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Abstract 

 

East Africa is a natural laboratory, both to test the fundamentals of ecological 

theory, and to study many of the contemporary ecosystem research questions. 

First of all, it has a unique geological and biological evolutionary history. 

Studying its past can help us better inform our theories and models, and as a 

result, make more accurate predictions into the future. Secondly, East Africa is 

also sensitive to the current climate variability and global climate change due to 

its present biogeographical setting. Finally, East Africa hosts major hotspots of 

global biodiversity, and supports some of the fastest growing populations in the 

developing world. East African vegetation plays a central role in all these aspects, 

and this dissertation aims to quantify its transient dynamics through simulations 

using a process-based vegetation model. 

 

Dynamic vegetation models (DVMs) can capture the biotic and abiotic 

interactions within terrestrial ecosystems in a spatially explicit way, which makes 

them suitable tools to study the questions asked in this dissertation. However, 

these models may need to be calibrated and validated for the particular study 

system if they were originally developed for another system. Therefore, I first 

simulated the present-day and mid-Holocene vegetation of East Africa with a 

DVM, namely LPJ-GUESS, and conducted an exhaustive area-wise comparison 

of model outputs with maps of potential modern vegetation distribution, and 

point-wise comparison with local pollen records (both modern and fossil). This 

was an effort to evaluate the model performance in East Africa, as well as to 

evaluate the applicability of point-wise model-data comparison approach with 

pollen data. Because when we study the past, we do not have vegetation maps that 

are based upon observations. We only have proxy data, such as pollen, which 

require extra modelling efforts to extract information about past vegetation, and 

which often provides highly localized signals as opposed to the spatial scales 

investigated with DVMs. Given that the topographical and climatic conditions 

change within very short distances in East Africa, I hypothesized that running the 

model at higher spatial resolutions would contribute to resolve the vegetation 

distribution better and have a better comparison scale with vegetation maps and 

pollen data. I used statistical downscaling methods to obtain finer resolution of 

model drivers and simulated the vegetation at these finer spatial scales. This study 
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showed that, overall, the model was able to reproduce the observed spatial 

patterns of East African vegetation. Both the area- and point-wise comparison 

showed that a higher spatial resolution does indeed allow a better comparison 

between predicted vegetation and data in East Africa.  

Once the model was tested and validated for the region, it became possible to 

probe one of the long standing questions regarding East African vegetation: How 

did East Africa lose its tropical forests? The present-day vegetation in the tropics 

is mainly characterized by forests worldwide except in tropical East Africa, where 

forests only occur as patches at the coast and the highlands. Previous studies 

indicate that these patches are most likely the remnants of a once continuous and 

intact forest belt along the tropical East Africa that fragmented in time due to 

increasing aridity in the region over the late Cenozoic. In a series of simulation 

experiments where I systematically altered the environmental conditions, I 

investigated under which conditions these forest patches could have been 

connected, and a preceding continuous forest belt could have extended and 

fragmented.  Results indicate that it is likely that the region indeed hosted 

conditions supporting forest biomes and a continuous forest belt during the late 

Cenozoic. This study once again established the sensitivity of East African 

vegetation to climate change and variability while providing an interpretation of 

the environmental changes that could have accompanied the hominin evolution 

that took place during this period. 

The sensitivity of East African vegetation to climate change and climate 

variability continues to play a critical role for ecosystem services and biodiversity 

conservation in this region. In particular, the El Niño Southern Oscillation 

(ENSO) influence and its potential future impacts on East African vegetation need 

to be well understood in order to predict the vegetation responses and inform 

management decisions. With this goal in mind, I removed the ENSO signal from 

the climate data using Empirical Orthogonal Teleconnections (EOT) analysis and 

simulated the vegetation under the historical climate without components related 

to ENSO teleconnections, in order to differentiate the vegetation variability due to 

ENSO. This analysis revealed three important findings: 1) EOT analysis can 

successfully produce coupled tropical Pacific Sea Surface temperature-East 

African rainfall teleconnection from observational climate datasets, 2) there are 
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ENSO driven patterns in East African vegetation response, 3) the ENSO signal 

extracted from the climate model outputs, applying the same analysis, showed a 

weak correlation with the recorded one, meaning the climate models are still not 

good at predicting ENSO teleconnections. These findings led to the next step of 

the study: If there is a known relationship between East African rainfall and 

ENSO events, and climate models are not good at capturing this rainfall 

variability due to ENSO, then what is the extent of this discrepancy in our future 

projections? Using the same approach, I extracted the future ENSO signal from 

climate model projections, manipulated this signal to be as strong as it should be 

according to present-day observations, merged it back with the future climate 

data, and simulated the future vegetation under this manipulated climate dataset. I 

also simulated the vegetation under the climate model outputs as they are and 

compared the predictions. Indeed, future simulations showed considerable 

differences in East African vegetation under these two future climate drivers. This 

implies that the future vegetation would be different from what is simulated under 

these climate model outputs that lack accurate ENSO contribution, and this is a 

further uncertainty in our future global carbon budget calculations. 

 

Overall, each component of this dissertation helped to fill both knowledge and 

methodology gaps in understanding East African vegetation dynamics, as well as 

to provide ancillary data for related studies such as palaeohydrology and 

palaeontology. I conclude with highlighting the importance of quantifying 

terrestrial ecosystem responses to changing climatic conditions to test and 

synthesize our understanding of how these natural systems work. Finally, I point 

out to future directions and research needs in modeling vegetation of East Africa 

in particular, and dryland ecosystems in general. 
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Kurzfassung 

 

Ostafrika ist ein natürliches Labor zur Überprüfung der Grundlagen ökologischer 

Theorien und zum Studium vieler gegenwärtiger Forschungsfragen auf dem 

Gebiet der Ökosysteme. Insbesondere hat Ostafrika eine einzigartige geologische 

und biologische Evolutionsgeschichte. Daher lassen sich durch ein Studium dieser 

Vergangenheit aktuelle Theorien und Modelle überprüfen und verbessern, was zu 

genaueren Vorhersagen über die Zukunft führen kann. Desweiteren unterliegt 

Ostafrika aufgrund seiner biogeographischen Rahmenbedingungen den 

gegenwärtigen Klimaschwankungen und dem globalen Klimawandel. Darüber 

hinaus beherbergt Ostafrika bedeutende Hotspots globaler Artenvielfalt und einige 

der am schnellsten wachsenden Bevölkerungsgruppen in Entwicklungsländern. 

Bei all diesen Punkten spielt die ostafrikanische Vegetation eine zentrale Rolle, 

und Ziel dieser Dissertation ist es, durch Simulationen mit einem prozessbasierten 

Vegetationsmodell die transienten Dynamiken dieser Vegetation zu 

quantifizieren. 

 

Dynamische Vegetationsmodelle (DVM) können sowohl biotische als auch 

abiotische Interaktionen innerhalb eines terrestrischen Ökosystems räumlich 

explizit erfassen. Damit sind sie geeignete Instrumente zum Studium der in dieser 

Dissertation behandelten Fragen. Es kann jedoch sein, dass diese Modelle für das 

Studiensystem neu kalibriert und validiert werden müssen, falls sie ursprünglich 

für ein anderes System entwickelt wurden. Daher wurden zunächst die aktuelle 

und die im Mittelholozän vorherrschende Vegetation Ostafrikas mit einem DVM 

simuliert, und zwar mit LPJ-GUESS. Mithilfe von Karten potentieller heutiger 

Vegetationsverteilung wurde ein gründlicher großräumiger Vergleich von Modell-

Outputs durchgeführt. Mit lokalen Pollen-Daten (sowohl aktuellen als auch 

fossilen) erfolgte ein punktueller Vergleich. Dadurch sollte die Leistungsfähigkeit 

des Modells in Ostafrika abgeschätzt werden, sowie die Anwendbarkeit des 

Ansatzes mit einem punktuellen Modell-Daten-Vergleich mit Pollen-Daten. Beim 

Studium der Vergangenheit verfügt man nämlich über keine auf Beobachtungen 

beruhenden Vegetationskarten, sondern nur über Proxy-Daten, wie etwa Pollen, 

die einen zusätzlichen Modellaufwand zur Beschaffung von Informationen über 

frühere Vegetation nötig machen und im Gegensatz zu den über DVMs 
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untersuchten räumlichen Skalen oft sehr lokalisierte Signale liefern. Aufgrund der 

Tatsache, dass in Ostafrika die topographischen und klimatischen Umstände oft 

auf kleinem Raum rasch wechseln, ging ich davon aus, dass eine Anwendung des 

Modells mit höheren räumlichen Auflösungen dazu beitragen kann, die 

Vegetationsverteilung besser zu klären und zu einer besseren Vergleichsskala mit 

Vegetationskarten und Pollen-Daten zu gelangen. Um eine genauere Auflösung 

der Modelltreiber zu erhalten, wurden statistische Downscaling-Methoden 

verwendet, und die Vegetation wurde auf diesen genaueren Skalen simuliert.  Es 

zeigte sich, dass das Modell insgesamt in der Lage war, die beobachteten 

räumlichen Muster der ostafrikanischen Vegetation zu reproduzieren. Sowohl aus 

dem großräumigen als auch aus dem punktuellen Vergleich ergab sich, dass eine 

höhere räumliche Auflösung tatsächlich einen besseren Vergleich zwischen 

vorhergesagter Vegetation und Daten in Ostafrika ermöglicht. 

 

Nachdem das Modell getestet und für die Region validiert war, konnte eine der 

seit langem offenen Fragen über die ostafrikanische Vegetation angegangen 

werden, nämlich wie Ostafrika seines Tropenwaldes verlustig gehen konnte. In 

den Tropen wird die heutige Vegetation weltweit hauptsächlich von Wäldern 

dominiert, mit Ausnahme der Tropengebiete Ostafrikas, wo Wälder nur noch 

stellenweise an der Küste und im Hochland vorkommen. Aus früheren Studien 

hatte sich ergeben, dass diese Waldreviere höchstwahrscheinlich die Reste eines 

durchgehenden, intakten Waldgürtels sind, der sich durch das ganze tropische 

Ostafrika zog und aufgrund der zunehmenden Trockenheit im späten Känozoikum 

fragmentiert wurde. In dieser Studie wurden in einer Reihe von 

Simulationsexperimenten die Umweltbedingungen systematisch verändert, sodass 

untersucht werden konnte, unter welchen Bedingungen die Waldgebiete 

miteinander verbunden gewesen sein konnten, und wo sich ein früherer 

durchgehender Waldgürtel vermutlich erstreckte und schließlich fragmentiert 

wurde. Es ergab sich, dass in der Region in der Tat mit hoher Wahrscheinlichkeit 

Bedingungen herrschten, die auf Waldbiome und einen durchgehenden 

Waldgürtel im späten Känozoikum schließen lassen. Meine Studie hat somit 

erwiesen, wie empfindlich die ostafrikanische Vegetation für Klimawandel und 

Klimaschwankungen ist. Sie lässt eine Interpretation der Umweltbedingungen zu, 

unter denen die damalige Evolution der Hominiden stattgefunden haben könnte. 
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Die Empfindlichkeit der ostafrikanischen Vegetation für Klimawandel und 

Klimaschwankungen spielt weiterhin eine kritische Rolle für die ökosystemaren 

Dienstleistungen und die Bewahrung der Artenvielfalt in der Region. 

Insbesondere muss gut erforscht werden, wie sich das El Niño/Southern 

Oscillation--Phänomen (ENSO) in Zukunft auf die ostafrikanische Vegetation 

auswirken könnte, damit sich die Vegetationsreaktionen vorhersagen lassen und 

geeignete Maßnahmen getroffen werden können. Im Hinblick darauf wurde in 

dieser Studie unter Benutzung der Empirical Orthogonal Teleconnections (EOT)-

Analyse das ENSO-Signal aus den Klimadaten entfernt, und die Vegetation unter 

dem historischen Klima wurde ohne Komponenten simuliert, die in Bezug zu 

ENSO-Telekonnektionen stehen. Damit sollten die auf das ENSO-Phänomen 

zurückgehenden Vegetationsschwankungen herausgearbeitet werden. Aus dieser 

Analyse haben sich drei wichtige Faktoren ergeben: 1) Die EOT-Analyse kann 

aus empirischen Klima-Datasätzen eine Telekonnektion zwischen der 

Meerestemperatur im tropischen Pazifik und den Niederschlägen in Ostafrika 

nachweisen 2) In der ostafrikanischen Vegetationsreaktion gibt es ENSO-bedingte 

Muster, 3) Das aus den Klimamodell-Outputs extrahierte ENSO-Signal wies bei 

der Anwendung der gleichen Analyse nur eine schwache Korrelation zum 

aufgenommenen Signal auf, was bedeutet, dass Klimamodelle immer noch nicht 

gut genug sind, um ENSO-Telekonnektionen vorherzusagen. Aus diesen 

Erkenntnissen leitete sich der nächste Schritt der Studie ab: Wenn es 

bekanntermaßen einen Zusammenhang zwischen den Niederschlägen in Ostafrika 

und dem ENSO-Phänomen gibt, und wenn Klimamodelle diese auf ENSO 

zurückgehenden Niederschlagsschwankungen nicht gut genug erfassen können, 

wie hoch ist dann das Ausmaß dieser Diskrepanz in unseren zukünftigen 

Projektionen? Unter Anwendung desselben Ansatzes wurde das künftige ENSO-

Signal aus den Klimamodellprojektionen herausgenommen und so manipuliert, 

dass es so stark war, wie es laut den heutigen Beobachtungen sein müsste. 

Daraufhin wurde es in die künftigen Klimadaten zurückgerechnet, und die 

künftige Vegetation wurde mit diesem manipulierten Klima-Datensatz simuliert. 

Die Vegetation wurde auch mit den tatsächlichen Klimamodell-Outputs simuliert, 

und die jeweiligen Vorhersagen wurden verglichen. Zukunftssimulationen 

ergaben, dass zwischen diesen beiden künftigen Klimatreibern in der 

ostafrikanischen Vegetation erhebliche Unterschiede bestehen. Daraus leitet sich 

ein Unterschied zwischen der künftigen Vegetation und den Simulationen ab, die 
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mit Klimamodell-Outputs erfolgen,  bei denen der genaue ENSO-Beitrag nicht 

berücksichtigt werden kann. Bei der Berechnung der künftigen weltweiten CO2-

Bilanz stellt dies daher einen zusätzlichen Unsicherheitsfaktor dar. 

 

Insgesamt hat jeder Teilaspekt dieser Dissertation dazu beigetragen, beim 

Verständnis der ostafrikanischen Vegetationsdynamik Wissens- und 

Methodenlücken zu füllen und zusätzliche Daten für verwandte Studien wie etwa 

in Paläohydrologie und Paläontologie zu erheben. Abschließend wird 

hervorgehoben, wie wichtig es ist, terrestrische Ökosystemreaktionen auf 

wechselnde klimatische Bedingungen zu quantifizieren, um unser Verständnis 

davon, wie diese natürlichen Systeme wirken, zu testen und zusammenzufassen. 

Es werden auch Hinweise darauf gegeben, in welcher Richtung bei der 

Modellierung der ostafrikanischen Vegetation im besonderen und Trockenland-

Ökosystemen im allgemeinen weitergeforscht werden sollte. 
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Chapter 1: Introduction 

 

1.1 Motivation 

 

Almost everything about East Africa is scientifically intriguing: the formation of 

the Great Rift Valley, dynamics of its lakes and plateaus, its fluctuating climate, 

diversity of its biomes, its evolutionary past and uncertain future. And what makes 

it even more fascinating is the interconnectedness of them all. It is almost never 

enough to study one without the other and each is a piece of a bigger puzzle. 

Therefore, this dissertation does not only takes an ecological approach but a 

whole earth system perspective. 

 

First, and foremost, the main motivation of this study was to learn more about the 

past vegetation of East Africa. Vegetation sets the scene for other earth system 

processes to take place: from affecting denudation rates (Torres Acosta et al., 

2015) to changing migratory routes (Cowlings et al., 2008) in East Africa. 

However, reconstructing palaeovegetation is a challenge in general, and in East 

Africa in particular. Because continuous records of palaeoecological change are 

rare from terrestrial sequences in East Africa as active faulting, erosion, and non-

deposition often punctuate the geologic record, and they often provide localized 

signals (Potts, 1998; Kingston, 2007). Tools such as dynamic vegetation models 

(DVMs) can help us incorporate information from other paleo-proxies and allow 

us to reconstruct the regional palaeovegetation in a spatially explicit way 

(Cowlings et al., 2008). 

 

While studying palaeoecology has its own value; the tools, the data and the 

knowledge emerged from these studies can also be used for predicting future 

changes. DVMs are central instruments for projecting future as well. However, 

there are substantial disagreements in their future predictions (Friedlingstein et al., 

2014). Therefore, testing their performance in reproducing the past environmental 

changes has become a common benchmarking effort to distinguish the reasons 

behind these disagreements and understand their sensitivities to different drivers 

(Monserud et al., 1993; Shellito & Sloan, 2006; Henrot et al., 2017). In line with 



24 
 

these efforts, while this dissertation investigates past vegetation dynamics in the 

region, it also provides a basis for more robust future projections for East Africa. 

 

We need robust projections for East Africa as it is sensitive to climate change and 

climate variability while hosting major hotspots of global biodiversity, and some 

of the fastest growing human populations in the developing world. Furthermore, 

dryland ecosystems such as East African savannas also play an important role in 

global carbon budget (Poulter et al., 2014; Ahlström et al., 2015). Both the 

geographical distribution and ecosystem services of drylands will be affected by 

climate change with unclear consequences on global carbon budget and 

sustainable livelihood (Tietjen et al., 2017). Moreover, the El Niño Southern 

Oscillation (ENSO) influence brings further uncertainties into the future 

predictions of terrestrial ecosystem responses in this region. Again, DVMs can 

help us quantify these uncertainties and inform our management strategies of 

these natural system as demonstrated in this dissertation. 

 

1.2 East Africa 

 

1.2.1 Geology 

 

Geology has a lot to do with vegetation when it comes to East Africa. A brief 

summary of geological history of East Africa during the Cenozoic (period 

between 66-0 million years ago, Ma hereinafter) is as follows: During Early 

Paleogene (66-50 Ma) African Continent was positioned south of its current 

location and the Tethys Sea in its north was still open. Together with the currents 

over Atlantic Ocean in the west and Indian Ocean in the east, northern part of the 

continent was moist and covered with forests from coast to coast (Lovett and 

Wasser, 1993). As the continent moved northwards from early to middle Miocene 

(around 20 Ma), the Tethys Sea closed when Africa collided with Eurasia. This 

ended the flow of oceanic currents around northern Africa, limiting moisture 

transport to the Sahara and the Arabian Peninsula (Lovett and Wasser, 1993). 

However, lower topographical setting was still allowing zonal circulations to 

bring precipitation to East Africa that could support forest biomes in the region 

(Sepulchre et al., 2006). Around this time, development of Ethiopian dome also 
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started (20±2 Ma), followed by volcanism in northern Kenya (15±2 Ma), 

southward propagation of the rifting (8±2 Ma), advanced development of the East 

African Rift System (3±1 Ma), leading to today's high topography of the region 

(MacGregor, 2015). Especially the uplift during the last 10 million years is 

associated with the aridification of East Africa, accompanying other 

environmental factors such as atmospheric CO2 decrease (8 to 6 Ma), Indian 

Ocean sea surface temperature cooling and the onset of glacial-interglacial cycles 

(5 to 3 Ma) that further influenced the East African vegetation (Sepulchre et al., 

2006). The change of East Africa from a relatively flat, homogeneous landscape 

covered with mixed tropical forests, to a heterogeneous one with high mountains 

and diverse vegetation might have facilitated the traits that enabled human 

ancestors to adjust to environmental change (Trauth et al., 2010; Maslin et al., 

2014). These topographical features continue to affect the climate of East Africa 

today. 

 

Figure 1.1 A brief summary and compilation of environmental changes accompanying human 

evolution in East Africa. From top to bottom, the panels show geological, climatological, 

ecological, and evolutionary changes. Multiple, intertwined factors are influential on human 

evolution. (MER: Main Ethiopian Rift, C4 min: C4 grass minimum in abundance) 
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1.2.2 Climate 

 

East African climate is mainly under the influence of seasonal movement of the 

east-west oriented Intertropical Convergence Zone (ITCZ) and the northeast-

southwest oriented Congo Air Boundary (CAB) (Figure 2). CAB is basically the 

area where Indian and West African Monsoonal air movements interact. In 

addition to major regional climatic factors, the topography also impacts local 

climate conditions in eastern Africa, causing a more complex and different 

climatic behaviour than in the rest of the Africa (Junginger et al., 2014). For 

instance, CAB’s location is determined partly by Ethiopian and Kenyan Domes. 

While Ethiopia, the western branch of EARS and most of western Tanzania 

receives seasonal rainfalls, the Horn of Africa and coastal East Africa are isolated 

orographically from convergence along CAB and consequently these regions are 

more arid. As a result, western Ethiopia and north of Lake Victoria have the 

highest rainfall amount (2000 mm/yr) whereas Afar, Somali and the Awash valley 

receives the lowest (150 mm/yr) (Nicholson, 2000).  

 

Figure 1.2 Distribution and amount of precipitation in East Africa (after Junginger et al., 2014). 

Rainfall closely follows the movement of Intertropical Convergence Zone (ITCZ) and the Congo 

Air Boundary (CAB) in the region. The modality of the rainfall for three locations (red dots) on a 

north-south gradient can be seen in the last column. 
 

This topography – precipitation interplay had an interesting impact in East Africa 

during the African Humid Period (AHP, 15-5 ka BP). During that time, changes in 

solar radiation increased the pressure gradient over the northern hemisphere 

resulting in northeastward shifts in ITCZ and CAB positions (Junginger et al., 

2014). With this pressure gradient, CAB was able overcome the orographic 

barrier, bringing precipitation to the drier parts of East Africa, filling out the rift 

lakes (Junginger et al., 2014). Increase in boreal summer season insolation also 
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enhanced evaporation and precipitation together with more inland movement of 

the West African Monsoon due to land-sea pressure gradients. The structural 

changes East African terrestrial ecosystems went through during this time are 

detectable in the proxy data (Peyron et al., 2000; Garcin et al., 2006). 

 

Being in the tropics and adjacent to the Indian Ocean, East Africa is also 

susceptible to inter-annual climate variability due to fluctuations in atmospheric 

and oceanic currents (Nicholson, 2000). Two main atmospheric circulations 

affecting the region is the Hadley Circulation that moves the air along latitudes 

(north-south) and the Walker Circulation that moves the air along the tropical 

longitudes (east-west). The strength of Hadley and Walker cells is affected by 

land-atmosphere-ocean temperature and pressure gradients.  

 

The branches of Walker circulations involve uplifts of air masses over Africa, 

Indonesia and South America, and subsidence in-between these areas (Figure 1.3, 

top panel). The cell over the Indian Ocean consists of uplift over Indonesia (rising 

air, wetter conditions) and subsidence occurring over the coast of East Africa 

(sinking air, drier conditions). The stronger this circulation becomes, the drier 

East Africa gets. On the contrary, when this cell weakens or shifted, more 

moisture from Indian Ocean can reach East Africa and wetter conditions occur 

(Lau and Yang, 2002).  

 

The interplay between Hadley and Walker circulations is also responsible for the 

teleconnection between Pacific Ocean Sea Surface Temperatures (SSTs) and East 

African rainfall (Schreck and Semazzi, 2004). When the trade winds (the part of 

Hadley cell where air masses move back towards the equator) weaken, the warm 

water in the western Pacific oscillates backwards to the eastern Pacific and this 

slows or stops the upwelling of cooler water along the coast (warm event, El Niño 

phase of the El Niño Southern Oscillation -ENSO-). As a result, the Walker 

circulation shifts with rising air over Pacific Ocean and East Africa, bringing 

more rainfall to the region (Figure 1.3, middle panel). When the opposite occurs 

and the trade winds strengthen, it causes even more upwelling of the cooler water 

in eastern Pacific, followed by a stronger Walker Circulation and less rainfall in 

East Africa (cold event, La Niña phase of ENSO, Figure 1.3, bottom panel). The 

inter-annual variability of precipitation is also influential on the East African 
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vegetation. 

 

 
Figure 1.3 Walker circulation moves the air masses across the tropics. (Source NOAA 

Climate.gov, drawing by Fiona Martin) 
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1.2.3 Vegetation 

 

The East African vegetation distribution and composition follows the precipitation 

patterns closely, whereas temperature is also effective on the rift mountains 

(Figure 1.4). As a result, within a relatively small region, East Africa hosts biomes 

ranging from deserts to afro-alpine grasslands, and from tropical rainforests to 

afromontane forests (White, 1983). However, arid and semi-arid environments 

still dominate the region with a proportion of 83.2% (excluding agriculture) which 

is even greater relative to their proportion in the whole Africa 70.1% (Bobe, 

2006).  

Figure 1.4 Precipitation (left; WordClim) and vegetation (right; White, 1983) patterns in East 

Africa. Biomes are distributed in accordance with the annual mean precipitation. 
 

The complexity of East African topography and climate dynamics requires a 

comprehensive study of its vegetation which sustains a great biodiversity and 

human population. However, the East African vegetation is relatively under-

studied due to the remoteness and the socio-economic history of the region. In the 

recent years, especially with the development of remote sensing technologies, this 

knowledge gap closes. However, long term monitoring and observation systems 

are still lacking for the region whereas such systems are vital for ground 

validation of the remote sensing data and forecasting the future responses of the 

terrestrial ecosystems. Although they cannot substitute for the observations and 

they themselves are data hungry, Dynamic Vegetation Models (DVMs) can help 

us bring pieces of information together and provide a more comprehensive picture 

of East African vegetation dynamics. For example, a model that can successfully 

reproduce the vegetation composition and distribution which is comparable to 
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satellite-based vegetation maps that we have for East Africa, may also be trusted 

for reproducing the fluxes correctly which we do not have from East Africa. 

 

Studying the palaeovegetation dynamics can partly be a remedy for the lack of 

long-term observations from East Africa. Thanks to its variable climatological 

history, East African vegetation has already experienced considerable changes in 

the past (for an example, see African Humid Period in the previous section), 

which can help us understand the conditions that they have adopted or sensitive to 

through time. Once more, DVMs can act as a scaffold: biome composition 

extracted from fossil pollen data can be compared to plant functional type 

composition predictions from a DVM, while surface runoff values calculated from 

palaeo-lake level reconstructions can be compared to its runoff predictions, and 

from that we can make interpretations about total biomass of that particular 

ecosystem through the DVM. In addition to connecting one pattern to the other 

through underlying mechanistic processes, DVMs could also connect them 

through space. 

 

1.3 Dynamic vegetation models 

 

Dynamic Vegetation Models (DVMs) are computer models that simulate the 

vegetation dynamics according to the underlying equations of ecosystem 

processes coded in their framework. They can be very simple with a few 

processes and a few hundred lines of code (Simplified Photosynthesis and 

Evapotranspiration -SIPNET- model; Braswell et al., 2005) or very complex 

(Community Land Model -CLM-; Oleson et al., 2010). DVMs were developed to 

simulate terrestrial ecosystem responses under rapid environmental changes and 

predict global vegetation patterns (Prentice et al., 1992). They are now also 

widely used to recreate past settings (Allen et al., 2010), forecast into the future 

(Hickler et al., 2012) or conduct simulation experiments that we cannot easily 

perform in the field (Higgins and Scheiter, 2012). 

 

DVMs generally combine biogeochemistry, ecophysiology, demography and 

disturbance submodels. Disturbance is often limited to wildfires, but 

implementations for land-use changes, pests and hurricanes also exist. DVMs 

usually “spin up” their simulations from bare ground to “equilibrium” vegetation 
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to establish realistic initial values for their various “pools”. Alternatively, they can 

also be started from prescribed initial conditions. The model used in this 

dissertation, Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS: 

Smith et al., 2001; Sitch et al., 2003; Gerten et al., 2004), uses spin-up approach in 

its simulations and simulates the potential natural vegetation (i.e. does not include 

anthropogenic land-use changes). More details regarding this model are given in 

the following chapters. 

 

In DVMs, the simulated units are usually Plant Functional Types (PFTs). The PFT 

concept is used to reduce the complexity in ecosystem modelling and is built on 

the similarities that plants show in their resource use and response to 

environmental changes. PFT parameters are distinguished according to the 

morphology, physiology and life history traits of plants, and are determined by 

field/laboratory measurements when possible. Then, the dynamics of a particular 

set of PFTs would be simulated according to these parameters, under a given input 

dataset including climatic variables (temperature, precipitation, insolation), soil 

type and atmospheric CO2 concentration.  

 

There are several important issues that needs to be considered while working with 

DVMs. First, these models are usually developed and tested for a particular 

system (e.g. temperate forests) or for reproducing global vegetation patterns. As a 

result, their PFTs and parameters, and even processes, could be tuned for 

increasing their predictive performance for such settings. Therefore, they need to 

be validated for the study system (in this case tropical systems) if it is different 

from the original development and validation system. Second, as these models are 

mainly developed for reproducing regional or global patterns, they accept gridded 

input datasets and they produce gridded outputs on the same spatial resolution as 

their inputs are. In other words, the model spatial resolution is contingent upon the 

spatial resolution of its inputs. However, spatial resolutions of gridded input 

datasets are often on the order of 100 km (as in one side of a square grid) if not 

coarser. Whereas, simulating East African vegetation (and other systems with 

similar topographical and climatological complexity) would require finer 

resolutions than that, as the topographical and climatological features change 

within distances as short as 10-20 km. Besides, if the model outputs are 
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considered to be compared to point-scale data such as pollen, finer simulation 

resolutions are expected to provide a better comparison scale with such data. 

Finally, both the model parameters and drivers include uncertainties. Therefore, 

the model predictions should be interpreted accordingly, and these uncertainties 

should be investigated and reported along with the model predictions. 

 

1.4 Objectives 

 

This dissertation aims to understand the transient East African vegetation 

dynamics through mechanistic process-based model simulations while filling the 

methodological gaps. The main objectives of this project are:  

 

1. Validating a widely-used dynamic vegetation model in East Africa and 

testing its performance against observations at different spatial resolutions. 

2. Understanding the responses of East African vegetation during the 

African Humid Period and its interaction with climate and hydrology.  

3. Comparison of drivers in the past and present, and understanding their 

relative importance at different periods.  

4. Investigating the influence of topographical changes on region's climatic 

and ecological fluctuations. 

5. Understanding the sensitivity of East African vegetation to climate 

variability and quantifying uncertainties related to future interannual 

climate change and variability. 

 

Chapters 2 through 4 address these objectives as independent studies published in 

peer-reviewed journals. Chapter 2, „High-resolution modelling closes the gap 

between data and model simulations for Mid-Holocene and present-day biomes of 

East Africa“, by Istem Fer, Britta Tietjen and Florian Jeltsch, addresses research 

objectives 1 to 3 and has been published in Palaeogeography, Palaeoclimatology, 

Palaeoecology (doi: 10.1016/j.palaeo.2015.12.001). Research objective 3 is 

addressed in Chapter 3, „Modelling vegetation change during Late Cenozoic 
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uplift of the East African plateaus“, by Istem Fer Britta Tietjen, Florian Jeltsch 

and Martin H. Trauth and has also been published in Palaeogeography, 

Palaeoclimatology, Palaeoecology (doi: 10.1016/j.palaeo.2016.04.007). Chapter 4 

addresses research objective 5 and is titled „Influence of El Niño-Southern 

Oscillation regimes on East African vegetation and its future implications under 

RCP 8.5 warming scenario“ which is published in the journal EGU 

Biogeosciences (doi: 10.5194/bg-14-4355-2017). 
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Chapter 2: 

 

High-resolution modelling closes the gap between data 

and model simulations for Mid-Holocene and present-day 

biomes of East Africa 

 

Abstract 

 

East Africa hosts a striking diversity of terrestrial ecosystems, which vary both in 

space and time due to complex regional topography and a dynamic climate. The 

structure and functioning of these ecosystems under this environmental setting can 

be studied with dynamic vegetation models (DVMs) in a spatially explicit way. 

Yet, regional applications of DVMs to East Africa are rare and a comprehensive 

validation of such applications is missing. Here, we simulated the present-day and 

mid-Holocene vegetation of East Africa with the DVM, LPJ-GUESS and we 

conducted an exhaustive comparison of model outputs with maps of potential 

modern vegetation distribution, and with pollen records of local change through 

time. Overall, the model was able to reproduce the observed spatial patterns of 

East African vegetation. To see whether running the model at higher spatial 

resolutions (10'x10') contribute to resolve the vegetation distribution better and 

have a better comparison scale with the observational data (i.e. pollen data), we 

run the model with coarser spatial resolution (0.5ºx0.5º) for the present-day as 

well. Both the area- and point-wise comparison showed that a higher spatial 

resolution allows to better describe spatial vegetation changes induced by the 

complex topography of East Africa.  Our analysis of the difference between 

modelled mid-Holocene and modern-day vegetation showed that whether a biome 

shifts to another is best explained by both the amount of change in precipitation it 

experiences and the amount of precipitation it received originally. We also 

confirmed that tropical forest biomes were more sensitive to a decrease in 

precipitation compared to woodland and savanna biomes and that Holocene 

vegetation changes in East Africa were driven not only by changes in annual 

precipitation but also by changes in its seasonality. 
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2.1 Introduction 

 

East Africa hosts a striking diversity of terrestrial ecosystems, ranging from 

deserts to rainforests and mountainous forests (White, 1983) as a function of its 

geography and highly variable topography which consists of central and coastal 

lowlands, elevated plateaus and adjacent rift basins (Pik, 2011). Superimposed on 

this complex topography, a dynamic system of Atlantic- and Indian Ocean-related 

air movements (monsoon systems) determine the amount of precipitation and its 

timing in the region (Tierney et al., 2011). The varied and heterogeneous 

ecosystems of East Africa are sensitive to the temporal and spatial changes in this 

environmental setting in terms of structure and functioning, all of which can be 

studied by predictive tools such as dynamic vegetation models (DVMs) (Cramer 

et al., 2001). Yet, regional applications of DVMs to East Africa are rare and a 

comprehensive validation of such applications is missing. 

 

The present-day vegetation of East Africa has been simulated by DVMs as a part 

of global (Hickler et al., 2006) and continental studies (Jolly et al., 1998a; 

Scheiter and Higgins, 2009), and even in  regional studies (as control runs in 

Sepulchre et al., 2006; Doherty et al., 2010; Prömmel et al., 2013). However 

neither of these studies validated their findings specifically and extensively for 

East Africa, and it is therefore not clear, if they can adequately represent the 

abrupt changes in biomes induced by the complex topography of the area. In this 

study, we apply a process-based DVM, LPJ-GUESS (Lund-Potsdam-Jena General 

Ecosystem Simulator) for East Africa at two different spatial resolutions and 

compare the resulting biome distributions with vegetation maps as well as with 

pollen data. LPJ-GUESS is suitable for regional scale studies with its detailed 

representation of vegetation dynamics (Smith et al., 2001) and has been applied 

and validated for West Africa before (Hely et al., 2006). However unlike East 

Africa, West Africa does not have a highly variable topography. Here, we aim to 

assess if East African biome distribution can be adequately described by low 

resolution models at it has been done until now, or if a higher resolution 

significantly improves the representation of vegetation patterns due to the 

requirement of a spatially detailed approach under the complex climatic and 

topographic conditions. 
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In addition, we apply LPJ-GUESS to simulate the mid-Holocene biomes of East 

Africa. During the early- to mid-Holocene, the higher summer insolation over the 

Northern Hemisphere due to changes in Earth's orbital parameters caused more 

heating of the continents and altered the land-sea pressure gradients (Bosmans et 

al., 2012). This resulted in both intensification and displacement of moisture 

related air circulations over East Africa, bringing more precipitation to the north-

eastern parts of the region (Junginger and Trauth, 2013). Meanwhile the Southern 

Hemisphere was partly in antiphase, experiencing less insolation and weaker 

monsoons which decreased the rainfall in south-eastern parts of the region 

(Castañeda et al., 2007). Our motivations in simulating mid-Holocene biomes are 

twofold: First, it provides a realistic scenario to test the regional application of 

LPJ-GUESS under different climatic conditions and understand the vegetation 

distribution, composition and its response to changing climate in East Africa. 

Second, for this period, high resolution climate outputs of global climate models 

(GCMs) to drive DVMs have recently been available. Here, we use the outputs of 

such an atmosphere-ocean coupled climate model, EC-Earth, which has one of the 

most sophisticated model parameterizations and highest resolution amongst the 

GCMs that simulated mid-Holocene so far (Bosmans et al., 2012). 

 

Our approach follows these steps: (i) simulating the potential modern East African 

vegetation with regional application of LPJ-GUESS, and area- and point-wise 

validation of the model outputs, (ii) assessing the level of agreement for model-

data comparison with different spatial resolutions (iii) reconstructing the mid-

Holocene biomes with more detailed representation of the mid-Holocene climate 

(iv) analysis of the vegetation changes between the two periods and the drivers 

these changes. 

 

2.2 Methods 

 

Dynamic Vegetation Models (DVMs) are widely accepted model platforms that 

simulate vegetation response to changing climatic variables and atmospheric CO2 

concentrations for both future (Koca et al., 2006; Doherty et al., 2010; Hickler et 

al., 2012) and past studies (Jolly et al., 1998a; Hely et al., 2009; Allen et al., 2010, 

François et al., 2011). In this study we analyze modern and palaeo-vegetation 

dynamics of East Africa simulated by the DVM, Lund-Potsdam-Jena General 
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Ecosystem Simulator (LPJ-GUESS). In order to assess the performance of the 

model in simulating the complex East African vegetation distribution, we first 

evaluated modern vegetation under modern climate data and compared the outputs 

with observational data (i.e. vegetation maps, modern pollen data). Afterwards, 

we simulated the mid-Holocene biomes and compared the outputs with fossil 

pollen data. Finally, by comparing the vegetation composition and distribution of 

both periods, we assessed the drivers behind the simulated differences and 

sensitivity of biomes to changes in precipitation regimes. 

 

2.2.1 LPJ-GUESS Model 

 

LPJ-GUESS is a mechanistic dynamic vegetation model in which ecosystem 

processes are simulated via explicit equations (Smith et al., 2001; Sitch et al., 

2003; Gerten et al., 2004). It has been successfully applied worldwide both 

regionally and locally (e.g. Koca et al., 2006; Tang and Beckage, 2010; Hickler et 

al., 2012) and recently to tropical regions (Hely et al., 2006, 2009; Doherty et al., 

2010).  

 

LPJ-GUESS consists of communicating submodules, each corresponding to 

different subsets of ecosystem processes, in order to provide a realistic 

representation of how the physiological and biophysical components and 

functions are linked in nature. In the model, the status of the processes is updated 

in either daily or annual time step. The physiological processes such as 

photosynthesis and plant respiration are simulated on a daily time step whereas 

establishment, growth, reproduction, mortality and disturbance are updated 

annually. Vegetation is represented as a mixture of plant functional types (PFTs), 

which are characterized by their life-form, phenology, physiology and other 

biological requirements and limits. Based on descriptions of these ecosystem 

processes and PFTs, LPJ-GUESS then provides gridded values of outputs of 

different PFTs (e.g. biomass, leaf area index (LAI) etc.), which can be used to 

assess the vegetation composition of an ecosystem. The spatial resolution of the 

outputs depends on the resolution of the inputs. In this study we simulated the 

vegetation at two different spatial resolutions: 10'x10' (higher) and 0.5ºx0.5º 

(coarser). Model parameters are provided in the Supplementary Material, 

Appendix I (for more detailed descriptions of the model structure, its 
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(biogeochemical) computational background and hydrological updates, see also 

Smith et al. (2001), Sitch et al. (2003) and Gerten et al. (2004), respectively).  

 

2.2.2 PFT parameterizations and classification rules 

 

LPJ-GUESS requires a list of PFT parameters to simulate the vegetation 

dynamics. A set of PFTs representing the vegetation of Africa has been 

parameterized and used in previous studies (Hely et al., 2006; Doherty et al., 

2010). Following the previous PFT sets and parameterizations (Hely et al., 2006; 

Doherty et al., 2010; Allen et al., 2010), with a number of changes, we used 

twelve PFTs in this study. In order to better represent tropical African biomes, we 

not only used tropical broadleaved evergreen/raingreen types, but we also split 

them into shade-tolerant and shade-intolerant types. Together with shade 

tolerance-intolerance distinction, we assumed shade intolerant trees to be more 

fire and drought resistant too, in order to distinguish them as savanna-type trees 

from forest-type trees. (Further details of PFT parameterizations can be seen in 

the Supplementary Material, Appendix I, Table A1.2 to A1.5) 

 

Classification of the outputs in terms of biomes is necessary in order to be able to 

compare the simulated vegetation with observational data. Amongst the outputs of 

the model, LAI provides an important representation of canopy structure and 

vegetation composition (ranging from 0 in bare soil to 7 in dense evergreen 

forests). Therefore, the resulting composition of annual LAI (averaged over the 

entire 111 years of simulation) was used to classify the corresponding biome of 

each grid cell according to a set of assignment rules (Table 1.1). As starting point 

for these rules we used comparable studies for West Africa (Hely et al., 2006, 

2009) and East Africa (Doherty et al., 2010). Then, we determined the final set of 

assignment rules by calibrating them to five East African study sites, for which 

biome classification according to modern pollen data (see section 2.3) and White's 

vegetation map (see section 2.4) were in agreement. 
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Table 2.1. Biome classification rules. Rules are based on total leaf area index (LAI) and 

proportions of LAIs of different plant functional types (PFT) and are applied in the given order 

to classify  biomes.  

Rules                                                                                                                                                                          Biome 

(1): If (MNE LAI >0.01 or MBS  LAI > 0.01)  and C3CG LAI > 2.0                                                                       XERO 

(2): If TeNE LAI > 0.01 or TeBE LAI > 0.1 TeBS LAI > 0.1                                                                              AFRO 

(3): If Tot. LAI >= 6.0 and woody LAI >=5.0 and TrBE is the dominant PFT                                                     TEFO 

(5): If Tot. LAI > 5.0 and woody LAI> =4.0                                                                                   TSFO 

(5): If Tot. LAI > 2.5 and woody LAI> =1.5                                                                                                            WOOD 

(6): If Tot. LAI > 0.5 and woody LAI > 0                                                                                     SAVA 

(7): If Tot. LAI >= 0.1                                                                                                                                   STEP 

(8): If Tot. LAI < 0.1                                                                                                                                              Bare Soil 
XERO=Afroalpine, AFRO=Afromontane, TEFO=Tropical Evergreen Forest, TSFO=Tropical Seasonal 

Forest, WOOD=Woodland, SAVA=Savanna, STEP=Steppe, MNE=Mountainous Needle-leaved Evergreen, 

MBS=Mountainous Broad-leaved Summergreen, C3CG=Cold C3 Grass, TeNE=Temperate Needle-leaved 

Evergreen, TeBE=Temperate Broad-leaved Evergreen, TrBE=Tropical (Shade-tolerant) Broad-leaved 

Evergreen. 
 

2.2.2 Climate data and Downscaling 

 

LPJ-GUESS requires climate data (gridded monthly values of temperature (°C), 

precipitation (mm) and cloud cover (%), atmospheric CO2 concentration and soil 

type data as an input. For modern climate, we used the Climate Research Unit 

(CRU) time series dataset CRU TS3.20 at 0.5° spatial resolution, spanning 1901-

2011 (Harris et al., 2014). For mid-Holocene climate, we used data from 

atmosphere-ocean coupled climate model, EC-Earth at 1.125° spatial resolution 

(Bosmans et al., 2012, for monthly temperature and precipitation anomaly maps 

see supplementary Figure A3. 1 and A3.2 respectively). For present-day run we 

used the atmospheric CO2 concentration data compiled by NASA (GISS Website, 

last accessed November 2015) from 1901 (296 ppm) to 2011 (390 ppm), and for 

the mid-Holocene run, we fixed the value to 280 ppm. 

 

As the topography of the region can change in very short distances, we 

downscaled the climate data in order to resolve the vegetation distribution better 

and have a better comparison scale with the observational data (i.e. pollen data). 

To do this, we followed the method given in Tang and Beckage (2010). For the 
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modern climate data, we first calculated the lapse rate of each grid cell by fitting a 

regression model to the 0.5° CRU TS3.20 climate dataset that treats the climatic 

value at each grid cell as a function of its latitude, longitude and elevation. Then 

we targeted a finer 10'x10'  resolution elevation dataset and interpolated the 

coarser resolution climate values using the lapse rates. 

 

For the mid-Holocene climate data, in order to eliminate model biases, we first 

calculated the anomalies between pre-industrial and mid-Holocene climate data 

that were simulated by EC-Earth model (for temperature the differences, and for 

precipitation and cloud cover the percentages of changes are calculated). Then, 

these anomalies were downscaled on the same finer 10'x10'  resolution as 

explained above and added to the monthly time series of modern climate data in 

order to obtain the interannual variability.  

 

2.2.3 Pollen data and biomization 

 

In this study pollen data was used for calibration of the classification rules, and 

for comparison of modern simulations and paleo-simulations at point scale. Both 

modern and fossil pollen data were obtained from the African Pollen Database 

(APD, last accessed February 2015). Pollen data, consist of pollen counts of 

identified taxa and each needs to be assigned to a biome so that the pollen record 

can be comparable with the simulated biomes. The pollen data and taxa from East 

Africa have been biomized extensively by previous studies (Jolly et al., 1998b; 

Peyron et al., 2000; Elenga et al., 2000; Mumbi et al., 2008; Lebamba et al., 2009, 

Vincens et al., 2006, 2010). As biomization of the pollen data was not the main 

focus of this study, we followed these earlier studies and constructed a 'taxon x 

biome' matrix, by assigning each taxon to the biomes (see Supplementary 

Material, Appendix II), based on their known biology, ecology and physiology. 

Finally, we assigned the pollen samples to a biome by calculating the affinity 

scores as described in Prentice et al. (1996). For the 'taxon x biome' matrix used in 

calculating the affinity scores and the assigned biomes to pollen sites, see 

Supplementary Material, Appendix II. In total, we used modern-day pollen 

spectra from 135 samples from East Africa. Thereof, five used for calibration of 

the classification rules, and 130 were used for comparison with the simulated 

modern biomes. In addition, fifteen of these 130 samples also provide fossil 
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pollen-derived records of vegetation change between the mid-Holocene (6000 yr 

BP) and today. 

 

2.2.4 Map Comparison: Vegetation Maps and Kappa Statistics 

 

For the validation of the model at regional scale we used White's Vegetation map 

(White, 1983; Figure 1a) as it is considered to be the closest vegetation map to the 

potential natural vegetation (PNV) of Africa and has been widely used for 

validation of vegetation model outputs for Africa (Hely et al., 2006, 2009; 

Scheiter and Higgins, 2009). To be able to compare the map with our model 

outputs, different biome classifications of White's vegetation map were 

aggregated into new classes (see Supplementary Material, Appendix III, Table 

A3.1). These new classes were comparable with the reconstructed biomes from 

pollen data and eight types of simulated biomes by LPJ-GUESS, namely, desert 

(or bare soil), steppe, savanna, woodland, seasonal forest, evergreen forest, 

afromontane and afroalpine. Additionally, we also compared our present-day 

simulation results with a satellite derived Global Land Cover 2000 Map 

(GLC2000, Mayaux et al., 2004), although GLC2000 was also classifying 

anthropogenically altered areas such as urban areas and croplands. As LPJ-

GUESS simulates the PNV only, these areas were masked out for both maps in 

the comparison step and the remaining classes were aggregated into new classes 

(see Supplementary Material, Appendix III, Table A3.2). Also, in GLC2000, it 

was not possible to make a distinction between afromontane and afroalpine 

biomes. Therefore, while comparing LPJ-GUESS and GLC2000 we combined 

afroalpine biomes simulated by LPJ-GUESS together with the afromontane 

biomes, resulting in seven biome types for comparison.  

 

To compare the simulated and observational maps in pairs, we used Kappa 

statistics as described by Prentice et al. (1992), and Monserud and Leemans 

(1992) to compute the level of agreement. With kappa statistics it is possible to 

compare two maps grid by grid with ruling out the agreement due to chance. 

When the value is close to zero, the agreement is no better than expected by 

chance. When it approaches to one, it suggests an excellent agreement. The 

comparisons between model outputs and vegetation maps were conducted at the 

resolution of LPJ-GUESS' outputs (10' x 10'), therefore vegetation maps with 
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higher resolution were first clipped to a subset of East Africa (25° E to 50° E, 12° 

N to 12° S) and then re-sampled at their nearest neighbour grid points to match 

the ones of LPJ-GUESS.  

 

2.3 Results and Discussion 

 

2.3.1 Present-day simulations 

 

The simulated potential natural vegetation (PNV) distribution by LPJ-GUESS 

under present-day climatic conditions mainly shows dry steppe biome types in the 

northeastern parts, evergreen and seasonal forest biome types in the central 

tropical Africa region, mountainous biome types along the elevated areas of the 

rift system and savanna-woodland biomes in the remaining areas (Figure 2.1b).  

 

                   (a)                                                             (b)                                                               (c) 

 

Figure 2.1. Biome distributions of East Africa. a) White's vegetation map, b) Present-day, and c) 

Mid-Holocene biomes simulated by LPJ-GUESS.  Each color represents a different biome whereas 

white areas represents the masked-out water bodies. Smaller icons show the locations of pollen 

sites and the reconstructed biome from the pollen data. Where the icon is black, the biome derived 

from the pollen data agrees with the simulated biome; the icon is red where it does not. 

XERO=Afroalpine, AFRO=Afromontane, TEFO=Tropical Evergreen Forest, TSFO=Tropical 

Seasonal Forest, WOOD=Woodland, SAVA=Savanna, STEP=Steppe, DESE=Desert 
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In order to asses the model performance for East Africa, we compared the 

simulated modern biomes grid by grid with two different observational vegetation 

maps (White's vegetation map and GLC2000). However, as they use different 

approaches and classification criteria, these vegetation maps differ in the biomes 

they represent and their distribution, and it was not always possible to match the 

corresponding biomes in each map. Thus, even the direct comparison between 

these two observational vegetation maps does not yield a one-to-one 

correspondence for East Africa, and in fact, their agreement was the lowest 

amongst others (fair: 0.4 < κ < 0.55, Table 2.2). The accuracy assessment between 

GLC2000 and LPJ-GUESS also presented a fair agreement, while the agreement 

between White's vegetation map and LPJ-GUESS was higher on the level of 

agreement (good: 0.55 < κ < 0.7, Table 2.2). The level of agreement with White’s 

vegetation map of Africa (White, 1983) was also higher than it was in the 

continental study of Scheiter and Higgins (2009). A reason for this can be the 

higher spatial resolution and the better resolved vegetation patterns produced in 

this study. Another reason might be that as this is a regional study, our biome 

classification rules are more suitable for representing East African biomes. A third 

reason might simply be the different performance of the two dynamic vegetation 

models (DVMs) that were applied in the studies. Furthermore, the level of 

agreement with White’s vegetation map in our study was only slightly lower than 

it was in the regional West African study of Hely et al. (2006), although their 

study region was especially selected for its relatively low variability in elevation 

which increases the predictive performance of the DVM. 

 

The existence of transitional zones (heterogeneous areas with a continuum of 

vegetation that are difficult to classify in discrete biome categories, e.g. forest-

woodland and woodland-savanna transitions), as it is the case in East Africa, tend 

to reduce the agreement between vegetation maps and simulated biomes (Hickler 

et al., 2006). Therefore, running the model at higher spatial resolution is expected 

to lead to a higher number of potentially disagreeing grid cells in such zones, and 

a reduced level of agreement. We run the model with coarser spatial resolution 

(0.5ºx0.5º grids) for the present-day in addition to our higher (10'x10' grids) 

resolution run and compared it with White's vegetation map. Contrary to 

expectations, we obtained no decrease in the level of agreement in such areas 

(Table 22.). Furthermore, our results show that, the high resolution simulation was 
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indeed able to resolve the evergreen forest and mountainous biomes of the region 

better, resulting in an even improved accuracy of simulated patterns of vegetation.  

 
Table 2.2. Accuracy assessments between simulated map and vegetation maps. See the methods 

for the level of agreement classes.  

 LPJ-GUESS vs. 
GLC2000 

LPJ-GUESS vs. White's 
map (10' x 10') 

LPJ-GUESS vs. White's 
map (0.5º x 0.5º) 

GLC2000 vs. White's 
map 

Biomes KIA KIA KIA KIA 
Bare Soil 0.13 0.03 0 0.03 
Steppe 0.30 0.44 0.47 0.26 
Savanna 0.47 0.66 0.65 0.44 
Woodland 0.53 0.62 0.62 0.52 
Seasonal F. 0.36 0.50 0.49 0.34 
Evergreen F. 0.58 0.60 0.51 0.72 
Afromontane 0.31 0.62 0.53 0.36 
Afroalpine - 0.49 0 - 

Overall α κ α κ α κ α κ 
 0.56 0.44 0.71 0.60 0.70 0.59 0.57 0.43 
# 12208 15864 1812 12147 

 

KIA = Kappa Index of agreement per biome; κ = Generalized Kappa value, α = the proportion of correctly classified cells; 

# = number of grid cells to compare (without the masked out cells). Levels of agreement: <0.4 poor, 0.4-0.55 fair, 0.55-0.7 

good, 0.7-0.85 very good, >0.85 excellent (Monserud and Leemans,1992). 

 

For present-day simulations, we additionally compared the model results (both 

higher -10'x10'- and lower -0.5ºx0.5º- resolutions) and White's vegetation map to 

modern pollen data (Table 2.3). This allowed us to (i) evaluate the comparability 

between biomized pollen data, the vegetation map and the simulated biomes, (ii) 

assess the level of agreement between the simulations and the pollen data at 

different spatial resolutions. Although the former exercise was not the main focus 

of this study, it was a necessary step before proceeding with the mid-Holocene 

simulations to show that biomes derived from pollen data can be used in model-

data comparison independently for paleo-simulations where we only have fossil 

pollen data to compare our model outputs with. 97 out of 130 biomized pollen 

samples were in exact agreement with the simulated biomes (at 10'x10' 

resolution), while this number was 89 for the comparison with White's vegetation 

map (Table 2.3). The majority of the simulated biomes and White's classes were 

correctly assigned to the pollen derived biomes with the highest mismatch for 

savannas (Table 2.3). However, in this point-wise comparison there were not more 
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disagreements between model output and the pollen records than disagreements 

between the model output and the vegetation map, or between the vegetation map 

and the pollen data. These discrepancies in the comparison of the model outputs 

and vegetation map to the pollen records are expected because pollen data are 

point-wise and they can capture sub-scale spatial distribution of vegetation rather 

than the larger spatial scale of our grid cells.  Ultimately, we found this point-wise 

comparison to be viable and used it for paleo-simulations as well. Moreover, the 

comparison of the modern pollen data with coarser (0.5ºx0.5º) simulations of the 

present-day biomes showed only 65 agreements out of 130 samples. The main 

importance of running the simulations at higher resolution manifested itself here. 

This finding clearly demonstrates that a higher the resolution leads to a better 

point-wise comparison, since model simulations can better capture site-specific 

characteristics. 
 

Table 2.3. Numerical comparison between pollen derived and simulated biomes, and White's 

vegetation map classes. Each cell shows how well the pollen-derived (P) distribution of vegetation 

biomes (left column) correspond with the biomes inferred for those sites on White's vegetation 

map (W), and 10'x10' (high-resolution, H) or 0.5°x0.5° (low-resolution, L) present-day simulations 

with LPJ-GUESS. The bold numbers in the diagonal show the number of samples with exact 

agreement between P, and W, H and L for that particular biome. 
 

        W&H&L 
 
 
P 

 
XERO  

 
AFRO 

 
TEFO 

 
TSFO 

 
WOOD 

 
SAVA 

 
STEP 

Exact 
agreement 

W H L W H L W H L W H L W H L W H L W H L W H L 

XERO (7) 7 7 - - - 6  - - 1         

AFRO (25) 1 1 - 19 23 18  - - 2 1 - 4 - 1 1 4 - -    

TEFO (0)                   

TSFO (14)  1 - - - 1 1 13 13 1 - - 12      

WOOD (13)    3 3 - 9 10 13 1 - -     

SAVA (42)  5 6 6 1 - 1 1 1 1 10 8 10 14 24 21 12 3 3    

STEP (29)        2 9 17 27 20 12    

Total (130)                      89 97 65 
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2.3.2 Mid-Holocene simulations 

 

In our study we also simulated the mid-Holocene biomes of East Africa. The main 

differences between the simulated mid-Holocene (Figure 2.1c) and simulated 

modern vegetation of East Africa (Figure 2.1b) were as follows: (i) During the 

mid-Holocene, the afromontane biomes were extended in area with respect to 

their present-day distribution, (ii) the steppe biomes in the northeastern, savanna 

biomes in the northern part of East Africa were covering less area, (iii) in the 

southeastern-most part of our study region, savanna biomes were more extended 

during the mid-Holocene at the expense of woodland biomes. We have chosen 15 

pollen sites such that they contain both mid-Holocene and modern pollen samples 

(Supplementary material, Appendix II). 12 out of 15 of these fossil pollen sites 

showed exact agreement with our mid-Holocene simulations. However, they do 

not fully capture the simulated differences in palaeo-vegetation with respect to 

present-day. Therefore we included comparison with available proxy records 

compiled by previous studies as well.  
 

Extension of afromontane biomes 

Two of the 15 sites that record both mid-Holocene and modern pollen samples  

(Rusaka and Kashiru) were biomized as afromontane biome for mid-Holocene 

while they no longer represent a mountainous biome today, which is in agreement 

with our simulations. As pollen samples are usually available from the elevated 

rift regions (where the lakes to preserve them are present), unsurprisingly most of 

them record afromontane biomes for both periods (Ahakagyezi, Rugezi, 

Mubwindi, Kuruyange, Koitoboss, Badda). Peyron et al. (2000) also reconstructed 

largely mountainous biomes around the rift vicinity. 

 

Extension of biomes with more closed vegetation 

We simulated extension of biomes with more closed vegetation during the mid-

Holocene, mostly in the northern parts of the region. Samples from five of the 

pollen sites that record both mid-Holocene and modern pollen samples 

(Tanganyika, Pilkington, Ndrumu, Albert, Nyamuswaga) were assigned to biomes 

with more closed vegetation for mid-Holocene and biomes with more open 

vegetation for present-day conditions, supporting our simulations. Among these 

five sites, Tanganyika has a relatively southern location, and it extends from 
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latitude 3.20º S to 8.45 º S. While its northern end is well situated in the region 

where we simulated biome shifts towards more closed vegetation, its southern end 

is close to the transition zone between the northern and southern hemisphere 

patterns. Still, Tanganyika records (plant leaf waxes: Tierney e al., 2010) indicate 

humid conditions during the mid-Holocene. 

 

Extension of biomes with more open vegetation 

In our mid-Holocene simulation, an expansion of savanna biomes at the expense 

of woodlands was simulated. However, none of the pollen data used in our study 

records a more open vegetation in the mid-Holocene and a more closed vegetation 

in the present-day at the same site. This is because there is not much fossil pollen 

data from the southeastern-most parts of our study region that is simulated to have 

experienced drier conditions during the mid-Holocene. The only fossil pollen data 

situated near these parts was from Lake Rukwa (8º S, 33º E, 793 m a.s.l.) and this 

site has been biomized and simulated as savanna for both present-day and mid-

Holocene in our study. A more detailed analysis of this fossil pollen data was 

given in Vincens et al. (2005) and it has been interpreted to record wetter 

conditions during the mid-Holocene as Tanganyika. However, a pollen data from 

Lake Masoko (which has a relatively more south-eastern location in our study 

area: 9.20º S, 33.45º E, 840 m a.s.l.) that was analyzed in detail by Garcin et al. 

(2006) records drier conditions during the mid-Holocene with respect to present-

day, agreeing with our simulations. Another pollen record from Lake Malawi 

(south of 10º S), analyzed by deBusk (1998) suggests slightly drier conditions 

during mid-Holocene for Lake Malawi catchment. In addition to pollen, molecular 

isotopic records from Lake Malawi also indicate a drier early- to mid-Holocene 

and a wetter mid- to late-Holocene, although these records suggest an earlier mid-

Holocene transition than 6000 ka (Castañeda et al., 2009). Moreover, carbon 

isotopic composition of fossil plant leaf waxes (Sinninghe-Damsté et al., 2011), 

and branched and isoprenoid tetraether index (Verschuren et al., 2009), from Lake 

Challa (3.19º S, 37.42º E, 880 m a.s.l.) indicate wetter conditions in the late 

Holocene than the mid-Holocene on average for the southeastern most parts of our 

study area. 
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2.3.3 Vegetation changes from mid-Holocene to present-day 

 

After simulating both the present-day and mid-Holocene vegetation of East 

Africa, we conducted an analysis concentrating on the precipitation and 

temperature differences between these periods in order to understand which 

variables drove the biome shifts from mid-Holocene to the present-day. As 

expected, the main driver of the simulated shifts from mountainous biomes 

(afroalpine, afromontane) to non-mountainous biomes (steppe, savanna, woodland 

and forest biomes) was the increase in temperature from mid-Holocene to present-

day. The monthly anomaly maps for temperature climatology (supplementary 

Figure A3. 1) indeed show higher present-day values in the vicinity of the 

elevated rift shoulders where the afromontane biomes occur (except for the JAS 

months). In this aspect, the simulated climate by Bosmans et al. (2012) agrees 

with the previous pollen-based reconstructions of cooler mid-Holocene 

temperatures in equatorial Africa (Bartlein et al, 2011).  

 

For the shifts occurred within non-mountainous biomes, change in precipitation 

regime was the main driver. The monthly anomaly maps for precipitation 

climatology (supplementary Figure A3. 2) show that the spatial and temporal 

distribution of precipitation changes were not the same over the study region 

resulting in two types of shifts occurring from mid-Holocene to present-day, 

namely, (i) biomes shifting from more open (hence, lower LAI) to more closed 

(hence, higher LAI) vegetation: savanna to woodland, woodland to seasonal 

forest, seasonal to evergreen forest, and (ii) biomes shifting from more closed to 

more open vegetation: evergreen to seasonal forest, seasonal forest to woodland, 

woodland to savanna, savanna to steppe, steppe to desert (Figure 2.2). We applied 

a logistic regression analysis to assess which environmental variables help us 

explain these shifts occurring from mid-Holocene to present-day (detailed outputs 

of the regression analysis are given in Appendix 3, TableA3.3). When the biome 

was a savanna or woodland, the change in mean annual precipitation (MAP) is the 

main driver in whether the biome shifts to another or remains the same in a 

particular grid cell. When the biome was a seasonal or an evergreen forest, the 

MAP of the site during the mid-Holocene is more explanatory.  
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A same percentage of change in MAP may or may not cause a shift depending on 

the MAP amount of the site during the mid-Holocene in which the biome might 

generally be found. As tropical forest ecosystems of East Africa cover wider span 

in the MAP domain (~1500<MAP<3000 mm year-1) compared to woodlands 

(~1000<MAP<1500 mm year-1) and savannas (~250<MAP<1000 mm year-1), the 

MAP of the site during the mid-Holocene becomes more relevant for explaining 

the shifts occurred from tropical forest biomes. Overall, the shifts were 

distinguished better under the combination of these two variables, and were 

plotted accordingly in this space as given in Figure 2.2. In the case of a biome 

shift towards more open vegetation (Figure 2.2b), based on the percentage of 

decrease in MAP necessary to shift from one biome to a drier one, forest biomes 

were more sensitive compared to woodland and savanna biomes, which is in 

agreement with the findings of Hely et al. (2006) for their study of West African 

biomes. It is interesting to note the shifts from seasonal to evergreen forest biomes 

(Figure 2.2a), although the MAP is decreasing from mid-Holocene to present-day. 

These sites were receiving enough precipitation to be an evergreen forest during 

the mid-Holocene, and even though their MAP decreased they are still receiving 

enough precipitation today. The reason behind the shifts from seasonal to 

evergreen forests is the higher atmospheric CO2 concentrations today and resulting 

increase in woody vegetation due to enhanced photosynthesis and improved water 

use efficiency which in return increases productivity and vegetation growth 

(fertilization effect) in vegetation models (Hickler et al., 2008). When we look at 

the opposite shift (from evergreen to seasonal forest, Figure 2.2b), again we see 

that MAP is decreasing from mid-Holocene to present-day. Even though these 

sites also receive enough MAP to be an evergreen forest for both periods and the 

fertilization effect of increasing atmospheric CO2 from mid-Holocene to present-

day on woody vegetation still applies, the decrease in the length of wet season (< 

8 months) prevents these sites to be an evergreen forest biome today. This finding 

demonstrate how the vegetation changes recorded during the Holocene in East 

Africa can be explained not only by changes in annual precipitation but also by 

changes in seasonality as suggested by previous sensitivity experiments (Hely et 

al.,2006; Gritti et al., 2010).  
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              (a)                                                                                                             (b) 
 
Figure 2.2. Biome shifts from Mid-Holocene (MH) to Present-day (PD) in non-mountainous 

biomes: a) towards closed vegetation, b) towards open vegetation. Every data point represents a 

grid point site in our study area that was a different biome during the mid-Holocene and shifted to 

another today according to our simulations for these two periods. The ellipses indicate the 

concentration of 90% of sites for each group.  

S to W = Savanna to Woodland, W to SF= Woodland to Seasonal Forest, SF to EF= Seasonal to 

Evergreen Forest, EF to SF= Evergreen to Seasonal Forest, SF to W=Seasonal Forest to Woodland, 

W to S= Woodland to Savanna, S to ST= Savanna to Steppe, ST to D= Steppe to Desert. 

 

2.4 Conclusion 

 

In our study, we have not only reproduced the past and present spatial patterns of 

the vegetation as suggested by the observational data, but also assessed the 

vegetation response and sensitivity to changing climate in East Africa in detail. 

Instead of focusing on specific locations, we included every grid point over the 

study region in our sensitivity analysis and confirmed the notion that Holocene 

vegetation changes in East Africa were driven not only by changes in annual 

precipitation but also by changes in its seasonality holds at regional scale. By 

driving a vegetation model with outputs of a high resolution climate model itself 

and running vegetation simulations at two different spatial resolutions,  we clearly 

demonstrated that using a higher spatial resolution helps to close the gap between 

proxy data and model simulations, especially for topographically and 

climatologically complex regions like East Africa where environmental patterns 

can differ within very short distances. This is of particular concern to 
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palaeoecological studies where we need more applications of high resolution 

regional climate models for simulating past climates and for driving vegetation 

models with their outputs.  
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Chapter 3:  
 

Modelling vegetation change during Late Cenozoic uplift 

of the East African plateaus 

 

Abstract 

 

The present-day vegetation in the tropics is mainly characterized by forests 

worldwide except in tropical East Africa, where forests only occur as patches at 

the coast and in the uplands. These forest patches result from the peculiar aridity 

that is linked to the uplift of the region during the Late Cenozoic. The Late 

Cenozoic vegetation history of East Africa is of particular interest as it has set the 

scene for the contemporary events in mammal and hominin evolution. In this 

study, we investigatethe conditions under which these forest patches could have 

been connected, and a previous continuous forest belt could have extended and 

fragmented. We apply a dynamic vegetation model with a set of climatic scenarios 

in which we systematically alter the present-day environmental conditions such 

that they would be more favourable for a continuous forest belt in tropical East 

Africa. We consider varying environmental factors, namely temperature, 

precipitation and atmospheric CO2 concentrations. Our results show that all of 

these variables play a significant role in supporting the forest biomes and a 

continuous forest belt could have occurred under certain combinations of these 

settings. With our current knowledge of the palaeoenvironmental history of East 

Africa, it is likely that the region hosted these conditions during the Late 

Cenozoic. Recent improvements on environmental hypotheses of hominin 

evolution highlight the role of periods of short and extreme climate variability 

during the Late Cenozoic specific to East Africa in driving evolution. Our results 

elucidate how the forest biomes of East Africa can appear and disappear under 

fluctuating environmental conditions and demonstrate how this climate variability 

might be recognized on the biosphere level.  
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3.1 Introduction 

 

The present-day vegetation in the tropics is mainly characterized by forest biomes 

with tree cover of more than 70 percent worldwide except in tropical East Africa 

(Hansen et al., 2013). East African forest biomes occur in patches along the coast 

and in the uplands that are separated from each other and from the central 

Congolese forests by vast expanses of savanna (White, 1983; Lovett & Wasser, 

1993; Fayolle et al., 2014). These forest patches are the result of the geological 

and climatological history of East Africa (Lovett & Wasser, 1993). In this study, 

we look into this historical background to investigate the conditions under which a 

continuous forest belt, a spatial continuation of woody vegetation with closed 

canopy cover connecting the modern patches along the coast and in the uplands 

with the central Congolese forests, could have existed, extended and fragmented.  

   

The peculiar aridity of the region and fragmentation of a once continuous forest 

belt in equatorial East Africa is linked to the rise of the Ethiopian and East 

African plateaus during the Late Cenozoic (Spiegel et al., 2007; Pik et al., 2008; 

Wichura et al., 2010). The uplifted topography of the East African Rift System 

(EARS) acts as a barrier to air movements related to the Atlantic Ocean that are 

associated with rainfall (Figure. 3.1) and prevent their penetration further 

eastward (Nicholson, 1996; Sepulchre et al., 2006). Consequently, East Africa 

receives less precipitation and experiences more seasonality than other parts of the 

continent at the same latitudes (Nicholson 1996, 2000) and cannot support forest 

biomes today (Hirota et al., 2011). 

 

The Late Cenozoic palaeovegetation of East Africa is particularly of interest 

because key speciation and dispersal events in mammals and hominins also took 

place in East Africa during this period (Potts, 1998). Existence of a continuous 

forest belt before it was fragmented might have provided migration and dispersal 

corridors for early hominins (Maslin et al., 2014). Extension and fragmentation of 

these environments might have influenced their movement, nesting, and hunting 

practices (Pickering and Bunn, 2007; Sept, 1998; Wheeler, 1994). Therefore 

understanding the dynamics of East African palaeovegetation is crucial for 

interpreting the setting in which contemporary evolution events came to pass.  
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The reconstruction of this period from empirical palaeoenvironmental data is far 

from complete (Bonnefille, 2010; Jacobs et al., 2010). Fossil flora data provide 

the only direct evidence of the past extent of biomes but either these proxy 

localities are rare or records are punctuated by geological processes or they only 

provide localized information rather than the wider regional patterns (Kingston, 

2007; Maslin et al., 2014). Recently, molecular phylogenetic studies of rainforest 

plant (Davis et al., 2002; Couvreur et al., 2008, Holstein & Renner, 2011) and 

animal (Tolley et al. 2011; van Velzen et al., 2013) taxa contribute to construct a 

timetable for the fragmentation of the East African Miocene forests. Yet,  

resolving the changing patterns exhibited by these forest biomes, together with the 

environmental drivers of these changes in a spatially extensive way is beyond 

these approaches. At this point, vegetation modelling can greatly broaden our 

understanding of the nature and intensity of the forcing factors and the response of 

the East African vegetation. 

 

Figure 3.1 Geological and geographical setting of East African Rift System (EARS). Present-day 

high topography of EARS acts as a barrier in front of the Atlantic originated rainfall system 

(small- er window on the upper left corner). WAM: West African Monsoon, ISM: Indian Summer 

Monsoon, ITCZ: Intertropical Convergence Zone, CAB: Congo Air Boundary.  
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In this study, we applied a dynamic vegetation model (DVM) for East Africa with 

a set of climatic scenarios that we generated numerically. To produce these 

scenarios, starting from the present-day setting, we systematically altered the 

environmental conditions such that they would be more favourable for a 

continuous forest belt in tropical East Africa. This, so to speak, inverse approach 

differentiates our study from the previous vegetation modelling studies on East 

African biomes under the influence of tectonic forcing. Sepulchre et al. (2006), 

Prömmel et al. (2013) and Sommerfeld et al. (2014) simulated the climate of East 

Africa with the pre-uplift topography of EARS and then drove DVMs with their 

climate model outputs to simulate the vegetation. Although this is a valid and very 

much needed approach, due to the high computational costs of applying climate 

models, these studies are only available for a very limited number of tectonic and 

orbital forcing settings so far. Hence, we generated our own climate data 

following our current knowledge on mechanisms that affected the East African 

climate during the Late Cenozoic and designed our study accordingly. 

 

To explore the possibility of a Miocene pan-African forest along the equatorial 

East Africa, we ran a process-based DVM (LPJ-GUESS) for a number of 

environmental scenarios towards more favourable environments for woody 

vegetation. In our scenarios: (i) we reduced the elevation of EARS to represent the 

pre-uplift topography which led to higher temperatures due to lower altitudes; (ii) 

increased the monthly means of rainfall and wet season length, and (iii) increased 

the atmospheric CO2 concentration values. We simulated East African biomes 

under the combination of these settings. 

 

3.2 Methods 

 

3.2.1 LPJ-GUESS Model 

 

Dynamic vegetation models (DVMs) are widely used tools to reconstruct the 

palaeovegetation composition and distribution under past climatic conditions and 

atmospheric CO2 concentrations (François et al., 2006.; Sepulchre et al., 2006; 

Prömmel et al., 2010). Here we used the Lund-Potsdam-Jena General Ecosystem 

Simulator (LPJ-GUESS) in which the ecosystem processes are simulated via 
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explicit equations (Smith et al., 2001; Sitch et al., 2003, Gerten et al., 2004, 

Hickler et al., 2012).  

 

In LPJ-GUESS different plant species are aggregated into plant functional types 

(PFTs), which are characterized by their life-form, morphology, phenology and 

other biological requirements and limits. LPJ-GUESS gives outputs (e.g. biomass, 

leaf area index (LAI) etc.) as a mixture of different PFTs, which can later be 

classified further into biomes according to their bioclimatic and compositional 

associations. The PFT parameterizations (Table B1-B5) and biome classification 

rules (Table B6) used are given in Appendix I. Although a comprehensive 

validation of the LPJ-GUESS model for East Africa is beyond the scope of this 

study and has been done in a previous study (Fer et al., 2016), the comparison of 

the simulated present-day biomes (Fig. B2) to a map of observed vegetation and 

their level of agreement can be seen in the Appendix.   

 

In this study, after distinguishing between steppes, savannas, woodlands, 

afromontane, tropical seasonal and evergreen forest biomes, we further aggregate 

afromontane, tropical seasonal and evergreen forests as forest-like biomes, and the 

remaining biomes as non-forest biomes. A grid cell is classified as a forest biome 

if total Leaf Area Index (LAI, m2 of leaves/m2  of ground) of simulated vegetation 

is greater than 5.0 and the contribution of woody vegetation (arboreal PFTs) to 

this total is at least 4.0.  A continuous forest belt is then defined as a spatial 

connection of forested grid cells from coastal forests to the central forests in east-

west direction, with a minimum extension of 50 km (one grid cell) in north-south 

direction. In other words, an individual starting from the Indian coast, could walk 

uninterrupted to the Atlantic coast under the closed canopy of such a forest belt 

while the north-south width of this belt never drops below 50 km. 

 

3.2.2 Experimental setup 

 

LPJ-GUESS uses gridded values of topography and climate data, namely 

temperature, precipitation and cloud cover. All present-day climatic values were 

obtained from the Climate Research Unit (CRU) monthly time series dataset CRU 

TS3.20 (Harris et al., 2014), and all the simulations were run at a spatial 

resolution of 0.5º by 0.5º.  
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Each scenario is run with the entirety of 111 years of modified (as explained 

below and in the supplementary material) climate data after a 500 years of spinup 

phase (in which vegetation and soil develop from bare ground to a state of 

equilibrium under the given environmental setting). The full set of experimental 

scenarios analyzed in this study is given in Table 3.1. In addition, under the 

reduced topography (TOPO50) and 350 ppm setting, we ran a continuous 

experiment for a thousand years by appending the sequence of scenarios as shown 

in Table 3.2, in which step by step, either the wet season length is increased by 

one month or the rainfall amount is increased by 20%. This way we were able to 

see the continuous effects of increments in precipitation on the vegetation without 

the specific spinning up phases per scenario. 

 

3.2.2.1 Topography 

 

The timing and magnitude of past developmental stages of the EARS are still 

matters of investigation (Wichura et al., 2010, 2015).  Therefore, we chose two 

simple and distinct settings to represent the pre-uplifted topography of East 

Africa: we reduced the elevation to (i) 50% (TOPO50) and (ii) 5% (NORIFT) of 

its present-day height (the equation provided by Sepulchre et al. (2006) and 

topographical settings used in this study which can be found in Appendix 1).  In 

our experiments, reduction of topography directly affects the calculation of the 

new temperature (section 3.2.2.2) values only. However, based on previous 

climate modelling studies (Sepulchre et al., 2006; Kaspar et al., 2010) we assumed 

that it was the absence of present-day high topography that increased the 

precipitation in principle (section 3.2.2.3). 

 

3.2.2.2 Temperature 

 

To calculate the new temperature values with the reduced topography, by treating 

the present-day temperature values in each grid as a function of its latitude, 

longitude and present-day elevation, we first calculated the lapse rates (change in 

temperature per unit change in elevation). Then, by targeting the new elevation 

datasets (TOPO50 and NORIFT) as described above, we obtained the 

corresponding temperature values. Since a lower altitude leads to a higher 
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temperature, temperature values of the NORIFT experiment were higher than the 

TOPO50 experiment. 

 

3.2.2.3 Precipitation 

 

To define our precipitation scenarios we followed the main findings of the seminal 

study by Sepulchre et al. (2006) that simulated increased precipitation under 

reduced topography in East Africa. We applied an increase in precipitation in three 

different modes: (i) increase in monthly rainfall amounts only, (ii) increase in wet 

season length only and (iii) increase in both monthly amount and wet season 

length.  

 

For the first set of experiments considering the increase in precipitation amount 

only, we systematically increased the amount of present-day precipitation values 

with the percentages similar to the amounts of Sepulchre et al. (2006) simulated 

and higher. Although the East African climatic system is quite complex and not 

every part of the region would have experienced the same type and amount of 

wetter conditions, we treated the region as a whole for simplicity. In previous 

climate modelling studies a lowered topography of EARS led to a precipitation 

increase of 60% with respect to present-day values (Sepulchre et al., 2006; Kaspar 

et al., 2010). However, during the extreme climate variability periods of the last 

10 million years (Maslin and Trauth, 2009), the synergetic effects of tectonic and 

orbital forcings might result in even higher precipitation. Therefore we included 

higher percentages of precipitation increase in our scenarios up to 100%. Also, 

previous climate modelling studies (Sepulchre et al., 2006; Kaspar et al., 2010) 

gave different amounts of increase in precipitation for different topographical 

reductions. However, as this study aims at a more complete overview, we applied 

all precipitation increase scenarios we produced to each of our topographical 

settings.  

 

Some parts of East Africa receive very little rain today and a percentage increase 

of these amounts still resulted in very little rainfall in the scenarios we produced. 

Therefore, in our second set of experiments, we increased the wet season length 

by adding a wet month to the present-day monthly time series data for every grid. 

We defined a wet month when the precipitation exceeds 50 mm for that month 
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following Jacobs and Herendeen (2004). To increase the wet season length, we 

topped a dry month (<50 mm) of each year with the highest precipitation up to 50 

mm. This was to add an extra wet month, and to increase the wet season length for 

more than one month, we repeated this recurrently (see Table 3.1 for the full set of 

experiments). For the third set of experiments considering both the increase in 

precipitation and wet season length, we applied the increases in percentages we 

used in the 1st set on the 2nd set with increased wet season length (Table 3.1). 

 

3.2.2.4 Cloud cover 

 

As we generated the climate data for our experiments numerically from the 

present day dataset instead of using outputs of climate models, we also needed to 

adjust the cloud cover data accordingly. For this, we first fitted a regression 

between present-day cloud cover values and both its monthly temperature and 

precipitation time series data in every grid cell. The Beta regression model is 

suitable for modeling proportions such as cloud cover data (we used the 'betareg' 

package v3.0-5 from R, Cribari-Neto and Zeileis, 2010). To see how it performed, 

we first carried out a two-fold cross validation on the present-day values, using 

the first 50 years as the training sample and the rest as the hold-out sample. The 

predicted values of the second half were in good agreement with the observed 

values (R=0.91, p<0.0001). So, once we generated the modified temperature and 

precipitation values as described in the previous sections, by using these new 

temperature and precipitation values as predictors, we computed the modified 

cloud cover values for each scenario. 

 

3.2.2.5 CO2 values 

 

The atmospheric CO2 concentration values (pCO2) of the Late Cenozoic varied 

and there is no consensus regarding the estimates of the ancient pCO2 for the 

period (Beerling and Royer, 2011). Pagani et al. (1999) showed that pCO2 

stabilized at concentrations between 250 and 320 ppm during the Late Miocene (9 

Ma). More recent data suggests pCO2 of 400-500 ppm during the middle Miocene 

(Zhang et al., 2013) and of 330-400 ppm during the Pliocene (Seki et al., 2010). 

Covering the range suggested by previous reconstruction studies,  we ran all our 
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experiments under three different pCO2 settings to include the effect of pCO2 on 

vegetation: 280 (the preindustrial value), 350 and 450 ppm.  

 
Table 3.1 Experimental Setup. Each cell (#70) represents a different scenario with percentages 

showing the amount of increase in precipitation compared to present-day. We run the LPJ-GUESS 

model for all these combinations under three different settings of atmospheric CO2 (pCO2) 

concentration (280, 350, 450 ppm), making 210 runs in total. Numbers in the margins show the 

fraction of simulations (under all three pCO2 settings) in which a continuous forest belt was 

simulated. TOPO50: elevation reduced to 50% of its present-day height, NORIFT: reduced to 5% 

of its present-day height 

 
3.3 Results 

 

Under our experimental scenarios, a continuous forest belt was simulated in 107 

out of 210 runs (Table 3.1 and Figure 3.2). 19, 36, 52 of these 107 were under 

280, 250 and 450 ppm of atmospheric CO2 concentrations (pCO2); and 65, 42 

were under reduced (TOPO50) and removed topography (NORIFT) settings 

respectively.  Three striking points can be deduced from Figure 2 where we give 

an overview of these results: (i) The number of simulations in which a continuous 

forest belt was simulated under the TOPO50 setting was significantly higher than 

the number under the NORIFT setting, (ii) neither an increase of total rainfall 

amount nor adding wet months produced a continuous forest belt per se in most of 

the “amount only” or “seasonality only” simulations (smaller circles in the 
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horizontal and vertical margins of each panel in Figure 3.2), while a combination 

of these two can easily lead to a continuous belt, and (iii) the higher the pCO2, the 

lower the precipitation amount and wet season length threshold for the extension 

of forest biomes. 

 
Table 3.2. The design of the 1000-year continuous run. All changes in wet season length (WSL) 

and mean annual precipitation (MAP) are with respect to present-day values. Cells are shaded in 

accordance with their precipitation amount. 

Interval  Change in WSL Change in MAP  

0-100 none none 
100-200 +1 +20% 
200-300 +1 +40% 
300-400 +2 +40% 
400-500 +2 +60% 
500-600 +2 +60% 
600-700 +2 +40% 
700-800 +1 +40% 
800-900 +1 +20% 
900-1000 none none 

 

The results from the 1000 yr continuous run are shown in Figure 3.3: As it can be 

seen from the figure, when a continuous forest is simulated, it occurs at south of 5 

ºS. In general, drier (non-forest) biomes are simulated in the northern (eastern) 

half of the region rather than southern (western) half. Five points were chosen 

from different parts of the region representing the shifting biomes during this 

1000 yr simulation; A (26.8 ºE - 2.8 ºN), B (30.2 ºE - 1.2 ºS), C (36.2 ºE – 0.8 ºS), 

D (32.8 ºE – 8.8 ºS) and E (36.2 ºE – 10.8 ºS). Site A was always simulated as a 

forest biome and it is classified as a tropical rainforest in observational vegetation 

maps today (White, 1983) with a mean annual precipitation (MAP) of 1776 

mm/yr which is typical for tropical forest ecosystems of today (~1500 < MAP < 

3000 mm year-1). The other sites shifted between forest and non-forest biomes as 

their state in the dry season length and precipitation-evapotranspiration difference 

space changed. The only intervals where all five of the sites were simulated as a 

forest biome are between the 400-600 years (only the 400-500 yr interval is 

mapped on Figure 3.3-b, however it can also be seen from Figure 3.3-a that all 
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sites have a total woody PFT LAI above 4 during this interval). A continuous 

forest belt was simulated for the 400-700 yr interval. None of the five points were 

simulated as a forest biome when the mean annual precipitation - mean annual 

actual evapotranspiration difference was below 500 mm/yr and when they 

experienced more than 5 dry months per year. 

 

 
Figure 3.2 Overview of the scenarios under which a continuous forest belt occurs. All 

combination of settings covered in this study can be seen in the figure. Large circles represent the 

scenarios in which both seasonality and amount of precipitation changes were applied. A large 

circle is placed in the corresponding place if a continuous belt was simulated under that particular 

combination of environmental conditions or the place is left blank if no connection was 

established. Different shades of large circles represents different number of wet months added in 

the scenarios as shown by the legend. The small circles in the horizontal and vertical margins of 

the panels represent the amount only and seasonality only experiments respectively. If a 

continuous belt is simulated under these, the circle is filled. For example for the NORIFT setting 

(lower three panels), among the amount only and seasonality only experiments, only 100% 

increase in rainfall amount under 450 ppm setting resulted in a continuous forest belt.  

 

3.4 Discussion 

 

In this study, by testing a number of scenarios, we explored the spatial dynamics 

of East African forest biomes under the conditions hypothetically enabled by the 

absence of the high topography of today. Our results show that, all of the 
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environmental variables we considered play a significant role in supporting the 

forest biomes, and certain combinations of these environmental settings can lead 

to a forest belt in tropical East Africa. Here we discuss our findings in three 

contexts: (i) the mechanisms behind the vegetation changes that we simulated, (i) 

the design of the experiments and their meaning for our interpretations, and (iii) 

comparison of our simulations with the palaeodata. 

 

3.4.1 Simulated vegetation dynamics 

 

3.4.1.1 Temperature and CO2  interplay 

The design of our experiments allowed us to differentiate the effects of each 

environmental variable we considered. For example, all precipitation and pCO2 

scenarios were run under each of the topographical settings (TOPO50 and 

NORIFT). Therefore the simulated vegetation under these two settings only 

differed due to temperature (the lower the topography, the higher the temperature). 

Thus, we were able to see that all else being equal (i.e., precipitation and pCO2), 

woody vegetation cover and the number of simulations in which a continuous 

forest belt was produced varied with temperature. Our results indicate that the 

higher temperatures of the NORIFT setting were less favourable for C3  woody 

vegetation. Under higher temperatures plants prefer to shut their stomata to reduce 

water loss via transpiration but this results in lower uptake of CO2. In C3 plants the 

carbon fixation reaction is inefficient as the responsible enzyme (rubisco) also 

reacts with O2. This process is called photorespiration, leaving almost half of the 

CO2 unutilized (Edwards et al., 2010). Therefore higher temperatures lead to an 

increased relative photorespiration and a reduced relative net photosynthesis. As 

this is implemented in LPJ-GUESS likewise (Sitch et al., 2003), other things 

being equal, net primary productivity (NPP) of the C3 woody vegetation gets 

lower with higher temperatures. Moreover, higher temperatures mean higher 

evaporative demand and, as it can be seen from Figure 3.3-c, the interplay 

between the total loss of water from the ecosystem (evapotranspiration) and the 

available precipitation plays a role as to whether or not a biome becomes a forest. 
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Figure 3.3 The simulated long-term biome dynamics of the continuous experiment under TOPO50 

and 350 ppm setting. (a) Total simulated woody Plant Functional Types (PFT) Leaf Area Index 

(LAI, m2 of leaves/m2 of ground) change in time for the five representative grid points A, B, C, D 

and E, as shown in (b). The dashed line represents the forest-biome threshold (LAI of woody types 

N4.0). (b) Biome maps for five 100 year-averaged slices: 0–100, 200–300, 400–500, 600–700 and 

800–900 year interval from bottom to top. (c) Climatic conditions and biome classification of the 

five representative grid points for the time intervals given in (b). Abbreviations: mean annual 

precipitation (MAP), mean annual actual evapotranspiration (AET). Dry season length is defined 

as the number of months in a year with b50 mm of rain.  
 

The effect of pCO2 was overlooked in previous modelling studies that specifically 

investigated the impact of climatic changes on vegetation under the influence of 
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different orographic scenarios for East Africa (Sepulchre et al., 2006, Prömmel et 

al., 2013; Sommerfeld et al., 2014). Our results show impacts of a similar 

magnitude for pCO2 and precipitation on vegetation which agree with the strong 

fertilization effect of CO2 on woody vegetation as simulated in previous dynamic 

vegetation modelling studies (François et al., 2006; Hamon et al., 2012). As 

discussed above, higher temperatures mean less CO2 uptake and loss in NPP as 

the stomata tend to shut earlier when water stress is present. Whereas, under 

higher pCO2 conditions, faster CO2 uptake compensates for this, preventing water 

and NPP losses, lowering the precipitation and wet season length threshold 

required for the forest biomes. Besides, the predictive performance of LPJ-

GUESS under CO2 enhancement was tested by Hickler et al. (2008). The model 

was able to reproduce the NPP response of vegetation for temperate forests from 

where we also have the observation data from the free-air CO2 enrichment (FACE) 

experiments, while it was predicting a more than double NPP enhancement in 

tropical forests from where we do not have such observational data. In our 

experiments, the increase in NPP due to CO2 increase only (from 280 ppm to 350 

ppm and from 350 ppm to 450 ppm), changes between +20 and +25%. This seems 

similar with the magnitude quantified in Hamon et al. (2012) for subtropical 

forests (~ +25%), however the amount of increases in CO2 in our study (+70 and 

+100 ppm) is less than the amount of increase in their sensitivity study (+280 

ppm). Apart from the differences in the models used in the studies (LPJ-GUESS 

in ours, CARAIB in Hamon et al., 2012, although both use the same 

photosynthesis model), we predicted a greater NPP enhancement due to CO2 

increase in tropical forests than Hickler et al. (2008). The photosynthesis model 

that is implemented within LPJ-GUESS (Farqhuar et al., 1980) represents the 

effects of pCO2 and temperature interplay already discussed and was shown to 

predict a strong temperature dependence of the photosynthetic response on 

elevated pCO2 (Long, 1991). However, as we do not have FACE experiments 

located in the tropics, it is difficult to specify how well this effect is represented in 

the tropics where temperatures are high. Having said this, as running the 

simulations under different pCO2 values results in substantially different outputs, 

we strongly recommend taking the effect of pCO2 into consideration when 

simulating and interpreting the past vegetation. However, it should also be noted 

that nutrient limitations (e.g. nitrogen) on photosynthetic productivity might 
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dampen the strong fertilization effect of high pCO2 (Finzi et al., 2006) and this 

version of LPJ-GUESS does not include these constraining effects. 

 

3.4.1.2 Amount of precipitation and seasonality 

 

We used three different modes of precipitation increase in our scenarios, 

therefore, it was possible to distinguish separate and synergetic effects of different 

modes of precipitation increase on the distribution of the biomes. For example 

under pCO2 of 350 ppm and TOPO50 setting, neither 40% increase in 

precipitation amount nor adding two wet months produced a continuous forest 

belt per se while a combination of these two resulted in such (Figure 3.2). As it 

can be seen from our continuous experiment (Figure 3.3) reducing the dry season 

length resulted in the development and expansion of forest biomes which cannot 

survive dry periods of more than 5 months. We also note that this was the case 

under a 350 ppm setting and different pCO2 could change this threshold (see 

below).  Again when we look at the pCO2 of 350 ppm and TOPO50 setting, 

increasing the wet season length by one month and the amount by 60% does not 

result in a continuous forest belt, while increasing the wet season length by two 

months and the amount by 40% does (Figure 3.2). When we look at the average 

monthly rainfall for southern East Africa (SEA; where the connection of the belt 

occurs when it does) under these scenarios, we see that the former is 147 

mm/month and the latter is 132 mm/month. Also, increasing the wet season length 

by three months and the amount by 20% leads to an average monthly rainfall for 

SEA of 117 mm/month (even less than +2 wet months and 40% increase), and 

still a continuous forest belt was simulated. This demonstrates how a similar 

magnitude of precipitation increase in average rainfall may or may not result in 

shifts towards forest biomes depending on the length of the dry season and the 

importance of rainfall seasonality in maintaining tropical African vegetation as 

highlighted by previous studies (Hely et al., 2006; Vincens et al., 2007, Ivory et 

al., 2012). This is particularly of relevance when interpreting past climate 

vegetation. While there are several studies estimating the mean annual 

precipitation values of the past, studies inferring seasonality from palaeorecords 

(Vincens et al., 2007; Ivory et al., 2012) are temporally and spatially more scarce 

and less quantitative making it difficult to construct a comprehensive profile of 
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seasonality parameters or patterns during the Late Cenozoic in East Africa 

(Kingston, 2007). 

  

Another remark about the seasonality aspect could be on the choice of a wet 

month threshold. The threshold that classifies a month as wet or dry differs in 

previous studies on African vegetation. While Jacobs and Herendeen (2004) chose 

a >50 mm threshold, Collins et al., (2010) chose a >100 mm threshold to define a 

wet month. Fontes et al. (1995) introduced another category: they classify a month 

with a total monthly rainfall between 50 and 100 mm as a sub-dry month, and a 

month with a total monthly rainfall higher than 100 mm as a wet month. In our 

study we report our results with a >50 mm threshold to enable comparison with 

previous palaeoprecipitation estimates, however we ran all our simulations with a 

>100 mm threshold as well. The distribution of the biomes and number of runs in 

which a continuous forest belt was simulated when a >100 mm threshold was 

chosen were similar to the reported results in this study (not shown). This is in 

agreement with the analysis of Collins et al. (2010) where they found modern-day 

%C3 vegetation is correlated more with wet season length than with wet season 

intensity. 

 

3.4.1.3 Long term vegetation dynamics 

 

Our continuous run of a thousand years, rather than simulating intervals discretely, 

shows the dynamic shifts in biomes. This experiment reveals two things: First, 

without the 500 yr spinup phase with the wetter conditions, shifts towards a forest 

biome happen more slowly. For example, while a hundred years simulation of +2 

wet months and a 40% increase in rainfall amount under TOPO50-350 ppm 

setting (the interval of 300-400 yrs of the total 1000 yrs) results in a continuous 

forest belt when run separately; it does not when run after 300 years of present-

day (100 yr), +1 wet month 20% increase (100 yr), +1 wet month 40% increase 

(100 yr) precipitation respectively. This is expected as maintaining a forest biome 

is easier when the ecosystem reaches to a state of equilibrium under a wetter 

setting (when run separately with the spinup phase) instead of having the same 

precipitation changes after vegetation and soil passes through drier conditions. For 

example, the interval of the same scenario towards the end of the experiment (the 

interval of 600-700 yrs of the total 1000 yrs) produces a continuous forest belt and 
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slightly more forest biomes compared to its 300-400 yr interval counterpart. 

Running the same precipitation scenario for the 600-700 yr interval after wetter 

conditions, mimics a similar situation with the spinup phase. This also agrees with 

the interpretation of Maslin (2004); if an area is covered with forest and starts to 

dry out, the ecosystem recycles moisture and maintains the biome as a forest 

before it shifts to a drier biome (e.g. woodland or savanna), whereas if an area is 

covered with savanna and starts to get wetter, the climate needs to get much 

wetter or stay wet for longer before the biome shifts to a forest. Secondly, this 

experimental run also shows that, given the right set of climatic changes, East 

African biomes can shift to/from forests on time scales of less than 103 years 

which is also in agreement with previous reports (Hughen et al., 2004). 

 

3.4.2 Scenario selection 

 

3.4.2.1 Topography 

 

We reduced the topography to 50% (TOPO50) and 5% (NORIFT) of its present-

day height to represent the past stages of the East African Rift System (EARS). 

There are still large uncertainties about the timing and magnitude of the uplift in 

the region (Wichura et al., 2015), and it is difficult to say which setting 

corresponds to which time in the past. Besides, the propagation of EARS showed 

a north to south trend in time (Macgregor, 2015), therefore these settings are only 

simplified representations of the past developmental stages as in previous 

modelling studies (Sepulchre et al., 2006; Prömmel et al., 2013). However, 

considering the palaeotopographic constructions so far, we can estimate that our 

TOPO50 setting in which the East African Plateau is uplifted to ~1,300 m 

corresponds to Mid- to Late Miocene (after 15 Ma, Wichura et al., 2010, 2015), 

while NORIFT setting corresponds to the Oligocene (before 25 Ma, Macgregor, 

2015). However, these matchings are somewhat of concern in our study as the 

topographical change was not directly used to force a climate model to simulate 

changes in atmospheric circulation. Instead, in our numerical experiments we used 

these topographical changes to calculate new temperature values which would be 

more likely to occur under reduced topography, as opposed to using present-day 

temperature values as they are. 
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3.4.2.2 Temperature 

 

In the tropics temperature is not the main limiting factor for plant distribution but 

rather plays a role in productivity and is of relevance for plant distribution only at 

higher elevations (Bonnefille, 2010). Thus, by using two distinct temperature 

settings associated with reduced topography scenarios, we attempted to include 

the impact of a change in temperature due to orography on East African 

vegetation. In our study, we generated the new temperature values statistically 

through calculation of adiabatic lapse rates. However, temperature changes due to 

orography can also be influenced by diabatic heating/cooling processes (Ehlers 

and Poulsen, 2009). To assess how much difference this would make in the 

interpretation of our scenarios, we compared our statistically calculated TOPO50 

temperature values with dynamically computed temperature values from a 

previous climate modelling study (Prömmel et al., 2013). The tectonic forcing 

(TECT) experiment in Prömmel et al. (2013) also considers a 50% reduction in 

topography, therefore presents a good comparison opportunity as a simulated 

change in temperature due to orography does not necessarily follow an adiabatic 

lapse rate in a climate model. The comparison of the two (one statistically 

calculated in this study, TOPO50; the other dynamically computed by Prömmel et 

al., TECT) climatology temperature data (supplementary material, Figure B2) 

reveals differences up to 6 °C in some grid cells. The statistical calculation (our 

TOPO50) led to higher temperature values over the Ethiopian Plateau and the 

Tanzanian coast compared to the simulated (TECT) temperature, while it returned 

lower values for most of the remaining areas. To see how this difference translates 

to the vegetation and affects our interpretations of this study, we ran all the 

combinations of our TOPO50 setting with TECT temperatures (i.e. other variables 

kept equal but only simulated values from Prömmel et al. were used as 

temperature input). The number of simulations in which a continuous forest belt 

simulated in TECT experiments was slightly lower than TOPO50 (supplementary 

material, Figure B3), as our TOPO50 temperatures were lower than TECT 

temperatures in southern East Africa, favouring woody vegetation. However, even 

in those TECT simulations that were not producing the continuous belt according 

to the criteria defined in this study, the distribution of biomes was still very similar 

to its TOPO50 counterparts (not shown). This comparison goes along with our 

decision to include only two distinct temperature settings to be able to see notable 



77 
 

shifts at the biome level. Nevertheless, we note that when a more temperature 

sensitive aspect of the environment is under investigation, using only the adiabatic 

lapse rates to calculate new temperature values due to topographical change may 

lead to further misestimations. 

 

3.4.2.3 Precipitation 

 

The mechanisms that control East African climate are numerous and have been 

discussed extensively in previous studies (Nicholson, 1996, 2000; Feakins and 

deMenocal, 2010; Trauth et al., 2005, 2007, 2009, 2015). In this study, the main 

mechanism that we assumed to generate a wetter climate in East Africa was the 

removal (or the reduction) of the tectonic uplift. EARS is such a great geological 

structure that, by the time it reached its full development, the uplifted topography 

no longer permitted the rainfall associated with the west African monsoon 

(WAM) and the Indian Ocean system to penetrate the innermost parts of the 

region (Nicholson 1996, 2000). Hence, more of the precipitation related air 

movements could have reached East Africa if the topography were lower then its 

present day height, resulting in less seasonality due to increased moisture 

availability. However, this is not the only mechanism that can be associated with 

our scenarios regarding the Late Cenozoic moisture history of East Africa. Given 

the geological setting determined by the tectonics, orbital changes also influence 

the East African climate (Kingston, 2007; Bergner et al., 2009; Feakins and 

deMenocal, 2010; Trauth et al., 2015). The cyclic variations in the Earth's orbital 

parameters alter the amount, timing and spatial distribution of received solar 

radiation, resulting in fluctuations in humidity on time scales of 104 to 105 yrs 

(Maslin et al., 2014 and references therein; Trauth et al., 2015 and references 

therein). For example a wetter climate in East Africa such as those in our 

scenarios could have occurred during the intervals of extreme climate variability 

associated with eccentricity and precessional maxima (Trauth et al., 2007). 

Moreover, there are mechanisms that work on time scales of <103 yr influencing 

the East African climate. For example, the changes in northern hemisphere 

insolation (e.g. a NH insolation maximum during a precession minimum) can alter 

the pressure gradients in the region. As a result, the Congo Air Boundary, 

currently blocked by topography, can cross the East African plateaus, bringing 
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extra moisture from the Congo basin further to the East (Junginger and Trauth, 

2013).   

 

3.4.3 Comparison with palaeorecords 

 

In this study, we show that a continuous forest belt could have existed in East 

Africa under different combinations of environmental settings. Based on our 

current knowledge of the palaeoenvironmental history of East Africa, it is likely 

that these conditions prevailed in the region and a continuous forest belt existed 

during the Late Cenozoic. When considering pCO2, we acknowledge that there is 

no agreement on the absolute values of reconstructed pCO2 (Beerling and Royer, 

2011) for the Late Cenozoic. Nevertheless, the estimates of pCO2 from 

boron/calcium ratios in foraminifera are between 250-450 ppm over the past 20 

Ma, fluctuating around 350 ppm during the Early Pleistocene and Mid-Miocene 

(Tripati et al., 2009). 

 

Reconstructing the Late Cenozoic environments of East Africa has gained 

substantial attention in the last decades (Feakins and deMenocal, 2010, and 

references therein; Maslin et al., 2014, and references therein). However, 

continuous geological records in space and time are scarce in the region because 

of the active faulting, erosion, non-deposition processes, and lack of archives 

outside the rift basins that would accumulate the proxy data. Therefore, given the 

complexity of the controls on climate and vegetation, it is difficult to extrapolate 

single records to the whole region for extended time periods. However, both the 

settings and simulated vegetation in our scenarios are comparable with the 

palaeorecords. For example, deep and large lakes which existed in the past 10 Myr 

BP recorded periods of humid conditions in East Africa (Tiercelin and Lezzar, 

2002). Borchardt and Trauth (2012) estimated a 25% increase in precipitation 

during the mid-Holocene (ca. 1.5–0.5x104 yr BP). Although this is a recent humid 

episode, this magnitude of change also applies to the older ones recorded by the 

palaeolakes of the past 10 Myr BP. Besides, this +25% change is independent of 

topographical reduction. Still, a +25% change in precipitation (that results in an 

average of monthly rainfall of 113 mm/month for SEA) is a comparable amount 

with our scenario when increasing the wet season length by three months and the 
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amount of precipitation by 20% (117 mm/month) under which a continuous forest 

belt was simulated.  

 

Late Oligocene – Early Miocene age palaeobotanical remains from East Africa 

indicate forest vegetation and show botanical affinities with both Guineo-

Congolian and Zambesian communities (Jacobs et al., 2010; Bonnefille, 2010). 

From the Middle Miocene on, the mixed climatic controls superimposed on the 

complex topography make the interpretation of the records more difficult. 

However, evidence dating from 13 to 6 Ma documents biomes from forests to 

savannas within 10 km of each other suggesting a variety of environments (Jacobs 

et al., 2010). Palaeobotanical data from Ethiopia, Kenya and Uganda also indicate 

the presence of evergreen and seasonal forests at different localities, and a peak in 

tree pollen from a single marine core sample from East Africa dated at 6.8 Ma was 

interpreted as an expansion of these forest biomes (Bonnefille, 2010). North East 

African (NEA) vegetation changes over the last 12 Myr were also investigated 

using plant leaf wax isotopic analysis. Feakins et al. (2013) shows while 

rainforests were unlikely to have been extensive in NEA, seasonally dry forests 

which may also reach 100% canopy cover, were a significant component of the 

regional landscape since the Late Miocene. In our experiments, a considerable 

expansion of forest biomes and the establishment of a continuous forest belt only 

occurs south of 5 ºS, and the record by Feakins et al. (2013) is not representative 

of SEA. However, we also simulated the expansion of forest biomes in NEA. In 

this study, for simplicity, we did not apply a different amount of increase in 

precipitation for NEA and SEA, therefore the simulated expansion of forest 

biomes in NEA would always be overestimated given that the findings (that the 

increase in precipitation due to lowered topography would be higher in SEA 

compared to NEA) of previous climate modelling studies are accurate (Sepulchre 

et al., 2006; Kaspar et al., 2010).  

 

Evidence from the Pliocene reports some occurrence of lowland forest taxa in the 

EARS, however pollen and palaeobotanical remains from this period is limited 

due to high oxidation conditions caused by wet-dry cycles (Jacobs et al., 2010; 

Bonnefille, 2010). Recently synthesized Plio-Pleistocene palaeovegetation data 

from northern Tanzania (Barboni, 2014), documents drier vegetation from this 

region in general (since ~4 Ma) with similarities to the present-day vegetation. 
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Due to design, the distribution of precipitation in our experiments closely follows 

the present-day distribution. Hence, we simulated less tree cover for the vicinity 

of northern Tanzania with respect to the more central parts of tropical East Africa 

(Figure 3-b), not disagreeing with this synthesis. Occurrence of closed woodlands 

to forests, locally and occasionally, can also be seen from the palaeovegetation 

records from this region (Barboni, 2014), documenting the wet-dry variability 

period (~1.9-1.7 Ma) during which East Africa experienced high moisture 

availability. 

 

Overall, the palaeorecords agree on a variable Late Cenozoic climate and 

environment in East Africa. Maslin et al. (2012) argue that the arid periods 

intensified while wet periods remained at a similar level within the progression 

towards this climate variability. As a result, low-temporal resolution proxy data 

that are used to interpret the palaeoenvironment for this period might have been 

affected by time-averaging processes. Therefore it is important to note that such 

data may not represent the short term variations in the environment given that it 

could have gone through substantial changes during these periods as demonstrated 

in the 1000-yr experiment we simulated in this study.  

 

3.5 Conclusion 

 

Extensive compilation of existing palaeoenvironmental records suggest that the 

East African climate experienced periods of short and extreme climate variability 

during the Late Cenozoic. Recent improvements on environmental hypotheses of 

hominin evolution highlight the role of such periods specific to East Africa in 

driving evolution (Maslin and Trauth, 2009). Our results elucidate how the forest 

biomes of East Africa could appear and disappear under fluctuating precipitation 

and pCO2 values, and demonstrate how this climate variability might be 

recognized on the biosphere level considering that the distribution of tropical 

vegetation can vary on short time scales under the right set of climatic changes. 

The millennial experiment we conducted with a setting that East Africa could 

actually have experienced during Late Cenozoic uplift of the East African plateaus 

shows that these changes could occur on the relevant temporal-scales to human 

evolution. Our findings demonstrate that the discussions on the exact influence of 

the Late Cenozoic uplift of the East African plateaus on early human 
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environments would benefit from further contributions from climate and 

vegetation modelling studies. 
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Chapter 4:  
 

Influence of El Niño-Southern Oscillation regimes on East 

African vegetation and its future implications under RCP 

8.5 warming scenario 

 

Abstract 

 

The El Niño Southern Oscillation (ENSO), is the main driver for the interannual 

variability in East African rainfall with significant impact on vegetation and 

agriculture, and dire consequences for food and social security.  In this study, we 

identify and quantify the ENSO contribution to the East African rainfall 

variability to forecast future East African vegetation response to rainfall 

variability related to a predicted intensified ENSO. To differentiate the vegetation 

variability due to ENSO, we removed the ENSO signal from the climate data 

using Empirical Orthogonal Teleconnections (EOT) analysis. Then, we simulated 

the ecosystem carbon and water fluxes under the historical climate without 

components related to ENSO teleconnections. We found ENSO driven patterns in 

vegetation response and confirmed that EOT analysis can successfully produce 

coupled tropical Pacific Sea Surface temperature-East African rainfall 

teleconnection from observed datasets. We further simulated East African 

vegetation response under future climate change as it is projected by climate 

models and under future climate change combined with a predicted increased 

ENSO intensity. Our EOT analysis highlight that climate simulations are still not 

good at capturing rainfall variability due to ENSO, and as we show here the future 

vegetation would be different from what is simulated under these climate model 

outputs lacking accurate ENSO contribution. We simulated considerable 

differences in East African vegetation growth under the influence of an intensified 

ENSO regime which will bring further environmental stress to a region with a 

reduced capacity to adapt effects of global climate change and food security.  
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4.1 Introduction 

 

The 2010-2011 drought in the Horn of Africa, by some measures the worst 

drought in 60 years (Nicholson, 2014), is a reminder that rainfall in this politically 

and socioeconomically vulnerable region can fluctuate dramatically. El Niño 

Southern Oscillation (ENSO) influence has long been at the center of attention as 

a driver of this interannual fluctuations in East African rainfall (Indeje et al. 2000, 

Anyah and Semazzi, 2007, Nicholson, 2015), however, it is still an on-going 

endeavour to qualify and quantify the future behaviour of ENSO regimes under 

the predicted future warming (Vecchi & Wittenberg, 2010; Miralles et al., 2014). 

In this study we aim to identify and quantify the ENSO contribution to the East 

African rainfall variability in order to increase our understanding on the future 

response of East African vegetation to rainfall variability related to changing 

ENSO regimes and climate which can have dire consequences in this region in 

terms of food and social security. 

 

4.1.1 East African climate 

 

Rainfall in East African climate is primarily controlled by the seasonal passage of 

the Intertropical Convergence Zone (ITCZ) (Nicholson, 2000). While mean 

annual precipitation varies from <200 to >2000mm/year (Nicholson, 2000) and 

dry season length can vary from 0 to >8 months. Interannual variations in the 

seasonal migration of the East African ITCZ are driven to large extent by the 

ENSO (Ropelewski and Halpert, 1996) and its related impact through western 

Indian Ocean sea surface temperature (SST) anomalies (Goddard and Graham, 

1999). The effect of ENSO on East African precipitation is diversified. Surface 

ocean warming in the western Indian Ocean (El Niño) leads to intensification and 

shifts of the ITCZ, bringing more precipitation to East Africa (Wolff et al., 2011), 

even through the direct teleconnection through the atmosphere tends to reduce 

rainfall (La Niña). These regions receive above average rainfall in El Niño years 

and below average in La Niña years during the OND months (Endris et al., 2013). 
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4.1.2 East African vegetation 

 

The control ENSO exerts on East African precipitation also manifests itself on the 

vegetation which is contingent upon the seasonal rainfall. East Africa hosts a 

variety of biomes ranging from tropical rainforest to desert, however the region is 

mainly dominated by arid or semi-arid vegetation (Bobe, 2006). The arid and 

semi-arid vegetation consist of species that can tolerate aridity for several months 

as a result of the exceedingly seasonal precipitation (Bobe, 2006). Agricultural 

activities also depends on this strong seasonality as it determines the cropping 

times (Shisanya et al., 2011). Maize, beans, coffee, tea and wheat are among the 

important agricultural products of East Africa together with fruit products, and 

grasses for livestock (FAOSTAT, 2016). 

 

An adaptive management of the limited resources will shape the future severity of 

climate change impacts on food productivity in this rainfall-reliant setup 

(Thornton et al., 2014). Therefore, a temporally and spatially extensive 

understanding of how the ecosystem dynamics in the region will respond to 

changing climate, and of particular concern to East Africa, to the ENSO regimes 

is needed. Several studies related the variability in African vegetation to ENSO 

events (Shisanya et al, 2011; Ivory et al., 2013; Abdi et al., 2016; Detsch et al., 

2016). However, the forthcoming of this relationship has been less of a focus, 

partly due to our imperfect knowledge on the nature of the future ENSO response 

to changing climate. 

 

4.1.3 ENSO impact on East African vegetation 

 

An opportunity to examine the ENSO – East African vegetation relationship is by 

means of using predictive tools such as vegetation models which have been 

successfully applied to determine and forecast regional vegetation dynamics 

(Moncrieff et al., 2014; Scheiter and Savadogo, 2016) as well as agricultural 

yields (Waha et al., 2013; Dietrich et al., 2014). In this study, we used the latest 

climate projections from the Intergovernmental Panel on Climate Change (IPCC) 

5th assessment report for Representative Concentration Pathway (RCP) 8.5 

scenario, downscaled by the Coordinated Downscaling Experiment (CORDEX) 

(Nikulin et al., 2012, Endris et al., 2013) to drive such a process-based dynamic 
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vegetation model, LPJ-GUESS (Lund-Potsdam-Jena general Ecosystem 

Simulator). To be able to differentiate the vegetation variability due to ENSO, we 

removed the ENSO signal from the climate data and simulated the vegetation 

under the historical climate without components related to ENSO teleconnections. 

In the following sections, we look at the ENSO influence on East African 

vegetation i) under present conditions, ii) under projected future climate, and iii) 

under a potentially increased ENSO intensity combined with future climate 

change. Finally, we discuss the effects of ENSO-related vegetation variability on 

the carbon and hydrological cycles, and its significance for mitigation efforts in 

the region. 

 

4.2 Methods 

 

4.2.1 The LPJ-GUESS model 

 

We used the dynamic vegetation model LPJ-GUESS (Lund-Potsdam Jena General 

Ecosystem Simulator, Smith et al. 2001; Sitch et al. 2003, Gerten et al. 2004), for 

our study. LPJ-GUESS is a mechanistic model in which ecosystem processes are 

simulated via explicit equations and is optimised for regional to global 

applications (Smith et al., 2001; Sitch et al., 2003; Gerten et al., 2004). Vegetation 

dynamics are simulated as the emergent outcome of growth, reproduction, 

mortality and competition for resources among woody plant individuals and 

herbaceous vegetation.  

 

The simulation units in this study are plant functional types (PFTs) distinguished 

by their growth form, phenology, photosynthetic pathway (C3 or C4), bioclimatic 

limits for establishment and survival and, for woody PFTs, allometry and life 

history strategy. The simulations of this study were carried out in ‘cohort mode,’ 

in which, for woody PFTs, cohorts of individuals recruited in the same patch in a 

given year are represented by a single average individual, and are thus assumed to 

retain the same size and form as they grow. A sample instruction file used to run 

LPJ-GUESS in this study with all the parameters listed can be found under 

github.com/istfer/ENSOpaper/ins.  
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Primary production and plant growth follow the approach of LPJ-DGVM (Sitch et 

al. 2003). Population dynamics (recruitment and mortality) are influenced by 

available resources and environmental conditions, and depends on demography 

and the life history characteristics of each PFT (Hickler et al. 2004). Disturbances 

such as wildfires are simulated based on temperature, fuel load and moisture 

availability (Thonicke et al. 2001). Litter arising from phenological turnover, 

mortality and disturbances enters the soil decomposition cycle. Decomposition 

rates depend on soil temperature and moisture (Sitch et al. 2003). Soil hydrology 

follows Gerten et al. (2004). A more detailed description of LPJ-GUESS is 

available in Smith et al. (2001). We used LPJ-GUESS version 2.1 which includes 

the PFT set and modifications described in Ahlström et al. (2012). LPJ-GUESS 

has already been successfully applied and validated to match present-day and 

mid-Holocene biome distributions of East Africa as suggested by data for both 

periods (Fer et al., 2016). 

 

4.2.2 Datasets Tracking ENSO and regional vegetation 

 

To isolate the ENSO signal contribution to East African precipitation, we 

conducted an Empirical Orthogonal Teleconnections (EOT) analysis between sea 

surface temperatures (SSTs) in the tropical pacific ocean and precipitation over 

East Africa (see section Identifying the ENSO signal). For historical extraction 

(1951-2005), we use monthly National Oceanic and Atmospheric Administration 

Extended Reconstructed Sea Surface Temperature (NOAA ERSST) V4 dataset 

(Huang et al., 2014; Liu et al., 2014), available on 2ºx2º global grids as a predictor 

field. As the response series, we used monthly Climatic Research Unit Time 

Series (CRU TS) 3.20 dataset (Harris et al., 2014), available on 0.5ºx0.5º global 

grids. 

 

4.2.2.1 LPJ-GUESS datasets 

 

LPJ-GUESS requires monthly climate (temperature, precipitation, cloud cover), 

atmospheric CO2 concentration and soil texture as input data. For historical period 

(1951-2005), we used monthly CRU TS 3.20 climate data. We chose these years 

for all historical analysis throughout the study as the historical simulations of 

CORDEX outputs are available for this period. For future projections (2006-
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2100), we used the outputs from the Coordinated Regional Climate Downscaling 

Experiment (CORDEX) program for the Africa domain. For reporting historical 

(1951-2005) and future (2006-2100) period, we adhered to the CORDEX division 

of years for interpretability and reproducibility reasons. For the future scenario, 

we chose the baseline high emissions Representative Concentration Pathways 

(RCP) 8.5 scenario under the assumption that climate mitigation targets will not 

be met (Moss et al., 2010; Riahi et al., 2011).  CORDEX, downscaled global 

climate models (GCMs) by using regional models, and the outputs are available 

from ESGF-CoG data portal (https://esgf-node.llnl.gov/search/esgf-llnl/). For East 

African climate, we took the ensemble mean of 9 models for future projections of 

RCP 8.5 scenario as these are the available, dynamically downscaled climate 

model outputs by the CORDEX project: CCCma CanESM2, CERFACS CNRM-

CM5, QCCCE CSIRO Mk3-6-0, ICHEC EC-EARTH, IPSL CM5A-MR, 

MIROC5, MPI ESM-LR, NCC NorESM1-M, NOAA GFDL-ESM2M (Full 

names of the models are given in the Appendix). Instead of working with 

individual models we decided to drive our simulations with ensemble means as it 

has been shown to outperform individual models and show a better agreement 

with data (Endris et al., 2013). RCP 8.5 compatible atmospheric CO2 values were 

also used as provided by NOAA – GISS experiment (Nazarenko et al., 2015). 

 

4.2.2.2 Bias correction 

 

To eliminate biases originating from using CRU climate dataset for present and 

model simulations for future, we subtract the 1951-2005 climatology of 

downscaled GCM ensemble from the 1951-2100 time series of the ensemble and 

add the anomalies on CRU 1951-2005 climatology. This way we will able to have 

a meaningful comparison between CRU-driven and GCM-driven vegetation 

model outputs while keeping the climate variability from the GCM simulations. 

We should note here, that this would not change the ENSO signal we will retrieve 

from the GCM outputs (see next section) because we de-season and work with 

anomalies of the data field for our EOT analysis.  
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4.2.2.3 Future Pacific SSTs 

 

For future pacific SSTs, we used outputs from GCM simulations of the same 

models listed above for RCP 8.5, except ICHEC EC-EARTH which was not 

available from the data portal at the time. However, these GCM outputs were not 

downscaled and standardized in terms of spatial resolution (they were all available 

in monthly time steps in terms of temporal resolution). We created raster files 

from these outputs and using the “raster-package” (R Core Team, 2015; v2.5-8), 

we resampled these rasters to brought them to the same spatial resolution as 

NOAA ERSST V4 dataset, and we took the ensemble mean. 

 

4.2.3 Identifying the ENSO signal 

 

Here we first identify the ENSO signal as a driver for monthly East African 

precipitation variability over the historical period (1951-2005). To do this we 

investigate the teleconnectivity between the SSTs in the tropical Pacific Ocean 

and precipitation over East Africa by using empirical orthogonal teleconnections 

(EOT). The method is explained by van den Dool et al. (2000) in detail, and 

Appelhans et al. (2015) implemented the original algorithm in R ('remote' package 

by Appelhans et al., 2015; R Core Team, 2015). Here, we only briefly present the 

major steps of the EOT analysis: 

 

4.2.3.1 Empirical Orthogonal Teleconnections (EOTs) 

 

In the EOT analysis, we aim to establish an explanatory relationship between the 

temporal dynamics of a (predictor) domain and temporal variability of another 

(response) domain. Such predictor and response domains consist of gridded time 

series profiles: in this study the gridded monthly SST time series of the tropical 

pacific as predictor and gridded precipitation time series of East Africa as the 

response. Then, the first step of EOT analysis is to regress these time series of 

each predictor domain grid (Np) against the time series of each response domain 

grid (Nr) (Appelhans et al., 2015). This will result in a (Np x Nr) number of 

regression fits after which we can calculate the sum of coefficients of 

determination per predictor grid (ending up with Np sum of coefficients of 

determination values). Then, the grid with the highest sum will be identified as the 
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“base point” of the leading mode as it explains the highest portion of the variance 

in the response domain (Appelhans et al., 2015). The time-series at this base point 

is referred as the leading teleconnection, or hereafter as the first EOT.  

 

4.2.3.2 Screening for ENSO signal 

 

We applied the EOT method on de-seasoned and de-noised data fields in order to 

retrieve a low frequency signal such as ENSO: here we used the SSTs in the 

tropical pacific ocean as predictor and precipitation over East Africa as response. 

Then we proceeded to calculate the SSTs modes that are most affecting for East 

African rainfall variability. We found the 1st EOT to be the ENSO signal. We 

compared this EOT with Nino3.4 index to see whether we were able to isolate the 

ENSO signal. The commented code used for all methods is publicly available on 

Github (github.com/istfer/ENSOpaper). 

 

Before moving on to identifying future pacific sea surface temperature – East 

African precipitation interactions, we applied the same extraction to historical 

GCM outputs (simulations) to see whether we can identify a similar relationship 

from GCM products. Finally, we prepared the model drivers with the modified 

ENSO signal we identified from the future simulations (see next section) and ran 

the model with these datasets (here we focused on precipitation data only, while 

precipitation varies in these simulations and the others -temperature- were kept as 

they were in the climate datasets: present – CRU TS 3.2, future – CORDEX 

ensemble de-biased using CRU as explained above). 

 

4.2.4 Removing and intensifying the ENSO signal 

 

In order to investigate the contribution of the ENSO signal to East African 

precipitation, we removed the ENSO signal and explored the rainfall pattern with 

and without ENSO contribution as well as the resulting vegetation changes 

calculated by LPJ-GUESS. We used the “remote” package which specifically 

implements the EOT analysis and keeps track of calculated values in a structured 

workflow: The rainfall we are left with after removing the first EOT mode (which 

we identified as the ENSO signal) becomes the rainfall behaviour without ENSO 

contribution (within the 'remote' package, this calculation of the residuals is 
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automatically available after the calculation of the EOT modes). Therefore, if we 

take the difference between these residuals and the initial de-seasoned and de-

noised data, this will give us the amount that we need to subtract from the raw 

data field to obtain the rainfall behaviour without ENSO contribution. The steps 

are explained below as pseudocode: 

 

i) Deseason and denoise the response and predictor fields. 

EAr, ds, dns: East African precipitation (response domain). Subscripts indicate raw, 

deseasoned, deseasoned and denoised respectively. 

PACr, ds, dns : Tropical Pacific Ocean Sea Surface Temperatures (SSTs) (predictor 

domain). Subscripts indicate raw, deseasoned, deseasoned and denoised 

respectively. 

 

 EAds = deseason(EAr)    PACds = deseason(PACr)                                   (1) 

 EAdns = denoise(EAds)    PACdns = denoise(PACds)                                  (2) 

 

ii) Conduct Empirical Orthogonal Teleconnection (EOT) analysis: 

 

 EOTmodes ← EOT(EAdns ~ PACdns)                                                            (3) 

 

Here the EOTmodes object can be thought as a list that stores both the time series of 

the modes, the reduced fields obtained after the removal of each mode, slopes and 

intercepts of the fields (for more details see Appelhans  et al., 2015). 

 

iii) Calculate the difference (Diff) between the de-seasoned, de-noised data (EAdns) 

and the rainfall behaviour without ENSO contribution from the information that is 

already stored in the resulting EOTmodes object (ENSO signal is the first mode, 

therefore the rainfall behaviour we are left without ENSO will be the EAmodes, rr1 

where subscript rr1 indicating “response residual” after the removal of the first 

EOT mode: 

 

 Diff = EAdns −  EAmodes, rr1                                                                                                               (4) 
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iv) If we subtract this difference from the initial raw response field (EAr), we will 

obtain the East African precipitation without ENSO contribution (EAr, woENSO): 

 

 EAr, woENSO = EAr − Diff                                                                            (5) 

 

v) As EOT analysis is basically a regression analysis, we can also obtain the 

ENSO contribution (Diff) from the regression equation as shown below (which 

will become handy when we insert back the intensified ENSO signal): 

 

 Diff = EOTmodes, eot_1 * EOTmodes,ri_1 − EOTmodes, rs_1                                  (6) 

 

Here EOTmodes, eot_1, EOTmodes,ri_1 and EOTmodes, rs_1 refer to the EOT time series of 

the 1st mode (the ENSO signal), intercept of and slope of the response field 

calculated for the 1st mode (Appelhans et al., 2015).  

 

vii) Then, it is possible to modify the future ENSO signal (EOTmodes, eot_m) 

obtained from EOT analysis on simulation datasets, re-calculate its contribution to 

the East African rainfall (Diffnew) and add this amount back on the precipitation 

data without ENSO signal (EAr, woENSO) to obtain new precipitation amounts (EAr, 

new) due to new signal. We can later use this EAr, new as the future precipitation 

input to our vegetation model to drive future simulations. 

 

 Diffnew = EOTmodes, eot_m * EOTmodes,ri_1 − EOTmodes, rs_1                             (7) 

 EAr, new = EAr, woENSO + Diffnew                                                                   (8) 

 

Here it is noticable that slope(s) and intercept(s) would also have been different if 

the ENSO signal was changes (EOTmodes, eot_m). However, this simplification is 

adequate for experiments in this paper. Moreover, we used the intercept and slope 

we retrieved from the EOT analysis on observational datasets while re-calculating 

the new difference  (Diffnew)  due to intensified ENSO signal. Because the East 

African rainfall patterns explained by Tropical Pacific SSTs in the GCM 

simulations are different from observations (Figure C1 and C2). By using slopes 

and intercepts obtained from the observational data we were also able to preserve 

the more accurate patterns in rainfall differences. 
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viii) Finally, we obtained the modified ENSO signal (EOTmodes, eot_m) in Eq. (7) by 

detrending (fitting a LOWESS smoother and removing it from the signal) and 

multiplying the ENSO signal we extracted from the future simulations 

(deseasoned and denoised GCM simulations for East African rainfall – EAdns_ftr - 

and Tropical Pacific SSTs - PACdns_ftr -) with a coefficient (k =  3) such that the 

peaks of the new signal would be as strong as the observed anomalies (± 2.5 °C, 

Figure 4.1 and C3). For the code of this step see IdentifyModifyFutureENSO.R 

script at github.com/istfer/ENSOpaper. 

 

          EOTmodes_ftr ← EOT(EAdns_ftr ~ PACdns, ftr)                                                  (9) 

          EOTmodes, eot_m  ← k x  detrend(EOTmodes_ftr, eot_1)                                      (10) 

 

4.3 Results 

 

4.3.1 EOT analysis – extracting the ENSO signal 

 

We compared the first EOT mode extracted after de-seasoning and de-noising the 

fields as explained by Appelhans et al. (2015) to the Nino-3.4 index recorded 

(Figure 4.1). The high correlation between the two (R = 0.90) confirms that we 

were able to extract the ENSO signal by conducting the EOT analysis. On the 

predictor domain (Tropical Pacific SSTs), the Nino-3.4 region found to be the 

area which explains the most variance in the response domain (East African 

precipitation) as expected (Figure C1). The time series of the first EOT explains 

0.85% of the rainfall variability over the analyzed period here (1951-2005). This 

small amount is not surprising, because East African precipitation follows a strong 

seasonal pattern following the position of the Intertropical Convergence Zone 

(ITCZ) within the year. Therefore, seasonality alone explains most of the 

variability in East African rainfall. In addition, due to the complex topographical 

setting of the region, local conditions play a major role in the variation of the 

rainfall. Still, when we de-season and de-noise the raw data fields to identify low-

frequency signals such as ENSO, the ENSO signal emerged as the most important 

teleconnection between tropical pacific SST anomalies and East African 

precipitation. 
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Having successfully extracted the ENSO signal from the observation datasets, we 

applied the same procedure with the outputs of the climate models. We used an 

ensemble of SSTs from 8 GCM outputs as the predictor field and an ensemble of 

rainfall from 9 GCMs downscaled by CORDEX as the response domain. The 

comparison between the calculated first EOT time series to the Nino-3.4 index 

observed was much poorer (R=0.19) (Figure 4.1) which indicates that GCMs are 

not capturing the coupled Pacific SST – East African rainfall teleconnection. 

Another striking feature that can be observed in Figure 4.1 is the smoothness of 

the time series of the 1st mode calculated from the EOT analysis on ensembles of 

climate model outputs when compared to the recorded index and the calculated 

ENSO signal from the observation datasets. In other words, the ENSO signal 

retrieved from the EOT analysis on the climate model outputs is nowhere near 

strong as the others. According to this signal obtained from the simulation 

datasets, the only ENSO events that happened during 1951-2005 period were in 

the “weak” category (Figure 4.1). Finally, the calculated patterns were different 

than the EOT analysis on observed datasets (the corresponding figure is given in 

the Appenix, Figure C2): The areas where the sum of the coefficients of 

determination were the highest were again situated around Nino 3.4 region but 

closer to the Nino 4 region this time (Figure C2 – left panel). Spatially, the north-

eastern and central parts of the response domain are the most explained whereas 

previously it was more centralized around the coastal equatorial parts of the 

region (Figure C2 – right panel). 
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Figure 4.1. The comparison between Nino 3.4 Index recorded by NOAA (black line), 

time series of the 1st mode obtained from the EOT analysis on observed CRU-NOAA 

datasets (red), and time series of the 1st mode obtained from the EOT analysis on 

ensembles of the climate model simulations (blue). Black dashed line: Zero line. Blue 

dashed lines   ± 1.0° anomaly thresholds for categorizing moderate ENSO events. 

Red dashed lines: ± 2.0° anomaly thresholds for categorizing very strong ENSO 

events. 

 

4.3.2 Historical simulations with and without the ENSO signal 

 

After calculating the ENSO signal, we removed the amount due to ENSO from 

the East African precipitation (CRU precipitation), and simulated East African 

vegetation using both datasets (CRUnormal and CRUwithout_ENSO) to see its effect on 

vegetation. As it can clearly be seen from Figure 1, impact of ENSO signal is not 

the same everywhere on the East African domain, which means removing ENSO 

signal would have differential effects on the rainfall amount. Regional maps of 

rainfall anomalies for the strongest three El Niño (1972, 1982, 1999) and La Niña 

(1973, 1975, 1988) events between 1951-2005 period are given in Figure 4.2. 

Here we show what the rainfall would be if there were not any influence by the 

Pacific SSTs particularly during these three years. Especially the coastal Kenya 

and Tanzania experience a strong change in the amount of rainfall they receive: 
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During the El Niño periods, these parts of East Africa receive up to 200 mm yr-1 

more rain other than they would receive, while they receive ~100 mm yr-1 less 

rain during the La Niña years. The impact is the opposite for western part of 

Ethiopia : receiving ~200 mm yr-1 less rainfall during El Niño years, while ~100 

mm yr-1 more during La Niña years. To provide a closer look to the impacts of 

ENSO related variability on vegetation, we report the results on vegetation 

simulations within the two transects where we see the strongest impacts over these 

two oppositely behaving, coastal and northwestern, regions (Figure. 4.2). 

 

 
Figure 4.2. Regional maps of anomalies (mm yr-1) for the strongest three (1972, 1982, 1997) El 

Niño (left) and (1973, 1975, 1988) La Niña (right) events between 1951-2005 period (anomalies 

were calculated by subtracting precipitation without ENSO contribution from precipitation with 

ENSO contribution). Northern inner and southern coastal transects chosen for reporting results on 

vegetation simulations. 
 

We drove the dynamic vegetation model once with CRU dataset as is and once 

with CRU dataset with removed ENSO contribution. Results are reported for the 

previously mentioned north and south sites in Figure 4.3 and Table 4.1. Outputs 

from the northern-inner part show more variability within the chosen grid-cells for 

this region. Indeed, this region is on the western edge of Ethiopian Plateau, with a 

transition of biomes from mountainous forests to woodlands and savannas (Fer et 

al., 2016). As the rainfall patterns in relation to ENSO signal was the opposite 

between these regions (Figure 4.2), we expect to see that the response of these 
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regions to the removal of the ENSO signal to be opposite, and this is indeed what 

we see in Figure 4.3: While outputs such as net primary productivity (NPP), net 

ecosystem exchange (NEE), soil evapotranspiration (EVAP) and surface runoff 

(RUNOFF) for northern site were less than otherwise they would be for El Nino 

events, they would be higher La Nina events. And the opposite behaviour is true 

for the southern site. 

 

 
Figure 4.3. Carbon and water fluxes from north and south transects, simulated under climate with 

and without ENSO contribution, for the strongest three (1972, 1982, 1997) El Niño and (1973, 

1975, 1988) La Niña events between 1951-2005 period. Top panel: Net Primary Productivity 

(NPP). Middle: Net Ecosystem Exchange (NEE). Bottom: Total runoff. Locations of the northern-

inner and southern-coastal sites are given in Figure 2. 
 

In order to test whether the difference between the vegetation simulated under 

climate with ENSO contribution, and the vegetation simulated under climate with 
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removed ENSO contribution, we conducted a paired t-test on the outputs. The 

results (Table 4.1) show that except NEE for northern sites, all differences 

between the vegetation simulated with and without ENSO impact were 

significant. In summary, ENSO contribution is significantly affecting the East 

African vegetation and we would expect different vegetation if there were no 

ENSO events. 

 
Table 4.1. Paired t-test results to test whether there is a significant difference in the vegetation 

simulations that are driven with and without ENSO contributions for the three strongest ENSO 

events during the historical period (1951-2005) and with and without intensified ENSO signal for 

the  strongest ENSO events during the future period (2006-2100). Grey highlighted cells indicate 

insignificant differences according to p=0.05 threshold. Significant p-values indicate rejection of 

the H0 in favor of the alternative, that is true difference in means is not equal to 0.   p: p-value,  

md: mean of the differences 

NPP: Net Primary Productivity, NEE: Net Ecosystem Exchange, RUNOFF: Surface runoff). 

Location of North (N) and South (S) sites are shown on Figure 2. 

  NPP 

(kgC m-2 yr-1) 

RUNOFF 

(mm yr-1) 

RUNOFF 

(mm yr-1) 

 El Niño La Niña El Niño La Niña El Niño La Niña 

 

Historical 

N p < 0.05 

md: -0.056 

p < 0.05 

md: 0.035 

p = 0.089 

 

p = 0.1 

 

p < 0.05 

md: -41.35 

p < 0.05 

md: 22.21 

S p < 0.05 

md: 0.084 

p < 0.05 

md: -0.074 

p < 0.05 

md: -0.088 

p < 0.05 

md: 0.087 

p < 0.05 

md: 19.41 

p < 0.05 

md: -10.74 

 

Future 

N p < 0.05 

md: -0.052 

p < 0.05 

md: 0.033 

p = 0.93 

 

p = 0.58 

 

p < 0.05 

md: -10.91 

p < 0.05 

md: 46.97 

S p < 0.05 

md: 0.049 

p < 0.05 

md: -0.101 

p < 0.05 

md: -0.113 

p < 0.05 

md: 0.173 

p < 0.05 

md: 5.66 

p = 0.06 
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4.3.3 Future simulations with and without the intensified ENSO signal 

 

We conducted the same paired t-test for the north and south sites for the future 

simulations (Table 4.1). In the northern site where intensified signal leads to less 

(more) NPP during El Niño (La Niña) years, the mean difference is -52 (+32.6)  

gC m-2 yr-1 between the vegetation simulated under future climate with and 

without intensified ENSO signal. In the southern site where intensified signal 

leads to more (less) NPP during El Niño (La Niña) years, the mean difference is 

+49.1 (-101.1)  gC m-2 yr-1 between the vegetation simulated under future climate 

with and without intensified ENSO signal. While the mean differences for NEE 

were not significant at the northern site, southern site stores 112.7 (173.1)  gC m-2 

yr-1 more (less) carbon under the intensified ENSO scenario during the El Niño 

(La Niña) years.  

 

Another noteworthy output is that, the northern site has a lot more runoff during 

the La Niña years under the intensified ENSO scenario. This is especially clear on 

Figure 4.4 where spatial patterns of the differences in the simulated future 

vegetation under RCP 8.5 scenario with and without intensified ENSO are shown. 

The opposite behaviour of the northern parts of East Africa under El Niño vs. La 

Niña conditions can also be observed on NPP and RUNOFF figures, wheres for 

NEE differences a particular pattern is not emergent. This is mainly because NEE 

values can themselves be negative (flux to ecosystem) and positive (release to 

atmosphere).  

 

The opposite temporal behaviours of the northern and southern transects are also 

clear in Figure 4.5 which shows the time series of the differences between 

simulated NPP, NEE and RUNOFF under climate drivers with and without 

intensified ENSO signal. In line with the characterized behaviours above, we 

simulated higher (lower) NPP for the southern transect (red line) for the El Nino 

(La Nina) years under the intensified scenario, whereas the opposite is true for the 

northern transect (black line). The higher amplitude of RUNOFF difference for 

the northern transect is notable in the bottom panel (Figure 4.5). 
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Figure 4.4. Simulated future differences in the NPP, NEE and RUNOFF between with and 

without intensified ENSO runs. (Left) Mean differences for the strong El Nino years (≥ + 1.5°C) 

(2025, 2026, 2077) were calculated by subtracting the GCM-ensemble driven simulations without 

modification from the GCM-ensemble driven future simulations with intensified ENSO signal. 

(Right) Same for strong future La Nina events (≤ ‒ 1.5°C) (2039, 2049, 2084). 
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Figure 4.5. Temporal differences in the NPP, NEE and RUNOFF according to future simulations 

with and without intensified ENSO contribution (Δ = With_Intensification -  

Without_Intensification). Black line: Northern transect, Red line: southern transect. Vertical blue 

lines: All moderate (< -1.0° C) La Nina years identified for the future period (2006-2100),  

Vertical pink lines: Moderate  (> 1.0° C) El Nino years. The units are same as Figure 4. 
 

4.4 Discussion 

 

4.4.1 Identifying and intensifying the ENSO Signal 

 

East African rainfall variability and especially contribution of the ENSO was 

investigated before (Indeje et al., 2000; Schreck and Semazzi, 2004). Here we 

used a different method, Empirical Orthogonal Teleconnections (EOT) analysis to 

quantitatively calculate the ENSO contribution and found the spatial correlation 

patterns over the East Africa region to be in agreement with previous studies who 

independently looked at Pacific SST drivers for East African precipitation (Anyah 
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and Semazzi, 2007). The ENSO signal identified through this method was also 

showing strong correlation with NOAA Nino3.4 index, which means EOT method 

was a suitable choice for our analysis. 

 

Using the EOT method, we presented a relatively conservative estimate of ENSO 

variability in East African rainfall, because we considered the direct Tropical 

Pacific teleconnection only. However, there are accompanying changes: ENSO 

events are linked to Indian Ocean Dipole, which more directly influences EA 

rainfall (Black et al., 2003). It has been suggested that subsequent to ENSO 

triggering, internal Indian Ocean dynamics could take over. More specifically,  

East African rainfall increases as the western Indian Ocean gets warmer which is 

often associated with ENSO forcing. However, warmer western Indian Ocean can 

weaken the rains when it interacts with southeasterly atmospheric circulations 

(Schreck and Semazzi, 2004). The exact relationship and discrepancies between 

IOD and ENSO behaviours are yet to be revealed (Lim et al. 2016). Still, we 

found that the ENSO-East Africa connection to be robust as previous studies 

(Indeje et al., 2000; Anyah and Semazzi, 2007) and did not delve into IOD 

relationship. Also, we were motivated by the previous studies that have identified 

ENSO influence to be important in dryland vegetation dynamics (Ahlström et al., 

2015; Abdi et al., 2016). Hence, we focused on reporting more comparable results 

with those. Another factor that could affect our estimations is atmospheric 

latency. In our analysis, we did not consider any time lags for the tropical pacific 

SST anomalies and East African precipitation teleconnection, but a time lag can 

be expected due to atmospheric circulation processes, and the influence of SST 

anomalies might not develop instantaneously.  Therefore if we account for this 

time lag, we might explain even more of the rainfall variance. For a more 

comprehensive study of SST influences on East African rainfall see Appelhans 

and Nauss (2016). 

 

The EOT method, which is shown here to be effective on the historical 

observations, produced different East African rainfall variability patterns due to 

Pacific SSTs when GCM outputs were used. Also the ENSO signal retrieved was 

much weaker than the one extracted from the observation datasets in terms of both 

ENSO event strength and the match (correlation) with the Nino 3.4 index. As a 

preliminary investigation (not shown), we conducted the EOT analysis across 
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mixture of observed-simulated datasets: Pacific SSTsobserved (NOAA ERSST) - 

East African precipitationsimulated (CORDEX), and Pacific SSTssimulated (GCMs) - 

East African precipitationobsrved (CRU). The ENSO signal retrieved from the 

Pacific SSTsobserved - East African precipitationsimulated pair was a better match with 

Nino 3.4 index than the one extracted from the simulated-simulated pair but still 

worse than the one extracted from observed-observed dataset pair, whereas ENSO 

signal retrieved from the Pacific SSTssimulated -  East African precipitationobsrved 

pair was not a better match to Nino 3.4 index than the one extracted from the 

simulated-simulated pair. This quick test indicated that the GCM simulated 

Tropical Pacific SSTs are the main source of the poor teleconnection identified 

from the simulated-simulated pair and a dynamic downscaling of the tropical 

Pacific SSTs might improve the ocean-atmosphere coupled teleconnection. 

However, more formal tests are needed to conclude on this matter, which was 

beyond the scope of this study.  

 

4.4.2 Present-day simulations 

 

Despite the fact that our estimation of ENSO contribution to the East African 

interannual rainfall variability was conservative, the precipitation difference 

between with and without ENSO contribution was equivalent to one or even two 

rainy months for some of the grid cells. These regions already receive a small 

amount of rainfall and even minor differences are critical for agricultural food 

production and the productivity of the natural ecosystem that sustains a large 

biodiversity. We found up to 0.1 kgC m-2 yr-1 mean difference in NPP in the 

southern parts of the region solely due to ENSO contribution.  

 

We found that ENSO influence on net ecosystem exchange is also prominent in 

the semi-arid ecosystems of East Africa. Especially, in southern-coastal parts, 

ecosystem releases more to the atmosphere during La Nina events whereas it 

would store more carbon otherwise. This would also have implications on global 

carbon cycle as it has previously been found that regional response of semi-arid 

ecosystems, mainly occupying low latitudes, play an important role in 

determining the trend in CO2 uptake by terrestrial ecosystems (Ahlström et al. 

2015). For instance, La Nina events are associated with large carbon sinks in 

Australian semi-arid ecosystems due to increased precipitation and 2011 anomaly 
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in global carbon sink was mainly attributed to the response of Australian 

ecosystems (Poulter et al., 2014). While semi-arid ecosystems of East Africa 

might play a smaller role than Australian ones (simply due to the difference in the 

area they cover), it would still influence the magnitude and trend of the global 

carbon sink by terrestrial ecosystems. Furthermore, Forzieri et al. (2017) report 

the importance of the interplay between vegetation cover (in terms of Leaf Area 

Index, LAI) and surface biophysics, finding an amplification of their relationship 

under extreme warm-dry and cold-wet years.   Here we found that the ENSO 

contribution impacts the temporal LAI variability in East Africa considerably 

(Figure C5), presenting a good example of such temporal variations that can play 

significant roles in modulating key vegetation-climate interactions. According to 

the analysis by Forzieri et al. (2017), the magnitudes of differences we found in 

our study due to accounting for an intensified ENSO signal are influential on the 

surface energy balance components such as longwave outgoing radiation, latent 

heat flux and sensible heat flux. Our findings reiterate the importance of 

considering ENSO contribution in carbon and energy budget calculations for any 

region that is influenced by ENSO variability.  

 

Here we also report ENSO influence on surface runoff as excess runoff response 

causes problems in East Africa. In this region, Rift Valley Fever (RVF) and 

Malaria outbreaks are threatening the livelihood of the society and these vector-

borne diseases are transmitted by mosquitoes who breed in flooded low-lying 

habitats (Meegan and Bailey, 1989, Kovats et al., 2003, Hope and Thomson, 

2008). For example, a major RVF outbreak during late 1997 to early 1998 has 

been linked to the heavy and prolonged rains that are associated with 1997-98 El 

Nino event (Trenberth, 1998), in agreement with our results where we found that 

the southern coastal site experiences higher runoff during El Nino events than 

otherwise it would do.  

 

Another important ecological factor to be considered for East African vegetation 

dynamics is fire. The fire occurrence in LPJ-GUESS depends on the atmospheric 

temperature values, and moisture and litter availability. Therefore, although we 

did not calibrate LPJ-GUESS fire parameters for East Africa or explicitly changed 

fire regimes under any of the scenarios, the model simulated the changes in fire 

behaviour due to different environmental states implicitly. More specifically, for 
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the southern coastal part, a higher mean expected return time of fire was simulated 

during the El Nino years for simulations with ENSO contribution than without 

due to higher moisture availability during ENSO years for this region (not 

shown). For the same site, the opposite was true for La Nina years, and the whole 

behaviour was reversed for the northern site. A more sophisticated fire – ENSO – 

vegetation interplay can be further investigated using models that have an 

individual level representation of fire response such as aDGVM2 (Scheiter, 

Langan and Higgins, 2013). 

 

In this study, we did not further calibrate the LPJ-GUESS PFT parameters as it 

has been calibrated and validated for the region by previous studies (Doherty et 

al., 2010, Fer et al., 2016). It is possible that these point estimate values do not 

capture the uncertainties associated with the PFT parameters. However, previous 

studies have shown LPJ-GUESS parameters to be robust (Zaehle et al., 2005; 

Doherty et al., 2010). Besides, as we used the same set of parameters for all runs, 

the discrepancies simulated with and without ENSO contribution would still hold. 

As LPJ-GUESS spins up from bare ground, we also do not expect much 

uncertainty influencing the model predictions with and without ENSO 

contribtuion due to initial conditions. On the other hand, we expect the driver 

uncertainty to dominate the uncertainty around model predictions. However, that 

is exactly what we aimed at to quantify in this study as being discussed in the 

following sections. 

 

4.4.3 Scenario selection and future simulations 

 

In the results for the future simulations, the total surface runoff and NPP 

responses were considerably underestimated. Under the intensified ENSO 

scenario, an excessive amount of runoff is simulated for the northern parts during 

La Nina years and for the southern parts during El Nino years, which would 

exacerbate the disease events in the region. Likewise, the simulated low amounts 

of runoff for the northern parts during El Nino years indicate drought events in 

this parts of the region. This effect can also be seen in the simulated NPP 

responses which reduces considerably for the northern parts during El Nino years. 

Furthermore, the amounts we calculated here agree well with previous studies 
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showing changes in NPP supply associated with ENSO events in sub-Saharan 

African drylands (Abdi et al., 2016).  

 

The regions identified to be impacted by ENSO the most, are also the regions that 

currently undergo the highest woody vegetation decrease and human population 

increase in East Africa according to the analysis by Brandt et al. (2017). In our 

future simulations, we simulated increase in woody vegetation LAI due to climate 

change (Figure A4) in those regions of East Africa. It requires further analysis to 

say whether this anthropogenic reduction in woody vegetation could be met by 

future climate and atmospheric CO2 related increase. However, it reinforces the 

essentiality of accounting for ENSO influence as independent analyses show 

increasing stress over this region. 

 

In this study, we chose RCP8.5 as our future warming scenario for two reasons: i) 

we aimed to follow the current trajectory which is pointing beyond RCP 8.5 

scenario given the observed trends (Sanford et al., 2014), ii) we intended to 

capture the furthest range presented by RCPs as that is the extent to be considered 

for the assessment of ecosystem responses and mitigation efforts. However, we 

found that the ENSO signal as identified by the EOT method to be very weak in 

the GCM outputs and for the future simulations we intensified the ENSO signal 

such that very strong ENSO years can also be experienced as it is the real-world 

case. It could be argued that we did not even applied an extra intensification due 

to RCP8.5, and this discrepancy would hold regardless of the future scenario. 

Considering that we are expected to experience even stronger ENSO events in the 

future than today (Cai et al., 2013) we could have intensified this signal even 

more.  However, our results with this realistic intensification already shows the 

importance of capturing atmosphere-ocean teleconnections in climate simulations 

for reliable future simulations of the ecosystems. We simulated large differences 

in future ecosystem responses under our 'intensified' ENSO scenario, as large as 

the differences we calculated for the present-day with and without ENSO 

simulations. In other words, if we were to predict vegetation response to future 

climate change by using GCM outputs as they are, it would be as if simulating the 

present-day vegetation with climate data without any ENSO contribution. 

 

Apart from the temporal and strength mismatch, the GCM simulations are also 
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producing different spatial patterns for tropical Pacific SST-East African rainfall 

teleconnection. Therefore, in our modification we chose to correct for this spatial 

pattern by using the relationships we obtained from the observed datasets as this 

correction did not influence the temporal behavior and the peakiness of the ENSO 

signal retrieved from the GCM simulations. As a result, our findings can be 

compared for present day patterns directly.  

 

Another finding in our study regarding the spatial patterns was that, while the 

region that explains the most variability in East African rainfall is closer to the 

Nino-3.4 region in our historical analysis, it shifts towards the Nino-4 region in 

the EOT analysis with GCM outputs. In our methodology the coupling of tropical 

Pacific Sea Surface temperature-East African rainfall variability emerges from the 

data, and this shift in the influence region agrees well with previous studies that 

identify an increase in the intensity of Central-Pacific (CP) ENSO in the future 

from GCM outputs (Kim and Yu, 2012). While CP ENSO is thought to be forced 

by changes in the atmospheric circulation, mechanism for Eastern-Pacific ENSO 

is rather associated with thermocline variations in the oceanic circulation (Yu, 

Kao and Lee, 2010), and the seasonal impacts produced by these two types of 

ENSO could differ. For example, wetter patterns of EP El Nino events in East 

Africa might not occur under CP El Nino events and, CP La Nina events could 

induce drier conditions in the southern parts of the region than EP La Nina events 

(Wiedermann et al. 2017) which could result in prolongated drought events for the 

East Africa region. Future work with further discrimination of CP-EP event types 

could help better anticipate the ecosystem responses to such seasonal extremes. 

 

4.5 Conclusion 

 

In this study, we translated the lack of ability of GCMs to account for ENSO 

teleconnections into quantified discrepancies in terms of ecosystem responses. We 

investigated the relationship between interannual East African rainfall variability 

and ENSO events using Empirical Orthogonal Teleconnection (EOT) analysis, 

and found a robust connection from observational datasets in agreement with 

previous studies, while confirming that GCM outputs are still not reliable for 

capturing this pertinent rainfall variability due to ENSO. While the strength of this 

relationship is not homogeneous among the region, and the patterns of vegetation 
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response presented opposite characteristics in the northern and southern areas, 

ENSO influence on East African vegetation and in return its carbon and 

hydrological fluxes was apparent. The simulated vegetation responses showed 

non-negligible differences under climate with and without stronger ENSO signal 

in relevance to mitigation efforts for future climate change. We conclude that the 

future vegetation would be different from what is simulated under these climate 

model outputs lacking accurate ENSO contribution to the degree of ignoring the 

ENSO influence altogether. Comparably with findings from previous studies 

linking vegetation-climate interactions, we discussed the importance of 

accounting for this influence which can bring further environmental stress to East 

Africa. Overall, our results highlight that more robust projections on coupled 

atmosphere-ocean teleconnections can help reducing large uncertainties of the 

future magnitude and sign of carbon sink provided by terrestrial ecosystems by 

improving our understanding on the vegetation response. 
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Chapter 5: Discussion and Conclusion 

 

5.1 Transient dynamics of East African vegetation 

 

The primary aim of this dissertation was to better understand the transient 

dynamics of East African vegetation through mechanistic process-based dynamic 

vegetation model (DVM) simulations. This approach was needed to study past, 

present and future responses of East African vegetation to environmental changes 

mainly for two reasons: 1) DVMs are proper means of studying such questions: 

vegetation models are essentially the collection of what we know about these 

natural systems, i.e. they embody our hypotheses of how terrestrial ecosystems 

work. This dissertation not only tested these hypotheses and theories for the 

under-studied East African ecosystems, but also used them for interpreting past 

changes and providing robust future projections. 2) DVMs are scaffolds: While 

studying East African vegetation is important for the various reasons that are 

stated throughout this dissertation, both current observations and palaeo-proxies 

are fragmentary from the region. Whereas DVMs can bring pieces of information 

from different sources together and reconcile them as demonstrated in chapters of 

this dissertation. 

 

5.1.1 Simulating East African vegetation 

 

DVMs are actively being develop and improved, as the one (LPJ-GUESS) used in 

this study. The number of DVMs increase incessantly. So do the data. However, 

projections of future ecosystem responses still show substantial disagreements 

between models (Friedlingstein et al., 2014). One main source of these 

disagreements is the gap in our understanding of tropical ecosystems. Both 

tropical forests and tropical drylands (ranging from dry sub-humid to hyper-arid 

lands) are less well-studied than their temperate counterparts. However, these 

ecosystems cycle a significant amount of terrestrial carbon, and they host a 

remarkable portion of global biodiversity. Thus, it is not unexpected to have 

disagreements in model predictions that have different representations of tropical 

ecosystems in their underlying processes. 
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To begin with, current vegetation models typically use more plant functional types 

(PFTs) to describe temperate biomes than tropical ones despite the much higher 

diversity in these biomes. In this dissertation, I used six PFTs to represent tropical  

African vegetation (excluding the montane cold-types) which is higher than 

previous applications of LPJ-GUESS (Hely et al., 2006; Doherty et al., 2010). 

This provided better comparison to both vegetation maps and the pollen data. 

However, the parameterization of these PFTs could be improved. Especially, the 

C4 grass hydraulic and photosynthetic properties are not very well informed due 

to scantness of direct measurements. Besides, the fact that there is only a single 

C4 and C3 grass type (note that in this dissertation I used a cold-type and a warm-

type C3 grass, but still only the warm C3 type was representative for lowland 

biomes) is not consistent with the functional diversity of thousands of grass 

species. For instance, a first diversification that could be thought of is a distinction 

between wetter and drier types of C4 grasses for representing Andropogoneae and 

Chloridoideae lineages respectively, as these are expected to show different 

responses to climate change (Still et al., 2014). Another missing or inadequately 

represented functional type in DVMs are the shrubs. Shrubs are typical functional 

forms in semi-arid ecosystems such as savannas and are common in East Africa. 

They have different allometries and physiological responses than trees. While in 

theory it is possible to define as many PFTs as one wants, the parameterization of 

such PFTs require quality measurements of plant traits. With advancement of 

plant trait databases such as TRY (Kattge et al, 2011), PFT parameterization is 

getting easier, more empirical and more justified. Having multiple grass and shrub 

functional types could have improved the model-data agreement and influenced 

future predictions in this study as well. 

 

Likewise, important ecological and physiological processes still need further 

development in these models for tropical biomes, considering the magnitude of 

stocks and fluxes in these ecosystems. For example, multiple nutrient limitations 

on photosynthesis might be important for pedictions in tropical biomes, whereas it 

is mostly not accounted for by ecosystem models (Norby et al., 2017). The 

version of LPJ-GUESS in this study does not include neither nitrogen (N) or 

phosphorus (P) limitation, however, a newer version of the model now represents 

plant and soil N dynamics and shown to improve model predictions (Smith et al., 

2014). C-N-P interactions could be particularly important to consider while 
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simulating topical biomes because similarly, the response of model parameters 

associated with the acclimation of photosynthesis to temperature and CO2 

concentration are less understood for tropical biomes. Both this dissertation and 

previous studies showed very high sensitivity of tropical biomes to elevated CO2 

concentration (Hickler et al., 2008), but this sensitivity could be dampened or 

even exacerbated by nutrient availability in these biomes. The representation of 

the interplay between C-N-P interactions, effect of fire on nutrient availability and 

precipitation in tropical biomes is constantly being improved, however, direct 

field measurements, long-term monitoring and manipulative experiments are 

needed from the region. 

 

5.1.2 Synthesis 

 

However limited, LPJ-GUESS version used in this study, with its current 

implementations and PFT set, successfully reproduced the overall vegetation 

patterns in East Africa and provided valuable insights regarding its past and future 

dynamics. Chapter 2 focused on exhaustive validation of the model in the region 

not only for present but also for the past. Driving the model with spatially 

downscaled climate data increased model agreement with both vegetation maps 

and pollen data. Increased agreement with pollen data with higher spatial-

resolution model outputs was expected as pollen data provides relatively localized 

vegetation signals. Whereas, increased agreement with potential natural 

vegetation map was rather surprising because higher spatial-resolution meant a lot 

more possibilities for disagreeing grid cells between the vegetation map and the 

model output. This is especially the case for East Africa with large transitional 

areas around the rift topography. Not reduced, and even increased agreement 

indicate that the statistical downscaling of climate data applied in this study was 

successful and could be used in future studies. Chapter 2 also showed that 

Holocene vegetation changes in East Africa were driven by both the annual 

precipitation and the seasonality of this precipitation. Chapter 3 investigated the 

sensitivity of East African biomes to precipitation amount and seasonality in a 

retrospective context, and identified transition points in climate space and time. 

Chapter 4 assessed the contribution of climate variability due to ENSO on East 

African vegetation and quantified the future uncertainties associated to this 

variability. In the light of these studies, I have reached the following conclusions: 
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1) Dynamic vegetation models can provide a more spatially and 

temporally complete understanding of East African vegetation dynamics 

until enough data can be collected in sufficient quantity and quality from 

the region. Even then, DVMs can continue to help us test competing 

hypotheses and scenarios against observations. Furthermore, they can be 

used in making forecasts based upon these refined theories and eventually 

inform policy decisions. 

 

2) Previously established site-level climate sensitivities of vegetation 

scales up to regional-level in East Africa. In addition to amount of change 

in precipitation, the status of a biome in the climate space (e.g. the total 

amount it receives and the seasonality of this precipitation) is also a key 

factor in biome shifts in East Africa. The drivers of dynamics in drier 

biomes (savannas and woodlands) and wetter biomes (mixed forests and 

evergreen forests) can differ even while they are undergoing through same 

environmental changes. 

 

3) A greener East Africa and multiple reconnection/disconnection events of 

forest biomes are highly likely in the Late Cenozoic with implications on 

human and mammal evolution and migration. Furthermore, the shifts from 

denser to more open vegetation, and vice versa, are shown to be possible 

to occur on much shorter time scales that are relevant to human evolution 

than previously thought. 

 

4) As East African vegetation has evolved under high climate variability, it 

is more resilient to environmental stress than its counterparts around the 

tropics. However, in some areas these biomes are already at the edge of 

their tipping points. Future climate and land-use change pressures can 

accelerate degradation of their ecosystem services and should be addressed 

in mitigation decisions. 

 

5) Global change research still needs much improved representations of 

non-linear interactions in earth system processes both in ecosystem and 

climate models. Until then, potential discrepancies should be quantified 
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through numerical experiments and accounted for in future predictions. 

Especially ENSO events have a non-negligible influence on East African 

vegetation, and on other dryland ecosystems around the world which in 

return have a dominant role on global carbon cycle trend and variability. 

 

5.2 Future steps 

 

Overall, each component of this dissertation helped to fill both knowledge and 

methodology gaps in understanding East African vegetation dynamics, as well as 

to provide ancillary data for related studies such as palaeohydrology and 

palaeontology. Use of DVMs proved to be successful and helpful in simulating 

past, present and future of East African vegetation in essence. However, in 

addition to aforementioned potential improvable areas in vegetation modeling, 

further research and method development needs became apparent along the way to 

improve this workflow as a whole.  

 

5.2.1 Studying the palaeovegetation 

 

Fossil pollen, without a doubt, can give important information regarding past 

vegetation and has been widely used in palaeoecology since the development of 

optical microscopes. Whereas, methods for quantification of this information is 

relatively new (Prentice et al., 1996). Expert interpretation through comparative 

analyses is still the most common way of reconstructing palaeovegetation from 

pollen data in the literature. In this dissertation, I used the most quantitative and 

unbiased method accessible to me at the time. Despite that, I often needed to 

appeal to expert opinion on PFT assignments and biome classification thresholds 

for which there were no strictly defined rules to follow. This was not unexpected 

because it is well-known that there are uncertainties regarding the 

palaeovegetation information recorded by the pollen data. As a result, there is 

room for a certain level of flexibility in interpretation of the pollen data. 

Furthermore, there are also no strict rules regarding the classification of DVM 

outputs into biomes that are comparable to the biomes reconstructed from the 

pollen data. Ultimately, a more direct, quantitative and formal comparison 

between pollen and dynamic vegetation models is needed. Dynamic vegetation 
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models already, mostly, incorporate mechanistic and quantitative representations 

of ecosystem processes. A more unbiased and formal way of comparing model 

outputs to pollen data could be obtained through statistical modeling of the pollen 

data that makes the information extracted from the pollen data directly 

comparable to model outputs with quantified uncertainties around this information 

(Paciorek and McLachlan, 2009). For example, instead of biomizing the pollen 

records according to arbitrary rules, we can reconstruct the above ground biomass 

from pollen data through statistical models of allometric equations of species or 

genera. Above ground biomass is a state variable that is directly comparable to 

model outputs. Also, now this biomass estimation can have a confidence interval 

that can be accounted for while calculating the model-data mismatch. 

 

A formal and quantitative model-data comparison brings further opportunities. If 

we can calculate the mismatch between model and data (likelihood) at a time 

point, we can inform model predictions with data. For example, we can start the 

model from a point in the past until we have information from pollen data. At the 

time point from which we have data, we can compare the state predicted by the 

model to the state reconstructed from the data and accordingly adjust model states 

as suggested by the data. Then we can run the model forward until we have 

another data point in time and re-adjust model states according to data, and so on. 

We can repeat this as many times as we have data points for. This framework is 

called data assimilation (Dubinkina et al., 2011). This is an ideal way of 

reconstructing the palaeovegetation (or palaeoclimate) because it borrows 

strengths of both the data and the model: data inform the patterns of the model 

states, whereas the model explains the mechanisms behind patterns suggested by 

the data. This framework is not only possible for fossil pollen data, but for any 

proxy as long as information about a state variable corresponding to a model 

output could be inferred from the proxy. It also has the flexibility to assimilate 

multiple types of data at the same time. 

 

5.2.2 Model uncertainty 

 

Estimations from the proxy data that we compare model outputs to have 

uncertainties, but the model outputs have uncertainties too. There are multiple 

sources of these uncertainties: First, no model perfectly captures the reality, so 
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model process error is one source. Second, the drivers are another source of 

uncertainty. The climate data that we feed into the models as inputs are also 

uncertain. This could be due to measurement errors, or natural variability if we are 

considering the observed climate. If we are considering the simulated climate 

data, the climate models have their own process errors and other uncertainty 

sources. Even for the same future or past scenario, there can be multiple 

realizations of the climate. Third, it is a common practice (as in this dissertation) 

to treat the PFT parameters as point values. However, there again can be 

measurement errors or natural variability to these parameters. Some model 

processes can be sensitive to these parameters and could give different results 

under slightly different values. Therefore, it is a better practice to propagate these 

uncertainties into model outputs while conducting simulation experiments with 

DVMs. This could be achieved by running model ensembles with multiple 

combinations of drivers and parameter values (and initial conditions if used). The 

result would be a spread of model predictions which would capture our imperfect 

knowledge of the system. Although this approach would increase uncertainty 

associated with our model predictions, it is better to account for these 

uncertainties, than being over-confident and biased. 

 

Once the driver / parameter / initial condition uncertainties are propagated to 

model outputs, one can start working towards reducing these uncertainties. 

Process error could be reduced in time with betterment of our theoretical 

understanding as knowledge accumulate, but it does not necessarily asymptote to 

zero. Whereas more rigorous and  numerous measurements and observations can 

help reduce driver and parameter uncertainties. For example, after determining 

that model outputs are sensitive to a certain parameter, or a certain parameter is 

too uncertain (e.g. can take values within a very wide interval due to little 

information), or both, we can design experiments or field campaigns for collecting 

more measurements and observations on that trait to constrain the parameter. 

Sometimes, it might not be possible to obtain direct measurements due to  high 

cost-benefit ratio or due the nature of the parameter at hand. In that case, other 

existing datasets that corresponds to model outputs, such as eddy flux data, can be 

used in indirect calibration of model parameters (Figure 5.1, Hartig et al., 2012). 

In Bayesian model calibration frameworks, we can constrain model parameters 

through Markov Chain Monte Carlo algorithms by repeatedly comparing model 
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outputs to data. Such frameworks help us to reduce parameter uncertainties and 

the associated uncertainties in the model predictions (Hartig et al., 2012). This 

could be especially valuable for regions like East Africa where remotely sensed 

data can also be utilized. 

 

 
Figure 5.1 Indirect (inverse) parameterization of dynamic vegetation models (figure from Hartig 

et al., 2012). When there is no or few measurements that we can directly map to model parameters, 

we can use indirect parameterization to adjust model parameters such that model-data agreement 

improves. This can be achieved through Bayesian calibration frameworks. 
 

To sum up, future efforts in modeling East African vegetation will benefit from 

quantification of uncertainties in more formal ways. There is certainly a need for 

more observational and experimental data from East Africa on parameters and 

processes. In the meantime, recent developments in Bayesian calibration methods 

could help improving models and global change research altogether. 
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Appendix A 

Table A1. Pollen sites from which data were compiled for comparison with the LPJ-GUESS simulation 

results. 

 Site name Latitude Longitude Altitude Number of 
14C dates 

Number of 
pollen 

samples 

Upper age 
(cal yr BP) 

Lower age 
(cal yr BP) 

1 Abernethy 56.233 -3.717 221 7 49 5950 14720 
2 Achit-Nur 49.500 90.600 1453 4 20 2240 14750 
3 Akulinin Exposure P1282 47.117 138.550 20 6 29 610 44890 
4 Akuvaara 69.125 27.683 170 5 33 0 11680 
5 Alut Lake 60.137 152.313 480 25 117 1130 31540 
6 Ampoix 48.167 2.933 1015 5 120 1720 12280 
7 Åntu sinijarv 59.133 26.326 95 9 54 -30 14810 
8 Aronde 49.463 2.691 50 3 46 0 14190 
9 Asbotorpsjon 58.417 13.833 280 9 35 9240 17220 

10 Baberzo 63.375 37.517 138 3 11 510 13580 
11 Baidara 68.850 66.900 30 10 67 4430 17190 
12 Ballinloghig 52.400 -10.300 84 11 68 1220 13110 
13 Bebrukas Lake (core 5) 54.090 24.120 149 14 50 150 15400 
14 Belle lake 52.183 -7.033 33 8 49 6030 14650 
15 Berelyekh River, Indigirka Lowland 70.583 145.000 20 4 37 8610 46350 
16 Bergakyllen 57.167 16.150 73 5 28 7170 23500 
17 Bezdonnoe 62.033 32.757 121 3 53 470 13780 
18 Black Sea southwest 42.184 28.917 0 3 22 1820 15150 
19 Blavasstjonn 64.917 11.667 92 4 36 80 11960 
20 Bledowo Lake 52.550 20.670 78 4 294 60 13300 
21 Blomoy 60.533 4.883 36 4 18 6070 15440 
22 Bludlivaya River 69.067 148.400 100 3 3 25640 42200 
23 Bolotnyii Stream 42.850 132.783 4 4 16 29150 43000 
24 Bugristoe 58.250 85.167 100 5 67 4240 12230 
25 Cam Loch 58.083 -5.000 130 7 37 11300 16200 
26 Chabada (central Yakutia) 61.983 129.367 290 5 62 190 9280 
27 Chernikhovo 53.420 26.430 52 4 52 2070 16860 
28 Chistic 57.335 33.000 205 4 34 3040 8780 
29 Circle 59.803 -151.158 300 3 52 30 15120 
30 Cororion 53.200 -4.100 83 11 156 120 11120 
31 Cregganmore 54.250 -0.960 60 3 66 3680 16170 
32 Daba-Nur 48.200 98.794 2465 6 25 1930 13480 
33 Derput 57.033 124.117 700 6 52 500 12520 
34 Dikikh Olyenyeii Lake Exposure 67.800 -178.800 300 5 48 40730 44970 
35 Domsvatnet 70.317 31.033 120 5 37 270 11530 
36 Elgennya 62.100 -149.000 1040 6 52 0 18760 
37 Elikchan 4 Lake 60.750 151.883 810 16 126 90 46820 
38 Ermistu 58.367 13.967 17 5 85 4460 11580 
39 Etivlik Lake 68.133 -156.033 631 4 23 90 18040 
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Site name Latitude Longitude Altitude Number of 
14C dates 

Number of 
pollen 

samples 

Upper age 
(cal yr BP) 

Lower age 
(cal yr BP) 

40 Frengstadsetra 62.567 10.133 790 5 31 4380 10650 
41 Glendalough 53.000 -6.333 130 5 150 -50 12600 
42 Goluboye 61.117 152.267 810 13 41 180 11050 
43 Grasvatn 63.700 8.700 45 8 45 230 14640 
44 Grosses Überling Schattseit-Moor: 47.167 13.900 1750 5 65 0 17960 
45 Gun-Nur 50.250 106.600 600 7 36 70 11890 
46 Gytgykai Lake 63.167 175.000 102 9 68 0 21740 
47 Harding Lake 64.444 -146.908 218 4 41 60 28990 
48 Hawks Tor 50.533 -4.600 229 5 35 12400 15420 
49 Hidden Lake 63.940 -144.658 372 5 33 30 20480 
50 Hockham Mere 52.500 0.833 33 23 163 1490 14720 
51 Hopseidet  70.833 27.717 225 4 53 -40 13010 
52 Hoton Nur 48.667 88.300 2083 6 37 270 28270 
53 Ifjord 70.433 27.633 317 4 93 0 14050 
54 Jack London lake 62.167 149.500 820 7 60 330 20850 
55 Joe Lake 66.767 -157.217 183 18 87 -30 46940 
56 Kaarkotinlampi 61.147 25.867 104 5 37 220 13530 
57 Kaiyak Lake 68.150 -161.417 190 7 53 2770 40500 
58 Kansjon 57.633 14.533 308 12 45 80 15540 
59 Karasieozerskoe 56.767 60.750 230 3 31 350 9150 
60 Khomustakh Lake 63.820 121.620 120 9 72 3820 13340 
61 Krechet 64.617 158.355 32 16 46 450 47090 
62 Krugloye 66.367 37.583 140 6 17 2400 12750 
63 Kupena 41.983 24.333 1300 6 31 670 15120 
64 Lac Long Inferieur 44.058 7.450 2093 12 71 1440 17750 
65 Lago d'Ajo 43.050 -6.150 1570 6 78 130 24980 
66 Lago di Martignano 42.117 12.333 200 8 68 0 14000 
67 Laguna de la Roya 42.217 -6.767 1608 6 72 360 16170 
68 Lake Boguda 63.667 123.250 120 7 58 1330 11340 
69 Lake Sambosjon 57.133 12.417 35 15 111 980 11290 
70 Lake Shabla-Ezeretz 43.833 28.850 1 9 39 390 8830 
71 Lake Skrzetuszewskie 52.550 17.361 109 7 83 370 12570 
72 Lake Solso 56.133 8.633 41 34 66 640 10430 
73 Le Fourneau 48.444 -0.192 – 10 74 100 23950 
74 Lednica 52.557 17.390 109 9 84 520 10800 
75 Liivjarve Bog 59.217 27.583 46 7 64 170 10660 
76 Lilla Gloppsjon 59.804 14.628 198 11 86 0 11140 
77 Liten Cappesjavri 71.074 25.368 41 16 72 70 13910 
78 Lobsigensee 47.032 7.299 514 10 83 50 11180 
79 Loch Maree 57.083 -5.483 60 6 57 50 10790 
80 Loch Sionascaig 58.061 -5.175 74 7 148 680 12790 
81 Lochan coir a' Ghobhainn 57.183 -6.300 82 4 21 8770 13140 
82 Loras 45.664 5.244 410 6 136 540 21560 
83 Luganskoe 43.733 40.692 2428 3 28 280 7680 
84 Maksimkin Yar 58.333 88.167 150 4 48 200 9190 
85 Mire Pelisoo 58.467 22.383 33 5 57 140 10240 
86 Mokre louky (South) 48.833 14.833 425 5 82 3160 11230 
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 Site name Latitude Longitude Altitude Number of 
14C dates 

Number of 
pollen 

samples 

Upper age 
(cal yr BP) 

Lower age 
(cal yr BP) 

87 Lago Grande di Monticchio 40.944 15.600 1326 **** 496 60 101500 
88 Mukkavaara 68.917 21.000 535 9 56 700 11970 
89 Nedre Madbergagolen 58.600 12.167 138 9 13 11760 13420 
90 Niechorze 54.000 15.050 5 9 52 3360 15430 
91 Nigula 58.000 24.667 55 11 60 740 8780 
92 Nizhnevartovskoye 61.250 77.000 55 14 33 180 10120 
93 Notsel 51.554 4.769 5 4 62 11310 15410 
94 Nulsaveito 67.533 70.167 57 5 30 5830 8720 
95 Oltush Lake 51.697 23.957 158 8 42 530 11670 
96 Over Kobbkrokvatnet 70.699 29.295 – 13 69 60 13670 
97 OverGunnarsfjorden 71.038 28.169 78 13 117 -40 13180 
98 Ozerki 50.417 80.467 107 10 48 0 15110 
99 Padule 44.297 10.215 1187 7 69 20 12330 

100 Pashennoe 49.370 75.400 871 12 34 0 10610 
101 Petropavlovka 58.333 82.500 100 5 66 670 10730 
102 Pickletillem 56.400 -2.900 21 11 29 10940 14720 
103 Place du Commerce 47.214 -1.556 7 7 40 5860 9010 
104 Plesheevo Lake 56.750 38.500 148 2 101 2770 90360 
105 Ptichje 66.350 30.567 120 2 29 400 10280 
106 Pur-Taz 66.700 79.733 50 5 70 4540 11050 
107 Puscizna Rekowianska 49.483 19.817 656 8 76 0 10399 
108 Puyuk Lake 63.500 -162.200 15 2 38 60 20090 
109 Quintanar de la Sierra 42.033 -3.017 1470 20 82 0 17420 
110 Ranger Lake 67.147 -153.650 820 8 60 0 42170 
111 Rebel Lake 67.417 -149.800 914 3 45 0 19410 
112 Rezabinec 49.250 14.117 369 9 34 0 13330 
113 Rotsee 47.076 8.326 419 11 128 0 13290 
114 Roztoki core 14A 49.717 21.583 230 2 25 13130 14570 
115 Rugozero 64.083 32.633 140 2 37 480 11250 
116 Saint Julien de Ratz 45.350 5.267 650 4 156 790 17540 
117 Shombashuo 65.117 32.633 100 2 28 180 15590 
118 Skaidejavri 70.001 27.867 183 5 100 0 11060 
119 Skvarran 57.200 16.150 86 6 31 9510 17740 
120 Slopiec 50.783 20.783 248 11 68 40 12280 
121 Sluggan Moss 54.933 -6.300 52 40 115 60 14100 
122 Smorordinovoye Lake 64.767 141.100 798 11 76 110 27180 
123 Starniki 50.270 26.050 198 10 30 470 13610 
124 Sudoble Lake 54.033 28.100 165 8 61 170 13750 
125 Suollakh 57.050 123.850 – 8 51 2770 13250 
126 Suovalampi 69.583 28.833 104 5 34 260 12050 
127 Syrjalansuo 61.217 28.117 83 6 81 0 16430 
128 Taloye Lake 61.017 152.333 750 7 36 2520 10810 
129 Tarnawa Wyzna 49.100 22.833 670 8 63 2100 14500 
130 Tarnowiec 49.700 21.617 22 9 62 110 17190 
131 Tiinkdhul Lake 66.583 -143.150 189 7 56 350 21560 
132 Tomtabaken 57.483 14.467 303 14 43 6400 15460 
133 Toppeladugard 55.600 13.367 35 3 40 12750 13270 
134 Tourves 43.500 5.900 298 8 117 3650 15270 
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 Site name Latitude Longitude Altitude Number of 
14C dates 

Number of 
pollen 

samples 

Upper age 
(cal yr BP) 

Lower age 
(cal yr BP) 

135 Trollvatnet 69.875 23.467 188 5 34 2020 14930 
136 Tschokljovo Marsh 42.367 22.083 870 6 30 250 9100 
137 Tsuolbmajavri  68.692 22.083 526 14 146 20 12920 
138 Uddelermeer 52.237 5.762 26 4 100 10940 13850 
139 Ust'Mashevskoe 56.317 57.883 220 5 51 20 9320 
140 Vallee de la Voise 48.417 1.750 – 5 62 460 10500 
141 Vallon de Provence 44.391 6.404 2075 6 83 3010 12210 
142 Vernerovice 50.100 16.250 450 9 38 0 13560 
143 Vingolen 57.133 15.950 104 6 32 9550 13730 
144 Vohma Mire 59.050 27.333 46 14 50 530 8780 
145 Wachel-3 53.038 8.036 17 7 104 20 8800 
146 Wien Lake 64.333 -151.267 305 9 43 0 14960 
147 Wrangel Island 71.167 -179.750 200 18 31 9490 14040 
148 Yenicaga 40.783 32.033 – 5 55 3310 15250 
149 Ylimysneva 62.133 22.867 172 4 51 -30 9640 
150 Zalozhsty 49.750 25.450 320 15 24 160 9950 
151 Zaruckoe 63.900 36.250 20 5 64 440 9940 
152 Zirbenwaldmoor 46.858 11.025 2150 7 66 970 10110 
153 Zsombo Swamp 46.361 19.994 92 2 54 80 15720 
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Table A2 Reclassification of the White's Vegetation Map (White, 1983) classes which are present in the 

study area into new classes that are comparable with LPJ-GUESS' simulated biomes.   

No. White's Class Name New class 
1 Lowland rain forest Evergreen Forest 
2 Rain forest: drier types Seasonal Forest 
4 Transitional rain forest Seasonal Forest 
8 Swamp forest Evergreen Forest 
11 Mosaic of lowland rain forest and secondary grassland Seasonal Forest 
12 Mosaic of lowland rain forest, woodland and secondary grassland Seasonal Forest 
16 East African coastal mosaic Woodland 
17 Mixture of Afromontane and lowland species Woodland 
19 Undifferentiated montane vegetation Afromontane 
25 Wetter woodland Woodland 
26 Drier woodland Woodland 
27 Woodland Woodland 
28 Woodland and scrub woodland Woodland 
29 Undifferentiated woodland Woodland 
31 Mosaic of woodland and secondary grassland Woodland 
35 Transition from woodland to wooded grassland Savanna 
37 Secondary wooded grassland Savanna 
38 Evergreen and semi-evergreen bushland and thicket Woodland 
40 Deciduous thicket Savanna 
42 Deciduous thicket Savanna 
43 Wooded grassland and deciduous bushland Savanna 
45 Mosaic of evergreen bushland and secondary wooded grassland Savanna 
54 Semi-desert grassland and shrubland Steppe 
59 Wooded edaphic grassland  Savanna 
60 Grassland and wooded grassland Savanna 
61 Grassland and wooded grassland Savanna 
62 Grassland and wooded grassland Savanna 
63 Grassland and wooded grassland Savanna 
64 Grassland and wooded grassland Savanna 
65 Altimontane, afroalpine Afroalpine 
67 Desert Desert 
68 Desert Desert 
71 Regs, hamadas, wadis Steppe 
75 Herbaceous swamp and aquatic vegetation Water/Masked out 
76 Halophytic vegetation Water/Masket out 
77 Mangrove Evergreen Forest 
81 Water Masked out 
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Table A3.2 Reclassification of the GLC2000 (Mayaux et al., 2004) classes which are present in the study 

area into new classes that are comparable with LPJ-GUESS' simulated biomes.   

 
No. GLC2000 Class Name New class 
1 Closed evergreen lowland forest Evergreen Forest 
3 Submontane forest Seasonal Forest 
4 Montane forest Afromontane 
6 Mangrove Seasonal Forest 
7 Mosaic forest/croplands Masked out 
8 Mosaic forest/savanna Seasonal Forest 
9 Closed deciduous forest Seasonal Forest 
10 Deciduous woodland Woodland 
11 Deciduous shrubland with sparse trees Woodland 
12 Open deciduous shrubland Savanna 
13 Closed grassland Savanna 
14 Open grassland with sparse shrubs Savanna 
15 Open grassland Savanna 
16 Sparse grassland Steppe 
17 Swamp bushland and grassland Water/Masked out 
18 Croplands Masked out 
19 Croplands with open woody vegetation Masked out 
20 Irrigated croplands Masked out 
22 Sandy desert and dunes Desert 
23 Stony desert Desert 
24 Bare rock Desert 
25 Salt hardpans Desert 
26 Inland waters Water/Masked out 
27 Cities Masked out 
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Figure A1 Monthly anomaly maps for temperature climatology (Bosmans et al., 2012) (Present-day minus 

mid-Holocene, the values shown are in ºC/month). 
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Figure A2 Monthly anomaly maps for precipitation climatology (Bosmans et al., 2012) (Present-day minus 

mid-Holocene, the values shown are in mm/month). 
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Table A4 Logistic regression results. Each biome name in the corner of the table represents the mid-

Holocene (MH) biome of the sites (i.e. sites that were steppe biomes in Mid-Holocene either shifted to 

desert biomes in present-day (PD) or remained a steppe). We applied a logistic regression analysis to assess 

which environmental variables explain whether the biome remains the same or shifts to another. 
 
shift: categories of shift - towards a more open/closed vegetation or remained same from MH to PD 

pre_diff: % change in MAP from Mid-Holocene to Present-day. 

pre_mh: Mid-Holocene MAP 

R package: rms(), function: lrm() 
 

STEPPE shift~ LR chi2 Pr(> chi2) Pseudo-R2 C-index AIC 

pre_diff 3.73 0.0536 0.054  0.581 115.0031 

pre_mh 29.98 <0.0001 0.383 0.830  88.7459 

pre_diff + pre_mh 47.46  <0.0001 0.558 0.910 73.26969 

 

SAVANNA shift~ LR chi2 Pr(> chi2) Pseudo-R2 C-index AIC 

pre_diff 3416.14 <0.0001 0.534 0.899 5913.557 

pre_mh 2224.97 <0.0001 0.379 0.870  7104.727 

pre_diff + pre_mh 7113.87 <0.0001 0.872 0.774 2217.827 

 

WOODLAND shift~ LR chi2 Pr(> chi2) Pseudo-R2 C-index AIC 

pre_diff 2234.80 <0.0001 0.454 0.847  5621.293 

pre_mh 32.54 <0.0001 0.008 0.620 7823.55 

pre_diff + pre_mh 3749.68 <0.0001 0.665 0.952 4108.412 
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S. FOREST shift~ LR chi2 Pr(> chi2) Pseudo-R2 C-index AIC 

pre_diff 77.68  <0.0001 0.046  0.616 4158.323 

pre_mh 338.28 <0.0001 0.185 0.751 3897.726 

pre_diff + pre_mh 1618.43 <0.0001 0.648 0.897 2619.574 

 

E. FOREST shift~ LR chi2 Pr(> chi2) Pseudo-R2 C-index AIC 

pre_diff 295.56 <0.0001 0.233 0.763 2135.574 

pre_mh 370.34 <0.0001 0.284 0.795 2060.801 

pre_diff + pre_mh  1026.59 <0.0001 0.634 0.908 1406.553 
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Appendix B 

Parameters used in LPJ-GUESS simulations1 

Table B1 Global parameters 

Parameter Value Parameter Value 
vegmode “cohort” ifdisturb 1 
nyear_spinup 500 ifbgestab 1 
ifdailynpp 0 ifsme 1 
ifdailydecomp 0 ifstochestab 1 
ifcalcsla 1 ifstochmort 1 
iffire 1 ifcdebt 1 
npatch 30 ifsmoothgreffmort 1 
patcharea 1000 ifdroughtlimitedestab 1 
estinterval 5 ifrainonwetdaysonly 0 
distinterval 100 ifspeciesspecificwateruptake 0 

 

                                                 
1
  Presented as in Allen et al., 2010. 

nyear Number of years for which to run simulation. 

ifdailynpp Whether to calculate NPP daily (1) or monthly (0). 

ifdailydecomp Whether to calculate soil respiration daily (1) or monthly (0). 

ifcalcsla Whether to calculate SLA from leaf longevity (1) or not (0). 

iffire Whether to implement fire (1) or not (0). 

npatch Number of replicate patches to simulate. 

patcharea Patch area (m2). 

estinterval Years between establishment events in cohort mode. 

distinterval Average return time for generic patch-destroying disturbances (yr). 

ifdisturb Whether generic patch-destroying disturbances enabled (1) or not (0). 

ifbgestab Whether background establishment enabled (1) or not (0). 

ifsme Whether spatial mass effect enabled (1) or not (0). 

ifstochestab Whether establishment stochastic (1) or not (0). 

ifstochmort Whether mortality stochastic (1) or not (0). 

ifcdebt Whether C debt (storage between years) permitted (1) or not (0). 

ifsmoothgreffmort Whether to vary mort_greff smoothly with growth efficiency (1) or to 

use the standard step-function (0) 

ifdroughtlimitedestab Whether establishment is limited by drought (1) or not (0). 

ifrainonwetdaysonly Whether to rain on wet days only (1), or to rain a bit every day (0) 

ifspeciesspecificwateruptake Whether there is species specific water uptake (1) or not (0) 
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Table B2 Parameters common to all PFTs 

Parameter Value 
lambda_max 0.8 
reprfrac 0.1 
k_chilla 0 
Photosynthetic pathway C3 for all except C4G 

 
lambda_max Non-water-stressed ratio of intercellular to ambient CO2 partial 

pressure. 
reprfrac Fraction of NPP allocated to reproduction. 
k_chilla Constant in equation for budburst chilling time requirement. 
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Table B3 Parameters common to groups of PFTs defined by their life form 

Parameter Trees Grasses 
lifeform "tree" “grass” 
ltor_max 1 0.5 
cton_leaf 29 29 
cton_root 29 29 
cton_sap 330 – 
kest_repr 200 – 
kest_bg 0.1 – 
kest_pres 1 – 

 
ltor_max Non-water-stressed leaf : fine root mass ratio. 
cton_leaf Leaf C : N mass ratio. 
cton_root Fine root C : N mass ratio. 
cton_sap Sapwood C : N mass ratio. 
kest_repr Constant in equation for tree establishment rate. 
kest_bg Constant in equation for tree establishment rate. 
kest_pres Constant in equation for tree establishment rate. 
  

 

Table B4 Parameters related to shade tolerance 

Parameter Shade Tolerant Shade Intolerant 
greff_min 0.04 0.08 
alphar 2 10 
parff_min 125000 (incl. Grasses) 250000 

 
greff_min Threshold for growth suppression 

mortality (kgC m-2leaf yr-1). 
alphar Shape parameter for recruitment – 

juvenile growth rate relationship. 
parff_min Minimum forest floor PAR for grass 

growth/tree establishment (J m-2 day-1). 
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Table B5 Parameters per plant functional types (PFTs) 

 MBS MNE TeBS TeBE TeNE TrBE TrIBE TrBR TrIBR C3CG C3WG C4G 

Form W W W W W W W W W H H H 
Phenology S S S E E E E R R A A A 
Leaf long. 0.5 2 0.5 2 2 2 2 0.5 0.5 1 1 1 
Turn. leaf 1 0.5 1 1 0.25 0.5 0.5 1 1 1 1 1 
Root dist. 70/30 60/40 70/30 70/30 60/40 80/20 60/40 80/20 50/50 90/10 80/20 80/20 
Turn. root 0.7 0.7 1 1 0.25 0.7 0.7 1 1 0.7 0.7 0.7 
Shade tol. T T T T T T I T I - - - 
Resp_C 1.2 1.2 1.2 1.2 1.2 0.15 0.15 0.15 0.15 1.0 1.0 0.5 
ptemp_min -4 -4 -4 -4 -4 2 2 2 2 -5 0 6 
ptemp_low 15 15 15 20 20 22 24 22 24 5 10 30 
ptemp_high 25 25 25 30 30 30 32 30 32 25 30 45 
ptemp_max 38 38 38 42 42 55 55 55 55 38 55 55 
gmin 0.5 0.3 0.5 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Turn. sap 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.05 0.1 - - - 
emax 5 5 5 5 5 7 7 7 7 5 5 7 
est_max 0.05 0.05 0.05 0.05 0.05 0.05 0.2 0.05 0.2 1 1 1 
phengdd5ramp 150 0 200 0 0 0 0 0 0 0 100 100 
tcmin_surv -32.5 -32.5 -17 3 -2 15.5 15.5 15.5 15.5 -1000 -1000 15.5 
tcmin_est -32.5 -32.5 -17 3 -2 15.5 15.5 15.5 15.5 -1000 -1000 15.5 
tcmax_est 10 10 18.5 18.5 20 1000 1000 1000 1000 15.5 1000 1000 
twmin_est -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 
gdd5min_est 350 600 1200 1200 1200 0 0 0 0 0 0 0 
wscal_min 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 

drought_tol 0.3 0.2 0.3 0.1 0.08 0.15 0.1 0.15 0.1 0.01 0.01 0.01 
fire_resist 0.12 0.12 0.12 0.3 0.5 0.15 0.25 0.15 0.35 0.5 0.5 0.5 
litterme 0.3 0.3 0.35 0.35 0.35 0.1 0.1 0.1 0.1 0.1 0.35 0.1 
MBS: Mountainous Broad-leaved Summergreen 
MNE: Mountainous Needle-leaved Evergreen 
TeBS: Temperate Broad-leaved Summergreen 
TeBE: Temperate Broad-leaved Evergreen 
TeNE: Temperate Needle-leaved Evergreen 
Tr(I)BE: Tropical Shade (In-)Tolerant Broad-leaved Evergreen 
Tr(I)BR: Tropical Shade (In-)Tolerant Broad-leaved Raingreen 
C3CG: C3 (Cold) Grasses 
C3WG: C3 (Warm) Grasses 
C4G: C4 Grasses 
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Form W=Woody;  H = Herbaceous. 
Phenology Phenology – S = summergreen; E = evergreen; A = any. 
Leaf long. Leaf longevity in years. 
Turn. leaf Leaf turnover (proportion per year). 
Root dist. Proportions of roots in upper 50cm of soil and below. (%) 
Turn. root Fine root turnover (proportion per year). 
Shade tol. Shade tolerance – I = Shade intolerant; T = Shade tolerant;  
Resp_C Respiration coefficient 
pstemp_min Minimum temperature limit for photosynthesis (°C) 
pstemp_low Minimum temperature of optimal range limit for photosynthesis (°C) 
pstemp_high Maximum temperature of optimal range limit for photosynthesis (°C) 
pstemp_max Maximum temperature limit for photosynthesis (°C) 
gmin Canopy conductance not associated with photosynthesis (mm s-1) 
turn. sap Sapwood turnover (proportion per year) 
emax Maximum evapotranspiration rate (mm day-1). 
est_max Maximum sapling establishment rate (individual m-2 yr-1) 
phengdd5ramp Growing degree days on 5°C base to attain full leaf cover. 
tcmin_surv Minimum 20-yr coldest month mean temperature for survival (°C). 
tcmin_est Minimum 20-yr coldest month mean temperature for establishment (°C). 
tcmax_est Maximum 20-yr coldest month mean temperature for establishment (°C). 
twmin_est Minimum warmest month mean temperature for survival (°C). 
gdd5min_est Minimum growing degree days above 5°C for establishment. 
wscal_min Water stress threshold for leaf abscission. 
drought_tol Drought tolerance (1 = intolerant; 0 = tolerant) 
fire_resist Fire resistance (proportion surviving fire). 
litterme Litter moisture flammability threshold (fraction of AWC). 
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Biome Classification rules 

 

Table B6 Biome classification rules. Rules are based on total leaf area index (LAI) and 

proportions of LAIs of different plant functional types (PFT) and are applied in the 

given order to classify the model outputs into biomes. XERO=Afroalpine, 

WAMF=Afromontane, TEFO=Tropical Evergreen Forest, TSFO=Tropical Seasonal 

Forest, WOOD=Woodland, SAVA=Savanna, STEP=Steppe, MNE=Mountainous 

Needle-leaved Evergreen, MBS=Mountainous Broad-leaved Summergreen, C3CG=Cold 

C3 Grass, TeNE=Temperate Needle-leaved Evergreen, TeBE=Temperate Broad-leaved 

Evergreen, TrBE=Tropical (Shade-tolerant) Broad-leaved Evergreen. 

 
Rules                                                                                                                                                                          Biome 
(1): If (MNE LAI >0.01 or MBS  LAI > 0.01)  and C3CG LAI > 2.0                                                                       XERO 
(2): If TeNE LAI > 0.01 or TeBE LAI > 0.1 TeBS LAI > 0.1                                                                                  WAMF 
(3): If Tot. LAI >= 6.0 and woody LAI >=5.0 and TrBE is the dominant PFT                                                          TEFO 
(5): If Tot. LAI > 5.0 and woody LAI> =4.0                                                                                                               TSFO 
(5): If Tot. LAI > 2.5 and woody LAI> =1.5                                                                                                            WOOD 
(6): If Tot. LAI > 0.5 and woody LAI > 0                                                                                                                  SAVA 
(7): If Tot. LAI >= 0.1                                                                                                                                                 STEP 
(8): If Tot. LAI < 0.1                                                                                                                                              Bare Soil 
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Generation of new datasets: 

Topographical settings 

 

EXP_topo = (CTL_topography – Hlim)*C + Hlim        (Sepulchre et al., 2006)  

 

EXP_topo : Experimental topography 

CTL_topography: Control (present-day) topography 

Hlim : Altitude threshold = 200 meters  

C : Reduction coefficient = 0.5 for TOPO50, 0.05 for NORIFT settings used in this 

study. 

 

              (a)                                              (b)                                                (c) 

 

Figure B1 Topographical settings used in this study. Topography is reduced to (b) 50% 

(TOPO50, reduced topography) and (c) 5% (NORIFT, removed topography) of the (a) 

present-day height. 
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Temperature: 

1. We first fitted a linear regression on the present-day values, that treats the present-day 
temperature values in each grid as a function of its latitude, longitude and present-day 
elevation. 
 
Tpresent ~ Lat + Lon+ Elvpresent 

2. Then, by targeting the new elevation datasets (TOPO50 and NORIFT) as described 
above, we obtained the new temperature values: 
 
Ttopo50 ← predict(Lat + Lon+ Elvtopo50)    
Tnorift ← predict(Lat + Lon+ Elvnorift)   
 

 
 
Figure B2 Comparison of the two, one statistically calculated in this study, TOPO50; the other 

dynamically computed by Prömmel et al. (2013) TECT, climatology temperature data. Anomalies shown 

are TECT-TOPO50 differences. 
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Figure B3 Comparison of the simulations in which a continuous forest belt simulated under TOPO50 and 

TECT temperatures. Large circles represent the scenarios in which both seasonality and amount of 

precipitation changes were applied. A large circle is placed in the corresponding place if a continuous belt 

was simulated under that particular combination of environmental conditions or left blank if no connection 

was established. Different shades of large circles represents different number of wet months added in the 

scenarios. 

 

Precipitation: 

i) increase in monthly rainfall amounts only: 

P20 ←  Ppresent + Ppresent x 20/100 

The same applies for 40% and other percentages of increase. 

(ii) increase in wet season length only: 

 1. Look at all 12 months of each year 

 2. Choose the months with precipitation <50 mm 

 3.  Top the month with the highest precipitation, among those filtered in Step 2, 

up to 50 mm 

 4. Repeat to add more than one wet month 

(iii) increase in both monthly amount and wet season length: 

PS1: Present day precipitation with one wet month added (to each year). 

PS1_20 ←  PS1 + PS1 x 20/100 
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The same applies for scenarios with more than one wet month added and other 

percentages of increase. 

 

Cloud Cover: 

C, T and P being monthly gridded time series cloud cover, temperature and precipitation 

data respectively: 

1. We first fitted a (beta) regression on the present-day values: 

Cpresent ~ Tpresent + Ppresent 

2. Once the new set of temperature and precipitation values for each setting is generated 

as above, we computed the modified cloud cover data by using these new T and P values 

as regressor variables of the fitted equation. 

Ctopo50_S1 ← predict(Ttopo50 + PS1)    

Ttopo50: new temperature values for Topo50 topographical setting  

PS1 : new precipitation values for +1 wet season 

... 

Cnorift_S1_20 ← predict(Tnorift + PS1_20)    

Tnorift: new temperature values for NORIFT topographical setting  

PS1_20 : new precipitation values for +1 wet season and 20% increase 
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Comparison of the simulated present-day biomes to an observed vegetation map 

 

                               (a)                                                                    (b) 

Figure B4 Biome distributions of East Africa. a) White's vegetation map, b) Present-day biomes simulated 

by LPJ-GUESS.  Each color represents a different biome whereas white areas represents the masked-out 

water bodies.  

 

XERO=Afroalpine, WAMF=Afromontane, TEFO=Tropical Evergreen Forest, 

TSFO=Tropical Seasonal Forest, WOOD=Woodland, SAVA=Savanna, STEP=Steppe, 

DESE=Desert 
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Table B7 Accuracy assessments between simulated map and vegetation map. KIA = 

Kappa Index of agreement per biome; κ = Generalized Kappa value, α = the proportion of 

correctly classified cells; # = number of grid cells to compare (without the masked out 

cells). Levels of agreement: <0.4 poor, 0.4-0.55 fair, 0.55-0.7 good, 0.7-0.85 very good, 

>0.85 excellent (Monserud and Leemans,1992). 

 LPJ-GUESS vs. White's map (0.5º x 0.5º) 
Biomes KIA 

Bare Soil 0 
Steppe 0.47 

Savanna 0.65 
Woodland 0.62 
Seasonal F. 0.49 

Evergreen F. 0.51 
Afromontane 0.53 
Afroalpine 0 

Overall α κ 
 0.70 0.59 
# 1812 

 

Allen, J. R. M., Hickler, T., Singarayer, J. S., Sykes, M. T., Valdes, P. J., Huntley, B., 2010. Last 

Glacial vegetation of northern Eurasia. Quaternary Science Reviews 29, 2604-2618. 

http://dx.doi.org/10.1016/j.quascirev.2010.05.031 

  

Fer, I., Tietjen, B., Jeltsch, F., 2015. High-resolution modelling closes the gap between data and 

model simulations for Mid-Holocene and present-day biomes of East Africa. (In review) 

 

Monserud, R.A., Leemans, R., 1992. The comparison of global vegetation maps. Ecological 

Modelling. 62, 275-293. http://dx.doi.org/10.1016/0304-3800(92)90003-W 

 

Prömmel, K., Cubasch, U., Kaspar, F., 2013. A regional climate model study of the 

impact of tectonic and orbital forcing on African precipitation and vegetation. 

Palaeogeography, Palaeoclimatology, Palaeoecology 369, 154-162. 

http://dx.doi.org/10.1016/j.palaeo.2012.10.015 

 
Sepulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J.-J., Brunet, M., 2006. Tectonic 

uplift and eastern Africa aridification. Science 313, 1419–1423. 

http://dx.doi.org/10.1126/science.1129158. 
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Appendix C 

 

 

Figure C1. Coupled ocean-atmosphere teleconnection between Pacific Sea Surface 

Temperatures and East African Rainfall retrieved from historical observations. (Upper 

Left) The coefficients of determination for the predictor field highlights that the Nino-3.4 

region explains the variance in the response domain the most. (Upper Right) Correlation 

coefficients of the each pixel of the East Africa (response) domain shows that spatially 

the coastal parts and a north-western area is being explained by the predictor field. 

(Bottom panel) Time series of Tropical Pacific SST anomalies at the base point  (the gray 

circle in the upper left panel) of the first mode as ENSO signal. 
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Figure C2. EOT Analysis for the historical period from the GCM simulations. Panels as 

explained in Figure A1: (Left) The coefficients of determination for the predictor field. 

(Right) Correlation coefficients of the each pixel of the East Africa (response) domain. 

(Bottom) Time series at the base point of the mode. 

 

 



151 
 

Figure C3. Intensified ENSO signal. Purple line: Future ENSO signal retrieved from 

GCM outputs for 2006-2100 period. Red Line: Intensified signal such that anomalies 

peak as strong as recorded amplitudes (± 2.0° C) .Dashed line marks the very strong 

ENSO event threshold. 
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Figure C4. Simulated woody vegetation Leaf Area Index (LAI) differences under future 

climate scenario RCP8.5 (without any manipulation to the ENSO signal) and present-day 

(PD). (ΔLAI = RCP8.5 – PD).      
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Figure C5. Temporal differences in LAI according to future simulations with and 

without intensified ENSO contribution (Δ = With_Intensification -  

Without_Intensification). Black line: Northern transect, Red line: southern transect. 

Vertical blue lines: All moderate (< -1.0° C) La Nina years identified for the future period 

(2006-2100),  Vertical pink lines: Moderate  (> 1.0° C) El Nino years.  
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C3 Full names of Global Circulation Models and their home Institutions 

CCCma-CanESM2: Canadian Centre for Climate Modelling and Analysis - The second 

generation Canadian Earth System Model (Flato et al., 2000) 

CERFACS CNRM-CM5: Centre Européen de Recherche et de Formation Avancée, 

Centre National de Recherches Météorologiques, Climate Model 5 (Voldoire et al., 2013) 

IPSL CM5A-MR: Institut Pierre Simon Laplace Climate Model 5A Medium Resolution 

(Hourdin et al., 2013) 

QCCCE CSIRO Mk3-6-0: Queensland Climate Change Centre of Excellence, 

Commonwealth Scientific and Industrial Research Organization, Mark 3.6 (Collier et al., 

2013) 

ICHEC EC-EARTH: Irish Centre for High End Computing, EC-Earth (Sterl et al., 2012) 

MIROC5: Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology, Model for Interdisciplinary Research on Climate (Watanabe et al., 2010) 

MPI-M ESM-LR: Max Planck Institute for Meteorology, Earth System Model, Low 

Resolution (Giorgetta et al.,, 2013) 

NCC NorESM1-M: Norwegian Climate Centre, Norwegian Earth System Model (Bentsen 

et al., 2013) 

NOAA GFDL-ESM2M: National Oceanic and Atmospheric Administration, Geophysical 

Fluid Dynamics Laboratory (Dunne et al., 2012) 
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