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We propose two strategies to characterize organisms with respect to their metabolic capabilities. The first, investigative, strategy 
describes metabolic networks in terms of their capability to utilize different carbon sources, resulting in the concept of carbon 
utilization spectra. In the second, predictive, approach minimal nutrient combinations are predicted from the structure of the 
metabolic networks, resulting in a characteristic nutrient profile. Both strategies allow for a quantification of functional properties 
of metabolic networks, allowing to identify groups of organisms with similar functions. We investigate whether the functional 
description reflects the typical environments of the corresponding organisms by dividing all species into disjoint groups based 
on whether they are aerotolerant and/or photosynthetic. Despite differences in the underlying concepts, both measures display 
some common features. Closely related organisms often display a similar functional behavior and in both cases the functional 
measures appear to correlate with the considered classes of environments. Carbon utilization spectra and nutrient profiles are 
complementary approaches toward a functional classification of organism-wide metabolic networks. Both approaches contain 
different information and thus yield different clusterings, which are both different from the classical taxonomy of organisms. Our 
results indicate that a sophisticated combination of our approaches will allow for a quantitative description reflecting the lifestyles 
of organisms. 

Copyright © 2009 O. Ebenhoh and T. Handorf. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. 

1. Introduction 

Genome-scale metabolic networks ideally comprise all enzy­
matic reactions that occur inside the cells of a specific organ­
ism. With the ever increasing number of fully sequenced 
genomes (at present, over 700 genome sequences have 
been published and well over 2000 sequencing projects are 
ongoing, [1]) and the advent of biochemical databases such 
as KEGG [2] or MetaCyc [3] in which the knowledge about 
the enzymes encoded in the genomes is compactly stored, 
organism-wide metabolic networks have now become easily 
accessible for a considerable number of species. 

Whereas such models usually contain quite accurate 
information on the stoichiometry, that is the wiring, of 
the network, detailed knowledge on the kinetic properties 
of the enzymes catalyzing the involved reactions is still 
sparse. In the recent years, a number of analysis techniques 

have emerged which account for this fact and require only 
information about the stoichiometries of the participating 
reactions. A particularly useful framework is that of flux 
balance analysis which allows to infer optimal flux distri­
butions given the structure of the network and an output 
function which is to be optimized. For the network of E. coli, 
for example, this approach has successfully been applied to 
predict flux distributions under the premise that biomass 
accumulation is maximized [4]. Further, in many cases, flux 
distributions could successfully be predicted for knock-out 
mutants lacking a particular enzyme [5]. 

In the recent past, we have proposed a complementary 
strategy for the analysis of large-scale metabolic networks, 
the so-called method of network expansion [6]. In this 
approach, networks of increasing size are constructed start­
ing from an initial set of substrates (the seed) by stepwise 
adding all those reactions from the analyzed metabolic 
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network, which use as substrates only compounds present in 
the seed or provided as products by reactions incorporated 
in earlier steps. The set of metabolites contained in the final 
network is called the scope of the seed and comprises all those 
metabolites which the network is capable of producing when 
only the seed compounds are initially available. Scopes can 
be understood as functional modules of the network, and 
since their compositions depend on the underlying network 
structure, they link in a natural way structural to functional 
properties of metabolic networks. In Ebenhoh et al. [7], 
we have systematically compared one particular metabolic 
function, namely, the ability to incorporate glucose as sole 
carbon source into the cellular metabolism, across species. 

In this paper, we generalize these ideas and define for a 
large number of available genome-scale metabolic networks 
their carbon utilization spectra. Each spectrum characterizes 
the ability of a network to utilize different carbon sources. 
Groups of organisms with similar and different carbon 
utilization spectra are identified and compared with their 
evolutionary relatedness. 

In Handorf et al. [8], we have studied the inverse scope 
problem and investigated whether it is possible to calculate 
from a given network structure a minimal set of seed 
compounds such that the corresponding scope contains a 
certain set of target metabolites. For the target, we have 
chosen important precursor molecules which are ubiquitous 
and essential for an organism's survival. By a systematic com­
parison of predicted nutrient requirements, we could identify 
global resource types and characterize each organism specific 
network by the degree of dependencies on each nutrient type. 
Here, we relate the two types of functional characterizations 
of organism-wide metabolic networks given by their nutrient 
profiles and their carbon utilization spectra, respectively. For 
this, we cluster organisms with similar predicted nutrient 
requirements and related carbon spectra and build phylo­
genetic trees based on the respective dissimilarities. This 
approach has been introduced in Aguilar et al. [9], where 
the so-called phenetic trees were constructed based on the 
reaction content present in the central metabolic pathways 
and compared to the classical 16S rRNA phylogeny. It 
was shown that within these phenetic trees, often those 
organisms are grouped which display a similar lifestyle, such 
as obligate parasitism. While these trees were constructed by 
comparing the structure of selected metabolic pathways, we 
attempt to build phylogenies based on functional properties 
of the complete organism-wide metabolic network. We 
generalize the ideas presented in Aguilar et al. [9] and 
outline how functional characterizations of networks may 
be put into relation with the particular lifestyles of the 
corresponding organisms. 

2. Carbon Utilization Spectra 

For a given metabolic network, the scope of a particular 
combination of seed compounds defines what the network 
is in principle, by its stoichiometry, able to produce if 
exactly the seed compounds are available. By the inclusion 
of cofactor functionality (see methods for details), the 
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interpretation of a scope as the biosynthetic capacity of 
an organism becomes realistic. An interesting question is 
how an organism may utilize a particular carbon source. 
We describe this capability using the concept of a scope 
by defining the seed as the set of all noncarbon-containing 
compounds appearing in the metabolic network of the 
organism under investigation. Additionally, we add to this 
set one particular carbon-containing metabolite. The scope 
of this seed describes the set of products that the organism is 
capable of producing when only the single carbon source is 
available but inorganic material is abundant. The description 
of an organism's metabolic capacity on a particular carbon 
source does not take into account whether this carbon source 
can actually be transported into the cell or only appears as an 
intermediate substrate of other biochemical processes. 

For our analysis, we have retrieved 447 organism-specific 
metabolic networks from the KEGG database (see methods 
for details on the retrieval process). In order to characterize 
the ability to incorporate carbon sources, we have identified 
all metabolites which contain besides carbon only the 
chemical elements hydrogen and oxygen, resulting in a list of 
935 simple carbon sources (the complete list is provided in 
Supplementary Material doi: 10.1155/2009/570456). Apply­
ing the method of network expansion with the modification 
to allow for cofactor functionalities, we have calculated 
for each network and each carbon source the number of 
metabolites which can additionally be synthesized when only 
the carbon source and inorganic material are abundant. For 
a particular organism 0 and a specific carbon source c, we 
denote this number by a? and call it the biosynthetic capacity 
of the organism 0 on the carbon source c. Interestingly, from 
248 of the considered carbon sources, no organism is able 
to synthesize any new compounds. For these carbon sources, 
a? = 0 for all organisms O. 

In order to study how well different carbon-containing 
compounds may be metabolized by the various organisms, 
we characterize the remaining 687 carbon sources by two 
characteristic values. The maximum value of the biosynthetic 
capacities for organisms on a particular carbon source 
describes whether this carbon source is at all useful to at 
least one organism. The mean biosynthetic capacity when 
averaged over all organisms, on the other hand, describes the 
general utilizability of that carbon source. Figure 1 displays 
the maximal capacities for the various carbon sources. The 
carbon sources have been sorted by decreasing maximal 
capacity. Interestingly, the average capacity (red line) is not 
directly related to the maximal capacity. Apparently, while 
some carbon sources can be extremely well utilized by some 
specialized organisms, others can be utilized by a wider 
range of organisms. The highest biosynthetic capacity is 
observed for maltose. From this carbon source, E. coli may 
synthesize 348 new compounds. Also other common sugars, 
such as glucose, fructose, lactose, sucrose, or ribose, display 
a high maximal capacity in some organism. The highest 
biosynthetic capacity of a carbon source when averaged over 
all organisms is exhibited by pyruvate, from which on average 
131 new metabolites may be produced. Remarkably, most 
metabolites occurring in the citric acid cycle, such as citrate, 
isocitrate, succinate, fumarate, malate, and oxaloacetate, also 
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Maximum and average biosynthetic capacities for carbon sources 
350~==~----~--~----'---~r----r---, 

300 

i? 250 
'0 
'" ~ 
13 200 

."l 
t) 

-£3 150 
~ o 

i:iS 
100 

50 

100 200 300 400 

Carbon sources 

Maximum capacity 
- Average capacity 

500 600 

FIGURE 1: Biosynthetic capacities for different carbon sources. The 
blue line displays the maximum capacities found for an organism. 
The carbon sources are arranged along the x-axis such that the 
maximal capacities appear in a decreasing order. The red line 
indicates the capacities for the carbon sources averaged over all 
considered 447 organisms. 

display a very high average biosynthetic potential, with over 
110 compounds being producible from them by an average 
organism. This reflects the central role of these metabolites 
as precursor molecules for several amino acids and the 
pyrimidine nucleotide synthesis pathways. These metabolites 
give rise to the highest peak of the red curve in Figure 1. In 
contrast, from sugars, only fewer new compounds may on 
average be produced. For example, from glucose or maltose, 
the average organism may produce 86 new compounds and 
from sucrose only 62. 

A sharp drop in maximal capacities can be observed, 
allowing to separate the carbon sources in two groups, 
a group displaying low capacities and a group of carbon 
sources for which there exists at least one organism that 
can utilize it to produce a considerable number of new 
products. In fact, for 491 carbon sources, there exists no 
organism able to produce more than 50 new compounds 
from it. The question arises whether simple chemical 
properties of the metabolites are responsible for this clear 
separation. Interestingly though, closely-related compounds 
may belong to different groups. For example, the L- and 
D-isoforms of arabinose exhibit maximal capacities of 341 
and 2 compounds, respectively. This demonstrates that the 
separation and the biosynthetic capacity in general are not 
exclusively determined by chemical properties but rather 
reflect aspects of the biological roles of the metabolites. This 
finding is in agreement with our previous results obtained 
for the global metabolic network comprising all biochemical 
reactions found in the KEGG database [10]. 

Analogous considerations can be performed for the 
different organisms. The maximal biosynthetic capacity is 
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obtained from the carbon source that is ideally suited for 
a particular organism. On the other hand, the capacity 
averaged over all carbon sources characterizes the flexibility 
of an organism in terms of carbon usage. Figure 2 shows 
the biosynthetic capacities for all considered organisms. The 
blue line depicts the capacity an organism exhibited for the 
carbon source it may metabolize best. In analogy to Figure 1, 
the organisms are sorted such that the maximal capacity 
appears in a decreasing order. The decline of this curve is 
rather constant, in contrast to the maximal capacities for 
carbon sources. This implies that a separation of organisms 
into good and bad metabolizers is not easily possible, it rather 
appears that maximal capacities are approximately evenly 
distributed among the considered species. Interestingly, the 
capacity averaged over the carbon sources (depicted in 
red) shows a similar behavior as the maximal capacities, 
indicating that as a tendency organisms which can utilize 
a particular carbon source to produce a large number 
of new metabolites, can also efficiently use a number of 
alternative carbon sources. In fact, many strains of E. coli 
display both a high maximal capacity as well as a high 
average capacity (for strain K12 MG1655, the maximal and 
average capacities amount to 344 and 50.7, resp., for strain 
UTI89 348 and 48.8). This is not surprising since E. coli 
is a known generalist which can survive on many different 
carbon sources. Another interesting organism displaying a 
high maximal and average capacity (328 and 39.6, resp.) is 
Rhodococcus sp. RHA1, an organism with enormous catabolic 
potential that is able to live on contaminated soil [11 ]. 
An exception is Vibrio fischeri exhibiting a large maximal 
capacity by being able to produce 278 new metabolites 
from maltose, but a rather low average capacity of only 
9.5 compounds. Interestingly, this bacterium is commonly 
undergoing symbiotic relationships with various marine 
animals such as bobtail squid, however, it may survive in 
isolation on decaying organic matter [12, 13]. 

The question arises whether the different capacities are 
simply a consequence of the network sizes, which may vary 
considerably among organisms. To test this, we have plotted 
in Figure 2 the number of metabolites within each organism­
specific network as a thin black line. It can be observed 
that as a tendency the maximal capacity decreases with 
decreasing network size. However, the decrease in capacity 
is more pronounced, and the fluctuations in network size 
are relatively large, indicating that the network size is not 
the only determinant of the maximal capacity. The same 
finding is obtained when the numbers of reactions instead 
of the metabolites are used as a measure of network size (see 
Supplementary Figure SI). 

While the statistical properties of carbon usage of various 
organisms already allowed for some general statements, they 
are clearly insufficient to provide a detailed characteristics of 
an organism's ability to metabolize different carbon sources. 
For this, we introduce the concept of the carbon utilization 
spectrum of an organism. We define this spectrum as the set 
ofbiosynthetic capacities of the investigated organism for all 
usable carbon sources. In the following, we will focus on the 
196 carbon sources that may be used by at least one organism 
to produce more than 50 new metabolites. A complete list 
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Maximum and average biosynthetic capacities for organisms 
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FIGURE 2: Biosynthetic capacities for different organisms. The 
blue line displays the maximal capacities. The organisms are 
arranged along the x-axis such that the maximal capacities appear 
in a decreasing order. The red line indicates the normalized 
capacities for the carbon sources averaged over all considered 687 
carbon sources. Additionally, the network size of the corresponding 
organisms is shown as a thin black line (right axis). 

of these carbon sources is provided in the supplementary 
material. For reasons of illustration and to demonstrate 
how spectra may be investigated and compared individually 
by visual inspection, we depict in Figure 3(a) the carbon 
utilization spectra for the four organisms: Rhodococcus, V 
fischeri, Buchnera, and E. coli, which are all discussed in more 
detail throughout the paper. Each spectrum is a characteristic 
for a particular organism and describes which carbon sources 
the organism is able to incorporate into its metabolism. 
Clear differences between these spectra are directly visible. 
The generalist nature of E. coli and Rhodococcus is reflected 
by many large values; the high maximal but low average 
capacity of V fischeri is manifested by a small number of 
high peaks. In contrast, Buchnera, an intracellular parasite, 
may only utilize a few selected carbon sources and possesses 
a small maximal capacity. In general, a comparison of 
different carbon utilization spectra allows the identification 
of commonly utilizable resources and those that are specific 
to single organisms. 

A manual inspection is appropriate when focussing on 
a small number of organisms. For a large scale comparison 
of organisms as well as carbon sources, it is useful to 
simultaneously display all considered carbon spectra. This 
is performed as a matrix representation in Figure 3 (b). 
Here, columns correspond to organisms and rows to carbon 
sources. The shading indicates the biosynthetic capacity for 
a particular organism using a certain carbon source, ranging 
from white (capacity of zero) to black, indicating the highest 
capacity amounting to 348 newly producible compounds. 
Therefore, each column represents a spectrum like the 
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selected spectra depicted in Figure 3(a). For clarity, the 
representation is restricted to a selection of 101 organisms 
(the list is provided in the supplementary material). Further, 
the rows and columns of the matrix are arranged in 
such a manner that columns representing organisms with 
similar spectra are adjacent, and neighboring rows stand 
for carbon sources which may be used by a similar set 
of organisms. This matrix representation allows to easily 
identify universally usable carbon sources and those which 
can only be metabolized by a small group of organisms. The 
rows near the bottom of the graph as a tendency represent 
the universally usable sources, whereas those in the top 
half appear to be specific for the metabolism of only few 
organisms. Similarly, columns appearing on the left side of 
the graph as a tendency represent those organisms able to 
utilize a wide spectrum of carbon sources, while those near 
the right can only use a smaller set. 

The selected spectra depicted in Figure 3(a) suggest that 
carbon sources either allow for the production of a large 
number of new metabolites or may not be metabolized 
at all. This assumption is also supported by the matrix 
representation in Figure 3(b). The vertical stripes result 
from the fact that within each row only extreme values are 
assumed. The capacity is either zero or close to the maximal 
capacity for that organism. Intermediate values are almost 
never observed. As a consequence, it is possible to divide 
the carbon sources for every organism in two groups, a 
group from which the organisms metabolism may produce 
a substantial amount of new substances and a group which 
it may not use for the production of other compounds. 
Inspired by this observation, we define for each organism 0 
a binary carbon utilization spectrum represented by a binary 
vector bO which is defined by 

b~ = {I, 
0, 

.f ° 1 ° I ac > -maxac" 
2 c' 

else. 
(1) 

The advantage of defining the spectra in a binary way 
is that the criterion whether a carbon source may be 
metabolized by a particular organism is independent from 
the actual number of new compounds that may be produced 
from it and also independent from other influencing factors 
such as the network size. Based on these independent spectra 
characterizing organisms by their ability to use different 
carbon sources, we define a dissimilarity measure which 
quantifies the different resource utilization capabilities of two 
organisms. Our dissimilarity measure is based on the Jaccard 
coefficient. This coefficient measures the similarity of two 
sets A and B by the ratio lA n BI/IA u BI. It amounts to 
one for identical sets and to zero for completely disjoint sets. 
Let 0 1 and O2 denote two organisms and ba' and ba' their 
respective binary carbon utilization spectra. Converting the 
binary carbon utilization vectors bO into sets Ba = {c lb? = 

I}, we introduce the distance measure 

IBa' n Ba' I 
d~us (Or, 02) = 1 - I Ba, u Ba, I . (2) 

For identical carbon utilization spectra, d~us = 0, whereas for 
disjoint spectra, d~us = l. 
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FIGURE 3: Carbon utilization spectra. (a) For the four selected species, Rhodococcus, Vibrio fischeri, Buchnera, and E. coli (from top to bottom), 
the carbon utilization spectra are explicitly plotted. (b) The carbon utilization spectra for a selection of 101 organisms are depicted in matrix 
form. Each column corresponds to an organism, while each row corresponds to one carbon source. Each spot indicates the biosynthetic 
capacity for a particular organism on a specific carbon source, with darker spots representing a higher capacity. 

We have applied these dissimilarities to perform a 
hierarchical clustering algorithm which clusters together 
those organisms exhibiting a similar carbon utilization 
spectrum. The resulting cluster dendrogram, restricted to 
the group of gamma-proteobacteria, is depicted in Figure 4. 
This figure demonstrates how this subgroup of organisms 
can in principle be grouped into clusters within which species 
exhibit similar carbon utilization spectra. Various families of 
gamma-proteobacteria are indicated with different colors. It 
can be seen that organisms belonging to the same family are 
often grouped together, indicating that they display similar 
carbon utilization spectra. However, for most families, 
exceptions can be found, demonstrating that taxonomically 
closely related organisms may exhibit drastically different 
carbon spectra. 

All strains of Yersinia pestis are found in the vicinity of 
each other. Similarly, most strains of Escherichia coli are also 
located together. However, the strain E. coli APEC, which 
has been extracted from birds rather than humans, as is the 
case for all other E. coli strains included in our analysis, 

is grouped into a different cluster. This is surprising, since 
it was found in J ohnson et al. [14] that this particular 
strain shares many traits with human uropathogenic E. coli 
strains (UTI89, 536, CFT073) . Moreover, the authors showed 
a great sequence homology with 87-93% identity between 
these strains. These findings make it seem unlikely that the 
metabolism of E. coli APEC is so drastically different to other 
E. coli strains. Whether the differences in genomic sequence 
can really explain fundamentally different network functions 
or whether the available metabolic network of the APEC 
strain is simply under annotated remains to be investigated. 

Clustering organisms by their carbon utilization spectra 
may reveal fundamental differences in the lifestyle of related 
organisms. For example, Buchnera aphidicola, an intracellu­
lar parasite in aphids [15], is evolutionary closely related to E. 
coli. However, whereas E. coli is widely known as a generalist 
that can survive in many different environments, Buchnera 
has adapted a specialized lifestyle strongly dependent on its 
host. The various strains of Buchnera aphidicola are grouped 
closely together with other bacteria that have specialized to a 
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FIGURE 4: Hierarchical clustering of all gamma-proteobacteria bas,ed on their binary carbon utilization spectra. Families of gamma­
proteobacteria have been color coded to indicate taxonomic similariti,es of the considered organisms. 

particular host; the most similar carbon utilization spectra 
are exhibited by the Blochmannia species floridanus [16] 
and pennsylvanicus [17], obligately intracellular bacteria in 
carpenter ants. 

This detailed phylogenetic analysis demonstrates the 
usefulness of the concept of carbon utilization spectra. 
As expected, taxonomically related organisms often display 
similar spectra. However, since carbon utilization spectra 
characterize functional properties of metabolic networks, 
taxonomic closeness does not always result in similar carbon 
spectra. Rather, this new functional characterization allows 
to identify those particularly interesting cases in which sim­
ilar and evolutionarily related organisms exhibit a different 
functional behavior. 

It is an intriguing question whether organisms with 
similar carbon utilization spectra in general tend to inhabit 
similar environments. Since it is difficult to systematically 

characterize habitats and living environments, we have 
used two simple criteria to define four distinct classes of 
organisms. Firstly, we checked whether the enzymes catalase 
and superoxide dismutase are present in the organism's 
metabolism. With their ability to remove radical oxygen 
species, they are essential for survival in aerobic environ­
ments. Secondly, the ability to perform photosynthesis is 
characterized through the presence or absence of RuBisCO, 
the essential enzyme fixating one molecule of C02 to 
ribulose-l,5-bisphosphate to yield two molecules of phos­
phoglyceric acid. These classifications allow to define four 
categories of organisms with common lifestyle properties: 
organisms which are aerotolerant, potentially photosyn­
thetic' none, or both. 

To study how carbon utilization spectra relate to 
these four categories, we have colored the organisms in 
Figure 4 according to the four categories (see Supplementary 
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Figure S2). A visual inspection indicates that for organ­
isms with common lifestyle properties, the tendency to be 
grouped together is comparable to the tendency observed 
for taxonomically related organisms. To test whether this 
observation also holds true when considering organisms 
from all kingdoms of life, we visualize dissimilarities in 
carbon utilization spectra as a two-dimensional scatter plot 
by applying multidimensional scaling [18]. The resulting 
scatter plot based on the distances (2) is shown in Figure 5. 
In this plot, every circle represents one organism, and 
those organisms are placed in close proximity, which exhibit 
similar carbon utilization spectra. The different categories 
are represented by different colors, with red circles char­
acterizing aerotolerant organisms, blue circles potentially 
photosynthetic organisms. Species represented by black 
circles possess both properties, while species represented 
by grey circles possess none. A visual inspection hints at 
a nonrandom distribution of organisms sharing common 
lifestyle characteristics. The region near the top and the right 
of the figure contains a high concentration of aerotolerant 
organisms (red), and an agglomeration of potentially photo­
synthetic organisms (blue) is visible in the right half of the 
plane. To confirm this visual inspection, we have performed 
two statistical tests to demonstrate that the distribution of 
organisms within a particular class is indeed not random. 
First, we have compared the average distance d~us (2) between 
pairs of organisms within a class with the average distances 
calculated for a large ensemble of randomly selected subsets 
of organisms of the same size. If the classes indeed are 
clustered in particular regions of the graph, the observed 
average should be significantly lower than that observed in 
random subsets. However, it may still be possible that a 
class of organisms is concentrated in several regions that 
are far spread. To assess whether a class occupies locally 
concentrated regions, we have also tested whether small 
distances are over represented in the organism classes. For 
this, we have determined the fraction of distances between 
pairs of organisms within one class that is smaller than the 
10% quantile of distances between all pairs of organisms. 
We again compared this number to that obtained for a 
large number of randomly selected subsets of organisms of 
the same size. For both, the potentially photosynthetic and 
the aerotolerant, organisms, less than 0.1 % of randomly 
selected subsets of identical size displayed a smaller average 
distance or contained a larger fraction of small distances. The 
corresponding P-values are indicated in Table l. 

This finding demonstrates that the defined lifestyle 
categories are not randomly distributed among all organisms 
and strongly indicates that the functional classification by 
carbon utilization spectra indeed reflects similarities of the 
habitats of organisms. 

3. Nutrient Profiles 

Using exclusively stoichiometric information on the 
metabolic networks of various organisms, we have in 
Handorf et al. [8] predicted minimal combinations of 
nutrients which an organism needs in order to produce 
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FIG URE 5: Similarities of the carbon utilization spectra based on 
the Jaccard coefficient of the analyzed organisms are represented 
as a multidimensional scaling plot. Red nodes denote aerotolerant 
organisms (catalase and super oxide dismutase enzymes present), 
while blue nodes mark organisms capable of carbon fixation 
(RuBisCO present). Organisms capable of both are black, while 
organisms capable of none are grey. 

all precursors that are required for essential life-sustaining 
processes such as the production of proteins, RNA or 
DNA, lipids, and important cofactors. As a result, for 
each organism, a nutritional profile has been predicted 
describing the essentiality of predefined resource types for 
the organism's metabolism. 

Here, we compare these nutrient profiles of different 
organisms in order to obtain clusters of species possessing 
similar nutritional requirements. For this, the nutrient 
profile of an organism 0 is described as a vector pO. An entry 
p? equals zero if nutrient type r is not needed, and equals 
one, if it is essential, and lies between these two extremes 
if the nutrient type represents one of several alternatives 
(the exact definition is given in the Methods). We define 
the dissimilarity between two organisms with respect to their 
predicted nutrient profiles by 

(3) 

where the sum extends over all resource types. 
Similarly to Figure 3, the nutrient profiles can be con­

cisely represented as a matrix, which has been presented 
in Handorf et al. [8]. Also here, related organisms often 
possess similar nutrient profiles but exceptions exist. As 
also observed for the carbon utilization spectra, the closely 
related organisms E. coli and Buchnera aphidicola display 
significantly different nutrient profiles. In fact, the profile of 
Buchnera aphidicola predicts the essentiality of many nutri­
ent types which are considered as typical for intracellular 
symbionts or parasites [8]. The profile of E. coli, on the other 
hand, shows only a few essential nutrients along with the 
possibility to use many alternative resources. 
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TABLE 1: Statistics for distances calculated from the carbon utilization spectra (jaccard distance) . The ensembles of species belonging to 
common environmental categories are analyzed. The average distances and the fraction of small distances of the ensembles are compared 
to 10000 random sets of species of the same size as the corresponding ensembles. The expected value for the mean distance between two 
points is E(d) = 0.741, and the expected value for the fraction of small distances by definition is E(ne) = 0.1. The P-values were determined 
by comparing the distribution of the corresponding values for the random ensembles with the actually observed value for the selected 
ensembles. See Supplementary Figure S8 for more details. 

Ensemble (size) d 

RuBisCO (73) 0.687 
SOD+CAT (279) 0.668 
SOD+CAT+RuBisCO (41) 0.678 

In analogy to Figure 5, we perform a multidimensional 
scaling based on the distances dprofile (3). The resulting two­
dimensional scatter plot as shown in Figure 6. Again, each 
symbol represents one organism, and symbols with similar 
nutrient profiles are placed in close proximity. The color 
coding corresponds to that used in Figure 5. 

The distribution of colors in Figure 6 is remarkable. As 
a tendency, identically colored symbols tend to concentrate 
in certain regions of the graph. For example, the left 
quarter seems dominated by aerotolerant organisms (red), 
and many potentially photosynthetic organisms (blue) seem 
to concentrate to the left of the center. However, also in 
this representation, the separation is not complete, and also 
closely neighbored nodes with different colors are abundant. 
To confirm our assumption that species within the same 
lifestyle category tend to be concentrated, we have again 
tested the mean distances within categories as well as the 
abundance of small distances against a large number of 
random selected subsets of identical sizes. We find that 
for both categories, the potentially photosynthetic and the 
aerotolerant organisms, none of 10000 randomly selected 
subsets of identical size displayed a smaller average distance 
or contained a larger fraction of small distances. The corre­
sponding P-values can be found in Table 2. These findings 
indicate that the clustering based on nutrient profiles is even 
more pronounced than that based on the carbon utilization 
spectra. We conclude that also the functional classification 
based on predicted nutrient profiles reflects aspects of typical 
habitats or the environments of the organisms. 

4. Relating Network Structure, Function, 
and Phylogeny 

We have provided two different measures to characterize 
organisms by functional aspects of genome-wide metabolic 
networks. Both methods seem suited to reflect differences 
and common properties of the typical habitats of the 
organisms. It is important to assess how far the information 
gained by the two approaches is independent and how the 
results were possibly influenced by structural the similarities 
of the organism's networks or by taxonomic proximity. 

In the tree, we reconstructed from dissimilarities in 
carbon utilization spectra (see Figure 4), often pairs of 
closely related organisms were grouped together, however, 

P-value 
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.0048 

• • 

ne 

0.159 
0.158 
0.145 

• • 
• • 

P-value 
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.0452 
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• ,., 

FIGURE 6: Similarities of the nutrient profiles of the analyzed 
organisms are represented as a multidimensional scaling plot. 
(Catalase and super oxide dismutase enzymes present), while 
blue nodes mark organisms capable of carbon fixation (RuBisCO 
present) . Organisms capable of both are black, while organisms 
capable of none are grey. 

also frequently related organisms were placed in different 
branches and it seemed that often parasitic organisms are 
grouped in close vicinity. This observation is in agreement 
with that of Aguilar et al. [9], where a similar tendency was 
observed when clustering organisms with respect to their 
reaction content of particular pathways. In both cases, the 
reconstructed tree does not reflect the standard taxonomy 
tree derived from rRNA sequence homologies. To assess 
the effect of the phylogenetic relationship and the purely 
structural properties of the networks, we have performed 
a topological comparison of four trees reconstructed from 
different dissimilarity measures. As a reference tree reflecting 
the commonly accepted evolutionary relationships between 
organisms, we have retrieved the taxonomy tree from the 
NeBI database [19] and extracted the minimal subtree 
containing all our considered 447 organisms as leaves. We 
have further constructed a tree by considering exclusively 
structural aspects of the metabolic networks by considering 
only their reaction content. However, in contrast to Aguilar 
et al. [9], we did not restrict this to single pathways or a small 
number thereof, but included all metabolic reactions present 
in the KEGG database. These two trees, in the following 
termed evolutionary and structural tree, were compared to 
the two functional trees, derived by hierarchical clustering 
based on the dissimilarity measures (2) and (3), the former 
trees reflecting differences in carbon utilization spectra, 
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TABLE 2: Statistics for distances calculated from the nutrient profiles. The ensembles of species belonging to common environmental 
categories are analyzed. The average distances and the fraction of small distances of the ensembles are compared to 10000 random sets of 
species of the same size as the corresponding ensembles. The expected value for the mean distance between two points is E(d) = 16.56, while 
the expected value for the fraction of small distances by definition is E(ncJ = 0.1. As for Table 1, the P-values were determined by comparing 
the distribution of the corresponding values for the random ensembles with the actually observed value for the selected ensembles. See 
Supplementary Figure S9 for more details. 

Ensemble (size) d 

RuBisCO (73 ) 14.62 

SOD+CAT (279 ) 14.57 

SOD+CAT + RuBisCO (41) 14.52 

and the latter reflecting differences in nutrient profiles. 
Symmetric topological distances between these trees were 
calculated using the TREED 1ST program of the PHYLIP [20] 
software suite, which is based on a tree metric introduced by 
Robinson and Foulds [2 1]. 

The symmetric tree distances are summarized in Table 3. 
Interestingly, the evolutionary tree is topologically more 
similar to the structural tree than to each of the functional 
trees. This indicates that phylogenetic proximity is stronger 
correlated with structural similarity than with common 
functional properties. This observation can be explained by 
considering that small alterations in the network structure 
may result in large functional changes. 

Remarkably, when comparing the topologies of any of the 
functional trees with that of the structural tree, an even larger 
difference is observed. This also holds true when comparing 
both functional trees, derived from nutrient profiles and 
the carbon utilization spectra, respectively. This indicates 
that all three ways to describe metabolic networks contain 
fundamentally different pieces of information and that 
taxonomy, structure, and function of metabolic networks are 
only weakly correlated. 

Despite the differences manifested by the different tree 
topologies, the resulting functional classifications of the 
organisms nevertheless share common properties. We study 
how the distance measures are related by determining the 
number of organism pairs with a certain combination 
of dissimilarities. For dprofile and d~us ' the corresponding 
numbers are plotted as a two-dimensional histogram in 
Figure 7, where dark spots indicate a high abundance of 
organism pairs. The scale for the intensity has been chosen 
logarithmically to make the smaller values visible. Consid­
ering that carbon utilization spectra strongly distinguish 
between similar chemical compounds but are restricted to 
single resources and a certain type of molecules, whereas 
nutrient profiles are of a more general nature, a strong 
correlation cannot be expected. However, because the global 
nutrient types also contain various carbon sources, these 
two measures are not completely independent, which is in 
agreement with the observed weak correlation. 

Interestingly, organisms belonging to the same domain 
of life (archaea, eukaryota, and bacteria) also show a 
tendency toward clustering when multidimensional scaling 
is performed (see Supplementary Figures S3 and S4). 
However, the statistical significance is in general lower than 
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FIGURE 7: Comparison of the distance measures obtained from 
the nutrient profiles and the carbon utilization spectra. A two­
dimensional histogram for all pairs of organisms is shown. Black 
shading indicates a high number of organism pairs sharing 
certain values of the two distance measures. The shading scale is 
logarithmic to allow for the visibility of relatively small abundances 
of combinations of distances. 

for groups of organisms with common lifestyle properties 
(see Supplementary Tables SI and S2). This observation is 
in agreement with our findings that dissimilarities based 
on carbon utilization spectra or nutrient profiles result 
in a different phylogeny when compared to the standard 
taxonomy as derived from the NCBI database. 

To study how strong the functional distance measures 
(2) and (3) are correlated with the taxonomic proximity of 
organisms, we have defined a simple measure which crudely 
estimates the evolutionary distance. We denote this distance 
with dE ( Ob 0 2 ) and define it by the number of edges that lie 
on the shortest path from organism 0 1 to organism O2 on 
the taxonomy tree derived from NCB!. 

Figure 8 depicts two-dimensional histograms represent­
ing the correlation between the two functional distance 
measures d~us (Figure 8(a)) and dprofile (Figure 8(b )) and the 
evolutionary distance dE. For both functional distances, no 
strong dependency on the evolutionary distance is visible. 
However, in particular for small evolutionary distances, the 
nutrient profiles are often similar, even though there exist 
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TABLE 3: Comparison of tree topologies. The tree distance was normalized with respect to the maximal possible values, such that identical 
trees exhibit a distance of 0, while maximally different trees have distance 1. 
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FIGURE 8: Comparison of the functional distance measures obtained from (a) the carbon utilization spectra and (b) the nutrient profiles 
with the evolutionary distance. A two-dimensional histogram for all pairs of organisms is shown. Black shading indicates a high number 
of organism pairs sharing certain values of the two distance measures. As in Figure 7, the intensity is scaled logarithmically since otherwise 
large regions would be invisible. 

exceptions as, for example, for the closely related species 
E. coli and B. aphidicola (see above). Also visible from 
Figure 8(b), species that have very similar nutrient profiles 
are often closely related. Similar observations can be made 
for the distances of carbon utilization spectra even though 
the correlation for small evolutionary distances is much less 
pronounced. 

We have verified that also the tree based on predicted 
nutrient profiles differs strongly from the taxonomy tree 
(see Table 3). Remarkably, both functional trees as well as 
the structural tree are similarly distant from the taxonomy 
tree while exhibiting an even greater mutual distance. The 
fact that the distance measures are largely independent and 
that the structural and functional trees are topological very 
different shows that phylogenies built on sequences, net­
work structures, or network functions contain independent 
information. We expect that a combination of structural and 
functional measures indeed allows for a reliable classification 
of organisms with respect to their habitat types. 

5. Discussion 

Based on purely structural information on the metabolic 
networks of a large collection of species, we provide 

two approaches to classify the organisms with respect to 
functional characteristics of their respective metabolism. 
For the first classification, the networks are probed with 
different carbon sources, and the variety of products that 
can be manufactured are calculated, leading to a functional 
characterization of the organisms by their carbon utilization 
spectra. In the second approach, minimal nutrient require­
ments are computationally predicted from the network 
structure, allowing for the characterization of organisms 
with respect to their nutrient profiles. 

The characterization of organisms with respect to their 
biosynthetic capabilities from single carbon sources is useful 
to provide a characterization of both the organisms as 
well as the carbon sources. The presented considerations 
could clearly group the carbon sources into more and less 
utilizable. Similar to the dendrogram depicted in Figure 4, 
one can also group together the various carbon sources (see 
Supplementary Figure SS) to obtain information on their 
general usefulness. Carbon utilization spectra of organisms 
allow for a fine distinction for the usability of chemically 
similar organic compounds. However, the characterization 
only takes single carbon sources into account. It cannot be 
excluded that the metabolic networks of some organisms 
are structured in such a way that they cannot manufacture 
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much from any single carbon source, but the combination 
of several will give rise to a high-biosynthetic potential. A 
disadvantage of the characterization of organism specific 
metabolic networks by their carbon utilization spectra is 
that they are not directly biologically interpretable. The 
ability to metabolize a carbon source is evaluated, regard­
less whether this carbon source is actually available in 
the environment or the organism possesses the necessary 
transporters to obtain this substance. We expect that with 
increasing knowledge on transport processes, it will be 
possible to adapt the concept of carbon utilization spectra 
to more realistically reflect the capacities of organisms in 
their respective environments. Despite the difficulties to 
directly relate carbon spectra with experimentally accessible 
quantities, we could show that by comparing carbon uti­
lization spectra across a large number of organisms, distinct 
functional characterizations of metabolic networks can be 
obtained. 

The second approach follows a more general strategy 
and tries to detect combinations from all chemicals which 
are sufficient for survival. Rather than simply describing 
biosynthetic capacities, minimal nutrient combinations are 
computationally predicted from the network structure. The 
predictive power of the inverse scope algorithm presented in 
Handorf et al. [8] is particularly pronounced for specialized 
compounds, such as vitamins, that an organism is not capa­
ble of producing and which, therefore, have to be supplied 
externally in the organisms diet. For nonessential nutrients, 
the predictions may be less accurate. For example, instead 
of sugars, the most important source for carbohydrates, the 
algorithm may predict other compounds from which sugars 
can, in principle, be produced, such as sugar phosphates or 
nucleotides. Indeed, while being a useful description of the 
strict requirements of organisms, nutrient profiles are not 
suitable to quantify the exploitability of specific substances 
since the algorithm considers only structural information 
and neglects kinetic details. 

The two presented strategies to characterize organism­
specific networks with respect to their metabolic function­
ality are, therefore, complementary, with nutrient profiles 
focus sing on specialized nutritional components and carbon 
utilization spectra allowing to resolve the usability of chem­
ically related carbohydrates. Despite the differing underlying 
concepts, both descriptions often lead to a similar character­
ization of closely related organisms, such as different strains 
of the same bacterial species. As a tendency this is expected, 
however, evolutionarily related organisms may have adapted 
to different environments. Both approaches are capable of 
reflecting differences in lifestyle for related organisms. For 
example, the generalist E. coli displays drastically different 
characteristics compared to its relative B. aphidicus, which, as 
a parasite in aphids, has evolved toward a high specialization 
and dependence on its constant environment. 

This example demonstrates that the introduced func­
tional measures, carbon utilization spectra and nutrient pro­
files, allow to distinguish between generalists and specialists. 
A future challenge will be to identify structural features of 
the metabolic networks that are responsible for an organism 
to be a specialist or generalist. 
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When comparing the phylogenetic trees derived from 
distance measures based on these two functional descrip­
tions, we found that both trees differ considerably from 
the taxonomy tree, but differ even stronger when directly 
compared with each other. This observation supports our 
claim to have provided two complementary approaches, both 
yielding information not provided by the other approach. 

By defining groups of strictly anaerobic and aerotolerant 
organisms as well as photosynthetic and non photosynthetic 
species, we could divide all organisms into four categories 
crudely characterizing their typical habitats. When clustering 
organisms with respect to their nutritional profiles, those 
organisms belonging to the same habitat type, are clearly 
not randomly distributed but appear to be concentrated 
in certain regions. It will be interesting to study how our 
proposed functional description relates organisms if a finer 
categorization of typical living environments is applied. We 
expect that it is possible to combine the two complemen­
tary functional categorization strategies to reliably cluster 
organisms with respect to typical habitats. Such a strategy 
would eventually allow for the prediction of the life-style of 
newly described and sequenced organisms and thus aid the 
discovery of suitable nutrient media and living conditions 
enabling a successful cultivation. 

The presented concepts may also be used to view 
metabolism in an evolutionary context. With the pro­
posed characterizations, the structural basis for functional 
changes which have occurred in the evolutionary history of 
organisms may be identified. For such studies, especially, 
pairs of organisms are interesting which are evolutionary 
closely related but show distinct functional characteristics. 
A problem remains to infer putative metabolic networks of 
common ancestral species. An approach how such networks 
may be estimated based on a maximum likelihood method 
is presented in Ebenhoh et al. [22], where we used the 
inferred networks to follow a particular metabolic function, 
the ability to incorporate glucose into the metabolism, along 
the evolutionary tree. A challenge for the future is to combine 
these two approaches and to arrive at a more detailed 
understanding of which specific structural properties of 
metabolic networks determine their functionality in different 
environments. 

6. Methods 

6.1. Network Retrieval. The analyses presented III this 
work are based on the same networks that we used in 
Handorf et al. [8] to infer nutritional requirements. 

We have extracted the metabolic networks for 447 
organisms from the KEGG database (as of Feb 13, 2007). 
The organisms have been selected in the following way. It 
has been verified that the number of reactions was realistic 
compared to similar organisms, if available. Otherwise, when 
the number of reactions seemed abnormally low, the original 
genome sequence paper was checked to verify that the low 
number is in line with biological knowledge, for example, in 
case of a low number of genes, a metabolic deficiency, and/or 
parasitism. 
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The corresponding metabolic networks have been 
extracted as follows. First, from the LIGAND subdivision 
(plain text file), the complete list of 6825 reactions has been 
imported. The reactions have been checked for consistency. 
We rejected 290 reactions because they showed an erroneous 
stoichiometry, by which we mean that some atomic species 
occurred in different numbers on both sides of the reaction. 
Further, we did not include 342 reactions involved in glycan 
synthesis because the focus of our investigation lies on the 
metabolism of small chemical species and does not include 
macromolecular syntheses. 

Information on the reversibility of reactions has been 
extracted from the KGML files which specify the pathways 
for all organisms included in KEGG. In general, a particular 
reaction is listed in several KGML files, and the information 
on its reversibility may be ambiguous. In fact, we identified 
136 reactions for which this is the case. For the present 
calculations, we consider a reaction to be irreversible only if 
it is defined as irreversible in all corresponding occurrences 
in the KGML files. This is the case for 2622 reactions. 

The organism specific networks were determined using 
the "reaction" and "enzyme" files from the KEGG/LIGAND 
database. In a first step, for all reactions, the EC numbers 
of the catalyzing enzymes were retrieved from their corre­
sponding entries in the "reaction" file (section ENZYME). 
Subsequently, from the "enzyme" file, for each enzyme, a list 
of organisms is obtained in which there exists a correspond­
ing gene (section GENES). Thus, for each organism, the 
metabolic network is defined by all those reactions for which 
a catalyzing enzyme is encoded in its genome. In all cases 
where an enzyme is not fully classified (e.g., EC1.3.1.-), the 
corresponding entry in the "enzyme" file contains no GENES 
section. As a consequence, no such reactions are included in 
organism specific networks. 

Further, the KO section of the database is inspected. 
Reactions specified in the DBLINKS/RN section of a KO 
entry are also assigned to the set of reactions of the organisms 
listed in the GENES section of this entry. 

6.2. Network Expansion. The method of network expansion 
is a constructive strategy to identify all those compounds 
which can in principle be synthesized by a metabolic 
network when a defined set of substrates, the seed, is 
initially available. For this, networks of expanding size are 
constructed following the rule that in each generation, those 
enzymatic reactions from the metabolic network are added 
which use as substrates exclusively metabolites contained 
in the seed or which have been provided as products 
by reactions incorporated into the expanding network in 
previous generations. The expansion process stops when no 
further reactions may be added. The chemicals contained 
in the final network are called the scope of the seed and 
they describe what the network is in principle capable of 
producing from the seed metabolites. 

To provide a realistic characterization of a biologically 
meaningful function, the concept of a scope in its original 
definition is too strict. In cellular metabolism, there exists a 
number of key compounds, the so-called cofactors, which 
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partICIpate in a large number of biochemical reactions in 
which they perform a characteristic function. For example, 
in many reactions, ATP acts as a donor of a phosphate group 
which is transferred to an acceptor molecule resulting in 
the formation of ADP. Similarly, NAD+ may accept pairs 
of electrons, resulting in the release of NADH and thereby 
mediating redox reactions. Under physiological conditions, it 
is clearly unrealistic to assume that these cofactors need to be 
synthesized de novo from the available nutrients before they 
may act in their characteristic cofactor function. In Handorf 
and Ebenhoh [23], we have described the implementation 
of a modification of the expansion algorithm that takes this 
biological fact into account. We assume that cofactors may 
act in their typical functions even if they have not been 
synthesized from the available seed compounds in previous 
steps of the expansion algorithm. In Kruse and Ebenhoh 
[24], we have systematically compared the results obtained 
by network expansion with cofactor functionalities to that 
obtained by a mathematically more stringent approach based 
on flux balance analysis and found that network expansion 
provides an extremely good approximation while requiring 
orders of magnitudes less computation time. 

6.3. Inferring Minimal Nutrient Combinations. To calculate 
a minimal combination of nutrient metabolites from which 
all precursor molecules necessary for higher level cellular 
processes may be synthesized, we have in Handorf et al. [8] 
described an algorithm that essentially reverses the scope 
algorithm. The greedy algorithm starts with a list of all 
metabolites occurring in the network. A seed containing this 
list is certainly sufficient to produce all precursor molecules. 
Then, the list is traversed, and each metabolite is temporarily 
removed. If after the removal of one metabolite still all 
precursors may be produced, this metabolite is permanently 
removed, otherwise it was required and is written back to 
the list. The list resulting after one complete traversal is 
minimal in the sense that no further metabolite may be 
removed without loosing the ability to produce all target 
metabolites. The resulting minimal combination strongly 
depends on the order in which the list is traversed. Therefore, 
we repeated this process a large number of times with 
perturbed lists. In order to obtain biologically meaningful 
combinations, we introduced heuristics that result in the 
preferential removal oflarge molecules from the list and the 
retaining of small molecules and those for which transporters 
are known. The resulting minimal combinations were then 
compared to identify exchangeable metabolites, and in this 
way, groups of metabolites could be identified from which 
at least one has to be provided as external resource. The 
cross-species comparison of such nutrient requirements led 
to the definition of global resource types, allowing for a 
quantification of the organism-specific requirements. For a 
particular organism 0, we define a vector po in which each 
component p? is assigned the fraction of minimal nutrient 
combinations in which a representative of nutrient type r 
is found. Thus, an entry p? characterizes the dependency 
of organism 0 on resource type r, where a value of one 
indicates that resource type r is essential, zero signifies that 
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the resource type is not required, and an intermediate value 
indicates that the resource type provides one of several 
alternatives. 

6.4. Hierarchical Clustering and Dimensionality Reduction. 
The hierarchical clustering (see e.g., [25]) for Figure 4 was 
performed using the method hclust implemented in the 
software package R, using average agglomeration method. 
Dimensionality reduction for Figures 6 and 5 was obtained 
using two-dimensional scaling [18], implemented in R as 
method cmdscale. 

6.5. Comparing Phylogenetic Trees. The tree comparison has 
been carried out using the treedist program from the 
phylip suite [20]. It calculates a distance between two trees 
by considering only its topology which was described by 
Robinson and Foulds [2 1]. The maximal distance of two trees 
with n species amounts to dn = 4n - 6, yielding dn = 1782 
for n = 447 species. 
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