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Abstract 

Background: Phosphorylation of proteins plays: a crucial role in the regulation and activation of 
metabolic and signaling pathways and constitutes an important target for pharmaceutical 
intervention. Central to the phosphorylation process is the recognition of specific target sites by 
protein kinases followed by the covalent attachment of phosphate groups to the amino acids serine, 
threonine, or tyrosine. The experimental identification as well as computational prediction of 
phosphorylation sites (P-sites) has proved to be a challenging problem. Computational methods 
have focused primarily on extracting predictive features from the local, one-dimensional sequence 
information surrounding phosphorylation sites. 

Results: We characterized the spatial context of phosphorylation sites and assessed its usability 
for improved phosphorylation site predictions. VVe identified 750 non-redundant, experimentally 
verified sites with three-dimensional (3D) structural information available in the protein data bank 
(PDB) and grouped them according to their respective kinase family. We studied the spatial 
distribution of amino acids around phosphorserines, phosphothreonines, and phosphotyrosines to 
extract signature 3D-profiles. Characteristic spatial distributions of amino acid residue types 
around phosphorylation sites were indeed discernable, especially when kinase-family-specific target 
sites were analyzed. To test the added value of using spatial information for the computational 
prediction of phosphorylation sites, Support Vector Machines were applied using both sequence as 
well as structural information. When compared to sequence-only based prediction methods, a 
small but consistent performance improvement was obtained when the prediction was informed by 
3D-context information. 

Conclusion: While local one-dimensional amino acid sequence information was observed to 
harbor most of the discriminatory power, spatial context information was identified as relevant for 
the recognition of kinases and their cognate target: sites and can be used for an improved prediction 
of phosphorylation sites. A web-based service (Phos3D) implementing the developed structure­
based P-site prediction method has been made available at http://phos3d.mpimp-golm.mpg.de. 
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Background 
Protein phosphorylation is a ubiquitously occurring 
post-translational modification influencing many mole­
cular processes in all complex cells. The recognition of 
phosphorylation sites by specific kinases and the 
subsequent phosphorylation generally leads to an 
alteration of the structure, function, or protein binding 
properties of the target protein, which has evolved as a 
mechanism to respond to environmental changes via 
phosphorylation-triggered complex signaling networks 
and cascades and is playing a crucial role in the 
regulation of enzymes or transporters in metabolic 
processes [1-4]. 

The study of phosphorylation events has been a central 
research topic in molecular biology for many years. Given 
the high number of candidate phosphorylation sites, 
efforts to experimentally identify and verify them all 
remain challenging. These difficulties motivated the 
development of computational methods to predict 
potential phosphorylation sites in silico. Most established 
computational prediction methods rely solely on the 
local sequence surrounding the target amino acid residue. 
The developed prediction methods range from simple 
amino acid sequence pattern recognition methods to 
Markov Models, Neuronal Networks, and advanced 
machine learning methods such as Support Vector 
Machines [5-10]. Many of them have been made publicly 
available and yield results with reasonable sensitivity and 
specificity, but they generally suffer from either over- or 
undercalling candidate sites as optimal parameters found 
for one particular protein target class cannot be general­
ized to all phosphorylation motifs [9,11] . Recognizing 
that the information content increases significantly when 
the respective kinase families associated with their targets 
are considered separately, approaches to predict phos­
phorylation sites in a kinase-family specific manner based 
on family-specific local sequence motifs have also been 
presented [5-8]. 

The acceptable performance of local-sequence-only 
methods, together with reports that phosphorylation 
sites appear to be preferentially located in unstructured 
regions of proteins suggesting a limited relevance of any 
structurally well-defined binding epitopes for the specific 
recognition of kinases and their substrate proteins [10], 
appear to justify focusing exclusively on local sequence 
patterns rather than three-dimensional (3D)-structural 
context information . However, the significantly 
increased number of experimentally determined phos­
phorylation sites by proteomics technologies with 
simultaneously available 3D structures of the associated 
proteins in recent years and published analyses suggest­
ing that target sites may very well assume defined 
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structural conformations and, furthermore, that phos­
phorylation sites may be surrounded by specific 
3D-structural environments [12,13] motivated us to 
re-investigate the role of 3D-structural information for 
the specific recognition of kinases and their substrate 
proteins. 

In a recently published systematic comparative and 
structural analysis of protein phosphorylation, Jimenez 
and co-workers [12] reported that serine and threonine 
phosphorylation sites exhibit only a marginal tendency 
to occur preferentially in structurally more flexible loops 
with approximately 35% actually being located in (X­
helices or ~-strands, which can be assumed as relatively 
rigid secondary structural elements. And for tyrosine 
sites, no tendency to occur more frequently in loops was 
detectable at all. Furthermore, they reported that a 
substantial number of phosphorylation sites (15%) are 
actually buried inside the protein and not exposed to the 
solvent. An increased significance of 3D-structural 
context for these locations is evident. Plewczynski and 
co-workers reported that as many as 60% of phosphor­
ylation sites for the kinase families protein kinase A and 
C (PKA, PKC) are located in (X-helical regions [8] . Thus, a 
significant number of phosphorylation sites are actually 
located in structurally defined regions in which defined 
structural surface features and motifs may turn out to be 
relevant. 

From studying sequence motifs associated with the 
protein kinase A and G (PKA, PKG kinase families), the 
consensus target sequence was determined as xRRxSx 
[14,15] . However, of 273 target motifs for PKA in the 
Phospho.ELM database [11], 5.5% do not contain any 
arginine, and 1.5% neither arginine nor lysine in the 
sequential neighborhood of six residues in both direc­
tions relative to the central serine. Of 32 targets for PKG 
kinases, 9.3% of target sites do not contain any arginine, 
and in 6% of the targets, both arginine and lysine is 
absent. This observation implies that some recognition 
features may perhaps be localized outside of the local 
sequence, such that the positive-charge bearing amino 
acids defining the required electrostatic potential surface 
for binding may be contributed from sequentially 
distant, but spatially close rather than sequence-local 
sites. 

In the light of these observations, it appears plausible 
that, although the local amino acid sequence may 
contain a significant portion of the information contents 
with regard to phosphorylation, the actual local three­
dimensional environment may contribute appreciably to 
the specificity of the kinase - target protein molecular 
recognition event. 
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Although there have been several approaches to use 
structural information for improved prediction of 
phosphorylation, they generally resulted in only modest 
success rates [13,16). These unsatisfactory results can 
possibly be explained by an insufficient number of 
annotated, experimentally determined structures as well 
as by focusing on general structural properties such as 
secondary structure, rather than trying to define 3D­
motifs based on spatial amino acid distributions. 

Fan and Zhang characterized phosphorylation sites in 
their spatial, protein-structural context using a simplified 
"Altman" shell model with a radius of 16 A and found 
only minor differences of the amino acid composition 
around phosphorylation sites compared to average 
protein composition [13,17). However, by analyzing 
phosphorylation sites across all kinase families, any 
motif that may be specific for particular kinase dasses 
may have been masked. The identification of kinase­
family-specific sequence motifs supports this view. These 
amino acid preferences may also be detectable using a 
protein structural approach which considers spatial 
proximity rather than sequence proximity alone. 

Plewczynski and co-workers applied molecular modeling 
to characterize the local structural context of phosphor­
ylation sites (8). In their approach, protein sequences 
were compared to a library of short sequence and 
structure motifs via a sequence matching algorithm, 
adapted for local 3D-structure prediction. They achieved 
significantly improved prediction accuracy of phosphor­
ylation events by means of similarity scores to a library 
of PKA and PKC targets and condude that "sequence 
information ought to be supplemented with additional 
structural context information... for more successful 
predictions of phosphorylation si tes in proteins." 

The use of structural information for improved phos­
phorylation site prediction has also been explored by 
Blom and co-workers, the authors of the popular 
sequence-only-based NetPhos predication server (16). 
In this approach, probabilities of contacts between Ca 
atoms of residues within spatial neighborhoods of 
phosphorylation sites and non-phosphorylation sites 
were calculated, so called contact or distance maps. In a 
second step, the probabilities of contacts of residues 
from sequences are then calculated according to those 
maps and used for prediction purposes. This led to 
markedly improved sensitivity of the prediction of 
phosphorylated tyrosine sites which the authors inter­
preted as an indication of the relevance of tertiary 
structural information not reflected in the sequence 
alone. However, this approach also led to an increase of 
false positive sites and, as a consequence, to overall 
worse prediction results. 

http://www.biomedcentral.com/1471-2105/10/117 

The goal of this work was to characterize phosphoryla­
tion sites by spatial amino acid propensity distributions 
to generate spatial signature motifs and the subsequent 
assessment of this information to improve the prediction 
of phosphorylation sites in proteins. 

As previous studies have shown that "one-fits-all" 
approaches; i.e., parameterization of the prediction 
method irrespective of kinase-family, have led to only 
modest success rates, we investigate here whether 
considering kinase-family specific 3D-motifs may reveal 
greater information contents and, thereby, yield 
improved prediction results. Our method is based on 
Support Vector Machines (SVM) (18,19). SVMs have 
been used in a wide range of problems in the area of 
molecular biology induding analyses of microarray data 
[20-22), string matching [23,24), drug design (25), 
protein fold recognition (26) and prediction of phos­
phorylation sites using sequence information [7,8,16). 

We observed that 3D-motifs are indeed detectable, 
especially when studying kinase families individually 
and obtained improved prediction results by induding 
3D information in the prediction. We also implemented 
a sequence-only approach that implicitly captures 3D 
structural preferences associated with each of the 
different amino acid types by using 530 amino acid 
features which indude also the generally accepted 
phosphorylation site features such as hydrophobicity, 
solvent accessibility as well as secondary and tertiary 
structure preferences, polarity, volume and solvent 
accessibility, structural disorder indices and others. This 
predictor has recently been developed by our group as 
part of a database of plant-specific phosphorylation sites. 
The predictor was shown to accurately identify plant 
phosphorylation sites and to outperform commonly 
available predictors (27). 

Results 
To characterize the general structural properties of 
phosphorylation sites (phos-sites) and to compare 
them to unphosphorylated sites (non-phos sites), we 
first analyzed secondary structural assignments, relative 
side chain solvent accessibility, and the crystallographic 
B-factor as a measure of local structural rigidity. A 
statistically significant tendency for serine as well as 
tyrosine phosphorylation sites to be more exposed to the 
solvent was detected. Threonine sites were also more 
exposed, albeit statistical significance could not be 
established (Figure 1, Table 1). While these observations 
follow the intuitive expectation that phophate-group 
attachment sites should be more exposed, the magnitude 
of the difference appears surprisingly low (Figure 1). 
However, one has to bear in mind that serine, threonine, 
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Table I: Structural features of phosphorylation sites 

Property mean-Values mean-Values p-Values p-Values 
Positive set Negative set t-Test Mann-Whitney 

Seri ne-sites 
Accessibility 4.25 3.70 1.32 E-03 1.93 E-03 

B-Factor 5.65 4.93 7.40 E-04 2.79 E-04 
Threonine-sites 

Accessibility 3.92 3.57 1.49 E-I 2.07 E-O I 
B-Factor 5.30 4.76 1. 11 E-I 8.26 E-02 

Tyrosine-sites 
Accessibility 2.98 2.36 7.33 E-07 2.52E-06 

B-Factor 5.56 5.15 6.96 E-02 2.68E-02 

Statistics for significance of the observed differences of solvent accessibility and crystallographic B-factor of phosphorylated (pos) vs. non­
phosphorylated (neg) for serine, threonine and tyrosine sites. 

and tyrosine - polar amino acids themselves - have an 
innate tendency to be exposed to water. The distribu­
tions of crystallographic B-factors of phos-sites in 
comparison to non-phos sites were also observed to 
differ (Figure 1). Phos-sites were more often found 
associated with the largest B-Factor (Bin 9), i.e. regions 
of greater structural flexibility, albeit significant p-values 
of differences were only observed for serine sites 
(Table 1). Phosphorylated serines and threonines are 
more frequently found in random coil regions and less 
in a-helical or ~-strand regions than their unpho­
sphorylated counter-parts (Figure 1). For tyrosine, no 
such preferences for secondary structural type were 
detectable, except for a marginally increased frequency 
of phosphorylated sites to occur more often in turns. 

Characterization of the spatial environment of 
phosphorylation sites 
We determined the propensities for the different amino 
acid residue types to occur in the spatial vicinity of the 
phosphorylated serines, threonines, and tyrosines, both 
for the sequential neighborhood as well as for the 
spatial-environment. By separating the two, our goal was 
to identify possible 3D-signature motifs. In a third 
analysis, both contributions were combined to assess the 
relative contribution of the sequence and structural 
environment. As explained in the Method section, across 
all phosphorylation sites, we calculated the propensity 
values as log-odds ratios of the relative occurrences of 
amino acid types within distances from 2 to 10 A from 
central phosphorylated amino acid residue and display 
the results in radial-radial cumulative propensity plots 
(RCP-plots) in which red-colored segments signify 
statistically significant enrichment relative to a reference 
set, and blue-colorings depletion. 

When all serine, threonine, and tyrosine phosphoryla­
tion sites irrespective of their association with a 

particular kinase family were analyzed, both the 
sequence logos and the spatial profile of phosphorylated 
serines showed only very little information contents 
(Figure 2). Only small differences relative to the 
reference set of un-phosphorylated sites were detectable 
as reflected by the only few colored segments in the RCP­
plots indicating enrichment or depletion. For all three 
target amino acid types, most information appears to be 
contained in the local sequence and not in the spatial 
environment. By considering amino acids irrespective of 
their sequential proximity ("combined" graph), essen­
tially no significant differences to the reference set of un­
phosphorylated sites were found. This agrees well with 
results reported by Fan and Zhang who characterized 
structural microenvironments of phosphorylation sites 
within 16 A from the central residue only and observed 
no evidence for significant amino acid propensities to 
fall within radial distance of 16 A [13). Interestingly, in 
the local sequence neighborhood, tyrosine residues - an 
amino acid that itself is target of phosphorylation events 
- appear to be depleted relative to the reference dataset 
in serine- and threonine-targeted phosphorylation sites. 
However, this depletion appears to be compensated by 
tyrosine residues found in the spatial environment such 
that overall ("combined" graph), no significant deple­
tion of tyrosine residues in the environment of serine­
and threonine phosphorylation sites was detectable. 

Kinase-family specific phosphorylation motifs 
For the set of serine protein kinase sequences whose 
target proteins were found by screening the protein 
structure databank (PDB); i.e ., the structure of the target 
proteins is known, we constructed a phylogenetic tree 
and computed the corresponding sequence logos of the 
targets associated with kinase group (Figure 3) (28) to 
obtain an overview and reference framework of the 
evolutionary relationships of the kinase sequences and 
their respective targets. For tyrosine and threonine 
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Sequence logos and radial cumulative propensity 
plots (Rep-plots). Sequence logos and radial cumulative 
propensity plots (RCP-plots) illustrating enrichment as well 
as depletion of particular amino acid types in the local 
sequence (sequence logo), sequence-local spatial 
environment including the 6 flanking amino acid residues on 
either side of the central serine/threonine/tyrosine, (left 
RCP-plot), spatially-local, but non-sequence local; i.e., 
excluding residues in the flanking sequence (middle plot), and 
combined information (right-most RCP-plot). For every 
amino acid type, the two different sub-sectors correspond to 
the statistics obtained by using the closest detected atom and 
the interaction center, respectively, and in clockwise order. 

kinases, respectively, such analysis was not possible 
(with the exception of the PTK group of tyrosine specific 
kinases) because of lack of annotated kinase-target pairs 
with known structure. (Note: A comprehensive phyloge­
netic analyses of kinases can be found in [29,30) . Here, 
we focused on kinase-target pairs with determined 
protein structures of the target protein.) In agreement 
with results from previous studies, the sequence logos of 
serine kinase targets associated with the main serine­
kinase families can be clustered into several groups 
[9,16,31,32) . Evolutionarily close kinase-groups tend to 
also share common features in their respective targets. 
The major groups of targets are characterized by proline 
residues next to the central serine (CMGC kinase group 

http://www.biomedcentral.com/1471-2105/10/117 

Figure 3 
Phylogenetic tree of serine-kinase groups. Phylogenetic 
tree of serine-kinase groups whose targets can be found in 
the protein structure database (PDB) according to the 
original Hanks and Hunter classification scheme [45] and 
associated sequence logos [28]. Kinases with high similarity 
tend to share similar targets. The major classes of kinase 
targets are characterized by a proline and glutamate next to 
the central serine, CMGC group I, 11, 11 and respectively 
ATM, a group with preferentially negatively charged amino 
acid residues, CMGC IV and AGC IV, and a large group of 
targets with an arginine and lysine at the second or third 
position relative to the central serine, CaMK-Group and 
AGC-Group except the AGC IV sub family. For kinase 
families PKA, PKC, as well as CKII and MAPK most targets 
with resolved structure were available and were used for 
kinase family-specific predictors in this study. 

except CK Il) or a glutamate (ATM), a second group with 
negatively charged sequences (CMGC IV: CK Il) . The 
AGC kinase-group as well as the CaMK kinase-group 
comprise kinases with positively charged targets. 

These enrichments are well captured by the sequence 
logos and are also reflected in the RCP-plots for the 
spatial environment considering sequence-local residues. 
In addition to the detected enrichments (red-colored 
segments), the RCP-plots also highlight significant 
depletions of amino acid types (blue segments, Figure 2) 
that are not immediately apparent from the sequence logo 
plots alone. 

In the following section, we investigate the targets 
associated with the main kinase families in greater 
detail. In particular, we are interested to uncover 
potential 3D-signature motifs beyond the established 
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sequence motifs that can be revealed when investigating 
individual kinase families rather than across all sites. 
Such motifs would become evident as colored segments 
found in the" non-sequence-local" graph, but not found 
in the "sequence-local" graph. We will refer to those 
motifs as 3D-signature motifs . Naturally, we limited our 
analyses to kinase families with sufficient numbers of 
representatives with the smallest family being the MAPK 
family with 12 members. 

Serine Sites 
The AGC group 
The AGC family consists of kinases recogmzmg serine 
targets with an arginine or lysine residue at a distance of2-3 
residues relative to the central serine within the local protein 
sequence and indudes the PKA and PKC as well as GRK, 
BARK, MARK, PKB, PKG, and RSK kinase families which are 
not induded in the study of spatial motifs presented here for 
paucity of corresponding data. Furthermore, the local 
sequence-based spatial profile is characterized by lower 
than expected occurrences of tryptophan and glutamate. 
Interestingly, the elevated occurrences of the positively 
charged amino acids arginine and lysine - the hallmark for 
the AGC kinase group - appears confined to the sequence­
local neighborhood. An enrichment of arginine or lysine in 
the spatial context of PKA was not detectable. In the 
structural neighborhood ("non-sequence-local" graphs), 
the counts for both amino acids are not increased relative 
to the reference distribution. The PKC motifs exhibit an 
additional enrichment of serine in the sequence-local 
neighborhood, accompanied by a pronounced depletion 
of the amino acid residues histidine, glutamate, and 
tryptophan. The PKA motifs were observed to be depleted 
of the amino acid cysteine. For both families, PKA and PKC, 
a depletion of the hydrophobic amino acids alanine and 
leucine in the non-sequence-local neighborhood and an 
additional depletion of isoleucine in PKA motifs was 
detected (Figure 4) . 

The CMGC group 
Proline residues flanking the phosphorylated serines are 
the hallmark sequence feature of targets associated with 
CMGC kinase group which indudes the CDK, CKII 
kinase families (Figure 3) as well as MAPK and CDC. The 
CKII and MAPK were induded in the spatial study as the 
number of structurally annotated targets was sufficient. 
The CKII family from the CMGC IV group, even though 
grouped into the CMGC group, does not follow the Pro­
next-to-Ser rule. Its location in the serine-kinase phylo­
genetic tree is near the branching point between the 
CMGC branch and ATM family (Figure 3) . 

In the sequence-local environment of the MAPK, no 
enrichments of amino acids besides proline were 
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Sequence logos and radial cumulative propensity plots 
(RCP-plots) of kinase-specific sequence motifs. Sequence 
logos and radial cumulative propensity plots (Rep-plots) of kinase 
specific sequence motifs, illustrating enrichment as well as 
depletion of particular amino acid types in the local sequence 
(sequence logo), sequence-local spatial environment including the 
6 flanking amino acid residues on either side of the central serine! 
threonine/tyrosine, (left Rep-plot), spatially-local, but non­
sequence local; Le., excluding residues in the flanking sequence 
(middle plot), and combined information (right Rep-plot). For 
every amino acid type, the two different sub-sectors correspond 
to the statistics obtained by using the closest detected atom and 
the interaction center, respectively, and in clockwise order. 

Page 7 of 17 
(page number not for citation purposes) 



BMC Bioinformatics 2009, 10:117 

detectable. Instead, depletions of eight amino acid types, 
glutamine, asparagine, phenylalanine, isoleucine, valine 
as well as glycine, serine, and threonine were detected. In 
the non-sequence-local environment of target serines, 
serine, and histidine residues were observed to be 
overrepresented. 

The active si tes of CKII kinases are characterized by 
positively charged surfaces (33). This positive charge 
density is mirrored by negatively charged aspartate and 
glutamate in the sequence-local and non-sequence-local 
spatial neighborhood. Furthermore, the RCP-plots reveal 
enrichments of serine and histidine the sequence-local 
and proline in the non-sequence-local RCP pattern. A 
depletion of phenylalanine is observed at distances of 7 
A and greater for both patterns, while a depletion of 
threonine, asparagine and isoleucine is only detectable 
in the sequence-local spatial context. 

Tyrosine sites 
The PTK group 
The PTK group comprises tyrosine phosphorylating 
kinases and as such were not included in the introduced 
phylogenetic tree of serine targeting kinases. The 
sequence-local spatial context of SRC-kinase family 
(PTK I) - for which sufficient data for analysis was 
available - is enriched in aspartate, proline, leucine, 
alanine, and tryptophan in the non-sequence-local 
spatial context. Depletions of several amino acids were 
also detectable, most consistently cysteine (Figure 4). 

In summary, all kinase-family specific RCP-plots reveal 
specific spatial profiles and more information contents 

Table 2: Prediction performance as measured by the AUC 
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than was detectable when sites were investigated across 
all kinase families (Figure 4). The profiles comprise 
signatures of sequential motifs and discern spatial 
preferences which cannot be identified by inspecting 
the local sequence alone. All profiles show significant 
patterns of enrichments as well as depletions of 
particular amino acid residue types within the spatial 
neighborhood of the phosphorylated target amino acid. 

Computational prediction of phosphorylation events 
using 3D-information 
We now turn to investigating whether incorporating 3D 
structural information can be used to improve the 
sensitivity and specificity of phosphorylation site pre­
dictions in proteins. 

Comparative analysis of prediction performance, 
Kinase-family-specific predictions 
For the general, kinase-family unspecific prediction of 
phosphorylated serine, threonine, and tyrosine sites, the 
SVM-predictors based on local sequence information 
alone that have been developed as part of this study were 
observed to perform at comparable or even slightly 
better performance levels compared to NetPhos and 
DisPhos, and consistently better compared to Kinase­
Phos as judged by the area under the receiver operating 
characteristic (AUC) from 10-fold cross-validation test 
(Table 2). 

Similarly, for the kinase-family specific predictions, the 
AUC-based performance of NetPhos and our SVM-based 
method was comparable or even in favor of our SVM 
(Table 2) giving us an appropriate best possible 

Kinase family Kinase group N Sequence-only Spatial-information NetPhos 3.1 b DisPhos 1.3 KinasePhos 2.0* 

Ser kinases 
PKA 
PKC 
MAPK 
CKII 

Thr kinases 

Tyr kinases 
SRC 

unspecific predictor 

I 
AGC I 
AGC 11 

CMGC 11 
CMGC IV 

I 
PTK I 

363 
34 
31 
12 
19 

134 

253 
24 

750 

enriched 

0.74 ± 0.02 ~1.79 ± 0.02 
0.91 ± 0.04 ~1.94 ± 0.04 
0.83 ± 0.05 ~1.87 ± 0.04 
0.89 ± 0.07 ~1.91 ± 0.06 
0.73 ± 0.07 ~1.78 ± 0.07 

0.72 ± 0.03 ~1.74 ± 0.03 

0.69 ± 0.02 ~1.71 ± 0.02 
0.72 ± 0.07 ~1.79 ± 0.06 

0.71 ± 0.0 I ~1.75 ± 0.01 

0.69 ± 0.02 
0.91 ± 0.03 
0.78 ± 0.05 
0.78 ± 0.09 
0.76 ± 0.07 

0.66 ± 0.03 

0.65 ± 0.02 
0.62 ± 0.07 

0.67 ± 0.01 

0.73 ± 0.05 0.63 ± 0.05 

0.72 ± 0.06 0.66 ± 0.05 

0.56 ± 0.06 0.54 ± 0.05 

0.68 ± 0.03 0.63 ± 0.03 

Results from the cross-validation of the various prediction approaches. The sequence-only and Spatial-information enriched methods were developed 
as part of this study and compared to NetPhos 3.1 b that includes the kinase-specific predictor NetPhos/K, DisPhos 1.3 and KinasePhos2.0. As 
KinasePhos reports only decision values of positively predicted sites, the evaluation of kinase specific prediction was not possible due to missing score 
values for sites not predicted to be phosphorylated. However, the kinase-specific predictions were feasible as KinasePhos essentially reports all 
submitted sites as being phosphorylated by at least one kinase. For the evaluation of the predictor, the highest reported decision value was used for 
each site. Best performing methods are printed in bold-face. 
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sequence-information-alone baseline to assess the effect 
of adding 3D-structural information on the prediction 
accuracy when added to the SVM. 

where it was impossible to compute AUC values for the 
KinasePhos 2.0 prediction program because of non­
returned score values, here it was possible to obtain 
relevant values also for the KinasePhos 2.0 prediction 
program. Again, adding 3D-information to using only 
sequence information resulted in modest (up to 5 
percentage points), yet consistently improved predic­
tions for all three target amino acid types as well as 
kinase-family specific targets such that best prediction 
results were always obtained by using our 3D-informa­
tion enriched SVM-based prediction method with the 
exception of the kinase families PKC and MAPK for 
which the performance was virtually identical compared 
to our sequence-only SVM, but still better than the 
other prediction programs included in this study. The 
most significant gain was obtained for serines sites 
followed by tyrosine and threonine sites. 

While the magnitude of performance gain when includ­
ing 3D-profile information was relatively small com­
pared to the estimated standard error, for all target sites 
and across all kinase-families and target residue types, a 
consistent increase in performance was obtained suggest­
ing that including three-dimensional structural informa­
tion does indeed improve the sensitivity and specificity 
of phosphorylation site prediction. 

Similar conclusions can be drawn from comparing 
prediction accuracies as well as sensitivities and 
specificities associated with the predictions rather than 
AUCs (Table 3) alone. Unlike in the case of AUC, 

Table 3: Prediction Performance as measured by accuracy, sensitivity (sn), and specificity (sp) 

Kinase family Kinase group N Sequence-only Spatial .. information NetPhos 3. I b 
enriched 

Ser kinases 363 0.69 ± 0.01 0 .. 73 ± 0.01 0.64 ± 0.01 
sn:0.76 ± 0.02 sn:0.73 ± 0.0 I sn:0.70 ± 0.00 
sp:0.62 ± 0.03 sp:0.73 ± 0.02 sp:0.58 ± 0.0 I 

PKA AGCI 34 0.83 ± 0.03 0 .. 88 ± 0.02 0.82 ± 0.02 
sn:0.93 ± 0.05 sn:0.86 ± 0.05 sn:0.82 ± 0.00 
sp:0.83 ± 0.07 sp:0.80 ± 0.07 sp:0.81 ± 0.05 

PKC AGC 11 31 0.82 ± 0.02 0.E12 ± 0.02 0.72 ± 0.02 
sn:0.76 ± 0.03 sn:0.80 ± 0.03 sn:0.58 ± 0.00 
sp:0.87 ± 0.03 sp:0.81 ± 0.04 sp:0.86 ± 0.04 

MAPK CMGC 11 12 0.89 ± 0.04 0 .. 89 ± 0.04 0.69 ± 0.02 
sn: 1.00 ± 0.00 sn:0.88 ± 0. 15 sn:0.42 ± 0.00 
sp:0.79 ± 0.08 sp:0.79 ± 0.08 sp:0.96 ± 0.04 

CKII CMGC IV 19 0.70 ± 0.03 0 .. 74 ± 0.04 0.74 ± 0.02 
sn:0.79 ± 0. 18 sn:0.88 ± 0.15 sn:0.53 ± 0.00 
sp:0.60 ± 0. 18 sp:0.61 ± 0. 14 sp:0.94 ± 0.04 

Thr kinases 134 0.68 ± 0.01 0 .. 69 ± 0.01 0.63 ± 0.01 
sn:0.55 ± 0.04 sn:0.61 ± 0.04 sn:0.49 ± 0.00 
sp:0.87 ± 0.04 sp:0.80 ± 0.04 sp:0.77 ± 0.02 

Tyr kinases 253 0.65 ± 0.01 0 .. 67 ± 0.01 0.62 ± 0.01 
sn:0.67 ± 0.06 sn:0.51 ± 0.03 sn:0.54 ± 0.00 
sp:0.63 ± 0.06 sp:0.81 ± 0.03 sp:0.71 ± 0.0 I 

SRC PTK I 24 0.70 ± 0.03 0 .. 75 ± 0.03 0.57 ± 0.01 
sn:0.74 ± 0. 15 sn:O.77 ± 0.09 sn:O.1 7 ± 0.00 
sp:0.66 ± 0. 16 sp:O.72 ± 0.10 sp:0.98 ± 0.10 

unspecific 750 0.66 ± 0.01 0 .. 69 ± 0.01 0.63 ± 0.01 
predictor sn:0.65 ± 0.0 I sn:0.60 ± 0.03 sn:0.61 ± 0.0 I 

sp:0.69 ± 0.02 sp:0.78 ± 0.03 sp:0.66 ± 0.0 I 

Disphos 1.3 KinasePhos 2.0 

0.68 ± 0.01 0.50 ± 0.00 
sn:0.47 ± 0.00 sn: 1.00 ± 0.00 
sp:0.88 ± 0.03 sp:0.50 ± 0.00 

0.71 ± 0.03 
sn:0.65 ± 0.00 
sp:0.75 ± 0.04 

0.64 ± 0.03 
sn:0.61 ± 0.00 
sp:0.66 ± 0.04 

0.61 ± 0.05 
sn:0.50 ± 0.00 
sp:0.64 ± 0.08 

0.62 ± 0.03 
sn:0.47 ± 0.00 
sp:0.67 ± 0.07 

0.66 ± 0.03 0.50 ± 0.00 
sn:0.49 ± 0.00 sn: 1.00 ± 0.00 
sp:0.83 ± 0.05 sp:0.50 ± 0.00 

0.53 ± 0.02 0.50 ± 0.00 
sn:0.29 ± 0.0 I sn: 1.00 ± 0.00 
sp:O.77 ± 0.05 sp:0.50 ± 0.00 

0.70 ± 0.04 
sn:0.83 ± 0.00 
sp:0.66 ± 0.04 

0.62 ± 0.01 0.50 ± 0.00 
sn:0.42 ± 0.0 I sn: 1.00 ± 0.00 
sp:0.83 ± 0.03 sp:0.50 ± 0.00 

Results from the cross-validation of the various prediction approaches. The sequence-only and Spatial-information enriched methods were 
developed as part of this study and compared to to NetPhos 3.1 b that includes the kinase-specific predictor NetPhos/K, Disphos 1.3 and 
KinasePhos2.0. The size of the negative set was adjusted to the size of the positive sites, ensuring equal sizes of the sets and a comparison 
to original reports of accuracies of alternative prediction approaches. In the case of the kinase unspecific prediction of KinasePhos2.0, 
all sites were predicted to be phosphorylated by at least one kinase. Best performing methods are printed in bold-face. Sn denotes 
sensitivity, while sp denotes the specificity for the stated accuracy. 
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Discussion 
In this work we focused on the characterization and 
prediction of phosphorylation sites. Serine is the most 
frequent target amino acid residue type for phosphoryla­
tion followed by threonine and tyrosine. We pursued 
two major themes: the analysis phosphorylation in a 
kinase family specific fashion, and to investigate whether 
phosphorylation sites are characterized by specific three­
dimensional (3D) structural motifs or epitopes consti­
tuted by amino acid residues that are not necessarily 
close in sequence, thereby providing additional informa­
tion that can help in predicting phosphorylation sites for 
proteins with known structure or with available struc­
tural models. We used the simple radial distance to 
define structural motifs. Ideally, angular information 
would be included as well. However, much larger 
datasets of determined structures would be necessary to 
derive reliable statistical data for more refined 
approaches. Even by applying only this simple model, 
we observed that 3D-structural context information is 
indeed discernable, even though the most information 
contents appears to reside primarily in the local 
sequence, as judged by the sequence-local kinase 
unspecific Rep-plots and the modest increased perfor­
mance when adding spatial-information to sequence­
only based predictors. The most pronounced improve­
ment of prediction of phosphorylation sites by augment­
ing sequence-only prediction by spatial information was 
obtained for targets of serine kinases . However, also for 
the prediction of threonine and tyrosine targets, a 
performance gain was obtained when adding 3D 
information. 

As several experimental techniques have been estab­
lished to detect proteins that specifically bind to 
phosphorylated sites based on immobilized peptides 
(pull-down assays and peptide chips [34-36]); i.e., the 
binding epitope is reconstituted from the sequence-local 
amino acid residues alone, the results obtained in this 
study lend further support to such approaches. Based on 
the findings obtained for our dataset, spatial informa­
tion is discernable, but may not be absolutely critical to 
define the binding epitope, although conclusively prov­
ing it will require experimental comparisons of binding 
efficiencies for known interacting partners based on the 
complete and natively folded as well as local peptide 
sequence. 

It has been reported that phosphorylation is preferen­
tially occurring in unstructured; i.e ., flexible regions of 
proteins [10]. These conclusions resulted from sequence­
based predictions of the flexibility of phosphorylated 
and non-phosphorylated sites and are also supported by 
the reasonable prediction performance by DisPhos1.3 
for serine and threonine. The prediction of 
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phosphorylation sites by DisPhos is based on a prior 
predication of local flexibility. However, many phos­
phorylation sites were found in regions of clearly defined 
secondary structures (Figure 1). We further investigated 
this by comparing the crystallographic B-factor as well as 
secondary structural class for phosphorylated and 
unphosphorylated serine sites (Figure 1). In the latter, 
loop regions may represent rather unstructured seg­
ments, even though it does not mean that this regions 
are structurally flexible. Flexibility may be better 
captured by the reported B-factor. We found statistically 
significant differences of B-factors for phosphorylated 
compared to non-phosphorylated serine sites detectable, 
albeit the differences were not that large. Of course, we 
only included those proteins in our investigation with an 
available crystallographic structure; including atomic 
coordinate information for the targeted peptide segment 
itself. It may be possible that, by only using fully 
resolved structures that we needed in order to detect 
possible 3D-motifs, we excluded phosphorylation events 
in unstructured regions right from the start. Indeed, 86% 
of removed motifs (Ser: 88%; Thr: 93%; Tyr: 75%) were 
localized in loops as judged by prediction by DisEmbl 
1.5 [37] . Within the training dataset only 66% of phos­
sites (Ser: 68%; Thr: 72%; Tyr: 60%) and 53% of non­
phos sites (Ser: 55%; Thr: 53%; Tyr: 51 %) were predicted 
in loops (Table 4) . Moreover, 3% of phosphorylated 
residues were found near the protein sequence termini 
where the structural flexibility naturally increases, which 
were not considered as potential target sites. Follow-up 
studies need to be performed to address this question 
more systematically by mapping sites that were found in 
peptide-based methods (mass spectroscopy) and to map 
them to available protein structures and to gather 
statistics how often phosphorylation sites map to regions 
that cannot be resolved crystallographically. 

Gnad and co-workers, the authors of the PHOSIDA 
database, evaluated the preferences of secondary struc­
ture, accessibility of phosphorylated residues and the 
conservation rate of phosphorylation sites [38] . The 
preferences of secondary structure and accessibility were 

Table 4: Predicted ratios of sites in loop regions 

Property removed training set training set 
phos sites ph os sites non-ph os 

All 86% 66% (53%) 53% (45%) 
Ser 88% 68% (57%) 55% (54%) 
Thr 93% 72% (64%) 53% (47%) 
Tyr 75% 60% (4 1%) 51% (34%) 

Predicted ratios of sites in loop regions as judged by prediction by 
DisEmbl 1.5 [37) . Percent of sites in loop regions according to the 
annotation of secondary structure of B. C. S. and T by DSSP is given in 
brackets. 

Page 10 of 17 
(page number not for citation purposes) 



BMC Bioinformatics 2009, 10:117 

estimated by prediction. Consistent with our results, they 
found small, yet statistically significant differences 
between the phos-site and non-phosite for serine, 
threonine, and tyrosine motifs. Furthermore, they were 
able to improve the performance of prediction by 
applying the predicted values to prediction. Although 
the average predicted accessibility differed from our 
results, the tendencies were comparable. The computed 
average accessibilities in the PHOSIDA-approach were 
3.7 and 3.4 for phos and non-ph os serines, 3.5/ 3 for 
threonines and 2.2/ l. 7 for tyrosines, respectively. In our 
approach the accessibilities and the secondary structure 
preferences were determined based on fully resolved 
protein structures. For PDBFINDER-based accessibility 
values, we determined 4.28/ 3.62 for serines, 3.88/ 3.52 
for threonines and 2.96/2.27 for tyrosines, respectively. 
Furthermore, Gnad et al. predicted 93% of phosphory­
lated serines and 78% of non-phosphorylated serines to 
occur in loops and hinge regions. For threonines, the 
corresponding frequencies were determined as 90% and 
70%, and for tyrosine 79% and 48%, respectively. In our 
approach, we found significant differences of secondary 
structural preferences between phos and non phos-sites. 
In addition, the determined frequencies of sites in rigid 
regions (non-loop regions) were much higher. However, 
including accessibility and the secondary structure 
information did not yield any improvements of the 
prediction, probably because both these properties were 
implicitly covered by the amino acid properties already. 

A major problem in any effort to develop a computa­
tional predictor arises from the difficulty to define a 
reliable true-negative set; i.e., sites that are truly unpho­
sphorylated. As phosphorylation is condition-depen­
dent, experimental screens may well be incomplete as 
it is impossible to explore all environmental conditions 
under which phosphorylation events may occur. Even 
sites that are buried and inaccessible for phosphorylating 
kinases in one protein state may become exposed upon 
conformational changes and become phosphorylated 
(12,39]. Thus, even buried sites cannot be ruled out as 
candidate phosphorylation sites. Even more so, the 
numerical value for solvent accessibility may oftentimes 
suggest that a serine is buried, even though it is actually a 
surface residue, but occluded by neighboring side chains 
and not buried deep in the protein's core. The assump­
tion that buried amino acids cannot become phosphory­
lated and using it as criterion for the construction of a 
negative set may, in fact, be misleading. The resulting 
predictors will tend to predict accessibility of target sites 
rather than the possibility of phosphorylation. An 
alternative way for defining negative sets is including 
of all candidate sites (serine, tyrosine, or threonine 
residues) except experimentally verified phosphorylation 
sites with the reasoning that such a true-negative set will 
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at least be depleted in true-positive sites. In this study, 
we followed this approach, realizing that this may 
represent a source of error. 

An estimated two to five percent of eukaryotic genomes 
codes for kinase genes grouped into different kinase 
families [29,30] and 30% of all proteins are estimated to 
be phosphorylated as judged by proteomics screens 
(15,40]. Mirroring the many different kinases catalyzing 
the addition of phosphate group to proteins, the high 
diversity of their cognate phosphorylation target sites is a 
major obstacle for a reliable prediction of phosphoryla­
tion. In addition, experimental evidence suggests that the 
kinases are to some degree unspecific and are capable of 
phosphorylating a wide spectrum of substrates (15]. On 
the other hand, evidence for sequence-encoded specificity 
on the side of phosphorylation target has also been 
presented. For example, the prediction accuracy of 
phosphorylation sites in plant proteins was shown to 
increase substantially when the computational methods 
were trained on plant proteins versus methods trained 
primarily on animal proteins suggesting kingdom specific 
differences of phosphorylation target sites [27,41]. 

The high diversity of targets of particular kinases and the 
number of possible phosphorylated proteins accompa­
nied with the pleiotropicity of kinases appear to contra­
dict a specific regulatory role of phosphorylation. 
However, the specificity for the actual target site may 
not be the only source of kinase specificity and 
sensitivity of the regulatory system. In fact, it was 
shown that subcellular compartmentation accompanied 
with recognition of secondary target sites relatively 
distant to the catalytic domains is crucial for further 
selectivity and specificity. While 3D motifs near the 
actual target site for phosphorylation have been at the 
center of our investigations, for the kinase family CDK, 
in particular the kinase CDK2 [42], it has been reported 
that secondary sites, protein surface site distant from the 
actual phosphorylation site may determine binding 
specificity of kinases with their target protein. Therefore, 
the systematic identification and characterization of such 
secondary recognition sites appears worthwhile [43]. 
Kinase activation in kinase cascades by post translational 
modification, formation of protein complexes as well as 
priming of phosphorylation further enhance the sensi­
tivity of the phosphorylation system (15]. 

Conclusion 
The reliable prediction of phosphorylation sites and the 
identification of associated kinase enzymes are important 
steps that will ultimately lead to a deeper understanding of 
complex signaling events in cellular systems. Applying a 
simple radial distance model for the characterization of the 
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3D-structural context of phosphorylation sites, it is possible 
to extract kinase specific signature 3D-profiles. While local 
one-dimensional amino acid sequence information was 
observed to harbor most of the discriminatory power, spatial 
context information was identified as relevant for the 
recognition of kinases and their cognate target sites and 
can be used for an improved prediction of phosphorylation 
sites. A web-based service (Phos3D) implementing the 
developed structure-based P-site prediction method has 
been made available at http://phos3d.mpimp-golm.mpg.de. 

Methods 
Creation of phosphorylation site dataset (phos-Set) 
The dataset of phosphorylation sites was obtained from 
the Phospho.ELM database (11). The amino acid residue 
annotated as phosphorylated (SerjThrjTyr) was placed in 
the middle position of the 13-mer peptide with six 
amino acid residues on either side flanking the central 
position extracted from the native sequence of the 
respective protein harboring the site. Incomplete (i.e . 
truncated) motifs were discarded. The data set comprised 
14,630 non-redundant sequence motifs (10,769 serine, 
2,095 threonine, and 1, 765 tyrosine motifs). To identify 
associated protein structures and the actual conforma­
tions and locations of the motifs within their three­
dimensional context, we screened the Protein Data Base 
(PDB) for protein structures containing the 13-mer 
peptide sequence associated with phosphorylation sites 
based on exact sequence matches. We found 1,234 
motifs (Ser: 633, Thr: 241 and Tyr: 360), which 
corresponded to 14,192 exact matches (Ser: 6,757, Thr: 
2,757, and Tyr: 4,865 matches) in 6,596 different PDB­
protein chains (Ser: 4,337, Thr: 2,086, Tyr: 2,765 chains); 
i.e., many motifs were found multiple times in different 
PDB-protein structures. The identified protein structures 
corresponded to 704 unique phospho-proteins (Ser: 
430, Thr: 227, Tyr: 202) as judged by their corresponding 
SWISS-PROT (44) identifier. The dataset consisted of 
highly non-redundant protein sequences as evidenced by 
the low levels of sequence identities (Additional file 1). 
Considering only structures with complete atomic 
coordinates of amino acids in their non-phosphorylated 
state for the phosphorylation motif and choosing the 
structure with the best crystallographic resolution in case 
of identical sequence motif hits, we obtained a final set 
of 750 non-redundant, structurally resolved phosphor­
ylation motifs (Ser: 363, Thr: 134, Tyr: 253 structural 
motifs). For a subset comprising 307 motifs (Ser: 164, 
Thr: 59, Tyr: 84 motifs), information of their respective 
phosphorylating kinases was available, and the asso­
ciated motifs were classified into respective kinase 
families . All motifs as well as the associated PDB entries 
and annotated kinase family annotations are provided in 
Additional file 2. 
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Creation of a non-phosphorylation site datasets 
(non-phos-Sets) 
We removed the phos-Set motifs from the sequences of 
the respective protein chains with known protein 
structure. From the remaining sequence fragments, we 
extracted all non-overlapping SerjThrjTyr site motifs. 
The resulting sets of sites served as the true-negative set. 
While our approach cannot guaranty that these extracted 
sites are truly unphosphorylated, we expect this dataset 
to be at least depleted in true phosphorylation sites. 

When kinase-family-specific phosphorylation events are 
analyzed, the true-positive counts are heavily outnum­
bered by true-negative sites posing the risk of dominating 
influences of the negative set rather than the positive set. 
In particular, the false-negatives; i.e., sites that we grouped 
as unphosphorylated that may, however, become phos­
phorylated under different conditions may then obscure 
any discernible signal. To alleviate this problem, while at 
the same time keeping a sufficient number of examples 
for training purposes, we reduced the negative set for 
kinase specific predictions by randomly eliminating sites 
from the non-phos-Set until the negative sets were no 
more than twice as large as the positive sets. 

Construction of the phylogenetic tree of serine-kinases 
Sequence motifs associated with putatively phosphory­
lated serines are partly annotated with their respective 
phosphorylating kinase and can be grouped into kinase 
families and groups according to the classification 
scheme proposed by Hanks and Hunter augment by 
the AURORA and ATM kinase group (45). Considering 
only kinase groups with known targets, a phylogenetic 
tree (dendrogram) was built from representative 
sequences using the CLUSTALW package (46). For each 
group, we calculated sequence logos from all respective 
targets, i.e . also targets which are not represented in the 
protein database PDB (28). A more in-depth analysis of 
the phylogeny of human kinases is provided in [30). 

General structural properties of phosphorylated and 
unphosphorylated sites 
Secondary structural assignments, relative side chain 
accessibilities, crystallographic B-Factors were obtained 
from the PDBFINDER II database [47-50). 

Calculation of spatial amino acid propensity profiles, 
Radial Cumulative Propensity (RCP) plots 
Propensity ratios (odds-ratios) defined by the normal­
ized counts of a particular amino acid type around sites 
in the ph os-Set relative to their counts observed around 
sites in the non-phos-Set representative set within radial 
distances ranging from 2 to 10 A from the central Serj 
ThrjTyr were calculated according to Equation l. The 
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chosen distance range covers both direct contacts as well 
as through-space interactions such as electrostatic inter­
actions. Beyond 10 A, we did not find any significant 
enrichment or depletion signals. We used two different 
distance measures. Amino acid residues were considered 
to lie within a given radial cutoff distance if i) the 
distance between the putatively activated oxygen 
(~-hydrogen) in case of a central serine and threonine, 
or y-carbon in case of tyrosine and any atom of that 
residue was shorter than the given cutoff distance, or, if 
ii) the distance between the interaction centers of 
residues as proposed by Park et al. [51) fell within a 
given radial distance cutoff. The proposed interaction 
centers were shown to better represent interactions 
between amino acid residues associated with secondary 
structural elements within proteins. Furthermore, both 
distance measures represent a different degree of resolu­
tion of atomic detail. Radial distance-dependent pro­
pensity ratios for all 20 amino acid types are illustrated 
graphically in radial cumulative propensity plots (RCP­
plot). These plots reflect the cumulative spatial amino 
acid residue propensity profile around phosphorylation 
sites. We differentiate between radial profiles associated 
with i) sequence-local amino acids, i.e. amino acid 
residues located within 6 residues from the central serine 
in the protein sequence, and ii) non-local amino acid 
residues; i.e., residues that are outside the local sequence 
environment (> 6 residue positions), and, iii), the 
general spatial profile irrespective of the amino acid 
position in the protein sequence. The 20 radial sectors 
associated with the different amino acid types are 
divided into two sub-sectors according to the two 
different distance measures used. The significance of 
the obtained propensities for increased or decreased 
occurrences relative to random expectation around 
phosphorylated sites was assessed by estimating the 
standard error of the odds-ratios, SE, as proposed by 
Levitt (Equation 1) [52). Odds-ratios signifying over- or 
underrepresentation were considered statistically signifi­
cant if odds-ratio> 2 and (odds-ratio - SE) > 1 with odds­
ratios inverted in cases where the propensity ratio was 
below 1; i.e., observed less than expected by chance. 
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Calculation of amino acid propensity ratios for the 
estimation of average depletion or enrichment given a 
particular motif set. #AAk/s is the count for amino acids, 
where k designates a particular amino acid residue type and s 
is the count summed over all amino acid residue types; r is 
the considered radial distance to the central serine/ 
threonine/ tyrosine, f is the relative frequency of amino 
acid in a particular set, and g the relative frequency of the 
amino acid k in the reference non-phos set. Associated 
standard errors SE were estimated according to [52). 

Prediction approach, evaluation of prediction 
performance 
To predict phosphorylation sites from sequence and to 
evaluate the effect of using structural information on 
prediction performance, we applied Support Vector 
Machines (SVM), first using sequence information 
alone and, subsequently, enriched by the spatial 
information. We used the "kernlab" R-package devel­
oped by Alexandros and co-workers [53) applying the 
default Radial Basis kernel with automated sigma 
estimation. We evaluated the Area Under the Receiver 
Operator Characteristic (ROC)-curve (AUC) from a 
10-fold cross-validation to quantify the performance of 
predictors and to compare the obtained results to 
prediction results obtained by using NetPhos and 
DisPhos [9,10,16). Associated standard errors were 
computed as in [54). 

The 10-fold cross-validation was based on training of the 
predictor on 9 out of 10 parts of the randomly ordered 
data set and subsequent classification of the remaining 
part. The test is repeated for all 10 possible partitions of 
the dataset. The classification results are then used for 
measuring the performance of the predictor. The devel­
oped classifiers based on Support Vector Machines 
included general, kinase-family unspecific serine, threo­
nine, and tyrosine predictors; i.e., the parameters were 
trained across all proteins irrespective of annotated 
kinase family, as well as predictors specific for the 
serine-centric PKA, PKB, MAPK, and CKII kinase family 
as well as tyrosine-centric SRC kinase family, for which at 
least 10 annotated targets or more were contained in the 
dataset. The minimal number of targets allowed a 
10-fold cross-validation with the lowest actual number 
being 12 kinase-annotated targets (MAPK). For threo­
nine target sites, the respective kinase-family annotation 
information yielded only data sets of insufficient size for 
statistical analyses. The area under the ROC-curve (AUC) 
from 10-fold cross-validation was compared among 
different prediction approaches and programs to judge, 
whether the addition of spatial information can improve 
the prediction performance. Perfect prediction results 
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would yield an AUC of 1, while guessing the outcome 
would, on average, yield AUCs of 0.5. 

Feature-vectors (FV) for the implemented Support 
Vector Machines 
The feature-vector (FV) used for the Support Vector 
Machines consisted of chemical-physical amino acid 
properties for the sequence-information-only approach 
and an additional spatial information component for 
the spatial prediction approach. For the amino acid 
property components of the FV, we utilized values from 
the collection of 530 commonly used indices provided 
by the AAindex database [55) induding hydrophobicity, 
solvent accessibility preferences, secondary and tertiary 
structure preferences, polarity, volume and solvent 
accessibility, structural disorder indices and others. The 
vector consisted of 530 x 12 dimensions for every index 
and position around the central serine, threonine, or 
tyrosine, where the components were values from the 
respective index and 530 dimensions for the average 
index value of the particular sequence motif. The latter 
dimensions were introduced to cover the general proper­
ties of the motifs, e.g. negative charge or high flexibility. 
To reduce the dimensionality of the Feature-vectors (FV) 
as well as to eliminate correlations between components, 
principle component analysis (PCA) was performed on 
the D FV x N data matrix, where D FV is the number of 
components of the Feature Vector, and N is the number 
of example peptide sequences in the training set, and the 
components of the FV were replaced by the resulting 
principle components with non-zero Eigenvalues 
explaining the entire variance in the dataset. Note: as 
there are fewer examples (N peptide sequences in the 
training set) than dimensions, the dimensionality 
(Eigenvectors with non-zero Eigenvalues) can be at 
most N-1. The PCA was performed independently for 
the serine, threonine, and tyrosine motifs. The total 
variance contained all independent datasets was essen­
tially completely covered by 228 principal components. 
This low number of PCs (compared to 530 properties) 
results from the high correlation of amino acid indices. 
Although computed by different approaches, various 
indices designed to capture different properties also show 
similar tendencies, e.g. hydrophobicity and polarity. More­
over, apparently different properties of amino acids, like 
hydrophobicity and solvent accessibility are based on 
similar attributes of amino acids and, therefore, also 
correlate. In addition, the preference for a particular 
secondary structure and structural flexibility correlate to a 
high degree. In this case, however, the correlation is negative 
and the respective loadings on the PC have different signs. 
By evaluation of the loading matrix from the PCAs, we 
observed that the PCs are mostly influenced by the 
hydrophobicity and flexibility values, which appear most 
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often in combination. The PCs differed with regard to the 
particular position of the property, rather than to the 
loadings of different indexes. For serine sites, PC1 was most 
influenced by the sum of the hydrophobicity and flexibility 
values over the entire sequence motif, PC2 by these 
properties at positions -6/+2, and PC3 at positions +1/+4 
and PC5 -3/+3. PC4 induded the variance of amino acid 
propensities to rigid structures at position -1 and the sum of 
these propensity values. The PCs of the PCA of threonine 
sites were based on the variance of the sums of the 
hydrophobicity and accessibility index values for PC1 and 
sum of the amino acid propensities to rigid secondary 
structures for PC2. Variances of hydrophobicity and 
flexibility at position +4 were loaded in PC3, +5 in PC4 
and +6 in PC4. For tyrosine sites we found the sum of the 
hydrophobicity and flexibility indices in PCI, at position +3 
in PC2, the sum and position +1 of preferences to rigid 
secondary structures in PC3, -1/ +1 hydrophobicity in PC4 
and hydrophobicity, accessibility, and polarity at position-6 
in PC5. For a comprehensive analysis, we provide the 
complete data matrix of variable (amino acid index) 
loadings as part of the newly developed Phos3D prediction 
server http://phos3d.mpimp-golm.mpg.de. 

The spatial information component consisted of the 
normalized distribution ratios according to (Eq. 2). The 
ratios of amino acid residues within the local sequence, 
outside the local sequence, and irrespective of the 
position in the protein sequence were used for distances 
in a range of 2 to 10 A between the putatively activated 
oxygen (~-hydrogen) in case of a central serine and 
threonine, or y-carbon in case of tyrosine and the dosest 
atom of all other amino acid residues, or between the 
interaction centers proposed by Park and coworkers [51). 
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Radial distance odds-ratios for particular amino acid 
residue types as explained in Eq. 1 with an additional 
rescaling rendering resulting values suitable for use in 
kernlab package by ensuring that values lie between zero 
and one and with 0.5 indicating a balanced count 
(neither over-, nor under-representation) designated as 
oddsSVM. 

Comparison to NetPhos, OisPhos- 1.3 and KinasePhos2.0 
We compared the AUC from the 10-fold cross-validation 
results obtained by using NetPhos, NetPhosK, DisPhos, 
KinasePhos2.0. NetPhos and NetPhosK are both part of 
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the NetPhos-3-1 b package. While NetPhos was designed 
to generally predict serine, threonine, and tyrosine 
phosphorylation events, NetPhosK includes kinase-spe­
cific predictors. DisPhos is based on SVM, utilizing the 
binary representation of the motif sequence, the relative 
frequencies of amino acids in that sequence as well as 
outputs from predictors for structural disorder and 
secondary structure(10). Furthermore, the Feature Vec­
tors are supplemented by amino acid properties covering 
the sequence complexity, net-charge and aromatic 
content, hydrophobic moment, and hydrophobicity as 
well as values according to a flexibility and surface 
exposure scale. Thus, the features used by DisPhos are 
comparable to features applied in our predictors. While 
NetPhos and DisPhos are predictors for phosphorylation 
events, KinasePhos2.0 was developed to identify the 
respective kinase [56), comprising over 50 kinase-specific 
predictions. The server is reported to yield highly 
accurate results also for the general prediction of 
phosphorylation events and, therefore, a good bench­
mark for the kinase specific predictors developed here. 

For comparison with DisPhos, we submitted 60 
randomly selected protein sequences covering at least 
50 positive and 100 negative motifs for serine, threo­
nine, and tyrosine sites to the DisPhos 1.3 server [57). 
Although 60 protein sequences are only a small subset of 
the total of 869 protein structures, the sequences cover 
14% serine, 37% threonine and 20% tyrosine sites. Sites 
being reported as predicted by similarity to the training 
sequences, as assigned by DisPhos were removed to 
avoid self-recognition. A similar procedure was applied 
to KinasePhos 2.0, however the KinasePhos2.0 server as 
well as NetPhos do not provide information of possible 
self-recognition events. We submitted the above men­
tioned protein sequences to the KinasePhos 2.0 server 
[58) setting the specificity value to "default". The 
comparison proved difficult as only positively predicted 
(phosphorylated) sites, i.e. sites which were predicted by 
a decision value above 0.5 were returned. This rendered 
the computation of the AUC for specific predictors 
impossible, as not for all submitted sites, a decision 
value (score) was available. However, as essentially all 
sites from the training and test set, irrespective of 
whether they were positive or negative were predicted 
to be phosphorylated by the server by at least one kinase, 
assessment of the performance of the prediction by 
evaluation of the AUC for kinase unspecific prediction 
was still possible. Out of 1,335 submitted serines, 1,288 
(97%) were predicted as being phosphorylated. The 
corresponding ratios for threonines were 1,098 out of 
1,124 (98%), and tyrosines 713 out of 723 (98%). 
Before evaluating the ROC curve, for each site, the 
highest reported decision values were determined. For a 
meaningful comparison, the size of the results from 
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DisPhos and NetPhos were adjusted to reflect a ratio of 
1:2 between the positive and negative set. This was 
performed by random removal of results from the 
positive or negative set, respectively. Subsequently, the 
AUCs were computed and compared. The obtained 
ROCs are provided in Additional file 1. 

Comparison to NetPhos, OisPhos 1.3 and KinasePhos 2.0 
judged by accuracy, sensitivity, and specificity 
As an alternative measure of performance, we also 
computed the accuracy defined as the proportion of 
correct predictions (true positive or true negative 
predictions) among the predictions made as well as the 
respective sensitivity, defined as the proportion of 
correctly classified positive sites and specificity, defined 
as the proportion of (Eq. 3): 

Accuracy = tp+tn 
tp +tn + fp+ fn 

Sensitivity = ~; Specificity = ~, 
tp+fn tn+fp 

(3) 

where tp are true pOSitive, tn-true negative, fp-false 
positive, and fn-false negative predictions. 

The accuracy measure also allowed our prediction 
approach to be compared directly to other available 
prediction programs, especially KinasePhos 2.0. For 
computing accuracies, a decision threshold for the 
assignment of a site to a particular group must be set. 
The positive assignment threshold for our predictors was 
set to zero. Negative decision values were judged as 
predicted to be non-phosphorylated and positive deci­
sion values to be phosphorylated. For the other 
predictors, this value was set to 0.5 as they reflect 
probabilities. For kinase-specific predictions, sequences 
from training set were submitted to the KinasePh02.0 
server. For assessing the performance associated with a 
particular kinase family, only the results corresponding 
to the particular family were evaluated as relevant 
predictions. As the prediction reports usually estimates 
the accuracies based on equal sizes of the positive and 
negative set, the negative sets were adjusted by random 
removal of the respective prediction results to reflect this 
ratio. This adjustment was performed 1,000 times with 
different random removals and the mean accuracy as 
well as the standard deviation was determined. 

Availability and requirements 
The protein structure-based phosphorylation site predic­
tion method developed as part of this study has been 
implemented as a freely accessible web-based service, 
Phos3D, and is available at http://phos3d.mpimp-golm. 
mpg.de. 
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