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Abstract A recombinant inbred line (RIL) population,

derived from two Arabidopsis thaliana accessions, and the

corresponding testcrosses with these two original accessions

were used for the development and validation of machine

learning models to predict the biomass of hybrids. Genetic

and metabolic information of the RILs served as predictors.

Feature selection reduced the number of variables (genetic

and metabolic markers) in the models by more than 80%

without impairing the predictive power. Thus, potential

biomarkers have been revealed. Metabolites were shown to

bear information on inherited macroscopic phenotypes. This

proof of concept could be interesting for breeders. The

example population exhibits substantial mid-parent biomass

heterosis. The results of feature selection could therefore be

used to shed light on the origin of heterosis. In this respect,

mainly dominance effects were detected.

Introduction

The main objective of the work presented in this article is

to develop methods which serve to improve the prediction

of hybrid properties based on their potential parents, a

fundamental aspect in many breeding programs. Today

breeders often use genetic information to identify specific

lines whose progeny are likely to manifest positive traits

(McCouch 2004). The aim is to accelerate the otherwise

laborious process of quality assessment and selection.

We focus on the development and validation of machine

learning methods designed to improve the prediction of

traits of new crosses using molecular data from different

sources. Molecular data often are described by a huge

number of features, the importance of which for the traits

under investigation is generally not known. We present a

procedure that combines variables/feature selection with

regression and dimensionality reduction. The selected

variables serve as potential biomarkers allowing the prog-

nosis of progeny properties.

Several methods have been developed to predict hybrid

performance in maize using genetic markers (Maenhout

et al. 2009; Reif et al. 2003; Schrag et al. 2007; Schrag

et al. 2009a, b; Vuylsteke et al. 2000) or gene expression

analysis (Frisch et al. 2009). A combination of genetic

markers with morphological characters, isozymes, and

proteins was employed for the same purpose in oilseed rape

(Yu et al. 2005). We present a proof of concept of a new

complementary approach that involves the utilization of

metabolite profiles as predictors in addition to SNP mark-

ers and the introduction of a new feature selection

procedure.

The detection of important markers is closely related

to the understanding of the interactions between them

and the resulting implications for the progeny traits. The
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advancement of this understanding is a further objective of

the present study.

The introduction of hybrids was a successful develop-

ment in plant breeding, especially with respect to yield

(Birchler et al. 2003). This is due to the effect called het-

erosis, which describes the superiority of heterozygous

hybrids in comparison to their homozygous parents (Shull

1948). Three hypotheses have been put forward in early

studies to explain this phenomenon: the dominance (Bruce

1910; Davenport 1908), overdominance (Crow 1948; Hull

1945), and epistasis hypothesis (Powers 1944; Williams

1959). However, in spite of enormous efforts, the molec-

ular basis of this phenomenon remains largely obscure.

For the validation of our procedure we chose a recom-

binant inbred line (RIL) population derived from Arabid-

opsis accessions Col-0 and C24 (Törjék et al. 2006) and the

heterozygous testcrosses of its lines with both parents. This

population meets the following requirements of a validation

population: it has been genotyped using SNP markers

(Törjék et al. 2006), manifests significant biomass heterosis

(Meyer et al. 2009), shows sufficient variance of the trait in

the crosses and consists of a sufficient number of genotypes.

In addition a large amount of established biochemical

knowledge on the population is available (Lisec et al. 2008,

2009; Meyer et al. 2007). Especially, quantitative trait loci

(QTL) for biomass per se, biomass heterosis, and metabo-

lites are known. Furthermore, we performed for the present

study a QTL analysis for testcross biomass per se. The

simple design of the testcross population with one parent

being kept constant facilitates both, prediction and inter-

pretation. A further advantage of using Arabidopsis thali-

ana is the existence of comprehensive databases such as

AraCyc (www.arabidopsis.org/biocyc/), which contain

information about predicted and experimentally determined

pathways, reactions, compounds, genes, and enzymes.

We previously developed a procedure to predict mid-

parent heterosis from a combination of SNP markers and

metabolite profiles of the homozygous population (Gärtner

et al. 2009). This multivariate procedure combined regres-

sion, dimensionality reduction, and feature selection

methods. In the work presented here, we predict directly the

biomass of the hybrids, from data obtained from the parents.

The predicted trait—in contrast to the mid-parent hetero-

sis—and its predictors are entirely derived from different

genotypes allowing for the validation of the method.

Methods and materials

The recombinant inbred line population and testcrosses

The homozygous RIL population was created from a reci-

procal cross between the Arabidopsis thaliana accessions

C24 and Col-0. F2 plants were propagated by single seed

descent to the F8 generation. A set of 110 SNP markers

served for the genotyping of the RIL population (Törjék et al.

2003; Törjék et al. 2006). In the present study, we included

359 RILs and 718 testcrosses with both parents, for which

both genetic and metabolic data were available.

Plant cultivation

All plants were grown together under controlled conditions

in 1:1 mixture of GS 90 soil and vermiculite (Gebrüder

Patzer, Sinntal-Jossa, Germany), under long-day regime

(16 h fluorescent light at 20�C and 60% relative humidity/

8 h darkness at 18�C and 75% humidity (Lisec et al.

2008)). Six plants of the same line were grown in one pot.

Shoot dry weight

The shoot dry weight was measured 15 days after sowing

(DAS). Mean shoot dry weight in milligram per plant was

estimated by using the linear mixed model G ? E:E�G ?

E�GC ? E�GC�T where E is experiment, G is genotype,

GC is growth chamber, and T is tray (Meyer et al. 2007;

Piepho et al. 2003).

Metabolite data

The metabolite profiles for each line were measured by gas

chromatography–mass spectrometry (GC–MS). The samples

for this measurement were harvested simultaneously with

those for the dry weight measurement at 15 DAS. The details

of measurement and GC–MS analysis are described by Lisec

et al. (2006). The metabolite profiles contain 181 different

metabolites. Since the lines were measured on different days

the effect of detector sensitivity were corrected by dividing

the intensity of each metabolite by the median of all inten-

sities of that metabolite per measurement day. The normali-

zation was done as described by Lisec et al. (2008).

Search for gene metabolite connections

We used the AraCyc 4.5 database to connect metabolites,

SNP markers, and genes as described by Lisec et al. (2009)

and identified genes directly involved in the conversion of

the respective metabolite. For such a gene, the closest SNP

marker is regarded to be associated with that metabolite.

Alternatively the SNP markers closest to the metabolic

QTL found by Lisec et al. (2008) were included.

QTL analyses

The QTL analyses for the biomass of the testcrosses fol-

lowed the approach described by Meyer et al. (2009).
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Composite interval mapping (CIM) was performed using

the software package PLABQTL (Utz and Melchinger

1996). Cofactors were automatically selected by forward

stepwise regression. Empirical logarithm of the odds

(LOD) thresholds were determined by 1,000 permutations

(Churchill and Doerge 1994). The genetic map used in all

QTL analyses is based on the map presented by Törjék

et al. (2006), with additional SNP markers (Meyer et al.

2009).

Machine learning procedure

The objective of the study presented here is to learn to

predict the biomass of the progeny from molecular data of

the ancestors. The machine learning procedure to achieve

this purpose is divided into two parts: (i) variable or feature

selection and (ii) regression. In the first step, the molecular

quantities that are best suited to predict the trait are iden-

tified in order to reduce the number of variables without

compromising the predictive power of the data set—

defined here as the correlation between estimated and

measured trait. In the second step, regression models are

estimated using only the selected variables. Here, the actual

prediction is performed.

The variables selection was subjected to a robustness

evaluation. The combination of feature selection and

regression was subjected to cross validation and permuta-

tion tests.

Variable selection methods

The variables selection method used in the present study is

a modification of the approach described by Gärtner et al.

(2009). In both approaches the variables are first ordered

according to the same measure of importance. In the sec-

ond step the actual selection takes place.

The variables are ordered according to their variables

importance in the projection (VIP) (Chong and Jun 2005;

Pérez-Enciso and Tenenhaus 2003). The VIP method is

based on the partial least squares (PLS) approach (Eriksson

et al. 2001; Wold 1975). PLS looks for linear combinations

of the original predictor variables that maximize the

covariance with a dependent variable also called response.

These combinations, called PLS components, are orthog-

onal, in our application. Thus, by taking only a small

number h of components PLS can be used for dimension-

ality reduction. There are different ways to determine h, as

explained below.

The weight of the jth original variable in the linear

combination resulting in the ith PLS component is denoted

by wij. The VIP of the jth variable depends basically on the

sum of the squared wij (i = 1,…, h) multiplied by the

correlation of the ith PLS component with the response.

In the approach by Gärtner et al. (2009) the VIP of each

original variable is calculated on the basis of the complete

data set. The number of PLS components h in the corre-

sponding PLS model is determined by maximizing the

squared correlation between the true dry weight and the dry

weight predicted in cross validation. Afterward, subsets of

variables are considered, the size of which varies between

1 and the total number of variables. The kth subset com-

prises the variables with the kth highest VIPs. For several

subsets PLS regression models are tested using cross val-

idation. This cross validation is performed in the training

set only and is repeated for each training set. Thus, two

different subsets are determined: a set with maximal pre-

dictive power and another set, the predictive power of

which is not significantly lower than that of the maximal

set. In order to estimate the significance of the deviation

from the maximal value, confidence intervals are calcu-

lated by jackknife procedures. The minimal set is the set of

selected variables that will be used in the subsequent pre-

diction procedure.

The modified procedure proposed here also calculates

the VIP of each original variable, but the determination of

the number h of PLS components in the corresponding PLS

model is achieved by applying F tests. The modified pro-

cedure starts with the maximum VIP variable. For the next

variable in the VIP order an F test is performed, which

decides if the new variable yields additional information

about the response, i.e., the null hypothesis of the test states

that the regression coefficient of the new variable is zero.

The F statistic we used is defined by F ¼ RSSðbkÞ�
RSSðbkþ1Þ=ðRSSðbkþ1Þ=ðn� k � 2ÞÞ, RSS denoting the

residual sum of squares for the models expressed by the

coefficient vectors bk and bk?1, and k and k ? 1 repre-

senting the number of variables already selected. If the P

value for the new variable is lower than 0.05 the variable is

included in the subset, if not, the next variable in the VIP

order is tested as described above.

Regression methods

The choice of the regression model depends on the prop-

erties of predictor data. Since the two procedures of vari-

ables selection differ, we used two different regression

models.

The variable selection method by Gärtner et al. (2009)

does not consider orthogonality directly. Therefore, a

dimensionality reduction method rendering the predictor

matrix orthogonal was required. Gärtner et al. (2009) used

PLS regression.

For the data sets generated by the modified approach we

applied, in addition to the PLS regression, ordinary least

squares (OLS) models, which maximize the correlation

between a combination of the predictor variables and the
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response. The advantage of this method lies in its unbiased

estimation of the model. The disadvantage is that correla-

tion and co-linearity of the predictors result in a large

variance of the estimation. However, since the selection of

variables is biased to orthogonal variables, the application

of OLS models is appropriate.

Evaluation of the robustness of the feature selection

We tested the robustness of the feature selection against

possible loss of information by the reduction of the number

of lines by applying bootstrap-like resamplings. In the first

test, 1077 (= 3 9 359) samples were drawn with replace-

ment from the set of all (359) RILs. This specific number

of samples was chosen because the expected proportion of

lines drawn at least once was then approximately 95%.

Thus, 18 lines were expected not to be included in the

resampled sets. For the second test, 359 samples were

drawn from the set of all RILs, thus in average around 35%

of the lines were left out. The resampling was replicated

100 times in both cases. Variable selection was performed

on the generated data sets as described in the previous

sections.

We also evaluated the effect of small perturbations. For

this purpose one observation was removed from the ori-

ginal data set 20 times. The question whether some of the

selected markers could be replaced by others if there are

only small changes in the data set was approached that

way.

Cross validation

The cross validation was performed according to the leave-

one-out (LOO) procedure: the predictor matrix Xn9p (with

n number of samples, i.e., RILs; and p number of variables,

i.e., SNP or metabolites) and the response, i.e., the dry

weight vector, are divided into subsets. All but one subset

are used to train a model including feature selection and

regression. The model is then applied to the remaining

subset in order to predict response Y of the test set. The

pseudo code displayed in Supplmentary Fig. 1 illustrates

this procedure.

Permutation tests

Permutation tests were performed to determine the statis-

tical significance of the estimation of the response (i.e., the

dry weight) from the predictor data sets. The null

hypothesis assumes that there is no relationship between

the considered set of markers and the testcross dry weight.

Therefore, the dry weight vectors were permuted 1,000

times. The complete machine learning procedure as

described above, including the variables selection, was

applied to each of these permutated dry weight vectors,

while the marker set remained unchanged. For each per-

mutation the correlation between the permutated vector and

its prediction was calculated. These correlations were

compared to the predictive power of the procedure, when

applied to the real data. The significance of the procedure

is measured by a P value, which is defined as the number

of random correlations higher than the predictive power

divided by the number of permutations: (number of

Rperm,i [ Rtrue/number of permutations). The procedure of

permutation test is represented by the pseudo code in

Supplementary Fig. 2.

Results

The parental dry weight as predictor for hybrid biomass

The biomass ratio of the biggest to the smallest RIL is 1.8,

the corresponding ratios of C24 and Col-0 testcrosses are

2.6 and 3.3, respectively. The mean dry weight values are

1.08, 1.59, and 1.55 mg plant-1 for RILs, C24, and Col-0

testcrosses, respectively. The power of the prediction of the

testcross biomass from parental biomass was evaluated

separately for the C24 and the Col-0 testcross population.

Since only the RIL parent has a variable dry weight in this

experimental set-up, the Pearson correlation of the RIL dry

weight with the biomass of both types of testcrosses is

considered as a measure for predictive power. For the C24

testcrosses that correlation is very low (0.21) but still sta-

tistically significant (P value = 6 9 10-5). The corre-

sponding correlation with Col-0 testcrosses biomass is even

lower (0.08 with a P value of 0.11).

Prediction of dry weight of testcrosses by parental

molecular data from different sources of the parents

The following four data sets were used as predictors:

metabolite profiles containing relative levels of 181

metabolites, 110 SNP markers, the combination of SNP

markers and metabolite profiles, the combination of

SNP markers, metabolites, and the RIL dry weight. All

mentioned predictor variables are measurements on RIL

parents only. In the following, we refer to these sets as

METAB, SNP, METAB-SNP, and METAB-SNP-DW. The

response to be predicted was the dry weight of the C24

testcrosses and the dry weight of the Col-0 testcrosses.

Before applying the feature selection, the predictive

power of the predictor complete sets was determined using

the OLS and the PLS regression method. A cross validation

was performed as described in the ‘‘Methods’’ part. The

best result was obtained for the C24 testcross population

using the SNP data set (R = 0.48). For all other data sets
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much lower values were obtained, especially in the case the

OLS regression is applied (Table 1).

Using our modified feature selection method we sought

to minimize the size of biomarker sets without significantly

lowering the predictive power in cross validation. The

predictive power of each data set/combination is given in

Table 1. For the METAB-SNP set the OLS prediction with

feature selection is improved in comparison to or equally

good as the PLS results for the complete data set. Figure 1

illustrates these results and their application using the

example of the combination of parental SNP markers,

metabolites, and dry weight as predictors for biomass in

C24 testcrosses. We have shown that the plants predicted to

be the 10% biggest C24 testcrosses applying the OLS

regression method had indeed a significantly higher mean

value (1.79 mg) than the entire C24 testcross population

(1.59 mg). This was done by a one sample t test. The P

value was lower than 10-16. This indicates a significant

biomass difference of the population mean as compared to

the value 1.79 mg.

Statistical significance of the procedure

The statistical significance of the OLS regression results

including our new variable selection procedure was eval-

uated by permutation tests as described in the ‘‘Methods’’

section. The highest P value was 0.085 for the metabolite

data set applied to C24 testcrosses. For all other potential

biomarker sets the P value was smaller than 0.001 in both

testcross set-ups.

For the METAB set permutation tests with 100 permu-

tations were performed using PLS and the variable selec-

tion method of Gärtner et al. (2009). P values of 0.04 and

0.02 were calculated for the Col-0 and C24 effect,

respectively.

The detected markers

The set of variables selected from the METAB-SNP set

contained six metabolites and six SNP markers for the C24

testcrosses’ biomass and 12 metabolites and three SNP

markers for the Col-0 testcrosses’ biomass. The overlap

between the two testcross set-ups comprises one metabolite

and one SNP marker. All three SNP markers found for the

Col-0 effect, and five of six SNP markers found for the C24

effect in the METAB-SNP set were also selected in the

SNP set. Lists of the selected markers are arranged in the

Supplementary Tables 1–3.

Robustness of the selected marker sets

To evaluate the effect of small changes one observation

was removed randomly 20 times from the METAB-SNP

set. The whole procedure was then applied to the reduced

data set and the selected features for each repetition were

stored. Eight of the 12 selected C24 testcross markers

were identified in all 20 subsets. Two further markers

were used more than 10 times. A further 31 markers were

detected at least once. The corresponding numbers for the

Col-0 effect are three, eight, and 39 (Supplmentary

Table 3). The predictive power for the reduced sets ran-

ged from 0.535 to 0.564 for C24 and from 0.451 to 0.483

for Col-0.

The results of robustness evaluation of the METAB-

SNP variable selection by bootstrap-like resamplings in

the case of the threefold resampling is presented in

Table 1 Predictive power in cross validation of the molecular data

from different sources and their combination

Data set C24 Col

Complete VS Complete VS

OLS regression

METAB 0.11 0.05 0.11 0.14

SNP 0.36 0.41 0.28 0.38

METAB-SNP 0.16 0.42 0.14 0.32

METAB-SNP-DW 0.16 0.41 0.14 0.31

PLS regression

METAB 0.12 0.06 0.23 0.21

SNP 0.48 0.40 0.35 0.37

METAB-SNP 0.39 0.40 0.28 0.32

METAB-SNP-DW 0.39 0.40 0.29 0.27

The columns 2–5 contain the predictive power for both effects (C24

and Col-0) and for the use of the variables selection (VS) and the use

of the complete sets. The table contains the results for both OLS and

PLS regression
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Fig. 1 Plot of the dry weight observed in the C24 testcrosses against

the dry weight predicted by the METAB-SNP-DW set after variables

selection. The vertical line indicates the 90% quantile of the predicted

dry weight values. Thus, the testcrosses corresponding to the data

points to the right of this line have been predicted to be the biggest

10% of the crosses. The horizontal line indicates the 90% quantile of

the true biomass values

Theor Appl Genet (2010) 120:239–247 243

123



Supplmentary 5. For the C24 effect eight markers were

found at least 90 times. Six of these markers belong to the

12 markers detected in the real data set (cf. Supplmentary

Table 3). This includes the only marker that was detected

100 times (see Supplmentary Table 5). For the Col-0 effect

four markers were detected at least 90 times including two

of the selected markers (cf. Supplmentary Table 3). One

SNP marker from chromosome 4 was found 100 times.

This marker also belongs to the set of markers detected

within the real data set.

With the second, more stringent resampling strategy

(see ‘‘Methods and materials’’ part), one marker for the

C24 effect and two markers for the Col-0 effect were found

at least 90 times. One metabolite marker of unknown

chemical identity was selected for both effects. For the

Col-0 effect the SNP marker MASC04123 located on

chromosome 4 was selected in addition. Both markers were

also detected within the real data set.

Methods comparison

We compared our results to those obtained applying the

method proposed by Gärtner et al. (2009). For this purpose

the variables selected by their method were subjected to a

cross validation, i.e., the variables selection is not included

in the cross validation. The procedure is similar to those

explained by the pseudocode for the permutation loop.

Therefore, the markers selected by the new feature selec-

tion were subjected to the same kind of cross validation.

Here, only the results for PLS regression were compared

(Table 2). In most cases the predictive power is similar for

both methods.

However, for the C24 effect metabolites have a higher

predictive power, if the procedure by Gärtner et al. (2009)

is applied, whereas the application of the new approach on

SNP markers yields better or equally good results. In most

cases fewer variables are needed when the new approach is

employed (Table 2). There is large overlap between the

markers detected with both methods. Notably, all of the

markers robust against small changes are found with both

methods.

Selected metabolites and SNP markers connected

to them

We found in the AraCyc 4.5 database all genes connected

directly to the metabolites of known chemical identity

selected from the METAB-SNP set. In the second step we

found for each such gene the SNP closest to it on the

chromosome. Using an F test we determined, whether

integrating the set of these SNPs in the reduced METAB-

SNP model (excluding the metabolites of known chemical

identity) significantly raises the predictive power.

For the Col-0 testcrosses 22 SNPs were linked to six

metabolites from the METAB-SNP set. The F test resulted

in a P value of 0.23, the inclusion of the six metabolites in

a P value of 0.02. For the C24 effect 12 SNPs were

determined as belonging to four metabolites. The corre-

sponding P values are 0.65 and 0.04.

Alternatively, the SNPs closest to the QTL found for

those metabolites by Lisec et al. (2008) were used,

allowing us to include also SNPs for metabolites of

unknown chemical identity. For the Col-0 effect four SNPs

were linked to the 11 metabolites from the METAB-SNP

selection. There was no significant gain in information by

the inclusion of the SNPs (P value 0.18) in contrast to the

inclusion of the metabolites (see above). For the C24 effect

we found eight SNPs belonging to the six metabolites. Again

the F test yielded no significant P value (0.57) for the inclusion

of the set of SNPs, while a P value of 3 9 10-4 was obtained

for the inclusions of the metabolites.

Comparison with per se, biomass heterosis,

and testcross biomass QTL

The SNP markers selected as important features were

compared to the SNP markers closely linked to detected

biomass QTL (Meyer et al. 2009). The results are sum-

marized in Table 3. We found that four of the eight SNP

Table 2 Predictive power of molecular data from different sources,

obtained with the procedure as described by Gärtner et al. (2009) and

the new method

C24 Col-0

Gärtner New Gärtner New

METAB 0.33 (56) 0.26 (9) 0.37 (18) 0.38 (13)

SNP 0.52 (17) 0.54 (9) 0.41 (9) 0.45 (8)

METAB-SNP 0.53 (56) 0.54 (12) 0.44 (30) 0.45 (15)

METAB-SNP-DW 0.54 (55) 0.56 (14) 0.44 (30) 0.46 (15)

The feature selection was performed outside the cross validation loop.

The numbers in brackets signify the number of selected variables

Table 3 Comparison between QTL and SNP markers detected from

the SNP set

Effect C24 Col-0

# of

QTL

# of

co-location

# of

QTL

# of

co-location

per se 7 2 7 4

Biomass heterosis 6 3 1 1

Testcross biomass 6 5 2 2

For both C24 and Col-0, the number of QTL and the number of co-

locations of the QTL with the 9 and 8 SNPs, respectively, are given
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markers selected from the SNP set for the prediction of dry

weight in Col-0 testcrosses, are co-locating with one of the

seven per se biomass QTL. The only Col-0 QTL for bio-

mass heterosis is co-located with one of the markers

selected from the SNP set.

For the C24 testcrosses three out of nine SNP markers

selected are also in the support intervals of per se biomass

QTL. For the six C24 QTL for biomass heterosis we found

three co-located SNP markers with the variables selection.

In addition, a QTL search for the testcross biomass was

performed in the present study with the same methods as

used by Meyer et al. (2009), cf. Chap. ‘‘Methods and

materials’’. We found six QTL for the C24 testcrosses and

two for the Col-0 testcrosses (Supplmentary Table 4). The

markers co-locating with QTL are indicated by arrows in

Fig. 2. One SNP marker on chromosome 1 is found for

both effects. The signs of the impact of the markers

obtained from the feature selection on the hybrid biomass

indicate in the most cases a biomass increase when the

corresponding position is heterozygous. There are two

exceptions for the C24 effect, but the corresponding

markers are less important than the others. One marker on

chromosome 1 for both effects shows a decrease in the

hybrid biomass, if the RIL parent had a C24 allele at this

position.

The SNP markers located in the support intervals of the

testcross biomass QTL were used to predict the corre-

sponding dry weight in cross validation. The predictive

power of these predictors was determined with 0.48 and

0.37 for C24 and Col-0, respectively. Since the same

response trait (i.e., testcross dry weight) was used these

results could be in principle compared to the predictive

power of the markers obtained by feature selection. How-

ever, the cross validation did not include the QTL search.

Therefore, the SNPs detected by the feature selection were

subjected to the same kind of cross validation (i.e., the

feature selection is not included in the cross validation).

Their predictive power is then 0.54 and 0.45 for the C24

and Col-0 effect, respectively.

Discussion

We developed a new feature selection method that repre-

sents a complementary approach to previous works in the

field (e.g., Frisch et al. 2009; Maenhout et al. 2009; Schrag

et al. 2007, 2009a, b; Yu et al. 2005). For the proof of

concept presented here we used a model population of

Arabidopsis, therefore a direct comparison with the more

agricultural applications of these authors is difficult.

However, the predictive power and the reduction of the

number of markers achieved by our procedure indicate its

potential usefulness for breeding programs. Additionally,

metabolites are introduced as useful markers.

We employed three types of potential predictors: mac-

roscopic phenotypes, genetic markers, and metabolites.

The small amount of variance of the hybrid biomass

explained by the parents’ biomass shows the insufficiency

of phenotypic markers as good predictors. The application

of machine-learning procedures to molecular data is

therefore a relevant alternative for the prediction of hybrid

performance in this population.

We could show that the prediction of the trait under

investigation is clearly increased by the use of SNP

markers and metabolite profiles in comparison to the use

of parent dry weight only. Permutation tests showed

with one exception, that the metabolites significantly

predict the testcross biomass. We conclude therefore

that these substances are potential biomarkers for hybrid

performance.

Fig. 2 Location of the SNP

markers used in the present

study. Markers detected as

biomarkers in both feature

selection as well as QTL search

are indicated by arrows. Banded
and unbanded arrows indicate

C24 and Col-0 biomarkers,

respectively. The arrows on

chromosome one point to the

same SNP
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With our procedure we were able to reduce the number

of variables employed for at least one of the two testcross

classes from 291 SNP markers and metabolites to 12 fea-

tures. The markers found by feature selection prove to be

robust against small changes in the data set. Some markers

are exchangeable without compromising the predictive

power. Overall, only a small proportion of the available

markers are used, e.g., for the C24 effect 31 out of 291. A

much smaller number (eight and four for the C24 and Col-0

effect, respectively) of markers are robust against the loss

of about 5% of the lines and only two markers are robust

against greater changes as shown by the results of the

bootstrap-like resampling.

The selection of small sets of markers is important for

three reasons. First, the prediction of the trait could be

improved for most of the predictor sets (see Table 1).

Second, the selection of a small set of markers reduces the

cost of measurement. Finally, a targeted measurement of

metabolite concentrations will result in a higher accuracy.

The selection of few important metabolites enables such

targeted measurements. This in turn is likely to improve the

predictive power of the procedure.

The modification of our original method (Gärtner et al.

2009) lowers the number of variables necessary to make

predictions with a nearly equal predictive power. As

described above, this is advantageous for the direct appli-

cation in breeding. However, when we are interested not

only in the prediction of an observed effect but in an

explanation of it in molecular terms, it is reasonable to take

into account also markers that improve the prediction only

slightly. Therefore, the markers identified by the method of

Gärtner et al. (2009) should be considered in such inves-

tigations, e.g., modelling approaches. Furthermore, the

modified method has the tendency to fail in case of pre-

dictors with considerable measurement errors. This is

shown by the worse results for the metabolites in the case

of the C24 testcrosses, where a significant prediction was

computed with our original method.

The metabolites of known chemical identity found to be

important in the METAB-SNP set, could be related to SNP

markers using information from the AraCyc 4.5 database.

In contrast to the metabolites, this set of SNP markers does

not add to the predictive power of the set of SNP markers

found to be important. The use of SNP markers derived

from metabolic QTL lead to the same conclusion. The

metabolite concentrations can not be explained sufficiently

by a linear combination of the genes known to be related to

these metabolites.

The SNP markers found by feature selection overlap

substantially with the QTL determined by Meyer et al.

(2009). This is also true for the testcross biomass QTL

determined in the present study. Mainly dominance effects

are found. The only QTL found for both C24 and Col-0

shows additive effects. The predictive power of the SNP

marker set detected by the variables selection is clearly

higher than that of the combination of QTL. This shows

that our method can find new interesting regions on the

chromosomes, represented by the SNP markers. In our

approach interactions between SNP markers are not con-

sidered and therefore, epistasis could not be detected,

directly. However, the role of the metabolites as presented

above nevertheless clearly indicates the presence of

epistasis.

To improve our approach, we plan to include gene

interaction in our model. Here, the knowledge of important

metabolites and their connection to genes will be helpful.

The use of more complex populations, i.e., derived from

more than two accessions, would be a further possibility to

test our method. In combination these two applications will

increase the area of potential applications of our procedure

for plant breeders.
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Wall H, Fiehn O, Törjék O, Selbig J, Altmann T, Willmitzer L

(2008) Identification of metabolic and biomass QTL in Arabid-
opsis thaliana in a parallel analysis of RIL and IL populations.

Plant J 53:960–972

Lisec J, Steinfath M, Meyer RC, Melchinger AE, Selbig J, Willmitzer

L, Altmann T (2009) Identification of heterotic metabolite QTL

in Arabidopsis thaliana RIL and IL populations. Plant J. doi:

10.1111/j.1365-313X.2009.03910.x

Maenhout S, De Baets B, Haesaert G (2009) Prediction of maize

single-cross hybrid performance: support vector machine regres-

sion versus best linear prediction. Theor Appl Genet (this issue)

McCouch S (2004) Diversifying selection in plant breeding. PLoS

Biol 2:e347

Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék
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