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Abstract 

Background: The development of bioinformatics databases, algorithms, and tools throughout the last 
years has lead to a highly distributed world ofbioinformatics services. Without adequate management and 
development support, in silica researchers are hardly able to exploit the potential of building complex, 
specialized analysis processes from these services. The Semantic Web aims at thoroughly equipping 
individual data and services with machine-processable meta-information, while workflow systems 
support the construction of service compositions. However, even in this combination, in silica 
researchers currently would have to deal manually with the service interfaces, the adequacy of the 
semantic annotations, type incompatibilities, and the consistency of service compositions. 

Results: In this paper, we demonstrate by means of two examples how Semantic Web technology 
together with an adequate domain modelling frees in silica researchers from dealing with interfaces, 
types, and inconsistencies. In Bio-jETI, bioinformatics services can be graphically combined to 
complex services without worrying about details of their interfaces or about type mismatches of 
the composition. These issues are taken care of at the semantic level by Bio-jETl's model checking 
and synthesis features. Whenever possible, they automatically resolve type mismatches in the 
considered service setting. Otherwise, they graphically indicate impossible/incorrect service 
combinations. In the latter case, the workflow developer may either modify his service composition 
using semantically similar services, or ask for help in developing the missing mediator that correctly 
bridges the detected type gap. Newly developed mediators should then be adequately annotated 
semantically, and added to the service library for later reuse in similar situations. 

Conclusion: We show the power of semantic annotations in an adequately modelled and 
semantically enabled domain setting. Using model checking and synthesis methods, users may 
orchestrate complex processes from a wealth of heterogeneous services without worrying about 
interfaces and (type) consistency. The success of this method strongly depends on a careful semantic 
annotation of the provided services and on its cOllsequent exploitation for analysis, validation, and 
synthesis. We are convinced that these annotations will become standard, as they will become 
preconditions for the success and widespread use of (preferred) services in the Semantic Web. 

Page 1 of 19 
(page number not for citation purposes) 



BMC Bioinformatics 2009, 10(SuppI10):S8 

Background 
Research projects in modern molecular biology rely on 
increasingly complex combinations of computational 
methods to handle the data that is produced in the life 
science laboratories. A variety of bioinformatics data
bases, algorithms and tools is available for specific 
analysis tasks . Their combination to solve a specific 
biological question defines more or less complex 
analysis workfiows or processes. Software systems that 
facilitate their systematic development and automation 
[1-7] have found a great popularity in the community. 

More than in other domains the heterogeneous services 
world in bioinformatics demands for a methodology to 
classify and relate resources in a both human and 
machine accessible manner. The Semantic Web [8,9] , 
which is meant to address exactly this challenge, is 
currently one of the most ambitious projects in 
computer science. Collective efforts have already lead 
to a basis of standards for semantic service descriptions 
and meta-information. 

Most importantly, the World Wide Web Consortium 
(W3C) set up a number of working groups addressing 
different technological aspects of the Semantic Web 
vision. Among their outcomes are the Semantic Annota
tions for WSDL (SAWSDL) recommendation [10] , the 
Resource Description Framework (RDF) specification 
[11], and the Web Ontology Language (OWL) [12]. 
While SAWSDL is designed to equip single entities with 
predicates, RDF and the more powerful OWL formally 
define relationships between the resources of a domain. 

Without a reasonably large set of semantically annotated 
(web) services, it is, however, difficult to evaluate the 
Semantic Web technologies with significant results and 
develop practical software for the client side. On the 
other hand, providers are not willing to put effort in 
annotating their services as long as they can not be 
confident which technologies will finally become estab
lished. Community initiatives like the Semantic Web 
Services (SWS) Challenge [13] or the Semantic Service 
Selection Contest (S3C) [14] address this problem. They 
provide collections of services, domain information and 
concrete scenarios that the different participants, being 
developers of methodologies for different Semantic Web 
aspects, have to deal with. In the scope of the S3 Contest, 
OPOSSum [15,16], an "online portal to collect and share 
SWS descriptions" [16], was set up. It aims at collecting, 
sharing, editing, and comparing SWS descriptions within 
a community infrastructure in order to collaboratively 
evaluate and improve SWS formalisms. As of March 
2009, however, OPOSSum does not list any bioinfor
matics services. 
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An example of a knowledge base particularly capturing 
bioinformatics data types and services are the constantly 
evolving namespace, object and service ontologies of the 
BioMoby service registry [17,18]. BioMoby's aim is to 
"achieve a shared syntax, shared semantic, and discovery 
infrastructure suitable for bioinformat-ics" [19] as a part 
of the Semantic Web. Originating from the early 2000s, 
the 1.0 MOBY-S( ervices) spec-ifications, however, do not 
adhere to the Semantic Web standards that have been 
developed in the last years . Consequently, the S 
(emantic)-MOBY branch of the project came into being 
to migrate to common technologies . It has recently been 
merged into the SSWAP (Simple Semantic Web Archi
tecture and Protocol) [20,21] project, which aims at 
providing life science knowledge using standard RDFj 
OWL technology. SSW AP provides a number of own 
ontologies, but also incorporates third-party domain 
knowledge like the MOBY-S object and service onto
logies. 

Generally, the development of ontologies in the bioin
formatics community is already very promising. Projects 
like the Gene Ontology (GO) [22] and the Open 
Biomedical Ontologies (OBO) [23] have already become 
widely used and also, for instance, incorporated by the 
SSWAP project. The majority of publicly available 
ontologies in the bioinformatics domain is, however, 
designed for the classification of scientific terms and the 
description of actual data sets, and not for (technical) 
descriptions of service interfaces and data types . 

The lack of properly semantically annotated services has 
evidently already been recognized by the community, as 
different projects are commencing to address the issue. 
For instance, major service providers like the European 
Bioinformatics Institute (EBI) plan to extend their service 
infrastructure to provide meta-information conforming 
to Semantic Web standards. Other initiatives aim at 
setting up stand-alone collections of service URls and 
corresponding annotations, without influencing the 
service infrastructures as such. 

While the provision of semantically annotated services is 
mainly the service providers' task on the client side 
software is needed that fully utilizes the available 
semantic information in order to provide helpful tools 
to the in silico researcher. The challenge for user-side 
software is to abstract from the underlying Semantic Web 
technology again and provide the achievements in an 
intuitive fashion . 

A simple but useful feature building upon semantic 
information about services is the categorization of 
services according to different criteria. A corresponding 
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functionality has already been available in the mean
while discontinued BioSPICE Dashboard, where it was 
possible to arrange services by location, provider, 
function, or I/O type (see Figure 1). The BioSPICE 
project is a meanwhile abandoned initiative that focused 
on the development of computational models for 
intracellular processes. Besides the provision of mere 
"access to the most current computational tools for 
biologists" (24), the work also aimed at integrating the 
services into a convenient graphical user environment, 
called the BioSPICE Dashboard. Thus, the need of multi
faceted service classification has been recognized several 
years ago, but until present services hardly provide 
appropriate meta-information. 

More advanced examples of utilizing semantic informa
tion about services are, for instance, available in the 
scope of the SWS Challenge [13). Among others, projects 
like SWE-ET (Semantic Web Engineering Environment 
and Tools) (25) and WSMX (26) participate in the 
challenge, adressing both discovery and mediation 
scenarios for Semantic Web Services. However, these 
solutions demand quite some technical understanding 
from the user, which hampers the uptake by a larger 
biological user community. 
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As an example from the bioinformatics domain, the 
BioMoby project provides a simple composition func
tionality for its services. (17,18). With the MOBY-S Web 
Service Browser (27) it is, e.g., possible to search for an 
appropriate next service, while in addition the sequence 
of actually executed tools is recorded and stored as a 
Taverna (4) workflow. A substantial drawback of this 
approach is, however, its restriction to the services that 
are registered in the respective platform. 

In this paper, we present our approach to semantics
based service composition in the Bio-jETI platform 
[7,28). By integration of automatic service composition 
functionality into an intuitive, graphical process man
agement framework, we are able to maintain the 
usability of the latter for semantically aware workflow 
development. Furthermore, we can integrate services and 
domain knowledge from any kind of heterogeneous 
resource at any location, and are not restricted to any 
semantically annotated services of a particular platform. 

This manuscript is structured as follows: In the next 
section, Results and Discussion, we discuss two examples 
that we developed in Bio-jETI with the help of a 
semantics-aware workflow synthesis method and 
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BioSPICE Dashboard. Graphical user interface of the BioSPICE Dashboard [24]. Services can be arranged according 
to the categories location, contributor, function, and I/O type (top left) . 
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model checking: a simple phylogenetic analysis work
flow and a more sophisticicated, highly customized 
phylogenetic analysis process based on Blast and 
ClustalW. Subsequently, the Conclusion deals with 
directives for the future development of our approach. 
Finally, the Methods section describes the applied 
techniques in greater detail. 

Results and discussion 
The approach to semantics-based service composItion 
that we present in this paper builds upon the Bio-jET! 
[7,28) framework for model-based, graphical design, 
execution and management of bioinformatics analysis 
processes. It has been used in a number of different 
bioinformatics projects [29-32) and is continuously 
evolving as new service libraries and service and software 
technologies become established. Technically, Bio-jET! 
uses the jABC modeling framework [33,34) as an 
intuitive, graphical user interface and the JET! electronic 
tool integration platform [35,36) for dealing with 
remote services. Using the jABC technology, process 
models, called Service Logic Graphs (SLGs) are constructed 
graphically by placing process building blocks, called 
Service Independent Building Blocks (SIBs), on a canvas and 
connecting them according to the flow of control. 
Figure 2 shows a screenshot of the graphical user interface 
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of the jABC. SLGs are directly executable by an interpreter 
component, and they can be compiled into a variety of 
target languages via the GeneSys code generation frame
work (37) . As Figure 3 (bottom) illustrates, GeneSys 
provides the means for transforming SLGs into native, 
stand-alone programm code (e.g., Java, C++) as well as 
into other workflow languages (e.g., BPEL). 

Workflow development in Bio-jET! is already supported 
by several plugins of the jABC framework for instance 
providing functionality for component validation or 
step-wise execution of the process model for debugging 
purposes. Now we are going to exploit further jABC 
technology, such as model checking and workflow 
synthesis, in order to enable Bio-jET! to support the 
development of processes in terms of service semantics. 

Model checking [38,39) can be used for reasoning about 
properties of process models . This can help to detect 
problems like undefined data identifiers, missing com
putations, or type mismatches. Solving these problems 
might require the introduction of further computational 
steps, for instance a series of conversion services in case 
of a data type mismatch. The approach here is to 
automate the creation of such process parts via workflow 
synthesis methodology [40-43) that allows for the 
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from a library (top left) on a canvas (center) and connecting them by labeled branches to define the flow of control. 
The models are directly executable by an inbuilt interpreter component (right). 
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Services 

Figure 3 

Semantic 
Information 

Relationship between SL TL and workflow languages. 
SL TL is designed to specify linear workflows on an abstract 
level. In conjunction with a set of services and adequate 
semantic information about the domain, it serves as input for 
the synthesis algorithm, which generates linear workflows 
according to the SL TL specification. The results are available 
as Bio-jETI SLGs, which can be further edited, combined, and 
refined . The SLGs can then be compiled into a number of 
different target languages by the GeneSys code generation 
framework. 

automatic creation of (linear) workflows according to 
high-level, logical specifications. Figure 3 (top) illus
trates the relationship between our specification lan
guage SLTI (Semantic Linear Time Logic) and the actual 
Bio-jETI workflow models, the SLGs: Provided with a 
logical specification of the process and semantically 
annotated services, the workflow synthesis algorithm 
generates linear sequences of services, which can be 
further edited and combined into complex process 
models on the SLG level. 

For the study that we present in this paper we used a SIB 
collection offering various remote and local services. 
Examples for contained remote services are the data 
retrieval services provided by the EBI (European Bioin
formatics Institute) [44,45), sequence analysis algo
rithms offered by BiBiServ (the Bielefeld Bioinformatics 
Server) (46), web services hosted by the DDBJ (DNA 
Data Bank of Japan) (47), and some tools of the 
EMBOSS suite (48) . On the local side, there are 
specialized components such as visualizer for phyloge
netic trees (49) and more generic ones like SIBs that 
realize user interaction or functionality for file manage
ment. Table 1 lists the fragment of the library that is 
relevant for our examples. 
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Table I: Exemplary set of services. Fragment of a component 
library that we used in the examples. The table lists the names of 
the building blocks (5IBs) along with function descriptions and 
selected service predicates 

SIB Description 

Archaeopteryx Displays a phylogenetic tree [49] . 
type:visualization, location:local, contributor: 
forester .org 

BLAST BLAST [63] against a DDBJ database. 
type:analysis, location:ddbj, contributor:ddbj 

ClustalW Runs ClustalW [64] . 
type:analysis, location:ddbj, contributor:ddbj 

Emma EMBOSS [48] interface to ClustalW. 

ExtractPattern 
type:analysis, location:ebi, contributor:emboss 
Extracts all parts of a string that match a regular 
expression. 
type:stringprocessing, location:local, contributor:jabc 

GetDDBJEntry Fetches an entry in at file format from a DDBJ 
database [51]. 
type:dataretrieval, location:ddbj, contributor:ddbj 

GetFASTA_ Fetches an entry in FASTA format from a DDBJ 
DDBJEntry database [51]. 

type:dataretrieval, location:ddbj, contributor:ddbj 
List2String Concatenates all entries of a list. 

type:stringprocessing, location:local, contributor:jabc 
MatchString Tries to match a string against a regular expression 

pattern. 
type:condition, location:local, contributor:jabc 

PutExpression Stores a user-supplied context expression or its 
value into the execution context. 
type:definition, location:local, contributor:jabc 

Putlnteger Provides an integer value. 
type:definition, location:local, contributor:jabc 

RepeatLoop Realizes a counting loop. 
type:loop, location:local, contributor:jabc 

ReplaceString Replaces substrings of a string with another 
character sequence. 
type:stringprocessing, location:local, contributor:jabc 

ShowlnputDialog Input dialog, provides a string. 
type:definition, location:local, contributor:jabc 

WSDBFetch Gets sequences from an EBI database [44,45] . 
type:dataretrieval, location:ebi, contributor:ebi 

In the jABC, the SIBs are displayed to the user in a 
taxonomic view, classified according to their position in 
the file system (by default) or to any other useful 
criterion, like the provider or the kind of service. The SIBs 
have user-level documentation, explaining what the 
underlying tool or algorithm does, that is derived 
directly from the provider's service descriptions. In 
addition, the SIBs provide information about their 
input and output types via a specific interface. This is 
already an integral part of the semantic information that 
helps to systematically survey large SIB libraries and it is 
used by our process synthesis and model checking 
methods. It is, in addition, possible to add arbitrary 
annotations to the SIB instances and by doing so 
providing further (semantic) information that is taken 
into account by our formal methodologies. 
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Service taxonomy. Service taxonomy for the services that we use in our examples. edited in OntEd. the ontology editing 
plugin of the jABC. 

The knowledge base that is needed for the process 
synthesis consists, furthermore, of service and type 
taxonomies that classify the services and types, respec
tively. Taxonomies are simple ontologies that relate 
entities in terms of is-a and has-a relations. These 
classifications provide sufficient information for our 
synthesis methodologies. 

We assume simple taxonomies for our examples, which 
have the generic OWL type Thing at the root. Going 
downwards, classifications are introduced, for instance 
refining the generic type into integers and strings, 
whereas the latter is further distinguished into align
ments, trees, sequences, tool outputs, and so on. Figure 4 
shows the service taxonomy for the services that we 
use in our examples, edited in the OntEd ontology editor 
plugin of the jABC. The corresponding type taxonomy 
classifying the involved data types is given in Figure 5. 

The basic input and output information for the services 
is defined in terms of the data types contained in the 
type taxonomy. Table 2 lists the set of data types that is 
relevant for our examples. The services are characterized 
by input-output-pairs of types, where the input or 
output may well be empty (as it is the case, e.g., for 
ShowlnputDialog and Archaeopteryx), respectively. 

Services may also provide multiple possible transforma
tions and thus achieve polymorphism. For instance, 
BiBiServ's ClustalW can process sequences in FASTA or in 
SequenceML format, and produces a FASTA or Align
mentML output, accordingly. 

Example I: a simple phylogenetic analysis workflow 
When developing bioinformatics analysis workflows, 
users often have a clear idea about the inputs and final 
results, while their conception of the process that 
actually produces the desired outputs is only vague. 
Figure 5 (upper left) shows a stub for a workflow: the 
start SIB (left) is an input dialog for a nucleic or amino 
acid sequence, which is followed by a SIB running a 
BLAST query with the sequence having been input in 
order to find homologous sequences. The workflow 
ends by invoking Archaeopteryx to display a phyloge
netic tree (right). The configuration of the SIBs is sound 
at the component level, as the Local Checker plugin 
(producing the small overlay icons top left) confirms. 
However, there are errors regarding the correct config
uration of the model as a whole, as the required input 
type for Archaeopteryx, some phylogenetic tree format, 
is not produced previously in the process. This is 
detected by our model checker GEAR (indicated by a 
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Figure 5 
Type taxonomy. Type taxonomy classifying the data types 
involved in our examples. 

Table 2: Exemplary set of types. The set of data types that was 
used in the example processes 

Type 

Accession 
AccessionList 

Accessions 

Alignment 
BlastResult 
ClustalWResult 
Counter 
DDBJEntry 
Limit 
Sequence 

Tree 

Description 

Single accession number. 
Iteratable (java.util.)list of accession 
numbers. 
Concatenation of accession numbers, 
separated by some character. 
Multiple sequence alignment. 
Tool output of BLAST. 
Tool output of ClustalW. 
Counter, i.e. positive integer value. 
DDBJ entry in flat file format. 
Limit, i.e. positive integer value. 
Single or multiple nucleic or amino 
acid sequences. 
Phylogenetic tree. 

red overlay icon with a white cross in the top right 
corner of the SIBs), that checks a temporal formula 
covering the following constraint (please refer to the 
Methods section for details on the model checking 
procedure): 

If a SIB uses an input of type tree, this input must have been defined before. ( . ) 

An experienced bioinformatician might be aware of the 
problem immediately, due to his familiarity with the 
involved tools. This is, however, only a small workflow. 
An automatic, semantically supported detection of 
misconfigurations and modeling errors unfolds its full 
potential when processes become more complex, and it 
is not feasible for the in silica researcher to dive into the 
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documentations of all services or to explore their 
behaviour by trial-and-error executions. 

Once detected, there are different ways to fix the 
problem. One can look for replacements for one of the 
involved SIBs that essentially compute the same results, 
but provide them in a data format that fits in the 
surrounding process. Another approach, assuming that 
the user has chosen these services for good reason, is to 
search for a sequence of additional services that resolve 
the mismatch and insert them into the process. Such data 
mediation sub-workflows are usually linear. They can 
consist of type conversions that simply adapt the 
involved data, or also of real computational services 
when the match can not be realized so easily. 

As a means for resolving the violation of property *, the 
example process model stub implies a process specifica
tion adequate as input for our workflow synthesis 
algorithm (please refer to the Methods section for 
details). In a high-level formulation, it reads: 

How can a phylagenetic tree be derived from a BLAST result? 

Utilizing the semantically annotated SIB collection and 
domain information from above, and computing the 
shortest service combination that satisfies the specifica
tion, our synthesis algorithm proposes the following 
simple four-step workflow for the above query (bottom 
left in Figure 6) : 

1. Extract the IDs of the hits from the BLAST result 
(using a regular expression) . 
2. Turn the matches into a comma-separated list. 
3 . Call DBFetch (fetching the corresponding 
sequences from a database). 
4. Run emma (computing a multiple sequence 
alignment and phylogenetic tree). 

The generated sequence of SIBs can now be inserted into 
the process stub and all parameters configured appro
priately. As Figure 6 (right) shows, neither the local nor 
the model checking does reveal errors any more. The 
process is now ready for execution. Figure 7 illustrates 
the corresponding runtime behaviour: the workflow 
starts by asking the user for a query sequence, then 
performs a similarity search, data retrieval and sequence 
analysis before it finally displays the resulting phyloge
netic tree. 

Example 2: Blast-C/ustalW workflow 
A simple phylogenetic analysis like in the previous 
example is an often recurring element of complex in silica 
experiments. In many cases, however, a customized, 
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Incomplete process 

dialoq: sequence input 

__ --def.ult~ 
BlastN Archaeopteryx 

Generated sequence 

from blastresult to tree: 

~-defaulH>Q -defaUIr-P@-default-P[j) 

get ID list list2string 
fetch sequences 

Figure 6 
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Complete process 

dialoa: sequence input ! lastN 
defaulr 

I 

Il 
Archaeo~ryX 

default 

\ 
a - defaulH;> -defaulr-P -dtfault-Pt:I) 

get ID list list2string 
fetch sequences 

emma 

Example I. A simple phylogenetic analysis process. The upper left shows an erroneous stub for a simple phylogenetic analysis 
process, it lacks a sequence of services leading from a BLAST result to a phylogenetic tree. Below is the appropriate sequence 
of services that is proposed by our synthesis algorithm. The complete and correct analysis process is shown on the right. 

Figure 7 

First execution step: input of the query sequence 

Q-Ok_. Il 
dlaloa: sequence Input I"~ ill. aslP Archaeo \rvx 

default defaufr 

I \ 
([)-d'f'UI..pO-d'f'UI~@-d'f'UI,.p(jJ 

get ID lisl liu2string fetch sequences .mm~ 

Last execution step: display of the phylogenetic: tree g-Ok_. 
BlilStP 

dialoa: ngufnn input ) .,~ 
def;Ju lt chf ilUl1 

I . \ 
([)-d'f'U~-d'f'UI~_d"'u4 

get ID list Iist2string fetch sequences emma 

~ 1'II .. l bond1 leng!hs 

~ lhow ... qnalTllls 

o lhowlIIXQIlomy 

D wppon vllkln 

colDr apecoas 

o shownocle boxell 

unco .. p ...... 

Insert sequence 

Please insen a query sequence. 

:PlEAPKCAPCVGlVRDGCGCCKVCAKQl 

( Abbrechen ) ( OK 

ATV 4.00 AlPHA 5 (06/01/2007) [ATV] 

Execution of example I. Execution of the simple phylogenetic analysis process. The execution begins with an interactive 
step, where a dialog is displayed in which the query sequence is entered (top) . After some non-interactive steps, the finally 
available phylogenetic tree is displayed using Archaeopteryx (bottom). 
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more specific processing of intermediate results is 
required, like in the Blast-ClustalW workflow [50] that 
is one of the DDBJ's sample workflows for the Web API 
for bioinformatics [51]. It is the archetype for our second 
example. 

The Blast-ClustalW workflow [50] has the same inputs 
and outputs as the simple phylogenetic workflow from 
example 1: It finds homologuous sequences for an input 
DNA sequence via BLAST and computes a hypothesis 
about the phylogenetic relationship of the obtained 
sequences (using ClustaIW). The proposed analysis 
procedure consists of four major computation steps 
(the blue rectangles in Figure 8, whereby steps 2 and 3 
have to be repeated for each Blast hit that is taken into 
account (not evident from the figure): 

l. Call the Blast web service to search the DDBJ 
database for homologues of a nucleic acid sequence. 
The input is a 16S RNA sequence in FASTA format, 
the output lists the database IDs of the similar 
sequences and basic information about the local 
alignment, e.g. its range within the sequences. 
2. Call the GetEntry web service with a database ID 
from the Blast output to retrieve the corresponding 
database entry. 
3. Extract accession number, organism name and 
sequence from the database entry. Trim the sequence 
to the relevant region using the start and end 
positions of the local alignment that are available 
from the BLAST result. 
4. Call the ClustalW web service to compute a global 
alignment and a phylogenetic tree for the prepared 
sequences. 

Due to the loop that is required for repeating steps 2 and 
3 a certain number of times, this process can not be 
created completely by our current synthesis algorithm, 
which is restricted to produce linear sequences of 
services. It is, however, possible to predefine a sparse 
process model in which the looping behaviour and other 
crucial parts are manually predefined, and to subse
quently fill in linear parts of the process automatically. 

Figure 8 
Blast-ClustalW workflow. Blast-ClustalW workflow as 
sketched by the DDBJ (following [SO]) . 
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Figure 9 (top) shows an advanced, but still incomplete 
model of the Blast-ClustalW workflow. Like in example 
1, the process begins with displaying a dialog for 
entering the query sequence (start SIB top left). The 
result of the subsequent Blast web service invocation is 
split into the separate results (SIB get blast hits). Before 
the loop is entered, a maximum is set for number of hits 
that is to be considered in the analysis. For this defined 
maximum number of hits, the loop's body is executed. 
The current hit is split into its seperate elements, e.g. 
accession number, score, and the start and end position 
of the local alignment that produced by BLAST within 
the whole sequence. The accession number is used to 
check whether the sequence corresponding to the current 
hit has already been added to the analysis in order to 
avoid duplicate sequences. If a duplicate is detected, the 
maximimum number of hits is incremented, so that 
another hit can be taken into account. Otherwise, the 
corresponding entry is fetched from the database using 
the DDBJ's GetEntry web service (SIB getFASTA_DDB
JEntry). The SIBs extract organism and extract sequence 
are then applied to extract the corresponding informa
tion from the DDBJ entry by means of a regular 
expression. The sequence is formatted, i.e. whitespaces 
removed, and the start and end positions that are known 
from the BLAST result are used to cut the subsequence 
that actually contributed to the local alignment during 
the BLAST search. The prepared sequence is then added 
to the analysis (SIB append sequence). Note that in 
contrast to the original representation of Figure 8, we see 
here the structure and the data-driven loops of the actual 
workflow. Finally, the resulting phylogenetic tree is 
displayed by Archaeopteryx. 

At this state of the process, the local checking of the 
components detects no errors, but the model checker reveals 
problems (overlay icons top right): As in the previous 
example, the SIB Archaeopteryx uses a variable tree, which is 
not defined before. Moreover, the SIBs extract organism and 
extract sequence use a variable ddbjentry, which is defined 
with an incompatible type. Details on the model checking 
procedure can be found in the Methods section. 

To resolve the first problem, we proceed similar as in 
example 1, by providing the synthesis algorithm with a 
temporal formula that asks for a sequence of services that 
takes a set of sequences as input (which is the last 
intermediate result that is computed previous to 
Archaeopteryx in the process) and produces a phyloge
netic tree (the input that Archaeopteryx expects). As 
Figure 9 (center) shows, a single call to emma is one of 
the (shortest) sequences that fulfils this request. 

The second problem is the presence of a type ddbjfasta 
where the type ddbjentry is expected. To solve this 
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Incomplete process 

~--Ok~lil ••• ' _. default.....:;> 0"= - -defaulr-:;'> c:J ,- default • _ ._. -eXi~~rr g 
dialoa, seguence input get blast hits Sl!t maxhits repeat m~it~es h 

BlastN -r --"'\: Arc aeopteryx 
default 

~ 
0"= - default-7.> 

cut su~quence 
default 

I 
format sequence 

append sequence 

extract sequence extract organism 

default next 

I 
maxhits~ split hit info elements 

true default 

~t 
1i111l.4:--fa,se- . ? 

getFASTA_DDBJEntry 
duplicate? 

Generated sequences 

from sequences to tree : from ddbjentry to ddbjfasta : from ddbjaccession to ddbjfasta: 

emma 
getDDElJEntry 

Complete Process 

~--Ok~IiIIIl.-defau't--7> 0"= -defaUIr-7>~ c:::J --default • --exit-7>~-defaul~ 
dialoa: sequence input get blast hits set IInaxhits repeat m~it~mes emma h 

BlastN -r --" Arc aeopteryx 
default default next 

;- - --I 

: ~ ~default-7.> c:::J 

~ I 
<ut s';-+~en<e append sequence maxhits~ split hit injo elements 

default true default 

I ~~ 
o,,= +-default- o~= +-default-~J I~default-lillil+--false-. ? 

format sequence extract sequence extract organism getDDBJEntry duplicate? 

Figure 9 
Example 2. The more complex Blast-ClustalW workflow. The model checking detects three errors for the original process (top) . 
To bridge the gap between the available sequences and the required tree, the emma web service can be inserted, computing a multiple 
alignment and providing the corresponding phylogenetic tree. No mediating sequence can be found that converts DDBJ entry into 
FAST A format, but it is possible to get this format when the also available DDBJ accession number is used as input (center). The 
complete process (bottom) has an additional SIB emma and has substituted getFASTA_DDBJEntry by getDDBJEntry. 
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mismatch, we ask our synthesis algorithm for a way to 
derive the latter from the former. It returns with an 
empty result (see Figure 9, center), which means that our 
SIB collection can not provide an appropriate sequence 
of services. We exclude the type ddbjfasta and the SIB 
getFASTA_DDBJEntry, by which is it produced, and try 
our luck with the type ddbjaccession, which has been 
defined last, as starting point for the synthesis. The 
answer is a service sequence consisting of the SIB 
getDDBJEntry (center), by which we can now substitute 
the improper data retrieval SIB from above. 

The bottom of Figure 9 shows the completely assembled 
process. We omit to demonstrate its execution beha
viour, as it is very similar to that of example l. 

Discussion and perspectives 
By means of two examples, the previous sections 
demonstrated the local checking, model checking and 
workflow synthesis methodology that is currently avail
able in the jABC framework and thus part of Bio-jET!. 
The Local Checker plugin provides domain-independent 
functionality and is already conveniently integrated in 
the framework. We are now working on a user-friendly 
integration of the domain-specific model checking and 
synthesis techniques, especially with regard to the 
bioinformatics application domain. This ongoing work 
spans three dimensions, which are discussed in the 
following sections: domain modeling, model checking, 
and model synthesis. 

Domain modeling 

This dimension is the heart of making information 
technology available to biologists, as it enables them to 
express their problems in their own language terms - on 
the basis of adequately designed ontologies. It raises the 
issue where the domain knowledge ideally comes from. 
It is, of course, possible for each user to define custom 
service and type taxonomies, allowing for exactly the 
generalization and refinement that is required for the 
special case. However, as the tools and algorithms that 
are used are mostly third-party services, it is desirable to 
automatically retrieve domain information from a public 
knowledge repository as well. Therefore we plan to 
incorporate knowledge from different publicly available 
ontologies, like BioMoby (17,18) and SSWAP [20,21), 
and to integrate it into the service and type taxonomies 
for use by our synthesis methodology. 

It is, of course, also necessary that the services themselves 
are equipped with meta-information in terms of these 
ontologies. Again, we are looking at BioMoby with 
interest: numerous institutions have registered their web 
services at Moby Central, describing functionality and 
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data types in pre-defined structures using a common 
terminology. Although BioMoby does not yet use 
standardized description formalisms like SAWSDL, it is 
already clear that there is semantic information available 
that we can use as predicates for automatic service 
classification. 

Furthermore it will be interesting to consider the 
incorporation of more content-oriented ontologies like 
the Gene Ontology (22) or the OBO (Open Biomedical 
Ontologies) (23) into our process development frame
work. This would allow the software to not only support 
the process development on a technical level, but also in 
terms of the underlying biological and experimental 
questions. Additional sources of information, like the 
provenance ontologies of [52) could be also easily 
exploited by our synthesis and verification methods. 

Model checking 

This dimension is meant to systematically and auto
matically provide biologists with the required IT knowl
edge in a seamless way, similar to a spell checker which 
hints at orthographical mistakes - perhaps already 
indicating a proposal for correction. Immediate concrete 
examples of detectable issues are (cf. the examples 
presented earlier): 

• Missing resources: a process step is missing, so that 
a required resource is not fetched/produced. 
• Mismatching data types: a certain service is not able 
to work on the data format provided by its predecessor. 

However, this is only a first step. Based on adequate 
domain modeling, made explicit via ontologies/ taxo
nomies, model checking can capture semantic properties 
to guarantee not only the executability of the biological 
analysis process but also a good deal of its purpose, and 
rules of best practice, like: 

• All experimental data will eventually be stored in 
the project repository. 
• Unexpected analysis results will always lead to an 
alert. 
• Chargeable services will not be called before 
permission is given by the user. 

On a more technical side, model checking allows us also 
to apply the mature process analysis methodology that 
has been established in programming language compi
lers in the last decades [53) and has shown to be 
realizable via model checking [54,55) . By providing a 
predefined set of desirable process properties to the 
model checker we plan to achieve a thorough monitor
ing of safety and liveness properties within the 
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framework. Similar to the built-in code checks that most 
Integrated (Software) Development Environments pro
vide, this would help Bio-jETI users to avoid the most 
common mistakes at process design time. In addition, 
the list of verified properties is extendable by the user, 
and can thus be easily adapted to specific requirements 
of the application domain. 

Model synthesis 
This dimension can be seen as a step beyond model 
checking: The biologist does not have to care about data 
types at all - the synthesis automatically makes the 
match by inserting required transformation programs. 
This is similar to a spell checker which automatically 
corrects the text, thus freeing the writer from dealing with 
orthography at all. (In our model-based framework. 
things are well-founded, without the uncertainties of 
natural language. Please do not be put off by this 
example because of annoying experiences with spell 
checkers!) 

The potential of this technology goes even further: 
ultimately, biologists will be able to specify their 
requests in a very sparse way, e.g. by just giving the 
essential corner stones, and the synthesis will complete 
this request to a running process. In our text writing 
analogy, this might look like a mechanism that 
automatically generates syntactically and intentionally 
correct text from text fragments according to predefined 
rules that capture syntax and intention. For instance, the 
fragments "ten cars", "1000 Euro for shipping", "19% 
value added tax", "four days" and "Mercedes", may be 
sufficient to synthesize a letter in which a logistics 
company offers its services to Mercedes according to a 
specific request. 

Back to biology, the fragments "DNA sequences", 
"phylogenetic tree", and "visualization", may automati
cally lead to a process that fetches EBI sequence data, 
sends them in adequate form to a tool that is able to 
produce a phylogenetic tree, and then transfers the result 
to an adequate viewer. Typically there are many 
processes that solve such a request. Thus our synthesis 
algorithm provides the choice of producing a default 
solution according to a predefined heuristics, or to 
propose sets of alternative solutions for the biologist to 
select. 

Conclusion 
We demonstrated by means of two examples how 
Semantic Web technology together with an adequate 
domain modelling frees in silica researchers from dealing 
with interfaces, types, and inconsistencies. In Bio-jETI, 
bioinformatics services can be graphically combined to 
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complex services without worrying about details of their 
interfaces or about type mismatches of the composition. 
These issues are taken care of at the semantic level by 
Bio-jETI's model checking and synthesis features. When
ever possible, they automatically resolve type mis
matches in the considered service setting. Otherwise, 
they graphically indicate impossible/incorrect service 
combinations. In the latter case, the workflow developer 
may either modify his service composition using 
semantically similar services, or ask for help in develop
ing the missing mediator that correctly bridges the 
detected type gap. Newly developed mediators should 
then be adequately annotated semantically, and added 
to the service library for later reuse in similar situations. 

In the first example we developed a simple phylogenetic 
analysis workflow. The model checker detected a SIB 
trying to access a data item that has not been defined 
previously in the workflow, which indicates that 
necessary computation steps are missing. We used the 
synthesis algorithm to generate the sequence of these 
missing steps. 

The second example dealt with a more complex 
phylogenetic analysis workflow, involving several local 
steps processing intermediate data. Here, the model 
checker did not only detect missing computations, but 
also a type mismatch that lead to an incorrect process 
model. Again, the synthesis algorithm was used to find 
an appropriate intermediate sequence of services and an 
alternative to the erroneous part of the workflow, 
respectively. 

We believe that our model checking and synthesis 
technologies have great potential with respect to making 
highly heterogeneous services accessible to in silica 
researchers that need to design and manage complex 
bioinformatics analysis processes. Our approach aims at 
lowering the required technical knowledge according to 
the "easy for the many, difficult for the few" paradigm [56). 
After an adequate domain modeling, including the 
definition of the semantic rules to be checked by the 
model checker or to be exploited during model synth
esis, biologists should ultimately be able to profitably 
and efficiently work with a world-wide distributed 
collection of tools and data, using their own domain 
language. This goal differentiates us from other workflow 
development frameworks like Kepler (3) or Triana (5), 
which can be seen as middleware systems that facilitate 
the development of grid applications in a workflow
oriented fashion. They require quite some technical 
knowledge. In Kepler, for instance, the workflow design 
involves choosing an appropriate Director for the 
execution, depending on, e.g., whether the workflow 
depends on time, requires multiple threads or 
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distributed execution, or performs simple transforma
tions. These aspects have to be taken into account for 
efficient execution of complex computiations, but not 
necessarily when dealing with the actual composition of 
services. This way, these frameworks address a bioinfor
matics user, and not the biologists themselves. 

We believe that Bio-jETI's control flow-oriented 
approach is suitable for adressing non-IT personnel: it 
allows them to continue to think in "Dos" and "Dont's", 
and steps and sequences of action in their own terms at 
their level of domain knowledge. In contrast, dataflow
oriented tools like Kepler (3), Taverna (4), or Triana (5) 
require their users to change the perspective to a resource 
point of view, which, in fact, requires implicit (technical) 
knowlegde to profitably use them. 

The challenge for us is now to integrate the available 
semantic information and the semantically aware tech
nologies into our process development framework in the 
most user-convenient way. One central issue is to find an 
appropriate level of abstraction from the underlying 
technology: we would like to provide a set of general, 
pre-defined analyses and synthesis patterns, but at the 
same time give experienced users a way to add 
specialized specifications. Another issue is how to 
integrate semantic information about the application 
domain and its services into this (partly) automated 
workflow development process, since such knowledge is 
essential to achieve adequate results. 

On the one hand, this requires predicates characterizing 
the single services, i.e. their function and their input/ 
output behaviour. On the other hand, taxonomies or 
ontologies are required which provide the domain 
knowledge against which the services (their predicates) 
are classified. The majority of this information has to be 
delivered by the tool and database providers, covering 
semantics of services as well as semantics of data. The 
convenience on the client side will increase as the 
Semantic Web spreads and new standards become 
established. 

Methods 
This section describes the methodologies for process 
model verification and synthesis that we used for 
developing the presented examples. 

Process model verification via model checking 
Model checking provides a powerful mechanism to 
analyze and verify static aspects of (arbitrary) models. 
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Generally speaking, it can be used to check whether a 
model M satisfies a property qJ, usually written as 

M 1= 4> 

where qJ is expressed in terms of a modal or temporal logic. 
Applying model checking to process models can help to 
detect problems in the design phase. It is in particular useful 
to analyze aspects of the whole model, where syntax or type 
checking at the component level is not sufficient. Examples 
for errors whose detection requires awareness of the whole 
model are manifold, ranging from undefined variables or 
simple type mismatches to computational gaps and incom
plete processes. The list of properties against which the model 
is evaluated is easily extendable, since including a new 
constraint in the verification only requires to write a modal or 
temporal formula expressing the property of interest. 

The model checker GEAR (39) allows to evaluate static 
properties of models within the jABc' basically using the 
Computation Tree Logic (CTL) [57) to formulate appropriate 
constraints. CTL is a temporal, branching time logic designed 
to reason about models represented as directed graphs, and 
whose syntax can be described by the following BNF: 

tjJ ::= p l -,tjJ I tjJ v tjJ I AF(tjJ ) I EF(tjJ ) I AG(tjJ) I EG(tjJ ) I AU(tjJ,tjJ ) I EU(tjJ,tjJ ) 

Thus, in addition to the operations and operands known 
from propositionallogic, it comprises the modalities Ap, 
EP, AC, EC, AU, and EU. The As and Es are path
quantifiers, providing a universal (A) or existential (E) 
quantification over the paths beginning at a state. F, C, 
and U express linear-time modalities for the path, 
specifying that qJ must hold finally (F), generally (C), 
or that qJl has to be valid until qJ2 finally holds (U). For 
example, the CTL formula 

AF(Rome) 

expresses that on all paths through the model that begin 
at the considered state, finally Rome is reached. As 
another example from routing, the formula 

EC(free) 

states that there is a path that is completely (globally) 
free of charge. That all routes should be toll-free until a 
particular place, say Rome, is reached, can expressed 
using the Until operator: 

AU(free, Rome). 

GEAR extends this variant of CTL further and includes 
additional overlined modalities representing a backward 
view, i.e. considering the paths that end at a given state. 
We apply it to our (bioinformatics) process models, the 
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Service Logic Graphs (SLGs), where the entire processes 
are the models, the individual activities (the services, in 
the form of SIBs) are the nodes, and the edges express the 
conditional flow of control. As both nodes and edges are 
labeled, these models are formally so-called Kripke 
Transition Systems. 

Basis for the analysis of processes are the atomic 
propositions, simple properties that hold for single 
nodes of the process model. For instance, we can add 
an atomic proposition use (x) to a SIB to express that a 
data item x is used by the service, or def(x) to state that it 
is produced (defined). Furthermore we can assume to 
have information about the types of the input and 
output data, and denote that a used or defined item x is 
of type y by type(use(x)) = y and type(def(x)) = y, 
respectively. Figure 10 shows the atomic propositions of 
the SIBs in example l. 

As we have seen in the examples, a model property of 
interest for processes orchestrated from remote services 
could be 

if a service uses an input x, it must have been defined before. 

The dependence between the two parts of this require
ment is a usual Boolean implication, the temporal 
constraint in the second part is expressed by the 
backward CTL modality AF: 

use(x) ~ AF( def(x)). 

Example 1, process stub 

e~blastresu lt) 
def(seq uence) pe(def(blastresult))-blastresul 

e(def(se uence»=se uence ---ok------?> pe{use(sequence»=sequence 

dialoq: sequence input 
use(sequence) 

BlastN 

Example 1, complete process 

ef(blaSlresult) 
d ef(seq uence) pe(d ef(blascres ult) = b lasrre sui 

pe(def(sequence»=sequence --ok~ pe{use(sequence))=sequence 

di.dog: sequence input 
use{sequence) 

BlastP 
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While this is sufficient to ensure that the variable x has 
been defined at all, it does not say anything about type 
correctness. Since the name x, however, could be used to 
refer to different data throughout the process, it is 
reasonable to extend the above constraint and to include 
the type of the used variable. In example 1, we 
considered, for instance, a variable of tree of type Tree: 

If a service uses a data item treeof type tree, treemust have 
been defined before with precisely this type, without having 
been overwritten since. 

If a service uses a data item tree of type tree, tree must have been defined before with precisely this type, 

without having been overwritten since. 

The corresponding CTL formula is: 

(use(tree) A type(use(tree)) = tree) => AU(~def(tree),def(tree) A type(def(tree)) = tree) 

The model checking reveals a property violation, as can 
be seen in Figures 6 (top left) and 1 0 (top): the 
rightmost SIB is marked by a red overlay icon in the 
upper right corner, indicating that the property is 
violated at that node. The reason is that the process 
does not provide the appropriate input type for the tree 
visualizer. The same formula can be applied analogously 
to other variables with other types, as we did, for 
instance, in our second example. 

Process synthesis 
By process synthesis we refer to techniques that construct 
workflows from sets of services according to logical 

------default------

Archaeopteryx 

\ 
def(alignment) 'Il 

u se!~~~~(id s)}= ids30mma ~:e~~~~~~~:~~~ tree 
-defauf.r-7> e(def(sequences»=sequences --defaulr~ type(use(sequences»=sequence 

def(sequences) def(tree) 

get ID list 
==-----' IYpe(def(alignmenQ)=alignment 

IIst2strlng fetch sequences 

Figure 10 
Atomic propositions of the SIBs in example I. Atomic propositions of the process stub and complete process 
model of example I. The propositions describe basic data flow properties. like defined and used variables and their types 
in terms of the data types of the taxonomy. 
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specifications [58). The algorithm that we use for our 
approach is based on a modal logic that combines 
relative time with descriptions and taxonomic classifica
tions of types and services (40) . It was implemented for 
the ABC and ETI platforms [43,59), and lately also used 
within the jABC framework. We applied it, for instance, 
in the SWS Challenge [13) to synthesize a mediator 
process converting between different message formats 
that were used by the web service providers in the 
scenario of [60,61) . 

In the following we describe how to apply our synthesis 
method, i.e. 1) how the domain knowledge forms a 
configuration universe, 2) how a modal logic can be 
used for workflow specification, and 3) what the 
algorithm can finally derive from this information. 
Note that we focus on usage here, details on the 
underlying logics and algorithms can be found in 
[40,59) . 
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The configuration universe 
The domain knowledge that has to be provided for our 
synthesis algorithm comprises basically three sets: types, 
services, and transitions. The set of types that is available 
in the domain form the static aspects, i.e. type 
constraints that are used as atomic propositions by the 
underlying logic. The set of services represents the 
dynamic aspects of the domain, which can be used as 
actions by the logic. According to the observation that 
tools and algorithms can simply be seen as transforma
tions that take an input and produce a corresponding 
output [59), the set of transitions is given in triples of the 
form (input, service, output) . Together, types, services, and 
transitions form the configuration universe, in which 
each (finite) path represents a possible workflow. Figure 
illustrates a configuration universe that is implied by the 
SIBs and data types of our examples. The synthesis 
algorithm searches the configuration universe for a path 
satisfying a particular specification. 

---*[)i o· 
Archa@opmryx --*", 

O· ---- f) o· ExtractPattern A.coIe .. 
---- / essionList 

~ree ~ ~astResult Ust2String 

h?P.,,,,"" .mm~}!ASf .1 
0 ·« ClustaM' o~W5D8F"<h -0 

'I ....... Access ions 

ClustaJWR~lt E.~m/_ seq j nce ~ 
ExtractPaffem .. . a G@tfA.5TA_OO8jfntry 

WSD8f@uh 

\ ___ / h,m".",," ~ 
iDJ ______ 0 1 

GetDDBjEntry o<e-----Alignment Accession 

DDBJEntry 

Figure II 
Fragment of the configuration universe. Fragment of the configuration universe based on the services and types 
from Tables I and 2. Paths through the configuration universe represent possible sequences of services. Note that the 
configuration universe is able to express service polymorphisnns: the service ExtractPattern, for instance, can be applied 
to different inputs, and produces different outputs, accordingly. 
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In addition, the domain knowledge can be extended 
further by hierarchically organizing types and services in 
taxonomies, i.e. simple ontologies that relate entities in 
terms of is-a and has-a relations. The types and service 
taxonomies for our examples are given in Figures 4 
and 5. The taxonomies are considered by the synthesis 
algorithm when evaluating type or service constraints. 

The specification language 
Our workflow specification language, which we call SLTL 
(for Semantic Linear Time Logic), can be seen as a linear
time variant of CTL (see previous section) or interpreted 
version of the Propositional Linear Time Logic. SLTL is 
described by the following BNF: 

4> ::= true I te 1-, 4> 14> /\ 4> I (sJ4> I G4> I4>U4> 

where te and Se express type and service constraints, 
respectively. 

Thus, SLTL combines static, dynamic, and temporal 
constraints. The static constraints are the taxonomic 
expressions (boo lean connectives) over the types or 
classes of the type taxonomy. Analogously, the dynamic 
constraints are the taxonomic expressions over the 
services or classes of the service taxonomy. The temporal 
constraints are covered by the modal structure of the 
logic, suitable to express the order in which services can 
be combined. 

A formal definition of the semantics of SLTL can be 
found in (40). Intuitively, true is satisfied by every 
sequence of services, and te by every sequence whose first 
component has an input interface satisfying te. Negation 
and disjunction are interpreted in the usual fashion. The 
construct <se)CP is satisfied if the first component satisfies 
se' and the continuation of the service sequence satsifies 
cp. A formula of the form Gcp requires that cp is satisfied 
Generally, and cpUVf expresses that the property cp holds 
for all services of the sequence, Until a position is 
reached whare the corresponding continuation satisfies 
the property cp. 

It is convenient to derive further operators from these 
basic constructs. The boo lean disjunction 

and the Eventually operator 

F4> = def true U4> 

are two common examples. 
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Coming to concrete examples of workflow specifications, 
the synthesis algorithm can be used to generate linear 
workflows just on the basis of an intial type (e.g. 
BlastResult) and a final type (e.g. Tree) via the following 
SLTL formula: 

BlastResult /\ F(Tree) 

As we have seen in the workflow examples, already this 
simple query has a real practical impact, as it allows to 
autmatically resolve type mismachtes. 

As another example, it is possible to query for an explicit 
sequence of services, let's say an input dialog asking for 
an accession number followed by the retrieval of the 
corresponding sequence from a database and a BLAST 
query: 

4> = (InputDialog)(DBFetch)(BLAST)true 

Note that the service constraints in the formula are not 
concrete service names, but terms from the service 
taxonomy that define higher-order service categories. 
The synthesis algorithm takes care of instantiating the 
result with concrete services. 

The synthesis algorithm 
The synthesis algorithm interprets SLTL formulas over 
paths of the configuration universe, i.e. provided with a 
specification, it searches the configuration universe for 
(finite) corresponding paths. The algorithm is based on a 
tableau method, of which a detailed description is given 
in (40). It automatically generates all, all minimal, or all 
shortest service compositions that satisfy a specification, 
according to the selected synthesis mode. The algo
rithm's output is the basis for the final assembly of the 
corresponding SLG. 

The presently available implementation of the algorithm 
had been developed for use within the ABC, the jABC's 
predecessor that has been written in C++. In order to 
make it accessible from within the Java-based jABC 
framework we integrated it using the JETI technology. 
The complete synthesis process is then defined by an 
SLG, as shown in Figure 12: The main process (top) 
triggers the execution of the synthesis and displays the 
solution that is returned. Then, it assembles the SLG 
corresponding to this solution and displays it on a 
canvas, where it can be used for further process 
development. The actual synthesis is carried out by the 
sub-process (bottom): It captures the available domain 
knowledge by collecting information about the available 
services (SIB CollectModules) and types (LoadSymbo
licTypes) while evaluating the workflow specification 
(GenerateQuery). The collected information is stored in 
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Synthesis Parent 

~I-default----:p .... ... ... --default~ a--defilu't~1!!] 
Synthesis DisplayGraph Synth:2E)(ec DisplayGraph 

Synthesis 

~ _ _ default";> ~-d€fault--";>O-defaUJt--";>IIJ_d@faUJr~ f" --defaul~ 

CollectModules LoadSymbolicTypes GenerareQuery GenerateLola SynrhOneShorr PUjABC 

Figure 12 
Synthesis SLG. Complete synthesis process, realized as jABC SLG. The main process (top) triggers the execution of the 
synthesis and displays the solution that is returned. Then, it assembles the SLG corresponding to this solution and displays it on 
a canvas, where it can be used for further process development. The actual synthesis is carried out by the sub-process 
(bottom): It captures the available domain knowledge and evaluates the workflow specification. The collected information is 
stored in a specific database file and sent to the synthesis algorithm, which computes one shortest solution (SynthOneShort). 
The generated sequence of services is then converted into the jABC's graph format in order to allow further processing within 
the framework. 

a specific database file (GenerateLola) and sent to the 
synthesis algorithm, which computes one shortes solu
tion (SynthOneShort). The generated sequence of 
services is then converted into the jABC's graph format 
(PL2jABC) in order to allow further processing within 
the framework. 

We are currently re-implemening the algorithm in Java, 
making it suitable for seamless integration into the jABC 
framework. Also, we will add functionality for facilitat
ing the synthesis procedure for the user, for instance by 
providing a graphical interface supporting the domain 
modeling and formula patterns for the specification of 
workflows. Furthermore, we plan to incorporate alter
native methods for the composition of services, such as 
an algorithm based on MoSeL (62) or different tools that 
are available in the Plan-jETI collection of planning 
algorithms. 
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