operator A ∈ Lµ;ν
cl (Rm) is elliptic if and only if

σψ(A)(x, ξ) 6= 0 for all (x, ξ) ∈ Rm × (Rm \ {0}),
σe(A)(x, ξ) 6= 0 for all (x, ξ) ∈ (Rm \ {0})× Rm,

σψ,e(A)(x, ξ) 6= 0 for all (x, ξ) ∈ (Rm \ {0})× (Rm \ {0}).

These conditions are independent of each other. For instance, A = Op(a) for a(x, ξ) =
〈ξ〉µ + 〈x〉ν satisfies the first two conditions, but the third one is violated.

Theorem 1.2.17. For an operator A ∈ Lµ;ν(Rm) the following conditions are equiv-
alent:

(i) the operator
A : Hs;g(Rm)→ Hs−µ;g−ν(Rm) (1.2.16)

is Fredholm for some s = s0, g = g0 ∈ R;

(ii) the operator A is elliptic.

The Fredholm property of (1.2.16) for s0, g0 ∈ R implies the same for all s, g ∈ R.

Theorem 1.2.18. An elliptic operator A ∈ Lµ;ν
(cl)(R

m) has a parametrix P ∈
L−µ;−ν

(cl) (Rm), i.e.,

I − PA, I −AP ∈ L−∞;−∞(Rm).

Proof. Let us first consider the non-classical case. Let a(x, ξ) be the (according to the
bijection (1.2.8) unique) symbol associated with A and choose p(x, ξ) as in (1.2.15).
Then

p(x, ξ)a(x, ξ) = 1 mod S−1;−1(Rm × Rm)

implies
p(x, ξ)#a(x, ξ) = 1 mod S−1;−1(Rm × Rm).

Thus there is a c(x, ξ) ∈ S−1;−1(Rm × Rm) such that

p#a = 1− c. (1.2.17)

Then, if c#j means c# · · ·#c with j factors, and using that the Leibniz product is
associative, it follows that

∞∑
j=0

c#j#(1− c) = 1 mod S−∞;−∞(Rm × Rm);
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(the infinite sum is interpreted as an asymptotic sum). Thus (1.2.17) gives us

( ∞∑
j=0

c#j
)
#p#a = 1 mod S−∞;−∞(Rm × Rm).

Therefore, q := (
∑∞
j=0 c

#j)#p ∈ S−µ;−ν(Rm × Rm) has the property q#a = 1
mod S−∞;−∞(Rm ×Rm). By virtue of Op(q)Op(a)−Op(q#a) ∈ L−∞;−∞(Rm), and
Op(q#a) = 1 mod L−∞;−∞(Rm) shows that Op(q) is a left parametrix of A. In a
similar manner we obtain a right parametrix which shows that Op(q) is a two-sided
parametrix, and we may set P = Op(q). In the classical case we can proceed in an
analogous manner using that asymptotic summation preserves classical symbols. Let
a(x, ξ) be classical; then if we set

pψ(x, ξ) := σ−1
ψ (a)(x, ξ), pe(x, ξ) := σ−1

e (a)(x, ξ), pψ,e(x, ξ) := σ−1
ψ,e(a)(x, ξ),

it can be easily verified that

σψ(pe)(x, ξ) = σe(pψ)(x, ξ) = pψ,e(x, ξ),

and hence, according to Remark 1.2.14, there exits an element p(x, ξ) ∈ S−µ;−ν
clξ;x

(Rm×
Rm) such that

σψ(p)(x, ξ) = pψ(x, ξ), σe(p)(x, ξ) = pe(x, ξ), σψ,e(p)(x, ξ) = pψ,e(x, ξ).

Now we continue as in the first part of the proof. Since the Leibniz product of classical
symbols is again classical, we have q := (

∑∞
j=0 c

#j)#p ∈ S−µ;−ν
clξ;x

(Rm × Rm) and
satisfies q#a = 1 mod S−∞;−∞(Rm×Rm). This shows us that Op(q) ∈ L−µ;−ν

cl (Rm)
is a parametrix of A.

1.2.3 Invariance under push forwards

Let Γ ⊂ Rm be an open set of the form

Γ = {x ∈ Rm \ {0} : x/|x| ∈ U} (1.2.18)

for a coordinate neighbourhood U on the unit sphere Sm−1. Let

Sµ;ν
0 (Γ× Rm) (Sµ;ν,ν′

0 (Γ× Γ× Rm))

denote the subspace of all a(x, ξ) ∈ Sµ;ν(Rm×Rm) (a(x, x′, ξ) ∈ Sµ;ν,ν′(Rm×Rm×
Rm)) such that there is a Γ0 ⊂ Γ of the form

Γ0 = {x ∈ Rm : |x| > ε, x/|x| ∈ U0} (1.2.19)

for some ε > 0 and U0 open, U0 ⊂ U , with

a(x, ξ) = 0 for x 6∈ Γ0 (a(x, x′, ξ) = 0 for x, x′ 6∈ Γ0).
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Moreover, let S0(Γ×Γ) denote the set of all c(x, x′) ∈ S(Rm×Rm) such that c(x, x′) =
0 whenever x 6∈ Γ0 or x′ 6∈ Γ0 for some Γ0 ⊂ Γ of the form (1.2.19). Define L−∞;−∞

0 (Γ)
to be the space of all C ∈ L−∞;−∞(Rm) with kernel in S0(Γ× Γ), and

Lµ;ν
0 (Γ) := {Op(a) + C : a(x, ξ) ∈ Sµ;ν

0 (Γ× Rm), C ∈ L−∞;−∞
0 (Γ)}.

In an analogous manner we define Lµ;ν
0,cl(Γ) as the corresponding subspace of Lµ;ν

0 (Γ)
with symbols in Sµ;ν

0,clξ;x
(Γ× Rm) := Sµ;ν

clξ;x
(Rm × Rm) ∩ Sµ;ν

0 (Γ× Rm).

Consider a diffeomorphism
ϕ : Γ̃→ Γ

between open conical sets of the form (1.2.18), where

ϕ(λx̃) = λϕ(x̃)

for all λ ∈ R+, x̃ ∈ Γ̃. Given an Ã ∈ Lµ;ν
0 (Γ̃) we now form the operator push forward

A := ϕ∗Ã by setting
A = (ϕ∗)−1Ãϕ∗

with the function pull back ϕ∗.

Theorem 1.2.19. The operator push forward ϕ∗ induces an isomorphism

ϕ∗ : Lµ;ν
0 (Γ̃)→ Lµ;ν

0 (Γ) (1.2.20)

for every µ, ν ∈ R.

The proof will be given in several steps. In particular, following the lines of Schrohe
[33], we derive an asymptotic expansion for the symbol a(x, ξ) of ϕ∗Ã. First it is
evident that ϕ∗ restricts to an isomorphism

ϕ∗ : L−∞;−∞
0 (Γ̃)→ L−∞;−∞

0 (Γ). (1.2.21)

Therefore, we may assume

Ãũ(x̃) =
∫∫

ei(x̃−x̃
′)ξ̃ã(x̃, ξ̃)ũ(x̃′)dx̃′d̄ξ̃, ũ ∈ S(Rm),

for an ã(x̃, ξ̃) ∈ Sµ;ν
0 (Γ̃×Rm). Let ω(x̃, x̃′) be a function supported near the diagonal,

as in Lemma 1.2.8, and write

ã(x̃, ξ̃) = ã1(x̃, x̃′, ξ̃) + ã2(x̃, x̃′, ξ̃)

for ã1(x̃, x̃′, ξ̃) := ω(x̃, x̃′)ã(x̃, ξ̃), ã2(x̃, x̃′, ξ̃) :=
(
1− ω(x̃, x̃′)

)
ã(x̃, ξ̃). We then have

Ã = Op(ã) = Op(ã1) + Op(ã2). (1.2.22)

We shall show in Lemma 1.2.25 below that Op(ã2) ∈ L−∞;−∞
0 (Γ̃). Theorefore, it is

enough to consider Ã1 := Op(ã1). We now insert ũ(x̃′) = u(x′) where x′ = ϕ(x̃′), i.e.,
ũ = ϕ∗u. Let us set, for convenience, χ := ϕ−1. Then A1u(x) := (ϕ∗)−1Ã1ϕ

∗u takes
the form

A1u(x) =
∫∫

ei(χ(x)−χ(x′))ξ̃ã1

(
χ(x), χ(x′), ξ̃

)
u(x′)|det dχ(x′)|dx′d̄ξ̃. (1.2.23)

In order to reformulate the latter expression we employ the following lemma.
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Lemma 1.2.20. Let x, x′ ∈ Γ and |x − x′| < δ〈x〉 for a sufficiently small constant
δ > 0. Let

D(x, x′) :=
∫ 1

0

dχ
(
x′ + t(x− x′)

)
dt.

Then we have

(i) χ(x) − χ(x′) = D(x, x′)(x − x′), moreover, D(λx, λx′) = D(x, x′) for every
λ ∈ R+;

(ii) D(x, x′) is invertible for |x− x′| ≤ ρ〈x〉 for a constant 0 < ρ < δ.

Proof. (i) is the mean value theorem. The property (ii) follows from the invertibility
of dχ(x) = D(x, x) and from the homogeneity of the transformation χ.

We now return to the formula (1.2.23) and write

A1u(x) : =
∫∫

ei(χ(x)−χ(x′))ξ̃ã1

(
χ(x), χ(x′), ξ̃

)
u(x′)|det dχ(x′)|dx′d̄ξ̃,

=
∫∫

ei(x−x
′)ξc(x, x′, ξ)u(x′)dx′d̄ξ (1.2.24)

for ξ := tD(x, x′)ξ̃ and

c(x, x′, ξ) := ã1

(
χ(x), χ(x′), tD−1(x, x′)ξ

)
|det dχ(x′)||detD−1(x, x′)|. (1.2.25)

Let us now characterise the behaviour of c(x, x′, ξ). First observe that

c(x, x′, ξ) ∈ Sµ;ν,0(Rm × Rm × Rm).

Applying Taylor’s formula (1.1.12) with respect to the second variable at x we
have for every N ∈ N

c(x, x′, ξ) =
∑
|θ|≤N

(−i)|θ|

θ!
Dθ
x′c(x, x

′, ξ)
∣∣∣
x′=x

(x− x′)θ + rN (x, x′, ξ)

where

rN (x, x′, ξ) = (N + 1)
∑

|θ|=N+1

(−i)N+1

θ!
rθ(x, x′, ξ)(x− x′)θ

with rθ(x, x′, ξ) =
∫ 1

0
(1− t)NDθ

x′c
(
x, x+ t(x′ − x), ξ

)
dt. It follows that

Op(c) = Op

 ∑
|θ|≤N

1
θ!
∂θξD

θ
x′c(x, x

′, ξ)
∣∣∣
x′=x

+ Op(rN ) (1.2.26)

where Op(rN ) = Op
(∑

|θ|=N+1
1
θ!∂

θ
ξ rθ(x, x

′, ξ)
)
. More precisely, setting

cθ(x, x′, ξ) :=
1
θ!
∂θξD

θ
x′c(x, x

′, ξ), (1.2.27)
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θ ∈ Nm, and

cN (x, x′, ξ) :=
∑

|θ|=N+1

N + 1
θ!

∫ 1

0

∂θξD
θ
x′c
(
x, x+ t(x′ − x), ξ

)
(1− t)Ndt, (1.2.28)

we have∫∫
ei(x−x

′)ξ (−i)|θ|

θ!
Dθ
x′c(x, x

′, ξ)
∣∣∣
x′=x

(x− x′)θu(x′)dx′d̄ξ

=
∫∫

ei(x−x
′)ξcθ(x, x, ξ)u(x′)dx′d̄ξ (1.2.29)

and∫∫
ei(x−x

′)ξrN (x, x′, ξ)u(x′)dx′d̄ξ =
∫∫

ei(x−x
′)ξcN (x, x′, ξ)u(x′)dx′d̄ξ (1.2.30)

for u ∈ S(Rm), N ≥ µ+m. This follows by integration by parts and using the relation
∂αξ e

i(x−x′)ξ = i|α|(x− x′)αei(x−x′)ξ, α ∈ Nm.

Theorem 1.2.21. We have bθ(x, ξ) := cθ(x, x, ξ) ∈ Sµ−|θ|;ν−|θ|(Rm ×Rm) for every
θ ∈ Nm. Moreover, if we define a symbol b(x, ξ) ∈ Sµ;ν(Rm × Rm) by the asymptotic
sum b(x, ξ) ∼

∑
θ∈Nm bθ(x, ξ), we have

Op(c) = Op(b) mod L−∞;−∞(Rm).

For the proof we establish a number of auxiliary results. First, for θ ∈ Nm and
0 ≤ t ≤ 1 we define the functions

cθ,t(x, x′, ξ) := ∂θξD
θ
x′c
(
x, x+ t(x′ − x), ξ

)
,

ft(x, x′, ξ) := ã1

(
χ(x), χ

(
x+ t(x′ − x)

)
, tD−1

(
x, x+ t(x′ − x)

)
ξ
)
,

gt(x, x′) :=
∣∣ det dχ

(
x+ t(x′ − x)

)∣∣,
ht(x, x′) :=

∣∣ detD−1
(
x, x+ t(x′ − x)

)∣∣.
By definition we have the relations

c = f1g1h1, cθ =
1
θ!
∂θξD

θ
x′(f1g1h1), cθ,t = ∂θξD

θ
x′(ftgtht).

Lemma 1.2.22. (i) We have for j ≥ 0

〈x+ t(x′ − x)〉−j ≤ C〈x〉−j〈x− x′〉j

for a constant C > 0 independent of t for 0 ≤ t ≤ 1.

(ii) For every α, α′, β ∈ Nm we have

|Dα
xD

α′

x′ gt(x, x
′)| ≤ C〈x〉−|α+α′|〈x− x′〉|α+α′|,

|Dα
xD

α′

x′ ht(x, x
′)| ≤ C〈x〉−|α+α′|〈x− x′〉|α+α′|,

|Dα
xD

α′

x′D
β
ξ ft(x, x

′, ξ)| ≤ C〈ξ〉µ−|β|〈x〉ν−|α+α′|〈x− x′〉|α+α′|,

where C > 0 is a constant independent of t for 0 ≤ t ≤ 1.
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Proof. (i) is a consequence of Peetre’s inequality (1.1.9). The estimates in (ii) follow
by using (i), the homogeneity of the transformation χ, and the Leibniz rule, together
with induction.

Corollary 1.2.23. For all multi-indices α, α′, β, θ ∈ Nm we have

(i) |Dα
xD

α′

x′D
β
ξ c(x, x

′, ξ)| ≤ C〈ξ〉µ−|β|〈x〉ν−|α+α′|〈x− x′〉|α+α′|;

(ii) |Dα
xD

α′

x′D
β
ξ cθ,t(x, x

′, ξ)| ≤ C〈ξ〉µ−|β+θ|〈x〉ν−|θ+α+α′|〈x− x′〉|θ+α+α′|;

(iii) cθ(x, x, ξ) ∈ Sµ−|θ|;ν−|θ|(Rm × Rm);

(iv) |Dα
xD

α′

x′D
β
ξ cN (x, x′, ξ)| ≤ C〈ξ〉µ−N−1−|β|〈x〉ν−N−1−|α+α′|〈x− x′〉N+1+|α+α′|,

for all (x, x′, ξ) ∈ R3m, with some C > 0 (depending on the multi-indices).

Remark 1.2.24. There is a constant C > 0 such that

|Dα
xD

α′

x′D
β
ξ c(x, x

′, ξ)| ≤ C〈ξ〉µ−|β|〈x〉ν

for all (x, x′, ξ) ∈ R3m.

In fact, by virtue of Corollary 1.2.23 (i) it is enough to observe that 〈x−x′〉 ≤ C〈x〉
on the set {(x, x′) ∈ R2m : c(x, x′, ξ) 6= 0}, for some C > 0.

Proof of Theorem 1.2.21. Let us set bN (x, ξ) =
∑
|θ|≤N cθ(x, x, ξ) and form

g(x, x′, ξ) := cN (x, x′, ξ)− (b− bN )(x, ξ).

Then Op(c)−Op(b) = Op(g).

By virtue of (1.2.26) and (1.2.30) we have Op(c) − Op(rN ) = Op(bN ), which
implies

Op(c)−Op(b) = Op(c− bN )−Op(b− bN ) = Op(rN )−Op(b− bN )
= Op(cN )−Op(b− bN ).

The function g(x, x′, ξ) satisfies the estimates

|Dα
xD

α′

x′D
β
ξ g(x, x

′, ξ)| ≤ C〈ξ〉µ−N−|β|〈x〉ν−N−|α+α′|〈x− x′〉N+|α+α′|. (1.2.31)

For cN (x, x′, ξ) this is contained in Corollary 1.2.23 (iv), while b(x, ξ) − bN (x, ξ) ∈
Sµ−N ;ν−N (Rm×Rm) also satisfies such estimates. To complete the proof of Theorem
1.2.21 it is enough to show that Op(g) ∈ L−∞;−∞(Rm), i.e., that this operator has
an integral kernel k(x, x′) ∈ S(Rm × Rm). The kernel has the form

k(x, x′) =
∫
ei(x−x

′)ξg(x, x′, ξ)d̄ξ.
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By virtue of the estimates (1.2.31) where N is arbitrary we have

Dα
xD

α′

x′ k(x, x
′) =

∫
Dα
xD

α′

x′ {ei(x−x
′)ξg(x, x′, ξ)}d̄ξ (1.2.32)

with admitted differentiation under the integral sign. Next observe that for arbitrary
natural M and α, α′ ∈ Nm we have

sup |〈x〉M 〈x− x′〉MDα
xD

α′

x′ k(x, x
′)| <∞, (1.2.33)

where sup is taken over all x, x′ ∈ Rm. In fact, inserting 〈x−x′〉−2L(1−∆ξ)Lei(x−x
′)ξ =

ei(x−x
′)ξ in (1.2.32) for arbitrary L, integrating by parts and using (1.2.31) gives us

immediately (1.2.33), for N large enough. The estimate (1.2.33) implies k(x, x′) ∈
S(Rm × Rm). In fact, it is enough to observe that

1 + |x|+ |x′| ≤ c〈x〉〈x− x′〉

for some c > 0.

Lemma 1.2.25. Let d(x, x′, ξ) :=
(
1−ω(x, x′)

)
a(x, ξ) for a(x, ξ) ∈ Sµ;ν

0 (Γ×Rm) and
ω(x, x′) supported near the diagonal as in Lemma 1.2.8. Then Op(d) ∈ L−∞;−∞(Γ).

Proof. We apply Taylor’s formula on d(x, x′, ξ) with respect to x′

d(x, x′, ξ) =
∑
|α|≤N

(−i)|α|

α!
Dα
x′d(x, x

′, ξ)
∣∣∣
x′=x

(x− x′)α + rN (x, x′, ξ) = rN (x, x′, ξ),

where

rN (x, x′, ξ) = (N + 1)
∑

|α|=N+1

(−i)N+1

α!
rα(x, x′, ξ)(x− x′)α

and

rα(x, x′, ξ) =
∫ 1

0

(1− t)NDα
x′d
(
x, x+ t(x′ − x), ξ

)
dt.

Now if we set

dN (x, x′, ξ) :=
∑

|α|=N+1

N + 1
α!

∂αξ rα(x, x′, ξ), N ∈ N,

we get that Op(d) = Op(dN ). This implies that Op(d) has a kernel of the form

k(x, x′) =
∫
ei(x−x

′)ξdN (x, x′, ξ)d̄ξ.

For dN we have the estimate

|Dα
xD

α′

x′D
β
ξ dN (x, x′, ξ)| ≤ C〈ξ〉µ−N−1−|β|〈x〉ν−N−1−|α+α′|〈x− x′〉N+1+|α+α′|,

which can be proved in a similar manner as (1.2.31). It is now easy to see, as in the
proof of Theorem 1.2.21, that k(x, x′) ∈ S(Rm × Rm).
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Proof of Theorem 1.2.19. The formula (1.2.22) together with Lemma 1.2.25 and re-
lation (1.2.21) reduces the assertion to the operator Ã1 = Op(ã1). We then have
A1 := ϕ∗Ã1 = Op(c), cf. the formula (1.2.24). The expression (1.2.25) for c(x, x′, ξ)
shows us that

c(x, x′, ξ) ∈ Sµ;ν,0
0 (Γ× Γ× Rm),

provided that ω(x̃, x̃′) is chosen in a suitable manner. Now Theorem 1.2.21 gives
us A1 = Op(b) mod L−∞;−∞(Rm) for b(x, ξ) ∼

∑
θ cθ(x, x, ξ). By virtue of formula

(1.2.27) the asymptotic sum can be carried out in Sµ;ν
0 (Γ×Rm). Thus Op(b) ∈ Lµ;ν

0 (Γ).
Moreover, (1.2.26) together with (1.2.28) and (1.2.30) gives us

Op(c) = Op(b) mod L−∞;−∞
0 (Γ),

where, as we saw, Op(b) ∈ Lµ;ν
0 (Γ), and hence, A1 ∈ Lµ;ν

0 (Γ).

Theorem 1.2.26. The operator push forward induces an isomorphism

ϕ∗ : Lµ;ν
0,cl(Γ̃)→ Lµ;ν

0,cl(Γ)

for every µ, ν ∈ R.

The proof will be given in Subsection 1.2.4 below, after some additional material on
classical symbols and operators.

1.2.4 Classical symbols and operators with exit property

In this section we deepen the material on classical symbols and operators in the
pseudo-differential calculus with exit property. First observe the following relations.

Example 1.2.27. Let us take functions pψ, pe, pψ,e of the form

pψ(x, ξ) := f(µ)(ξ) g(x),
pe(x, ξ) := f(ξ) g(ν)(x),

pψ,e(x, ξ) := f(µ)(ξ) g(ν)(x)

for arbitrary f(ξ) ∈ Sµcl(Rmξ ), g(x) ∈ Sνcl(Rmx ), where f(µ) and g(ν) are the respective
homogeneous principal parts of f and g. Then the relation (1.2.13) is satisfied, and
we can form the function p(x, ξ) by (1.2.14).

Remark 1.2.28. An a(x, ξ) ∈ Sµ;ν(Rm×Rm) belongs to Sµ;ν
clξ;x

(Rm×Rm) if and only
if there exist elements

pψ,j(x, ξ) ∈ S(µ−j)(Rmξ \ {0})⊗̂πS
ν−j
cl (Rmx ), (1.2.34)

pe,j(x, ξ) ∈ Sµ−jcl (Rmξ )⊗̂πS(ν−j)(Rmx \ {0}), (1.2.35)

pψ,e,j(x, ξ) ∈ S(µ−j)(Rmξ \ {0})⊗̂πS(ν−j)(Rmx \ {0}) (1.2.36)
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j ∈ N, such that if we form pj analogously as (1.2.14) in terms of (1.2.34), (1.2.35),
and (1.2.36), then we have

a(x, ξ)−
N∑
j=0

pj(x, ξ) ∈ Sµ−(N+1);ν−(N+1)(Rm × Rm).

for every N ∈ N. In this case we also have

pψ,0 = σψ(a), pe,0 = σe(a), pψ,e,0 = σψ,e(a),

and

pψ,j = σψ

(
a−

j−1∑
l=0

pl

)
, pe,j = σe

(
a−

j−1∑
l=0

pl

)
, pψ,e,j = σψ,e

(
a−

j−1∑
l=0

pl

)
.

Let S[µ]
ξ (Rm × Rm) be the space of all a(x, ξ) ∈ C∞(Rm × Rm) such that

a(x, λξ) = λµa(x, ξ) for all λ ≥ 1, x ∈ Rm, |ξ| ≥ c

for a c = c(a) > 0. In an analogous manner we define S[ν]
x (Rm×Rm) by interchanging

the role of x and ξ. Set

Sµ;[ν] := Sµ;ν ∩ S[ν]
x , S[µ];ν := Sµ;ν ∩ S[µ]

ξ .

Let Sµ;[ν]
clξ

(Rm × Rm) denote the subspace of all a(x, ξ) ∈ Sµ;[ν](Rm × Rm) such that

there are elements ak(x, ξ) ∈ S[µ−k]
ξ ∩ S[ν]

x , k ∈ N, satisfying

a(x, ξ)−
N∑
k=0

ak(x, ξ) ∈ Sµ−(N+1);ν(Rm × Rm)

for all N ∈ N. Moreover, define Sµ;ν
clξ

(Rm × Rm) to be the subspace of all a(x, ξ) ∈
Sµ;ν(Rm × Rm) such that there are elements ak(x, ξ) ∈ S[µ−k];ν(Rm × Rm), k ∈ N,
satisfying

a(x, ξ)−
N∑
k=0

ak(x, ξ) ∈ Sµ−(N+1);ν(Rm × Rm)

for all N ∈ N. By interchanging the role of x and ξ we obtain analogously the spaces
S

[µ];ν
clx

(Rm × Rm) and Sµ;ν
clx

(Rm × Rm).

The following theorem gives us an equivalent definition of the spaces Sµ;ν
clξ;x

(Rm ×
Rm), cf. (1.2.9), which we will use for proving Theorem 1.2.26. A proof of Theorem
1.2.29 can be found in [48].

Theorem 1.2.29. Sµ;ν
clξ;x

(Rm × Rm) is the space of all a(x, ξ) ∈ Sµ;ν(Rm × Rm) for
which there are sequences

ak(x, ξ) ∈ S[µ−k];ν
clx

, k ∈ N and bl(x, ξ) ∈ Sµ;[ν−l]
clξ

, l ∈ N (1.2.37)
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such that

a(x, ξ)−
N∑
k=0

ak(x, ξ) ∈ Sµ−(N+1);ν
clx

, a(x, ξ)−
N∑
l=0

bl(x, ξ) ∈ Sµ;ν−(N+1)
clξ

(1.2.38)

for all N ∈ N.

Proof of Theorem 1.2.26. After the proof of Theorem 1.2.19 in the preceding section
it is enough to verify that the symbol b(x, ξ) is classical which follows when we show
that the summands bθ(x, ξ) in the asymptotic expansion of b(x, ξ) are classical. Let
us mainly consider c(x, x, ξ); the arguments for cθ(x, x, ξ), θ 6= 0, are similar.
Since the function ã(x̃, ξ̃) is classical in ξ̃ and x̃ we can find homogeneous components

ãk(x̃, ξ̃) ∈ S[µ−k];ν
clx̃

(Rm × Rm), b̃l(x̃, ξ̃) ∈ Sµ;[ν−l]
clξ̃

(Rm × Rm), (1.2.39)

k, j ∈ N such that

ã(x̃, ξ̃)−
N∑
k=0

ãk(x̃, ξ̃) ∈ Sµ−(N+1);ν
clx̃

(Rm × Rm)

ã(x̃, ξ̃)−
M∑
l=0

b̃l(x̃, ξ̃) ∈ Sµ;ν−(M+1)
clξ̃

(Rm × Rm)

for every N,M ∈ N. Apart from the factor ω(x̃, x̃′), which drops out when we restrict
ourselves to the diagonal, we can substitute the variables (x̃, ξ̃) as

x̃ = χ(x), ξ̃ = tdχ−1(x)ξ,

in the homogeneous components (1.2.39) (using that tD−1(x, x) = tdχ−1(x), see
Lemma 1.2.20), and obtain a resulting homogeneous components in x and ξ of
c(x, x, ξ) = ã

(
χ(x),tdχ−1(x)ξ

)
.

For every ãk of the first sequence in (1.2.39) there is a sequence

ãjk ∈ S
[µ−k]
ξ̃

∩ S[ν−j]
x̃ , j ∈ N,

such that

ãk(x̃, ξ̃)−
L∑
j=0

ãjk(x̃, ξ̃) ∈ S
µ−k;ν−(L+1)(Rm × Rm), L ∈ N.

Setting ajk(x, ξ) := ãjk
(
χ(x),tdχ−1(x)ξ

)
, and because of the homogeneity properties

of χ, it is easy to see that

ajk(x, ξ) ∈ S
[µ−k]
ξ ∩ S[ν−j]

x ,

for every k, j ∈ N, and that

ak(x, ξ)−
L∑
j=0

ajk(x, ξ) ∈ S
µ−k;ν−(L+1)(Rm × Rm), L ∈ N,
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where ak(x, ξ) := ãk
(
χ(x),tdχ−1(x)ξ

)
. This means that ak(x, ξ) ∈ S

[µ−k];ν
clx

(Rm ×
Rm), k ∈ N, from which it follows that

c(x, x, ξ)−
N∑
k=0

ak(x, ξ) ∈ Sµ−(N+1);ν
clx

(Rm × Rm),

for every N ∈ N. For the second sequence of (1.2.39) we can argue in a similar way.
This completes the proof.

Remark 1.2.30. The invariance under ϕ∗ : Ã → A of the principal symbols is as
follows:

σψ(Ã)(x̃, ξ̃) = σψ(A)(x, ξ), (x̃, ξ̃) ∈ Rm × (Rm \ {0});

σe(Ã)(x̃, ξ̃) = σe(A)(x, ξ), (x̃, ξ̃) ∈ (Rm \ {0})× Rm;

σψ,e(Ã)(x̃, ξ̃) = σψ,e(A)(x, ξ), (x̃, ξ̃) ∈ (Rm \ {0})× (Rm \ {0}).

1.2.5 Exit calculus on manifolds

In this subsection we recall some elements of the exit calculus on a manifold M with
conical exits to infinity.
On the manifold M we fix the partition of unity {ϕ0, ϕ1, . . . , ϕN}, N ∈ N, in
such a way that ϕ0 ∈ C∞0 (intM0) and ϕj ∈ C∞0 (Vj), where Vj is of the form
Vj = e−1

(
(R+,∞) × Uj

) ∼= Γj , j = 1, . . . , N , for some conical sets Γj ⊆ Rm and
{U1, . . . , UN} forms an open covering of X by coordinate neighbourhoods (cf. the no-
tations at the beginning of Subsection 1.2.1). Furthermore, we choose another system
{ψ0, ψ1, . . . , ψN} of functions ψ0 ∈ C∞0 (intM0) and ψj ∈ C∞(Vj) that are for j ≥ 1
pull backs of elements in C∞(Γj) that vanish near ∂Γj and are homogeneous of order
zero for large |x|, such that ϕjψj = ϕj for all j = 0, . . . , N .

Definition 1.2.31. Lµ;ν
(cl)(M) for µ, ν ∈ R is defined to be the space of all operators

A =
∑N
j=0 ϕjAjψj+C for arbitrary A0 ∈ Lµ(cl)(intM0), Aj ∈ Lµ;ν

0,(cl)(Vj), j = 1, . . . , N ,
C ∈ L−∞;−∞(M).

Let us now define complete symbols for Lµ;ν(M) and principal symbols for
Lµ;ν

cl (M). The manifold M is written as a union
⋃N
j=0 Vj . We choose coordinate

neighbourhoods {O1, . . . , OL} on V0 = intM0 such that V 0 ⊂
⋃L
l=0Oj and charts

κl : Ol → Ωl for open sets Ωl ⊆ Rp, l = 1, . . . , L, (p is the dimension of the manifold
M0), and χj : Vj → Γj , j = 1, . . . , N . Then {O1, . . . , OL, V1, . . . , VN} is an open
covering of M with the charts {κl}l=1,...,L, and {χj}j=1,...,N . Consider the system
of operators (κl)∗A|Ol

∈ Lµ(Ωl), (χj)∗A|Vj
∈ Lµ;ν(Γj) for all l and j. Using the

isomorphisms

Lµ(Ωl)/L−∞(Ωl) ∼= Sµ(Ωl × Rp)/S−∞(Ωl × Rp),
Lµ;ν(Γj)/L−∞;−∞(Γj) ∼= Sµ;ν(Γj × Rm)/S−∞;−∞(Γj × Rm)
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we find corresponding local symbols σΩl
(A) and σΓj (A) that are unique modulo sym-

bols of order −∞ and (−∞;−∞), respectively. We set

σ(A) = {σΩ1(A), . . . , σΩL
(A), σΓ1(A), . . . , σΓN

(A)} (1.2.40)

and call σ(A) a complete symbol of A. Furthermore, for A ∈ Lµ;ν
cl (M) the compo-

nents of (1.2.40) are classical, and we obtain the system of homogeneous principal
components

σψ(A) = {σψ,Ω1(A), . . . , σψ,ΩL
(A), σψ,Γ1(A), . . . , σψ,ΓN

(A)}

that represents an invariantly defined function σψ(A) ∈ C∞(T ∗M \ 0), homogeneous
of order µ. In addition, we have the principal exit symbols

σe(A) = {σe,Γj
(A)}j=1,...,N , σψ,e(A) = {σψ,e,Γj

(A)}j=1,...,N

which are defined on Sµ;ν
clξ;x

(Γj×Rm) in an analogous manner as for Rm. In the classical
case we set

σ(A) = {σψ(A), σe(A), σψ,e(A)}.

Theorem 1.2.32. A ∈ Lµ;ν(M), B ∈ Lµ̃;ν̃(M) implies AB ∈ Lµ+µ̃;ν+ν̃(M) and
we have σ(AB) = σ(A)#σ(B), where # means the Leibniz product of the local
representatives in corresponding local coordinates. In the classical case we obtain
σ(AB) = σ(A)σ(B) with component-wise multiplication.

Definition 1.2.33. An operator A ∈ Lµ;ν(M) is called elliptic (of order (µ; ν)) if
σ(A) is elliptic in the sense that there is a tuple of symbols

p = {pΩ1 , . . . , pΩL
, pΓ1 , . . . , pΓN

},

pΩl
∈ S−µ(Ωl × Rp), pΓj

∈ S−µ;−ν(Γj × Rm), such that the components of σ(A)#p
are equal to 1 modulo symbols of order −∞ and (−∞;−∞), respectively.

Theorem 1.2.34. For an operator A ∈ Lµ;ν(M) the following conditions are equiv-
alent:

(i) A is elliptic (of order (µ, ν));

(ii)
A : Hs;g(M)→ Hs−µ;g−ν(M) (1.2.41)

is a Fredholm operator for any choice of s = s0, g = g0 ∈ R.

If A is elliptic there is a parametrix P ∈ L−µ;−ν(M) in the sense that 1−PA, 1−
AP ∈ L−∞;−∞(M) holds, and (1.2.41) is a Fredholm operator for all s, g ∈ R.

Remark 1.2.35. Let A ∈ Lµ;ν be elliptic. Then Au = f ∈ Hs;g(M), u ∈
H−∞;−∞(M) implies u ∈ Hs+µ;g+ν(M) for all s, g ∈ R.
Moreover, kerA is a finite-dimensional subspace V of S(M), and there is another
finite-dimensional subspace W ⊂ S(M) such that imA ∩W = {0} and imA +W =
Hs;g(M) when A considered as an operator on Hs−µ;g−ν(M). Thus kerA, cokerA and
indA are independent of the Sobolev smoothness and of weights at infinity.



Chapter 2

Operators on infinite
cylinders

2.1 The behaviour of push forwards from cylinders
to cones

2.1.1 Characterisation of push forwards

Let X be a closed compact manifold, say of dimension n, and U ⊂ X a coordinate
neighbourhood such that there is a diffeomorphism χ1 : U → B to the open unit ball
B in Rn. Let [·] : R→ R+ be a positive function such that [r] = |r| for |r| ≥const> 0
and set

Γ := {(r, x̃) ∈ R+ × Rn : r ∈ R+, x̃ = [r]x, x ∈ B}, (2.1.1)

and consider the diffeomorphism

β : R+ × U → Γ, β
(
r, χ−1

1 (x)
)

= (r, [r]x). (2.1.2)

Set
S(X∧) :=

{
u ∈ C∞(X∧) :

(
1− ω(r)

)
u ∈ S

(
R, C∞(X)

)}
for some cut-off function ω. This is a Fréchet space in a natural way. Moreover, define
S(X∧ ×X∧) := S(X∧)⊗̂πS(X∧).

As a moderate generalisation of the definitions in the preceding section we define
a class of pseudo-differential operators on X∧, now with the parameter η ∈ Rq, which
will play later on the role of the edge-covariable. It can be easily verified that, for
q = 0, the following definition is compatible with Definition 1.2.31.

Definition 2.1.1. The space Lµ;ν(X∧; Rq) is defined to be the set of all A(η) ∈
Lµ(X∧; Rq) with the following properties:

35
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(i) For every ϕ,ψ ∈ C∞(X) with suppϕ ∩ suppψ = ∅ we have

ϕA(η)ψ ∈ L−∞;−∞(X∧,Rq) := S
(
Rq, L−∞;−∞(X∧)

)
;

(ii) for every ϕ,ψ ∈ C∞(X) supported in the same coordinate neighbourhood of X
the push forward of (1−ω)ϕA(η)ψ(1−ω′) under β for arbitrary cut-off functions
ω(r), ω′(r) is equal to Op(a)(η) for some a(r, x̃, ρ, ξ̃, η) ∈ Sµ;ν(R1+n × R1+n ×
Rq), cf. Definition 1.2.4 (i) (the parameter η is considered as a covariable).

To motivate Definition 2.1.1 consider a differential operator on X∧ ×Ω 3 (r, x, y)
of the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rDy)α

with coefficients ajα ∈ C∞
(
R+ × Ω,Diffµ−(j+|α|)(X)

)
, X closed compact manifold,

Ω ⊆ Rq open. Such an operator is called edge-degenerate. Here Diffν(X) denotes the
space of all differential operators of order ν ∈ R on X with smooth coefficients.
We are interested in the behaviour of the so-called homogeneous principal edge symbol

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)(−r∂r)j(rη)α (2.1.3)

which is a family of differential operators on X∧. The dependence on y ∈ Ω will be
ignored in this section. For every fixed η ∈ Rq the operator σ∧(A)(η) is of Fuchs type
close to r = 0. To employ (2.1.3) as an edge symbol we need σ∧(A)(η) for η 6= 0
on the infinite stretched cone X∧, including r → ∞. The structures for r → 0 and
r → ∞ cannot be reduced to each other by the transformation r → r−1. Therefore,
the properties for r → ∞ are discussed separately, and we just encounter an aspect
of operators on a manifold with conical exits to infinity. Let us identify a coordinate
neighbourhood on X with the open unit ball B ⊂ Rnx ; then we obtain

σ∧(A)(η) = r−µ
∑

j+|γ|+|α|≤µ

bjγα(x)Dγ
x(−r∂r)j(rη)α, (2.1.4)

bjγα ∈ C∞(B). Transforming R+ ×B 3 (r, x) to the conical set Γ := {(r, x̃) ∈ R1+n :
x̃/r = x ∈ B}, x̃ := (x̃1, . . . , x̃n), the operator (2.1.4) in the coordinates (r, x̃) ∈ Γ
takes the form

σ∧(A)(η) = r−µ
∑

j+|γ|+|α|≤µ

rj+|γ|+|α|b̃jγα(x̃)Dj
rD

γ
x̃η

α (2.1.5)

for certain b̃jγα ∈ C∞(Γ) only depending on x̃/r. For the parameter-dependent homo-
geneous principal symbol of (2.1.4) with the covariables (ρ, ξ) and parameter η ∈ Rq
we have

σψ (σ∧(A)) (r, x, ρ, ξ, η) = r−µ
∑

j+|γ|+|α|=µ

bjγα(x)(−irρ)jξγ(rη)α
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and for (2.1.5)

σψ (σ∧(A)) (x̃, ρ, ξ̃, η) =
∑

j+|γ|+|α|=µ

b̃jγα(x̃)ρj ξ̃γηα

where b̃jγα(x̃) = bjγα(x) for x̃/r = x.

Remark 2.1.2. (i) For every fixed η 6= 0 the operator (2.1.5) belongs to Lµ;0(Γ);

(ii) the ellipticity of (2.1.4) in the sense

σ̃ψ(σ∧(A))(r, x, ρ̃, ξ, η̃) :=
∑

j+|γ|+|α|=µ

bjγα(x)(−iρ̃)jξγ η̃α 6= 0

for all (ρ̃, ξ, η̃) ∈ R1+n+q \ {0} entails the exit ellipticity of (2.1.5), for every
fixed η 6= 0, i.e.,

σψ(σ∧(A))(x̃, ρ, ξ̃) =
∑

j+|γ|=µ

b̃jγ0(x̃)ρj ξ̃γ 6= 0 for all (ρ, ξ̃) ∈ R1+n \ {0}

σe(σ∧(A))(x̃, ρ, ξ̃) =
∑

j+|γ|+|α|=µ

b̃jγα(x̃)ρj ξ̃γηα 6= 0 for all (ρ, ξ̃) ∈ R1+n,

σψ,e(σ∧(A))(x̃, ρ, ξ̃) = σψσ∧(A)(x̃, ρ, ξ̃) 6= 0 for all (ρ, ξ̃) ∈ R1+n \ {0},

for all (r, x̃) ∈ Γ.

To study operators on X∧ for r → ∞ it is convenient to ignore specific effects
for r → 0 and to consider operators on X� = R × X (now with two conical exits
r → ±∞). After that we can localise the results again to r > R for some R > 0 by a
multiplication by 1− σ(r) for a cut-off function σ(r).

In our case for σ∧(A)(η) there is an element

p̃(r, ρ̃, η̃) ∈ C∞
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)

(2.1.6)

such that, when we set
p(r, ρ, η) := p̃(r, [r]ρ, [r]η), (2.1.7)

we have (
1− σ(r)

)
σ∧(A)(η) = r−µOpr(p)(η). (2.1.8)

In fact, rµσ∧(A)(η) is of the form Opr
(
p̃1(rρ, rη)

)
for some p̃1(ρ̃, η̃) ∈ Lµcl(X; R1+q

ρ̃,η̃ ),
and we obtain (2.1.8) when we first fix the function r → [r] such that [r] = |r| for
|r| ≥ R and then choose σ(r) in such a way that 1−σ(r) vanishes for r ≤ R (including
the negative r half-axis). Then it suffices to set

p̃(r, ρ̃, η̃) =
(
1− σ(r)

)
p̃1(ρ̃, η̃).

Let Lµ(cl)
(
X; R × (Rq \ {0})

)
denote the set of (classical) parameter-dependent

families of operators in Lµ(cl)(X) with parameters (ρ, η) ∈ R×(Rq\{0}). The definition
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is analogous to the case of parameters in R× Rq, but for completeness we formulate
it in detail. If (U1, . . . , UN ) is an open covering of X by coordinate neighbourhoods,
(ϕ1, . . . , ϕN ) a subordinate partition of unity, (ψ1, . . . , ψN ) a system of functions
ψj ∈ C∞0 (Uj) such that ψj ≡ 1 on suppϕj , j = 1, . . . , N , and χj : Uj → Σ charts,
Σ ⊆ Rn open, then every A(ρ, η) ∈ Lµ(cl)

(
X; R× (Rq \ {0})

)
has the form

A(ρ, η) =
N∑
j=1

ϕj
{
(χ−1
j )∗Opx(aj)(ρ, η)

}
ψj + C(ρ, η). (2.1.9)

Here aj(x, x′, ρ, ξ, η) is an element of Sµ
(
Σ × Σ × R1+n

ρ,ξ × (Rqη \ {0})
)
. The space

Sµ
(
U × R1+n × (Rq \ {0})

)
, U ⊆ Rd open, consists of all

p(x, ρ, ξ, η) ∈ C∞
(
U × Rn+1 × (Rq \ {0})

)
such that

sup〈ρ, ξ, η〉−µ+|β||Dα
xD

β
ρ,ξ,ηp(x, ρ, ξ, η)| (2.1.10)

is finite for every α ∈ Nd, β ∈ N1+n+q, where sup is taken over all x ∈ K, (ρ, ξ, η) ∈
R1+q × (Rq \ {0}), |η| ≥ h, for every compact K ⊂ U ⊂ Rd and h > 0. The subspace
Sµcl
(
U×R1+n×(Rq\{0}

)
is defined similarly as in the case of covariables (ρ, η) ∈ R1+q.

The operator C(ρ, η) in (2.1.9) is smoothing in the sense C(ρ, η) ∈ S
(
R × (Rq \

{0}), L−∞(X)
)
; here S

(
R×(Rq\{0})

)
is the Schwartz space over R×(Rq\{0}), defined

to be the set of all f(ρ, η) ∈ C∞
(
R× (Rq \ {0})

)
such that χ(η)f(ρ, η) ∈ S(R1+q) for

every excision function χ(η) in Rq.
The spaces Lµ(cl)

(
X; R× (Rq \ {0})

)
are Fréchet in a natural way.

The idea of the following considerations is to construct operators in the exit cal-
culus on X� in terms of operator functions Opr(a)(η) with symbols

a(r, ρ, η) = ã(r, [r]ρ, [r]η),

ã(r, ρ̃, η̃) ∈ C∞
(
R, Lµ(cl)

(
X; Rρ̃ × (Rqη̃ \ {0})

))
, with a suitable dependence on r at

infinity. Let us study the behaviour of our operator families under push forward from
coordinates (r, x) ∈ R+ × Rn to (r, x̃) ∈ R+ × Rn via

χ : (r, x)→ (r, x̃), x̃ := [r]x. (2.1.11)

To this end we follow the lines of Schrohe and Schulze [34]. We choose the function
r → [r] in such a way that [r] = r for r ≥ 1. The main aspect concerns r → ∞. In
order to avoid a cutting out factor for a neighbourhood of r = 0 for simplicity we take
symbols that are smooth up to r = 0 and employ (2.1.11) as a diffeomorphism

χ : R+ × Rn → R+ × Rn.

The Jacobi matrix of its inverse χ−1(r, x̃) = (r, x̃/[r]) has the form

J(r, x̃) =
(

1 0
−(∂r[r])x̃/[r]2 [r]−1I

)
(2.1.12)
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with I being the (n× n) identity matrix. Let us define

F (r, x̃, r′, x̃′) =
∫ 1

0

J
(
r + ϑ(r′ − r), x̃+ ϑ(x̃′ − x̃)

)
dϑ, (r′, x̃′) ∈ R+ × Rn

which is an invertible (n+ 1)× (n+ 1)-matrix. For r, r′ ≥ 1 from (2.1.12) we obtain

F (r, x̃, r′, x̃′) =
(

1 0
−N(r, x̃, r′, x̃′) M(r, r′)I

)
for

M(r, r′) :=

{
log r−log r′

r−r′ , r 6= r′

1
r , r = r′

, N(r, x̃, r′, x̃′) =
∫ 1

0

x̃+ ϑ(x̃′ − x̃)(
r + ϑ(r′ − r)

)2 dϑ.
Let us show that

N(r, x̃, r′, x̃′) =

{
1

r′−r

(
r′x̃−rx̃′
rr′ − x̃−x̃′

r−r′ (log r − log r′)
)
, r 6= r′

x̃+x̃′

2r2 , r = r′
(2.1.13)

In fact, for the case r 6= r′, we can write x̃+ϑ(x̃′−x̃)
(r+ϑ(r′−r))2 = a

(r+ϑ(r′−r))2 + b
r+ϑ(r′−r) with

coefficients a, b, determined by a+ b
(
r+ ϑ(r′− r)

)
= x̃+ ϑ(x̃′− x̃) which holds when

a+ br = x̃, b(r′ − r) = x̃′ − x̃, i.e., a = r′x̃−rx̃′
r′−r , b = x̃′−x̃

r′−r . Thus we obtain

∫ 1

0

x̃+ ϑ(x̃′ − x̃)(
r + ϑ(r′ − r)

)2 dϑ = a

∫ 1

0

dϑ(
r + ϑ(r′ − r)

)2 + b

∫ 1

0

dϑ

r + ϑ(r′ − r)

= a

[
− 1

(r′ − r)
(
r + ϑ(r′ − r)

)]1

0

+ b

[
1

r′ − r
log
(
r + ϑ(r′ − r)

)]1
0

= a
1
r′r

+ b
log r′ − log r

r′ − r
.

Otherwise, for r = r′, we simply obtain N by the integral r−2
∫ 1

0

(
x̃ + ϑ(x̃′ − x̃)

)
dϑ

which yields altogether (2.1.13).
Observe that detF depends only on (r, r′). For r, r′ ≥ 1 it follows that

tF−1 =
(

1 RN
0 RI

)
(2.1.14)

for R(r, r′) := M−1(r, r′); this gives us det tF−1 = Rn(r, r′).

Lemma 2.1.3. Let p̃ ∈ C∞b
(
R+ × R+, S

µ
(
Rnx × Rnx′ × Rρ̃ × Rnξ × (Rqη̃ \ {0})

))
, and

set
p(r, r′, x, x′, ρ, ξ, η) := p̃(r, r′, x, x′, rρ, ξ, rη)

for any fixed η ∈ Rq \ {0}. Then we have

χ∗
(
Opr,x(p)

)
= Opr,x̃(q)
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for q(r, r′, x̃, x̃′, ρ, ξ, η) = p̃

(
r, r′,

x̃

[r]
,
x̃′

[r′]
, tF−1

(
rρ
ξ

)
, rη

)
|det tF−1(r, r′)|[r′]−n.

For r, r′ ≥ 1 we obtain the simpler expression

p̃

(
r, r′,

x̃

r
,
x̃′

r′
, rρ+RNξ,Rξ, rη

)
|Rn(r, r′)||r′|−n.

Proof. First recall that if V is a Fréchet space with the countable semi-norm system
(πι)ι∈N then

C∞b (R+ × R+, V ) :=
{
f(r, r′) ∈ C∞(R+ × R+, V ) :

sup
r,r′∈R+×R+

πι
(
∂kr ∂

k′

r′ f(r, r′)
)
<∞ for every ι, k, k′ ∈ N

}
.

For u(r, x̃) ∈ C∞0 (R+ × Rn), (χ∗u)(r, x) = u(r, [r]x) we have

χ∗
(
Opr,x(p)

)
u(r, x̃) = Op(p)(χ∗u)

(
χ−1(r, x̃)

)
(2.1.15)

=
∫∫∫∫

ei(r−r
′)+i( x̃

[r]−x
′)ξp̃(r, r′,

x̃

[r]
, x′, rρ, ξ, rη)u(r′, [r′]x′)dr′dx′d̄ρd̄ξ

=
∫∫∫∫

e
i(r−r′)ρ+i( x̃

[r]−
x̃′
[r′] )ξp̃(r, r′,

x̃

[r]
,
x̃′

[r′]
, rρ, ξ, rη)u(r′, x̃′)[r′]−ndr′dx̃′d̄ρd̄ξ;

here we have substituted x′ =
x̃′

[r′]
. We now observe that

(r − r′)ρ+
(
x̃

[r]
− x̃′

[r′]

)
ξ =

(
χ−1(r, x̃)− χ−1(r′, x̃′)

)(ρ
ξ

)
=
(
(r, x̃)− (r′, x̃′)

)
tF (r, x̃, r′, x̃′)

(
ρ

ξ

)
.

For the right hand side of (2.1.15) we thus obtain∫∫∫∫
ei(r−r

′)ρ+i(x̃−x̃′)ξp̃

(
r, r′,

x̃

[r]
,
x̃′

[r′]
,tF−1

(
rρ

ξ

)
, rη

)
u(r′, x̃′)[r′]−n|det tF−1|dr′dx̃d̄ρd̄ξ.

The assertion then follows from (2.1.14).

Proposition 2.1.4. Let p(r, r′, x, x′, ρ, ξ, η) be as in Lemma 2.1.3 and fix again η ∈
Rq \ {0}. Then if ϕ(x), ϕ′(x) ∈ C∞0 (Rnx) have disjoint supports and ω(r), ω̃(r) are
cut-off functions (equal to 1 for r ≤ 1), the push forward

χ∗
((

1− ω(r)
)
ϕ(x)Opr,x(p)ϕ

′(x)
(
1− ω′(r)

))
is an integral operator with kernel in S

(
R× R, C∞(Rn × Rn)

)
.
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Proof. Let us set w(r, r′, x, x′) :=
(
1 − ω(r)

)
ϕ(x)ϕ′(x′)

(
1 − ω′(r′)

)
. For u(r, x) ∈

C∞0 (R1+n) and L ∈ N with µ− L < −n− 1 we have

Cu(r, x) := (1− ω)ϕOp(p)ϕ′(1− ω′)u(r, x)

=
∫∫∫∫

ei(r−r
′)ρ+i(x−x′)ξw(r, r′, x, x′)p̃(r, r′, x, x′, rρ, ξ, rη)u(r′, x′)dr′dx′d̄ρd̄ξ

=
∫∫∫∫

ei(r−r
′)ρ+i(x−x′)ξ|x− x′|−2Lw(r, x, r′, x′)∆L

ξ p̃(r, r
′, x, x′, rρ, ξ, rη)

u(r′, x′)dr′dx′d̄ρd̄ξ.

The integral exists, and we obtain Cu(r, x) =
∫∫

K(r, r′, x, x′)u(r′, x′)dr′dx′ for

K(r, r′, x, x′) = r−1

∫∫
ei(

r−r′
r )ρ+i(x−x′)ξwL(r, r′, x, x′)(∆L

ξ p̃)(r, r
′, x, x′, ρ, ξ, rη)d̄ρd̄ξ,

wL(r, r′, x, x′) := |x− x′|−2Lw(r, x, r′, x′). Using the identity

b−2N (r, r′, x, x′)∆N
ρ,ξe

i
(

r−r′
r

)
ρ+i(x−x′)ξ = e

i
(

r−r′
r

)
ρ+i(x−x′)ξ

, N ∈ N (2.1.16)

for b(r, r′, x, x′) :=
(∣∣∣ r−r′r ∣∣∣2 + |x− x′|2

)1/2

, and applying once again integration by

parts it follows that

Cu(r, x) = r−1

∫∫∫∫
ei(

r−r′
r )ρ+i(x−x′)ξwL(r, r′, x, x′)

b−2N (r, r′, x, x′)∆N
ρ,ξ∆

L
ξ p̃(r, r

′, x, x′, ρ, ξ, rη)u(r′, x′)dr′dxd̄ρd̄ξ.

Thus C is an integral operator with kernel

K(r, r′, x, x′) = r−1

∫∫
ei(

r−r′
r )ρ+i(x−x′)ξb−2N (r, r′, x, x′)

wL(r, r′, x, x′)∆N
ρ,ξ∆

L
ξ p̃(r, r

′, x, x′, ρ, ξ, rη)d̄ρd̄ξ.

From the symbolic estimates |∆N
ρ,ξ∆

L
ξ p̃(r, r

′, x, x′, ρ, ξ, rη)| ≤ c〈ρ, ξ, rη〉µ−2N−2L (that
are only relevant for r ≥ 1, r′ ≥ 1 and for (x, x′) ∈ suppϕ× suppϕ′) we obtain

|K(r, r′, x, x′)| ≤ cr−1|wL(r, r′, x, x′)|b−2N (r, r′, x, x′)
∫∫
〈ρ, ξ, rη〉µ−2N−2Ld̄ρd̄ξ.

For η ∈ Rq \ {0} fixed we employ the estimate

〈ρ, ξ, rη〉µ−2N−2L = 〈ρ, ξ, rη〉µ−L〈ρ, ξ, rη〉−L−2N ≤ c〈ρ, ξ〉µ−L〈rη〉−L−2N (2.1.17)

r ≥ 1, for some c > 0. For b−2N we have b−2N (r, r′, x, x′)〈rη〉−2N ≤ c|r − r′|−2N

which gives us for the kernel the estimate |K(r, r′, x, x′)| ≤ cr−1|r − r′|−2N 〈rη〉−L.
Choosing N so large that L = 2N it follows that

|K(r, r′, x, x′)| ≤ c〈r〉−N 〈r′〉−N

for r ≥ 1. The strong decrease in x, x′ is clear anyway, since ϕ and ϕ′ are of compact
support. For the derivatives of the kernel we can argue in an analogous manner. The
push forward of K under χ gives us [r]−nK(r, r′, x̃/[r], x̃′/[r′]) ∈ S

(
R× R, C∞(Rn ×

Rn)
)
.
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Proposition 2.1.5. Let p, p̃, ω, ω′ be defined as in Lemma 2.1.3 and let ϕ,ϕ′ ∈
C∞0 (Rn). Moreover, let ψ(r, r′) ∈ C∞b (R× R), where ψ(r, r′) = 0 for |r − r′| ≤ ε and
ψ(r, r′) = 1 for |r − r′| ≥ 2ε for some ε > 0. Then χ∗

(
(1− ω)ϕOpr,x(p)ψϕ′(1− ω′)

)
is an integral operator with kernel in S

(
R× R, C∞(Rn × Rn)

)
.

Proof. Let u(r, x) ∈ C∞0 (R1+n) and define w(r, r′, x, x′) as in the preceding proof.
Then we have

Cu(r, x) := (1− ω)ϕ(Op(p))ψϕ′(1− ω′)u(r, x)

=
∫∫∫∫

ei(r−r
′)ρ+i(x−x′)ξw(r, r′, x, x′)ψ(r, r′)

p̃(r, r′, x, x′, rρ, ξ, rη)u(r′, x′)dr′dx′d̄ρd̄ξ.

Substituting rρ = ρ′ and then going back to ρ it follows that

Cu(r, x) = r−1

∫∫∫∫
ei(

r−r′
r )ρ+i(x−x′)ξw(r, r′, x, x′)ψ(r, r′)

p̃(r, r′, x, x′, ρ, ξ, rη)u(r′, x′)dr′dx′d̄ρ, d̄ξ. (2.1.18)

Using the identity (2.1.16) for N large enough and integrating by parts we obtain

Cu(r, x) = r−1

∫∫∫∫
ei(

r−r′
r )ρ+i(x−x′)ξb−2N (r, r′, x, x′)w(r, r′, x, x′)ψ(r, r′)

∆N
ρ,ξp̃(r, r

′, x, x′, ρ, ξ, rη)u(r′, x′)dr′dx′d̄ρd̄ξ.

Thus C is an operator with kernel

K(r, r′, x, x′) = r−1

∫∫
ei(

r−r′
r )ρ+(x−x′)ξb−2N (r, r′, x, x′)

w(r, r′, x, x′)ψ(r, r′)∆N
ρ,ξp̃(r, r

′, x, x′, ρ, ξ, rη)d̄ρd̄ξ.

Due to the symbolic estimates |∆N
ρ,ξp̃(r, r

′, x, x′, ρ, ξ, rη)| ≤ c〈ρ, ξ, rη〉µ−2N the integral
with respect to ρ, ξ exists. Let us choose any fixed L ∈ N such that µ− 2L < −n− 1
and write µ − 2N = µ − 2L − 2M for N = M + L. Similarly as (2.1.17) we have an
estimate 〈ρ, ξ, rη〉µ−2N ≤ c〈ρ, ξ〉µ−2L〈rη〉−2M for all r ≥ 1, η ∈ Rq \ {0} fixed. This
gives us an estimate for the kernel K of the form

|K(r, r′, x, x′)| ≤ cr−1|b−2L(r, r′, x, x′)w(r, r′, x, x′)||b−2M (r, r′, x, x′)ψ(r, r′)|〈rη〉−2M

(2.1.19)
There is a constant c > 0 such that

|b−2M (r, r′, x, x′)ψ(r, r′)|〈rη〉−2M ≤ c〈r〉−M 〈r′〉−M .

Taking into account that |b−2L(r, r′, x, x′)w(r, r′, x, x′)| is at most of polynomial
growth in r, r′ for large r, r′ and that M independently of L can be chosen as large
as we want, we see that K(r, r′, x, x′) is strongly decreasing for r → ∞, r′ → ∞.
Moreover, the support with respect to x, x′ is bounded because of the involved fac-
tors ϕ(x), ϕ′(x′). Similar considerations are valid for the derivatives of K of any order.
ThusK belongs to S(R×Rn×R×Rn), and the push-forward under χ is as desired.
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2.1.2 Estimates near the diagonal

We will here restrict the variables to the set

W :=
{

(r, r′, x̃, x̃′, ρ, ξ) : r, r′ ≥ 1,
∣∣∣ r
r′
− 1
∣∣∣ < 1

2
,

∣∣∣∣ x̃r
∣∣∣∣ ≤ C, ∣∣∣∣ x̃′r′

∣∣∣∣ ≤ C}
for some C > 0. Observe that on W we have

[r] ∼ [r′] ∼ [r, x̃] ∼ [r′, x̃′]

(for instance, [r] ∼ [r′] means the existence of constants c1, c2 > 0 such that c1[r′] ≤
[r] ≤ c2[r′] for all r, r′).

Lemma 2.1.6. For R(r, r′) = M−1(r, r′) and S(r, r′, x̃, x̃′) := R(r, r′)N(r, r′, x̃, x̃′)
(cf. the notation in (2.1.14))we have on the set W

(i) |Dk
rD

l
r′R(r, r′)| ≤ c(r1−k−l) for some c > 0, and R(r, r′) ≥ c0r for some c0 > 0;

(ii) |Dk
rD

l
r′D

α
x̃D

β
x̃′S(r, r′, x̃, x̃′)| ≤ c(r−|α|−|β|−k−l) for some c > 0.

The left hand side vanishes for |α|+ |β| > 1.

On W the function S satisfies the S0;0,0-estimates and R the S0;1,0-estimates (cf. the
notation in Definition 1.2.4).

Proof. (i) We consider the case r 6= r′, since otherwise the function R obviously
satisfies the desired properties. Let us write R(r, r′) = rϕ(r′/r) for ϕ(t) = t−1

log t .
We then have R(r, r′) ≤ cr and R(r, r′) ≥ c0r. For the derivatives we have also
such estimates, namely, r∂rR(r, r′) = r (ϕ(t)− t∂tϕ(t)) |t=r′/r ≤ cr, and, similarly,
r′∂r′R(r, r′) ≤ cr. Since rkDk

r can be written as a linear combination of operators
(rDr)j , 1 ≤ j ≤ k, we obtain rkDk

r (r
′)lDl

r′R(r, r′) ≤ cr.

(ii) We have

|N(r, r′, x̃, x̃′)| ≤ max{|x̃|, |x̃′|}
∫ 1

0

(
r + ϑ(r′ − r)

)−2
dϑ = max{|x̃|, |x̃′|}(rr′)−1.

Since x̃/r and x̃′/r are both bounded and R(r, r′) ≤ cmin{r, r′}, it follows that
|S| ≤ c. Moreover, we have

Dk
rD

l
r′N(r, r′, x̃, x̃′) = ckl

∫ 1

0

(1− ϑ)kϑl
x̃+ ϑ(x̃′ − x̃)(

r + ϑ(r′ − r)
)2+k+l dϑ.

Then, analogous estimates as above show that these terms can be estimated by

cmax{|x̃|, |x̃′|}r−2−k−l.

Now (i) together with the Leibniz rule gives us the assertion for α = β = 0. If
|α|+ |β| = 1 the integrand is equal to (1−ϑ)k+|α|ϑl+|β|

(
r+ϑ(r′− r)

)−2−k−l, and we
can argue as before.
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Lemma 2.1.7. Let S be as in the preceding lemma. For every fixed η 6= 0 there are
constants c, δ > 0 such that

δr[ρ, ξ] ≤ [rρ+ Sξ,Rξ, rη] ≤ cr[ρ, ξ] (2.1.20)

on the set W .

Proof. In this proof we again denote by c different positive constants. For the first
estimate of (2.1.20) we observe that if |ρ, ξ| ≤ 1 the term in the middle of (2.1.20)
is ≥ [rη] ≥ cr ≥ cr[ρ, ξ]. Therefore, we may assume |ρ, ξ| > 1. Let γ = sup |S| + 1
and consider the cases |ρ| ≤ 2γ|ξ| and |ρ| ≥ 2γ|ξ| separately. In the first case we have

1 < (|ρ|2 + |ξ|2) 1
2 ≤

(
((2γ)2 + 1)|ξ|2

) 1
2 = 〈2γ〉|ξ|. For |ρ| ≤ 2γ|ξ| this implies

r[ρ, ξ] = r|ρ, ξ| ≤ r
(
(2γ)2|ξ|2 + |ξ|2

) 1
2 = 〈2γ〉r|ξ|. (2.1.21)

Moreover, we have

[rρ+ Sξ,Rξ, rη] ≥ c[Rξ] ≥ c|Rξ| ≥ cr|ξ|

for a suitable c > 0, and (2.1.21) entails

[rρ+ Sξ,Rξ, rη] ≥ cr[ρ, ξ].

For |ρ| ≥ 2γ|ξ| we observe that

|rρ+ Sξ| ≥ |rρ| − |Sξ| ≥ r

2
|ρ|+ 1

2
|ρ| − γ|ξ| ≥ r

2
|ρ| ≥ cr[ρ, ξ].

In the last inequality we employed that

[ρ, ξ] = |ρ, ξ| = (|ρ|2 + |ξ|2) 1
2 ≤

(
|ρ|2 +

1
(2γ)2

|ρ|2
) 1

2

= 〈(2γ)−1〉|ρ|.

Thus we have proved the estimate from below.
For the second inequality we first observe that R ≤ cr and hence

[Rξ] ≤ cr[ξ] ≤ cr[ρ, ξ].

In a similar manner we obtain [rρ + Sξ] ≤ c([rρ] + [Sξ]) ≤ cr[ρ, ξ]. This yields the
desired estimate from above.

Theorem 2.1.8. Let p̃(x, x′, ρ̃, ξ, η̃) ∈ Sµ(Rn×Rn×R1+n×Rq), µ ∈ R, ϕ(x), ϕ′(x) ∈
C∞0 (Rn), and choose cut-off functions ω(r), ω′(r) = 1 for r ≤ 1. Fix η 6= 0, and define

p(r, x, x′, ρ, ξ, η) := p̃(x, x′, rρ, ξ, rη).

Then for the push forward under χ we have

χ∗
((

1− ω(r)
)
ϕ(x)Opr,x(p)ϕ

′(x)
(
1− ω′(r)

))
= Opr,x̃(q)

for a symbol q(r, r′, x̃, x̃′, ρ, ξ) ∈ Sµ;µ,0(R1+n ×R1+n ×R1+n). Its symbol semi-norms
can be estimated by those for p̃.
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Proof. The terms (1−ω), (1−ω′) vanish for r ≤ 1. From Lemma 2.1.3 we know that
the symbol q(r, r′, x̃, x̃′, ρ, ξ) of the push forward is of the form

p̃(x̃/r, x̃′/r′, rρ+ Sξ,Rξ, rη)
(
(1− ω(r)

)(
1− ω′(r′)

)
ϕ(x̃/r)ϕ′(x̃′/r′)Rn(r, r′)(r′)−n.

Since suppϕ and suppϕ′ are bounded, x̃/r and x̃′/r′ may assumed to be bounded. In
addition we may assume |r− r′| to be small, since by Proposition 2.1.5 it is admitted
to multiply the symbol by a function supported near r = r′, modulo some rapidly
decreasing remainder. In fact, since r, r′ ≥ 1 we may assume |r/r′−1| < 1

2 . Therefore,
we only need to verify the symbolic estimates on the set W , for q vanishes on the
complement. In the following let

V := (x̃/r, x̃′/r′, rρ+ Sξ,Rξ, rη);

then we have

Dx̃j p̃(V ) =
(
Dx̃j p̃

)
(V )r−1 +

(
Dρp̃

)
(V )

n∑
k=1

∂x̃jSkξk,

Drp̃(V ) =
n∑
k=1

{(
Dx̃k

p̃
)
(V )
(
−x̃k/r2

)
+
(
Dρp̃

)
(V )
(
ρ+ ∂rSkξk

)
+
(
Dξk

p̃
)
(V )∂rRξk +

(
Dη̃k

p̃
)
(V )ηk

}
,

Dρp̃(V ) =
(
Dρp̃

)
(V )r,Dξj

p̃(V ) =
(
Dρ̃p̃

)
(V )Sj +

(
Dξj

p̃)(V )R.

(2.1.22)

Here Sk and ξk denote the components of S and ξ, respectively. The derivatives with
respect to x̃′ and r′ can be easily deduced from those.
If we concentrate on W then ∂x̃jSkξk satisfies the estimates for an S1;−1,0-symbol,
ρ+ ∂rSkξk and ∂rRξk for an S1;0,0-symbol, while r−1 and x̃k/r2 satisfy those for an
S0;−1,0-symbol. Also (r, x̃) → ϕ(x̃/r) and (r′, x̃′) → ϕ(x̃′/r′) are S0-symbols on W .
According to Lemma 2.1.7 and using the relations [r, x̃] ∼ [r] ∼ R ∼ [r′] ∼ [r′, x̃′] on
W we can estimate the derivatives of p̃ as follows:

|Drp̃(V )|, |Dx̃k
p̃(V )| ≤ c[r, x̃]µ−1[ρ, ξ]µ,

|Dρp̃(V )|, |Dξj p̃(V )| ≤ c[r, x̃]µ[ρ, ξ]µ−1,

and hence we obtain

|Dl
ρD

α
ξD

β
x̃D

β′

x̃′D
k
rD

k′

r′ q(r, r
′, x̃, x̃′, ρ, ξ)| ≤ c[r, x̃]µ−|β|−k[r′, x̃′]−|β

′|−k′ [ρ, ξ]µ−|α|−l,

provided that the total number of derivatives is ≤ 1. The form of the derivatives in
(2.1.22), together with the above observations on the functions ∂x̃jSkξk, . . . , x̃k/r

2

shows that the general result follows in an analogous manner.

2.1.3 Global operators

Given a C∞ manifold X, n = dimX, with a system of charts κι : Uι → Rn, ι ∈ I we
consider the cylinder R×X with the charts

1× κι : R× Uι → R× Rn.
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The cylinder can also be equipped with the structure of X�, a manifold with conical
exits to infinity, r → ±∞, and we define a diffeomorphism

χ : R×X → X� (2.1.23)

by the local transformations χ : R× Rn → R× Rn, χ(r, x) = (r, [r]x).

Theorem 2.1.9. Let X be a C∞ manifold and P̃ (ρ̃, η̃) ∈ Lµ(X; R1+q
ρ̃,η̃ ). Then, if

ω(r), ω′(r) are cut-off functions, and P (r, ρ) := P̃ (rρ, rη), for any fixed η 6= 0, we
have

χ∗
((

1− ω(r)
)
Opr(P )

(
1− ω′(r)

))
∈ Lµ;µ(X�).

Proof. Let (Uι)ι∈I be an open covering of X by coordinate neighbourhoods, dif-
feomorphic to Rn, and let (ϕι)ι∈I be a subordinate partition of unity. Then we
can write Opr(P ) =

∑
ι,κ∈I ϕιOpr(P )ϕκ, and it suffices to show the assertion for

(1− ω)ϕιOpr(P )ϕκ(1− ω′). However, this is an immediate consequence of Theorem
2.1.8.

It is instructive to study the other way around, i.e., to express pseudo-differential
operators in R1+n

x̃ with smooth symbols across x̃ = 0 in polar coordinates with respect
to x̃ for x̃ 6= 0. Let M be a C∞ manifold and let us fix a point v ∈ M , interpreted
as a conical singularity. We define Lµdeg(M) as the space of all operators of the form
σr−µOpr(p)σ′ + (1 − σ)Aint(1 − σ′′) + C, for a symbol p(r, ρ) = p̃(r, rρ), p̃(r, ρ̃) ∈
C∞

(
R+, L

µ
cl(X; Rρ̃)

)
, Aint ∈ Lµcl(M \ {v}) and C ∈ L−∞(M \ {v}). σ, σ′, σ′′ are cut-

off functions satisfying
σ′′ ≺ σ ≺ σ′.

(If f and g are two functions such that g ≡ 1 on the support of f then we write this
symbolically as f ≺ g.)

Theorem 2.1.10. There is a canonical embedding

Lµcl(M)|M\{v} ↪→ Lµdeg(M)

for every µ ∈ R.

Proof. Set n + 1 := dimM , and choose a chart χ : U → R1+n for a coordinate
neighbourhood U of the point v with χ(v) = 0. Due to the pseudo-locality of pseudo-
differential operators it suffices to show that χ∗(A|U )|R1+n\{0} belongs to Lµdeg(R1+n)
for some fixed operator A ∈ Lµcl(M).
In other words, we may assume M = R1+n, v = 0. Modulo a rotation in R1+n it
suffices to concentrate on a cone Γ ⊂ R1+n written as

Γ = {x̃ = (r, rx1, . . . , rxn) : r ∈ R+, x ∈ B}

for B := {(x1, . . . , xn) ∈ Rn : |x| < 1}. We consider the diffeomorphism

β : R+ ×B → Γ, β(r, x) = (r, rx),

and show that
(β−1)∗A|Γ ∈ Lµdeg(B

∆),
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B∆ = (R+ ×B)/({0} ×B).

The reason why we take the simpler transformation β instead of passing to the
polar coordinates is that they are both diffeomorphic to each other. In fact, for C =
Γ ∩ Sn there is a diffeomorphism κ : R+ × C → R+ × B induced by the orthogonal
projection of R1+n 3 (x̃0, x̃1, . . . , x̃n) to the hyperplane {x̃0 = 1, (x̃1, . . . , x̃n) ∈ Rn}.
The transformation κ, which is homogeneous of degree 1 in r, induces an isomorphism
C∆ → B∆ in the category of the respective manifolds with conical singularities. This
gives rise to an isomorphism Lµdeg(C

∆) → Lµdeg(B
∆), and we may identify C∆ with

Γ ∪ {0}.

Modulo a remainder in L−∞(Γ) (which can be ignored) we assume

(A|Γu)(x̃) = Opx̃(a)u(x̃) =
∫∫

ei(x̃−x̃
′)ξ̃a(x̃, ξ̃)u(x̃′)dx̃′d̄ξ

for an a(x̃, ξ̃) ∈ Sµcl(R1+n × R1+n). By definition, the points x̃ = (x̃0, x̃1, . . . , x̃n) ∈ Γ
and (r, x1, . . . , xn) ∈ R+ × B are related via β−1(x̃) = (r, x̃1/r, . . . , x̃n/r) = (r, x),
x = (x1, . . . , xn). Then for the associated covariables (ρ, ξ) we have(

(β−1)∗A|Γ
)
f(r, x) = Op(b)f(r, x),

(modulo a smoothing operator that is again negligible) where

b(r, x, ρ, ξ)
∣∣
(r,x)=β−1(x̃)

∼
∑

α∈N1+n

1
α!

(
∂α
ξ̃
a
)(

x̃, tdβ−1(x̃)
(
ρ
ξ

))
Πα

(
x̃,

(
ρ
ξ

))
(2.1.24)

for

Πα

(
x̃,

(
ρ
ξ

))
= Dα

z̃ e
iδ(x̃,z̃)

( ρ
ξ

) ∣∣∣∣
z̃=x̃

(2.1.25)

and δ(x̃, z̃) = β−1(z̃) − β−1(x̃) − dβ−1(x̃)(z̃ − x̃), x̃ = x̃(r, x) = (r, rx). Let
us simplify the notations in the asymptotic sum of (2.1.24). We have β−1(x̃) =
(r(x̃), x1(x̃), . . . , xn(x̃)) for

r(x̃) = x̃0, xj(x̃) = x̃j/x̃0 for j = 1, . . . , n.

Writing for the moment r(x̃) = x0(x̃), we have dβ−1(x̃) =
(
∂x̃j

xi(x̃)
)
i=0,...,n
j=0,...,n

and

hence we can write dβ−1(x̃) in the variables (r, x) ∈ R+ ×B as follows

dβ−1(x̃) = r−1

(
r 0
−tx 1

)
,

i.e., tdβ−1(x̃) = r−1

(
r −x
0 1

)
, where 1 stands for idRn , and x̃(r, x) = (r, rx). Thus

the summands in the asymptotic expansion (2.1.24) have the form

1
α!

(
∂α
ξ̃
a
)(

x̃(r, x), r−1

(
rρ− xξ

ξ

))
Πα

(
x̃(r, x),

(
ρ
ξ

))
. (2.1.26)
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In order to characterise the function Πα

(
(r, rx),

(
ρ
ξ

))
we first note that

δ(x̃, z̃) = (t− r, z − x)− r−1

(
r 0
−tx 1

)(
t− r
tz − rx

)
,

i,e.,

δ(x̃, z̃)
(
ρ
ξ

)
= (1− r−1t)(z − x)ξ.

Let α = (α′, α′′) for α′ ∈ N and α′′ ∈ Nn. Using ∂z̃j
= t−1∂zj

, j = 1, . . . , n, it follows
that Dα

z̃ = Dα′

z̃0
t−|α

′′|Dα′′

z , z = (z1, . . . , zn). Moreover, we have Dα′

z̃0
= Dα′

t , α′ ∈ N.
This yields

Dα
z̃ e

i(1−r−1t)(z−x)ξ = Dα′

t t
−|α′′|Dα′′

z ei(1−r
−1t)(z−x)ξ

= Dα′

t

{
t−|α

′′|(1− r−1t)|α
′′|ξα

′′
ei(1−r

−1t)(z−x)ξ
}

= Dα′

t

{
t−|α

′′|(1− r−1t)|α
′′|
}
ξα

′′
ei(1−r

−1t)(z−x)ξ

since the differentiation of the exponent produces vanishing terms after the substitu-
tion t = r, z = x. We can write Dα′

t

{
t−|α

′′|(1− r−1t)|α
′′|
}

as a sum of the form

∑
k≤α′

(
α′

k

)
Dα′−k
t t−|α

′′|Dk
t (1− r−1t)|α

′′| =
∑
k≤α′

cα,kt
−|α′′|−α′+kr−k(1− r−1t)|α

′′|−k

for some constants cα,k. After substituting t = r, z = x we see that the last sum van-
ishes unless |α′′| ≤ α′, then it contains only one term, namely, the one corresponding
to k = |α′′|. In other words, we can ignore all other terms and write

Dα′

t

{
t−|α

′′|(1− r−1t)|α
′′|
}

= cαt
−α′r−|α

′′|

for some constant cα. We substitute in (2.1.25) and obtain

Πα

(
(r, rx),

(
ρ
ξ

))
= Dα

z̃ e
i(1−r−1t)(z−x)ξ

∣∣∣∣
t=r
z=x

= cαt
−α′r−|α

′′|ξα
′′
ei(1−r

−1t)(z−x)ξ
∣∣∣∣
t=r
z=x

= cαr
−|α|ξα

′′
, (2.1.27)

where for α′′ we have the inequality |α|/2 = (α′ + |α′′|)/2 ≥ |α′′|, since Πα ≡ 0
otherwise.
In order to show that

b(r, x, ρ, ξ) = r−µp̃(r, x, rρ, ξ) mod S−∞(R+ ×B × R1+n
ρ,ξ )

for a function p̃(r, x, ρ̃, ξ) ∈ Sµcl(R×B×R1+n
ρ̃,ξ ), it suffices to know that the homogeneous

components b(µ−j)(r, x, ρ, ξ), j ∈ N, have the form

b(µ−j)(r, x, ρ, ξ) = r−µp̃(µ−j)(r, x, rρ, ξ)
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for certain p̃(µ−j)(r, x, ρ̃, ξ) ∈ C∞
(
R+×B,S(µ−j)(R1+n

ρ̃,ξ \{0})
)
. In fact, the asymptotic

sum p̃(r, x, ρ̃, ξ) ∼
∑∞
j=0 ϑ(ρ̃, ξ)p̃(µ−j)(r, x, ρ̃, ξ) (for some excision function ϑ(ρ̃, ξ))

can be carried out in Sµcl(R+ × B × R1+n
ρ̃,ξ ). Thus it remains to show that p̃(µ−j) are

as desired. We first consider the homogeneous components of(
∂α
ξ̃
a
) (
x̃(r, x), r−1(rρ− xξ), r−1ξ

)
of homogeneity order µ−|α|−j, j ∈ N, that are of the form fj(r, x, r−1(rρ−xξ), r−1ξ)
for some fj(r, x, τ, ξ) ∈ C∞

(
R+ ×B,S(µ−|α|−j)(R1+n

ξ̃
\ {0})

)
, j ∈ N. This means, we

have
fj(r, x, r−1(rρ− xξ), r−1ξ) = r−µ+|α|+jfj(r, x, rρ− xξ, ξ).

However, that fj(r, x, ρ̃ − xξ, ξ) ∈ C∞
(
R+ ×B × (R1+n \ {0})

)
and fj

(
r, x, λ(ρ̃ −

xξ), λξ
)

= λµ−|α|−jfj(r, x, ρ̃− xξ, ξ) for all λ ∈ R+ give us

fj(r, x, ρ̃− xξ, ξ) = |ρ̃, ξ|µ−|α|−jf1,j
(
r, x,

ρ̃− xξ
|ρ̃, ξ|

,
ξ

|ρ̃, ξ|

)
where f1,j(r, x, ρ̃−xξ, ξ) ∈ C∞

(
R+ ×B × Sn

)
with Sn being the unit sphere in R1+n

ρ̃,ξ .
It follows that fj(r, x, ρ̃− xξ, ξ) can be written as a function

f̃(µ−|α|−j)(r, x, ρ̃, ξ) ∈ C∞
(
R+ ×B,S(µ−|α|−j)(R1+n

ρ̃,ξ \ {0})
)
,

and we obtain that the component of
(
∂α
ξ̃
a
)(
x̃(r, x), r−1(rρ−xξ), r−1ξ

)
of homogene-

ity µ− |α| − j has the form r−µ
(
r|α|+j f̃(µ−|α|−j)(r, x, rρ, ξ)

)
. From (2.1.24), (2.1.26),

and (2.1.27) we finally write b(r, x, ρ, ξ) as an asymptotic sum

b(r, x, ρ, ξ) = r−µ
∑

α∈N1+n

j∈N

χ

(
rρ, ξ

cj

)
rj f̃(µ−|α|−j)(r, x, rρ, ξ)ξα

′′
,

for some excision function χ(ρ̃, ξ) and some sequence of constant (cj)j∈N tending to
∞ fast enough.

2.2 A new parameter-dependent calculus on infinite
cylinders

2.2.1 Operator-valued symbols with parameter

We now consider (operator-valued) symbols depending on the covariables ρ, η in edge-
degenerate form. Since we are interested in operators on the manifold X� modelled
on a cylinder R×X 3 (r, x), interpreted as a manifold with conical exits |r| → ∞, X
smooth and closed, we ignore the edge-degeneracy at r = 0 and consider symbols of
the form

a(r, ρ, η) = ã(r, [r]ρ, [r]η) (2.2.1)
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for ã(r, ρ̃, η̃) ∈ C∞
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
. To be more precise, we assume

ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
, (2.2.2)

i.e., we take standard symbols in r ∈ R of order ν ∈ R with values in Lµcl(X; R1+q
ρ̃,η̃ ),

µ ∈ R. We study operators

Opr
(
ã(r, [r]ρ, [r]η)

)
: C∞0 (R×X)→ C∞(R×X) (2.2.3)

for any fixed η ∈ Rq \ {0} and observe the behaviour for |r| → ∞. The continuity of
(2.2.3) follows from Opr

(
ã(r, [r]ρ, [r]η)

)
∈ Lµcl(R ×X) for every η. Some aspects can

be deduced from what we did in Subsection 2.1.1 as we proved that the push forward
under the transformation (2.1.11), say, for r > 0, gives rise to an operator with exit
behaviour. In particular, we see that (2.2.3) induces a continuous operator

Opr
(
ã(r, [r]ρ, [r]η])

)
: S
(
R, C∞(X)

)
→ S

(
R, C∞(X)

)
(2.2.4)

for every fixed η 6= 0. Also other properties of operators (2.2.3) for |r| → ∞ can
be deduced from the results of Section 2.1.1. However, when we replace later on
the cross section X by a manifold with singularities, it is instructive also to refer
to the degenerate behaviour of the operator-valued amplitude functions in a more
direct manner. This is just what we are doing here in the case when X is smooth.
In particular, we will prove the continuity (2.2.4) once again. At the same time we
observe some general properties of the symbols (2.2.1) for (2.2.2). In other words, the
crucial definition is as follows:

Definition 2.2.1. (i) Let E be a Fréchet space with the (countable) system of
semi-norms (πj)j∈N; then Sν(R, E), ν ∈ R, is defined to be the set of all a(r) ∈
C∞(R, E) such that

πj
(
Dk
ra(r)

)
≤ c[r]ν−k

for all r ∈ R, k ∈ N, with constants c = c(k, j) > 0,

(ii) Sµ,ν for µ, ν ∈ R denotes the set of all operator families

a(r, ρ, η) = ã(r, [r]ρ, [r]η)

for ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)

(referring to the natural nuclear topology of
the space Lµcl(X; R1+q

ρ̃,η̃ )).

For future references we state and prove a standard property on the norm growth
of parameter-dependent pseudo-differential operators.

Theorem 2.2.2. Let M be a closed compact C∞ manifold and A(λ) ∈ Lµcl(M ; Rl)
a parameter-dependent family of order µ, and let ν ≥ µ. Then there is a constant
c = c(s, µ, ν) > 0 such that

‖A(λ)‖L(Hs(M),Hs−ν(M)) ≤ c〈λ〉max{µ,µ−ν}. (2.2.5)

In particular, for µ ≤ 0, ν = 0 we have

‖A‖L(Hs(M),Hs(M)) ≤ c〈λ〉µ. (2.2.6)
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Moreover, for every s′, s′′ ∈ R and every N ∈ N there exists a µ(N) ∈ R such that
for every µ ≤ µ(N), k := µ(N)− µ, and A(λ) ∈ Lµcl(M ; Rl) we have

‖A‖L(Hs′ (M),Hs′′ (M)) ≤ c〈λ〉
−N−k. (2.2.7)

for all λ ∈ Rl, and a constant c = c(s′, s′′, µ,N, k) > 0.

Proof. In this proof we write ‖ · ‖s′,s′′ = ‖ · ‖L(Hs′ (M),Hs′′ (M)). The estimates (2.2.5)
and (2.2.6) are standard. Concerning (2.2.7) we first observe that we have to choose
µ so small that A(λ) : Hs′(M) → Hs′′(M) is continuous. This is the case when
s′′ ≤ s′ − µ, i.e., µ ≤ s′ − s′′. Let Rs

′′−s′(λ) ∈ Ls
′′−s′

cl (M,Rl) be an order reducing
family with the inverse Rs

′−s′′(λ) ∈ Ls
′−s′′

cl (M,Rl). Then we have

Rs
′′−s′(λ) : Hs′′(M)→ Hs′(M),

i.e., Rs
′′−s′(λ)A(λ) : Hs′(M)→ Hs′(M). The estimate (2.2.6) gives us

‖Rs
′′−s′(λ)A(λ)‖s′,s′ ≤ c〈λ〉µ+(s′′−s′)

for µ ≤ s′ − s′′. Moreover, (2.2.5) yields ‖Rs′−s′′(λ)‖s′,s′′ ≤ c〈λ〉s
′−s′′ . Thus

‖A(λ)‖s′,s′′ = ‖Rs
′−s′′(λ)Rs

′′−s′(λ)A(λ)‖s′,s′′

≤ ‖Rs
′−s′′(λ)‖s′,s′′‖Rs

′′−s′(λ)A(λ)‖s′,s′ ≤ c〈λ〉(s
′−s′′)+µ+(s′′−s′) = c〈λ〉µ.

In other words, when we choose µ(N) in such a way that µ ≤ s′ − s′′, and µ(N) ≤ −N ,
then (2.2.7) is satisfied. In addition, if we take µ = µ(N) − k for some k ≥ 0 then
(2.2.7) follows in general.

Corollary 2.2.3. Let A(λ) ∈ Lµcl(M ; Rl), and assume that the estimate

‖A(λ)‖s′,s′′ ≤ c〈λ〉−N

holds for given s′, s′′ ∈ N and some N . Then we have

‖Dα
λA(λ)‖s′,s′′ ≤ c〈λ〉−N−|α|

for every α ∈ Nl.

Now we go back to Definition 2.2.1 and establish some properties of the Sµ,ν

spaces that play a role in our calculus.

Proposition 2.2.4. (i) ϕ(r) ∈ Sσ(R), a(r, ρ, η) ∈ Sµ,ν implies ϕ(r)a(r, ρ, η) ∈
Sµ,ν+σ.

(ii) For every k, l ∈ N and α ∈ Nq we have

a ∈ Sµ,ν ⇒ ∂lra ∈ Sµ,ν−l, ∂kρa ∈ Sµ−k,ν+k, ∂αη a ∈ Sµ−|α|,ν+|α|.

(iii) a(r, ρ, η) ∈ Sµ,ν , b(r, ρ, η) ∈ Sµ̃,ν̃ implies a(r, ρ, η)b(r, ρ, η) ∈ Sµ+µ̃,ν+ν̃ .
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Proof. (i) is evident. (ii) For simplicity we assume q = 1 and compute

∂rã(r, [r]ρ, [r]η) =
(
(∂r + [r]′ρ∂ρ̃ + [r]′η∂η̃)ã

)
(r, [r]ρ, [r]η)

where [r]′ := ∂r[r]. Since ρ̃ã(r, ρ̃, η̃), η̃ã(r, ρ̃, η̃) ∈ Sν(R, Lµ+1
cl (X; R1+q

ρ̃,η̃ )), and
∂ρ̃ã, ∂η̃ã ∈ Sν(R, Lµ−1

cl (X; R1+q)), we obtain

∂rã(r, [r]ρ, [r]η) =
(
(∂r + ([r]′/[r])ρ̃∂ρ̃ + ([r]′/[r])η̃∂η̃)ã

)
(r, [r]ρ, [r]η) ∈ Sµ,ν−1.

By induction it follows that ∂lra ∈ Sµ,ν−l for all l ∈ N. Moreover, we have

∂ρã(r, [r]ρ, [r]η) = [r](∂ρ̃ã)(r, [r]ρ, [r]η)

which gives us ∂ρa ∈ Sµ−1,ν+1, and, by iteration, ∂kρa ∈ Sµ−k,ν+k. In a similar manner
we can argue for the η-derivatives.

(iii) By definition we have

a(r, ρ, η) = ã(r, [r]ρ, [r]η), b(r, ρ, η) = b̃(r, [r]ρ, [r]η)

for ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X,R

1+q
ρ̃,η̃ )

)
, b̃(r, ρ̃, η̃) ∈ Sν̃

(
R, Lµ̃cl(X,R

1+q
ρ̃,η̃ )

)
. Then the asser-

tion is a consequence of the relation

(ãb̃)(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lµ+µ̃

cl (X,R1+q
ρ̃,η̃ )

)
.

Corollary 2.2.5. For a(r, ρ, η) ∈ Sµ,ν , b(r, ρ, η) ∈ Sµ̃,ν̃ for every k ∈ N we have

∂kρa(r, ρ, η)D
k
r b(r, ρ, η) ∈ Sµ+µ̃−k,ν+ν̃

Remark 2.2.6. (i) Let ϕ1, ϕ2 ∈ C∞(R) be strictly positive functions such that
ϕj(r) = |r| for |r| ≥ cj for some cj > 0, j = 1, 2. Then we have

Sµ,ν =
{
a
(
r, ϕ1(r)ρ, ϕ2(r)η

)
: a(r, ρ̃, η̃) ∈ Sν

(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)}

;

(ii) a(r, ρ, η) ∈ Sµ,ν implies a(λr, ρ, η) ∈ Sµ,ν for every λ ∈ R+.

Proof. (i) We can write

a
(
r, ϕ1(r)ρ, ϕ2(r)η

)
= a

(
r, ψ1(r)[r]ρ, ψ2(r)[r]η

)
for ψj(r) ∈ C∞(R), ψj(r) = 1 for |r| > c for some c > 0, j = 1, 2. Then it suffices to
verify that

a
(
r, ψ1(r)ρ̃, ψ2(r)η̃

)
∈ Sν

(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
;

however, this is straightforward.

(ii) It is evident that the relation ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)

implies
ã(λr, ρ̃, η̃) ∈ Sν

(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
. Therefore, it suffices to show ã(r, [λr]ρ, [λr]η) ∈

Sµ,ν . Let us write

ã(r, [λr]ρ, [λr]η) = ã
(
r, ϕλ(r)[r]ρ, ϕλ(r)[r]η

)
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for ϕλ(r) := [λr]/[r]. We have ϕλ(r) = λ for |r| > c for a constant c > 0, i.e.,
ϕλ(r) − λ ∈ C∞0 (R). Thus there is an r-excision function χ(r) (i.e., χ ∈ C∞(R),
χ(r) = 0 for |r| ≤ c0, χ(r) = 1 for |r| ≥ c1 for certain 0 < c0 < c1) such that

χ(r)ã(r, [λr]ρ, [λr]η) = χ(r)ã(r, [r]λρ, [r]λη),

which belongs to Sµ,ν . It remains to characterise
(
1− χ(r)

)
ã
(
r, ϕλ(r)[r]ρ, ϕλ(r)[r]η

)
which vanishes for |r| ≥ c1, and a simple calculation shows(

1− χ(r)
)
ã
(
r, ϕλ(r)ρ̃, ϕλ(r)η̃

)
∈ C∞0

(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
,

which is contained in Sµ,−∞.

Proposition 2.2.7 (Asymptotic summation). Let

ãj(r, ρ̃, η̃) ∈ Sν
(
R, Lµ−jcl (X; R1+q)

)
, j ∈ N,

be an arbitrary sequence, µ, ν ∈ R. Then there is an ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X; R1+q)

)
such that

a−
N∑
j=0

aj ∈ Sν
(
R, Lµ−(N+1)

cl (X; R1+q)
)

for every N ∈ N, and a is unique modulo Sν
(
R, L−∞cl (X; R1+q)

)
.

Proof. The proof is similar to the standard one on asymptotic summation of
symbols. We can find an asymptotic sum as a convergent series ã(r, ρ̃, η̃) =∑∞
j=0 χ ((ρ̃, η̃)/cj) ãj(r, ρ̃, η̃) for some excision function χ in R1+q, with a sequence

cj > 0, cj → ∞ as j → ∞ so fast, that
∑∞
j=N+1 χ ((ρ̃, η̃)/cj) ã(r, ρ̃, η̃) converges in

Sν(R, Lµ−(N+1)
cl ) for every N .

2.2.2 Continuity in Schwartz spaces

The Schwartz space S(R, E) with values in a Fréchet space E can be interpreted as
the projective tensor product S(R)⊗̂πE, using the nuclearity of S(R). In particular we
have the space S

(
R, C∞(X)

)
. Occasionally we will write S(R×X) := S

(
R, C∞(X)

)
.

Theorem 2.2.8. Let p(r, ρ, η) = p̃(r, [r]ρ, [r]η), p̃(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
, i.e.,

p(r, ρ, η) ∈ Sµ,ν . Then Opr(p)(η) induces a family of continuous operators

Opr(p)(η) : S
(
R, C∞(X)

)
→ S

(
R, C∞(X)

)
for every fixed η 6= 0.

Proof. We have

Opr(p)(η)u(r) =
∫
eirρp(r, ρ, η)û(ρ)d̄ρ,
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first for u ∈ C∞0
(
R, C∞(X)

)
. In the space S

(
R, C∞(X)

)
we have the semi-norm

system
πm,s(u) = max

α+β≤m
sup
r∈R
‖[r]α∂βr u(r)‖Hs(X)

for m ∈ N, s ∈ Z, which defines the Fréchet topology of S
(
R, C∞(X)

)
. If necessary

we indicate the variable r, i.e., write πm,s;r rather than πm,s.
The Fourier transform Fr→ρ induces an isomorphism

F : S
(
Rr,Hs(X)

)
→ S

(
Rρ,Hs(X)

)
for every s. For every m ∈ N there exists a C > 0 such that

πm,s;ρ(Fu) ≤ Cπm+2,s;r(u) (2.2.8)

for all u ∈ S
(
R,Hs(X)

)
(see [19, Chapter 1] for scalar functions; the case of functions

with values in a Hilbert space is completely analogous). We have to show that for
every m̃ ∈ N and s̃ ∈ Z there exist m ∈ N and s ∈ Z, such that

πm̃,s̃
(
Op(p)u(r)

)
≤ cπm,s(u) (2.2.9)

for all u ∈ S
(
R, C∞(X)

)
, for some c = c(m̃, s̃) > 0. According to Proposition 2.2.10

below we write the operator Op(p)(η) in the form

Opr(p)(η)◦〈r〉−M ◦〈r〉M = 〈r〉−MOpr(bMN )(η)◦〈r〉M+Opr(dMN )(η)◦〈r〉M (2.2.10)

for a symbol bMN (r, ρ, η) ∈ Sµ,ν , N ∈ N and a remainder dMN (r, ρ, η) satisfying
estimates similar to (2.2.19).
We have

‖Opr(p)(η)u(r)‖H s̃(X) =
∥∥∥∥∫ eirρp(r, ρ, η)û(ρ)d̄ρ

∥∥∥∥
H s̃(X)

≤
∥∥∥∥∫ eirρ〈r〉−MbMN (r, ρ, η) ̂(〈r〉Mu)(ρ)d̄ρ∥∥∥∥

H s̃(X)

+‖Opr(dMN )(η)〈r〉Mu(r)‖H s̃(X).

(2.2.11)

For the first term on the right of (2.2.11) we obtain for s := s̃ + µ and arbitrary
M̃ ∈ N∥∥∥∥∫ eirρ〈ρ〉−M̃ 〈r〉−MbMN (r, ρ, η)〈ρ〉M̃ ̂(〈r〉Mu)(ρ)d̄ρ∥∥∥∥

H s̃(X)

≤
∫
‖〈ρ〉−M̃ 〈r〉−MbMN (r, ρ, η)〈ρ〉M̃ ̂(〈r〉Mu)(ρ)‖H s̃(X)d̄ρ

≤ c sup
(r,ρ)∈R2

〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X))

∫
〈ρ〉M̃‖ ̂(〈r〉Mu)(ρ)‖Hs(X)d̄ρ.

Moreover, we have∫
〈ρ〉M̃‖ ̂(〈r〉Mu)(ρ)‖Hs(X)d̄ρ ≤ sup

ρ∈R
〈ρ〉M̃+2‖ ̂(〈r〉Mu)(ρ)‖Hs(X)

∫
〈ρ〉−2d̄ρ

≤ cπ
M̃+2,s;ρ

( ̂(〈r〉Mu)(ρ)) ≤ π
M̃+4,s;r

(〈r〉Mu)) ≤ cπ
M+M̃+4,s;r

(u)
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Here we employed the estimate (2.2.8). Thus (2.2.11) yields

π0,s̃

(
Op(p)(η)u

)
≤ c sup

(r,ρ)∈R2
〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X))πM+M̃+4,s;r

(u)

+ π0,s̃

(
Opr(dMN )(η)(〈r〉Mu)

)
. (2.2.12)

The factor c sup(r,ρ)∈R2〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) is finite when we ad-
equately choose M and M̃ . In fact, since bMN (r, ρ, η) ∈ Sµ,ν we see from Theorem
2.2.2 that

‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) ≤ c〈r〉ν〈[r]ρ, [r]η〉max{µ,0}.

Thus

〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) ≤ c〈ρ〉−M̃ 〈r〉ν−M 〈[r]ρ, [r]η〉max{µ,0}.

If µ ≤ 0 then it suffices to choose M ≥ ν and M̃ ≥ 0. Let µ ≥ 0 then we can write

〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) ≤ c〈ρ〉−M̃ 〈r〉ν−M 〈[r]ρ, [r]η〉µ

= c
(1 + [r]2ρ2 + [r]2|η|2)µ/2

(1 + r2)(M−ν)/2(1 + ρ2)M̃/2

≤ c (1 + [r]2ρ2 + c[r]2)µ/2

(1 + r2)(M−ν)/2(1 + ρ2)M̃/2
.

This means that if we choose M ≥ µ+ ν, M̃ ≥ µ then

sup
(r,ρ)∈R2

〈ρ〉−M̃ 〈r〉−M‖bMN (r, ρ, η)‖L(Hs(X),H s̃(X)) <∞.

Next we consider the second term on the right hand side of (2.2.12). We have

‖Opr(dMN )(η)〈r〉Mu(r)‖H s̃(X)

=
∥∥∥∥∫ eirρ〈ρ〉−MdMN (r, ρ, η)〈ρ〉M ̂(〈r〉Mu)(ρ)d̄ρ∥∥∥∥

H s̃(X)

≤
∫
‖〈ρ〉−MdMN (r, ρ, η)〈ρ〉M ̂(〈r〉Mu)(ρ)‖H s̃(X)d̄ρ

≤ sup
(r,ρ)∈R2

‖〈ρ〉−MdMN (r, ρ, η)‖L(Hs(X),H s̃(X))

∫
‖〈ρ〉M ̂(〈r〉Mu)(ρ)‖Hs(X)d̄ρ.

From the analogue of the estimate (2.2.19) for dMN (r, ρ, η) we see that for N suffi-
ciently large it follows that the right hand side of the latter expression can be estimated
by

c

∫
‖〈ρ〉M ̂(〈r〉Mu)(ρ)‖Hs(X)d̄ρ

≤ sup
ρ∈R
〈ρ〉M+2‖ ̂(〈r〉Mu)(ρ)‖Hs(X)

∫
〈ρ〉−2d̄ρ ≤ cπ2M+4,s;r(u).
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In other words we have proved

π0,s̃

(
Op(p)(η)u

)
≤ c
(
π
M+M̃+4,s

(u) + π2M+4,s(u)
)
≤ cπL,s(u) (2.2.13)

for s = s̃+ µ, L := max{M + M̃ + 4, 2M + 4}. For π1,s̃ we write

∂rOp(p)(η)u(r) =
∫
eirρ∂rp(r, ρ, η)û(ρ)d̄ρ+

∫
eirρp(r, ρ, η)D̂u(ρ)d̄ρ,

rOp(p)(η)u(r) =
∫
eirρ

(
i∂ρp(r, ρ, η)

)
û(ρ)d̄ρ+

∫
eirρip(r, ρ, η)∂ρû(ρ)d̄ρ.

From Proposition 2.2.4 we have

∂rp(r, ρ, η) ∈ Sµ,ν−1, i∂ρp(r, ρ, η) ∈ Sµ−1,ν+1.

Thus we obtain

sup
r∈R
‖∂rOp(p)(η)u(r)‖H s̃(X) ≤ cπL+1,s(u),

sup
r∈R
‖rOp(p)(η)u(r)‖H s̃(X) ≤ c

(
πL,s−1(u) + πL+1,s(u)

)
≤ cπL+1,s(u),

i.e., π1,s̃

(
Op(p)(η)u

)
≤ cπL+1,s(u). Analogously, one can prove (2.2.9) for arbitrary

m̃ ∈ N, s̃ ∈ Z, and suitable m, s.

2.2.3 Leibniz products and remainder estimates

Let ã(r, ρ̃, η̃) ∈ Sν(R, Lµcl), b̃(r, ρ̃, η̃) ∈ Sν̃(R, Lµ̃cl) where Lµcl = Lµcl(X; R1+q
ρ̃,η̃ ). The

operator functions

a(r, ρ, η) := ã(r, [r]ρ, [r]η), b(r, ρ, η) := b̃(r, [r]ρ, [r]η)

will be interpreted as amplitude functions of a pseudo-differential calculus on R con-
taining η as a parameter (below we assume η 6= 0). We intend to apply an analogue
of Kumano-go’s technique [19] and form the oscillatory integral

a#b(r, ρ, η) =
∫∫

e−itτa(r, ρ+ τ, η)b(r + t, ρ, η)dtd̄τ (2.2.14)

which has the meaning of a Leibniz product, associated with the composition of
operators. The rule

Opr(a)(η)Opr(b)(η) = Opr(a#b)(η) (2.2.15)

for η 6= 0 will be justified afterwards. Similarly as in [19], applying Taylor’s formula
on a(r, ρ + τ, η) with respect to the second variable at the point ρ we get for any
N ∈ N

a(r, ρ+ τ, η) =
N∑
k=0

τk

k!
∂kρa(r, ρ, η) +

τN+1

N !

∫ 1

0

(1− θ)N (∂N+1
ρ a)(r, ρ+ θτ, η)dθ.
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We substitute in (2.2.14) and, using the identity e−itττk = (−Dt)ke−itτ , k ∈ N, we
write

a#b(r, ρ, η) =
N∑
k=0

1
k!

∫∫
e−itτ∂kρa(r, ρ, η)(D

k
r b)(r + t, ρ, η)dtd̄τ

+
1
N !

∫∫
e−itτ

{∫ 1

0

(1− θ)N (∂N+1
ρ a)(r, ρ+ θτ, η)dθ

}
(DN+1

r b)(r + t, ρ, η)dtd̄τ

(2.2.16)

Then, by means of the Fourier inversion formula we see that the first term of the right
hand side of (2.2.16) is equal to

∑N
k=0

1
k!∂

k
ρa(r, ρ, η)D

k
r b(r, ρ, η).

Setting ck(r, ρ, η) := 1
k!∂

k
ρa(r, ρ, η)D

k
r b(r, ρ, η) and

rN (r, ρ, η) :=

1
N !

∫∫
e−itτ

{∫ 1

0

(1− θ)N (∂N+1
ρ a)(r, ρ+ θτ, η)dθ

}
(DN+1

r b)(r + t, ρ, η)dtd̄τ

(2.2.17)

we can decompose a#b in the form

a#b(r, ρ, η) =
N∑
k=0

ck(r, ρ, η) + rN (r, ρ, η). (2.2.18)

By virtue of Corollary 2.2.5 we have ck(r, ρ, η) = c̃k(r, [r]ρ, [r]η) for some c̃k(r, ρ̃, η̃) ∈
Sν+ν̃(R, Lµ+µ̃−k

cl ). Let us now characterise the remainder.

Lemma 2.2.9. For every s′, s′′ ∈ R, k, l,m ∈ N, there is an N ∈ N such that

‖Di
rD

j
ρrN (r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m (2.2.19)

for all (r, ρ) ∈ R2, |η| ≥ ε > 0, i, j ∈ N, for some constant c = c(s′, s′′, k, l,m,N, ε) >
0, here ‖ · ‖s′,s′′ = ‖ · ‖L(Hs′ (X),Hs′′ (X)).

Proof. By virtue of Proposition 2.2.4 we have

∂kρ ã(r, [r]ρ, [r]η) ∈ Sµ−k,ν+k, ∂kr b̃(r, [r]ρ, [r]η) ∈ Sµ̃,ν̃−k

for every k. Let us set

ãN+1(r, [r]ρ+ [r]θτ, [r]η) := (∂N+1
ρ a)(r, ρ+ θτ, η),

b̃N+1(r + t, [r + t]ρ, [r + t]η) := (DN+1
r b)(r + t, ρ, η).

By virtue of Theorem 2.2.2 for every s0, s′′ ∈ R and every M there exists a µ(M)
such that for every µ ≤ µ(M) and p(ρ̃, η̃) ∈ Lµcl(X; R1+q

ρ̃,η̃ ) we have

‖p(ρ̃, η̃)‖s0,s′′ ≤ c〈ρ̃, η̃〉−M (2.2.20)
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for all (ρ̃, η̃) ∈ R1+q, c = c(s0, s′′, µ,M) > 0. In addition, for s′, s0 ∈ R there exists a
B ∈ R such that ‖p(ρ̃, η̃)‖s′,s0 ≤ c〈ρ̃, η̃〉B for all (ρ̃, η̃) ∈ R1+q, c = c(s′, s0, µ) > 0. We
apply this to ãN+1(r, ρ̃, η̃) and b̃N+1(r, ρ̃, η̃), combined with the dependence on r ∈ R
as a symbol in this variable. In other words, we have the estimates

‖ãN+1(r, ρ̃, η̃)‖s0,s′′ ≤ c〈r〉ν+(N+1)〈ρ̃, η̃〉−M , (2.2.21)

‖b̃N+1(r, ρ̃, η̃)‖s′,s0 ≤ c〈r〉ν̃−(N+1)〈ρ̃, η̃〉B ; (2.2.22)

here we applied the above mentioned result to ãN+1 for the pair (s0, s′′) for N suf-
ficiently large, and for b̃N+1 the second estimate for (s′, s0) with some exponent B.
Let us take s0 := s′ − µ̃; then we can set B = max{µ̃, 0}. The remainder (2.2.17) is
regularised as an oscillatory integral in (t, τ), i.e., we may write

rN (r, ρ, η) =
1
N !

∫∫
e−itτ 〈t〉−2L(1− ∂2

τ )
L〈τ〉−2K(1− ∂2

t )
K{∫ 1

0

(1− θ)N ãN+1(r, [r]ρ+ [r]θτ, [r]η)dθ
}
b̃N+1(r + t, [r + t]ρ, [r + t]η)dtd̄τ

(2.2.23)

for sufficiently large L,K ∈ N. For simplicity from now on we assume q = 1; the
considerations for the general case are completely analogous. Then we have for every
l ≤ L

∂2l
τ ãN+1(r, [r]ρ+ [r]θτ, [r]η) =

(
∂2l
ρ̃ ãN+1

)
(r, [r]ρ+ [r]θτ, [r]η)([r]θ)2l,

and for every k ≤ K

∂2k
t b̃N+1(r + t, [r + t]ρ, [r + t]η) =

(
∂2k
t b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)

+
(
∂2k
ρ̃ b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)(ρ∂t[r + t])2k

+
(
∂2k
η̃ b̃N+1

)
(r + t, [r + t]ρ, [r + t]η)(η∂t[r + t])2k +R,

where R denotes a linear combination of other mixed derivatives, for example,

∂2k−1
t {(∂ρ̃b̃N+1)(r + t, [r + t]ρ, [r + t]η)(ρ∂t[r + t])}

=
∑

i+j=2k−1

cij
(
∂it(∂ρ̃b̃N+1)(r + t, [r + t]ρ, [r + t]η)

)
ρ∂j+1
t [r + t],

∂2k−1
t {(∂η̃ b̃N+1)(r + t, [r + t]ρ, [r + t]η)(η∂t[r + t])}

=
∑

i+j=2k−1

cij
(
∂it(∂η̃ b̃N+1)(r + t, [r + t]ρ, [r + t]η)

)
η∂j+1

t [r + t]

for some coefficients cij .
From (2.2.21) we have

‖∂2l
τ ãN+1(r, [r]ρ+ r[θ]τ, [r]η)‖s0,s′′ ≤ c〈r〉ν+(N+1)〈[r]ρ+ [r]θτ, [r]η〉−M−2l([r]θ)2l,

(2.2.24)
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see Corollary 2.2.3, and (2.2.22) gives us

‖(∂2k
t b̃N+1)(r+ t, [r+ t]ρ, [r+ t]η)‖s′,s0 ≤ c〈r+ t〉ν̃−(N+1)〈[r+ t]ρ, [r+ t]η〉B (2.2.25)

(where we take N so large that ν̃ − (N + 1) ≤ 0), and

‖(∂2k
ρ̃ b̃N+1)(r + t, [r + t]ρ, [r + t]η)(ρ∂t[r + t])2k‖s′,s0

≤ c〈r + t〉ν̃−(N+1)〈[r + t]ρ, [r + t]η〉B−2k|ρ∂t[r + t]|2k, (2.2.26)

‖(∂2k
η̃ b̃N+1)(r + t, [r + t]ρ, [r + t]η)(η∂t[r + t])2k‖s′,s0

≤ c〈r + t〉ν̃−(N+1)〈[r + t]ρ, [r + t]η〉B−2k|η∂t[r + t]|2k. (2.2.27)

The above mentioned mixed derivatives admit similar estimates (in fact, better ones;
so we concentrate on those contributed by (2.2.24), (2.2.25), (2.2.26), (2.2.27)).

We now derive an estimate for ‖rN (r, ρ, η)‖s′,s′′ . From (2.2.23) we obtain

‖rN (r, ρ, η)‖s′,s′′ ≤
∫∫∫ 1

0

‖〈t〉−2L(1− ∂2
τ )
L〈τ〉−2K(1− ∂2

t )
K

(1− θ)N ãN+1(r, [r]ρ+ [r]θτ, [r]η)b̃N+1(r + t, [r + t]ρ, [r + t]η)‖s′,s′′dθdtd̄τ.

The operator norm under the integral can be estimated by expressions of the kind

I := c〈r〉ν+(N+1)〈r + t〉ν̃−(N+1)〈t〉−2L〈τ〉−2K〈[r]ρ+ [r]θτ, [r]η〉−M−2l([r]θ)2l

〈[r + t]ρ, [r + t]η〉B
{
1 + 〈[r + t]ρ, [r + t]η〉−2k(|ρ|2k + |η|2k)|(∂t[r + t])2k|

}
l ≤ L, k ≤ K, plus terms from R of a similar character. We have, using Peetre’s
inequality,

〈r〉ν+(N+1)〈r + t〉ν̃−(N+1) ≤ 〈r〉ν+ν̃〈t〉|ν̃−(N+1)|.

Moreover, we have 〈[r]ρ + [r]θτ, [r]η〉−2l([r]θ)2l ≤ c〈[r]η〉−2l[r]2l ≤ c for |η| ≥ ε > 0
(as always, c denotes different constants), and

〈[r + t]ρ, [r + t]η〉−2k(|ρ|2k + |η|2k)|(∂t[r + t])2k|
≤ c

{
〈[r + t]ρ〉−2k([r + t]|ρ|)2k + 〈[r + t]η〉−2k([r + t]|η|)2k

}
[r + t]−2k ≤ c,

using |(∂t[r + t])2k| ≤ c, [r + t]−2k ≤ c for all r, t ∈ R and. This yields

I ≤ c〈r〉ν+ν̃〈t〉|ν̃−(N+1)|〈t〉−2L〈τ〉−2K〈[r]ρ+ [r]θτ, [r]η〉−M 〈[r + t]ρ, [r + t]η〉B .

Writing M = M ′ +M ′′ for suitable M ′,M ′′ ≥ 0 to be fixed later on, we have

〈[r]ρ+ [r]θτ, [r]η〉−M = 〈[r]ρ+ [r]θτ, [r]η〉−M
′
〈[r]ρ+ [r]θτ, [r]η〉−M

′′

≤ c〈[r]η〉−M
′
〈[r]ρ, [r]η〉−M

′′
〈[r]θτ〉M

′′
≤ c〈[r]η〉−M

′
〈[r]ρ〉−M

′′
〈[r]θτ〉M

′′
.

We applied once again Peetre’s inequality which gives us also

〈[r + t]ρ, [r + t]η〉B ≤ c〈[r + t]ρ〉B〈[r + t]η〉B
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since B ≥ 0. Thus

I ≤ c〈r〉ν+ν̃〈t〉|ν̃−(N+1)|−2L〈τ〉−2K〈[r]θτ〉M
′′
〈[r+ t]ρ〉B〈[r]ρ〉−M

′′
〈[r+ t]η〉B〈[r]η〉−M

′
.

Let us show that 〈t〉−B〈[r + t]ρ〉B〈[r]ρ〉−B ≤ c. In fact, this is evident in the regions
|r| ≤ C, |t| ≤ C or |r| ≥ C, |t| ≤ C for some C > 0. For |r| ≤ C, |t| ≥ C the estimate
essentially follows from 1 + t2ρ2 ≤ (1 + t2)(1 + ρ2). For |r| ≥ C, |t| ≥ C, we can
suppose that [r + t] ≥ C, and hence, [r + t] = |r + t|, [r] = |r|. Then the estimate
follows from

〈t〉−2〈[r + t]ρ〉2〈[r]ρ〉−2 =
1 + |r + t|2|ρ|2

(1 + |t|2)(1 + |rρ|2)
≤ 1 + |rρ|2 + |tρ|2 + 2|rtρ2|

1 + |t|2 + |rρ|2 + |rtρ|2

≤ c1 + |rρ|2 + |tρ|2 + 2|rtρ2|
1 + |rρ|2 + |tρ|2

≤ c
(

1 +
2|rtρ2|

1 + |rρ|2 + |tρ|2

)
≤ const.

In the last inequality we employed that

|rtρ2|
1 + |rρ|2 + |tρ|2

≤ |rt|
r2 + t2

=
|r|

r2 + t2
|t|

r2 + t2
≤ const.

Analogously we have 〈t〉−B〈[r + t]η〉B〈[r]η〉−B ≤ c. This gives us the estimate

I ≤ c〈r〉ν+ν̃〈t〉|ν̃−(N+1)|−2L+2B〈τ〉−2K〈[r]θτ〉M
′′
〈[r]ρ〉B−M

′′
〈[r]η〉B−M

′
.

Finally, using 〈τ〉−M ′′〈r〉−M ′′〈[r]θτ〉M ′′ ≤ c for all 0 ≤ θ ≤ 1 and all r, τ , we obtain

I ≤ c〈r〉ν+ν̃+M
′′
〈t〉|ν̃−(N+1)|−2L+2B〈τ〉−2K+M ′′

〈[r]ρ〉B−M
′′
〈[r]η〉B−M

′

for all r, t ∈ R, ρ, τ ∈ R, 0 ≤ θ ≤ 1. Choosing K and L so large that

−2K +M ′′ < −1, |ν̃ − (N + 1)| − 2L+ 2B < −1,

it follows that ‖rN (r, ρ, η)‖s′,s′′ ≤ c〈r〉ν+ν̃+M ′′〈[r]η〉B−M ′〈ρ〉B−M ′′
for η 6= 0. Here

we used that 〈[r]ρ〉B−M ′′ ≤ c〈ρ〉B−M ′′
for B −M ′′ ≤ 0. Let us now show that for

B −M ′ ≤ 0
〈[r]η〉B−M

′
≤ c[r]B−M

′
〈η〉B−M

′
(2.2.28)

for all |η| ≥ ε > 0 and some c = c(ε) > 0. In fact, we have

[r]2〈η〉2

1 + |[r]η|2
=

[r]2

1 + |[r]η|2
〈η〉2

1 + |[r]η|2
∼ c 1

[r]−2 + |η|2
1

|η|−2 + [r]2
≤ c,

i.e., (1 + |[r]η|2)−1 ≤ c[r]−2〈η〉−2 which entails the estimate (2.2.28). It follows

‖rN (r, ρ, η)‖s′,s′ ≤ c〈r〉ν+ν̃+M
′′+B−M ′

〈ρ〉B−M
′′
〈η〉B−M

′
.

Now B is fixed, and M,M ′′ can be chosen independently so large that

B −M ′′ ≤ −k, B −M ′ ≤ −m, ν + ν̃ +M ′′ +B −M ′ ≤ −l.

Therefore, we proved that for every s′, s′′ ∈ R and k, l,m ∈ N there is an N ∈ N such
that

‖rN (r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m (2.2.29)

for all (r, ρ) ∈ R2, |η| ≥ ε > 0. In an analogous manner we can show the estimates
(2.2.19) for all i, j.
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Proposition 2.2.10. For every a(r, ρ, η) ∈ Sµ,ν and ϕ(r) = [r]ν̃ (which belongs to
S0,ν̃) for every η 6= 0 we have (as operators Opr(ã(r, [r]ρ, [r]η)) : C∞0 (R, C∞(X)) →
C∞(R, C∞(X)))

Opr(a)(η) ◦ ϕ = ϕ ◦Opr(d)(η) +R(η) (2.2.30)

for some d(r, ρ, η) ∈ Sµ,ν and a remainder R(η) = Opr(rN )(η) which is an operator
function rN (r, ρ, η) ∈ C∞

(
R × R × Rqη, L

(
Hs′(X),Hs′′(X)

))
for every given s′, s′′

and sufficiently large N = N(s′, s′′) ∈ N, satisfying the estimates (2.2.19) for all
(r, ρ) ∈ R2 and all |η| ≥ ε > 0.

Proof. We apply the relation (2.2.18) to the case b(r, ρ, η) = ϕ(r), where N is so large
that the remainder forms a bounded operator Hs′(X)→ Hs′′(X), and obtain

Op(a) ◦ ϕ = Op(a#ϕ) =
N∑
k=0

Op
(

1
k!
∂kρa(r, ρ, η)D

k
rϕ(r)

)
+R(η) (2.2.31)

for R(η) = Op(rN ) and rN (r, ρ, η) is as in (2.2.19). For the sum on the right hand
side of (2.2.31) we have

N∑
k=0

Op
(

1
k!
∂kρa(r, ρ, η)D

k
rϕ(r)

)

= ϕ(r) ◦Op

(
a(r, ρ, η) + ∂ρa(r, ρ, η)ν̃

[r]′

[r]
+

N∑
k=2

1
k!
∂kρa(r, ρ, η)ϕk(r)

)
,

for some ϕk(r) ∈ C∞0 (R), k = 2, . . . , N . Let us set

d(η) := a(r, ρ, η) + ∂ρa(r, ρ, η)ν̃
[r]′

[r]
+

N∑
k=2

1
k!
∂kρa(r, ρ, η)ϕk(r).

Then, using Proposition 2.2.4, we easily see that d(η) ∈ Sµ,ν . This completes the
proof.

Let us now return to the interpretation of (2.2.14) as a left symbol of a composition
of operators. From Theorem 2.2.8 we know that

Opr(a)(η),Opr(b)(η) : S
(
R, C∞(X)

)
→ S

(
R, C∞(X)

)
are continuous operators. Thus also Opr(a)(η)Opr(b)(η) is continuous between the
Schwartz spaces. This shows, in particular, that the oscillatory integral techniques of
[19] also apply for our (here operator-valued) amplitude functions, and we obtain the
relation (2.2.15).

Let A(η) = Opr(a)(η) for

a(r, ρ, η) := ã(r, [r]ρ, [r]η), ã(r, ρ̃, η̃) ∈ Sν
(
R, Lµcl(X; R1+q

ρ̃,η̃ )
)
.

Then we form the formal adjoint A∗(η) with respect to the L2(R×X)-scalar product,
according to (

A(η)u, v
)
L2(R×X)

=
(
u,A∗(η)v

)
L2(R×X)
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for all u, v ∈ S
(
R, C∞(X)

)
. As usual we obtain

A∗(η)v(r′) = Opr′(a
∗)(η)v(r′)

for the right symbol a∗(r′, ρ, η) = ā(r′, ρ, η) = ˜̄a(r′, [r′]ρ, [r′]η). Similarly as before we
can prove that

Opr′(a
∗)(η) : S

(
R, C∞(X)

)
→ S

(
R, C∞(X)

)
is continuous for every η 6= 0. Thus by duality it follows that

Opr(a)(η) : S ′
(
R, E ′(X)

)
→ S ′

(
R, E ′(X)

)
(2.2.32)

is continuous for every η 6= 0. By S ′
(
R, E ′(X)

)
we mean here the space of all contin-

uous functionals on S
(
R, C∞(X)

)
with the strong topology of the bounded conver-

gence. Another way to interpret the space S
(
R, C∞(X)

)
is to say that f ∈ E ′(X)⇔

f ∈ Hs(X) for some real s ∈ R; then S ′
(
R, E ′(X)

)
means the inductive limit of the

spaces L
(
S(R),Hs(X)

)
over s ∈ R.

Remark 2.2.11. From the identifications

E ′(X) =
⋃
s∈R

Hs(X), S(R) =
⋂

m,g∈R
Hm;g(R),

for Hm;g(X) = 〈r〉−gHm(X), we see that

u ∈ S ′
(
R, E ′(X)

)
⇔ u ∈ L

(
Hm;g(R),Hs(X)

)
for a certain s ∈ R and some m, g ∈ R dependent on s.

Lemma 2.2.12. For every s′, s′′ ∈ R and k, l,m ∈ N there exists a real
µ(s′, s′′, k, l,m) such that for every a(r, ρ, η) ∈ Sµ,ν , ν ∈ R we have

‖a(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

(r, ρ) ∈ R2, whenever µ ≤ µ(s′, s′′, k, l,m), |η| ≥ ε > 0.

Proof. The proof is straightforward, using Theorem 2.2.2, more precisely, writing
a(r, ρ, η) = ã(r, [r]ρ, [r]η), we have the estimate

‖ã(r, ρ̃, η̃)‖s′,s′′ ≤ c〈r〉ν〈ρ̃, η̃〉−N

for every fixed N ∈ N when µ is chosen sufficiently negative (depending on N),
uniformly in r ∈ R. Then, similarly as in the proof of Lemma 2.2.9, we obtain for
suitable N and given k, l,m that 〈[r]ρ, [r]η〉−N ≤ c〈ρ〉−k〈r〉−l+ν〈η〉−m for |η| ≥ ε >
0.

Corollary 2.2.13. Let a(r, ρ, η) ∈ S−∞,ν
(
:=
⋂
µ∈R Sµ,ν

)
. Then for every s′, s′′ ∈ R,

k, l,m ∈ N we have

‖Di
rD

j
ρa(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

for all (r, ρ) ∈ R2, |η| ≥ ε > 0, i, j ∈ N, for some constants c = c(s′, s′′, k, l,m, ε) > 0.
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Proposition 2.2.14. The kernels c(r, r′, η) of operators Opr(a)(η) for a ∈ S−∞,ν ,
ν ∈ R, belong to

C∞
(
Rq \ {0},S

(
R× R,L(Hs′(X),Hs′′(X)

))
, (2.2.33)

for all s′, s′′ ∈ R, and are strongly decreasing in η for |η| ≥ ε > 0 together with all
η-derivatives, more precisely, we have

sup ‖〈η〉αDβ
η 〈r, r′〉σDτ

rD
τ ′

r′ c(r, r
′, η)‖s′,s′′ <∞ (2.2.34)

for every β ∈ Nq, α, σ, τ, τ ′ ∈ R with sup being taken over all |η| ≥ ε > 0, (r, r′) ∈ R.

Proof. If we show the result for ν = 0 from Proposition 2.2.4 it follows immediately
for all ν. Write a(r, ρ, η) = ã(r, [r]ρ, [r]η) for ã(r, ρ̃, η̃) ∈ S0

(
R, L−∞(X; R1+q

ρ̃,η̃ )
)
. Then

we have
‖Dγ

ρ̃,η̃ã(r, ρ̃, η̃)‖s′,s′′ ≤ c〈ρ̃, η̃〉
−N

for γ ∈ N1+q and each N ∈ N. For a sufficiently large N this easily gives us

‖Di
rD

j
ρD

α
η a(r, ρ, η)‖s′,s′′ ≤ c〈ρ〉−k〈r〉−l〈η〉−m

for every k, l,m ∈ N, |η| ≥ ε > 0. Now the kernel of Opr(a)(η) has the form∫
ei(r−r

′)ρa(r, ρ, η)d̄ρ =
∫
ei(r−r

′)ρ
(
1 + |r − r′|2

)−M (1−∆ρ)Ma(r, ρ, η)d̄ρ (2.2.35)

for every sufficiently large M . This implies∥∥∥∥∫ ei(r−r
′)ρa(r, ρ, η)d̄ρ

∥∥∥∥
s′,s′′

≤
∫
‖
(
1 + |r − r′|2

)−M (1−∆ρ)Ma(r, ρ, η)‖s′,s′′ d̄ρ

≤ c
(
1 + |r − r′|2

)−M 〈r〉−l〈η〉−m ∫ 〈ρ〉−kd̄ρ
≤ c
(
1 + |r − r′|2

)−M 〈r〉−l〈η〉−m <∞

for k ≥ 2. In a similar manner we can treat the (r, r′)- and η-derivatives of the
kernel.

Definition 2.2.15. (i) Let L−∞,−∞(X�; Rq\{0}) denote the space of all operators
with kernels c(r, r′, η) as in Proposition 2.2.14. Moreover, for purposes below,
let L−∞,−∞(X�) denote the space of all operators with kernels

c(r, r′) ∈
⋂

s′,s′′∈R
S
(
R× R,L

(
Hs′(X),Hs′′(X)

))
.

(ii) Let Lµ,ν(X�; Rq \ {0}) denote the space of all operators of the form

A(η) = Opr(a)(η) + C(η),

depending on the parameter η ∈ Rq \ {0}, for arbitrary a(r, ρ, η) ∈ Sµ,ν and
operators C(η) ∈ L−∞,−∞(X�; Rq \ {0}).
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Theorem 2.2.16. (i) For every p̃(ρ̃, η̃) ∈ Lscl(X; R1+q
ρ̃,η̃ ), s ≤ 0, and p(r, ρ, η) =

p̃([r]ρ, [r]η), the operator

Opr(p)(η) : L2(R×X)→ L2(R×X) (2.2.36)

is continuous for every η ∈ Rq \ {0}, and we have

‖Opr(p)(η)‖L(L2(R×X)) ≤ c〈η〉s (2.2.37)

for all |η| ≥ ε, ε > 0 and a constant c = c(ε) > 0.

(ii) In the case s < 0 the operator

[r]−s+gOpr(p)(η) : L2(R×X)→ L2(R×X) (2.2.38)

is compact for every g < 0 and η 6= 0.

Proof. (i) For the continuity (2.2.36) and the estimate (2.2.37) we apply a version of
Calderón-Vaillancourt theorem which states that if H is a Hilbert space and a(r, ρ) ∈
C∞

(
R× R,L(H)

)
is a symbol satisfying the estimate

π(a) := sup
k,l=0,1
(r,ρ)∈R2

‖Dk
rD

l
ρa(r, ρ)‖L(H) <∞ (2.2.39)

the operator
Opr(a) : L2(R,H)→ L2(R,H)

is continuous, where
‖Opr(a)‖L(L2(R,H)) ≤ cπ(a)

for a constant c > 0. In the present case we have

a(r, ρ) = p̃([r]ρ, [r]η) (2.2.40)

where η 6= 0 appears as an extra parameter. It is evident that the right hand side of
(2.2.40) belongs to C∞

(
R × R × Rq,L(L2(X))

)
. From the assumption on p̃(ρ̃, η̃) we

have
sup
r∈R
‖p̃(ρ̃, η̃)‖L(L2(X)) ≤ c〈ρ̃, η̃〉s (2.2.41)

for all (ρ̃, η̃) ∈ R1+q and some c > 0. In fact, the latter estimate corresponds to (2.2.5)
for s = ν = 0 and µ = s ≤ 0. For (2.2.39) we first check the case l = k = 0. We have

sup
(r,ρ)∈R2

〈[r]ρ, [r]η〉s ≤ c〈η〉s (2.2.42)

for all |η| ≥ ε > 0 and some c = c(ε) > 0. Thus (2.2.41) gives us

sup
(r,ρ)∈R2

‖p̃([r]ρ, [r]η)‖L(L2(X)) ≤ c〈η〉s

for such a c(ε) > 0. Assume now for simplicity q = 1 (the general case is then
straightforward). For the first order derivatives of p̃([r]ρ, [r]η) in r we have

∂rp̃([r]ρ, [r]η) = [r]′(ρ∂ρ̃ + η∂η̃)p̃([r]ρ, [r]η) (2.2.43)
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for [r]′ = d
dr [r]. For the derivatives of p̃ with respect to ρ̃, η̃ we employ that ∂ρ̃p̃(ρ̃, η̃),

∂η̃p̃(ρ̃, η̃) ∈ Ls−1(X; R1+q
ρ̃,η̃ ). Thus, similarly as before we obtain

‖∂αρ̃,η̃p̃(ρ̃, η̃)‖L(L2(X)) ≤ c〈ρ̃, η̃〉s−1

for any α ∈ N2, |α| = 1. This gives us for the right hand side of (2.2.43)

sup
(r,ρ)∈R2

‖[r]−1[r]′([r]ρ∂ρ̃ + [r]η∂η̃)p([r]ρ, [r]η)‖L(L2(X))

≤ sup[r]−1|[r]ρ+ [r]η|〈[r]ρ, [r]η〉s−1

≤ c〈η〉s sup[r]−1|[r]ρ, [r]η|〈[r]ρ, [r]η〉−1 ≤ c〈η〉s.

Here we employed (2.2.42). For the derivative of p([r]ρ, [r]η) in ρ we have

sup ‖∂ρp̃([r]ρ, [r]η)‖L(L2(X)) = sup ‖[r](∂ρ̃p̃)([r]ρ, [r]η)‖L(L2(X))

≤ c sup[r]〈[r]ρ, [r]η〉s−1 ≤ c〈η〉s

for all |η| ≥ ε > 0. This gives altogether the estimate (2.2.37). To obtain (2.2.36) we
only need to note that L2

(
R, L2(X)

)
= L2(R×X).

(ii) For s < 0 the operator

[r]−s+gOpr(p)(η), η 6= 0 fixed,

can be regarded as an operator with symbol

a(r, ρ) ∈ Ss;g
(
R× R;L2(X), L2(X)

)
(2.2.44)

with values in compact operators L2(X) → L2(X), since X is compact. The symbol
class on the right of (2.2.44) refers to the trivial group action on L2(X) (cf. the
notation in (3.1.8)). In order to verify (2.2.44) we have to check the estimate

‖∂kr ∂lρ[r]−s+gp̃([r]ρ, [r]η)‖L(L2(X)) ≤ c〈r〉g−k〈ρ〉s−l (2.2.45)

for all (r, ρ) ∈ R2 and k, l ∈ N. First, because of

‖[r]−s+gp̃([r]ρ, [r]η)‖L(L2(X)) ≤ c[r]−s+g〈[r]ρ, [r]η〉s ≤ c〈r〉g〈ρ〉s (2.2.46)

for all (r, ρ) ∈ R2 and some constant c > 0, the estimate (2.2.45) is true for k = l = 0.
Let us now check (2.2.45) for k = 0, l = 1. In this case we have ∂ρ[r]−s+gp̃([r]ρ, [r]η) =
[r]−s+g+1(∂ρ̃p̃)([r]ρ, [r]η). Since (∂ρ̃p̃)(ρ̃, η̃) ∈ Ls−1

cl (X; R1+q
ρ̃,η̃ ) we are in the same situ-

ation as (2.2.46) with s− 1 instead of s. Inductively we obtain (2.2.45) for arbitrary
l ∈ N and k = 0. For k = 1 we have

∂r

(
[r]−s+g+l(∂lρ̃p̃)([r]ρ, [r]η)

)
= (−s+ g + l)[r]′[r]−s+g+l−1(∂lρ̃p̃)([r]ρ, [r]η)

+ [r]−s+g+l−1[r]′([r]ρ)(∂l+1
ρ̃ p̃)([r]ρ, [r]η) + [r]−s+g+l−1[r]′([r]η)(∂η̃∂lρ̃p̃)([r]ρ, [r]η).

For the first term on the right hand side we have

‖(−s+ g + l)[r]′[r]−1[r]−s+g+l(∂lρ̃p̃)([r]ρ, [r]η)‖L(L2(X)) ≤ c[r]g−1〈ρ〉s−l.
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The other two terms admit analogous estimates since ρ̃(∂l+1
ρ̃ p̃)(ρ̃, η̃), η̃(∂η̃∂lρ̃p̃)(ρ̃, η̃) ∈

Ls−lcl (X; R1+q
ρ̃,η̃ ). In other words we obtain (2.2.45) for k = 1 and arbitrary l. The

higher r-derivatives can be treated in an analogous manner, i.e., we obtain (2.2.45)
in general. Consequently we have proved that

[r]−s+gp̃([r]ρ, [r]η) ∈ Ss;g
(
R× R;L2(X), L2(X)

)
.

The values of the operator function [r]−s+gp̃([r]ρ, [r]η) are compact for s, g < 0.
Finally we use the following lemma, its proof can be found in [43, Chapter 7]:

Lemma 2.2.17. Let H, H̃ be two Hilbert spaces with group actions, and a(y, η) ∈
Ss;g(Rq × Rq;H, H̃), s, g < 0; moreover, let a(y, η) : H → H̃ be a compact operator
for every (y, η) ∈ R2q. Then

Op(a) : 〈y〉−g
′
Ws′(Rq,H)→ 〈y〉g

′
Ws′(Rq, H̃)

is compact for every s′, g′ ∈ R.

By virtue of Lemma 2.2.17 the operator

[r]−s+gOp(p) :W0
(
R, L2(X)

)
→W0

(
R, L2(X)

)
is compact. It remains to note that

W0
(
R, L2(X)

)
= L2

(
R, L2(X)

)
= L2(R×X).

Remark 2.2.18. Using Calderón-Vaillancourt theorem one can also prove that any
operator A ∈ L0;0(X�; Rq \ {0}) induces continuous operators

A(η) : L2(R×X)→ L2(R×X).

Theorem 2.2.19. Let a ∈ Sµ,ν , b ∈ Sµ̃,ν̃ ; then we have

Opr(a)(η)Opr(b)(η) ∈ Lµ+µ̃,ν+ν̃(X�; Rq \ {0}).

Proof. According to (2.2.15) the composition can be expressed by a#b, given by the
formula (2.2.14). By virtue of Corollary 2.2.5 we have

1
k!
∂kρa(r, ρ, η)D

k
r b(r, ρ, η) ∈ Sµ+µ̃−k,ν+ν̃ ,

i.e., this symbol has the form ck(r, ρ, η) = c̃k(r, [r]ρ, [r]η) for some

c̃k(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lµ+µ̃−k

cl (X; R1+q
ρ̃,η̃ )

)
.

Applying Proposition 2.2.7 we form the asymptotic sum

∞∑
k=0

c̃k(r, ρ̃, η̃) ∼ c̃(r, ρ̃, η̃) ∈ Sν+ν̃
(
R, Lµ+µ̃

cl (X; R1+q
ρ̃,η̃ )

)
.
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Setting c(r, ρ, η) = c̃(r, [r]ρ, [r]η) from (2.2.18) we obtain

Opr(a#b)(η) = Opr(c)(η) + Opr

(
N∑
k=0

ck − c

)
(η) + Opr(rN )(η)

modulo L−∞,−∞(X�; Rq \{0}), where
(∑N

k=0 ck − c
)

(r, ρ, η) ∈ Sµ+µ̃−(N+1),ν . Since
this is true for every N ∈ N Lemma 2.2.12 gives us the right remainder esti-
mate also for ‖Opr(

∑N
k=0 ck − c)‖s′,s′′ , and it follows altogether that the kernel of

Opr(a#b)(η) − Opr(c)(η) has finite semi-norms (2.2.34) as indicated in Proposition
2.2.14 for arbitrary α, β ∈ Nq, σ, τ, τ ′ ∈ R, s′, s′′ ∈ R, |η| ≥ ε > 0.

Theorem 2.2.20. Let p̃(ρ̃, η̃) ∈ Lscl(X; R1+q) be parameter-dependent elliptic of order
s ∈ R, and set p(r, ρ, η) = p̃([r]ρ, [r]η). Then there exists a C > 0 such that for every
|η| ≥ C the operator

[r]−sOpr(p)(η) : S
(
R, C∞(X)

)
→ S

(
R, C∞(X)

)
(2.2.47)

extends to an injective operator

[r]−sOpr(p)(η) : L2(R×X)→ S ′
(
R, E ′(X)

)
. (2.2.48)

More precisely, considering [r]−sOpr(p)(η) as an operator

[r]−sOpr(p)(η) : L2(R×X)→ L
(
S(R),Ht(X)

)
, (2.2.49)

which is continuous for some t ∈ R, then it is injective.

Proof. First, according to (2.2.32) there is a t such that (2.2.49) is continuous for all
g, l ∈ R. For the injectivity we show that the operator has a left inverse. This will be
approximated by Opr(a) for

a(r, ρ, η) := [r]sp̃(−1)([r]ρ, [r]η) (2.2.50)

where p̃(−1)(ρ̃, η̃) ∈ L−scl (X; R1+q) is a parameter-dependent parametrix of p̃(ρ̃, η̃).
Setting

b(r, ρ, η) := [r]−sp̃([r]ρ, [r]η) (2.2.51)

we can write the composition of the associated pseudo-differential operators in r for
every N ∈ N in the form

Opr(a)(η)Opr(b)(η) = Opr(a#b)(η) = Opr
(
1 + cN (r, ρ, η) + rN (r, ρ, η)

)
(2.2.52)

for cN (r, ρ, η) =
∑N
k=1

1
k!∂

k
ρa(r, ρ, η)D

k
r b(r, ρ, η) has the form

cN (r, ρ, η) = c̃N (r, [r]ρ, [r]η) for some c̃N (r, ρ̃, η̃) ∈ S0
(
R, L−1

cl (X; R1+q)
)
.

Moreover, the remainder rN is as in (2.2.17). From Theorem 2.2.16 for s = −1 we
know that

‖Opr(cN )(η)‖L(L2(R×X)) ≤ c〈η〉−1
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for |η| > ε. Moreover, Lemma 2.2.9, applied to s′ = s′′ = 0 together with an operator-
valued version of the Calderón-Vaillancourt theorem, gives us

‖Opr(rN )(η)‖L(L2(R×X)) ≤ c〈η〉−1

for sufficiently large N . Thus for every |η| sufficiently large the operator on the right
of (2.2.52) is invertible in L2(R×X), i.e., Opr(b)(η) has a left inverse which implies
the injectivity.

Theorem 2.2.21. A ∈ Lµ,ν(X�; Rq \ {0}), B ∈ Lµ̃,ν̃(X�; Rq \ {0}) implies AB ∈
Lµ+µ̃,ν+ν̃(X�; Rq \ {0}).

Proof. Let us write

A(η) = Opr(a)(η) + C1(η), B(η) = Opr(b)(η) + C2(η)

for a ∈ Sµ,ν , b ∈ Sµ̃,ν̃ , and C1(η), C2(η) ∈ L−∞,−∞(X�; Rq \ {0}). Then we have

AB = Opr(a)(η)Opr(b)(η) + C1(η)Opr(b)(η) + Opr(a)(η)C2(η) + C1(η)C2(η).

Theorem 2.2.19 implies that Opr(a)(η)Opr(b)(η) ∈ Lµ+µ̃,ν+ν̃(X�; Rq \ {0}). More-
over, the composition of smoothing families is again smoothing. It remains to show
that

C1(η)Opr(b)(η),Opr(a)(η)C2(η) ∈ L−∞,−∞(X�; Rq \ {0}). (2.2.53)

To this end we write C1(η) = Opr(c1)(η), C2(η) = Opr(c2)(η) for c1 ∈ S−∞,ν1 ,
c2 ∈ S−∞,ν2 for some ν1, ν2 ∈ R. Then, by virtue of (2.2.15), C1(η)Opr(b)(η) =
Opr(c1#b)(η), Opr(a)C2(η) = Opr(a#c2)(η). Finally we observe that c1#b ∈
S−∞,ν1+ν̃ and a#c2 ∈ S−∞,ν+ν2 and hence they are as in Corollary 2.2.13, which
completes the proof.

Remark 2.2.22. It is sometimes desirable to consider operators of the form A(η1)
for some A(η) ∈ Lµ,ν(X�; Rq \{0}) where η1 ∈ Rq \{0} fixed. Then we can easily pass
to new parameter-dependent situation by replacing η1 by δη1, δ ∈ R. This produces a
family A(δη1) ∈ Lµ,ν(X�; R \ {0}). For instance, if A and B are two operators, in
order to characterise the composition

A(η1)B(η2)

for fixed η1, η2 ∈ Rq \ {0} we can apply Theorem 2.2.21 to A(δη1), B(δη2), and then
set δ = 1.

Definition 2.2.23. An A ∈ Lµ,−µ+ν(X�; Rq \ {0}) is called elliptic if it can be
written in the form

A(η) = Opr(a)(η) + C(η)

for C(η) ∈ L−∞,−∞(X�; Rq\{0}), a(r, ρ, η) ∈ Sµ,−µ+ν for which there is a b(r, ρ, η) ∈
S−µ,µ−ν such that

1− a(r, ρ, η)b(r, ρ, η), 1− b(r, ρ, η)a(r, ρ, η) ∈ S−1,−1.
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Proposition 2.2.24. Let A1 ∈ Lµ,−µ+ν(X�; Rq \{0}), A2 ∈ Lµ̃,−µ̃+ν̃(X�; Rq \{0})
be elliptic. Then A1A2 ∈ Lµ+µ̃,−(µ+µ̃)+ν+ν̃(X�; Rq \ {0}) is also elliptic.

Proof. By definition we can write

Ai = Op(ai) + Ci

ai(r, ρ, η) = ãi(r, [r]ρ, [r]η), i = 1, 2, and there are corresponding symbols bi(r, ρ, η) =
b̃i(r, [r]ρ, [r]η), i = 1, 2. Then we have

A1A2 = Op(a1#a2) = Op(a3) + C3

for a3(r, ρ, η) = ã3(r, [r]ρ, [r]η) ∈ Sµ+µ̃,−(µ+µ̃)+ν+ν̃ , C3 ∈ L−∞,−∞. Now it suffices to
set b3(r, ρ, η) := b2(r, ρ, η)b1(r, ρ, η), and it follows that

1− a3b3 = 1− (a1#a2)b2b1 = 1− a1a2b2b1 − (a1#a2 − a1a2)b2b1. (2.2.54)

Using a2b2 = 1 + c2, a1b1 = 1 + c1 for c1, c2 ∈ S−1,−1 it follows that

1−a1a2b2b1 = 1−a1(1+c2)b1 = 1−a1b1−a1c2b1 = 1−(1+c1)−a1c2b1 = −c1−a1c2b1.

From Proposition 2.2.4 (iii) it follows that the right hand side of the latter relation
belongs to S−1,−1. Moreover, we have

(a1#a2 − a1a2)b1b2 ∈ Sµ+µ̃−1,−(µ+µ̃)+ν+ν̃−1S−(µ+µ̃),µ+µ̃−(ν+ν̃) ⊂ S−1,−1.

Thus the right hand side of (2.2.54) belongs to S−1,−1. In a similar manner we can
check that 1− b3a3 ∈ S−1,−1.

Theorem 2.2.25. Let A ∈ Lµ,−µ+ν(X�; Rq \ {0}) be elliptic. Then there exists a
parametrix P ∈ L−µ,µ−ν(X�; Rq \ {0}) in the sense that

1−AP, 1− PA ∈ L−∞,−∞(X�; Rq \ {0}).

Proof. By definition we can write A = Op(a) + C for an a ∈ Sµ,−µ+ν such that for
some p ∈ S−µ,µ−ν we have 1− ap, 1− pa ∈ S−1,−1, and C ∈ L−∞,−∞(X�; Rq \ {0}).
Let us form P0 = Op(p); then

AP0 = Op(a#p) mod L−∞,−∞.

Let us write a#p = ap + (a#p − ap). From a#p = ap mod S−1,−1 and ap = 1
mod S−1,−1 it follows that AP0 = 1 +D for some D ∈ L−1,−1. A formal Neumann
series argument gives us a K ∈ L−1,−1 such that (1 +D)(1 +K) = 1 + C for some
C ∈ L−∞,−∞, and P0(1 +K) ∈ L−µ,µ−ν(X�; Rq \ {0}) is then a right parametrix of
A. In a similar manner we conclude that there is a left parametrix, i.e., we may set
P = P0(1 +K).
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2.3 Parameter-dependent operators on an infinite
cylinder

2.3.1 Weighted cylindrical spaces

Definition 2.3.1. Let s, g ∈ R and fix some p̃(ρ̃, η̃) ∈ Lscl(X; R1+q
ρ̃,η̃ ) as in Theorem

2.2.20. Then Hs;g
cone(X

�) is defined to be the completion of S(R ×X) with respect to
the norm

‖[r]−s+g+ n
2 Opr(p)(η

1)u‖L2(R×X)

for any fixed η1 ∈ Rq, |η1| ≥ C for some C > 0 sufficiently large, and n = dimX.

Setting ps,g(r, ρ, η) := [r]−s+g+
n
2 p̃([r]ρ, [r]η), from Definition 2.3.1 it follows that

Op(ps,g)(η1) : S(R×X)→ S(R×X)

extends to a continuous operator

Op(ps,g)(η1) : Hs;g
cone(X

�)→ L2(R×X). (2.3.1)

Moreover, the operator P (η) = Op(ps,g)(η) ∈ Ls,−s+g+ n
2 (X�; Rq \ {0}) is elliptic

and hence it has a parametrix P (−1)(η) ∈ L−s,s−g−
n
2 (X�; Rq \ {0}). We can choose

P (−1)(η) in such a way that for some C > 0

P (−1)(η) = P−1(η) for |η| > C.

In fact, the relation

1− P (η)P (−1)(η) = C(η) ∈ L−∞,−∞(X�; Rq \ {0})

allows us to replace P (−1)(η) by
(
1− χ(η)

)
P (−1)(η) + χ(η)P (−1)(η)

(
1− C(η)

)−1 for
an excision function χ(η) such that χ(η) = 1 for |η| ≥ C so large that

(
1 − C(η)

)−1

exists.

Theorem 2.3.2. The operator (2.3.1) is an isomorphism for every fixed s, g ∈ R and
|η1| sufficiently large.

Proof. We show the invertibility by verifying that there is a right and a left inverse.
By notation we have ps,g(r, ρ, η) = [r]−s+g+

n
2 p̃([r]ρ, [r]η) ∈ Ss,−s+g+ n

2 . The operator
family p̃(ρ̃, η̃) ∈ Lscl(X; R1+q

ρ̃,η̃ ) is invertible for large |ρ̃, η̃| ≥ C for some C > 0.
There exists a parameter-dependent parametrix p̃(−1)(ρ̃, η̃) ∈ L−scl (X; R1+q

ρ̃,η̃ ) such that
p̃(−1)(ρ̃, η̃) = p̃−1(ρ̃, η̃) for |ρ̃, η̃| ≥ C. Let us set

p−s,−g(r, ρ, η) := [r]s−g−
n
2 p̃(−1)([r]ρ, [r]η) ∈ S−s,s−g−

n
2 ,

and P s,g(η) := Op(ps,g)(η), P−s,−g(η) := Op(p−s,−g)(η). Then we have

P s,g(η)P−s,−g(η) = 1 + Op(cN )(η) +RN (η) (2.3.2)
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for some cN (r, ρ, η) ∈ S−1,0 and a remainder RN (η) = Op(rN )(η) where rN is as in
Lemma 2.2.9. We have Op(cN )(η)→ 0 and RN (η)→ 0 in L(L2(R×X)) as |η| → ∞;
the first property is a consequence of Theorem 2.2.16 (i), the second of the estimate
(2.2.19). Thus (2.3.2) shows that P s,g(η) has a right inverse for |η| sufficiently large.
Such considerations remain true when we interchange the role of s, g and −s,−g. In
other words, we also have

P−s,−g(η)P s,g(η) = 1 + Op(c̃N )(η) + R̃N (η)

where Op(c̃N )(η) and R̃N (η) are of analogous behaviour as before. This shows that
P s,g(η) has a left inverse for large |η|, and we obtain altogether that (2.3.1) is an
isomorphism for η = η1, |η1| sufficiently large.

2.3.2 Elements of the calculus

The results of Section 2.2.3 show the behaviour of compositions of parameter-
dependent families Op(a)(η) for a(r, ρ, η) ∈ Sµ,ν and η 6= 0, first on S(R × X).
In particular, it can be proved that, when we concentrate, for instance, on the case
s′ = s′′ = 0, the inverses of operators of the form 1 +K : L2(R ×X) → L2(R ×X),
for K ∈ L−∞,−∞(X�; Rq \ {0}), can be written in the form 1 + L where L is again
an operator of such a smoothing behaviour. Moreover, there are other (more or less
standard) constructions that are immediate by the results of Section 2.2. For instance,
if we look at an element c(r, ρ, η) ∈ S−1,0 as cN in the relation (2.3.2). By a formal
Neumann series argument we find a d(r, ρ, η) ∈ S−1,0 such that(

1 + Op(c)
)(

1 + Op(d)
)

= 1 + Op(rM )

for every M ∈ N with a remainder rM which is again as in Lemma 2.2.9.

Theorem 2.3.3. Let a(r, ρ, η) ∈ Sµ,−µ+ν and |η| 6= 0. Then

Op(a)(η) : S(R×X)→ S(R×X)

extends to a continuous operator

Op(a)(η) : Hs;g
cone(X

�)→ Hs−µ;g−ν
cone (X�) (2.3.3)

for every s, g ∈ R.

Proof. Let u ∈ S(R × X), and set ‖ · ‖s;g := ‖ · ‖Hs;g
cone(X�), in particular, ‖ · ‖0;0 =

‖ · ‖L2(R×X). By definition we have ‖u‖s;g = ‖Op(ps,g)(η1)u‖0;0. Then we have

‖Op(a)(η)u‖s−µ;g−ν = ‖Op(ps−µ;g−ν)(η1)Op(a)(η)u‖0;0
= ‖Op(ps−µ;g−ν)(η1)Op(a)(η)Op(ps,g)−1(η1)Op(ps,g)(η1)u‖0;0 (2.3.4)

for |η1| large enough. Here the parameter η ∈ Rq \ {0} is also fixed. In order to apply
Remark 2.2.18 we pass to the operator functions Op(ps−µ,g−ν)(δη1), Op(a)(δη), etc.,
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δ ∈ R \ {0}, and obtain families Op(a) ∈ Lµ,−µ+ν(X�; Rδ \ {0}), etc., cf. Remark
2.2.22. Those can be multiplied within our calculus, and it follows that

Op(ps−µ,g−ν)(δη1)Op(a)(δη)Op(ps,g)−1(δη1) ∈ L0,0(X�; R \ {0}).

By virtue of Remark 2.2.18 this is a family of continuous operators in L2(R×X), and
hence, returning to δ = 1, the right hand side of (2.3.4) can be estimated by

‖Op(ps−µ,g−ν)(η1)Op(a)(η)Op(ps,g)−1(η1)‖0;0‖Op(ps,g)(η1)u‖0;0 = c‖u‖s;g

for a constant 0 < c <∞.

Theorem 2.3.4. Let A ∈ Lµ,−µ+ν(X�; Rq \ {0}) be elliptic. Then there is a C > 0
such that

A(η) : Hs;g
cone(X

�)→ Hs−µ;g−ν
cone (X�) (2.3.5)

is an isomorphism for every |η| ≥ C and s, g ∈ R. The parametrix B(η) ∈
L−µ,µ−ν(X�; Rq \ {0}) can be chosen in such a way that B(η) = A−1(η) for |η| ≥ C.

Proof. Let us form the operator

A0(η) = Op(ps−µ,g−ν)(η)A(η)Op(ps,g)(−1)(η) (2.3.6)

where Op(ps,g)(−1) is a parametrix of Op(ps,g). Then A0 is elliptic, cf. Proposition
2.2.24, and hence it has a parametrix A(−1)

0 such that

1−A0(η)A
(−1)
0 (η) =: Cr(η), 1−A(−1)

0 (η)A0(η) =: Cl(η) ∈ L−∞,−∞(X�; Rq \ {0}).

The operator 1 − Cl(η) : L2(R ×X) → L2(R ×X) is invertible for large |η|, and by
replacing A(−1)

0 (η) by
(
1− χ(η)

)
A

(−1)
0 (η) + χ(η)A(−1)

0 (η)
(
1−Cl(η)

)−1 for a suitable
excision function χ(η) we obtain another parametrix, again denoted by A(−1)

0 (η), but
with the property

A
(−1)
0 (η) = A−1

0 (η) for |η| > C

for a suitable C > 0. Now, using the relation (2.3.6) we find a parametrix B(η) of
A(η) by setting

B(η) := Op(ps,g)(−1)(η)A(−1)
0 (η)Op(ps−µ,g−ν)(η)

which is invertible for |η| ≥ C for C > 0 sufficiently large.

Theorem 2.3.5. For every s′ ≥ s, g′ ≥ g we have a continuous embedding

E : Hs′;g′

cone (X�) ↪→ Hs;g
cone(X

�) (2.3.7)

that is compact for s′ > s, g′ > g.

Proof. We first show that there is a continuous embedding. To this end we choose an
elliptic element B ∈ Ls′,−s′+g′+ n

2 (X�; Rq \ {0}) that induces isomorphisms

B : Hs′;g′

cone (X�)→ L2(R×X),

B : Hs;g
cone(X

�)→ H
s−s′;g−g′−n

2
cone (X�)
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for every |η| ≥ C for some constant C > 0. Then, according to the following diagram

Hs′;g′

cone (X�) E−−−−→ Hs;g
cone(X

�)

∼=
yB ∼=

yB
L2(R×X) E0−−−−→ H

s−s′;g−g′−n
2

cone (X�),

(2.3.8)

in order to prove that E is continuous it suffices to show that E0 is a continuous
embedding.
We write E0(η) as a composition PQ where Q(η) := Opr

(
[r]−(s′−s)+g′−gq(r, ρ, η)

)
∈

L−(s−s′),s−s′−(g−g′)(X�; Rq \ {0}) for q(r, ρ, η) = q̃([r]ρ, [r]η) and some param-
eter dependent elliptic q̃(ρ̃, η̃) ∈ Ls

′−s
cl (X; R1+q

ρ̃,η̃ ) of order s′ − s, and P (η) :=(
Q(η)|H∞;∞

cone (X�)

)−1 for |η| sufficiently large. It is clear that Q(η) is elliptic in the
sense of Definition 2.2.23 and hence represents an isomorphism

Q(η) : L2(R×X)→ H
s−s′;g−g′−n

2
cone (X�)

for every |η| large enough. Therefore, it is sufficient to show that

P (η) : Hs−s′;g−g′−n
2

cone (X�)→ H
s−s′;g−g′−n

2
cone (X�) (2.3.9)

is continuous for η sufficiently large. Then, since E0(η) = P (η)Q(η) is the identity
operator on H∞;∞

cone (X�), it is also the identity operator on Hs′;g′

cone (X�), i.e., it repre-
sents an embedding operator.
Now, if we define P0(η) by the commutative diagram

H
s−s′;g−g′−n

2
cone (X�) P−−−−→ H

s−s′;g−g′−n
2

cone (X�)

∼=
yB̃ ∼=

yB̃
L2(R×X) P0−−−−→ L2(R×X)

for some elliptic B̃(η) ∈ Ls−s′,−(s−s′)+g−g′(X�; Rq \{0}), it is easy to find an element
p̃0(ρ̃, η̃) ∈ Ls−s

′

cl (X; R1+q
ρ̃,η̃ ) such that P0(η) is written in the form

P0 = Opr
(
[r]−(s−s′)+g−g′p0(r, [r]ρ, [r]η)

)
mod L−∞,−∞(X�; Rq \ {0}),

|η| ≥ C > 0, for p0(r, [r]ρ, [r]η) = p̃0([r]ρ, [r]η). Finally, by virtue of Theorem 2.2.16,
the operator

P0(η) : L2(R×X)→ L2(R×X) (2.3.10)

is continuous for s′ ≥ s, g′ ≥ g and for every η 6= 0. Hence P (η) = (B̃(η))−1P0(η)B̃(η)
is continuous.

For the compactness we apply Theorem 2.2.16 again and obtain that (2.3.10) is
compact for s′ > s, g′ > g, i.e., P (η) = (B̃(η))−1P0(η)B̃(η) is compact, since it
is the composition of continuous operators with a compact one. This implies that
E0(η) = P (η)Q(η) is compact for s′ > s, g′ > g, and also E is compact for s′ > s,
g′ > g, because of the commutative diagram (2.3.8).
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Chapter 3

Axiomatic approach with
corner-degenerate symbols

3.1 Symbols associated with order reductions

3.1.1 Scales and order reducing families

Let E denote the set of all families E = (Es)s∈R of Hilbert spaces with continuous
embeddings Es

′
↪→ Es, s′ ≥ s, such that E∞ :=

⋂
s∈R E

s is dense in every Es, s ∈ R
and that there is a dual scale E∗ = (E∗s)s∈R with a non-degenerate sesquilinear pairing
(·, ·)0 : E0×E∗0 → C, such that (·, ·)0 : E∞×E∗∞ → C, extends to a non-degenerate
sesquilinear pairing

Es × E∗−s → C

for every s ∈ R, where supf∈E∗−s\{0}
|(u,f)0|
‖f‖E∗−s

and supg∈Es\{0}
|(g,v)0|
‖g‖Es

are equivalent

norms in the spaces Es and E∗−s, respectively; moreover, if E = (Es)s∈R, Ẽ = (Ẽs)s∈R
are two scales in consideration and a ∈ Lµ(E , Ẽ) :=

⋂
s∈R L(Es, Ẽs−µ), for some

µ ∈ R, then
sup

s∈[s′,s′′]

‖a‖s,s−µ <∞

for every s′ ≤ s′′; here ‖ · ‖s,s̃ := ‖ · ‖L(Es,Ẽs̃). Later on, in the case s = s̃ = 0 we often
write ‖ · ‖ := ‖ · ‖0,0.
A scale E ∈ E is said to have the compact embedding property, if the embeddings
Es

′
↪→ Es are compact whenever s′ > s.

Remark 3.1.1. Every a ∈ Lµ(E , Ẽ) has a formal adjoint a∗ ∈ Lµ(Ẽ∗, E∗), obtained
by (au, v)0 = (u, a∗v)0 for all u ∈ E∞, v ∈ Ẽ∗∞.

Remark 3.1.2. The space Lµ(E , Ẽ) is Fréchet in a natural way for every µ ∈ R.
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Definition 3.1.3. We call a system (bµ(η))µ∈R of operator functions bµ(η) ∈
C∞

(
Rq,Lµ(E , E)

)
an order reducing family of the scale E, if bµ(η) : Es → Es−µ

is an isomorphism for every s, µ ∈ R, η ∈ Rq, b0(η) = idEs for every s ∈ R, η ∈ Rq,
and

(i) Dβ
η b
µ(η) ∈ C∞

(
Rq,Lµ−|β|(E , E)

)
for every β ∈ Nq;

(ii) for every s ∈ R, β ∈ Nq we have

max
|β|≤k

sup
η∈Rq

s∈[s′,s′′]

‖bs−µ+|β|(η){Dβ
η b
µ(η)}b−s(η)‖0,0 <∞

for all k ∈ N, and all reals s′ ≤ s′′;

(iii) for every µ, ν ∈ R, ν ≥ µ, we have

sup
s∈[s′,s′′]

‖bµ(η)‖s,s−ν ≤ c〈η〉B

for all η ∈ Rq and s′ ≤ s′′ with constants c(µ, ν, s), B(µ, ν, s) > 0, uniformly
bounded in compact s-intervals and compact µ, ν-intervals for ν ≥ µ; moreover,
for every µ ≤ 0 we have

‖bµ(η)‖0,0 ≤ c〈η〉µ

for all η ∈ Rq with constants c > 0, uniformly bounded in compact µ-intervals,
µ ≤ 0.

Clearly the operators bµ in (iii) for ν ≥ µ or µ ≤ 0, are composed with a corre-
sponding embedding operator.
In addition we require that the operator families (bµ(η))−1 are equivalent to b−µ(η),
according to the following notation. Another order reducing family (bµ1 (η))µ∈R, η ∈ Rq,
in the scale E is said to be equivalent to (bµ(η))µ∈R, if for every s ∈ R, β ∈ Nq, there
are constants c = c(β, s) such that

‖bs−µ+|β|
1 (η){Dβ

η b
µ(η)}b−s1 (η)‖0,0 ≤ c,

‖bs−µ+|β|(η){Dβ
η b
µ
1 (η)}b−s(η)‖0,0 ≤ c,

for all η ∈ Rq, uniformly in s ∈ [s′, s′′] for every s′ ≤ s′′.

Remark 3.1.4. Parameter-dependent theories of operators are common in many
concrete contexts. For instance, if Ω is an (open) C∞ manifold, and Lµcl(Ω,Rq) is the
space of all parameter-dependent pseudo-differential operators on Ω of order µ ∈ R,
with parameter η ∈ Rq, where the local amplitude functions a(x, ξ, η) are classical
symbols in (ξ, η) ∈ Rn+q, treated as covariables, n = dim Ω, while L−∞(Ω,Rq) is
defined as the space of all Schwartz functions in η ∈ Rq with values in L−∞(Ω), the
space of smoothing operators on Ω. Later on we will also consider specific examples
with more control on the dependence on η, namely, when Ω = M \ {v} for a manifold
M with conical singularity v.
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Example 3.1.5. Let X be a closed compact C∞ manifold, Es := Hs(X), s ∈ R, the
scale of classical Sobolev spaces on X and bµ(η) ∈ Lµcl(X; Rqη) a parameter-dependent
elliptic family that induces isomorphisms bµ(η) : Hs(X) → Hs−µ(X) for all s ∈ R.
Then, from Theorem 2.2.2, for ν ≥ µ we have

‖bµ(η)‖L(Hs(X),Hs−ν(X)) ≤ c〈η〉π(µ,ν)

for all η ∈ Rq, uniformly in s ∈ [s′, s′′] for arbitrary s′, s′′, as well as in compact µ-
and ν-intervals for ν ≥ µ, where

π(µ, ν) := max{µ, µ− ν} (3.1.1)

with a constant c = c(µ, ν, s′, s′′) > 0. Observe that

sup
ξ∈Rn

〈ξ, η〉µ

〈ξ〉ν
≤ 〈η〉π(µ,ν) (3.1.2)

for all η ∈ Rq.

Remark 3.1.6. Let bs(τ̃ , η̃) ∈ Lscl(X; R1+q
τ̃ ,η̃ ) be an order reducing family as in Exam-

ple 3.1.5, now with the parameter (τ̃ , η̃) ∈ R1+q rather than η, and of order s ∈ R.
Then, setting bs(t, τ, η) := bs([t]τ, [t]η) the expression{∫

‖[t]−s+ n
2 Opt(b

s)(η1)u‖2L2(X)dt
} 1

2

for η1 ∈ Rq \ {0}, |η1| sufficiently large, is a norm on the space S
(
R, C∞(X)

)
. Here

n = dimX. Let Hs
cone(R × X) denote the completion of S

(
R, C∞(X)

)
with respect

to this norm. Observe that this space is independent of the choice of η1, |η1| suffi-
ciently large. For references below we also form weighted variants Hs;g

cone(R × X) :=
〈t〉−gHs

cone(R×X), g ∈ R, and set

Hs;g
cone(R+ ×X) := Hs;g

cone(R×X)|R+×X . (3.1.3)

As is known, cf. [14], the spaces Hs;g
cone(R × X) are weighted Sobolev spaces in the

calculus of pseudo-differential operators on R+×X with |t| → ∞ being interpreted as
a conical exit to infinity.

Another feature of order reducing families, known, for instance, in the case of
Example 3.1.5, is that when U ⊆ Rp is an open set and m(y) ∈ C∞(U) a strictly
positive function, m(y) ≥ c for c > 0 and for all y ∈ U , the family bs1(y, η) :=
bs(m(y)η), s ∈ R, is order reducing in the sense of Definition 3.1.3 and equivalent to
b(η) for every y ∈ U , uniformly in y ∈ K for any compact subset K ⊂ U . A natural
requirement is that when m > 0 is a parameter, there is a constant M = M(s′, s′′) > 0
such that

‖bs(η)b−s(mη)‖0,0 ≤ cmax{m,m−1}M (3.1.4)

for every s ∈ [s′, s′′], m ∈ R+, and η ∈ Rq.

We now turn to another example of an order reducing family, motivated by the
calculus of pseudo-differential operators on a manifold with edge (here in “abstract”
form), where all the above requirements are satisfied, including (3.1.4).
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Definition 3.1.7. (i) If H is a Hilbert space and κ := {κλ}λ∈R+ a group of iso-
morphisms κλ : H → H, such that λ → κλh defines a continuous function
R+ → H for every h ∈ H, and κλκρ = κλρ for λ, ρ ∈ R, we call κ a group
action on H.

(ii) Let H = (Hs)s∈R ∈ E and assume that H0 is endowed with a group action
κ = {κλ}λ∈R+ that restricts (for s > 0) or extends (for s < 0) to a group action
on Hs for every s ∈ R. In addition, we assume that κ is a unitary group action
on H0. We then say that H is endowed with a group action.

If H and κ are as in Definition 3.1.7 (i), it is known that there are constants
c,M > 0, such that

‖κλ‖L(H) ≤ cmax{λ, λ−1}M (3.1.5)

for all λ ∈ R+.
Denote by Ws(Rq,H) the completion of S(Rq,H) with respect to the norm

‖u‖Ws(Rq,H) :=
{∫
〈η〉2s‖κ−1

〈η〉û(η)‖
2
Hdη

} 1
2

;

û(η) = Fy→ηu(η) is the Fourier transform in Rq. The spaceWs(Rq,H) will be referred
to as edge space on Rq of smoothness s ∈ R (modelled on H). Given a scale H =
(Hs)s∈R ∈ E with group action we have the edge spaces

W s :=Ws(Rq,Hs), s ∈ R.

If necessary we also write Ws(Rq,Hs)κ. The spaces form again a scale W :=
(W s)s∈R ∈ E.

For purposes below we now formulate a class of operator-valued symbols

Sµ(U × Rq;H, H̃)κ,κ̃ (3.1.6)

for open U ⊆ Rp and Hilbert spaces H and H̃, endowed with group actions κ =
{κλ}λ∈R+ , κ̃ = {κ̃λ}λ∈R+ , respectively, as follows. The space (3.1.6) is defined to be
the set of all a(y, η) ∈ C∞

(
U × Rq,L(H, H̃)

)
such that

sup
(y,η)∈K×Rq

〈η〉−µ+|β|‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) <∞ (3.1.7)

for every compact K ⊂ U,α ∈ Np, β ∈ Nq.

Remark 3.1.8. (i) Analogous symbols can also be defined in the case when H̃ is a
Fréchet space with group action, i.e., H̃ is written as a projective limit of Hilbert
spaces H̃j , j ∈ N, with continuous embeddings H̃j ↪→ H̃0, where the group action
on H̃0 restricts to group actions on H̃j for every j. Then Sµ(U × Rq;H, H̃) :=
lim←−j∈N S

µ(U × Rq;H, H̃j);
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(ii) another generalisation can be made when one controls the variable y at infinity
by defining the symbol class

Sµ;ν(U × Rq;H, H̃)κ,κ̃ (3.1.8)

as the set of all a(y, η) ∈ C∞
(
U × Rq,L(H, H̃)

)
such that

sup
(y,η)∈K×Rq

〈η〉−µ+|β|〈y〉−ν+|α|‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) <∞,

for all α ∈ Np, β ∈ Nq.

Consider now an operator function p(ξ, η) ∈ C∞
(
Rp+qξ,η ,Lµ(H,H)

)
that represents

a symbol
p(ξ, η) ∈ Sµ(Rp+qξ,η ;Hs,Hs−µ)κ,κ

for every s ∈ R, such that p(ξ, η) : Hs → Hs−µ is a family of isomorphisms for all
s ∈ R, and the inverses p−1(ξ, η) represent a symbol

p−1(ξ, η) ∈ S−µ(Rp+qξ,η ;Hs,Hs+µ)κ,κ

for every s ∈ R. Then bµ(η) := Opx(p)(η) is a family of isomorphisms

bµ(η) : W s →W s−µ, η ∈ Rq,

with the inverses b−µ(η) := Opx(p−1)(η). Here W s =Ws(Rpx,Hs), s ∈ R.

Proposition 3.1.9. (i) We have

‖bµ(η)‖L(W 0,W 0) ≤ c〈η〉µ (3.1.9)

for every µ ≤ 0, with a constant c(µ) > 0.

(ii) For every s, µ, ν ∈ R, ν ≥ µ, we have

‖bµ(η)‖L(W s,W s−ν) ≤ c〈η〉π(µ,ν)+M(s)+M(s−µ) (3.1.10)

for all η ∈ Rq, with a constant c(µ, s) > 0, and M(s) ≥ 0 defined by

‖κλ‖L(Hs,Hs) ≤ cλM(s) for all λ ≥ 1.

Proof. (i) Let us check the estimate (3.1.9). For the computations we denote by j :
H−µ ↪→ H0 the embedding operator. We have for u ∈W 0

‖bµ(η)u‖2W 0 =
∫
‖jp(ξ, η)(Fu)(ξ)‖2H0dξ

=
∫
‖κ−1
〈ξ,η〉jκ〈ξ,η〉κ

−1
〈ξ,η〉p(ξ, η)κ〈ξ,η〉κ

−1
〈ξ,η〉(Fu)(ξ)‖

2
H0dξ

≤
∫
‖κ−1
〈ξ,η〉jκ〈ξ,η〉‖

2
L(H−µ,H0)‖κ

−1
〈ξ,η〉p(ξ, η)κ〈ξ,η〉κ

−1
〈ξ,η〉(Fu)(ξ)‖

2
H−µdξ

≤c
∫
‖κ−1
〈ξ,η〉p(ξ, η)κ〈ξ,η〉‖

2
L(H0,H−µ)‖κ

−1
〈ξ,η〉(Fu)(ξ)‖

2
H0dξ

≤c sup
ξ∈Rp

〈ξ, η〉2µ‖u‖2W 0 .
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Thus ‖bµ(η)‖L(W 0,W 0) ≤ c supξ∈Rp〈ξ, η〉µ ≤ c〈η〉µ, since µ ≤ 0.

(ii) Let j : Hs−µ ↪→ Hs−ν denote the canonical embedding. For every fixed s ∈ R
we have

‖bµ(η)u‖2W s−ν =
∫
〈ξ〉2(s−ν)‖κ−1

〈ξ〉jp(ξ, η)(Fx→ξu)(ξ)‖
2
Hs−νdξ

=
∫
〈ξ〉2(s−ν)‖κ−1

〈ξ〉jp(ξ, η)κ〈ξ〉〈ξ〉
−s〈ξ〉sκ−1

〈ξ〉(Fx→ξu)(ξ)‖
2
Hs−νdξ

= sup
ξ∈Rp

〈ξ〉−2ν‖κ−1
〈ξ〉jp(ξ, η)κ〈ξ〉‖

2
L(Hs,Hs−ν)

∫
〈ξ〉2s‖κ−1

〈ξ〉Fx→ξu(ξ)‖
2
Hsdξ.

For the first factor on the right hand side we obtain

‖κ−1
〈ξ〉jp(ξ, η)κ〈ξ〉‖L(Hs,Hs−ν) ≤ ‖κ−1

〈ξ〉jκ〈ξ〉‖L(Hs−µ,Hs−ν)‖κ−1
〈ξ〉p(ξ, η)κ〈ξ〉‖L(Hs,Hs−µ)

≤ c‖κ−1
〈ξ〉p(ξ, η)κ〈ξ〉‖L(Hs,Hs−µ)

with a constant c > 0. We employed here that ‖κ−1
〈ξ〉jκ〈ξ〉‖L(Hs−µ,Hs−ν) ≤ c for all

ξ ∈ Rp. Moreover,

‖κ−1
〈ξ〉p(ξ, η)κ〈ξ〉‖L(Hs,Hs−µ)

≤ ‖κ−1
〈ξ〉κ〈ξ,η〉‖L(Hs−µ,Hs−µ)‖κ−1

〈ξ,η〉p(ξ, η)κ〈ξ,η〉‖L(Hs,Hs−µ)‖κ−1
〈ξ,η〉κ〈ξ〉‖L(Hs,Hs)

≤ c〈ξ, η〉µ‖κ〈ξ,η〉〈ξ〉−1‖L(Hs−µ,Hs−µ)‖κ〈ξ,η〉−1〈ξ〉‖L(Hs,Hs)

≤ c〈ξ, η〉µ
( 〈ξ, η〉
〈ξ〉

)M(s−µ)+M(s)
.

As usual, c > 0 denotes different constants (they may also depend on s); the numbers
M(s), s ∈ R, are determined by the estimates

‖κλ‖L(Hs,Hs) ≤ cλM(s) for all λ ≥ 1.

We obtain altogether that

‖bµ(η)‖L(W s,W s−ν) ≤ c sup
ξ∈Rn

〈ξ, η〉µ

〈ξ〉ν
( 〈ξ, η〉
〈ξ〉

)M(s−µ)+M(s)

≤ c〈η〉π(µ,ν)+M(s−µ)+M(s),

cf. formula (3.1.2).

It is also not difficult to check that the operators in Proposition 3.1.9 also have the
uniformity properties with respect to s, µ, ν in compact sets, imposed in Definition
3.1.3.

3.1.2 Symbols based on order reductions

We now turn to operator valued symbols, referring to scales

E = (Es)s∈R, Ẽ = (Ẽs)s∈R ∈ E.
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For purposes below we slightly generalise the concept of order reducing families by
replacing the parameter space Rq 3 η by H 3 η, where

H := {η = (η′, η′′) ∈ Rq
′+q′′ : q = q′ + q′′, η′′ 6= 0}. (3.1.11)

In other words for every µ ∈ R we fix order-reducing families bµ(η) and b̃µ(η) in the
scales E and Ẽ , respectively, where η varies over H, and the properties of Definition
3.1.3 are required for all η ∈ H. In many cases we may admit the case H = Rq as well.

Definition 3.1.10. By Sµ(U × H; E , Ẽ) for open U ⊆ Rp, µ ∈ R, we denote the set
of all a(y, η) ∈ C∞

(
U ×H,Lµ(E , Ẽ)

)
such that

Dα
yD

β
ηa(y, η) ∈ C∞

(
U ×H,Lµ−|β|(E , Ẽ)

)
, (3.1.12)

and for every s ∈ R we have

max
|α|+|β|≤k

sup
y∈K,η∈H,|η|≥h

s∈[s′,s′′]

‖b̃s−µ+|β|(η){Dα
yD

β
ηa(y, η)}b−s(η)‖0,0 (3.1.13)

is finite for all compact K ⊂ U , k ∈ N, h > 0.

Let Sµ(H; E , Ẽ) denote the subspace of all elements of Sµ(U × H; E , Ẽ) that are
independent of y.
Observe that when (bµ(η))µ∈R is an order reducing family parametrised by η ∈ H
then we have

bµ(η) ∈ Sµ(H; E , E) (3.1.14)

for every µ ∈ R.

Remark 3.1.11. The space Sµ(U ×H; E , Ẽ) is Fréchet with the semi-norms

a→ max
|α|+|β|≤k

sup
(y,η)∈K×H,|η|≥h

s∈[s′,s′′]

‖b̃s−µ+|β|(η){Dα
yD

β
ηa(y, η)}b−s(η)‖0,0 (3.1.15)

parametrised by compact K ⊂ U , s ∈ Z, α ∈ Np, β ∈ Nq, h ∈ N \ {0}. We then have

Sµ(U ×H; E , Ẽ) = C∞
(
U, Sµ(H; E , Ẽ)

)
= C∞(U)⊗̂πSµ(H; E , Ẽ).

We will also employ other variants of such symbols, for instance, when Ω ⊆ Rm is
an open set,

Sµ(R+ × Ω×H; E , Ẽ) := C∞
(
R+ × Ω, Sµ(H; E , Ẽ)

)
.

In order to emphasise the similarity of our considerations for H with the case
H = Rq we often write again Rq and later on tacitly use the corresponding results for
H in general.
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Remark 3.1.12. Let a(y, η) ∈ Sµ(U ×Rq) be a polynomial in η of order µ and E =
(Es)s∈R any scale of Hilbert spaces and identify Dα

yD
β
ηa(y, η) with

(
Dα
yD

β
ηa(y, η)

)
ι

with the embedding ι : Es → Es−µ+|β|. Then we have

‖bs−µ+|β|(η){Dα
yD

β
ηa(y, η)}b−s(η)‖0,0 ≤ |Dα

yD
β
ηa(y, η)|‖b−µ+|β|(η)‖0,0

≤ c〈η〉µ−|β|〈η〉−µ+|β| = c

for all β ∈ Nq, |β| ≤ µ, y ∈ K ⊂ U , K compact (see Definition 3.1.3 (iii)). Thus
a(y, η) is canonically identified with an element of Sµ(U × Rq; E , E).

Proposition 3.1.13. We have

S−∞(U × Rq; E , Ẽ) :=
⋂
µ∈R

Sµ(U × Rq; E , Ẽ) = C∞
(
U,S

(
Rq,L−∞(E , Ẽ)

))
.

Proof. Let us show the assertion for y-independent symbols; the y-dependent case is
then straightforward. For notational convenience we set Ẽ = E ; the general case is anal-
ogous. First let a(η) ∈ S−∞(Rq; E , E), which means that a(η) ∈ C∞

(
Rq,L−∞(E , E)

)
and

‖bs+N (η){Dβ
ηa(η)}b−s(η)‖0,0 < c (3.1.16)

for all s ∈ R, N ∈ N, β ∈ Nq and show that

sup
η∈Rq

‖〈η〉MDβ
ηa(η)‖s,t <∞ (3.1.17)

for every s, t ∈ R, M ∈ N, β ∈ Nq. To estimate (3.1.17) it is enough to assume t > 0.
We have

‖〈η〉MDβ
ηa(η)‖s,t = ‖b−kt(η)bkt(η)〈η〉MDβ

ηa(η)b
−s(η)bs(η)‖s,t (3.1.18)

for every k ∈ N, k ≥ 1. It is sufficient to show that the right hand side is uniformly
bounded in η ∈ Rq for sufficiently large choice of k. The right hand side of (3.1.18)
can be estimated by

〈η〉M‖b−t(η)‖0,t‖b(1−k)t(η)‖0,0‖bkt(η)Dβ
ηa(η)b

−s(η)‖0,0‖bs(η)‖s,0.

Using ‖bkt(η)Dβ
ηa(η)b

−s(η)‖0,0 ≤ c, which is true by assumption and the estimates

‖bs(η)‖s,0 ≤ c〈η〉B , ‖b−t(η)‖0,t ≤ c〈η〉B
′
,

with different B,B′ ∈ R and ‖b(1−k)t(η)‖0,0 ≤ c〈η〉(1−k)t (see Definition 3.1.3 (iii))
we obtain altogether

‖〈η〉MDβ
ηa(η)‖s,t ≤ c〈η〉M+B+B′+(1−k)t

for some c > 0. Choosing k large enough it follows that the exponent on the right
hand side is < 0, i.e., we obtain uniform boundedness in η ∈ Rq.

To show the reverse direction suppose that a(η) satisfies (3.1.17), and let β ∈ Nq,
M, s, t ∈ R be arbitrary. We have

‖bt(η)Dβ
ηa(η)b

−s(η)‖0,0 ≤ ‖bt(η)〈η〉−M‖t,0‖〈η〉2MDβ
ηa(η)‖s,t‖〈η〉−Mb−s(η)‖0,s.

(3.1.19)
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Now using (3.1.17) and the estimates

‖bt(η)〈η〉−M‖t,0 ≤ c〈η〉A−M , ‖〈η〉−Mb−s(η)‖0,s ≤ c〈η〉A
′−M ,

with constants A,A′ ∈ R, we obtain

‖bt(η)Dβ
ηa(η)b

−s(η)‖0,0 ≤ c〈η〉A+A′−2M .

Choosing M large enough we get uniform boundedness of (3.1.19) in η ∈ Rq, which
completes the proof.

Proposition 3.1.14. Let a(y, η) ∈ Sµ(U × Rq; E , Ẽ) and µ ≤ 0. Then we have

‖a(y, η)‖0,0 ≤ c〈η〉µ

for all y ∈ K ⊂ U , K compact, η ∈ Rq, with a constant c = c(s,K) > 0.

Proof. For simplicity we consider the y-independent case. It is enough to show that
‖a(η)u‖Ẽ0 ≤ c〈η〉µ‖u‖E0 for all u ∈ E∞. Let j : E−µ → E0 denote the embedding
operator. We then have

‖a(η)u‖Ẽ0 = ‖a(η)b−µ(η)jbµ(η)u‖Ẽ0 ≤ ‖a(η)b−µ(η)‖L(E0,Ẽ0)‖jb
µ(η)u‖E0

≤ c〈η〉µ‖u‖E0 .

Proposition 3.1.15. A symbol a(y, η) ∈ Sµ(U × Rq; E , Ẽ), µ ∈ R, satisfies the esti-
mates

‖a(y, η)‖s,s−ν ≤ c〈η〉A (3.1.20)

for every ν ≥ µ, and every y ∈ K ⊂ U , K compact, η ∈ Rq, s ∈ R, with constants
c = c(s, µ, ν) > 0, A = A(s, µ, ν,K) > 0 that are uniformly bounded when s, µ, ν vary
over compact sets, ν ≥ µ.

Proof. For simplicity we consider again the y-independent case. Let j : Ẽs−µ ↪→ Ẽs−ν

be the embedding operator. Then we have

‖a(η)‖s,s−ν = ‖jb̃−s+µ(η)b̃s−µ(η)a(η)b−s(η)bs(η)‖s,s−ν
≤ ‖jb̃−s+µ(η)‖0,s−ν‖b̃s−µ(η)a(η)b−s(η)‖0,0‖bs(η)‖s,0.

Applying (3.1.13) and Definition 3.1.3 (iii) we obtain (3.1.20) with A = B(−s+µ,−s+
ν, 0)+B(s, s, 0), together with the uniform boundedness of the involved constants.
Also here it can be proved that the involved constants in Propositions 3.1.14, 3.1.15
are uniform in compact sets with respect to s, µ, ν.

Proposition 3.1.16. The symbol spaces have the following properties:

(i) Sµ(U × Rq; E , Ẽ) ⊆ Sµ′(U × Rq; E , Ẽ) for every µ′ ≥ µ;

(ii) Dα
yD

β
ηS

µ(U × Rq; E , Ẽ) ⊆ Sµ−|β|(U × Rq; E , Ẽ) for every α ∈ Np, β ∈ Nq;
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(iii) Sµ(U × Rq; E0, Ẽ)Sν(U × Rq; E , E0) ⊆ Sµ+ν(U × Rq; E , Ẽ) for every µ, ν ∈ R
(the notation on the left hand side of the latter relation means the space of all
(y, η)-wise compositions of elements in the respective factors).

Proof. For simplicity we consider symbols with constant coefficients. Let us write
‖ · ‖ := ‖ · ‖0,0.

(i) a(η) ∈ Sµ(Rq; E , Ẽ) means (3.1.12) and (3.1.13); this implies

‖b̃s−µ
′+|β|(η){Dβ

ηa(η)}b−s(η)‖ = ‖b̃µ−µ
′
(η)b̃s−µ+|β|(η){Dβ

ηa(η)}b−s(η)‖

≤ c〈η〉µ−µ
′
‖b̃s−µ+|β|(η){Dβ

ηa(η)}b−s(η)‖ ≤ c‖b̃s−µ+|β|(η){Dβ
ηa(η)}b−s(η)‖.

Here wee employed µ− µ′ ≤ 0 and the property (iii) in Definition 3.1.3.

(ii) The estimates (3.1.13) can be written as

‖b̃s−(µ−|β|)(η){Dβ
ηa(η)}b−s(η)‖ ≤ c,

which just means that Dβ
ηa(η) ∈ Sµ−|β|(Rq; E , Ẽ).

(iii) Given a(η) ∈ Sµ(Rq; E0, Ẽ), ã(η) ∈ Sν(Rq; E , E0) we have (with obvious mean-
ing of notation)

‖b̃s−ν+|γ|0 (η){Dγ
η ã(η)}b−s(η)‖L(E0,E0

0), ‖b̃s−µ+|δ|(η){Dδ
ηa(η)}b−s0 (η)‖L(E0

0 ,Ẽ
0) ≤ c

for all γ, δ ∈ Nq. If α ∈ Nq is any multi-index, Dα
η (aã)(η) is a linear combination of

compositions Dδ
ηa(η)D

γ
η ã(η) with |γ|+ |δ| = |α|. It follows that

‖b̃s−(µ+ν)+|α|(η)Dδ
ηa(η){Dγ

η ã(η)}b−s(η)‖L(E0,Ẽ0)

= ‖b̃s−(µ+ν)+|α|(η)Dδ
ηa(η)b

−s+ν−|γ|
0 (η)bs−ν+|γ|0 (η)Dγ

η ã(η)b
−s(η)‖L(E0,Ẽ0)

≤ ‖b̃t−µ+|α|−|γ|(η)Dδ
ηa(η)b

−t
0 (η)‖L(E0

0 ,Ẽ
0) ‖b

s−ν+|γ|
0 (η)Dγ

η ã(η)b
−s(η)‖L(E0,E0

0)

(3.1.21)

for t = s− ν + |γ|; the right hand side is bounded in η, since |α| − |γ| = |δ|.

Remark 3.1.17. Observe from (3.1.21) that the semi-norms of compositions of sym-
bols can be estimated by products of semi-norms of the factors.

3.1.3 An example from the parameter-dependent cone calcu-
lus

We now construct a specific family of reductions of orders between weighted spaces
on a compact manifold M with conical singularity v, locally near v modelled on a
cone

X∆ := (R+ ×X)/({0} ×X)
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with a smooth compact manifold X as a base. The parameter η will play the role of
covariables of the calculus of operators on a manifold with edge; that is why we talk
about an example from the edge calculus. The associated “abstract” cone calculus
according to what we did so far in the Subsections 3.1.1 and 3.1.2 and then below
in Section 3.2 will be a contribution to the calculus of corner operators of second
generation.
It will be convenient to pass to the stretched manifold M associated with M which is a
compact C∞ manifold with boundary ∂M ∼= X such that when we squeeze down ∂M
to a single point v we just recoverM . Close to ∂M the manifold M is equal to a cylinder
[0, 1)×X 3 (t, x) - a collar neighbourhood of ∂M in M . A part of the considerations
will be performed on the open stretched cone X∧ := R+×X 3 (t, x) where we identify
(0, 1) × X with the interior of the collar neighbourhood (for convenience, without
indicating any pull backs of functions or operators with respect to that identification).
Let M̃ := 2M be the double of M (obtained by gluing together two copies M± of M
along the common boundary ∂M, where we identify M with M+); then M̃ is a closed
compact C∞ manifold. On the space M we have a family of weighted Sobolev spaces
Hs,γ(M), s, γ ∈ R, that may be defined as

Hs,γ(M) :=
{
σu+ (1− σ)v : u ∈ Hs,γ(X∧), v ∈ Hs

loc(M \ {v})
}
,

where σ(t) is a cut-off function (i.e., σ ∈ C∞0 (R+), σ ≡ 1 near t = 0), σ(t) = 0 for
t > 2/3. Here Hs,γ(X∧) is defined to be the completion of C∞0 (X∧) with respect to
the norm  1

2πi

∫
Γ n+1

2 −γ

‖bµbase(Imw)(Mu)(w)‖2L2(X)dw


1
2

, (3.1.22)

n = dimX, where bµbase(τ) ∈ Lµcl(X; Rτ ) is a family of reductions of order on X,
similarly as in Example 3.1.5 (in particular, bsbase(τ) : Hs(X) → H0(X) = L2(X)
is a family of isomorphisms). Moreover, M is the Mellin transform, (Mu)(w) =∫∞
0
tw−1u(t)dt, w ∈ C the complex Mellin covariable, and

Γβ := {w ∈ C : Rew = β}

for any real β. From tδHs,γ(X∧) = Hs,γ+δ(X∧) for all s, γ, δ ∈ R it follows the
existence of a strictly positive function hδ ∈ C∞(M \ {v}), such that the operator of
multiplication by hδ induces an isomorphism

hδ : Hs,γ(M)→ Hs,γ+δ(M) (3.1.23)

for every s, γ, δ ∈ R.
Moreover, again according to Example 3.1.5, now for the smooth compact manifold M̃
we have an order reducing family b̃(η) in the scale of Sobolev spaces Hs(M̃), s ∈ R.
More generally, we employ parameter-dependent families ã(η) ∈ Lµcl(M̃ ; Rq). The
symbols a(η) that we want to establish in the scale Hs,γ(M) on our compact manifold
M with conical singularity v will be essentially (i.e., modulo Schwartz functions in η
with values in globally smoothing operators on M) constructed in the form

a(η) := σaedge(η)σ̃ + (1− σ)aint(η)(1− ˜̃σ), (3.1.24)
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aint(η) := ã(η)|intM, with cut-off functions σ(t), σ̃(t), ˜̃σ(t) on the half axis, supported
in [0, 2/3), with the property

˜̃σ ≺ σ ≺ σ̃

(here σ ≺ σ̃ means the σ̃ is equal to 1 in a neighbourhood of suppσ).
The “edge” part of (3.1.24) will be defined in the variables (t, x) ∈ X∧. Let us choose
a parameter-dependent elliptic family of operators of order µ on X

p̃(t, τ̃ , η̃) ∈ C∞
(
R+, L

µ
cl(X; R1+q

τ̃ ,η̃ )
)
.

Setting
p(t, τ, η) := p̃(t, tτ, tη) (3.1.25)

we have what is known as an edge-degenerate family of operators on X. We now
employ the following Mellin quantisation theorem.

Definition 3.1.18. Let Mµ
O(X; Rq) be the set of all h(z, η) ∈ A

(
C, Lµcl(X; Rqη)

)
such

that h(β + iτ, η) ∈ Lµcl(X; R1+q
τ,η ) for every β ∈ R, uniformly in compact β-intervals

(here A(C, E) with any Fréchet space E denotes the space of all E-valued holomorphic
functions in C, in the Fréchet topology of uniform convergence on compact sets).

Observe that also Mµ
O(X; Rq) is a Fréchet space in a natural way. Given an

f(t, t′, z, η) ∈ C∞
(
R+ × R+, L

µ
cl(X; Γ 1

2−γ
× Rq)

)
we set

opγM (f)(η)u(t) :=
∫

R

∫ ∞
0

(
t

t′
)−( 1

2−γ+iτ)f(t, t′,
1
2
− γ + iτ, η)u(t′)

dt′

t′
d̄τ,

d̄τ = (2π)−1dτ , which is regarded as a parameter-dependent weighted pseudo-
differential operator with symbol f , referring to the weight γ ∈ R. The Mellin quan-
tisation theorem states that there exists an element

h̃(t, z, η̃) ∈ C∞
(
R+,M

µ
O(X; Rqη̃)

)
, (3.1.26)

such that, when we set
h(t, z, η) := h̃(t, z, tη) (3.1.27)

we have
opγM (h)(η) = Opt(p)(η) mod L−∞(X∧; Rqη), (3.1.28)

for every weight γ ∈ R. Observe that when we set

p0(t, τ, η) := p̃(0, tτ, tη), h0(t, z, η) := h̃(0, z, tη) (3.1.29)

we also have opγM (h0)(η) = Opt(p0)(η) mod L−∞(X∧; Rqη), for all γ ∈ R.
Let us now choose cut-off functions ω(t), ω̃(t), ˜̃ω(t) such that ˜̃ω ≺ ω ≺ ω̃. Fix the
notation ωη(t) := ω(t[η]), and form the operator function

aedge(η) := t−µωη(t)opγ−
n
2

M (h)(η)ω̃η(t)

+ t−µ
(
1− ωη(t)

)
Opt(p)(η)

(
1− ˜̃ωη(t)

)
+m(η) + g(η). (3.1.30)
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Here m(η) and g(η) are smoothing Mellin and Green symbols of the edge calculus.
The definition of m(η) is based on smoothing Mellin symbols f(z) ∈ M−∞(X; Γβ).
Here M−∞(X; Γβ) is the subspace of all f(z) ∈ L−∞(X; Γβ) such that for some ε > 0
(depending on f) the function f extends to an

l(z) ∈ A
(
Uβ,ε, L

−∞(X)
)

where Uβ,ε := {z ∈ C : |Re z − β| < ε} and

l(δ + iτ) ∈ L−∞(X; Rτ )

for every δ ∈ (β − ε, β + ε), uniformly in compact subintervals. By definition we then
have f(β + iτ) = l(β + iτ); for brevity we often denote the holomorphic extension l
of f again by f . For f ∈M−∞(X; Γn+1

2 −γ
) we set

m(η) := t−µωηopγ−
n
2

M (f)ω̃η

for any cut-off functions ω, ω̃.
In order to explain the structure of g(η) in (3.1.30) we first introduce weighted spaces
on the infinite stretched cone X∧ = R+ ×X, namely,

Ks,γ;g(X∧) := ωHs,γ(X∧) + (1− ω)Hs;g
cone(X

∧) (3.1.31)

for any s, γ, g ∈ R, and a cut-off function ω, see (3.1.22) which defines the norm
in Hs,γ(X∧) and the formula (3.1.3) for Hs;g

cone(X). Moreover, we set Ks,γ(X∧) :=
Ks,γ;0(X∧). The operator families g(η) are so-called Green symbols in the covariable
η ∈ Rq, defined by

g(η) ∈ Sµcl
(
Rqη;Ks,γ;g(X∧),Sγ−µ+ε(X∧)

)
, (3.1.32)

g∗(η) ∈ Sµcl
(
Rqη;Ks,−γ+µ;g(X∧),S−γ+ε(X∧)

)
, (3.1.33)

for all s, γ, g ∈ R, where g∗ denotes the η-wise formal adjoint with respect to the
scalar product of K0,0;0(X∧) = r−

n
2 L2(R+ ×X) and ε = ε(g) > 0. Here

Sβ(X∧) := ωK∞,β(X∧) + (1− ω)S
(
R+, C

∞(X)
)

for any cut-off function ω. The notion of operator-valued symbols in (3.1.32), (3.1.33)
refers to (3.1.6) in its generalisation to Fréchet spaces H̃ with group actions (see
Remark 3.1.8) that are in the present case given by

κλ : u(t, x)→ λ
n+1

2 +gu(λt, x), λ ∈ R+ (3.1.34)

n = dimX, both in the spaces Ks,γ;g(X∧) and Sβ(X∧).

The following theorem is crucial for proving that our new order reduction family
is well defined. Therefore we will sketch the main steps of the proof, which is based
on the edge calculus. Various aspects of the proof can be found in the literature,
for example in Kapanadze and Schulze [13, Proposition 3.3.79], Schrohe and Schulze
[34], Harutyunyan and Schulze [9]. Among the tools we have the pseudo-differential
operators on X∧ interpreted as a manifold with conical exit to infinity r → ∞; the
general background may be found in Schulze [39]. The calculus of such exit operators
goes back to Parenti [28], Cordes [2], Shubin [45], and others.
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Theorem 3.1.19. We have

σaedge(η)σ̃ ∈ Sµ
(
Rq;Ks,γ;g(X∧),Ks−µ,γ−µ;g(X∧)

)
(3.1.35)

for every s, g ∈ R, more precisely,

Dβ
η {σaedge(η)σ̃} ∈ Sµ−|β|

(
Rq;Ks,γ;g(X∧),Ks−µ+|β|,γ−µ;g(X∧)

)
(3.1.36)

for all s, g ∈ R and all β ∈ Nq. (The spaces of symbols in (3.1.35), (3.1.36) refer to
the group action (3.1.34)).

Proof. To prove the assertions it is enough to consider the case without m(η) + g(η),
since the latter sum maps to K∞,γ;g(X∧) anyway. The first part of the Theorem is
known, see, for instance, [9] or [3]. Concerning the relation (3.1.36) we write

σaedge(η)σ̃ = σ{ac(η) + aψ(η)}σ̃ (3.1.37)

with

ac(η) := t−µωηopγ−
n
2

M (h)(η)ω̃η, aψ(η) := t−µ(1− ωη)Opt(p)(η)(1− ˜̃ωη)

and it suffices to take the summands separately. In order to show (3.1.36) we consider,
for instance, the derivative ∂/∂ηj =: ∂j for some 1 ≤ j ≤ q. By iterating the process
we then obtain the assertion. We have

∂jσ{ac(η) + aψ(η)}σ̃ = σ{∂jac(η) + ∂jaψ(η)}σ̃ = b1(η) + b2(η) + b3(η)

with

b1(η) := σt−µ
{
ωηopγ−

n
2

M (h)(η)∂jω̃η + (1− ωη)Opt(p)(η)∂j(1− ˜̃ωη)
}
σ̃,

b2(η) := σt−µ
{
ωηopγ−

n
2

M (∂jh)(η)ω̃η + (1− ωη)Opt(∂jp)(η)(1− ˜̃ωη)
}

˜̃σ,

b3(η) := σt−µ
{

(∂jωη)opγ−
n
2

M (h)(η)ω̃η +
(
∂j(1− ωη)

)
Opt(p)(η)(1− ˜̃ωη)

}
σ̃.

In b1(η) we can apply a pseudo-locality argument which is possible since ∂jω̃η ≡ 0
on suppωη and ∂j(1 − ˜̃ωη) ≡ 0 on supp (1 − ωη); this yields (together with similar
considerations as for the proof of (3.1.35))

b1(η) ∈ Sµ−1
(
Rq;Ks,γ;g(X∧),K∞,γ−µ;g(X∧)

)
.

Moreover we obtain

b2(η) ∈ Sµ−1
(
Rq;Ks,γ;g(X∧),Ks−µ+1,γ−µ;g(X∧)

)
since ∂jh and ∂jp are of order µ− 1 (again combined with arguments as for (3.1.35)).
Concerning b3(η) we use the fact that there is a ψ ∈ C∞0 (R+) such that ψ ≡ 1 on
supp ∂jω, ω̃ − ψ ≡ 0 on supp ∂jω and (1 − ˜̃ω) − ψ ≡ 0 on supp ∂jω. Thus, when we
set ψη(t) := ψ(t[η]), we obtain b3(η) := c3(η) + c4(η) with

c3(η) := σt−µ
{

(∂jωη)opγ−
n
2

M (h)(η)ψη − (∂jωη)Opt(p)(η)ψη
}
σ̃,

c4(η) := σt−µ
{

(∂jωη)opγ−
n
2

M (h)(η)[ω̃η − ψη]− (∂jωη)Opt(p)(η)[(1− ˜̃ωη)− ψη]
}
σ̃.
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Here, using ∂jωη = (ω′)η∂j(t[η]) which yields an extra power of t on the left of the
operator, together with pseudo-locality argument, we obtain

c4(η) ∈ Sµ−1
(
Rq;Ks,γ;g(X∧),K∞,γ−µ;g(X∧)

)
.

To treat c3(η) we employ that both ∂jωη and ψη are compactly supported on R+.
Using the property (3.1.28), we have

c3(η) = σt−µ(∂jωη)
{
opγ−

n
2

M (h)(η)−Opt(p)(η)
}
ψησ̃

∈ Sµ−1
(
Rq;Ks,γ;g(X∧),K∞,γ−µ;g(X∧)

)
.

Definition 3.1.20. An operator family c(η) ∈ S
(
Rq,

⋂
s∈R L

(
Hs,γ(M),H∞,δ(M)

))
is called a smoothing element in the parameter-dependent cone calculus on M asso-
ciated with the weight data (γ, δ) ∈ R2, written c ∈ CG(M, (γ, δ); Rq), if there is an
ε = ε(c) > 0 such that

c(η) ∈ S
(
Rq,L

(
Hs,γ(M),H∞,δ+ε(M)

))
,

c∗(η) ∈ S
(
Rq,L

(
Hs,−δ(M),H∞,−γ+ε(M)

))
;

for all s ∈ R; here c∗ is the η-wise formal adjoint of c with respect to the H0,0(M)-
scalar product.

The η-wise kernels of the operators c(η) are in C∞
(
(M \ {v})× (M \ {v})

)
. However,

they are of flatness ε in the respective distance variables to v, relative to the weights
δ and γ, respectively. Let us look at a simple example to illustrate the structure. We
choose elements k ∈ S

(
Rq,H∞,δ+ε(M)

)
, k′ ∈ S

(
Rq,H∞,−γ+ε(M)

)
and assume for

convenience that both k and k′ vanish outside a neighbourhood of v, for all η ∈ Rq.
Then, with respect to a local splitting of variables (t, x) near v, we can write k =
k(t, x, η) and k′ = k′(t′, x′, η). Set

c(η)u(t, x) :=
∫∫

k(t, x, η)k′(t′, x′, η)u(t′, x′)t′ndt′dx′

with the formal adjoint

c∗(η)v(t′, x′) :=
∫∫

k′(t′, x′, η)k(t, x, η)v(t, x)tndtdx.

Then c(η) is a smoothing element in the parameter-dependent cone calculus.

Definition 3.1.21. By Cµ(M, (γ, γ−µ); Rq) we denote the set of all operator families

a(η) = σaedge(η)σ̃ + (1− σ)aint(η)(1− ˜̃σ) + c(η) (3.1.38)

where aedge is of the form (3.1.30), aint ∈ Lµcl(M \{v}; Rq), while c(η) is a parameter-
dependent smoothing operator on M , associated with the weight data (γ, γ − µ).
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Remark 3.1.22. According to [6] an operator family a(η) ∈ Cµ(M, (γ, γ − µ); Rq)
can be equivalently written in the form

a(η) = σt−µopγ−
n
2

M (h)(η)σ̃ + (1− σ)aint(η)(1− ˜̃σ) + (m+ g)(η) + c(η) (3.1.39)

where h is as in (3.1.27), aint(η) ∈ Lµcl(M \{v}; Rq), m+g is a smoothing Mellin and
Green operator and c(η) ∈ CG(M, (γ, γ − µ); Rq).

Theorem 3.1.23. Let M be a compact manifold with a conical singularity. Then the
η-dependent families (3.1.24), which define continuous operators

a(η) : Hs,γ(M)→ Hs−ν,γ−ν(M) (3.1.40)

for all s ∈ R, ν ≥ µ, have the properties:

‖a(η)‖L(Hs,γ(M),Hs−ν,γ−ν(M)) ≤ c〈η〉B (3.1.41)

for all η ∈ Rq, s ∈ R, with constants c = c(µ, ν, s) > 0, B = B(µ, ν, s), and, when
µ ≤ 0,

‖a(η)‖L(H0,0(M),H0,0(M)) ≤ c〈η〉µ (3.1.42)

for all η ∈ R, s ∈ R, with constants c = c(µ, s) > 0.

Proof. The result is known for the summand (1 − σ)aint(η)(1 − ˜̃σ) as we see from
Example 3.1.5. Therefore, we may concentrate on

p(η) := σaedge(η)σ̃ : Hs,γ(M)→ Hs−ν,γ−ν(M).

To show (3.1.41) we pass to

σaedge(η)σ̃ : Ks,γ(X∧)→ Ks−ν,γ−ν(X∧).

Then Theorem 3.1.19 shows that we have symbolic estimates, especially

‖κ−1
〈η〉p(η)κ〈η〉‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)) ≤ c〈η〉µ.

We have

‖p(η)‖L(Ks,γ(X∧),Ks−ν,γ−ν(X∧)) ≤ ‖p(η)‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)),

and

‖p(η)‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)) = ‖κ〈η〉κ−1
〈η〉p(η)κ〈η〉κ

−1
〈η〉‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧))

≤ ‖κ〈η〉‖L(Ks−µ,γ−µ(X∧),Ks−µ,γ−µ(X∧))‖κ−1
〈η〉p(η)κ〈η〉‖L(Ks,γ(X∧),Ks−µ,γ−µ(X∧))

‖κ−1
〈η〉‖L(Ks,γ(X∧),Ks,γ(X∧)) ≤ c〈η〉µ+M̃+M .

Here we used that κ〈η〉, κ−1
〈η〉 satisfy estimates like (3.1.5).

For (3.1.42) we employ that κλ is operating as a unitary group on K0,0(X∧). This
gives us

‖p(η)‖L(K0,0(X∧),K0,0(X∧)) = ‖κ−1
〈η〉p(η)κ〈η〉‖L(K0,0(X∧),K0,0(X∧))

≤ ‖κ−1
〈η〉p(η)κ〈η〉‖L(K0,0(X∧),K−µ,−µ(X∧)) ≤ c〈η〉µ.
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Theorem 3.1.24. For every k ∈ Z there exists an fk(z) ∈ M−∞(X; Γn+1
2 −γ

) such
that for every cut-off functions ω, ω̃ the operator

A := 1 + ωopγ−
n
2

M (fk)ω̃ : Hs,γ(M)→ Hs,γ(M) (3.1.43)

is Fredholm of index k, for all s ∈ R.

Proof. We employ the result (cf. [38]) that for every k ∈ Z there exists an fk(z) such
that

Ã := 1 + ωopγ−
n
2

M (fk)ω̃ : Ks,γ(X∧)→ Ks,γ(X∧) (3.1.44)

is Fredholm of index k. Recall that the proof of the latter result follows from a
corresponding theorem in the case dimX = 0. The Mellin symbol fk is constructed
in such a way that 1+ fk(z) 6= 0 for all z ∈ Γ 1

2−γ
and the argument of 1+ fk(z)|Γ 1

2−γ

varies from 1 to 2πk when z ∈ Γ 1
2−γ

goes from Im z = −∞ to Im z = +∞. The choice
of ω, ω̃ is unessential; so we assume that ω, ω̃ ≡ 0 for t ≥ 1− ε with some ε > 0. Let
us represent the cone M̃ := X∆ as a union of

(
[0, 1 + ε

2 )×X
)
/({0}×X) =: M̃− and

(1− ε
2 ,∞)×X =: M̃+. Then

Ã|
M̃−

= 1 + ωopγ−
n
2

M (fk)ω̃, Ã|
M̃+

= 1. (3.1.45)

Moreover, without loss of generality, we represent M as a union
(
[0, 1+ ε

2 )×X
)
/({0}×

X)∪M+ where M+ is an open C∞ manifold which intersects
(
[0, 1+ ε

2 )×X
)
/({0}×

X) =: M− in a cylinder of the form (1− ε
2 , 1 + ε

2 )×X. Let B denote the operator on
M , defined by

B− := A|M− = 1 + ωopγ−
n
2

M (fk)ω̃, B+ := A|M+ = 1 (3.1.46)

We are then in a special situation of cutting and pasting of Fredholm operators. We
can pass to manifolds with conical singularities N and Ñ by setting

N = M̃− ∪M+, Ñ = M− ∪ M̃+

and transferring the former operators in (3.1.45), (3.1.46) to N and Ñ , respectively,
by gluing together the ± pieces of Ã and A to belong to M̃± and M± to corresponding
operators B̃ on Ñ and B on N . We then have the relative index formula

indA− indB = indÃ− indB̃ (3.1.47)

(see [26]). In the present case Ã and M̃ are the same as B̃ and Ñ where B and N are
the same as A and M . It follows that

indÃ− indB̃ = indB − indA. (3.1.48)

From (3.1.47), (3.1.48) it follows that indA = indB = indÃ.

Let us now give more information about the above mentioned space

Cµ(M, g; Rq), g = (γ, γ − µ),
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of parameter-dependent cone operators on M of order µ ∈ R, with the weight data
g, cf. Definition 3.1.21. The elements a(η) ∈ Cµ(M, g; Rq) have a principal symbolic
hierarchy

σ(a) := (σψ(a), σ∧(a)) (3.1.49)

where σψ(a) is the parameter-dependent homogeneous principal symbol of order µ,
defined through a(η) ∈ Lµcl(M \ {v}; Rq). This determines the reduced symbol

σ̃ψ(a)(t, x, τ, ξ, η) := tµσψ(a)(t, x, t−1τ, ξ, t−1η)

given close to v in the splitting of variables (t, x) with covariables (τ, ξ). By construc-
tion σ̃ψ(a) is smooth up to t = 0. The second component, the edge symbol σ∧(a)(η)
is defined as

σ∧(a)(η) := t−µω|η|opγ−
n
2

M (h0)(η)ω̃|η|+t−µ(1−ω|η|)Opt(p0)(η)(1− ˜̃ω|η|)+σ∧(m+g)(η),

cf. (3.1.29), where σ∧(m + g)(η) is just the (twisted) homogeneous principal symbol
of m+ g as a classical operator-valued symbol.

Every element a(η) of Cµ(M, g; Rq) represents families of continuous operators

a(η) : Hs,γ(M)→ Hs−µ,γ−µ(M) (3.1.50)

for all s ∈ R.

Definition 3.1.25. An element a(η) ∈ Cµ(M, g; Rq) is called elliptic, if

(i) σψ(a) never vanishes as a function on T ∗
(
(M \{v})×Rq

)
\0, and if σ̃ψ(a) does

not vanish for all (t, x, τ, ξ, η), (τ, ξ, η) 6= 0, up to t = 0;

(ii) σ∧(a)(η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧) is a family of isomorphisms for all η 6= 0,
and any s ∈ R.

Remark 3.1.26. There is an extended notion of ellipticity for 2 × 2 block matrix
families which includes extra trace and potential families.

Theorem 3.1.27. If a(η) ∈ Cµ(M, g; Rq), g = (γ, γ − µ), is elliptic, there exists an
element a(−1)(η) ∈ C−µ(M, g−1; Rq), g−1 := (γ − µ, γ), such that

1− a(−1)(η)a(η) ∈ CG(M, gl; Rq), 1− a(η)a(−1)(η) ∈ CG(M, gr; Rq),

where gl := (γ, γ), gr := (γ − µ, γ − µ).

The proof employs known elements of the edge symbolic calculus (cf. [39]); so we
do not recall the details here. Let us only note that the inverses of σψ(a), σ̃ψ(a) and
σ∧(a) can be employed to construct an operator family b(η) ∈ C−µ(M, g−1; Rq) such
that

σψ(a(−1)) = σψ(b), σ̃ψ(a(−1)) = σ̃ψ(b), σ∧(a(−1)) = σ∧(b).

This gives us 1 − b(η)a(η) =: c0(η) ∈ C−1(M, gl; Rq), and a formal Neumann series
argument allows us to improve b(η) to a left parametrix a(−1)(η) by setting a(−1)(η) :=(∑∞

j=0 c
j
0(η)

)
b(η) (using the existence of the asymptotic sum in C0(M, g; Rq)). In a

similar manner we can construct a right parametrix, i.e., a(−1)(η) is as desired.
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Corollary 3.1.28. If a(η) is as in Theorem 3.1.27, then (3.1.50) is a family of
Fredholm operators of index 0, and there is a constant C > 0 such that the operators
(3.1.50) are isomorphisms for all |η| ≥ C, s ∈ R.

Theorem 3.1.29. The space Cµ(M, (γ, γ − µ); Rq) contains an element a(η) which
induces a family of isomorphisms

a(η) : Hs,γ(M)→ Hs−µ,γ−µ(M) (3.1.51)

for all s ∈ R and all η ∈ Rq.

Proof. The strategy of the proof is to construct an operator family a(η, ζ, λ) in
Cµ(M, (γ, γ − µ); Rq+r+lη,ζ,λ ), q, r, l ∈ N \ {0}, which is parameter-dependent elliptic
in the sense of Definition 3.1.25, then to apply Theorem 3.1.27 and finally to set
a(η) := a(η, ζ1, λ1) for ζ1, λ1 fixed.

We choose a function

pλ(t, τ, η, ζ) := p̃λ(tτ, tη, tζ)

similarly as in (3.1.25) where p̃λ(τ̃ , η̃, ζ̃) ∈ Lµcl(X; R1+q+r+l

τ̃ ,η̃,ζ̃,λ
) is parameter-dependent

elliptic with parameters τ̃ , η̃, ζ̃, λ. We specify p̃λ in such a way that the parameter-
dependent homogeneous principal symbol in (x, τ̃ , ξ, λ, η̃, ζ̃) for (τ̃ , ξ, λ, η̃, ζ̃) 6= 0 is
equal to

(|τ̃ |2 + |ξ, λ|2 + |η̃|2 + |ζ̃|2)
µ
2 .

We now form an element

h̃λ(z, η̃, ζ̃) ∈Mµ
O(X; Rq+r+l

η̃,ζ̃,λ
)

analogously as (3.1.26) such that

hλ(t, z, η, ζ) := h̃λ(z, tη, tζ)

satisfies
opγM (hλ)(η, ζ) = Opt(pλ)(η, ζ) mod L−∞(X∧; Rq+r+lη,ζ,λ ).

For every fixed (ζ, λ) ∈ Rr+l this is exactly as before, but in this way we obtain
corresponding (ζ, λ)-dependent families of such objects. We set

σbedge,λ(η, ζ)σ̃ := t−µσ
{
ωη,ζopγ−

n
2

M (hλ)(η, ζ)ω̃η,ζ + χη,ζOpt(pλ)(η, ζ)χ̃η,ζ
}
σ̃

with
χη,ζ(t) := 1− ωη,ζ(t), χ̃η,ζ(t) := 1− ˜̃ωη,ζ(t).

Let us form the principal edge symbol

σ∧(σbedge,λσ̃)(η, ζ) = t−µ
{
ω|η,ζ|opγ−

n
2

M (hλ)(η, ζ)ω̃|η,ζ| + χ|η,ζ|Opt(pλ)(η, ζ)χ̃|η,ζ|
}

for |η, ζ| 6= 0. The latter is interpreted as a family of continuous operators

σ∧(σbedge,λσ̃)(η, ζ) : Ks,γ;g(X∧)→ Ks−µ,γ−µ;g(X∧) (3.1.52)



94 AXIOMATIC APPROACH WITH CORNER-DEGENERATE SYMBOLS

which is elliptic as a family of classical pseudo-differential operators onX∧. In addition
it is “exit” elliptic on X∧ in the sense of Remark 1.2.15 with respect to the conical
exit of X∧ to infinity. In order that (3.1.52) is Fredholm for the given weight γ ∈ R
and all s, g ∈ R it is necessary and sufficient that the subordinate conormal symbol

σcσ∧(σbedge,λσ̃)(z) : Hs(X)→ Hs−µ(X)

is a family of isomorphisms for all z ∈ Γn+1
2 −γ

. This is standard information from the
calculus on the stretched cone X∧. By definition the conormal symbol is just

h̃λ(z, 0, 0) : Hs(X)→ Hs−µ(X). (3.1.53)

Since by construction h̃λ(β + iτ, 0, 0) is parameter-dependent elliptic on X with pa-
rameters (τ, λ) ∈ R1+l, for every β ∈ R (uniformly in finite β-intervals) there is a
C > 0 such that (3.1.53) becomes bijective whenever |τ, λ| > C. In particular, choos-
ing λ large enough, the bijectivity follows for all τ ∈ R, i.e., for all z ∈ Γn+1

2 −γ
. Let

us fix λ1 in that way and write again

p(t, τ, η, ζ) := p̃λ1(tτ, tη, tζ),

h(t, z, η, ζ) := h̃λ1(z, tη, tζ),
bedge(η, ζ) := bedge,λ1(η, ζ).

We are now in the same situation we started with, but we know in addition that
(3.1.52) is a family of Fredholm operators of a certain index, say −k for some k ∈
Z. With the smoothing Mellin symbol fk(z, η, ζ) ∈ M−∞(X,Γn+1

2 −γ
× Rq+rη,ζ ) as in

Theorem 3.1.24 we now form the composition

F (η, ζ) := σbedge(η, ζ)σ̃
(
1 + ωη,ζopγ−

n
2

M (fk)ω̃η,ζ
)
, (3.1.54)

which is of the form

σbedge(η, ζ)σ̃ + ωη,ζopγ−
n
2

M (f)ω̃η,ζ + g(η, ζ) (3.1.55)

for another smoothing Mellin symbol f(z, η, ζ) and a certain Green symbol g(η, ζ).
Here, by a suitable choice of ω, ω̃, without loss of generality we assume that σ ≡ 1 and
σ̃ ≡ 1 on suppωη,ζ ∪ supp ω̃η,ζ , for all (η, ζ) ∈ Rq+r. Since (3.1.54) is a composition
of parameter-dependent cone operators the associated edge symbol is equal to

σ∧F (η, ζ) = σ∧(σbedgeσ̃)(η, ζ)
(
1+ω|η,ζ|opγ−

n
2

M (fk)ω̃|η,ζ|
)
:Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

(3.1.56)
which is a family of Fredholm operators of index 0. By construction (3.1.56) depends
only on |η, ζ|. For (η, ζ) ∈ Sq+r−1, the unit sphere in Rq+r, we now add a Green
operator g0 on X∧ such that

F (η, ζ) + g0(η, ζ) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

is an isomorphism; it is known that such g0 (of finite rank) exists (for N =
dim kerF (η, ζ) it can be written in the form g0u :=

∑N
j=1(u, vj)wj , where (·, ·) is
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the K0,0(X∧)-scalar product and (vj)j=1,...,N , (wj)j=1,...,N are orthonormal systems
of functions in C∞0 (X∧)). Setting

g(η, ζ) := σϑ(η, ζ)|η, ζ|µκ|η,ζ|g0κ
−1
|η,ζ|σ̃

with an excision function ϑ(η, ζ) in Rq+r we obtain a Green symbol with σ∧(g)(η, ζ) =
|η, ζ|µκ|η,ζ|g0κ

−1
|η,ζ| and hence

σ∧(F (η, ζ) + g(η, ζ)) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

is a family of isomorphisms for all (η, ζ) ∈ Rq+r \ {0}. Setting

aedge(η, ζ)

:= t−µ
{
ωη,ζopγ−

n
2

M (h)(η, ζ)ω̃η,ζ + χη,ζOpt(p)(η, ζ)χ̃η,ζ
}(

1 + ωη,ζopγ−
n
2

M (fk)ω̃η,ζ
)

+ |η, ζ|µϑ(η, ζ)κ|η,ζ|g0κ
−1
|η,ζ| (3.1.57)

we obtain an operator family

σaedge(η, ζ)σ̃ = F (η, ζ) + g(η, ζ)

as announced before.

Next we choose a parameter-dependent elliptic aint(η, ζ) ∈ Lµcl(M \{v}; R
q+r
η,ζ ) such

that its parameter-dependent homogeneous principal symbol close to t = 0 (in the
splitting of variables (t, x)) is equal to

(|τ |2 + |ξ|2 + |η|2 + |ζ|2)
µ
2 .

Then we form

a(η, ζ) := σaedge(η, ζ)σ̃ + (1− σ)aint(η, ζ)(1− ˜̃σ)

with σ, σ̃, ˜̃σ as in (3.1.24). This is now a parameter-dependent elliptic element of the
cone calculus on M with parameter (η, ζ) ∈ Rq+r. It is known (see Theorem 3.1.27)
that there is a constant C > 0 such that the operators (3.1.51) are isomorphisms for
all |η, ζ| ≥ C. Now, in order to construct a(η) such that (3.1.51) are isomorphisms for
all η ∈ Rq we simply fix ζ1 so that |ζ1| > C and define a(η) := a(η, ζ1).

Observe that the operator functions of Theorem 3.1.29 refer to scales of spaces with
two parameters, namely, s ∈ R, the smoothness, and γ ∈ R, the weight. Compared
with Definition 3.1.10 we have here an additional weight. There are two ways to make
the different view points compatible. One is to apply weight reducing isomorphisms

h−µ : Hs,γ(M)→ Hs,γ−µ(M) (3.1.58)

as in (3.1.23). Then, passing from

a(η) : Hs,γ(M)→ Hs−µ,γ−µ(M) (3.1.59)

to
bµ(η) := h−γ+µa(η)hγ : Hs,0(M)→ Hs−µ,0(M) (3.1.60)

we obtain operator functions between spaces only referring to s but with properties
as required in Definition 3.1.10.
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Remark 3.1.30. The spaces Es := Hs,0(M), s ∈ R, form a scale with the properties
at the beginning of Section 3.1.1.

Another way is to modify the abstract framework by admitting scales Es,γ rather
than Es, where in general γ may be in Rk (which is motivated by the higher corner
calculus). We do not study the second possibility here but we only note that the
variant with Es,γ-spaces is very similar to the one without γ.

Let us now look at operator functions of the form (3.1.60).

Theorem 3.1.31. The operators (3.1.60) constitute an order reducing family in the
spaces Es := Hs,0(M), where the properties (i)-(iii) of Definition 3.1.3 are satisfied.

Proof. In this proof we concentrate on the properties of our operators for every fixed
s, µ, ν with ν ≥ µ. The uniformity of the involved constants can easily be deduced;
however, the simple (but lengthy) considerations will be left out.
(i) We have to show that

Dβ
η b
µ(η) = Dβ

η {h
−γ+µa(η)hγ} ∈ C∞

(
Rq,L(Es, Es−µ+|β|)

)
for all s ∈ R, β ∈ Nq. According to (3.1.24) the operator function is a sum of two
contributions. The second summand

(1− σ)h−γ+µaint(η)hγ(1− ˜̃σ)

is a parameter-dependent family in Lµcl(2M; Rq) and obviously has the desired prop-
erty. The first summand is of the form

σh−γ+µ{aedge(η) +m(η) + g(η)}hγ σ̃.

From the proof of Theorem 3.1.23 we have

Dβ
ησaedge(η)σ̃ ∈ Sµ−|β|

(
Rq;Ks,γ;g(X∧),Ks−µ+|β|,γ−µ;g(X∧)

)
for every β ∈ Nq. In particular, these operator functions are smooth in η and the
derivatives improve the smoothness in the image by |β|. This gives us the desired
property of σh−γ+µaedge(η)hγ σ̃. The C∞ dependence of m(η) + g(η) in η is clear
(those are operator-valued symbols), and they map to K∞,γ−µ;g(X∧) anyway. There-
fore, the desired property of σh−γ+µ{m(η) + g(η)}hγ σ̃ is satisfied as well.
(ii) This property essentially corresponds to the fact that the product in consideration
close to the conical point is a symbol in η of order zero and that the group action
in K0,0(X∧)-spaces is unitary. Far from the conical point the boundedness is as in
Example 3.1.5.
(iii) The proof of this property close to the conical point is of a similar structure
as Proposition 3.1.9, since our operators are based on operator-valued symbols refer-
ring to spaces with group action. The contribution outside the conical point is as in
Example 3.1.5.

Remark 3.1.32. For Es := Hs,0(M), s ∈ R, E = (Es)s∈R, the operator functions
bµ(η) of the form (3.1.60) belong to Sµ(Rq; E , E) (see the notation after Definition
3.1.10).
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3.2 Operators referring to a corner point

3.2.1 Weighted spaces

Let E = (Es)s∈R ∈ E be a scale of Hilbert spaces with the compact embedding
property and (bµ(ρ))µ∈R, ρ ∈ R, be an order reducing family (see Definition 3.1.3
with q = 1). We define a new scale of spaces adapted to the Mellin transform (1.1.24)
and the approach of the cone calculus. In the following definition the Mellin transform
refers to the variable r ∈ R+, i.e.,M =Mr→w.

Definition 3.2.1. For every s, γ ∈ R we define the space Hs,γ(R+, E) to be the
completion of C∞0 (R+, E

∞) with respect to the norm

‖u‖Hs,γ(R+,E) =
{ 1

2πi

∫
Γ d+1

2 −γ

‖bs(Imw)Mu(w)‖2E0dw
} 1

2
(3.2.1)

for a d = dE ∈ N. The Mellin transform M in (3.2.1) is interpreted as the weighted
Mellin transform Mγ− d

2
.

The role of dE is an extra information, given together with the scale E . In the
example E = (Hs(X))s∈R for a closed compact C∞ manifold X we have dE := dimX.

Observe that when we replace the order reducing family in (3.2.1) by an equivalent
one the resulting norm is equivalent to (3.2.1).

By virtue of the identity

rβHs,γ(R+, E) = Hs,γ+β(R+, E)

for every s, γ, β ∈ R, it is often enough to refer the considerations to one particular
weight, or to set

dE = 0. (3.2.2)

For simplicity, if nothing else is said, from now on we assume (3.2.2).

Proposition 3.2.2. Let ω ∈ C∞0 (R+) be a cut-off function. Then the multiplication
by ω induces continuous operator

Mω : Hs,γ(R+, E)→ Hs,γ(R+, E)

for every s, γ ∈ R. Moreover, ω →Mω induces a continuous operator

C∞0 (R+)→ L
(
Hs,γ(R+, E)

)
.

Let us consider Definition 3.1.10 for the case U = R, q = 1, and denote the
covariable now by ρ ∈ R. Set

Sµ(R+ × R+ × R; E , Ẽ) := Sµ(R× R× R; E , Ẽ)|R+×R+×R
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and

Sµ(R+ × R+ × Γδ; E , Ẽ) :=

{a(r, r′, w) ∈ C∞
(
R+×R+×Γδ,Lµ(E , Ẽ)

)
: a(r, r′, δ+iρ) ∈ Sµ(R+×R+×Rρ; E , Ẽ)}

for any δ ∈ R. The subspaces of r′-independent ((r, r′)-independent) symbols are
denoted by Sµ(R+ × R; E , Ẽ) (Sµ(R; E , Ẽ ′)) and Sµ(R+ × Γδ; E , Ẽ) (Sµ(Γδ; E , Ẽ)),
respectively.

Given an element f(r, r′, w) ∈ Sµ(R+ × R+ × Γ 1
2−γ

; E , Ẽ) we set

opγM (f)u(r) =
1
2π

∫ ∫ ∞
0

(
r

r′
)−( 1

2−γ+iρ)f(r, r′,
1
2
− γ + iρ)u(r′)

dr′

r′
dρ. (3.2.3)

Let, for instance, f be independent of r′. Then (3.2.3) induces a continuous operator

opγM (f) : C∞0 (R+, E
s)→ C∞(R+, Ẽ

s−µ). (3.2.4)

In fact, we have opγM (f) = M−1
γ,w→rf(r, w)Mγ,r′→w. The weighted Mellin trans-

form Mγ induces a continuous operator

Mγ : C∞0 (R+, E
s)→ S(Γ 1

2−γ
, Es)

for every s ∈ R. The subsequent multiplication of Mγu(w) by f(r, w) gives rise to
an element in C∞

(
R+,S(Γ 1

2−γ
, Ẽs−µ)

)
, and then it follows easily that opγM (f)u ∈

C∞
(
R+, Ẽ

s−µ). We now formulate a continuity result, first for the case of symbols
with constant coefficients.

Theorem 3.2.3. For every f(w) ∈ Sµ(Γ 1
2−γ

; E , Ẽ) the operator (3.2.4) extends to a
continuous operator

opγM (f) : Hs,γ(R+, E)→ Hs−µ,γ(R+, Ẽ) (3.2.5)

for every s ∈ R. Moreover, f → opγM (f) induces a continuous operator

Sµ(Γ 1
2−γ

; E , Ẽ)→ L
(
Hs,γ(R+, E),Hs−µ,γ(R+, Ẽ)

)
(3.2.6)

for every s ∈ R.

Proof. We have

‖opγM (f)u‖2Hs−µ,γ(R+,Ẽ)

=
∫

R
‖b̃s−µ(ρ)Mγ(M−1

γ f(
1
2
− γ + iρ))(Mγu)(

1
2
− γ + iρ)‖2

Ẽ0dρ

=
∫

R
‖b̃s−µ(ρ)f(

1
2
− γ + iρ)b−s(ρ)bs(ρ)(Mγu)(

1
2
− γ + iρ)‖2

Ẽ0dρ

≤ c2‖u‖2Hs,γ(R+,E)



OPERATORS REFERRING TO A CORNER POINT 99

with
c = sup

ρ∈R
‖b̃s−µ(ρ)f(

1
2
− γ + iρ)b−s(ρ)‖L(E0,Ẽ0),

which is finite for every s ∈ R (cf. the estimates (3.1.13)). Thus we have proved the
continuity of both (3.2.5) and (3.2.6).

In order to generalise Theorem 3.2.3 to symbols with variable coefficients we im-
pose conditions of reasonable generality that allow us to reduce the arguments to a
vector-valued analogue of Kumano-go’s technique.
Given a Fréchet space V with a countable system of semi-norms (πι)ι∈N that defines
its topology, we denote by C∞B (R+×R+, V ) the set of all u(r, r′) ∈ C∞(R+×R+, V )
such that

sup
r,r′∈R+

πι

(
(r∂r)k(r′∂r′)k

′
u(r, r′)

)
<∞

for all k, k′ ∈ N. In a similar manner by C∞B (R+, V ) we denote the set of such functions
that are independent of r′.
Moreover, we set

SµB(R+ × R+ × Γ 1
2−γ

; E , Ẽ) := C∞B
(
R+ × R+, S

µ(Γ 1
2−γ

; E , Ẽ)
)

and, similarly, SµB(R+ × Γ 1
2−γ

; E , Ẽ) := C∞B
(
R+, S

µ(Γ 1
2−γ

; E , Ẽ)
)
.

Theorem 3.2.4. For every f(r, w) ∈ SµB(R+ × Γ 1
2−γ

; E , Ẽ) the operator opγM (f)
induces a continuous mapping

opγM (f) : Hs,γ(R+, E)→ Hs−µ,γ(R+, Ẽ),

and f → opγM (f) a continuous operator

SµB(R+ × Γ 1
2−γ

; E , Ẽ)→ L
(
Hs,γ(R+, E),Hs−µ,γ(R+, Ẽ)

)
for every s ∈ R.

Parallel to the spaces of Definition 3.2.1 it also makes sense to consider their
“cylindrical” analogues, defined as follows.

Definition 3.2.5. Let (bs(η))s∈R, be an order reducing family as in Definition 3.1.3.
For every s ∈ R we define the space Hs(Rq, E) to be the completion of C∞0 (Rq, E∞)
with respect to the norm

‖u‖Hs(Rq,E) :=
{∫

Rq

‖bs(η)Fu(η)‖2E0dη

} 1
2

.

Clearly, similarly as above, with a symbol a(y, y′, η) ∈ Sµ(Rq × Rq × Rq; E , Ẽ)
(when we impose a suitable control with respect to the dependence on y′ for large
|y′|) we can associate a pseudo-differential operator

Opy(a)u(y) =
∫∫

ei(y−y
′)ηa(y, y′, η)u(y′)dy′d̄η.
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In particular, if a = a(η) has constant coefficients, then we obtain a continuous
operator

Opy(a) : Hs(Rq, E)→ Hs−µ(Rq, Ẽ) (3.2.7)

for every s ∈ R. In the case of variable coefficients we need some precautions on the
nature of symbols. This will be postponed for the moment.

We are mainly interested in the case q = 1. Consider the transformation

(Sγu)(y) := e−( 1
2−γ)yu(e−y)

from functions in r ∈ R+ to functions in y ∈ R. We then have the identity

(Mγu)(
1
2
− γ + iρ) = (FSγu)(ρ)

with F being the one-dimensional Fourier transform. This gives us{
1
2π

∫
R
‖bs(η)(FSγu)(η)‖2E0dη

} 1
2

= ‖Sγu‖Hs(R,E) = ‖u‖Hs,γ(R+,E),

i.e., Sγ induces an isomorphism

Sγ : Hs,γ(R+, E)→ Hs(R, E). (3.2.8)

Remark 3.2.6. By reformulating the expression (3.2.3) we obtain

opγM (f)u(r) =
1
2π

∫∫
e(

1
2−γ+iρ)(log r

′−log r)f(r, r′,
1
2
− γ + iρ)u(r′)

dr′

r′
dρ.

Substituting r = e−y, r′ = e−y
′
gives us

opγM (f)u(r) =
1
2π

∫∫
ei(y−y

′)ρe(
1
2−γ)(y−y

′)f(e−y, e−y
′
,
1
2
− γ + iρ)u(e−y

′
)dy′dρ

= Opy(gγ)v(y)

with v(y) := u(e−y) and gγ(y, y′, ρ) := e(
1
2−γ)(y−y

′)f(e−y, e−y
′
, 1

2 − γ + iρ).

In other words, if χ : R+ → R is defined by χ(r) = − log r =: y, we have (χ∗v)(r) =
v(− log r) or ((χ−1)∗u)(y) = u(e−y) and

opγM (f) = χ∗Opy(gγ)(χ
−1)∗.

Thus Opy(gγ) is the operator push forward of opγM (f) under χ.

3.2.2 Mellin quantisation and kernel cut-off

The axiomatic cone calculus that we develop here is a substructure of the gen-
eral calculus of operators with symbols in a(r, ρ) ∈ Sµ(R+ × R; E , Ẽ) of the form
a(r, ρ) = ã(r, rρ), ã(r, ρ̃) ∈ Sµ(R+ × Rρ̃; E , Ẽ) (up to a weight factor and modulo
smoothing operators) with a special control near r = 0 via Mellin quantisation. By
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L−∞(R+; E , Ẽ ; Rq) we denote the space of all Schwartz functions in η ∈ Rq with values
in operators

C∞0 (R+, E
−∞)→ C∞(R+, Ẽ

∞).

We then define

Lµ(R+; E , Ẽ ; Rq) =

{Opr(a)(η) + C(η) : a(r, ρ, η) ∈ Sµ(R+ × R1+q
ρ,η ; E , Ẽ), C(η) ∈ L−∞(R+; E , Ẽ ; Rq)}.

Our next objective is to formulate a Mellin quantisation result of symbols

a(r, ρ, η) = ã(r, rρ, rη), ã(r, ρ̃, η̃) ∈ Sµ(R+ × R1+q
ρ̃,η̃ ; E , Ẽ). (3.2.9)

Definition 3.2.7. By Mµ
O(E , Ẽ ; Rqη̃) we denote the set of all h(z, η̃) ∈ A

(
C,

Sµ(Rqη̃; E , Ẽ)
)

such that

h(β + iρ, η̃) ∈ Sµ(Rρ × Rqη̃; E , Ẽ)

for every β ∈ R, uniformly in compact β-intervals. For q = 0 we simply write
Mµ
O(E , Ẽ).

The space Mµ
O(E , Ẽ ; Rqη̃) is Fréchet with a natural semi-norm system, namely, the

one induced by A
(
C× Rq,Lµ(E , Ẽ)

)
together with

sup
|ρ|≤k

πι,ρ(hΓρ×Rq ), ι, k ∈ N,

where (πι,ρ)ι∈N denotes a countable semi-norm system for the Fréchet topology of
Sµ(Γρ × Rq; E , Ẽ).

Theorem 3.2.8 (Mellin quantisation). For every symbol a(r, ρ, η) of the form
(3.2.9) there exists an h̃(r, z, η̃) ∈ C∞

(
R+,M

µ
O(E , Ẽ ; Rq)

)
such that for h(r, z, η) :=

h̃(r, z, rη) and every δ ∈ R we have

opδM (h)(η) = Opr(a)(η)

modulo operators in L−∞(R+; E , Ẽ ; Rq).

This result in the context of operator-valued symbols based on order reductions
is mentioned here for completeness. It extends a corresponding result of the edge
symbolic calculus, see [6, Theorem 3.2]. More information in that case is given in [18,
Chapter 4]. Here we adapt some part of this approach to realise the kernel cut-off
principle that allows us to recognise how many parameter-dependent meromorphic
Mellin symbols exist.

Definition 3.2.9. Let Sµ(C × Rq; E , Ẽ) denote the space of all operator functions
h(ζ, η) ∈ A

(
C, Sµ(Rqη; E , Ẽ)

)
such that

h(ρ+ iδ, η) ∈ Sµ(R1+q
ρ,η ; E , Ẽ)

for every δ ∈ R, uniformly in compact δ-intervals.
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Clearly the space Sµ(C ×Rq; E , Ẽ) is a generalisation of Mµ
O(E , Ẽ), however, with

an interchanged role of real and imaginary part of the complex covariable. To produce
elements of Sµ(C × Rq; E , Ẽ) we consider a version of the kernel cut-off operator

HF : C∞0 (R)× Sµ(R1+q; E , Ẽ)→ Sµ(C × Rq; E , Ẽ)

transforming an arbitrary element a(ρ, η) ∈ Sµ(R1+q; E , Ẽ) into
(
HF (ϕ)a

)
(ζ, η) ∈

Sµ(C × Rq; E , Ẽ) for any ϕ ∈ C∞0 (R) (cf. Section 1.1.3). It will be useful to admit ϕ
to belong to the space

C∞b (R) := {ϕ ∈ C∞(Rθ) : sup
θ∈R
|Dk

θϕ(θ)| <∞ for every k ∈ N}.

We set (
HF (ϕ)a

)
(ρ, η) :=

∫∫
e−iθρ̃ϕ(θ)a(ρ− ρ̃, η)dθd̄ρ̃, (3.2.10)

interpreted as an oscillatory integral. We now prove the following result:

Theorem 3.2.10. The kernel cut-off operator HF : (ϕ, a) → HF (ϕ)a defines a
bilinear and continuous mapping

HF : C∞b (R)× Sµ(R1+q; E , Ẽ)→ Sµ(R1+q; E , Ẽ), (3.2.11)

and
(
HF (ϕ)a

)
(ρ, η) admits an asymptotic expansion

(
HF (ϕ)a

)
(ρ, η) ∼

∞∑
k=0

(−1)k

k!
Dk
θϕ(0)∂kρa(ρ, η). (3.2.12)

Proof. First note that the mapping

C∞b (R)× Sµ(R1+q
ρ,η ; E , Ẽ)→ C∞

(
Rqρ,η, S

µ
b (Rθ × Rρ̃; E , Ẽ)

)
(ϕ, a)→ ϕ(θ)a(ρ− ρ̃, η),

for Sµb (Rθ×Rρ̃; E , Ẽ) := C∞b
(
Rθ, Sµ(Rρ̃; E , Ẽ)

)
is bilinear and continuous. For the proof

of the continuity of (3.2.11) it suffices to verify that
(
HF (ϕ)a

)
(ρ, η) ∈ Sµ(R1+q; E , Ẽ)

and then to apply the closed graph theorem. By virtue of

Dβ
ρ,η

(
HF (ϕ)a

)
(ρ, η) =

(
HF (ϕ)(Dβ

ρ,ηa)
)
(ρ, η)

for every β ∈ N1+q we only have to check that for every s ∈ R

‖b̃s−µ(ρ, η)
(
HF (ϕ)a

)
(ρ, η)b−s(ρ, η)‖L(E0,Ẽ0) ≤ c (3.2.13)

for all (ρ, η) ∈ R1+q, with a constant c = c(s) > 0. We regularise the oscillatory
integral (3.2.10)(

HF (ϕ)a
)
(ρ, η) =

∫∫
e−iθρ̃〈θ〉−2{(1− ∂2

θ )
Nϕ(θ)}aN (ρ, ρ̃, η)dθd̄ρ̃

for
aN (ρ, ρ̃, η) := (1− ∂2

ρ̃){〈ρ̃〉−2Na(ρ− ρ̃, η)}. (3.2.14)
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The function (3.2.14) is a linear combination of terms

(∂jρ̃〈ρ̃〉
−2N )(∂kρa)(ρ− ρ̃, η) for 0 ≤ j, k ≤ 2.

We have∥∥∥∥b̃s−µ(ρ, η){∫∫ e−iθρ̃〈θ〉−2(1− ∂2
θ )
Nϕ(θ)

(∂jρ̃〈ρ̃〉
−2N )(∂kρa)(ρ− ρ̃, η)dθd̄ρ̃

}
b−s(ρ, η)

∥∥∥∥
L(E0,Ẽ0)

=
∥∥∥∥∫∫ b̃s−µ(ρ, η)b̃−s+µ(ρ− ρ̃, η)b̃s−µ(ρ− ρ̃, η)

{
e−iθρ̃〈θ〉−2(1− ∂2

θ )
Nϕ(θ)

(∂jρ̃〈ρ̃〉
−2N )(∂kρa)(ρ−ρ̃, η)}b−s(ρ−ρ̃, η)bs(ρ−ρ̃, η)b−s(ρ, η)dθd̄ρ̃

∥∥∥∥
L(E0,Ẽ0)

≤ c
∫
‖b̃s−µ(ρ, η)b̃−s+µ(ρ− ρ̃, η)‖L(Ẽ0,Ẽ0)‖b̃

s−µ(ρ− ρ̃, η)(∂jρ̃〈ρ̃〉
−2N )

(∂kρa)(ρ− ρ̃, η)b−s(ρ− ρ̃, η)‖L(E0,Ẽ0)‖b
s(ρ− ρ̃, η)b−s(ρ, η)‖L(E0,E0)d̄ρ̃. (3.2.15)

For the norms under the integral we apply Taylor’s formula

bs(ρ− ρ̃, η) =
M∑
m=0

1
m!

(∂mρ b
s)(ρ, η)(−ρ̃)m +

ρ̃

M !

M+1 ∫ 1

0

(1− t)M (∂M+1
ρ bs)(ρ− tρ̃, η)dt.

This yields

‖bs(ρ− ρ̃, η)b−s(ρ, η)‖L(E0,E0) ≤
M∑
m=0

1
m!
〈ρ̃〉m‖(∂mρ bs)(ρ, η)b−s(ρ, η)‖L(E0,E0)

+
〈ρ̃〉M+1

M !

∫ 1

0

(1− t)M‖(∂M+1
ρ bs)(ρ− tρ̃, η)b−s(ρ, η)‖L(E0,E0)dt.

By virtue of (3.1.14), Proposition 3.1.16 and Proposition 3.1.14 we obtain

‖(∂mρ bs)(ρ, η)b−s(ρ, η)‖L(E0,E0) ≤ c〈ρ, η〉−m.

Moreover, using Definition 3.1.3 (iii), it follows that

‖(∂M+1
ρ bs)(ρ− tρ̃, η)b−s(ρ, η)‖0,0

= ‖(∂M+1
ρ bs)(ρ− tρ̃, η)b−s(ρ− tρ̃, η)bs(ρ− tρ̃, η)b−s(ρ, η)‖0,0

≤ c‖(∂M+1
ρ bs)(ρ− tρ̃, η)b−s(ρ− tρ̃, η)‖0,0‖bs(ρ− tρ̃, η)‖s,0‖b−s(ρ, η)‖0,s

≤ 〈ρ− tρ̃, η〉−(M+1)+B1(s)〈ρ, η〉B2(s)

with certain Bi(s), i = 1, 2. Here we denoted by ‖·‖s,l the operator norm in L(Es, El),
s, l ∈ R. We thus obtain

‖bs(ρ− ρ̃, η)b−s(ρ, η)‖L(E0,E0) ≤ c〈ρ̃〉M+1〈ρ, η〉B2(s) sup
|t|≤1

〈ρ− tρ̃, η〉−(M+1)+B1(s).
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By Peetre’s inequality for L ≥ 0 we have sup|t|≤1〈ρ− tρ̃, η〉−L ≤ c〈ρ̃〉L〈ρ, η〉−L. Thus,
choosing M so large that

−(M + 1) +B1(s) ≤ 0, −(M + 1) +B1(s) +B2(s) ≤ 0,

it follows that

‖bs(ρ− ρ̃, η)b−s(ρ, η)‖L(E0,E0) ≤ c〈ρ̃〉M+1〈ρ̃〉M+1−B1(s)〈ρ, η〉−(M+1)+B1(s)+B2(s)

≤ c〈ρ̃〉A(s) (3.2.16)

for A(s) := 2(M + 1)−B2(s).

In a similar manner we can show that

‖b̃s−µ(ρ, η)b̃−s+µ(ρ− ρ̃, η)‖L(Ẽ0,Ẽ0) ≤ c〈ρ̃〉
Ã(s) (3.2.17)

for some Ã(s) ∈ R. Applying (3.2.16) and (3.2.17) in the estimate (3.2.15) it follows
that

‖b̃s−µ(ρ, η)
(
HF (ϕ)a

)
(ρ, η)b−s(ρ, η)‖L(E0,Ẽ0) ≤ c

∑
0≤j≤2

∫
|∂jρ̃〈ρ̃〉

−2N |〈ρ̃〉A(s)+Ã(s)d̄ρ̃.

(3.2.18)
Since N ∈ N can be chosen as large as we want, it follows that the right hand side
of (3.2.18) is finite for an appropriate N . This completes the proof of (3.2.13). The
relation (3.2.12) immediately follows by applying Taylor’s formula on ϕ at 0.

Theorem 3.2.11. The kernel cut-off operator HF : (ϕ, a) → HF (ϕ)a defines a
bilinear and continuous mapping

HF : C∞0 (R)× Sµ(R1+q; E , Ẽ)→ Sµ(C × Rq; E , Ẽ). (3.2.19)

Proof. Writing (
HF (ϕ)a

)
(ρ, η) =

∫
e−iθρϕ(θ)

{∫
eiθρ

′
a(ρ′, η)d̄ρ′

}
dθ

we see that
(
HF (ϕ)a

)
(ρ, η) is the Fourier transform of a distribution

ϕ(θ)
∫
eiθρ

′
a(ρ′, η)d̄ρ′ ∈ S ′

(
Rθ,Lµ(E , Ẽ)

)
with compact support. This extends to a holomorphic Lµ(E , Ẽ)-valued function in
ζ = ρ+ iδ, given by (

HF (ϕ)a
)
(ρ+ iδ, η) =

(
HF (ϕδ)a

)
(ρ, η)

for ϕδ(θ) := eθδϕ(θ). From Theorem 3.2.10 we obtain
(
HF (ϕ)a

)
(ρ + iδ, η) ∈

Sµ(R1+q; E , Ẽ) for every δ ∈ R. By virtue of the continuity of δ → ϕδ, R → C∞0 (R)
and of the continuity of (3.2.11) it follows that (3.2.19) induces a continuous mapping

HF : C∞0 (R)× Sµ(R1+q; E , Ẽ)→ Sµ(Iδ × Rq; E , Ẽ),

Iδ := {ζ ∈ C : Imζ = δ}, which is uniform in compact δ-intervals. The closed graph
theorem gives us also the continuity of (3.2.19) with respect to the Fréchet topology
of Sµ(C × Rq; E , Ẽ).
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3.2.3 Meromorphic Mellin symbols and operators with asymp-
totics

As an ingredient of our cone algebra we now study meromorphic Mellin symbols,
starting from Mµ

O(E , Ẽ) (see Definition 3.2.7 for q = 0).

Theorem 3.2.12. h ∈ Mµ
O(E , Ẽ) and h|Γβ

∈ Sµ−ε(Γβ ; E , Ẽ) for some ε > 0 entails
h ∈Mµ−ε

O (E , Ẽ).

Proof. The ideas of the proof are similar to the case of the cone calculus with smooth
base X and the scales

(
Hs(X)

)
s∈R (see, e.g., the thesis of Seiler [44]). Let us sketch

it briefly.
Without loss of generality we assume h|Γ0 ∈ Sµ−ε(Γ0; E , Ẽ). We apply Taylor’s formula

h(β + iρ) =
N−1∑
j=0

(Dj
ρh0)(ρ)
j!

βj +
βN

(N − 1)!

∫ 1

0

(1− θ)N−1(∂Nw h)(θβ + iρ)dθ,

h0(ρ) := h(w)|Γ0 . The terms in the first sum on the right hand side are continuous
in β with values in Sµ−j−ε(Rρ; E , Ẽ). Since they are holomorphic in w ∈ C with
values in Lµ(E , Ẽ), Cauchy’s formula gives us elements in Mµ−ε

O (E , Ẽ) for all j =
0, . . . , N −1. Choosing N > ε we obtain that (∂Nw h)(θβ+ iρ) is continuous in θ and β
with values in Sµ−ε(Rρ; E , Ẽ). At the same time it is holomorphic in C with values in
Lµ(E , Ẽ). Cauchy’s integral formula then shows that the remainder term also belongs
to Mµ−ε(E , Ẽ).

Proposition 3.2.13. Let h(w) ∈ Mµ
O(E0, Ẽ), f(w) ∈ Mν

O(E , E0); then for pointwise
composition we have h(w)f(w) ∈Mµ+ν

O (E , Ẽ).

Proof. The proof is obvious.

Definition 3.2.14. An element h(w) ∈ Mµ
O(E , Ẽ) is called elliptic, if for some β ∈

R the operators h(β + iρ) : Es → Ẽs−µ are invertible for all s ∈ R, ρ ∈ R and
h−1(β + iρ) ∈ S−µ(Rρ; Ẽ , E).

Theorem 3.2.15. Let h ∈Mµ
O(E , Ẽ) be elliptic. Then,

h(w) : Es → Ẽs−µ (3.2.20)

is a holomorphic family of Fredholm operators of index zero for s ∈ R. There is a
set D ⊂ C, with D ∩ {c ≤ Rew ≤ c′} finite for every c ≤ c′, such that the operators
(3.2.20) are invertible for all w ∈ C \D.

Proof. By assumption we have g := (h|Γβ
)−1 ∈ S−µ(Γβ ; Ẽ , E). Applying a version of

the kernel cut-off construction, now referring to the Mellin transform rather than the
Fourier transform, cf. (1.1.6), with a function ψ ∈ C∞0 (R+), ψ ≡ 1 near 1, we obtain
a continuous operator

HM(ψ) : S−µ(Γβ ; Ẽ , E)→M−µO (Ẽ , E)
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where HM(ψ)g|Γβ
= g mod S−∞(Γβ ; Ẽ , E). Setting h(−1)(w) := HM(ψ)g we obtain

h(−1)(w) ∈M−µO (Ẽ , E), and from Proposition 3.2.13 it follows that

h(w)h(−1)(w) ∈M0
O(Ẽ , Ẽ), h(−1)(w)h(w) ∈M0

O(E , E)

and

h(w)h(−1)(w)|Γβ
− 1 ∈ S−∞(Γβ ; Ẽ , Ẽ), h(−1)(w)h(w)|Γβ

− 1 ∈ S−∞(Γβ ; E , E),
(3.2.21)

for every β ∈ R, and hence

h(w)h(−1)(w) = 1 +m(w), h(−1)(w)h(w) = 1 + l(w) (3.2.22)

for certain m(w) ∈ M−∞O (Ẽ , Ẽ), l(w) ∈ M−∞O (E , E). For every s ∈ R and every fixed
w ∈ C the operators

m(w) : Ẽs → Ẽ∞, l(w) : Es → E∞

are continuous. Therefore, since the scales have the compact embedding property,
from (3.2.22) we obtain that h(−1)(w) is a two-sided parametrix of h(w) for every
w, i.e., the operators (3.2.20) are Fredholm. Since h(w) ∈ A

(
C,Lµ(Es, Es−µ)

)
is

continuous in w ∈ C we have indh(w1) = indh(w2) for every w1, w2 ∈ C. However,
since h is invertible on the line Γβ it follows that indh(w) = 0 for all w ∈ C. Finally,
from the relations (3.2.22) we see that for every c ≤ c′ there is an L(c, c′) > 0 such
that the operators (3.2.20) are invertible for all w ∈ C with |Imw| ≥ L(c, c′), c ≤
Rew ≤ c′. Then a general result on holomorphic Fredholm families gives us that
the strip c ≤ Rew ≤ c′ contains at most finitely many points where (3.2.20) is
not invertible. Those points just constitute the set D, it is also independent of s,
since kerh(w) is independent of s as we easily see from (3.2.22) and the smoothing
remainders; then vanishing of the index shows that the invertibility holds exactly
when kerh(w) = {0}.

Theorem 3.2.16. The ellipticity of h with respect to Γβ as in Definition 3.2.14
entails the ellipticity with respect to Γδ for all δ ∈ R satisfying Γδ ∩D = ∅. In other
words Definition 3.2.14 is independent of the choice of β.

Recall here that D is a discrete set in the complex plane which consists of those
points w for which h(w) = 0.

Proof. Let us apply the kernel cut-off operator HM(ψε), where ψε ∈ C∞0 (R+) is of
the form ψε(t) = ψ(εt), ε > 0, for some ψ ∈ C∞0 (R+). Then, setting

HM(ψε)
(
h−1(β + iρ)

)
=: fε ∈M−µO (Ẽ , E)

we obtain fε|Γβ
∈ S−µ(Γβ ; Ẽ , E) and fε|Γβ

→ h−1(β+ iρ) as ε→ 0 in the topology of
S−µ(Γβ ; Ẽ , E). This shows us that fε1 |Γβ

is pointwise invertible for ε1 > 0 sufficiently
small. Let us set h(−1)(w) = fε1(w). According to Proposition 3.2.13 we have g(w) :=
h(−1)(w)h(w) ∈M0

O(E , E) and by construction

g|Γβ
= 1 + l for some l ∈ S−∞(Γβ ; E , E).



OPERATORS REFERRING TO A CORNER POINT 107

Then Theorem 3.2.12 yields g = 1 mod M−∞O (E , E). It follows that

h(−1)|Γδ
h|Γδ

= 1 + lδ for some lδ ∈ S−∞(Γδ; E , E)

and hence
(1 + lδ)−1h(−1)|Γδ

h|Γδ
= 1.

From Proposition 3.1.13 we know that lδ ∈ S
(
Γδ,L−∞(E , E)

)
and it is also clear that

(1 + lδ)−1 = 1 +mδ for some mδ ∈ S
(
Γδ,L−∞(E , E)

)
. Then Proposition 3.1.16 (iii)

shows that (h|Γδ
)−1 = (1 +mδ)h(−1)|Γδ

∈ S−µ(Γδ; Ẽ , E).

Add a word about asymptotics!
A sequence

R = {(pj ,mj , Lj)}j∈Z

is called a discrete asymptotic type of Mellin symbols if pj ∈ C, mj ∈ N, and Lj ⊂
L−∞(E , Ẽ) is a finite dimensional subspace of finite rank operators; moreover, πCR :=
{pj , j ∈ Z} is assumed to intersect the strips {w ∈ C : c1 ≤ Rew ≤ c2} in a finite
set, for every c1 ≤ c2. Let M−∞R (E , Ẽ) denote the space of all functions m ∈ A

(
C \

πCR,L−∞(E , Ẽ)
)

which are meromorphic with poles at the points pj of multiplicity
mj+1 and Laurent coefficients at (w−pj)−(k+1) belonging to Lj for 0 ≤ k ≤ mj , and
χ(w)m(w)|Γδ

∈ S(Γδ; E , Ẽ) for every δ ∈ R, uniformly in compact δ-intervals, where
χ is any πCR-excision function. Moreover, we set

Mµ
R(E , Ẽ) := Mµ

O(E , Ẽ) +M−∞R (E , Ẽ). (3.2.23)

Theorem 3.2.17. Let h ∈Mµ
R(E0, Ẽ), f ∈Mν

S(E , E0) with asymptotic types R,S and
orders µ, ν ∈ R, then we have hf ∈ Mµ+ν

P (E , Ẽ) with some resulting asymptotic type
P .

Proof. The proof of this result is analogous to the one in the “concrete” cone calculus,
see [36].

Proposition 3.2.18. For every m ∈M−∞R (E , E) there exists an m(−1) ∈M−∞S (E , E)
with another asymptotic type S such that(

1 +m(w)
)(

1 +m(−1)(w)
)

= 1.

For the proof we employ the following Lemma.

Lemma 3.2.19. Let E be a Banach space, U ⊆ C open, 0 ∈ U , and let h ∈
A
(
U,L(E)

)
be an element such that h(w) = 0 on a closed subspace F ⊆ E of fi-

nite codimension. Moreover, let a1, . . . , aN ∈ L(E) be operators of finite rank, for
some N ∈ N \ {0}. Then there is a δ > 0 such that the meromorphic L(E)-valued
function

f(w) = 1 + h(w) +
N∑
j=1

ajw
−j

is invertible for all w ∈ Vδ := {w ∈ C : 0 < |w| < δ}. Moreover, f−1(w) = 1 + h̃(w) +∑Ñ
j=1 ãjw

−j for w ∈ Vδ with h̃ ∈ A
(
Vδ ∪ {0},L(E)

)
and finite rank operators ãj.
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Proof of Proposition 3.2.18. First observe that if m ∈ L−∞(E , E) is an operator such
that

1 +m : Es → Es

is invertible for all s ∈ R, we can define an operator g ∈ L0(E , E) such that (1 +
m)(1 + g) = 1. This gives us 1 + m + g + mg = 1, and m,mg ∈ L−∞(E , E) implies
g = −m(1 + g) ∈ L−∞(E , E).
Moreover, our operator function 1 + m is holomorphic in C \ πCR. Then g = (1 +
m)−1−1 is holomorphic in C\D with values in L−∞(E , E), whereD ⊆ C is a countable
set such that {w ∈ C : c1 ≤ Rew ≤ c2} ∩ {w ∈ C : dist(w, πCR) > ε} ∩ D is finite
for every c1 ≤ c2 and ε > 0. We have a representation (1 +m)−1 =

∑∞
j=0(−1)jmj as

a convergent series of functions with values in L(Es, Es), w ∈ C for c ≤ Rew ≤ c′,
|Imw| ≥ C for every c ≤ c′ and C(c, c′) > 0 sufficiently large. In a similar manner we
obtain convergence of all w-derivatives of

∑∞
j=0(−1)jmj in a set of such a structure.

Thus, from g = −m(1 + g) = −m(1 +m)−1 and the Schwartz property of m for large
|Imw|, uniformly in finite strips c ≤ Rew ≤ c′, we obtain the same property for g
itself. It remains to show that g is meromorphic with poles at the points of D, that
D has no accumulation points at πCR, and that the Laurent coefficients are of the
desired kind, namely, to belong to L−∞(E , E) and to be of finite rank. Let us verify
that there are no accumulation points of the singularities of

(
1+m(w)

)−1. Let w0 be
a pole of m, i.e., w0 ∈ πCR. Then we can write

1 +m(w) = 1 +m0(w) +
K∑
k=1

bk(w − w0)−k

with suitable K ∈ N, m0 holomorphic in a neighbourhood of w0 and L−∞(E , E)-
valued, with finite rank operators bk. Note that m0 6≡ −1. Setting n(w) :=∑K
k=1 bk(w − w0)−k we have

1 +m(w) =
(
1 +m0(w)

)(
1 +

(
1 +m0(w)

)−1
n(w)

)
.

Now m0 is holomorphic near w0 and 1 + m0(w) a Fredholm family, since m0 takes
values in L−∞(E , E), therefore the singularities of

(
1 + m0(w)

)−1 form a countable
discrete set; therefore there is a δ > 0 such that

(
1 +m0(w)

)−1 exists for all w such
that 0 < |w − w0| < δ. Moreover,

(
1 + m0(w)

)−1
n(w) can be written in the form

h(w) +
∑N
j=1 aj(w−w0)−j with a suitable h which is holomorphic near w0 and finite

rank operators aj , 1 ≤ j ≤ N . The operator
(
1 + m0(w)

)−1
n(w) vanishes on the

space F :=
⋂K
k=1 ker bk which is of finite codimension. Setting M :=

⋂N
j=1 ker aj it

follows that h(w)u = 0 for all u ∈M ∩F ; the latter space is also of finite codimension.
Lemma 3.2.19 then shows that 1+

(
1+m0(w)

)−1
n(w) is invertible in 0 < |w−w0| < δ

for a suitable δ > 0.

Theorem 3.2.20. Let h ∈Mµ
O(E , Ẽ) be elliptic, then there is an f ∈M−µS (Ẽ , E) with

asymptotic type S such that hf = 1.

Proof. Let h(−1)(w) ∈M−µO (Ẽ , E) be as in the proof of Theorem 3.2.15. Then we have
the relations (3.2.22). By virtue of Proposition 3.2.18 there exists a g ∈ M−∞P (Ẽ , Ẽ),
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for some asymptotic type P , such that
(
1 + m(w)

)(
1 + g(w)

)
= 1. This yields

h(w)f(w) = 1 for f := h(−1)(1 + g) which belongs to M−µS (Ẽ , E), according to Theo-
rem 3.2.17. In a similar manner we find an f̃ ∈ M−µ

S̃
(Ẽ , E) such that f̃(w)h(w) = 1.

This implies f = f̃ .

Definition 3.2.21. A g ∈ Mµ
R(E , Ẽ) is said to be elliptic, if there is a β ∈ R such

that (g|Γβ
)−1 ∈ S−µ(Γβ ; Ẽ , E).

Theorem 3.2.22. If g ∈ Mµ
R(E , Ẽ) is elliptic, there is an asymptotic type S and an

element f ∈M−µS (Ẽ , E) such that gf = 1.

Proof. Applying the kernel cut-off operator to (g|Γβ
)−1 we find an h(−1) ∈M−µO (Ẽ , E)

such that h(−1)|Γβ
− (g|Γβ

)−1 ∈ S−∞(Γβ ; Ẽ , E). By definition we have g = g0 + g1 for
certain g0 ∈ Mµ

O(E , Ẽ), g1 ∈ M−∞R (E , Ẽ). Then h(−1)g0|Γβ
= 1 mod S−∞(Γβ ; E , E)

implies h(−1)g0 = 1 mod M−∞O (E , E) (see Theorem 3.2.12). If follows that h(−1)g =
1 + m for some m ∈ M−∞R (E , E) with an asymptotic type R (see Theorem 3.2.17).
Thus Proposition 3.2.18 gives us g−1 = (1 + m)−1h(−1) ∈ M−µS (Ẽ , E) with some
asymptotic type S.

Parallel to the spaces of Mellin symbols (3.2.23) we now introduce subspaces of
Hs,γ(R+, E) with discrete asymptotics. To this end it is not necessary to specify certain
finite-dimensional spaces Lj ∈ L−∞(E , Ẽ). We consider sequences of the form

P := {(pj ,mj)}0≤j≤N (3.2.24)

with N ∈ N∪{+∞}, mj ∈ N, 0 ≤ j ≤ N . A sequence (3.2.24) is said to be a discrete
asymptotic type, associated with weight data (γ,Θ) (with a weight γ ∈ R and a
weight interval Θ = (ϑ, 0], −∞ ≤ ϑ ≤ 0), if for some d = dE ∈ N

πCP := {pj}0≤j≤N ⊂ {w ∈ C :
d+ 1

2
− γ + ϑ < Rew <

d+ 1
2
− γ},

and πCP is finite when ϑ is finite, and Re pj → −∞ as j → ∞ when ϑ = −∞ and
N = +∞. We will say that P satisfies the shadow condition, if (p,m) ∈ P implies
(p− j,m) ∈ P for all j ∈ N with d+1

2 − γ + ϑ < Re (p− j) < d+1
2 − γ.

If Θ is finite we define the (finite-dimensional) space

SP (R+, E) :=


N∑
j=0

mj∑
k=0

ω(r)cjkr−pj logk r : cjk ∈ E∞


with some fixed cut-off function ω on the half-axis. We then have

SP (R+, E) ⊂ H∞,γ(R+, E).

Moreover, we set

Hs,γΘ (R+, E) := ω
⋂
ε>0

Hs,γ−ϑ−ε(R+, E) + (1− ω)Hs,γ(R+, E),
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where the intersection is endowed with the Fréchet topology of the projective limit,
and

Hs,γP (R+, E) := Hs,γΘ (R+, E) + SP (R+, E)

as a direct sum of Fréchet spaces.
In order to formulate spaces with discrete asymptotics of type P in the case Θ =
(−∞, 0] we form Pl := {(p,m) ∈ P : Re p > d+1

2 − γ − (l + 1)} for any l ∈ N.
From the above construction we have the spacesHs,γPl

(R+, E) together with continuous
embeddings

Hs,γPl+1
(R+, E) ↪→ Hs,γPl

(R+, E), l ∈ N.

We then define
Hs,γP (R+, E) := lim←−

l∈N
Hs,γPl

(R+, E) (3.2.25)

in the corresponding Fréchet topology of the projective limit.

Remark 3.2.23. That u ∈ Hs,γP (R+, E), with P being associated with (γ,Θ), Θ =
(−∞, 0], is equivalent to the existence of (unique) coefficients cjk ∈ E∞, 0 ≤ k ≤ mj,
such that for every t ∈ R+ there is an N = N(t) ∈ N with

ω(r)

u(r)− N∑
j=0

mj∑
k=0

cjkr
−pj logk r

 ∈ Hs,γ+t(R+, E).

Similarly as in the “concrete” cone calculus (see [36]) we have the following con-
tinuity result:

Theorem 3.2.24. Let f ∈ Mµ
R(E , Ẽ) be such that πCR ∩ Γ d+1

2 −γ
= ∅, and P an

asymptotic type associated with the weight data
(
γ, (ϑ, 0]

)
, for some −∞ ≤ ϑ < 0.

Then the operator

opγ−
d
2

M (f) : Hs,γ(R+, E)→ Hs−µ,γ(R+, Ẽ) (3.2.26)

restricts to a continuous operator

opγ−
d
2

M (f) : Hs,γP (R+, E)→ Hs−µ,γQ (R+, Ẽ)

for every s ∈ R with some resulting asymptotic type Q.

The proof will be given in several steps. To this end we establish some auxiliary
lemmas. The first one is due to Cauchy’s integral formula.

Lemma 3.2.25. Let f(w) be an (operator-valued) meromorphic function with finitely
many poles at points pj of multiplicities mj +1, j = 0, . . . , N . Then for any piecewise
smooth curve C clockwise surrounding the poles we have

1
2πi

∫
C

f(w)r−wdw =
N∑
j=0

mj∑
k=0

cjkr
−pj logk r

for some constant (operators) cjk.
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Lemma 3.2.26. Under the requirements of Theorem 3.2.24, the operator (3.2.26)
restricts to a continuous operator

opγ−
d
2

M (f) : SP (R+, E)→ H∞,γQ̃
(R+, Ẽ),

for some asymptotic type Q̃.

Proof. Let P be given by (3.2.24). We consider the case ϑ > −∞, the general case
follows immediately. For u(r) ∈ SP (R+, E) there are unique elements cjk ∈ E∞,
j = 0, . . . , N , k = 0, . . . ,mj such that

u(r) =
N∑
j=0

mj∑
k=0

ω(r)cjkr−pj logk r,

for some cut-off function ω. Then Mu(w) is meromorphic with poles at πCP
with values in E∞. Moreover, if χ(w) ∈ C∞(C) is a πCP -excision function then
χ(w)Mu(w)|Γβ

∈ S(Γβ , E∞) for every β ∈ R (cf. [4, Chapter 1]). Now multiplying
by f we obtain an Ẽ∞-valued meromorphic function with poles at πCP ∪ πCR and,
if we set g(w) := f(w)Mu(w),

χ1(w)g(w)|Γβ
∈ S(Γβ , Ẽ∞)

for any πCP ∪ πCR-excision function χ1 and any β ∈ R. We have

opγ−
d
2

M (f)u(r) =
(
M−1

γ− d
2
g
)
(r) =

1
2πi

∫
Γ d+1

2 −γ

r−wg(w)dw

= ω
1

2πi

∫
Γ d+1

2 −γ

r−wg(w)dw + (1− ω)
1

2πi

∫
Γ d+1

2 −γ

r−wg(w)dw. (3.2.27)

The second term on the right hand side of (3.2.27) belongs to (1 − ω)H∞,γ(R+, Ẽ),
so let us concentrate on the first term. Let Q̃ be the asymptotic type defined by
{(qj , dj)}0≤j≤L, L ∈ N, where {qj}0≤j≤L are the poles of πCP ∪πCR that lie between
the weight lines Γ d+1

2 −γ+ϑ
and Γ d+1

2 −γ
. For ε > 0 we write

ω
1

2πi

∫
Γ d+1

2 −γ

r−wg(w)dw = ω
1

2πi

∫
Γ d+1

2 −γ+ϑ+ε

r−wg(w)dw + Iε(r), (3.2.28)

where

Iε(r) = ω
1

2πi

∫
Γ d+1

2 −γ

r−wg(w)dw − ω 1
2πi

∫
Γ d+1

2 −γ+ϑ+ε

r−wg(w)dw

= ω
1

2πi

∫
Cε

r−wg(w)dw
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for a rectangle Cε (clockwise oriented), consisting of sufficiently large intervals [−R,R]
on Γ d+1

2 −γ+ϑ+ε and Γ d+1
2 −γ

and straight segments parallel to the real axis of suffi-
ciently large imaginary parts. By virtue of Lemma 3.2.25 there exist an M = M(ε) ≤
L and elements c̃jk ∈ Ẽ∞, j = 0, . . . ,M , k = 0, . . . , dj such that

ω
1

2πi

∫
Cε

r−wg(w)dw =
M∑
j=0

dj∑
k=0

ω(r)c̃jkr−qj logk r.

Then, from (3.2.28) we obtain for any ε > 0

ω
1

2πi

∫
Γ d+1

2 −γ

r−wg(w)dw

= ω
1

2πi

∫
Γ d+1

2 −γ+ϑ+ε

r−wg(w)dw +
M∑
j=0

dj∑
k=0

ω(r)c̃jkr−qj logk r

∈ ωH∞,γ−ϑ−ε(R+, Ẽ) + SQ̃(R+, Ẽ)

Finally we fix ε so small that all the poles of Q̃ lie on the right of the weight line
Γ d+1

2 −γ+ϑ+ε. Then we have

ω
1

2πi

∫
Γ d+1

2 −γ

r−wg(w)dw ∈ H∞,γΘ (R+, Ẽ) + SQ̃(R+, Ẽ)

and hence, we obtain altogether that opγ−
d
2

M (f)u ∈ H∞,γ
Q̃

(R+Ẽ).

Lemma 3.2.27. The operator (3.2.26) restricts to a continuous operator

opγ−
d
2

M (f) : Hs,γΘ (R+, E)→ Hs−µ,γRΘ
(R+, Ẽ)

for RΘ := {(q, n) ∈ R : d+1
2 − γ + ϑ < Re r < d+1

2 − γ}.

Proof. Let us first show that the weighted Mellin transform induces an isomorphism

Mγ− d
2

: Hs,γ(R+, E)→ Ĥs(Γ d+1
2 −γ

, E), (3.2.29)

where Ĥs(Γβ , E) := {h(β + iρ) = Ft→ρv(ρ) for some v(t) ∈ Hs(Rt, E)}, β ∈ R. In
fact, the Mellin and the Fourier transform relate to each other by the identity

Mγ− d
2
u(
d+ 1

2
− γ + iρ) = Ft→ρSγ− d

2
u(ρ),

here Sγ− d
2
u(t) = e−( d+1

2 −γ)tu(e−t), cf. Section 3.2.1. Therefore (3.2.29) is consequence
of the isomorphism (3.2.8).
Now let u ∈ Hs,γΘ (R+, E), then u ∈ Hs,γ(R+, E) and Mγ− d

2
u ∈ Ĥs(Γ d+1

2 −γ
, E). As
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a consequence of (3.2.7), the multiplication operator by f(d+1
2 − γ + iρ) induces

continuous operator

Mf : Ĥs(Γ d+1
2 −γ

, E)→ Ĥs−µ(Γ d+1
2 −γ

, Ẽ).

Moreover fMγ− d
2
u(d+1

2 − γ + iρ) can be extended to an Ẽs−µ-valued meromorphic
function in the strip {w ∈ C : d+1

2 − γ + ϑ < Rew < d+1
2 − γ} with poles at

the points qj at multiplicity dj + 1 and Laurent coefficients in Ẽ∞ such that for
any πCRΘ-excision function χ we have χ(w)f(w)Mγ− d

2
u|Γβ

∈ Ĥs−µ(Γβ , Ẽ) for every
β ∈ (d+1

2 − γ + ϑ, d+1
2 − γ], uniformly in compact β-subintervals. It can be proved,

analogously as in the proof of Lemma 3.2.26, that

opγ−
d
2

M u(r) =Mγ− d
2
fMγ− d

2
u(r) ∈ Hs−µ,γRΘ

(R+, Ẽ).

Proof of Theorem 3.2.24. Let u ∈ Hs,γP (R+, E). Then we can write u = uflat + using

for some uflat ∈ Hs,γΘ (R+, E) and using ∈ SP (R+, E). Then, by virtue of Lemma 3.2.26
and 3.2.27 we have

opγ−
d
2

M (f)uflat ∈ Hs−µ,γRΘ
(R+, Ẽ), opγ−

d
2

M (f)using ∈ H∞,γQ̃
(R+, Ẽ).

Let Q be the asymptotic type defined as the union of the poles of both RΘ and
Q̃ with the corresponding multiplicity or, for the common poles, the sum of the
two multiplicities. Then, to prove the assertion, it is enough to notice that both
Hs−µ,γRΘ

(R+, Ẽ) and H∞,γ
Q̃

(R+, Ẽ) are continuously embedded in Hs−µ,γQ (R+, Ẽ).

The case of Mellin symbols with variable coefficients is also of interest in the corner
calculus. It is then adequate to assume f(r, w) ∈ C∞

(
R+,M

µ
R(E , Ẽ)

)
and to consider

operators ωopγM (f)ω̃ in combination with cut-off functions ω(r), ω̃(r). Those induce
continuous operators Hs,γP (R+, E)→ Hs−µ,γQ (R+, Ẽ) as well.
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Verlag, Basel, 1997.

[6] J.B. Gil, B.-W. Schulze, and J. Seiler, Cone pseudodifferential operators in the
edge symbolic calculus, Osaka J. Math. 37 (2000), 219–258.

[7] G. Harutyunyan and B.-W. Schulze, The relative index for corner singularities,
Integral Equations Operator Theory 54, 3 (2006), 385–426.

[8] G. Harutyunyan and B.-W. Schulze, The Zaremba problem with singular inter-
faces as a corner boundary value problem, Potential Analysis 25, 4 (2006), 327–
369.

[9] G. Harutyunyan and B.-W. Schulze, Elliptic mixed, transmission and singular
crack problems, European Mathematical Soc., Zürich, 2008.
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Mµ
O(X), 86

Mµ
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; E , Ẽ), 99
Sµ(cl)(R+ × Σ× C× Rn)hol, 15
Sµ(cl)(C

n), 6

Sγ , 14, 100
S ′
(
R, E ′(X)

)
, 62

S(X∧), 35
S(R, E), 53
S(R×X), 53
Sβ(X∧), 87
SP (R+, E), 109
Sµ,ν , 50
S0(Γ× Γ), 25
scale of Hilbert spaces, 75

endowed with a group action, 78
with the compact embedding prop-

erty, 75
Schwartz space on a manifold with conical

exits, 18
semi-norm system, 2
shadow condition, 109
smoothing Mellin and Green symbols, 87
smoothing operator

in the parameter-dependent cone cal-
culus, 89

in the parameter-dependent calculus,
38

Sobolev weighted space, 16, 77
on a manifold with conical singulari-

ties, 85
space of symbols, 1
streched wedge, vi
stretched manifold, 85
symbolic structure, v
symbols in the exit calculus, 19

T−γ , 15
Taylor’s formula, 8
topology

of the projective limit, 2
transpose operator, 9

W s, 78
Ws(Rq,H), 78
weight reducing isomorphism, 95

X∆, v, 84
X∧, v, 17


	Title page
	Imprint

	Contents
	Introduction
	1 The pseudo-differential cone calculus
	1.1 Basics in pseudo-differential operators
	1.1.1 Spaces of symbols
	1.1.2 Pseudo-differential operators and distributional kernels
	1.1.3 Kernel cut-off
	1.1.4 Elements of the calculus
	1.1.5 Continuity in Sobolev spaces
	1.1.6 Ellipticity
	1.1.7 Mellin pseudo-differential operators

	1.2 Operators on a manifold with conical exits to infinity
	1.2.1 Manifolds with conical exits to infinity
	1.2.2 Calculus in the Euclidean space
	1.2.3 Invariance under push forwards
	1.2.4 Classical symbols and operators with exit property
	1.2.5 Exit calculus on manifolds


	2 Operators on infinite cylinders
	2.1 The behaviour of push forwards from cylinders to cones
	2.1.1 Characterisation of push forwards
	2.1.2 Estimates near the diagonal
	2.1.3 Global operators

	2.2 A new parameter-dependent calculus on infinite cylinders
	2.2.1 Operator-valued symbols with parameter
	2.2.2 Continuity in Schwartz spaces
	2.2.3 Leibniz products and remainder estimates

	2.3 Parameter-dependent operators on an infinite cylinder
	2.3.1 Weighted cylindrical spaces
	2.3.2 Elements of the calculus


	3 Axiomatic approach with corner-degenerate symbols
	3.1 Symbols associated with order reductions
	3.1.1 Scales and order reducing families
	3.1.2 Symbols based on order reductions
	3.1.3 An example from the parameter-dependent cone calculus

	3.2 Operators referring to a corner point
	3.2.1 Weighted spaces
	3.2.2 Mellin quantisation and kernel cut-off
	3.2.3 Meromorphic Mellin symbols and operators with asymptotics


	Bibliography
	Index

