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Zusammenfassung

Synchronisation — die Anndherung der Rhythmen gekoppelter selbst oszillierender Sys-
teme — ist ein faszinierendes dynamisches Phdnomen, das in vielen biologischen, sozialen
und technischen Systemen auftritt.

Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach
gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen natiirlichen Frequenzen.

Das Standardmodell fiir dieses kollektive Phéanomen ist das Kuramoto-Modell — unter
anderem aufgrund seiner Losbarkeit im thermodynamischen Limes unendlich vieler Oszil-
latoren. Ahnlich einem thermodynamischen Phaseniibergang zeigt im Fall unendlich vieler
Oszillatoren ein Ordnungsparameter den Ubergang von Inkohérenz zu einem partiell syn-
chronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz
rotiert. Im endlichen Fall treten Fluktuationen auf.

In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen
hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen
aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall moglich ist.

Zunichst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer
kollektiven Mode im endlichen Kuramoto-Modell. Dann priifen wir die Abhéangigkeit des
Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von
Eigenschaften der natiirlichen Frequenzverteilung fiir verschiedene Kopplungsstérken.

Wir stellen dabei zunéchst numerisch fest, dass der Synchronisationsgrad stark von
der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der
kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe)
der natiirlichen Frequenzen abhingt. Beides konnen wir im thermodynamischen Limes
analytisch verifizieren.

Mit diesen Ergebnissen konnen wir Erkenntnisse anderer Autoren besser verstehen und
verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir auflerdem einen
analytischen Ausdruck fiir die Volumenkontraktion im Phasenraum.

Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktua-
tionen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell
sind die Oszillatoren eindeutig in kohérent und inkohérent und damit in geordnet und
ungeordnet getrennt. Im endlichen Fall kénnen die auftretenden Fluktuationen zusétzliche
Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die
rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter
den gekoppelten Ostzillatoren ndhern sich die Phasen aufgrund der Fluktuationen des Ord-
nungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem
Synchronisationsmafs aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren
nachweisen.

Wir bestimmen die Abhéngigkeit dieses Synchronisationsmafses vom Verhéltnis von
paarweiser natiirlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir
eine gute Ubereinstimmung mit einem einfachen analytischen Modell, in welchem wir die
deterministischen Fluktuationen des Ordnungsparameters durch weifses Rauschen ersetzen.
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Abstract

Synchronization — the adjustment of rhythms among coupled self-oscillatory systems — is a
fascinating dynamical phenomenon found in many biological, social, and technical systems.

The present thesis deals with synchronization in finite ensembles of weakly coupled
self-sustained oscillators with distributed frequencies.

The standard model for the description of this collective phenomenon is the Kuramoto
model — partly due to its analytical tractability in the thermodynamic limit of infinitely
many oscillators. Similar to a phase transition in the thermodynamic limit, an order pa-
rameter indicates the transition from incoherence to a partially synchronized state. In the
latter, a part of the oscillators rotates at a common frequency. In the finite case, fluctua-
tions occur, originating from the quenched noise of the finite natural frequency sample.

We study intermediate ensembles of a few hundred oscillators in which fluctuations are
comparably strong but which also allow for a comparison to frequency distributions in the
infinite limit.

First, we define an alternative order parameter for the indication of a collective mode
in the finite case. Then we test the dependence of the degree of synchronization and the
mean rotation frequency of the collective mode on different characteristics for different
coupling strengths.

We find, first numerically, that the degree of synchronization depends strongly on the
form (quantified by kurtosis) of the natural frequency sample and the rotation frequency
of the collective mode depends on the asymmetry (quantified by skewness) of the sample.
Both findings are verified in the infinite limit.

With these findings, we better understand and generalize observations of other authors.
A Dbit aside of the general line of thoughts, we find an analytical expression for the volume
contraction in phase space.

The second part of this thesis concentrates on an ordering effect of the finite-size fluctu-
ations. In the infinite limit, the oscillators are separated into coherent and incoherent thus
ordered and disordered oscillators. In finite ensembles, finite-size fluctuations can generate
additional order among the asynchronous oscillators. The basic principle — noise-induced
synchronization — is known from several recent papers. Among coupled oscillators, phases
are pushed together by the order parameter fluctuations, as we on the one hand show
directly and on the other hand quantify with a synchronization measure from directed
statistics between pairs of passive oscillators.

We determine the dependence of this synchronization measure from the ratio of pairwise
natural frequency difference and variance of the order parameter fluctuations. We find a
good agreement with a simple analytical model, in which we replace the deterministic
fluctuations of the order parameter by white noise.
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Chapter 1

Introduction

How do the billions of heart muscle cells in our chest know when to contract? Why do
hipsters all look the same when they are so deliberately wanting to be different? Are
school girls that jointly refuse to partake in the swimming course conspiring liars? Why
is shift work unhealthy? And what brings about the vigorous shaking of epileptic patients?

These questions are all subject to current research!. Although the scope of the effects is
broad, they share the same basic mechanism: Synchronization, the adjustment of rhythms
among self-sustained oscillators? due to their weak coupling. Much like the first half of the
20th century is seen as the heyday of quantum mechanics today, later generations might
connect our time with the onset of an understanding of biological organisms in physical
and mathematical terms. Biological rhythms and their mutual adjustment form a central
part of this new discipline. Apart from the life sciences, also social sciences benefit from
the theoretical framework of synchronization. Precise experiments and inspirations are
in large part derived from electrical engineering, and applications in this field are innu-
merable. Sophisticated molecular- and cell-biological, gene-technological methods, diverse
methods of neuroscience, but also the fast advances in data science feed the development
of a theoretical framework.

Some systems, e.g. heart pacemakers that swear the heart muscle cells to a common
beat frequency, have a clear driver-follower relation. Other systems, such as firefly colonies
in the Great Smokey Mountains [FaulO|, reach unison in their flashing by democratic
means. This striving for consensus is the key mechanism discussed in this thesis. It can
be thought of as a group of musicians that, without conductor, manages to find a common
rhythm simply by listening to what all others play — and adapting to it.

The phenomenon already fascinated Arthur T. Winfree and he developed a model
for large populations of weakly coupled rhythmic units with different natural frequen-
cies [Win67]. Yoshiki Kuramoto further simplified this model to a self-consistent mean
field model he could solve analytically |[Kur75]. Like spins align below the critical Curie
temperature, oscillators adapt their speed of rotation above a critical coupling strength.
In both the Curie-Weiss model for ferromagnets [KPW13| and the Kuramoto model for
self-sustained oscillators, all microscopic units contribute to the macroscopic mean field,
and the mean fields acts back on all units. In the thermodynamic limit of infinitely many
microscopic units, both mean fields assume constant values, whereby the microscopic units
effectively decouple. This allows for a self-consistent solution of the model in terms of the

!See e.g. [NDLT 16, Toul4, CHB12, GRD12, WHS™ 10].

2Systems that keep an inner rhythm or periodic cycle by balancing between energy loss (due to dissi-
pation) and energy consumption (e.g. in organisms: ATP) — in the theory of dynamical systems those are
limit-cycle oscillators. Each oscillator has its own preferred “natural” frequency, but as we see, willingly
adapts to a sufficiently strong periodic forcing.
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mean field.

This thesis is dedicated to weakening this strong model assumption: Kuramoto’s pop-
ulations consist of infinitely many oscillators — but which population of fireflies or which
clapping audience actually meets this assumption? In particular, the combination of all-
to-all coupling and thermodynamic limit are realized in few examples only. Typically the
physical interaction between cells, insects, laser beams, or humans has a finite range, so
that mostly only nearest neighbors interact.

One reason for why finite-size networks occur often in nature is an effect in time-
dependent networks. Let us consider an example where indeed a large number of units inter-
acts globally: stirred yeast cells that synchronize their glycolytic cycles, see e.g. [BBWO0O].
Only the artificial stirring brings each cell in the cuvette into a vicinity of any other cell
within seconds, while one glycolytic cycle takes roughly a minute. If every interaction be-
tween two cells is replaced by a network link that lasts as long as the interaction, then the
network is constantly rewiring much faster than the dynamics in the cells evolves. Time-
scale separation then allows to consider the network as static and completely connected.
In the natural system, where persistent stirring is absent, the time scales of network and
dynamics become comparable — the network might even evolve more slowly. Depending on
the density of cells in the solution, the network might temporarily disconnect into smaller
networks. As many natural networks are separated into strongly connected hubs with
few inter-connecting links, the typical intermediate sub-network is likely comparable to an
all-to-all coupled finite-size network.

Apart from this network effect, many systems are a priori finite.

In contrast to the infinite case, the finite-size Kuramoto model is of both experimental
and mathematical interest. In experiments, small ensemble sizes are often either inevitable
for practical reasons or conceptually necessary. To study cell cycle kinetics, it is desirable to
reach synchronization in these cycles, preferentially among few cells [SS07]. A Kuramoto-
type transition to synchrony with cell density as bifurcation parameter was detected by
limiting to a few hundred cells [WPZH12|. Many technical experiments work with a small
number of units, for instance experiments with electro-chemical oscillators [KKJ 14|, with
metronomes [BUTN13|, or on power grids [FNPO0S].

From the mathematical side, the link between finite and infinite systems is still not fully
understood. In [Str00], Steven H. Strogatz assesses finite ensemble fluctuations as one of
two major open questions in the field. Also [ABVT05] and [PR15] include the topic into
their reviews. Most efforts directed towards this issue studied the scaling of fluctuations,
considering the model from a thermodynamic perspective for thousands or more oscillators.
The finite-size Kuramoto model is therefore our central object of study. We want to find
out how much of the theory for the thermodynamic limit holds also in finite ensembles, and
which additional effects occur. The “rigorous convergence results” that Strogatz called for
are still pending, but as a first step this thesis considerably refines the dynamical picture
of finite populations of self-sustained oscillators.

We take a different perspective from the scaling-of-fluctuations community, and discuss
the model for only few (20-200) oscillators, where the quenched noise from finite frequency
sampling is most prominent. Fluctuations are comparably strong and therefore also the
its effects in the ensemble are more pronounced. The samples are large enough, though,
to allow for a comparison to natural frequency distributions in the infinite limit.

First, we want to see if a collective dynamics is still well defined for such small samples,
albeit the finite-size fluctuations.

Further, we know from recent literature that the Kuramoto phase transition is a first or
second order phase transition for a uniform or a Lorentz distribution of natural frequencies,
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respectively. The variability between different finite samples of the natural frequency
distribution can therefore be expected to reflect in the mean field dynamics.

As a last question, recent findings on noise-induced synchronization suggest that the
finite-size fluctuations in the Kuramoto model should generate a similar effect.

The thesis starts in Chap. 2 with a short overview over the necessary concepts for
understanding this thesis. As the main focus of this work is on the finite-size Kuramoto
model, we also give a brief literature review of recent findings in the topic.

Chap. 3 relates properties of the natural frequency distribution of a finite ensemble of
oscillators to the resulting dynamics. The synchronization transition resembles a thermo-
dynamic phase transition. In the thermodynamic limit, the Kuramoto order parameter
equals zero below critical coupling; at the transition, a synchronous solution with finite
order parameter bifurcates and indicates the partially synchronous state where oscillators
are separated into synchronous and asynchronous ones.

In finite ensembles, the order parameter fluctuates and the mean of the order parameter
changes smoothly with coupling strength, and can therefore not indicate the transition
point. We therefore define an alternative indicator for the transition to a collective mode
in finite ensembles.

One important feature of finite populations is the sampling distribution of their nat-
ural frequencies. We find that the coupling strength at which the collective mode or a
specific degree of synchrony is achieved depends strongly on the shape of the frequency
sample: In peaked samples with few strong outliers, oscillators form a collective mode
at comparably weak coupling — a central synchronized cluster forms, unimpressed by the
far away fast rotating outliers — but then much stronger coupling is needed to synchro-
nize also these outliers. In flatter distributions, in contrast, comparably strong coupling
is necessary to lock the first oscillators, but a slightly stronger coupling already suffices to
synchronize all of them. Quantifying the shape by the fourth moment, or kurtosis, of the
distribution, we prove the observed shape dependence in infinite ensembles by evaluating
the self-consistency equation for the order parameter for a family of distributions that has
kurtosis as a parameter.

A similar reasoning reveals the effect of asymmetry in natural frequency samples. We
find that in both finite and infinite ensembles, sign and value of the skewness of the
frequency sample or distribution determine direction and velocity, respectively, of the global
mean field rotation for a given coupling strength. Again, the self-consistency equation of
the order parameter for a family of distributions with variable skewness shows this relation
in the thermodynamic limit.

As an additional result, we are able to analytically express the total volume contraction
in phase space for arbitrary coupling strengths.

In Chap. 4, we discover a synchronizing effect of the thermodynamic mean field fluctu-
ations. The theory in the thermodynamic limit suggests to think synchronous oscillators
as locked thus ordered and asynchronous oscillators as incoherent thus disordered. This
picture does not hold for finite ensembles. As is known from other systems, weak noise can
have a synchronizing effect (even on non-identical oscillators). On the other hand, several
authors report on positive Lyapunov exponents for both sub- and super-critical coupling
strengths, indicating weak chaos that should have a similar effect as noise.
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We investigate two different Kuramoto ensembles with a) Gaussian distributed natural
frequencies at super-critical coupling and b) equidistant natural frequencies at sub-critical
coupling. In a), fluctuations are weak compared to the typical difference of natural fre-
quencies among the asynchronous oscillators. Therefore, we need to let the mean field act
on (uncoupled) oscillators with smaller frequency difference to detect the synchronizing
effect. We quantify synchronization by pairwise correlation among these oscillators. Last,
we model the mean field fluctuations as Gaussian white noise and find an analytical ex-
pression for the same pairwise correlation measure as in the numerical experiments as a
function of noise intensity and frequency difference.

Two Appendices close the thesis: App. A contains auxiliary analytical calculations;
App. B is a protocol of some of the numerical experiments — both for Chapters 3 and 4.



Chapter 2

Background and State of the Art

In this chapter, we recall the theoretical foundations for this thesis and give a brief review
on relevant literature regarding the finite Kuramoto model.

Sect. 2.1 is concerned with the basic theory. We keep this section short and present
only the most necessary theoretical background, namely the Adler equation Sect. 2.1.1, the
Winfree model Sect. 2.1.2, and the Kuramoto model Sect. 2.1.3. We refrain from repeating
the derivations of the model equations in all detail. The Adler equation is discussed in all
detail in [Str15] Chap. 4.3 and [PRKO03| Chaps. 3 and 7. For a derivation of the Winfree
model, or “phase model” turn to [Izh07], Chap. 10. An elegant and accurate deduction of
the Kuramoto model can be found in [PRKO03|, Chap. 12, and in [T6n08], Sect. 2.1.

In Sect. 2.2, we list and shortly review literature on the scaling of fluctuations and on
chaoticity in the finite size Kuramoto model.

2.1 Theoretical prerequisites

In the following, we discuss the basic models that build the theoretical foundation of this
thesis. The Adler equation can be seen as the backbone of the Kuramoto equation. The
Kuramoto model was derived from the Winfree equation with few additional assumptions.
The Winfree- and the Kuramoto model describe ensembles of weakly coupled oscillators
that adapt their self-sustained rhythms to each other. We start by discussing such self-
sustained oscillators.

All biological oscillators fuel their activity by consumption of energy. They balance
energy losses and keep their inner cycles and rhythms (e.g. the Krebs cycle, heart beat,
neural firing, gene expression, etc.) running at an approximately fixed level. Mathemati-
cally, this can be described by attractive limit-cycle oscillators — dynamical systems with
an isolated periodic orbit that is, at least in a vicinity, attractive (= basin of attraction).
The motion on a limit cycle with period T can be parameterized by a single variable that
can be mapped to a uniformly rotating variable called phase. The motion on the limit cycle
corresponds to a zero Lyapunov exponent, and perturbations along the limit cycle neither
grow nor decay. In contrast, any perturbation in transverse direction returns exponentially
fast to the limit cycle.

The basin of attraction of the limit cycle can be parametrized by the phase on the limit
cycle (and an amplitude): A stroboscopic map with period 7" maps an arbitrary point in
phase space forward in time, asymptotically reaching a point on the limit cycle. All points
in the basin of attraction that map to the same point on the limit cycle form a submanifold
called isochrone. This parametrization persists under weak perturbations that are merely
strong enough to bring the oscillator slightly off the limit cycle. Three theories of Winfree,
Kuramoto, and Malkin describe the action of weak periodic perturbation on the phase
dynamics of a limit cycle oscillator — for a short review see [IK06], for deeper insights into
the theory turn to [PRKO03,1zh07]. Oscillators whose dynamics can be reduced in this way
to the (phase-) dynamics on the limit cycle are called phase oscillators.
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2.1.1 Adler equation, 1946

The Adler equation is a standard example in the theory of low-dimensional nonlinear dy-
namics that is key to the understanding of the Kuramoto model. It describes a weakly
periodically driven self-sustained oscillator with some natural frequency that adjusts its
frequency to a sufficiently close driving frequency. Adler’s key modeling assumptions were
the similarity between the frequency of the driving and the natural frequency of the os-
cillator (i.e. small frequency detuning p), a rapid decay of amplitude perturbations as
compared to the inverse frequency detuning, and weak external driving.
These three assumptions allow to re- o 5
duce the mathematical description to the 4
phase difference ¥ between driver and os-

cillator. With some geometrical consid-
erations and linearization around small ﬁ
frequency differences, the original arti- /S

cle [Adl46] motivates the following Adler t

equation HL
dv

T —p+ asin(¥). (2.1)

' Fig. 2.1: Solutions ¥(¢) of Eq. (2.1)

The parameter a (fgr definiteness a > 0)  fo; different frequency detunings p. 1:
quantlﬁes the coupling strength between p=0;2 p<0,|ul <a (inside Arnold
the driver and follower. tongue); 3,4,5: pu < 0, |u| > a (outside
Let us discuss the different solutions Arnold tongue) with increasing detun-

of the Adler equation. Ratio u/a is the ing. Figure adapted from [PRKO03).
bifurcation parameter of a saddle node

bifurcations at p/a = £1. For |u/a| > 1, the equation has no fix points and the phase
difference ¥ rotates freely. Is is slowed down around the bottleneck at ¥ = +7/2 and
performs quick phase slips (see smooth jumps in Fig. (2.1)) inbetween. An analytic ex-
pression of W(t) is given in the original article. Decreasing |u/a| to below 1, a pair of a
stable and an unstable fix points is born, corresponding to a constant phase difference W.
Driver and driven oscillator rotate at the same speed, called 1 : 1 locking. Averaging ¥
over time gives the so called observed frequency. Inside |u/a| < 1 it vanishes, outside it
can be approximated as (w>t ~ /p — a, converging to linear growth as u increases. The
condition |u/al < 1 forms a triangle in the a-p plane, called Arnold tongue.

The discretized phase equation exhibits much richer behavior. A stroboscopic map-
ping of the Adler equation at each period of the driving results in a circle map. The map
has additional Arnold tongues of rational locking ratios other than 1 : 1 that are thinner
(and not triangular) and thus experimentally harder to access. A more detailed picture of
the ordering of the widths of the tongues depending on the locking ratio is given by the
Farey tree, |GP85|. The “devils staircase” of observed frequency against ratio of driving
and oscillator frequency illustrates the same fractal structure. Above a critical coupling,
the mapping becomes non-invertible and may exhibit chaos. Where the Arnold tongues of
different rotation numbers overlap, chaos can be reached over a cascade of period-doublings.

Generalizing the Adler equation to higher modes in the coupling function, i.e. adding
terms with sin(n¥), the system displays higher order locking as well.

As we saw, the Adler equation is a basic equation in nonlinear dynamics that is fully
soluble and understood. It can help to understand other systems like the Kuramoto model
better. The Kuramoto model is a simplification of the Winfree model:
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2.1.2 Winfree model, 1967

The ingenuity of Arthur T. Winfree, a theoretical biologist from Florida, manifests in a gen-
eralization of the plentiful and diverse types of oscillations in biology to few mathematical
models and concepts. His most prominent model, thus decorated with his name, describes
the synchronization of a population of self-sustained relaxation oscillators by weak mutual
coupling, [Win67|. He realized that such seemingly fundamentally different phenomena as
primordial cells of pacemaker nodes, rhythmically and collectively flashing fireflies, and all
sorts of circadian rhythms are all fingerprints of the same nonlinear mechanism.

In Winfree’s model, weak coupling of limit cycle oscillators acts as mutual weak pertur-
bation [GMP17]. The phase oscillators with distributed frequencies interact via a product
of the “sensitivity function” and the “intensity function”. The sensitivity function Q(6), or
phase response curve of an oscillator, describes in which phase of its inner cycle it reacts
how strongly on a perturbation. The intensity function is a sum over the so called pulse
functions P(0) of all other oscillators that describe how strongly these oscillators perturb
the other oscillators in which phase of their own cycles.

N
Winfree model 0; = w; + Q(HZ)% Z P(0;). (2.2)

Although Winfree already observed synchronization among this type of oscillators, the
product form of the interaction complicated an analytical treatment of the problem.

2.1.3 Kuramoto model, 1975

In 1975, Kuramoto proposed to substitute the product coupling in the Winfree model by a
form that allowed him to solve the model analytically [Kur75|. His derivation starts from
Stuart-Landau oscillators coupled over the sum of complex amplitudes. He formulates
three assumptions

i) global coupling, i.e. all oscillators are coupled to all others with the same coupling
strength,

ii) infinite growth and decay rate of the amplitude (all dynamics happens on the limit
cycle) with constant ratio, but finite frequency and coupling strength, and

iii) the thermodynamic limit of infinitely many oscillators.

In this case, the Stuart-Landau oscillators reduce to phase oscillators. Their coupling
depends only on the phase difference between the oscillators and is of sinusoidal form.
Condition ii) can be alleviated to the condition of sufficiently weak coupling and small
frequency dispersion as well as sufficiently strong attraction of the limit cycles. The small
frequency dispersion rules out higher locking orders than 1 : 1 by separation of time scales.
The weak coupling leaves the limit-cycles undeformed.

The resulting Kuramoto model describes N phase oscillators with natural frequencies
w; distributed according to a distribution g(w):

N
. € .
Kuramoto model 0; = w; + N E 1 sin(6; — 6;). (2.3)
j=

We restrict our analysis to positive coupling strengths e. To reduce the system to the
necessary number of parameters it is convenient to change to a rotational reference frame for
which the distribution g(w) is centered around zero and normalize the distribution to unit
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standard-deviation. The coupling of phases 6; is sinusoidal such that the ensemble strives
for a minimization of the phase differences. The system achieves partial (and eventually
complete) frequency locking at sufficiently large coupling strength e. The model can be
written in a simpler form via the Kuramoto order parameter

N
1
7= Re'? = > et (2.4)
j=1

The Kuramoto mean field Z is the centroid of the polygon connecting the phases 6; on
the unit circle. Phase ¢ shows the direction in which this centroid lies from the center of
the circle. Only when all phases are equal, amplitude R is exactly one. In contrast many
configurations are compatible with R = 0.

With the help of Z, model equation Eq. (2.3) can be rewritten as

0; = w; + eRsin(p — 6;), (2.5)

which reflects the structure of the system: each oscillator contributes to a complex-valued
mean field which acts back on all oscillators. This mechanism is the key to the self-
consistency theory that Kuramoto developed for the infinite case N — oo, where R con-
verges to a constant, so that the oscillators effectively decouple.

In the infinite limit, the complex order parameter Z is an integral

Z = 7dw]deg(w)P(e|w,eR) (2.6)

over the natural frequency distribution g(w) and the density of phases P(6|w, eR). Assum-
ing that R is constant and ¢ rotates at constant frequency 2, Eq. (2.5) describes Adler
oscillators with the above mentioned two types of solutions (see text below Eq. (2.1)).
Likewise, the density of phases separates into two densities, depending on the condition

10— ] { < eR synchronous @.7)

> e¢R asynchronous.

Synchronous oscillators lock their frequency to the mean field, so their phase distribution
is a delta distribution around the fixed point of Eq. (2.5). Asynchronous oscillators rotate
with varying speed and their phase density is proportional to 1/ |0| Knowing these densities
as functions of €R, one can insert them into the integrals in the right-hand side of Eq. (2.6).
The two types of oscillators and the imaginary and real part in this equation amount to
four integrals. For symmetric g(w), the imaginary integrals cancel and the real integral of
the asynchronous oscillator vanishes. In this case, after rotating into the reference frame
of the global phase 1 = 6; — ¢, Eq. (2.6) becomes

w/2
R=¢€R / dyp g(Q + eRsin ) cos® 1h. (2.8)
—7/2

Assuming a Lorentzian natural frequency distribution g(w) = v/[r(w? + 7?)], Kuramoto
solved this integral by complex integration. For € < 2+, the only solution of Eq. (2.8) is zero;
above, another solution R = /1 — 2/e appears, corresponding to partial synchrony in
the sense of coexistence of synchronous and asynchronous oscillators. Complete synchrony,
in which all oscillators lock to the mean field, is only possible for frequency distributions
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with bounded support.

In the sub-critical coupling regime of the infinite ensemble, the phases assume a uniform
distribution on the circle, corresponding R = 0. The super-critical density of phases is the
sum of a uniform distribution of the asynchronous oscillators and a one-hump distribution
that is bounded in (—7/2,7/2) in the reference frame of the global phase ¢. Therefore, a
finite value R in the thermodynamic limit approximates only roughly the portion of locked
and unlocked oscillators, but instead quantifies the alignedness of phases on the circle.

We discuss the above densities and integrals in more detail in Sect. 3.2.2. Other pre-
sentations of the derivation can be found in [Kur75, Kur84, PRK03|.

The model was subsequently extended in many ways: When the sine term includes an
additional phase delay 3, sin(6; — 0; — /), it is called Kuramoto-Sakaguchi model [SK86].
Also, higher harmonics of order n of the coupling function, sin[n(6; — 6;)], generalize
the model, e.g. [KP14]. Instead of global coupling, a network structure can be assumed
[AKMT08].

In 2008, a major leap in the understanding of the synchronization phenomenon in
infinite ensembles was achieved by [OA08]. The authors found an attractive invariant
synchronization manifold, now referenced as Ott-Antonsen manifold. The time-dependent
order parameter dynamics is then described by only two variables. However, as this elegant
theory finds no explicit application in this thesis, we leave its presentation and extension
to [PRO8, MMS09, PR15].

2.2 Recent work on the finite-size Kuramoto model

Here we briefly review a major part of former publications on the finite-size Kuramoto
model that are concerned with 1. the scaling of fluctuations and with 2. chaoticity and
Lyapunov exponents. The comparison to former literature reveals that we take a very
different viewpoint on the Kuramoto model in the following chapters.

2.2.1 Finite-Size Fluctuations in the Kuramoto model

The scaling of fluctuations dominates the present literature on finite systems of coupled
phase oscillators.

Hiroaki Daido was the first to discuss finite-size scaling laws for the Kuramoto model. In
a series of papers [Dai86, Dai87,Dai90|, he discusses a computation-time saving discrete-
time version of the Kuramoto model that takes the form of coupled circle maps with
distributed winding numbers. He calls the model Lorentzian-Dirac-sine (LDS) model to
summarize the model assumptions of Lorentzian natural frequency distribution and global
coupling by the sine of the phase differences. Frequency samples were generated as the
tangent of equidistant points. His main interest is devoted to the scaling « of the standard
deviation of the order parameter — or susceptibility in thermodynamic contexts — with
distance to the critical coupling o ~ |e — .|~ /v/N. The quantification was quite difficult.

In |Dai86], Daido analytically predicted ax = 1/2, but then in |[Dai87] obtained
ay ~ 1/8 with a slight discrepancy between sub-critical a— and super-critical ay. He
already noted a more complicated scaling function on the super-critical side that was later
extensively discussed by Hong et. al.. In the meantime, though, Nishikawa and Kuramoto
claimed in [KN87] that the susceptibility at the criticality is finite in the thermodynamic
limit. In [Dai90], Daido gave a statistical description of the complex order parameter’s
behavior and uncovered a conceptual mistake in [KN87|. We extend Daido’s work in many
details, showing how much the dynamics can vary due to sampling of the natural frequency
distribution in Chap. 3, but also how much more complicated than the classical picture of
order and disorder the finite-size model is (see Chap. 4).
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Similar to [Dai90], but with a version of the model with no preferred phase (gauge-
invariant), [PR99] showed that the observed fluctuations in the order parameter can be
described by a noisy Stuart-Landau equation for sufficiently large N. The noisy contri-
butions to the evolution of the higher order order parameters become independent. The
law of large numbers and the Furutsu-Novikov formula allow to approximate shape and
mean of the noisy contributions, respectively. The hierarchy of time evolution equations for
the order parameters is now a system of k coupled nonlinear stochastic differential equa-
tions with independent (individual) noise sources. Expanding around the critical point of
the first order order parameter and neglecting the multiplicative noise that is comparably
small close to the transition, they obtain the standard form of a noisy Hopf-Andronov
bifurcation.

In the following years, a group around Hong published a series of papers [HCPTO07,
HPTO07,SH10] that discussed scaling relations of the form o ~ N=8/7 f(N'/7|e — ¢.|/¢.) in
the framework presented in [Dai90]. In [HCPT07| they analytically estimated the scaling
function, obtaining a correlation size exponent v ~ 5/2 that differs from typical thermo-
dynamic equilibrium phase transitions. In [HPT07|, they employed a similar analysis on
scale-free networks, obtaining decisive differences only for more heterogeneous networks.
In [SH10]|, they studied scaling relations when additional individual noise terms force the
oscillators. As noise increases, the correlation size exponent is decreased to 7 ~ 2. In
contrast to Daido, who mostly sticked to the Lorentzian, Hong et. al. carried out all their
numeric studies with a standard Gaussian natural frequency distribution.

[Tanl1] reported on a different correlation size exponent of 7 ~ 5/4 in the case of
regularly sampled frequencies. In [NTHA12,NTA13, NIT* 14|, Nishikawa et. al. returned
to the issue with a mostly numerical analysis of the scaling law for a diffusion coefficient of
the order parameter time evolution in both the sub- and the super-critical coupling regime
for general coupling functions. In comparison to the former scaling relations, they were
now able to quantify long-term fluctuation correlations.

[CHK13| compared steady and dynamical scaling of fluctuations (after and before
the steady state is reached), for different natural frequency sample generation methods.
Also [LYK14| numerically explored the scaling with N, (¢ — €.), and time, here in the
globally coupled Kuramoto model with or without individual noise, in a Watts-Strogatz
small world network, and in a generalized version of the Ising model. [HCTP15] revisited
the finite scaling problem — inspired by [Tanll]| focusing on different ways of generating
frequency samples.

[HS16] distributed both frequencies and coupling strengths, but in a highly symmet-
rical, correlated way that results in higher synchronizability and discuss the scaling of
fluctuations. In [WRGB15|, the authors approximated the stable solution for individual
phases in the completely synchronized (FS) regime, based on the lower threshold to critical
coupling for FS that was given in [VMO07|. Finally, [CDJ17| discussed the scaling of the
order parameter and the largest Lyapunov exponent (LLE) with (e — ¢.) for equidistant
natural frequencies. They find a difference between mid- and endpoint rule in both scales
(order parameter and LLE).

2.2.2 Chaos in the Finite-Size Kuramoto Model

We now give a short overview over publications that address chaoticity and Lyapunov
exponents in the finite-size Kuramoto model.

[PMTO05] discussed phase chaos as known from the Ginzburg-Landau equations in
ensembles of size 4 and 20, respectively, with equidistant natural frequencies. Particularly
interesting for Chap. 4 is Fig. 2 therein that shows an increase of the largest Lyapunov
exponent prior to the critical coupling.
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The doctoral thesis [Bar13| contains an otherwise unpublished chapter 3, in which the
Lyapunov spectrum of a finite Kuramoto ensemble with Gaussian distributed frequencies is
discussed. He found positive Lyapunov exponents in a wide range of super-critical coupling
strengths. Some findings in the study are inconclusive, however, e.g. he found that the
largest Lyapunov exponent was independent of the ensemble size.

[CGP17] performed computationally expensive studies on the largest Lyapunov ex-
ponent for different natural frequency samples that were generated either randomly or
regularly (see Sect. 3.0 in this thesis) and found that the largest Lyapunov exponent scales
~ 1/N or ~In N/N with system size N for randomly or regularly distributed frequencies,
respectively. An explanation of this finding is still pending.

[PP16| dedicates a section “Global coupling: phase oscillators” to the finite Kuramoto
model in which they present the sub- and super-critical Lyapunov spectrum of 400 Ku-
ramoto oscillators.

This brief overview over the literature in the field demonstrates that in the past most
works were dedicated to the scaling of fluctuations with number of oscillators, distance to
the criticality, and time. The literature on Lyapunov exponents and chaoticity in the finite
Kuramoto model is very limited. In what follows, we take a different approach to the here
listed publications and draw our comparisons to the infinite limit in a different way, see
Chap. 3. In Chap. 4, we discuss the synchronizing effect of finite-size fluctuations with a
short outlook on the scaling of the effect with ensemble size.
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Chapter 3

Transition to a collective mode

In 1967, Winfree created his famous model of large ensembles of coupled phase oscillators
referring to “innately oscillatory devices (e.g. electronic oscillators, secretory cells, sponta-
neously active neurons, or individual animals)”, [Win67|. From there, Kuramoto [Kur75,
Kur84| derived a self-consistency mean field theory for a simplified version of the Winfree
model, having in mind circadian rhythms® and a-rhythms in the brain, compare Sect. 2.1.3.
These initial motivations represent a small part of what both theories eventually apply to.
It were the radical reductions in these first publications to the very essence of synchroniza-
tion in large ensembles of self-sustained oscillators that allowed for analytical tractability
and understanding of the key mechanism of synchronization in large populations.

For many years now, researchers from all over the world try to weaken the rather strong
model assumptions in Kuramoto’s derivation to extend its applicability. Theoreticians
progressed in generalizations to higher harmonics of the coupling function [KP13,PM09],
network structure instead of global coupling [AKM*08, RPJK16|, time-varying networks
[LFCP18|, time delay [KSYHS98| or phase delay [SK86| in the coupling function, and
common or individual noise [GPRP17].

Quite surprisingly, even identical oscillators exhibit rich behavior such as chimera states
[KB02,AS04,PA15] and partial synchrony [CPR16]. Also, the stability of the synchronized
solution still remains only partially understood [OA09, Chil5|. The Ott-Antonsen theory
brings the two models — Winfree and Kuramoto — closer together by solving some special
cases of the Winfree model in the infinite case [GMP17].

But even when limiting the discussion of Kuramoto ensembles to only the first har-
monics of the coupling function, including neither Kuramoto-Sakaguchi phase delay nor
network structure, many interesting aspects are still, if at all, only partly understood. Fi-
nite ensembles differ from infinite ensembles in many ways. While the phase dynamics
is chaotic for intermediate-sized ensembles in a large range of coupling strengths and the
order parameter fluctuates, the infinite system is fully described by merely two variables,
at least in the case of a unimodal natural frequency distribution.

While in the finite Kuramoto model Eq. (2.3) the locking condition Eq. (2.7) is time-
dependent, oscillators in the infinite limit strictly separate into locked and unlocked ones.
In general, the finite case exhibits much richer behavior, but often evades analytical treat-
ment. Most earlier literature on the finite-size Kuramoto model concentrated on quantify-
ing the scaling of fluctuations around the criticality, see 2.2.1. In these publications, the
smallest sample sizes already exceed 103. Therefore, we focus our analysis on intermediate
system sizes of 25-200 oscillators, where finite-size effects are strongly pronounced, yet the
infinite limit is close at hand to explain certain observations.

The two central questions we address in this chapter are:

LQuote from the video speech Kuramoto gave on a conference dedicated to the 40th birthday of his
model, [KK15].
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e What is a suitable indicator for the onset of a collective mode in finite Kuramoto
ensembles?

e How does the sample-to-sample variability of the natural frequencies affect the global
dynamics?

The chapter opens with an overview, Sect. 3.0, over the different types of distributions
and samples used in our analysis. In Sect. 3.1, we introduce an indicator for the onset of a
collective mode. As discussed in Chap. 2, the critical coupling strength in the infinite case
in the case of a unimodal natural frequency distribution is unambiguous. Below, the order
parameter vanishes exactly. Above, an additional non-zero solution exists. Fluctuations of
the order parameter rule out such distinction in the finite case. As in [TZT*12|, where a
similar property was used, it is the minimum of the order parameter that detects collective
behavior.

When discussing the effects of sample-to-sample variability, some of them vanish with
system size and others extend into the infinite limit. Therefore, in Sect. 3.2.2, we present
a more general parametric approach to the solution of the self-consistency integrals. The
method was used by other authors before; we extend it here to also asymmetric distri-
butions. Sect. 3.3 and Sect. 3.4 reveal the connection between the shape of the natural
frequency sample and the absolute value of the order parameter on the one hand and the
effect of the symmetry of the natural frequency sample on the global phase dynamics on
the other hand. In both cases, we first employ extensive numerical calculations to uncover
the connections in finite populations and then juxtapose them with solutions from the
infinite limit. In the latter case, families of distributions with either shape or asymmetry
as parameters allow for such an analysis.

After gaining intuition for the system, Sect. 3.5 discusses the rather problematic finite-
size Lorentzian case. Chaoticity in the finite Kurmamoto model is briefly discussed in
Sect. 3.6.

In summary, this chapter takes a novel viewpoint on the finite Kuramoto model and
clarifies several aspects of the model in general, particularly concerning different natural
frequency distributions. The predominant part of the work presented in this chapter was
previously condensed into [PP18]. Figures and their captions created for that publication
are copied to this chapter. The discussion in this chapter often goes more into detail than
in the paper, and Sect. 3.5 and Sect. 3.6 are completely additional.

3.0 Natural frequency distribution and samples

The review article [ABVT05] draws a link between the dynamics of the order parameter
and the underlying frequency distribution, yet collects mere hints into different directions.
A central question in this chapter is therefore the following: How do the synchronization
transition and the collective dynamics in the finite Kuramoto model (Eq. (2.3)) depend on
the natural frequency distribution?

In the thermodynamic limit, the assumption of a Lorentz (or Cauchy) distribution
dominates the literature on the Kuramoto model and its descendants, see [Kur84, OA0S,
MBS*09a, HBHT 14, BPM18], because the poles of this distribution allow to solve the
emerging self-consistent integrals. From a modeling perspective, the fat tails of the distri-
bution actually contradict the assumption of small frequency dispersion. As we discussed
in Sect. 2.1.3, a large dispersion allows for higher resonances, and higher harmonics of
the coupling function should be taken into account in the derivation of the model. Also,
several motivations — many of them from biology — point to the more natural choice of a
Gaussian frequency distribution. Details of the mathematical problems related to applying
our numerical method to the Lorentz distribution are discussed in Sect. 3.5.
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Finite-size nonlinear models of intermediate size, as we address them here (25-200
oscillators), are often analytically intractable. Therefore, by employing numerical analysis
we are quite free in the choice of the model parameters and concentrate on the more natural
Gaussian distribution.

For the comparison of different system sizes it seems reasonable to generate frequency
samples in a deterministic way. Inverse transform sampling of frequencies from equidistant
points z; € (0,1) produces frequency samples that resemble the underlying distribution
even for rather small sample sizes. The required quantile function is the inverse of the
cumulative distribution function — in the Gaussian case: w; = \/§erf*1(2xi — 1), where
erf ™! is the inverse error function. Frequency differences are minimal in the center and
increase monotonically to both sides. The samples are symmetric, i.e., for all 7 there exists
exactly one j such that w; = —w;. In the following, we refer to this sample as being regular.

Random samples, in contrast, almost surely do not possess this perfect symmetry. Small
samples are compatible with a large variety of underlying distributions. The moments of
a sample follow the sampling distribution that depends on both, the sample size and the
underlying distribution. For Gaussian samples for instance, the variance of the mean scales
as 1/N. Also pairwise frequency differences vary between samples and — again in the case
of a Gaussian sample — the smallest frequency differences are not necessarily central. This
variability is reflected in the dynamics, as we see in the following sections: As the samples
are compatible with different underlying frequency distributions, their different infinite
limits might imply different behavior. We elaborate this idea further in Sect. 3.3.2 and
3.4.2, where we analytically show how certain links between features of a natural frequency
sample and resulting dynamics persist in the infinite limit.

Finally, we stress that finite samples cannot equal their corresponding infinite-limit
distribution in all moments. In the Kuramoto model Eq. (2.3), a finite mean of the natural
frequency distribution @ # 0 can be compensated for by rotating to the corresponding
reference frame p; — @; — @ and has no effect on the dynamics. Likewise, any standard
deviation o # 1 merely changes the relation between time scale and coupling strength; we
divide our samples by the measured standard deviation to increase comparability between
samples, and set variance to one in all distributions g(w). Higher moments, i.e. skewness
and kurtosis, in contrast, are relevant parameters.

3.1 The minimal value of the order parameter as an indicator
for the transition to a collective mode

The central quantity in the Kuramoto model Eq. (2.3) is the complex Kuramoto order
parameter Z, especially its absolute value R. Sect. 2 already gave us an overview over the
different regimes in the infinite case: Starting from a fully incoherent state with R = 0,
with increasing coupling strength the ensemble undergoes a critical transition to partial
frequency locking. Eventually, in case of frequency distributions with bounded support,
all oscillators lock to the common frequency at sufficiently strong coupling. The phase
distribution of the locked oscillators narrows with increasing coupling strength. In the
infinite case, R therefore clearly indicates sub- and super-critical regime.

In the finite case, though, R fluctuates (at least below the critical coupling strength
of complete locking?), and incoherence in the sense of uncorrelated dynamics of individual
oscillators is not indicated by R = 0.

2 Above the critical value of complete locking, where all oscillators rotate uniformly with the frequency
of the mean field, the order parameter becomes stationary. For a discussion of this type of critical coupling
strength see [VMO7].
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Fic. 3.1: Time evolution of the complex order parameter Z in polar representation
at different values of coupling strength e for 50 oscillators with frequencies 3.1a) randomly
sampled from the normal distribution, 3.1b) regularly sampled via quantiles from the normal
distribution, and 3.1c) randomly sampled from the Lorentz distribution over ¢t = 10° RK4
time steps of size 0.01. We will see that the decisive difference between random and regular
Gaussian sample is the pairwise symmetry of the latter (Vi 3 exactly one j : w; = —w;). Note
that in 3.1a), 3.1b) we display only € = 0.8, 2.0, and 3.0, while in 3.1¢) we show ¢ = 0.1, 0.8,
2.0, and 7.0 — because the Lorentzian distributed oscillators reach partial synchronization
at much lower coupling strength compared to the two Gaussian samples but need much
stronger coupling to achieve complete frequency locking. The table contains the first central
moments of the three natural frequency samples: mean pu, variance o2, skewness ~y;, and
kurtosis B2 (see (3.34) and (3.22) for definitions of the latter two). All trajectories start
from the same 50 initial phases, randomly picked from a uniform distribution in [0, 27),
therefore R(to) ~ 0.

In this section, we first discuss the typical time evolution of the complex order parameter
Z in different setups and compare it to the infinite model. What we observe will then
motivate the definition of an alternative order parameter R, which is necessary for a
meaningful definition of the global phase. The second part of the section is then devoted
to the discussion of this new quantity.

General time evolution of the complex mean field in finite ensembles

This chapter takes a different, less thermodynamic, view on the Kuramoto model-specific
finite-size effects. We aim to grasp the different outcomes of the quenched noise stemming
from the sample-to-sample variability of the frequency distribution that imprints different
features to each realization of the model. In order to gain some intuition about the different
parameters in the finite model, we first discuss time series of the order parameter for
different coupling strengths, natural frequency distributions and ensemble sizes. We will
state three main observations, one of which will motivate the definition of an alternative
order parameter for the detection of a collective dynamics.

In Fig. 3.1, we compare the time evolution of the order parameter for three typical nat-
ural frequency distributions. The random Lorentzian sample in panel 3.1c) traditionally
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appears in connection with the infinite Kuramoto model due to the above-mentioned ana-
lytical tractability. The random Gaussian distribution in panel 3.1a) dominates the set of
all examples of distributions in nature due to the classical central limit theorem. The reg-
ular Gaussian in panel 3.1b) might serve as representative for the set of Gaussian samples
in certain aspects and potentially eases comparisons between different sample sizes.

In all three cases, the order parameter strays around zero for small coupling strengths.
For stronger coupling, apparently an inner disc is avoided after a transient period, i.e.
the order parameter arrives at a certain degree of order that it seemingly never undercuts
again. Like in the infinite case, where the synchronized state is stable and attractive, the
partially synchronous state might correspond to a stable and attractive region in phase
space to which the dynamics migrates within the transient time, further corroborated by
results in Sect. 3.6. Already at this point, we note the transition with increasing coupling
strength from an incoherent regime with arbitrarily small order parameter to a partially
ordered regime, where the order parameter complies with a lower bound. We soon discuss
Ruin as an indicator of this transition that serves as an alternative order parameter in
Sect. 3.1.

The critical coupling corresponding to this transition point varies considerably between
different natural frequency distributions, as the comparison between random Gaussian and
random Lorentzian sample indicates: At coupling strength ¢ = 0.8, while the Gaussian
ensemble still fluctuates close to zero, the Lorentzian ensemble already clearly forms a
ring with considerable minimum, R(¢) > 0.6. At stronger coupling, on the contrary,
the Gaussian population reaches complete frequency locking, indicated by constant mean
field after a transient, with constant order parameter already at e = 2, while it requires
a coupling strength of € = 7 to synchronize the Lorentzian ensemble completely. This
effect is quite plausible considering the peakedness and comparably fat tails of the Lorentz
distribution which typically produces samples with many close frequencies densely packed
around the mean and a few extreme outliers. While weak coupling suffices to synchronize
the central cluster of almost equal frequencies, the few outliers deviate strongly from the
majority and necessitate significantly stronger forcing by the mean field to join the central
cluster. The dependence of the typical behavior of order parameter R(¢) on the natural
frequency distribution in the infinite case and on finite frequency samples merits discussion
in Sect. 3.3.

The third important observation concerns the rotation and fluctuation of the global
phase. We discuss in Sect. 3.1 that the global phase deserves its name only when a finite
minimum of the order parameter can be assured. Then, the complex order parameter
typically forms a characteristic ring structure (see Fig. 3.1) that reflects a finite drift and
small fluctuations of the global phase. Perfectly symmetric samples (in which for each
oscillator there is exactly one oscillator that rotates with the same frequency but in the
opposite direction) are a notable exception from this typical behavior. Here, the global
phase converges to a constant, while the order parameter fluctuates persistently. Fig. 3.2
shows typical trajectories of the global phase and the dependence on initial conditions®.
We discuss the relation between the symmetry of the natural frequency distribution (or
sample) and the drift of the global mean field in Sect. 3.4.

3Note that for large coupling strengths, the motion appears more regular — the only respective publi-
cation known to the author indicates weak chaoticity, see [Barl3].
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Fi1c. 3.2: Time evolution of the global phase for different natural frequency samples
comparing different initial conditions for the same three natural frequency samples as in 3.1,
at coupling strength 2. Different colors indicate different initial conditions (three, ten, and
three initial conditions in 3.2a), 3.2b), 3.2c), respectively). They differ from each other only
by a small phase vector of length 0.05 that points into a random direction. For (pairwise)
symmetric samples, see 3.2b), the global phase converges to a constant that depends on the
initial condition. Ensembles with asymmetric frequency sample adopt a finite drift with
persistent fluctuations on top, see 3.2a) and 3.2c).
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Three observations constitute the main body of this chapter:
e 1Ist, the transition to a finite minimum order parameter,

e 2nd, the relation between the shape of g(w) and the critical coupling strength for the
transition, and

e 3rd, the relation between the asymmetry of g(w) and the global phase drift.

Aspects concerning fluctuations and chaoticity are discussed in Chapter 3.6.

Transition to a meaningful global phase definition

As discussed above, Fig. 3.1 suggests that sub-critical and super-critical regime can be
distinguished via the existence of a minimal value of the order parameter. In the two
random cases of this figure, Fig. 3.1a) and Fig. 3.1c), this corresponds to a ring shape of
the complex order parameter’s time evolution. We therefore define an indicator Ry, as
the minimum of a sufficiently long time evolution after a transient.

The idea already proved useful in [TZT*12|. There, 20 coupled Wien-bridge oscillators
exhibited partial synchrony* with a mean field frequency different from the frequency of
the single units. The minimum value of the mean-field amplitude indicated the transition
from a fluctuating incoherent to an oscillatory coherent regime. The motivation becomes
apparent when plotting the recorded outputs of the mean-field voltage against its Hilbert
transform: In the oscillating regime, the resulting phase portrait avoids an inner circular
disk giving meaning to a phase definition, while in the fluctuating regime the whole disk
is covered and thus any interpretation as periodic behavior must fail.

Likewise in the finite-size Kuramoto model (see Fig. 3.1) a global phase describes a
collective oscillation only above the transition to a finite value of Ry,. This is due to two
main reasons: First, when R = 0 in Z = Re'? then ¢ can take arbitrary values, i.e. the
phase is mathematically not well defined; second, for a physical meaning of a collective
phase the system must, at least partially, exhibit collective phase evolution. The term
global phase is conceptually justified only when a sufficient amount of coherence indicates
collective oscillations. We quantify this amount by a non-vanishing Rpyip.

In Fig. 3.3 (the top panel), we juxtapose the minimum and mean of the order param-
eter, and the individual observed frequencies of an ensemble of 50 Kuramoto oscillators
— dependent on the coupling strength. The mean is finite at zero coupling strength and
hardly informs about the dynamical state. The minimum, in contrast, clearly identifies the
transition. The observed frequencies in the background show which oscillators’ frequencies
lock at which coupling strength.

The minimum of the order parameter is determined recording all updates of the mini-
mum of R(t) after cutting a transient. In the bottom panel, we color-code Rpyin(t) according
to whether its final value after 10° time units exceeds 0.01 or not. Sub-critical Ruin(t)
approach zero with ~ t~1/2, while super-critical saturate quicker. A clearer distinction
around the critical value can be achieved by extending the time evolution.

Whenever we speak of sub- or super-critical regimes or coupling strengths (and do not
say otherwise), we refer to the critical coupling strength with respect to Rpyip.

By means of this new indicator, we can now compare the collective dynamics of different
natural frequency samples. We first present a method for finding a parametric solution for
the dependence of the order parameter on coupling strength for general natural frequency
distributions in the thermodynamic limit. This later helps us to explain observations in
the finite case by comparison to the infinite case.

4This is a different notion of partial synchrony than we use in this thesis, see footnote 6.
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a) Red and blue dots: Ry, (t = 10°) lesser or greater than 1072,
respectively. Green line: mean of R(t). Gray lines and right ordi-
nate axis: individual observed frequencies Q; = (p;);.
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b) Time dependence of the minimum of the order parameter. The
black line ~ t~1/2 approximates the scaling of Ruy,(t) at sub-
critical coupling strengths.

F1G. 3.3: Statistical characterization of the minimum of R(¢), for N = 50 oscillators and a fixed
random sample of a Gaussian frequency distribution with sample moments p = 0, 02 = 1,
skewness 1 = —0.45 (see Eq. (3.34)), excess kurtosis 7, = —0.55 (see Eq. (3.23)). Time
evolution starts from uniformly distributed phases in [0,27). (&) Rmin, (R), and Q; vs.
coupling strength e. Here Ry, is shown vs. € at ¢t = 10° (after transients of length 102) for
an e-grid with Ae ~ 0.02. The green solid line shows the mean value (R), averaged over
a time interval of T' = 10%. The observed individual frequencies ; shown in gray (right
hand scale) reveal which oscillators synchronize already at small frequencies, and which
join the synchronous cluster only at stronger coupling. The sampled natural frequencies
w; equal the observed frequencies €); at zero coupling. Note that several gray lines join far
below critical coupling, indicating early synchronization of small clusters due to time-scale
separation. (b) Dependence of Rpyi, on the observation time. The bold black line gives
an estimate t~/2 for the scaling behavior. In both panels, red indicates Ry > 0.01 at
t = 10%; blue marks Ry, < 0.01.
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3.2 Solving the self-consistency equation (SCE) in the infinite
case

The startling beauty of Kuramoto’s theory lies in the concert of different approximations
that allowed him to find an exact self-consistent solution®. After this groundbreaking
derivation, for more than 40 years now, all sorts of different generalizations remain in vivid
discussion. The model assumptions are partially disputed as unrealistic, especially the
combination of all-to-all coupling in combination with the infinite limit in the number of
oscillators, but also the assumption of a Lorentzian natural frequency distribution with
its heavy tails. The efforts presented in this section aim at extending the applicability of
the theory especially in the last aspect. The normal distribution covers a wide range of
applications due to the central limit theorem. Furthermore, with its exponentially bounded
tails, it better meets the stipulation of small frequency dispersion.

We now present a self-consistent equation for the Gaussian frequency distribution, link-
ing order parameter and coupling strength. Although this dependence cannot be expressed
by elementary functions, its expression via modified Bessel functions allows for approxima-
tion of the relation R(e) to arbitrary precision. In preparation for the later discussion of
the effect of shape and symmetry of the natural frequency distribution on the dynamics of
the complex order parameter, we also present a scheme for solving the SCE in parametric
form for general unimodal symmetric or asymmetric distributions.

3.2.1 Solving the SCE for Gaussian distribution of natural frequencies

To find the dependence of the order parameter on the coupling strength in the case of a
Gaussian natural frequency distribution, we start from the self-consistency equation for
symmetric unimodal distributions given in Eq. (5.4.27) in [Kur84], after changing to our
notation (K — €, Q@ — @, 0 — R), or likewise Eq. (2.8), where solution R = 0 is already
excluded:

/2

1= e/ cos’ 6 - g(@ + eRsin 6) df (3.1)

—7/2
with absolute value of the order parameter R, coupling strength ¢ and mean frequency w.
We insert a Gaussian with zero mean and unit standard deviation
< " cos2 fe 2 (R)?sin®0 gg . €

V2 J_nj2 V2T

To make calculations easier, we define A := ¢2R?/2 and just look at

1=

Ler (3.2)

/2 )
Ier= / cos® e Asn* qg. (3.3)
—7/2

Replacing the squared trigonometric functions by their double-angle expressions we write

1 w/2 A
T.r= 2/ B (14 cos 20) e 2 (17c0520) g, (3.4)

STake “It is difficult to explain how this emission of light is simultaneous for several thousands of
individuals” as a quote that expresses the magic inherent in this phenomenon — quote from Bishop Pallegoix
from 1854, an apostolic vicar in Eastern Siam at the impression of synchronous fireflies. Citation taken
from John Bonner Buck, Synchronous Rhythmic Flashing of Fireflies, The Quarterly Review of Biology,
Vol. 13, No. 3 (Sep., 1938), p. 302 — Kuramoto rather referred to chemical oscillators than to fireflies in
his early publications, it is now considered a most illustrative example to which the theory applies.
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Respecting that the function under the integral is symmetrical w.r.t. the y-axis and re-
placing z = 26, we obtain

ES

e 2 T — A cosz
Icr= > /. (1+cosx)e 2 dz (3.5)

e 2 T a e 2 [T A
= / e 2T dx 4 / cosxe 2 %dx |, (3.6)
2 0 2 Jo

which corresponds to the modified Bessel functions of first kind I, [AS65] p. 374 ff., espe-
cially Eq. 9.6.19 therein. Eq. (3.2) can thereby be expressed as

R = \/Z\/E [Io (z) + I (z)]e™® where z = €e2R%/4 (3.7)

Note that [Ip (x) + I; ()] e™* = 1 at z = 0, such that we recover equation e, = 1/(2¢g(w)) =
2v/2/\/7. For x — oo, I, (z) ~ ¢*/v/2mx (compare [AS65| Eq. 9.7.1) such that R — 1
as € — 00, reflecting that the width of the phase distribution of the synchronized oscilla-
tors decreases with increasing coupling strength. After treating this special case which is
the central example in this thesis, we now develop a method for solving self-consistency
equations for general, also asymmetric, distributions in parametric form.

3.2.2 Expressing the solution of the SCE in parametric form for a gen-
eral natural frequency distribution

In order to find parametric solutions for more general (also asymmetric) frequency distri-
butions, we adopt a technique developed in [OW12,0W13,ZPL17, KP14] and extend it to
asymmetric natural frequency distributions. We start from Eqs. (2.5) and (2.6) and as-
sume that the mean field R exp(1p) rotates at constant frequency €2 and reaches a constant
absolute value after some transient. We determine these two values self-consistently.

0 =w+eRsin(p—0) with Re¥ =(e¥) and ¢=0Q (3.8)

Substituting ¢ = 6 — ¢ compensates for the uniform rotation of the mean field, which in
this model is equal to the rotation of all locked individual oscillators®. Furthermore, we
define a parameter a := eR, which together results in an Adler-equation

¥ =w—Q—asinp. (3.9)

This equation has only one relevant parameter, so for the discussion of its solutions we can
rescale to ¢) = A — sin¢ (where the dot now refers to a different time scale) and consider
¢ € (—m,w|. This first order nonlinear differential equation undergoes a saddle-node
bifurcation at both, A =1 and A = —1. For A € (—1,1), a pair of stable and unstable
fixed points exists with ¢ in (—m/2,7/2) and with |[¢| in (7/2, ), respectively. We recall
that 1) is the difference between an oscillators’ individual phase and the phase of the global
mean field. The stable fixed point, with constant frequency difference, thus corresponds
to frequency locking between the two. For |A| > 1, there is only the free-running periodic
solution, which corresponds to asynchrony between mean field and individual oscillator.

Recently, systems exhibiting partial synchrony (ps) raised attention [MP06,RP15,CPR16]. Other than
in this thesis, ps refers to a periodic collective dynamics when individual oscillators rotate at frequencies
different to the mean field phase.
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The integral form of the definition of the order parameter as in Eq. (3.8) can be in-
terpreted as a self-consistent equation for the order parameter, as first presented by Ku-
ramoto [Kur75|.

R:i/ﬁde/mg@ﬂw@uﬁ&aﬁw>mp:FﬁL@de® (3.10)

= [ e ) + ) 0 (3.11)

—Tr

where ng(¢)) and n,s(¢)) are the distributions of the phase differences to the global mean
field phase of the synchronous and asynchronous solution, respectively. The trick now is
to interpret the right hand side of Eq. (3.10) as a function F e'?® which depends on the
frequency of the global mean field Q2 and on parameter a. As R = F(£,a) e @Ea) pyg
R € [0,1] is real, the order parameter is given as a function of 2 and a and the imaginary
part must vanish”. With € = a/R, the set of parametric equations is complete.

As derived in [Kur84| Chap. 5 or [PRKO03| Chap. 12, the oscillators fall in either of the
two groups corresponding to the two types of solutions of the Adler equation, according
to their natural frequency. Oscillators with frequencies |2 — w| < a lock to the mean
frequency (the unstable fixed point is occupied by a set of oscillators of Lebesgue measure
zero). Oscillators with frequencies |2 —w| > a rotate according to Eq. (3.9). The respective
densities ng and n,s can thus be written as

ng = /OO g(w)d <1/1 — arcsin [w —

=ag(Q+asiny)cosyy with —

Q]) dw (3.12)

<y < (3.13)

m m
2 2

where we transformed the d-distribution according to d(f(z)) = d(z — z¢)/|f'(x0)|, which

applies for sufficiently well-behaved functions f with only one root at xg and derivative f’.
For the asynchronous part we have

%wmz/ dw g(w) P, w), (3.14)
lw—Q|>a

where P(1,w) is the probability density of the individual phase differences which scales
inversely to the velocity of the phase differences P(¢,w) ~ 1/|¢|. By normalizing we
obtain

__ v 1
ST /1] 1]

™ 1 -1
:(/ M%M—Q—mmw) (3.16)

» |lw—Q —asiny|

P(¢,w) (3.15)

1 (w—0)2 —a?
21 |w—Q —asiny|

(3.17)

7... in contrast to the Kuramoto-Sakaguchi model, where Q represents the phase delay 3, see Sect. 2.1.3.
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which yields®

w/2 ™
) -0 2 _ 2
F=a / elwg(Q—{—asin@Z)) (:osgl)dqﬁ—i—/dgl);T / dwg(w)|w (iuﬂ—zzsinjﬂ
—7/2 -7 |lw—8|>a
= synchronous + asynchronous oscillators = I + I, (3.19)

Other than in the two cited derivations, we here assume unimodal but not necessarily
symmetric natural frequency distributions, such that €2 in general is different from zero.
Before solving the integral over frequencies in Eq. (3.14) for a special frequency distribution,
the integral over phases can be solved for arbitrary g(w), see Appendix A.1, where we
calculate the 1 integrals in I,s. The imaginary part & of the synchronous integral can be
cast to an integral over w by parameter transformation. The condition for € reads

0= —1alys + —1a3(I5)

— [ o) (-9 - Vio-a7-2)
a+
—a+Q a+
+ / dwgw) (@) + Vo QF —a) + / W-Dgwdo  (3.20
o —a+Q

As g(w) is positive definite and the weight, i.e. the integration kernel, grows monotonously,
Q is unique (compare Fig. 3.4). While the integrals are general and e.g. valid also for mul-
timodal distributions, the uniqueness of €2 is only guaranteed for unimodal distributions.

Having found the €2 corresponding to a, we can solve the real part R of the integral
over synchronous oscillators for this pair

a+
R (L) = / 9@ /1= (W/a) dw = F(Q,0) = R (3.21)
—a+$Q

with R (I5) = F(2,a) = R, and therefore by a = eR we find R(e). The presented scheme
finds © and R(e) for arbitrary distributions g(w). For graphic representations of the integral
kernels, see Fig. 3.4. When an analytical solution of the involved integration and root
finding is either not necessary or intractable, this scheme allows for numerical integration
as well (see Sections 3.3.2 and 3.4.2).

In the finite case, such a self-consistent approach does not apply. The order parameter
varies in time — at a time scale comparable to individual oscillators. The effective decou-
pling found in the infinite case does therefore not apply in the finite case. However, the
minimum of the order parameter Ry, (introduced for the detection of a collective mode)

8The symbolic form of the asynchronous integral over frequencies means

Q—a oo

_ . 318

/ |w—Q —asinf| / —w+Q—asin9+ / w—0—asinf ( )
|lw—Q|>a — o0 Q+a

Interestingly, as we will see in more detail in the following sections, the asynchronous integral balances the
weighted tails (everything outside the integral (—a, a)) of the frequency distribution, while the synchronous
integral quantifies the weighted probability mass contained in interval (—a, a) around the mean — frequency
Q simply shifts these integrals left or right, see Fig. 3.4.
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F1G. 3.4: Graphical illustration Eq. (3.20) and of integral R(I5) as in (3.21). In both cases, the
frequency distribution g(w) (solid) is multiplied by a kernel (dashed) and then integrated
over the support of the kernel. The thin gray line in 3.4a) marks w — Q. In 3.4a), with
given a, ) is defined as the (unique) frequency shift at which the three terms in Eq. (3.20)
cancel each other. For given a and 2, R = R(I;) corresponds to coupling strength € = a/R.

gives us an alternative for characterizing the mean field dynamics depending on the natural
frequency distribution.

3.3 The shape of the distribution of natural frequencies de-
termines the route to synchrony R, (¢)

Synchronization is an emergent phenomenon. Macroscopic features result from individual
characteristics of microscopic units. In this Section, we show how the transition point
and the degree of synchronization at a certain coupling strength relate to the natural
frequencies in a finite ensemble. In Fig. 3.1, we observed a strong difference between the
two Gaussian samples and the Lorentzian case: the Lorentzian ensemble forms a collective
mode, indicated by finite Ry, at much smaller coupling than the Gaussian ensemble. On
the other hand, much stronger coupling than in the Gaussian case is necessary to reach
a constant order parameter, which (as can be concluded from the mean field phase, see
Sect. 3.4) corresponds to complete frequency locking.

To understand this observation, let us characterize a typical Lorentzian sample in con-
trast to a typical Gaussian one: the central peak in the Lorentzian distribution most likely
produces many small frequencies. Under the restriction of unit sample variance, this central
pack needs to be compensated for by few comparably large outliers, compatible with the
fat tails of the underlying distribution. The time scales of the central frequencies and the
outliers are well separated. The outliers barely hinder the central oscillators to synchronize.
The spread of the central oscillators is small, and weak coupling suffices to synchronize
them. They are superior in number compared to the outliers. Their synchronization at
weak coupling is directly reflected in a finite Ry, at comparably weak coupling. On the
other hand, when trying to synchronize all oscillators, much stronger coupling is necessary
to include the outliers. As this example shows, the shape of the distribution plays an
important role in the synchronization transition.

Former studies indicated a connection between the shape of the natural frequency
distribution and the transition to synchrony. Kuramoto noted already in [Kur84| that
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uni-modal frequency distributions with non-vanishing second-order derivative at the max-
imum have a second-order phase transition, i.e. the order parameter is a smooth func-
tion of coupling strength at the critical point. Diego Paz6 was the first?!? to investigate
the non-hysteretic first order phase transition in Kuramoto ensembles with uniform fre-
quency distribution [Paz05|. [BU07| correctly linked this property to the vanishing deriva-
tive at the maximum over a sufficiently large interval and thereby extended the class of
frequency distributions with first-order transition to all distributions with a sufficiently
flat maximum, which they call plateau. In [BUOS|, the same authors investigate asym-
metric triangular distributions with and without flat top and observe the same effect of
flat tops. [Cra94, MBST09b| studied bi-modal frequency distributions, constructed as two
Lorentzian distributions with the same scale (half-width at half-maximum) but different
center frequencies. They find a parameter region with standing waves that in small regions
coexists with the partially synchronized state in the bifurcation diagram. This so called
Crawford state corresponds to locking within the two groups at two different frequen-
cies. [PMO09] found hysteresis in such bi-modal distributions when the central dip between
the two maxima becomes sufficiently small. [TIAY17| find an even richer bifurcation dia-
gram, e.g. with traveling waves, for different heights of the two Lorentzians and therefore
asymmetry of the distribution. More surprising scenarios can be found e.g. by including
a Kuramoto-Sakaguchi phase [OW12], where the order parameter decreases with increas-
ing coupling strength for a clever choice of frequency distribution and phase delay. We
generalize in this section the shape dependence of the transition in unimodal distributions
(without such phase delay).

Shape in the above discussed sense of either peakedness combined with heavy tails or
uniformity is well captured by the fourth moment, called kurtosis (2. [BMS88] interpret
kurtosis ¢ vaguely [...] as the location- and scale-free movement of probability mass from
the shoulders of a distribution into its center and tails.” The term wvaguely refers to the
fact that distributions with the same kurtosis can still have tremendously different shape.
The last part of their definition, “movement of probability mass from the shoulders of
a distribution into its center and tails”, dispels former misinterpretations as “the lack of
shoulders” or multi-modality and ends up being exactly what we want to describe, compare
above Lorentzian example compared to the Gaussian one. The measure is location- and
scale-free in that it is centered around the mean and normalized by the variance of the
distribution:

kurtosis S = (w;)(wy) > (3.22)

K3 K3

Regarding kurtosis, the Gaussian distribution with 83 = 3 serves as a reference, leading
to the definition of excess kurtosis

excess kurtosis Yo = 2 — 3. (3.23)

Distributions or samples with positive excess kurtosis, called leptokurtic distributions, typ-
ically have fat tails and a central peak. Platykurtic distributions with negative excess
kurtosis resemble more the uniform distribution. The Gaussian distribution, and others
with 5 ~ 0, are called mesokurtic.!!

9Note that Winfree observed “explosive” synchronization, i.e. a first-order transition, for flat frequency
distributions in the already in [Win67], in the last lines of the Appendix. In [Win80] he already generalizes
this statement to flat-topped distributions, see Box on p. 115 therein.

10The term “explosive” synchronization is used in both contexts: synchronization due to a certain relation
between node degree and frequency in that node in networks of Kuramoto oscillators [GGnGAM11]| or due
to a plateau in the distribution of natural frequencies [Paz05|.

"n [Stu27], the two extremes of platykurtic and leptokurtic are illustrated as a mnemonic aid. Platy-
pues with their chubby physique and short tail resemble distributions whose main probability mass is
concentrated around the mean, i.e. platykurtic distributions. Leptokurtic distributions in contrast, with
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F1G. 3.5: Dependence of Ry, on e: Each panel shows results for 100 random samples of a Gaussian
frequency distribution, for N = 25,50, 100,200. The curves are color-coded according to
their respective excess kurtosis 5. Note that the range of v, differs considerably between
the panels. The black dashed line stems from regular sampling. The dotted black line
marks the cut at Ry, = 0.2, at which the spread presented in Fig. 3.7 is measured.

With this knowledge, we now compare the transition to synchronization for different
samples of the Gaussian. The sampling distribution of the kurtosis of the Gaussian has a
wider spread for small sample sizes, so we naturally come across a considerable diversity
of shapes for sample sizes of circa 50 oscillators, e.g. excess kurtosis 2 ranges from ~ —1.
to ~ 3. in Fig. 3.5 top right panel.

3.3.1 Effect of kurtosis of natural frequency samples in finite ensembles

The introductory discussion and the observations made in Fig. 3.1 result in the hypothesis
that the kurtosis of the natural frequency sample and the coupling strength dependence
of the synchronization transition are correlated. We make use of the above discussed
alternative order parameter Ry, to track the emergence and coherence of the collective
mode.

In the first experiment, we compare Rpin(€) for 100 random samples and the regular
sample (compare Sect. 3.0) of a Gaussian natural frequency distribution for each of four
sample sizes 25,50, 100, 200. This means calculating time series of length ¢t = 10° after a

their central peak but heavy tails, the author compares to two facing kangaroos with their heavy tails and
upright posture. The author of this publication is “Student”, also known as William Sealy Gosset was the
inventor of the Student’s t-test and a friend of Pearson and Fisher.
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1.0

Rmin

FI1G. 3.6: Rpin(€) for 10 different initial conditions but the same natural frequency sample. The
non-monotonicity of Ry, (€) could be linked to the effective multi-modality of finite ensem-
bles and resulting multi-stability and hysteresis, compare [PM09]. Approximately starting
at Rpin ~ 0.6, all curves from one frequency sample perform collective jumps to higher
values of Ruyip.

transient t = 102 for each frequency sample and coupling strength and evaluating Rmin
over time. The results are presented in Fig. 3.5.

The colors, going from bright for leptokurtic to dark for platykurtic, indicate a negative
kurtosis-gradient in e-direction for small Ry,. Leptokurtic samples who have typically
many very small frequencies and few comparably large outlier frequencies form a collective
mode at comparably weak coupling. Platykurtic samples that are rather flat but therefore
confined to a smaller frequency interval achieve sufficient coherence to form a collective
mode only at comparably strong coupling but then suddenly jump to high values of Ryin.
For large Rmin, i.e. at strong coupling, the relation reverses: The strong outliers in the
leptokurtic samples resist up to strong coupling against inclusion into the synchronized
cluster, while platykurtic samples are completely locked at much lower coupling strength.

Let us shortly note some further observations from this figure. Non-monotonicities in
individual curves partially stem from the finite measurement time of the minimum of the
order parameter; as we saw, the waiting times between updates of the minimum become
longer with time. An other reason might be the effective multi-modality of the finite fre-
quency sample, with the above mentioned hysteresis. Additional tests show that the spread
of R varies between different initial conditions, depending on the coupling strength (see
Fig. 3.6). Further experiments are necessary to clarify this point.

Fig. 3.3 hinted to an effect that is now repeated for all frequency samples in Fig. 3.5.
At stronger coupling strengths, the minimum of the order parameter jumps abruptly to a
higher value (as we see in Fig. 3.6, these jumps are independent of the initial condition).
The mean observed frequencies in Fig. 3.3a) show that these jumps stem from single or few
oscillators that join the synchronized cluster. Still, the system of one large synchronized
cluster and single asynchronous oscillators can be weakly chaotic, as the single oscillators
perturb the collective mean field [Barl3|. A lower bound to the critical coupling strength
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F1c. 3.7: Coupling strength at the level Ry, = 0.2 vs. sample kurtosis of the respective g(w)-
sample; the same data as in Fig. 3.5. Solid (blue) and dashed (flamingo) lines give predic-
tions from numerical integration of Eq. (3.21) for two families of distributions with kurtosis
as a parameter, Subbotin and Pearson, respectively (see Sect. 3.3.2). Inset: Scaling of the
standard deviation of € corresponding to Ry, = 0.2 with the number of oscillators IV;
linearly fitted by power law o (e(Ruyin = 0.2)) ~ N 038,

at which all oscillators lock (which always exists in finite samples, as their support is
always bounded) was given in [VMO07|. [Erm85| presented the critical width of different
distributions in the infinite limit under which, assuming ¢ = 1, the partial synchrony
solution bifurcates from the incoherent branch. For the finite equidistant case |[OLS16]
derived the exact critical width, as well assuming ¢ = 1.

To find the relation between the coupling strength for a certain Ry, and the sample
kurtosis of the respective natural frequency sample, we cut through all the curves at Rpyin =
0.2 and plot the corresponding coupling strength (weighted between coupling strengths of
the pair of closest Rpyin < 0.2) against excess kurtosis 2, see Fig. 3.7. The distribution
of points in the figure shows a clear tendency: The smaller the kurtosis (i.e. the more
comparable to a uniform distribution!?), the larger the coupling strength necessary to
form a collective mode. For N = 25, the spread of the cloud of points is large in both
directions, because of the large spread also of higher moments (and therefore compatibility
of the samples with a larger variety of underlying distributions). As sample size increases,
the spread in kurtosis — and thereby the spread of coupling strengths at which Ry, = 0.2
— decreases (see inset of the figure). The cloud eventually collapses into a point, because
in the infinite limit, 75 = 0 and R(e = 0.2) is unique for the Gaussian distribution.

To check our hypothesis also in the infinite limit, we need a family of distributions,
in which kurtosis is a parameter. We find two quite natural families and evaluate their

12WWe discuss the finite equidistant natural frequency sample in more detail in Chap. 4. The uniform
distribution in the infinite case is analytically soluble in all details, see following Sect. 3.3.2.
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FiG. 3.8: Numerical solution of the self-consistency integral for Pearson VII family members with
different kurtosis. The kurtosis ranges from high, (violet; left in a), top maximum in b)),
to low kurtosis (red; right in a), lowest maximum in b)). The analytical solution for y2 = 0
is given in black. Note that v > 0 in this family.

R(e) dependence in the next section. We juxtapose the results from finite samples and the
infinite limit in Fig. 3.7. For larger numbers of oscillators Nyg., we use a computationally
more efficient procedure, see App. B.1.

3.3.2 Effect of kurtosis of natural frequency distribution in the thermo-
dynamic limit

We now show that the observed kurtosis dependence of the R(e) relation is not a genuine
finite-size effect. Above, we solved the self-consistency equation for a Gaussian distribution
of natural frequencies, the result for a Lorentz distribution is known from the literature, see
Sect. 2.1.3. Another frequency distribution that allows for in that case complete analytic
solution is the uniform distribution that we treat as a special case of one two families of dis-
tributions, in which kurtosis is a parameter. For all these cases of symmetric distributions
it suffices to integrate Eq. (3.21) with = 0.

We now dicuss two families of distributions with adjustable kurtosis. The Pearson
family of distribution of type VII is part of Pearson’s system of distributions that was con-
structed exactly for the purpose of having skewness and kurtosis as parameters. Members
of the family VII are symmetric distributions with mean zero. For symmetric distributions,
asymmetry integrals (Eq. (3.20)) cancel at £ = 0, which simplifies Eq. (3.21). Under two
assumptions, the distributions possess the first four moments, allowing us to fix mean and
variance and to vary kurtosis for their comparison. The probability densities

f(z;0,m) = 0\f7£‘((:;)—§) [1 + (i)z} : (3.24)

(with Gamma function I'(-)) have shape parameter m and scale o. For the kth moment to
be defined, one needs m > k + 1/2, thus for kurtosis to be defined, we need m > 5/2. To
obtain unit variance, we set 0> = 2m — 3. m defines excess kurtosis o via m = % + %
For 75 — 0, the distribution converges to the standard normal distribution N(0,1). For

Y2 — 00, the distribution converges to g(z) = 3(2 + x2)_g. The Pearson family VII,
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symmetric around mean zero with unit variance and kurtosis v2 = 3/(m — 5/2) reads

Flazm) = L(m) [1 L= ]m (3.25)
Y V2m =3yl (m - ) 2m —3| '

Note that the family is purely leptokurtic, i.e. vo > 0.
The self consistency equation as in Eq. (3.21) for this family of distributions and a := €R
reads

jus

2
al’(m) / [ a? sin? 0} -,
R = 1+ ——— 0de. 3.26
V2m = 3/l (m — ) T om—3| (3.26)

2

Apart from ~9 = 0, we solve these integrals numerically for different m, see Fig. 3.8.

A much less known yet all the more natural family of distributions that ranges from
platykurtic to leptokurtic members is the Subbotin distribution, also referred to as stretched
exponential. It has three parameters u, o, and p, with which mean, variance, and kurtosis
can be set.

The general Subbotin distribution has the form [Chi00]

1 [z — P
= —_ 3.27
20, PT(L+ 1) { pob } (327

()

where p is the mean value, and o0, > 0 and p > 0 are shape parameters. The kurtosis is

given by 1 5 e
wer=r () G)/ PG 328)

and excess kurtosis follows from 5 = B2 — 3. Calculations are given in App. A.2. We leave
mean at zero and scale variance to one and obtain the centered standardized Subbotin
family suitable for our model

g(w:p) = |20,p"PT(1+ 1/1?)} "o <_|w|1;> ) (3.29)
pbop
Leptokurtic members correspond to 0 < p < 2, platykurtic are distributions with p > 2.
p = 1 corresponds to the Laplace distribution, p = 2 to the Standard Normal distribution,
for p — oo, p(x) converges to the uniform distribution. For some of these special cases,
the self-consistency approach gives analytical solutions for the order parameter, either
explicitely or implicitely. We saw in the preceding section that for the Gaussian case
with p = 2, the self-consistent solution is expressed via Bessel functions. For p = 0,
g(w; p) converges to the (normalized) §-Distribution whereby the non-trivial self-consistent
solution reads R = 1, i.e. unsurprisingly perfect phase locking or complete incoherence are
the two only solutions for identical oscillators, independent of the coupling strength (which
in that case merely scales the transient time before reaching full synchrony).
For p — oo, the Subbotin distribution converges to a uniform distribution, g(w) =
h for |w| < Wmax, g(w) = 0 else, with height h = 1/(2,/3). Normalization sets wmax = V3.
The kurtosis converges to v = —1.2:

rG)r()
(

S

lim Bs = lim —22——"2 — lim

1 5
) (+s) o
p—00 p—00 3\ )2 p—00 D (3.30)
r(3)) 5 (1



32 Chapter 3. Transition to a collective mode

1.0 .

0.8 g

0.6 4

R
0.4} .
excess kurtosis v,

— 3.10° -- 0.0
— 5102 — -04

0.2} — 222 — -0.6
— 6.7 — -0.9
— 3.0 — -1.1
— 0.8 — p—oo

0.0 ' ' '

0 1 2 3 4 5

F1c. 3.9: Kurtosis-dependence of R(e): We numerically integrate the self-consistent Eq. (3.21)
with € = 0 for the Subbotin family of frequency distributions, see Eq. (3.29). The
integral for the uniform distribution stems from the analytical solution, see Eq. (3.33)
with wmax = V3. The curves (from left to right) correspond to values of the parameter
p=0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 5, 10 and to the uniform distribution with p — oo
(or likewise to the excess kurtosis values as given in the legend). The inset shows the
respective probability densities.

and thus 72 = 2 — 3 = —1.2, where we used that I'(1 + z) converges to 1 for z — 0.
In this limit case, we can find a parametric solution for R(€) from the self-consistency

equation. In the integral, we need g(a-sin f) instead of g(w), which is just g(a-sin ) = ﬁ
for |f| < arcsin @, zero else.
Then the self-consistency integral reads
a r=min(7/2, arcsin(?)
R=—— —(z+sinzcosz) (3.31)
2\/§ 2 1 sin(2z) z=—min(m/2, arcsin(@)
2
If Y2 > 1, then
a 1 R=0
=t to= 3.32
2V/3 2(7T+) {R#O :>e:¥ = R:%S% ( )

which means that at ¢, = ﬂrﬁ, R can take all values between 0 and 7. If on the other

hand arcsin(?) < 3, then

(3.33)

that means R < 1 at any finite coupling strength. At €., where R reaches 7/4 we have that
Te€e/4 = Wmax = —Wmin. This means that at the critical coupling strength, the ensemble
already completely locks their frequencies.
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F1G. 3.10: Typical examples of frequency distributions with positive (heavier tail to the right),
zero (symmetrical), and negative (heavier tail to the left) skewness.

and thermodynamic limit roughly coincide.

For all other values of p, we solve Eq. (3.21) numerically for Q@ = 0. We solve the
are presented in Fig. 3.9. In the range of kurtosis of Fig. 3.5, results from finite ensembles

integral for different a and then plot F'(0, a) against a/F(0,a), i.e. R against e. The results

To conclude, the dependence of the order parameter on the coupling strength is mainly
determined by the shape of the natural frequency distribution, both in finite and infinite
ensembles.

3.4 The asymmetry of the natural frequency distribution drives
the global phase

In Fig. 3.1, we observed a crucial difference in the super-critical (w.r.t. Rp;,) time evolu-
tion of the complex order parameter between ensembles with random or regular natural
frequency samples, respectively. The numerical experiments on the finite system in this
and the analytical derivations in the next section show that the reason lies in the symmetry
of the frequency sample (or distribution). As the mean of the samples is rotated to zero,
field phase should have no drift.

one might, at first glance, expect that the mean field could fluctuate but that the mean

The following calculations and numerical experiments in contrast show that the sym-
metry of the natural frequency distribution is of fundamental importance for the dynamics
of the global phase in the regime of partial synchrony.

Asymmetry of probability distributions is reflected in all odd higher moments, starting

with the third. As the higher moments are harder to estimate for small samples, we restrict
skewness

our studies to this lowest moment!® reflecting symmetry, called skewness.

3\, ,2\—3/2
71 = () (W) (334)
The above Fig. 3.10 is a quick reminder of what positive and negative skewness typically
mean. Like all higher moments, the interpretation of skewness requires caution.
matter is simplified notably here, as we restrict our considerations to distributions and
samples similar to the Gaussian distribution, i.e., approximately unimodal distributions

The

14

with exponentially decaying tails. With these two simplifications, a distribution or sample
is positively (negatively) skewed, if the tail to right (left) is longer and heavier than that
to the left (right) and, in most cases, the distribution seems to lean to the left (right).

likely for small samples.

MPinite samples of unimodal distributions might be compatible with an interpretation as mixtures of

13Shifting the mean to zero in all finite or infinite experiments and calculations in this chapter, there
two (or more) unimodal samples with different mean, i.e., be bi- (or multi-) modal. This effect is more

is no need to distinguish between central moments and moments about zero. Likewise, as the standard
deviation is set to one, the moments we calculate are by construction normalized moments.
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F1c. 3.11: Macroscopic phase 2 = (¢) for N = 50 oscillators versus coupling strength e. Different
colors indicate different sample skewnesses: from top 73 = —0.95, to bottom ~; = 0.95.
Each chain of dots represents the mean over up to 20 phase velocities of distribution
samples with the same (+107°) skewness. The relative number of samples with Ry, > 0.1,
i.e., for which a collective mode is actually defined at a given ¢, increases with coupling
strength, which we reflect in decreasing transparency. The frequencies are calculated by
averaging over the time interval 103. The inset shows cuts through the main picture at
three different values of e: phase velocity vs. skewness.

Following the same order as in the former section that linked the shape of the natural
frequency distribution to the curve of R(e), we start with numerical findings in finite
ensembles. Then we compare the findings with a family of distributions with tuneable
asymmetry in the thermodynamic limit.

3.4.1 Effect of skewness of natural frequency distribution
in finite ensembles

Regular samples, such as the one defined in Sect. 3.0, can be useful, e.g. for the comparison
of different sample sizes. Chosen cleverly, such regular samples can circumvent the necessity
of large statistics by generating an in the best case typical sample that captures most of
the effects of interest in a representative way. The regular sample we described in Sect. 3.0
produces the first four moments fairly well, see table below Fig. 3.1, but panels a) and b)
of the same figure show that the resulting dynamics crucially differs from the dynamics
emerging in random samples. Above critical coupling w.r.t. Rpin, the global phase in a
regular ensemble converges to a constant, in contrast to typical random samples for which
we see a rotation of the mean field and persistent fluctuations of the global phase. The
asynchronous self-consistent integrals Eq. (3.20) vanish for symmetric g(w), i.e. the global
phase assumes a constant value as well.
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F1G. 3.12: Average frequencies of the mean field vs. skewness of the frequency sample for different
ensemble sizes. The continuous curve stems from the numerical integration and root-
finding in self-consistency Eq. (3.20) for skew-normal distributions with different skewness
parameters «. Each marker shape corresponds to one ensemble size, for each of which
1000 samples of a Gaussian with mean zero and variance one are generated randomly. For
each sample, the time evolution of ¢ at € = 2, performed over ¢ = 10® plus 10% transient,
gives () represented by one point in the plot.

To investigate the relation between asymmetry of the frequency sample and the result-
ing global phase dynamics further, we create skewed natural frequency samples and record
their average observed mean field frequency. Therefore, we generate millions of Gaussian
random samples of sample size 50 until we have 20 samples for each of 20 target sample
skewnesses. That means, we find for each target skewness 20 samples close (£107°) to
this target skewness. For each of the 400 samples and for each of 50 super-critical coupling
strengths, the time evolution is recorded after a transient of 10? time units. The observed
frequencies are obtained from the unwrapped global phases’ time evolution by linear regres-
sion. We then average over the 20 observed frequencies for each target skewness, thereby
also averaging out other sampling effects such as varying kurtosis. The results are depicted
in Fig. 3.11. The observed mean field frequencies have their largest value at small coupling
strengths. An inset shows the profile of the observed mean field frequency over the skew-
ness of the frequency sample at three different coupling strengths. The global frequency is
roughly proportional to minus the sample skewness.

In a second experiment, we freely sample 1000 random Gaussian samples (without
picking sample skewnesses and without averaging) for each of 7 ensemble sizes and plot
the relation of observed mean field frequency in this sample against sample skewness. The
coupling strength € = 2 is super-critical for all samples. Unsurprisingly, the spread of the
cloud of points decreases with ensemble size, and would shrink to a point at (0,0) in the
infinite limit. We also compare the results with solutions of the self-consistency equation
in the thermodynamic limit for a family of distributions in which skewness is a parameter,
where we observe a similar tendency.

To conclude, we observe that the global phase dynamics depends strongly on the sym-
metry of the natural frequency sample. Negatively skewed samples rotate in mathemati-
cally positive sense and vice versa. We now check this relation for the infinite case.
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F1G. 3.13: Frequency of the macroscopic oscillations Q for skew normal distributions as in
Eq. (3.35), obtained by solving the self-consistency relation Eq. (3.20) for skewness from
top 71 = —0.95 to bottom ~; = 0.95 against coupling strength € > €.. The distributions
are depicted in the inset.

3.4.2 Effect of skewness of g(w) in the thermodynamic limit

With the framework we developed in Sec. 3.2.2, a family of distributions with asymmetry
as parameter extends our findings from finite samples to infinite ensembles — similar to
how we proceeded in Sec. 3.3.2 for the kurtosis. A natural choice is the family of skew
normal distributions, [Azz13]'5,

g(w) = \/;m o [1 +erf (O‘(‘:’@;“))} (3.35)

where erf is the error function'® and o quantifies asymmetry. The Gaussian distribution
corresponds to @ = 0 and positive (negative) « corresponds to positive (negative) skewness.
The inset of Fig. 3.13 depicts members of this families with different o’s and therefore
different skewnesses v;. Mean and variance are additional parameters which we choose to

15Not the original but without doubt the most extensive publication on skew normal distributions.
1For numerical purposes or even for some analytical tricks, it might be useful to replace the error
function (erf) by the tangens hyperbolicus (tanh).
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be zero and one, respectively:

+ 5\F!o d 2<1+252> L1 where a (3.36)
g — = aln g e = whnere = .
: m m V1+a?

Therefore, with § := 2(52/7r,

,u;—sgn(oz)\/g/(l—i-g) and aél/\/l—k& (3.37)

Skewness 71 already depends merely on «:

4 5\
-7
7 = sgn(«) 5 (1 - S) . (3.38)

By inverting this formula, we generate the same target skewnesses as in the finite-size
numerical experiment, see preceding Sect. 3.4.1. Kurtosis differs only slightly for different
.

In comparison to the self-consistent solution for the Subbotin family of distributions
in Sec. 3.3.2, any family of skew distributions requires one additional calculation step.
First, we need to find €2 such that the imaginary part of the self-consistency equation
vanishes, see Eq. (3.20). (The corresponding integrals are hard to solve, and we turn to
numerical integration.) We apply the Newton bisection method for the root finding, using
the derivative of Eq. (3.35):

o) = W L - ()
J(@) = —"—Fgw) + —e

(3.39)

With these preparations, we first find Q for different a = eR such that Eq. (3.20) is fulfilled.
With the resulting pair (a, §2), we integrate Eq. (3.21) to obtain R(a,€2) and thereby (e).
Fig. 3.13 displays the same tendency as Fig. 3.11. The curves for each target skewness
start at the respective critical coupling strength; the difference in these critical couplings
reflects on the variation in kurtosis among the distributions. Negatively skew ensembles ro-
tate in mathematically positive direction and vice versa. The absolute global frequency in-
creases with increasing absolute skewness and decreases with increasing coupling strength.
Note that Q2 at €. is not necessarily the frequency at the maximum of the distribution.

In conclusion, we find a relation between asymmetry of the natural frequency sample
and the rotation frequency of the global phase. Remembering from [Kur84| that frequencies
around the maximum of a unimodal frequency distribution synchronize first, and taking
a look at Fig. 3.10, with the benefit of hindsight these results become plausible. The
analytical results from the thermodynamic limit explain why in the finite case the global
phase typically rotates with a constant drift.

3.5 Remark on the Lorentzian case

The Lorentz distribution arises in most of the literature on Kuramoto- and similar models,
because it cracks the hard integrals in the self-consistency equation Eq. (3.21) for the mean
field, see e.g. [Kur84, OA08|. In this section, we discuss, why the preceding discussion of
Gaussian-like distributions!” does not extend straightforwardly to the Lorentz distribution,
especially the comparison between finite and infinite samples.

17 Gaussian-like in the sense of (approximately) unimodal distributions that possess the higher moments
that we need for our comparison.
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Both the Lorentz and the Gaussian distribution belong to the family of (Lévy) alpha-
stable distributions. Members of this family fulfill a generalized central limit theorem and
are in this sense natural'® distributions. They are leptokurtic, heavy-tailed and do not
possess moments higher than the first — with the Gaussian distribution being the only
exception in all three of these characteristics. The probability density function in most
cases has no analytic expression, only the characteristic function does. It is therefore
difficult to treat alpha-stable distributions in general. We restrict the discussion to the
Lorentz distribution g(w) = v/[r(w?+~?)] as a representative for the problematic features
in this family.

There are three main problems: First, as stated above, the Lorentz distribution contra-
dicts the model assumption of almost identical natural frequencies, as it possesses heavy
tails. Second, finite Lorentzian samples are — due to the fat tails of the distribution —
characterized by few strong outliers. Outliers with large positive or negative frequencies
perform fast rotations. Their time scales separates from the time scale of the mean field.
Third, the (infinite) distribution has no moments.

At least for the third problem, there are possible alternatives. Other than the moments,
the quantiles of a probability distribution are always defined — by any of the abundant
definitions, see e.g. [HF96|. Generally, the mth n-tile is obtained by dividing the support
of a probability distribution into n pairwise disjoint intervals such that the probability
distribution has an nth part of the probability mass in each of the intervals — then the mth
n-tile is the lower boundary of the mth interval, counting from —oo to co.

We now describe combinations of quantile measures that should ideally resemble the
sample moments: [Moo88|' proposes a quantile-based measure for kurtosis, which applies
to heavy-tailed distributions in the infinite case — where 9 diverges — and to finite samples.
It combines the properties that we discussed as the crucial features for kurtosis, namely “(i)
concentration of probability mass near [the mean|” and “(ii) concentration of probability
mass in the tails of the distribution”. The octiles F,, of a probability distribution symmetric
around zero, i.e. distributions with E4 = 0, derive for m > 4 from the integral

Em
/0 g(w)dw = —— (3.40)

and for m < 4 it holds that By = —Fg, 1 = —FE7, and E3 = —FE5. [Moo88| defines
quantile kurtosis as

FE,—FE Fs—F FE—FE
T:= 2 5) + (B ) = for symm. distribution: 7 = =" "2 (3.41)
Eg — 5 Eg
A Gaussian distribution with standard deviation o and mean 0 has octiles
Epss = V20 erf ™ [(m — 4) /4] (3.42)

1 1
and thus 7T = {erf1 <i> —erf™! (4)] Jerf ! <2> ~ 1.233,

where erf ™! is the inverse error function.

18 Natural frequency distributions are difficult to access experimentally in the many applications of the
model — especially in biological systems where an in-vivo time-resolved observation of uncoupled individuals
is necessary. The few publications on this topic we know of are an elaborate experiment recording the
inter-flash intervals of at least 4 individuals [BBH*81] and the time-resolved recording of glycolytic cycles
in starved yeast cells as observed in [WPZH12|.

9nterestingly, the article uses the stretched exponential, i.e. the Subbotin family of distributions as an
example. The « in their Eq. (3.6) corresponds to 1/p in our Eq. (3.27). Their kurtosis ¥ minus 3 is our
excess kurtosis 7.
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For the Lorentzian distribution with scale v integral (3.40) gives
Es =y(V2—1)=—FEs;, Es=v=—-E, E;=7(2+1)=-E (3.43)

and thereby T = 2.

When we plot Rpyin(€) with data from Fig. 3.5 (i.e. for Gaussian distributed frequencies)
with colour scale proportional to this quantile based kurtosis, though, the correlation is
not as clear as in Fig. 3.5. We conclude that the finite Lorentzian samples are a difficult
matter to treat and that methods of separation of time scales can be used to discuss them
fairly well.

3.6 The total volume contraction in the finite Kuramoto model
phase space

The research on chaoticity in the finite Kuramoto model is limited to a handful of publica-
tions, see Sect. 2.2.2. The finite-size model is in most aspects elusive to analytical treatment
and all previous publications estimate the Lyapunov exponents numerically. Here we derive
the sum of all Lyapunov exponents that represents the average total volume contraction
in the phase space. We use the same terminology as [PP16].

Starting from the Kuramoto model with finite ensemble size N

N
. € .
0; = w; + N j:E 1 sin (0] — 91) =: fi, (3.44)

the time evolution of an infinitesimal perturbation « is given by

i = K(0)i, (3.45)
where the entries of matrix K read
_0h [k (Siicos(o -0 1) i=k
90y, v cos(Op —0;) 1F#k.

Ky (3.46)

The total volume contraction Sy is given as the sum of the Lyapunov exponents which is
the trace of matrix K:

: 1 ! / 074\ 4
Sy = {tr K (1)) = lim 7 /0 dt’ tr [K(e(t ), t )] (3.47)
1 t ¢ N N
— ] J— ,_7 P— . p—
= th—glo ; /0 dt N2 ;:1 cos(8; — 0;) 1 (3.48)

cos fl; cos0;+sin6; sin6;

% (=N2R(t')?+N)
= —eN(R(t)?) + . (3.49)

Eq. (3.49) shows that the sign of the volume contraction depends only on the product
N{R?(t)). The time average (R?(t)) is the sum of variance and squared mean of R(t) and
depends on € and the natural frequency sample.

Unfortunately, we did not follow this direction of research any further, and the inter-
pretation of this equation is still open. The obvious next step would be to either show that
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the finite Kuramoto model is contracting for any positive € or, if this is not the case, to
find the minimal value N(R(t)?) that undercuts 1.

The equation could potentially help to prove the existence of a finite minimum order
parameter (compare Sect. 3.1) also below the thresholds given by [VMO07]: we expect that
the dynamics is contracted to a lower dimensional subspace, as known from the infinite
case |OA08| and that configurations with vanishing order parameter cannot be visited
already shortly above the critical ¢ corresponding to Ryin-

3.7 Conclusion

In this chapter we took an alternative viewpoint on the finite Kuramoto model — alternative
to the otherwise usual thermodynamic framework of scaling of fluctuations. Instead we in-
vestigated how the collective dynamics depends on system parameters in finite ensembles.
Therefore, it was necessary to first define an indicator for the emergence of a collective
mode and thereby for a meaningful definition of a global phase. Inspired by [TZT*12],
we chose the minimum of the Kuramoto order parameter which allows for a numerical
estimation of the corresponding critical coupling with arbitrary precision.

The dependence of this new indicator on the coupling strength varies strongly among
different intermediate-size natural frequency samples. We find that most of this variabil-
ity can be traced back to the sampling distribution of the fourth moment — kurtosis — of
the distribution. In finite ensembles, we find a strong correlation between the coupling
strength, at which a certain degree of synchronization is reached, and the sample kurtosis
of the natural frequencies. In the infinite limit, solving the self-consistency equation of the
order parameter for a family of distributions, in which kurtosis is a parameter, allows us to
confirm this relationship. The results reconcile former results and draw a more complete
picture.

The same approach helps to uncover the link between asymmetry of the natural fre-
quency sample and resulting mean frequency of the global phase. We observe in both finite
and infinite ensembles that negatively skewed natural frequency samples generate a global
phase on average rotating in mathematically positive sense and vice versa. In skew finite
ensembles, the phase drifts at constant frequency with fluctuations on top; in perfectly
symmetric finite ensembles, the global phase converges to a constant.

We then remark that an analysis of finite samples of the Lorentz distribution requires
a prudent approach. In particular, the moments we used above for the characterization
of shape and asymmetry cannot be applied for the comparison of finite and infinite en-
sembles with Lorentz natural frequency distributions. Trying to circumvent this problems
by combining quantile measures, we can not reproduce the kurtosis-dependence of the
minimum order parameter curve for a quantile based kurtosis measure. For small sample
sizes, extreme outliers as they are common in heavy-tailed distributions could be treated
by time-scale separation.

We close the chapter by giving an analytical expression for the total volume contraction
in the phase space of the finite-size Kuramoto model, a result that opens room for future
research.
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Chapter 4

Mean field fluctuations induce micro-
and macroscopic correlations

Since Kuramoto presented the self-consistent mean field theory of sine coupled phase os-
cillators with distributed natural frequencies, countless publications refer to his picture of
synchronizing ensembles consisting of synchronous and asynchronous oscillators. In the
infinite limit, amplitude and angular velocity of the mean field assume constant values,
whereby the oscillators effectively decouple. Then, each oscillator follows an Adler equa-
tion with slightly different parameters. The ratio of frequency detuning between oscillator
and mean field on the one hand and coupling strength on the other decides over the os-
cillator either locking to the global mean field or rotating freely. The results from the
thermodynamic limit associate synchronous oscillators with order and asynchronous with
disorder: Synchronized oscillators rotate at a constant phase difference to the mean field
and pairwise correlation among them is perfect. In contrast, asynchronous oscillators each
rotate at a unique observed frequency, corresponding to disorder. The main question in
this chapter is how radically this picture changes in the finite case.

We saw in Chap. 3 that the order parameter fluctuates persistently. In Chap. 2, we
reviewed publications that report on a positive largest Lyapunov exponent in a large range
of coupling strengths. We here investigate the action of this deterministic chaos in com-
parison to a random process.

A whole series of papers revealed the synchronizing effect of noise in a diverse range of
theoretical models. Starting from [Pik84], many authors describe synchronization among
uncoupled identical [GP04, TT04, GP05b|, and non-identical oscillators [GP05a| forced
by common noise, but also in coupled systems of identical [PGRP16] and non-identical
[PGRP16,NK10]| oscillators. All these publications assume Gaussian white noise as part
of the driving force — employing the powerful corresponding apparatus of stochastic dif-
ferential equations. We show in the following that more general fluctuating driving forces
produce similar effects. The mean field fluctuations can thereby increase order in the
disordered natural frequency interval of asynchronous oscillators.

Some experiments indicate positive effects of synchronization by external noise, such
as increased spike timing reliability [MS95|. The most famous paper is maybe [GWFT98|,
where the population sizes of the sheep populations of two close — but with respect to
sheep migration separated — isles were synchronized by the common weather impact. On
the other hand, experiments also show how a complex system itself produces fluctuations
due to finite-size effects, e.g. channel noise in neurons [FSL*12].

Combining these two facts, noise-induced synchronization and inherent fluctuations in
finite ensembles, the following question arises: Can the weakly chaotic fluctuations from a
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finite Kuramoto ensemble create order among disordered, incoherent oscillators?

We consider the effect of mean field fluctuations in finite ensembles with 1) Gaussian
distributed natural frequencies (random or symmetric, see Sect. 3.0) at super-critical cou-
pling and 2) equidistant natural frequencies at sub-critical coupling (super- and sub-critical
in the Ryin-sense). In the latter case, fluctuations are much stronger than in the former,
so in the Gaussian super-critical case we need a trick to make the effect of these weak
fluctuations visible.

In both setups, we find a competition between the synchronizing effect of the noisy
mean field fluctuations and the differences in the natural frequencies of the individual os-
cillators. In the Gaussian case, fluctuations are weaker and pairwise natural frequency
differences among asynchronous oscillators are larger than in the equidistant case. The
typical frequency difference could be decreased by increasing the number of oscillators, but
with increasing ensemble size also fluctuations get weaker. We find a work-around for this
(for our purposes unfortunate) relation between frequency difference and noise intensity.
We decouple noise intensity from natural frequency difference by letting the mean field
of few active Kuramoto oscillators act on uncoupled passive Kuramoto oscillators with

arbitrarily small natural frequency differences!.

In this chapter, we approach the topic of synchronization by Kuramoto finite-size fluc-
tuations in three different ways:

First, in Sect. 4.1, we define a suitable model of active and passive oscillators for the
detection of fluctuations.

In Sect. 4.2, we visualize the effect by taking snapshots of individual passive phases for
different natural frequencies.

In Sect. 4.3, we quantify the pairwise correlation between the uncoupled oscillators with
the same model. Locking to the observed frequencies of asynchronous active oscillators
plays an important role.

Finally in Sect. 4.4, we model the effect on passive oscillators by uncoupled pairs of
oscillators driven by common white Gaussian noise. In this analytical treatment, we de-
rive an expression for the same pairwise correlation measure as in Sect. 4.3 and compare
numerical experiment and analytical model.

A part of the research presented here is discussed in a publication we soon release, the
other part gives research ground for a new project.

4.1 Active-passive Kuramoto model
— Passive oscillators as tracers of the active field

In [PGRP16], an infinite ensemble of non-identical Kuramoto oscillators is subject to weak
common Gaussian white noise. The authors prove analytically that the level of synchroniza-
tion increases with noise intensity. For identical oscillators, they show that synchronization
is associated with a negative Lyapunov exponent.

We instead want to measure to what extend phase differences between (coupled or
uncoupled) oscillators are decreased under the action of noise (more precisely, of Kuramoto
finite-size fluctuations) albeit their natural frequency difference. This effect will prove
to depend on both natural frequency difference and strength of fluctuations. In finite
Kuramoto ensembles, the two are strongly related: the larger the ensemble, the weaker the

LA similar system with passive (or testing) oscillators was discussed in [RPKT02].
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fluctuations but also the smaller the natural frequency differences (under the premise of
variance one of the frequency sample, w.l.o.g.). We therefore define an extended Kuramoto
model, in which natural frequency difference and strength of finite-size fluctuations can be
chosen independently.

Active-passive Kuramoto model
A small number N, > 3 of active phase oscillators ¢; generates a fluctuating Ku-

ramoto mean field N

. 1 n
Zact =2 Ract eiPact —: N Z el (41)
=1

with order parameter R,.; and global phase ¢, by following the standard Kuramoto
model

(Z.Si = w; + €flaet Sin(¢act - (z)z) (42)

with global coupling strength € and natural frequencies w; given as a sample of natural
frequency distribution g(w). Similar to sprinkling iron filings in a magnetic field, we
now force passive oscillators with this active mean field at the same coupling strength.

P = Qi + €Ract Sin(¢aet - 902') (4'3)

Passive natural frequencies §); are comparable to natural frequencies of the active
oscillators.

We want to discuss the synchronizing action of active ensembles with different natu-
ral frequency samples. First, we consider (random or symmetric?) Gaussian samples in
the super-critical regime. As seen in Chap. 3, both cases display persistent fluctuations
in the absolute value of the order parameter. Second, we investigate equidistant natural
frequencies at sub-critical coupling. In the thermodynamic limit, the corresponding uni-
form distribution leads to a first order phase transition. As shown in [PMTO05], the largest
Lyapunov exponent is largest slightly below critical coupling, and fluctuations are much
stronger than in the Gaussian super-critical case.

In the following section we visualize the action of a fluctuating active mean field on the
phases of passive oscillators with distributed natural frequencies.

4.2 Cyclic alteration between formation
and breakdown of phase synchronized bars

Passive oscillators ¢; in our model function as enhancers of the effect of increased corre-
lation among asynchronous oscillators. We want to visualize these correlations by taking
snapshots of the phases of these passive oscillators versus their natural frequencies, see
e.g. Fig. 4.1. In a first experiment, we distribute these natural frequencies €2; equidistantly
(with difference AQ between neighboring frequencies) into an interval outside the locking
condition: |€2;| > emin(Ryet).

Let us shortly discuss the case of a static active mean field (from an infinite active
ensemble or at complete synchrony). Then the passive oscillators follow Adler equations
with different frequencies. The density of phases for a particular ; converges to the
invariant set of this Adler equation, which for |2;| < €R,ct is a delta distribution and for
|| > €Ract, the passive oscillators rotate freely so their density is proportional to 1/|¢;| =
Q% + €Ract sin(dact — ©;)| "t — a wrapped Cauchy distribution. The phases accumulate

2The regular sample defined in Sect. 3.0 is symmetric.
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Fi1G. 4.1: Eight snap shots of passive phases against their natural frequencies in [1.702,1.724]
(same magnification and frequency interval as in lowest panel of Fig. 3.1a) for a system
of 50 active oscillators with random Gaussian natural frequency distribution shot at each
150 time units after 8700, indicated by vertical red lines in lower panel. Lower panel: time
evolution of the absolute value R = R, of order parameter of active ensemble. Coupling
strength € = 1.85. In comparison to the equidistant case, it takes more than ten times
as long until phases concentrate on thin lines, compare also Fig. 4.2. Note that, e.g., the
rupture at €2; = 1.716 vanishes during the first four panels.

around the bottleneck of the Adler equation, @, + 7/2 for ; = 0. The spread of the
phase distribution increases with increasing |€2;].

This picture changes considerably, when we now introduce finite-size fluctuations in
Rt (t), generated by 50 coupled oscillators.

The observations we describe in the following pages are of dy-
namical nature: Under the impact of finite-size mean field fluctu-
ations, the phases of passive oscillators in small regions of natural
frequencies achieve strong local coherence for a while but then get
dragged apart by the difference in their natural frequencies, un-
til fluctuations unify them again, see Fig. 4.1-4.3. This cyclic al-
teration between low and high coherence is harder to understand
from static pictures and description, so we collect a series of videos
[Pet18b, Pet18c,Pet18d| and others in a video playlist [Pet18al, see
QR-code aside text or use https://tinyurl.com/yawmkatw. De-
scriptions of experiments below respective movies. This monograph, though, provides a
comprehensive description of most aspects in these films.

In the two next sections we visualize and discuss correlations among passive oscillators
in the Gaussian super-critical and the equidistant sub-critical case.

Link to playlist.

4.2.1 Weak fluctuations from a super-critical Gaussian ensemble

First, let us review the super-critical dynamics in the finite-size Kuramoto model with
Gaussian natural frequency distribution (see Chap. 3). The Kuramoto transition to syn-
chrony compares to a thermodynamic second-order phase transition. Above the critical
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coupling (indicated by Rmin), & large synchronized cluster with a common observed fre-
quency is formed by all oscillators with a natural frequency close to zero. The asynchronous
oscillators in the wings of the natural frequency distribution already decrease their observed
frequencies to join the central cluster at stronger coupling.

The exact critical coupling strength and its dependence on the particular frequency
sample are extensively discussed in [PP18] and Sect. 3.

The pairwise phase differences within the central cluster fluctuate, due to the locking
condition Eq. (2.7) being time-dependent. Oscillators with natural frequencies on the
border of this central cluster are of particular importance for the phenomenon we aim to
evince in this section, as they carry the strongest fluctuations.

P A . L . 3 ok - . . |
1.705 1.710 1.715 1.720 0.590 0.595 0.600 0.605 0.610
i i

a) random Gaussian active ensemble b) equidistant active ensemble

FIG. 4.2: Snap shot at t = 10% of passive phases (small black dots) against their natural frequency
for a system of 50 active oscillators (in red) with 4.2a) random Gaussian natural frequencies
or 4.2b) equidistant natural frequencies and 10 passive oscillators with equidistant frequen-
cies in three zoom levels with factor 10: Gaussian case [0.8,3.], [1.6,1.82], and [1.72,1.742]
— equidistant case [—1.,1.], [0.5,0.7], and [0.59,0.61]. Coupling strengths ¢ = 1.85 and
e = 1.25, respectively. In the Gaussian case, the phases did not yet form a thin line as it
occurs after ¢t ~ 5 - 10%, compare Fig. 4.1. Both in the equidistant and in the Gaussian
case, passive oscillators with natural frequencies close to an active oscillator lock to the
latter (upmost panels). Correlation among neighboring passive oscillators decreases with
difference to the central cluster, indicated by thinner and scarcer stripes. The green arrows
in 4.2a) point to a rupture that is starting to close (old) and a recently born rupture (new).
In 4.2b), there is only one rupture that is almost already closed.

The analogy of the synchronization transition to a thermodynamic phase transition
suggests to investigate critical phenomena around the transition point. The vast majority
of publications regarding the finite-size Kuramoto model therefore discusses the scaling of
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fluctuations close to the criticality and concentrates on relatively large numbers of oscilla-
tors. Much less investigated is the chaoticity of the collective motion in the super-critical
regime. The only reference known to the author is [Bar13]. In that work, small positive
Lyapunov exponents in the direction of some of the oscillators’ phases are found in a con-
siderable range of super-critical coupling strengths — approximately between the critical
coupling strength for a strictly positive order parameter after transient and the critical
coupling strength for full synchrony. They produce noisy fluctuations in the Kuramoto
order parameter — an important ingredient in the effect we show here.

We now observe the time-dependent phase profile (instantaneous individual phases vs.
natural frequency) of passive oscillators forced by an active ensemble of 50 oscillators with
Gaussian distributed frequencies at super-critical coupling € = 1.85, compare Figs. 4.1 and
4.2a)3. Initially the passive phases get attracted to the active global phase plus (minus)
7 /2 for passive oscillators faster (slower) than the active mean field — as in the case of
periodic driving. The weak fluctuations of the driving active mean field then brings phases
of passive oscillators closer together. After a long time of ~ 5000 time units, the passive
phases align with other passive phases with similar natural frequency, forming a thin line.
The natural frequency difference in contrast, drags phases apart, so that the thin line
breaks and a “rupture” occurs (see e.g. bottom panels in Fig. 4.2). We call the approx-
imately horizontal line between two such ruptures a bar. The fluctuating driving closes
these ruptures in ~ 500 time units. The system seems to go into a dynamic equilibrium
with certain density of ruptures, in which bars are constantly reformed and destructed.
The typical bar width of ~ 0.02 is indeed smaller than the typical natural frequency dif-
ference among asynchronous active oscillators ~ 0.2; we therefore call these correlations
microscopic. Note that passive oscillators with natural frequencies close to one of the active
oscillators, frequency-lock to the latter.

4.2.2 Stronger fluctuations from a sub-critical equidistant ensemble

In the case of equidistant natural frequencies in the active ensemble and coupling strength
€ = 1.25 only slightly below the critical coupling € ~ 1.275, fluctuations are stronger than
in the Gaussian super-critical case, assuming values between R ~ 0 and R ~ 0.6. Also
the auto-correlation is larger than in the Gaussian case, as a comparison of the lower
panels in Fig 4.1 and Fig 4.3 indicates. The effects are qualitatively equivalent to the
above described Gaussian case, but occur on a shorter time-scale (approx. factor 10) and
on larger passive-natural frequency intervals. Correlation ’'lengths’, i.e. typical interval
lengths of passive frequencies in which bands are formed, become macroscopic, such that
the concept of passive oscillators is not actually necessary in order to visualize (compare
e.g. [Pet18¢c| for the case of 1000 active oscillators, although the effect is already visible
for ~ 50 oscillators). The mean field fluctuations suffice to induce the bar-formation-and-
destruction cycle among the central oscillators. The process happens cyclically but not
periodically; after all the order parameter performs chaotic motion and the different cycle
times reflect that.

As in the Gaussian case, we observe both, phase slips and closing of the ruptures
they cause, and convergence of the phase distribution of individual passive oscillators
to a narrow peak. As chaoticity is stronger than in the Gaussian case, both processes
occur much quicker slightly below the critical coupling to complete synchrony, where both
amplitude and Lyapunov exponents are significantly larger. Also, the correlation 'length’,

3For comparability, the natural frequency sample, coupling strength, and initial condition are the same
in Sect. 4.2 and 4.3.
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F1G. 4.3: Eight snap shots of passive phases against their natural frequencies in [—1.01, 1.01] (same
magnification as in upmost panel of Fig. 4.2b) for a system of 50 active oscillators with
equidistant natural frequencies shot at each 10 time units after 420, indicated by vertical
red lines in lower panel. Lower panel: time evolution of the absolute value R = R, of
order parameter of active ensemble. Coupling strength 1.25. Note the closing of ruptures
especially between 440 and 450 time units for the most central passive frequencies. First
and eighth upper panel are similar, indicating beginning and end of a bar-formation-and-
destruction cycle. Comparing to the lower panel, the cycle takes place between two local
minima; the local maximum in the middle corresponds to the largest central ’bar’.

i.e. the typical interval length of passive natural frequencies in which the phases form such
a band is considerably larger in the equidistant case. For a direct comparison of snapshots
of the time evolution of passive phases in the Gaussian and equidistant case, respectively,
see Fig. 4.2.

In the thermodynamic limit of infinitely many active oscillators, the uniform distri-
bution is special in that, at the critical coupling, all oscillators at once lock to the mean
frequency in a first order phase transition. Below critical coupling the order parameter
vanishes, the oscillators decouple, and oscillators rotate at their natural frequencies. In
the case of a finite ensemble, on the contrary, correlation among oscillators appear already
at small coupling strength and increase when approaching critical coupling. With increas-
ing coupling strength, the correlation length grows, and thereby the width of the central
bar. The typical period of a cycle of formation and destruction of the central bar increases.
As we discuss further in the next section, the transition to synchrony is quite elusive and
deserves deeper discussion in a future project.

The above findings imply that finite-size fluctuations might play a crucial role in the
stabilization of partial synchrony. Uncoupled equidistant oscillators driven by a constant
mean field lock to the latter successively, as the coupling strength increases. In a coupled
finite system of oscillators in contrast, fluctuations cause correlations almost across all
natural frequencies that would in principle allow to lock all oscillators at once. This finding
could be the path to a completely new understanding of the procedure of synchronization
transitions in finite systems.
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F1G. 4.4: Synchronization index 7 of passive oscillators driven by the mean field of 50 active
oscillators with Gaussian distributed natural frequencies against frequencies around which
passive oscillator pairs are centered. (For numerical details see text.) ~ decreases with
passive natural frequency difference and with distance to the synchronized central cluster.
Passive oscillators lock to active oscillators when natural frequencies of the former are
similar to the natural frequency of the latter (indicated by gray vertical lines). Then, 7
assumes values close or equal to one. The exceptional peak at natural frequency ~ 2.4 is
discussed below Fig. 4.5.

4.3 Quantifying the correlations between neighboring passive
frequencies via a synchronization index

The qualitative analysis in the former section should now be complemented with numbers
that allow us to compare the result to the white-noise approximation. We observed that
the typical width of the natural frequency interval in which phases stay close for some
while (= correlation length) decreases with the natural frequency difference to the central
synchronized cluster. We know that the variance of order parameter fluctuations decays
with N~=!. And we are able to compare the impact on oscillators with different natural
frequency difference by means of the method of passive oscillators.

Now we need a measure for correlation between pairs of passive oscillators. Before
applying a correlation measure that is suitable for the circle topology, we need to compen-
sate for a bias. Due to the movement of all oscillators in a common, nonlinear potential,
spurious correlations occur, when the oscillators pass the same bottleneck. Speaking in
the analogy of a particle sliding down a plane (as in [PRKO03|, Eq. (9.8)): all particles slide
down the same tilted (time-dependent) potential, only that the tilt is a slightly different
for each oscillator. We discussed that phases of oscillators with natural frequencies close
to the synchronization transition have rather narrow phase distributions on the circle, due
to their long stay close to the synchronized cluster interrupted only by short phase slips.
Think of the temporal distribution of one passive oscillator on the circle as a snapshot
of infinitely many identical oscillators at time ¢ that started from uniformly distributed
phases in [0, 27). Then, the attraction of these identical oscillators to a narrow distribution
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Fi1G. 4.5: Observed versus mnatural frequencies for active and passive oscillators.
The natural frequencies of the seven asynchronous active oscillators are:
[1.0725,1.2456, 1.3344,1.5192,1.9305, 2.2162,2.2230], i.e. the two largest nat. frequen-
cies are close in this random sample. Same active natural frequency sample as in Fig. 4.4.
Averaging time ~ 2 -10? RK4 time steps of size 0.01. Unsurprisingly, the general shape
compares to the observed frequency vs. frequency detuning graph of the Adler equation
— as discussed in Chap. 2. Partially synchronized oscillators form a collective mode that
in the infinite limit corresponds to a driving with the constant mean field frequency. The
central oscillators on average rotate with the mean velocity of the order parameter phase
<q5act>t = —0.02. Small steps beyond the central synchronized plateau stem from locking
to asynchronous active oscillators. The power spectrum of Ract exp(dact) in light blue
(from a time series of 10° units) consists of a noisy background and few pronounced peaks.
The highest peak corresponds to two pairwise locked active oscillators with small natural
frequency difference. Passive oscillators with similar natural frequencies lock 1 : 1 to the
two active oscillators. As the latter do not rotate at constant speed but rather linger
around ¢,c; + 7/2 between occasional phase slips, passive oscillators with smaller natural
frequency are better synchronized, reflected in the slight asymmetry of the minor plateaus
around active natural frequencies. What holds for the highest peak is also true for most
of the minor peaks. Some though correspond to 2 : 1 synchronization, e.g. the tiny step
at natural frequency ~ 2.42 beyond the range of active natural frequencies. Comparison
to multiples of the frequencies (measured from the observed frequency of the active mean
field) at which the peaks appear reveals that this step corresponds to twice the peak at
observed frequency ~ 1.07, i.e. the passive oscillators with natural frequency ~ 2.42 lock
2 : 1 to the active oscillator with natural frequency ~ 1.52. The width of steps in general
decreases with distance to the central synchronized cluster. Asymmetry of steps around
active oscillators and width of these steps appear equivalently in a simplified model, where
solutions of Adler equations with different ratios |A;/a| drive passive Kuramoto oscillators.
With the word “steps”, we refer to the devils’ staircase of a circle map, where — other than
in the Adler equation — different winding numbers,/ locking ratios occur.

around a certain phase 6; is described by a Mébius transform, [WS94|. We therefore use
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F1G. 4.6: Temporal order parameter |z;| for passive oscillators with natural frequency ; for the
four experiments in Fig. 4.7. The inverse Mobius transform as in Eq. (4.4) indeed leads
to an approximately uniform rotation of individual passive phases, indicated by |z;| for all
natural frequencies sufficiently far from the central synchronous cluster. The pairwise phase
difference between oscillators in the synchronous cluster fluctuates. Therefore |z;| < 1 before
the transformation. Oscillators close to this cluster fluctuate strongest, entering and leaving
the central cluster irregularly. They are thus not transformed to uniform distribution by
the Mobius transform that can only smear out one global maximum of a phase distribution.

an inverse Mobius transform, with narrowness of the phase distribution and phase 6; as
parameters, to spread the narrow phase distribution to an approximately uniform one. We
later check numerically, whether this trick indeed results in a flat distribution.

From a time series of individual passive oscillator ¢, we determine a temporal order
parameter equivalent to the Kuramoto order parameter z; = |z;| exp[:0;] = (explup;(t)]):.
Absolute value |z;| lies between zero for uniform rotation and one for a constant phase. The
following inverse Md&bius transform stretches the time evolution of asynchronous oscillators
which are constant interrupted by phase slips to approximately uniform rotation:

Zi — ez(@i —act)

Wi _

e’ = zFerpi=dact) — 1 (4.4)
Measuring individual order parameter |z;| again after the Mobius transform quantifies the
success of the transformation (see Fig. 4.6, where |z;| before and after transformation is
plotted against passive natural frequencies for four different active ensemble sizes). As the
active mean field typically rotates and fluctuates slowly due to asymmetries in the active
natural frequency sample (compare Sect. 3.4), we apply the Mébius transform only after
rotating into the reference frame of the active mean field ; — ©; — Gact-

An appropriate directional measure was suggested by [MJ00|. It measures “the mean
phase coherence of an angular distribution”. For transformed phases 1); ;, the pairwise
synchronization index

v = [(explu(vi — ¥5)])el, (4.5)
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F1G. 4.7: Synchronization index v as in Fig. 4.4, with same method, averaging time, and coupling
strength as there, for active ensemble sizes 25, 50, 100, and 200. Natural frequencies of
the active ensemble are drawn randomly from a Gaussian distribution; sample mean and
standard deviation are unified to 0 and 1 after sampling.

is averaged over large times for pairs of passive oscillators with difference of natural fre-
quencies AS).

In the following, we distinguish again between Gaussian and equidistant case. In the
Gaussian case, we determine the index for one particular active natural frequency sample
and discuss it thoroughly. Afterwards we shortly touch upon the scaling with active ensem-
ble size, passive natural frequency difference, and intensity of active mean field fluctuations
— to allow for a comparison to the analytical treatment in 4.4. In the equidistant case, we
see in the same experiment as in the Gaussian case that the Mobius transform turns out
less effective the closer the coupling approaches critical coupling.

4.3.1 Gaussian distribution

We focus at first on one particular Gaussian natural frequency sample for the active oscilla-
tors. We determine that the coupling strength 1.85 is super-critical for this sample. After
a transient of 10 time units, the order parameter Ruc; fluctuates with variance ~ 0.0035
around mean ~ 0.575. Around each of 110 equidistant frequencies w in [0.8, 3.0], we center
five pairs of passive oscillators with natural frequency differences 1076,107°,107%, 1073,
and 1072, Active and passive oscillators evolve jointly; the instantaneous order parameter
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F1G. 4.8: Synchronization index versus ratio of pairwise natural frequency difference and variance
of the active mean field. Data as in Fig. 4.7: In all four subplots, we average v(Nactive) OVer
all passive frequency indeces for which v(A = 1072) falls below an (arbitrary) threshold of
v = 0.6. Thereby, we mainly exclude the effect of locking to active asynchronous oscillators
to focus on the effect of the noisy components of the driving. Compare to analytical white
noise approximation, Fig. 4.13.

of the active mean field acts on the passive oscillators in each time step. After the tran-
sient, we use the average z; = (exp[¢(¢i — Pact)])+ for each hundredth RK4 time step of size
0.01 over ¢ = 2.14 - 107 time units to inverse Mdbius transform the trajectories of all 1100
passive phases. Only then, we measure the pairwise correlation of the transformed phases
via 7 as in Eq. (4.5), i.e. for each of the 110 frequencies we obtain five values. In the last
10" RK4 time steps, v changed by less than 0.3%. The results are presented in Fig. 4.4.

As anticipated from the videos and snapshots from the former section, the results
in Fig. 4.4 show a decreasing coherence with increasing distance to the central cluster.
Comparing different AQ), + also quantifies what we formerly referred to as a correlation
length: While the correlation of passive oscillators with natural frequency difference 10~6
almost equals one across all measured frequencies, the correlation between oscillators with
a frequency difference of 1072 amounts to less than 0.3 (excluding those oscillators for
which v is close to one) and for which |z;| is sufficiently small after transformation. The
passive natural frequencies at which v ~ 1 for all frequency differences are those close
enough to one of the active oscillators to lock to them. We discuss this aspect in detail in
Fig. 4.5. The upper right panel of Fig. 4.6 shows the success of the inverse Mébius transform
in straightening the phase evolution of single passive oscillators. Passive oscillators with
natural frequencies close to the synchronized cluster phase slip seldomly and irregularly;
therefore the transformation is less successful and + partly measures spurious correlations
at these frequencies.

The intensity of fluctuations decreases with ensemble size. In Fig. 4.7-4.8, we evaluate
the above experiment with parameters as above also for active ensembles with sizes 25, 100,
and 200. As Fig. 4.7 shows, 7 typically decreases with ensemble size for a specific passive
natural frequency difference. To have a measure for this tendency, we pick all passive
natural frequencies around which v(AQ = 1072) is smaller than a threshold 0.6, by which
we aim to exclude both passive oscillators locked to an active one and passive oscillators
close to the central synchronized cluster. Over these selected passive natural frequencies,
we average < to obtain one value for each of the five AQ) and four active ensemble sizes.
The error of v is estimated as 25th and 75th percentile of v of the respective selected
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F1G. 4.9: Correlation for equidistant active ensemble. Panel 4.9a) v of 1000 x 4 pairs of passive
oscillators driven by mean field of 50 active oscillators with natural frequencies equidistant
in [—1,1] (vertical gray lines above plot). Panel 4.9b) Temporal order parameter |z;| of
passive oscillators, pairs of which are compared in panel 4.9a). (The small hump in |z;]
after the transformation increases further when approaching the critical coupling — the
applicability of the Mobius transform decreases.)

passive natural frequencies. Figs. 4.8 displays the results of this averaging against a ratio
4AQ/0? that appears in the analytical derivation in Sect. 4.4. Noise intensity o2 is the
variance of Ract(t). The general curve compares very well to the analytical white noise
result shown in Fig. 4.13.

4.3.2 Equidistant distribution

Correlations in slightly sub-critical equidistant active ensembles range over a passive nat-
ural frequency of the order of the active natural frequency range, as we saw in Fig. 4.3.
Pairs with passive natural frequency differences 1,0.1,1072, 1073 have sizable correlation.
Moreover, fluctuations are stronger than in the Gaussian active ensemble. For both rea-
sons, it suffices to average over 10® RK4 steps of size 0.01, after cutting a transient of 10*
time units.

Fig. 4.9 shows synchronization index « , similar to Fig. 4.8. Coupling strength ¢ = 1.25
in this figure lies slightly below critical coupling € ~ 1.275. The strong macroscopic cor-
relations observed in Fig. 4.3 are indeed reflected in large values of v even for passive
frequencies ~ 1072, As in the Gaussian case, we observe locking to active natural frequen-
cies. With increasing A€} they smear out, as A{Q) exceeds the width of the locking interval
of passive natural frequencies.

For a future project it would interesting to investigate changes of this picture when
approaching the transition point. Temporal order parameter |z;| of the central passive
oscillators before transformation increases until finally reaching 1. Our inverse Md&bius
transform becomes less efficient close to the transition. While in the thermodynamic limit
the transition is clearly of first order, little is known about how the finite system undergoes
the transition. For determining the exact transition point one might use [OLS16].
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4.4 Approximation of chaotic mean field fluctuations as Gaus-
sian white noise

The passive oscillators in Eq. (4.3) are mutually uncoupled and driven by a common chaotic
forcing?. In the previous section, we measured a considerable pairwise correlation between
these forced passive oscillators. Our observations from former Sects. 4.2 and 4.3 suggest
that the chaotic driving acts similarly to a noisy forcing. Strong fluctuations close to
criticalities are a universal phenomenon, described by scaling laws. Some authors also
touched upon the corresponding increased Lyapunov exponents in systems similar to the
here discussed finite-size model, see [Barl3, PMTO05|. Synchronization by common noise
appears in a variety of setups, as was mostly revealed by Goldobin et. al., e.g. [GPRP17|
but also [TT04]. That motivates us to replace the chaotic mean field by Gaussian white
noise as a first order approximation.

Clearly, the observed locking of passive oscillators to specific frequencies in the spec-
trum of the time-dependent mean field as observed in Sect. 4.3 are not captured by this
approximation. The theories of Adler equation and circle map explain most aspects in
this respect. We can therefore focus our attention on the effect of noise. This section is
dedicated to the competition between noise and frequency difference in the passive-active
System.

Therefore, we consider the synchronization index of a pair of two oscillators with natural
frequency difference A and noisy forcing. We first bring the evolution equation of the
passive oscillators in all three cases — equidistant sub-critical active forcing, random super-
critical, and symmetric super-critical — into a common form. The Fokker-Planck equation
of the phase differences’ probability density then leads us to how the pairwise angular
correlation depends on frequency difference and noise intensity.

4.4.1 Mean field driving of three active ensembles
— approximation as stochastic differential equation

Three types of finite ensembles — one with equidistant natural frequencies at slightly sub-
critical coupling, one with Gaussian randomly sampled natural frequencies and one Gaus-
sian sample with symmetry Vi3!j : w; = —w;, the latter two at slightly super-critical
coupling — all exhibit the effect of bar formation that we discussed in Sect. 4.2. We thus
expect the formalism of noise-induced synchronization to apply to all three systems. The
dynamic equation for two passive oscillators ¢, 2 is given by

@i = Qi + €Ract sin(Pact — ¥i)- (4.6)

The time evolution of amplitude and phase of the active mean field, Ract and ¢act, dif-
fers considerably in the three cases. We will reduce this equation in the following to an
equivalent form for all three cases:

by = Qi + x(t) — hsing; + %Sin(d}z‘)fl (t) + gCOS(%‘)&(t) (4.7)

where v;, Q;, h, a,b, and white noise random processes &12(t) and x(t) have different
definitions, corresponding to the different ensembles. Random processes & 2(t) represent
two uncorrelated white noise processes (§; ;(t)) = 0 and (&(¢)&;(t)) = 20;;0(t — t').

4The setup should though not be confused with generalized synchronization, see [RSTA95|, where a
chaotic oscillator entrains an identical (chaotic) system.
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4.4.1.1 Active mean field of equidistant ensemble at slightly sub-critical cou-
pling

In Kuramoto ensembles at sub-critical coupling strength, both the phase and the absolute
value of the Kuramoto order parameter fluctuate strongly. Roughly, the complex order
parameter Z,.; can be approximated to perform random white noise diffusion around zero:
Zact(t) = Ex(t) + 1€y (t) where £x(t) and &y (f) are uncorrelated, real-valued Gaussian
white noise processes with zero mean. The phase transition in the thermodynamic limit
in case of a uniform distribution is of first order, compare Eq. (3.26). As order parameter
fluctuations are stronger closer to the criticality, the standard deviation of the order pa-
rameter fluctuations should be estimated from numerical experiments at the corresponding
coupling strength. We rewrite Eq. (4.6) accordingly”:

Qbi = Qz + 6fiact Sin(¢act - SOZ)
= Q; + €Ract [SIN Pact COS p; — COS Pact SIN ;]
=Q; + €[y (t) cos p; — Ex(t) sin @]
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F1G. 4.10: Mean field absolute value R,.t(t) and phase @,ct(t) of 50 Kuramoto oscillators with
equidistant natural frequencies at coupling strength ¢ = 1.25 slightly below critical cou-
pling e ~ 1.275.
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Eq. (4.8) already has the form of Eq. (4.7), with ¢; = ¢;, Q;
and a&i(t) = —2€{x (t), béa(t) = 2ey (1)

Looking into details of our numerical findings, see also Fig 4.10 and [Pet18c|, we observe
recurring local plateaus which seem to be both the result of and the reason for bar formation
— the white noise approximation might only capture part of the mechanisms involved.

= Q;, x(t)

4.4.1.2 Active mean field of Gaussian random ensemble at slightly super-
critical coupling

As shown in [PP18|, the super-critical order parameter Rat =: R + &g fluctuates around
a finite constant value R := (R(t)):, while the global phase ¢, on average rotates at
constant frequency €2, depending roughly linearly on the skewness of the natural frequency
distribution (see Sect. 3.4), superimposed by small-amplitude fluctuations. We model the
global frequency ¢act as a constant plus white noise. With gact ~ Q + 530’ we express the
phases ¢; in the rotating reference frame of the global mean field @; = p; — ¢t and get
0 =2 — Q=&

— €(R + &R) sin(@;). (4.9)

=0 —Q, x(t) =

This equation equals Eq. (4.7) by identifying v; = — Pact,

h = €eR, and a&;(t) = —2€£r(t), b =0.

"By @(t) = f(t) + g(t)&(t) we denote the stochastic differential equation (SDE) dX, = f(t)dt + g(t)dW,
where X, is a random process and W, represents a Wiener process.

_&p)
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F1G. 4.11: Mean field absolute value and phase of 50 Kuramoto oscillators with Gaussian randomly
sampled natural frequencies at coupling strength € = 1.76 slightly above critical coupling
€~ 1.75.

Fig. 4.11 shows a typical time evolution of absolute value and phase of the order pa-
rameter that motivates the approximation as white noise.

4.4.1.3 Active mean field of Gaussian symmetric ensemble at slightly super-
critical coupling

One crucial observation in [PP18] was that the global phase ¢, converges to a constant €2
when the underlying natural frequency distribution is symmetric in the sense that Vi3!lj :
w; = —wj. This facilitates calculations considerably, as we can set ¥; = ¢©; — @acr (Without
generating an additional noise term). With R := (R(t)); and order parameter fluctuations
¢r, Eq. (4.6) then becomes

Ui = O — e(R+ €g) sin(t;) (4.10)

which is already of the form of Eq. (4.7) with 1, = ¢; — @act, Q= x(t) = 0, and
h = €eR, and a&;(t) = —2€£r(t), b = 0.

Fig. 4.12 shows a typical time evolution of absolute value and phase of the order pa-
rameter that motivates the approximation as white noise and the convergence of the phase
of the complex order parameter to a constant.
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Fic. 4.12: Mean field absolute value and phase of 50 Kuramoto oscillators with regular Gaussian
natural frequencies (see Sect. 3.0) at coupling strength ¢ = 1.89 slightly above critical
coupling € ~ 1.87. The global phase converges to a constant.

4.4.2 Removing bias in pairwise correlation via inverse Mobius trans-
form

As in the numerical experiment, there is a bias in the pairwise correlation of passive
oscillators, as they all move in a common nonlinear (time-dependent) potential. In the
case of a unimodal natural frequency distribution and super-critical coupling strength,
e.g., where the mean field is dominated by the approximately uniformly rotating central
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synchronized cluster, both active and passive asynchronous oscillators sojourn longer time
at a distance of 7/2 to the mean field phase. By applying an inverse Mobius transform, we
stretch the peaked distribution of instantaneous positions of individual phases in [0, 27) to
an approximately uniform distribution.®

Starting from Eq. (4.7), we first shift phases 1); to Ui = Yi—T /2. Thereby, sinty = cos "
and cosy = —sin 12, which proves practicable in the following calculation.

%Zi IQi‘FhCOS%Z)i-i—%COST/;i& - gsim/;i@—kx(t). (4.11)

We use the inverse Mobius transform in the form

i Q—h i
tangi =4[ = tanﬂ. (4.12)
2 Q;+h 2

The time evolution of the transformed variables ¢; derives from these two equations and
using derivative

d
— (t = 1+ tan? 4.13
dm( anx) + tan” z (4.13)
and half-tangent relations
2t 1—1t?
t:tang, sinx = Fpel and cosz = I e (4.14)

After a number of simple algebraic transformations, compare App. A.3, the dynamical
equation for ¢; are of similar form as Eq. (4.7), namely

. ~ 1
GZ‘Z\/Q?—W%—W

As noises 5§ and x(t) are both Gaussian white noise processes centered around zero,
their sum is a Gaussian process as well, with noise intensity being the sum of variances of
both summands. Replacing the respective variables, Eq. (4.15) in the M&bius transformed
variables ¢; takes the form

(Qicosg; +h) - [gfl + X(t)} - gSin ¢i &2 (4.15)

bi= /92— 2+ x(1) + gsm ¢i &1() + § 6i Ea(t). (4.16)

New variables relate to the old as follows. x(t) is a Gaussian white noise process with zero
mean and intensity

h2
n? = Ry [a?/4 + Var(x(t))]. (4.17)
and A = —b and
B Q0

Natural frequency differences |Q; — Q;| < 1, therefore we set B = B; = B; and ) =
n = n;. €12(t), X(t) are Gaussian white noise processes with <§:”(t)> = (x(t)) = 0 and
(€:(1)&; (1)) = 2050(t — 1), (&(t)X()) = 0, (X(t)X(t')) = 2°6(t — ') . Note that, though

5This transformation was adapted from celestial mechanics to the synchronization of identical phase
oscillators, see [SSW92|. There, the forward Mobius transform mediates the common rapprochement of
phases in the synchronization process.
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having the same statistics as former processes &1 2(t), x(t), the transformed realizations
generally differ. We drop the tilde in the following.

4.4.3 The synchronization index for a pair of noise driven oscillators

Only after that transformation, we can apply the correlation measure we formerly used in
Sect. 4.3, namely

5 = |(er@r =00y, | (4.19)

The comparison to the numerical estimation of the synchronization index under Kuramoto
mean field driving is straightforward, as also there we compared pairs of oscillators.

In the following, approximating Eq. (4.6) as a stochastic differential equation, see
Eq. (4.7), the probability density of the difference of two phases can be found by solv-
ing the corresponding Fokker-Planck equation.

4.4.3.1 Diffusion of the phase differences’ probability density

The calculations in this subsection are partially adapted from [GPRP17]. We start from
Eq. (4.7), where we introduce the mean of the natural frequencies of two oscillators as w
and their frequency difference as A:

w= (/28 —h2 /03— h2)/2 and A= /0 h2—\/0f R (4.20)

Thereby, the equations for the two oscillators become

br=w+ SA+ 1D + 5 sm(@)E(0) + 5 cos(or)ea(t),

b =w— LA R() + 5 sin(e)a(0) + D cos(én)eals)

It proves useful to reformulate to new variables: on the one hand the difference of phases
0 = ¢1(t) — ¢2(t) that we need for the synchronization index, see Eq. (4.19), and on the
other hand the sum of phases 1) = ¢1(t) + ¢2(t) which we can later integrate over. These
new variables relate to the former as follows:

% (sin(¢1) — sin(¢2)) = sing cos %, % (sin(¢1) + sin(¢p2)) = cosg sin%
% (cos(¢1) — cos(pa)) = — sing sin %, % (cos(¢1) + cos(p2)) = cosg cos %

The evolution equations of 8 and v are similar, only that the sum of phases rotates at
faster speed.

= A—i—Asingcos %ﬁl(t) - Bsingsin %ﬁg(t) (4.21)

. 0 0
= 2w+ 2x(t) + Acos 3 sin %fl (t) + B cos 5 c08 %{2(75)

The above stochastic differential equation should be interpreted as of Stratonovich type,
because the derivation of the Kuramoto model uses conventional differential calculus. In
the Fokker-Planck equation for the probability density W (6,1,t), the additive noise term
X(t) — which is independent of both 6 and 1) — enters as a constant diffusion term with
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differential operator Dy, for the partial derivative w.r.t. 6, such that

0 0 0
GV (0.0.0)+ 5 AW, 0.)] + o 20V (6,0.1)
= |%(Q% + Q%) + 4* D3| W(0,v,1) (4.22)
where Q A, are differential operators
oQa() = :} [880 <smecosd}( )) 81 <cosesmq’2b( ))] (4.23)
cQp(-) = \2 [869 <— sin g sin %( )> 3a¢ (cos 0 cos %( ))] . (4.24)
For small A, A%, B2, 02, n? < 2w, Eq. (4.22) reduces to an easily solvable PDE:
0 W (4, t|0 2 3 t|g) =0 4.25

The equation carries # as a mere parameter and can be solved, e.g. by the method of
characteristics, to give W (v,t|0) = f(1) — 2wt|@), where the function f is determined by
the initial condition. That means that in -direction, assuming comparably large w, the
initial condition solely rotates at constant speed. We now average over these fast rotations
by applying the method of multiple scales (compare [Nay81|, e.g. Chap 4.5 therein). For
A, A, B, o, we define A = 02A1, A = 02Ay, B = 0?By, and n? = 0?n?. We express the
time dependence of density W (f,,t) in different powers of the small parameter o2

W (0,9, t|0%) = W(0,1),t, 0%, 0*t,05...) = W (0,1, 1o, t1,t2, t3...) (4.26)

where we defined well-separated time scales t, = 0>*t. The differentiation with respect to
time ¢ becomes
0 0 9 0

A 42
ot ot o (4.27)

We seek for a solution of the form

W =W (tg,t1,..) + WD (tg, 1, ...) + ... (4.28)

Inserting this into Eq. (4.22) gives in zeroth and first order

(aﬁo " 201) <W(0) +at W) 29
B s )
& )

o [(@r G+ ] (WO 4 o2
When we now sort the equations by time scales, we get in the zeroth order Eq. (4.25):

OO 49y 9 o

o 5 (4.30)
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Therefore, to the leading order, W(O)(H, ¥, t) = w(,t). The first order in o2 gives

0 0 0 A .

Twwy Lo 4 & [A WO )} i :[ 2+0%) + 2w (431
ot + ot T a9 A1 + w8¢ (@a+Qp)+m (4.31)

We now have to remove secular terms, i.e. spurious terms from the approximation that

accumulate with integration time. Therefore, when we average Eq. (4.31) over 1, we

should set the monotonously growing term

o 27

v W e = 4.32
o pLo (432)

to zero. Multiplying Eq. (4.31) with o2, we can omit subscripts 1 that formerly indicated

the order in o2.

0 0 0 A .
gr O 1) + g [8w(@, 0] 4w () = |o*(Qh + Qh) + 4D w(@,)
When now applying the operator % fo% dy, terms that have % as their outmost operation

vanish, e.g. terms (4.31) and some terms in Qi—l—QQB as well as the diffusion term stemming
from additional noise X ().

9 9 2(A2 1 A2
Sw(0.8) = =Azsw(0.6) + [0*(Q% + Q)| w(6,) (4.33)
We still need to solve integrals
2 2m 2 2m
o [ QAdw and T [ QB()dv (4.34)
2 0 A 2T 0 B '

where (-) does not depend on . 0Qap both have the form ocQap = D)0 +
%[()()], so when we square the operator we get

*Q4 5= % {("‘>§9["'] + (...)(;/}[...]}

where the second term vanishes when integrating over 1. The equation now reads

2
UQQi = é(%{smicos;baae [Sinecosw( )} +Sln9cosg}£b [cosesm;ﬂ( )]}
6 . ¢

A B2 o 0 . 0 , 0 . Y 0 0 P
2A2 - _ - _ R _ o
UQB— —2 89{811128111289{ 81n2sm2()}+sm sm2a¢ [cos cosz()]}.

Both equations consist of two parts; the first can be integrated over all terms containing
¥ right away, while in the second one first needs to perform the derivative. Summing both
integrals yields

o |, @ @poa = T (G [an G (0 50)] + g5 [ 350

A2—|-B2 82
== [(1—cosf)(-)]. (4.36)

With that we now obtained the reduced Fokker-Planck equation for the phase difference of
two oscillators obeying Eq. (4.33). The solutions with stationary flux J = Qg / 27, where
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Qobs is the difference between the observed frequencies obey

2 2
Aw(8) — A%B% (1 = cos O)w(0)] = J (4.37)

This equation merely depends on A? + B2, i.e. only the strength of the noisy forcing
matters, not its direction. We therefore set A? + B? = ¢ and quantify noise intensity by
new variable . We define parameters

— =ta and — =:j. (4.38)
Integrating the resulting equation

0
aw = o5 [(1—cos@)w]=j (4.39)
over # in [0, 27) yields 27j = a.
Note that in Eq. (4.37), only the frequency difference between the two oscillators and
the noise amplitude enter.

4.4.3.2 Numerical approximation of v from static flux

In the former equation relating the static flux J to the probability density of the pairwise
phase difference w

)l

we substitute w by a Fourier series with coefficients wy

1 —cosO)w(h)] = £ (4.40)

o’

aw(6

1 oo
w(f) = o > wpe® (4.41)

k=—o00

Inserting Eq. (4.41) into Eq. (4.40) gives

Z e [ wy, — 1k wy, + 1k(wp—1 + wpt1)/2] = a. (4.42)

k=—o00

For k = 0, the equation represents the normalization condition wg = 1. To be valid for all
6, terms with other k, i.e. k < 0, should vanish independently. As w_j = wy, we restrict
our attention to positive k.

1k

k
5 wi—1 + (a — k) wy + % Wg41 =0 (4.43)

which gives the following recursive definition for their ratios ry := wy_1/wg:

k+1a 1
k Tk+1 '

rp =2 (4.44)

Reinserting rp11 successively, 7 represents an infinite (generalized) continued fraction. It
facilitates further calculations considerably to transform the fraction slightly to a simpler
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F1G. 4.13: Approximations of 7. Circles: representation of v as the absolute value of the first
Fourier mode, truncation of continued fraction r; at £ = 100. Dashed line: Truncation of
continued fraction r, at k = 1, i.e. 1/|ra] ~ 0. Solid line: representation of v via trigono-
metric integrals, approximated via Taylor series up to 100th order for ¢ < 1 and via the
asymptotic expansion of the auxiliary functions f and g for a > 1. For detailed explanation
of the first two see Sect. 4.4.3.2, the latter procedures are described in Sect. 4.4.3.3.

form and to represent it as a series:

1 1
ag — =ag+ = [ap, —a1,a2,—a3,---] (4.45)

e — —a; + ——
1 1 1 . 1
ag — ———— a _
2 a3_ 2 _a3+
where for the ratios r:

k+a
k; b

ap_1 = 2(—1)* kE=1,2,3, - (4.46)

For a = 0, the continued fraction can be denoted as [2,—2,2,—2,...] and the sequence of
convergents reads

2,

Do | o
Wl

o (4.47)

| Ot

i i

such that the continued fraction converges to one. For large a, i.e. for large natural fre-
quency difference A or small-amplitude noise, we observe that 1/|rs| is of order 1/a?, so
we approximate

r1=2(1+12a) and w; =wo/r1 =0.5/(1+a). (4.48)

For intermediate values of a, both convergence and limit of r; are not so easily accessible,
and we switch to numerical approximation. The value of the continued fraction is given as
the limit of the sequence of convergents py /gy, where

po=ap, p1=apa1+1, q=1, qa=a
and  pp = apPr—1 + Pk—2, Qk = QkQr—1 + Qp—2- (4.49)

We iterate this scheme until £ = 100 (in the last iteration step, v changed less than
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1075 for a = 1073, and less than 1071° for a = 10®) and represent 1/|r1| by green circles
in Fig. 4.13 — namely because the synchronization index equals the absolute value of the
first Fourier coefficient:

N = <ez(¢1(t)—¢2(t))>t’:’<ezO(t)>t’:| w(0) e 40 = w1 = ?
1

—T

1
= — (450

By Eq. (4.48), synchronization index v is approximated as 0.5/v/a? + 1 which we also
depict in Fig. 4.13.

4.4.3.3 Expressing v by trigonometric integrals

Alternatively, the synchronization index can be expressed as a function of sine and cosine
integrals. Therefore, we transform the density w of phase difference 6 to density p of the
cotangent half-angle x of 6:

0 .92 1 1’2 —1 . 2z 1+ 1’2
m—cot§ sin t§—1+$2 cos@-grzi_i_1 sm@-m dr = — 5 dé.
Thereby, with p(z)dz = w(#)dd, the transformed density reads
2
p(z) = w(f(z)) T2 (4.51)

While 6 € [0,27), cotangent x extends over the whole real line. It is therefore necessary
to check the proper decay of p(z) for |z|] — oo, especially for delta-distributed w(#).
Singularities around 6 = 7, i.e. x+ = 0 are harmless. The problematic case is § — 0,
i.e.  — £o0o. We represent the delta distribution in w as

w(f) = lim \/E exp(—62/€?). (4.52)

e—=0 \/TT€

Around € = 0, we use the approximation sinf ~ 6 to simplify the transformation to p(x)

and obtain )
. 1 2 1 2
ple) =l = s o [‘ 2 <1+x2> ] (4.53)

which decays as

2 .
lim p(z)~ lim L 2 ex [—12 ( 2 > ] ~ {01 ifo<lfe (4.54)

—5 €XP 5 .
|z|—o00 || —o0 /7€ 22 €2 \ 22 = ifx>1/e
e—0

The normalization of p(z) is also still fulfilled. Function p(x) thereby is a probability
density. Converting Eq. (4.40) gives

dp(z) ___a
dz T ap(e) = m(1+4x2)

(4.55)
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We define a potential function V(x) = az and solve the differential equation formally by
Variation of Parameters:

dp(z) / _ a B —az
V@) = s ple) = mla)e (4.56)
)= [ ey (4.57)
m(1+y?)

_ 2 @ aly-a)

p(z) - / 0+ ) e dy. (4.58)
For synchronization index + we need
s—<ine>—7 22 (x)de and C = { 9>—7‘”2_1 (x)de.  (459)
= (s = T2 P@)dz a = (cosf) = T3 2 P() dz. :

Inserting Eq. (4.58) into the integral for S and substituting v = x — y, v = x, where
0 <u<ooand —oco < v < 00, we obtain

o
a
d d 4.60
7['/ U/ u1+v2 1+(v—u)) (4.60)
0
where the integral over v solves, e.g. by complex integration, to
oo
2v 2mu
d = : 4.61
/ A D)(v—w?+1)  u+4 (4.61)
—o

As a is real and positive in our definition, we apply formula 3.354.2 in the integral tables
of Gradsteyn & Ryzhik [GR80] and express S via sine and cosine integrals:

S = / duu2 _:; = 2a[—ci(2a) cos(2a) — si(2a) sin(2a)]. (4.62)
0

where cosine and sine integrals are defined as
cost ) sint
/ ——dt = Ci(x) and si( / — dt = Si(z) — 7/2. (4.63)

For the cosine case C, we proceed equivalently. Substituting p(z) from Eq. (4.58) in the
equation for C in Eq. (4.59) and, as above, transforming to variables u,v with u =z — y,
v =, where 0 < u < 0o and —oo0 < v < 00 we get

o0

_a T . u (v2 — 1)e o
‘W_Zo W [ a A+ oD+ (0= u)?) (4.64)

0
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Again by complex integration, we solve the integral over v:

T v? -1 Tu?
| e~ e (469)

Gradsteyn & Ryzhik’s equation 3.354.1 helps us to express C' as

¥ ule—au n e au
C= a/ dum = 1—4a/ duu27+22 = 1—2a]ci(2a) sin(2a) —si(2a) cos(2a)]. (4.66)
0 0

Synchronization index -y is the square root of

7% =1+ 4a?(ci*(2a) + 5i%(2a)) — 4alci(2a) sin(2a) — si(2a) cos(2a)] (4.67)

where the expression in brackets equals auxiliary function f represented as an other inte-
gral, see [AS65] Chapter 5,

—2at

sint 7 e
] = dt = —dt. 4.68
-] (/t+2a /t2+1 (4.68)
0 0

For graphical representation, Ci and Si are well approximated by their respective
Taylor expansions [AS65]:

‘ o -1 n22n+1 ) oo 1 nZQn
Si(z) = Tg:o (Qn(—i— 1))(2n — and Ci(z) =7vem +Inz + ,; E2n))(2n)‘ (4.69)

with FEuler-Mascheroni constant ygn. As the Taylor expansion converges slowly for large
arguments, it is beneficial to switch to a representation via auxiliary functions

f(2) = ci(z)sin(z) — si(z) cos(z) and g(z) = —ci(z)cos(z) — si(z) sin(z) (4.70)

with (for |arg(z)| < )

f@%lo—%+ﬂ—&~),m&%;é—m+a—ﬂm>- (4.71)

z z z 26 23 20 27

Results from this and the previous section are compared in Fig. 4.13.

4.4.3.4 Comparison between numerical experiment and analytical model

Fig. 4.14 allows for a direct comparison of the results from Sect. 4.3 and from this analytic
model. It is actually surprising, how well the experiment and analytical result coincide.
First, note that the curves for all ensemble sizes collapse to a universal relation between
synchronization index and ratio of natural frequency difference and intensity of fluctu-
ations. Second see that little statistics is involved in the numerical analysis: For each
ensemble size, merely one ensemble with one natural frequency sample was analyzed. Fur-
ther investigations should test the robustness to changes, e.g. of the threshold below which
~v was actually averaged.
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F1G. 4.14: Direct comparison of synchronization index v between Fig. 4.8 and Fig. 4.13, see re-
spective description. S in the inset is the variance of the active order parameter after
cutting a transient. S in the main figure is either the same as in in the inset (for the
comparison of ensemble sizes in the numerical experiments in Sect. 4.3), corresponding to
all colored lines or it is the noise intensity in the analytical model, corresponding to the
black line. The inset shows the scaling of the variance of the order parameter fluctuations
with ensemble size. A deviation from the known 1/N law is due to having only one data
point for each ensemble size.

4.5 Conclusion

In this chapter, we investigated the effect of finite-size fluctuations of the complex order
parameter on Kuramoto oscillators.

In the first two sections, we compared the synchronizing effect of a) an ensemble with
random Gaussian natural frequencies and b) an ensemble with equidistant natural fre-
quencies at sub-critical coupling. In the letter case, fluctuations are considerably stronger.
Especially in case a), fluctuations are weak compared to the typical natural frequency dif-
ference between asynchronous oscillators. We therefore let the fluctuating mean field act
on passive Kuramoto oscillators that are mutually uncoupled. This principle allows for an
arbitrary choice of natural frequency differences between the oscillators.

In the first section, we took snapshots of the phases of a large number of passive os-
cillators (with small natural frequency difference) against their natural frequency. In the
Gaussian case, fluctuations are weak, so that only phases of oscillators with very small
natural frequency difference are correlated and their phase difference is small for a compa-
rably long time. In the equidistant ensemble, fluctuations are strong enough to generate
correlation among oscillators with natural frequency differences of the order of about half
of the maximal frequency difference in the active sample. While in the Gaussian case cor-
relation is microscopic, in the equidistant case it turns out to be a macroscopic effect.

We quantified this correlation by a pairwise synchronization index. An additional trans-
formation before applying this measure was necessary to stretch the phase distribution of
the individual oscillators to an approximately uniform distribution. This transformation
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accounts for the bias that occurs because all passive oscillators pass the same major bot-
tleneck. The passive oscillators allowed us to measure correlation between oscillators with
arbitrary natural frequency difference. We observe that the correlation decreases both
with increasing natural frequency difference and with increasing frequency difference to
the active mean field frequency. Furthermore, passive oscillators with natural frequencies
in the vicinity of one of the active natural frequencies lock their frequency to the latter.

In the last section, we modeled the mean field fluctuations of the active ensemble by
Gaussian white noise. We let this noise force act on a pair of passive oscillators with a
small frequency difference. For this system, the Fokker-Planck equation of the difference
and the sum of the two phases can be considerably simplified by applying multiple scale
analysis. The static flux of the probability density of the phase difference then allows for
an analytic expression of the synchronization index via trigonometric integrals. We found
that the scaling of correlations with the pairwise ratio of natural frequency difference to
noise intensity (or variance of order parameter fluctuations) coincides very well with our
numerical results for the deterministic finite-size Kuramoto model.
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Chapter 5

Discussion & Outlook

We here summarize and discuss the results of Chaps. 3 and 4 and comment on possibly
viable lines of future research.

The main research question of this thesis was: How does the finite-size Kuramoto
model relate to its infinite counterpart? Which additional effects emerge in the finite
model that are absent in the infinite? And can some of the finite-size effects be translated
to the infinite limit? We answered the first and the third question in Chap. 3, where we
compared numerical results from finite ensembles to analytic results in the thermodynamic
limit. The second question was discussed in Chap. 4, were we observed an unanticipated
genuine finite-size effect, namely the ordering effect of the finite-size fluctuations of the
Kuramoto order parameter.

In Chap. 3, we discussed the dynamics of the global mean field for Kuramoto ensembles
of intermediate size (~ 25-200 oscillators). We revealed the connection between character-
istics of the natural frequency sample and the resulting order parameter dynamics.

Like the Kuramoto ensemble in the thermodynamic limit, the finite system transitions
from an incoherent to a partially synchronized state with increasing coupling strength.
(Eventually, a fully synchronized state is always reached in the finite system, as is known
from the infinite limit for frequency distributions with bounded support). The Kuramoto
order parameter (that in infinite ensembles indicates this transition) fluctuates in finite en-
sembles and the transition is smeared out. Inspired by [TZT*12|, we defined an alternative
indicator for the transition to a collective mode: the timely minimum of the order param-
eter after a transient. The new indicator allows to detect the critical coupling strength for
the onset of a collective mode with arbitrary precision.

Our main result in this chapter was a generalization of some former publications that
linked different natural frequency distributions to the corresponding order parameter dy-
namics.

First, we linked the shape of the natural frequency distribution to the curve progres-
sion of the order parameter with coupling strength. This result incorporates the former
finding of a first-order transition for the uniform frequency distribution [Paz05] and puts
it into relation with the long-known result for the Lorentz distribution [Kur75]. Extensive
numerical experiments with finite Kuramoto ensembles of sizes between 25 and 200 oscilla-
tors uncovered the role of kurtosis of the natural frequency sample in the synchronization
transition. In ensembles with negative excess kurtosis, i.e. platykurtic distributions like
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the uniform distribution, some first portion of the oscillators synchronizes to a central syn-
chronized cluster only at comparably strong coupling — and typically only slightly stronger
coupling is necessary for synchronizing the entire ensemble. In contrast, in ensembles with
leptokurtic natural frequency distribution, i.e. with positive excess kurtosis like the Laplace
distribution, that have a central peak and fatter tails than the Gaussian distribution, os-
cillators close to the maximum of the distribution synchronize at comparably low coupling
strength, but then all much stronger is required to synchronize oscillators in the tails.

A recent publication [Skal8| pronounced the importance of a generalization to a wider
class of natural frequency distributions. They applied the Ott-Antonsen ansatz to a family
of rational frequency distributions: gn(w) = nsin(w/2n)A?" ! /7 (w?™ + A®"). The latter
have poles, just as the Lorentz distribution, and therefore allow for closure of the mean field
equations in the Ott-Antonsen framework [OA08|. Though the focus of that publication
is different, their results confirm our findings on the effect of shape once again.

An open question at this point is the extension of this analysis to multimodal natural
frequency distributions in the infinite case. The literature on this topic is restricted to com-
binations of Lorentz distributions, but reports on interesting results such as traveling waves
and hysteresis [PM09, TIAY17]. A deeper understanding of the synchronization transition
in ensembles with multimodal natural frequency distributions might also illuminate some
questions in the finite model. Any finite sample can be considered as a multimodal dis-
tribution of equally weighted delta peaks. One question that remained unanswered in our
analysis is the varying spread of the minimum of the order parameter at certain coupling
strengths that could probably be explained by multistability due to the multimodality of
the finite distribution.

As a second important result of Chap. 3, we linked the asymmetry of the natural
frequency distribution to the mean frequency of the super-critical global phase. This is
important, because almost all finite ensembles are asymmetric and the resulting drift of the
mean field could not be explained otherwise. We found that the global phase ensembles
with positively skewed natural frequency distribution rotate in mathematically negative
direction, and vice versa. The absolute value of this rotation frequency is roughly propor-
tional to the absolute value of the skewness of the sample. In perfectly symmetric samples,
where for each natural frequency there exists exactly one natural frequency with the same
absolute value but opposite sign, we observed that the super-critical global phase converges
to a constant. A mathematical proof is still pending, but we here give the following heuris-
tic explanation:

Let us suppose that for symmetry reasons, phases of pairs of oscillators ¢,j in such
symmetric frequency samples with symmetric frequencies w; = —w; are attracted to a
dynamical state with a reflection symmetry of the individual phases with respect to the
mean phase. (A reason for such attraction could lie the fluctuations of the forcing mean
field as we discussed them in Chap. 4.) Apparently due to this attraction, the fluctuations
in ¢ decay, also because on the attractor of partial synchrony, all pairs of oscillators have
perfect reflection symmetry with respect to ¢, and therefore w9 — 2¢. Combining the
model Eq. (2.3) and the definition for the order parameter in Eq. (2.4), the exact evolution
equation for the global phase reads

) 1 eRy .
Y=~} ;wz cos(p — 0;) + - sin(2¢ — p2) (5.1)
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The first term of the latter equation decays for pairs with w; = —w; as ¢ — 0; —
0; — ¢. The second term vanishes because if §; = ¢ + Af; and 0; = ¢ — Af; (ie. if
reflection symmetry of corresponding phases with respect to ¢ is fulfilled), then o =
arg (% Zi:wi>0 U2 H20:) 1 e’(w_zei)) = 2¢p. We see in the experiment that 2¢ — @3 — 0
and that fluctuations of ¢ decay. The value the global phase ¢ converges to depends on the
initial condition, due to the zero Lyapunov exponent corresponding to invariance to con-
stant global phase shifts. A rigorous proof of this convergence to a constant super-critical
global phase in perfectly symmetric samples should show that such a state is stable and
attractive.

An open riddle that might be connected to such proof was posed in [CGP17|. The scal-
ing of the largest Lyapunov exponent (LLE) with ensemble size (at sub-critical coupling
strength) is ~ In N/N or ~ 1/N for regular or random samples, respectively (and the LLE
is typically larger in random than in regular systems). The explanation might lie in the
high symmetry of regular samples that might reduce the dynamics to a lower dimension
in phase space.

Thinking the above discussions further, it seems quite plausible that kurtosis and asym-
metry should have an effect on the size of the fluctuations of the global phase as well. To
estimate the influence of kurtosis, take a small natural frequency sample with large kurto-
sis and therefore few extreme outliers. The latter will hardly be influenced by the central
cluster of comparably small frequencies. Consequently, the motion is more regular and
fluctuations are weaker, compare top and bottom panel in Fig. 3.2. The effect of skewness
can be estimated under consideration of the convergence of the super-critical global phase
in perfectly symmetric samples: when phase fluctuations vanish for samples with perfect
symmetry they should stay small for a sample with tiny asymmetry.

In Chap. 4, we investigated the effect of finite-size fluctuations in the Kuramoto model.
From former publications, we knew of the effect of noise-induced synchronization. We
chose two types of ensembles: one with random Gaussian natural frequency sample at
super-critical coupling strength and one with equidistant natural frequencies at sub-critical
coupling strength. Especially in the former case, fluctuations are weak compared to the
typical natural frequency difference among the asynchronous oscillators. We therefore let
the fluctuating mean-field of few such oscillators act on uncoupled passive Kuramoto os-
cillators with freely eligible natural frequency difference.

The main work in this chapter consisted of observing and quantifying the correlations
among pairs of such passive oscillators. We also modeled the fluctuating mean field as
Gaussian white noise and again quantified the correlation among the noise driven passive
oscillators, and found very good agreement with the numerical experiment. In both the de-
terministic and the stochastic model, the degree of correlation depends mostly on the ratio
of the natural frequency difference of the passive oscillators and the variance of fluctuations
(or the noise intensity). Prior to the application of the correlation measure, we needed to
stretch the phase distributions of passive oscillators with a given natural frequency to a
uniform phase distribution. We did so using the Mobius transform — a technique applied
in time series analysis to obtain the phase from the protophase [KCR'08].
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We first discuss the deterministic case of an active Kuramoto ensemble with Gaussian
distributed frequencies at super-critical coupling, where a central cluster is already formed.
Other than in the stochastic case, the behavior of the passive oscillators depends not only
on pairwise frequency difference but also from the frequencies themselves. Passive oscilla-
tors with natural frequency close to the natural frequency of one of the active oscillators
lock their observed frequency to the observed frequency of this active oscillator. This also
means that the passive oscillators lock to the central cluster of the active ensemble. We
therefore only consider a range of natural frequencies in which the active oscillators rotate
asynchronously. Passive oscillators with natural frequency sufficiently (depending on the
coupling strength) different from any of the active natural frequencies are predominantly
influenced by the chaotic (or noisy) components of the driving. This fluctuating forcing
joins phases, as we see directly in the phase versus natural frequency plane for the passive
oscillators. Our synchronization index measures finite correlation among pairs of passive
oscillators. It increases with decreasing natural frequency difference and decreases with
increasing frequency detuning to the active mean field frequency.

Let us compare these observations to the traditional picture of the Kuramoto model
which stems from the solutions in the thermodynamic limit. There, the complex Ku-
ramoto order parameter assumes a constant absolute value and rotates at constant speed.
The oscillators in this ensemble are effectively decoupled. They separate in two groups
— synchronous and asynchronous. The synchronous oscillators lock to the global phase
and are immobile in the corresponding reference frame — a perfectly ordered state. The
asynchronous oscillators slow down close to the mean field phase but periodically perform
phase slips that get more frequent with larger natural frequency difference to the global
mean field frequency. Asynchronous oscillators with different natural frequencies therefore
also have different observed frequencies and pairwise correlation among them (again, after
a transformation that smooths the phase evolution to uniform rotation) averages to zero
— reflecting perfect disorder.

In the finite model, in contrast, this clear distinction between ordered and disordered
state does not hold. Finite-size fluctuations generate correlations among otherwise uncou-
pled oscillators (in the range of natural frequencies where active oscillators rotate asyn-
chronously), thereby creating order. Also, the synchronous oscillators are not perfectly
ordered. As long as the order parameter fluctuates, a varying number of oscillators ful-
fills the synchronization condition and the phase differences between the locked oscillators
fluctuates. The traditional picture of order and disorder in the Kuramoto model (for syn-
chronous and asynchronous oscillators, respectively) does consequently not hold in the
finite case. We expect that such an ordering effect of inherent fluctuations is not restricted
to mean field models.

As a consequence, questions that are already hard to answer in the infinite case, all
the more elude analytical comprehension in the finite case. This is true for statements
about the stability of the partially synchronized state, and thereby the question of the
existence of a finite minimum of the order parameter(see Sect. 3.1) or the related question
of the exact value of critical coupling in the Rpyin-sense. In Sect. 3.6, we gave an analytic
expression for the volume contraction in phase space that might hint to solutions for these
questions.

In Fig. 4.5, we juxtaposed the observed frequencies of the active and passive oscillators
with the power spectrum of the active complex mean field. It seems that the noise intensity
decays with increasing frequency. We conjecture as an idea for future investigations that
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the decay of the power spectrum of the active mean fields’ order parameter with increasing
frequency (which might correspond to pink noise) acts stronger on smaller frequencies —
which is a possible explanation for the decay of the synchronization index with distance to
the central synchronized cluster.

We now discuss the the deterministic case of an active ensemble with equidistant nat-
ural frequencies at sub-critical coupling. Prior to the critical transition, which in the
thermodynamic limit corresponds to a first order phase transition, fluctuations are partic-
ularly strong — much stronger than in the super-critical Gaussian ensemble of the same
size. The resulting correlation is macroscopic: it spans approximately half of the natural
frequency range of the active oscillators. We plan to carry out further investigations in the
equidistant case:

e We want to discuss the scaling of the synchronizing effect with (e. —€). An imminent
problem is the failing of the M&bius transform as a suitable transform to a uniform
density of phases close to €. — here we need to find an alternative.

e A white noise approximation might have oversimplified important details of the order
parameter dynamics in the equidistant model. Fig. 4.9 (bottom panel) shows that
the order parameter time series has a sizeable autocorrelation. It would therefore be
interesting to test the stochastic model with more realistic noise spectra.

Finally, we tentatively suggest that the results of this thesis could also be interpreted
as a contribution to the modeling of opinion dynamics. In [HS11|, the public discourse
was modeled by a mixture of troublemakers who want to prevent consensus by all means
(with negative coupling) and others that strive for nothing but harmony (with positive
coupling) — otherwise identical townsmen. We propose that more realistic (and still ana-
lytically tractable) social models could be achieved by including passive oscillators: Our
non-identical passive oscillators could represent individuals of a broader mass in which the
public discourse is led by few active oscillators, be it media owners, influencers on social
media, or influential organizations whose purview exceeds the number of its actual mem-
berships.

As a final conclusion we state that answering scientific questions is like pruning a plant:
the cutting back encourages the growth of new vines.
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Appendix A

Analytical Calculations

A.1 The asynchronous integral

Using symmetry arguments and applying the Weierstrass substitution solves the asyn-
chronous integral over v in (3.19).

s T

1 1 1 1
— [ e dyp = W — Al
27r/ ¢ lw—Q — asiny| ¥ 27m/ ¢ |A — sin )| ¥ (A1)

—T

where A = (w—)/a and |A| > 1. The integral over the cosine vanishes due to symmetry.
For the integral over the sine, we treat case A > 1 first, to then conclude on case A < —1.
We have

sin 1 [ A—singp—A T 1 B
/A—smw _/A—sinwdw__zﬂ—FA/A_sinwdw—m (A2)

—r -7

Substitution now the tangent half-angle

Y dt 1+ | 2t
t=tan | — — = == A.
an(z I 5 v SV = (A-3)
we get

S SRR S
T AL+ —2t T 112 2t/A '

24 1 1+iVAZ -1
= 2T+ —— < - — _) dt where tfzz— (A.5)

2ivVAZ — 1 t—td  t—t, A

Complex integration over, e.g., the upper half plane with the isolated singular pole ¢ gives
2mi and we end up with

™

sin ¢ A
Y = o
/A—simp‘w VA1

Equivalently, for A < —1 we obtain

[ sing 1A
———dyp =271 - ——— A7
At sng V=27 ( ) (A7)

—T
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and the full SCE - integral for the asynchronous oscillators is purely imaginary:

—O)P &2
Ias - 5 W (W
¢ / dwg(w) lw—Q —asiny| &

-7 w—Q|>a

= - / dw g(w) ((w - Q) — V(w—02)2% - a2) (A.8)

—a+2

+o / dw g(w) ((w—Q)+ (w—Q)Q—cﬂ)

— 00

A.2 Moments of the Subbotin family of distributions

We here calculate the relation between parameters of the Subbotin family to central (not
standardized) moments p; for i = 0,...4. We will often make use of the gamma function

relation
IMNz+1)=2-T(2) (A.9)

First, we check the normalization. We integrate the un-normalized symmetric frequency

distribution iy
oo o0 oo _|lz—p
/ p(z)dx = 2/ p(z)dx = 2/ e P9 dx. (A.10)
0 0

—00

In the following, we set mean pu = pp = 0. With the help of a transformation of the

exponent to a new variable
P
T

- = A1l
V= LoT (A.11)

over which we perform the integration, converts the integral to a Gamma function.

p-1 T
y/: € = (y b ‘;;D) P _ yr -pr (A.12)
Op Op Op

Such that we finally obtain

> 19 [ 1.4 _ 20 1 1
Ho = /Oop(x)dx =20,pr /0 yr e Ydy = pl_f/pf(l/p) = 20pprl (1 + p)
r(3)=rr(1+3)
(A.13)

The variance is given by the second moment integral, for which we can again use the
reflection symmetry w.r.t. = 0.

= 2 = Ool'Q i X
/ 2 p(lal) da =2 /0 p()d (A.14)

—0o0

in our case

) 1 o0 5 — acpp
— — po:
po =0 = oppt/PT (1 + %) /0 e Pr dw (A.15)
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We substitute

xP dy  aP~!
y(z) = p—ag — e T y(0) =0, y(zr— 00)— o0 (A.16)

by which the second central moment reads

po = 1 /OO L% e vay il Q. T S
= op!PT(1+1) )y ar7! pobapTd o (ypop) ?
(A.17)
b} /OO 2—le—yd' I+ 1) /OO “ovdy TEV ) (A.18)
=—F [y y Te+D)=[ y y =T :
F(l-i-%) 0 0 D
2_1 o 2 49
pp Up 3 pp O-p 3 1
=— P =——"2T11+5) 2 A.19

In our model, a non-unity variance is a redundant parameter, which we can get rid of by
rescaling time and coupling strength. To obtain ¢ = 1, we have to force

r(1+1
2 = Pop2P.3 = A.20
a8’ (A.20)

The third moment obviously vanishes, as the distribution is symmetric, u3 = 0. The fourth

moment is
1 e.¢] _ zP
— 4 po‘p
p=—— z5e P dx A.21
2 O_ppl/pl"(1+1)/0 ( )
with the transformation
xP dy P! 4 TP 1-5 5 4
— N Y — — . = P . A.22
y(x) pol e (yp) ro,-x (A.22)
gives
4,21
o;pP 5
pa = —r—-T(-) (A.23)
= TI'l+5) »

from which, inserting o, as above, we can derive kurtosis and excess kurtosis

4 /L;L _ r (Il?) I (%) and 9 = 2 — 3. (A.24)
()
A.3 Evolution of Mobius transformed phase

Starting from Eq. (4.11), we first shift phases v; such that the drift term depends on the
cosine of the phase instead of sine:

i=vi— 3, (A.25)
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such that '
@Z;i =Q; + h cos 151 + — COS 11)@ & — = sin @ZJZ S+ x (A.26)

We apply the Mobius transform in the form

o _ [Q—h 1/2-
= — A2
tan 5 o h tan (A.27)

Thee transformed phases evolve according to

d o soN ¢ [Q—hd b\ [Q—h 0\
dt(tan ) (Htan 2)2_\/Q+hdt tang ) =\ g\t g g

where we dropped indeces 1.
. [Q—h1+tan?
PTVQT R 1+ tan?

Now, inserting time evolution of @E yields

O hl4tan??¥ I
90_\/97%1_’_“”12(5 (Q+hcosw+2coswél—zsmngg—i—)() (A.28)

Then, using half tangent relations

0.

SN[
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1 — tan?® g )
cosa = T tanZ e and sina =
+ tan b

2tan §

— A.29
1+ tan® § (A.29)

and inserting the Mobius transform we get

Ot 0
. Q—h 1+ Fhtan? £ o 1—Hhtan2e  p 2¢/grptany
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canceling terms and multiplying out
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v Q+h1+tan2§< R T e 2+h[ Q_n™

a Q+h 2g0£_72 Q4+ h
2 Q—h Q—h

tangﬁz +X>

The terms in the first line simplify considerably, and also the a, b terms in the second line
can be expressed much simpler by cos p, sin ¢:

. Q—h 1 Q+h, Lo

—/ Q+h+(Q—h tan2 ¥

4 Q+h1+tan2§’< FhA @ =h)g— tan 2)
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b Q—h 1
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(A.30)
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Finally the x term has the same cosine form as the a-term:
. 5 5 1 a b .

0?2 — h2
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Appendix B

Protocols of numerical experiments

B.1 Standard deviation of ¢(R.;, = 0.2) with error

The inset of Fig. 3.7 shows the scaling of the spread of the coupling strengths at which
different samples of a Gaussian natural frequency distribution reach a certain degree of
synchronization (Rpin = 0.2) with ensemble size. The data analysis strategies in prepa-
ration for Fig. 3.5 differs between data for N = 25,50, 100,200 and higher N. This has
practical reasons. For the smaller ensembles, we already scanned the whole e-range to get
a general picture. For the larger ensembles, we are only interested in the scaling with N
for certain observed effects:

1. How does the critical coupling for the Ryi,-parameter depend on different properties
of the natural frequency distribution? — We saw the connection to the kurtosis of
the sample and we also discuss it in the infinite case.

2. How does the standard deviation of R, at the horizontal cut depend on the system
size (and does that fit to how the spread of the kurtosis in a Gaussian sample depends
on the sample size?)

To save computational power, we use for N = 25, 50, 100, 200 the time series that we
generated for Fig. 3.5, see following Sect. B.1.1, and for NV = 400, 800, 1600 a bisection
method, see following Sect. B.1.2.

B.1.1 Standard deviation and error for N = 25, 50, 100, 200

We use the same Rpnin’s as in Fig. 3.5 to quantify the spread of coupling strengths at
which Ryin =~ 0.2 for N = 25, 50, 100, and 200. For each natural frequency sample,
i.e. for each curve Rpyin(€), we first check, how often the horizontal line at 0.2 is crossed;
which is necessary because Rpin(€) is in general not monotonous, especially for smaller
ensembles. For all samples, and all N’s, it was only crossed once. In the grid of coupling
strengths, we search for the first change in sign of (Rmin — 0.2) (let us call the preceding
minimum of order parameter Rj,, and the first above the threshold R,;), for each of
the Ny, natural frequency samples. Between that and the preceding € in the grid, we
interpolate Rpin(€) linearly and save the coupling strength at which the resulting line
crosses Ry, = 0.2. The error of this method is largest when the slope of this line is
smallest. We estimate 'the error of each of Ny, crossing coupling strengths (label 7) by
the error of Ruyin, AR} ;. ~ (Rup — Riow)/2 by following standard error analysis Ae; =
|0€;/OR! ;. | AR . and thereby the four standard errors for the four different ensemble

sizes are estimated as Ao = ), |00 /0ei| Ae; = Y, |e; — €|/ (Ng(w) - 0) A

B.1.2 Standard deviation and error for N = 400, 800, 1600

For larger sample sizes, two reasons motivate us to change the scheme by which we obtain
€(Rmin = 0.2) for different natural frequency samples for larger sample sizes. First, the
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computational power of the RK4-integration of the globally coupled Kuramoto model scales
linearly with ensemble size, but the computational power needed for 107 time steps is
already high for only 25 oscillators. Second, Rpyin grows more likely monotonously (perhaps
because multi-modality occurs more unlikely?). We can therefore apply a bisection method.
From Fig. 3.5, we estimate an interval of coupling strengths in which the Ry, (€)-curves
likely cross the arbitrary threshold of Ry, = 0.2. For 400 oscillators, we expect crossings
in [1.1,1.9], for 800 in [1.46,1.82], and for 1600 in [1.4,1.8]. The bisection starts at the
self-consistent value in the infinite case ¢ = 1.5957. For each frequency sample, at each
step, the program generates a time series of 107 RK4 time steps of size 0.01 and measures
Ruin after a transient of 10* time steps. If Rpyin falls below 0.19, we save additional
computation time by aborting the time series. Then, we choose a new € value between
the current and either the upper or the lower value, depending on whether R, was
smaller or larger than 0.2. All time evolutions start from the same initial condition This
process loops until either the algorithm gets stuck — in which case we asymmetrically shift
upper and lower bound by +0.03 and —0.02, respectively — or until |Rpy;, — 0.2| < 0.01.
This procedure results in a statistic of (Rpyin = 0.2)-coupling strengths for 100 frequency
distribution samples {w} for each of N = 400, 800, 1600 (i.e. in a set of pairs €;, {w};). The
inset contains both the standard deviation of these 100 values and the corresponding error
bars, estimated again by means of standard error analysis. From o2 = Y. (¢; — €)?/Ny()
with Ng(,) natural frequency samples and therefore the standard error of the standard
deviation can be approximated as Ao = ), |00 /0¢;| Ae; = ), |e; — €| /(Ny() - o) Ae where
we approximate Ae to be 0.001 from the difference of coupling strengths between the
penultimate and the ultimate step before reaching Ry, = 0.2.

B.2 Synchronization index 7 in active-passive system

Active natural frequencies are a) randomly sampled from a Gaussian distribution with
variance one and mean zero and b) equidistant in [—1,1]. Around 110 natural frequencies
equidistant in a) [0.8,3.] and b) [—1, 1], we symmetrically place pairs of passive oscillators
whose natural frequencies have differences a) AQ = 1072 to 1075 an b)AQ =1 to 1073,
respectively. The coupling strength of a) 1.85 b) 1.25 is a) super- b) sub-critical for the
respective natural frequency samples. A transient of 10% is omitted. We use a Runge-Kutta
scheme of order 4 with step size 0.01. Over an averaging time a) 2-107 and b) 105, we use
every hundredth step to average the timely order parameter z; = (e!#i()=%act()), for each
individual passive oscillator, where we subtract the active mean field in each time step. The
resulting complex value is the parameter in transform Eq. (4.4), again after subtracting the
mean field phase ¢;(t) — ¢act(t). Finally, we evaluate synchronization index v, see Eq. (4.5)
for pairs of transformed passive phases. We display |z;| before and after transformation,
see Fig. 4.6 to illustrate the success of the transformation, i.e. to show that phases indeed
rotate approximately uniformly after transformation.
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