
U n i v e r s i t ä t P o t s d a m

Anna-Lena Lamprecht, Tiziana Margaria, Bernhard Steffen

Bio-jETI : a framework for semantics-based
service composition

first published in:
BMC Bioinformatics 10 (2009), Suppl. 10, Art. S8,
DOI: 10.1186/1471-2105-10-S10-S8

Postprint published at the Institutional Repository of the Potsdam University:
In: Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 136
http://opus.kobv.de/ubp/volltexte/2010/4506/
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45066

Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 136

BMC Bioinformatic,s
()

BioMecI Central

Research Open Access

Bio-jETI: a framework for semantics-based service composition
Anna-Lena Lamprecht* \ Tiziana Margaria *2 and Bernhard Steffen 1

Address: ' Chair fo r Programming Systems, Dortmund University of Technology, Dortmund, 0 -44227, Germany and 2Chair fo r Service and
Software Engineering, Potsdam University, Po tsdam, 0 -14882, Germany

E-mail : Anna-Lena Lamprecht*-anna- lena. lam precht@cs. tu-dortmund .de;TizianaMargaria*- margaria@cs.uni-potsdam .de;
Bernhard Steffen - steffen @cs. tu-dortmund .de
*Corresponding author

from Semantic Web Applications and Tools for Life Sciences, 2008
Edinburgh, UK 28 November 2008

Published: 0 I October 2009

BMC Bioinformatics 2009, IO(Suppl 10):58 doi : 10.1186/ 1471-2105- 10-510··58

This article is available from: http: //www.biomedcentral.com/ 1471-2105/ 10/SI0/S8

© 2009 Lamprecht et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (httR:llcreativecommons.org/licenses/by/2.0) ,
which permits unrestricted use, distribution, and reproduction in any medi um, provided the original work is properly cited.

Abstract

Background: The development of bioinformatics databases, algorithms, and tools throughout the last
years has lead to a highly distributed world ofbioinformatics services. Without adequate management and
development support, in silica researchers are hardly able to exploit the potential of building complex,
specialized analysis processes from these services. The Semantic Web aims at thoroughly equipping
individual data and services with machine-processable meta-information, while workflow systems
support the construction of service compositions. However, even in this combination, in silica
researchers currently would have to deal manually with the service interfaces, the adequacy of the
semantic annotations, type incompatibilities, and the consistency of service compositions.

Results: In this paper, we demonstrate by means of two examples how Semantic Web technology
together with an adequate domain modelling frees in silica researchers from dealing with interfaces,
types, and inconsistencies. In Bio-jETI, bioinformatics services can be graphically combined to
complex services without worrying about details of their interfaces or about type mismatches of
the composition. These issues are taken care of at the semantic level by Bio-jETl's model checking
and synthesis features. Whenever possible, they automatically resolve type mismatches in the
considered service setting. Otherwise, they graphically indicate impossible/incorrect service
combinations. In the latter case, the workflow developer may either modify his service composition
using semantically similar services, or ask for help in developing the missing mediator that correctly
bridges the detected type gap. Newly developed mediators should then be adequately annotated
semantically, and added to the service library for later reuse in similar situations.

Conclusion: We show the power of semantic annotations in an adequately modelled and
semantically enabled domain setting. Using model checking and synthesis methods, users may
orchestrate complex processes from a wealth of heterogeneous services without worrying about
interfaces and (type) consistency. The success of this method strongly depends on a careful semantic
annotation of the provided services and on its cOllsequent exploitation for analysis, validation, and
synthesis. We are convinced that these annotations will become standard, as they will become
preconditions for the success and widespread use of (preferred) services in the Semantic Web.

Page 1 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

Background
Research projects in modern molecular biology rely on
increasingly complex combinations of computational
methods to handle the data that is produced in the life
science laboratories. A variety of bioinformatics data
bases, algorithms and tools is available for specific
analysis tasks . Their combination to solve a specific
biological question defines more or less complex
analysis workfiows or processes. Software systems that
facilitate their systematic development and automation
[1-7] have found a great popularity in the community.

More than in other domains the heterogeneous services
world in bioinformatics demands for a methodology to
classify and relate resources in a both human and
machine accessible manner. The Semantic Web [8,9] ,
which is meant to address exactly this challenge, is
currently one of the most ambitious projects in
computer science. Collective efforts have already lead
to a basis of standards for semantic service descriptions
and meta-information.

Most importantly, the World Wide Web Consortium
(W3C) set up a number of working groups addressing
different technological aspects of the Semantic Web
vision. Among their outcomes are the Semantic Annota
tions for WSDL (SAWSDL) recommendation [10] , the
Resource Description Framework (RDF) specification
[11], and the Web Ontology Language (OWL) [12].
While SAWSDL is designed to equip single entities with
predicates, RDF and the more powerful OWL formally
define relationships between the resources of a domain.

Without a reasonably large set of semantically annotated
(web) services, it is, however, difficult to evaluate the
Semantic Web technologies with significant results and
develop practical software for the client side. On the
other hand, providers are not willing to put effort in
annotating their services as long as they can not be
confident which technologies will finally become estab
lished. Community initiatives like the Semantic Web
Services (SWS) Challenge [13] or the Semantic Service
Selection Contest (S3C) [14] address this problem. They
provide collections of services, domain information and
concrete scenarios that the different participants, being
developers of methodologies for different Semantic Web
aspects, have to deal with. In the scope of the S3 Contest,
OPOSSum [15,16], an "online portal to collect and share
SWS descriptions" [16], was set up. It aims at collecting,
sharing, editing, and comparing SWS descriptions within
a community infrastructure in order to collaboratively
evaluate and improve SWS formalisms. As of March
2009, however, OPOSSum does not list any bioinfor
matics services.

http://www.biomedcentral.com/1471-2105/1 0/S10/S8

An example of a knowledge base particularly capturing
bioinformatics data types and services are the constantly
evolving namespace, object and service ontologies of the
BioMoby service registry [17,18]. BioMoby's aim is to
"achieve a shared syntax, shared semantic, and discovery
infrastructure suitable for bioinformat-ics" [19] as a part
of the Semantic Web. Originating from the early 2000s,
the 1.0 MOBY-S(ervices) spec-ifications, however, do not
adhere to the Semantic Web standards that have been
developed in the last years . Consequently, the S
(emantic)-MOBY branch of the project came into being
to migrate to common technologies . It has recently been
merged into the SSWAP (Simple Semantic Web Archi
tecture and Protocol) [20,21] project, which aims at
providing life science knowledge using standard RDFj
OWL technology. SSW AP provides a number of own
ontologies, but also incorporates third-party domain
knowledge like the MOBY-S object and service onto
logies.

Generally, the development of ontologies in the bioin
formatics community is already very promising. Projects
like the Gene Ontology (GO) [22] and the Open
Biomedical Ontologies (OBO) [23] have already become
widely used and also, for instance, incorporated by the
SSWAP project. The majority of publicly available
ontologies in the bioinformatics domain is, however,
designed for the classification of scientific terms and the
description of actual data sets, and not for (technical)
descriptions of service interfaces and data types .

The lack of properly semantically annotated services has
evidently already been recognized by the community, as
different projects are commencing to address the issue.
For instance, major service providers like the European
Bioinformatics Institute (EBI) plan to extend their service
infrastructure to provide meta-information conforming
to Semantic Web standards. Other initiatives aim at
setting up stand-alone collections of service URls and
corresponding annotations, without influencing the
service infrastructures as such.

While the provision of semantically annotated services is
mainly the service providers' task on the client side
software is needed that fully utilizes the available
semantic information in order to provide helpful tools
to the in silico researcher. The challenge for user-side
software is to abstract from the underlying Semantic Web
technology again and provide the achievements in an
intuitive fashion .

A simple but useful feature building upon semantic
information about services is the categorization of
services according to different criteria. A corresponding

Page2of19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

functionality has already been available in the mean
while discontinued BioSPICE Dashboard, where it was
possible to arrange services by location, provider,
function, or I/O type (see Figure 1). The BioSPICE
project is a meanwhile abandoned initiative that focused
on the development of computational models for
intracellular processes. Besides the provision of mere
"access to the most current computational tools for
biologists" (24), the work also aimed at integrating the
services into a convenient graphical user environment,
called the BioSPICE Dashboard. Thus, the need of multi
faceted service classification has been recognized several
years ago, but until present services hardly provide
appropriate meta-information.

More advanced examples of utilizing semantic informa
tion about services are, for instance, available in the
scope of the SWS Challenge [13). Among others, projects
like SWE-ET (Semantic Web Engineering Environment
and Tools) (25) and WSMX (26) participate in the
challenge, adressing both discovery and mediation
scenarios for Semantic Web Services. However, these
solutions demand quite some technical understanding
from the user, which hampers the uptake by a larger
biological user community.

F~e Edit Bio-SPICE V_ Took window Help

5 11 · C'at I.iii . I ~c,t· • ~ C 'R, !iiiJiu1Wna
e l"YtceM

' ~OrI2iCl' Ion '" ". ","SP'" , T"'" W""" "'"

J[It,Analyzersby FlI"Ction

~Analy~ersbyLocation

I1t Anaiyzersby Cortributor

Analyzers by 1(0 Type

d ~efter

I' § T.bOe"''''T''t''''''"~
L ~ rlllle5eries To ZipFileCorwerte

\:lEditor
d'¥iewer li ..

I ~ pt""
L _ T~ble\lje""

t.i1 Render 1>W:LY1 sm..Mtion

T..l" Rend", S8Ml

Figure I

I

i-~ti ptP\ot

L . TabIeVieW

T,.~ RertderMat!absirrl.J&icn

T,.lJ RenderSBM..

http://www.biomedcentral.com/1471-2105/10/S10/S8

As an example from the bioinformatics domain, the
BioMoby project provides a simple composition func
tionality for its services. (17,18). With the MOBY-S Web
Service Browser (27) it is, e.g., possible to search for an
appropriate next service, while in addition the sequence
of actually executed tools is recorded and stored as a
Taverna (4) workflow. A substantial drawback of this
approach is, however, its restriction to the services that
are registered in the respective platform.

In this paper, we present our approach to semantics
based service composition in the Bio-jETI platform
[7,28). By integration of automatic service composition
functionality into an intuitive, graphical process man
agement framework, we are able to maintain the
usability of the latter for semantically aware workflow
development. Furthermore, we can integrate services and
domain knowledge from any kind of heterogeneous
resource at any location, and are not restricted to any
semantically annotated services of a particular platform.

This manuscript is structured as follows: In the next
section, Results and Discussion, we discuss two examples
that we developed in Bio-jETI with the help of a
semantics-aware workflow synthesis method and

-~l

~-------------------------~_~.~~x

.""'~
TCTGCCTC(A leCTT --TTCTC,I,CAGCAA TG TTTT<;<: TCTGAACCC GTGAAAAACAAAA---

------- TTGCCTGAATTGTACTGTATGTAGCTGCACTACAACAGATTCTTACCGTCTC<:ACAAGGTCAGA
GATTGTAAATGGTCAATACTGACTTTTTTTTTT-ATTCCCTTGACTCAAGACCGCTAACTTCM TTTCAGAA
CGTGTTTTAAACCTTTGTGTGCTGGTTTATAAATAAT.

TCTGCCTC<:A leCTT _. TTCTCACAGCAA TGAA TTTTGCAA TCTGAACCCAAGTGAAAAACAAAA •••• • •
······-TTGCCTGAATTGTACTGTATGTAGCTGCACTACAACAGATTCTTACCGfCTCCACAAGGTCAGA
GA TTG T AAA TGOTCAAT ACTGACTTTTTTTTTT .A, TTCCCTTGACTCAAGACCGCT AACTTCAA TTTCAGAA

»chicken

··········TCCTTGTTTCTCAAAGCAATGAATTTTGCAATCTGAACCCAAGTGAAAAAAAAAAAT····
...... - rrc.ccTGAA TTGT ACTG T ATG T AGCTGCACT ACAACAGA n CTT ACCGTCTCCACAAGG TCAGA
GATTGTAAATGGTCAATACTGACTTTTTTTT ••• ATTCCCTTGACTCAAGACCGCTAA(TTCAATTTCAGAA
CG TGTT TT AAACCTTTGTGTGCTGGTTT A T AACG TGT .

p-WrtlpLinestoWidthcJTextArea

J

BioSPICE Dashboard. Graphical user interface of the BioSPICE Dashboard [24]. Services can be arranged according
to the categories location, contributor, function, and I/O type (top left) .

Page 3 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

model checking: a simple phylogenetic analysis work
flow and a more sophisticicated, highly customized
phylogenetic analysis process based on Blast and
ClustalW. Subsequently, the Conclusion deals with
directives for the future development of our approach.
Finally, the Methods section describes the applied
techniques in greater detail.

Results and discussion
The approach to semantics-based service composItion
that we present in this paper builds upon the Bio-jET!
[7,28) framework for model-based, graphical design,
execution and management of bioinformatics analysis
processes. It has been used in a number of different
bioinformatics projects [29-32) and is continuously
evolving as new service libraries and service and software
technologies become established. Technically, Bio-jET!
uses the jABC modeling framework [33,34) as an
intuitive, graphical user interface and the JET! electronic
tool integration platform [35,36) for dealing with
remote services. Using the jABC technology, process
models, called Service Logic Graphs (SLGs) are constructed
graphically by placing process building blocks, called
Service Independent Building Blocks (SIBs), on a canvas and
connecting them according to the flow of control.
Figure 2 shows a screenshot of the graphical user interface

http://www.biomedcentral.com/1471-2105/10/S10/S8

of the jABC. SLGs are directly executable by an interpreter
component, and they can be compiled into a variety of
target languages via the GeneSys code generation frame
work (37) . As Figure 3 (bottom) illustrates, GeneSys
provides the means for transforming SLGs into native,
stand-alone programm code (e.g., Java, C++) as well as
into other workflow languages (e.g., BPEL).

Workflow development in Bio-jET! is already supported
by several plugins of the jABC framework for instance
providing functionality for component validation or
step-wise execution of the process model for debugging
purposes. Now we are going to exploit further jABC
technology, such as model checking and workflow
synthesis, in order to enable Bio-jET! to support the
development of processes in terms of service semantics.

Model checking [38,39) can be used for reasoning about
properties of process models . This can help to detect
problems like undefined data identifiers, missing com
putations, or type mismatches. Solving these problems
might require the introduction of further computational
steps, for instance a series of conversion services in case
of a data type mismatch. The approach here is to
automate the creation of such process parts via workflow
synthesis methodology [40-43) that allows for the

~ ,..., ~ " AnalYle Le/MS (prototype)- -/User~/lampre(h/Desktop/BioStatjstics_lCMS/Anaty;ze_LCM5---Pfototype.xml - j./l,BC V 3.7 - 16.10.2008

--1 Proj ects SIB~ L

l!I It; de.jabc.sib .ge:ar.utll

III ro de.jabCSib.jeti.helpers

B liiJ. de.jabc.sib.JttUs5_vultur

8 lCMSAnalyze

El Lcr.1SFIIIPeaks
El LCMSGroop

El LCMSPIotRaw

I SIB Graph Draw

o OutputFile :)tset

o PeaklistsFile:)(set

o PlotOutputfile: (orPIoI

" height 15 .0
o horizontal: FALSE

Dwidth: 20.0

SI N 4 244 34904 3 1 C@ II s el@cted

Figure 2

Ru4 R, .!aUIZIP
d('f~u/r

.j,-

lCM~oup
de(~u/f

.j,-

d('(~u/r

-l-
defdll/r-ru

Vi_ (orrK IO!d plol Co rrlot PS to PDF

-defilulr..:p
" ----"

LCMSFiliPu ks l CMSAn"lyu
fork

1
"

~Alwavs onlop

O lgnorebrukpOints

~ Fade edge color

~"'"1""'r-r....,...,......j1·1
2500 3000 3500 4000 4500

Retention Time
I .. ___ A

Bio-jETI GUI. The jABC framework. which provides the graphical user interface for Bio-jETI. supports the orchestration
of processes from heterogeneous services. Workflow models are constructed graphically by placing process building blocks
from a library (top left) on a canvas (center) and connecting them by labeled branches to define the flow of control.
The models are directly executable by an inbuilt interpreter component (right).

Page 4 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

Services

Figure 3

Semantic
Information

Relationship between SL TL and workflow languages.
SL TL is designed to specify linear workflows on an abstract
level. In conjunction with a set of services and adequate
semantic information about the domain, it serves as input for
the synthesis algorithm, which generates linear workflows
according to the SL TL specification. The results are available
as Bio-jETI SLGs, which can be further edited, combined, and
refined . The SLGs can then be compiled into a number of
different target languages by the GeneSys code generation
framework.

automatic creation of (linear) workflows according to
high-level, logical specifications. Figure 3 (top) illus
trates the relationship between our specification lan
guage SLTI (Semantic Linear Time Logic) and the actual
Bio-jETI workflow models, the SLGs: Provided with a
logical specification of the process and semantically
annotated services, the workflow synthesis algorithm
generates linear sequences of services, which can be
further edited and combined into complex process
models on the SLG level.

For the study that we present in this paper we used a SIB
collection offering various remote and local services.
Examples for contained remote services are the data
retrieval services provided by the EBI (European Bioin
formatics Institute) [44,45), sequence analysis algo
rithms offered by BiBiServ (the Bielefeld Bioinformatics
Server) (46), web services hosted by the DDBJ (DNA
Data Bank of Japan) (47), and some tools of the
EMBOSS suite (48) . On the local side, there are
specialized components such as visualizer for phyloge
netic trees (49) and more generic ones like SIBs that
realize user interaction or functionality for file manage
ment. Table 1 lists the fragment of the library that is
relevant for our examples.

http://www.biomedcentral.com/1471-2105/10/S10/S8

Table I: Exemplary set of services. Fragment of a component
library that we used in the examples. The table lists the names of
the building blocks (5IBs) along with function descriptions and
selected service predicates

SIB Description

Archaeopteryx Displays a phylogenetic tree [49] .
type:visualization, location:local, contributor:
forester .org

BLAST BLAST [63] against a DDBJ database.
type:analysis, location:ddbj, contributor:ddbj

ClustalW Runs ClustalW [64] .
type:analysis, location:ddbj, contributor:ddbj

Emma EMBOSS [48] interface to ClustalW.

ExtractPattern
type:analysis, location:ebi, contributor:emboss
Extracts all parts of a string that match a regular
expression.
type:stringprocessing, location:local, contributor:jabc

GetDDBJEntry Fetches an entry in at file format from a DDBJ
database [51].
type:dataretrieval, location:ddbj, contributor:ddbj

GetFASTA_ Fetches an entry in FASTA format from a DDBJ
DDBJEntry database [51].

type:dataretrieval, location:ddbj, contributor:ddbj
List2String Concatenates all entries of a list.

type:stringprocessing, location:local, contributor:jabc
MatchString Tries to match a string against a regular expression

pattern.
type:condition, location:local, contributor:jabc

PutExpression Stores a user-supplied context expression or its
value into the execution context.
type:definition, location:local, contributor:jabc

Putlnteger Provides an integer value.
type:definition, location:local, contributor:jabc

RepeatLoop Realizes a counting loop.
type:loop, location:local, contributor:jabc

ReplaceString Replaces substrings of a string with another
character sequence.
type:stringprocessing, location:local, contributor:jabc

ShowlnputDialog Input dialog, provides a string.
type:definition, location:local, contributor:jabc

WSDBFetch Gets sequences from an EBI database [44,45] .
type:dataretrieval, location:ebi, contributor:ebi

In the jABC, the SIBs are displayed to the user in a
taxonomic view, classified according to their position in
the file system (by default) or to any other useful
criterion, like the provider or the kind of service. The SIBs
have user-level documentation, explaining what the
underlying tool or algorithm does, that is derived
directly from the provider's service descriptions. In
addition, the SIBs provide information about their
input and output types via a specific interface. This is
already an integral part of the semantic information that
helps to systematically survey large SIB libraries and it is
used by our process synthesis and model checking
methods. It is, in addition, possible to add arbitrary
annotations to the SIB instances and by doing so
providing further (semantic) information that is taken
into account by our formal methodologies.

Page 5 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8 http://www.biomedcentral.com/1471-2105/10/S10/S8

<New>' !<New>_lJ -jABC V 3.7 -16.10.2008

I Projects SIBs L
~ jASC Projects

Q FiatFlux-P [/Users /lamprech/ Documents/workspace /FiatFlux-P/jabc-project]
DDBJ-Workflows l/ Usersj la mprech/ Documents/workspace / DDBJ-Workflows]

Q Rjnlnf- F){;!mnlp ~ r J II~pr<;. / I.lo m nrp("h /norI Jmpnr <;. / wnrlc~n.lo("p / Rinlnf-F){;!mn lpc;l_

1 ... SI8 Icon GEAR [Advanced) APs Reference OntEDPlugin LocalCnecker ~

---J Ontology Classes Individuals Properties Reas oning L

Import ontology) (----..,-Re-mo-v • ...,.im-p-ort--~)

i <?xml version="l.O"?>

< IDOCTYPE rdf:RDF !
<!ENTITY owl Mhnp://www,w3.orgj2002 / 07/ owl#" >
<!ENTITY xsd "hnp:l l www.w3.org/2:00 1j XMLSchema#- >
<!ENTITY owI2xml"hnp://www.w3.org/ 2006/ 12/ owI2 - xml#·· >
<!ENTITY rdfs ~tlttp : / / www.w3.org /2000 /0 1 /rdf-schema#· >
<!ENTITY rdf ''http : //www.w3 .org/l999/02 / 22 - rdf- syntax-ns#~ >
<!ENTITY bmc_s ervices ''http://biojet i.cs.tu- donmund.de/ ontologies / bmc_services.o

J>

<rdf:RDF xmlns = "hnp:/ /biojeti.cs.tu-dortmund.deJontologiesJbmc_services.ow/#"
xml : base=~http : //blojetl. c s.t u-dortmund.de/ ontologies/bmc_services.owl"

xmln s :owI2xml="http:J /www.w3.org/2006J 12/ owl2 - xml,."
...... <I .. r

I RDFXML : 1 (~ ______ ~O~nt~ol~og~y~Fr~am~'~ ____ -J

SI N 4344349043 10 Cells selected

Figure 4

I

, hnp:ll biojeti,cs.tu - donmund.de / ontologies / bmc_services.owl

<f-- iSA-

Thing

Nothing

service'

isA

DataRetrieval

~
. A~gprOCeSSing

~"
<f---isA---

commo~. A Condition

"~

Definition

5.2 M' - .. , re" ,1 I ALT 1 Dev.'oper 1100%

Service taxonomy. Service taxonomy for the services that we use in our examples. edited in OntEd. the ontology editing
plugin of the jABC.

The knowledge base that is needed for the process
synthesis consists, furthermore, of service and type
taxonomies that classify the services and types, respec
tively. Taxonomies are simple ontologies that relate
entities in terms of is-a and has-a relations. These
classifications provide sufficient information for our
synthesis methodologies.

We assume simple taxonomies for our examples, which
have the generic OWL type Thing at the root. Going
downwards, classifications are introduced, for instance
refining the generic type into integers and strings,
whereas the latter is further distinguished into align
ments, trees, sequences, tool outputs, and so on. Figure 4
shows the service taxonomy for the services that we
use in our examples, edited in the OntEd ontology editor
plugin of the jABC. The corresponding type taxonomy
classifying the involved data types is given in Figure 5.

The basic input and output information for the services
is defined in terms of the data types contained in the
type taxonomy. Table 2 lists the set of data types that is
relevant for our examples. The services are characterized
by input-output-pairs of types, where the input or
output may well be empty (as it is the case, e.g., for
ShowlnputDialog and Archaeopteryx), respectively.

Services may also provide multiple possible transforma
tions and thus achieve polymorphism. For instance,
BiBiServ's ClustalW can process sequences in FASTA or in
SequenceML format, and produces a FASTA or Align
mentML output, accordingly.

Example I: a simple phylogenetic analysis workflow
When developing bioinformatics analysis workflows,
users often have a clear idea about the inputs and final
results, while their conception of the process that
actually produces the desired outputs is only vague.
Figure 5 (upper left) shows a stub for a workflow: the
start SIB (left) is an input dialog for a nucleic or amino
acid sequence, which is followed by a SIB running a
BLAST query with the sequence having been input in
order to find homologous sequences. The workflow
ends by invoking Archaeopteryx to display a phyloge
netic tree (right). The configuration of the SIBs is sound
at the component level, as the Local Checker plugin
(producing the small overlay icons top left) confirms.
However, there are errors regarding the correct config
uration of the model as a whole, as the required input
type for Archaeopteryx, some phylogenetic tree format,
is not produced previously in the process. This is
detected by our model checker GEAR (indicated by a

Page 6 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

~iSA-

~15A--- limit

~i5A

/

'0",,, ---
Counter

isA

/ / "om",
TY"~ /,A /

i,A ~/ T",

Thing

isA

~ ".--~ Sequence

~ i>A--
~

iSA__ ~ BLASTResult
String ~

isA ToolOutput iSA __

iSA~ CluHalWllesult

Nothing

~~'"'~
Anusion

Figure 5
Type taxonomy. Type taxonomy classifying the data types
involved in our examples.

Table 2: Exemplary set of types. The set of data types that was
used in the example processes

Type

Accession
AccessionList

Accessions

Alignment
BlastResult
ClustalWResult
Counter
DDBJEntry
Limit
Sequence

Tree

Description

Single accession number.
Iteratable (java.util.)list of accession
numbers.
Concatenation of accession numbers,
separated by some character.
Multiple sequence alignment.
Tool output of BLAST.
Tool output of ClustalW.
Counter, i.e. positive integer value.
DDBJ entry in flat file format.
Limit, i.e. positive integer value.
Single or multiple nucleic or amino
acid sequences.
Phylogenetic tree.

red overlay icon with a white cross in the top right
corner of the SIBs), that checks a temporal formula
covering the following constraint (please refer to the
Methods section for details on the model checking
procedure):

If a SIB uses an input of type tree, this input must have been defined before. (.)

An experienced bioinformatician might be aware of the
problem immediately, due to his familiarity with the
involved tools. This is, however, only a small workflow.
An automatic, semantically supported detection of
misconfigurations and modeling errors unfolds its full
potential when processes become more complex, and it
is not feasible for the in silica researcher to dive into the

http://www.biomedcentral.com/1471-2105/10/S10/S8

documentations of all services or to explore their
behaviour by trial-and-error executions.

Once detected, there are different ways to fix the
problem. One can look for replacements for one of the
involved SIBs that essentially compute the same results,
but provide them in a data format that fits in the
surrounding process. Another approach, assuming that
the user has chosen these services for good reason, is to
search for a sequence of additional services that resolve
the mismatch and insert them into the process. Such data
mediation sub-workflows are usually linear. They can
consist of type conversions that simply adapt the
involved data, or also of real computational services
when the match can not be realized so easily.

As a means for resolving the violation of property *, the
example process model stub implies a process specifica
tion adequate as input for our workflow synthesis
algorithm (please refer to the Methods section for
details). In a high-level formulation, it reads:

How can a phylagenetic tree be derived from a BLAST result?

Utilizing the semantically annotated SIB collection and
domain information from above, and computing the
shortest service combination that satisfies the specifica
tion, our synthesis algorithm proposes the following
simple four-step workflow for the above query (bottom
left in Figure 6) :

1. Extract the IDs of the hits from the BLAST result
(using a regular expression) .
2. Turn the matches into a comma-separated list.
3 . Call DBFetch (fetching the corresponding
sequences from a database).
4. Run emma (computing a multiple sequence
alignment and phylogenetic tree).

The generated sequence of SIBs can now be inserted into
the process stub and all parameters configured appro
priately. As Figure 6 (right) shows, neither the local nor
the model checking does reveal errors any more. The
process is now ready for execution. Figure 7 illustrates
the corresponding runtime behaviour: the workflow
starts by asking the user for a query sequence, then
performs a similarity search, data retrieval and sequence
analysis before it finally displays the resulting phyloge
netic tree.

Example 2: Blast-C/ustalW workflow
A simple phylogenetic analysis like in the previous
example is an often recurring element of complex in silica
experiments. In many cases, however, a customized,

Page 7 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

Incomplete process

dialoq: sequence input

__ --def.ult~
BlastN Archaeopteryx

Generated sequence

from blastresult to tree:

~-defaulH>Q -defaUIr-P@-default-P[j)

get ID list list2string
fetch sequences

Figure 6

http://www.biomedcentral.com/1471-2105/10/S10/S8

Complete process

dialoa: sequence input ! lastN
defaulr

I

Il
Archaeo~ryX

default

\
a - defaulH;> -defaulr-P -dtfault-Pt:I)

get ID list list2string
fetch sequences

emma

Example I. A simple phylogenetic analysis process. The upper left shows an erroneous stub for a simple phylogenetic analysis
process, it lacks a sequence of services leading from a BLAST result to a phylogenetic tree. Below is the appropriate sequence
of services that is proposed by our synthesis algorithm. The complete and correct analysis process is shown on the right.

Figure 7

First execution step: input of the query sequence

Q-Ok_. Il
dlaloa: sequence Input I"~ ill. aslP Archaeo \rvx

default defaufr

I \
([)-d'f'UI..pO-d'f'UI~@-d'f'UI,.p(jJ

get ID lisl liu2string fetch sequences .mm~

Last execution step: display of the phylogenetic: tree g-Ok_.
BlilStP

dialoa: ngufnn input) .,~
def;Ju lt chf ilUl1

I . \
([)-d'f'U~-d'f'UI~_d"'u4

get ID list Iist2string fetch sequences emma

~ 1'II .. l bond1 leng!hs

~ lhow ... qnalTllls

o lhowlIIXQIlomy

D wppon vllkln

colDr apecoas

o shownocle boxell

unco .. p

Insert sequence

Please insen a query sequence.

:PlEAPKCAPCVGlVRDGCGCCKVCAKQl

(Abbrechen) (OK

ATV 4.00 AlPHA 5 (06/01/2007) [ATV]

Execution of example I. Execution of the simple phylogenetic analysis process. The execution begins with an interactive
step, where a dialog is displayed in which the query sequence is entered (top) . After some non-interactive steps, the finally
available phylogenetic tree is displayed using Archaeopteryx (bottom).

Page 8 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

more specific processing of intermediate results is
required, like in the Blast-ClustalW workflow [50] that
is one of the DDBJ's sample workflows for the Web API
for bioinformatics [51]. It is the archetype for our second
example.

The Blast-ClustalW workflow [50] has the same inputs
and outputs as the simple phylogenetic workflow from
example 1: It finds homologuous sequences for an input
DNA sequence via BLAST and computes a hypothesis
about the phylogenetic relationship of the obtained
sequences (using ClustaIW). The proposed analysis
procedure consists of four major computation steps
(the blue rectangles in Figure 8, whereby steps 2 and 3
have to be repeated for each Blast hit that is taken into
account (not evident from the figure):

l. Call the Blast web service to search the DDBJ
database for homologues of a nucleic acid sequence.
The input is a 16S RNA sequence in FASTA format,
the output lists the database IDs of the similar
sequences and basic information about the local
alignment, e.g. its range within the sequences.
2. Call the GetEntry web service with a database ID
from the Blast output to retrieve the corresponding
database entry.
3. Extract accession number, organism name and
sequence from the database entry. Trim the sequence
to the relevant region using the start and end
positions of the local alignment that are available
from the BLAST result.
4. Call the ClustalW web service to compute a global
alignment and a phylogenetic tree for the prepared
sequences.

Due to the loop that is required for repeating steps 2 and
3 a certain number of times, this process can not be
created completely by our current synthesis algorithm,
which is restricted to produce linear sequences of
services. It is, however, possible to predefine a sparse
process model in which the looping behaviour and other
crucial parts are manually predefined, and to subse
quently fill in linear parts of the process automatically.

Figure 8
Blast-ClustalW workflow. Blast-ClustalW workflow as
sketched by the DDBJ (following [SO]) .

http://www.biomedcentral.com/1471-2105/10/S10/S8

Figure 9 (top) shows an advanced, but still incomplete
model of the Blast-ClustalW workflow. Like in example
1, the process begins with displaying a dialog for
entering the query sequence (start SIB top left). The
result of the subsequent Blast web service invocation is
split into the separate results (SIB get blast hits). Before
the loop is entered, a maximum is set for number of hits
that is to be considered in the analysis. For this defined
maximum number of hits, the loop's body is executed.
The current hit is split into its seperate elements, e.g.
accession number, score, and the start and end position
of the local alignment that produced by BLAST within
the whole sequence. The accession number is used to
check whether the sequence corresponding to the current
hit has already been added to the analysis in order to
avoid duplicate sequences. If a duplicate is detected, the
maximimum number of hits is incremented, so that
another hit can be taken into account. Otherwise, the
corresponding entry is fetched from the database using
the DDBJ's GetEntry web service (SIB getFASTA_DDB
JEntry). The SIBs extract organism and extract sequence
are then applied to extract the corresponding informa
tion from the DDBJ entry by means of a regular
expression. The sequence is formatted, i.e. whitespaces
removed, and the start and end positions that are known
from the BLAST result are used to cut the subsequence
that actually contributed to the local alignment during
the BLAST search. The prepared sequence is then added
to the analysis (SIB append sequence). Note that in
contrast to the original representation of Figure 8, we see
here the structure and the data-driven loops of the actual
workflow. Finally, the resulting phylogenetic tree is
displayed by Archaeopteryx.

At this state of the process, the local checking of the
components detects no errors, but the model checker reveals
problems (overlay icons top right): As in the previous
example, the SIB Archaeopteryx uses a variable tree, which is
not defined before. Moreover, the SIBs extract organism and
extract sequence use a variable ddbjentry, which is defined
with an incompatible type. Details on the model checking
procedure can be found in the Methods section.

To resolve the first problem, we proceed similar as in
example 1, by providing the synthesis algorithm with a
temporal formula that asks for a sequence of services that
takes a set of sequences as input (which is the last
intermediate result that is computed previous to
Archaeopteryx in the process) and produces a phyloge
netic tree (the input that Archaeopteryx expects). As
Figure 9 (center) shows, a single call to emma is one of
the (shortest) sequences that fulfils this request.

The second problem is the presence of a type ddbjfasta
where the type ddbjentry is expected. To solve this

Page 9 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8 http://www.biomedcentral.com/1471-2105/10/S10/S8

Incomplete process

~--Ok~lil ••• ' _. default.....:;> 0"= - -defaulr-:;'> c:J ,- default • _ ._. -eXi~~rr g
dialoa, seguence input get blast hits Sl!t maxhits repeat m~it~es h

BlastN -r --"'\: Arc aeopteryx
default

~
0"= - default-7.>

cut su~quence
default

I
format sequence

append sequence

extract sequence extract organism

default next

I
maxhits~ split hit info elements

true default

~t
1i111l.4:--fa,se- . ?

getFASTA_DDBJEntry
duplicate?

Generated sequences

from sequences to tree : from ddbjentry to ddbjfasta : from ddbjaccession to ddbjfasta:

emma
getDDElJEntry

Complete Process

~--Ok~IiIIIl.-defau't--7> 0"= -defaUIr-7>~ c:::J --default • --exit-7>~-defaul~
dialoa: sequence input get blast hits set IInaxhits repeat m~it~mes emma h

BlastN -r --" Arc aeopteryx
default default next

;- - --I

: ~ ~default-7.> c:::J

~ I
<ut s';-+~en<e append sequence maxhits~ split hit injo elements

default true default

I ~~
o,,= +-default- o~= +-default-~J I~default-lillil+--false-. ?

format sequence extract sequence extract organism getDDBJEntry duplicate?

Figure 9
Example 2. The more complex Blast-ClustalW workflow. The model checking detects three errors for the original process (top) .
To bridge the gap between the available sequences and the required tree, the emma web service can be inserted, computing a multiple
alignment and providing the corresponding phylogenetic tree. No mediating sequence can be found that converts DDBJ entry into
FAST A format, but it is possible to get this format when the also available DDBJ accession number is used as input (center). The
complete process (bottom) has an additional SIB emma and has substituted getFASTA_DDBJEntry by getDDBJEntry.

Page 10 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

mismatch, we ask our synthesis algorithm for a way to
derive the latter from the former. It returns with an
empty result (see Figure 9, center), which means that our
SIB collection can not provide an appropriate sequence
of services. We exclude the type ddbjfasta and the SIB
getFASTA_DDBJEntry, by which is it produced, and try
our luck with the type ddbjaccession, which has been
defined last, as starting point for the synthesis. The
answer is a service sequence consisting of the SIB
getDDBJEntry (center), by which we can now substitute
the improper data retrieval SIB from above.

The bottom of Figure 9 shows the completely assembled
process. We omit to demonstrate its execution beha
viour, as it is very similar to that of example l.

Discussion and perspectives
By means of two examples, the previous sections
demonstrated the local checking, model checking and
workflow synthesis methodology that is currently avail
able in the jABC framework and thus part of Bio-jET!.
The Local Checker plugin provides domain-independent
functionality and is already conveniently integrated in
the framework. We are now working on a user-friendly
integration of the domain-specific model checking and
synthesis techniques, especially with regard to the
bioinformatics application domain. This ongoing work
spans three dimensions, which are discussed in the
following sections: domain modeling, model checking,
and model synthesis.

Domain modeling

This dimension is the heart of making information
technology available to biologists, as it enables them to
express their problems in their own language terms - on
the basis of adequately designed ontologies. It raises the
issue where the domain knowledge ideally comes from.
It is, of course, possible for each user to define custom
service and type taxonomies, allowing for exactly the
generalization and refinement that is required for the
special case. However, as the tools and algorithms that
are used are mostly third-party services, it is desirable to
automatically retrieve domain information from a public
knowledge repository as well. Therefore we plan to
incorporate knowledge from different publicly available
ontologies, like BioMoby (17,18) and SSWAP [20,21),
and to integrate it into the service and type taxonomies
for use by our synthesis methodology.

It is, of course, also necessary that the services themselves
are equipped with meta-information in terms of these
ontologies. Again, we are looking at BioMoby with
interest: numerous institutions have registered their web
services at Moby Central, describing functionality and

http://www.biomedcentral.com/1471-2105/10/S10/S8

data types in pre-defined structures using a common
terminology. Although BioMoby does not yet use
standardized description formalisms like SAWSDL, it is
already clear that there is semantic information available
that we can use as predicates for automatic service
classification.

Furthermore it will be interesting to consider the
incorporation of more content-oriented ontologies like
the Gene Ontology (22) or the OBO (Open Biomedical
Ontologies) (23) into our process development frame
work. This would allow the software to not only support
the process development on a technical level, but also in
terms of the underlying biological and experimental
questions. Additional sources of information, like the
provenance ontologies of [52) could be also easily
exploited by our synthesis and verification methods.

Model checking

This dimension is meant to systematically and auto
matically provide biologists with the required IT knowl
edge in a seamless way, similar to a spell checker which
hints at orthographical mistakes - perhaps already
indicating a proposal for correction. Immediate concrete
examples of detectable issues are (cf. the examples
presented earlier):

• Missing resources: a process step is missing, so that
a required resource is not fetched/produced.
• Mismatching data types: a certain service is not able
to work on the data format provided by its predecessor.

However, this is only a first step. Based on adequate
domain modeling, made explicit via ontologies/ taxo
nomies, model checking can capture semantic properties
to guarantee not only the executability of the biological
analysis process but also a good deal of its purpose, and
rules of best practice, like:

• All experimental data will eventually be stored in
the project repository.
• Unexpected analysis results will always lead to an
alert.
• Chargeable services will not be called before
permission is given by the user.

On a more technical side, model checking allows us also
to apply the mature process analysis methodology that
has been established in programming language compi
lers in the last decades [53) and has shown to be
realizable via model checking [54,55) . By providing a
predefined set of desirable process properties to the
model checker we plan to achieve a thorough monitor
ing of safety and liveness properties within the

Page 11 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

framework. Similar to the built-in code checks that most
Integrated (Software) Development Environments pro
vide, this would help Bio-jETI users to avoid the most
common mistakes at process design time. In addition,
the list of verified properties is extendable by the user,
and can thus be easily adapted to specific requirements
of the application domain.

Model synthesis
This dimension can be seen as a step beyond model
checking: The biologist does not have to care about data
types at all - the synthesis automatically makes the
match by inserting required transformation programs.
This is similar to a spell checker which automatically
corrects the text, thus freeing the writer from dealing with
orthography at all. (In our model-based framework.
things are well-founded, without the uncertainties of
natural language. Please do not be put off by this
example because of annoying experiences with spell
checkers!)

The potential of this technology goes even further:
ultimately, biologists will be able to specify their
requests in a very sparse way, e.g. by just giving the
essential corner stones, and the synthesis will complete
this request to a running process. In our text writing
analogy, this might look like a mechanism that
automatically generates syntactically and intentionally
correct text from text fragments according to predefined
rules that capture syntax and intention. For instance, the
fragments "ten cars", "1000 Euro for shipping", "19%
value added tax", "four days" and "Mercedes", may be
sufficient to synthesize a letter in which a logistics
company offers its services to Mercedes according to a
specific request.

Back to biology, the fragments "DNA sequences",
"phylogenetic tree", and "visualization", may automati
cally lead to a process that fetches EBI sequence data,
sends them in adequate form to a tool that is able to
produce a phylogenetic tree, and then transfers the result
to an adequate viewer. Typically there are many
processes that solve such a request. Thus our synthesis
algorithm provides the choice of producing a default
solution according to a predefined heuristics, or to
propose sets of alternative solutions for the biologist to
select.

Conclusion
We demonstrated by means of two examples how
Semantic Web technology together with an adequate
domain modelling frees in silica researchers from dealing
with interfaces, types, and inconsistencies. In Bio-jETI,
bioinformatics services can be graphically combined to

http://www.biomedcentral.com/1471-2105/10/S10/S8

complex services without worrying about details of their
interfaces or about type mismatches of the composition.
These issues are taken care of at the semantic level by
Bio-jETI's model checking and synthesis features. When
ever possible, they automatically resolve type mis
matches in the considered service setting. Otherwise,
they graphically indicate impossible/incorrect service
combinations. In the latter case, the workflow developer
may either modify his service composition using
semantically similar services, or ask for help in develop
ing the missing mediator that correctly bridges the
detected type gap. Newly developed mediators should
then be adequately annotated semantically, and added
to the service library for later reuse in similar situations.

In the first example we developed a simple phylogenetic
analysis workflow. The model checker detected a SIB
trying to access a data item that has not been defined
previously in the workflow, which indicates that
necessary computation steps are missing. We used the
synthesis algorithm to generate the sequence of these
missing steps.

The second example dealt with a more complex
phylogenetic analysis workflow, involving several local
steps processing intermediate data. Here, the model
checker did not only detect missing computations, but
also a type mismatch that lead to an incorrect process
model. Again, the synthesis algorithm was used to find
an appropriate intermediate sequence of services and an
alternative to the erroneous part of the workflow,
respectively.

We believe that our model checking and synthesis
technologies have great potential with respect to making
highly heterogeneous services accessible to in silica
researchers that need to design and manage complex
bioinformatics analysis processes. Our approach aims at
lowering the required technical knowledge according to
the "easy for the many, difficult for the few" paradigm [56).
After an adequate domain modeling, including the
definition of the semantic rules to be checked by the
model checker or to be exploited during model synth
esis, biologists should ultimately be able to profitably
and efficiently work with a world-wide distributed
collection of tools and data, using their own domain
language. This goal differentiates us from other workflow
development frameworks like Kepler (3) or Triana (5),
which can be seen as middleware systems that facilitate
the development of grid applications in a workflow
oriented fashion. They require quite some technical
knowledge. In Kepler, for instance, the workflow design
involves choosing an appropriate Director for the
execution, depending on, e.g., whether the workflow
depends on time, requires multiple threads or

Page 12 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

distributed execution, or performs simple transforma
tions. These aspects have to be taken into account for
efficient execution of complex computiations, but not
necessarily when dealing with the actual composition of
services. This way, these frameworks address a bioinfor
matics user, and not the biologists themselves.

We believe that Bio-jETI's control flow-oriented
approach is suitable for adressing non-IT personnel: it
allows them to continue to think in "Dos" and "Dont's",
and steps and sequences of action in their own terms at
their level of domain knowledge. In contrast, dataflow
oriented tools like Kepler (3), Taverna (4), or Triana (5)
require their users to change the perspective to a resource
point of view, which, in fact, requires implicit (technical)
knowlegde to profitably use them.

The challenge for us is now to integrate the available
semantic information and the semantically aware tech
nologies into our process development framework in the
most user-convenient way. One central issue is to find an
appropriate level of abstraction from the underlying
technology: we would like to provide a set of general,
pre-defined analyses and synthesis patterns, but at the
same time give experienced users a way to add
specialized specifications. Another issue is how to
integrate semantic information about the application
domain and its services into this (partly) automated
workflow development process, since such knowledge is
essential to achieve adequate results.

On the one hand, this requires predicates characterizing
the single services, i.e. their function and their input/
output behaviour. On the other hand, taxonomies or
ontologies are required which provide the domain
knowledge against which the services (their predicates)
are classified. The majority of this information has to be
delivered by the tool and database providers, covering
semantics of services as well as semantics of data. The
convenience on the client side will increase as the
Semantic Web spreads and new standards become
established.

Methods
This section describes the methodologies for process
model verification and synthesis that we used for
developing the presented examples.

Process model verification via model checking
Model checking provides a powerful mechanism to
analyze and verify static aspects of (arbitrary) models.

http://www.biomedcentral.com/1471-2105/10/S10/S8

Generally speaking, it can be used to check whether a
model M satisfies a property qJ, usually written as

M 1= 4>

where qJ is expressed in terms of a modal or temporal logic.
Applying model checking to process models can help to
detect problems in the design phase. It is in particular useful
to analyze aspects of the whole model, where syntax or type
checking at the component level is not sufficient. Examples
for errors whose detection requires awareness of the whole
model are manifold, ranging from undefined variables or
simple type mismatches to computational gaps and incom
plete processes. The list of properties against which the model
is evaluated is easily extendable, since including a new
constraint in the verification only requires to write a modal or
temporal formula expressing the property of interest.

The model checker GEAR (39) allows to evaluate static
properties of models within the jABc' basically using the
Computation Tree Logic (CTL) [57) to formulate appropriate
constraints. CTL is a temporal, branching time logic designed
to reason about models represented as directed graphs, and
whose syntax can be described by the following BNF:

tjJ ::= p l -,tjJ I tjJ v tjJ I AF(tjJ) I EF(tjJ) I AG(tjJ) I EG(tjJ) I AU(tjJ,tjJ) I EU(tjJ,tjJ)

Thus, in addition to the operations and operands known
from propositionallogic, it comprises the modalities Ap,
EP, AC, EC, AU, and EU. The As and Es are path
quantifiers, providing a universal (A) or existential (E)
quantification over the paths beginning at a state. F, C,
and U express linear-time modalities for the path,
specifying that qJ must hold finally (F), generally (C),
or that qJl has to be valid until qJ2 finally holds (U). For
example, the CTL formula

AF(Rome)

expresses that on all paths through the model that begin
at the considered state, finally Rome is reached. As
another example from routing, the formula

EC(free)

states that there is a path that is completely (globally)
free of charge. That all routes should be toll-free until a
particular place, say Rome, is reached, can expressed
using the Until operator:

AU(free, Rome).

GEAR extends this variant of CTL further and includes
additional overlined modalities representing a backward
view, i.e. considering the paths that end at a given state.
We apply it to our (bioinformatics) process models, the

Page 13 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

Service Logic Graphs (SLGs), where the entire processes
are the models, the individual activities (the services, in
the form of SIBs) are the nodes, and the edges express the
conditional flow of control. As both nodes and edges are
labeled, these models are formally so-called Kripke
Transition Systems.

Basis for the analysis of processes are the atomic
propositions, simple properties that hold for single
nodes of the process model. For instance, we can add
an atomic proposition use (x) to a SIB to express that a
data item x is used by the service, or def(x) to state that it
is produced (defined). Furthermore we can assume to
have information about the types of the input and
output data, and denote that a used or defined item x is
of type y by type(use(x)) = y and type(def(x)) = y,
respectively. Figure 10 shows the atomic propositions of
the SIBs in example l.

As we have seen in the examples, a model property of
interest for processes orchestrated from remote services
could be

if a service uses an input x, it must have been defined before.

The dependence between the two parts of this require
ment is a usual Boolean implication, the temporal
constraint in the second part is expressed by the
backward CTL modality AF:

use(x) ~ AF(def(x)).

Example 1, process stub

e~blastresu lt)
def(seq uence) pe(def(blastresult))-blastresul

e(def(se uence»=se uence ---ok------?> pe{use(sequence»=sequence

dialoq: sequence input
use(sequence)

BlastN

Example 1, complete process

ef(blaSlresult)
d ef(seq uence) pe(d ef(blascres ult) = b lasrre sui

pe(def(sequence»=sequence --ok~ pe{use(sequence))=sequence

di.dog: sequence input
use{sequence)

BlastP

http://www.biomedcentral.com/1471-2105/10/S10/S8

While this is sufficient to ensure that the variable x has
been defined at all, it does not say anything about type
correctness. Since the name x, however, could be used to
refer to different data throughout the process, it is
reasonable to extend the above constraint and to include
the type of the used variable. In example 1, we
considered, for instance, a variable of tree of type Tree:

If a service uses a data item treeof type tree, treemust have
been defined before with precisely this type, without having
been overwritten since.

If a service uses a data item tree of type tree, tree must have been defined before with precisely this type,

without having been overwritten since.

The corresponding CTL formula is:

(use(tree) A type(use(tree)) = tree) => AU(~def(tree),def(tree) A type(def(tree)) = tree)

The model checking reveals a property violation, as can
be seen in Figures 6 (top left) and 1 0 (top): the
rightmost SIB is marked by a red overlay icon in the
upper right corner, indicating that the property is
violated at that node. The reason is that the process
does not provide the appropriate input type for the tree
visualizer. The same formula can be applied analogously
to other variables with other types, as we did, for
instance, in our second example.

Process synthesis
By process synthesis we refer to techniques that construct
workflows from sets of services according to logical

------default------

Archaeopteryx

\
def(alignment) 'Il

u se!~~~~(id s)}= ids30mma ~:e~~~~~~~:~~~ tree
-defauf.r-7> e(def(sequences»=sequences --defaulr~ type(use(sequences»=sequence

def(sequences) def(tree)

get ID list
==-----' IYpe(def(alignmenQ)=alignment

IIst2strlng fetch sequences

Figure 10
Atomic propositions of the SIBs in example I. Atomic propositions of the process stub and complete process
model of example I. The propositions describe basic data flow properties. like defined and used variables and their types
in terms of the data types of the taxonomy.

Page 14 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

specifications [58). The algorithm that we use for our
approach is based on a modal logic that combines
relative time with descriptions and taxonomic classifica
tions of types and services (40) . It was implemented for
the ABC and ETI platforms [43,59), and lately also used
within the jABC framework. We applied it, for instance,
in the SWS Challenge [13) to synthesize a mediator
process converting between different message formats
that were used by the web service providers in the
scenario of [60,61) .

In the following we describe how to apply our synthesis
method, i.e. 1) how the domain knowledge forms a
configuration universe, 2) how a modal logic can be
used for workflow specification, and 3) what the
algorithm can finally derive from this information.
Note that we focus on usage here, details on the
underlying logics and algorithms can be found in
[40,59) .

http://www.biomedcentral.com/1471-2105/10/S10/S8

The configuration universe
The domain knowledge that has to be provided for our
synthesis algorithm comprises basically three sets: types,
services, and transitions. The set of types that is available
in the domain form the static aspects, i.e. type
constraints that are used as atomic propositions by the
underlying logic. The set of services represents the
dynamic aspects of the domain, which can be used as
actions by the logic. According to the observation that
tools and algorithms can simply be seen as transforma
tions that take an input and produce a corresponding
output [59), the set of transitions is given in triples of the
form (input, service, output) . Together, types, services, and
transitions form the configuration universe, in which
each (finite) path represents a possible workflow. Figure
illustrates a configuration universe that is implied by the
SIBs and data types of our examples. The synthesis
algorithm searches the configuration universe for a path
satisfying a particular specification.

---*[)i o·
Archa@opmryx --*",

O· ---- f) o· ExtractPattern A.coIe ..
---- / essionList

~ree ~ ~astResult Ust2String

h?P.,,,,"" .mm~}!ASf .1
0 ·« ClustaM' o~W5D8F"<h -0

'I Access ions

ClustaJWR~lt E.~m/_ seq j nce ~
ExtractPaffem .. . a G@tfA.5TA_OO8jfntry

WSD8f@uh

\ ___ / h,m".",," ~
iDJ ______ 0 1

GetDDBjEntry o<e-----Alignment Accession

DDBJEntry

Figure II
Fragment of the configuration universe. Fragment of the configuration universe based on the services and types
from Tables I and 2. Paths through the configuration universe represent possible sequences of services. Note that the
configuration universe is able to express service polymorphisnns: the service ExtractPattern, for instance, can be applied
to different inputs, and produces different outputs, accordingly.

Page 15 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

In addition, the domain knowledge can be extended
further by hierarchically organizing types and services in
taxonomies, i.e. simple ontologies that relate entities in
terms of is-a and has-a relations. The types and service
taxonomies for our examples are given in Figures 4
and 5. The taxonomies are considered by the synthesis
algorithm when evaluating type or service constraints.

The specification language
Our workflow specification language, which we call SLTL
(for Semantic Linear Time Logic), can be seen as a linear
time variant of CTL (see previous section) or interpreted
version of the Propositional Linear Time Logic. SLTL is
described by the following BNF:

4> ::= true I te 1-, 4> 14> /\ 4> I (sJ4> I G4> I4>U4>

where te and Se express type and service constraints,
respectively.

Thus, SLTL combines static, dynamic, and temporal
constraints. The static constraints are the taxonomic
expressions (boo lean connectives) over the types or
classes of the type taxonomy. Analogously, the dynamic
constraints are the taxonomic expressions over the
services or classes of the service taxonomy. The temporal
constraints are covered by the modal structure of the
logic, suitable to express the order in which services can
be combined.

A formal definition of the semantics of SLTL can be
found in (40). Intuitively, true is satisfied by every
sequence of services, and te by every sequence whose first
component has an input interface satisfying te. Negation
and disjunction are interpreted in the usual fashion. The
construct <se)CP is satisfied if the first component satisfies
se' and the continuation of the service sequence satsifies
cp. A formula of the form Gcp requires that cp is satisfied
Generally, and cpUVf expresses that the property cp holds
for all services of the sequence, Until a position is
reached whare the corresponding continuation satisfies
the property cp.

It is convenient to derive further operators from these
basic constructs. The boo lean disjunction

and the Eventually operator

F4> = def true U4>

are two common examples.

http://www.biomedcentral.com/1471-2105/10/S10/S8

Coming to concrete examples of workflow specifications,
the synthesis algorithm can be used to generate linear
workflows just on the basis of an intial type (e.g.
BlastResult) and a final type (e.g. Tree) via the following
SLTL formula:

BlastResult /\ F(Tree)

As we have seen in the workflow examples, already this
simple query has a real practical impact, as it allows to
autmatically resolve type mismachtes.

As another example, it is possible to query for an explicit
sequence of services, let's say an input dialog asking for
an accession number followed by the retrieval of the
corresponding sequence from a database and a BLAST
query:

4> = (InputDialog)(DBFetch)(BLAST)true

Note that the service constraints in the formula are not
concrete service names, but terms from the service
taxonomy that define higher-order service categories.
The synthesis algorithm takes care of instantiating the
result with concrete services.

The synthesis algorithm
The synthesis algorithm interprets SLTL formulas over
paths of the configuration universe, i.e. provided with a
specification, it searches the configuration universe for
(finite) corresponding paths. The algorithm is based on a
tableau method, of which a detailed description is given
in (40). It automatically generates all, all minimal, or all
shortest service compositions that satisfy a specification,
according to the selected synthesis mode. The algo
rithm's output is the basis for the final assembly of the
corresponding SLG.

The presently available implementation of the algorithm
had been developed for use within the ABC, the jABC's
predecessor that has been written in C++. In order to
make it accessible from within the Java-based jABC
framework we integrated it using the JETI technology.
The complete synthesis process is then defined by an
SLG, as shown in Figure 12: The main process (top)
triggers the execution of the synthesis and displays the
solution that is returned. Then, it assembles the SLG
corresponding to this solution and displays it on a
canvas, where it can be used for further process
development. The actual synthesis is carried out by the
sub-process (bottom): It captures the available domain
knowledge by collecting information about the available
services (SIB CollectModules) and types (LoadSymbo
licTypes) while evaluating the workflow specification
(GenerateQuery). The collected information is stored in

Page 16 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8 http://www.biomedcentral.com/1471-2105/10/S10/S8

Synthesis Parent

~I-default----:p --default~ a--defilu't~1!!]
Synthesis DisplayGraph Synth:2E)(ec DisplayGraph

Synthesis

~ _ _ default";> ~-d€fault--";>O-defaUJt--";>IIJ_d@faUJr~ f" --defaul~

CollectModules LoadSymbolicTypes GenerareQuery GenerateLola SynrhOneShorr PUjABC

Figure 12
Synthesis SLG. Complete synthesis process, realized as jABC SLG. The main process (top) triggers the execution of the
synthesis and displays the solution that is returned. Then, it assembles the SLG corresponding to this solution and displays it on
a canvas, where it can be used for further process development. The actual synthesis is carried out by the sub-process
(bottom): It captures the available domain knowledge and evaluates the workflow specification. The collected information is
stored in a specific database file and sent to the synthesis algorithm, which computes one shortest solution (SynthOneShort).
The generated sequence of services is then converted into the jABC's graph format in order to allow further processing within
the framework.

a specific database file (GenerateLola) and sent to the
synthesis algorithm, which computes one shortes solu
tion (SynthOneShort). The generated sequence of
services is then converted into the jABC's graph format
(PL2jABC) in order to allow further processing within
the framework.

We are currently re-implemening the algorithm in Java,
making it suitable for seamless integration into the jABC
framework. Also, we will add functionality for facilitat
ing the synthesis procedure for the user, for instance by
providing a graphical interface supporting the domain
modeling and formula patterns for the specification of
workflows. Furthermore, we plan to incorporate alter
native methods for the composition of services, such as
an algorithm based on MoSeL (62) or different tools that
are available in the Plan-jETI collection of planning
algorithms.

List of abbreviations
API: Application Programming Interface; BLAST: Basic
Local Alignment Search Tool; BNF: Backus-Naur Form;
BiBiServ: Bielefeld Bioinformatics Server; CTL: Computa
tion Tree Logic; DDBJ: DNA Data Bank of Japan; DNA:
DeoxyriboNucleic Acid; EBI: European Bioinformatics
Institute; EMBOSS European Molecular Biology Open
Software Suite; GEAR: Game-based Easy And Reversed
model checking tool; GO: Gene Ontology; GUI:

Graphical User Interface; IT: Information Technology;
(j)ABC: Application Building Center (Java implementa
tion); (j)ETI: Electronic Tool Integration platform (Java
implementation); LTL: Linear Time Logic; MoSeL:
Monadic Second order Logic; OBO: Open Bioinformatics
Ontologies; OWL: Web Ontology Language; RDF:
Resource Description Framework RNA: RiboNucleic
Acid; S3C: Semantic Service Selection Contest; SA WSDL:
Semantic Annotations for WSDL; SIB: Service-Indepen
dent Building block; SLG: Service Logic Graph; SLTL:
Semantic Linear Time Logic SSWAP: Simple Semantic
Web Architecture and Protocol; SWS: Semantic Web
Services; URI: Uniform Resource Identifier; W3C: World
Wide Web Consortium; WSDL: Web Service Description
Language.

Competing interests
The authors declare that they have no competing
interests.

Authors' contributions
AL developed the presented examples and drafted the
manuscript. TM and BS have been developing the
concept of the jABC and JETI platforms since 1993,
first in the area of formal verification tools, then in the
area of Semantic Web services. They have revised and
edited the manuscript. All authors read and approved the
final manuscript.

Page 17 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

Acknowledgements
Many thanks to Stefan Naujokat for technical support with the synthesis
tools and algorithms.

This article has been published as part of BMC Bioinformatics Volume 10
Supplement 10, 2009: Semantic Web Applications and Tools for Life
Sciences, 2008. The full contents of the supplement are available online at
htto: //www.biomedcentral.com/ 1471 -2105/ 1 O1issue=S I O.

References
I . Bausch W, Pautasso C and Alonso G: BioOpera: Cluster-aware

Computing. Proceedings of the 4th IEEE International Conference on
Cluster Computing (Cluster) 2002, 99- 106.

2. Eker J, Janneck J and Lee E, et 0/: Taming heterogeneity - the
Ptolemy approach. Proceedings of the IEEE 2003, 91:127- 144.

3. Altintas I, Berkley C and Jaeger E, et 0/: Kepler: An Extensible
System for Design and Execution of Scientific Workflows.
16th Intl Conf on Scientific and Statistical Database Management
(SSDBM '04) 2004, 21 - 23.

4 . Oinn T, Addis M and Ferris J, et 0/: Taverna: a tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20(17):3045- 3054.

5. Taylor I, Shields M, Wang I and Harrison A: The Triana Workflow
Environment: Architecture and Applications. Workflows for
e-Science Springer, New York; 2007, 320- 339.

6. Tang F, Chua CL and Ho L, et 0/: Wildfire: distributed, Grid
enabled workflow construction and execution. BMC Bioinfor
matics 2005, 6:69.

7. Margaria T, Kubzcak C and Steffen B: Bio-jETI: a Service
Integration, Design, and Provisioning Platform for Orche
strated Bioinformatics Processes. BMC Bioinformatics 2008, 9
(Suppl 4):S 12.

8. Berners-Lee T, Hendler J and Lassila 0 : The Semantic Web - A
new form of Web content that is meaningful to computers
will unleash a revolution of new possibilities. Scientific American
200 I, 284(5):34-43 .

9. W3C Semantic Web Activity. htto://www.w3.org/2001 /sw/.
10. Semantic Annotations for WSDL Working Group. http: //

www.w3 .org/2002/ws/sawsdll.
I I. Resource Description Framework (RDF)1W3C Semantic

Web Activity. http://www.w3.org/RDF/.
12. Web Ontology Language OWLlW3C Semantic Web Activ

ity. http://www.w3 .org/2004/0WU.
13. SWS Challenge Website. http://sws-challenge.org.
14. International Contest S3 on Semantic Service Selection.

http://www-ags.dfki .uni-sb.de/-klusch /s3/index.html .
15. OPOSSum Online Portal for Semantic Services. http://fusion .

cs. uni -jena.de/opossum /.
16. Kuuster U, Konig-Ries Band Krug A: OPOSSum - An Online

Portal to Collect and Share SWS Descriptions. Proceedings of
the 2008 IEEE International Conference on Semantic Computing IEEE
Computer Society; 2008, 480-481.

17. Wilkinson MD and Links M: BioMOBY: an open source
biological web services proposal. Briefings in Bioinformatics
2002,3(4):331-41.

18. Wilkinson MD, Senger M and Kawas E, et 0/: Interoperability with
Moby I.O-it's better than sharing your toothbrush!. Briefings in
Bioinformatics 2008, 9(3):220- 31 .

19. Wilkinson MD, Gessler D, Farmer A and Stein L: The BioMOBY
Project Explores Open-Source, Simple, Extensible Proto
cols for Enabling Biological Database Interoperability.
Proceedings of the Virtual Conference on Genomics and Bioinformatics
2003, 3: 17- 27.

20. Gessler D: SSWAP - Simple Semantic Web Architecture
and Protocol.2009 http://sswap.info/docs/SSWAP.pdf.

21 . Simple Semantic Web Architecture and Protocol.2009
http://sswap.info.

22. Ashburner M, Ball CA and Blake JA, et 0/: Gene ontology: tool for
the unification of biology. Nature Genetics 2000, 25:25- 9.

23. Smith Band Ashburner M, et 0/: The OBO Foundry: coordinated
evolution of ontologies to support biomedical data integra
tion. Not Biotech 2007, 25(11): 1251 - 1255.

24. Garvey TD, Lincoln P, Pedersen q , Martin D and Johnson M:
BioSPICE: access to the most current computational tools for
biologists. Omics: A Journal of Integrative Biology 2003,7(4):411-420.

25. Brambilla M, Celino I, Ceri S, Cerizza D, Valle ED and Facca F: A
Software Engineering Approach to Design and Develop-

http://www.biomedcentral.com/1471-2105/10/S10/S8

ment of Semantic Web Service Applications. The Semantic
Web - ISWC Springer Berlin/Heidelberg; 2006, 172- 186.

26. Haselwanter T, Kotinurmi P, Moran M, Vitvar T and Zaremba M:
WSMX: A Semantic Service Oriented Middleware for B2B
Integration. Service-Oriented Computing - ICSOC Springer Berlinl
Heidelberg; 2006, 477-483.

27. Dibernardo M, Pottinger Rand Wilkinson M: Semi-automatic
web service composition for the life sciences using the
BioMoby semantic web framework. Journal of Biomedical
Informatics 2008.

28. Bio-jETI Website. http://biojetLcs.tu-dortmund.de/.
29. Margaria T, Kubczak C, Njoku M and Steffen B: Model-based

Design of Distributed Collaborative Bioinformatics Pro
cesses in the jABC. Proceedings of ICECCS, IEEE Computer Society
2006, 169- 176.

30. Kubczak C, Margaria T, Fritsch A and Steffen B: Biological LC/MS
Preprocessing and Analysis with jABC, JETI and xcms.
Leveraging Applications of Formal Methods, Verification and Validation,
ISoLA 2006 2006, 303- 308.

31 . Lamprecht A, Margaria T and Steffen B, et 0/: GeneFisher-P:
variations of GeneFisher as processes in Bio-jETI. BMC
Bioinformatics 2008, 9(Suppl 4):S 13.

32. Lamprecht A, Margaria T and Steffen B: Seven Variations of an
Alignment Workflow - An Illustration of Agile Process
Design and Management in Bio-jETI. Bioinformatics Research and
Applications LNBI, Atlanta, Georgia: Springer; 2008, 4983:445-456.

33. Steffen B, Margaria T, Nagel R, Jorges Sand Kubczak C: Model
Driven Development with the jABC. Hardware and Software,
Verification and Testing 2006, 92- 108.

34. jABC Website. http://www.jabc.de.
35. Margaria T, Nagel Rand Steffen B: JETI: A Tool for Remote Tool

Integration. Tools and Algorithms for the Construction and Analysis of
Systems LNCS, Springer Berlin / Heidelberg; 2005, 34401
2005:557- 562.

36. Margaria T, Kubczak C, Steffen Band Naujokat S: The FMICS-jETI
Platform: Status and Perspectives. ISoLA 2nd IEEE-EASST
International Symposium On Leveraging Applications of formal methods,
verification, and validation, Paphos (CY), Proceedings IEEE Computer
Science Press; 2006, 414-418.

37. Jorges S, Margaria T and Steffen B: Genesys: Service-Oriented
Construction of Property Conform Code Generators.
Innovations in System and Software Engineering 2009,4(4):361 - 384.

38. Clarke EM, Grumberg 0 and Peled DA: Model Checking The MIT
Press; 1999.

39. Bakera M, Margaria T, Renner CD and Steffen B: Verification,
Diagnosis and Adaptation: Tool supported enhancement of
the model-driven verification process. ISoLA 2007, 85- 97,
[(Journal version to appear in ISSE)] .

40. Steffen B, Margaria T and Freitag B: Module Configuration by
Minimal Model Construction.Tech rep University of Passau;
1993.

41 . Steffen B, Margaria T and Beeck M: Automatic synthesis of linear
process models from temporal constraints: An incremental
approach. ACMIS/GPLAN Int Workshop on Automated Analysis of
Software (AAS'97) 1997.

42. Margaria T and Steffen B: Backtracking-Free Design Planning by
Automatic Synthesis in METAFrame. Fundamental Approaches
to Software Engineering 1998, 188.

43. Margaria T and Steffen B: L TL Guided Planning: Revisiting
Automatic Tool Composition in ETI. Proceedings of the 31 st
IEEE Software Engineering Workshop IEEE Computer Society; 2007,
214- 226.

44. Pillai S, Silventoinen V and Kallio K, et 0/: SOAP-based services
provided by the European Bioinformatics Institute. Nucleic
Acids Research 2005, 33 Web Server: W25-8.

45. Labarga A, Valentin F, Anderson M and Lopez R: Web Services at
the European Bioinformatics Institute. Nucleic Acids Research
2007, 35 Web Server: W6- 1 I.

46. Hartmeier S, Kruger J and Giegerich R: Webservices and
Workflows on the Bielefeld Bioinformatics Server: Prac
tices and Problems. Proceedings of the Workshop on Network Tools
and Applications in Biology (NETTAB), Pisa, Italy 2007.

47. Miyazaki S, Sugawara H, Ikeo K, Gojobori T and Tateno Y: DDBJ in
the stream of various biological data. Nucleic Acids Research
2004, 32 Database: D31-4.

48. Rice P, Longden I and Bleasby A: EMBOSS: the European
Molecular Biology Open Software Suite. Trends in Genetics: TIG
2000, 16(6):276-7.

Page 18 of 19
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(SuppI10):S8

49. Zmasek CM and Eddy SR: ATV: display and manipulation of
annotated phylogenetic trees. Bioinformatics (Oxford, England)
200 I, 17(4):383-4.

50. Shigemoto Y, Kuwana Y and Sugawara H: Blast-ClustalW work
flow.2009 htto:llxml.nig.ac.jo/workflow/blast clustal.html.

51. Web API for Biology (WABI). http://xml.nig.ac.jp/.
52. Sahoo SS, Sheth A and Henson C: Semantic Provenance for

eScience: Managing the Deluge of Scientific Data. IEEE
Internet Computing 2008, 12(4):46-54.

53. Aho AV, Lam MS, Sethi Rand Ullman JD: Compilers: Principles,
Techniques, and Tools Addison Wesley; 2007.

54. Steffen B: Data Flow Analysis as Model Checking. TACS '9/:
Proceedings of the International Conference on Theoretical Aspects of
Computer Software Springer-Verlag; 1991, 346-365.

55. Schmidt DA and Steffen B: Program Analysis as Model
Checking of Abstract Interpretations. Proceedings of the 5th
International Symposium on Static Analysis Springer-Verlag; 1998,
351-380.

56. Margaria T: Service is in the Eyes of the Beholder. IEEE
Computer 2007.

57. Clarke EM, Grumberg 0 and Peled DA: Model Checking The MIT
Press chap. Temporal Logics; 1999,27-32.

58. Manna Z and Wolper P: Synthesis of Communicating Pro
cesses from Temporal Logic Specifications. ACM Trans
Program Lang Syst 1984, 6:68-93.

59. Freitag B, Steffen B, Margaria T and Zukowski U: An Approach to
Intelligent Software Library Management. Proceedings of the
4th International Conference on Database Systems for Advanced
Applications (DASFAA) World Scientific Press; 1995, 71-78.

60. Margaria T, Bakera M, Raffelt Hand Steffen B: Synthesizing the
Mediator with jABC/ABC. EON CEUR Workshop Proceedings,
Tenerife, Spain: CEUR-WS.org; 2008, 359:.

61 . Kubczak C, Margaria T, Kaiser M, Lemcke J and Knuth B: Abductive
Synthesis of the Mediator Scenario with jABC and GEM.
EON CEUR Workshop Proceedings, Tenerife , Spain: CEUR-WS.org;
2008, 359.

62. Kelb P, Margaria T, Mendler M and Gsottberger C: MOSEL: A
flexible toolset for monadic second-order logic. PROCEED
INGS OF CAV'97, LNCS 1254 1997, 183-202.

63. Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ: Basic
local alignment search tool. Journal of Molecular Biology 1990, 215
(3):403-10.

64. Thompson JD, Higgins DG and Gibson TJ: CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting. position-specific gap
penalties and weight matrix choice. Nucleic Acids Research 1994,
22(22):4673-80.

http://www.biomedcentral.com/1471-2105/10/S10/S8

Publish with BioMed Central and every
scientist can read your work free of charge

.. BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime . ..

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

• available free of charge to the entire biomedical community

• peer reviewed and published immediately upon acceptance

• cited in PubMed and archived on PubMed Central

• yours - you keep the copyright

Submit your manuscri pt here: 0 BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 19 of 19
(page number not for citation purposes)

	Title page
	Bio-jETI: a framework for semantics-based service composition
	Background
	Results and discussion
	Example I: a simple phylogenetic analysis workflow
	Example 2: Blast-ClustalW workflow
	Discussion and perspectives
	Domain modeling
	Model checking
	Model synthesis

	Conclusion
	Methods
	Process model verification via model checking
	Process synthesis
	The configuration universe
	The specification language
	The synthesis algorithm

	References

