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Abstract

reaction, Recombinant Escherichia coli, Restriction enzymes

Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for
cloning into a target plasmid pose a challenge for conventional cloning.

Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target
sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single
deoxyinosine base at the third position from the 5’ end. Treatment of such PCR products with endonuclease V generates
3’ protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions.

Conclusions: The developed approach generates terminal cohesive ends without the use of Type Il restriction
endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of
template DNA are required. Using the robust Tag enzyme or a proofreading Pfu DNA polymerase mutant, the method is
applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA
sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the
restriction sites of the target plasmid can be either retained or removed.

Keywords: Cohesive ends, DNA cleavage, Genetic vectors, Modified primers, Molecular methods, Polymerase chain

Background

With hundreds of enzymes commercially available today
[1], restriction endonuclease treatment of insert and plas-
mid vector DNA followed by ligation and transformation
into competent E. coli strains presents the standard cloning
method in molecular biology. Given the advances in struc-
tural biology and the advent of synthetic biology, a strong
demand exists to transfer and rearrange a large variety of
DNA fragments from different genetic sources in a directed
manner. A diverse catalogue of plasmid vectors is at hand
for propagation in pro- and eukaryotic cells, enabling
heterologous protein expression in various host organisms.
Frequently, suitable pairs of Type II restriction enzymes
with unique recognition sites in the vector and insert DNA
fragments can be found, especially since the latter are easily
produced via PCR. In such a case, the PCR primers contain
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add-on tails composed of the restriction endonuclease
recognition sequence and additional nucleotides which
ensure efficient enzymatic processing [2]. Especially with
an increasing size of the insert, however, the chance rises
that it contains a recognition site of the desired restriction
enzymes. Statistically, the 6 bp recognition sequence of a
Type II restriction enzyme such as Xbal would occur once
in every 4° / 2 = 2048 base pairs. The situation gets worse if
one aims to insert multiple sequences in dual-expression
vectors, as for instance required for co-expression studies
in metabolic engineering, structural and synthetic biology
[3-6]. These circumstances require purchase and storage
of numerous restriction enzymes or the execution of
site-directed mutagenesis (including design and synthesis/
purchase of mutagenic primers, high-fidelity PCR, trans-
formation and sequencing) [7,8] in order to remove the un-
wanted recognition sites. Individual buffer and temperature
requirements for endonuclease stability and activity [9]
further limit the number of cloning options.

© 2013 Baumann et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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To eliminate the problems of conventional cloning,
methods avoiding the use of Type II restriction enzymes
have been developed. The Gateway cloning system relies
on site-specific recombination catalyzed by a proprietary
bacteriophage A protein formulation in vitro [10]. Creation
of large recombinant DNA molecules can be achieved by
the domino method [11] and DNA assembler [12], which
are based on homologous recombination in vivo by the
machinery of B. subtilis or S. cerevisiae, respectively. The
endogenous recombination system of E. coli can combine
insert and vector molecules upon co-transfection [13,14],
which can be facilitated by expression of a homing endo-
nuclease and bacteriophage recombinases [15]. Similarly,
a cell lysate which contains a prophage recombination
system can be used in vitro [16]. PCR-based generation of
complete recombinant plasmids, preferably via a proofread-
ing DNA polymerase, can be achieved by several strategies
[17-21]. For the highly complex challenge of genome
engineering, homing nucleases [22], transcription activator
like (TAL) [23] and zinc-finger nucleases [24] can be used.

More similar to the conventional restriction-ligation
system, compatible cohesive ends can be generated in
alternative ways. Combined with a subsequent ligation
reaction that stabilizes the paired ends, exonuclease III [25]
or T4 DNA polymerase [26] can be used for their creation.
Ligation-independent cloning (LIC) [27] employs lon-
ger overhangs resulting in sufficiently stable DNA base
pairing for transformation. These can be created by
several means, e.g. via T4 DNA polymerase or incom-
plete PCR [27-29], hybridization of PCR products [30],
ribonucleotide-containing primers [31], terminal transfer-
ase [32], abasic sites [33], chemical or enzymatic cleavage
of phosphorothioated DNA [34,35], or \ exonuclease [36].
Elegant enzyme-based in vitro systems have been devel-
oped, such as In-Fusion cloning [37], for which the poly-
merase is known but not the exact composition, as well as
the combined isothermal usage of a DNA polymerase, a
5" exonuclease and DNA ligase, named Gibson assembly
cloning [38]. Although several of the described cloning
systems with individual advantages and disadvantages are
commercially available, many present costly alternatives
or demand complex planning.

Smith et al. reported a method to create insert frag-
ments with 5" recessed ends via PCR, utilizing deoxyuracil-
containing primers [39]. Treatment of the PCR products
with heat or alkaline solution creates 3" overhangs compat-
ible with those of the vector fragment. In a similar fashion,
USER friendly DNA cloning [40] utilizes a commercially
available enzyme mix. In contrast to uracil DNA glycosylase
(UDG) treatment, this enzyme mix removes the dU resi-
dues instead of cleaving the N-glycosylic bond. Compatible
vectors are generated by treating the plasmid DNA with
a nicking and a Type II restriction endonuclease instead
of PCR-based amplification. As for other methods, this
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strategy avoids the risk of introducing polymerase errors
into the plasmid backbone. Although cohesive ends can
also be generated by using DNA glycosylase-lyase Endo VIII
[41] or Endo IV [42] subsequent to UDG, we sought to de-
velop a more straightforward cloning method that requires
only one enzyme, no heat- or alkaline treatment and which
allows the creation of more 3" protruding end combinations
(see Figure 1 for those created in this study).

Unlike deoxyuracil, the universal base deoxyinosine (dI)
can pair with all four canonical DNA nucleobases following
a duplex stability series of I:C>I:A > :T=I:G [43]. In
contrast to several proofreading polymerases [44], Taq
polymerase can incorporate dITP during primer extension
and readily extends dI-containing DNA. These properties
allow deoxyinosine usage for the creation of degenerate
primers [45,46] as well as for random [47] and sequence
saturation mutagenesis [48].

With deoxyinosine-containing oligonucleotides and
endonuclease V (EndoV) readily available from commercial
suppliers, a method was developed to create terminal 3’
protruding ends independent of the insert DNA sequence

Optional
(to retain or remove restriction site)

]
Aatll 5" GACGT|C

3 CTGCAG

Kpnl 5 GG TACIC
3" CICATG

@

~— end of DNA fragment

Pstl 57 CTGCAIG
3’ G'ACGT

Q

Sacl 5" GAGCT|C
3/ CITCGA
1

absent in primers

(7}

Figure 1 Cohesive dsDNA ends created in this study. In order to
ligate insert DNA fragments efficiently with a linearized target
plasmid vector, both molecules have to carry compatible cohesive
ends. For the vector DNA, 5 recessed ends are created by
conventional restriction enzyme treatment. Names and recognition
sequences of the enzymes used in this study are listed. For other
enzymes, please refer to REBASE [60]. Endonucleolytic cleavage
positions are depicted as vertical dashes. Insert DNA fragments with
compatible cohesive ends are created by PCR and subsequent
endonuclease V treatment (as illustrated in Figure 2). The 5" ends of
the PCR primers and the termini of the corresponding PCR products
differ from the shown sequences: They lack the first nucleotide
(shown in red) and carry deoxyinosine instead of the residue shown
in orange. EndoV treatment of the PCR product results in 5°
recessed ends shown in bold letters with yellow background. If the
residue highlighted in grey is omitted from the oligonucleotide
design, ligation of the insert fragments with linearized plasmid DNA
does not reconstitute the restriction enzyme site.
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(Figure 2). Appropriate positioning of dI in the primer se-
quence enables the directional insertion of DNA fragments
into plasmid vectors by PCR, endonuclease V treatment
and ligation. In order to avoid the introduction of polymer-
ase errors, linearized vectors are created using conventional
restriction endonucleases. The applicability of the system is
demonstrated by successful cloning of three different cod-
ing sequences into several plasmid vectors with efficiencies
matching or exceeding those of alternative approaches.

Results and discussion

Non-directional ampicillin resistance cassette cloning

In order to establish the proof of concept, the oligonucleo-
tides pUCamp_f and pUCamp_r (Table 1) were designed
for the amplification of a 1114 bp region from plasmid
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pUCIS8. Insertion of this DNA sequence into a different
plasmid vector was expected to confer ampicillin resist-
ance to transformed E. coli cells, allowing straightforward
detection of recombinant clones. The target sequence in-
cludes the P3 promoter [49], the ribosome binding site,
the p-lactamase (bla) coding region and the terminal TAA
stop codon. Both oligonucleotides were designed to form
primer-template duplexes with 7, values of 56-57°C. In
order to enable cloning, the 5" primer ends comprise four
additional nucleotides with a deoxyinosine residue at the
third position (compare Figure 1). According to previous
reports and the crystal structure of the Thermotoga
maritima (Tma) enzyme [50], treatment of the PCR
products with endonuclease V was expected to result
in hydrolysis of the second phosphodiester bond 3" to dI

Sacl -
compatibility

* = cleaved phosphodiester bond

restriction enzyme treatment (in the depicted case Sacl and Kpnl).

insert DNA
51 N | NNNNNNNNNNNNN | N 30 (1)
30 N | NNNNNNNNNNNNN | N 51
n
PCR
51 AG T N|NNNNNNNNNNNNN|N G N A C 30 (2)
30 T C N A N|NNNNNNNNNNNNN|N C TG 51
n
Endonuclease V
51 AG T*N | NNNNNNNNNNNNN|N G N A C 30 (3)
30 T C N A N|NNNNNNNNNNNNN|N*C TG 51
n
Purification
P\
51 N| NNNNNNNNNNNNN|N G N A C 30 (4)
30 T C N A N|NNNNNNNNNNNNN|N_ 51
2]
n

restriction endonuclease

Figure 2 Scheme for the generation of cohesive ends. In addition to regions complementary to the insert DNA sequence (1), oligonucleotides are
designed with overhangs comprising the 4 bp cohesive part of a restriction site combined with deoxyinosine (dl) at the third position from the 5°
end. Primer annealing and extension during a PCR leads to amplification of the desired target fragment (2), which carries the dl residues

(bold, orange) in its termini. The pairing properties of the universal base will generate a sequence distribution at the corresponding site of the
opposing strand (indicated as ‘N). Purified PCR products are treated with EndoV, which cleaves the second phosphodiester bond 3" to dI (3). The
target DNA fragment (4) is obtained by spin column-based or agarose gel purification, respectively, removing the weakly bound residues of ssDNA.
Carrying cohesive ends with 5” phosphates, the insert fragment is now suitable for ligation to vector DNA fragments created by conventional

Kpnl
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Table 1 Oligonucleotide sequences

Oligonucleotide Sequence (5' - 3')

pUCamp_f GTICC TATGAGTAAACTTGGTCTGACAGTTACC
pUCamp_r GTICC GTCATCACCGAAACGCGCG

RFP-dev_f TGIAG GCGCAACGCAATTAATGTGAG
RFP-dev_r ACITC GTTATTAAGCACCGGTGGAGTG

MITF_f AGITC ATGCTGGAAATGCTAGAATACAG

MITF_r GTICCTCA ACACGCATGCTCCGTTTCTTC
Mitf-FL_f CATGCTAGCATGCTGGAAATGCTAGAATACAGTC
VR2_r ATTACCGCCTTTGAGTGAGC

Deoxyinosine residues are shown in bold, primer add-on tails are underlined
and separated from regions complementary to the target sequences
by spaces.

[51]. Removal of the weakly bound 4 bp ssDNA stretch
creates cohesive ends compatible with those generated by
the restriction enzyme Kpnl. Figure 2 illustrates a similar
case of cohesive end creation, whereas the design of the
forward primer results in an overhang compatible with that
of a different Type II restriction enzyme (see Figure 1 for
all cohesive ends created in this study). It should be noted
that the base-pairing properties of dI [43] will generate
a sequence distribution at the corresponding position
on the opposing strand of the PCR-generated dsDNA,
which is discussed in the Conclusions section.

With the two synthetic oligonucleotides, PCR was
conducted using Taq DNA polymerase and a total of
27 amplification cycles. Subsequent to DNA purification,
endonuclease V treatment and preparative agarose gel
electrophoresis were performed. Ligation reactions were
prepared with Kpnl-digested and dephosphorylated
pIRES2-EGEFP or pSB1C3, respectively. Next, competent
E. coli XL-1 Blue cells were transformed. After overnight
incubation at 37°C, clones were found to grow on LB agar
plates supplemented with ampicillin in addition to either
kanamycin or chloramphenicol, respectively. Accordingly,
the insert DNA was successfully integrated into the vector
backbone and the amplified antibiotic resistance cassette
(AmpR) was functional in vivo.

PCR was repeated with an annealing temperature gradi-
ent spanning Ty, + 3°C. As shown in Figure 3A, products
of the expected size were formed in all cases with
comparable quantities. Other, non-specific bands were not
detected. Consequently, the presence of the dI-containing
overhang did not hinder binding of the primers to the
complementary plasmid DNA. This is consistent with earl-
ier studies [52]. To test whether E. coli colonies can serve
as a direct source for the target DNA, colony PCR was
performed using XL-1 Blue cells transformed with the
template plasmid. Cycling and reaction conditions
were kept identical except for the initial denaturation,
which was extended to 3 min to facilitate cell disruption
and DNA release. Figure 3B shows that specific PCR
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Figure 3 Robust PCR-amplification of insert DNA fragments
using deoxyinosine-containing primers. Analytical agarose gel
electrophoresis of PCR products produced by Tag polymerase using
either plasmid DNA (A) or E. coli colonies (B) as template material.
Relative to the calculated T,,,, annealing temperatures used for PCR
cycling are indicated for each lane.

products undistinguishable from those created by amplifi-
cation from plasmid DNA were formed.

While simple co-transfection of vector and insert DNA
fragments, each with large homologous regions (> 10 bp)
at both ends, can create recombinant plasmids [13,14],
we found no recombinant clones when the endonuclease
V treatment of the insert DNA was omitted. Ligation
reactions performed with only insert or vector DNA,
respectively, also did not yield ampicillin-resistant clones.

Directional cloning of a RFP reporter device

Since functional selection for the insertion of the ampicillin
resistance cassette into plasmid vectors (previous chapter)
did not yield information about the background of erro-
neous, empty or incomplete ligation events, a screening
method for positive clones was employed. The red fluores-
cent protein (RFP) coding device BioBrick BBa_J04450
was chosen since mRFP1 expression by E. coli is easily
detected [53]. Primers RFP-dev_f and RFP-dev_r (Table 1)
were used to amplify an 830 bp region which comprises
the E. coli lactose (lac) operon promoter including CAP
and RNA polymerase binding sites, a ribosome binding
site and a coding region for mRFP1 followed by a double
TAA stop codon. The Ty, value of the primer-template
duplexes was 53-55°C. A total of 31 cycles were used
for Taq polymerase-based amplification. After treatment
with 5 u of Tma endonuclease V, a ligation reaction with
dephosphorylated pUC19 digested with Aatll and Pstl
was set up using a molar insert to vector ratio of 7:1.
Transformation of E. coli XL-1 Blue yielded 252 colonies,
of which 233 were classified as RFP-positive by manual
counting (see Figure 4). Five apparently RFP-negative
clones were used to inoculate 5 mL LB medium containing
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cyan markers present negative colonies with poor or no fluorescence.

Figure 4 mRFP1-positive clones obtained by cloning an RFP-coding device into pUC19. Recombinant E. coli colonies expressing mRFP1.
Detection was facilitated via excitation at 505 nm. Manual counting yielded a positive fraction (dark blue markers) of about 92.4% (233 of 252 colonies),

100 pg/mL ampicillin. After overnight incubation at 37°C
and 200 rpm, the liquid cultures possessed no or only
slightly red color, respectively. DNA sequencing revealed
that all clones carried an RFP coding device insert.
Evidently, the observed low or missing red fluorescence
was caused by point mutations or single base pair
deletions in the mRFP1 coding sequence. Given the high
number of PCR cycles used to produce the insert DNA
fragment, this outcome was not unexpected. Assuming a
constant amplification fidelity, the range of reported Taq
polymerase error rates of 8 x 10°° - 2 x 10™* [54,55] corre-
sponds to a fraction of 25.7 - 100% PCR products with
one or more base substitutions. In addition, plasmid DNA
from seven fluorescent clones was sequenced. One clone
carried two mutations of which one was silent; another
clone carried one silent mutation. Five clones were free of
mutations in the mRFP1 coding region. This corresponds
to a total error rate of about 6 x 10 which fits
the expected range (see above). Based on the frequency

of RFP-positive clones, the efficiency of RFP-device
insertion into the plasmid vector was > 92.4%.

Directional cloning of an eukaryotic coding sequence

To further explore the capabilities and limits of the cloning
method, we chose to amplify the coding region of the Mus
musculus microphthalmia-associated transcription factor
(Mitf). The oligonucleotides MITF_f and MITF_r (Table 1)
were designed for the amplification of a 1270 bp DNA
fragment. The regions complementary to the template mol-
ecule were 24 or 21 bp in length, respectively, and a TGA
stop codon was introduced via an overhang in the reverse
primer. The oligonucleotide design was set up for the gen-
eration of cohesive ends corresponding to those created by
the restriction enzymes Sacl and Kpnl as shown in Figure 2.
It should be noted that with two internal Sacl and one
internal Kpnl recognition sites, this DNA fragment cannot
be cloned accordingly into the multiple cloning site of the
vector using the conventional restriction-ligation strategy.
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The cycle number for Tag-based PCR was decreased to 19
in order to reduce the reaction time and the frequency
of PCR errors. Following treatment with 5 u E. coli
endonuclease V, purified insert DNA fragments were
used in five- or 10-fold molar ratios relative to digested
and dephosphorylated pBluescript II KS(+). Competent
E. coli XL-1 Blue and BL21 strains were used for trans-
formation of the ligation reactions. The five-fold molar
excess of insert DNA fragments yielded 137 or 444 col-
onies, respectively, while the 10-fold excess yielded 83
or 456 colonies, respectively. Consequently, no profound
differences were observed from the two different ratios of
insert to vector molecules used in the individual ligation
reactions. In order to detect the fraction of clones carrying
the Mitf target DNA fragment inserted into pBluescript II
KS(+) in correct orientation, a colony PCR assay was
performed with colonies of both strains. Oligonucleotides
Mitf-FL,_f and VR2_r (Table 1) were used, with the first
being complementary to the insert DNA sequence and the
second to the vector backbone in reverse direction relative
to the expected insert orientation. All 19 colonies tested
were positive (data not shown), indicating the presence
of the Mitf coding sequence inside the target plasmid
in correct orientation. DNA sequencing of five additional
randomly picked clones was performed, each using flanking
forward and reverse primers. One clone showed a large
plasmid backbone deletion of approximately 1.9 kb. The
remaining four clones carried correct junction sites and the
expected insert. Despite the relatively large amplicon size
for a Tag-based PCR, two clones had full-length inserts free
of mutations. The cloned Mitf coding sequence of the other
two clones had two or four mutations, respectively.

High fidelity cloning

Although robust, primer extension reactions using Tag
DNA polymerase suffer from relatively low fidelity of the
enzyme, restricting the cloning of DNA fragments to a
maximum length of about 1.5 kb. As shown by Eckert
and Kunkel, improvements in fidelity can be reached
by optimization of the PCR conditions [54].

Cloning of even larger DNA fragments demands the use
of a DNA polymerase with proofreading capability, thus
3’-5" exonuclease activity. Several polymerases of archeal
origin were reported to be unable to amplify deaminated
nucleotides efficiently [56]. We found the enzymes Q5
(formulated with or without an aptamer-based inhibitor for
hot start functionality), Phusion, Pfullltra II and Deep Venty
failing to amplify DNA fragments when dI-containing
oligonucleotide primers were used (data not shown).

However, with PfuTurbo C, Hotstart, one exception was
found. This Pfu DNA polymerase mutant was engineered
to overcome uracil stalling. According to the manufac-
turer’s description, this enzyme possesses a fidelity equiva-
lent to that of the wild-type protein and allows generation
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of PCR products exceeding a length of 6 kb [57]. While all
other tested proofreading enzymes failed to generate PCR
products suitable for endonuclease V-mediated cloning,
all three types of recombinants (pIRES2-AmpR, pUCI19-
mRFP1, pBSK-Mitf) were successfully created by using the
Pfu DNA polymerase mutant in place of the Tag enzyme.
Without PCR optimization, comparable numbers of col-
onies were obtained using a molar vector to insert ratio of
1:8 (as summarized in Table 2). Ligation reactions using
Kpnl-linearized pIRES2-EGFP and PCR products treated
with E. coli EndoV yielded 384 ampicillin-resistant colonies.
Expression of mRFP1 was detected in 97 out of 113 clones,
equivalent to a cloning efficiency of 85.8%. An increased
molar vector to insert ratio of 1:10 yielded 170 colonies, of
which 153 (90%) were fluorescent. Significantly lower in
number, the origin of the 26 positive clones generated using
a ratio of 1:8 without EndoV treatment remains unknown.
Presumably, in vivo recombination events occurred.

The Mitf PCR product was successfully cloned into the
multiple cloning site of plasmid vector pBluescript IT KS(+).
Transformation of ligation reactions containing only the
linearized plasmid vector yielded five colonies while the
addition of the EndoV-treated PCR products resulted in
997 cfu. With 816 cfu, increasing the molar insert to vector
fragment ratio to 10:1 did not result in a higher number of
transformants. Without EndoV treatment, transformation
of the corresponding ligation reaction resulted in only 10
colonies, demonstrating that deoxyinosine 3’ endonuclease
activity is a strict requirement for the cloning strategy to
work. Further analysis of the recombinants using col-
ony PCR indicated that from 39 clones, 38 carried the
Mitf coding sequence in correct orientation (Figure 5).
This corresponds to a cloning efficiency of 97.5%.

Table 2 Cloning efficiencies using a proofreading DNA
polymerase

Ligation reaction EndoV Number Fraction
of colonies positive

pBSK + Mitf PCR product + 997 97.5% (39/40)

pPBSK + Mitf PCR product - 5 ND

Mitf PCR product + 0

pBSK 10 ND

pIRES2-EGFP + AmpR PCR product + 384 100%

pIRES2-EGFP 0

pUCT9 + mRFP1 PCR product + 113 85.8%

pUCT9 + mRFP1 PCR product - 26 100%

mRFP1 PCR product + 0

puUC19 0

Ligation reactions were set up using plasmid vector DNA linearized by restriction
endonuclease treatment. Column two indicates whether the PCR-generated insert
was treated with endonuclease V. pBSK denotes pBluescript Il KS(+). Fractions of
positive clones were determined by red fluorescence (mRFP1 PCR product), growth
in the presence of ampicillin (AmpR PCR product) or colony PCR (Mitf PCR product,
40 clones tested), respectively. ND = not determined.
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Figure 5 Colony PCR screening to detect successful cloning of Mitf. Presence of the Mitf coding region inside the plasmid vector pBluescript
II'KS(+) in correct orientation detected by colony PCR and analytical gel electrophoresis. From 40 individually tested colonies, 39 were judged
positive as evident from the amplification of a DNA fragment (expected size: 1621 bp). Colonies from the same E. coli strain transformed with
plasmid DNA lacking the Mitf coding region served as negative control (NC).

To our knowledge, this study is the first to demonstrate
that a Pfu DNA polymerase mutant can achieve exponen-
tial DNA amplification in PCR using two deoxyinosine-
containing oligonucleotides. Gill et al have reported
that the mutant enzyme V93Q can extend duplexes with
modified primers, while exponential amplification fails
when dGTP is replaced by dITP [58]. Using dI-containing
oligonucleotides, primer extension reactions with the wild-
type enzyme were reported to fail [44,59]. Using Pfullltra 11
Fusion HS, we indeed observed no exponential amplifica-
tion (data not shown). Relative to Tag DNA polymerase,
the mutant Pfu enzyme proved more sensitive towards
high annealing temperatures. The target PCR product
yield was found to be optimal when the primer annealing
steps were performed at T}, - 3°C and decreased as soon
as Thnneal €xceeded Ty, (compare Figure 6). Only in one

case, nonspecific by-products were observed, namely
for the ampicillin resistance cassette PCR conducted
with Typpeat = Ty + 3°C.

Conclusions

The developed method allows the creation of PCR frag-
ments carrying cohesive ends compatible to those of Type
II restriction endonucleases which create 4 bp 3’ over-
hangs, as demonstrated herein for four different restriction
enzyme recognition sites. To date, 21 enzymes of this type
are commercially available [60]. The key advantage of our
approach is the independence of the insert DNA sequence,
which can - in contrast to the conventional cloning method
- internally carry the recognition sequences of the restric-
tion enzymes used for the digestion of the target plasmid
vector. Consequently, only the approximate insert length
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Figure 6 Insert DNA fragment generation using a proofreading DNA polymerase. PfuTurbo C, Hotstart polymerase was used for PCR
amplification of insert DNA fragments using two deoxyinosine-containing oligonucleotides. Analytical agarose gel electrophoresis was performed
with PCR products comprising the ampicillin resistance cassette (1114 bp, A), the mRFP1 reporter device (830 bp, B), and the Mitf coding
sequence (1270 bp, C). Annealing temperatures which were used for PCR cycling are indicated relative to T,, for each lane.

(for PCR extension time determination) and its terminal Assuming an equal incorporation probability for all four
sequences (for primer design) must be known. The devel-  canonical nucleotides when the DNA polymerase encoun-
oped method is straightforward and requires only minimal ters the dI residue on the template strand, one out of four
amounts of template DNA, e.g. 1 ng plasmid DNA or a  created insert termini can be ligated to a cohesive vector
single E. coli colony, for insert generation. With sufficient ~DNA end (compare Figure 2). It is thus conceivable that
amounts of target plasmid vector at hand, all cloning steps  the ligation efficiency benefits from even higher molar
can be performed in a single day finished by overnight insert to vector ratios. Based on our experiences, however,
incubation of transformed E. coli cells. ratios between 5:1 and 8:1 are optimal. It should be
In contrast to other cloning strategies (e.g. In-Fusion  emphasized that for all plasmid clones described within
cloning) [37], cohesive terminal sequences are created this study, the created ligation sites presented an exact
via primer overhangs only four nucleotides in length. Asa  match to the overhang of the vector fragment. Evidently,
result, the PCR-primers used for insert DNA generation only PCR amplicons having precisely matching cohe-
remain short, minimizing the chance for secondary struc- sive ends hybridize efficiently with vector molecules.
ture and primer-dimer formation as well as synthesis errors ~ Consequently, inserts which contained mismatches at the
to occur. Including a single deoxyinosine residue, this type  position complementary to the dI residue were not ligated
of modification is cost-efficient and available from commer-  to the linearized vector at detectable frequencies. Note
cial suppliers. Even at small synthesis scale, shipped primer  that ligation conditions were chosen according to the
amounts are good for several hundred PCRs. Therefore, ~manufacturer’s recommendation for T4 DNA ligase
the method is particularly cost-effective when primers can  and cohesive ends. Conditions potentially favoring the
be reused, e.g. for cloning of individual mutants in the con-  formation of wrong pairings (e.g. low temperatures)
text of libraries. By employing two different overhangs, no  should be avoided. While sufficient colony numbers were
multiple insertions were observed and cloning was dir-  obtained in all cases, it should be noted that competent
ectional as anticipated. Consequently, the developed cells with relatively low transformation efficiency were
method is most suitable to use when no appropriate pair ~ used intentionally.
of Type II restriction endonucleases for the conventional Although the terminal transferase activity of Tag DNA
restriction-ligation strategy is at hand or available. As a re-  polymerase [61] could potentially cause ligation prob-
sult, a reduced number of such enzymes has to be lems, additional nucleotides flanking the ligation sites
maintained in the laboratory. The new strategy is also  or mutations therein were never observed. Inexpensive
particularly suited when ligation-independent cloning and robust, this enzyme is recommended for cloning of
(LIC) methods and techniques based on homologous re- insert sequences up to 500 bp in length. Compatibility
combination fail, for instance when the required homolo-  with the PfuTurbo C, Hotstart DNA polymerase relieves
gous regions cannot be created via PCR. Although in the limitations generated by the relatively low fidelity of
principle possible, we recommended to avoid PCR- the Tag enzyme and greatly expands the application
amplification of the vector DNA, as it is prone to introduce  range of the cloning method. It is further possible that
PCR errors. For the same reason, cloned insert sequences the absence of terminal transferase activity leads to higher
should be verified by sequencing. cloning efficiencies compared to Taq polymerase.
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With its broad buffer compatibility, E. coli endo-
nuclease V allows its combined use with more than 200
commercially available restriction enzymes [9]. This
could further expand the range of cloning options by
generating one cohesive end via EndoV and one via a
Type 1II restriction endonuclease. In addition, this en-
zyme can be heat-inactivated and requires an incubation
temperature of 37°C in contrast to the highly stable
Thermotoga maritima enzyme. Since a fill-in reaction by
the DNA polymerase cannot take place, a direct addition
of endonuclease V to the PCR mixture after thermocycling
is also conceivable.

Methods

Plasmids and strains

Target plasmid vectors suitable for propagation in E. coli
were pUCI18 and pUC19 [62], pIRES2-EGFP (Clontech,
Mountain View, CA, USA) and pBluescript II KS(+)
[GenBank: X52327.1]. pSB1C3 and the RFP coding device
BBa_J04450 were obtained from the Registry of Standard
Biological Parts [63]. pAR200d-Mitf FL is a derivative
of pQE16 (Qiagen, Hilden, Germany) containing the
coding sequence of the Mus musculus microphthalmia-
associated transcription factor (Mitf)[GenBank: Z23066.1].
Competent Escherichia coli XL-1 Blue (Stratagene; now
Agilent Technologies, Boblingen, Germany) and BL21-cells
(Novagen, Darmstadt, Germany) were prepared by standard
CaCl, protocol. Transformation efficiencies determined
as cfu per pg pUCI18 plasmid DNA reached 1-3 x 10°
for XL-1 Blue and 3-4 x 10° for BL21.

Design of deoxyinosine-containing primers

All oligonucleotides used in this study were obtained from
Sigma-Aldrich (Taufkirchen, Germany) in desalted quality
without further purification. Primers were dissolved in
water and stored at -20°C. All T,, values reported in
this study correspond to theoretical values determined for
complementary regions by the nearest-neighbor method
using OligoCalc [64] with default parameters. In order to
create 3’ protruding ends by endonuclease V treatment of
the PCR products, a single deoxyinosine residue was placed
at the third position of the primer 5’ end (compare Figure 1).
DNA segments complementary to the ends of the template
molecule were designed to reach T}, values of > 53°C.

PCR-based amplification of target DNA fragments

Taqg DNA polymerase and dNTP mix were obtained
from New England Biolabs (Frankfurt am Main, Germany).
The supplied Standard Taq Reaction Buffer containing
1.5 mM MgCl, was used. Reactions with a total volume of
50 pL further contained 50 pM of each dNTP, 0.2 uM
each primer, 1 ng template DNA and 2.5 u enzyme.
Thermocycling was performed using a Mastercycler gradi-
ent (Eppendorf, Hamburg, Germany) with a heated lid and
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the following common parameters: initial denaturation 95°C
30 s; amplification (95°C 25 s, T,nnear (as calculated)
25 s, 68°C 60 s per kb) x 19-31 cycles; final extension
68°C 3 min. Unless stated otherwise, Tynnear €quals to
the calculated T, value minus 3°C. For colony PCR,
small samples of E. coli colonies served as the template
DNA source. PfuTurbo C, Hotstart DNA polymerase
(Agilent Technologies, Boblingen, Germany) was used
for high fidelity PCR. Reactions contained the supplied
buffer and final concentrations of 50 uM each dNTP,
0.2 uM each primer, 1 ng template DNA and 2.5 u of
enzyme. Thermocycling was performed using the following
parameters: 95°C 2 min; (95°C 20 s, Tanneal 20 s, 72°C
60 s per kb) x 25 cycles; 72°C 3 min. Pfullltra 11 Fusion
HS DNA polymerase was purchased from Agilent
Technologies (Boblingen, Germany). The DNA polymer-
ases Q5 High-Fidelity, Q5 Hot Start High-Fidelity, Deep
Ventg and Phusion High-Fidelity were purchased from
New England Biolabs (Frankfurt am Main, Germany). DNA
concentrations were determined using a NanoDrop 2000
micro-volume UV-Vis spectrophotometer (Thermo Fisher
Scientific, Schwerte, Germany). Agarose gels for PCR
product analysis or purification, respectively, were prepared
using Agarose Standard (Carl Roth GmbH, Karlsruhe,
Germany) and TAE buffer. GeneRuler DNA ladder mix
(Thermo Fisher Scientific, St. Leon-Rot, Germany) was
used as a size marker. DNA was stained using GelRed
(Biotium Inc., Hayward, CA, USA). PCR products were
visualized under UV transillumination. Pictures were
taken using an EOS 1100D Digital SLR camera (Canon,
Krefeld, Germany) equipped with a Hoya K2 HMC
filter (Hapa-Team, Eching, Germany). In order to fa-
cilitate the visual detection of faint bands, adjustments
in greyscale levels were performed on the entire digital
image. Silica membrane-based PCR product purifica-
tion was performed using a NucleoSpin Extract II kit
(Machery-Nagel, Diren, Germany).

Endonuclease V treatment

Escherichia coli or Thermotoga maritima endonuclease
V (EndoV) were obtained from New England Biolabs
(Frankfurt am Main, Germany) or Thermo Fisher Scientific
(St. Leon-Rot, Germany), respectively. DNA treatments
were performed in the supplied buffers for 45 min at 37°C
or 60°C, respectively.

Ligation with plasmid vector fragments

Plasmid vector DNA fragments were produced by re-
striction endonuclease treatment. All restriction enzymes
(EC 3.1.21.4) were of Type IIP [65] and were obtained from
New England Biolabs (Frankfurt am Main, Germany),
as High Fidelity (HF) versions if available. Reactions
were performed at 37°C for at least 2 h using the supplied
NEBuffer 4 and BSA solution. Vector DNA fragments
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were purified subsequent to agarose gel electrophoresis
using a NucleoSpin Extract II kit (Machery-Nagel, Diiren,
Germany). Antarctic Phosphatase from New England
Biolabs (Frankfurt am Main, Germany) was used to release
the terminal 5 phosphate groups; incubation and heat
inactivation were performed as recommended by the
manufacturer. Without further purification, the reaction
products were used for ligation reactions. Different molar
ratios of insert to vector DNA as well as 1 Weiss unit of T4
DNA Ligase and the supplied buffer from Thermo Fisher
Scientific (St. Leon-Rot, Germany) were used. With a total
volume of 10 pL, the reactions were incubated for 30 min at
room temperature (20-25°C). A 2 pL sample was used for
E. coli transformation (50 pL cell suspension) by heat shock.

Analysis of transformants

The presence of a functional ampicillin resistance cassette
(AmpR) was tested by transferring freshly transformed
E. coli cell suspensions onto LB agar plates supplemented
with 50 pg/mL ampicillin in addition to either 50 pg/mL
kanamycin (pIRES2-EGFP vector backbone) or 25 pg/mL
chloramphenicol (pSB1C3 vector backbone), respectively.
Colony forming units (cfu) were determined as described
[66] using Image] (National Institutes of Health, Bethesda,
MD, USA). Expression of mRFP1 [53] from the RFP
coding device was visible to unaided eyes under day light.
Epi-illumination pictures of red fluorescent colonies were
taken by using 505 nm cyan LEDs (Winger Electronics,
Dessau-Rofilau, Germany) and an EOS 1100D Digital
SLR camera (Canon, Krefeld, Germany) equipped with
a UV-filter.
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