Technical Report:
Fall Retreat 2018

Christoph Meinel, Hasso Plattner, Jurgen Déllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch,
Tobias Friedrich, Erwin Bottinger,

Christoph Lippert (Eds.)

Technische Berichte Nr. 129

des Hasso-Plattner-Instituts far
Digital Engineering an der Universitat Potsdam

Hasso
Plattnher
Institut

Digital Engineering * Universitdt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Digital Engineering an der Universitidt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Digital Engineering an der Universitdt Potsdam | 129

Christoph Meinel | Hasso Plattner | Jiirgen Dollner | Mathias Weske |
Andreas Polze | Robert Hirschfeld | Felix Naumann | Holger Giese |
Patrick Baudisch | Tobias Friedrich | Erwin Bottinger |

Christoph Lippert (Eds.)

Technical Report

Fall Retreat 2018

Universitdtsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet tiber http://dnb.dnb.de/ abrufbar.

Universitidtsverlag Potsdam 2019
http:/ /verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir Digital
Engineering an der Universitit Potsdam wird herausgegeben von den Professoren des
Hasso-Plattner-Instituts fiir Digital Engineering an der Universitit Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschiitzt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-465-4
Zugleich online veroffentlicht auf dem Publikationsserver der Universitdt Potsdam:

https:/ /doi.org/10.25932 / publishup-42753
https:/ /nbn-resolving.org/urn:nbn:de:kobv:517-opus4-427535

mailto:verlag@uni-potsdam.de

Contents

Microtask Crowdsourcing as Means to Identify and Explain Software Failures| 1

E

[Understanding Change-Behavior of Data and Metadata| 11
Tobias Bleifufs

[Lung-Pan Cheng

[Process Mining Methodologies| 31

[Preparing for a Virtual City Model as a Digital Twin of an Urban Environment| 35

[Understanding Sources of Heterogeneity in SMP Systems| 45
|Andreas Grapentin|

[Data-Knoller: A Framework for Systematic Data Preparation| 55
! g

(IrussFormer: 3D Printing Large Kinetic Structures| 67
Robert Kovacs|

(Theory of Estimation-of-Distribution Algorithms| 79

Martin Krejca

[Event Handling in Business Process Enactment 91

é

[Employing Sottware Development Data to Drive Process Change 119
[Christoph Matthies|

Contents

Mining Concepts from Code to Support Program Comprehension and Software |
Mod Vo e 133
[Joni Mattis

[GraalSqueak: A Fast Squeak/Smalltalk Implementation |

abio Niephaus

[Examining Dependability in the Internet of Things|. 163

[Evolutionary Algorithms and Local Search in Combinatorial Optimization| . . 173
|Francesco Quinzan)|

[A Comparison of Implementation Techniques for Implicit Layer Activation|. . 183
Stefan Ramson

[Deep Learning from Unbalanced Medical Imaging| 197

=]

[Comparative Text Mining and News Comment Analysis|. 211

ulian Risc

[Power-Law Distributions in Random Satisfiability| 217
[Ralf Rothenberger|

Thijs Roumen

mantic Enrichment of In r 3D Point Cl Isl L. 239
[Vladeta Stojanovic|

Multi-Source 3D Geodata Analysis| 251

Vi

Microtask Crowdsourcing as Means to Identify and Explain
Software Failures

Christian Adriano

System Analysis and Modeling Research Group
Hasso-Plattner-Institut
christian.adriano@hpi.uni-potsdam.de

This report describes my research on the feasibility of a novel and fast method
to identify and explain software failures, which I call “failure resolution”. The
method consists of partitioning complex work into small and independent tasks
(microtasks) that can executed by a crowd of anonymous programmers recruited
on a popular crowdsourcing platform (Mechanical Turk). My method automati-
cally generates microtasks, distributes them, and aggregates their individual out-
comes into a failure resolution result. This method was incrementally designed
and evaluated through experiments with software programmers and real bugs
from popular open source projects.

1 About this report

This is the second Fall report on my research. In the next two sections I review my
previous results and summarize the results obtained through the year of 2018.

1.1 Previous report

In the previous report, I investigated how to enable a crowd of programmers to work
within a feedback loop with mechanisms that generate, distribute, and aggregate
microtasks aimed at resolving software failures (Figure|I]).

1.Select failing Z.Qenerate 3 Distribute
Java method microtasks

Explanations

Crowd Programmers
about faulty 5.A
: Aggregate 4.Answer P; !g P% !g
e
program outcomes questions

statements

Figure 1: Failure resolution process

Feedback loop The goal of each loop cycle is to suggest the next microtasks to

be performed by a group of programmers (subcrowd). For that, the feedback loop
relies on five decision models, which I summarize below.

mailto:christian.adriano@hpi.uni-potsdam.de

Christian Adriano: Crowdsourcing to Identify and Explain Software Failures

o Feature selection model predicts and ranks the attributes of answers and pro-
grammers which can be used to prioritize microtasks.

o Sampling model determines how to combine multiple results from the same task
or from different tasks. The configurations available consist of under-sampling
and over-sampling, which allow to trade-off between accuracy and variance in
results.

o Aggregation model predicts the location of a root-cause by applying voting meth-
ods. We trained a set of machine learning models to predict the threshold for
three different voting methods.

o Subcrowd model predicts which sub-groups of programmers (subcrowds) per-
form better at identifying root-causes for software failures. These subcrowds
can be used to decide who should be prioritized to receive a certain microtask.

o Task selection model consists of determining which tasks should be executed
next based on the result of previous tasks. The goal is to minimize the number
of tasks needed. We report on this model in the current report.

1.2 Current report

My current report focuses on the last model (task selection) and two methodological
concerns: the practical application of my method and the generalization of it to
other domains distinct from software failure resolution. Moreover, this report also
discusses the motivation for this type of research, the corresponding related work,
and my research roadmap.

2 Motivation

Need for speed to resolve failures Quickly resolving software failures has been
part of the practice of agile teams, which since the agile manifestoE] became wide-
spread by achieving the goldilocks of shorter software release cycles without sacrific-
ing quality, cost, or overloading the development teams [2]]. Nonetheless, software
teams have come under renewed pressure by two external factors: the disruption
from failures that happen only in later stages of testing and the need to deploy soft-
ware multiple times a day. A recent industry report [[3] shows that top performing
businesses are deploying on average 32 times a day and are keeping lead times below
one hour, i.e., the time between committing the source code and running it on pro-
duction. Hence, while teams used to have days to resolve failures, now many teams
have only a few hours. To alleviate this pressure on teams, many approaches have
been investigated, e.g., improve continuous integration environments, mandatory

Thttp://agilemanifesto.org (last accessed 2018-10-18).

http://agilemanifesto.org

2 Motivation

code reviews, and, finally, make failure resolution quicker to perform (my research
focus).

Automated methods solutions In response to more agility, software engineering
researchers developed various automated methods. Static analysis tools like PMC
and FindBugs are executed during compilation time to quickly weed out errors
that can become potential software failures. Continuous integration tools run unit
tests to expose failures before they are moved into production. Spectra-based fault
localization [11]] methods run hundreds unit tests to identify the program statements
that the most probable root-cause of a software failure.

Besides creating a safety net to catch software failures introduced during short
development cycles, automated methods are also the pillar of many tools that auto-
matically repair root-causes of failures [9]. Hence, agile teams, high frequency de-
ployment, and automated program repair tools depend on the methods that quickly
identify root-causes of software failures.

Perfect fault understanding assumptions However, research has shown that iden-
tifying a root-cause is not a sufficient condition to resolve a failure. Even when pro-
grammers are given the root-cause, there is no guarantee that programmers will
unequivocally recognize the root-cause. Parnin and Orso [[10] described this as the
“perfect fault understanding assumption”.

Difficulty to guarantee fault understanding is also an issue when fixes are auto-
matically suggested. Research showed [12} 13]] that programmers still need to be
involved to evaluate if the suggested fixes are not over-fitting the unit tests ,i.e., mak-
ing the failing test pass but not generalizing to other test input data. Research also
confirmed the need for patches explanations [[7], but this is hindered by the difficulty
of using “understandability” as a metric to select of patches [§]].

Nonetheless, in my research I depart from the assumption that fault understand-
ing can be made explicit in written explanations. This assumption is corroborated
by the studies on the performance of senior and junior programmers on debugging
tasks. Senior programmers are shown to require fewer [4] hypotheses (i.e., explana-
tions) to correctly identify a root-cause of a failure. Moreover, senior programmers’
hypotheses have shown to present better quality [6]] than the ones from junior peers.

Therefore, my research focuses on both the traditional problem of fault localization
(identifying failure root-causes) and how to obtain the explanations for the corre-
sponding software failures. Inamed this dual outcome as a failure resolution process,
which I investigate with respect to its efficiency (speed) and efficacy (positive impact
on bug fixing).

My investigation approach I proposed a method to speed up failure resolution
by parallelizing its execution. My method obtains explanations to the failure root-
causes by the execution of human-judgment tasks. The method was inspired on a
MapReduce [1]] model that has been successfully combined with crowdsourcing
[5] to partition complex work into smaller and independent tasks (microtasks),

Christian Adriano: Crowdsourcing to Identify and Explain Software Failures

distribute them, and aggregate their individual outcomes into one failure resolution
result. My method has many challenges that I discuss in detail in the next section.

3 Research problems

Problem.1 The choice for task design is constrained by trade-offs between the speed
and quality of failure resolution. Trade-offs are present among the processes of
partitioning, distributing, and executing tasks. Partitioning work in many tasks can
increase failure resolution speed by increasing parallelization, which is achieved by
making tasks as small as possible. However, as the number of tasks increase, their
complete distribution might take longer because more capable programmers need to
be recruited. When executing a task that is too small, quality might decrease because
the programmer would have less information to make good judgments about the
failure root-cause. Moreover, a programmer could be less motivated to do quality
work, because each smaller tasks has a lower monetary pay. Fundamentally, the our
problem is to discover what is a feasible task size regarding speed and quality of
failure resolution. This might help understand whether it is better to have many
smaller or larger tasks distributed to many or fewer programmers.

Problem.2 As the execution of tasks are completed, we face the problem of aggre-
gating the outcomes of multiple tasks into a consolidated failure resolution. This can
be challenging because programmers might have distinct beliefs about the root-cause
of the software failure. Furthermore, even after agreeing on a root-cause, program-
mers might provide distinct explanations. This is particularly difficult when more
than one root-cause and explanation are effective to suggest valid bug fixes. Ulti-
mately, our problem is to learn how to identify valid root-causes and explanations
by aggregating competing beliefs.

Problem.3 Aswe aggregate task outcomes, we have the problem of how to improve
speed and quality from one failure resolution job to another. This is challenging
because we cannot guarantee improvement by redesigning the tasks, i.e., making
them larger or smaller depending on the current outcomes. The alternative is to
learn to identify the programmers who produce faster and higher quality failure
resolutions. This is particularly difficult when programmers have different levels of
programming skill, experience, and motivation. More fundamentally, our problem
is how to select groups of programmers (subcrowds) who consistently outperform
the average programmer in terms of speed and quality of failure resolution.

Problem.4 After guaranteeing some level of efficacy in failure resolution, we need
to solve the problem of speed. For that we need to minimize the number of tasks
necessary to correctly identify and explain a software failure. This is difficult because
at any given moment we have the option to obtain more results for the same task
(exploit) or execute a different task (explore), or decide to stop executing certain
tasks (expire). These decisions to exploit, explore,and expire are difficult because

4 Method

one cannot know for certain which of the previous task outcomes are correct (e.g.,
true positive and true negatives).

4 Method

Iinvestigated these problems with a method that automatically partitions work in
small independent tasks (microtasks) and distributes them to programmers (crowd)
recruited on a crowdsourcing platform (Mechanical Turk). Microtasks are automat-
ically generated from template questions that cover the program statements of the
source code that failed its unit test (Figure[2)).

QUESTIONS W 192 q3 g4 95 46 97 a8

public final void translate (CharSequence impur, Writer out) throws IOException |{

1f (out == null) {

throw new IllegalArgumentEXception ("The Writer must not be null"):
]
if (input == null) {

return;

]
int poa = 0;
int len = input.length();

slate (input, pos, out):

acter.toChars (Character.codePOLNTAT (input, pos)):

ai |
yes| Py ey
q4 B for (int pt = 0; pt < consumed; pt++) {
yes pos +=tharacter.charCount (Chazacter.codePOintht (1nput, pos)):
I e
45 no a6 yes 970 9Byes

qi- Is there any issue with the loop between lines 94 and 97 that might relate to the failure?

Figure 2: Questions and answers for each source code fragment

For each microtask, the programmers provide their beliefs on a root-cause of given
a software failure and justify their beliefs with a written explanation. Their beliefs
are expressed in an answer to a question about the possible relationship between a
program statement and the software failure. The answers are either YES, NO, or I
DON’'T KNOW. Programmers are also required to provide their confidence for their
answers. To answer these questions, programmers receive the following informa-
tion: the unit test assertion, the failure message, the source code of the method that
failed the test. This information is provided to programmers on web-based interface
(Figure3|) that also collects programmers’ answers.

The outcomes of microtasks are automatically aggregated by different voting meth-
ods. My method also selects the best performing subcrowds. This is done by predic-
tion models that were trained with attributes of programmers and their correspond-
ing answers.

Although I automated the processes of partitioning, distribution, aggregation, and
subcrowd selection, I did not apply any automated debugging method. I purpose-

Christian Adriano: Crowdsourcing to Identify and Explain Software Failures

Please take a look at the following problem, the code below it, and answer the -
questions. Quit

We ran the following est: parorimenon . forof e

But we received this failure: 2

Is there any issue with the conditional clause between lines 273 and 275
that might be related to the failure?
1 don't know Yes, there is an issue No, there is not an issue

How confident you are in your answer? Very Not

Please provide an explanation: & @ wd 1

Submit
The source code:
public static DateTimeZone inutes(int houl , im
if (hoursOffset == & B& minutesoffset ==) {
return DateTimeZone.uTcC;
}
if (hoursoffset < -22 || hoursoffset > 23) {
throw new TllegalArgumentException(“Hours out of range: “ +
1
if (minutesOffset ¢ ¢ || minutesoffset > 59) {
throw new IllegalargumentException("Minutes out of range: "
}
int offset = @;
try {
int hoursInMinutes = hoursOffset * 60;
if (hoursInMinutes < @) {
minutesOffset = hoursInMinutes - minutesoffset;|
} else {

minutesoffset = hoursInMinutes + minutesOffset;

¥

offset = FieldUtils.safeMultiply(minutesoffset, DateTimeCons
} catch (ArithmeticException ex)

throw new IllegalArgumentException("Offset is too large”);

}
return foroffsetmillis(offset);
+

Figure 3: Web-based GUI for the microtask

fully did so as a first study because I wanted to evaluate a method that is independent
of automated debugging tools. This way I sought to avoid possible tool biases and
produce a baseline for future automation.

5 Contributions

I evaluated my method through three large scale experiments. The results of these
experiments are summarized in the following contributions:

1. I showed the efficacy of my method for two different designs of microtasks
and two sets of real software failures from 16 different popular open source
software projects. In the first design, I performed an experiment with 777 pro-
grammers, who executed 5705 microtasks. The best group of programmers
(subcrowd) located six out of the ten root-causes of software failures, but
with high levels of false positives (57% precision and 70% recall). For the
second microtask design, I performed an experiment with 654 programmers
who performed 2580 microtask. The most effective subcrowd comprised 133
programmers, who answered 836 questions in 33 minutes to resolve all eight
software failures with 94% precision and 65% recall at the program statement
level. Therefore, my method achieved a competitive efficiency in the second
experiment. Efficiency was measured in terms of the number of microtasks,
programmers, cost per failure, and the time needed to locate the root-causes
of all software failures.

6 Latest results

2. I showed that models can be built to predict the quality of microtask out-
comes. Models were built with features (attributes) from programmers and
their answers to the microtasks. These predictive models were evaluated across
different types of software failures and source code with different sizes and
complexities.

3. The aggregation mechanisms based on cardinal voting method performs better
than majority voting, proportional voting, and absolute threshold voting. We
validated this for both microtask designs and across different software failures.

4. Ishowed that the root-cause explanations were meaningful and effective to help
programmers to suggest bug fixes. Meaningfulness stems from explanations
being categorized into distinct classes. We show efficacy by measuring accuracy
of bug fixes when programmers where provided with explanations and when
they were not.

6 Latest results

Since the last Fall report I have worked on three concrete topics. Below I discuss my
preliminary results.

6.1 Task selection model

To increase the speed of failure resolution I investigated how to minimize the number
of questions asked. My approach was to prioritize questions by the perceived utility
to the programmer. I experimented with two formulations: user perceived difficulty
and confidence. To evaluate these utility functions I designed an iterative algorithm
that samples, aggregates, and ranks questions (Figure[d)).

1: Start with one answer per question

2: Loop (iterations=10)

3: Aggregate answers

Compute question ranking (classification frontier)
Select top R questions as predictors of the fault location
Compute statistics (Precision, Recall, LOC)

Rank question by utility value

Select top U questions to sample

© ® 9 9 w»n A

Sample A answers from the U questions

10: End loop

Figure 4: Algorithm to evaluate the utility-based selection of microtasks. Hyper-
parameters of the algorithm in bold font

Christian Adriano: Crowdsourcing to Identify and Explain Software Failures

I explored the hyper-parameter space for a utility function based on the answer
confidence. The best results were obtained for the following parameterization: sam-
ple one answer per question (A1), rank only the top question to be answered (U1),
and select the top three questions (R3) as covering the failure root-causes. This en-
ables to locate and explain all software failures with more than 90% precision, 100%
recall (at program statement level) and requiring less than 20% of all questions asked
(Figure5)).

As future work I plan to compute the expected utility, which would require to
estimate a probability for each utility value. My approach for that will be to model the
stream of answers for each question as a Markov chain. The stationary distribution
of the Markov chain will provide me with the probabilities of the question receiving
either a YES, NO, or DON'T KNOW answer. Since I am interested in the questions
with high chances of covering a root-cause, I can use the probability of a YES to
compute the expected utility of each question at any given time. Note that as more
answers are received, I will update these probability estimates.

Utility step = top one questions (U1) to top three (U3)
Sampling step = sample one answer per question - over sampling with replacement (A1)
Classification frontier = questions ranking within top 2 with more YES answers (R2)

Utility Function U(qg;) = ¢'(qi) + 2 * ¢?(qi) +0 = c3(qi) + 4 = c*(qi)+ 5+ 5(qi) , confidence levels

precision, recall by answers U 1 A1R 2 precision, recall by answers U2 A1 R 2 precision, recall by answers U3A 1R 2

sssssssssssssssssssss

Figure 5: Precision and recall for various hyper-parameter values

6.2 Practical application

I performed a third experiment to evaluate the impact of the explanations on the
perfect fault understanding assumption. The experiment involved 21 software pro-
grammers and three real software failures. These programmers were asked to suggest
bug fixes based on the failure resolution produced in the second experiment by the
crowd of programmers. I evaluated the correctness of the bug fixes in the presence
and the absence of the explanations for the root-causes identified in the second ex-
periment. I found that programmers who relied on explanations were more accurate
in their bug fixes. The effect of explanations on bug fix accuracy was statistically
significant (two-tailed t-test, p-value=0.0014) and had a large effect (Cohen’s D =
1.13).

7 Research roadmap

6.3 Generalization

The generalization aimed to isolate the characteristics that are independent of the
failure resolution domain and to capture them in a software architecture. I proposed
a software architecture that allows to instantiate my method as an online hybrid
crowd-machine system. The goal of the system is to partition, distribute, aggregate,
and prioritize work that can be performed as microtasks. My software architecture
will be designed to satisfy two non-functional requirements: scalability (vertical
and horizontal) and adaptability (at deployment and at run-time). My future work
includes experiments to evaluate these two requirements.

7 Research roadmap

The roadmap is organized around paper writing and experiments.

e Perform a bug fixing experiment with the remaining 15 real software bugs
from experiments one and two,

Submit paper about the three experiments to ESE Journal (December 2018),

Submit paper on task prioritization to SASO conference (February 2019),

Perform experiments to evaluate the scalability and adaptability of the online
hybrid crowd-machine system,

Submit paper to ESEM conference (May 2019).

References

[1] J.Dean and S. Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pages 107-113.

[2] T Dingseyr, S. Nerur, V. Balijepally, and N. B. Moe. “A decade of agile method-
ologies: Towards explaining agile software development”. In: Journal of Systems
and Software 85.6 (2012), pages 1213-1221.

[3] N.Forsgren, G.Kim,]. Humble, A. Brown, and N. Kersten. 2017 State of DevOps
Report. Technical report. Puppet, 2017.

[4] L. Gugerty and G. M. Olson. “Comprehension differences in debugging by
skilled and novice programmers”. In: Papers presented at the first workshop on em-
pirical studies of programmers on Empirical studies of programmers. 1986, pages 13—
27.

[5] A.Kittur, B. Smus, S. Khamkar, and R. E. Kraut. “Crowdforge: Crowdsourc-
ing complex work”. In: Proceedings of the 24th annual ACM symposium on User
interface software and technology. 2011, pages 43-52.

Christian Adriano: Crowdsourcing to Identify and Explain Software Failures

(6]
[7]
8]

[10]

[11]

[12]

[13]

A. Ko and B. Myers. “Debugging reinvented”. In: ACM/IEEE 30th International
Conference on Software Engineering (ICSE’08). 2008, pages 301-310.

C. Le Goues, S. Forrest, and W. Weimer. “Current challenges in automatic
software repair”. In: Software quality journal 21.3 (2013), pages 421-443.

M. Monperrus. “A critical review of automatic patch generation learned from
human-written patches: essay on the problem statement and the evaluation of
automatic software repair”. In: Proceedings of the 36th International Conference
on Software Engineering. 2014, pages 234-242.

M. Monperrus. “Automatic software repair: a bibliography”. In: ACM Com-
puting Surveys (CSUR) 51.1 (2018), page 17.

C.Parninand A. Orso. “Are automated debugging techniques actually helping
programmers?” In: Proceedings of the 2011 international symposium on software
testing and analysis. 2011, pages 199-209.

S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and
B. Keller. “Evaluating and improving fault localization”. In: Proceedings of the
39th International Conference on Software Engineering. 2017, pages 609-620.

Z.Qi, F. Long, S. Achour, and M. Rinard. “An analysis of patch plausibility
and correctness for generate-and-validate patch generation systems”. In: Pro-
ceedings of the 2015 International Symposium on Software Testing and Analysis.
2015, pages 24-36.

E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. “Is the cure worse than the
disease? Overfitting in automated program repair”. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. 2015, pages 532-543.

10

Understanding Change-Behavior of Data and Metadata

Tobias Bleifufs

Information Systems Group
Hasso-Plattner-Institut
tobias.bleifuss@hpi.de

The following report gives an overview of my research activities in the field of
change exploration. It outlines our data model with its exploration primitives,
transformations of datasets into this model and the classification of changes rep-
resented in this model. Finally, an outlook on possible applications of the gained
insights presents ideas on how to predict future changes and build trust.

1 Change in Data and Metadata

Data change, all the time. This undeniable fact has motivated the development of
database-management systems (DBMSs) in the first place. While DBMSs are good
at recording this change, and while much technology has emerged to analyze this
data, there has not been much research on exploring and understanding the change-
behavior of data and metadata over time.

Also: schemata change, quite often. While such metadata-change happens less fre-
quently, schemata are much less stable than what is alluded to in DBMS textbooks,
and than what is desirable from an application developer’s point of view, in our ex-
perience. In particular, modern “schemaless” DBMSs exacerbate the need to explore
changing metadata.

The observed changes are manifold: values are inserted, deleted or updated; enti-
ties appear and disappear; properties are added or repurposed, etc. Explicitly recog-
nizing, exploring, and evaluating such change can alert to changes in data ingestion
procedures, can help assess data quality, and improve the general understanding of
the dataset and its behavior over time.

With this work we address a common but less studied addition to the well-known
“V”s of big data [3]]: To the common notions of volume, velocity, and variety that
characterize big data problems, we address variability. While variety is typically
viewed as differences in format, semantics and other properties between multiple
data sources, we introduce variability as describing such differences even within a
data source over time.

2 Change Exploration: our Model, its Primitives, and a Tool
We propose a generic model to represent changes to a dataset. In particular, our

model of change-cubes can reflect changes to both the data and its schema and inte-
grate changes from various data sources. It includes the following four dimensions

11

mailto:tobias.bleifuss@hpi.de

Tobias Bleifuf$: Understanding Change-Behavior of Data and Metadata

Data
sources

Operator | Description
sort | sorts the changes within a change-cube
slice | filters the changes in a (set of) change-cube(s)
split | groups changes and splits the cube accordingly
union | unions multiple change-cubes into one
‘ rank | sorts (a set of) change-cubes

View
definitions

prune | filters change-cubes by threshold
top | selects change-cubes by relative position

Figure 1: An overview of the DBChEx workflow and a short description of the
devised exploration primitives on the change-cube

to represent when (time) what (entity) changed where (property) and how (new
value):

Time A timestamp in the finest available granularity.

Entity The id of an entity represented in the dataset. An entity could correspond to
a row in a relational database, a node in a graph, a subject of an RDF-triple, a
schema element, etc. Entities can be grouped or belong to a hierarchy, modeled
separately. In this way, we can recognize which rows belong to the same table,
which RDF-subjects are of the same class, etc.

Property The property of the entity. Properties can be entities themselves and corre-
spond to columns in a table, properties of a graph, predicates of an RDF-triple,
schema associations, etc. Properties can be hierarchically organized, for in-
stance grouped by semantic domain, such as person name, address, etc., or by
data-type.

Value The new value introduced by the change (or the null-value (L) to represent
a deletion). Values can be literals, which we denote in quotes, or ids of other
entities. Furthermore, values need not be atomic, they can be sets or lists.

Without the time-dimension, the cube represents the traditional model-indepen-
dent representation of facts as triples. By including time we can define an individual
change and the change-cube as a set of changes:

Definition 1. A change c is a quadruple of the form (timestamp, id, property, value) or
in brief (t,id, p,v). We call a set of changes a change-cube C = {cy,...,c, }. Among the
changes, combinations of (t, id, p) are unique.

A change (t,id, p, v) describes that at a certain point in time t (When?) the property
p (Where?) of an entity with the stable identifier id (What?) was changed to the new
value v (How?). Implicitly, a value of a change is valid from timestamp until the closest
succeeding timestamp of a quadruple with same id and property but different value.
Or it is valid until “now”, when no succeeding quadruple exists.

12

2 Change Exploration: our Model, its Primitives, and a Tool

On top of that data model, we enable change exploration, which we define as: for
a given dynamic dataset, we aim to efficiently capture and summarize changes at
value-, aggregate-, and schema-level, and enable users to effectively explore this
change in an interactive and graphical fashion. We implemented a web-based explo-
ration tool DbChEx that facilitates change exploration through a set of exploration
primitives. Figure [I| shows how we envision the general workflow using DBChEx
and a short summary of the implemented primitives. Because the defined operators
are closed (operators are defined on a set of change-cubes and their result is also
a set of change-cubes), we can compose them and we call such a composition of
operators an operator sequence. The operator sequences are the primary navigation
through the changes: they represent the current exploration path and show what
the user currently focuses on (comparable to the navigation bar in a web browser).
The user-interface is designed to keep the user engaged and reduce the amount
of required text input. In our tool it usually takes the user just a click to add, edit,
or remove new operators from the current operator sequence. A large portion of
the user’s findings based on exploration primitives are lead by serendipity, but also
by a number of statistics, such as a volatility measure. However, our tool also inte-
grates results from change mining (see Section4]). We define change mining as the
automatic discovery of interesting change events and identification of underlying
structures and constraints of change. Change mining can provide an overview of the
vast amount of data, for example by clustering changes, which in turn can facilitate
exploration.

Change exploration requires access not only to the current dataset, but also to its
history. While all subsequent steps will profit by the unified change-cube model,
it entails the upfront overhead of transforming the changes into the change-cube.
The obvious problem is that there are many different ways of how the changes are
stored in the real-world, which implies a high variety of different input formats.
We transformed many datasets and their history into our model, for example the
changes of Wikipedia infoboxes and tables (see Section[3)) or IMDB data.

These transformations from data sources to change-cubes can be relatively generic
in the beginning, because the user may not know and understand the previous
schemata. Hence, we propose an iterative, closed-loop approach that improves the
semantics of the change-cube over time. In this way, knowledge gained during explo-
ration can be fed back into the transformation. For example, if users recognize that
a property has been renamed, they can merge these two properties at the click of
a button. Each of these transformations creates a view on the original change-cube.
The view definitions can also be implemented with the help of operator sequences,
in which the above operators are used to select the part of the cube to be transformed.
The transformation on the selected quadruples is then achieved either via templates
for frequent schema changes (such as renaming) or custom transformations defined
in SQL or an external program.

Related work. Because data change is a fundamental concept of databases, many
research areas are related, though none come close to covering what we envision. It
is impossible for space reasons to discuss them all here, but there is an overview in

13

Tobias Bleifuf3: Understanding Change-Behavior of Data and Metadata

our vision paper [15]], in which we for example compare our approach to temporal
or sequence databases [2]] and time series exploration techniques and tools [6]].

3 Tracking Changes: Wikipedia Table History

Many Wikipedia tables have a long and eventful edit history. Until now users could
only explore and understand the history of Wikipedia tables by manually browsing
through the past revisions of a Wikipedia article. However, this is a cumbersome
process as it is not obvious, which of the numerous revisions contain changes to a
particular table. For an automatic extraction of the changes in tables, there is one
big hurdle: given two consecutive revisions of the same Wikipedia article, the two
versions of Wikitext (the markup language used in Wikipedia) do not immediately
reveal what changes occurred.

Clearly, we can calculate a line-wise difference of two document revisions, but that
approach completely ignores any semantic information. Therefore, in many cases
the resulting diff-set does not represent the intentions the user had in mind when
performing a certain change. The line-wise difference assumes that the (relative)
position of an object stays constant over its lifetime and is incapable of identifying
moving objects. In particular, given a new document revision and a set of previously
seen tables in the same document, we want to determine which table is the successor
of which other table. And, in order to get an even more fine-grained picture of table
changes, we want to determine, which cell is the successor of which other cell within
a table. This allows us to track tables and their cells over multiple document revisions
in time. Our aim is not to calculate a minimal difference between two object revisions.
Instead, we want to link multiple versions of the same element over multiple revisions
in a semantically meaningful way.

We solve this task using the assumption that changes happen gradually, so that
the context of changed elements can still be used to identify elements over time. This
assumption allows us to use a rather simple similarity measure based on tokens.
However, because it is difficult to find a similarity measure that works well univer-
sally, our method combines several similarity measures in multiple matching steps.
The idea here is to first create obvious matches with as little computational effort as
possible and linear scalability in the number of tables and only then to match the
remaining candidates with more relaxed methods and potentially more expensive
similarity metrics. These relaxed procedures are necessary, for example, to cope with
the fact that tables can also grow or shrink, which has a negative impact on certain
similarity measures.

Our manually generated gold standard shows that this procedure works very
well on tables and our underlying assumption seems to hold. Our experiments also
show that, despite this assumption, our algorithm remains robust at higher temporal
resolutions. In this experiment, we simulated a scenario in which snapshots of the
table are only available at longer intervals, such as a monthly crawl of web pages. In
this case, too, our methods still achieve very good results. For the matching of cells it
was more challenging to create a gold standard, because of the sheer number of cells

14

4 Change Mining: Distinguish Different Change Types

Club League Sport Venue Attendance Founded Championships Club League
Chicago Bears NFL | Football | Soldier Field 62,358 1919 |1 Super Bowl, (8 prior championships)
Chicago Cubs - Baseball | Wrigley Field 32,742 1870 2 World Series wins (and 1 tie) ZUUD-UD-Z 1 1 V4044
2006-06-23T03:04Z Team
Chicago Blackhawks - Ice hockey | United Center 21,775 1926 | 5 Stanley Cups 2006'06'23T1 7_002
Chicago Bulls NBA Basketball | United Center 21,716 1966 | 6 NBA Championships 2006-06-23T19:20Z Team
Chicago White Sox | MLB | Baseball | U.S. Cellular Field 20,896 1900 |3 World Series 2006-06-23T19:252
2006-07-14T05:26Z Club
oo [ORRER r om 1 o e oy Toros
Chicago Sky WNBA | Basketball _ 6,520 2005 | 0 WNBA Championships 2007-04-22T15:35Z Club
02 April 2005 16 August 2017 2007-05-02T01:18Z
- - o . o 2007-05-02T01:19Z Club

eaEN o EEBPGaES o ¢ a» 2007-05-10T22:46Z
2007-05-10T22:47Z Club

Figure 2: A browser plugin that displays the history of Wikipedia tables

even within one version of a table times the number of table versions. But we have
now found a suitable solution that assists the user in picking a good cell matching
and are confident to publish results soon.

We also developed a browser plugin that makes such histories accessible and
explorable by the users. By tracking the history of tables and also their cells, we
can enrich each table in a Wikipedia article by a timeline that displays revisions
that contain changes to this particular table (see Figure 2)). The user can examine
the table in any of these revisions by simply clicking on that revision in the timeline.
Furthermore, the history of individual cells allows us to draw a heat map that reflects
certain cell metadata, such as the volatility of a cell or the age of the current value.
The past values of a cell can be explored by hovering over a cell. These means allow
users to gain insights on how the table developed over time, which can influence the
trust in its content or give inspirations for future edits.

Related work. Related datasets have been extracted from the web and Wikipedia
before. WebTables are an extract of static versions of tables on the web. The
infobox history comprise an orthogonal subset of structured information on
Wikipedia, namely However, the problem is different, as each property of an infobox
has a unique identifier. Additionally, they ignore the fact that a Wikipedia article
can contain multiple infoboxes. The tracking of individual rows has parallels with
linking temporal records [[7]], but we do not assume a static schema.

4 Change Mining: Distinguish Different Change Types

Often it is necessary to distinguish different types of changes. For example, if you
take a closer look at the changes in the change-cubes, you will notice that a large part
of the changes will appear as noise. What exactly is considered noise is of course
dependent on the use-case. While for some applications one user might want to
ignore, e.g., vandalism in Wikipedia, another user might be particularly interested
in vandalism. Besides vandalism, other types of noise exist, such as schema or for-
mat changes. In our change-cube format, these result in many changes and quickly

15

Tobias Bleifuf3: Understanding Change-Behavior of Data and Metadata

Registered residents (2014)/81182] Registered residents (2014)81182]
Citizenship Population Citizenship Population
I Germany 2,988,824 W Germany 2,000,000
Turkey 98,659 » Turkey 300,000
s Poland 53,304 = Poland 115,288

B B tay 25,250 B Bay 70,506
wwm Bulgaria 21,397 pa Bulgaria 35,000

Figure 3: An example for subtle vandalism in Wikipedia, which tampered with
the ratio of nationalities of Berlin citizens

dominate in number and size. Nevertheless, in both cases it is necessary to have a
way of distinguishing between the different types of changes. If the different types
are known in advance, a method method to distinguish them is called classification,
but we also have published results on how to perform a clustering of change-cubes
through mapping them to time series [[16]. These clusterings are especially useful
for exploration as also mentioned in Section [2}

Our master project in the last semester dealt with the detection of vandalism in
Wikipedia tables. In particular, the three students examined whether the structure
of tables could improve the results compared to purely text-based methods. Inter-
estingly, we have found in tables a very subtle kind of vandalism which can only
be detected with considerable background knowledge (see Figure [3)). However, the
results show that this is not an easy problem, because it is relatively difficult to
find features that perform better than the already known, more general features
from related work. Without external knowledge, it is even difficult for humans to
distinguish between vandalism and non-vandalism in the case of the subtle type
mentioned above.

Another classification problem is the following: When thinking of database changes,
the first thing that comes to mind are changes that insert new elements or delete
old ones or adjust values based on new factual information. However, because not
only the information stored in the database changes over time, but also the require-
ments placed on the database, the representation of the information in the database
also changes. These new requirements may have operational reasons, such as a new
database system or performance optimizations, but also functional reasons, such as
the need to store additional information about existing entities. I am currently work-
ing on distinguishing these two types of changes. I intend to use a machine-learning
method, which also includes elements of rule-mining. For example, an approach that
mines frequent itemsets of attributes that are added to or removed from an entity,
can already find results like this one:

delete:placeofdeath, delete:born, delete:died,
delete:placeofbirth, add:birth_date, add:birth_place,
add:death_place, add:death_date

16

5 Future Work: Change Prediction and Trust

This result shows, for example, how four attributes were renamed. However, it also
leads to new questions, such as which attribute pairs belong together, so which new
attributes store the information that were stored in one particular deleted attribute.
In addition, such changes will also change the format or domain of the values. So
another question would be, whether we can derive automatic transformation rules
for the values? If we had such rules, then we could also check whether the schema
changes were also accompanied by simultaneous value changes. Furthermore, we
could apply those rules to other entities for which that schema change was not
performed yet and check for the other entities whether it was applied consistently.

Related work. There is related work on ontology change [5] and database schema
evolution [9]]. These works assume that you have multiple versions of an explicit
ontology/schema, while we try to infer that an implicit schema changed based on
observed data changes. There is also work on schema inference [[13]] that tries to
infer schema on schemaless datasets, which, however, assume a static dataset and a
static schema. If we apply this schema inference on multiple snapshots, though, and
compare the inferred schemas, we might also recognize schema changes.

5 Future Work: Change Prediction and Trust

One step further than change mining is the change prediction: given a set of past
changes can we predict which future changes are likely to happen and when they
are going to happen? This problem is related to the problem of knowledge graph
completion [|12]], which deals with the prediction of missing links between entities.
The works in this field often assume a static knowledge graph, however there have
been recent works that recognize that this assumption might be too strong for real-
world datasets and therefore deal with dynamic knowledge graphs [[10,[14], which
are much more related to our problem than static graphs. There is also work that
leverages schema information [11]] for that task, but we are not aware of any work
that tries to solve the problem on dynamic knowledge graph with a dynamic schema.
Besides these probabilistic models, we also want to look into rule-based approaches.
As an initial inspiration, we consider temporal association rules [|1]] and how we can
adjust and apply them to the change-cube.

The insight we gain from our analysis will not only give the user a better under-
standing of their data and its behavior over time. In fact, it is possible to draw profit
from these insights through application in, e.g., increasing data quality through noti-
fication of unusual change events and database tuning. For example, the discovered
knowledge can support decisions on which indices and materialized views to choose,
because it can serve as an input for predictions of their update costs. More impor-
tantly, it can help users decide which data to trust and which not to trust, which
appears more important than ever today.

17

Tobias Bleifuf3: Understanding Change-Behavior of Data and Metadata

References

[1]

[11]

[12]

[13]

J. M. Ale and G. H. Rossi. “An approach to discovering temporal associa-
tion rules”. In: Proceedings of the ACM Symposium on Applied Computing. 2000,
pages 294-300.

R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann, 2000.

D. Laney. 3D Data Management: Controlling Data Volume, Velocity and Variety.
Technical report. Gartner, 2001.

M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. “WebTables:
exploring the power of tables on the web”. In: Proceedings of the International
Conference on Very Large Databases (VLDB) 1.1 (2008), pages 538-549.

G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou.
“Ontology change: classification and survey”. In: The Knowledge Engineering
Review 23.2 (2008), pages 117-152.

J. Zhao, F. Chevalier, and R. Balakrishnan. “KronoMiner: using multi-foci
navigation for the visual exploration of time-series data”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2011, pages 1737—
1746.

P.Li, X. L. Dong, A. Maurino, and D. Srivastava. “Linking temporal records”.
In: Frontiers of Computer Science 6.3 (2012), pages 293-312.

E. Alfonseca, G. Garrido, J. Delort, and A. Pefias. “WHAD: Wikipedia historical
attributes data - Historical structured data extraction and vandalism detection
from the Wikipedia edit history”. In: Language Resources and Evaluation 47.4
(2013), pages 1163-1190.

A. Cleve, M. Gobert, L. Meurice, J. Maes, and]J. Weber. “Understanding
database schema evolution: A case study”. In: Science of Computer Program-
ming 97 (2015), pages 113-121.

C. Esteban, V. Tresp, Y. Yang, S. Baier, and D. Krompafs. “Predicting the co-
evolution of event and knowledge graphs”. In: International Conference on In-
formation Fusion (FUSION). 2016, pages 98-105.

P. Minervini, C. d’Amato, N. Fanizzi, and F. Esposito. “Leveraging the schema
in latent factor models for knowledge graph completion”. In: Symposium on
Applied Computing (SAC). 2016, pages 327-332.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. “A review of relational
machine learning for knowledge graphs”. In: Proceedings of the IEEE 104.1
(2016), pages 11-33.

M.-A. Baazizi, H. B. Lahmar, D. Colazzo, G. Ghelli, and C. Sartiani. “Schema
inference for massive JSON datasets”. In: Proceedings of the International Con-
ference on Extending Database Technology (EDBT). 2017, pages 222-233.

18

[14]

[15]

[16]

References

R. Trivedi, H. Dai, Y. Wang, and L. Song. “Know-Evolve: Deep Temporal Rea-
soning for Dynamic Knowledge Graphs”. In: International Conference on Ma-
chine Learning. 2017, pages 3462-3471.

T. Bleifufs, L. Bornemann, T. Johnson, D. V. Kalashnikov, F. Naumann, and
D. Srivastava. “Exploring Change — A New Dimension of Data Analytics [Vi-
sion]”. In: Proceedings of the International Conference on Very Large Databases
(PVLDB) (2018). Accepted.

L. Bornemann, T. Bleifuf3, D. Kalashnikov, F. Naumann, and D. Srivastava.
“Data Change Exploration using Time Series Clustering”. In: Datenbank Spek-
trum 18.2 (2018), pages 1-9.

19

Mutual Human Actuation

Lung-Pan Cheng

Human Computer Interaction
Hasso-Plattner-Institut
lung-pan.cheng@hpi.uni-potsdam.de

Human actuation is the idea of using people to provide large-scale force feedback
to users. While the experience of human actuators was decent, it was still inferior
to the experience these people could have had, had they participated as a user. We
address this issue by making everyone a user. The key idea is to run pairs of users at
the same time and have them provide human actuation to each other. Our system,
Mutual Turk, achieves this by (1) offering shared props through which users can
exchange forces while obscuring the fact that there is a human on the other side,
and (2) synchronizing the two users’ timelines such that their way of manipulating
the shared props is consistent across both virtual worlds. We demonstrate mutual
human actuation with an example experience in which users pilot kites though
storms, tug fish out of ponds, are pummeled by hail, battle monsters, hop across
chasms, push loaded carts, and ride in moving vehicles.

1 Introduction

Many researchers argue that the next step in virtual reality is to allow users to not
only see and hear, but also feel virtual worlds [10]. Researchers initially explored
the use of mechanical machinery for that purpose, such as exoskeletons []1]] and
robotically actuated [7]] props.

Unfortunately, the size and weight of such mechanical equipment tends to be
proportional to what they actuate, often constraining such equipment to arcades
and lab environments.

Researchers therefore proposed creating similar effects by replacing the mechani-
cal actuators with human actuators. Haptic Turk, for example, uses four such human
actuators to lift, bump, and shake a single human user [2]]. TurkDeck brings human
actuation to real walking [3]]. It allows a single user to explore a virtual reality ex-
perience that is brought to life by ten human actuators that continuously rearrange
physical props and apply forces to the user.

While both systems produced highly-rated experiences for their users during user
testing, unfortunately (1) the need to recruit four to ten human actuators means that
these systems require a non-trivial amount of preparation, and (2) unsurprisingly,
human actuators rated their experience significantly lower than the user’s experience.

In this paper, we address this issue by making everyone a user. We introduce
mutual human actuation, a version of human actuation that works without dedicated
human actuators.

21

mailto:lung-pan.cheng@hpi.uni-potsdam.de

Lung-Pan Cheng: Mutual Human Actuation

2 Mutual Turk

Mutual Turk is a real walking virtual reality system that implements mutual human
actuation. The key idea behind Mutual Turk is that it runs two users at the same
time, synchronizing their experience so that every time one user is manipulating an
object in her virtual world, the other user is subjected to forces presumably caused
by something in his virtual world.

Figure 1: (a) This user, alone in his virtual world, is trying to pull a huge creature
out of the water. (b) At the same time, this other user, also alone in her virtual
world, is struggling to control her kite during a heavy storm. (c) While users’
experiences of force might suggest the presence of a force feedback machine,
Mutual Turk achieves force feedback instead by orchestrating users so as to
actuate the shared prop at just the right moment and with just the right force
to produce the correct experience for the other user.

Figure[l|shows an example. (a) One of the two users, alone in his virtual world,
is trying to pull a huge creature out of the water. Through the fishing rod he feels
how the creature is struggling. (b) At the same time, the other user, also alone in
her virtual world, is struggling to control her kite during a heavy storm, which she
feels pulling at her kite. (c) In reality, both users are connected by means of a shared
prop, so that all forces they output become input to the other user. This is the main
concept behind Mutual Turk. Mutual Turk’s main functionality is that it orchestrates
users so as to actuate props just at the right moment and just with the right force to
produce the correct experience for the other user.

2.1 Shared Props

The key to enabling mutual human actuation is the use of shared props — props allow
users to exchange forces without revealing that these forces are generated by another
human (through, e.g., skin softness, temperature, moisture, shape of hands).

Different prop designs enable different levels of expressivity. We explored five:
continuous force (most expressive), moving, impact, contactless sensations, and
rearranging props (least expressive).

22

2 Mutual Turk

1. Continuous Exchange of Force Between Users” Hands The kite/fishing-rod
prop from Figure [1| uses string to connect the two handles. This specific design
allows the prop to eliminate much of the information about what is located at the
other end of the prop — the only information that is transmitted is the direction and
magnitude of the tension. This allows the system to re-envision the many dimensions
that were filtered out, such as to render the kite at the end of a 100x longer tether.

2. Continuous motion In Figure[2h, the user pushes an empty cart under a faucet.
He watches as the faucet drops water into the tank. (b) Meanwhile, in the other
user’s world, she hops onto the escape pod. (c) She then rides the automated pod
down an evacuation tunnel — propelled by the first user pushing his cart, as the first
user starts to push his (now much heavier) cart on to next destination.

-

Figure 2: One user pushes cart around while the other enters and rides an escape
pod

The office chair prop transmits movement and rotation in one direction. In return,
the user sitting on the chair affects the chair’s inertia. Unlike the interactions in the
previous category, only one user’s hands are involved in driving the office chair. This
allowed us to drop the tether and use a rigid prop instead.

3. Impact The user in Figure [3] sees himself walking in stormy weather; he sees
huge hailstones shooting down from the sky at an angle, hitting his body at various
locations. (b) In the meanwhile, the other user is fighting back a monster using an
improvised weapon made from a plastic tube she found at the lab.

The foam stick used in this scene touches the other user for only very brief periods
of time, which properly obfuscates the origin of the force.

23

Lung-Pan Cheng: Mutual Human Actuation

Figure 3: One user is getting bombarded by hail, as the other user is fighting a
monster

4. Contactless sensations In Figure[dh, our user is trying to fight her way back to
lab against very heavy wind. (b) Meanwhile, our user in the other world is trying to
get a fire going to distill the emulsion created earlier.

The forces exchanged in this scene are obviously minimal. However, the interaction
produces a strong tactile sensation (and certainly properly obfuscated).

Figure 4: One user is trying to fight her way through heavy winds, while the other
is trying to get a fire going

5. Rearranging props Finally, Figure 5h shows a user waiting for a series of pillars
to rise in order to allow her to cross the pit ahead of her. As she lowers her right foot
to probe the space below, she can feel the void. Once she sees that the pillar has fully
risen, she can step on it. (b) In the meanwhile, the other user is solving a puzzle that
requires him to place numbered boxes on matching tiles.

24

2 Mutual Turk

This is the least expressive type of exchange between two users as no physical
contact between the two users is ever established. It thus is also the most obfuscated
type of interaction.

Figure 5: One user is waiting for the next pillar to rise, while the other user rear-
ranges boxes to solve a puzzle

2.2 Synchronizing Users

As discussed earlier, the main function of the Mutual Turk system is to serve as

scheduler, i.e., to orchestrate the two users in a way that their experiences are properly
synchronized in time and space.

So far, we only looked at what we call action sequences, i.e., sequences during

which the users already hold the shared prop and the subsequent interaction emerges
largely from the use of this prop.

user 1 ——— user 2

coaction coaction

scene 1 scene 2

acqusition
disposal

disposal
acqusition

unlinked

Figure 6: Mutual Turk experiences typically consist of multiple scenes, each of
which consists of prop acquisition, use, and disposal

25

Lung-Pan Cheng: Mutual Human Actuation

As illustrated by Figure [} complete Mutual Turk experiences are more encom-
passing than this. Mutual Turk must not only synchronize the use of the shared
props, but also their acquisition and disposal. A typical scene consists of a period of
real walking within a designated area, the acquisition of a prop, the use of the prop
forming an action sequence, the disposal of the prop, and return to unencumbered
real walking. Experiences are then sequences of such scenes.

3 Implementation

As illustrated by Figure[7, Mutual Turk runs inside of Unity 3D and is written in C#.
This includes (1) a native OptiTrack NatNet Unity plug-in that receives the tracking
data directly from OptiTrack Motive, (2) Petri net server and client and (3) our demo
experience called “Edison, Jr.” (in which users have to perform a series of experiments
to help their ancestor regain physical form).

Optitrack Prime 17w

Gear VR
Samsung S6

—

Linksys WRT1200ac
wireless router

= NETGEAR ProSafe
GS728TPP switch

\Lk@

tracking system |«

3D adventure

———— |MotiveDirect:
skeletons/rigidbodies : Mutual
Turk
S.Eﬁt!‘jﬂ.‘?.t.. " transition =Petrinet§ client
Mutual Turk server Unity Engine

GearVR Platform

Figure 7: The Mutual Turk system diagram

Headsets to allow for unencumbered real walking, we used Samsung S6s mounted
into GearVR headsets with earphones attached. Both headsets run their own Unity
app where a Mutual Turk client and the adventure experience are embedded. Via
our wireless network, the Mutual Turk client receives the tracking data and com-

26

3 Implementation

municates with the Mutual Turk server to synchronize its Petri net with the other
Mutual Turk clients.

For tracking, we use nine OptiTrack Prime 17w cameras to track a 5 m x 5 m
tracking space, running the OptiTrack Motive 2.10 tracking software. Users wear
motion capture suits. To make props trackable, we attached rigid body markers, 6.7
mm to 9.5 mm.

Mutual Turk runs in real time with two users. We achieved 40+ fps by making VR
scenes low-poly, simple lights, etc. In addition, we enabled time warping to guarantee
interactive rates. The maximum delay between visual and haptics was around 25ms.
The devices receive tracking updates wirelessly at 120 Hz with ping interval 5ms in
average.

3.1 Tracking Acquisition and Disposal

Mutual Turk determines when to advance the global timeline using simple rules,
such as “fishing rod user is touching the fishing rod and the fishing rod prop has
started to move”.

Internally, Mutual Turk considers the two users and their acquisition and disposal
of props as a concurrent state machine. It manages this state machine as a Petri net
[[8]]. This allows Mutual Turk to ensure that the overall story arc does not progress
until both users are ready for it. The Petri net is also useful for level designers to
detect and avoid potential dead locks, i.e., situations where both users would be
waiting for each other.

drop rod anchor move

get rod
I get
no rod got rod fishing kite
. read andle steer left
fishing y
kiting action 1 action 2

Figure 8: The Petri net diagram that governs the acquisition sequence of the
fishing-vs.-kite scene

Figure |8 shows the Petri net of the fishing rod vs. kite acquisition sequence de-
scribed earlier. As we see, in the first half of the Petri net, the fishing user and the

27

Lung-Pan Cheng: Mutual Human Actuation

kite user have no influence on each other. The fishing user has the freedom to pick
up or drop the fishing rod anytime and the kite user has the freedom to walk around
as well. Only when they both are in their correct respective locations and the kite
user has grabbed the handle, both users get to move on. One can extend the Petri
net to continue the experience of the remaining user as a single-user without mutual
haptics experience if one of the users refuse to progress.

3.2 Tracking and Extrapolation During Action Sequences

In the fishing rod vs. kite scene, Mutual Turk needs to know the amount of tension
on the tether, e.g., in order to determine whether the user is pulling hard enough
to reel in the creature, but also to render the kite and fishing line visuals properly.
Figure [¥]illustrates how the fishing rod/kite prop allows Mutual Turk to sense this
tension. The key idea is that the prop bears two markers on the fishing rod side. The
angle between the two markers indicates how much the rod is currently bent, which
indicates the applied force.

rigid body 2

Figure 9: Mutual Turk computes the tension applied to the fishing line based on
how much the prop is bent

4 Related Work

This work is based on haptics and motion experience devices, passive haptics, and
in particular human actuation.

4.1 Haptics and Motion Experience Devices
A wide range of devices has been created in order to provide users with a sense
of touch and motion. Many of the standard stationary platforms are based on the

6-DOF Stewart platform based on six hydraulic cylinders [9]]. Force feedback can be
realized through a variety of approaches. FlexTorque creates force feedback using an

28

5 Conclusion and Future Work

arm exoskeleton using retractable belts [|11]. Seminal work by McNeely introduced
the idea of using a robotic arm to repositioning a single prop so as to simulate a
surface wherever the user tries to touch [7]].

4.2 Passive Haptics

Previous work shows that props, also known as passive haptics can enhance the
sense of presence [4]]. Several “passive haptic” systems use physical props in real
walking environments. Low et al., for example, use Styrofoam walls onto which
they project augmented reality experiences [|6]. Similarly, mixed reality for military
operations in urban terrain [5] uses passive haptics to add a haptic sense to otherwise
virtual objects, terrain, and walls.

4.3 Human Actuation

Haptic Turk [2]], for example, uses four such human actuators to lift, bump, and shake
a single human user in the form of a human motion platform. By making human
actuators perform movements according to timed motion instructions, Haptic Turk
assures that users’ physical experience matches their virtual experience. TurkDeck
extends the concepts of human actuation to real walking [3]]. It allows a single user
to explore a virtual reality experience that is brought to life by ten human actuators
that continuously rearrange physical props and apply forces to the user. Mutual Turk
builds on Haptic Turk and TurkDeck, but eliminates the need for dedicated human
actuators.

5 Conclusion and Future Work

We have introduced the concept of mutual human actuation, presented the imple-
mentation details and demonstrated this system at the example of a demo experience.
The main benefit of our approach is that it eliminates the need for dedicated human
actuators and instead allows everyone to enjoy their experience in the role of a user.
The main limitation of Mutual Turk is that designing experiences for mutual hu-
man actuation requires additional care, as each scene is subject to at least twice the
number of design requirements as regular scenes. As future work, we are planning
to develop a design tool based on the Petri net model and extend mutual human
actuation to more than two users.

References

[1] M. Bergamasco. “The GLAD-IN-ART Project”. In: Virtual Reality. 1993,
pages 251-258. ISBN: 978-3-642-88650-8.

29

Lung-Pan Cheng: Mutual Human Actuation

2]

L.-P. Cheng, P. Luehne, P. Lopes, C. Sterz, and P. Baudisch. “Haptic Turk: A
Motion Platform Based on People”. In: Proceedings of the 32Nd Annual ACM
Conference on Human Factors in Computing Systems. 2014, pages 3463-3472. DOL:
10.1145/2556288.2557101.

L.-P. Cheng, T. Roumen, H. Rantzsch, S. Koehler, P. Schmidt, R. Kovacs, J.
Jasper, J. Kemper, and P. Baudisch. “TurkDeck: Physical Virtual Reality Based
on People”. In: Proceedings of the 28th Annual ACM Symposium on User Interface
Software and Technology. 2015, pages 417-426. DOI: 10.1145/2807442.2807463.

H. G. Hoffman. “Physically Touching Virtual Objects Using Tactile Augmen-
tation Enhances the Realism of Virtual Environments”. In: Proceedings of the
Virtual Reality Annual International Symposium. VRAIS "98. 1998, pages 59-64.
ISBN: 0-8186-8362-7.

C. E. Hughes, C. B. Stapleton, D. E. Hughes, and E. M. Smith. “Mixed Reality
in Education, Entertainment, and Training”. In: IEEE Comput. Graph. Appl. 25.6
(2005), pages 24-30. DOI: 10.1109/MCG.2005.139.

K.-L. Low, G. Welch, A. Lastra, and H. Fuchs. “Life-sized Projector-based
Dioramas”. In: Proceedings of the ACM Symposium on Virtual Reality Software
and Technology. 2001, pages 93-101. ISBN: 1-58113-427-4. DOI:|10.1145/505008,
505026,

W. A. McNeely. “Robotic Graphics: A New Approach to Force Feedback for
Virtual Reality”. In: Proceedings of IEEE Virtual Reality Annual International
Symposium. 1993, pages 336-341. DOI:|10.1109/VRAIS.1993.380761.

W. Reisig. “Petri Nets and Algebraic Specifications”. In: Theor. Comput. Sci. 80.1
(1991), pages 1-34. DOI: [10.1016/0304-3975(91)90203-E.

D. Stewart. “A Platform with Six Degrees of Freedom”. In: Proceedings of the
Institution of Mechanical Engineers 180.1 (1965), pages 371-386. DOI: |10.1243/
PIME_PROC_1965_180_029_02.

I. E. Sutherland. “The Ultimate Display”. In: Proceedings of the IFIP Congress.
1965, pages 506-508.

D. Tsetserukou, K. Sato, and S. Tachi. “FlexTorque: Exoskeleton Interface for
Haptic Interaction with the Digital World”. In: Proceedings of the 2010 Interna-
tional Conference on Haptics - Generating and Perceiving Tangible Sensations: Part
1I. 2010, pages 166—-171. ISBN: 3-642-14074-2.

30

https://doi.org/10.1145/2556288.2557101
https://doi.org/10.1145/2807442.2807463
https://doi.org/10.1109/MCG.2005.139
https://doi.org/10.1145/505008.505026
https://doi.org/10.1145/505008.505026
https://doi.org/10.1109/VRAIS.1993.380761
https://doi.org/10.1016/0304-3975(91)90203-E
https://doi.org/10.1243/PIME_PROC_1965_180_029_02
https://doi.org/10.1243/PIME_PROC_1965_180_029_02

Process Mining Methodologies

Kiarash Diba

Business Process technology
Hasso-Plattner-Institut
Kiarash.diba@hpi.uni-potsdam.de

Process mining is a discipline that exploits real life data recorded in organizations’
information systems to facilitate business process monitoring, analysis and im-
provement. As a relatively young research area there are a number of challenges
unsolved in regard to process mining projects. My research will focus on method-
ologies to conduct a process mining project considering different requirements
and objectives. My research is still in its beginning phases of exploration, and
observation which will drive the research to the phases of building the theory,
evaluation and deduction.

1 Overview

In every organization a variety of processes exist and are performed. These processes
are a set of connected activities performed to realize a business goal, create or deliver
value to customers. A few examples of such processes are sale processes, manufac-
turing processes, handling a purchase order, etc. Business process models are an
abstract graphical representation of processes. Business Process Management (BPM)
is a field concerning the design, modelling, execution, analysis, optimization and
improvement of business processes and uses process models as its basis [4]]. One
important phase in BPM is the analysis and improvement of processes. On one hand,
most classical process-oriented analyses in BPM (such as simulation) do not incor-
porate available data, while on the other hand, data-based analysis do not consider
the end to end processes. Process mining however, bridges this gap between classical
data analysis and process-oriented analysis [3]]. Process mining incorporates data
recorded in various information systems and ERP systems to analyze processes and
generate insight on the process models and their performances. The starting point
for process mining is an event log found in various information systems, usually
consisting of a case id, the performed activity and a timestamp. Process mining takes
the event data recorded by the software system and enables three main types of
analysis: process discovery, conformance checking and process enhancement and
performance analysis [2]]. Process discovery is the automatic generation of process
models using the event data. It answers the questions of what really happened and
what the process actually looks like. Conformance checking takes both the event data
and the process model and compares them by replaying reality on top of the model.
It identifies differences, deviations and the desired paths. Conformance checking
can be used for auditing and fraud detection among others. Enhancement takes
the log and the model and enriches the model with performance related informa-
tion such as waiting times, throughput times, and bottlenecks. It enables various

31

mailto:Kiarash.diba@hpi.uni-potsdam.de

Kiarash Diba: Process Mining Methodologies

performance related analyses. However, process mining is not restricted to these
types. Process mining can be used in online settings. Monitoring processes as they
are being executed and incorporating data in real time to facilitate process moni-
toring, deviation detection, performance prediction (such as remaining flow time
for a running case), and recommendation (e.g. identifying the next best activity to
perform depending on the case). During the last few years, various process mining
techniques, algorithms, and tools have been developed and have been used in dif-
ferent domains and scenarios. However, as e relatively new field, various challenges
still exist. As identified in the process mining manifesto published by the members
of IEEE task force on process mining, these challenges range from data collection,
preparation and cleaning to dealing with concept drifts, providing operational sup-
port, etc. Various further challenges have been identified in different case studies
when applying process mining techniques in different domains. Addressing these
challenges has been the focus of process mining researchers in recent years. However,
many challenges have remained unsolved and new challenges are emerging as a re-
sult of wider applications as use cases. This specifies the various potential research
problems in the field of process mining. Currently, different case studies have been
conducted in different ways and arising issues and challenges have been addressed
in an ad-hoc manner. A more structured methodology for conducting case studies,
tackling challenges and extracting valuable insights can have a significant impact on
the quality of case studies and identifying process mining best practices. While, tech-
niques and algorithms are reaching a relatively mature level, applications, use cases
and a specific methodology to conduct process mining projects in different domains
have not followed suit; while, for example, in the field of data mining a dominant
methodology called Crisp-DM (short for Cross Industry Standard for Data Mining)
has been suggested and successfully used for some years. Therefore, my future work
will focus on process mining methodologies and application and use cases. Starting
with a systematic literature review of use cases in different domains and structuring
projects based on different characteristics such as project goals and objective, tech-
niques, algorithms, tools etc. Further use cases will be conducted and an analysis
of different process mining tools will be performed. This will tie to our projects in
the Business Process Technology group at HPI. My research can contribute to these
projects and can be positively influenced by the project, the collaboration and its
result.

2 Approach

The starting point is a systematic literature review of available process mining use
cases in different settings, domains and with various objectives. Structuring these
case studies and identifying the best practices will contribute to the development of
new methodologies to conduct process mining projects in real life. Furthermore, we
will conduct case studies to develop, test and improve these methodologies through
real life challenging projects.

32

3 Related Work

3 Related Work

As mentioned before, there are not many works concerning methodologies for pro-
cess mining. Three methodological frameworks have been published to support the
execution of a process mining project: (i) the process diagnostic method [|1]], (ii) the
L* life-cycle model and (iii) the PM?methodology. Non of which are comprehensive
and does not provide a generic approach and method to conduct process mining
projects in real life setting with various requirements. The process diagnostic method
(PDM) consists of 6 high level steps starting from log preparation and log inspection
to control flow analysis, performance analysis, role analysis and transferring results.
Their methodology is rather high level and do not specify further detail on each
step. Furthermore, It does not consider one of the most important factors in pro-
cess mining projects which is identifying project goals, objectives and requirements.
It also neglects techniques and tool requirements. The L* life-cycle model encom-
passes steps such as plan and justify, extract, create control flow and connect it to
the data, create integrated process model, and operational support. Although the
L* life cycle model considers the process goal and objectives in the first two phases,
it is rather too broad. It includes the whole spectrum of process mining capabili-
ties from process discovery to operational support. Tailoring it to specific project is
therefore, not a straightforward task and it can lead to ineffective use of resources
for conducting the project and results which were not the main focus of the project.
The third method PM2-methodology attempts to improve the two previously men-
tioned methodologies and includes six phases. Planning, extraction, data processing,
mining and analysis, evaluation and process improvement and support. While this
methodology is certainly an improvement of the previous methods and addresses
some of their problems, there are still lacking areas. The method focuses on narrow
perspectives of process mining (e.g. Control-flow), and more importantly neglects
the domain in which the project is being conducted and its specific requirements.
Therefore, there is still work that needs to be done in this area to drive projects more
effectively and with less manual and unstructured effort.

4 Future Work

My future work will focus on process mining methodologies and application and use
cases. Starting with a systematic literature review of use cases in different domains
and structuring projects based on different characteristics such as project goals and
objective, techniques, algorithms, tools and etc. Further use cases will be conducted
and an analysis of different process mining tools will be performed. This will tie to our
projects in the Business Process Technology group at HPI. My research can contribute
to these projects and can be positively influence by the project, the collaboration
and its result. During my Master thesis, I have been working on business process
simulation tools and their capabilities, limitations and potential improvements. The
use of real data through process mining for input to simulation scenarios has a
significant impact on the reliability and precision of the final result of the analysis.

33

Kiarash Diba: Process Mining Methodologies

References

[1] M. Bozkaya, J. Gabriels, and J. M. van der Werf. “Process Diagnostics: A
Method Based on Process Mining”. In: International Conference on Information,
Process, and Knowledge Management (eKNOW'09). 2009, pages 22-27.

[2] W.M. Van der Aalst. “Process Discovery: An Introduction”. In: Process Mining.
2011, pages 125-156.

[3] W.M. Van der Aalst and A. Weijters. Process Mining: A Research Agenda. 2004.

[4] M. Weske. “Business Process Management Architectures”. In: Business Process
Management. 2012, pages 333-371.

34

Preparing for a Virtual City Model as a Digital Twin of an
Urban Environment

Andreas Fricke

Computer Graphics Systems
Hasso Plattner Institute for Digital Engineering
Andreas.Fricke@hpi.uni-potsdam.de

This report describes my recent activities on Service-oriented Systems Engineer-
ing in the HPI Research School as a continuation of my Spring Report 2018. Fur-
thermore it summarizes my research and teaching activities since my joining the
graduate school in mid-October 2017.

1 Overview

Because of its transdisciplinary nature, geoinformation science integrates research
and development of different disciplines to generate solutions for complex research
and application problems with a spatial component. Current R&D, however, largely
disregards the complexity to model multidimensional geodata from various sources
in order to build - in this case — more than a visually represented city model for var-
ious applications (such as maps, data, analysis, apps). Such complexity is required
to cater for different domains, and heterogeneous user groups (universality). This
development is paralleled by the ubiquity of geodata and geodata processing sys-
tems [8]], facing experts and users alike with modern data and software engineering
concepts, such as SOA /SOC or open source software [|6]].

To enable efficient utilisation of heterogeneous geospatial software systems and
data pools, key challenges to build (transmit, harmonise, transform, combine) smart,
integrated virtual city model as a digital twin of the urban environment — regardless
of potential users’” domains or expertise. Dedicated web-services are required to
provide non-professional users with the necessary knowledge to make full use of
potential to present such higher dimensional information spaces [6,15].

1.1 About the previous report

The previous report in spring 2018 dealed with the simple integration of initial
services to real-world problems. Thereby a simple seen but more complex task is two
combine heterogeneous geodata from different origins, but identical area coverage.
Concept and procedures were aligned with the framework of the Open Geospatial
Consortium (OGC). An issue in this context was to assess if existing standards could
be applied here or a specific service standard will have to be defined. Another issue
was related to how services can be linked in an intelligent way. The previous main
research focus was how intelligent services are transferable to different application

35

mailto:Andreas.Fricke@hpi.uni-potsdam.de

Andreas Fricke: Preparing for a Virtual City Model as Digital Twin

fields in a generic way and what kind of granulation therefore is needed. The aspect
of domain-less services was under consideration due to a generic conceptualisation.

1.2 About this report

This report will give a summary about the application of the concept based on a real-
world scenario of a virtual city model. This city model is the preparation for an smart
digital twin of an urban environment. At the outset a fundamental view on the terms
Digital Twin and Digital Model will be pointed out, while this outset highlights the
access to the subject matter in general. Afterwards the case of application is described
while important aspects are emphasised. Finally the past research activities were
summarised and a short outlook will been given.

1.3 Digital Twin or Digital Model?

The scientific disciplines Computer Graphics and Geoinformatics differ. In contrast
to geoinformatics, the Digital Twin in Computer Graphics is seen as the most accurate
image of a real-world object. However, in geoinformation science the focus is always
on the digital model, whose level of abstraction serves as a basis for a wide variety
of applications. They differ in the degree of similarity defined and required by a
particular application [[4]].

The Digital Gemini, on the other hand, is usually the most accurate image of reality;,
although it represents only a model of it, due to possible fine granular differences to
the reference, the reality. Therefore, Digital Twins are also called “Look-a-Like”, “Feel-
a-Like”, “Work-a-Like”, since the focus is often not solving an application problem,
but much more expressing reality in certain forms [[18]].

The functions of a digital twin are usually limited to a few individuals [17]]. While
the spatial reference and application context usually plays a minor role. The Com-
puter Graphics has a technical application reference, as an example the calculation of
lighting in a rendered scene of different objects or as a technical limitation factor in
the process flow. Geoinformation science is application-oriented due to its domain.
Thus, each digital modelling, the degree of similarity, and abstraction grade is de-
fined by the application itself, research question and target group, as an example a
spatial planning application.

Against Digital Twin as a model, on the other hand, has a very low modelling depth
in terms of classical spatial applications, because its abstraction level is very low. The
realization level is very high, therefore it is realistic, although the focus still is on the
technical processing and presentation [[1]]. Nevertheless, this is a limiting factor to
that degree as the limit of perception in terms of similarity to reality is undershot
[4]. However, for a large part of the applications this is technically conceivable but
irrelevant, as it does not help to represent or solve a problem in a better way [7].

At this point, the different approaches of the mentioned scientific disciplines be-
comes apparent, although both use the example of the virtual city model to work
on the same application. Viewed on a continuum that reflects iconicity [10]]. Both
disciplines approach each other bipolarly, but always with different foci of modelling

36

2 Approach

- me 7 2
Vo dnm e
_.I‘

u

Figure 1: An urban agglomeration. Source Wikimedia: 2018.

and “look-a-like”. However, there are points of contact that constitute the basis of
this research. But without further effort, those views on the same object or applica-
tion cannot be combined. Certainly, by combining various concepts, techniques, and
processes in a complementary way, the application that is based inter alia on spatial
data can benefit [6].

2 Approach

As mentioned the use case scenario for the adaptation of web-services in a smart
process chain is a virtual city model for a Middle Eastern metropolitan city. The con-
ceptual work will be applied to a current R & D project base. In this project, different
user groups with different geospatial expertise collaborate to acquire and process
geodata to build a smart 3D model of an urban agglomeration for exploration, anal-
ysis and decision making. Figure|l|gives an impression of potential granular object
categories a smart 3D model has to cope with. Benefits and limitations of servici-
fication in the geospatial domain will be demonstrated by discussing, firstly,
the service-based generation of a geospatial database from a variety of heteroge-
neous sources [[6]], secondly, any further analytics and provisioning [20]], and thirdly,
visualisation modules as well [9].

37

Andreas Fricke: Preparing for a Virtual City Model as Digital Twin

2.1 Use case objectives

In this context, the objectives discussed here are to build an integrated database for
a Middle Eastern urban agglomeration. Modelling such agglomerations, the city
centres of which constitute a highly developed form of densely integrated urban
structures, requires a variety of geospatial data with different geometric, semantic
and temporal features and granularity [3, [12]]. Dealing with such complex spatial
structures calls for efficient and effective handling systems [13, 14]]. The architec-
ture, following the concerns of service-oriented systems, is designed to address
requirements, focusing on processing scalability (performance) and interoperability
(parametric polymorphism) [5]]. A modular process chain implements generic pro-
cessing strategies to speed up individual tasks and facilitate the distribution of those
tasks alongside corresponding datasets within a distributed infrastructure for data
storage [6]]. The integrated geospatial database mentioned above serves as a basis
for the generation of a smart 3D city model with GIS functionalities. The database is
therefore populated with a range of data from heterogeneous sources, such as remote
sensing imagery, geotopographic base data, building-related data, various thematic
data stocks, etc. The city model is conceived as a flexible, service-based, modular
structure, allowing for a variety of applications and analyses, such as map generation,
locational and network analysis or planning and citizen participation instrument.
In short, the 3D city model provides an intuitive, transparent, and informative deci-
sion support system for local communities and stakeholders, i.e. heterogenous user
groups. Proper use of the system requires considerable knowledge and skills on the
part of local administrators, planners, decision makers, interested citizens and their
associations. However, most of the targeted users as well as a number of the collabo-
rating partners do not have a domain-specific background or professional expertise.
Besides the characterisation of users it is important to highlight the characteristics
of existing heterogeneous data pools as well.

2.2 Multidimensional Geodata

What does multidimensional mean? In many disciplines, two-dimensional data
sets are the ones to chose. While two- and higher-dimensional data sets are multi-
dimensional, the term multidimensional tends to be applied only to data sets with
three or more dimensions. Normally when thinking about multi-dimensional data
they are characterised by time or multiple phenomena obtained [2]. Typically the
geographical dimension is limited to 3 + 1 D (spatially and temporally) [21]]. In fact
combining time series and cross-sectional data can be thought of as daily issues in
the geospatial domain. But often these analyses or standard tasks are limited to one
dimension only. As an example, weather forecast data sets provide forecasts for mul-
tiple target periods, conducted by multiple forecasters or automated models, and
made at multiple horizons [21]]. The multiple dimensions provide more information
than can be gleaned from two-dimensional data sets. Therefore, multidimension-
ality has two meanings which both are important but require different strategies.
The tricky task is to combine both in an flexible process chain to take advantage of

38

2 Approach

different perspectives of one and the same object. The solution are partly reverse
engineering techniques where key facts are:

1. Multidimensional database based on various resources

2. Reverse engineering
find identical features in different scales
harmonise geodata

homogenise geodata

3. Enabling geoprocessing at runtime
2.3 Requirements for Digital Modelling and Data Integration

The geographic dimension or the scale of geographic research includes a specific
spatial order of the objects studied and a certain scale-adequate intensity in the
analysis and synthesis. The equality of methods used and the same intensity of
the exploration are reflected in the selection of parameters for characterization of
objects (natural space or landscape space and their components [20]. Following
this theory, within a geographical dimension, the objects under investigation are
strictly comparable, the methods used have the same degree of exactitude about the
nature of objects and these are described at the same level of abstraction [|16]]. Indeed
models, as simplified representations, come in many different “flavours” and are
defined as a schematisation of reality with operational potentials [11]]. This points
to the intimate relationship between the type and degree of schematisation and the
objectives for the call on the operational potentials. It is targeting to scale down and
convert reality to a form which is comprehensible. Hence, a model is a manageable,
comprehensible and schematic representation of a piece of reality [19].

Technically the modelling can be utilised “rule-based” and “constraint-based”.
Whereas “rule-based” includes an expert systems legacy (“if something then action”)
with a blind end. The generalisation has a high level of complexity and it is not easy to
identify rules because of its rigidity. This is a not exactly generalised modus ponens,
and therefore the reverse engineering approach is called, because there are no generic
non-inventoried objects. In contrast the “constraint-based” approach can be broken
down to a set of numerical conditions (size, distance, ...) but there it is impossible to
satisfy all. It is a kind of an optimization as a synthesis of conditions. Flexibility is
granted due to the method choice. But this approach is more result-oriented in case
of the application domain. A combination of both approaches is the result due to
holistic software-agents. Each software-agent is represented as a generic service and
exemplified in 2| To take advantage of geodata’s multidimensionality it is needed to
explicitly define objects and it relations. Thus, it follows an incremental model and
is therefore complex as well as complicated to implement in a generic way. This is
described as different services of “amplified intelligence” or geospatial intelligence
[[6]] and illustrated as follows:

1. Data Distribution

39

Andreas Fricke: Preparing for a Virtual City Model as Digital Twin

Data Data
Selection Requirements?

S
.--{Georeference Service
Georeference?

[indirect]

[not fulfil)

Georeference?

[service call]

/ A\ 8

[Consistencyh [Quality? [Harmonisaton}
[not fulfil] *
[not fulfil]

A

Data
Acquisition

geocode
data

Ino) ’ lyes]
frar Sf
reference

. . |Selected
~{Filtering-
operations

Figure 2: Schematic overview of the concept structure

Access, Shaping, Characteristics

N

. Data Integration
Structure Recognition

Congestion, Coalescence, Complication, Inconsistency, Imperceptibility

3. Data Modification
Spatial Transformation and Semantic Enrichment

Incremental Adaptation or Generalisation

I

. Data Analytics

5. Data and Service Provision
Rule- or Constraint-based

Concatenating Applications

(o)}

. Quality Assurance
Maintain Accuracy, Consistency, Logical Hierarchy, Cartographic Quality

Computational Issues, Algorithm Costs, Maximum Data Reduction
2.4 Generalisation of multi-criteria geodata as Data Integration
Generalisation is known and needed for many different tasks, domains and applica-

tions unless its fundamentally equal meaning could be described as simplification
or abstraction to get in the end a more universal insight/evidence for an inspected

40

3 Research Activities

behaviour. The process encompasses in general the reduction of complexity, the
emphasis of essential and suppress unimportance, the maintenance of relationship
among objects while preserving a defined quality [4]. Not least it is a process of
semantic and numeric resolution reduction. Quality is seen as a selection and simpli-
fied representation of a detail, appropriate scale and/or purpose of an application,
different processes deriving from data source through the application of transforma-
tions, whereas derivation objectives are to reduce data in scope of amount, type and
cartographic portrayal with maintenance of consistency and clarity of the presen-
tation. Thus, the term generalisation is separated into two main parts [20]]. Model
Generalisation as a new conceptualisation of phenomena (mostly extending quali-
tative) and Visual Generalisation as a new structural phenomenon representation
(mostly quantitative). However, both generalisation types aim to isolate the charac-
teristics that are independent to both feature and domain resolution. Furthermore it
defines the capture in a software architecture as well. The proposed software archi-
tecture allows to instantiate this method as a web-based service system. That means
users — regardless of their expertise level or domain affiliation — could adapt the sys-
tem to their specific (micro-)task or workflo [|6]. It is designed to enable a complete
process chain split as micro-tasks. The architecture will be designed to satisfy two
non-functional requirements: scalability (vertical and horizontal) and adaptability
(at deployment and at run-time). The future work includes experiments to evaluate
these two requirements in terms of quality assurance and performance issues.

3 Research Activities

Since joining the Research School in October 2017 I have been able to benefit from
the versatility of specialist groups at HPI and regular events, such as the last fall
retreat in 2017 and the Symposium on Future Trends in Service-Oriented Comput-
ing in spring 2018. The interdisciplinary perspective is very important and helpful
especially in the geodomain, because of its mentioned interdisciplinary character. To
conceptualize and sharpen my dissertation project, I can already count on a contri-
bution in the German geo-community (DGFK, DGPF, Runder Tisch GIS) and the
international branch of growing Geo-IT Experts in the International Cartographic
Association (ICA) in terms of cartographic relevance and the informatics community
of service-oriented systems engineering. It has been shown that geo-servicification
in general is on the rise, but not yet a research topic, because of its continuum sphere
demonstrated within the IT-disciplines. The next steps are to highlight the domain-
less aspect of the approach described to cover up the mentioned continuum and
to bridge the application focus of this conceptualisation. It is planned to consider
methods and techniques of this approach in the community as well at international
conferences and paper contributions.

41

Andreas Fricke: Preparing for a Virtual City Model as Digital Twin

References

[1]

T. Akenine-Moller, E. Haines, and N. Hoffman. Real-time rendering. AK Peter-
s/CRC Press, 2018.

D. Asimov. “The grand tour: a tool for viewing multidimensional data”. In:
SIAM journal on scientific and statistical computing 6.1 (1985), pages 128-143.

I. R. M. Association et al. “Geospatial research: concepts, methodologies, tools
and applications”. In: Information Science Reference, Hershey, PA (2016).

S. Boschert and R. Rosen. “Digital twin — the simulation aspect”. In: Mecha-
tronic Futures. 2016, pages 59-74.

T. Erl, P. Merson, and R. Stoffers. Service-oriented architecture: analysis and design
for services and microservices. Prentice Hall, 2017.

A. Fricke,]. Dollner, and H. Asche. “Servicification — Trend or Paradigm Shift
in Geospatial Data Processing?” In: Computational Science and Its Applications —
ICCSA 2018. 2018, pages 339-350. ISBN: 978-3-319-95168-3.

M. F. Goodchild. “A GIScience Perspective on the Uncertainty of Context”. In:
Annals of the American Association of Geographers (2018), pages 1-6.

M. F. Goodchild. “Twenty years of progress: GIScience in 2010”. In: Journal of
spatial information science 2010.1 (2010), pages 3-20.

D. Hildebrandt and J. Déllner. “Service-oriented, standards-based 3D geovi-
sualization: Potential and challenges”. In: Computers, Environment and Urban
Systems 34.6 (2010), pages 484—495.

I. Hinterwaldner. Das systemische Bild: Ikonizitit im Rahmen computerbasierter
Echtzeitsimulationen. Wilhelm Fink, 2010.

Y. Iwasaki and H. A. Simon. “Causality and model abstraction”. In: Artificial
intelligence 67.1 (1994), pages 143-194.

H. A. Karimi. Big Data: techniques and technologies in geoinformatics. CRC Press,
2014.

R. Kitchin. “Big Data, new epistemologies and paradigm shifts”. In: Big Data
& Society 1.1 (2014), pages 1-12.

J.-G. Lee and M. Kang. “Geospatial big data: challenges and opportunities”.
In: Big Data Research 2.2 (2015), pages 74-81.

A.M. MacEachren and M.-]. Kraak. “Research challenges in geovisualization”.
In: Cartography and geographic information science 28.1 (2001), pages 3-12.

J. F. Roddick, K. Hornsby, and D. de Vries. “A unifying semantic distance
model for determining the similarity of attribute values”. In: Proceedings of the
26th Australasian computer science conference. 2003, pages 111-118.

R. Rosen and S. Boschert. Modellbildung und simulation. 2017.

F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui. “Digital twin-driven
product design, manufacturing and service with big data”. In: The International
Journal of Advanced Manufacturing Technology 94.9-12 (2018), pages 3563-3576.

42

References

J. Thatcher, A. Shears, and]. Eckert. Thinking big data in geography: New regimes,
new research. Univ. of Nebraska Press, 2018.

V. Tolpekin and A. Stein. The core of GIScience: a systems-based approach. Uni-
versity of Twente, Faculty of Geo-Information Science and Earth Observation
(ITC), 2012.

P. Van Oosterom and J. Stoter. “5D data modelling: full integration of 2D/3D
space, time and scale dimensions”. In: International Conference on Geographic
Information Science. 2010, pages 310-324.

S. Vandermerwe and]. Rada. “Servitization of business: adding value by
adding services”. In: European management journal 6.4 (1988), pages 314-324.

43

Understanding Sources of Heterogeneity in SMP Systems

Andreas Grapentin

Operating Systems and Middleware
Hasso-Plattner-Institut
andreas.grapentin@hpi.uni-potsdam.de

There is a disconnect between the behavior of modern SMP systems and the
expectations of application programmers and system software routines about the
behavior of these systems. One of the more notable manifestations of this dis-
connect are the punishing effects of the non-uniform memory access (NUMA)
architecture on the performance of unaware applications, that operating systems
are still not able to mitigate satisfyingly. Another example is the introduction of the
big. LITTLE architecture on mobile devices, in order to balance the requirements of
efficiently handling compute load spikes while maintaining low power consump-
tion. Although the big.LITTLE architecture has shown to be a success, unmodified
schedulers of general purpose operating systems are not yet capable of utilizing
the strengths of the heterogeneous compute resources.

At the core of this phenomenon seems to be the notion that SMP systems are
homogeneous structures of memory resources and compute resources, which
leads to numerous assumptions that are made by system software and application
developers that do not hold on real hardware. I have identified four sources of
heterogeneity in SMP systems, that are discussed below in terms of their purpose,
as well as their impact on the behavior of applications, and what utilization or
mitigation strategies exist in systems software and operating systems.

1 Symmetric Multiprocessing

The term Symmetric Multiprocessing (SMP) describes a type of multiprocessing sys-
tem in which concurrent units of work (Processes) are executed in parallel, distributed
on a homogeneous set of independent processing units. The processes are assigned
slices of runtime on the processing units by the scheduler, which is a component of the
operating system that balances and orders the workload in a way that is optimized
for certain criteria such as throughput, responsiveness and fairness.

Virtually the only types of multiprocessing system supported by todays generation
of general purpose operating systems — such as Windows or GNU/Linux — are SMP
systems. This is due in part to the constant and continued ubiquitousness of SMP
systems and their ability to scale up and get a lot of work done quickly, and also in
part to the three decades these operating systems and their predecessors have had to
be adapted and optimized for efficient operation in multiprocessing environments.

Specialized versions of UNIX supported SMP Systems as early as 1984, motivated
by the arrival of the Balance 8000 and Balance 21000 machines [4], and the necessity for
the pivotal turn towards ubiquitous multiprocessing and SMP has been described
by Herb Sutter in 2005 in his article “The Free Lunch is Over” [|6]]. Today, while

45

mailto:andreas.grapentin@hpi.uni-potsdam.de

Andreas Grapentin: Understanding Sources of Heterogeneity in SMP Systems

SMP is deeply rooted in all areas of computing, from IoI devices to server blades,
the further advancement of technology has introduced aspects of heterogeneity to
SMP systems, that have proven to be detrimental to the performance and stability of
unaware software.

2 Sources of Heterogeneity

The homogeneity assumptions of SMP — and the decades of adaptation and optimiza-
tion of SMP-capable scheduling algorithms to this assumption — are disconnected
from the actual structure and the behaviour of real hardware, where technological ad-
vancements or specific problems have necessitated the introduction of heterogeneity
in the memory- and compute resources of the system.

In following, as outlined in Figure(T} are described four common sources of hetero-
geneity in SMP systems, two of which focus on the systems main memory latency
and throughput characteristics, and two of which outline ways in which the compute
resources in a system can be heterogeneous.

FFFF

11

0000

EC
I11 IV

Figure 1: Four sources of heterogeneity in an SMP system. I — non-uniform mem-
ory segments caused by hardware properties. Il - non-uniform memory access
topologies. III — non-uniform CPU capabilities and big.LITTLE systems. IV —
non-uniform CPU ISA.

46

2 Sources of Heterogeneity

2.1 Non-Uniform Memory Segments

To the application, the main memory available in the system appears as a continuous,
byte-addressable array of numbers that is homogeneous in regards to access latency
and throughput. However, in reality the access latency is hard to predict due to
the effects of caching. Additionally, the physical address space of a system is only
partially backed by physical memory modules and hardware registers.

If memory modules of different technologies were used to provide different seg-
ments of physical memory, then the latency and throughput of memory access in
the system would depend on the physical properties of the backing module of the
given target address, which would introduce heterogeneity in the memory access.

This effect, while benign, is especially common in embedded devices, where differ-
ent memory technologies, such as Flash and SRAM are utilized in significant amounts
and generally available in the same address space.

On devices that support an operating system, this problem is typically solved
through a virtual memory abstraction, where the different memory regions are used
for different purposes and only the SRAM is typically utilized by the operating
system for dynamic memory allocation by the application, partially restoring ho-
mogeneity of the address space available to the application. On deeply embedded
devices without an operating system, virtual memory abstractions and dynamic
memory allocation methods typically do not exist and the application operates on
physical addresses. In this case, the developer is responsible for placing variables in
a suitable memory region.

2.2 Non-Uniform Memory Access Topologies

Assuming a set of uniform memory modules in a given system, heterogeneity is
still not impossible. In fact, the majority of multi core SMP systems adhere to the
Non-Uniform Memory Access (NUMA) Architecture to combat the effects of the von-
Noumann bottleneck.

In the NUMA Architecture, the processing units in a system are linked through a
network of interconnects, and the physical memory modules are each attached to a
separate processing unit, as opposed to a global shared memory bus. This has the
advantage that a processing unit has full and undisturbed access to its local memory;,
and is not limited by the congestion of a global shared bus, meaning systems can
scale up further.

This scale up is in turn limited by the overhead of maintaining cache coherence
among the processing units, which requires a constant communication on the inter-
connect network. Additionally, accessing memory not local to the executing process-
ing unit invokes a communication through the interconnect network and is orders
of magnitude more expensive than a local memory access.

As a result, the latency and throughput of a memory access depends on the dis-
tance of the originating processing unit to the memory module containing the target
address in hops, as well as the congestion of the interconnect network.

47

Andreas Grapentin: Understanding Sources of Heterogeneity in SMP Systems

This is a challenge for operating systems, since the scheduler as well as the vir-
tual memory manager need to be aware of the NUMA topology of the underlying
hardware, as well as the projected memory access and compute resource utilization
behavior of the application, to be able to make optimal work and data placement de-
cisions in the system. This information is not known a-priori, and may be difficult to
gather at runtime, depending on the actual system. Estimating application behavior
to control future placement strategies is not straightforward, and optimal placement
might not even be possible, or may be futile if a later task migration destroys the
maintained locality.

The field of NUMA penalty mitigation is a vast area of active research, with vary-
ing strategies being implemented and evaluated, and constantly improved upon. One
strategy to mitigate the performance adverse effects of the NUMA architecture is
implemented by numad on GNU/Linux. numad is a system daemon that will monitor
task behavior and data access to incrementally improve the placement of tasks and
core affinity. Other approaches try to dictate new programming models to help de-
velopers create NUMA aware applications through explicit language constructs [3]],
and many more techniques and approaches exist.

In the context of the Shared Something architecture, an effort has been made to
generalize the properties of the NUMA Architecture and to allow the specification
of arbitrary interconnect networks between compute and memory components in
the system through introduction of the Generation Z architecture specification , as
illustrated in Figure

Processor /
Memory
Controller

Graphics

Switch

Processor [
Memory
Controller

Memaory

T

Figure 2: The GenZ Architecture specification generalizes the NUMA Architec-
ture and provides a means to describe memory access topologies of arbitrary
complexity.

48

2 Sources of Heterogeneity

2.3 Non-Uniform CPU Capabilities

The processing units in an SMP system can be heterogeneous in ways beyond their
connection to segments of the main memory. While still maintaining binary com-
patibility, they can differ in their functional and non-functional capabilities, such
as power efficiency, instructions per second, or the availability of functional units
such as vector- or floating-point units. This type of heterogeneity is less common,
but such systems do exist.

For example, handheld devices such as mobile phones need to conserve energy
during phases of low activity to extend their battery life, while also being able to
process short to medium bursts of high compute load during user activity. These
scenarios pose conflicting requirements to the hardware, where smaller, more power-
efficient processing units would benefit battery life through the long phases of low
activity, while bigger, more performance focused processing units would improve
the peak performance of the device during the short bursts of high activity.

To meet these conflicting requirements, ARM has introduced the big. LITTLE archi-
tecture in 2011, where different types of processing units —a cluster of energy efficient
cores, and a cluster of performance optimized cores — are combined on the same
chip, allowing the system to switch between energy efficiency and peak performance
at will, in three possible modes of operation.

The first two modes of operation only ever utilize half of the available cores.

Clustered Switching In Clustered Switching the operating system can choose to
utilize either the complete cluster of energy efficient cores, or the complete cluster
of performance optimized cores. The active cluster can be switched at any time,
resulting in all active tasks to be migrated to the activated cluster.

Regardless of which cluster is active, within the active cores the homogeneity
is maintained and SMP scheduling can proceed as usual. Switching between the
clusters only switches the entire system to power-saving, or to high-performance
mode.

In-Kernel Switching In In-Kernel Switching or CPU Migration, the clusters are split
up into pairs of one power-saving core and one performance optimized core each.
At runtime, in each pair only one core is active and the operating system can switch
between them, resulting in the active task on that pair of cores to be migrated. This
allows to selectively enable a process that is compute heavy to complete faster, while
still keeping the majority of the system in a power-saving state and vice versa, allow-
ing for more fine grained control.

In this mode, the active cores are not necessarily homogeneous, and a combina-
tion of power-saving and performance optimized cores may be active simultaneously.
However, while the active cores may be heterogeneous, the available compute re-
sources are homogeneous since every pair of cores is equal. This means that place-
ment decisions do not matter, since the scheduler can simply choose to enable a high
performance core for a task that needs it.

49

Andreas Grapentin: Understanding Sources of Heterogeneity in SMP Systems

Table 1: Specifications of the Odroid-XU4 test system

Odroid-XU4
Processor Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-A7
Memory 2GB LPDDR3 RAM PoP stacked
Operating system modified Ubuntu Linux 16.04

Heterogeneous Switching In the Heterogeneous Switching mode, the operating sys-
tem has access to all cores simultaneously and no cores are switched off, resulting
in an SMP configuration with truly heterogeneous compute resources.

This poses a challenge to the systems scheduler, since tasks will behave differently
on the different cores. A compute intensive task will take longer to complete on
a power-saving core, while a memory intensive task will waste cycles waiting for
data when running on a performance optimized core. Additionally, activating a
performance optimized core in addition to its corresponding power-saving core puts
stress on the system, and should be done sparingly. In this scenario, in order for the
scheduler to fulfil its goals of optimizing throughput and system efficiency, it needs
to take into account the projected behavior of the tasks to be scheduled when making
a placement decision. Additionally the scheduler becomes responsible to answer a
new dimension of questions, that is which cores to keep active, and which cores to
turn off, if any.

In the mainline Linux kernel, there is currently, as of version 4.18, no support for
these scenarios, and the scheduler will treat all cores equally, resulting in a subopti-
mal schedule and high stress on the system. As a result, attempting to run all cores
under high load on the mainline kernel will lock up the system reliably. This has
been shown by running a set of virtual machines on an Odroid-XU4 as a testbed for
the Fabric-Attached Memory emulation [1]] as shown in Figure 3|and the details of the
testbed are listed in Table

The virtual machines were pinned to individual cores to investigate the behavior
of heterogeneous shared-something computing, where otherwise independent virtu-
alized systems running on heterogeneous hardware have access to a shared memory
segment.

While there is currently no consensus on how to proceed with these problems in
the mainline kernel, there are several out-of-tree attempts at implementing support,
one of which is headed by Qualcomm, and another by Linaro, but both still have
shortcomings and are not likely to be included in the mainline linux kernel soon.
Both approaches try to sample the behavior of running tasks to distinguish between
compute dominant and memory access dominant tasks, and also provide a concept of
big and small tasks, and important and unimportant tasks, that should allow for more
informed scheduling decisions. However, in practice these sampling approaches are
expensive to perform and do not adapt well to tasks with switching runtime profile.
Both approaches also include a load balancing algorithm to try and reduce the system
load if a cluster is overloaded and in danger of overheating.

50

2 Sources of Heterogeneity

application application
ARM

Cortex
Al5

ARM
Cortex
A7

virtual

emu. LITTLE § memor

Figure 3: A set of virtual machines on an Odroid-XU4 demonstrating the proper-
ties of the fabric-attached memory on the big. LITTLE heterogeneous platform

However, these types of scheduling shortcomings might be typical to monolithic
operating system kernels and other types operating systems, such as the multikernel
operating system Barrelfish might be better suited for heterogeneous SMP systems
due to their inherently distributed nature [5]].

In 2017, ARM have announced the successor of the big. LITTLE architecture, called
DynamIQ. DynamlIQ relaxes the homogeneous cluster requirement imposed by the
big.LITTLE platform and allows any combination of up to 8 power-saving and up
to 4 performance optimized cores per cluster, and an arbitrary amount of clusters
per chip. It remains to be seen what configurations of this architecture are being
implemented by hardware manufacturers and how scheduling approaches will be
able to evolve to accommodate for these configurations, while still being universal,
and imposing a manageable overhead.

2.4 Non-Uniform CPU Instruction Set Architecture

The processing units in a system can be even more diverse than described before, if
the requirement of binary compatibility is dropped. Binary compatibility between
a set of processing units and a program image is a property that describes that the
program image compiled once from a program can be executed on either of the
processing units without change. This requires the processing units to understand
the same bytecode, or to have the same Instruction Set Architecture (ISA).

Dropping this requirement means that the processing units in a system can be
truly heterogeneous, arbitrarily connected to the systems main memory, and capable

51

Andreas Grapentin: Understanding Sources of Heterogeneity in SMP Systems

Table 2: Specifications of the parallella test system

parallella
Processor ARM Cortex-A9
FPGA ZYNC Artix-7
Accelerator 16-core Epiphany RISC SOC
Memory 1GB SDRAM
Operating system modified Ubuntu Linux 16.04

of executing arbitrary program images. This type of heterogeneity is very common,
albeit not usually associated with SMP scheduling. All kinds of accelerators, such
as General-Purpose GPUs (GPGPUs), FPGAs and others can be counted into this
category. Generally, these sorts of devices are not controlled by the system scheduler,
but by applications acquiring dedicated access, and provisioning special program
images made for the accelerator for execution, sometimes even written in special
programming languages. In the context of a GPGPU, this program image would be
a shader, or an OpenCL Kernel, deployed by an application directly to the accelerator.

Scheduling tasks on a heterogeneous cross-ISA SMP system is challenging. The
program images could function only on a subset of the available cores, and the
available cores could only process a subset of the available workload. To limit the
possibility of starvation due to overload of a certain type of core, fat binaries can be
utilized, effectively allowing a single binary to function on more than one type of
the available cores. This results in a possible n-to-m mapping of available tasks to
available cores that a scheduler would need to accommodate at runtime. A task broker
would be needed to match the capabilities of the available compute resources to the
requirements of a given task.

In order to investigate the behavior of this type of SMP system, I created a prototyp-
ical system by deploying a RocketCore riscv64 softcore CPU to the FPGA of a parallella
SoC board, as shown in Figure 4 and the specifications of the parallella board are
listed in Table 2l For SMP scheduling to function on such a platform, the task model
of the Linux kernel needs to be extended to accommodate for the differences in ISA
support of a program image and its process. Cross-ISA task migration could also be
conceivable.

3 Conclusions

Heterogeneity in SMP systems is unavoidable and can cause major problems in
system performance and stability, if the system software and the application are
unaware of it. For example, managing the NUMA characteristics of the hardware in
a transparent and portable manner is still challenging, and newly emerging systems
supporting heterogeneous processing unit configurations have yet to be recognized
and fully supported by leading general purpose operating systems. With the growing

52

4 Future Work

linux

parallella sbc

Figure 4: A RocketCore deployed as softcore CPU onto on FPGA in a parallella
SoC configured as an SMP system

complexity of heterogeneous characteristics of announced future architectures, such
as DynamlIQ), these effects are only going to get stronger.

Heterogeneity is embraced by hardware manufacturers as a solution to scalability
problems, or energy efficiency problems, or as a means to solve one very specific
set of tasks, but this introduces new challenges in the system software or in the
application that are not sufficiently addressed.

I have identified four major sources of heterogeneity in SMP systems, and outlined
their impact on the systems they are a part of, as well as some of the mitigation
strategies that currently exist to reduce the problems they introduce.

4 Future Work

I'would like to revisit the big. LITTLE architecture and propose an efficient scheduling
algorithm for SMP systems, and extend the linux kernel with an implementation of
this algorithm. I would also like to investigate how multikernel operating systems
such as Barrelfish handle the pitfalls of heterogeneous compute resources.

I also want to extend the cross-ISA prototype to successfully schedule tasks of
different binary architectures and study their behavior in order to try to implement
a task broker and a concept of fat binaries on a single system.

Additionally, I want to further my understanding of the Generation Z architecture
specification and look into the specifics of the DynamlIQ architecture proposed by
ARM, and see how the heterogeneous SMP scheduling algorithms proposed for
big. LITTLE perform on DynamlIQ.

53

Andreas Grapentin: Understanding Sources of Heterogeneity in SMP Systems

References

R. Craig. Emulation of Fabric-Attached Memory for The Machine. 2017. URL: https:
//github.com/FabricAttachedMemory/Emulation (last accessed 2018-09-03).

Gen-Z Consortium. Gen-Z Draft Core Specification. 2017.

W. Hagen, M. Plauth, F. Eberhardt, F. Feinbube, and A. Polze. “PGASUS: a
framework for C++ application development on NUMA architectures”. In:
Computing and Networking (CANDAR), 2016 Fourth International Symposium on.
2016, pages 368-374.

R. W. Hockney and C. R. Jesshope. Parallel Computers 2: architecture, program-
ming and algorithms. Volume 2. CRC Press, 1988.

A. Schiipbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and R.
Isaacs. “Embracing diversity in the Barrelfish manycore operating system”. In:
Proceedings of the Workshop on Managed Many-Core Systems. 2008, page 27.

H. Sutter. “The free lunch is over: A fundamental turn toward concurrency in
software”. In: Dr. Dobb’s journal 30.3 (2005), pages 202-210.

54

https://github.com/FabricAttachedMemory/Emulation
https://github.com/FabricAttachedMemory/Emulation

Data-Knoller: A Framework for Systematic Data Preparation

Lan Jiang

Information Systems
Hasso-Plattner-Institut
lan.jiang@hpi.uni-potsdam.de

Raw data comes in many shapes and forms, most of which are not what a data
engineer, data scientist, or an analytics tool desires. The tedious task of preparing
data dominates time and effort spent in data science and on data analytics projects.
Its ad-hoc nature also impedes transparency and reproducibility of analyses and
experiments. We lay out a path for a systematic framework to specify and execute
a comprehensive set of operations related to data preparation. To this end, we
propose a formal and comprehensive taxonomy of preparation operators based
on metadata extracted from data at every stage of the preparation process. On
top of the extensible framework, we propose many useful components, such as
optimizing the pipeline of preparators, suggesting useful preparation steps, or even
automatically inferring an entire preparation process given some input data and a
desired output format as prescribed by subsequent analytics or other processing
tasks.

1 Overview

1.1 Motivation

Data preparation is the process of obtaining, cleaning, transforming and storing
raw data before serving them to downstream applications, such as data analysis,
machine learning, and visualization. Coming from various sources, raw data do not
always meet the requirements of the following applications, leading users, including
both expert data scientists and novice data workers, to frequently conduct data
preparation tasks. It is reported that preparing data is a labor-intensive yet tedious
work for users, and this phase accounts for 50 %—80 % of the time spent in the whole
data analysis lifecycle [9, |19} 24]]. In business scenarios, users spend a lot of time
and budget to support their data preparation work, reducing resources that should
be devoted to interesting downstream applications. In academia, scientists massage
data in various ways and usually omit to document each step, leading to the non-
repeatability of experiments and evaluations.

To create prepared data that are valid input for further applications, a common
practice is to conduct many trivial but critical transformations on raw data, such
as tuning field delimiter, reformatting strings, and conducting arithmetic calcula-
tion on specific fields. Building ad-hoc scripts to prepare such kind of datasets is
a common practice. The drawbacks of these approaches are obvious. First, writing
ad-hoc scripts requires certain programming skills, which many analysts do not have,
and implementing these solutions possibly produces large time expenses, impairing

55

mailto:lan.jiang@hpi.uni-potsdam.de

Lan Jiang: Data-Knoller: A Framework for Systematic Data Preparation

< SynactCTTARSor —

Data preparation

Change Normalize De-
delimiter date format duplication

Figure 1: Data preparation versus data cleaning

the overall efficiency of data-driven businesses. Second, these scripts are specific
preparation task oriented, and thus reusing them may be hard. Furthermore, ad-hoc
scripts may not support the management of critical information, such as metadata,
provenances, and preparation errors, which all contribute to execution robuesness
and preparation repeatability.

1.2 Data cleaning vs data preparation

Data cleaning is a frequently used term for the activity to handle these data qual-
ity problems in the research community. However, it differs from data preparation
in our context, although the border between them is blurry. Figure|[l|indicates the
explanation of their difference. Both are data transformation activities aiming at en-
suring data quality. However, in this work, data cleaning refers to transformations
that are more semantic (e.g., de-duplication), whereas data preparation comprises
more primitive transformations (e.g., changing delimiter of a delimiter-separated
file). Both types of transformations may appear at any position of a data transforma-
tion pipeline. Nevertheless, we expect data preparations to be applied more towards
the beginning while data cleaning towards the ending stages.

2 Approach

To solve the above issues, we propose a framework for systematic data preparation,
named Data—KnollerEl The framework aims to provide an easy-to-use platform for
robust, efficient, and repeatable data preparation. It accepts input data in any sup-
ported format and data model, creates a data preparation task as a preparation pipeline
of transformations on data, and eventually produces prepared data that are valid

IKnolling is the art-form of neatly arranging related objects in parallel or 90-degree angles
as a method of organization.

56

2 Approach

- Split file Remove Ezﬁ::ﬁi Fill missing pad column Change Split date -
Raw data preamble RS value date format column Prepared data

Figure 2: A pipeline describing a data preparation task

input for further applications. We give the name preparator to each transformation
operator in our context, and the pipeline considers each transformation as an indi-
vidual preparation on data. Figure 2|illustrates an example of a preparation pipeline
with seven individual preparators performed frequently by analysts.

We propose a comprehensive taxonomy of preparators to formalize the specifica-
tions of transformations, as well as a taxonomy of metadata that specifies the meta-
data employed in the system. Due to the space limitation, we do not display them
in this report, but have placed them on our web pageﬂ Data-Knoller incorporates
six components: a metadata manager, an error manager, a provenance manager, and
a preparation suggester, a pipline optimizer, and a pipeline adapter. These compo-
nents contribute to the robustness of results and efficiency of data preparation. The
metadata manager is in charge of collecting, validating, and maintaining metadata
during preparation processes. The correctness and consistency of metadata play a
critical role for executability of preparators and generation of expected results. The
error manager deals with preparation pipeline errors and data errors that possibly
appear before and during the execution of data preparation tasks. In order to enable
effective data preparation, the system shall be capable of telling users the positions of
the exact errors occurred while executing preparators. Analysts may be interested in
not only the data results produced by executing a pipeline, but also how the results
were produced and where they originated. The provenance manager captures and
stores provenance information produced by preparation pipelines while they are
running. As we notice that users spend a lot of time figuring out what is the next
transformation on data, we propose a suggestion component, which is based on
available metadata and a specification of the expected result. The pipeline optimizer
re-schedules the executing order of the preparators of a pipeline, ensuring that the
execution is most efficient in terms of time and memory expenses. We propose a
pipeline adapter to trace the evolution of data schema, and adapting the pipeline
used to prepare data to the new schema accordingly.

2.1 Architecture

Figure (3| illustrates the architecture of Data-Knoller. It composes of a preparation
pipeline that comprises a couple of preparators, along with six components that
assist data processing, i.e. metadata manager, error manager, provenance manager,

Zhttps://hpi.de/naumann/projects/data-quality-and-cleansing/data-preparation.html (last ac-
cessed 2018-10-18).

57

https://hpi.de/naumann/projects/data-quality-and-cleansing/data-preparation.html

Lan Jiang: Data-Knoller: A Framework for Systematic Data Preparation

Figure 3: The architecture of data preparation framework

preparator suggester, pipeline optimizer, and pipeline adapter. In the rest of this
section, we introduce the principles and details of these components.

2.2 Data preparation pipeline

The preparation pipeline is the main component of Data-Knoller. It composes of a
chain of preparators, each of which performs a specific data transformation, such
as changing the data type of a column or filling the empty slots of a column. Start-
ing from the input data, each preparator consumes the output data from the last
preparator as its input data, producing the output data for the next preparator. The
pipeline eventually produces the data that meet the requirements of the downstream
application.

2.3 Metadata manager

Metadata are inevitable and important for a data preparation pipeline, because
these metadata maintain the properties of data that determine the executability of
the preparators. Applying preparators without validating corresponding metadata
may fail the transformations, whereas well-managed metadata ensure preparation
pipelines produce expected results. For example, misinterpreting the delimiter of a
data file may cause the truncation of values in some columns.

The metadata manager serves to manage the metadata and dynamically maintain
them during the execution of a data preparation pipeline. It serves multiple func-
tionalities, including generating, validating, and updating metadata as requested by
preparators in pipelines. To this end, the metadata manager maintains a metadata
coordinator, which communicates with the metadata generator, the metadata valida-
tor, and the metadata updater that perform the aforementioned actions, respectively.
In order to maintain runtime metadata, the metadata manager additionally holds a
metadata repository to store the created or updated metadata.

It is worth mentioning that metadata generator is extendable, because the per-
formance of generating a single metadata could be largely diverse among different

58

2 Approach

implementations. The system provides users with default solutions to generate meta-
data, as well as the space to let users bring their own implementations.

2.4 Error manager

Data preparation tasks may fail in various ways, usually because preconditions of
the preparator are not met by its input data. In many cases, locating which part of the
data results in the failure of the data preparation task is overwhelmingly expensive.
For example, when changing the data type of a column from string to double fails,
users possibly need to spend a lot of time locating and analyzing the value on which
and the reason why the preparation does not work. Therefore, In order to reduce this
time overhead, an efficient and robust data preparation system needs to incorporate
an error handler that can tell users the what and where is the error occurred while
executing the preparation.

It can be assumed that the more fine-grained reason of an error the system gives
users, the faster they can figure out how to fix it. Therefore, we define three levels
of data preparation errors: pipeline-level, metadata-level, and data-level errors. Pipeline-
level errors occur during specification of the preparation pipeline and are thus inde-
pendent of the actual data. Metadata-level errors occur before execution of a preparator
by identifying a mismatch between the known properties (metadata) of the data and
the preconditions of the preparator. Finally, data-level errors occur during execution of
a preparator. The error manager captures the incurred errors during the executions
of preparation pipeline, and report them to users while the executions terminate.

2.5 Preparation suggester

At any time during data preparation, analysts need to persistently ask themselves
two questions: 1) which transformation do I need to perform; 2) which parameters
do I choose for this particular transformation. To obtain the answers for these two
questions, they need to carefully inspect the data, come up with some hypotheses
for the statistics and structure of the data, and possibly make a few trial and error
to realize the specific hidden features of the data, for which they choose a proper
preparator or parameters. However, these processes may take an unpredictably long
time and become the bottleneck of efficient data preparation [[15]. The condition be-
comes deteriorated in business scenarios where data has large capacity and complex
structure.

Realizing that most of the time expenses are essentially donated to inspecting and
trying out preparators and parameters, which can be easily delegated to machines,
we propose a preparation suggester to search for ideal preparator candidates and
their corresponding parameters. Taking the previous preparator, the data at the
current stage, the metadata context as input, the preparation suggester traverses the
search space of the preparators and produce a list of parameterized preparators as
suggestions, from which analysts can then choose the most suitable preparator. It is

59

Lan Jiang: Data-Knoller: A Framework for Systematic Data Preparation

notable that traversing the whole search space is in most cases not feasible, due to
the large amount of parameters that could be assigned to each preparator.

2.6 Provenance management

Provenance refers to arbitrary information that explain the origin of and the pro-
cesses applied to data [[17]]. This information is of wide usage in many cases, such as
enabling scientific experiments repeatability [8]], data processing and debugging [5,
18]]. In the context of data preparation, depending on whether we consider preparator
mechanisms as black boxes, provenances fall into two groups, i.e. pipeline prove-
nance (a.k.a. workflow provenance in some literature 3, 11]) and data provenance.
Pipeline provenance captures the processes applied to data, as well as the run-time
setup of specific executions. It represents coarse-grained provenance, interpreting
that the full output of a preparator come from its input data as a whole. Such informa-
tion could be useful in the cases where users want to repeat the same processes with
the same setups. Data provenance, on the other hand, produces more fine-grained
information. It determines which part of the input data contributes to a specific out-
put data item. A data item is shaped as a particular forms in different data models,
such as a tuple of a relational data model, or an element or subtree of an XML file.
Data provenance is capable of giving an explanation of how data are created from
particular sources throughout data preparation pipelines.

Data-Knoller maintains a provenance repository to store and manage provenance of
the aforementioned types. The repository records heterogeneous types of provenance
compose of different pieces of information. For example, pipeline provenance only
tracks the steps of a preparation pipeline along with run-time environment setup,
whereas data provenance tracks the input and output of a preparator to a particular
degree of concreteness, depending on the semantics of data provenance required to
record. The implementation of this component provides a storage of provenance of
various types, as well as an convenient query to this information.

2.7 Pipeline optimization

So far, we discussed the architecture of Data-Knoller based on the assumption that
the preparators in a pipeline are executed in the order they are specified. However,
this order, which follows the preparation as designed by the user is not necessarily
the most efficient solution. In fact, the execution order of some preparators can be
exchanged without modifying the result of the whole pipeline, whereas the time
and memory cost of the two orders might be largely different. For example, suppose
a user specifies the following four preparators in a row in the preparation pipeline,

1. removeExactDuplicates();

2. select(predicate: orderPrice>20);

3. normalizeDateFormat(field: shipDate,
targetFormat: YYYY-MM-DD);

4. deleteField(field: telephone)

60

3 Related Work

Removing exact duplicates can be exchanged with selecting all the records whose
‘orderPrice’ is larger than twenty, and the same for normalizing the value format of
field ‘shipDate” with geocoding ‘shipAddress’, because the results of the preparators
in each pair are independent from each other. However, removing duplicates first
means to examine also the records that do not fulfill the predicate of the next select-
ing preparator, which could be omitted by executing the select first. In the second
aforementioned case, the two preparators operate on different data fields, leaving
the space to reduce execution cost by switching their execution order as well.

Some preparators must be executed in an certain order strictly, for not changing
the execution result. For example, removing duplicates cannot be executed after nor-
malizing the format of ‘shipDate’, because the latter one may reconcile the different
format of date for the same entity, and thus producing exact duplicates afterward.

The goal of the pipeline optimizer is to find out the optimal pipeline execution
order that obtain the same output with the least time expense. Given a preparation
pipeline with n preparators specified in a certain order, there are possibly up to n!
different orders, meaning that a brute-force approach is not feasible. The pipeline
optimizer is further obliged to evaluate the costs of different execution orders by
estimating the overall cost of individual preparators in a certain order, and thus
produce the optimal execution order with the least cost. Currently we are designing
the mechanism to discover the most efficient executable pipeline order.

2.8 Pipeline evolution

In many real-world cases, users face a large number of datasets defined with schemata
similar to one another. Such data might come from different sources that define the
essentially same schema in similar ways or the same source with evolving schema
definitions. An extreme case of such a situation is the preparation of web tables: The
emergence of collaborative online knowledge services, such as Wikipedia, enables
individual users to revise contents on web pages with significant freedom. Therefore,
web tables are subject to more frequent changes than traditional relational database
tables in terms of both values and schema. In order to re-use existing pipelines on
data with evolved schema, users need to revise the existing pipeline so as to fit the
new schema. However, manually doing this can be time-consuming and error-prone.
We are currently exploring the approach to automate the adaption of preparation
pipeline based on the evolution specification and the pipeline logic.

3 Related Work

Each of these components incoporated in Data-Knoller is backed by an interesting
research area and we have seen numerous academic efforts on each of them. Parallel
to research activities, the industry has turned the fruits of academia into actual
products. In this section, we summarize representative work in each relevant field
and highlight popular data preparation tools.

61

Lan Jiang: Data-Knoller: A Framework for Systematic Data Preparation

Data quality and data cleaning. Data quality issues arise in different forms and
shapes. For example, there might be inconsistencies of date or phone number formats,
extra or missing characters, duplicate records, etc. Compiling the variety of error
types helps the research community recognize the complete family of data quality
issues and possible challenges of cleaning them.

Some endeavors have been made to collect various forms of data errors to cer-
tain extents. Researchers have proposed various taxonomies of dirty data types to
describe possible data quality issues [21} 22, 23| 25]]. The preparator taxonomy we
build is inspired by these previous work. Note that some preparators in our taxon-
omy reflect an interesting and challenging research topic themselves, e.g., automatic
string transformations, such as automating string transformation [2, 14, 27]]. In the
implementation of preparators, we employ the techniques from previous work.

Metadata management. Regarding data preparation, a metadata standard is needed
to interchange and manage metadata within the system. A number of metadata have
been recognized and categorized to different extents [|1]], facilitating the creation of
our metadata taxonomy. Capturing and storing metadata are two of the traditional
research concerns of metadata management [|10, 28], which are of importance for
our data preparation framework as well. In a typical data preparation pipeline, data
are modified frequently, leading to numerous metadata changes. Thus, keeping
metadata up-to-date and consistent is yet another issue.

Preparation suggestion. In many cases, users might not know what preparation shall
be done on data. This is a common situation where preparation suggestion comes
into play. Wrangler [20] is a research prototype based on the prior interactive data
cleaning system Potter’s Wheel [26]. It introduces an inference engine that takes data
context, transformation context and the selected data units in the interface as input,
producing a list of ranked candidate transformations accordingly. Wrangler later
became the foundation of Trifacta [[16]], a commerical data preparation system. To
promise an agile self-service data preparation, our system incorporates preparation
suggestion as well.

Provenance management. Provenance is useful in the context of a data preparation
system: by tracking the origins of data, the system enables users to debug preparation
pipelines. Provenance provides an insight of the transformations that have been
done on data, thus enabling repeatability of preparations. A lot of efforts have been
undertaken to capture [|6,/13]], store [4, 7, [12], and query [[12]] provenance, inspiring
us to build a data-preparation-specific provenance management system based on
them.

Data preparation tools. Seeing the importance of a systematic data preparation
system for the day-to-day data preparation effort, several industrial products have

62

4 Future Work

been built, such as Open—RefineE] Tableau Prepﬁ Trifacta[ﬂ and Talendlﬂ These tools
provide users with interactive interfaces to conduct direct manipulation for data
preparation and visualize data properties, such as statistical data characteristics,
data type, and data histogram.

4 Future Work

There are three obvious things that we are going to explore in future work. First,
we will look for a solution to prune the search space of preparators and different
paramters so as to enable more efficient preparation suggestion. Second, we will
explore the exchangeability of different preparators under particular conditions and
employ it to prune the search space of execution order. Last but not least, we will
explore the approach to enable preparation pipeline evolution with the evolution
specification of schema.

References

[1] Z. Abedjan, L. Golab, and F. Naumann. “Profiling Relational Data: A Survey”.
In: Proceedings of the VLDB Endowment 24.4 (2015), pages 557-581.

[2] Z. Abedjan, J. Morcos, M. N. Gubanov, L. F. Ilyas, M. Stonebraker, P. Papotti,
and M. Ouzzani. “Dataxformer: Leveraging the Web for Semantic Transfor-

mations”. In: Proceedings of the Conference on Innovative Data Systems Research
(CIDR). 2015.

[3] P. Alper, K. Belhajjame, C. A. Goble, and P. Karagoz. “Enhancing and Abstract-
ing Scientific Workflow Provenance for Data Publishing”. In: EDBT/ICDT
Workshops. 2013, pages 313-318.

[4] Z.Bao, H. Kohler, L. Wang, X. Zhou, and S. W. Sadiq. “Efficient Provenance
Storage for Relational Queries”. In: Proceedings of the International Conference
on Information and Knowledge Management (CIKM). 2012, pages 1352-1361.

[5] P. Bourhis, D. Deutch, and Y. Moskovitch. “POLYTICS: Provenance-Based
Analytics of Data-Centric Applications”. In: Proceedings of the International
Conference on Data Engineering (ICDE). 2017, pages 1373-1374.

[6] P.Buneman, S. Khanna, and W. C. Tan. “Why and Where: A Characterization
of Data Provenance”. In: Proceedings of the International Conference on Database
Theory (ICDT). 2001, pages 316-330.

3http://openrefine.org/ (last accessed 2018-10-18).
4https://www.tableau.com/products/prep (last accessed 2018-10-18).
Shttps://www.trifacta.com/, (last accessed 2018-10-18).
Ohttps://www.talend.com/ (last accessed 2018-10-18).

63

http://openrefine.org/
https://www.tableau.com/products/prep
https://www.trifacta.com/
https://www.talend.com/

Lan Jiang: Data-Knoller: A Framework for Systematic Data Preparation

[7]

[12]

[13]

[14]

[15]

A. Chapman, H. V. Jagadish, and P. Ramanan. “Efficient Provenance Storage”.
In: Proceedings of the International Conference on Management of Data (SIGMOD).
2008, pages 993-1006.

K. Cranmer, L. Heinrich, R. Jones, and D. M. South. “Analysis Preservation in
ATLAS”. In: Journal of Physics: Conference Series. Volume 664. 3. 2015.

T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley,
2003.

R. Ferreira, J]. Moura-Pires, R. Martins, and M. Pantoquilho. “XML Based Meta-
data Repository for Information Systems”. In: Portuguese Conference on Artificial
intelligence (EPIA). 2005, pages 205-213.

B. Glavic. “Big Data Provenance: Challenges and Implications for Benchmark-
ing”. In: Proceeding of the Workshop on Specifying Big Data Benchmarks (WBDB).
2012, pages 72-80.

B. Glavic and G. Alonso. “The Perm Provenance Management System in Ac-
tion”. In: Proceedings of the International Conference on Management of Data (SIG-
MOD). 2009, pages 1055-1058.

T. J. Green, G. Karvounarakis, and V. Tannen. “Provenance Semirings”. In:
Proceedings of the Symposium on Principles of Database Systems (PODS). 2007,
pages 31-40.

S. Gulwani. “Automating String Processing in Spreadsheets Using Input-
Output Examples”. In: Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). 2011, pages 317-330.

J. Heer, J. M. Hellerstein, and S. Kandel. “Predictive Interaction for Data Trans-
formation”. In: Proceedings of the Conference on Innovative Data Systems Research
(CIDR). 2015.

J. M. Hellerstein, J. Heer, and S. Kandel. “Self-Service Data Preparation: Re-
search to Practice”. In: IEEE Data Engineering Bulletin 41.2 (2018), pages 23—
34.

M. Herschel, R. Diestelkimper, and H. Ben Lahmar. “A Survey on Provenance:
What for? What Form? What from?” In: Proceedings of the International Confer-
ence on Very Large Databases (VLDB) 26.6 (2017), pages 881-906.

M. Herschel and T. Grust. “Transformation Lifecycle Management With Nau-
tilus”. In: VLDB Workshop on the Quality of Data (QDB). 2011.

S.Kandel, A. Paepcke,]. M. Hellerstein, and J. Heer. “Enterprise Data Analysis
and Visualization: An Interview Study”. In: IEEE Visual Analytics Science and
Technology (VAST) 18 (2012), pages 2917-2926.

S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. “Wrangler: Interactive
Visual Specification of Data Transformation scripts”. In: Proceedings of the
International Conference on Human Factors in Computing Systems (CHI). 2011,
pages 3363-3372.

64

[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

References

W. Y. Kim, B. Choi, E. K. Hong, S. Kim, and D. Lee. “A Taxonomy of Dirty
Data”. In: Data Min. Knowl. Discov. 7.1 (2003), pages 81-99.

L. Li, T. Peng, and J. Kennedy. “A Rule Based Taxonomy of Dirty Data”. In:
GSTF Journal on Computing (JoC) 1.2 (2018).

P. Oliveira, F. Rodrigues, P. Henriques, and H. Galhardas. “A Taxonomy of
Data Quality Problems”. In: 2nd Int. Workshop on Data and Information Quality.
2005, pages 219-233.

G. Press. “Cleaning Data: Most Time-Consuming, Least Enjoyable Data Sci-
ence Task”. In: Forbes (2016).

E. Rahm and H. H. Do. “Data Cleaning: Problems and Current Approaches”.
In: IEEE Data Eng. Bull. 23.4 (2000), pages 3-13.

V.Raman and J. M. Hellerstein. “Potter’s Wheel: An Interactive Data Cleaning
System”. In: Proceedings of the International Conference on Very Large Databases
(VLDB). 2001, pages 381-390.

R. Singh and S. Gulwani. “Learning Semantic String Transformations from
Examples”. In: Proceedings of the VLDB Endowment 5.8 (2012), pages 740-751.

D. Srivastava and Y. Velegrakis. “Using Queries to Associate Metadata with
Data”. In: Proceedings of the International Conference on Data Engineering (ICDE).
2007, pages 1451-1453.

65

TrussFormer: 3D Printing Large Kinetic Structures

Robert Kovacs

Human Computer Interaction group
Hasso Plattner Institute
robert.kovacs@hpi.uni-potsdam.de

TrussFormer is an integrated end-to-end system that allows users to 3D print
large-scale kinetic structures, i.e., structures that involve motion and deal with
dynamic forces. TrussFormer builds on TrussFab, from which it inherits the ability
to create static large-scale truss structures from 3D printed connectors and PET
bottles. TrussFormer adds movement to these structures by placing linear actuators
into them: either manually, wrapped in reusable components called assets, or by
demonstrating the intended movement. TrussFormer verifies that the resulting
structure is mechanically sound and will withstand the dynamic forces resulting
from the motion. To fabricate the design, TrussFormer generates the underlying
hinge system that can be printed on standard desktop 3D printers. We demonstrate
TrussFormer with several example objects, including a 6 legged walking robot and
a 4m tall animatronics dinosaur with 5 degrees of freedom.

1 Introduction

Personal fabrication tools, such as 3D printers, afford rapid prototyping [[10] as well
as to fabricate interactive objects [[7]]. The latter includes animated objects, such as
kinematic animals [4]] or actuated paper origami [|14], and simple machines [[18]].

More recently, HCI researchers have started to explore how to enable non-expert
users to fabricate large-scale structures. While professional users may have access to
large-scale 3D printing equipment, non-experts are generally limited to the use of
desktop 3D printers, causing these systems to achieve scale by combining 3D print
with ready-made objects, such as empty plastic bottles [§]]. The resulting systems also
support users in creating structures capable of dealing with the substantial forces
such structures are subject to. TrussFab [§]], for example, achieves this by allowing
users to combine already sturdy primitives and by checking stability during editing.

While large-scale fabrication systems like TrussFab have been shown to support
a wide range of applications, from furniture to trade-show pavilions, such systems
are limited to creating static structures.

In this paper, we present a system that allows users to create large kinetic struc-
tures, i.e., structures that involve motion and deal with dynamic forces, as they occur
as part of animatronics devices, such as the animated Tyrannosaurus Rex, illustrated
by Figure 1, and other large-scale machinery. TrussFormer embodies the required
engineering knowledge from creating the appropriate mechanism, verifying its struc-
tural soundness, and generating the underlying hinge system printable on desktop
3D printers.

67

mailto:robert.kovacs@hpi.uni-potsdam.de

Robert Kovacs: TrussFormer: 3D Printing Large Kinetic Structures

Shape

Motion

Actuator

leg bend hinge
Loads
weight force
S Load

Export Hubs & Animation

Figure 1: TrussFormer is an end-to-end system that allows users to design and 3D
print large-scale kinetic truss structures. TrussFormer verifies that the designed
structure can handle the forces resulting from its motion, as shown on this
animatronics 4m tall T-Rex.

2 Related Work

TrussFormer builds on previous efforts in animatronics, robotics, software tools for
creating mechanisms in HCI and graphics, and creating variable geometry truss
mechanisms.

2.1 Software tools for Animatronics

Many HCI researchers have built software tools to empower users to animate robots
[[17]]. This is especially challenging when the users are novices and the intended
results are expressive movements, such as imitating animal (organic) movements,
i.e., animatronics. Animatronics interfaces follow several designs, from manual con-
trol [9]] to puppeteering using skeletal tracking [[19]]. Marti et al. designed an early
example of an animatronics software tool for a small (puppet sized) phone call
handling agent, demonstrating two methods: manual control (user directly controls
each single actuator using one GUI fader) and programming motion patterns using
a sequencer [9].

2.2 Software tools for designing mechanisms and dealing with forces

TrussFormer draws from work on systems that assist users with creating mecha-
nisms that involve motion or forces. Algorithmic tools can help users create moving

68

3 Creating kinetic structures using TrussFormer

mechanisms. For example, kinematic synthesis of mechanisms [22]], or generation
of personalized walking toys from a library of predefined template mechanisms [|1]].
These can be embedded in design support systems, for example, generating moving
toys from motion input [24]].

Researchers in the domain of personal fabrication have started to investigate the
effects of dynamic forces in the resulting models, such as balancing rotating objects
[13] and interactively designing model airplanes [23]]. TrussFormer extends these
approaches by using physical simulation interactively in its editor. This combination
is necessary to provide an editor that embodies the domain knowledge needed to
produce large scale animated truss structures.

2.3 Variable geometry truss mechanisms

TrussFormer’s mechanisms are based on variable geometry trusses (VGT) [[15} 16,
21]]. VGTs have been used extensively in robotics. Tetrobot [5] is built by chaining
the tetrahedron edges with linear actuators, which unite at a vertex in a spherical
joint. The design and mechanics behind this type of spherical joints have been ex-
tensively analyzed [2]. Tetrobot was designed to enable robots to reconfigure into
different usages by reusing the same basic primitives. Researchers and engineers
have explored variations of this VGT design in different contexts, for example: space
applications [[15]], reconfigurable robotic manipulators [5], and shape morphing
trusses [20]]. Other researchers introduced design variations in this basic cell, allow-
ing the resulting structure to afford new qualities. For instance, the Spiral Zipper
[3]] is an extendable edge, based on extending a cylinder that allows for extreme
expansion ratios (e.g., 14:1). Similarly, Pneumatic Reel Actuator [|6]] is based on a
mechanism that extrudes and retracts a plastic (tape-like) tubing, to act as an actua-
tor. The mechanism is designed to be lightweight and low-cost while being limited
in its robustness.

TrussFormer takes inspiration from VGTs and builds on the conceptual design
of Tetrobot. To this work, TrussFormer contributes a spherical joint design that is
automatically generated based on the designed truss geometry.

3 Creating kinetic structures using TrussFormer

TrussFormer helps users to create the shape and design the motion of large-scale
kinetic structures. It does this by incorporating linear actuators into rigid truss struc-
tures in a way that they move “organically”, i.e., hinge around multiple points at the
same time. These structures are also known as variable geometry trusses [[15]]. Figure
2 illustrates this on the smallest elementary truss, (a) the rigid tetrahedron. (b) We
swap one of the edges with a linear actuator, (c) resulting in a variable geometry
truss. The only required change for this is to introduce hubs that enable rotation at
the nodes. We call these hinging hubs.

This simple approach to create variable geometry truss mechanisms scales well
to arbitrary larger structures. Our T-Rex model from Figure 1 contains five linear

69

Robert Kovacs: TrussFormer: 3D Printing Large Kinetic Structures

Figure 2: (a) The static tetrahedron (b-c) is converted into a moving structure
by swapping one edge with a linear actuator. The only required change is to
introduce connectors that enable rotation.

actuators and thus offers five degrees of freedom (DoF). It can (a) lift or lower its
neck (1 DoF), (b) turn its head left and right (1 DoF), (c) sweep its tail (2 DoF), and
(d) open its mouth (1 DoF), as shown in Figure 3.

In the following, we demonstrate how TrussFormer allows non-expert users to
create such structures in six steps.

3.1 Step 1: Creating the static structure

As shown in Figure 4, this particular model was created by first modeling the T-Rex
as a static structure in TrussFormer. Our editor’s ability to create static structures
is based on TrussFab [8]] : users design the shape of their T-Rex using structurally
stable primitives (tetrahedra and octahedra).

Figure 3: Modeling the static shape of the T-Rex. Here, the user creates the jaws
of the T Rex by attaching tetrahedron primitives through the steps (a, b, ¢).

70

3 Creating kinetic structures using TrussFormer

3.2 Step 2: Adding movement

To add movement to the static structure, users select the demonstrate movement tool
and pull the T-Rex head downwards, as shown in Figure 5. TrussFormer responds
by placing an actuator that turns the T-Rex body into a structure that organically
moves and bends down. Together with the Demonstrate movement tool, TrussFormer
provides three different approaches to animating structures, ranging from this (1)
automated placement (for novice users), through (2) placing elements with prede-
fined motion, called assets, to (3) manual placement (as users acquire engineering
knowledge). We discuss these in section “Adding motion to the structure”.

Figure 4: (a) The user selects the demonstrate movement tool and pulls the T-Rex
head downwards. (b) TrussFormer responds by adding an actuator to the T-
Rex body so that it is capable of performing this type of motion. At this point
the system also places 9 hinging hubs to enable this motion (marked with blue
dots).

3.3 Step 3: Stability check across poses

During this step, TrussFormer also verifies that the mechanism is structurally sound.
In the background, TrussFormer finds the safe range of expansion and contraction of
the placed actuator by simulating the occurring forces in a range of positions. If there
is a pose where the forces exceed the pre-determined breaking limits or the structure
would tip over, TrussFormer sets the limits for the actuator so it will not extend
beyond them. This check prevents users from producing invalid configurations.

3.4 Step 4: Animation

To animate the structure users open the animation pane in the toolbar, as shown
in Figure 6. First, they control the movement of the structure manually using slid-

71

Robert Kovacs: TrussFormer: 3D Printing Large Kinetic Structures

ers, to try out the movement. When they find the desired pose, they simply add
it as a keyframe to the animation timeline. With this TrussFormer allows users to
orchestrate the movement of all actuators using a simple timeline/keyframe editor.
In Figure 6 we program a “feeding” behaviour, where the T-Rex opens its mouth
while reaching down and waving its tail.

e e animation pane

Os 4s 8s

MN\.—/&—. Lﬁ
0]
#S//.\-o\ *
L>
l

hide

Os 4s 8s
e
#4 .0~ —e *
Os 4s 8s
Y
. —

Os 4s 8s

Figure 5: Animating the structure. Users sets the desired pose using the sliders
in the animation pane and orchestrates the movement by placing key-frames
on the timeline.

3.5 Step 5: Checking forces during the motion

Once a movement has been defined, TrussFormer computes the dynamic forces. As
shown in Figure 7a, the user creates an animation that moves the T-Rex body up
and down. (b) TrussFormer computes the forces while T-Rex’s body comes back
up quickly after dipping down; the large acceleration of the long neck leads to very
high inertial forces, exceeding the breaking limit of the construction, (c) causing
the structure to fail at the indicated time point. These situations are hard to foresee,
because the inertial forces can be multiple times higher than the static load in the
structure. (d) TrussFormer addresses this by automatically correcting the animation
sequence by either limiting the acceleration or the range of the movement, assuring
that the structure will now withstand the movement.

3.6 Step 6: Fabrication
When users are satisfied with their design (structure, movement and animation),
they click the fabricate button, shown in Figure 8a. This invokes (1) TrussFormer’s

hinge generation algorithm, which analyzes the structure’s motion and generates
the appropriate 3D printable hinge and hub geometries, annotated with imprinted

72

3 Creating kinetic structures using TrussFormer

auto-corrected

A\ FRY%4 animation
[JOK) \ animation pane [JoX) :) aima%e
‘ > #1/]\"//% * ‘ > #1"/\/‘? *

Os 4s 8s Os 4s 8s

Figure 6: Verifying the inertial forces: (a-b) The forces are increasing with the
acceleration of the structure. (c¢) The structure breaks when the direction of
the movement changes rapidly. (d) TrussFormer resolves this by making the
movement slower.

73

Robert Kovacs: TrussFormer: 3D Printing Large Kinetic Structures

IDs for assembly. In the case of the T-Rex, the system exports 42 3D printed hubs,
consisting of 135 unique hinging pieces. (2) Next, TrussFormer exports the created
animation patterns as Arduino code that users upload to their microcontroller. (3)
Lastly, it outputs a specification, containing the force, speed, and motion range of
the actuators, in order to achieve the desired animation pattern. Users find these
actuators as standardized components.

2R VAL

leg bend hinge

Loads

i actuator%@

Figure 7: (a) To fabricate our T-Rex model, TrussFormer exports: (b) the appro-
priate 3D printable hinging-hubs, (c) and the specifications for the actuators
that inform the users which one to buy. TrussFormer also exports the animation
sequence for an Arduino.

3.7 Implementation
3.7.1 Software system

We extend the TrussFab editor [8]], which provides the core functionality to cre-
ate, save, load, and export static structures. TrussFormer further allows users to

74

4 Conclusion

add movement and animate these structures. Like TrussFab, TrussFormer is also
implemented as a plugin for the 3D modelling software SketchUp. The native pro-
gramming language for SketchUp plugins is Ruby, which most of the features that we
described throughout the paper, such as the hinge placement algorithm, are written
in. To simulate the movement and the force distribution in the 3D model, we use the
physical simulation engine MSPhysics, a Ruby wrapper for the C++ physics library
Newton Dynamics [|11]]. To achieve interactive performance, the only simulated com-
ponents are the hubs, the edges are just animated on the scene. The hubs contain all
the necessary information, such as weight, breaking force, and the stiffness determin-
ing how much hubs can move in relation to their neighbors. User interface elements
(e.g., the control or the animation pane) are displayed in a SketchUp-integrated Web
Browser View. We implemented the UI in HTML and JavaScript to take advantage
of UI frameworks such as React. To generate the 3D printable hinge, we use the para-
metric 3D modeling tool OpenSCAD [[12]]. When users export their kinetic structure,
TrussFormer determines the hinges and static hubs and calls the pre-defined Open-
SCAD scripts with the relevant parameters (e.g., angle, connection type, or length of
the connection). These scripts describe the resulting parametrized 3D model, which
are rendered in OpenSCAD as .stl files.

3.7.2 Control system and actuators

Figure 24 shows the hardware we use to actuate our T-Rex example. We use pneu-
matic actuators with interfaced with proportional valves (Festo VPPE and MPYE
series) that are controlled by an Arduino Nano. The pneumatic cylinders have di-
ameters from 25 to 35 mm and produce forces between 390 N and 770 N. We use an
Airpress HL 360 compressor that can provide up to 8 bar of pressure.

4 Conclusion

We presented TrussFormer, an end-to-end system that enables novice users to design
and build large animated structures. Such structures are usually a privilege of indus-
try such as theme parks. TrussFormer encapsulates domain knowledge about the
occurring dynamic forces so that even novice users can build such animated struc-
tures. We showed how TrussFormer enables users to add motion to static structures
in three ways, including simply pulling on the virtual model and letting the system
find the placement of an actuator to enable this motion. Furthermore, we showed
how TrussFormer finds valid motion and force ranges for actuators to realize user-
defined animations. TrussFormer detects and automatically suggests corrections
for animations that would break the simulated structure, thereby ensuring that the
physical structure will function as desired. As a last step, TrussFormer generates all
connectors and hinges that users print on their desktop 3D printer and exports the
actuator specifications.

75

Robert Kovacs: TrussFormer: 3D Printing Large Kinetic Structures

References

[1]

G. Bharaj, S. Coros, B. Thomaszewski, J. Tompkin, B. Bickel, and H. Pfister.
“Computational design of walking automata”. In: Proceedings of the 14th ACM
SIGGRAPH /Eurographics Symposium on Computer Animation. 2015, pages 93—
100.

P. Bosscher and I. Ebert-Uphoff. “A novel mechanism for implementing multi-
ple collocated spherical joints”. In: Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on. Volume 1. 2003, pages 336-341.

F. Collins and M. Yim. “Design of a spherical robot arm with the spiral zipper
prismatic joint”. In: IEEE International Conference on Robotics and Automation
(ICRA’16). 2016, pages 2137-2143.

S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W.
Matusik, and B. Bickel. “Computational design of mechanical characters”. In:
ACM Trans. Graph. 32.4 (2013), 83:1-83:12. DOI: 10.1145/2461912.2461953.

G.J. Hamlin and A. C. Sanderson. “Tetrobot: A modular approach to parallel
robotics”. In: IEEE Robotics & Automation Magazine 4.1 (1997), pages 42-50.

Z.M. Hammond, N. S. Usevitch, E. W. Hawkes, and S. Follmer. “Pneumatic
reel actuator: Design, modeling, and implementation”. In: IEEE International
Conference on Robotics and Automation (ICRA’17). 2017, pages 626—633.

S. E. Hudson. “Printing teddy bears: a technique for 3D printing of soft in-
teractive objects”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2014, pages 459-468. DOI: 10.1145/2556288.2557338.

R. Kovacs, A. Seufert, L. Wall, H.-T. Chen, F. Meinel, Miiller, S. You, M. Brehm,
J. Striebel, Y. Kommana, A. Popiak, T. Blésius, and P. Baudisch. “TrussFab:
Fabricating sturdy large-scale structures on desktop 3D printers”. In: Proceed-
ings of the ACM Conference on Human Factors in Computing Systems. 2017. DOI:
10.1145/3025453.3025624.

S. Marti and C. Schmandt. “Physical embodiments for mobile communication
agents”. In: Proceedings of the 18th annual ACM symposium on User interface
software and technology. 2005, pages 231-240.

S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretiére, and P.
Baudisch. “WirePrint: 3D printed previews for fast prototyping”. In: Proceed-
ings of the 27th annual ACM symposium on User interface software and technology.
2014, pages 273-280. DOI: 10.1145/2642918.2647359.

Newton Dynamics. URL: http://newtondynamics.com/forum/newton.php (last
accessed 2018-09-25).

OpendSCAD. URL: http://openscad.org (last accessed 2018-09-25).

R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung. “Make it stand:
balancing shapes for 3D fabrication”. In: ACM Transactions on Graphics (TOG)
32.4 (2013), page 81.

76

https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1145/2556288.2557338
https://doi.org/10.1145/3025453.3025624
https://doi.org/10.1145/2642918.2647359
http://newtondynamics.com/forum/newton.php
http://openscad.org

[14]

[15]

[20]

[21]

[22]

[23]

References

J. Qi and L. Buechley. “Animating paper using shape memory alloys”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
2012, pages 749-752.

V. A. Reinholtz and L. T. Watson. Enumeration and analysis of variable geometry
truss manipulators. Technical report. Virginia Polytechnic Institute and State
University; Blacksburg, VA, United States, 1990.

M. D. Rhodes and M. Mikulas Jr. Deployable controllable geometry truss beam.
Technical report. NASA Langley Research Center; Hampton, VA, United States,
1985.

T. Ribeiro and A. Paiva. “The illusion of robotic life: principles and practices
of animation for robots”. In: Proceedings of the seventh annual ACM/IEEE inter-
national conference on Human-Robot Interaction. 2012, pages 383-390.

T. J. Roumen, W. Miiller, and P. Baudisch. “Grafter: Remixing 3D-Printed Ma-
chines”. In: Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems. 2018, page 63.

M. Sakashita, T. Minagawa, A. Koike, I. Suzuki, K. Kawahara, and Y. Ochiai.
“You as a puppet: Evaluation of telepresence user interface for puppetry”. In:
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 2017, pages 217-228.

A. Sofla, D. Elzey, and H. Wadley. “Shape morphing hinged truss structures”.
In: Smart Materials and Structures 18.6 (2009), pages 1-8.

A. Spinos, D. Carroll, T. Kientz, and M. Yim. “Variable topology truss: Design
and analysis”. In: 2017 IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS’17). 2017, pages 2717-2722.

D. Subramanian et al. “Kinematic synthesis with configuration spaces”. In:
Research in Engineering Design 7.3 (1995), pages 193-213.

N. Umetani, Y. Koyama, R. Schmidt, and T. Igarashi. “Pteromys: interactive
design and optimization of free-formed free-flight model airplanes”. In: ACM
Transactions on Graphics (TOG) 33.4 (2014), page 65.

L. Zhu, W. Xu, J. Snyder, Y. Liu, G. Wang, and B. Guo. “Motion-guided me-
chanical toy modeling.” In: ACM Trans. Graph. 31.6 (2012), pages 127-136.

77

Theory of Estimation-of-Distribution Algorithms

Martin Krejca

Algorithm Engineering
Hasso-Plattner-Institut
martin.krejca@hpi.de

Estimation-of-distribution Algorithms (EDAs) are randomized search heuristics
and general-purpose optimizers that create a probabilistic model of the problem’s
domain and iteratively refine it using samples. Due to their flexibility, they are
most often used when there is little problem-specific knowledge or when there is
too little budget to implement or set up highly specific solvers.

Our focus lies on theoretically analyzing EDAs in order to gain insights into
their key features, with the aim of answering important questions, such as how
to overcome noise, how fast these algorithms can optimize at all, and how they
compare to classical evolutionary algorithms (EA). We present our latest results,
which are a new type of EDA that is fast on different classes of functions — a feat
that, up to now, no other EDA or EA has achieved — and better tools for analyzing
random processes theoretically.

1 Introduction

When facing real-world optimization problems, it is sensible to use state-of-the-art
solvers. Due to the NP-hard nature of many of these problems, one does not neces-
sarily expect to get optimal results but a fair approximation. However, if the problem
cannot (easily) be transformed into the form that the solver accepts, if there is no
good solver for the problem, or if one is interested in a fast (and hopefully good)
preliminary solution, one may consider using alternative approaches like random-
ized search heuristics. One class of such heuristics are estimation-of-distribution
algorithms (EDAs) [20]], which can produce good solutions in little time. They have
been applied to a variety of different problems, where they proved to be superior to
competing algorithms, oftentimes yielding better solutions or any solution at all [20]].

In a broader sense, EDAs belong to the class of evolutionary algorithms (EAs) [12]],
which are optimization algorithms that mimic behavior seen in natural evolution,
such as mutation or crossover. Classical EAs maintain a (multi)set (the population)
of candidate solutions (the individuals) over the space of all potential solutions of
the optimization problem and iteratively create new individuals by modifying the
existing ones and then discarding bad individuals, creating a new population (see
Figure [Ia]). In contrast to that, EDAs store a probabilistic model (which implies
a probability distribution) of the problem space, which they evolve by learning
from samples of the model (see Figure [1b]). Thus, EDAs do not only show which
individuals are good but, additionally, show which areas of the solution space are
more beneficial. From this point of view, EDAs can be considered more insightful

79

mailto:martin.krejca@hpi.de

Martin Krejca: Theory of Estimation-of-Distribution Algorithms

Iteration

O 0a®
o6 .. K068 I Pe®
OR2=0P0-0¢ =0 0
0500 OxoLe@ 5 Ce

—_
Population Offspring

(a) The schematic view of a classical EA. The population first increases through variation
(that is, mutation or crossover) and then gets reduced by selection.

Iteration

Sampling OO Update
—> —>

Distribution Offspring

(b) The schematic view of an EDA. The algorithm samples offspring from a distribution and
then performs an update.

Figure 1: A comparison of the main differences between classical EAs and EDAs.
A classical EA (Figure works with an explicit population, whereas an EDA
(Figure[1b)) uses a probability distribution instead. Both algorithms create off-
spring and perform an update afterward.

than classical EAs. Therefore, it is interesting to study the differences between EDAs
and classical EAs.

EAs in the broad sense are general-purpose heuristics that only need a problem-
specific quality measure (called a fitness function) that says how good or bad each in-
dividual is. Thus, from a theoretical point of view, these algorithms fall into the black-
box model. Theoretical analyses then follow black-box complexity, which means that
only the number of function evaluations — the supposedly most costly operation —is
considered.

When performing such analyses, the function class is usually limited to certain
benchmarks that exhibit a desired property. In this context, pseudo-Boolean func-
tions are the most commonly analyzed class, that is, functions f: {0,1}" — R. The
function analyzed the most in this class is OneMax (equation ([1f)): a function that
returns the number of 1s of a bit string, thus, each bit string (but the optimum) has
a neighbor (of Hamming distance 1) that is better. When considering this function,
one is interested in how well an algorithm is able to follow a simple gradient in

80

2 Preliminaries

fitness (also called hill climbing). Another common function is LeadingOnes (equa-
tion), which returns the number of consecutive 1s starting from the left. This
function resembles the process of finding a hidden permutation, and it shows how
well an algorithm can handle dependency in the bits, as information about bits more
to the right of a bit string is only revealed once all bits to the left are 1. In Section 3}
we go more into detail about the run times of many EAs and EDAs on these two
functions (Table|1)).

Our first result introduces a new EDA, the sig-cGA (Algorithm , that is able to
optimize both OneMax and LeadingOnes in O(n log 1) in expectation — a feat that is
up to now unique for any EA or EDA. The algorithm works by saving a (condensed)
history of samples and then searches for significances, that is, a far higher number
of 1s or Os than expected. If such a significance is found, the probabilistic model of
the algorithm is adjusted accordingly.

Our second result is concerned with drift theory — the essential toolbox of theorems
used when analyzing EAs and other random processes. We improve the applicability
of the most basic theorem (the additive drift theorem; Theorem(T)). As it is used to prove
many other drift theorems, our result entails that these theorems are improved as
well.

We now proceed by stating some notation and terms in Section [2] that we need to
explain our results presented in Section 3 We conclude with an overview on future
work in Section

2 Preliminaries

Recall that we consider pseudo-Boolean optimization, that is, our fitness functions
f:4{0,1}" — R are defined over the discrete hypercube. Let n € N* always denote
the dimension of the search space. For an individual x € {0,1}", that is, a bit string of
length 1, we call its respective value f(x) fitness. Further, we call every component x;
of x a bit and index i the position of that bit. Last, we denote string concatenation
with the o symbol.

In Section 3| we investigate the following two functions, which we already dis-
cussed in Section

=

OneMax(x) = in and (1)
LeadingOnes(x) = i X . (2)

Our algorithm of interest is the sig-cGA (short for significance-based compact genetic
algorithm; Algorithm (1)), which we recently introduced [3]. It works with a very sim-
ple probabilistic model that assumes independence between all bits of the hypercube,
that is, its model is univariate. This model is represented by a vector T (the frequency
vector) of n probabilities. Each component 7; (a frequency) denotes the probability
to sample a 1 at position i (and a 0 with probability 1 — 7;) independently from all

81

Martin Krejca: Theory of Estimation-of-Distribution Algorithms

Algorithm 1: The sig-cGA [3]] with parameter ¢ and significance function sig
(equation (B])) optimizing f
1t 0
2 forie {1,...,n} do Tl.(t) — % and H; + @
3 repeat
4 x,y ¢ offspring sampled with respect to T(*

5 x < winner of x and y with respect to f

6 fori € [n] do

7 H; + H;ox;

8 if sig(Ti(t),Hi) = up then Ti(tﬂ) —1-1/n

9 else if sig(Ti(t), H;) = down then TZ.(HI) «—1/n
10 else Ti(tH) — Ti(t)

11 if Ti(tH) # Ti(t) then H; < ©

12 end

13 t+—t+1
14 until termination criterion met

other positions. Every iteration, two individuals are sampled and compared via their
fitness. We call the better individual the winner and the other the loser (breaking ties
uniformly at random). Additionally, the algorithm keeps a history of bit values for
each position and only performs an update when a statistical significance within
a history occurs. This approach aligns with the intuitive reasoning that an update
should only be performed if there is valid evidence for a different frequency being
better suited for sampling good individuals.

In more detail, for each position i, the sig-cGA keeps a history H; € {0,1}* of
all the bits sampled by the winner of each iteration since the last time 7; changed —
the last bit denoting the latest entry. Observe that if there is no bias in selection at
position i, that is, each individual has the same fitness, the bits sampled by 7; follow
a binomial distribution with a success probability of 7; and |H;| tries. We call this
our hypothesis. Now, if we happen to find a sequence (starting from the latest entry)
in H; that significantly deviates from the hypothesis, we update 7; with respect to
the bit value that occurred significantly, and we reset the history. We only use the
following three frequency values:

e 1/2: starting value;
e 1/n: significance for Os was detected;
e 1 —1/n:significance for 1s was detected.

We formalize significance by defining the threshold as follows for all ¢, 4 € R,
where y is the expected value of our hypothesis and ¢ is an algorithm-specific pa-

rameter: s(¢, 1) = emax{/puInn,Inn}.

82

2 Preliminaries

For an ¢ € RY, we say that a binomially distributed random variable X deviates
significantly from a hypothesis Y ~ Bin(k, 7), where k € N and 7 € [0, 1], if there
exists a ¢ = (1) such that Pr[|X — E[Y]| < s(¢,E[Y])] <n*

We now state our significance function sig: {%, %, 1— %} x {0,1}* — {up, stay,
down}, which scans a history for a significance. However, it does not scan the entire
history but multiple subsequences of a history (always starting from the latest entry).
This is done in order to quickly notice a change from an insignificant history to a
significant one. Further, we only check in steps of powers of 2, as this is faster than
checking each subsequence and we can be off from any length of a subsequence by
a constant factor of at most 2. More formally, for all H € {0,1}* we define, with ¢
being a parameter of the sig-cGA, where H k]| denotes the last k bits of H,

S [e N R 2 (e),
Sig(E,H) = ¢ down if 3m € N: ||[H[2"]|o > %"”S(S’ 27"1)/

stay else.

) _ {down if Im € N: [[H2"]|jo > 2~ +5(e, %),

stay else.

sig(1 Ly (3)

=

_ (1) - Jup i 3me Ne[HR") > 3 +s(e %),
sig o =
stay else.

We stop at the first (minimum) length 2 that yields a significance. Thus, we check
a history H in each iteration at most log, |H| times.

Observe that in line[14} the termination criterion is not specified. When we consider
the run time of the sig-cGA, we mean the number of iterations the algorithm needs
to sample an optimum for the first time. This means that the termination criterion
could also say until optimum found. However, since this is a piece of information the
algorithm does not have, we assume that it keeps iterating forever, and we just stop
all further considerations once the optimum is found.

Note that the first-hitting time is a random variable because the individuals in each
iteration are random variables, due to the random nature of the sampling process.
The most valuable piece of information about a random variable is of course its
distribution. However, determining the exact distribution of such a complex random
variable is basically impossible. Therefore, the standard approach is to calculate its
expectation. We call this value the expected run time of a randomized algorithm. The
prevalent way of determining this expected value when analyzing EAs theoretically
is to use drift theory.

Drift theory is a toolbox of various theorems that bound the expected first-hitting
times of random processes. The core idea of these drift theorems is to bound the
expected progress of a random process during a single step. They then yield a bound
on the overall first-hitting time. Hence, drift theory transforms information on local
changes to global information about the process.

The initial drift theorem was proven by Hajek [8]] and later introduced to the theory
community analyzing EAs and restated in a different fashion by He and Yao [9,10].

83

Martin Krejca: Theory of Estimation-of-Distribution Algorithms

It is called the additive drift theorem because it bounds the expected change of the
process by a global constant. We state it in its most general form.

Theorem 1 (Additive Drift Theorem [[13]]). Let (F;)ten be a filtration, let (X¢)ieN be a
random process over R adapted to F, and let T = inf{t | X; < 0}. Furthermore, suppose
that,

1. (non-negativity) for all t € N, it holds that X - 1;;<7y > 0, and that

2. (drift condition) there is some value 5 > 0 such that, for all t € N, it holds that
(Xt —E[Xes1 | Fe]) - Ljpery = 0 1oty

Then

X
E[T | Xo] < 5.
Note that 1,7 is the indicator random variable for the event that the random
process did not reach 0 yet. This effectively means that we are only interested in the

process as long as it did not reach 0. What happens afterward is irrelevant for T.

3 Results

We are not going to discuss our prior results that we already discussed in great detail
in the last reports [21, 22]]. Here, we discuss our run time results of the sig-cGA [3]]
as well as our results on drift theory [13]]. We start with the former.

As already discussed in Section(T} two common benchmark functions for the theory
of EAs are OneMax and LeadingOnes. We show various run time results of different
algorithms on these functions in Table|l} The usual expected run time for OneMax is
©(nlogn), as many algorithms perform a process known as coupon collector, which
has an expected time of @ (nlog n) [|18]]. The reasoning behind this is that, intuitively
speaking, at the beginning, the optimization process progresses quickly and finds
many of the n correct bits. However, the process slows down over time, as it is harder
to find incorrect bits, adding a factor of logn to the run time in total. In contrast,
the usual expected run time for LeadingOnes is @(12), as the bits have to be found
sequentially and each position takes, on average, a time of ®(n) to optimize.

The main point for the slower run time on LeadingOnes when compared to One-
Max for EAs is that the mutation probability is commonly very low (at1/7) in order
to have a constant number of changes per iteration. Hence, when only a single posi-
tion is relevant, the waiting time for a correct mutation to occur is in the order of n.
If the mutation probability is increased, the algorithm performs more and more of
an unbiased random walk, which is detrimental for the overall optimization process.
We propose the sig-cGA (Algorithm [T]), which starts, so to speak, with a constant
mutation probability. However, it circumvents the aforementioned problem in two
ways: first, once a bit value seems to be significant, the respective frequency is set to
an extreme value (of either 1 — 1/n or 1/n), making it very likely to sample the same
bit every iteration without being stuck with this decision. Second, the sig-cGA only
performs an update once a significance (see function (3)) is detected. This way, the

84

3 Results

c<s (€l (uBoru)o <3 [l (uSoru)o (1 S1v) voo-8is
(De=r(do=r 0<2(e=r
‘(uBone = d/1 (2] (uBoru)0 ()@ =v"(udo)y =0d/1 (€] ({o)5C" (eT}ur) U VoS8
ouou TML (du) /1 :VEEVCN
suou E A duy /¢ Z4)O (Ne =19 [61]] (u3o1u)@ INV-1
(w)&rod)o U (uSoruMU = | lea] (450
- umowun (w)kod)o = § [e2] ? Soru + %v U TSYININ-T/VD?
(Ve ="
“(u)ou (uBop)y = 110 (V)@
= A:woﬁkxv =110 ()Y
= v '(uMou (uSony = 1 lsgistl (uv)o
(Ve
= n'(ulop)uy = v [91[1] (1 + vSorvu)O (Vo=1 [#1] (uSoru+ufrv)o Tdd/Vann
S)Ie)Sal
“(u(9+up))urg < [£1]] (uBoru)0 - umowyun VSO
, So , ‘
_ umowun Y=o =d [q Aﬁ‘,\ww_woﬂ,\: xwoé%é&v@ vo ((v'v) +1)
((w)hrod)o = v [t1] (uv + 4)@ (—o=v [11/7] A% + u3op :v® va (v +1)
(mhod)o =1 2] (u+uSojun)e ((u)hrod)o = 11 [¥2]] (uSoru + ur)e v (1+1)
duou [9] (;w)® ouou [9] (#Bo1u)E@ va (1+1)
SJUTRIISUO0D sauQ3urpea] SJUTRIISUO0D XeNPUQO WYILIO3[Y

"souQ3urpea] 10§ (,U)@ JO pue XeNPRUQ 10§ (u 30[U)@ JO W} Uuni e
aArY sunyiogre Auew ‘sgunyes 1jaurered rewmdo 104 *(Ajpanoadsar /(g) pue (1)) suonenba) ssupSurpes pue xeNauUQ suonouny
om} a3y} 1oj wnwmndo ue puy 3s1y A3y} [HuUN sunyjrIode snorea Jo (SUOeN[eAd ssauwjy JOo Idquinu) sawr uni pajoadxy T a[qeL,

85

Martin Krejca: Theory of Estimation-of-Distribution Algorithms

decision of setting a frequency to an extreme value is not arbitrary but well-founded.
Together, these properties achieve that the search process does not degenerate into a
random walk but into a somewhat directed search process.

Our main result is that the sig-cGA has an expected run time of O(nlogn) on
both OneMax and LeadingOnes [J3]]. This is the first time this has been proven for
any EA or EDA. Although the run time is the same on both functions, the reasons
are quite different. For LeadingOnes, the leftmost position whose frequency is not
at 1 — 1/n samples drastically more 1s than Os (by a constant factor larger than ex-
pected). Hence, it only takes O(log n) iterations in expectation to optimize such a
position instead of the usual O(n) iterations. Note that this is the minimum num-
ber of iterations necessary in order to perform an update, due to how we define a
significance. Once a frequency is increased, it will not decrease with high probabil-
ity. After setting a frequency to 1 — 1/n, the next position gets a significant boost
in saving 1s and gets increased after O(logn) iterations in expectation. Thus, the
optimization process advanced sequentially. Consequently, since n frequencies need
to be optimized, the expected run time is O(nlogn).

For OneMayx, a single frequency is increased during O(nlog n) iterations in expec-
tation. This is by a factor of n longer when compared to LeadingOnes. The reason
is that all of the bits influence the fitness of an individual drastically at the same
time — the probability to save a 1 in the history is only by a factor of 1//n larger
than expected. Thus, it takes some time in order to collect enough samples before
a significance occurs. However, all of these frequencies are optimized at the same
time, that is, in parallel. Thus, the overall run time is still O(nlogn).

These results show a stark contrast in how the sig-cGA optimizes different func-
tions: LeadingOnes is optimized fully sequentially, whereas OneMax is optimized
fully in parallel. Nonetheless, in the end, the same run times result.

Another result of ours is the improvement of the classical additive drift theo-
rem [[13]]. Our main contribution is to remove all prior assumptions that are not
necessary for proving the theorem. Such unnecessary assumptions included the
state space to be finite, discrete, or bounded, which all imply (albeit indirectly) that
the expected first-hitting time E[T] of the analyzed process is finite — a property
that is necessary, as the theorem would not hold otherwise since it yields a finite
upper bound. Our new theorem works for any process over R>g (Theorem(l]). This
means that we show that the finiteness of E[T] already follows mainly from the drift
condition (condition. This makes the theorem easier to use and less error-prone,
as fewer requirements have to be checked.

Further, we provide examples that show that the theorem does not hold anymore
if one of the two conditions are not met. For condition 2] this is trivial, as the bound
provided does not make any sense without it. However, condition[I]is also necessary,
as it provides (indirectly) a bound on how close the process can get to 0. If the process
can get up to a value of a € R, then the drift can be at most 4 for condition 2|to hold.
This implies a lower bound on the bound provided by the theorem, assuring that it
cannot get below the actual expected first-hitting time of the process. These insights
are very helpful when coming up with new drift theorems or trying to improve

86

4 Future Work

existing ones, as one has a better understanding of what properties are important
and how they interact with each other.

4 Future Work

Over the last three and a half years with the Research School, I co-authored many
publications on EDAs, mainly analyzing the run time behavior of these algorithms.
Hence, my current focus is on writing my PhD thesis.

Independently of my current activities, the introduction of the sig-cGA provides
plenty of new research possibilities. One important goal are more lower bounds
(especially on LeadingOnes) of EDAs in order to see if the sig-cGA is strictly better
than other EDAs on certain functions. Further, the sig-cGA should be analyzed on
more functions, for example, the Jump function or linear functions. In addition to that,
the algorithm can be thought of as a regular EA (as briefly discussed in Section 3)).
Hence, it would be interesting to see if run time results of EAs carry over to the
sig-cGA in the spirit of that the sig-cGA is only by a constant slower than most EAs.
Since many run time results are known for EAs, this would increase the results for
the sig-cGA tremendously.

References

[1] D.-C. Dang and P. K. Lehre. “Simplified runtime analysis of estimation of
distribution algorithms”. In: Proc. of GECCO. 2015, pages 513-518.

[2] B. Doerr and C. Doerr. “A tight runtime analysis of the (1+(A, A)) genetic
algorithm on OneMax”. In: Proc. of GECCO. 2015, pages 1423-1430.

. Doerr an . S. Krejca. “Significance-based Estimation-of-Distribution Al-
3] B.D d M. S. Krejca. “Signifi based E f-D b Al
gorithms”. In: Proc. of GECCO. 2018, pages 1483-1490.

[4] B. Doerr and M. Kiinnemann. “Optimizing linear functions with the (1+A)
evolutionary algorithm — different asymptotic runtimes for different in-
stances”. In: Theoretical Computer Science 561 (2015), pages 3-23.

[5] B. Doerr, FE. Neumann, D. Sudholt, and C. Witt. “On the runtime analysis of
the 1-ANT ACO algorithm”. In: Proc. of GECCO. 2007, pages 33—40.

[6] S.Droste, T.Jansen, and I. Wegener. “On the analysis of the (1+1) evolutionary
algorithm”. In: Theoretical Computer Science 276.1-2 (2002), pages 51-81.

[7] T. Friedrich, T. Kétzing, and M. S. Krejca. “EDAs cannot be Balanced and
Stable”. In: Proc. of GECCO. 2016, pages 1139-1146.

[8] B.Hajek. “Hitting-time and occupation-time bounds implied by drift analysis
with applications”. In: Advances in Applied probability 14.3 (1982), pages 502—
525.

87

Martin Krejca: Theory of Estimation-of-Distribution Algorithms

[9]
[10]

[11]

[21]

[22]

[23]

[24]

J. He and X. Yao. “A study of drift analysis for estimating computation time
of evolutionary algorithms”. In: Natural Computing 3.1 (2004), pages 21-35.

J. He and X. Yao. “Drift analysis and average time complexity of evolutionary
algorithms”. In: Artificial Intelligence 127.1 (2001), pages 57-85.

T. Jansen, K. A. D. Jong, and I. Wegener. “On the choice of the offspring popu-
lation size in evolutionary algorithms”. In: Evolutionary Computation 13 (2005),
pages 413—440.

J. Kacprzyk and W. Pedrycz, editors. Springer Handbook of Computational Intel-
ligence. Springer, 2015. ISBN: 978-3-662-43504-5.

T. Kétzing and M. S. Krejca. “First-Hitting Times Under Additive Drift”. In:
Proc. of PPSN. 2018, pages 92-104.

M. S. Krejca and C. Witt. “Lower Bounds on the Run Time of the Univari-
ate Marginal Distribution Algorithm on OneMax”. In: Proc. of FOGA. 2017,
pages 65-79.

P.K. Lehre and P. T. H. Nguyen. “Improved Runtime Bounds for the Univariate
Marginal Distribution Algorithm via Anti-Concentration”. In: Proc. of GECCO.
2017, pages 1383-1390.

P. K. Lehre and P. T. H. Nguyen. “Level-Based Analysis of the Population-
Based Incremental Learning Algorithm”. In: Proc. of PPSN. 2018, pages 105—
116.

A. Moraglio and D. Sudholt. “Principled design and runtime analysis of ab-
stract convex evolutionary search”. In: Evolutionary Computation 25.2 (2017),
pages 205-236.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. ISBN: 978-0-521-47465-8.

F. Neumann and C. Witt. “Runtime analysis of a simple ant colony optimiza-
tion algorithm”. In: Algorithmica 54.2 (2009), pages 243-255.

M. Pelikan, M. Hauschild, and F. G. Lobo. “Estimation of Distribution Al-
gorithms”. In: Springer Handbook of Computational Intelligence. Edited by].
Kacprzyk and W. Pedrycz. Springer, 2015, pages 899-928. ISBN: 978-3-662-
43504-5.

Proceedings of the 10th Ph.D. retreat of the HPI Research School on service-oriented
systems engineering. Universitdtsverlag Potsdam, 2016. ISBN: 978-3-86956-390-
9.

Proceedings of the 9th Ph.D. retreat of the HPI Research School on service-oriented
systems engineering. Universitdtsverlag Potsdam, 2015. ISBN: 978-3-86956-345-
9.

D. Sudholt and C. Witt. “Update Strength in EDAs and ACO: How to Avoid
Genetic Drift”. In: Proc. of GECCO. 2016, pages 61-68.

C. Witt. “Runtime analysis of the (1 + 1) EA on simple pseudo-Boolean func-
tions”. In: Evolutionary Computation 14 (2006), pages 65-86.

88

References

[25] C.Witt. “Upper bounds on the runtime of the univariate marginal distribution
algorithm on OneMax”. In: Proc. of GECCO. 2017, pages 1415-1422.

89

Event Handling in Business Process Enactment

Sankalita Mandal

Business Process Technology
Hasso-Plattner-Institut
Sankalita.Mandal@hpi.uni-potsdam.de

Business process management (BPM) enables modeling, executing and monitor-
ing organizational processes to achieve certain business goals. Organizations con-
tinue to strive for agility and take advantage of the digital era to bring flexibility
in their processes, for example by integrating complex event processing (CEP)
techniques. Event handling specifies how a process interacts with its environment
and how the environmental occurrences influence the execution of the process.
Though highly expressive and feature-rich languages like BPMN exist for process
specification, they still lack the flexibility required for event handling in different
real-life scenarios. In this work, an event handling model is proposed that take
into account the possibilities of event subscription at different points in time with
respect to process execution. The model is grounded formally and provides map-
ping to Petri Nets as implementation semantics. Further, trace analysis ensures
correct execution of process behavior while maintaining the temporal dependen-
cies intact among event subscription, event occurrence, event consumption and
event unsubscription.

1 Introduction and Motivation

Process implementation in an organizational context is model driven, where a pro-
cess model defines a set of activities to achieve certain business goal(s) [[16]. The
activities are connected with causal and temporal dependencies for their execution
using control-flow. The process model also specifies how a process is supposed to
interact with its environment. The environmental occurrences are represented as
events [7]]. Process engines subscribe to event sources and react to events emitted
by them following process specification. Often, a separate complex event process-
ing engine is used to abstract from the complexity of connecting to different event
sources, parsing events in different formats and aggregating events from multiple
event streams [8]]. The CEP engine or an event publisher registers subscription for
specific event(s) and notifies the process engine when matching events occur [[11]].

Business Process Model and Notation (BPMN) [[13]] is the de facto standard for
modeling and executing processes. BPMN includes explicit event constructs to depict
the production and consumption of events, message flows to link external process
participants, and control-flow routing based on events such as event-based gateways
or boundary events. However, the event handling semantics in BPMN is quite limited
while it comes to specify when to subscribe to an event source or when to stop
listening to an event stream [/12]]. BPMN specification [13]] states:

91

mailto:Sankalita.Mandal@hpi.uni-potsdam.de

Sankalita Mandal: Event Handling in Business Process Enactment

Wish for Offers Confirmation Flight Details Payment Ticket Booking
Traveling Received Sent Received Initiated Received Completed

A e

Send

Request for

Flight Offers
O

Customer

Book
Flight

Send
Offers

Details

Request Confirmation Payment Ticket
Received Received Received Sent

Travel Agent

Figure 1: Process collaboration involving travel agent and customer.

| Airlines |

- .

c :

&

< , Gheck Plan Local Finalize

o ©_>| S'%c;sn?s"d Travel Travel Plan 8

7 | _Booking Flight Travel Plan
= Completed Update Sent

Figure 2: Process showing travel plan creation

‘For Intermediate Events, the handling consists of waiting for the Event to occur. Wait-
ing starts when the Intermediate Event is reached. Once the Event occurs, it is consumed.
Sequence Flows leaving the Event are followed as usual.” [[13]] (Sect. 13.4.2)

According to BPMN, when the control-flow reaches the event construct, the node
is enabled and the process instance waits for the event occurrence. Once it happens,
the control-flow is passed to downstream activities. As a result, a process instance
may not react to an event that occurred before the control-flow enabled the respective
event node. The above semantics is a severe limitation as the event sources might
be unaware of the process execution status and therefore the events can occur any-
time irrespective of the process being ready to consume it. Figure|l{shows a process
collaboration diagram for booking flights with several message exchanges between
a travel agent and a customer. The event ConfirmationReceived can not occur
before the previous activity Send Offers has been completed, as Confirmation-
Sent has to be produced for receiving the confirmation, which in turn depends on
the intermediate catching message event Of fer sReceived as a result of the activity
Send Offers. Thus, the causal dependencies bound the order of event occurrences.

Additionally, the travel agent sends some local travel plan once the customer books
the flight, as shown in Figure 2 The research about the sights and ongoing events
at the destination and planning the travel accordingly take some time. After having
the initial plan, the flight update is considered to make sure the time of arrival and
departure and based on that, the plan is finalized. Here, the FlightUpdate can be
released before or during the planning as the airlines (shown as a grey box as the
internal processes are not visible to travel agent) is independent of the processes the
travel agent might execute. In these situations, BPMN semantics restrict the process
to access the events that have already occurred and are still relevant for the process
execution.

92

2 Foundations

The major share of adopting complex event processing concepts from a BPM per-
spective is application oriented, such as using external events to monitor business
processes [1, 3, 8], predicting deviations [4], checking compliance to the process
model [15] and so on. The CASU framework proposed in [|5] talks about the (un)-
subscription of start events to instantiate a process. Though our work is hugely
inspired by this research, the work in this paper addresses the shortcomings of event
handling semantics and proposes a formal operational semantics to BPMN events
supporting high degree of flexibility. Possible usages of an intermediate event in pro-
cess are defined as event constructs. The occurrence and consumption possibilities
of events are considered based on a timeline starting from the initiation of process
engine and ending at the termination of engine. To this end, a formal framework is
proposed that specifies the semantics for event subscription, occurrence, consump-
tion and unsubscription with the help of Petri Nets. Trace analysis shows correct
execution behavior complying with the new semantics.

The remainder of the paper is structured as follows. introduces the fun-
damentals of business process model and Petri Nets later used for the event handling
model. The conceptual framework for event handling is introduced in[section 3} Next,
the Petri Net mappings and trace analysis in show the correct execution
behavior for each scenario derived from the framework. discusses the appli-
cation of the concepts to two different use cases and finally, gives concluding
remarks and outlines future research directions.

2 Foundations

This section presents a brief introduction to the concepts and formalism based on
which the event handling model has been built up. Namely, we introduce business
process management (BPM) and Petri Nets in this section.

Business Process Management. A process model consists of nodes and edges [/16]]
where nodes can be activities, gateways and events. A process model is a blue print
for a set of process instances which are the individual executions of this process.
Each process instance consists of several activity instances which traverse through
different life cycle states such as ready, running, terminated among others.

Business processes modeled with BPMN may include start, intermediate or end
event constructs to represent the interaction with other processes as well as with
the environment. These are different from transitional events logged during process
execution. Rather, these event constructs represent something that has happened
in a particular system or context [7]] and can influence process execution to a great
extent [[10]]. BPMN offers several event types to represent the interaction between a
process and its environment. Start events are needed to instantiate a process model.
An intermediate event can be produced by the process (throwing event) as well as
it can be received by the process (catching event). A start event or an intermediate
catching event can be engine generated, such as timer event or received from outside
of the process pool, e.g., a message from another process, a sensor update, or simply

93

Sankalita Mandal: Event Handling in Business Process Enactment

an email from a user. An end event is always a throwing event. Based on the above
discussion, we formally define the relevant concepts for our work in the following.
For simplicity, we consider only structurally sound processes.

A Process Model is a tuple M = (N, cf) with

e a finite non-empty set of nodes N = Ny U Ng U N where N4, Ng and Ng are
pairwise disjoint sets of the activities, the events and the gateways, respectively,
and

e a control flow relation cf C N x N.

e Np = {es} UE;U{e.}, where e is the start event, E] is the set of intermediate
events, and ¢, is the end event.

e E; = Ejc UE|r where Ejc and E7 are pairwise disjoint sets of intermediate
catching events and intermediate throwing events, resp.

e The function B : Ny — 2Fic maps the activities to the associated boundary
event(s).

e N;g = G4 UGx UGEg, where G4, Gx, and Gg are pairwise disjoint sets of AND
gateways, XOR gateways, and event-based gateways.

For an activity A € Ny, let Ay, Ay, A; be the beginning, termination and can-
cellation of A, respectively. A start event is always a catching event, whereas an
end event is always a throwing event. The preset of a node n € N is defined
asen = {x € N | (x,n) € cf}. The postset of a node n € N is defined as
ne={xeN|(nx)e€cf}

Petri Nets. Petri Nets are one of the most popular and standard techniques to
represent the behavior of concurrent systems [9]]. The net is composed of places
and transitions, connected with directed arcs between them in a bipartite manner.
The transitions represent active components of a system, such as activities, events or
gateways in a process. On the other hand, the places are used to model the passive
components, e.g., the input place models the precondition and the output place
models the postcondition of a transition. We chose Petri Nets for our mapping since
it gives clearer implementation semantics than BPMN. The Petri Net semantics used
here follow the definitions proposed in [9]] and [[14]].

A marking of a Petri Net signifies the system state. A marking is calculated using
the distribution of tokens over the places of the net. The firing of a transition can
change the marking, i.e., the state of the system. Firing of transitions are considered
as atomic step. The behavior of the system is described by all firing sequences of a
net that start with an initial marking. A single firing sequence is named as a trace.
The relevant definitions are quoted in the following.

A Petri net is a tuple 9t = (P, T, F) with

e a finite set P of places,

94

3 Flexible Event Handling Model

e a non-empty, finite set T of transitions,
suchthat TN P =@, and

e aflow relation F C (P x T) U (T x P).

A marking of 91 is a function M : P — Ny, that maps the set of places to the
natural numbers including 0. M(p) returns the number of tokens on the place p € P.
Let M be the set of all markings of 91. A Petri Net system is a pair S = (N, M),
where 91is a Petri net and My € M is the initial marking. A sequence of transitions
o= t,tr,...,ty,n € Ny, is a firing sequence, if and only if there exist markings
Moy, ...,M, € M, such that for 1 < i < n, transition t; changes the system from
(M, M;_1) to (9, M;). The set of traces I of S contains all firing sequences ¢, such
that o is enabled in M.

3 Flexible Event Handling Model

The proposed event handling model supports flexible event handling notions intro-
duced in [[12]] and extends it. We first classify the intermediate catching message
events into four types of event constructs depending on their behavior. Next, we
define the possible points in time when the subscription for events can be done.
We assume that early subscriptions do not have any unresolved data dependency,
i.e. subscription is independent of any data that must be generated during process
execution and therefore, feasible even if it is done earlier than process instantiation.
The BPMN to Petri Net formal mapping proposed by [6] is followed in our work for
mapping the semantics of a process model to a Petri Net, added with the event han-
dling semantics enhancing flexibility. The Petri Net mapping is discussed in detail

in
3.1 Event Constructs

We define the following event constructs with respect to the position and behavioral
semantics of an intermediate event.

Mandatory Event. An event e € Ejc is a mandatory event iff Vo € &, 3Jj such that
tj =e. Let EM C Ejc be the set of mandatory events in 1.

These are the events that have to occur in order to complete the process execution.
If an event is located after an XOR gateway, then it is not mandatory for all instances of
the process, but if an instance follows that particular branch, then the event becomes
mandatory to complete the instance execution. Note that, this is not what we refer
to as mandatory events. According to our definition, a mandatory event can be
identified directly from the model, for example, an event in the main process flow
or an event inside a parallel branch that is in the main process flow.

Boundary Event. An event e € Ejc is a boundary event iff e € image(BB) where
the function B maps the activities to its associated boundary event(s). Therefore,
image(B) is the set of events associated with activities. Let E? C Ejc be the set of
boundary events in 91.

95

Sankalita Mandal: Event Handling in Business Process Enactment

Engine Process Process Event Process Process Engine
Initiation Deployment Instantiation Enablement Termination Undeployment Shut Down

| | !

eerd
i
i

——— e ®_._

. . !
! ! !
! ! !
: : Estart :
! ! !
! ! !

|
i
i
Figure 3: Process execution timeline

The interrupting boundary events in BPMN, once occurred, cancel the associated
activity and trigger an exceptional branch. The relevance of the event occurrence
here is the duration of the associated activity being in running state, i.e. the event
must happen after the activity begins and before it terminates in order to follow the
exceptional path. Since we are considering only sound processes, we do not include
process patterns with non-interrupting boundary event.

Racing Event. If there exists a gateway g € G such that Ve;,1 <i <n € IN, e¢; =
{g}, then the events ey, ey, ..., e, € Ejc are racing events. Let ER C Ejc be the set of
racing events in 1.

The event-based gateway in BPMN is a special gateway where instead of data, the
event occurrence decides which branch to follow further. The gateway is immediately
followed by the events and whichever event occurs first, the process takes the branch
lead by that event. Therefore, the events after an event-based gateway are in a race
with each other.

Exclusive Event. An evente € Ejc is an exclusive eventiffeisino = g;,...,¢,...,g;
such that g;, g; € Gx A 3¢ € Gy such that g; < ¢ < e. Let EX C Ejc be the set of
exclusive events in 9.

A specific process execution follows only one of the paths after an exclusive gate-
way. This makes the events on the branches after an XOR split and before an XOR
join exclusive, i.e. when one of the branches is chosen, the events in other branches
are not needed any more.

3.2 Point of Subscription

The milestones of process execution starting from the engine initiation until the en-
gine is shut down is shown in Figure 3l An event independent of process causality
can occur before, after or during the whole process execution, basically anytime
throughout the timeline and beyond that. Since we assumed that there is no unre-
solved data dependency for the event subscriptions, we can subscribe to the events
at several milestones. The notion of Point of Subscription (POS) listed below controls
at which point in time events start to become relevant for a process.

POS1: At Event Enablement. A subscription is made only when the event construct
is enabled by the control-flow. This is completely in line with the BPMN semantics
and should be implemented when subscription for an event can be done only af-

96

4 Petri Net Mapping

Engine Mandatory Subscription at Event Enablement Subscription at Process Instantiation
Initiation (E1) Event P (x, Ce) P(Cev) P(gtl, es) P(g»\a) Plx C) P(Cery)

Process P (%, Se) ((-—/
Deployment (PD)

(—>a - x —>y
e, e
Subscription at Process Deployment Subscription at Engine Initiation

P (€1, PD) Plesal PlxCd PiCy) Pleval PIxCd PG)
\

(N Mo ()
_7 _/ _7

Se

O

Figure 4: Petri Net modules for mandatory event construct

ter completing the previous activity. Subscription at event enablement means the
following for the event constructs described before:

Given e € Ejc \ E® and x € N4 U Ng such that xe = {e},

subscribe to e when x terminates.

Givene € EBand A € N4 such that A — ¢,

subscribe to e when A begins (Ay).

POS2: At Process Instantiation. A subscription is made as soon as the process is
instantiated, i.e., Ve € Ejc, subscribe to e when e; occurs. This is required when the
subscription is done separately for each process instance, but the event can occur
earlier than scheduled in the process.

POS3: At Process Deployment. According to subscription at process deployment,
Ve € Ejc, subscribe to e at process deployment (PD). Here, the subscription for all
the intermediate catching events are created as soon as one of the process patterns is
deployed. This is almost always true for subscription to a start event, as it is needed
for process instantiation. For an intermediate event, this should be implemented
when all instances of a process model might need the event.

POS4: At Engine Initiation. A subscription is made by the process engine itself at the
time when the engine starts running. So, following subscription at engine initiation,
Ve € Ejc, subscribe to e at engine initiation (EI).

This is helpful in a situation where the engine already knows which events might
be needed by the processes to be executed and already subscribes to the events. In
such scenarios, an event information is often shared by several processes. When one
process starts executing, it can then immediately access the events already occurred
and stored by the engine.

4 Petri Net Mapping

We have defined the Event Constructs and Points of Subscription in the previous section.
In this section we map each set of event construct and point of subscription to cor-
responding Petri Net modules. We take the BPMN to Petri Net mapping prescribed
by [6] as basis and extend it to enable flexible event handling.

97

Sankalita Mandal: Event Handling in Business Process Enactment

Event
Occurrence
Event Event Matching
Subscription & Consumption
Event
Unsubscription

Figure 5: Dependencies among event subscription, event occurrence, consump-
tion, and unsubscription

Figure [5is an extended version of the causality proposed by [2]] that said an event
can only be consumed if both, a subscription has been issued earlier and the event
actually occurred already. We argued that this provides only a partial order [[12]]
and proposed that to make an event relevant for a process, the subscription should
be done before the event occurrence. Yet, the unsubscription was not part of the
model. As obvious, the subscription should exist before an unsubscription can take
place. But an unsubscription is independent of the event consumption, or even event
occurrence, e.g., if at certain point of process execution the event becomes irrelevant,
unsubscription can be done. Formally, the temporal dependencies can be expressed
as S, < O, < C, A\ Se < U, where S, denotes the subscription of event ¢, O, denotes
the occurrence of e relevant for the consumer process, C, denotes the consumption
of e, and U, denotes the unsubscription of e.

In the current paper, we abstract from the details included in CEP engine or event
buffering discussed in [12]]. Also, we do not show the activity life cycle phases as
separate transitions, unless they are needed explicitly (e.g., for boundary event). As
our focus is on intermediate catching events, for start and end events, we only show
the occurrence and abstract from other details. In general, the subscription for start
events has to happen at the latest at process deployment, otherwise the process does
not get initiated. On the other hand, the end event is a throwing event produced by
the process, therefore we do not need any subscription for it. Additionally, we have
the following assumptions:

e For any event, occurrence time coincides detection time.

e Unsubscription is done either at event consumption or at a point when the
event becomes irrelevant to complete the process execution.

As explained in [6], x denotes the predecessor node of event e, y denotes the
successor node of e and places with dashed borders mean they are not unique to one
module. Note that, we use Petri Net semantics in our work to capture the behavior of a
process engine with respect to one process model. To clarify, we show the milestones
such as engine initiation (EI) or process deployment (PD) (represented in Figure[3])
as Petri Net transitions. Therefore, the initial marking of the Petri Net has one token in
the input place of (EI). Process instantiation is denoted by start event es, followed by
node a. A process ends with an end event e,. For each intermediate catching event, the
temporal order S, < O, < C. A S, < U, holds. Additional restrictions on execution
are discussed at the corresponding trace analysis sections. To summarize, we use

98

4 Petri Net Mapping

BPMN process model excerpts along with the engine execution milestones as our
representation level and specify the corresponding Petri Net as the implementation
level.

4.1 Petri Nets for Mandatory Event

Following subscription at event enablement, these are the steps to map a mandatory
event construct to corresponding Petri Net module:

1. Event e is mapped to four separate transitions, subscription to e (S,), occur-
rence of e (O,), consumption of e (C,) and unsubscription to e (UL).

2. S, has one input place to link with x, the predecessor node of e.
C. has one input place to link with x.

C. has one output place to link it to y, the successor node of e.
A flow is added from S, to O,.

A flow is added from O, to C,.

N o ke

A flow is added from C, to U,.

For other points of subscription, Step 2 is replaced as indicated in the following. The
event construct and resulting Petri Nets are shown in Figure

e Subscription at process instantiation: A flow is added from the transition for start
event e to S,.

e Subscription at process deployment: A flow is added from the transition for process
deployment (PD) to S,.

e Subscription at engine initiation: A flow is added from the transition for engine

initiation (EI) to S..

Trace Analysis for Mandatory Event The temporal constraints complying with
correct execution behavior for a process containing mandatory event e are given for
each POS in the following.

e POSI1: Subscription should be done only after the previous transition x is exe-
cuted, i.e. x < S, must hold.

e POS2: Subscription should be done immediately after start event has occurred,
the event is consumed after x is executed, i.e., ¢s < S, < x < C, must hold.

e POS3: Here, the subscription is done after process deployment but before pro-
cess instantiation. Thus, PD < S, < e; < x < C, must hold.

e POS4: Subscription is done after engine initiation, before process deployment,
ie, EI <S, < PD <es < x < C, must hold.

99

Sankalita Mandal: Event Handling in Business Process Enactment

Boundary Event Subscription at Event Enablement

Figure 6: Petri Net module for boundary event construct
4.2 Petri Nets for Boundary Event

For a boundary interrupting event, even if the subscription is created earlier, the
event occurrence is relevant only during the running phase of the associated activity.
Therefore, for this event construct, subscription is recommended at event enablement.
For the same reason, the unsubscription should be done either after consuming the
event or as soon as the associated activity terminates. Figure[6|shows the resulting
Petri Net module. The steps for mapping boundary event construct with subscription
at event enablement are given below.

1. The event e is mapped to S, O,, C, and U,.

2. The associated activity A is mapped to three transitions, A; depicting the begin-
ning of A, A; depicting the termination of A and A. depicting the cancellation
of A.

3. Ap has one input place to link with x, the predecessor node of A.
4. Ay has one output place to link with y, successor of A (normal flow).

5. C, has one output place to link with z, the successor node of e (exception
branch).

6. A flow is added from A, to S,.

7. A flow is added from S, to O,.

8. A flow is added from O, to C,.

9. Another flow is added from O, to A..
10. A flow is added from C, to U..

Trace Analysis for Boundary Event x < A, < S, AO, < A. A A; < U, should
hold for a boundary event.

4.3 Petri Nets for Racing Event
For subscription at event enablement, once the control-flow reaches the gateway, all

the events following the gateway are subscribed. Immediately after one of the events
occurs, the other events are unsubscribed and the process takes the path lead by the

100

4 Petri Net Mapping

event occurred. To ensure the correct order of event consumption for other POS, the
occurrence of an event passes the token to the input place for event consumption and
at the same time, it also enables the unsubscription of all other events that were in
race. The methodology for mapping a racing event construct to Petri Net following
subscription at event enablement is as following;:

1.

6.
7.

The event ¢; is mapped to two separate transitions, occurrence of ¢; (O,), and
consumption of e (C,).

. Two additional transitions are introduced to represent the combined subscrip-

tion to all the racing events ey, ey, ...,e4 (Seyey,...e,), and the combined unsub-
scription to all the racing events (U, e,,.. e,)-

. The subscription transition has one input place to link with g, the event based

gateway.

Each consumption transition C,, has one output place to link with y;, the suc-
cessor node of e;.

. A flow is added from subscription to each occurrence transition O,,.

A flow is added from O, to Ce,.

A flow is added from each O,, to the unsubscription transition.

For other points of subscription, instead of the subscription transition, each consump-
tion transition C,, is connected with an input place P(g,C,,) to link it to g, the event
based gateway. Additionally, Step 3 is replaced as indicated in the following.

e Subscription at process instantiation: A flow is added from the transition for start

event e; to the subscription transition (Se, e,,..e,)-

e Subscription at process deployment: A flow is added from the transition for process

deployment (PD) to to the subscription transition.

e Subscription at engine initiation: A flow is added from the transition for engine

initiation (EI) to the subscription transition.

Trace Analysis for Racing Event The temporal constraints for each POS are:

e POSI: g < Serer...o

e POS2:e5 < Seper..0, < & < Ci

® POS3: PD < S .0, < € < g <C;

[POS4: EI < 561/62/-“/6” < PD < €s < g < CZ

101

Sankalita Mandal: Event Handling in Business Process Enactment

4.4 Petri Nets for Exclusive Event

In essence, the exclusive event behaves like a mandatory event once the associated
branch is enabled by control-flow. Therefore, the mapping of exclusive event con-
struct to Petri Net realizing subscription at event enablement coincides with the Petri
Net module for mandatory event construct for the same POS (see Figure). How-
ever, if subscription is done earlier, then all the events situated in different optional
branches can occur before the control flow reaches the XOR gateway. In this case, as
soon as the decision is taken at the gateway and one branch is selected, the event(s)
in other branch(es) should be excluded, i.e., the unsubscription should be done for
them. The steps for the mapping with subscription at process instantiation are given
below:

1. The event ¢; is mapped to Se]., Oe]., Ce]. and Ue]--
2. C,; has one output place to link it to y;, the successor node of e;.
A flow is added from start event e, to Se]..

A flow is added from Se/. to OE],.

AR B

A flow is added from Oej to Ce],.

o

A flow is added from Ce]. to Ue],.

7. Aninput place P (d;, U,;) where i # jis added to trigger the unsubscription of
e; when the first transition in any other branch after the gateway is fired.

For POS3 and POS4, Step 3 is replaced as following:

e Subscription at process deployment: A flow is added from the transition for process
deployment (PD) to S,

e Subscription at engine initiation: A flow is added from the transition for engine

initiation (EI) to Sej.

Trace Analysis for Exclusive Event The temporal constraints for each POS are:

o POSI:g < S,

e POS2:es < Se/, <g< CE].Adi < LIEJ.

° POSB:PD<Se]. < e <g<ng/\di < ugj

® POS4: EI < S, < PD <'es <g<CE]./\di < U,

To enable flexible event handling for any process, the events should be mapped to
Petri Net in accordance with the associated methodology for that event construct and
chosen point of subscription. The rest of the process should be mapped to Petri Net
modules according to the methodology provided in [6]]. Combining the modules
along with process flow will result in the Petri Net for implementation.

102

5 Application to Use Case

5 Application to Use Case

In this section, we apply the concepts introduced so far to the travel agent’s pro-
cesses of booking a flight ticket (refer to Figure 1)) and creating local travel plan
(refer in Figure [2)) introduced in [section TJ). We identify the intermediate catching
events as mandatory event constructs.

The correct traces for the booking process are:
Sub. at Event Enablement: EI,PD, RR, SO, Scr,

Ocr, Ccr, Ucr, BF, SD, Spr, Opr, Cpr, Upr, TS

Sub. at Process Instantiation: EI, PD,RR, Scg pr,

SO, Ocr, Ccr, Ucr, BE, SD, Opg, Cpr, Upg, TS

Sub. at Process Deployment: EI, PD, Scg pr, RR,

SO, 0c¢r, Ccr, Ucr, BF, SD, Opg, Cpr, Upg, TS

Sub. at Engine Initiation: EI, Scg pr, PD, RR,

SO, Ocr, Ccr, Ucr, BE, SD, Opg, Cpr, Upg, TS

For the travel plan process, the correct traces are:
Sub. at Event Enablement:

EI,PD,BC,CSE, PLT, Sru, Oru, Cru, Ury, FTP, TPS
Sub. at Process Instantiation:

EI PD, BC, Sy, CSE, PLT, Ory, Cru, Ury, FTP, TPS
EI,PD, BC, Sgy, CSE, Opy, PLT, Cry, Ury, FTP, TPS
EI,PD, BC, Sy, Ory, CSE, PLT, Cry, Uy, FTP, TPS
Sub. at Process Deployment:

EI, PD, Sy, BC, CSE, PLT, Ory, Cru, Ury, FTP, TPS
EI, PD, Sgy, BC,CSE, Ofy, PLT, Cry, Ury, FTP, TPS
EI,PD, Sy, BC, Ory, CSE, PLT, Cry, Upy, FTP, TPS
EI PD, Sy, Oru, BC, CSE, PLT, Cry, Upy, FTP, TPS
Sub. at Engine Initiation:

EI,Spy, PD, BC,CSE, PLT, Ory, Cru, Ury, FTP, TPS
EI, Sru, PD, BC, CSE, Opy, PLT, Cry, Upy, FTP, TPS
EL Sfy, PD, BC, Opy, CSE, PLT, Cry, Ury, FTP, TPS
EI, Sfu, PD, Ofy, BC, CSE, PLT, Cry, Ury, FTP, TPS
EI,Sru, Oru, PD, BC,CSE, PLT, Cry, Uy, FTP, TPS

Discussion. From the above presented traces it is evident that for the booking pro-
cess, even if the subscription is done at different points, the event CR will always take
place after the previous activity SO is executed and the event PR will always occur
after SD is executed. The reason is the process causality explained in[section T|which
restrict the temporal ordering of an event occurrence based on the completion of pre-
decessor tasks. Existing BPMN semantics is perfectly applicable for these scenarios.
However, for the local travel planning process, the traces show more variety. Depend-
ing on the time of subscription, the event integration gets more accommodating here,

103

Sankalita Mandal: Event Handling in Business Process Enactment

i.e., even if the event FlightUpdate is published by the Airlines much earlier
than the Travel Agent isready to consume it, the information carried by the event
can still be used when needed. In this case, the use of flexible event handling model
decreases the probability of the process execution getting delayed or stuck forever
due to the lag between event occurrence and consumption.

6 Conclusion and Future Work

Business processes extensively interact with its environment, represented as events,
to be informed about the context and react to it. BPMN and such expressive modeling
notations include event constructs to model and realize these interactions. However,
for a communication model in a distributed setup, the existing semantics do not
give the necessary flexibility. The BPMN assumption of an event occurrence only after
the event construct is enabled restricts the communication possibilities between event
producers and consumers where the separate entities are not necessarily informed
about each others internal status. This can lead to missing out on a still relevant event
and waiting for an already occurred event, resulting in process delay, even deadlock.

In this work, intermediate catching events are classified as four event constructs,
namely, mandatory event, boundary event, racing event, and exclusive event. Next,
four points of subscription are identified with respect to the process execution time-
line — at event enablement, at process instantiation, at process deployment, and at
engine initiation. The dependencies among event subscription, occurrence, consump-
tion and unsubscription are analyzed and Petri Net mapping for each pair of event
construct and point of subscription are described. Further, execution trace analy-
sis on two use cases show that the proposed event handling model gives detailed
semantics for a more flexible interaction between business processes and external
events required for real world scenarios.

The formally grounded event handling model opens many significant research
directions. Implementing the semantics will help to discover the technical challenges,
if any. Next steps will include evaluating the model by exploring the behavior of a
process in the light of the interactions with environmental events. The newly defined
semantics along with the trace analysis is also planned to be used to verify the
correctness of process specification.

References

[1] M. Backmann, A. Baumgrass, N. Herzberg, A. Meyer, and M. Weske. “Model-
Driven Event Query Generation for Business Process Monitoring”. In: Service-
Oriented Computing — ICSOC 2013 Workshops. 2013, pages 406—418. DOI: 10,
1007/978-3-319-06859-6_36.

[2] A. Barros, G. Decker, and A. Grosskopf. “Complex Events in Business Pro-
cesses”. In: BIS. 2007.

104

https://doi.org/10.1007/978-3-319-06859-6_36
https://doi.org/10.1007/978-3-319-06859-6_36

References

A. Baumgrass, N. Herzberg, A. Meyer, and M. Weske. “BPMN Extension
for Business Process Monitoring”. In: EMISA. Lecture Notes in Informatics.
Gesellschaft fiir Informatik (GI), 2014.

C. Cabanillas, C. D. Ciccio, J. Mendling, and A. Baumgrass. “Predictive Task
Monitoring for Business Processes”. In: BPM. 8659. 2014, pages 424—432. DOI:
10.1007/978-3-319-10172-9_31.

G. Decker and J. Mendling. “Process Instantiation”. In: Data Knowledge Engi-
neering 68.9 (2009), pages 777-792. DOI:10.1016/j.datak.2009.02.013.

R. M. Dijkman, M. Dumas, and C. Ouyang. “Semantics and Analysis of Busi-
ness Process Models in BPMN”". In: Information and Software Technology 50.12
(2008), pages 1281-1294. DOI: 10.1016/j.infsof.2008.02.006.

O. Etzion and P. Niblett. Event Processing in Action. Manning Publications, 2010.
ISBN: 978-1-935182-21-4.

N. Herzberg, A. Meyer, and M. Weske. “An Event Processing Platform for
Business Process Management”. In: EDOC. 2013.

M. Kunze and M. Weske. Behavioural Models - From Modelling Finite Automata
to Analysing Business Processes. Springer, 2016. DOI:10.1007/978-3-319-44960-9.

D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 2010. ISBN: 0-201-72789-7.

S. Mandal, M. Hewelt, and M. Weske. “A Framework for Integrating Real-
World Events and Processes in an IoI' Environment”. In: CooplS. 2017.

S. Mandal, M. Weidlich, and M. Weske. “Events in Business Process Imple-
mentation: Early Subscription and Event Buffering”. In: Business Process Man-
agement. 2017.

OMG. Business Process Model and Notation (BPMN), Version 2.0. 2011.

M. Weidlich. “Behavioural Profiles: A Relational Approach to Behaviour Con-
sistency”. PhD thesis. University of Potsdam, 2011.

M. Weidlich, H. Ziekow,]J. Mendling, O. Giinther, M. Weske, and N. Desai.
“Event-based Monitoring of Process Execution Violations”. In: BPM. 2011,
pages 182-198.

M. Weske. Business Process Management - Concepts, Languages, Architectures, 2nd
Edition. Springer, 2012. DOI: 10.1007/978-3-642-28616-2.

105

https://doi.org/10.1007/978-3-319-10172-9_31
https://doi.org/10.1016/j.datak.2009.02.013
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/978-3-319-44960-9
https://doi.org/10.1007/978-3-642-28616-2

Scenograph: Fitting Real-Walking VR Experiences into
Various Tracking Volumes

Sebastian Marwecki

Human Computer Interaction
Hasso-Plattner-Institut
sebastian.marwecki@hpi.uni-potsdam.de

When developing a real-walking virtual reality experience, creators generally de-
sign virtual locations to fit a specific tracking volume. Unfortunately, this prevents
the resulting experience from running on a smaller or differently shaped tracking
volume. To address this, we present a software system called Scenograph. The core
of Scenograph is a tracking volume-independent representation of real-walking
experiences. Scenograph instantiates the experience to a tracking volume of given
size and shape by splitting the locations into smaller ones while maintaining nar-
rative structure.

1 Introduction

The most immersive approach to experiencing virtual reality is to allow users to walk
around in the tracking volume in a way that maps the virtual world one-to-one to
the tracking volume. This approach, known as real-walking [13]], can lead to higher
immersion than in-situ walking (e.g., treadmills [3]], walking in place [12]) and
related VR navigation techniques (e.g., teleportation [2]).

The typical workflow for designing real-walking experiences is to initially deter-
mine the size and shape of the available tracking volume, such as the designer’s
research lab or some standardized installation like The Void, and then design the
virtual world for that volume accordingly. Because of this, real-walking experiences
tend to be specific to the size and shape of the tracking volume they were designed
for.

Recent tracking technologies such as Oculus or Vive and online platform such as
Steam allow users to bring VR experiences into their preferred environments (i.e.,
their living room), instead of having to go to the VR setup. Since designers of VR
experiences cannot anticipate the amount or shape of users preferred space, the
current approach of designing experiences that are tailored to the tracking space
becomes impossible.

Creators of VR experiences at home are thus faced with a choice: (1) to artificially
narrow down their market by designing for niche tracking volumes or (2) abandon
real-walking — creators have picked the latter. We find ourselves in a situation where
users have paid for a VR system capable of real-walking but have essentially no
real-walking contents — they miss out on the extra immersion potentially available.

While researchers investigated how to reduce space demands for real-walking
[[15]), their proposed techniques are still based on tailoring the experiences to a
specific tracking space. Techniques like redirected walking [7]], flexible spaces [15]),

107

mailto:sebastian.marwecki@hpi.uni-potsdam.de

Sebastian Marwecki: Fitting VR Experiences into Various Tracking Volumes

= 1
AnlaENS oy Jihered?, <
A

\
‘-‘.
: i ~ broke chaif? j‘ g
. 1|red"
=" s

- g
Figure 1: (a) This rendition of the fairy tale ‘Goldilocks’ consists of three 25m?
locations filled with interactive assets. Unfortunately, specifying the tracking
volume prevents the experience from running on smaller tracking volumes.
(b) Here we used Scenograph to map ‘Goldilocks’ to an L-shaped 8m? space.
While maintaining the narrative structure, it splits the three locations into six
smaller ones, each fitting the new tracking volume.

curious!

or VirtualSpace [XYZ] considerably reduce space requirements, but ultimately do
not address the problem that applications still assume a tracking volume with well-
defined size and shape (e.g., VirtualSpace requires 16m? to let individual require-
ments sink to 4m?). A substantial step in the right direction is Oasis [[10]], which
enables customization of virtual worlds. Users scan their tracking volume with a
depth camera, and from this data, Oasis creates a static virtual location that fits into
the space.

In this paper, we present a system, Scenograph, that pushes this idea further, but
instead of mapping static location to arbitrary tracking volumes, we map experiences.
By making real-walking experiences independent of any particular tracking volume,
Scenograph provides a crucial component for making real-walking experiences avail-
able to consumers.

Figure 2: Figure 2: (a) Our adaptation of the fairy tale ‘Goldilocks and the Three
Bears’, in which Goldilocks maliciously enters the home of the three bears, eats
their porridges, sits on their chairs and sleeps in their beds. (b) The user in our
tracking space of 5m x 5m.

108

2 SCENOGRAPH

2 SCENOGRAPH

Scenograph is a software system that offers a tracking volume-independent repre-
sentation of real-walking experiences. Instead of designing for a tracking volume of
specific size and shape, Scenograph lets designers specify an experience indepen-
dent of the tracking volume. The virtual world is then automatically generated by
Scenograph (while applying space compression techniques like [[11]], so that users
can run the experience in their individual tracking volume. We demonstrate this pro-
cess through an example application based on the 19th-century fairytale ‘Goldilocks
and the Three Bears’ (see Figure|l|for our design). Naturally, Scenograph allows for
the design of any application that can be procedurally generated, ‘Goldilocks’ is a
good example as the narrative unfolds within one connected environment.

The interface to Scenograph is an editor, in which application designers define
the unfolding of their real-walking experience. An experience is the designed ar-
rangement of possible interaction sequences, where users switch between different
virtual locations, or scenes to be more general. Users experience those scenes by
real-walking as each scene has a designed arrangement of objects that users walk
between. Scenograph encodes that experience in a bipartite graph (specifically, a
petri-net). The instantiated graph maintains the arrangement of virtual scenes and
objects. Goldilocks contains three scenes, a ‘dark forest’, the ‘three bears” home’, and
‘upstairs bedroom’ (see Figure[2)). The ‘home’ scene is connected to three ‘porridges’
and three ‘chairs’. Corridors are used as portals to switch between scenes making
the switch unperceivable (like in [11]]). Logical elements enable story progression
when the user interacts with certain objects, e.g., after eating ‘little bear’s porridge’,
the user changes into the “tired” state, so that users can now interact with the ‘chairs’.

Internally, Scenograph represents the experience as a petri-net, as such it has tran-
sitions and nodes. Nodes are either spatial or logical. The spatial nodes are the scenes
of the experience. The logical nodes are the states that enable story progression. The
two kinds of nodes are connected by transitions, the virtual objects in the scenes.
Transitions pass tokens between input and output nodes. The first ‘door” for example,
passes tokens from the ‘forest” (spatial) and ‘curious’ (logical) nodes to the ‘home’
(spatial) and ‘hungry’ (logical) node. In Figure 3| we see that the ‘porridge’ then
takes these tokens away from the ‘hungry”’ state, but keeps it in the ‘house’, as the
user remains there. A petri-net is suitable for encoding any direction a narrative
may take (see Figure[d]). This data structure can be expressed in any environment
the application is developed in, here we used Unity3D and C# (see implementation
section).

Scenograph adapts the scenes to the available space by splitting the nodes into
multiple instances — this is the core value of the system. As seen in Figure 2} limiting
the tracking volume from 25m? to 8m? results in splitting the ‘home’ node into four
nodes. Figure 5|shows in detail how transitions get re-linked to maintain narrative
structure. Scenograph takes the petri-net and the available tracking volume as input
and transforms them into the new layout.

The end-user has no knowledge of Scenograph’s data structure. The system merely
requires a specification of the user’s tracking volume in the form of a polygon. This

109

Sebastian Marwecki: Fitting VR Experiences into Various Tracking Volumes

hungry!@
- = ©
™

Figure 3: Scenograph encodes all possible interaction sequences in a graph. (a)
Spatial nodes define the virtual scenes, here a part of the ‘three bears” home’.
(b) Logical nodes express states of the user and of objects, here whether the
main character Goldilocks is ‘hungry’. (c) Transitions, here a ‘porridge’, let
users switch states and scenes, they populate the virtual scenes as objects. The
‘porridge’ can be interacted with, as both its requirements, ‘home” and "hungry’,

are satisfied.

@ . f @ tired?
hungry?

= tired?
[

1 Y v

sleepy?= ‘ #r = a

© LAC) »

v
tired?” sleepy? ¢ sleepy?
v Y Y

. Y .
j ™ broke chair? » W

Figure 4: Here are examples of different narrative arrangements, which the petri-
net representation allows. (a) Sequence: the ‘porridge’, ‘chair” and ‘bed” are
accessed in a set order. (b) Conflict: the user needs to decide between one of
the “chairs’. (c¢) Concurrency: eating the ‘porridge” allows using the ‘chair’ and
the ‘bed’. (e) Synchronization: sitting on the ‘chair” and eating the ‘porridge’
is necessary before sleeping in the ‘bed’. Other progressions are also possible
(‘confusion’, ‘merging’, etc.).

110

2 SCENOGRAPH

-

o, = ®

b r

oY e
F
H5 -
Y e -~ ®
‘ » [|
» : 4
s, = f @ -4
i Y "
Nired7e “
N7 =

Figure 5: Scenograph splits the ‘home’ node into two as the designed for 25m? get
reduced to an L-shaped 12m?. (a) This node has six transitions (three porridges
followed by three chairs). (b) The porridges are placed in the first (upper) node,
the chairs in the second, as they are interacted with after the porridges.

specification can be provided by a range of tracking technologies. The designer
provides the volume-independent representation of the experience.

To create an experience, the designer must define all possible interaction sequences,
i.e., the connections between spatial nodes, logical nodes, and transitions. This speci-
fication follows a bipartite graph structure, as nodes and transitions can only connect
to each other, not to themselves.

Scenograph can also attribute multiple transitions to the same virtual object. In
Figure[6 for example, one side of the 3D model of the big bed is considered ‘mama
bear’s bed’, the other side “papa bear’s bed’. A staircase can be used for ‘going up-
wards’ and ‘going downwards’, etc. The classic Goldilocks fairy tale is sequential
(like most stories). Goldilocks eats the porridges, sits on the chairs, then lies on the
beds. She always starts with the item of papa bear, then mama bear and finally the
small bear. In our rendition of Goldilocks, we instead chose to allow for user deci-
sions: any porridge is edible until small bear’s porridge is eaten, sitting on any chair
is possible until the user sat on small bear’s chair, etc. A sequentially told story in
Scenograph would provide an easy to solve problem (cut off the story when we run
out of space, then split the location node). Scenograph usefulness increases with the
complexity of the narrative, for example, when user decisions are involved, since
the problem of where to split the nodes is then non-trivial. On the other end of the
spectrum, if there is no logical connection at all (all objects can be interacted with
anytime without consequences or story progression), then the decision where to
split the node would be arbitrary.

Scenograph requires its applications to declare the space requirements for its
virtual objects the transitions are paired with. Space requirements entail the objects
length and width as hard constraints, and placement preferences (close to a wall,
middle of the room, etc.) as soft constraints with a cost function.

Scenograph requires a specification of the given tracking volume in the form of
a polygon, as well as the resolution into which the space gets virtualized, which is
provided by the application. In our lab setup we have 5m x 5m available, and our

111

Sebastian Marwecki: Fitting VR Experiences into Various Tracking Volumes

Figure 6: (a) A ‘porridge’ is a virtual object that requires 1m?, (b) ‘papa chair’
needs 4m? and a wall, (c) ‘little bed” 1m x 2m and a corner, (d) a generic
corridor-portal connecting scenes takes 1m? and a corner.

example applications is designed for a resolution of Im x 1m so that Scenograph
tessellates the space into 5 x 5 tiles.

The generated chunks of tiles are allocated to the system for the generation of the
virtual scenes. Different physical setups will thus result in different scenes. Note
that each experience requires a minimum size based on its largest virtual object, e.g.,
for Goldilocks this is the sofa with 2m x 2m. Scenograph allows to switch setups
at runtime, for example if space gets occupied or freed up suddenly. In this case
Scenograph reinstantiates the experience, however, it maintains the current logical
and spatial nodes (e.g., ‘frightened” and “upstairs bedroom”).

Scenograph needs to determine if all nodes can support their transitions, i.e., if
the virtual objects’ can be packed together onto the space the scene is given. The
system offers different packing algorithms, (“best-fit”, using simulated annealing),
or random placement (“first-fit”, using random placement). Given a smaller or dif-
ferently shaped tracking volume, the packing algorithm might not find a solution
and the node is then not able to support its transitions. In Figure 5| we cannot pack
three ‘porridges’ and three ‘chairs’ into L-shaped 12m?, thus Scenograph splits the
‘home’ node into two.

To determine the number of splits per node and the distribution of transition
onto split nodes Scenograph uses divisive hierarchical clustering. The distance com-
putation between transition pairs, required for our hierarchical clustering, uses a
simple semi-decision technique (distance of 1 if two transitions can be interacted
with in any order, 2 if one transition needs to be interacted with after the other, 3
for neither). Scenograph now needs to evaluate which clustering to take for each
node. Scenograph cannot linearly iterate through each node separately to find the
right clustering, as some virtual objects need to be instantiated on the same tiles in
more than one scene (transitions with different spatial nodes as input and output,
such as a door). This means that Scenograph needs to consider all possible cluster-
ings for all nodes in parallel, making the packing problem 3-dimensional (width,
depth, occurrence in nodes). Scenograph iterates through all possible clustering in
an informed manner. The number of clusters and therefore the potential connected
scenes to consider is exponential in the number of virtual objects. Our hierarchical

112

2 SCENOGRAPH

clustering does not reduce this amount, it merely sorts all potential clusterings based
on the conceptual distance between transitions. The number of virtual objects and
thus of potential clusters is different for each scene. For example, our three nodes
have one transition (‘forest” has a door leading to ‘home”), eight transitions (‘home’
has 3 “porridges’, 3 “chairs’, 1 ‘door’, 1 ‘stairway’) and three transitions (“upstairs
bedroom’ has 2 ‘beds’, 1 ‘stairway”), leaving 20 + 27 + 22 = 512 possibilities. Each
possibility corresponds to a certain clustering depth per node, which we represent
using a mixed radix numeric system (e.g., 112613 corresponds to splitting the sec-
ond node in two). We iterate through this numeric system linearly first based on the
checksum of this clusterings number (to reduce the number of nodes) and then on
its order within the hierarchical clustering (maximizing proximity of virtual objects
that are also conceptually close).

The virtual scenes are now generated. Each virtual object is placed onto the space
the packing algorithms allocated for it. Afterwards, the rest of the scene is generated.
While an application may create the visuals for each scene itself, Scenograph offers
some default procedural generation algorithms to create the scene automatically.
The application just provides the decorative objects, walls, floors, etc., together with
placement constraints (e.g., a wall element with a window cannot be used next
to occupied tiles). Scenograph loads and unloads scenes dynamically depending
on the users’ interaction with the virtual objects or where they walk. Scenograph
uses corridors similar to “impossible spaces” to connect scenes [[11], which serve as
portals or locks. The L-shaped 12m? space in Figurecan thus be used twice to fit the
‘porridges’ as well as the ‘chairs’. Less overlap makes the technique less perceptible.
However, since we focus on small spaces, Scenograph here fully overlaps the scenes.

The process of our system can be summarized as seen in Figure[7]

55 = Bpplication.GetSpatialNodes ()
for all spatial nodes s,
d. = GenerateDendrogram (s;)
r = Epplication.GetResolution ()
t = GetZwvailableSpace (r)
threshold = Application.PackingThreshold
iterate through cluster possibilities
Cpm = Currentclustering
S:Cn = SplitNodesForClustering(d, ca)
if (not PackingPossible (s.c.))
reject ggcq
if (PackingValue (s.c,) >= threshold)
pick g.gs
for all ggcq
e.= GenerateScene (g&g&}l
LinkScenes(g;, Rpplication.Preference)

Figure 7: The process of our system.

The system was implemented in C#, the example application and editor interface
in Unity3D. ALGLIB [|1]] was used for clustering. To allow researchers to replicate
our work, we provided the full source code online [§].

113

Sebastian Marwecki: Fitting VR Experiences into Various Tracking Volumes

3 Contribution

Scenograph allows designers of real-walking virtual reality experiences to reach
users with tracking volumes of arbitrary size and shape. The core of Scenograph
is a tracking volume-independent representation of real-walking experiences. This
representation is not spatial until instantiated into tracking volumes of specific size
and shape. Scenograph thereby lays the groundwork for real-walking experiences
to reach the consumer market.

4 Related Work

While walking in VR can be enabled by treadmills [3]], it is more often simulated
with techniques such as walking in place [12] or teleportation [2]]. However, real-
walking, a one-to-one mapping of physical to virtual motion, leads to the highest user
satisfaction [[13]]. Real-walking has a high space demand, which researchers have
tried to reduce with several techniques (for an overview see [[14]). Resetting [[16]]
rotates and virtually repositions users once they hit the tracking volume’s borders.
Seven league boots [|5] scales the virtual motion. In one way or another, these and
related techniques perceptibly interrupt or alter the one-to-one mapping of physical
to virtual motion, which leads to a reduction of the immersive quality of walking.

With redirected walking Razzaque et al. [7]] break this one-to-one mapping un-
perceivably and fold long walking paths into limited tracking space, thus lowering
the required amount of space for real-walking. Redirected walking benefits from the
a priori knowledge of the virtual environment, onto which the walking paths can be
mapped. Even with the constraint of a priori setting of walking paths, this approach
is subperceptible only for large tracking volumes (e.g., 4m x 10m [7]]). For smaller
spaces, complementary fallback techniques such as resetting [16]] are needed, which
disrupt the walking experience.

Instead of reducing space demand by breaking the mapping of physical to virtual
motion, designers can alter or influence the virtual world. VirtualSpace [6]] packs
more people into limited space, reducing the space demand to 4m? per user. Col-
lisions are avoided by design; VirtualSpace requires its applications to adhere to
an API to dynamically set virtual obstacles and goals that redirect their respective
users. However, this technique still assumes a tracking volume of specific size for its
applications (in this case 16m?). In impossible spaces, Suma et al. [[11]] lets virtual
rooms unnoticeably overlap to compress space. The layout can be dynamically ge-
erated, such as in Vasylevska et al.’s [|15] flexible spaces. As impossible spaces uses
change blindness, it requires large amounts of space to be sub-perceptible (9m x 9m).
However, even when the overlap is noticeable this technique still enables enjoyable
experiences, like the commercially available game “unseen diplomacy”, a game with
relative success that uses only a relatively small space (4m x 3m). The major draw-
back here is that this game, like VirtualSpace, was designed with a fixed tracking
volume in mind. As argued in the introduction, this makes the game unsuitable for

114

5 Discussion

a lot of setups; either it does not make use of possible surplus space of the user or it
does not even run at all for tracking volumes that do not fit the required 4m x 3m.

An important step towards altogether circumventing the problem of a virtual scene
not fitting into the tracking volume has been taken in Oasis [[10]. Sra and colleagues
adapted virtual scenes to fit rooms of arbitrary shape. Conceptually, this widens the
possibilities for space setups, also to mobile scenarios. This concept is also known as
procedural content generation (PCG).

Techniques using PCG for real-walking, however, do not take the creation or main-
tenance of a coherent narrative into account. This points to a problem of PCG in
general — it is designed to quickly generate variance in the virtual scenes and is
usually not used for story focused experiences. Translating this problem into real-
walking applications for VR: when PCG is applied to generate a virtual scene there
are two constraints, tracking volume as well as maintaining the virtual narrative.

Our system conceptually borrows from the field of operating systems; the software,
here our ‘Goldilocks” application, is abstracted so that it can run on arbitrary phys-
ical hardware, in this case, arbitrary physical tracking volume. Specifically, it links
compiled and assembled objects together and loads them onto physical space, the
hardware. This abstraction of hardware and software allows for hardware changes
(space variance) and code survivability (preservation of the experience). In this re-
gard, Scenograph performs as an integral part of operating system for real-walking
in VR and enables development of software independent of the hardware.

5 Discussion

Our main finding is that Scenograph can create real-walking experiences in VR for
tracking volumes of any size and shape. When comparing Scenograph’s experiences
to two commonly used locomotion techniques, namely instant teleportation [2]] and
scaling the mapping of physical to virtual motion (e.g., [5]]), experiences were rated
to be more realistic, leading to the conclusion that Scenograph degrades more grace-
fully with limitations of tracking volume. (Study omitted in this report, please see
UIST18 publication for further details). Space compression impacts realism differ-
ently than enjoyment. Both teleportation and motion scaling still provided enjoyable
experiences to the participants. Also, the size of the tracking volume did not measur-
ably impact enjoyment (comparing 9m? to 25m?). The number of participants might
have played into not discovering the hypothesized differences, but it seems that even
when space compression is high and becomes more perceivable to the user (teleport,
stronger motion scaling, higher overlap of impossible spaces) it affects realism first.
Only when the compression becomes very high (motion scaling for L-shaped 8m?)
does it also impact enjoyment. Based on our results, we can thus only make claims
about Scenograph’s impact on realism.

For future work, we imagine integrating not only variance in tracking volume,
but variance in the number of users within the tracking volume. While VirtualSpace
[6] already addressed this this issue, the arcade-style applications did not contain a
narrative. Building on Supple++ [[4]], we also consider binding in user capabilities

115

Sebastian Marwecki: Fitting VR Experiences into Various Tracking Volumes

and preferences for achieving tighter or looser packing of virtual objects or speeding
up narrative and altering story arcs. While binding in physical props (e.g., “substitu-
tional reality” [9]]) and automatic layouting (e.g., “flexible spaces” [[15]) has already
been addressed with regard to real-walking, future work should address this also
with regard to narrative structure.

6 Conclusion

We presented Scenograph, a software system that supports the design of real-walking
experiences, which can adapt to any tracking volume’s size and shape. Scenograph
achieves this by representing the experience in a petri-net. Based on this represen-
tation and a given tracking volume the system generates a set of virtual scenes that
guarantees the preservation of the experience for each user’s individually available
space. This strategy provides more realistic real-walking experiences than commonly
applied techniques for variance in tracking volume. Real-walking experiences are
typically designed with a specific tracking volume in mind. Scenograph allows users
with constrained tracking volume to also have these experiences.

References

[1] Alglib, Cross-platform Numerical Analysis and Data Processing Library. URL: http:
//www.alglib.net/ (last accessed 2018-09-30).

[2] E.Bozgeyikli, A. Raij, S. Katkoori, and R. Dubey. “Point & Teleport Locomotion
Technique for Virtual Reality”. In: Proceedings of the 2016 Annual Symposium
on Computer-Human Interaction in Play — CHI PLAY '16. 2016, pages 205-216.
DOI:|10.1145/2967934.2968105.

[3] R.P. Darken, W. R. Cockayne, and D. Carmein. “The Omni-directional Tread-
mill: A Locomotion Device for Virtual Worlds”. In: Proceedings of the 10th an-
nual ACM symposium on User interface software and technology — UIST 97 (1997),
pages 213-221. DOI: 10.1145/263407.263550.

[4] K. Z. Gajos,]. O. Wobbrock, and D. S. Weld. “Automatically Generating User
Interfaces Adapted to Users” Motor and Vision Capabilities”. In: Proceedings of
the 20th Annual ACM Symposium on User Interface Software and Technology. 2007,
pages 231-240. DOI: 10.1145/1294211.1294253.

[5] V.Interrante, B. Ries, and L. Anderson. “Seven League Boots: A New Metaphor
for Augmented Locomotion through Moderately Large Scale Immersive Vir-
tual Environments”. In: 2007 IEEE Symposium on 3D User Interfaces. 2007. DOL:
10.1109/3DUI.2007.340791.

[6] S.Marwecki, M. Brehm, L. Wagner, L.-P. Cheng, F. ". Mueller, and P. Baudisch.
“VirtualSpace — Overloading Physical Space with Multiple Virtual Reality

116

http://www.alglib.net/
http://www.alglib.net/
https://doi.org/10.1145/2967934.2968105
https://doi.org/10.1145/263407.263550
https://doi.org/10.1145/1294211.1294253
https://doi.org/10.1109/3DUI.2007.340791

[10]

[11]

[12]

[13]

[16]

References

Users”. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. 2018, 241:1-241:10. DOI: 10.1145/3173574.3173815.

S. Razzaque, Z. Kohn, and M. C. Whitton. “Redirected Walking”. In: Proceed-
ings of EUROGRAPHICS. 2001, pages 105-106.

Scenograph, Online Repository. URL: https://github.com/sebastianmarwecki/
Scenograph (last accessed 2018-09-30).

A. L. Simeone, E. Velloso, and H. Gellersen. “Substitutional Reality: Using the
Physical Environment to Design Virtual Reality Experiences”. In: Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 2015,
pages 3307-3316. DOI: 10.1145/2702123.2702389.

M. Sra, S. Garrido-Jurado, and C. Schmandt. “Procedurally Generated Virtual
Reality From 3D Reconstructed Physical Space”. In: Proceedings of the 22nd
ACM Conference on Virtual Reality Software and Technology - VRST 16. 2016,
pages 191-200. DOI: 10.1145/2993369.2993372.

E. A. Suma, Z. Lipps, S. Finkelstein, D. M. Krum, and M. Bolas. “Impossi-
ble Spaces: Maximizing Natural Walking in Virtual Environments with Self-
Overlapping Architecture”. In: IEEE Transactions on Visualization and Computer
Graphics 18.4 (2012), pages 555-564. DOI:10.1109/TVCG.2012.47.

J. N. Templeman, P. S. Denbrook, and L. E. Sibert. “Virtual Locomotion: Walk-
ing in Place through Virtual Environments”. In: Presence: Teleoperators and
Virtual Environments 8.6 (1999), pages 598—-617. DOI:|10.1162/105474699566512.

M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater, and F. P.
Brooks. “Walking > Walking-in-place > Flying, in Virtual Environments”.
In: Proceedings of the 26th annual conference on Computer graphics and interactive
techniques - SIGGRAPH "99 (1999), pages 359-364. DOI:|10.1145/311535.311589.

K. Vasylevska and H. Kaufmann. “Compressing VR: Fitting Large Virtual
Environments within Limited Physical Space”. In: IEEE Computer Graphics and
Applications 37.5 (2017), pages 85-91. DOI: 10.1109/MCG.2017.3621226.

K. Vasylevska, H. Kaufmann, M. Bolas, and E. A. Suma. “Flexible Spaces:
Dynamic Layout Generation for Infinite Walking in Virtual Environments”.
In: IEEE Symposium on 3D User Interface 2013, 3DUI 2013 - Proceedings. 2013,
pages 39—42. DOI: 10.1109/3DUI1.2013.6550194.

B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr, J. Rieser,
and B. Bodenheimer. “Exploring Large Virtual Environments With an HMD
When Physical Space is Limited”. In: Proceedings of the 4th symposium on Applied
perception in graphics and visualization - APGV '07. 2007, page 41. DOI: 10.1145/
1272582.1272590.

117

https://doi.org/10.1145/3173574.3173815
https://github.com/sebastianmarwecki/Scenograph
https://github.com/sebastianmarwecki/Scenograph
https://doi.org/10.1145/2702123.2702389
https://doi.org/10.1145/2993369.2993372
https://doi.org/10.1109/TVCG.2012.47
https://doi.org/10.1162/105474699566512
https://doi.org/10.1145/311535.311589
https://doi.org/10.1109/MCG.2017.3621226
https://doi.org/10.1109/3DUI.2013.6550194
https://doi.org/10.1145/1272582.1272590
https://doi.org/10.1145/1272582.1272590

Employing Software Development Data to Drive Process
Change

Christoph Matthies

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut
christoph.matthies@hpi.de

Modern software is not produced by single individuals, but by teams. The form
that collaboration in these software development teams takes, how team mem-
bers work together, organize tasks and responsibilities and coordinate themselves
impacts the quality of the product being produced. Therefore, practicing and up-
holding an effective development process is crucial for team success. These pro-
cesses need maintenance, requiring study and continuous improvement. This is
true both for education settings, where students are taught processes and best
practices, as well as in professional software development contexts. The ideas of
iterative improvement and self-reflection are at the core of agile software devel-
opment methodologies, which have become widespread in industry. However,
these methods do not specify exactly how improvement should be achieved, how
it should be tracked or measured. In order to find improvement possibilities or
weaknesses, teams rely on their personal impressions of past development iter-
ations or mentoring by a knowledgeable third party. However, these methods
mostly depend on subjective perceptions of team members and their results are
hard to quantify. Therefore, after process changes have been adopted, it may be
difficult to assess their impact and whether the action taken resolved the identified
issue. In this research, we propose tackling these challenges by supplementing
existing process improvement techniques with approaches leveraging the wealth
of information contained within the development data created by development
teams. This data, such as commits, test runs, issues or results of static analyses
are already being produced during the regular work of modern software develop-
ment teams, be they students or professionals. By collecting, aggregating, linking
and analyzing this mostly untouched treasure trove of team data, insights into the
development process of teams can be generated. Teams can be enabled to better
reflect on their own executed processes and opportunities for discussions on the
basis of data can be fostered.

1 Introduction

How the methods used to construct software by development teams can be studied
and analyzed in order to improve them is one of the core questions of the Software
Process Improvement (SPI) field [|18]. Over the decades since the research in the
field started, many frameworks have been proposed, success factors were studied
and experiences were reported. A mapping study of publications over the last 25
years by Kuhrmann et al. found that the field was still shaped by experience reports
and solution proposals, which make up about two-thirds of studied publications.
The authors identify that much of the research suffers from missing evidence. Recent

119

mailto:christoph.matthies@hpi.de

Christoph Matthies: Employing Software Development Data to Drive Process Change

work has also focused on the application of SPI in the context of agile software de-
velopment, pointing out that a main challenge is to define the role of SPI in an agile
context where people and interactions are more valued than process and tools [21]].
In this research, we focus on how theses identified issues of basing analysis on data
as well as applying SPI to agile contexts can be tackled. We chose an educational
context for our preliminary studies, as this allows rapid changes in experimental
design, easy iteration and control of the context that studies are performed in. In
this paper, we describe a case study on how software development artifacts, created
during students’ project work in a software engineering course, can be used to check
educators” assumptions on student behavior. The course’s setting of collaborative
software engineering in a simulated real-world scenario is ideally suited for collect-
ing development data. During the project work, students use common development
tools such as version control systems (VCS), issue trackers and Continuous Inte-
gration services. The artifacts produced using these systems, i.e. commits in a VCS
containing code changes and descriptions, contain a large amount of information on
how students work and collaborate in their groups [20, 22]].

1.1 Research Questions

The following research questions (RQ) guide our work:

RQ1 How can surveys be used to gauge students perceptions of changes in course
design over time?

RQ2 What data can be collected from software development artifacts created by
students during a classroom course?

RQ3 What metrics can be applied to student development data to gauge changes in
student behavior during project work?

2 Case Study Context

The undergraduate software development course Softwaretechnik II described in this
case study is repeatedly run in the winter semester with a length of 15 weeks and was
most recently taught in the winter semester of 2017/18. Course installments prior
to the winter semester of 2014/15 taught exclusively the Scrum methodology [23]].
However, Lean development approaches, such as Kanban [27]], have gained popular-
ity in industry [/10,25]. Therefore, in an ongoing effort to keep the course as relevant
and closely related to real-world scenarios as possible, the practice of Kanban was
included. Students employed the Scrum methodology at the beginning of the course,
before switching to Kanban. In comparison to Scrum, Kanban is considered less au-
thoritative and prescriptive, having fewer rituals and rules than Scrum [8]. In order
to improve learning results, it is therefore advisable to introduce Kanban after stu-
dents have already gained experience with the more structured Scrum method [|11]].
Iterations of the course prior to the winter term 2015/16 did not include Kanban and

120

3 Surveys

focused solely on the application of Scrum. The inclusion of Kanban in the course is
a major change as it impacts how students collaborate, plan their work and organize
their team structures and meetings. After course participants have become familiar
with the Scrum process and their teams, i.e. after they have reached the norming
stage of group development [4]], and have developed a cohesive group, Kanban and
its practices are introduced in a lecture. The concepts of Kanban such as the Kanban
board, the idea of workflow visualization and the guiding principle of limiting work
in progress (WIP) [[1]] are introduced. We encourage students to try out and apply
these new ideas in their teams. Participants employ Kanban for the last iteration of
the project, instead of a final Scrum sprint.

3 Surveys

When trying to assess the impact of changes in curriculum design and whether
the expected changes to student behavior took place, students’” perceptions can be
collected through the use of surveys.

3.1 End-of-term Survey

As part of an ongoing effort to collect feedback from students to improve teaching
and university courses, standardized end-of-term surveys were conducted in all
iterations of our software engineering courses in the years 2013 up to 2018. This has
become standard practice for educational institutions to evaluate teaching quality [5].
The survey is administered online before students receive their final course grades
to prevent interference. The survey collects perceptions of students on a range of
topics, including satisfaction with the course in general, perceived importance of
course contents and satisfaction with mentoring. An extract of the questions relevant
to student satisfaction with the project work and the course over the iterations of the
course is shown in Table

Table 1: Questions and statements of the end-of-term survey

Survey item

The course was fun

The course motivated me to delve deeper into the discussed topics
I learned a lot in the course

The course is important to my course of studies

The course was well structured

The topics of the course were well chosen

How would you rate the course overall?

N oUW N R 3

121

Christoph Matthies: Employing Software Development Data to Drive Process Change

Questions and statements could be rated on a scale of “fully agree”/“great” to
“totally disagree”/”bad”. Results of the anonymous survey are presented to course
instructors in aggregate form, with ratings mapped to German school grades. The
grade 1 (“very good”) is the best, with the grade 5 (“inadequate”) signifying a fail.

Results Average ratings for all installments of the course showed overwhelmingly
positive perceptions of the course and its content, see Figure(l| Very few questions

2017/18 course 1 2016/17 course M 2015/16 course M 2014/15course W 2013/14 course
22

) “I |‘I h ||| |‘I h I‘I
1 2 3 4 5 6 7

Question number

Average grade
o o

w

Figure 1: Mean grades given to course installments by students after the course’s
end. German school grades: 1 is the best grade, i.e. the lower the better. Courses
in 2013/14 and 2014/15 (blue) employed solely Scrum, the others (yellow)
employed both Scrum and Kanban.

were answered with mean scores larger than 2 (“good”). While this is satisfying
to see as far as student satisfaction goes it also means no significant change can be
detected in student satisfaction between the courses employing Kanban and those
that did not. The variance in answers is very low, as students rated aspects of the
course overwhelmingly as very good (1) to good (2). Therefore, we devised a more
specific survey.

3.2 Kanban Survey

In the second installment of the software engineering course that used Kanban (in
2016/17), we conducted a voluntary, anonymous online survey among all students
after course completion, in addition to the regular end-of-term surveys. The first
course that introduced Kanban (in 2015/16) using newly created teaching materials
had received critical comments from students in oral feedback sessions, which we
addressed in the following course. The Kanban survey focused on students’ percep-
tions of Kanban as well as the advantages and drawbacks of the introduced practices
and methods. While the survey was designed to elicit responses to the details of
how Kanban was introduced in the course, it also explicitly included questions on
whether and how students” workflows were adapted when changing from Scrum to
Kanban processes. These questions were designed to better understand whether the
expected changes in process had actually taken place. The survey questions related
to process change are listed in Table

122

3 Surveys

Table 2: Questions related to Kanban adoption of the anonymous online student
survey performed at the end of the 2016/17 software engineering course

Type Question

1 5-point Was the Kanban week at project end more useful and productive then

scale a last week of Scrum?
2 5-point Did you have to adapt your workflow for the Kanban week?
scale

3 freetext What were the biggest advantages and disadvantages of using Kan-
ban in your team?
4 multiple How did user stories change from using Scrum to Kanban?

choice
5 b5-point Would you recommend using Kanban to the participants of next
scale year’s course?

Table 3: Summarized answers of participants to the 5-point Likert scale questions
of the survey. Answer possibilities: 1 (strong no) to 5 (strong yes).

Question Topic Mean Std. 10% Trim. Median Range
Dev. Mean
1 Kanbanweek preferred overan- 4.08 1.38 4.30 5.00 4.00
other Scrum week?
2 Was the workflow adapted? 383 111 4.00 4.00 4.00
5 Recommended for next year? 433 098 4.50 5.00 3.00

The survey consisted mainly of questions that could be answered using a 5-point
Likert scale, ranging from 1 (strong no) to 5 (strong yes), with 3 being neutral.
Additionally, the survey included free text questions as well as a multiple choice
question to gather more detailed insights. It was possible to submit the survey with
missing answers.

Results Overall, 18 students, 17 men and 1 woman, answered the questionnaire.
All questions featuring the Likert scale were answered by all participants. Table
contains a summary of the collected answers. Concerning the change of Scrum to
Kanban methods (question 2), students on average stated that they had adapted
their workflows, see Figure[2| The high mean value (4.08), as well as the median of 5
(highest agreement), point to students having adapted their workflow in a reflected
manner. The overall positive student attitude towards group software development
methodologies was also reflected in the answers to questions 1 and 6, regarding
the preference of Kanban over Scrum for the last iteration as well as recommending
the course for next year’s students. Surveys participants indicated that they would
strongly recommend the usage of Kanban to the next cohort of students of the soft-

123

Christoph Matthies: Employing Software Development Data to Drive Process Change

5-point Likert scale answers

qt q‘2 q‘5
Survey questions
Figure 2: Summary of answers to questions 1, 2 and 5 as a box plot. Center lines
show the medians, box limits indicate the 25th and 75th percentiles. N = 12.

ware engineering course (question 6), indicating that, even though this question is
not a measure of learning success, applying Kanban was most likely at least fun.

The free text answers to question 3, see Figure [2, regarding the (dis)advantages
of Kanban, were manually labeled with the mentioned topics. The list of topics was
refined repeatedly after evaluating every question. Survey participants identified
the following topics as advantages of Kanban (N=11): Efficiency (7 mentions), Au-
tonomy (4 mentions). Three other other topics were mentioned only twice or fewer
times. As concepts, efficiency and autonomy are closely related to Lean Software’s
guiding principles of Eliminate Waste and Empowering the Team, respectively [17]]. As
Kanban is heavily inspired by these ideas, it is reassuring to see that these ideas
transferred. Regarding the disadvantages of Kanban usage, students mentioned the
following topics (N=9): Only worked on small user stories (3 mentions), item Un-
even task distribution (2 mentions). Another six disadvantages only received single
mentions. Solely working on small user stories, i.e. work items in an agile process,
may be a consequence of team member autonomy. Developers may choose to work
on small items that can be moved through the columns of the Kanban board quickly,
instead of picking larger, more time-consuming tasks to work on. Tackling uneven
task distribution between team members is an ongoing challenge in educational set-
tings and especially in self-organizing teams of students. It can be seen as a negative
consequence of the autonomy identified by survey participants. Developers are free
to handle their workload, with some developers choosing to do more and others
choosing to work on fewer items.

User stories are one of the core means of communication, both in Kanban and
Scrum, between the Product Owner, who receives input from stakeholders, and
developers [[19]]. As such, we included a question on the perceived change of user
stories when switching from Scrum to Kanban (question 4). In order to make an-
swering easier, this question was a multiple choice question that provided a range
of answer possibilities of which any number could be chosen. The choices, as well
as the summarized answers of survey participants, are shown in Table 4

Students classified the user stories that were written by Product Owners and
developers during the Kanban iteration as shorter and more bug-oriented than in

124

3 Surveys

Table 4: Answers of survey participants to question #4, regarding attributes of
user stories when changing from Scrum to Kanban processes. N=12.

Topic Answer choice and count

User story focus bug-oriented 11 feature-oriented 0
User story length Shorter 11 Longer 0
Requirements More detailed 8 More general 0
Interaction with PO More 3 Less 0
Prioritization of stories Better 3 Worse 2

the previous Scrum iterations. While an influx of small fixes to a software product is
expected shortly before the final deadline, a time in which Kanban was used, smaller
user stories can also help move tickets through the Kanban board more quickly. This
reduced the cycle time, the time from when work begins on an item until it is ready
for delivery [/16]].

However, students also answered that the requirements, i.e. part of the acceptance
criteria [24]] within user stories, had gotten more detailed during Kanban usage. This
allows work on a user story to be started without having to clarify open questions
beforehand and can help efficiency by decreasing the cycle time. Small user stories
that contain enough detail to be immediately implementable are ideal for usage in
the Kanban process [15].

3.3 Discussion

Both surveys, the more general end-of-term survey as well as the more specialized
survey on Kanban, revealed positive attitudes towards our approach of teaching
agile processes in a hands-on fashion as well as the shift from Scrum to Kanban
at the end of the project (RQZ). Students indicated that they would recommend
using Kanban to participants of the following year’s course. These results are in line
with related, similar studies [[12]]. In particular, Melnik et al. state that students, in
general, were “very enthusiastic about core agile practices” and accepted and liked
them [/14]]. The authors also point out that this observation held for a broad range of
students, regardless of educational program, age or industry experience. While the
findings of this and similar studies are encouraging for educators teaching software
project courses, they also pose challenges. If students are generally content in agile
project courses, simply due to the course setting and the fact that teamwork and
building software together is fulfilling, how can improvements to curriculum design
and changes in student behavior be evaluated?

Student opinions and attitudes towards course contents are an important part of
any assessment plan. However, evaluations of teaching methods should primarily
rely on the assessment of learning outcomes [5]], which surveys only partly capture
as they are geared towards collecting perceptions and attitudes. Furthermore, if not
every survey participant answered the more reflective, time-consuming free text

125

Christoph Matthies: Employing Software Development Data to Drive Process Change

answers, data on the learning outcomes of these participants is missing completely.
To help tackle these challenges, the outcomes and artifacts produced during the
process transition from Scrum to Kanban can be analyzed to gain additional insights
into development teams.

4 Development Artifact Analysis

While surveys are effective tools for capturing the attitudes of participants, they do
not allow insights into whether the perceived change in workflow or in user story
quality actually took place during the project or how severe the change was. In order
to provide another dimension of analysis based on real project data, we evaluated the
software development artifacts produced by course participants. In particular, we
compared students” development artifacts of the last five installments of our software
engineering course, the earliest two of which did not include Kanban and the three
most recent ones that did.

4.1 Data Collection

The development artifacts we collected from course repositories included commits
into the version control system git, containing code changes, timestamps and com-
mit messages describing the change, as well as tickets, acting as user stories, in an
issue tracker. Both of these data sources were collected from the collaboration and
hosting service GitHub, where all projects were hosted. GitHub features extensive
application programming interfaces (APIs) that allow programmatically extracting
the data stored by the service.

For every repository of the last five course iterations, user stories/issues and com-
mits from the last seven days of project work were collected. This is the time frame
that Kanban was employed in the more recent course iterations. Using this data,
both the assumptions on student behavior, i.e. educators hypothesis of how artifacts
would change from using Scrum to Kanban, as well as the accurateness of student
perceptions could be tested.

4.2 Discussion

The collected data shows that the length of user stories did not significantly differ
from when Kanban or Scrum was used in the last iteration of the course, see Ta-
ble[5| This differs from the reported perceptions of students in the survey performed
in the 2016/17 course installment. There, students reported that user stories were
perceived to be shorter when using Kanban when compared to Scrum. While these
two measures are not necessarily directly comparable, further study into the content
differences between user stories in Kanban and Scrum is required. However, the
analysis was able to uncover this discrepancy and provides a starting point for fur-
ther investigation. Most other measures calculated from commits, such as the mean

126

4 Development Artifact Analysis

Table 5: Issue body and title length of issues for the last week of projects. Courses
marked with * employed Kanban.

Issue body length Issue title length

Course year Mean Stdev Median Mean Stdev Median

2013/14 2748 2952 169.0 35.3 15.3 32.0
2014/15 420.8 3273 361.0 50.7 15.5 50.0
2015/16* 3609 3394 253.0 36.9 16.9 32.5
2016/17* 505.5 556.9 378.0 36.9 16.7 35.0
2017/18* 579.8 3933 526.0 35.9 14.3 37.5

amount of touched files, did not differ significantly between the two processes in
different course years, see Table[6] However, it is encouraging to see that the amount

Table 6: Comparison of commit attributes for the last week of projects. Courses
marked with * employed Kanban. All values stated normalized by course par-
ticipant count.

Course = Commit Touched Last-minute Line changes Unique issues

year amount files commits per commit referenced
2013/14 12.1 13.3 14 590.5 2.8
2014/15 7.2 6.9 1.2 408.0 1.0
2015/16* 6.1 8.0 8.1 466.0 0.1
2016/17* 3.4 54 22 163.5 22
2017/18* 8.6 5.3 1.7 195.0 1.5

of last-minute commits, i.e. commits made close to the end of the iteration [[13] tended
to be higher in the course installments in which Kanban was employed. Scrum’s iter-
ation plan, the Sprint Backlog, contains all the work items a team intends to address
in a sprint, i.e. the amount of work that can be performed by a team in an iteration.
Ideally, these items are worked on in a continuous manner, so that towards the end
of the sprint the last user story is finished [23]]. In this manner, work intensity and
commit frequency should be uniformly distributed during an iteration. In contrast,
Kanban does not explicitly call for iteration planning and so work is more likely to be
assigned more dynamically: new work items can easily be added to the work queue,
especially towards the end of the project, when the deadline approaches.

The more dynamic nature of Kanban is also reflected in the fact that the mean line
change per commit, as well as the mean number of touched files, were smaller in the
last two years of the course, see Table[) when educators had already gathered some
experience teaching the new methodology. This is in line with the Kanban survey

127

Christoph Matthies: Employing Software Development Data to Drive Process Change

results, where students stated that their user stories when employing Kanban were
more bug-oriented than feature-oriented. Fixing a bug usually requires changing
fewer lines touching fewer files than implementing an entirely new feature. Fur-
thermore, bugs are usually noticed during regular development activities or during
testing and can easily be added to a Kanban board [6]], whereas they might only end
up in the next Scrum sprint [9]].

Interactions with user stories, i.e. issues on GitHub, did not differ significantly
between those courses that employed kanban and those that used Scrum, see Table[7]

Table 7: Comparison of issues and their attributes for the last week of projects.
Courses marked with * employed Kanban.

Mean per contributor % issues
Course Issue Issue Issue opened & closed
by same person

year amount events comments

2013/14 4.9 27.5 171 43

2014/15 2.6 47.8 41 58

2015/16* 3.9 35.5 4.1 20

2016/17* 2.8 64.4 6.4 46

2017/18* 2.1 68.9 4.8 65

Normalized by participant count, similar mean numbers of issues were closed in
the studied time frame and a similar amount of comments were attached to issues.
However, the two most recent courses using Kanban showed higher mean amounts
of non-comment events, such as labeling or assignments, a sign that the issue tracker
was used more heavily. While Scrum explicitly calls for a role that mainly writes
and prioritizes user stories, the Product Owner [23]], Kanban does not. We had thus
hypothesized that introducing Kanban would result in higher engagement by the
entire team with the list of outstanding work items, instead of teams mostly relying
on the PO to maintain it. However, the percentage of issues opened and closed by the
same person, see the last column of Table [/} was surprisingly low even in the Scrum
courses, with only 43% and 58% in course installments 2013/14 and 2014/15. These
numbers did not differ significantly for the Kanban courses. While these results do
not support our original hypothesis on team engagement with user stories, they
represent opportunities for future work on how agile student teams interact with
user stories and work item backlogs in collaboration with a Product Owner role.

By analyzing software development data created by students, which is already
produced during regular development activities, we were able to uncover areas
where some of our assumptions on student behavior regarding the adoption of
different agile software development methodologies were confirmed and some were
refuted. These areas will serve as a basis for future improvements to the course.

128

5 Related Work

5 Related Work

A variety of specialized data sources have been analyzed in previous work in order
to gain insights into student behaviors in computer science courses.

Wilson and Shrock [26] employed a survey to determine factors that promote
success in an introductory computer science course. They examined twelve factors of
which comfort level, math, and attribution to luck for success/failure were the most
important for predicting student scores. Similarly, Bennedsen and Caspersen [3]]
attempted to help improve students’ learning premises by collecting data on the
emotional and social factors of students in a survey. They collected data on the
factors of perfectionism, self-esteem, coping tactics, affective states, and optimism.

While surveys can be used to collect data on arbitrary factors, depending on which
questions are used, entirely different ways of collecting student data have also been
explored. Keen and Etzkorn [7] analyzed the complexity of teachers’ lecture notes,
the buzzword density, i.e. the amount of Computer Science domain-specific words
divided by the total number of words in the lecture, to predict grades. Ashenafi et al.
used data created by students during course activities, namely the results of several
semi-automated peer-assessment tasks throughout the semester, to build a linear
regression model for predicting final grades [2]].

6 Conclusion

Employed processes need to be maintained and monitored to ensure that teams
employ a process that works for every team member and the team’s context. This is
also true in university, where courses need to be continuously adapted to changes
in requirements, such as industry shifts and technology advancements. Feedback
to educators on curriculum design usually takes the form of end-of-term surveys
or questionnaires on specific course aspects. However, techniques from the field of
Educational Data Mining can be employed to gain insights into student teams and
their reactions to changes in curricula that go beyond those possible with surveys.
This research presents our approach to analyze development artifacts to achieve this
goal. We analyzed the software development artifacts of student teams from five
university undergraduate software development courses, which teach different agile
development methodologies. Surveys with participants revealed positive attitudes
towards the course and changing the employed development methodology during
the course from Scrum to Kanban. However, surveys were not able to ascertain the
degree to which students had adapted their workflows accurately. Therefore, we
propose an approach of analyzing the software development data created by stu-
dents during regular project work activities, specifically user stories and commits
to a version control system, as an additional dimension of analysis. While this data
serves a primary purpose in communication between team members, it also rep-
resents information that can be collected and analyzed to generate insights into a
team’s behavior during project work.

129

Christoph Matthies: Employing Software Development Data to Drive Process Change

References

[1]

[12]

[13]

M. O. Ahmad, J. Markkula, and M. Oivo. “Kanban in software development:
A systematic literature review”. In: 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications. 2013, pages 9-16. DOI: 10.1109/SEAA|
2013.28.

M. M. Ashenafi, G. Riccardi, and M. Ronchetti. “Predicting students’ final
exam scores from their course activities”. In: 2015 IEEE Frontiers in Education
Conference (FIE). 2015, pages 1-9. DOI: |10.1109/FIE.2015.7344081.

J. Bennedsen and M. E. Caspersen. “Optimists have more fun, but do they
learn better? On the influence of emotional and social factors on learning
introductory computer science”. In: Computer Science Education 18.1 (2008),
pages 1-16.

D. A. Bonebright. “40 years of storming: A historical review of Tuckman’s
model of small group development”. In: Human Resource Development Interna-
tional 13.1 (2010), pages 111-120. DOI: 10.1080/13678861003589099.

R. M. Felder and R. Brent. “How to improve teaching quality”. In: Quality
Management Journal 6.2 (2009), pages 9-21.

M. Ikonen, E. Pirinen, F. Fagerholm, P. Kettunen, and P. Abrahamsson. “On
the impact of Kanban on software project work: An empirical case study in-
vestigation”. In: 16th IEEE International Conference on Engineering of Complex
Computer Systems. 2011, pages 305-314. DOI: 10.1109/ICECCS.2011.37.

K.J. Keen and L. Etzkorn. “Predicting students” grades in computer science
courses based on complexity measures of teacher’s lecture notes”. In: Journal
of Computing Sciences in Colleges 24 (2009), pages 44—48. ISSN: 1937-4771.

H. Kniberg. Kanban and Scrum — Making the most of both. Lulu.com, 2009,
pages 1-49. ISBN: 978-0-557-13832-6.

H. Kniberg. Scrum and XP from the trenches. C4Media, 2007, pages 1-105. DOI:
978-1-4303-2264-1.

A. Komus and M. Kuberg. Abschlussbericht : Status quo Agile 2016/2017. Tech-
nical report. Hochschule Koblenz, University of Applied Sciences, 2017.

V. Mahnic. “From Scrum to Kanban: Introducing lean principles to a software
engineering capstone course”. In: International Journal of Engineering Education
31.4 (2015), pages 1106-1116. ISSN: 0949-149X.

V. Mahni¢. “Scrum in software engineering courses: An outline of the litera-
ture”. In: Global Journal of Engineering Education 17.2 (2015), pages 77-83. ISSN:
1328-3154.

C. Matthies, T. Kowark, M. Uflacker, and H. Plattner. “Agile metrics for a uni-
versity software engineering course”. In: IEEE Frontiers in Education Conference
(FIE). 2016, pages 1-5. DOI: 10.1109/FIE.2016.7757684.

130

https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/FIE.2015.7344081
https://doi.org/10.1080/13678861003589099
https://doi.org/10.1109/ICECCS.2011.37
https://doi.org/978-1-4303-2264-1
https://doi.org/10.1109/FIE.2016.7757684

[14]

[21]

References

G. Melnik and F. Maurer. “A cross-program investigation of students” percep-
tions of agile methods”. In: Proceedings of the 27th International Conference on
Software Engineering (ICSE’05). 2005, pages 481-488. DOI: |10.1109/ICSE.2005|
1553593.

N. Nikitina and M. Kajko-Mattsson. “Developer-driven big-bang process tran-
sition from Scrum to Kanban”. In: Proceeding of the 2nd workshop on Software
engineering for sensor network applications (SESENA'11). 2011, page 159. DOI:
10.1145/1987875.1987901.

R. Polk. “Agile and Kanban in Coordination”. In: 2011 AGILE Conference. IEEE,
2011, pages 263-268. DOI: 10.1109/AGILE.2011.10.

M. Poppendieck and T. Poppendieck. Lean software development: an agile toolkit.
Addison-Wesley, 2003.

J. Pries-Heje and J. Johansen. “SPI manifesto”. In: European System & Software
Process Improvement and Innovation (2010).

M. Rees. “A feasible user story tool for agile software development?” In: Ninth
Asia-Pacific Software Engineering Conference, 2002. Volume 2002-Janua. 2002,
pages 22-30. DOI: 10.1109/APSEC.2002.1182972.

C. Rosen, B. Grawi, and E. Shihab. “Commit guru: analytics and risk predic-
tion of software commits”. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE’15). 2015, pages 966-969. DOL:
10.1145/2786805.2803183.

C. Santana, F. Queiroz, A. Vasconcelos, and C. Gusmao. “Software process
improvement in agile software development: A systematic literature review”.
In: 41st Euromicro Conference on Software Engineering and Advanced Applications.
2015, pages 325-332. DOI: 10.1109/SEAA.2015.82.

E. A. Santos and A. Hindle. “Judging a commit by its cover”. In: Proceedings of
the 13th International Workshop on Mining Software Repositories (MSR’16). 2016,
pages 504-507. DOI: 10.1145/2901739.2903493.

K. Schwaber and J. Sutherland. The Scrum guide — The definitive guide to Scrum:
The rules of the game. Technical report. 2017, page 19.

A. Silva, T. Aratjo, J. Nunes, M. Perkusich, E. Dilorenzo, H. Almeida, and A.
Perkusich. “A systematic review on the use of Definition of Done on agile
software development projects”. In: Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering (EASE’17). 2017,
pages 364-373. DOI: 10.1145/3084226.3084262.

VersionOne Inc. The 11th Annual State of Agile Report. Technical report. Ver-
sionOne Inc., 2017.

B. C. Wilson and S. Shrock. “Contributing to success in an introductory com-
puter science course”. In: ACM SIGCSE Bulletin 33.1 (2001), pages 184-188.
DOI:|10.1145/366413.364581.

J. P. Womack, D. T. Jones, and D. Roos. The machine that changed the world: the
story of lean production. Harper Collins, 1991.

131

https://doi.org/10.1109/ICSE.2005.1553593
https://doi.org/10.1109/ICSE.2005.1553593
https://doi.org/10.1145/1987875.1987901
https://doi.org/10.1109/AGILE.2011.10
https://doi.org/10.1109/APSEC.2002.1182972
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1109/SEAA.2015.82
https://doi.org/10.1145/2901739.2903493
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1145/366413.364581

Mining Concepts from Code to Support Program
Comprehension and Software Modularity

Toni Mattis

Software Architecture Group
Hasso-Plattner-Institut
toni.mattis@hpi.uni-potsdam.de

Software modularity is a quality that determines how fluently individual parts of
a system can vary and be understood if taken by themselves. Modularity tends to
degrade during program evolution — old concepts get entangled with code intro-
duced into their modules, while new concepts end up being scattered over many
existing modules. This process, which we call architectural drift, makes programs
more difficult to understand and more expensive to maintain.

Our research aims at creating tools to overcome these obstacles and helping
programmers understand and effectively manipulate a system in the presence of
architectural drift. We research probabilistic models that recover and relate the un-
derlying concepts from source code repositories and evaluate them on a large-scale
dataset to assess how well they perform in clustering, recommendation, and infor-
mation retrieval tasks. We proceed to explore how programming environments
can be improved by a concept-oriented representation of a system. We argue that
better understanding and continuous feedback on modularity eventually helps to
improve software quality in the long run.

1 Introduction

Software modularity is a quality that determines how fluently individual parts (mod-
ules) of a system can vary and be understood if taken by themselves. It contributes
to lower maintenance costs by preventing requirement changes from propagating
through the system, helping programmers understand a system, increasing testabil-
ity, helping teams work independently on different parts, and a wide range of other
effects.

Problem statement Modularity tends to degrade during program evolution — old
concepts get entangled with code introduced into their modules, while new concepts
end up being scattered over many existing modules. Several factors contribute to
this so called architectural drift: The programming language may lack mechanisms
to express a concept modularly, the existing architecture cannot accommodate a
new requirement, or management may prioritize short-term goals over long-term
maintainability.

Even in reasonably modularized systems, the inherent complexity increases the
risk of misunderstanding the underlying conceptual model or making design deci-
sions with incomplete information.

133

mailto:toni.mattis@hpi.uni-potsdam.de

Toni Mattis: Mining Code Concepts to Support Modularity

Architectural drift creates a reinforcing feedback loop in which a lack of under-
standing and bad maintainability causes programmers to add more scattered and
tangled code over time. It is an instance of technical debt that accumulates “interest”.

Architectural drift is often approached from a language design perspective, where
the objective is to make underlying programming languages more expressive to
better separate concepts. Examples include Aspect-oriented Programming (AOP) or
type systems. However, when architectural drift already manifests itself by driving
up the costs of change, retroactive approaches that improve program comprehension
and assist refactoring or re-modularization move into focus.

Goal Our research approaches the feedback loop at three different leverage points:

1. Metrics: Measure architectural drift to provide programmers with feedback
where and when modularity is degrading and to which degree and if counter-
measures are effective

2. Reverse engineering: Help programmers discover which concepts are distributed
across which modules, how they interact in the system, and how they evolved
throughout the version history

3. Forward engineering: Support programmers in their choice of names, code loca-
tions to edit, refactorings, and other activities that can directly improve modu-
larity

Approach Our approach is centered around finding a latent decomposition of a
software system into concepts through a machine learning process. Our notion of a
concept is derived from that of cognitive psychology, in which it constitutes a unit of
comprehension or — especially in software engineering — a unit of communication and
usually has one or more names used to refer to that concept and its constituents.

We propose a knowledge representation, referred to as concept model, that encodes
which concepts are in a system, where each individual concept is expressed in source
code, how they interact with each other, and which distinguishing names and fea-
tures identify each concept. Possible extensions of such a model can also attribute
expert knowledge about certain concepts to individual programmers or teams, and
associate external artifacts, such as issues in a bug tracker, to concepts.

Integrating such a concept model into the programming toolchain can support all
three of the above objectives through continuous feedback:

e Modularity metrics can be obtained from measuring how much the current
system deviates from the inferred concept model, or how much an individual
change to the software contributes to that deviation

e The model, when properly visualized, can be explored by programmers to
gain a high-level understanding of the system, or queried for specific concepts
to see which code locations are affected from a change to that concept

134

1 Introduction

Concept
Authentication

Concept
Persistence

Q< —)
\L=_l

‘e.. User.java Order.java User.java Order.java

«uses»

Figure 1: [llustration of two concepts (circles) that cut across multiple modules,
their locations in source code, and a relation between them

e The model can provide immediate support as programmers work, for example
in the form of refactoring recommendations that would improve modularity
and names that better fit the current conceptual context

Each type of feedback is explainable and actionable, e.g., placing code at the wrong
location does not only quantitatively impact a metric, but the model can always
explain which concepts have been confused or mixed, and recommend better locations.
When presented with a possibly misguiding explanation, expert programmers can
intervene, correct a mistake made by the model, and thus refine it on the fly.

We explored different types of probabilistic generative models, such as topic mod-
els, and their explanatory power with regard to a software system. We eventually
developed a graph-based model in which edges constitute observable relations in
source code, edit history, and at run-time, and a stochastic process that generates
such a graph from a set of interacting concepts. As with any probabilistic model,
our objective is to find a decomposition of the system into concepts that most likely
explains the observed graph.

Evaluation and Tooling To explore uses and evaluate effectiveness, we follow both
a qualitative and quantitative approach. The quantitative part focuses on evaluating
different versions of the concept model itself and comparing it with related work on
multi-view learning, topic modeling, and software recommender systems. Metrics
to compare how well a concept model captures the underlying structure of a system
are recently being researched, and one of our contributions will be a representative
evaluation data set extracted from more than 10 billion program modifications on
GitHub for change prediction and software artifact recommendation.

A future qualitative evaluation will be based on a modified concept-aware pro-
gramming environment as described in [[9]] and study the effects of new tools on
program comprehension and modification tasks in a few case studies.

135

Toni Mattis: Mining Code Concepts to Support Modularity

2 Mining Concepts from Code
2.1 Background: Concepts and Names

Origins In cognitive sciences and philosophy, a concept is often described as a
mental representation (or placeholder) for a set of instances and expectations. For
example, the concept of a “tree” can represent the set of real-world plants with
certain shape, creates the ability to imagine a protoypical tree, allows us to recognize
a tree if we see one, and evokes expectations, e.g., branches of certain size support a
person’s weight. Most concepts carry a specific vocabulary, e.g., the tree concept is
associated with words like branch, root, and leaf.

Concepts in programming In programming, concepts appear in two different
kinds: First, there are computational concepts provided by the programming and exe-
cution environment. They include types, operations, memory and process abstrac-
tions, etc. They also dictate how programmers can express the second kind: Domain
concepts that need to be engineered in a program to achieve its purpose. Domain con-
cepts originate from requirements (e.g., business processes, users, documents, goods,
other systems, etc.) and appear in a program as named instances or combinations of
computational concepts.

The mapping between domain concepts and computational concepts is described
in literature as theory building [11]] or concept assignment problem [4], and often the
only recognizable links are names. For example, the computational concept of a string
of characters has no meaning in any domain, but can be linked to the concept of a
phone number by assigning it to a variable named phoneNumber. Seeing this name and
having the associated concept in mind, programmers can have some expectations
how the string might be formatted and can imagine examples for such a string.
Similarly, seeing the names root and leaf invokes the tree concept again, this time
as a metaphor for a recursive data structure analogous to real-world trees.

High-level concepts In the context of this work, we are interested in larger high-
level concepts that have the potential to span multiple modules and, thereby, impede
program comprehension. Such concepts can include concrete domain subjects (user,
order, ...), other subsystems (database, services, ...), processes (user registration, booking,
...), and cross-cutting concerns (authorization, logging, ...). Their vocabularies span
dozens up to hundreds of distinct words, such that full-text search usually does not
suffice to find all participants of a complex system function and not every word can
be immediately associated with a concept.

2.2 Inferring Concept Models
Finding names Our first objective is to find the names that programmers have
chosen. Typical places include the names of variables, arguments, classes, methods,

fields, and types. Moreover, short strings or, in case the language has syntax for it,
symbols, carry meaning. They can be found as dictionary keys, in metaprogramming,

136

2 Mining Concepts from Code

error messages, etc. In Smalltalk and related languages there are category names used
to organize class members. Comments are of interest in future work, but excluded for
the moment, since we do not want to deal with the noise introduced by unrestricted
natural language.

Each of these lexical tokens can be constructed from multiple names, which jus-
tifies the decision to attach multiple concept labels to a single lexical token. Typical
examples are camel-case and underscore identifiers like isEmpty or open_file, or
Smalltalk’s multi-part messages at:put:, where each part can be camel-cased again.
Our analysis is not constrained to nouns, or even actual words, but builds an exhaus-
tive vocabulary of potential names used in the source code.

Distributional Hypothesis Insemantics, the distributional hypothesis states that two
lexical tokens that share meaning also share the same statistical distribution in a text
corpus. That means, they are more likely co-occurring (and co-missing) than two
unrelated tokens.

If the lexical tokens in a program are derived from concepts similarly as we refer to
concepts in text, the distributional hypothesis should hold for program source code
as well. For example, when a structure resembles a graph and programmers decide
to name the parts vertex and edge, they will be more frequently occurring together
than, e.g., vertex and password.

Abstraction and limitations of the Distributional Hypothesis A method or other
unit of modularity is typically not self-contained, i.e., it makes use of other units and
is being used by units building on top of it. This naturally limits the coherence of
names within a unit, since it tries to express one concept while internally depending
on vocabulary exposed by other concept’s interfaces, e.g., a stack using a list internally.

Such abstraction barriers still manifest themselves as highly correlated names,
and force different sides of the abstraction barrier into being labeled with the same
concept if we solely rely on the distributional hypothesis.

Abelson and Sussman [[1]] identified that programming environments typically
have three constituents: primitives, means of combination, and means of abstraction.

Means of combination include all operations on data (e.g. mathematical opera-
tors) as well as operations on operations (e.g. sequencing two statements, condition-
ally executing or repeating operations). Common means of abstraction are constant
and variable assignments, function/method definitions, and class/interface defini-
tions. All abstractions define one or more (new) names in terms of (a combination of)
implementation-specific primitives or existing names, which gives us a new way of
how two names can be related.

We refine the distributional hypothesis in the context of a programming language
to mean that two names that share the same concept tend to be frequently combined,
and, if a concept A makes use of a different concept B, names from A will be more
frequently defined in terms of names from B.

LDA-Type Topic Modeling In a first step, we used topic modeling, a technique
that represents a set of text documents as mixture of high-level concepts which

137

Toni Mattis: Mining Code Concepts to Support Modularity

in turn consist of words. Probabilistically, topic models factorize the histogram of
words w in each document d, considered as a sample from a distribution P(w|d)
Y P(w|t)P(t|d) into a mixture of topics t for each document P(t|d) and a distribution
of words within each topic P(w|t) such that individual words which are correlated by
their meaning become conditionally independent given their topic. Latent Dirichlet
Allocation (LDA) treats both conditional distributions as multinomial distributions
with a Dirichlet prior 6] and each distribution can be easily approximated using
Gibbs Sampling [7]].

By treating methods in source code as documents in the LDA model, we could
recover high-level concepts reasonably well, reproducing prior research of apply-
ing LDA to Java classes [|8|]. We can also assign single concepts to each name, for
example by choosing the most likely topic as concept argmax, P(f|w, d) or by taking
the most frequent topic from the Gibbs sampling distribution. User feedback can
be incorporated by fixing specific names to a topic and re-running inference for the
unmodified names. However, several types of user feedback (e.g. re-ranking a name
inside a concept) are difficult to represent in LDA.

Limits of LDA-Type models and Abstraction-aware LDA We observed several
weaknesses in classic topic modeling emerging from independence assumptions
between documents, and also between topics. Units of modularity in source code
systematically introduce new vocabulary by defining it in terms of already known
vocabulary. We try to capture this abstraction and composition process with our
concept model. In an extension to LDA, we refined the generative model to con-
sider concept transitions, i.e., defining a term of one concept using a term from
another concept, resulting in a more expressive model. Probabilistically, we intro-
duce the topic or concept transition probability P(t;|t,) to reflect the chance that a
term of abstraction concept ¢, is defined through or implemented by a term in imple-
mentation concept t;, and model the distribution of right-hand side identifiers (i.e.,
those which appear in the body of a variable or method definition) as P(w;|d) =
Yo, Y, P(wilt;) P(ti|ta) P(ts|d), while left-hand side identifiers (i.e., method signa-
tures or names being currently defined) in the same document are treated like they
belong to the abstraction, P(w,|d) = Y; P(wq|t;)P(t,|d). The inference procedure
used for LDA is extended to accommodate for the new model parameters P(t;|t;).
The model can now summarize large-scale interactions between concepts through its
transition matrix formed by all pairs in P(#;|t,), but may collapse into the LDA model
with all P(t|t,) ~ 1.0if t; = t, else P(t;|t,) ~ 0.0 on a small code base. An additional
limitation is a slowdown of factor 2 to 3 compared to LDA since the number of latent
variables has doubled.

Graph-based Topic Modeling To better address the underlying structure of code
repositories, we designed a graph-based model, in which nodes are names and co-
occurrence is represented by multi-edges between these names. By defining a stochas-
tic process that generates a graph G = (V, E) in a way that two nodes get connected
when they play a role in the same concept, we can recover the most likely concept
that explains an edge and propagate this information to the adjacent nodes. Prob-

138

2 Mining Concepts from Code

abilistically, we add an edge n; <+ n, between two nodes (names) ny,n, € V with
probability P(n; <+ ny) = Y. P(nq|c)P(n2|c)P(c), that means our concepts c repre-
sent, analogously to topics, a probability distribution over nodes. P(c) represents
the global proportions of concepts, there is no document-specific concept mixture.
We can infer the concept assignments ¢, for every edge e € E (E is a multi-set) using
Gibbs sampling from a previously constructed co-occurrence graph. We can obtain a
single concept for every name n by looking for the concept that most likely generated
the majority of adjacent edges.

In our implementation, we define co-occurrence, and thus whether we add an edge
to the graph, by two names being combined in the sense of [1]], e.g., if a statement
applies a mathematical operator the value of two variables, then both variables are
co-occurring.

Graph-based Topic Modeling with Abstraction We extended this model by a
directed edge type n; — n, to encode abstraction; a directed edge is explained
by the first concept making use of the second one, analogously to our extended
distributional hypothesis:

P(ny — n2) = Y, P(ca) X, P(cilca) P(n1|ca) P(n2|c;). Hence, we obtain additional
model parameters P(c;|c,) that quantify how an abstraction ¢, makes use of concept
c; for its implementation. The observation on which the model is trained includes
those directed edges whenever an abstract name 7, is defined (from left-hand side
tokens or method signatures) in terms of another implementation-specific (from
right-hand side tokens or the method body) name n;.

A large benefit of this model is that it does not require the code to be sliced into
documents like in LDA-type models. New edge types can be added easily that encode
new concept relations, e.g. a directed edge type that models data flow, or edges
connecting program parts to other artifacts (e.g. comments or documentation).

Preliminary evaluation using coherence measures from Mimno et al. [[10] indicate
that our graph-based models outperform LDA-type models when run on many small
“documents” or when fewer data is available, but inference is about 10 times more
memory and computation intensive. We are working towards a parallel, optimized
implementation of graph-based concept models that can run in real-time.

Modularity The distribution of concept labels in each module can be used to assess
the module’s coherence as well as the locality of the respective concept. Related
work dealing with an LDA-based modularity assessment proposes to use entropy
measures [8]. We can adapt this idea to the labeled names and define per-method
entropy as

H(m) = —}_p(c|m)log,(p(c|m))

With p(c|m) being the proportion of concept ¢ with regard to all labels in module
m. The larger this number, the less coherent a module is with regard to naming. As
a refinement we could eliminate implementation-specific concept labels from the
analysis and only focus on the labels given to the method signatures. This would give

139

Toni Mattis: Mining Code Concepts to Support Modularity

us a measure for the entropy in a module’s interface and not consider the fan-out
caused by implementation details.

Using the same mechanism, we can quantify cross-cuttingness of a concept by
measuring its entropy across all modules:

H(c) = =) _p(mlc)log,(p(mlc)),

with p(m|c) given by Bayes’ Rule from previously computed p(c|m).

In combination with version control, we could track the entropy measures across
change sets and score each change according to whether it was an improvement
(decreasing H(m)) or a sign of deterioration (increasing H(m)). This difference
might become more apparent when versions with many changes in between are
being compared.

Programmatic Interface From tooling perspective, we are working on a reflection
interface that extends existing meta-programming facilities with mechanisms to re-
trieve and manipulate concepts of arbitrary program artifacts. This interface can be
used by tools, e.g., debuggers, browsers, and editors, to display concepts, sort or
group by concepts, and use visual hints such as ing to indicate concept correspon-
dence. A key idea is to extend abstract syntax trees (ASTs) emitted by parsers and
used by a multitude of tools to further split each name into individual lexical sub-
tokens (e.g., splitting camel case and underline-separated names off an identifier)
and provide an attribute that links these sub-tokens to their concept.

3 Related Work

DESIRE and DM-TAO An early instance of program-assisted concept assignment
was the DESIRE system [4]. It was founded on a model that distinguishes program-
ming-oriented concepts (formal, unambiguous, data-manipulating) from human-
oriented concepts (informal, possibly ambiguous, domain-based). Biggerstaff et
al. identified the mapping between them as a crucial part in program comprehen-
sion similar to Naur and highlighted that natural language tokens and proximity of
statements (including grouping, e.g., by linebreaks) are important to automatically
discover these links. Particularly interesting is their first approach to an intelligent
agent called DM-TAO that can both locate concepts in code and explain code in terms
of domain-model concepts, thereby serving two of our main use cases. It relied on
a semantic graph that, similar to a neural network, computes the likelihood of a
domain-model concept given observable syntactical and term-like features, can be
trained by user feedback and bootstrapped from an existing domain model.

Topic models on code The discipline of topic modeling, originally from the do-
main of natural language processing, has been applied to software in several circum-
stances. Linstead et al. [8]] successfully applied LDA to a large repository of Java
source files to discover globally prevalent concepts. They also introduced entropy as

140

4 Future Work

a method to measure tangling and scattering of topics in the sense of aspect-oriented
programming. Saeidi et al. [[12]] refined LDA and included expert feedback in the
form of manually defined must-link and cannot-link constraints between names.
Asuncion et al. [3] extend topic modeling to related artifacts surrounding the pro-
gramming environment. This allows information retrieval and software traceability
across large projects. Thomas et al. [[16] propose to track topic evolution in source
code, especially the points in time where new concepts were introduced or removed,
by a specifically designed topic model. Binkley et al. [5] investigated LDA on source
code in detail and provided relevant insights that helped parametrize our own LDA
implementation as a first step towards automated concept assignment.

Kernel-based methods More recent research focuses on kernel-based learning to
capture code similarity, and improving the bag-of-words representation of software
modules to include other information, such as types, with lexical features [[13]]. Sig-
nificant progress on integrating different views (source code, history, and call-graph)
using shared subspace learning to better capture semantic relatedness between mod-
ules is being made [yet unpublished].

Other statistical models Beyond topic modeling, the discipline of graph clustering
and community detection researches similar structures, such as the mixed-member-
ship stochastic block model [2]], which can be understood as a topic model on graphs.

The problem of structuring concepts in a hierarchy has been addressed for natural
language and images using a hierarchical Dirichlet process [[15], but not yet applied
to source code.

Computational biology is concerned with detecting subsystems (analogous to con-
cepts) in reaction pathways to understand and classify lifeforms in terms of these
subsystems. The models used to summarize reaction pathways into subsystems re-
semble modern topic and graph clustering models [|14]. The fact that abstractions
(implementation details, interface) in programming resemble reactions in chemi-
cal pathways (reagents, products) makes these models partially applicable to our
domain.

4 Future Work

Given a way of distributing concept labels to each name, and also knowing abstrac-
tions and dependencies between concepts, we elaborate on our planned tool integra-
tion and quantitative evaluation.

Quantitative Evaluation We are facing the problem that we need to compare
graph-based models, topic models, and ideally related work from kernel-based and
other embedding methods. All three use different evaluation metrics throughout
literature, e.g., graph-based models often use modularity while topic models use

perplexity.

141

Toni Mattis: Mining Code Concepts to Support Modularity

To construct better metrics that capture how well a model captures the underlying
semantics of a system, we are currently building a data set from about 10 billion Git
commits obtained from GitHub that includes not only source code, but also history
and meta-data.

The data set is currently designed for the following evaluation scenarios:

Clustering Using a concept model for clustering can determine how well it captures
semantic relatedness of existing modules. We cluster a range of well structured
software systems using a top-down approach based on the most likely decom-
position according to the probabilistic models. We then compare and measure
their path distance (PD) to the real architecture. A variation of this experiment
would use hierarchical clustering to better compare to non-probabilistic related
work.

Change Prediction We use the concept model and related models to recommend
likely code locations that are related to a code change. We compare the rec-
ommendations to actual modifications that have been made throughout the
version history using standard measures, such as area under ROC curve.

Refactoring Recommendation When commits explicitly intend to improve a code
base, we plan to measure if a concept model rates the result of a modifica-
tion as more desirable than the original version and identify cases in which
programmer and model opinion diverge.

Name Suggestion Our model is capable of estimating the probability of names
within an arbitrary context and thereby can be used to recommend identifier
names or re-rank code completion suggestions. We can construct incomplete
test data from complete source code and measure how well our model could
auto-complete identifiers or select the right name from a list of proposals.

Depending on the preliminary results of the above evaluation we plan to extend the
framework to measure model stability, e.g., how fast inferred concepts shift with each
program version, and how modularity assessed using the concept model compares
to a wide range of other software metrics aimed at locating maintainability issues.

Concept-augmented Class Diagram We propose to introduce a new tool to ex-
plore the program at concept-level and address the information needs stated above.

The design studies in [Figure 2|and B|show a class diagram with color-coded con-
cepts. Selecting a concept from the top highlights methods which have a majority
of names labeled with this concept, making clear where the concept is prevalent. It
should be possible to collapse or hide classes not concerned with the selected con-
cepts, since class diagrams tend to use up a lot of space for larger systems. Even if
not selected, the other concepts are indicated by color markers alongside modules,
they might as well show proportions rather than just a binary indicator, but with
many concepts such miniature charts might get cluttered. A major challenge will be
automated layouting, such that classes related by concept are arranged closer to each
other. For a user-layouted class diagram, we can provide linting, e.g., assessing how

142

4 Future Work

...................
...................
'''''''

City |:||:|. »| Vertex .

Canvas : = []
— Road CEE

f P _I_> Edge .

Figure 2: A class diagram with a selected concept. Concepts are represented as
colored collection of relevant names, the corresponding parts of the program
are highlighted using this color. Links to implementation-specific concepts are
shown. Each module has colored indicators to show which additional concepts
it is dealing with.

.........

.....

» .

City OO Vertex =

Canvas : D []
— Road OEE

-_— _I_. Edge =

Figure 3: The same class diagram as in with a different selected concept

143

Toni Mattis: Mining Code Concepts to Support Modularity

well the spatial grouping of classes reflects concepts and help re-arrange a diagram
for better readability.

Concept-aware Browser and Editor For less explorative tasks or tasks requiring
programming, the standard code browser and editor can be augmented to support
first-class concepts in multiple ways. Similar to the class view, we can use color-
coding to indicate relatedness of certain modules to a given concept. Concepts should
be available anywhere, e.g., by selecting any identifier within the source code the
editor should explain which concepts this identifier is labeled with (e.g., by showing
a colored indicator near the identifier and some names associated with it). Interacting
with any colored concept indicator, e.g., by hovering or clicking, should highlight
every part of the program that belongs to the same concept.

Besides color-coding, the editor may warn programmers when they use names
that are inconsistent with the context.

City » planRouteTo: destination

" (self |name
position

vertex B
drawOn:

City » planRouteTo: destination

" (self vertex|shortestPathTo: g

edges [|
addEdge: [|

Figure 4: Code completion is scoped to a concept and additionally proposes com-
pletions from related concepts. When a concept transition is detected, code
completion updates its concept context accordingly.

Concerning code completion, each typed name indicates what concept program-
mers are dealing with. Combined with the context (e.g., concepts in the currently
active method and class), code completion can prefer those names that are either
inside the concept, or in frequently used related concepts, like illustrated in [Figure 4]
(top). When a transition into another concept is detected, e.g., because a specific
implementation detail uses a different concept, syntax completion can snap into that
concept again, as in [Figure 4] (bottom). This can be combined with traditional code
completion ranking mechanisms, such as type inference and most-recently-used
heuristics, but details on the exact mechanism need to be explored and tested yet.

Debugger A common challenge with debugging complex systems in graphical

debuggers is that the call stack does not reflect abstractions in the original program
design. Especially highly modular architecture expands to a call stack that slices

144

4 Future Work

through a high number of abstractions which are likely unrelated to the problem at
hand.

First-class concepts can help to structure a debugging session, since they can col-
lapse call frames that belong to unrelated concepts, or at least mark the relevant
ones.

Since modern debuggers have access to live objects in the running program, there
is the opportunity to arrange or retrieve them by their concept.

Version Control With modern version control systems, changes can be tracked in
small increments and attributed to their author. When reviewing individual change
sets, the difference in terms of concepts (e.g., how many labels of each concept have
been removed or added) may already give away what the code change was about.
By aggregating the number of concept labels affected per author, we can compute
what each author is an expert for.

Including Programmers’ Feedback All of our designs rely on the fact that concepts
detected using topic-modeling and similar techniques group names in a way that
they are recognizable as coherent concept by humans. Since they only make use of
artifacts created by programmers, they can only better arrange information that is
already there, but not recover parts of the programmers’ mental model that were
never encoded in the program.

At any point where concept labels appear, experts should be able to correct the
current label. This may trigger a cascade of automated updates trying to optimize
the remaining, automatically chosen labels to reflect the change made by the expert.
Other operations on concepts that we want to support include:

e Merge two concepts. This is simple, as each label of the second concept can just
flip its color to the first concept.

o Automatically split a concept. This requires computing an optimal split, where
each sub-concept retains the highest possible coherence while making sure
that the names with the lowest semantic similarity are put into different sub-
concepts.

e Manually split a concept. Experts drag and drop names into a new concept
(similar to [[12]]). The environment may recommend additional names to move
to the new concept, e.g., those that have high co-occurrence with the ones
already moved.

e Shuffle a set of concepts. This might be the last resort when automated con-
cept allocation fails. The good concepts remain fixed and the (randomized)

145

Toni Mattis: Mining Code Concepts to Support Modularity

algorithm is re-run on the remaining concepts, probably finding a different
solution]

An interesting challenge manifests itself when concept-aware reflection facilities
or client tools are used by multiple, collaborating developers. In a fully automated
setting, the assignment algorithm may be tuned to compute the same results for each
identical working copy of a shared repository. When decentralized expert feedback
is taken into account, we need a way to synchronize concept assignments, for ex-
ample, by serializing them into code comments or files managed by version control.
Alternatively, a repository of concepts and their lexical features can be maintained
independently from version control, feedback would be submitted to this repository,
and automated analyses on different code bases can re-use this “crowd-sourced”
knowledge.

References

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Com-
puter Programs — 2nd Edition. MIT Press, 1996.

[2] E.M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. “Mixed Membership
Stochastic Blockmodels”. In: Advances in Neural Information Processing Systems
21.2009, pages 33-40.

[3] H.U. Asuncion, A. U. Asuncion, and R. N. Taylor. “Software Traceability with
Topic Modeling”. In: Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering. 2010, pages 95-104.

[4] T.].Biggerstaff, B. G. Mitbander, and D. Webster. “The Concept Assignment
Problem in Program Understanding”. In: Proceedings of 1993 15th International
Conference on Software Engineering. 1993, pages 482-498.

[5] D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt. “Understanding LDA in
Source Code Analysis”. In: Proceedings of the 22nd International Conference on
Program Comprehension. 2014, pages 26-36.

[6] D.M.Blei, A.Y.Ng, and M. L Jordan. “Latent Dirichlet Allocation”. In:]. Mach.
Learn. Res. 3 (2003), pages 993-1022.

[7] T. Griffiths. Gibbs Sampling in the Generative Model of Latent Dirichlet Allocation.
2011.

[8] E.Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. “Mining Concepts
from Code with Probabilistic Topic Models”. In: Proceedings of the Twenty-
Second IEEE /ACM International Conference on Automated Software Engineering.
2007, pages 461-464.

!Gibbs samplers are randomized algorithms. Especially when a large range of near-optimal,
but completely different solutions exist, re-running a Gibbs sampler with a different
starting configuration can give a better solution.

146

[10]

[14]

References

T. Mattis, P. Rein, S. Ramson, J. Lincke, and R. Hirschfeld. “Towards Concept-
aware Programming Environments for Guiding Software Modularity”. In:
Proceedings of the 3rd Programming Experience (PX/17.2) Workshop. PX/17.2. To
appear. 2017.

D. Mimno, H. M. Wallach, E. Talley, M. Leenders, and A. McCallum. “Opti-
mizing Semantic Coherence in Topic Models”. In: Proceedings of the Conference

on Empirical Methods in Natural Language Processing. 2011, pages 262-272. ISBN:
978-1-937284-11-4.

P. Naur. “Programming as Theory Building”. In: Microprocessing and Micropro-
gramming 15.5 (1985), pages 253-261.

A. M. Saeidi,]. Hage, R. Khadka, and S. Jansen. “ITMViz: Interactive Topic
Modeling for Source Code Analysis”. In: Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension. 2015, pages 295-298.

A. Saeidi, J]. Hage, R. Khadka, and S. Jansen. “On the Effect of Semantically
Enriched Context Models on Software Modularization”. In: The Art, Science,
and Engineering of Programming 2.1 (2017), 2:1-2:39. DOI: 10.22152/programmi
ng-journal.org/2018/2/2.

M. Shafiei, K. A. Dunn, H. Chipman, H. Gu, and J. P. Bielawski. “BiomeNet:
A Bayesian Model for Inference of Metabolic Divergence among Microbial
Communities”. In: PLOS Computational Biology 10.11 (2014), pages 1-17. DOL
10.1371/journal.pcbi.1003918.

Y. W. Teh, M. L. Jordan, M. J. Beal, and D. M. Blei. “Hierarchical Dirichlet
Processes”. In: Journal of the American Statistical Association 101 (2004).

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein. “Modeling the Evo-
lution of Topics in Source Code Histories”. In: Proceedings of the 8th Working
Conference on Mining Software Repositories. 2011, pages 173-182. DOI: 10.1145/
1985441.1985467.

147

https://doi.org/10.22152/programming-journal.org/2018/2/2
https://doi.org/10.22152/programming-journal.org/2018/2/2
https://doi.org/10.1371/journal.pcbi.1003918
https://doi.org/10.1145/1985441.1985467
https://doi.org/10.1145/1985441.1985467

GraalSqueak: A Fast Squeak/Smalltalk Implementation
for the GraalVM

Fabio Niephaus

Software Architecture Group
Hasso Plattner Institute, University of Potsdam, Germany
Fabio.Niephaus@hpi.uni-potsdam.de

Language implementation frameworks aim to provide everything that is needed
to build interpreters, simplify the process by making certain design decisions in
advance, and suggest implementation strategies to virtual machine creators.

Truffle, for example, is a language implementation framework designed for
building [Abstract Syntax Tree|interpreters that run on top of the GraalVM. Vari-
ous programming languages have already been implemented in Truffle including
SOMns, a Newspeak implementation in the tradition of Smalltalk and Self. How-
ever, an implementation of a traditional Smalltalk system is missing.

In this paper, we propose an approach for a fast Squeak/Smalltalk implementa-
tion in Truffle for the GraalVM. Our implementation GraalSqueak aims to provide
full compatibility to existing Squeak/Smalltalk images including support for its
programming environment and its unique language features. Although Truffle’s
warmup behavior has noticeable side-effects on the responsiveness of the program-
ming environment, an early version of GraalSqueak already achieves competitive
run-time performance in micro benchmarks.

1 Introduction

Implementing virtual execution environments for dynamic programming languages
is a comprehensive activity when done from scratch. It is not only necessary to
implement common components such as a parser, interpreter, or garbage collector,
but also common optimizations for dynamic languages such as a just-in-time (jit)
compiler. Language implementation frameworks such a RPython [/1]] and Truffle [24]
have become more and more popular as they allow language implementors to use a
high-level language and provide useful and reusable components and optimization
mechanisms.

These frameworks, however, often enforce certain implementation styles because
they are usually designed to support a specific kind of interpretation model. For
example, RPython [1], a language implementation framework maintained as part of
the PyPy project [21]], is mainly used to implement bytecode interpreters, because
its tracing jit compiler is most suited to operate on bytecode. Oracle’s Truffle frame-
work [24]], on the other hand, is designed for implementing Abstract Syntax Tree
(ast) interpreters and its jit compiler applies ast node rewriting and partial evaluation
to significantly increase run-time performance of corresponding interpreters.

In this paper, we present GraalSqueak, a Squeak/Smalltalk [12] implementation
for the GraalVM [24]. Squeak/Smalltalk is a Smalltalk dialect derived from the

149

mailto:Fabio.Niephaus@hpi.uni-potsdam.de

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

Smalltalk-80 language specification [|10] and GraalVM is the runtime environment
for Truffle language implementations. With SOMns [|16]], a Smalltalk-like interpreter
implemented in Truffle already exists. However, it operates entirely on asts as it
is not image-based like traditional Smalltalk-80 systems and can therefore be well
optimized by the GraalVM. GraalSqueak, on the other hand, aims to be fully com-
patible with Squeak/Smalltalk images including its programming environment and
Smalltalk language features such as sender chain modifications and full reflective
access. Some of these language features are unique to Smalltalk and for that reason
harder to implement in Truffle than others.

In the following|section 2} we introduce Squeak/Smalltalk as well as Truffle and
the GraalVM ecosystem. Then, we present concepts and implementation strategies
for Smalltalk-specific features that are especially hard to implement in Truffle in
Afterwards, we give an overview over the implementation of GraalSqueak
and highlight some design decisions insection 4} In|section 5, we then evaluate the
performance of GraalSqueak before discussing our approach insection 6|and related
work in[section 7] Finally, we conclude the paper infsection §and give an outlook to

future work.

2 Context

In this section, we introduce Squeak/Smalltalk as well as the GraalVM and the Truffle
framework which we used to build GraalSqueak.

2.1 Squeak/Smalltalk

Squeak/Smalltalk [[12]] is a Smalltalk dialect derived from the Smalltalk-80 language
specification [[10]]. It was originally developed by Alan Kay, Dan Ingalls, and others,
most of which were also part of the Xerox PARC Learning Research Group which
designed Smalltalk-80. The default framework for Squeak’s graphical user interface
(ui) is Morphic [14]], which originally was developed for the Self programming lan-
guage [22]]. Over the years, many projects have evolved from Squeak/Smalltalk in-
cluding Newspeak [6]], Etoys [9, 13], Scratch [|19], Pharo [[4]], and Babelsberg/S [11]].

2.2 Truffle and GraalVM

GraalVM [24] is a multi-language runtime environment and based on the Java Virtual
Machine (JVM). Its main component is the Graal compiler which performs ast node
rewriting and partial evaluation to produce specialized machine code. The compiler
can be used as a jit compiler at run-time or for ahead-of-time (aot) compilation as
part of the SubstrateVM project [23]].

Truffle [[24] is a language implementation framework for building ast interpreters
that run on top of the GraalVM. It not only allows language implementors to define
ast nodes that can then be processed by the Graal compiler, but also to fine-tune

150

3 Approach

Figure 1: A bytecode stream and a sequence of ast nodes

the compiler with various hints. Moreover, it provides various profiling and caching
mechanisms as well as optimized data structures that can be used to further improve
run-time performance.

3 Approach

In this section, we propose an approach for implementing Squeak/Smalltalk in
the Truffle framework. This includes implementation strategies to model Squeak/
Smalltalk concepts in Truffle as well as language-specific performance optimizations.

3.1 Building a Bytecode Interpreter with Truffle

The Smalltalk-80 language specification includes a well-defined bytecode set that a
Virtual Machine (vm) needs to implement to execute Smalltalk code. Since Squeak/
Smalltalk is derived from this specification, a Truffle-based interpreter needs to sup-
port its bytecode set. However, Truffle only operates on ast nodes, so an ast needs to
be produced from Squeak/Smalltalk bytecode. This can be done by decompiling its
bytecode. Squeak/Smalltalk comes with a decompiler, but since it is implemented in
Smalltalk and runs within the image, it is unavailable on interpreter-level. Although
porting this decompiler to Truffle is relatively straightforward, it would add signifi-
cant complexity to the interpreter. More importantly, compatibilty breaks in case the
Squeak/Smalltalk compiler is changed since the vm now depends on in-image code
because of a ported decompiler.

A better approach to implement a Smalltalk bytecode interpreter is to transform
bytecode into a stream of ast nodes as depicted in For this, each bytecode
is represented as a node and connected with one or, in the case of a jump, with two
successor nodes which results in a linked list of ast nodes with jump pointers. Truffle
and the Graal compiler, however, need additional hints to efficiently execute such
asts. These hints will be discussed in more detail in

151

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

3.2 Providing Support for Squeak/Smalltalk Context Objects

Unlike many other programming languages, Smalltalk languages including Squeak/
Smalltalk expose execution information as Context objects and it is possible to fully
modify these objects. This, for example, allows an implementation of exception han-
dling to be self-contained in Smalltalk because it is possible to jump from one context
to another by modifying a context’s sender.

Since this is not a common mechanism, sender modification is not supported by
Truffle’s Frame implementation. Because Truffle and Graal heavily optimize asts, they
try to avoid materialization of these Frame objects if possible. Similar to Deutsch and
Schiffman [7]], we propose to use different representations (volatile, stable, hybrid)
for Squeak/Smalltalk Context objects in Truffle. When such a Context object is not
required, it is not allocated at all. We call this a fully virtualized context (volatile).
When execution information is requested, it can be reconstructed from the corre-
sponding Truffle frame. In case the execution context needs to be fully mutable, the
vm allocates a fully materialized context (stable). Otherwise, a hybrid context is al-
located if a method modifies only parts of a volatile context. In this case a context
consists of a materialized Truffle Frame as well as a pointer array that overlays this
frame. If, for example, the method is changed, it will be stored within this array and
this array has precedence over values stored inside the frame object. This is also
the case when the sender is replaced. Additionally, the Truffle frames need to be
unwound as they no longer correspond to Squeak/Smalltalk’s Context chain. This
is an expensive operation, especially when always unwinding all frames. When this
happens as part of the exception handling mechanism, for example, the new sender
is likely to be part of the chain of Truffle frames. Therefore, unwinding can stop as
soon as the new sender is found to minimize performance degradation.

3.3 Primitives and VM Plugins

Alongside a bytecode set definition, Smalltalk-80 also defines a set of language prim-
itives. The most important primitives are numbered, but they can also be named and
additional primitives can be provided through a plugin mechanism. To implement
these primitives in Truffle, we suggest to use a dedicated node subclass as well as
a Java annotation for storing primitive indexes and names. More importantly, the
allocation of new frames should be avoided by eagerly detecting and evaluating
these primitive nodes within the parent frame. Only if a primitive fails, a new call-
target should be allocated and activated. This is a common performance optimization
which has also improved performance in GraalSqueak significantly.

A crucial v plugin is the BitBlt plugin which is responsible for drawing the ui
on a canvas by providing bulk operations for modifying bitmaps. This plugin pro-
vides only few primitives, but their implementation is complex as it supports a great
number of different so-called combination rules for mixing two bitmaps into one.
The original sources of the BitBlt plugin are written in Slang, a Smalltalk subset that
can be transpiled to C. These sources, however, can also be used inside an image
for simulating loading other images for development and debugging purposes [18]].

152

4 Implementation

Similar to RSqueak/VM [8], we propose to use the simulation code from within the
vm. This allows a very simple implementation of the BitBlt plugin. The BitBlt code,
although not part of the vim code base, is still complex and can take relatively long
to be partially evaluated by Graal. Therefore, we propose another hybrid implemen-
tation that we call partial primitives. First, we analyzed which operations within the
BitBlt plugin are used most often and take the most time to run. Since primitives are
implemented as nodes, we can provide optimized code for the most common opera-
tions using specializations and appropriate guards. An example will be discussed

in more detail in[section 4.3

4 Implementation

In this section, we give an overview over the implementation of GraalSqueak 0.4.0
and highlight the most interesting design decisions. The source code of GraalSqueak
is available on GitHub]

4.1 High-level Overview

GraalSqueak’s code base is organized similarly to other Truffle languages and can
be built, tested, and used with the mxﬂ command-line tool. The core project and
Java package is called de.hpi.swa.graal.squeak and contains approximately 21k
SLOC which implement the interpreter. Other projects contain tests and various
boilerplate code required by Truffle. The image reader supports 32-bit and 64-bit
Squeak/Smalltalk images using the Spur image format [|§]. The VMMaker packageﬁ
needs to be present in an image if opened in headful mode, as it contains the BitBIt
simulation code. The test suite has only few test cases for testing specific parts of
the vim. The most important test case, however, is called SqueakSUnitTest and runs
Squeak/Smalltalk’s tests within an image which covers most of GraalSqueak’s code
base and gives good feedback on its compatibility. GraalSqueak is automatically built
and tested on different Java Development Kits (jdks) for each commit using Travis
CL

4.2 Implementing the Bytecode Interpreter

GraalSqueak’s bytecode interpreter is implemented by the ExecuteContextNode.
This node contains two interpreter loops: an optimized bytecode loop for executing
a method from scratch (startBytecode) as well as a non-optimized version which
is used when a method is resumed (resumeBytecode). This way, we can avoid that
resumed methods are being optimized by Graal’s partial evaluator.

lhttps://github.com/hpi—swa/graalsqueak/releases (last accessed 2018-10-18).
Zhttps://github.com/graalvm/mx (last accessed 2018-10-18).
3http://sou rce.squeak.org/VMMaker/ (last accessed 2018-10-18).

153

https://github.com/hpi-swa/graalsqueak/releases
https://github.com/graalvm/mx
http://source.squeak.org/VMMaker/

O 0 N G ke W N =

WOW W W NNNNNN N NNN R e s s e s e e s
XN RS Y ®» N U A XN R S WOV ® N U R W N =R O

34

35

36
37
38
39
40
41
42

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

@ExplodeLoop (kind = ExplodeLoop.LoopExplosionKind.MERGE_EXPLODE)
void startBytecode(VirtualFrame frame) {
CompilerAsserts.compilationConstant(bytecodeNodes.length);
int pc = 0; 1int backJumpCounter = 0;
AbstractBytecodeNode node = bytecodeNodes[pc];
try {
while (pc >= 0) {
CompilerAsserts.partialEvaluationConstant(pc);
if (node 1dinstanceof ConditionalJumpNode) {
ConditionalJumpNode jumpNode = (ConditionalJumpNode) node;
boolean condition = jumpNode.executeCondition(frame);
if (jumpNode.getCountingConditionProfile().profile(condition)) {
int successor = jumpNode.getJumpSuccessor();
if (CompilerDirectives.inInterpreter() && successor <= pc) {
backJumpCounter++;
}
pc = successor; node = bytecodeNodes[pc]; continue;
} else {
int successor = jumpNode.getNoJumpSuccessor ()
if (CompilerDirectives.inInterpreter() && successor <= pc) {
backJumpCounter++;
+
pc = successor; node = bytecodeNodes[pc]; continue;
b
} else 1if (node instanceof UnconditionalJumpNode) {
UnconditionalJumpNode jumpNode = (UnconditionalJumpNode) node;
int successor = jumpNode.getJumpSuccessor();
if (CompilerDirectives.inInterpreter() && successor <= pc) {
backJumpCounter++;
b
pc = successor; node = bytecodeNodes[pc]; continue;
} else {
final 1int successor = getGetSuccessorNode() .executeGeneric(frame,
- node);
getUpdateInstructionPointerNode() .executeUpdate(frame,
< successor);
try { node.executeVoid(frame); } catch (NonLocalReturn nlr) { /*
— ..o %/}
pc = successor; node = bytecodeNodes[pc]; continue;
}
}
} finally {
LoopNode. reportLoopCount(this, backJumpCounter);
}
}

Figure 2: Optimized bytecode loop with hints for the Graal compiler

154

4 Implementation

shows a simplified and self-contained version of the optimized bytecode
loop including appropriate annotations for the Graal compiler. These are now ex-
plained in more detail.

The @ExplodelLoop annotation in line 1 of [Figure 2instructs the compiler to unroll
loops. In our case, it uses the MERGE_EXPLODE strategy which is designed especially
for bytecode interpreters as it tries to explode all loops while merging copies of the
loop body that have identical state. Next, we assert that the number of bytecodes is
constant per method instance (line 3) and fetch the first bytecode node. Then, the
actual interpreter loop begins with a check that the program counter is reduced to
a constant during the partial evaluation phase (line 8). Afterwards, there are three
options how control flow can continue.

First, if the node is a conditional jump node, the condition is being executed (line
11). Each conditional jump node maintains a probability value that represents how
often the condition is true or false as part of a counting condition profile provided
by Truffle. This profile is invoked on the condition result in line 12. Afterwards,
the next program counter is determined depending on whether the condition was
true or false (line 13 and 19). If executed in the interpreter and if the successor
is smaller than the current program counter, a backJumpCounter is incremented. This
backJumpCounter is reported to the compiler through the LoopNode: : reportLoopCount
API on method exit as part of the finally block in line 40. This information is used
in Truffle’s optimization heuristics to further improve the compilation process. Lastly,
the successor becomes the current program counter and the interpreter loop contin-
ues with the next bytecode.

Second and in the case of an unconditional jump, the next program counter is
fetched and analyzed for backward jumps if running is interpreted (line 26 to 31).

Otherwise, the bytecode is executed exactly as in the non-optimized version of
the loop: the next program counter is determined (line 33) and stored in case it is
requested through Squeak/Smalltalk’s context object (line 34). Then, the node is
fully executed in a try-catch block to handle NonLocalReturn correctly. Finally, the
next bytecode node is fetched.

The Javadocs for the different Truffle hints provide further information on how
they work or can be used, yet are unable to fully explain how to use them in combi-
nation with others or how exactly the Graal compiler benefits from them.

4.3 Partial Primitives

Many of Squeak/Smalltalk’s primitive methods provide Smalltalk fallback code
which is executed in case a primitive fails in the vm. This mechanism makes it pos-
sible to speed up computation-heavy operations if supported by the vm without
breaking compatibility.

We believe the notion of specializations in Truffle provides an elegant way to
implement only certain code paths which gives vm builder more flexibility.

As an example, we demonstrate how GraalSqueak implements the BitBlt plugin
which is used for drawing the ui onto a canvas. A full reimplementation of the BitBlt
plugin in Truffle would require a significant amount of work which we believe is

155

O ® N o Ul oW

10
11
12

13
14
15

16
17

18
19
20
21
22
23

24
25
26
27

29
30
31

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

class BitBltPlugin extends AbstractPrimitiveFactoryHolder {

@SqueakPrimitive(name = "primitiveCopyBits")

abstract static class PrimCopyBitsNode extends AbstractPrimitiveNode

- A
// Constructor omitted for brevity.
Object executeCopy(VirtualFrame frame, PointersObject receiver,
Object sourceForm, Object destForm) {
return executeCopy(
frame, receiver, receiver.atO(BIT_BLT.COMBINATION_RULE),
receiver.at0(BIT_BLT.SOURCE_FORM),
< receiver.atO(BIT_BLT.DEST_FORM));

}

abstract Object executeCopy(VirtualFrame frame, PointersObject
— receiver,
Object combinationRule, Object sourceForm, Object destForm);

@Specialization(guards={"combinationRule == 24",
<~ "is32BitForm(sourceForm)",
"is32BitForm(destForm)"})
Object doCombinationRule24(VirtualFrame frame, PointersObject
< receiver,
long combinationRule, Object sourceForm, Object destForm) {
// Apply combinationRule 24 to destForm using sourceForm...
}
// More specializations for other combinationRules...
@Fallback
Object fallbackToSimulation(VirtualFrame frame, PointersObject
— receiver,
Object combinationRule, Object sourceForm, Object destForm) {
// Fall back to in-image simulation code for BitBlt...
}
boolean 1is32BitForm(PointersObject target) {
return (long) target.at®(FORM.DEPTH) == 32;
}
}

Figure 3: Simplified implementation of a partial primitive for BitBlt

156

5 Evaluation

unnecessary. When profiling calls into the plugin, we notice that only few code paths
are activated often and only some of them are slow in performance as they are slow
to execute or slow to compile. Truffle specializations allow us to implement these
kind of primitives and entire plugins partially.

[Figure 3|shows a simplified implementation of a partial primitiveCopyBits prim-
itive in GraalSqueak. The @SqueakPrimitive is used to defined the name of the
primitive while the module name is derived from the class name. Therefore, this
primitive is triggered by a Smalltalk method starting with:

copyBits
<primitive: 'primitiveCopyBits' module: 'BitBltPlugin' error:
- ec>
"Fallback Smalltalk code...".

The node’s entry method is defined in line 5 to 10 which simply extracts combina-
tion rule, source form, and destination form from the receiver and then calls the
abstract method in lines 12 and 13. This method is automatically generated by Truf-
fle’s annotation processor. Its implementation first tries to call the specialization
doCombinationRule24, otherwise it falls back to fallbackToSimulation. The spe-
cialization has three guards (line 15 to 16) which ensure that the combination rule of
the receiver is 24 and that both Form objects have a depth of 32-bit. Only in this case
the partial Java port of the primitive is activated (line 19) while in all other cases, the
simulation code is called (line 25).

5 Evaluation

In this section, we compare GraalSqueak 0.4.0 with the OpenSmalltalkVM (tag
201810071412), the standard vm for Squeak/Smalltalk, and RSqueak/VM (commit
533c836e) in terms of run-time performance. For this, we run the Are-We-Fast-Yet
micro benchmark suite [|15]] with ReBenchE] in the same 64-bitﬁ Squeak/Smalltalk
trunk image (update level: 18163) on the same hardware, a Dell PowerEdge 2950
(CPU: 2.33GHz Intel Xeon CPU E5410; Memory: 8x4GB DDR2-667MHz SDRAM
ECC). The benchmark results, however, should still be taken with a grain of salt as
neither memory consumption nor CPU time were measured. Compared to OpenS-
malltalkVM and RSqueak/VM which both run on a single CPU core, GraalSqueak on
GraalVM uses multiple Truffle compiler threads by default and can easily consume
two gigabytes of memory in case of a 50 megabyte image.

The benchmark results are shown in[Figure 4} In six of 12 micro benchmarks, Graal-
Squeak performs worse than OpenSmalltalkVM. The worst case is the DeltaBlue

4 https://github.com/smarr/ReBench (last accessed 2018-10-18).

SRSqueak/VM does not support 64-bit Spur images yet, so we had to use an equivalent 32-bit
version. Nonetheless, the corresponding results should be comparable as RSqueak/VM
always operates in 64-bit mode independently of the image.

157

https://github.com/smarr/ReBench

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

5s |- g N
— | J00penSmalltalkVM | |
4s | 2 U0 GraalSqueak |
_ 0o RSqueak/VM
3s 8 | P 1
OS HHH T D\H T T T I T H& T %HH T HH T Hm T H T HHH T ’1 T HHH
< < N > S <& S o & &%
o&\c \éb\‘} «2&4\@ ,\%o V é‘bob p > 0‘&@0 xgﬁb ¥ \o@% &,Oée
RS QQ} Q@ @) @Q 9

Figure 4: Are-We-Fast-Yet benchmark results in seconds (lower is better)

benchmark which runs approximately 9.14x slower on GraalSqueak. Its performance
is comparable to the standard Squeak/Smalltalk vm in another four benchmarks.
However, it is faster when running the NBody (+1.74x) and Sieve benchmarks
(+1.68x). Compared to RSqueak/VM, it is faster, often significantly, in half of the
benchmark suite, and slower or comparable in the other half. Although this bench-
mark was performed on an early version of GraalSqueak, its overall performance is
already competitive with the two other Smalltalk vms.

6 Discussion

In this section, we discuss our approach and GraalSqueak. The main goal was to get
the programming system up and running which GraalSqueak is capable of. This,
however, requires a fully functional interpreter with support for many primitives
including the ones provided by the BitBlt plugin. In a Squeak/Smalltalk trunk image
(update level: 18163), about 274 of 374 SUnit test cases (73.26%) pass on GraalSqueak
0.4.0. Most of the failing tests target primitives that are not yet implemented (e.g.
SqueakSSL primitives). GraalSqueak’s code base consists of roughly 22,5k SLOC
which is comparable to RSqueak/VM (approximately 21,3k SLOC) which in turn is
written in PyPy’s language implementation framework RPython.

With regard to run-time performance, we believe GraalSqueak still has potential as
performance has been a secondary goal so far. One performance bottleneck, for exam-
ple, is its internal representation for BoxedFloat64 objects which are used in 32-bit

158

7 Related Work

Squeak/Smalltalk images. Furthermore, Truffle is known for slow warmup times [2]]
which are especially noticeable when opening the programming environment. The
reason for this is that the Graal compiler needs seconds, sometimes minutes to com-
pile important code paths that are responsible for drawing the ui which results in
poor response times in the first seconds. Responsiveness significantly improves over
time while the user interacts with the environment.

GraalSqueak can also be compiled into a standalone binary with SubstrateVM.
Although SubstrateVM improves warmup times as promised, an aot-compiled Graal-
Squeak binary is not yet able to provide snappy response times. More importantly,
peak-performance is negatively effected. One reason for this could be that its garbage
collector is currently unable to handle the allocation of many small objects well,
which happens continuously in Squeak/Smalltalk.

7 Related Work

In this section, we present related work and compare it to our work on GraalSqueak.

OpenSmalltalkVM and Sista The OpenSmalltalkVM [|17]] is the default v for
Squeak/Smalltalk and variations of it include Sista [[3] which stands for “Speculative
Inlining SmallTalk Architecture”. Instead of optimizing code purely on vm-level,
the vin provides an API which can be used from inside a Smalltalk environment to
retrieve profiling information. This information can then be used to apply optimiza-
tions on image-level which can also be persisted when saving the image. Compared
to GraalSqueak, the OpenSmalltalkVM comes with its own jit compiler, garbage
collector, and other components which need to be maintained as part of the project.

RSqueak/VM RSqueak/VM [5] is an alternative interpreter for Squeak/Smalltalk
and written in the language implementation framework RPython [1]]. Therefore, it
leverages the same meta-tracing jit compiler that is also used in PyPy to optimize
its bytecode loop. GraalSqueak, on the other hand, uses the Graal compiler which
performs node rewriting and partial evaluation.

SOMns SOMns [[16] is an implementation of the Newspeak language [6]] in Truffle.
Since it is completely file-based, it does not provide compatibility with image-based
Newspeak and traditional Smalltalk systems. In contrast, GraalSqueak is designed
to be compatible with existing Squeak/Smalltalk images and is able to display the
programming environment. It also supports language features such as sender modi-
fications and provides various v plugins.

Sulong Sulong [20] is a bytecode-based interpreter for LLVM bitcode, written in
Truffle, and maintained by Oracle Labs as part of the GraalVM project. Its byte-
code loop employs similar Truffle hints as GraalSqueak to support the compiler in
optimizing run-time performance.

159

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

8 Conclusion and Future Work

In this paper, we presented an approach as well as and an implementation of a fast
Squeak/Smalltalk vm in Truffle for the GraalVM. The vm uses a bytecode inter-
preter to provide full compatibility to the language specification. Although Truffle
is designed for implementing ast interpreters, GraalSqueak achieves good run-time
performance because it provides appropriate hints for the Graal compiler. Moreover,
the v uses different internal representations for providing support of Smalltalk
Context objects to further improve performance. Instead of implementing all prim-
itives including the ones provided by the BitBlt plugin for drawing purposes, we
demonstrated how only certain code paths can be accelerated with partial primitives
implemented as node specializations in Truffle. A benchmark demonstrated that
GraalSqueak’s run-time performance is competitive compared to OpenSmalltalkVM,
the standard vm for Squeak/Smalltalk, as well as RSqueak/VM, an RPython-based
vm employing PyPy’s jit.

In the future, we want to further increase performance as there is still potential for
improvements. A closer look at micro benchmarks and at the benchmark results are
good starting points. Additionally, it would be interesting to develop a benchmark
to measure the responsiveness of Squeak/Smalltalk’s ui as partial evaluation has no-
ticeable side-effects as discussed in Since GraalSqueak combines a flexible
Smalltalk-based programming system and the polyglot runtime system GraalVM,
we think it also opens up opportunities for novel experiments in the area of polyglot
programming.

Acknowledgments

We gratefully acknowledge the financial support of Oracle Labsﬁ HPT’s Research
School[Z| and the Hasso Plattner Design Thinking Research Programﬂ

References

[1] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. “RPython: A Step To-
wards Reconciling Dynamically and Statically Typed OO Languages”. In: Pro-
ceedings of the 2007 Symposium on Dynamic Languages. 2007, pages 53—-64. doi:
10.1145/1297081.1297091.

Shttps://labs.oracle.com/ (last accessed 2018-10-18).
7https://hpi.de/en/research/research-school.html (last accessed 2018-10-18).
8https://hpi.de/en/dtrp/ (last accessed 2018-10-18).

160

https://doi.org/10.1145/1297081.1297091
https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/

[12]

[13]

References

E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt. “Virtual Machine
Warmup Blows Hot and Cold”. In: Proc. ACM Program. Lang. 1 (2017), 52:1—
52:27. d0i:|10.1145/3133876.

C. Béra, E. Miranda, T. Felgentreff, M. Denker, and S. Ducasse. “Sista: Saving
Optimized Code in Snapshots for Fast Start-Up”. In: Proceedings of the 14th
International Conference on Managed Languages and Runtimes. 2017, pages 1-11.
doi:|10.1145/3132190.3132201.

A.P.Black, O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo by Example. Lulu.com,
2010.

C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nierstrasz, L. Renggli,
A. Rigo, and T. Verwaest. “Back to the Future in One Week — Implement-
ing a Smalltalk VM in PyPy”. In: Self-Sustaining Systems: First Workshop. 2008,
pages 123-139. doi: 10.1007/978-3-540-89275-5_7.

G. Bracha, P. Ahe, V. Bykov, Y. Kashai, and E. Miranda. The Newspeak Pro-
gramming Platform. 2008. url: http://bracha.org/newspeak.pdf (last accessed
2017-07-01).

L. P. Deutsch and A. M. Schiffman. “Efficient Implementation of the Smalltalk-
80 System”. In: Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. 1984, pages 297-302. doi: 10.1145/800017|
800542,

T. Felgentreff, T. Pape, P. Rein, and R. Hirschfeld. “How to Build a High-
Performance VM for Squeak/Smalltalk in Your Spare Time: An Experience
Report of Using the RPython Toolchain”. In: Proceedings of the 11th Edition
of the International Workshop on Smalltalk Technologies. 2016, 21:1-21:10. doi:
10.1145/2991041.2991062.

B. Freudenberg, Y. Ohshima, and S. Wallace. “Etoys for One Laptop Per Child”.
In: Proceedings of the 7th International Conference on Creating, Connecting and
Collaborating through Computing. 2009, pages 57-64. doi: 10.1109/C5.2009.9.

A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
The Blue Book. Addison-Wesley Longman, 1983. isbn: 978-0-201-11371-6.

M. Graber, T. Felgentreff, R. Hirschfeld, and A. Borning. “Solving Interactive
Logic Puzzles With Object-Constraints: An Experience Report Using Babels-
berg/S for Squeak/Smalltalk”. In: Proceedings of the Workshop on Reactive and
Event-based Languages and Systems (REBLS), co-located with the Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA).
2014.

D. Ingalls, T. Kaehler, . Maloney, S. Wallace, and A. Kay. “Back to the Future:
The Story of Squeak, a Practical Smalltalk Written in Itself”. In: SIGPLAN Not.
32.10 (1997), pages 318-326. doi: 10.1145/263700.263754.

A. Kay. Squeak Etoys, Children & Learning. 2005. url: http://vpri.org/pdf/rn
2005001_learning.pdf (last accessed 2017-07-01).

161

https://doi.org/10.1145/3133876
https://doi.org/10.1145/3132190.3132201
https://doi.org/10.1007/978-3-540-89275-5_7
http://bracha.org/newspeak.pdf
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1109/C5.2009.9
https://doi.org/10.1145/263700.263754
http://vpri.org/pdf/rn2005001_learning.pdf
http://vpri.org/pdf/rn2005001_learning.pdf

Fabio Niephaus: GraalSqueak - A Squeak/Smalltalk Implementation for the Graal VM

[14]

[15]

[16]

[19]

[20]

[21]

J. Maloney. Morphic: The Self User Interface Framework. 1995. url: http://ftp.
squeak.org/docs/Self-4.0-Ul-Framework.pdf (last accessed 2017-07-01).

S. Marr, B. Daloze, and H. Mossenbock. “Cross-language Compiler Bench-
marking: Are We Fast Yet?” In: SIGPLAN Not. 52.2 (2016), pages 120-131. doi:
10.1145/3093334.2989232.

S.Marr, C. Torres Lopez, D. Aumayr, E. Gonzalez Boix, and H. Mossenbdck. “A
Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging
Tools”. In: Proceedings of the 13th ACM SIGPLAN International Symposium on
Dynamic Languages. 2017. doi: 10.1145/3133841.3133842.

E. Miranda and contributors. OpenSmalltalkVM. 2017. url: https://github.com/
OpenSmalltalk/opensmalltalk-vm (last accessed 2018-05-08).

E. Miranda, E. Gonzalez Boix, C. Béra, and D. Ingalls. “Two Decades of
Smalltalk VM Development”. In: Proceedings of the 10th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages. 2018,
pages 1-10. doi: 10.1145/3281287.3281295.

M. Resnick,]. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond, K. Bren-
nan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. “Scratch:
Programming for All”. In: Communications of the ACM 52.11 (2009), pages 60—
67. doi: 10.1145/1592761.1592779.

M. Rigger, M. Grimmer, C. Wimmer, T. Wiirthinger, and H. Mssenbock.
“Bringing Low-level Languages to the JVM: Efficient Execution of LLVM IR
on Truffle”. In: Proceedings of the 8th International Workshop on Virtual Machines
and Intermediate Languages. 2016, pages 6—15. doi: 10.1145/2998415.2998416.

A. Rigo and S. Pedroni. “PyPy’s Approach to Virtual Machine Construction”.
In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented program-
ming systems, languages, and applications. 2006, pages 944-953. doi: 10.1145/
1176617.1176753.

D. Ungar and R. B. Smith. “Self: The Power of Simplicity”. In: Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and Applications.
1987, pages 227-242. doi: 10.1145/38765.38828.

C. Wimmer, V. Jovanovic, E. Eckstein, and T. Wiirthinger. “One Compiler:
Deoptimization to Optimized Code”. In: Proceedings of the 26th International
Conference on Compiler Construction. 2017, pages 55-64. doi:|10.1145/3033019|
3033025.

T. Wiirthinger, C. Wimmer, A. W68, L. Stadler, G. Duboscq, C. Humer, G.
Richards, D. Simon, and M. Wolczko. “One VM to Rule Them All”. In: Pro-
ceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software. 2013, pages 187-204. doi: 10.1145/
2509578.2509581.

162

http://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
http://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
https://doi.org/10.1145/3093334.2989232
https://doi.org/10.1145/3133841.3133842
https://github.com/OpenSmalltalk/opensmalltalk-vm
https://github.com/OpenSmalltalk/opensmalltalk-vm
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

Examining Dependability in the Internet of Things

Lukas Pirl

[Operating Systems and Middleware Group (OSM)
Hasso Plattner Institute for Digital Engineering (HPI
g g g
lukas.pirl@hpi.de

Due to an increasing number of [Internet of Things (IoI')|technologies which are
being deployed for critical applications, their dependability properties need to

be increasingly considered likewise. We evaluate the concept of

Injection (SFI)|for dependability assessments of systems. Investigations are
conducted in three settings: virtually in simulations, physically in the

Lab and in the field. Special attention is payed to the representativeness of the
results from the three aforementioned settings. On an abstract level, this research
explores a systematic approach to dependability assessments of [[0T] systems. On
a concrete level, we will contribute results from dependability assessments of
technologies.

In the context of a joint project (with, e.g., DB Systel GmbH), the wireless network
standard IEEE 802.11p for [Vehicle-to-Vehicle communication|is being investigated
for applicability in railway use cases. First experiments in the Lab revealed
that the latency of initiating connections and [packet Round Trip Times (RT1s)|are
indeed lower compared to conventional wireless networks (i.e., in ad hoc or access
point mode). This holds even in the presence of a third, maliciously disturbing (i.e.,
jamming) station. In current efforts, we analyze the implementation of the IEEE
802.11p network stack in the network simulator #s-3 and how it can be leveraged
to gather gainful insights from simulations, including experiments.

1 Overview

The growing importance of (distributed software systems|for individuals, enterprises,
and governments can hardly be disputed. As a consequence, the dependability of
the critical systems has to be guaranteed with great confidence. At the same time,
the satisfaction of this need is complicated by the increasing quantity, rate of change,
and complexity of contemporary |distributed software systems|

In established areas, such as Cloud computing, manifold best practices to en-
sure systems’ dependability have evolved. In the|Internet of Things (IoI') however,
unprecedented challenges narrow the applicability of established [Fault Tolerance
IMechanisms (FTMs)| Foremost, typical|lol]devices face notable resource constraints
regarding computation, storage, and communication. Further, the devices tend to op-
erate in uncontrolled - if not hostile — environments. Finally, [lo]|systems are usually
widely distributed, where ensuring dependability is notoriously difficult.

Apart from the technical challenges which render the development of dependable
systems non-trivial even for experts, economic circumstances come into addition.
For instance, the pressure for short time-to-market cycles is likely to hamper the
maturing of the systems. Recently, the digital transformation increases the pressure

163

mailto:lukas.pirl@hpi.de

Lukas Pirl: Examining Dependability in the Internet of Things

for innovation and |Information Technology (IT)|starts to pervade all industries.
This leads to the circumstance that formerly non{[T}-centric industries operate and
even develop [[T|systems. Together with the aforementioned challenges regarding
distributed software systems|in general and the specifically, it does not seem
to be far-fetched that the lack of experiences in “digitally transforming” industries
worsens the situation regarding dependability.

Since dependability concerns are not a novel phenomenon, development stan-
dards from several areas intend to raise the awareness for dependability, for example
by requiring hazard and risk assessments [5]]. Some standards even highly recom-
mend [Software Fault Injection (SFI)|to test systems for their resilience to failure [7]].
SFl|is the concept of using software to forcefully introduce suspected error causes
(faults) or erroneous states (errors) into a|Service Under Consideration (SUC)|in or-
der to assess its dependability. Despite its prospects, [SFI|does not seem to be widely
integrated into software development practices, not to mention assessments of pro-
duction systems. Nevertheless, the famous example of Netflix" Chaos Monkey [11]]
proves that[SFl|can be integrated into development and even operation practices. The
throughout practice of can thus foster a detailed understanding of the systems’
dependability properties.

Especially with the advent of technologies in critical infrastructures, such
as utility or rail services, the approaches to dependability assurance need to be
advanced further as well. with its experimental nature, its easily employable
high-level black-box perspective and its mental model rooted in the failure space,
might be a valuable approach to counter the challenges described. Since the as
a deployment model, rather equals an ecosystem than a single it is an open
question how [SFI| can be applied to leverage its full potential in this domain.

The remainder of this document is structured as follows: In the subsequent para-
graph, we will describe the general approach and overall goal of our research. Start-
ing with Section [2} this document will be oriented towards our particular current
efforts and therefore take a more technical perspective.

Approach Given that[lol|systems are likely to grow in quantity, complexity, and
criticality in evermore areas, we want to examine approaches to assess their depend-
ability. Due to the reasons given above, [SFI| will be the encompassing direction of
our research. Joint projects with the manufacturing industry (e.g., Siemens), the rail
services industry (e.g., Deutsche Bahn), and research organizations (e.g., German
Aerospace Center (DLR)) will ensure the practical relevance and the topicality of our
work. In these projects, further practical case studies will be conducted which will
consolidate the foundation we base our theoretical work upon.

The case studies in the context of the joint projects will include dependability
assessments of systems. As a result, we will not only contribute the results from
the concrete assessments, but also re-evaluations of established under the yet
little explored circumstances. Adding to that, on a more abstract level, this will trial
the usefulness of existing approaches to |SF]| for the From the obtained insights,
we want to develop a structured approach to [SFl| for assessing dependability in the
If we can demonstrate the benefit of [SFI| for the [[oT]and how to maximize this

164

1 Owverview

benefit systematically, we hope to further promote [SFl| as a valuable tool to attain
dependability for[lol|systems and a corresponding awareness.

The investigations will be conducted in three different settings, i.e., virtually in
simulations, physically in the Lab, and finally in the field. Simulations play
a key role in experimenting with technologies, architectures, and algorithms prior
their real-life deployment. It is especially helpful to gain insights prior real-life de-
ployments in a well-controlled setting if, e.g., the deployments are large, expensive
and laborious to set up. While investigations in a physical lab serve similar purposes,
they additionally reveal effects which remained undisclosed in simulations. Those
discrepancies between simulations and the reality can occur, e.g., when the models
of the simulations are over-simplified or immature. Similar effects are to be expected
when investigating the in the field, where a vast number of environmental
factors start to play in. In addition to the insights directly related to the projects, we
want to explore if patterns regarding the discrepancies between settings emerge;
under which circumstances the discrepancies harm the transfer of insights between
settings; and how the discrepancies can be lessened.

To enable a continuous integration of the dependability assessments in devel-
opment and operation practices, processes need to enable full automation. In past
research, we found that exploiting machine- and human-readable fault and depend-
ability models for the automated identification and exercise of [SFI helps in systemat-
ically assessing complex (distributed software systems| [3]]. A systematic assessment
is, e.g., characterized by being reproducible, as well as by being able to achieve
a predictable and high coverage. Aside from the advantages for automation, the
creation of the aforesaid models alone supports the understanding of the systems’
dependability properties.

Related Work Although the|lol|is a significant field of research, it can be stated
that there is little publicly available research on introducing [[oT] technologies in rail-
way infrastructures. A similar situation can be observed regarding|SFI|in particular:
although this topics is being examined since the early years of computer science, few
current works seem to apply the concept to[lol|systems. Regarding dependability of
systems in general, software security concerns appear to be a more active field
of research which is, contrastingly, not one of our main considerations. Scientific
contributions which assess the dependability of [oI|hardware using fault injection
(e.g., [2]]) confirm the suspected usefulness of [SF]| for the[[oT]

One of the few closely related works is a dependability evaluation tool for the
presented by Silva et al. [[10]. With the aforementioned tool, the dependability of [[oT]
applications in the presence of failing hardware and network links can be assessed
at early design time. A notable functionality of the tool is its ability of deriving
a fault tree from an arbitrarily laid out network topology of the application
under consideration, e.g., to identify dependability bottlenecks. Other works have
proposed the use of Markov Chains to evaluate the reliability and availability of
applications [6]]. In contrast to our work, a compound and systematic approach
including, e.g., real-life assessments and [SFI|- which we think is a key to dependable
Idistributed software systems|— has not been considered yet.

165

Lukas Pirl: Examining Dependability in the Internet of Things

In [4]], Gluhak et al. survey available test beds (as of 2011) for experimental re-
search on systems and present a taxonomy to classify them. Simulations are
valued as an important tool for the design of systems, but, in contrast to our
work, are not a major concern in their survey. We see that large parts of their in-
sights (e.g., 2- and 3-tier architectures, considerations regarding composition and
the devices’ operation environments) are still applicable to today’s diverse under-
standing of the Even thought the authors propose ideas to close the identified
gaps with concrete projects, it is outside their scope to provide abstract and system-
atic approaches to experimental dependability assessments for the not speaking
of

Alipour recently identified fault types for in event-based systems [[1]]. This
work however is possibly in an early stage, since the so far identified faults (i.e., loss,
duplication and delay of events) appear to be well-known from |distributed software|
research. It is nevertheless to be considered, if incorporating the identified
fault types into the investigations in the context of this research would be beneficial.

2 Research Activities

Together with DB Systel GmbH, Siemens Mobility AG,|Deutsches Zentrum fiir Luft- und|
[Raumfahrt e. V. | German Aerospace Center (DLR)| and DRALLE Systementwicklungen,
we work in the publicly funded project Rail2X — Smart Services. The overall goal of this
project is to explore, design, and develop [Vehicle-to-Everything (V2X)|applications
for railways (therefore Rail2X; also in analogy to, e.g., [Ship2X]). Three novel
use cases of applications for railways guide the activities of all consortium
partners within the project:

e use case 1: predictive maintenance: trains collect and transport maintenance data
of field elements instead of installing wiring under a lot of efforts or using
expensive mobile networks;

o use case 2: on-demand level crossing: enabled cars automatically request
barriers to open instead of requiring drivers to get out of the car for calling the
train dispatcher manually;

e use case 3: flag stop: stop buttons send their state to trains wirelessly instead
of relying on visual communication which can be problematic near curves or
under poor visibility conditions.

The role of the [HPI|[Operating Systems and Middleware Group} as part of the
Rail2X consortium; is to contribute expertise and research in the fields of middle-
ware technologies, middleware architectures, and software systems” dependability
(including [[T|security and data privacy).

Our efforts are currently focused on use case 1 which is visualized in Figure[I|and
specifically on the underlying wireless network technology IEEE 802.11p. This tech-
nology is the basis for standardized vehicular communication in the US (IEEE 1609

166

2 Research Activities

f— train with on-board unit

v

road-
side
unit

Figure 1: Rail2X use case 1: passing trains collect data from field elements (e.g.,
switches) using the short-range wireless network standard IEEE 802.11p to
enable predictive maintenance

standards family) and Europe (ETSI[ITS}G5 by the [European Telecommunications]
iStandards Institute (ETSI)|Intelligent Transport Systems (ITS)| Technical Commit-
tee). IEEE 802.11p defines network protocols for the physical layer (OSI level 1) and
data link layer (OSI level 2). On the physical layer, IEEE 802.11p operates in a 5.9
GHz band, close to the well-established IEEE 802.11n wireless network standard.
While conventional IEEE 802.11 wireless networks typically operate in Basic Service
Set (BSS, i.e., an access point) mode, a notable innovation in IEEE 802.11p is the intro-
duction of the Outside the Context of a BSS (OCB, comparable to broadcasts) mode.
Since IEEE 802.11p is the basis for all Rail2X applications, it is especially relevant
for the investigations in the context of the project. The fact that IEEE 802.11p is a
relatively new standard, with a less extensive body of research and fewer practical
experiences compared to well-established wireless network technologies, makes it
particularly interesting for our research.

In a concise student’s project, a simulation of IEEE 802.11p communication has
been conducted in the event-based network simulator ns—SEI Ns-3 is widely used
and generally recognized as an advanced tool for simulating a wide variety of net-
work technologies (e.g., the realistic simulation of contemporary cellular networks).
However, the results from the aforementioned student’s project suggest that the com-
munication quality is largely unaffected by the distance between two stations when
inside the communication range. Once the distance between two stations reaches
the maximum communication range, the communication quality degrades abruptly.
The results therefore suggested an unrealistic model of IEEE 802.11p in ns-3 and a
discrepancy between simulation and reality (lab measurements from our project
partner DLR confirm this intuition). Consequently, these observations motivated a

Thttps://www.nsnam.org (last accessed 2018-10-18).

167

https://www.nsnam.org

Lukas Pirl: Examining Dependability in the Internet of Things

detailed assessment of the IEEE 802.11p models in ns-3, so that the models can be
configured or enhanced to yield more realistic results.

Until now, we created a setup to analyze the IEEE 802.11p model in ns-3 and
conducted first experiments. The results clearly confirmed our assumption that the
communication quality between two stations degrades abruptly when close to the
communication range. Figure [2[shows that the packet loss ratio between two stations
degrades approximately between 91 and 103 meters, while Figure |3|shows that the
packet Round Trip Times (RTTs) between two stations degrade approximately be-
tween 99 and 103 meters. Considering that IEEE 802.11p has a communication range
of up to 1000 meters by design and a less abrupt signal loss behavior [9], there is a
lot of room for ongoing research.

Apart from assessments in the simulation setting, we also conducted physical
IEEE 802.11p measurements in the Iol Lab [8]. Since the IEEE 802.11p intends to
enable low-latency communication in network with highly dynamic topologies, we
initially measured the latency of joining an Independent Basic Service Set (IBSS, i.e.,
an ad hoc network), a BSS, or no BSS in OCB mode. The results depicted in Figure
M| show that OCB mode in fact has the lowest latency with the lowest variability to
join a network compared to the other two modes.

In further experiments, we conducted practical SFI experiments in the IoI' Lab.
Since vehicular networks are potentially exposed to malicious parties, their resistance
to, e.g., so-called jamming attacks must be of major concern. Jamming describes the
usually malicious practice of transmitting random or specifically crafted radio signals
as fast and energetic as possible with the intention to disturb legitimate wireless
communication. We investigated the degradation of RTTs between two stations in
the presence of a third station which jammed the IEEE 802.11p frequency band (i.e.,
pseudo-random data on OSI level 3, therefore valid level 2 and 1 packets). As shown
in Figure 5} IEEE 802.11p in OCB mode achieves the lowest RTTs with the lowest
variability compared to the other two modes.

Future Work This research is work in progress and any future work will be aligned
with the spanning research goals (see Section[I)). And of course, the work in Rail2X
will continue according to the project goal with its use cases and project plan (touched
in the beginning of this Section).

Concretely, we will continue to assess IEEE 802.11p for the use in Rail2X, e.g.,
with the stations in movement (up to 300 km/h) or with hopping stations. As it is a
central concern of this research, it is needless to say that we will continue to conduct
SFI experiments; be it with the technique of denial-of-service attacks on OSI layer
2 and lower (e.g., jamming), layer 3-6 (e.g., packet flooding), or on the application
layer. These next steps apply to all the three settings which we consider (i.e., in the
simulation, lab, and field).

Specifically regarding the simulation in ns-3, we continue to identify configura-
tions, and possibly patterns and processes to make the results from simulations more
realistic. On the one hand, the maximum range has to be extended (i.e., a range of
around 400-500 m [9]]). On the other hand, the degradation of the signal quality has

168

2 Research Activities

1.00 4
0.80 A
o
2
© 0.60 -
2]
[72]
S
-
S
o 0.40 A
@
o,
0.20 -
0.00 -
e e 9 <@ <9 <9 9 @ 9 9 9 <@ 9 9 <9 <9
S - N M ¢ 1 YW N 0O O O — N oM™ ¢ 10
S o o o o o o o o o O o o O o O
i i i Ll i L
distance (m)

Figure 2: Packet loss ratios relative to the distance between two stations commu-
nicating over IEEE 802.11p (measured in ns-3, 1000 packets per distance)

0000000000000 0000000000000000000000000O0
1.84 -
~~
£ 1.82 1
N
[}
g
-
£1.80 -
L
°
S
3
(@]
~
1.78 -
1.76 -
00
rTrrorTT
@ 999 @9 9 a9 9 9 a9 9 e 9
© = a4 MO0 I ;0 ©O© > 0 O O «H O 0 I 9w
D & & OO &0 OO &0 O o0 O O o o o o o
Ll i i i i i

distance (m)

Figure 3: Packet round trip times relative to the distance between two stations
communicating over IEEE 802.11p (measured in ns-3, 1000 packets per distance,

blue: median, orange: mean)

169

Lukas Pirl: Examining Dependability in the Internet of Things

oms 20ms 40ms 60oms 80oms 100ms 120 ms

latency to join a service set
IBSS ©BSS/AP ®mOCB

Figure 4: [EEE 802.11p’s OCB mode achieves the lowest latency with the lowest
variability to join a network (measurements in the IoI Lab, 100 trials each)

125 ms

RTT
1]
S

. .
))
o R PR) DR R
IBSS IBSS IBSS IBSS IBSS IBSS IBSS BSS/AP BSS/AP BSS/AP BSS/AP BSS/AP BSS/AP BSS/AP OCB OCB OCB OCB OCB OCB OCB
100 200 300 400 500 757 100 200 300 400 500 757 100 200 300 400 500 757

packet size (bytes)

Figure 5: Especially with larger packet sizes, IEEE 802.11p’s OCB mode achieves
the lowest RTTs with the lowest variability in the presence of a third jamming
station (SFI experiments in the IoT Lab, 2000 trials each)

to degrade over nearly the whole communication range (i.e., approximately linear
degradation, starting at around 50 m [9]]).

Further investigations and SFI experiments in the IoT Lab and finally in the field
will continue to contribute to Rail2X and the overall goal of this research.

References

[1] M. A. Alipour. “Fault injection in the internet of things applications”. In: Pro-
ceedings of the 1st ACM SIGSOFT International Workshop on Testing Embedded
and Cyber-Physical Systems (TECPS’17).2017. doi: 10.1145/3107091.3107095.

[2] C.A. Boano, K. Rmer, and T. Voigt. “RELYonIT: Dependability for the Internet
of Things”. In: IEEE IoT Newsletter Januray 13 (2015).

[3] L.Feinbube, L. Pirl, P. Troger, and A. Polze. “Software fault injection campaign
generation for cloud infrastructures”. In: IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C’17). 2017, pages 622—
623.

[4] A.Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafindralambo.
“A survey on facilities for experimental internet of things research”. In: IEEE
Communications Magazine 49.11 (2011), pages 58-67.

170

https://doi.org/10.1145/3107091.3107095

[10]

[11]

References

ISO. “26262: Road vehicles — Functional safety”. In: International Standard
ISO/FDIS 26262 (2011).

D. Macedo, L. A. Guedes, and . Silva. “A dependability evaluation for Internet
of Things incorporating redundancy aspects”. In: Proceedings of the 11th IEEE
International Conference on Networking, Sensing and Control. 2014, pages 417—422.
doi:10.1109/icnsc.2014.6819662.

B. O’Connor. “NASA software safety guidebook”. In: NASA Technical Standard
NASA-GB-8719.13 (2004).

D. Richter, J. Beilharz, L. Pirl, C. Werling, and A. Polze. “Performance of real-
time wireless communication for railway environments with IEEE 802.11p”.
In: Proceedings of the 52th Hawaii International Conference on System Sciences
(HICSS). To appear. 2018.

V. Shivaldova and C. F. Mecklenbrauker. “Real-world measurements-based
evaluation of IEEE 802.11 p system performance”. In: IEEE 5th International
Symposium on Wireless Vehicular Communications (WiVeC’13). 2013, pages 1-5.

I. Silva, R. Leandro, D. Macedo, and L. A. Guedes. “A dependability evaluation
tool for the Internet of Things”. In: Computers & Electrical Engineering 39.7
(2013), pages 2005-2018. doi: https://doi.org/10.1016/j.compeleceng.2013.04.021.

A. Tseitlin. Chaos Monkey released into the wild. 2012. url: http://techblog.netflix|
com/2012/07/chaos-monkey-released-into-wild.html (last accessed 2017-03-02).

171

https://doi.org/10.1109/icnsc.2014.6819662
https://doi.org/https://doi.org/10.1016/j.compeleceng.2013.04.021
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

Evolutionary Algorithms and Local Search in Combinatorial
Optimization

Francesco Quinzan

Algorithm Engineering
Hasso Plattner Institute
francesco.quinzan@hpi.uni-potsdam.de

In the context of black box optimization, the most common way to handle decep-
tive attractors is to periodically restart the algorithm. To derive the optimal restart
time of a black-box algorithm, perfect knowledge of the convergence probability
function is necessary. This quantity is often unknown or difficult to compute. We
analyze various pseudo-Boolean fitness landscapes on these problems, and show
that the corresponding restart strategies are nontrivial. We show that Eas with
restart strategy perform well on some combinatorial optimization problems.

We investigate the performance of a local search algorithm for the problem
of maximizing functions under a partition matroid constraint. We consider non-
monotone submodular functions and monotone subadditive functions. We discuss
the applicability of our results to the maximum entropy sampling problem, and
related determinant function problems. We conclude that local search heuristics
are well-suited to approach these problems. This constitutes the basis of a more
complex analysis with evolutionary algorithms.

1 Overview

The following is an exposition of my main current and past projects. The project
on the optimization of noisy functions, now concluded, is briefly summarised and
in line with what has already been presented on this topic. The project on restart
strategy is also briefly presented. I also discuss new results, currently under review.

Typically, evolutionary algorithms require as input a population of strings of fixed
length n. After an offspring is generated, a mutation factor is introduced, to ensure
full objective space exploration. The fitness is then computed, and the less desirable
result is discarded. The (y + 1)-EA and the (2 + 1)-GA differ in how the offspring is
generated. In the first case, the offspring is selected u.a.r. from the input population,
while in the latter case a crossover operation is performed on two u.a.r. chosen strings.
We use uniform crossover, which consists of assembling a new element by choosing
coefficients of one parent or the other with probability p = 0.5.

A restart stratey for a black-box algorithm is an infinite sequence (t1,t2,...,t,...)
that specifies that the algorithm should be run from a uniformly random starting
point for t; steps, then restarted uniformly at random and run again for t, steps
and so forth. Thus, we consider only a priori restart strategies, although it has been
observed that other kinds of restart techniques may fasten the expected run time of
randomized algorithms (cf. de Perthuis de Laillevault et al. [[18]] and Lissovoi et al.

[113]]).

173

mailto:francesco.quinzan@hpi.uni-potsdam.de

Francesco Quinzan: Evolutionary Algorithms and Local Search in Combinatorial Optimization

The optimal restart strategy is the sequence that minimizes the expected number of
runs until a run returns the optimal solution. In the context of Las Vegas algorithms,
when the density function of the convergence probability over time is known, then
the optimal strategy can be computed exactly (cf. Luby et al. [15]). More formally,
let A be any Las Vegas algorithm, and let T denote its run time. In this context, T
is a r.v. that returns the number of calls to the fitness function, until a solution that
satisfies a convergence criterion is reached. We consider convergence criteria that
terminate the process when the global optimum is reached, or a solution that gives
an approximation of it. Let p(t) the probability of convergence at step t, and g(t) =
Y.#<; p(t') the probability of search termination before step t, i.e. the cumulative
distribution function.

More specifically, let A be any Las Vegas algorithm, p(t) the probability of con-
vergence at step ¢, and q(f) = Y., <; p(t) the probability of converging before step ¢
- i.e. the cumulative distribution function. The optimal restart strategy for A is the
repeating sequence S = (i, ..., t,...) with f, defined as

. 1 /
by 1= n}f{q(t) <t—t§q(t)>} (1)

Thus, t, is the first point in time that minimizes the probability of not converging
over the probability of converging at previous steps. We refer to this result as Luby
theorem.

Luby et. al. prove S to be optimal, both for ¢, a finite number, and ¢, = +oo - in the
latter case the optimal strategy being not restarting the process at all. In most real
world settings, however, p(t) is not known a priori, and a numerical approximation
of it is not feasible. Because of this, Luby et. al. present a “universal” method to
simulate S when p(t) is unknown. This strategy is indicated by

Suniv — (1,1’2,1,1’2,4,1,1,2,1,1/2/4/8/- . ')

Pseudo-code for an algorithm A running as indicated by S*" is given in Algo-
rithm 1} The universal restart strategy and the optimal restart strategy are depicted
in Figure [lajand Figure We adapt the results presented above to the case of evo-
lutionary heuristics running with time budget constraints, or with solution quality
constraints. We focus on finding an explicit relationship between the optimal restart
point given in Equation (1} the total time budget, and the impact on overall perfor-
mance. We experimentally compare the performance of the (2 + 1)-EA and without
restarts on a combinatorial optimization problem. The Minimum Vertex Cover prob-
lem consists of finding the smallest set such that each edge of the graph is incident to
at least one vertex of the set. For a given graph G = (V, E), with n nodes, a solution
is stored in memory as a pseudo-boolean array, its length is the number of vertices of
the graph. In all cases, the quality of the solution is evaluated against the following
function

f(x) = n*u(x) +|xih (2)

We consider the Facebook (NIPS) available on the Stanford Network Analysis Project
(SNAP), and search for the Minimum Vertex Cover (cf. Figure 2a]). This dataset

174

1 Owverview

length l ------------- I I I II
‘IIIIIIIIIIIIIIII tength | NI L[]]

individual runs of Las Vegas algorithm individual runs of Las Vegas algorithm
(a) The best possible restart strategy (b) The universal strategy is defined as in
consists of let the algorithm run for Algorithm 1} and approximates the op-
a fixed amount of time (length). The timal strategy up to a logarithmic factor.
optimal length of each run depends This strategy has the advantage that no
on the algorithm and may be hard tuning is needed.
to compute.

Figure 1: A comparison of two different strategies

Algorithm 1: The Universal Strategy S for A.

174 0,t<« []
2 while convergence criterion not met do
3 if Ik € N:i=2F—1then

4 run A for 25~ steps

5 t[i] + 2k1

6 elseif 3k € N : 2k-1 < i < 2k —_ 1 then
7 run A for t[i — 2F-1 + 1] steps

8 t[i] < t[i — 21 4+ 1]

9 end

10 i+i+1

11 end

consists of ‘friends lists” from Facebook. Facebook data was collected from survey
participants using this Facebook app. The dataset includes node features (profiles),
circles, and ego networks.

The results are presented in Figure 2bl We observe that for fixed time budget
the (¢ + 1)-EA following the universal strategy clearly outperforms the (y + 1)-EA
without restart strategies, for y = 1.

Together with evolutionary algorithms, we study a simple greedy algorithm (see
Algorithm [6]), for the problem of maximizing a non-negative submodular functions
with bounded curvature, under a single matroid constraint. This type of analysis
constitutes the bases for studying more complex algorithms on this problem. Greedy
is the simple discrete greedy algorithm that appears in Algorithm 6| Starting with
the empty set, Greedy iteratively adds points that maximize the marginal values
with respect to the already found solution. This algorithm is a mild generalization
of the simple deterministic greedy due to Nemhauser and Wolsey [17]].

We empirically study Algorithm|[6]on the following problem: Given a set of ran-
dom variables (RVs), find the most informative subset of variables, subject to a

175

Francesco Quinzan: Evolutionary Algorithms and Local Search in Combinatorial Optimization

Algorithm
— (1+1)EA
— (1+1)EAy

solution quality [sample mean]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000
time budegt [calls to fitness]

(a) The Facebook (NIPS) network, taken (b) Number of fitness evaluations (run
from the Stanford Network Analysis time) for the (4 + 1)-EA with and with-
Project (SNAP). The nodes size is out restarts (with y = 1), to find the
proportional to the degree. We clearly MVC on the network in Figure2a] The
observe community structure. size of each dot is proportional to the

sample standard deviation.

Figure 2: Experiments on a large network

side constraint. This setting finds a broad spectrum of applications, from Bayesian
experimental design [[19], to monitoring spatio-temporal dynamics [20].

We consider the Berkley Earth climate datasetEl This dataset combines 1.6 billion
temperature reports from 16 preexisting data archives, for over 39.000 unique stations.
For each station, we consider a unique time series for the average monthly temperature.
We always consider time series that span between years 2015-2017. This gives us a
total of 2736 time series, for unique corresponding stations. The code is available at
[removed for review |.

We study the problem of searching for the most informative sets of time series
under various constraints, based on these observations. Given a time series X = { X; }
we study the corresponding variation series X = {X;}; defined as X; = X; — X;_1.
A visualization of time series X is given in Figure (a).

We compute the covariance matrix ¥ between series X, Y, the entries of which are
defined as

1 & =1\

cov(X,Y) = Pl _1(Z —E[X])(Y:—E[Y]), (3)

with m = 35 the length of each series. A visualization of the covariance the matrix X

is given in Figure

lhttp://berkeleyearth.org/data/ (last accessed 2018-10-18).

176

http://berkeleyearth.org/data/

2 Approach

Algorithm 2: The Greedy algorithm.

15+ 0

2 while |S| < YX_ d; do

3 let w € V maximizing f(SU{w}) — f(S) and s.t.
[(SU{w}) NBi| < dj, Vi€ [K]

4 S+ SU{w}

5 end

6 return S

Assuming that the joint probability distribution is Gaussian, we proceed by maxi-
mizing the entropy, defined as

£(S) = ”1’;(‘2”) S| + %m dets (S) (4)

for any indexing set S C {0,1}".

We consider two types of constraints. In a first set of experiments we consider
the problem of maximizing the entropy as in (4)), under a cardinal constraint only.
Specifically, given a parameter d, the goal is to find a subsets of time series that
maximizes the entropy, of size at most d of all available data. We also consider a
more complex constraint: Find a subset of time series that maximizes the entropy,
and s.t. it contains at most d of all available data of each country. The latter constraint
is a partition matroid constraints, where each subset B; consists of all data series
measured by stations in a given country.

A summary of the results is displayed in Figure Ba|(b). We observe that in both
cases the entropy quickly evolves to a stationary local optimum, indicating that
a relatively small subset of stations is sufficient to explain the random variations
between monthly observations in the model. We observe that the Greedy reaches
similar approximation guarantees in both cases. We remark that the Greedy finds a
nearly optimal solution under a cardinality constraint, assuming that the entropy is
(approximately) monotone [9].

In Figure [we display solutions found by Greedy for the cardinality and partition
matroid constraint, with d = 10%.

We observe that in the case of a cardinality constraint, the sensors spread across the
map; in the case of a partition matroid constraint sensors tend to be placed unevenly.
We remark that in the original data set, some countries have a much higher density
of stations than others.

2 Approach
All tests are carried out by performing a global optimum search with objective space

consisting of all pseudo-Boolean strings of fixed size n. In some cases, we add poste-
rior Gaussian noise in order to simulate an environment where errors of controlled

177

Francesco Quinzan: Evolutionary Algorithms and Local Search in Combinatorial Optimization

k p \ \ X 4 140
/ N \\ / - 1 500 120
; / \ 100
- \] 1000 0
o 5 10 15 20 25 30 35
time step (a) 60
400 T T T T T T T 1
o 500 w©
QOO [cleiea
300 K 500 o0 i
> ¥,0 20
z
Lot fg 1 2000
§ +0 0
ool 1
a3 cardinality constraint
0 | ; ; 2500
o 0.05 0.1 0.15 02 0.25 03 0.35 0.4 -40

size of the constraint [%] (b) 500 1000 1500 2000 2500

N
S

3

o

3

&
S

temperature variation [°C]

(a) A visualization of the monthly (b) A visualization of the covari-
temperature variations of three ance matrix X of time series avail-
time series in (a), with particu- able in the Berkley Earth climate
larly high variance. . Optimal so- dataset. We consider stations that
lution found by Greedy for a uni- have full available reports between
form constraint and a partition years 2015-2017, for a total of 2736
matroid constraintby countriesin stations. We consider the variation
(b). The f-value of each set of sta- between average monthly tempera-
tions is the entropy (@), with ¥ tures of each time series. Each entry
the covariance matrix of variation of this matrix is computed by taking
series as in (a) (see Figure. the sample covariance as in (3)).

Figure 3: Our results

standard deviation are produced, and we simulate a resampling operator: we com-
pute the fitness function r times, and take the average.

For each set of experiments we look at the sample mean, sample standard deviation,
and infer the trend toward asymptotic behaviour via model regression. All samples
considered are of size N > 102; the exact size and relevant information is given
in the description of each experiment. Statistical models with different properties
are considered. In all cases, tests on the predictions made by the fitting models are
performed. For a given experiment described by pairs {(x;, y;) }ic, denote with 7 the
sample mean, and let { f; };c; be the predictions of a given model. We assume that
the model is valid if R? > 0.95, with R? the coefficient of determination. This choice
is intuitively motivated by the fact that R? is the “percent of variance explained” by
the model.

3 Related Work

In the context of real-world optimization, there is usually very little analytical knowl-
edge of the problem at hand, and classical numerical methods often fail. Problems
of this kind can be approached with black-box optimizers — algorithms that access the
function to be optimized only via the evaluation of possible solutions.

178

3 Related Work

Figure 4: A visualization of the solution found by Greedy for d = 10% in the case
of a uniform constraint (left), and a partition constraint by countries (right).
In both case, a solution is obtained by maximizing the entropy as given in @
The covariance matrix X for all possible locations is displayed in Figure 3bl We
observe that in the case of a cardinality constraint, the informative stations tend
to be spread out, whereas in the partition constraint by countries they tend to
be grouped in a few areas. We remark that in the original dataset stations are
not distributed uniformly among countries.

Optimizers of this kind often exhibit a large variance in run time, due to a strong
dependence of the run time on initial conditions. Typically, a significant number
of iterations are wasted trapped in deceptive basins of attraction: sets of states that
lead the search away from the optimal solution. A simple and effective strategy for
handling this problem is to use restarts. In this scenario, an algorithm is periodically
re-initialized after some time (the restart time), with the hope that if it has already
become trapped in a deceptive basin then it can be allotted another chance to discover
the global optimum.

The utility of re-initializing with a uniformly chosen random point depends strong-
ly on the function under consideration. Let X be a fixed domain, and consider any
family of functions 7 C {f | f : X — R} s.t. forall x € X thereisa f € F that
attains a unique global optimum at f(x). Then the restart strategy that uses uniform
measure on the samples is the optimal choice [7]]. On the other hand, if there are
more restrictions on the global structure of the space F, different restart strategies
can be employed. This is the idea behind iterated local search [14]] in which restarts
are nonuniform, and it is assumed that smaller perturbations can escape deceptive
attractor basins. In this paper, we shall assume the former situation, in which no
information is known and so the best policy is restarting uniformly at random. Such
function families are a common object of study, for example in the field of black-box
complexity.

It is possible to derive theoretically the optimal restart time — the value that yields
the fastest possible convergence over all such restart times. This result is due to Luby,
Sinclair, and Zuckermann [[15]], but was also discovered in the context of backpropa-
gation training for neural networks [/16].

179

Francesco Quinzan: Evolutionary Algorithms and Local Search in Combinatorial Optimization

The classical result of [5]] shows that a greedy algorithm achieves a 1/2 approxi-
mation ration when maximizing monotone submodular functions under partition
matroid constraints. [17]] showed that no-polynomial time algorithm can achieve
a better approximation ratio than (1 — 1/e). Many years later [3]] where able to
achieve this upper bound using a randomized algorithm. Recently [2]] achieved a
deterministic 0.5008-approximation ratio by derandomizing search heuristics.

Formally, a set function f: 2V — R is submodular if for all U, W C V, f(U) +
f(W) > f(UUW) + f(UNW). As these functions come from a variety of applica-
tions, in this work we will assume that, given aset U C V, the value f(U) is returned
from an oracle. This is a reasonable assumption as in most applications f(U) can be
computed efficiently. Often in these applications, a realistic solution is subject to some
constraints. Among the most common constraints include matroid and Knapsack
constraints — see [[11]]. From these families of constraints the most natural and com-
mon type of constraints are uniform matroid constraints also known as cardinality
constraints. Optimizing a submodular function given k as a cardinality constraint is
to finding a set U, with |U| < k, that maximizes f(U). In this paper we consider sub-
modular maximization under partition matroid constraints. These constraints are in
the intersection of matroid and knapsack constaints and generalize uniform matroid
constraints. In partition matroid constraints we are given a collection By, ..., By of
disjoint subsets of V, integers d; .. . di. Every feasible solution to our problem must
then include at most d; elements from each set B;. Submodular maximization under
partition matroid constraints are considered in various applications, e.g. see [8,12]].

As the literature in submodular optimization is immense, we will only review the
results on submodular maximization under matroid and knapsack constraints. The
classical result of [5] shows that a greedy algorithm achieves a 1/2 approximation
ration when maximizing monotone submodular functions under partition matroid
constraints. [17]] showed that no-polynomial time algorithm can achieve a better
approximation ratio than (1 — 1/e). Many years later [3] where able to achieve this
upper bound using a randomized algorithm. Recently [2] achieved a deterministic
0.5008-approximation ratio by derandomizing search heuristics.

The previous approximation ratios can be further improved when assuming that
the rate of change of the marginal values of f is bounded. This is expressed by the
curvature « of a function. The results of [4, 21]] show that a continuous greedy algo-
rithm gives a 1 (1 — ¢~*) approximation when maximizing a monotone submodular
function under any matroid constraint. Thus, when a < 1.58933 the the continuous
greedy outperforms the algorithm of [2]] and when a < 1 the continuous greedy
outperforms the algorithm of [3]]. Finally, [[1] show that the deterministic greedy algo-
rithm achieves a 1 (1 — e~*) approximation when maximizing submodular monotone
functions of curvature «, but only under cardinality constraints.

All of the aforementioned approximation results rely on the fact that f is monotone.
In practice submodular functions such as maximum cut, combinatorial auctions, sen-
sor placement and experimental design the functions need not be monotone. To solve
such problems using simple greedy algorithms, often assumptions are made that
the function f is monotone or that f is under some sense “close” to being monotone.

180

4 Future Work

Practical problems that are solved using greedy algorithms under such assumptions
can be found in many articles such as [, 6,10, [20]].

4 Future Work

A core feature of evolutionary algorithms is their mutation operator. Recently, much
attention has been devoted to the study of mutation operators with dynamic and
non-uniform mutation rates. Following up on this line of work, we propose a new
mutation operator and analyze its performance on the (141) Evolutionary Algorithm
(EA).

This mutation operator competes with pre-existing ones, when used by the (y +1)-
EA on classes of problems for which results on the other mutation operators are avail-
able. We present a “jump” function for which the performance of the (u + 1)-EA
using any static uniform mutation and any restart strategy can be worse than the per-
formance of the (y + 1)-EA using our mutation operator with no restarts. We show
that the (y + 1)-EA using our mutation operator finds a (1/3)-approximation ratio
on any non-negative submodular function in polynomial time. This performance
matches that of combinatorial local search algorithms specifically designed to solve
this problem.

References

[1] A.A.Bian, J]. M. Buhmann, A. Krause, and S. Tschiatschek. “Guarantees for
Greedy Maximization of Non-submodular Functions with Applications”. In:
Proc. of ICML. 2017, pages 498-507.

[2] N. Buchbinder, M. Feldman, and M. Garg. “Deterministic (1/2 + ¢€)-
Approximation for Submodular Maximization over a Matroid”. In: CoRR
abs/1807.05532 (2018).

[3] G. Calinescu, C. Chekuri, M. P4l, and]J. Vondrdk. “Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint”. In: SIAM Journal of
Computing 40.6 (2011), pages 1740-1766.

[4] M. Conforti and G. Cornuéjols. “Submodular Set Functions, Matroids and
the Greedy Algorithm: Tight Worst-case Bounds and Some Generalizations
of the Rado-Edmonds Theorem”. In: Discrete Applied Mathematics 7.3 (1984),
pages 251-274.

[5] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. “Location of Bank Accounts
to Optimize Float: An Analytic Study of Exact and Approximate Algorithms”.
In: Management Science 23.8 (1977), pages 789-810.

[6] A.Dasand D. Kempe. “Submodular meets Spectral: Greedy Algorithms for
Subset Selection, Sparse Approximation and Dictionary Selection”. In: Proc.
of ICML. 2011, pages 1057-1064.

181

Francesco Quinzan: Evolutionary Algorithms and Local Search in Combinatorial Optimization

[7] X.Hu, R. Shonkwiler, and M. C. Spruill. Random Restarts in Global Optimiza-
tion. Technical report 110592-015. School of Mathematics, Georgia Institute of
Technology, 1994.

[8] S.]Jegelka and J. Bilmes. “Submodularity Beyond Submodular Energies: Cou-
pling Edges in Graph Cuts”. In: Proc. of CVPR. 2011, pages 1897-1904.

[9] A.Krause, A. P. Singh, and C. Guestrin. “Near-Optimal Sensor Placements in
Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies”. In:
Journal of Machine Learning Research 9 (2008), pages 235-284.

[10] N.D.Lawrence, M. W. Seeger, and R. Herbrich. “Fast Sparse Gaussian Process
Methods: The Informative Vector Machine”. In: Proc. of NIPS. 2002, pages 609—
616.

[11] . Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. “Non-monotone Sub-
modular Maximization under Matroid and Knapsack Constraints”. In: Proc.
of STOC. 2009, pages 323-332.

[12] H. Lin and]. Bilmes. “Multi-document Summarization via Budgeted Maxi-
mization of Submodular Functions”. In: Proc. of HLT. 2010, pages 912-920.

[13] A. Lissovoi, D. Sudholt, M. Wagner, and C. Zarges. “Theoretical Results on
Bet-and-Run as an Initialisation Strategy”. In: Proc” of GECCO. 2017, pages 857—
864. doi:|10.1145/3071178.3071329.

[14] H.R.Lourenco, O. C. Martin, and T. Stiitzle. “Iterated Local Search”. In: Hand-
book of Metaheuristics. 2003, pages 320-353.

[15] M. Luby, A. Sinclair, and D. Zuckerman. “Optimal Speedup of Las Vegas
Algorithms”. In: Information Processing Letters 47.4 (1993), pages 173-180.

[16] M. Magdon-Ismail and A. F. Atiya. “The Early Restart Algorithm”. In: Neural
Computation 12.6 (2000), pages 1303-1312.

[17] G.L.Nemhauser and L. A. Wolsey. “Best Algorithms for Approximating the
Maximum of a Submodular Set Function”. In: Mathematics of Operations Re-
search 3.3 (1978), pages 177-188.

[18] A. de Perthuis de Laillevault, B. Doerr, and C. Doerr. “Money for Nothing:
Speeding Up Evolutionary Algorithms Through Better Initialization”. In: Proc’
of GECCO. 2015, pages 815-822.

[19] P. Sebastiani and H. P. Wynn. “Maximum Entropy Sampling and Optimal
Bayesian Experimental Design”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 62.1 (2002), pages 145-157.

[20] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser. “Efficient Informative
Sensing using Multiple Robots”. In: Journal of Artificial Intelligence Research
34 (2009), pages 707-755.

[21]]. Vondrak. “Submodularity and Curvature: The Optimal Algorithm”. In:
RIMS Kokyuroku Bessatsu B23 (2010), pages 253-266.

182

https://doi.org/10.1145/3071178.3071329

A Comparison of Implementation Techniques for Implicit
Layer Activation

Stefan Ramson

Software Architecture Group
Hasso-Plattner-Institut
Stefan.Ramson@hpi.uni-potsdam.de

[Context-oriented programming (cop)| directly addresses context variability by
providing dedicated language concepts: layers, units of modularity, store context-
dependent behavior. During runtime, layers can be applied dynamically depend-
ing on the current context of the program.

Various activation means for layers have been proposed. Most of them require
developers to model context switches explicitly. In contrast, [implicit layer activaq
allows developers to bind the activation status of a layer to a boolean
predicate. The associated layer stays automatically active as long as the given pred-
icate evaluates to true.

Despite its declarative semantics, fila]is usually implemented in an imperative
manner. In context of our research, we investigated the applicability of reactive
programming for an implementation of Thus, we present a reactive implemen-
tation variant of filain Context]S alongside an imperative one. Furthermore, we
discuss their trade-offs regarding code complexity as well as runtime overhead.

1 Introduction

Context variability is an inherent property to most modern software systems. How-
ever, wide-spread programming languages do not support concepts for context vari-
ability in a principled way. The |context-oriented programming| ((cop|) paradigm [3]]
directly addresses context variability by providing dedicated language concepts to
describe contexts and context-dependent behavior. Layers allow to store all behavior
related to a specific context in a single unit of modularity.

To apply context-dependent behavior, layers can be activated dynamically through
various activation means. Most activation means require developers to model context
switches in an explicit manner [[5]. For example, using global layer activation, a layer
becomes (de-)activated at a certain point in imperative control flow, usually guarded
by a condition. Similarly, dynamic layer activation allows to explicitly activate a layer
for the extent of a message send. Even integrations with event-based concepts, such
as event transitions, require to emit the respective events explicitly.

In contrast to most activation means, implicit layer activation| [18] provides
a mechanism to declaratively define contexts. By describing the extent of a context
rather than context switches, [ila| relieves the programmer from the task of manually
describing the boundaries of contexts. While [ila| offers promising properties, only
few [cop|implementations support|ila][2, 4,5, 8]]. Despite its declarative semantics,
is usually implemented in an imperative fashion, similar to other activation means.

183

mailto:Stefan.Ramson@hpi.uni-potsdam.de

Stefan Ramson: Reactive Implicit Layer Activation

In particular, the current layer composition stack is determined imperatively when
calling a layered method. At this very point in time, the framework checks the
conditions of all implicitly activated layers. However, this non-reactive approach is
only possible, because most[cop|implementations are limited to adapting object and
class methods [9]]. These concepts are passive entities that only affect the program
behavior when called explicitly. Therefore, the limitation to passive entities enables
the framework to check the condition at a well-defined point in the program. In
contrast, active entities, such as constraints, may initiate behavior by themselves with-
out being called explicitly. Extending the concept of [cop|beyond method decoration
requires to activate scoped entities at specific times.

Using a reactive implementation, a framework can eagerly enable implicitly acti-
vated layers and, thus, deal with active entities properly. Thus, a reactive implemen-
tation might pave the way to apply the concept of [cop|to other types of abstraction
beyond partial methods. For example, a layer could be used to limit the scope of a
constraint: when a condition becomes true, the corresponding layer becomes active
and the constraint immediately takes effect [|6]], instead of waiting for an additional,
explicit trigger.

Similar to active entities, life-cycle callbacks, such as onActivate and onbDeactivate,
should be executed immediately when a layer becomes active or inactive, respec-
tively. As an example, an onActivate callback might set up some state required by the
layer while the onbeactivate callback cleans up this additional state. An imperative
implementation might lead to unintended behavior as it delays the execution of the
callbacks unnecessarily. Instead, the life-cycle callbacks expect to be executed eagerly.
Again, integrating fila| properly with reactive concepts, such as life-cycle callbacks,
requires a reactive implementation for|ila|itself.

Both examples above highlight advantages of a reactive implementation for filal
However, imperative implementations are more prevalent. Thus, we examine the
different approaches to implement|ila] In particular, we extend Context]S [[7]] with
limplicit layer activation| in two variants: an imperative implementation based on
an extended dispatch and a reactive implementation based on Active Expressions [10]].
Furthermore, we compare the two implementations regarding code complexity and
runtime overhead.

2 Background
This section presents relevant prior work. In particular, we discuss the concepts of
and fila]as well as Active Expressions as a means to implement fila| using reactive

programming concepts.

2.1 Context-oriented Programming

[Context-oriented programming] (cop|) is a programming paradigm dedicated to
directly express context variability. To do so, allows developers to extend system
behavior through heterogeneous adaptations given as partial method definitions:

184

1
3
1

1

S I O I

2 Background

fetch(url) {
console.log('fetch ' + url);
return proceed(url);

}

Partial method definitions may extent or base override the behavior of class or object
methods. In the example above, the partial method fetch prints out the given url
before continuing with the base behavior in line[3| One may combine multiple partial
method definitions into a unit of modularity, called a layer:

const networkTracer = new Layer ().refineObject(Networking, {
fetch(url) {
console.log('fetch ' + url);
return proceed(url);

}
};

A layer represents a set of behavior adaptations to be active while the system is in
a specific context. To signalize that a certain context is present, the developer can
activate a layer using one of various activation means:

Networking.fetch('example.com'); // prints nothing

> networkTracer.beGlobal();

Networking.fetch('example.com'); // prints 'fetch example.com'

In the example above, line 2| activates the layer using global layer activation. Once
a layer is active, its partial methods are applied to the program behavior. Thus, the
resource request in line 3|is traced. In case of global layer activation, this behavior
adaptations last indefinitely.

2.2 Implicit Layer Activation
[a] [[8] is another activation means for[cop|layers. In contrast to global layer activation,

has declarative semantics. To be precise, developers can associate a layer to an
arbitrary |object-oriented (00)|expression:

layer.activeWhile(expression)

By associating a layer with an expression, the layer is not activated or deactivated
at a fixed time. Instead, the layer is active as long as the given condition holds, as
depicted in the following example:

var shouldTrace = false;
networkTracer.activeWhile(() => shouldTrace);

Networking.fetch('example.com'); // prints nothing
shouldTrace = true;

» Networking. fetch('example.com'); // prints 'fetch example.com'

Despite these declarative semantics, fila|is typically implemented in an imperative
manner. An underlying system keeps track of all layered methods, such as the fetch
method. Then, when calling a layered method, the current layer composition stack is
determined [5]. At this very point in time, the framework checks the conditions
of all implicitly activated layers [1,9]. If the condition evaluates to true, the method
adaptation is taken into account for this method call, as the modified behavior in
line 6l illustrates.

185

Stefan Ramson: Reactive Implicit Layer Activation

Considering the declarative semantics of|ila a reactive implementation does not
seem a stretch [|6]]: an underlying reactive framework may monitor variables ref-
erenced by the given condition. When such a variable changes, the condition is
re-evaluated and the corresponding layer is activated or deactivated accordingly.

2.3 Active Expressions

Active Expressions [10] is a basic reactive programming concept designed to aid
language designers when implementing reactive programming concepts in |oo|envi-
ronments. In particular, Active Expressions relieve developers from the tedious task
of change detection by hiding implementation details behind a unified abstraction:
expressions. Developer provide the expression to be monitored to the reactive
framework by calling the aepxr function:

aexpr(expression).onChange(callback)

The specified callback gets executed whenever the evaluation result of the expression
changes.

Using Active Expressions, one can significantly reduce the implementation effort
when creating new reactive programming concepts. As|ila|fits well into the work-
ing principle of Active Expressions, we use Active Expressions in order to simplify
the reactive implementation of [ilal The provided expression may contain any
mechanism, such as information hiding and polymorphism. As a consequence, the
resulting[ilalimplementation integrates well with |oo|environments.

3 Implementing Implicit Layer Activation in Context]S

Currently, Context]S [7]] does not support [implicit Tayer activation| (ila]) as an ac-
tivation meansE] However, due to the reactive and declarative nature of the web,
Context]S might benefit from this activation means. Thus, we show how to extend
Context]S with [ila} first using an imperative implementation, then using a reactive
implementation with Active Expressions.

3.1 Imperative Implementation

Context]S supports multiple activation means, including global activation and dy-
namic activation for the extent of a function call. When calling a layered method, the
currentLayers function is responsible for computing an appropriate layer composi-
tion, either by using a cached result or, if necessary, by determining a new one using
global and dynamic layers:

1 export function currentLayers() {
2 // parts omitted for readability

1 https://github.com/LivelyKernel/ContextJS| (last accessed 2018-09-03, at commit 938e117; npm
package: contextjs in version 2.0.0).

186

https://github.com/LivelyKernel/ContextJS

N

)

3 Implementing Implicit Layer Activation in Context]S

if (!current.composition) {
current.composition = composelayers(LayerStack);

}

return current.composition;

}

For our extensionﬂ we add a separate list of layers to represent layers potentially
activated through called implicitLayers. To implicitly activate a layer, we add the
method activewhile to the class Layer:

activeWhile(condition) ({
if (!implicitLayers.includes(this)) {
implicitLayers.push(this);
}
this.implicitlyActivated = condition;
return this;

}

This method has two responsibilities. First, in line |3 it adds the layer to the list
of implicitly activated layers, if necessary. Second, it stores the provided argument
condition, a boolean function to specify whether the layer should be active, as seen
in line 5| Using the list of implicitly activated layers, we can get all layers that are
actually activated by filtering this list for layers with their conditions evaluating to
true, as done by the getActiveImplicitLayers function:

function getActiveImplicitLayers() {
return implicitLayers.filter(layer => layer.implicitlyActivated());

2)

Using the getActiveImplicitLayers function, we can now adjust the computation of the
current layer composition in currentLayers:

export function currentLayers() ({
// part omitted for readability
var current = LayerStack|[LayerStack.length — 1];
if (!current.composition) {
current.composition = composelayers(LayerStack);

}

return current.composition.concat(getActiveImplicitLayers());
}
To include implicitly activated layers, we append all layers activated through ilalto
the already computed layer composition. As a result, the returned layer composition
contains dynamically activated, globally activated, and implicitly activated layers.
Note that we cannot cache implicitly activated layer, because we have no means to
invalidate the cache on changes to the condition.

3.2 Reactive Implementation
In contrast to the imperative implementation, we do not introduce a separate data

structure for implicitly activated layers. Instead, we treat implicitly activated layers
as being globally active as long as their condition evaluates to true. As a result, we

Zhttps://github.com/active-expressions/programming-contextjs-plain (last accessed 2018-09-03,
at commit 22deb54).

187

https://github.com/active-expressions/programming-contextjs-plain

W N

Stefan Ramson: Reactive Implicit Layer Activation

can reuse the existing layer composition algorithm once a layer becomes active. To do
s0, the activewhile method has to setup dependencies to detect changes to the given
condition and update the layer accordingly. For this implementationﬁ we wrap the
given condition in an Active Expression. Using this Active Expression, we can easily
implement the appropriate reactive behavior:

activeWhile(condition) {
aexpr(condition)
.onBecomeTrue(() => this.beGlobal())
.onBecomeFalse(() => this.beNotGlobal());
return this;

}

Using the ongecomeTrue (line[3]) and onecomeFatse (line[d) methods, the layer is eagerly
activated or deactivated whenever the expression result becomes true or false, re-
spectively. Thus, the layer is automatically taken into account as a globally activated
layer by the existing layer composition algorithm. Additionally, those methods auto-
matically adjust the initial state of the layer depending on the current result of the
given expression.

4 Implementation Complexity

We quantitatively compare both implementations of [ilalin terms of code complexity.
As a measurement for code complexity, we count the total number of|Abstract Syntax|
nodes in each implementation. We summarize our measurements in
According to[Table T} the reactive implementation based on Active Expressions
has a lower complexity compared to the imperative implementation.

However, more important than these quantitative results is the way both imple-
mentations introduce the concept of fila| to the Context]S library. The imperative
implementation introduces an additional layer type: implicitly activated layers. Fur-
thermore, the imperative implementation requires knowledge about the underlying
dispatch mechanism in order to extend the layer composition algorithm to take im-
plicitly activated layers in account. In contrast, the reactive variant reuses the existing
semantics by only modifying layers through already exposed methods. Thus, the
reactive variant only requires knowledge about the usage of Context]S, not about its
internal working principles.

5 Performance Evaluation
To identify the performance penalties implied by the different implementation vari-

ants described injsection 3} we provide and discuss multiple micro benchmark scenar-
ios in the following. For each scenario, we compare the imperative implementation,

3https://github.com/active-expressions/programming-contextjs-aexpr (last accessed 2018-09-03,
at commit 07437e8).

188

https://github.com/active-expressions/programming-contextjs-aexpr

5 Performance Evaluation

Table 1: Code complexity of the presented implementations compared to the
existing Context]S version in terms of the number ofnodes

nodes (sioc) Complete Difference to
Context]S

Unmodified Context]S 2485 (se8)

Imperative Implementation 2557 (580 72 (2

Reactive Implementation 2525 (s73) 40)

described infsection 3.1} with the Active Expression-based implementation, described
infsection 3.2] Active Expressions allow to choose between multiple underlying imple-
mentation strategies. Thus, we compare against two strategies. First, the interpretation
strategy uses dynamic interpretation to punctually insert property accessors into the
system space. Second, the compilation strategy performs a heavy-weight source code
transformation to notify about changes in the system state.

In[section 5.1} we discuss our benchmark setup, test suite, and statistical methods.
5.1 Performance Benchmark Setup and Statistical Methods

All benchmarks were executed on the following system:

e CPU and memory: Intel(R) Core(TM) i7-6650U CPU @ 2.20GHz 2.21 GHz, 4
Logical cores; 16.0 GB Main Memory,

System software: Windows 10 Pro (OS Build 15063),

Runtime: Google Chrome version 57.0.2987.133; benchmarks executed using
Karma test runner version 1.2.0 and Mocha test framework version 3.0.2,

Transpiler and bundler: babel-cli 6.11.4 (no es2015 preset) and rollup 0.34.8,

Libraries under test:

— programming-contextjs-plain at commit 1360e1aE]

— programming-contextjs-aexpr at commit 07437e8E]
e Benchmark suite: aexpr-ila-benchmark at commit 6a6395b|§]

We measured the execution time of a benchmark by wrapping the benchmark in a
function and measuring the time between calling the function and it returning. Each
benchmark configuration was iterated 100 times, with only the final 30 iterations

4https://github.com/active-expressions/programming-contextjs-plain (last accessed 2018-09-03).

Shttps://github.com/active-expressions/programming-contextjs-aexpr (last accessed 2018-09-
03).

6https://github.com/active—expressions/aexpr—ila—benchmark (last accessed 2018-09-03).

189

https://github.com/active-expressions/programming-contextjs-plain
https://github.com/active-expressions/programming-contextjs-aexpr
https://github.com/active-expressions/aexpr-ila-benchmark

Stefan Ramson: Reactive Implicit Layer Activation

- o
=) 160+ 8
T 140 =
2
'g 120+
g 100+
g
N—

o 801

=
= 60
=
2
5 404
Q
%

m 204

=]

g —e —

— r T T T 1
g Imperative Active Expressions Active Expressions
IS Implementation (Interpretation) (Compilation)
Z

Implementation Strategy

Figure 1: Execution times for declaratively associating 10,000 layers with a context
usingfilal The thick red line indicates the median, the upper and lower edges
of the box are the second and third quartile and the end of the whiskers are the
most outlying values in a 1.5 inter-quartile range distance from the second and
third quartile.

taken into account for the overall performance measurement to mitigate the effects
of the V8 just-in-time (jit)}

Statistical Methods We make no assumptions on the underlying distribution and
provide Tukey boxplots in to[3|to visualize the median and variation of the
measured timings. Exact median timings are given in to[d] Slowdowns are
computed by dividing the median execution times of the measurements to compare.
Confidence bounds of this statistic are given by the 2.5-th and 97.5-th percentile of
the bootstrap distribution of the computed ratio.

5.2 Overhead for Initial Association

First off, we analyze the initial cost to create associations between a layer and a declar-
ative context. For this purpose, we measure the time to associate 10,000 layers with
the same context expression. As a running example, we use the following expression
for all benchmarks:

() => context.enabled()
The variable context references an instance of the class context with a single Boolean
property representing whether the current is active. The enabled method provides

access to this status. Thus, we execute layer.activeWhile(() => context.enabled()) 10,000
times.

190

5 Performance Evaluation

Table 2: Benchmark timings and relative slowdowns for declaratively associating
10,000 layers with a context using Slowdowns given as ratio of medians
with 95 % confidence intervals.

timing [ms] slowdown
(vs Imperative)

Imperative 28.09
Reactive (Interpretation) 3976.06 141.57 (13874-14477)
Reactive (Compilation) 70.29 2.50 [2.14-264]

Discussion As reveals, the imperative implementation has the lowest
runtime for creating associations to declarative contexts. This result is to be expected,
as the imperative implementation only adds the given layer to a global array when
creating the association. In contrast, both reactive strategies have to set up their
respective dependency mechanisms in order to monitor for changes. Accordingly,
they impose high overhead as shown by the relative slowdowns in[Table 2} While the
compilation strategy runs the given expression in native JavaScript, the interpretation
strategy uses a full-fledged JavaScript-in-JavaScript interpreter to determine relevant
dependencies, which explains the very high impact of the interpretation strategy.
The relative overhead compared to the imperative implementation is subject to the
complexity of the given expression.

5.3 Frequent Context Switches

The above measurements show only the initial overhead of the respective implemen-
tation strategy. In the following, we identify the overhead that is imposed by implicit
context switches. Continuing the previous scenario, we enable and disable a context
object implicitly associated with a layer by [ila} We disable and re-enable this context
500 times each. Then, we test the expected semantics by calling context-dependent
behavior:

expect(adaptee.call()).to.equal(expected);

Thus, 1,000 context switches occur before using context-dependent behavior once.
We measure the time it takes to repeat this process 100 times.

Discussion According to the results in[Figure 2} both reactive implementations im-
pose a very high overhead for frequent context switches. As highlighted in[Table 3]
the interpretation strategy is over two orders of magnitude slower and the compila-
tion strategy is over three orders of magnitude slower. This high overhead is to be
expected, because the imperative implementation does not invoke any additional
behavior when switching contexts implicitly. In contrast, both reactive strategies
activate the respective layer globally, thus, invalidating the current layer composi-
tion. The compilation strategy has a higher overhead than the interpretation strategy,
because the applied source code transformation affects all computations. In con-

191

Stefan Ramson: Reactive Implicit Layer Activation

] <]
2,200
2,000 8
g 1,800 —
= 1,600+
£.1.400
g
< 1,200
(]
& 1,000+
=
= 800+
2 600-
3
Q400+
[}j ——]
= 200+
] J ——
- r T T T 1
g Imperative Active Expressions Active Expressions
(ZD Implementation (Interpretation) (Compilation)

Implementation Strategy

Figure 2: Performance benchmark results for a high ratio of context switches to
invocations of context-dependent behavior. The exact ratio is 1000 to 1. All
results are normalized by the imperative median. The normalization is the
quotient of execution time of the respective implementation and the time of the
imperative solution.

Table 3: Benchmark timings and relative slowdowns for frequently switching
contexts

timing [ms] slowdown
(vs Imperative)

Imperative 0.42
Reactive (Interpretation) 125.63 295.61 [284.28-305.44]
Reactive (Compilation) 799.34 1880.81 [1851.14-192457]

192

5 Performance Evaluation

14+ o
S 13-
127 °
EN
g 104
g 97 °
S —
N— 7 '
> J
R —
F
= 54
2
ER
151 34
<
S8 24
= o - —
] 11 —_— ===
= T T T T 1
g Imperative Active Expressions Active Expressions
£ Implementation (Interpretation) (Compilation)

Implementation Strategy

Figure 3: Performance benchmark results for calling context-dependent behavior
1,000 times before switching contexts. All results are normalized by the median
of the imperative implementation.

Table 4: Benchmark timings and relative slowdowns for frequently invoking
context-dependent behavior

timing [ms]| slowdown
(vs Imperative)

Imperative 17.63
Reactive (Interpretation) 14.98 0.85 [0.80-0.96]
Reactive (Compilation) 120.12 6.81 [639-7.08]

trast, the interpretation strategy uses property accessors to punctually intercept the
program execution.

5.4 Frequent Message Sends

The previous experiment hints a high overhead for reactive implementations when
switching contexts frequently. In the following benchmark, we examine the over-
head introduced by each implementation strategy when frequently calling context-
dependent behavior. In particular, we switch context ten times, with invoking context-
dependent behavior 1000 times after each context switch.

Discussion As reveals, both, the imperative and the interpretation-based
implementation have similar performance for frequent invocation of context-depen-
dent behavior. According to the reactive variant using the interpretation
strategy is slightly faster than the imperative implementation. The reason is that the

193

Stefan Ramson: Reactive Implicit Layer Activation

reactive implementation utilizes the caching mechanism of Context]S. When calling
context-dependent behavior subsequently, the dispatch mechanism checks whether
the layer composition became invalid since the last dispatch. If not, Context]S can
reuse the existing layer composition. Because the reactive implementations update
layers on change, no additional checks are required. In contrast, the imperative im-
plementation has to check the current status of each implicitly activated layer on
dispatch. Because the imperative implementation cannot anticipate context switches,
the layer composition needs to be recomputed for each method invocation.

Even with this conceptual advantage, the compilation strategy is considerably
slower than the imperative implementation. This result highlights the high perfor-
mance overhead imposed by the source code transformation. The reason for this high
overhead is that the invocation of detection hooks, such as access to object members,
is highly polymorphic, and, therefore hard to optimize by As every access to a
property and every call of a member function is wrapped, this strategy can cause
severe performance penalties.

The presented benchmark highlights the potential provided by reactive implemen-
tations ofilal In particular, systems with long living layers and frequent invocations
of context-dependent behavior might benefit from such an implementation. How-
ever, the benchmarks also indicate potential performance problems. In particular, the
production of fjirunfriendly code represents a major source of performance issues.
Further studies on the effect of the different implementation variants are needed,
especially with regard to real-world applications.

6 Conclusion and Future Work

We implemented [implicit layer activation| in two different variants: an imper-
ative and a reactive one. Our comparison shows that the reactive implementation
matches the declarative semantics of filajmore closely. The runtime overhead of the
two implementations highly depends on the specific usage scenario: the imperative
implementation is suitable for a system with frequent context switches, while the
reactive implementation is more suitable for systems with frequent invocations of
context-dependent behavior. A reactive implementation seems viable and offers in-
teresting possibilities: the eager (de-)activation of layers allows for the integration
of fila] with layer life-cycle callbacks and active entities, for example by scoping the
effect of constraints [6].

The work reported here represents an application of our main research project,
Active Expressions. We expect to continue to evolve both the concept of Active Ex-
pressions itself and its application on various problems. Thus, there are a number
of directions for future work:

194

References

Bridging the Gap Between Object-oriented and Reactive Programming Besides
Active Expressions may act as a foundation of many other reactive programming
mechanisms. A key design rationale to Active Expressions is to enable a seamless
integration of those reactive mechanisms with the oo/ host language. Due to their
basic nature, Active Expressions might represent the smallest possible increment
on the [object-oriented programming (oop)| paradigm to integrate reactivity on a
fundamental level. In this future work, we aim to identify whether Active Expressions
are suitable for the role of integrating object-oriented and reactive programming,
thereby, improving the day-to-day experience of software developers.

Transactional Integrity on Information Hiding Boundaries In contrast to many
other reactive programming systems, Active Expression automatically infer depen-
dencies from the given state description. Thereby, when encountering object methods,
the underlying framework pierces these encapsulation boundaries to identify rele-
vant state dependencies. When calling high-level state-altering methods, multiple
state modifications might be required to carry out the intended behavior. In this
case, Active Expressions may leak implementation details to users, thereby breaking
encapsulation. Some reactive programming mechanisms do not desire this behavior.
To improve the applicability of Active Expressions on such reactive programming
mechanisms, we want to introduce optional transaction boundaries on units of en-
capsulation.

References

[1] M. Appeltauer, R. Hirschfeld, M. Haupt,]J. Lincke, and M. Perscheid. “A
Comparison of Context-oriented Programming Languages”. In: International
Workshop on Context-Oriented Programming (COP). 2009, 6:1-6:6. doi: 10.1145/
1562112.1562118.

[2] E.Bainomugisha, J. Vallejos, C. D. Roover, A. L. Carreton, and W. D. Meuter.
“Interruptible Context-dependent Executions: A Fresh Look at Programming
Context-aware Applications”. In: Symposium on New Ideas in Programming and
Reflections on Software (Onward!), 2012. 2012, pages 67-84. doi:|10.1145/2384592|
2384600.

[3] R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-oriented Program-
ming”. In: Journal of Object Technology (JOT) 7.3 (2008), pages 125-151. issn:
1660-1769.

[4] H.Inoue and A. Igarashi. “A Library-based Approach to Context-dependent
Computation With Reactive Values: Suppressing Reactions of Context-
dependent Functions Using Dynamic Binding”. In: 15th International Confer-
ence on Modularity (MODULARITY'). 2016, pages 50-54. doi: 10.1145/2892664,
2892669.

195

https://doi.org/10.1145/1562112.1562118
https://doi.org/10.1145/1562112.1562118
https://doi.org/10.1145/2384592.2384600
https://doi.org/10.1145/2384592.2384600
https://doi.org/10.1145/2892664.2892669
https://doi.org/10.1145/2892664.2892669

Stefan Ramson: Reactive Implicit Layer Activation

[5]

[10]

T. Kamina, T. Aotani, and H. Masuhara. “Generalized Layer Activation Mech-
anism Through Contexts and Subscribers”. In: 14th International Conference on
Modularity (MODULARITY'), 2015. 2015, pages 14-28. doi: 10.1145/2724525,
2724570.

S. Lehmann, T. Felgentreff, and R. Hirschfeld. “Connecting Object Constraints
with Context-oriented Programming: Scoping Constraints with Layers and
Activating Layers with Constraints”. In: 7th International Workshop on Context-
Oriented Programming (COP). 2015, 1:1-1:6. doi: 10.1145/2786545.2786549.

J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. “An Open Implemen-
tation for Context-oriented Layer Composition in Context]S”. In: Science of
Computer Programming (SCICO) 76.12 (2011), pages 1194-1209. doi: 10.1016/j|
5Cico0.2010.11.013!

M. von Loéwis, M. Denker, and O. Nierstrasz. “Context-oriented Programming:
Beyond Layers”. In: International Conference on Dynamic Languages (ICDL), 2007.
2007, pages 143-156. doi:|10.1145/1352678.1352688.

K. Mens, R. Capilla, N. Cardozo, and B. Dumas. “A Taxonomy of Context-
aware Software Variability Approaches”. In: Workshop on Live Adaptation of
Software SYstems (LASSY'). 2016, pages 119-124. doi: 10.1145/2892664.2892684.

S. Ramson and R. Hirschfeld. “Active Expressions: Basic Building Blocks for
Reactive Programming”. In: Journal on The Art, Science, and Engineering of Pro-
gramming 1.2 (2017).

196

https://doi.org/10.1145/2724525.2724570
https://doi.org/10.1145/2724525.2724570
https://doi.org/10.1145/2786545.2786549
https://doi.org/10.1016/j.scico.2010.11.013
https://doi.org/10.1016/j.scico.2010.11.013
https://doi.org/10.1145/1352678.1352688
https://doi.org/10.1145/2892664.2892684

Deep Learning from Unbalanced Medical Imaging

Mina Rezaei

Internet Technologies and Systems
Hasso-Plattner-Institut
Mina.Rezaei@hpi.de

Unbalanced data is one of the major challenges in medical image segmentation,
where the number of pixels belonging to a desired object, the organ or the tumors,
are significantly lower than those belonging to the background. A model trained
with imbalanced data tends to bias towards majority class distribution, which is
not desired in clinical applications. We propose different learning algorithms that
mitigates the challenge raised by unbalanced data using biased complementary
labels, biased with synthetic minority classes, and biased with mini-batch nor-
malization in data-level. We approach ensemble generative model, deep mutual
learning, and adversarial weighted loss towards minority classes. We show evi-
dence that the proposed frameworks is applicable to different types of medical
images of varied sizes on different applications of clinical routine tasks such as
diseases diagnosis, abnormal tissues localization, and semantic segmentation.

1 Overview

Medical imaging plays an important role in disease diagnosis, treatment planning,
and clinical monitoring. However, one of the major challenges in medical image
analysis is imbalanced data where there exists a majority class with normal or healthy
data and a minority class with abnormal or non-healthy data. A model trained with
imbalanced data tends to bias towards healthy data which is not desired in clinical
applications and generally predicted outputs by these networks have high positive
predictive value and low sensitivities.

There are methods in medical image analysis against class imbalance issue by
cascade training [[17]], training with cost-sensitive function [|11]], equal selection of
training samples [|13]], and samples re-weighting [5, 21]] which directly adjusts the
sample sizes of respective classes.

In this paper, we overview our recent approaches for handling imbalanced med-
ical data in data-level and algorithmic-level using generative adversarial networks
(GANSs). At the data-level, the objective is to balance the class distribution through
biased complementary labels [23]], biased with synthetic minority classes [24]],and
biased with mini-batch normalization [27]]. Algorithm-level based solutions address
class imbalanced problems by modifying the learning algorithm to alleviate the bias
towards majority class. Examples are the ensemble generative model [25| 26]], deep
mutual learning [27]], and adversarial weighted loss towards minority classes [28]].

197

mailto:Mina.Rezaei@hpi.de

Mina Rezaei: Deep Learning from Unbalanced Medical Imaging

2 Background

In a conventional generative adversarial network, generative model G tries to learn
a mapping from random noise vector z to output image y; G : z — y . Meanwhile,
a discriminative model D estimates the probability of a sample coming from the
training data x,., rather than the generator x . The GAN objective function is a
two-player mini-max game like Eq.([I)).

@in max V(D,G) = E,[logD(y)]+
Exz[log(1— D(G(x,2)))]

(1)

In a conditional GAN, a generative model learns the mapping from the observed
image x and a random vector z to the output image y; G : x,z — y . Discriminative
model on the other hand attempts to discriminate between generator output and
ground truth of the training set Eq. ().

Lugo rgin max V(G,D) = Eyy[logD(x,y)]+

(2)
E..[log(1 —D(x,G(x,2)))]

3 Methods for Handling Imbalanced Medical Imaging

We propose different conditional GAN frameworks to mitigate imbalanced imaging.
Similar conditional GAN [[19]; in our proposed methods, a generative model learns
mapping from a given sequence of 2D multimodal MR images x; to a sequence
semantic segmentation y; ., and classification y.s; G : {xi, 2} — {Vieq, Yeis} (e.g. i
refers to 2D slice index between 1 and 155 from a total 155 slices acquired from each
patient). The training procedure for the segmentation task is similar to two-player
mini-max game as shown in Eq. .

While the generative model generates segmentation pixel labels, the discriminator
classifies whether the predicted pixel output by generator is similar to the ground
truth annotated by a medical expert or synthetic. The adversarial loss is mixed with
two additional loss to attenuate the imbalanced data impact.

Logo < 12311'11 max V(G, D) = Ex .. [10gD (X, Yseg)]+

(3)
Ey.[log(1 — D(x,G(x,z)))]

3.1 Cost-sensitive Learning
A class-imbalance in a medical dataset where non-healthy classes could not be

trained as well as healthy classes, might dominate the gradient direction. Regarding
to mitigate class-imbalanced impact, we mixed adversarial loss Eq. (3|) with selective

198

3 Methods for Handling Imbalanced Medical Imaging

Encoders LSTMs outputs: \

Inputs: Encoders |STMs Decoders Cls-Out Seg-Ou‘t

. Inputs:
y n-1-i 4

N

Ground \

MR
Real v

Image

@
; Generated
»’ | 5 e i

i Ground

X
Noise (z) — > Generated i
Fakex
p ~— 7
-G — D

Figure 1: Our proposed architecture for learning semantic segmentation and dis-
eases prediction. We design a set of auto-encoders combined with a LSTM
unit in a circumvent bottleneck as the generator network with skip connections
between each layer i and the corresponding layer n-1-i (mostly like UNet ar-
chitecture). The discriminator is fully convolutional network substituted with
LSTM unit. Both networks are trained together in an adversarial way with se-
lective weighted categorical cross entropy loss for semantic segmentation and
selective weighted L1 for diseases prediction.

weighted Eq.(4)) categorical cross-entropy loss L(G) for semantic segmentation,
and with selective weighted Eq.([4) ¢1 loss Eq.(6) for classification of diseases.

i

Where the weight for each class c is based on the ratio of the cordiality among
N classes on entire training dataset (e.g. mostly healthy classes) by the frequency
of samples with class c appears in the dataset. Since we have intense frequency
differences, the square root is applied to prevent huge weights. This implies that
larger classes in the training set have a weight smaller than 1 and the weights of the
smallest classes are the highest defined by Eq.(@).

The final loss for semantic segmentation task is calculated through Eq.

Lsog(D,G) = Lago(D,G) + L1(G * w,) (5)

As shown in Fig[l] the concatenated depth features from last decoder layer with
skip connection of encoder part passed into a couple of dense layers and map to
the disease class. The objective function for class prediction is ¢1 to minimize the
absolute difference between the predicted value and the existing largest value Eq.(6])

Ecls(G) = E, || Yeis — G(xi * wc) H (6)
i=1

Where i indicates to 2D slice index from the same patient (e.g. in Brain dataset i is
between 1 and 155 from a total of 155 slices acquired from each patient).

199

Mina Rezaei: Deep Learning from Unbalanced Medical Imaging

Generator

_ Discriminator

Refinement
‘ll I | I FP. g{x}

Final output Out_cGAN False Positive False Negative

Figure 2: The proposed method for medical image semantic segmentation consists
of a generator network, a discriminator network, and a refinement network. The
generator tries to segment the image into pixel level, while the discriminator
classifies the synthesized output as real or fake. The final semantic segmentation
masks are computed through eliminating the false positives and adding the
false negatives predicted masks by the refinement network.

In this work, similar to the work of Isola et al. [[16], we used Gaussian noise z in the
generator alongside the input data x. Without z, the network learns a mapping from
x with a condition attached to the specific label y and would produce deterministic
outputs, thus failing to match any distribution other than a delta function.

The final objective function for simultaneous semantic segmentation and classifi-
cation is:

L = Lseg(D,G) + L5(G) (7)
3.2 Deep Ensemble Learning

To mitigate the problem of imbalanced data in medical image segmentation and
achieve a much better trade-off between precision and recall, we proposed a condi-
tional generative refinement network.Our proposed method consists of a generator
and two discriminator where one discriminator feedback generator in true positive
and true negative and another in false positive and false negative named refinement
network.

The refinement network is trained to learn the false prediction of conditional GAN
in details of false negatives Eq. and false positives Eq. (9). The false negative
error represents the number of pixels that were incorrectly labeled as background or
wrong class (Fig. (2)) third column). Similarly, the false positive indicates the number

200

3 Methods for Handling Imbalanced Medical Imaging

of pixels that were incorrectly labeled as part of the region of interest (Fig. (2] last
column).

Ly = clip((y — Lseg),0,1) (8)

L1y = clip(Laeg —),0,1) (9)

where in both equations (8land @ Y, Lseq respectively refers to the ground truth
labels and predicted labels by adversarial loss.

Our final objective function Lcr_can for semantic segmentation relies on adding
false negatives and subtracting false positives from outputs of adversarial network.

Lcr-6aN = Lseg— Lfp+ Ly (10)

where L, indicates to predicted labels by adversarial loss.
3.3 Deep Mutual Learning

As shown in Figure 3| we propose generative multi-adversarial networks, forcing G
to learn from ensemble of discriminators. This ultimately encourages G to produce
samples from a variety of modes, since it now needs to fool the different possible
discriminators that may remain in the ensemble. Variations in the ensemble are
achieved by the feedback of each D with a certain probability p; at the end of every
batch. This means that G will only consider the loss of the remaining discriminators
in the ensemble while updating its parameters at each iteration. Here, left side of Fig-
ure (3} the generator starts training from scratch by receiving feedback from different
pre-trained and fine tune discriminators with different losses.

As depicted by Figure 3|in right side, we extend the generative networks equal to
number of discriminative networks. Each generator communicate with correspond
discriminator using adversarial loss. Moreover, the generator takes different mini-
batches and discriminator are different in losses. The generator shared the mutual
knowledge during training in way of using KL divergence, represented in Eq.

k

Lo, = Lo, + 5 L Dielpi || po) (1)

I=1
where K indicated the number of discriminators and generators, our mutual loss
for each generator effectively takes the other k — 1 networks in the cohort as K — 1
discriminators to provide a learning experience. Note that we added the coefficient
1/k — 1 to make sure that the training is mainly directed by supervised learning of
the true labels. The optimization with more than two networks is a straightforward
extension. It can be distributed by learning each network on one device and passing

the small probability vectors between devices.

201

Mina Rezaei: Deep Learning from Unbalanced Medical Imaging

Wasserstein_Dice
7
\d

Average Surface Distance

Wasserstein_Dice

Average Surface Distance

f

Weighted cross-entropy ﬁ .’ Weighted Cross-entropy

Figure 3: Our proposed architecture for learning semantic segmentation and dis-
eases prediction. We design a set of auto-encoders combined with a LSTM
unit in a circumvent bottleneck as the generator network with skip connections
between each layer i and the corresponding layer n-1-i (mostly like UNet ar-
chitecture). The discriminator is fully convolutional network substituted with
LSTM unit. Both networks are trained together in an adversarial way with se-
lective weighted categorical cross entropy loss for semantic segmentation and
selective weighted L1 for diseases prediction.

3.4 Patient-wise mini-batch Normalization

Several popular techniques are developed for normalization, such as batch normal-
ization [[14]], and max norm constraints [[29]], with the core idea of shifting the inputs
to a zero mean and unit variance. The inputs are normalized before applying non-
linearity to prevent the inputs from saturating extreme non-linearity. As described
by Toff et al. [[14]], batch normalization improve the overall optimization and gradient
issues. In many cases, initial weights have a large deviance from true weights, de-
laying the convergence during training. Batch norm reduces the influence of weight
deviance by normalizing the gradients this speeds up the training.

We initially normalized the inputs where the mean and variance are computed on
a specific patient from the same acquisition plane (Saggital, Cronal, and Axial) and
from all available image modalities (e.g., T1, T1-contrast, T2, Flair in the BraTS bench-
mark). In this regard, the deviances get increasingly large, and the back-propagation
step needs to account for these large deviances which this restrict us for using a small
learning rate to prevent gradient explosion.

For example, the mini-batch with 128 images includes the same patient images and
four available modalities from the same acquisition plane. Algorithm. 1) shows how
to compute normalization at each mini-batch by proposed patient-wise batch-norm
technique.

3.5 Complementary Labels

Here, we mitigate the negative impact of the class imbalanced by inverse class fre-
quency segmentation masks, that we name complementary segmentation labels.

202

4 Experiments

Algorithm 1: Patient-wise mini-batch normalization. (i and n respectively refer
to a number of 2D slices and number of patient e.g. 0 < i < 155, n=230 in BraTS)
Input :Values of x over a mini-batch: § = x1, x2, ..., X155
Parameters to be learned:, B
Output:y; = BN, 4(x;)
1 for Patient : P1, P, ..., P, do

2 for AcquisitionPlane : x;,y;,z; do
3 for Image Modalities : T1, T2, Tlc, Flair do
n
4 < %,21 Xi
1=
n
5 0 %El (xi — pp)?
‘ t e St
7 yl%')/fi‘kﬁ:BN“/ﬁ(xl)
8 end
9 end
10 end

Figure 4: The brain MR image, from Brats 2018 after pre-processing. We extracted
complementary mask from inverse of ground truth file annotated by medi-
cal expert, presented in the first column. Other binary masks extracted from
ground truth file in columns 2—4 respectively are whole tumor, enhanced tumor,
and core of tumor which they are used by the discriminator. The 5-8 columns
are a slice of example 3D input of the segmentor.

Assume, Y is true segmentation label annotated by expert and Y is synthesize pair
of corresponding images with complementary label where the P(Y =i | Y =),i #
j € 40,1,..,c — 1}, and ¢ is a number of semantic segmentation class labels. The
complementary label Y is a negative label for the major class and a positive label for
the ¢ — 1 class. Then, our network train with both true segmentation mask Y and
complementary segmentation mask Y at the same time.

4 Experiments

To evaluate the performance of our network on imbalanced data segmentation and
compared it with state-of-the-art methods, we trained recent popular annotated

203

Mina Rezaei: Deep Learning from Unbalanced Medical Imaging

medical imaging benchmarks for more detail please refer to [26]]. Here we show an
example on BraTS 2017 as described in Section ([.1]).

4.1 Dataset and Pre-processing

The first experiment is carried out on real patient data obtained from BraTS2017 chal-
lenge [6}|7,8,|18]]. The BraTS2017 released data in three subsets train, validation, and
test comprising 289, 47, and 147 MR images respectively in four multisite modalities
of T1, T2, T1ce, and Flair which the annotated file provided only for the training set.
The challenge is semantic segmentation of complex and heterogeneously located of
tumour(s) on highly imbalanced data. Pre-processing is an important step to bring
all subjects in similar distributions, we applied z-score normalization on four modal-
ities with computing the mean and stdev of the brain intensities. We also applied
bias field correction introduced by Nyl et al. [20].

Additionally, we provided data augmentation such as randomly cropped, re-
sizing, scaling, rotation between -10 and 10 degree, and Gaussian noise applied
on training and testing time for three datasets.

4.2 Implementation

Configuration: Each proposed method is implemented separately based on a Keras
library [/10] with backend Tensorflow [[1]] and our code is publicly availabl We did
different experiments on 2D, 2D sequences, and 3D images which all codes are
publicly available inE]

4.3 Evaluation Results and Discussion

The segmentation of the brain tumour from medical images is highly interesting in
surgical planning and treatment monitoring. The goal of segmentation as described
by organizer [6, 7, 8, (18] is to delineate different tumour structures such as active
tumorous core (TC), enhanced tumorous (ET), and edema or whole tumorous (WT)
region.

Fig. (B) shows qualitative results of the cGAN network, and refinement network
in detail. Based on Fig. (), the result shows good relation to the ground truth for
the segmentation after refinement network.

The Dice score, Hausdorff distance, sensitivity, and specificity are introduced by
BraTS2017 as evaluation criteria for segmentation task. Tables (I}) present the
brain segmentation results from proposed architecture and compare them with other
related methods based on the pre-proceeding report [9]].

From Table (1], the cGAN network (in second line) with one generator and dis-
criminator achieved 12% less accuracy for whole tumour region segmentation com-

Thttps://github.com/HPI-DeepLearning/voxelGAN| (last accessed 2018-10-18).
2https://github.com/HPI—DeepLearning/ (last accessed 2018-10-18).

204

https://github.com/HPI-DeepLearning/voxelGAN
https://github.com/HPI-DeepLearning/

4 Experiments

CBICA_AMF.nz.76 CBICA_AMF.nz.80 CBICA_AMF.nz.86

CBICA_AMF.nz.91

CBICA_AMF.nz.97

CBICA_AMF.nz.107

CBICA_AMF.nz.118

CBICA_AMF.nz.124

Figure 5: Visual results from our model on axial views of CBICA-AMF.nz.76-124
from the validation set. The first row shows Flair modality, while the second
and fourth row show the output results respectively from cGAN and refine-
ment architecture. The third row shows the semantic segmentation masks from
cGAN overlaid Flair modalities where the fifth row shows outputs after refine-
ment network. The red color codes the whole tumour (WT) region, while pink
and yellow represent the enhanced tumour (ET) and the tumorous core (TC)

respectively.

Table 1: Comparison of the achieved accuracy for semantic segmentation of dif-
ferent classes of tumour in terms of Dice and Hausdorff distance on validation
data [6}|7, 8,18]] reported by the BraTS2017 organizer. The terms WT, ET, and
TC are abbreviations of whole tumor region, enhanced tumor region, and core

of tumor respectively.

Refinement GAN [226]] 0.86

cGAN [23] 0.74
Recurrent-cGAN [24]] 0.79
Residual-Encoder [3]] 0.82

Label Dice-WT Dice-ET Dice-TC Hdf-WT HdAf-ET HdAf-TC
0.64 0.73 7.22 8.30 11.04
0.53 0.61 12.6 16.41 31.0
0.60 0.68 11.73 14.54 25.83
0.62 0.57 - - -
FCN [2] 0.83 0.69 0.69 11.06 11.49 12.53
3D-Unet [4] 0.81 0.76 0.72 13.65 22.36 13.88
Nifty-Net [12] 0.83 0.71 0.68 27.49 17.35 31.34
3D-CNN [22] 0.82 0.46 0.56 9.56 13.8 14.7
biomedia [21] 0.90 0.73 0.79 4.2 4.5 6.5
UCL-TIG [30]] 0.90 0.78 0.83 3.8 3.2 6.4
MIC-DKFZ [15] 0.89 0.73 0.79 6.9 45 94

205

Mina Rezaei: Deep Learning from Unbalanced Medical Imaging

Table 2: Comparison and the achieved accuracy for semantic segmentation in

: —1 _ TruePositive i1
terms of false negative rate or fnr= 1 — g5 Farsene zarie and false positive

_ TrueNegative . .
rate or fpr=1 — TrieNegatioe+ FalsePosiiioe 0N validation data. The terms of WT, ET,

and TC are abbreviations of whole tumor region, enhanced tumor region, and
core of tumor respectively.

Label fnr-WT fnr-ET fnr-TC fpr-WT fpr-ET fpr-TC
RefinementGAN [226]] 0.11 0.16 0.29 0.02 0.02 0.02
cGAN [23] 0.22 0.34 0.32 0.02 0.04 0.03
Recurrent-cGAN [[24]] 0.19 0.32 0.30 0.02 0.03 0.02
biomedia [21] 0.11 0.22 0.24 - - -
UCL-TIG [30]] 0.09 0.23 0.18 - - -
MIC-DKFZ [15] 0.11 0.21 0.22 - - -

pared to the segmentation results after the refinement network. In the first stage,
the generator is trained by true positive and true negative masks. Meanwhile, the
discriminator network tests how true is the predicted mask created by the generator.
On the top of cGAN, the refinement learns the false negative and false positive masks.
Table (2)) presents discovery of false negative rate (1-recall) and false positive rate
(1-specificity) in detail of network architecture. The final masks computed from the
cGAN (or recurrent-cGAN) network with eliminating false negative and adding
false positive predicted by refinement network.

Regarding results of false discovery rate presented in Table (), we have achieved
good results as second and third ranked teams in BraTS2017 competition when the
segmented masks computed by recurrent conditional GAN and refinement network.
Regarding quantitative results by Tables (Tjand[2), the networks substituted by LSTM
unit predicted more accurate results.

In test time, every group had 48 hours from receiving the test subjects to process
them and submit their segmentation results to the online evaluation system. The av-
erage value of the Dice coefficient is 0.85 in test time, which the results from Table (3))
obtained and evaluated by challenge organizer. Since the results of the challenge in
testing are not publicly available, we are not able to compare the performance of the
different approaches in the test time.

It is important to mention that our method takes only 58 seconds to segment one
MR brain image consisting 155 slices at testing time.

5 Conclusion and Future Work
In this paper, we introduced some recent adversarial frameworks for handling im-

balanced problems for the task of medical image segmentation. We developed and
evaluated the four different algorithms in data-level and algorithm-level to mitigate

206

References

Table 3: The achieved accuracy for brain tumour semantic segmentation by pro-
posed conditional refinement GAN in terms of Dice, sensitivity, specificity, and
Hausdorff distance reported by the BraTS-2017 organizer

Evaluation Validation Test

WI ET TC WT ET TC
Dice 0.86 0.64 073 085 0.61 0.72
Sens 0.89 0.84 0.71 - - -
Spec 098 098 097 - - -
Hdfd 722 830 11.04 873 59.2 259

the issue of unbalanced data for medical image analysis. We achieved promising
results on two popular medical imaging benchmarks for the task of semantic seg-
mentation of abnormal tissues as well as a body organ, together with a prediction
of diseases. In the future, we plan to investigate the potential of one-class learning
using unsupervised GANs for semantic segmentation task.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. “Tensorflow: A System for Large-scale Ma-
chine Learning.” In: OSDI. Volume 16. 2016, pages 265-283.

[2] A.etal. “Brain Tumor Segmentation from Multi Modal MR images using Fully
Convolutional Neural Network”. In: Proceedings of the 6th MICCAI BRATS
Challenge. 2017, pages 1-8.

[3] P. etal “Residual Encoder and Convolutional Decoder Neural Network for
Glioma Segmentation”. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries. 2018, pages 263-273.

[4] P. Amorim, c. vinicius chagas, and e. guilherme escudero. “3D U-Nets For
Brain Tumor Segmentation in MICCAI 2017 BraTS Challenge”. In: Proceedings
of the 6th MICCAI BraTS Challenge. 2017, pages 9-14.

[5] S.Ando and C.Y. Huang. “Deep Over-sampling Framework for Classifying
Imbalanced Data”. In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. 2017, pages 770-785.

[6] S.Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby,]. Freymann, K.
Farahani, and C. Davatzikos. “Segmentation Labels and Radiomic Features for
the Pre-operative Scans of the TCGA-GBM collection”. In: The Cancer Imaging
Archive (2017). doi:|10.7937/K9/TCIA.2017.KLXWJJ1Q.

207

https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

Mina Rezaei: Deep Learning from Unbalanced Medical Imaging

[7]

[12]

[16]

[17]

[19]

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki,]. Kirby, J. Freymann, K.
Farahani, and C. Davatzikos. “Segmentation Labels and Radiomic Features for
the Pre-operative Scans of the TCGA-LGG collection”. In: The Cancer Imaging
Archive (2017). doi: 10.7937/K9/TCIA.2017.GJQTROEF.

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, J. Freymann,
K. Farahani, and C. Davatzikos. “Advancing the Cancer Genome Atlas glioma

MRI collections with expert segmentation labels and radiomic features”. In:
Nature Scientific Data (2017).

S. Bakas, editor. 2017 International MICCAI BraTS Challenge. 2017, pages 1-352.
F. Chollet et al. Keras. 2015.

P. F. Christ, F. Ettlinger, F. Grun, M. E. A. Elshaer, J. Lipkova, S. Schlecht, F.
Ahmaddy, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, F. Hofmann, M. D’Anas-
tasi, S. Ahmadi, G. Kaissis, J. Holch, W. H. Sommer, R. Braren, V. Heinemann,
and B. H. Menze. “Automatic Liver and Tumor Segmentation of CT and MRI
Volumes using Cascaded Fully Convolutional Neural Networks”. In: CoRR
abs/1702.05970 (2017). arXiv:|1702.05970.

Z. Eaton-Rosen, W. Li, G. Wang, T. Vercauteren, B. Sotirios, S. Ourselin, and
M. J. Cardoso. “Using niftynet to Ensemble Convolutional Neural Nets for
the BRATS Challenge”. In: Proceedings of the 6th MICCAI BraTS Challenge. 2017,
pages 61-67.

M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C.
Pal, P.-M. Jodoin, and H. Larochelle. “Brain Tumor Segmentation with Deep
Neural Networks”. In: Medical image analysis 35 (2017), pages 18-31.

S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167
(2015). arXiv:1502.03167.

F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein.
“Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution
to the BRATS 2017 Challenge”. In: 2017 International MICCAI BraTS Challenge
(2017).

P.Isola, J. Zhu, T. Zhou, and A. A. Efros. “Image-to-Image Translation with
Conditional Adversarial Networks”. In: CoRR abs/1611.07004 (2016).

K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski,
M. Rajchl, M. Lee, B. Kainz, D. Rueckert, et al. “Ensembles of Multiple Models
and Architectures for Robust Brain Tumour Segmentation”. In: arXiv preprint
arXiv:1711.01468 (2017).

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y.
Burren, N. Porz, J. Slotboom, R. Wiest, et al. “The Multimodal Brain Tumor
Image Segmentation Benchmark (BRATS)”. In: IEEE transactions on medical
imaging 34.10 (2015), pages 1993-2024.

M. Mirza and S. Osindero. “Conditional Generative Adversarial Nets”. In:
CoRR abs/1411.1784 (2014).

208

https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
https://arxiv.org/abs/1702.05970
https://arxiv.org/abs/1502.03167

[24]

[25]

[26]

[27]

[28]

[29]

[30]

References

L. G. Nydl, J. K. Udupa, and X. Zhang. “New Variants of a Method of MRI
Scale Standardization”. In: IEEE transactions on medical imaging 19.2 (2000),
pages 143-150.

N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, and B. Glocker. “En-
sembles of Multiple Models and Architectures for Robust Brain Tumour Seg-
mentation”. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries: Third International Workshop. Volume 10670. 2018, page 450.

G. R. C. Ramiro and A. Claudio. “Multimodal Brain Tumor Segmentation
using 3D convolutional networks”. In: Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries. 2018, pages 226-240.

M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, and
C. Meinel. “A Conditional Adversarial Network for Semantic Segmentation of
Brain Tumor”. In: International MICCAI Brainlesion Workshop. 2017, pages 241-
252.

M. Rezaei, H. Yang, and C. Meinel. “Cardiac MRI Segmentation via Context
Aware Recurrent Generative Adversarial Network”. In: Journal Computer As-
sisted Radiologist and Surgery (2018). Under review.

M. Rezaei, H. Yang, and C. Meinel. “Instance Tumor Segmentation using Mul-
titask Convolutional Neural Network”. In: IEEE International Joint Conference
on Neural Networks (2018). Accepted.

M. Rezaei, H. Yang, and C. Meinel. “MISS-GANs: Medical Image Semantic
Segmentation via Generative Adversarial Networks”. In: Journal Medical Image
Analysis (2018). Under review.

M. Rezaei, H. Yang, and C. Meinel. “Survival GAN: An adversarial Network
for learning multiple clinical tasks”. In: Medical Image Computing and Computer
Assisted Intervention (2018). Under review.

M. Rezaei, H. Yang, and C. Meinel. “Whole Heart and Great Vessel Segmen-
tation with Context-aware of Generative Adversarial Networks”. In: Bildverar-
beitung fiir die Medizin 2018 — Algorithmen — Systeme — Anwendungen. Proceedings
vom 11. bis 13. Mirz 2018 in Erlangen. 2018, pages 353-358. doi: 10.1007/978-3-
662-56537-7_89.

N. Srebro and A. Shraibman. “Rank, Trace-Norm and Max-Norm”. In: Learning
Theory. 2005, pages 545-560.

G. Wang, W. Lj, S. Ourselin, and T. Vercauteren. “Automatic Brain Tumor
Segmentation Using Cascaded Anisotropic Convolutional Neural Networks”.
In: arXiv preprint arXiv:1709.00382 (2017).

209

https://doi.org/10.1007/978-3-662-56537-7_89
https://doi.org/10.1007/978-3-662-56537-7_89

Comparative Text Mining and News Comment Analysis

Julian Risch

Information Systems Group
Hasso-Plattner-Institut
julian.risch@hpi.de

This progress report describes my recent activities in the HPI Research School on
Service-Oriented Systems Engineering. It presents the current state of my work
and summarizes my research and teaching activities during the last two years.

1 Overview

My field of research is called comparative text mining, where I work on novel doc-
ument representations. The challenge of document representations is to capture
semantic similarities despite different language use. To this end, I develop new topic
models, dense vector representations, and recurrent neural networks. Applications
of my work are text classification systems and content-based recommender systems.
For example, my research can be applied to reference recommendation for patents
and scientific papers, content-based book recommendation, and semi-automated
comment moderation at online discussion platforms.

1.1 Digital Libraries

I am part of the research community working on digital libraries, which deals with
large collections of documents. These documents are typically text documents in
our context but they are not limited to a specific type of text document. My datasets
contain, for example, patents, scientific papers, book synopses, news articles, user
comments, and medical documents. Together with my co-authors I published three
different papers at the three major conferences on digital libraries, which are geo-
graphically distributed across different continents, but address a joint community.
These publications have in common that they deal with large collections of docu-
ments and that they mine information from these documents in order to compare
them. However, they deal with different datasets and aim at different goals. In our
paper “What Should I Cite? Cross-Collection Reference Recommendation of Patents
and Papers” published at the Conference on Theory and Practice of Digital Libraries
(TPDL) we cluster patents and scientific papers by topic despite their different lan-
guage use. We propose an extension to cross-collection topic models, which we also
evaluated on other datasets and tasks in our paper “My Approach = Your Appara-
tus? Entropy-Based Topic Modeling on Multiple Domain-Specific Text Collections”
at the Joint Conference on Digital Libraries (JCDL). Similar to these two publications,
our most recent research is also a recommender system. In “Book Recommendation
Beyond the Usual Suspects: Embedding Book Plots Together with Place and Time

211

mailto:julian.risch@hpi.de

J. Risch: Comparative Text Mining and News Comment Analysis

Information” we model plot, place, and time of a story in a dense vector space. This
space allows us to do arithmetics with books. For example, given a popular book,
we can recommend another book that has a similar plot but is set at a different, user-
defined place and time. This paper has been accepted at the International Conference
on Asia-Pacific Digital Libraries (ICADL).

Recent advances of deep learning in natural language processing introduced the
concept of word embeddings. Independently of any downstream applications, word
embeddings provide a way to represent words as points in a high-dimensional vector
space. Semantically similar words have also (numerically) similar representations in
this space. However, to train word embeddings, huge corpora with billions of tokens
are needed. The training process is also computationally expensive. Therefore the
community mostly uses publicly available, pre-trained word embeddings. These
word embeddings have been trained by large companies and research institutions,
for example, on all English-language Wikipedia pages.

In our paper “Learning Patent Speak: Investigating Domain-Specific Word Embed-
dings”, we compare generic word embeddings with domain-specific word embed-
dings. It has been published at the International Conference on Digital Information
Management (ICDIM), which is topically related to previously mentioned confer-
ences on digital libraries. Specifically, we find that domain-specific word embeddings
can drastically improve precision and recall at an exemplary classification task. We
trained these word embeddings on 38 billion tokens and publish them online so that
other researchers can use them. Currently, I co-advise a master thesis that extends
this work. Its goal is to model the hierarchical scheme for patent classification within
a neural network. It also touches the field of few-shot learning, because the class
distribution is highly imbalanced. For some classes only very few training samples
exist, which makes the classification problem more challenging.

1.2 Comment Analysis

My second field of research is news comment analysis, which deals with user com-
ments posted at online news platforms. Thanks to a collaboration with a large online
news provider, I have access to a real-world dataset of millions of user comments
with additional metadata about comments, users, and articles. Industry collabora-
tions like this also give me valuable insights into the daily working routine of news
editors. In our joint work we discuss our own views of what modern tech-driven
journalism could be. Besides proprietary datasets, I also work on publicly available
data from other online news platforms.

To some extent, collections of millions of comments can be seen as digital libraries,
too. However, collections of comments are typically not used to retrieve archived
information. Instead, I identified several other tasks, which I motivate and explain in
the following. All these tasks share the research questions “How can we leverage ma-
chine learning to improve online discussions?” and “How can we mine information
from online discussions?”.

212

1 Owverview

e Toxic Comment Classification: For editors at online news platforms it is costly
in terms of working power and time to keep discussion sections clean from
inappropriate content and to watch the compliance of users (“netiquette”). To
support editors at the task of moderating and editing user-submitted content,
we propose a semi-supervised machine learning approach. We model linguis-
tic differences of toxic comments in comparison to non-toxic comments and
classify whether a comment contains obscene language, insults, threats, hate
speech, or any other toxic content that makes users leave a discussion. In a joint
work together with PhD students from Beuth University of Applied Sciences,
we participated in the Kaggle Toxic Comment Classification Challenge. Our
approach is an ensemble of recurrent neural networks, convolutional neural
networks, logistic regression, and boosted trees. We finished in the top 2%
(place 54/4551) and continued our collaboration in the field of hate speech de-
tection. This collaboration resulted in a paper publication on current research
challenges, titled “Challenges for Toxic Comment Classification: An In-Depth
Error Analysis” [[1]]. It will be presented at a workshop co-located with the
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Further, we plan to do research on how to automatically explain why a partic-
ular comment is considered toxic or not.

We apply our machine learning approach to English and Hindi comments in
our paper “Aggression Identification Using Deep Learning and Data Augmen-
tation” [[5], but also to German tweets in our paper “Fine-Grained Classification
of Offensive Language” [4]. In a collaboration with the German news provider
ZEIT Online we work on a dataset of German news comments and published
the results in our paper titled “Delete or not Delete? Semi-Automatic Comment
Moderation for the Newsroom” [|6]]. This wide range of languages proofs that
our approach is language-independent. These papers have been published
at workshops co-located with the Conference on Computational Linguistics
(COLING) and the Conference on Natural Language Processing (KONVENS).

One challenge of toxic comment classification is the small amount of labeled
training data. To this end, we propose a transfer learning approach. Instead of
training our models with the limited training data of a specific task, we pre-
train them on related tasks that provide larger amounts of data. For example we
use English-language training data and machine-translate this data to German.
After this process, we use the translated data to train models for German-
language tasks.

e Highlighting Interesting Comments: A contrary approach to toxic comment
classification is the automatic detection of so called “editor picks”. Editor picks
are comments that are highlighted because of their high writing quality and
their relevance to other users. An example is a comment that provides back-
ground information that is not mentioned in the article itself. Another example
is a comment that summarizes parts of a discussion and is helpful to other users
by giving an overview. Currently, I co-advise a master thesis on how to improve
automatic classification of comments by incorporating a comment’s context,

213

J. Risch: Comparative Text Mining and News Comment Analysis

such as previous comments and its corresponding news article. Further, we
participate in the project ,Yes comment!” together with industry partners from
online media. This project is framed by the ,Masterclass Science Journalism*
funded by the Robert Bosch Foundation. It explores how to summarize and
highlight interesting comments in order to enhance the communication in on-
line comment sections. The outcome of the project is planned to be a case
study.

e Comment Volume Prediction: News directors decide when to schedule which
article for publication. With the help of a good prediction of expected interest
and comments, they can balance the distribution of highly controversial topics
across a day. Thereby, not only readers and commenters get a chance to engage
in each single controversial discussion, but also the moderation workload for
comment editors is distributed evenly. Further, knowing which articles will
receive many comments helps in the moderation process: Guiding the main
focus of attention of moderators towards controversial topics facilitates efficient
moderation. We propose a logistic regression model based on article metadata,
linguistic, and topical features to predict the number of comments that an
article will receive. In this field, I co-advised a master’s thesis with the title
“Automatically Managing News Comments”. Based on the results of this thesis,
we published a paper with the title “Prediction for the Newsroom: Which
Articles Will Get the Most Comments?” at the NAACL conference[2].

o Comment Ranking: Typically, online comments are presented in chronological
order. As a consequence, the earliest comments attract the most attention, re-
gardless of whether their content is interesting for other users. Especially early,
provocative comments can stifle any chance of an open and meaningful de-
bate. To encounter this problem, we propose new comment rankings that keep
reply structures intact and address different user needs. For example, we con-
sider rankings based on comment upvotes and downvotes or prestige scores
for users. This is work in progress and overlaps with the next task: discussion
summarization.

e Discussion Summarization: When online discussions grow, it becomes almost
impossible to read through all comments. Popular news articles receive hun-
dreds to thousands of comments. Large comment sections are split across
multiple pages and most users only pay attention to the first page of com-
ments. Because of the large number of comments, it is hard for users to get an
overview of the discussion and extract relevant information. We propose to
automatically summarize discussions, cluster subtopics, and extract principal
arguments. Thereby, we aim to make longer discussions more engaging and
more accessible to users.

e Modeling Linguistic Change: Language use underlies temporal changes. The
detection, analysis, and visualization of vocabulary shifts, can give interesting
insights. Further, whether a particular comment is appropriate for publication
might also vary over time. As a consequence, machine learning models, such as

214

References

semi-automated comment classifiers need to adapt to vocabulary shifts. Our ap-
proach focuses on diachronic word embeddings, where a word is represented
with a different vector depending on the temporal context of its use.

e Modeling Users” Commenting Behavior: While comment volume prediction
and modeling linguistic change considers online communities as a whole, mod-
eling the comment behavior of particular users is a more fine-grained task.
Here, the goal is to predict which articles a particular user will most likely
comment on or in what tone. Besides the accuracy of a model’s predictions, its
interpretability and explainability is an important aspect. The latter is an un-
solved research problem especially for deep neural networks and motivates the
use of other machine learning models, such as probabilistic graphical models.

1.3 Outlook

Two submissions are planned in November and January to the Web Conference 2019
(formerly WWW conference) and the International Conference on Research and De-
velopment in Information Retrieval 2019 (SIGIR). In November 2018, I will present
our paper “Book Recommendation Beyond the Usual Suspects: Embedding Book
Plots Together with Place and Time Information” at the 20th International Confer-
ence On Asia-Pacific Digital Libraries (ICADL) [3]. At the same time, our paper
“Challenges for Toxic Comment Classification: An In-Depth Error Analysis” will
be presented at the 2nd Workshop on Abusive Language Online (co-located with
EMNLP) [1]]. After my work on comment ranking and discussion summarization
is finished, I plan to focus my research on how to model users’ commenting behav-
ior. Starting from March 2019, I will again teach an HPI Youth College course on
Information Retrieval and Web Search.

References

[1] B.van Aken,]. Risch, R. Krestel, and A. Loser. “Challenges for Toxic Comment
Classification: An In-Depth Error Analysis”. In: Proceedings of the 2nd Workshop
on Abusive Language Online (co-located with EMNLP). 2018.

[2] C.Ambroselli,]. Risch, R. Krestel, and A. Loos. “Prediction for the Newsroom:
Which Articles Will Get the Most Comments?” In: Proceedings of the 16th Annual
Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL). 2018, pages 193-199.

[3] J.Risch, S. Garda, and R. Krestel. “Book Recommendation Beyond the Usual
Suspects: Embedding Book Plots Together with Place and Time Information”.
In: Proceedings of the 20th International Conference On Asia-Pacific Digital Libraries
(ICADL). 2018.

215

J. Risch: Comparative Text Mining and News Comment Analysis

[4]

J. Risch, E. Krebs, A. Loser, A. Riese, and R. Krestel. “Fine-Grained Classifica-
tion of Offensive Language”. In: Proceedings of the Germeval Task 2018 — Shared
Task on the Identification of Offensive Language (co-located with KONVENS). 2018.

J. Risch and R. Krestel. “Aggression Identification Using Deep Learning and
Data Augmentation”. In: Proceedings of the First Workshop on Trolling, Aggression
and Cyberbullying (co-located with COLING). 2018, pages 150-158.

J. Risch and R. Krestel. “Delete or not Delete? Semi-Automatic Comment Mod-
eration for the Newsroom”. In: Proceedings of the First Workshop on Trolling,
Aggression and Cyberbullying (co-located with COLING). 2018, pages 166—-176.

216

Power-Law Distributions in Random Satisfiability

Ralf Rothenberger

Algorithm Engineering
Hasso Plattner Institute
ralf.rothenberger@hpi.de

One of the most fundamental problems in computer science is Propositional Satisfi-
ability (SAT). Its computational hardness gave rise to many complexity-theoretical
concepts, e.g. NP-hardness and lower bounds on algorithmic runtime via the
(Strong) Exponential Time Hypothesis. In order to analyze the average-case com-
plexity of SAT and to generate benchmarks for solvers, instances are created at
random (random SAT). Random SAT initiated the development of sophisticated
rigorous and non-rigorous techniques for analyzing random structures. Despite a
long line of research and substantial progress, nearly all theoretical work on ran-
dom SAT assumes a uniform distribution on the variables. In contrast, real-world
instances often exhibit community structure and large fluctuations in variable
occurrence, similar to big real-world networks.

This report documents my work analyzing a more realistic random SAT model
inspired by one proposed by Ansétegui et al. [2]]. I present my latest results, which
show under which requirements the probability of generating satisfiable formulas
abruptly changes from asymptotically almost surely (a.a.s.) one to a.a.s. zero.

1 Overview

Random k-SAT was introduced as a means to study the average-case complexity
of Propositional Satisfiability (SAT). In it one creates random SAT instances with a
given number of variables 7, a given number of clauses m, and a given number of
literals per clause k. These instances are generated in such a way, that each instance
with these parameters has the same uniform probability to be created. One of the
most prominent questions related to random k-SAT is trying to prove the satisfiability
threshold conjecture. Intuitively, the satisfiability threshold is the clause-variable-
ratio m/n at which the probability to generate a satisfiable formula goes from one
to zero (see Figurell)).

The satisfiability threshold conjecture states that for a formula ® generated with
random k-SAT, there is a real number r; such that

lim Pr{® is satisfiable} =

n— 00

1 m/n<rg
0 m/n>ry.

Trying to prove this conjecture has been the subject of many works since the 1980’s
and there has been a lot of progress since then: For k = 2, Chvatal and Reed [4]]
and, independently, Goerdt [[13]] proved that r, = 1. For k > 3, explicit upper and
lower bounds have been derived, e.g., 3.52 < r3 < 4.4898 [8, 14, [15]. Additionally,
the cavity method from statistical mechanics [|16] was used to suggest a numerical

217

mailto:ralf.rothenberger@hpi.de

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

1 T T T '.I T T T
0.8 i
o o
o
3
% 061 —
©
(2] .
c
S 04f |
(8]
9 L]
0.2 . i
0 ! ! ! ! b WY . .
0 1 2 3 4 5 6 7 8

ratio of clauses to variables

Figure 1: Fraction of satisfiable formulas for random SAT with clause length k = 3
and n = 100 variables. Each data point created with 500 random formulas.
The threshold can be observed somewhere around a clause-variable-ration of
m/n =~ 4.26.

estimate of r3 ~ 4.26. Coja-Oghlan and Panagiotou [5| 6] derived a bound (up to
lower order terms) for k > 3 withr, = 2log2 — 1(1 +1og2) + 0k(1). Recently, Ding,
Sly and Sun [7]] proved the exact position of the threshold for sufficiently large values
of k.

Determining the location of the satisfiability threshold can give insights about
structural properties of the random formulas. Furthermore, it can be observed that
the runtime of SAT solvers is especially high around the satisfiability threshold [[17]]
(see Figure[2). Therefore, knowing the location of the threshold can be helpful when
trying to generate difficult benchmarks.

However, nearly all other theoretical work on random SAT assumes a uniform
distribution on the variables. In contrast, real-world instances often exhibit commu-
nity structure and large fluctuations in variable occurrence, similar to big real-world
networks. For example, it has been found out that the degree distribution of many
families of industrial instances follows a power-law [|1, 3]. This means that the frac-
tion of variables that appear i times is proportional to i ~#, where B is a constant
intrinsic to the instance. To help close the gap between the structure of random and
industrial instances, Ansétegui et al. [[1]] proposed a power-law random SAT model.

These insights inspired us to also look beyond random k-SAT with uniform distri-
butions. Instead, we consider instances with a given ensemble of variable probability
distributions (), - To create an instance with n variables and m clauses, the vari-
ables of each clause are drawn with a probability proportional to p,, then they are
negated independently with a probability of 1/2 each. This is repeated m times. We
call this model non-uniform random k-SAT. The main questions we want to answer
now are: Does an equivalent of the satisfiability threshold conjecture still hold, if

218

2 Preliminaries and Related Work

10000 ; . . —— . ;
9000 .
8000 . 1
7000 y
6000 . .
5000 * e -
4000
3000
2000
1000 y e

median computational cost

0 1 2 3 4 5 6 7 8
ratio of clauses to variables

Figure 2: Median number of propagations when solving with MiniSAT (no pre-
processing or randomization) for uniform random SAT with clause length
k = 3 and n = 100 variables. Each point is the median of 500 random formulas.
It can be seen that around the satisfiability threshold there is a peak in median
runtime, which turns out to scale exponentially with the number of variables
n.

we consider the non-uniform random k-SAT model? If so, for which ensembles of
variable probability distributions does it hold and for which does it not?

In this report we summarize and discuss our latest results trying to answer these
questions.

2 Preliminaries and Related Work

To give an answer to these questions, one first has to understand asymptotic and
sharp thresholds for satisfiability. Let y,, be the probability that a random formula
is unsatisfiable when drawing m(n) clauses over n variables. m* = m*(n) is an
asymptotic threshold function for unsatisfiability if for every m = m(n)

{0, if m = o(m*)

lim p, =
1, ifm=w(m*).

n—o0

We say that unsatisfiability has a sharp threshold, if there exists a function m* =
m*(n) such that for every constant ¢ > 0 and for every m = m(n)

lim =
n—oo]/lm

0, ifm<(1—¢g)m*
1, ifm > (1+¢)m*.

Otherwise we call the threshold coarse.

219

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

In terms of threshold functions, the satisfiability threshold conjecture states that
there is a sharp threshold for satisfiability at m = r¢ - n and the constant ry is the
same for a fixed k and all sufficiently large n. For k = 2, Chvatal and Reed [4] and
Goerdt [13]] proved the conjecture and showed that r, = 1. However, random 2-SAT
is easier to analyze than random k-SAT and their techniques do not work for bigger
values of k. For uniform random k-SAT the “recipe” for proving the conjecture is as
follows:

1. Show the existence of an asymptotic threshold function, i.e. show constant
lower and upper bounds on 7y.

2. Prove that the threshold is sharp. In 1999 Friedgut [9]] showed that the satisfi-
ability threshold for uniform random k-SAT is sharp, although its location is
not known exactly for all values of k. However, his result does not prove that r;
is the same for a fixed k and all sufficiently large values of n. Friedgut’s proof
relies on knowing the asymptotic threshold function.

3. Derive the actual constant r; and that the threshold is sharp around it. Ding et
al. [7]] were the first to prove the exact value of r; for values of k bigger than 2.
Their proof relies on the result of Friedgut.

The approach we have is to show equivalents of these proofs for non-uniform prob-
ability distributions in order to show or refute the conjecture for certain probability
ensembles.

3 Our Results

In our last reports we primarily reported results on the asymptotic threshold for
power-law random k-SAT, i.e. non-uniform random k-SAT where the prescribed vari-
able frequency is a power law. These results are summed up in the next section before
we state our more general and more recent results in the section thereafter.

3.1 Power-Law Random k-SAT

We analyzed the power-law random k-SAT model and showed results regarding
its asymptotic satisfiability threshold. First, we showed the following lower bound
on the threshold position for power-law random 2-SAT [[11]]. An illustration of this
bound compared to experimental results can be seen in Figure

Theorem 1. Scale-free random 2-SAT with power-law exponent B > 3 and clause-variable

ratiom/n < % is almost surely satisfiable.

We then showed that the satisfiability threshold for power-law random k-SAT with

power-law exponents below zkk_—*ll is sublinear in n [[10]].

Corollary 2. Let ® be a random k-SAT formula that follows an arbitrary power-law distribu-
tion and consists of ®(n) clauses. If the power-law exponent is p < Zkk%ll, D is unsatisfiable
with high probability.

220

3 Our Results

1 M unsatisfiable

Figure 3: Phase diagram for scale-free 2-SAT formulas with n = 107 variables. We
empirically observe a sharp phase transition (==), which closely matches the
theoretical bound of Theorem 1| (—).

unsatisfiable unsatisfiable

-
-
-

-
S A
.

o4

-
L}
L}
L}
L}
L}
L}

unknown
wsolver timeout)

-
R e

S 2,
S S g .-
' Pt
 satisfiable 2 satisfiable
1 »
2kk—;11 2 22 24 26 28 3
p p

Figure 4: Illustration of our asymptotic results for the power-law satisfiability
threshold location when n — co (left) compared with empirical results for
randomly generated power-law 3-SAT formulas on 1 = 10° variables checked
with the SAT solver MiniSAT (right). The timeout was set to one hour.

For power-law exponents above 2= we were able to show that the satisfiability

threshold is at least linear in n by providing the following lower bound.

Theorem 3. Let @ be a random k-SAT formula that follows an arbitrary power-law distri-
bution. If the power-law exponent is p > 2,('1—_11 + ¢ for an arbitrary e > 0, O is satisfiable
with high probability if % is a small enough constant.

Although the satisfiability threshold for every probability distribution can be at
most, linear, we improved upon the trivial bound of In(2) / ln(%) with the follow-

ing theorem.

221

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

Theorem 4. Let ® be a random k-SAT formula with k > 2 and r = ' that follows a
power-law distribution. Let further N € IN™ be any constant. If the power-law exponent is
B > 2, then ® is w. h. p. unsatisfiable if

((121,()r21111\l]_[1 lz—exp (—(14—0(1))1'2,{]{_12:? <I;T>ﬁll>]N) <1

I=1

A summary of those results can be seen in Figure
3.2 More recent results

Recently we considered non-uniform random k-SAT with other variable probability
distributions besides a power law. Let D (n, k, p, m) be non-uniform random k-SAT,
where m clauses are drawn with a variable probability distribution 7 over n vari-
ables. The first result we showed for D (n, k, j, m) asserts sharpness if the asymptotic
threshold is known and if p has certain properties [[12]. This result provides us with
the second part of our “recipe” for proving the satisfiability threshold conjecture.

Theorem 5. Let pj be a variable probability distribution on n variables and let m. = t be an
asymptotic satisfiability threshold for D (n, k, p, m) with respect to m. If

[Plle =0 (t‘k/(Zk—l) log~(k"D/(2=1) t)

and
113 =0 (£2%),
then satisfiability has a sharp threshold on D (n, k, p, m) with respect to m.

The first step toward showing this result is considering a slightly different random
k-SAT model. In D (n, k, g, m) a fixed number m of clauses is drawn at random. In
the new model we consider, which we call F (n,k, p,s), we flip a coin for each of the
(1) - 2% possible k-clauses to see if we add it. The probability with which we add a
certain clause is equivalent to the probability of drawing that clause in D (n, k, g, m)
multiplied with a scaling factor s. We can now define an equivalent of asymptotic
and sharp thresholds with respect to the scaling factor s instead of the number of
clauses m. This model is a lot easier to analyze and we can show that the thresholds
in both models behave similarly under the conditions of Theorem 5| The following
theorem now asserts sharpness of the threshold for F (n,k, g, s).

Theorem 6. Let pj be a variable probability distribution on n variables and let s = t be an
asymptotic satisfiability threshold for F (n,k, p, s) with respect to s. If

[P]lec =0 (t*k/(Zkfl) log~(k=1)/@k-1) t)

and
1815 = 0 (2%),

then satisfiability has a sharp threshold on F (n,k, p, s) with respect to s.

222

3 Our Results

The proof of this theorem follows the lines of Friedgut’s proof for the uniform
case [9] and employs Fourier transformation techniques by O’'Donnell [|18]]:

We assume toward a contradiction that the threshold is coarse. Then the Sharp
Threshold Theorem [[18] tells us that there have to be so-called “boosters” of constant
size that appear with constant probability in the random formula. These boosters are
subformulas which have the property that conditioning on their existence boosts the
probability of the random formula to be unsatisfiable by at least an additive constant.

One kind of booster are unsatisfiable subformulas of constant size. Conditioning
on these would boost the probability to be unsatisfiable to one. We rule these out by
showing that they do not appear with constant probability.

Then, we consider subformulas which give the second highest boost: maximally
quasi-unsatisfiable subformulas. These are subformulas which have only one satisfy-
ing assignment for the variables appearing in them and adding any new clause over
those variables makes them unsatisfiable. We want to show that these cannot boost
the probability of a formula to be unsatisfiable by a constant.

Again toward a contradiction, we assume, that conditioning on a maximally quasi-
unsatisfiable subformula T is enough to boost the unsatisfiability probability by a
constant. First, we prove that conditioning on T is equivalent to adding a number of
clauses of size shorter than k to the random formula over variables not appearing in T.
Then, we use a version of Friedgut’s coverability lemma to show that, if adding these
clauses of size smaller than k makes the random formula unsatisfiable with constant
probability, then so does adding o(t) clauses of size k. We prove that this probability is
dominated by the probability to make the original random formula unsatisfiable for
a slightly bigger scaling factor. However, due to the assumption of a coarse threshold,
the slope of the probability function for unsatisfiability has to be small at one point in
the threshold interval. If we consider exactly this point, the probability to make the
original random formula unsatisfiable cannot be increased by a constant with our
slightly increased scaling factor. This contradicts our assumption that the probability
is boosted by a constant in the first place. Therefore, quasi-unsatisfiable subformulas
cannot be boosters.

After showing this, every less restrictive subformula cannot be a booster either.
That means, the only possible boosters are unsatisfiable subformulas, which we ruled
out already. Therefore, the implication of the Sharp Threshold Theorem does not
hold, which contradicts the assumption of a coarse threshold.

This theorem especially applies to both uniform random k-SAT and power-law
random k-SAT with exponent g > 2kk_;11 +1

Corollary 7. Let p be an arbitrary power-law distribution. If the power-law exponent is
B > 2=1 + ¢ for an arbitrary € > 0, then D (n, k, p, m) has a sharp threshold with respect
to m.

223

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

4 Conclusion and Future Work

I analyzed the power-law random SAT model proposed by Ansétegui et al. [2]]. For
the case of power-law random 2-SAT I was able to prove a lower bound on the
satisfiability threshold which depends on the power-law exponent of the variable
distribution and seems to be tight in practice [[11]]. For k-SAT with k > 3 I showed
that only the regime of distributions with power-law exponent bigger than zkk 7
exhibits a satisfiability threshold which is constant in the clause-variable-ratio, while
distributions with a lower exponent almost surely generate unsatisfiable formulas
at constant clause-variable ratios. For power-law exponents above 2k L I gave upper
and lower bounds on the satisfiability threshold, which allowed me to show that an
asymptotic threshold exists at ©(n). These results can also be found in [|10]].

Furthermore, I studied a more general model for random k-SAT, which I called
non-uniform random k-SAT. For this model I proved requirements on the sharpness
of the satisfiability threshold depending on the variable probability distribution [[12]],
c. f. Theorem[5} The requirements of the theorem are met, if the power-law exponent
is above 2k L +1, proving a sharp threshold in this case. This means, for power-law
random k SAT with power law exponents above Zk 1 +1, I already provided the
first two out of three ingredients towards proving an equlvalent of the satisfiability
threshold conjecture

At the moment I am further investigating the threshold behavior of non-uniform
random k-SAT. Since random 2-SAT is easier to analyze am considering non-uniform
random 2-SAT. For this special case I want to show matching lower and upper bounds
on the satisfiability threshold under certain conditions on the variable probability
distribution. This could allow me to immediately prove the satisfiability threshold
conjecture for certain probability ensembles. If these conditions are not met, I want
to show that there is an asymptotic threshold, but this threshold is coarse. This will
show a dichotomy for the sharpness of the threshold depending on the variable
probability distribution.

I want to show similar results for non-uniform random k-SAT with k > 2. This
means studying the asymptotic threshold and showing conditions under which
the threshold is coarse. Furthermore, I want to try and improve my result on the
sharpness of thresholds to demand only |7l = o (t71/%).

All results mentioned in this report and some of the results I am currently working
on will be part of my dissertation.

References
[1] C. Ansétegui, M. L. Bonet, and]J. Levy. “On the Structure of Industrial SAT

Instances”. In: 15th Intl. Conf. Principles and Practice of Constraint Programming
(CP). 2009, pages 127-141.

224

[13]
[14]

[15]

References

C. Ansétegui, M. L. Bonet, and . Levy. “Towards Industrial-Like Random SAT
Instances”. In: 21st Intl. Joint Conf. Artificial Intelligence (IJCAI).2009, pages 387-
392.

Y. Boufkhad, O. Dubois, Y. Interian, and B. Selman. “Regular Random k-SAT:
Properties of Balanced Formulas”. In: J. Automated Reasoning 35.1-3 (2005),
pages 181-200.

V. Chvatal and B. A. Reed. “Mick Gets Some (the Odds Are on His Side)”. In:
33rd Symp. Foundations of Computer Science (FOCS). 1992, pages 620-627.

A. Coja-Oghlan. “The Asymptotic k-SAT Threshold”. In: 46th Symp. Theory of
Computing (STOC). 2014, pages 804-813.

A. Coja-Oghlan and K. Panagiotou. “The Asymptotic k-SAT Threshold”. In:
Advances in Mathematics 288 (2016), pages 985-1068.

J. Ding, A. Sly, and N. Sun. “Proof of the Satisfiability Conjecture for Large K”.
In: 47th Symp. Theory of Computing (STOC). 2015, pages 59-68.

J. Diaz, L. M. Kirousis, D. Mitsche, and X. Pérez-Giménez. “On the Satisfia-
bility Threshold of Formulas With Three Literals per Clause”. In: Theoretical
Computer Science 410.30-32 (2009), pages 2920-2934.

E. Friedgut. “Sharp Thresholds of Graph Properties, and the k-SAT Prob-
lem”. In: J. Amer. Math. Soc. 12.4 (1999). With an appendix by Jean Bourgain,
pages 1017-1054. issn: 0894-0347.

T. Friedrich, A. Krohmer, R. Rothenberger, T. Sauerwald, and A. M. Sutton.
“Bounds on the Satisfiability Threshold for Power Law Distributed Random
SAT”. In: 25th European Symposium on Algorithms (ESA). 2017, 37:1-37:15.

T. Friedrich, A. Krohmer, R. Rothenberger, and A. M. Sutton. “Phase Transi-
tions for Scale-Free SAT Formulas”. In: 31st Conf. Artificial Intelligence (AAAI).
2017, pages 3893-3899.

T. Friedrich and R. Rothenberger. “21st Intl. Conf. on Theory and Applica-
tions of Satisfiability Testing (SAT)”. In: International Conference on Theory and
Applications of Satisfiability Testing (SAT). 2018, pages 273-291.

A. Goerdt. “A Threshold for Unsatisfiability”. In: J. Comput. Syst. Sci. 53.3
(1996), pages 469-486.

M. T. Hajiaghayi and G. B. Sorkin. The Satisfiability Threshold of Random 3-SAT
is at Least 3.52. Technical report RC22942. IBM, 2003.

A. C. Kaporis, L. M. Kirousis, and E. G. Lalas. “The Probabilistic Analysis of
a Greedy Satisfiability Algorithm”. In: Random Struct. Algorithms 28.4 (2006),
pages 444-480.

M. Mézard, G. Parisi, and R. Zecchina. “Analytic and Algorithmic Solution of
Random Satisfiability Problems”. In: Science 297.5582 (2002), pages 812-815.

D. G. Mitchell, B. Selman, and H. J. Levesque. “Hard and Easy Distributions
of SAT Problems”. In: 10th Conf. Artificial Intelligence (AAAI). 1992, pages 459—
465.

225

Ralf Rothenberger: Power-Law Distributions in Random Satisfiability

[18] R.O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

226

Mobile Fabrication

Thijs Roumen

Human Computer Interaction
Hasso-Plattner-Institute
thijs.roumen@hpi.uni-potsdam.de

I explore the future of fabrication, in particular the vision of mobile fabrication,
which I define as “personal fabrication on the go”. We introduce this vision with
two surveys, two simple hardware prototypes, matching custom apps that provide
users with access to a solution database and custom fabrication processes we de-
signed specifically for these devices. Our findings suggest that mobile fabrication
is a compelling next direction for personal fabrication. From our experience with
the prototypes we derive the hardware requirements to make mobile fabrication
technically feasible.

Aside from presenting the vision of mobile fabrication, I will touch upon the
different challenges for mobile fabrication to become a reality (how to model on
the go, what the hardware for mobile fab can be, how to ensure portability of
models) and present an overview of projects we are currently engaged in to push
this agenda forwards.

L1
Q)Ah\wudl)lm

Figure 1: According to our survey, one use case of mobile fabrication is to fix
things that break while on the go. This user, for example, fabricates a hex key
to fix his broken bike light using either (a) a custom “mobile” 3D printer or (b)
a “human-assisted” 3D printer based on an extruder pen. We drive both using
a mobile phone running our custom app.

1 Overview

Personal fabrication has emerged as a topic in human computer interaction [|6]. 3D
printers, initially considered tools for prototyping [9]], are now explored as tools to

227

mailto:thijs.roumen@hpi.uni-potsdam.de

Thijs Roumen: Mobile Fabrication

help users solve engineering problems, such as the design and assembly of furniture
and vehicles [[15], optimization of objects” aerodynamics [[19]], or repair of objects
[[17].

While fabrication currently takes place in offices, labs, and workshops, the current
evolution of 3D printing hardware suggests that 3D printers are about to achieve a
mobile form factor (e.g. iBoxNano (iboxprinters.com) or Olo (olo3d.com)). Future
users may soon have access to such devices while on the go. In an analogy to mobile
computing, such mobile fabrication could provide users with access to fabrication
anywhere, anytime. This raises a number of questions: what will users do with
such devices while on the go? How will the hardware develop? What issues and
limitations will users encounter?

2 Approach

First we explore the vision of mobile fabrication, this is the main content of this
document. The conclusion of this is a set of requirements to make this vision a
reality. I am currently engaged in a series of follow-up projects that focus each on
one of these requirements. One of them being grafter [12]], which was presented in
previous retreats, focusing on the challenge of modeling on the go (remixing and
browsing is feasible on the go, 3D modeling from scratch is not).

To explore the vision of mobile fabrication, we conducted two surveys with the
primary objective to create a basis for our subsequent work. The objective of the first
survey was to create a list of objects potential future users might want to fabricate
while on the go. The objective of the second survey was to prioritize this list. The
resulting prioritized list of objects became the basis for our subsequent engineering.

2.1 Survey one: scenarios worth solving with fabrication

We recruited 40 volunteers from our institution (age 18-38, 12 female). Each par-
ticipant filled in a questionnaire with the following wording “We are studying 3D
printing, specifically a potential future where people might carry a tiny 3D printer
with them at all times, as we do with mobile phone. We are wondering about poten-
tial use cases. Please list five on-the-go scenarios where being able to make a missing
object quasi-instantaneously would really help you out.”

Results: Each participant listed on average of 3.9 objects for a total of 75 distinct
objects. The list contained 50 objects that could be produced by a mobile 3D printer.

Discussion The useful scenarios in which objects on the list would be required
could be characterized by three main qualities: (1) Unexpectedness: users are un-
likely to incidentally carry the required objects. (2) Importance: not having the object
costs time, money, safety, or reputation. (3) Urgency: The problem requires a timely
solution otherwise users would solve the problem later, by buying the object or by
fabricating it at home or at work. To help us focus our subsequent engineering effort

228

2 Approach

on the most relevant objects, we conducted a second survey in which we prioritized
objects on this list.

2.2 Survey two: prioritizing the scenarios

We recruited a separate set of 39 participants (age 2045, 18 female). Each participant
rated each of 12 use cases of mobile fabrication. We had created the list by sampling
each of the 5 categories from the first survey and then making the list of objects more
tractable by adding a brief description of a context of use. Participants rated objects
in the resulting scenarios as “must have”, “nice to have”, and “uninteresting”.

Results: The three scenarios that received the highest number of “must have”
ratings were: (15) “make a key when you locked yourself out at home”, (11) “create
earplugs when there is somebody snoring next to you in a long distance bus”, and
(9) “make a carabiner to fix a bag strap on the way to plane.”

Scenarios with the highest combined number of “must have” and “nice to have” rat-
ings were: (38) “Make an Allen wrench to fix a bike lamp” (36) “Replacing shoelaces
when they break during a longer hike”, and (36) the carabiner mentioned before. The
least popular scenarios (with largest number of “unimportant” ratings) were: (25)
“replace a lost earring retainer”, (11) “make a shopping cart clip”, and (8) “make
disposable cutlery”.

Discussion The second survey provided us with a ranking of objects that helped
us focus our subsequent engineering effort. Furthermore, the survey had raised the
question about engineering issues, which we decided to address using a solutions
database. Finally, the large number of “must have” ratings in the second survey
suggests that mobile fabrication has the potential to matter.

2.3 Engineering and practicality check 1: modified 3D printer

Building on the results of our surveys, we set out to test the practicality of mobile
fabrication. We started by creating the first iteration of what a mobile 3D printer
might look like, wrote a matching app for it, and then tried to fabricate the list of
desired objects from our survey. To satisfy the urgency objective, we re-engineered
all objects so as to minimize build time. Our overall objective was to investigate what
objects this type of device would be able to produce and where mobile 3D printers
would fail in order to derive implications about mobile 3D printer hardware.

We started out with a 3D printer that extrudes plastic. We wanted to use the printer
truly “on the go” and FDM worked well here because it continues to print when held
sideways or even upside down and while being shaken. This criterion prevented us
from using certain other printer designs, including those based on stereo-lithography
as they use a container of liquid resin that needs to be upright and stationary while
printing (e.g. Olo).

In order to optimize the form factor, we reduced the height of the device as shown
in Figure |2} This reduced the printable height from 11.6cm to 2.2cm, and the print
area to 9.1 x 8.4 cm. The resulting printer weighted 1190g and measured 9 x 18.5 x

229

Thijs Roumen: Mobile Fabrication

battery pack

extruder head

mini PC
Figure 2: The modified printer, a Micro 3D printer reduced in height and extended
with battery pack and UDOO miniPC

18.5cm, which makes its size comparable to a handbag or messenger bag. We added
a shoulder strap, allowing users to wear the printer like a messenger bag, as shown
in Figure[I|and Figure

To allow the printer to work on the go, we retrofitted it with a battery pack that
allowed for about one hour of printing time (1800mAh). We attached a single-board
computer (UDOO Quad board) running a web-based host (OctoPrint [7]]) on top
of Linux (Udoobuntu 1.1). This allowed us to control the printer through a phone
app connecting to the OctoPrint server as a web app.

To allow users to look up engineered solutions, we wrote the app shown in Figure
The app allowed users to search for solutions for the on-the-go scenarios from
the survey and it returned hand-engineered annotated 3D models. The app ran in a
web browser and was written in AngularJS. The app retrieved the 3D models from
a cloud service (Firebase), which used a NoSQL database to store relevant data in
JSON format. We stored the images accompanying the 3D models with an image
service provider (Cloudinary). The app interfaced with Firebase and the server
using HTTP requests.

Walkthrough Users operated the system as illustrated by Figure 3| Here a user
uses the system to re-attach a bike lamp. (a) He wants to ride home in the dark when
he discovers that the lamp sags — the mount of the bike lamp is broken. In order
to make his ride home safe, he decides to re-attach the lamp. (b) Close inspection
reveals a loose hex nut, but our user does not carry the matching hex key. (c) He
starts our app and enters “hex key”. (d) The system offers several models of hex
keys — all custom designs reduced to the bare mini-mum to allow for fast fabrication.
The first two are sized 5mm and 6mm, but the user is uncertain about the diameter
of the nut. He therefore picks the third model, which offers two heads: one for 5mm
and one for 6mm.

(e) The user produces the hex key, which takes 25 minutes. The printer works
in any orientation and while moving. Since the app works while running in the
background, the user is free to roam around and to use the phone in the meantime.

230

2 Approach

Figure 3: Walkthrough

(f) 25 minutes later the app plays a notification sound. The user removes the hex key
from the print chamber, (g) re-attaches the lamp by tightening the hex nut, and (h)
rides on safely.

Designing for mobile fabrication based on 3D printer In order to engineer the
solutions in the database, we got together with a team of three lab members and
recreated the 3D printable designs from the study list for our mobile 3D printer
setup. We generally started with objects from an online repository (Thingiverse.com)
and then optimized for use with our mobile printer. Most designs only required
optimizing material use in order to maximize printing speed. We created five types
of optimizations, which we discuss at the example of the aforementioned hex key
(Figure [shows 5 close-ups).

(a) Use strong geometric structures. The handle of the hex key has to be strong
enough to transmit large amounts of torque, yet we still want it to print quickly.
As shown in Figure |4} we address this by creating a handle in the form of a flat
structure of connected beams (aka truss) optimized to handle torque. (b) Avoid
support material by designing in 2%2D. To prevent buckling, we need to add several
very narrow extra layers on top for a L-shaped cross section, but we add them on
one side resulting in a 2%2D design that prints is flat against the build platform and
does not require support-material.

231

Thijs Roumen: Mobile Fabrication

@

Figure 4: Our optimizations, at the example of the hex key included

(c) Reinforce weak points. The weakest point of the hex key design is the connec-
tion between handle and tip. We rein-force it by adding a smooth transition, aka a
fillet. (d) Reinforce using metal parts. If we need to transmit even more torque, e.g.,
to unlock rusty nuts, make users embed metal objects they are likely to carry, here a
coin.

(e) To maximize strength, we print this hex key sideways. This allows filament to
weave back and forth between the top and the cradle for the coin, resulting in extra
stability.

More challenging was the fabrication of objects that require printing around or
through objects from the environment. Shoelaces are one example. While we can 3D
print shoelaces, the nature of the PLA plastic makes it hard to tie a knot. We would
therefore prefer to close up our shoelaces by 3D printing stoppers at each end, i.e.,
print, pause the printer to insert the lace into the shoe, and then finish the print (as
demonstrated in and [2]]).

We were able to avoid this type of complication by adding 3D printed locking
mechanism into our objects, i.e., print the entire object, insert it, and then close the
mechanism. Figure [5illustrates this, implementing (a) shoelaces as a zip tie and (b)
a chain link as a carabiner.

Figure 5: (a) Shoelace as zip tie, (b) chain link as carabiner

232

2 Approach

2.3.1 Limitation: Objects that have to fit the environment

While we managed to overcome the challenge of making objects that “loosely” con-
nect with the environment, objects that “tightly” interact with the environment re-
main elusive.

The hex key from our walkthrough is a benevolent sub-category of this problem.
While the user has to guess the size of the nut the hex nuts are standardized. This
leaves a reasonably small number of choices, which we can address by simply im-
plementing all the choices under consideration, i.e., a 5mm head and a 6mm head.
In this particular example, we can do so with little overhead as most of the printing
effort goes into the handle regardless. The overhead of producing multiple solutions,
however, grows with the number of possible choices and the approach fails when
trying to reproduce an infinite number of choices, such as ear buds that fit the 3D
geometry of the user’s ear.

Ultimately, mobile 3D printers will likely contain appropriate measurement tools
in order to fabricate this class of objects. Measurement equipment could be as simple
as calipers or as complex as a 3D scanner with sub-millimeter precision. We discuss
this in the discussion section.

Since this type of scanning equipment is not quite ready for mobile use, we took
a different approach and created a second mobile fabrication prototype that drops
the 3D printer in favor of a more experimental, more flexible fabrication device.

2.4 Engineering and Practicality check 2: hand-held

Figure [| shows our second prototype. Like our first prototype, it used a plastic ex-
truder. However, instead of the 3D printer’s x/y/z actuation mechanism, this proto-
type was built around a hand-held plastic extruder pen, i.e., the prototype actuates
the extruder using the user’s hand, resulting in a human-assisted [23]] fabrication
system.

Figure 6: Second prototype

At the expense of additional user effort, the ad-hoc benefits of the human-assisted
approach include: (1) fabrication directly onto objects in their environments, (2) a
device 10x smaller than our first prototype, and (3) substantially faster fabrication
(by integrating external objects and a coarser extruder).

Again we wrote an app around the device that provides users with solutions for
common problems, and then tried to fabricate the list of desired objects from our

233

Thijs Roumen: Mobile Fabrication

survey. We re-engineered all objects so as to produce as fast as possible. Our overall
objective was to explore what objects we could make and where our system would
fail in order to derive implications for mobile 3D printer hardware, like in the first
iteration.

2.4.1 The second prototype

For this prototype, we modified an off-the-shelf plastic extruder pen (a 3Doodler
2.0, the3doodler.com) to allow for mobile use (Figure[6)). It was outfitted with two
120mAH rechargeable batteries to provide 20 minutes of printing time, enough
to build one large object or three smaller ones. (Other extruder pens, such as the
Creopop (creopop.com) or Bondic (notaglue.com) could have been used as well).

Like our first prototype, plastic extruder pens are based on FDM, which allows
them to print in any orientation as well as while shaking. The 3Doodler 2 is 16cm
long, allowing it to fit into a coat pocket and is weighs 60 grams including one strand
of filament.

The app lets users prototype directly on the phone’s screen, utilizing the screen
as the build platform to trace blueprints at actual scale. To assure adhesion between
filament and screen we covered the screen with adhesive transparent plastic film
(0,3mm rigid-PVC, anti-reflex).

The app provided users with solutions for the scenarios from our survey. However,
this time the app did not return 3D models, but fabrication instruction to be executed
by a human (similar to, for example, Instructables.com). The app used the same back-
end as our previous app.

2.4.2 Walkthrough

The walkthrough shown in Figure 7 demonstrates the same scenario as before, i.e.,
how to re-attach a bike headlight using a fabricated hex key. (a) As with our first pro-
totype, the user pulls out the phone and queries the app for “hex key”. (b) The app
returns multiple results from its online database, each result containing a sequence
of instructions to be executed by a human. The first result requires a coin, which our
user does not have on him. He thus picks the second hit. (c) The app displays a brief
synopsis. The user inspects it briefly to get an overview of what is ahead and flicks
to get started.

(d) The app displays the first fabrication step; it shows how to manufacture a
truss-shaped handle for the hex key. The system shows the instructions directly on
the screen, and the user fabricates the part by tracing it using the extruder pen. The
instructions detail how to interlock the individual layers of material to maximize
stability. Following additional instructions, the user completes the hex key by (e)
molding a tip directly on the nut and (f) fusing it to the handle (details on these
techniques below), attaches the light, and rides on.

2.5 Editor

As we already saw, instructions in our app are essentially sequences of photos, mak-
ing them easy to create. To simplify the creation of instructions even further we

234

3 Related Work

implemented the basic editor shown in Figure[7] (a) It offers templates for each of
the individual fabrication processes and (b) helps users create instructions to be
traced by allowing them to scale photographs with rulers and grid tools as reference,
before (c) drawing the lines to be traced on top of the photo.

Figure 7: Editor to make new instructions

2.6 Contribution and Conclusions

Our main contribution is an exploration into the future of fabrication, in particular
the vision of mobile fabrication. We explore this vision with two surveys, two simple
hardware prototypes, matching custom apps that provide users with access to a
solution database, engineering fabrication techniques specifically for these devices,
including tracing and molding, and a user study conducted in situ on metro trains.
All of this combined asks the question whether mobile fabrication will happen. We
think it will.

3 Related Work

Our work builds on the work of HCI researchers who explored how to help non-
engineers fabricate. We also build on humans assisted fabrication.

Fabrication systems that provide domain knowledge To help non-engineers en-
gineer, researchers in HCI and graphics have developed tools that incorporate the
required domain knowledge, such as interactive controls (Maker’s Marks [14]]), the
dynamics of model airplanes (Pteromys [19]), the structural engineering of furniture
(SketchChair [[13]]), or how to design enclosures (Enclosed [20]).

Design for fabrication on context With mobile fabrication, users create objects
that are part of and connect to their context of use. Several research projects have
investigated how to allow users to design objects in their context. Tactum, for ex-
ample, lets users design bracelets directly on the wearer’s arm [5]. CopyCAD [4]

235

Thijs Roumen: Mobile Fabrication

brings physical objects virtually into the fabrication environment. MixFab [21] lets
modeling and physical environment blend together. More recently Koyama et al.
demonstrated how to generate geometry that connects 3D models to their context
(AutoConnect [8]).

How-to instruction repositories We guide users in the fabrication process using
how-to instructions. Several researchers studied the sharing [[1]] and evolution [10]
of the communities surrounding such repositories. Recently, Torrey et al. [|18] inves-
tigated searching for how-to instructions. The proposed instruction system builds
on their findings by allowing users to filter by tool, providing a wide variety of
keywords for every object, and by presenting instructions in a highly visual way.
Two notable examples of commercial online repositories related to fabrication are
Thingiverse.com and Instructables.com.

Human-assisted fabrication In “the wise chisel,” Zoran et al. [25]] provide a great
over-view of handheld fabrication tools extended with guidance mechanisms. Free-D
[24] elaborates on the concept of guidance by deactivating the tool when off-bounds.
Similarly, Augmented Airbrush for Computer Aided Painting [16]] applies this idea
to airbrushes. D-coil [|[11]] lets users fabricate 3D models out of wax.

While the systems above track users, Devendorf’s being the machine [3]] uses a
form of human-assisted fabrication that does not require tracking. The system uses
a laser pointer to point users to where to apply material, with the goal to make the
fabrication process more expressive through human input and the resulting reduced
precision.

The term human-assisted manufacturing was coined by Yoshida et al.; their system
guides users through the fabrication of large objects by piling chopsticks using a
chop-stick blower [23]].

4 Future Work

My work continues to focus on filling in the open challenges of mobile fabrication.
Currently we are working on developing small sized fabrication machines, sketching
the trade-off between machine size and percentage of models that it can fabricate.
In previous work, I looked into remixing as a strategy for 3D-modeling [|12]] which I
consider the most advanced form of modeling on the go (seems unlikely that people
will model from sratch on the go). There we took mechanisms and remixed then,
in follow-up I want to study this more by making fully re-usable units from scratch.
Grfater showed how to benefit from other people’s models, but also identified the
key issue of portability between fab machines. Which is another challenge I am
attempting to tackle in the remainder of my PhD. All of these projects have relevance
specifically to mobile fabrication but also beyond that in their own right.

236

References

References

[1]

E. Buehler, S. Branham, A. Alj, J. . Chang, M. K. Hofmann, A. Hurst, and S. K.
Kane. “Sharing is caring: Assistive technology designs on thingiverse”. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 2015, pages 525-534.

X. Chen, S. Coros, J. Mankoff, and S. E. Hudson. “Encore: 3D printed augmen-
tation of everyday objects with printed-over, affixed and interlocked attach-
ments”. In: Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. 2015, pages 73-82.

L. Devendorf and K. Ryokai. “Being the Machine: Reconfiguring Agency and
Control in Hybrid Fabrication”. In: Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems. 2015, pages 2477-2486.

S. Follmer, D. Carr, E. Lovell, and H. Ishii. “CopyCAD: remixing physical
objects with copy and paste from the real world”. In: Adjunct proceedings of
the 23nd annual ACM symposium on User interface software and technology. 2010,
pages 381-382.

M. Gannon, T. Grossman, and G. Fitzmaurice. “Tactum: a skin-centric ap-
proach to digital design and fabrication”. In: Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems. 2015, pages 1779—
1788.

N. Gershenfeld. Fab: the coming revolution on your desktop—from personal comput-
ers to personal fabrication. Basic Books, 2008.

J. Horvath. Mastering 3D printing. Apress, 2014.

Y. Koyama, S. Sueda, E. Steinhardt, T. Igarashi, A. Shamir, and W. Matusik.
“AutoConnect: computational design of 3D-printable connectors”. In: ACM
Transactions on Graphics (TOG) 34.6 (2015), page 231.

S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretiére, and P.
Baudisch. “WirePrint: 3D printed previews for fast prototyping”. In: Proceed-
ings of the 27th annual ACM symposium on User interface software and technology.
2014, pages 273-280.

L. Oehlberg, W. Willett, and W. E. Mackay. “Patterns of physical design remix-
ing in online maker communities”. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. 2015, pages 639—-648.

H. Peng, A. Zoran, and F. V. Guimbretiére. “D-coil: A hands-on approach to
digital 3D models design”. In: Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. 2015, pages 1807-1815.

T.]J. Roumen, W. Miiller, and P. Baudisch. “Grafter: Remixing 3D-printed ma-
chines”. In: Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems. 2018, page 63.

237

Thijs Roumen: Mobile Fabrication

[13]

[14]

[17]

[18]

[20]

[21]

[22]

G. Saul, M. Lau, J. Mitani, and T. Igarashi. “SketchChair: an all-in-one chair
design system for end users”. In: Proceedings of the fifth international conference
on Tangible, embedded, and embodied interaction. 2011, pages 73-80.

V.Savage, S. Follmer, J. Li, and B. Hartmann. “Makers” Marks: Physical markup
for designing and fabricating functional objects”. In: Proceedings of the 28th An-
nual ACM Symposium on User Interface Software & Technology. 2015, pages 103—
108.

A. Schulz, A. Shamir, D. I. W. Levin, P. Sitthi-amorn, and W. Matusik. “Design
and fabrication by example”. In: ACM Trans. Graph. 33.4 (2014), 62:1-62:11.
doi:|10.1145/2601097.2601127.

R. Shilkrot, P. Maes, J. A. Paradiso, and A. Zoran. “Augmented airbrush for
computer aided painting (CAP)”. In: ACM Transactions on Graphics (TOG)
34.2 (2015), page 19.

D.]. Solove. The digital person: Technology and privacy in the information age. NyU
Press, 2004.

C. Torrey, E. F. Churchill, and D. W. McDonald. “Learning how: the search for
craft knowledge on the internet”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2009, pages 1371-1380.

N. Umetani, Y. Koyama, R. Schmidt, and T. Igarashi. “Pteromys: interactive
design and optimization of free-formed free-flight model airplanes”. In: ACM
Transactions on Graphics (TOG) 33.4 (2014), page 65.

C. Weichel, M. Lau, and H. Gellersen. “Enclosed: a component-centric inter-
face for designing prototype enclosures”. In: Proceedings of the 7th International
Conference on Tangible, Embedded and Embodied Interaction. 2013, pages 215-218.

C. Weichel, M. Lau, D. Kim, N. Villar, and H. W. Gellersen. “MixFab: a mixed-
reality environment for personal fabrication”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2014, pages 3855-3864.

K. Willis, E. Brockmeyer, S. Hudson, and 1. Poupyrev. “Printed optics: 3D
printing of embedded optical elements for interactive devices”. In: Proceedings
of the 25th annual ACM symposium on User interface software and technology. 2012,
pages 589-598.

H. Yoshida, T. Igarashi, Y. Obuchi, Y. Takami, J. Sato, M. Araki, M. Miki, K.
Nagata, K. Sakai, and S. Igarashi. “Architecture-scale human-assisted additive
manufacturing”. In: ACM Transactions on Graphics (TOG) 34.4 (2015), page 88.

A. Zoran and J. A. Paradiso. “FreeD: a freehand digital sculpting tool”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
2013, pages 2613-2616.

A. Zoran, R. Shilkrot, P. Goyal, P. Maes, and J. A. Paradiso. “The wise chisel:
The rise of the smart handheld tool”. In: IEEE Pervasive Computing 13.3 (2014),
pages 48-57.

238

https://doi.org/10.1145/2601097.2601127

Semantic Enrichment of Indoor 3D Point Cloud Models

Vladeta Stojanovic

Computer Graphics Systems
Hasso-Plattner-Institut
Vladeta.Stojanovic@hpi.de

The use of Building Information Modeling (BIM) for FM in the Operation and
Maintenance (O&M) stages of the building life-cycle is intended to bridge the
gap between operations and digital data, but lacks the functionality of assessing
and forecasting the state of the built environment in real-time. To accommodate
this, BIM data needs to be constantly updated with the current state of the built
environment (“as-is” representation). Generation of as-is BIM data for a digital
representation of a building is a labor intensive process. While some software ap-
plications offer a degree of automation for the generation of as-is BIM data, they can
be impractical to use for routinely updating digital FM documentation. Current
approaches for capturing the built environment, using consumer mobile devices
methods, allow for routine capture of 3D point clouds that can be used as basis
data for a Digital Twin (DT), along with existing BIM and FM documentation. 3D
point clouds themselves do not contain any semantics or specific information about
the building components they represent physically, but using machine learning
methods they can be enhanced with semantics that would allow for reconstruc-
tion of as-is BIM and basis DT data. This research report present an overview of
the current progress towards the development of a service-oriented platform for
semantic enrichment of 3D point cloud representations and creation of basis data
for as-is BIMs and DT’s of indoor environments.

1 Introduction

With the current trend of adoption of ICT practices in the Architecture, Engineering and
Construction (AEC) industry, the continuing integration of the BIM process for FM
operations has created new opportunities and challenges [[18]]. One of the key chal-
lenges is updating and reflecting the changes in the BIM that represent the current
state of the built environment, referred to “as-is” or “as-built” versus “as-designed”
representation [/10,|24]]. Another key challenge is being able to monitor and forecast
the current state of the built environment, especially if digital documentation is inte-
grated with real-time or historic data that is used to provide feedback and enhance
decision making [22]]. Apart from BIM adoption for FM, concepts and practices from
Industry 4.0 are currently being evaluated and adopted for FM use [[19]]. The most
important relative concept of this paradigm are Digital Twin (DT) representations. A
DT is a digital duplicate of the physical environment, states and processes. While a
BIM model contains as-is and as-designed data and representations, a DT can be used
to assess the current state, and to potentially forecast the future state, using a digital
duplicate of the built environment [|7,15]]. The data used for a DT therefore needs to
representative of both the static physical attributes, as well as the dynamic processes

239

mailto:Vladeta.Stojanovic@hpi.de

Vladeta Stojanovic: Semantic Enrichment of Indoor 3D Point Cloud Models

and states of the built environment. In order to capture the current physical state
of the built environment, 3D point clouds can be used as the basis for as-is BIM
and DT representations [4]]. This report provides a high-level overview concerning
the design, development and testing of the main components of a service-oriented
platform, used to generate semantically rich data from 3D point clouds. These se-
mantically enriched 3D point cloud representations can be used as basis data for
DTs. This allows for routine generation of semantically rich models for enhancing
collaboration, decision making, and forecasting among FM stakeholders.

2 Overview of Methodology

The main focus of the presented research methodology is on semantic enrichment
and integration of 3D point cloud representations of indoor environments for en-
hancing decision making concerning FM operations, particularly O&M operations.
A 3D point cloud consists of what can be defined as non-interpreted data - data that
is open to visual interpretation but does not have any semantics associated with
it. 3D point clouds can be used by themselves to represent the current state of the
physical environment for practical needs (e.g., assessment of space usage in a room),
but for any further representations and assessment the 3D point cloud needs to be
processed in order generate useful semantics. These can than be used as the basis
for as-is BIMs or DTs. Although there is overlapping between a DT and BIM rep-
resentations, for this research DTs are treated as a higher-level representation that
includes both as-designed and as-is BIM data, and any other associated semantics (see
Figure 1). A DT representation fuses these as-designed and as-is representations with
additional information layers pertaining to the current state of the built environment
(see Figure 2).

Data Hierarchy: Representation Hierarchy:
Digital Twin
Digital Twin Representation
As-is BIM Sensor Data
Analytics As-is BIM Representation
3D Point +
Cloud 3D Point Cloud Representation

Figure 1: Data and representational hierarchy diagram for as-is BIMs and DTs

240

2 Qverview of Methodology

/ Owner Tenant \ / Owner i? Tenant ? \
Asset
Manager
Property
Manager

Utilities Operations &
Provider Maintenance
Insurance
Provider

Current FM Practices Featuring Scattered Unification of Data and Controlled Access
Information Landscape using Digital Twins

Figure 2: [llustrated example showing the current scattered state of FM operations
in a typical building (left), in comparison to the unified and centralized access
to operational status and digital data using a DT (right)

2.1 Point Cloud Acquisition

The main advantage of using consumer mobile devices (such as Google Tango spec-
ification compatible devices), is that they provide an affordable, flexible, and simple
solution for capturing 3D point clouds of interiors in comparison to more expen-
sive laser scanning devices [6]]. Photometry-based processing methods can be im-
plemented on mobile devices and allow the processing of a sequence of captured
images to be converted into a point cloud representation. These 3D point cloud rep-
resentations captured using mobile phones may feature lower fidelity in terms of
visual details, but very detailed 3D representations of indoor environments are not
generally required for routine FM applications. The visual representation described
by a point cloud can be used to enhance FM practices and fulfills the need to be able
to have up-to-date representations of interiors of a facility for enhancing and making
informed decisions. The process for capturing point clouds is fairly straightforward,
as the user has to simply walk around an interior space and capture the point cloud
with the designated mobile tablet or phone device (see Figure 3). Once the scan has
been generated, the resulting 3D point cloud needs to be filtered for overlapping
duplicate points, and preferably sub-sampled to a reasonable degree in order to
decrease processing time while preserving the visual fidelity of the 3D point cloud
representation.

2.2 Reconstruction

As-is BIM reconstruction can generally be thought of as representing global charac-
teristics of a built environment (e.g., comparison of as-built vs as-designed room
layouts). Current general research in the AEC industry is focused on efficient geom-
etry reconstruction at appropriate levels of detail using segmentation and geometry
reconstruction methods. Before semantics can be added to the point cloud, the point
cloud dataset has to be segmented in order to divide and mark the homogeneous

241

Vladeta Stojanovic: Semantic Enrichment of Indoor 3D Point Cloud Models

Figure 3: Acquisition of a 3D point cloud of office furniture using a Google Tango
compatible mobile phone, and an example 3D point cloud of an office room
generated using such a device

regions of point clusters, which allows for quicker identification of building features
[14]. Segmentation can be either be done manually or can be automated by taking
into account the spatial features of the point dataset (e.g., all point below a certain
vertical axis coordinate can be considered as belonging to the floor cluster). Notable
approaches for BIM reconstruction have been investigated by [|1, 13, 21]]. Segmented
regions of the point cloud can then be used for reconstruction to a specified Level of
Detail (LOD) BIM representation, usually stored in the Industry Foundation Classes
(IFC) file format. This is illustrated in Figure 4.

Apart from reconstruction to BIM data, horizontally segmented point cloud repre-
sentations of interiors can be used to generate 2D and 3D floor plan representations.
Such representations can be very useful for analyzing space utilization, room layouts
and emergency route planning. Research by [[23] has presented a notable approach
for generating room layouts for floor plan representations using segmented 3D point
cloud representations of indoor buildings. Evaluation of boundary features derived
from the spatial arrangement of point clouds can also be used to generate 2D and 3D

242

2 Qverview of Methodology

(a) (b)

| AR R RNl ¥

cesiand
TR Ll

(©)

Figure 4: ElThe original point cloud of an office hallway. |E|Shows the segmented
point cloud that includes different colored planes to denote different point
cluster orientations in comparison to other cluster regions in the point cloud
data set, and [Shows the initial results of segmentation and reconstruction of
an office hallway from a 3D point cloud at LOD-300.

243

Vladeta Stojanovic: Semantic Enrichment of Indoor 3D Point Cloud Models

boundary approximation representations. Such representations can be useful when
combined with existing 2D or 3D point cloud and CAD data in order to enhance 3D
visualizations for initial assessment of the state of the building (e.g., energy usage,
navigation planning and capacity simulation). Figure 5 illustrates an example of 2D
and 3D floor plan boundary generation.

2.3 Classification

Segmented regions of the point cloud can be used to classify point cloud clusters as
specific features of the built environment, such as furniture classification. In turn,
this is the primary mechanism for semantic enrichment of segmented and/or recon-
structed 3D point clouds. The process of classification is based on machine-learning
and allows a Convolutional Neural Network (CNN) to recognize 2D or 3D spatial and
visual features of a given point cluster [[12}16]]. Training data used to train a CNN can
either be segmented 3D point cloud clusters, or images of specific point cloud objects
(e.g., images of point cloud representations of office furniture for example). Using
2D image classification methods, known as “multi view classification”, this process
can be automated by having a trained CNN model classify point cloud clusters [2,
9]. a 3D pint cloud cloud can be partitioned using a 3D data structure such as an
Octree or kD-tree, where each partitioned region can be used to generate classification
images. These generated classification images can be classified in a service-oriented
manner (see Section 2.5), and the classification results can be streamed back and
associated with each partitioned region of the 3D point cloud. This allows for auto-
mated semantic-enrichment of the point cloud data, which in turn enables the point
clouds to be used as basis data for as-is BIM or DT representations. The implemen-
tation of such a classification system is illustrated in Figure 6, and and example of
such a classification result is shown in Figure 7.

2.4 Visualization

The use of interactive 3D visualization can benefit FM stakeholder engagement by
allowing real-time display and analysis of 2D and 3D visual outputs generated from
the acquired data sources. Using modern computer graphics rendering approaches,
complex visualizations can be presented to users in real-time on various configura-
tions including commodity and older hardware. Service-based interactive visualiza-
tion can enable streaming of complex visualization results to thin clients, such as
smartphones and tablets [{8]]. With standardization of the WebGL 3D graphics API
for most modern HTML5 compliant web browsers, it is possible to visualize in in
real-time 3D various models and generated outputs for AEC applications. The use
of high-level JavaScript frameworks for 3D web-based visualization, such as Three.js
[3]], allows for advanced real-time 3D features such as model loading (including PLY
file format support for 3D point clouds), scene navigation, 3D data structures (oc-
trees), and GPU-based rendering. Further, it features a flexible scene-management
system where each component of the scene is added to a scene graph and accessed
using a hierarchical function call system. One limit of Three.js for visualizing point

244

2 Overview of Methodology

(©)

Figure 5:E|Examples of floor plan generation outputs, using a 3D point cloud scan
of an building interior. p] A 2D vector contour around a regularized horizontal
point cloud slice, and [dan extruded 3D mesh representation of the primary 2D
floor plan boundaries based on the generated vector contours.

245

Vladeta Stojanovic: Semantic Enrichment of Indoor 3D Point Cloud Models

Trained Machine
Learning Model

CS e
- %)
Pojn} Cloud Generated 2D Images Mmg
Training Data from Point Clouds Model Training 2 *i
S I ML

Classification of Point Generation of Point As-is BIM
oy Cloud Partitions Cloud Semantics Representation
sl W N
P~
L P Y
Input Point Point Cloud Generation of 2D Images Classification
Cloud Data Partitioning for Each Partition of 2D Images

Figure 6: High-level overview of the presented point cloud classification approach
using image-based classification

Sofa Object Classification o

Chair Object Classification T / .

Figure 7: Classification results of an indoor office area containing a sofa and
chairs. The left image shows the input point cloud and the segmented region
that is to be classified. The right image shows the classification output. In the
classification output, the blue cubes indicate possible spatial location of a sofa
and the red cubes indicate possible spatial positions for chairs.

clouds is the lack of support for out-of-core rendering of massive amounts of point-
cloud data, without resorting to the use of more sophisticated scene and memory
management methods [[17]. An example of the implemented web-based 3D visual-
ization system used for display of semantically-enriched 3D point clouds of building
interiors is illustrated in Figure 8.

2.5 Service Oriented Approach

Service-based interactive visualization can enable streaming of complex visualiza-
tion results to thin clients, such as smartphones and tablets. Some mobile devices may
be older generation and may not have the ability to process visualization data in real-
time using their native hardware, thus data can be pre-processed and streamed from
a server in real-time to the mobile device using an implemented service-oriented

246

3 Conclusion and Outlook

Figure 8: Example of a 3D scene being visualized using a prototype version of a
web-based semantic enrichment tool for indoor point clouds

architecture solution [5]. Using a service oriented approach also allows for increased
stakeholder collaboration, especially using 3D visualization of indoor environments
[11]]. The description of a BIM-based multidisciplinary collaboration platform, along
with specific technical requirements, has been described in detail by [20]]. A high-
level overview of the implemented service oriented architecture for semantic en-
richment of 3D point clouds using image-based classification is illustrated in Figure
9.

3 Conclusion and Outlook

Using a service-oriented paradigm, the scanned indoor environments obtained us-
ing consumer mobile devices can be reconstructed as semantically rich as-is 3D point
cloud data, and as basis data for as-is BIMs and DTs. The described methodology
provides a detailed overview of the processes required for acquiring, generating,
and presenting this semantically rich 3D point cloud representations of indoor build-
ing environments. Current research efforts are focused on utilizing the presented
methodology to generate results using real-world data, in order to effectively demon-
strate the potential to increase engagement and enhance decision making for FM
practitioners who are adopting BIM and Industry 4.0 practices.

247

Vladeta Stojanovic: Semantic Enrichment of Indoor 3D Point Cloud Models

Load and
Display Point
Cloud

—]

Generate Set Octree

Client Octree

Point Cloud
Data
Display
Classification
Results

H

Set Node Object
Type for Each
Valid Node

H

Generate Average
Classification Values for
Each Node

—

lode
Centers

GET

Results

Server
from Server| | Poll Server LJ Sensstfato
erver

Client Front-End Classification System Back-End Visualization Front-End

B Client-Side Data — ificati lient-side Result Visualizati
¢ (HTML:RZT:\ZEQSSWSN % (Node.js, Sockets.io) and Result Data Output

Figure 9: The presented client-server model showing the data flow, processes, and
systems used for a service oriented implementation of a web-based semantic

enrichment tool for indoor point clouds

References

(1]

I. Anagnostopoulos, M. Belsky, and I. Brilakis. “Object boundaries and room
detection in as-is BIM models from point cloud data”. In: Proceedings of the 16th
International Conference on Computing in Civil and Building Engineering. 2016,
pages 6-8.

K. Babacan, L. Chen, and G. Sohn. “Semantic segmentation of indoor point
clouds using convolutional neural network”. In: ISPRS Annals of Photogramme-
try, Remote Sensing & Spatial Information Sciences 4 (2017).

R. Cabello et al. Three. js. 2010. url: URL:%20https://github.%20com/mrdoob/
three.js%20(last%20accessed%202018-10-18).

S. Discher, R. Richter, M. Trapp, and]J. Déllner. “Service-oriented processing
and analysis of massive point clouds in geoinformation management”. In:
Service oriented mapping: Changing paradigm in map production and geoinformation
management. 2018.

J. Doellner, B. Hagedorn, and J. Klimke. “Server-based rendering of large 3D
scenes for mobile devices using G-buffer cube maps”. In: Proceedings of the
17th International Conference on 3D Web Technology. 2012, pages 97-100.

M. Froehlich, S. Azhar, and M. Vanture. “An investigation of Google Tango®
tablet for low cost 3D scanning”. In: ISARC. Proceedings of the International
Symposium on Automation and Robotics in Construction. Volume 34. 2017.

M. Grieves. “Digital twin: manufacturing excellence through virtual factory
replication”. In: White paper (2014).

B. Hagedorn and J. Déllner. “High-level web service for 3D building informa-
tion visualization and analysis”. In: Proceedings of the 15th annual ACM interna-
tional symposium on Advances in geographic information systems. 2007, page 8.

248

URL:%20https://github.%20com/mrdoob/three.js%20(last%20accessed%202018-10-18)
URL:%20https://github.%20com/mrdoob/three.js%20(last%20accessed%202018-10-18)

[22]

References

A.Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris. “Deep learn-
ing advances in computer vision with 3d data: A survey”. In: ACM Computing
Surveys (CSUR) 50.2 (2017), page 20.

G. Kelly, M. Serginson, S. Lockley, N. Dawood, and M. Kassem. “BIM for
facility management: a review and a case study investigating the value and
challenges”. In: Proceedings of the 13th International Conference on Construction
Applications of Virtual Reality. 2013, pages 30-31.

W.-L. Lee, M.-H. Tsai, C.-H. Yang,].-R. Juang, and J.-Y. Su. “V3DM+: BIM
interactive collaboration system for facility management”. In: Visualization in
Engineering 4.1 (2016), page 5.

Y. Ma, B. Zheng, Y. Guo, Y. Lei, and J. Zhang. “Boosting multi-view convolu-
tional neural networks for 3D object recognition via view saliency”. In: Chinese
Conference on Image and Graphics Technologies. 2017, pages 199-209.

H. Macher, T. Landes, and P. Grussenmeyer. “From point clouds to building
information models: 3D semi-automatic reconstruction of indoors of existing
buildings”. In: Applied Sciences 7.10 (2017), page 1030.

A. Nguyen and B. Le. “3D point cloud segmentation: A survey”. In: RAM.
2013, pages 225-230.

J. Posada, C. Toro, I. Barandiaran, D. Oyarzun, D. Stricker, R. De Amicis, E. B.
Pinto, P. Eisert,]. Dollner, and I. Vallarino. “Visual computing as a key enabling

technology for industrie 4.0 and industrial internet”. In: IEEE computer graphics
and applications 35.2 (2015), pages 26—40.

C.R. Qi, H. Su, K. Mo, and L. J. Guibas. “Pointnet: Deep learning on point
sets for 3d classification and segmentation”. In: IEEE Proc. Computer Vision and
Pattern Recognition (CVPR) 1.2 (2017), page 4.

R. Richter, S. Discher, and J. Dollner. “Out-of-core visualization of classified
3d point clouds”. In: 3D Geoinformation Science. 2015, pages 227-242.

K. Roper and R. Payant. The facility management handbook. Amacom, 2014.

SAP. Leonardo Innovation Services Showroom. 2018. url: https://discover.sap.com/
innovation - showroom-demo/en-us/digital-twin. html % 20(last % 20accessed %
202018-10-18).

V. Singh, N. Gu, and X. Wang. “A theoretical framework of a BIM-based multi-
disciplinary collaboration platform”. In: Automation in construction 20.2 (2011),
pages 134-144.

P. Tang, D. Huber, B. Akinci, R. Lipman, and A. Lytle. “Automatic reconstruc-
tion of as-built building information models from laser-scanned point clouds:
A review of related techniques”. In: Automation in construction 19.7 (2010),
pages 829-843.

P. Teicholz et al. BIM for facility managers. John Wiley & Sons, 2013.

249

https://discover.sap.com/innovation-showroom-demo/en-us/digital-twin.html%20(last%20accessed%202018-10-18)
https://discover.sap.com/innovation-showroom-demo/en-us/digital-twin.html%20(last%20accessed%202018-10-18)
https://discover.sap.com/innovation-showroom-demo/en-us/digital-twin.html%20(last%20accessed%202018-10-18)

Vladeta Stojanovic: Semantic Enrichment of Indoor 3D Point Cloud Models

[23]

[24]

E. Turner and A. Zakhor. “Floor plan generation and room labeling of in-
door environments from laser range data”. In: 2014 International Conference on
Computer Graphics Theory and Applications (GRAPP). 2014, pages 1-12.

R. Volk, J. Stengel, and F. Schultmann. “Building Information Modeling (BIM)
for existing buildings — Literature review and future needs”. In: Automation
in construction 38 (2014), pages 109-127.

250

Multi-Source 3D Geodata Analysis

Johannes Wolf

Computer Graphics Systems Group
Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, Germany
johannes.wolf@hpi.de

Different sensory equipment can measure geospatial information of our environ-
ment. Ground-penetrating 2D radar scans are captured for examination of surface
conditions and below-ground variations such as lowerings and developing pot-
holes in road areas. 3D point clouds captured above ground provide a precise
digital representation of the ground’s surface and the surrounding environment.
Panoramic photos add color information and an easy to interpret overview of a
certain area. When combining different data sources for the same area, a com-
bined visualization is a valuable tool for infrastructure maintenance tasks. This
report presents currently ongoing research in visualization techniques for com-
bined visual exploration of multiple data sources and analyses that benefit from
the different data characteristics.

1 Introduction

Our physical environment can be measured in many different ways. Varying sensors
capture specific features of the surrounding world and together give us a complete
overview of scanned areas. The number of applications which have a need for such
geographical base data is continuously increasing. Use cases such as urban planning
and development as well as environmental monitoring are dependant on a broad
data basis.

While focusing on the analysis of 3D point clouds as central element for many
applications, additional data sources such as panoramic photos and ground pene-
trating radar can improve the insights gained from the data.

3D point clouds can be seen as highly detailed representations of the scanned
environment and are used as “digital twins”. They are a collection of unstructured,
unsorted, independent points in three-dimensional space with an arbitrary num-
ber of attributes attached to each point [16]. In contrast to 3D city models [4], 3D
point clouds provide a “raw” view of the captured data and can be used for further
processing.

Depending on the capturing technique, 3D point clouds often do not contain
color information (see[2.1]). For improved visualization in a more familiar way, color
information can be gained from panoramic photos captured in parallel to the 3D
point cloud creation. They can also be used for detailed analyses of, e.g., individual
road signs or similar assets. Combining this information with the 3D point cloud
data is a current area of research.

Both, 3D point clouds and panoramic photos, only represent the above-ground
world. For applications such as road construction and archeological surveys, infor-

251

mailto:johannes.wolf@hpi.de

Johannes Wolf: Multi-Source 3D Geodata Analysis

mation about the conditions below ground are of great interest. Ground penetrating
radar can be used to gain that information and is the third data source that is to be
integrated into a common data analysis and exploration framework.

We are working on different visualization and analysis techniques which combine
the aforementioned data sources for a better understanding of the environment and
faster data aggregation to create insights [[19]].

2 Data Sources
2.1 3D Point Clouds

3D point clouds can be captured by photogrammetric approaches, which derive the
points from a series of pictures taken from different angles. A more precise approach
uses laser scanners, resulting in a lot more detailled 3D point clouds. Many of our
use cases are using these laser scanned data sets, where each point after capturing
has only a three-dimensional position and an intensity value, representing to what
extend the laser beam was reflected from the object it hit.

Point clouds can also be distinguished by the perspective from which they have
been captured. Data from airplanes and drones results in aerial data that character-
istically has a more or less homogeneous point density and provides data from the
top-down view onto roofs, streets, and vegetation. A different approach to scan the
environment is via mobile mapping [11,15]. Mobile carrier platforms like cars or
trains are used to capture entire infrastructure networks [[13]]. The resulting datasets
contain information from ground perspective including vehicles, building facades,
trees, road signs, train signals, and many more [[1, 8]].

The point clouds we are processing can contain billions of points, resulting in
several terabytes of data, raising the need for efficient spatial data structures and
processing algorithms.

2.2 Panoramic Photos

Due to the physical process of capturing a 3D point cloud with a laser scanner, cap-
tured points do have no color information. It is common to take panoramic photos
in parallel, to colorize the point cloud with data from these images in postprocess-
ing. While this doesn’t result in perfectly colored point clouds due to perspective
differences (see [Figure 1), it can improve the visual data inspection for some use
cases.

Panoramic photos are usually created from a number of individual photos taken
in different directions which are then merged into a combined photo containing a
full 360°view. shows an examplary panoramic photo projected onto a plane.

In situations where users want to get a detailled view of a certain area, panoramic
photos can be used for a fast insight. Applications need to integrate panoramic photos

252

2 Data Sources

Figure 1: Visualization of a colored 3D point cloud with visible color mapping
issues on the ground behind the red-bordered sign

Figure 2: Panoramic photo projected onto plane

in a supporting way, allowing for easy access to the region of the closest image at a
certain point of interest.

2.3 Ground Penetrating Radar (GPR)

Ground penetrating radar (GPR) has been used for below-ground analyses for sev-
eral decades. Ground penetrating radar scanners can measure material properties
several meters below ground, creating insights about the non-visible foundation of
roads and pathways [3]]. A typical visualization of a ground penetrating radar data
B-scan is shown in Figure B} Ground penetrating radar scanners can also easily be
mounted onto scanning vehicles, adding an additional data source for the region
not accessible by LiDAR scanning [[12]].

253

Johannes Wolf: Multi-Source 3D Geodata Analysis

™ g0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
cm { S | [EadE S | R s ‘ R ([| [b | { S | [e

0 ~ L e TR | 0 g R T T T T b
*MMMMW e W

» L ——— - - o tg L .

v prl o - Ny -

25 > e AP - pA AR G \

P R 1 A e

LAl
)
'}

+1

a
=

~
o

-
=
=

Figure 3: Visualization of a ground penetrating radar data B-scan

3 Data combination
3.1 3D Point Cloud and Panoramic Photos

3.1.1 Visualization
Panoramic photos are often placed into a spatial context by visualizing their locations

on a map, like in [Figure 4

Qe -
G360_Steinweg_20180208(1)... x

Figure 4: Rectangular section from a spheric projection of a panoramic photo
(right) placed next to a map showing its location (left)

In a similar way, we are currently integrating panoramic photos directly into 3D
point clouds. Areas of interest are blending between these two data sources, transi-
tioning from one photo to the next in a capturing series and the respective movement
within the point cloud.

254

3 Data combination

3.1.2 Analysis
The panoramic images can be used for a more detailed analysis of objects if the
geometric information is not sufficient, e.g., to identify road signs. The position of a
sign can be analyzed in the 3D point cloud data and its type can be found by applying
image recognition on the respective area in a suitable panoramic photo.
Additionally, 3D point clouds colored by the use of panoramic photos can be
better analyzed in some situations, because the color for each point can be used as
an additional input attribute for different metrics and analysis steps.

3.2 3D Point Cloud and GPR

3.2.1 Visualization

Giannopoulos describes how ground penetrating radar data can be visualized [7]]. In
addition to two-dimensional profiles, he shows an example for a three-dimensional
visualization by rendering the three principal planes of a cuboid which is holding
the data. Usually, two-dimensional ground penetrating radar profiles are shown
individually, but multiple scans can be placed next to each other to create spatial
feeling for the data [/6].

We developed a GPR data visualization inside the 3D point cloud environment by
projecting GPR data B-scans onto the captured GPS trajectory of the tracking vehicle.
Because the visibility of inner B-scans is limited, the user can hide individual B-scans
for a clear view onto the others.

For a better spatial impression, a textured cuboid-like structure is rendered onto
the GPS trajectory, as shown in Figure[B] This structure covers the amount of space
scanned by the GPR sensors. To fill the area in between the B-scans, their values
are interpolated. A 3D-texturing approach guarantees the possibility of slicing the
cuboid - both vertically and horizontally — as well as moving it along the trajectory.

Figure 5: Cuboid rendered onto the GPS trajectory (left). Vertical and horizontal
slicing can be used to explore data inside the cuboid (right).

255

Johannes Wolf: Multi-Source 3D Geodata Analysis

We decided to raise the GPR data cuboid above the surface instead of rendering it
in its accurate position below ground for better visibility and usability. To keep the
spatial context, the corresponding points from the 3D point cloud located above the
cuboid are translated alongside and highlighted for a better contrast to the remaining
points (Figure 6.

Figure 6: Points under the cuboid are elevated above it and highlighted. A magic
lens shows the cuboid’s surface below the points.

Furthermore, a magic lens approach has been implemented, which hides the points
around the cursor and enables a direct view onto the cuboid’s surface. The visualiza-
tion can be switched to instead only show the points above the cuboid around the
cursor, for focusing on the GPR data, while keeping once more the spatial context.

When presenting the prototypical implementation to experts in the field of GPR
evaluation and city infrastructure planning, they approved of the visualization and
stated it would greatly improve current workflows. We re currently working on
additional analyses to highlight, e.g., anomalies in the data (see[3.2.2)).

3.2.2 Analysis

The combination of above-ground 3D point clouds and below-ground 2D radar scans
enables a more extensive analysis of road environments by using two combined
sources instead of evaluating each on their own. A common use case for ground
penetrating radar data inspection is to find certain areas with increased chance of
developing pot-holes [9]. By adding road surface information from the 3D point
cloud, false positives like manholes can easily be distinguished from other anomalies
in the road’s subsoil. Use cases are widely spread: The data can, e.g., be used in post-
earthquake situations for ground analysis [14]] as well as for general road surface
modelling [[10].

Benedetto et al. give an overview of how ground penetrating radar can be used
for road inspections [2]]. They discuss in detail which processing techniques can
be used to analyze the pavement condition. Evans et al. summarize the abilities of
ground penetrating radar for general pavement investigations [j5]]. Saarenketo and

256

4 Conclusions and Future Work

Scullion explicitly list the localization of sinkholes and crack growth monitoring in
their report about ground penetrating radar applications on roads and highways
[[17]. They further describe possible soil and road structure evaluations and required
data interpretation techniques [[18]].

The described threshold and amplification manipulation assist during visually
identifying anomalies in the GPR data. An extended automated analysis could help
to find anomalous regions in the data by highlighting them for the user during
inspection, which might further ease to find locations of interest.

Another possible improvement is an automated object detection within the 3D
point cloud data that would enable the detection of manholes, so anomalies located
closely to them could already be respectively tagged in the visualization. Other
typical objects which can be filtered and tagged in a similar way are streetcar tracks
and curbstones.

4 Conclusions and Future Work

GPR scans can be visualized together with 3D point cloud data for road inspection
and the combination offers added value to typical users. A combined visualization
in the same viewing space enables comparison between both data sources for easier
evaluation. Anomalies in the GPR data can be compared with the 3D point cloud
to detect irregularities visible from above ground. Manhole covers and gullies can
easily be identified within the 3D point cloud and their location can be taken into
account when evaluating anomalies from the GPR data.

Cropping the ground penetrating radar B-scans to a certain area of interest in
length and height allows users to focus on details in a small area and avoids occluding
too much context information. Individual ground penetrating radar B-scans can be
enabled or disabled for the visualization to further decrease visual clutter of currently
unneeded data, especially with regard to ground penetrating radar B-scans scanned
with different frequencies.

An implementation of level of detail approaches for the GPR data might improve
handling even larger data sets.

Visualizing the ground penetrating radar B-scans slightly raised above ground,
also raising the ground points from the 3D point cloud in close proximity with them,
enables a less occluded view onto the ground penetrating radar B-scans. By hiding
those elevated points in a small region around the cursor, the top plane of the ground
penetrating radar cuboid can still be inspected.

Also, the visualization of ground penetrating radar B-scans from different scans
in areas of intersections and for roads with multiple scanning runs holds potential
for further development.

257

Johannes Wolf: Multi-Source 3D Geodata Analysis

References

[1]

[10]

[11]

[12]

[13]

[14]

S. Becker and N. Haala. “Combined feature extraction for facade reconstruc-
tion”. In: Proceedings of the ISPRS Workshop Laser Scanning. 2007, pages 241-
247.

A. Benedetto, F. Tosti, L. B. Ciampoli, and F. D’Amico. “An overview of ground-
penetrating radar signal processing techniques for road inspections”. In: Signal
Processing 132 (2017), pages 201-209.

J. L. Davis and A. P. Annan. “Ground-penetrating radar for high-resolution
mapping of soil and rock stratigraphy”. In: Geophysical prospecting 37.5 (1989),
pages 531-551.

]J. Dollner, H. Buchholz, M. Nienhaus, and F. Kirsch. “Illustrative visualization
of 3D city models”. In: Electronic Imaging 2005. International Society for Optics
and Photonics. 2005, pages 42-51.

R. D. Evans, M. W. Frost, M. Stonecliffe-Jones, and N. Dixon. A review of pave-
ment assessment using ground penetrating radar (GPR). Technical report. Univer-
sty of Birmingham and EuroGPR, 2008.

Geo Radar: 3D and GPR. url: |http://www.geo-radar.pl/en/methods/georadar/3d/
(last accessed 2018-06-25).

A. Giannopoulos. “Modelling ground penetrating radar by GprMax”. In: Con-
struction and building materials 19.10 (2005), pages 755-762.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. “Surface
reconstruction from unorganized points”. In: Computer Graphics (SIGGRAPH
'92 Proceedings) 26.2 (1992), pages 71-78.

D. R. Huston, N. V. Pelczarski, B. Esser, and K. R. Maser. “Damage detection in
roadways with ground penetrating radar”. In: Eighth International Conference
on Ground Penetrating Radar. Volume 4084. 2000, pages 91-95.

A.Jaakkola, J. Hyyppd, H. Hyypp4d, and A. Kukko. “Retrieval algorithms for
road surface modelling using laser-based mobile mapping”. In: Sensors 8.9
(2008), pages 5238-5249.

R. Li. “Mobile mapping: An emerging technology for spatial data acquisition”.
In: Photogrammetric Engineering and Remote Sensing 63.9 (1997), pages 1085—
1092.

Mobile GPR. url: https://www.catsurveys.com/Services/MGPR (last accessed
2018-06-26).

Nusantara Secom InfoTech. Road condition laser surveying (MMS: mobile map-
ping system). url: http://www.nsi.co.id/road-condition-laser-surveying-mms-
mobile-mapping-system (last accessed 2017-09-21).

M.]J. Olsen and R. Kayen. “Post-earthquake and tsunami 3D laser scanning
forensic investigations”. In: Forensic Engineering 2012: Gateway to a Safer Tomor-
row. 2013, pages 477-486.

258

http://www.geo-radar.pl/en/methods/georadar/3d/
https://www.catsurveys.com/Services/MGPR
http://www.nsi.co.id/road-condition-laser-surveying-mms-mobile-mapping-system
http://www.nsi.co.id/road-condition-laser-surveying-mms-mobile-mapping-system

[15]

[16]

[17]

References

I. Puente, H. Gonzalez-Jorge,]. Martinez-Sanchez, and P. Arias. “Review of
mobile mapping and surveying technologies”. In: Measurement 46.7 (2013),
pages 2127-2145.

R. Richter, M. Behrens, and J. Déllner. “Object Class Segmentation of Massive
3D Point Clouds of Urban Areas Using Point Cloud Topology”. In: International
Journal of Remote Sensing 34.23 (2013), pages 8408-8424.

T. Saarenketo and T. Scullion. Ground penetrating radar applications on roads
and highways. Technical report. Texas A&M University System; Arlington, TX,
United States, 1994.

T. Saarenketo and T. Scullion. “Road evaluation with ground penetrating
radar”. In: Journal of applied geophysics 43.2-4 (2000), pages 119-138.

J. Wolf, S. Discher, L. Masopust, S. Schulz, R. Richter, and J. Déllner. “Com-
bined visual exploration of 2D ground radar and 3D point cloud data for road
environments”. In: ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences XLII-4/W10 (2018), pages 231-236.

259

Band

128

127

126

125

124

123

122

121

120

119

118

117

116

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

ISBN

978-3-86956-464-7

978-3-86956-463-0

978-3-86956-462-3

978-3-86956-453-1

978-3-86956-441-8

978-3-86956-433-3

978-3-86956-432-6

978-3-86956-430-2

978-3-86956-422-7

978-3-86956-406-7

978-3-86956-405-0

978-3-86956-401-2

978-3-86956-397-8

Titel

The font engineering platform :
collaborative font creation in a
self-supporting programming
environment

Metric temporal graph logic over
typed attributed graphs :
extended version

A logic-based incremental
approach to graph repair

Die HPI Schul-Cloud : Roll-Out
einer Cloud-Architektur fiir
Schulen in Deutschland

Blockchain : hype or innovation

Metric Temporal Graph Logic
over Typed Attributed Graphs

Proceedings of the Fifth HPI
Cloud Symposium "Operating
the Cloud” 2017

Towards version control in
object-based systems

Squimera : a live, Smalltalk-
based IDE for dynamic
programming languages

k-Inductive invariant Checking
for Graph Transformation
Systems

Probabilistic timed graph
transformation systems

Proceedings of the Fourth HPI
Cloud Symposium "Operating
the Cloud” 2016

Die Cloud fiir Schulen in
Deutschland : Konzept und
Pilotierung der Schul-Cloud

Autoren / Redaktion

Tom Beckmann, Justus
Hildebrand, Corinna Jaschek,
Eva Krebs, Alexander Loser,
Marcel Taeumel, Tobias Pape,
Lasse Fister, Robert Hirschfeld

Holger Giese, Maria
Maximova, Lucas Sakizloglou,
Sven Schneider

Sven Schneider, Leen
Lambers, Fernando Orejas

Christoph Meinel, Jan Renz,
Matthias Luderich, Vivien
Malyska, Konstantin Kaiser,
Arne Oberlander

Christoph Meinel, Tatiana
Gayvoronskaya, Maxim
Schnjakin

Holger Giese, Maria
Maximova, Lucas Sakizloglou,
Sven Schneider

Estee van der Walt, Isaac
Odun-Ayo, Matthias Bastian,
Mohamed Esam Eldin Elsaid

Jakob Reschke, Marcel
Taeumel, Tobias Pape, Fabio
Niephaus, Robert Hirschfeld

Fabio Niephaus, Tim

Felgentreff, Robert Hirschfeld

Johannes Dyck, Holger Giese

Maria Maximova, Holger
Giese, Christian Krause

Stefan Klauck, Fabian
Maschler, Karsten Tausche

Jan Renz, Catrina Grella, Nils
Karn, Christiane Hagedorn,
Christoph Meinel

ISBN 978-3-86956-465-4
ISSN 1613-5652

	Title
	Imprint

	Contents
	Microtask Crowdsourcing as Means to Identify and Explain Software Failures
	1 About this report
	1.1 Previous report
	1.2 Current report

	2 Motivation
	3 Research problems
	4 Method
	5 Contributions
	6 Latest results
	6.1 Task selection model
	6.2 Practical application
	6.3 Generalization

	7 Research roadmap
	References

	Understanding Change-Behavior of Data and Metadata
	1 Change in Data and Metadata
	2 Change Exploration: our Model, its Primitives, and a Tool
	3 Tracking Changes: Wikipedia Table History
	4 Change Mining: Distinguish Different Change Types
	5 Future Work: Change Prediction and Trust
	References

	Mutual Human Actuation
	1 Introduction
	2 Mutual Turk
	2.1 Shared Props
	2.2 Synchronizing Users

	3 Implementation
	3.1 Tracking Acquisition and Disposal
	3.2 Tracking and Extrapolation During Action Sequences

	4 Related Work
	4.1 Haptics and Motion Experience Devices
	4.2 Passive Haptics
	4.3 Human Actuation

	5 Conclusion and Future Work
	References

	Process Mining Methodologies
	1 Overview
	2 Approach
	3 Related Work
	4 Future Work
	References

	Preparing for a Virtual City Model as a Digital Twin of an Urban Environment
	1 Overview
	1.1 About the previous report
	1.2 About this report
	1.3 Digital Twin or Digital Model?

	2 Approach
	2.1 Use case objectives
	2.2 Multidimensional Geodata
	2.3 Requirements for Digital Modelling and Data Integration
	2.4 Generalisation of multi-criteria geodata as Data Integration

	3 Research Activities
	References

	Understanding Sources of Heterogeneity in SMP Systems
	1 Symmetric Multiprocessing
	2 Sources of Heterogeneity
	2.1 Non-Uniform Memory Segments
	2.2 Non-Uniform Memory Access Topologies
	2.3 Non-Uniform CPU Capabilities
	2.4 Non-Uniform CPU Instruction Set Architecture

	3 Conclusions
	4 Future Work
	References

	Data-Knoller: A Framework for Systematic Data Preparation
	1 Overview
	1.1 Motivation
	1.2 Data cleaning vs data preparation

	2 Approach
	2.1 Architecture
	2.2 Data preparation pipeline
	2.3 Metadata manager
	2.4 Error manager
	2.5 Preparation suggester
	2.6 Provenance management
	2.7 Pipeline optimization
	2.8 Pipeline evolution

	3 Related Work
	4 Future Work
	References

	TrussFormer: 3D Printing Large Kinetic Structures
	1 Introduction
	2 Related Work
	2.1 Software tools for Animatronics
	2.2 Software tools for designing mechanisms and dealing with forces
	2.3 Variable geometry truss mechanisms

	3 Creating kinetic structures using TrussFormer
	3.1 Step 1: Creating the static structure
	3.2 Step 2: Adding movement
	3.3 Step 3: Stability check across poses
	3.4 Step 4: Animation
	3.5 Step 5: Checking forces during the motion
	3.6 Step 6: Fabrication
	3.7 Implementation
	3.7.1 Software system
	3.7.2 Control system and actuators

	4 Conclusion
	References

	Theory of Estimation-of-Distribution Algorithms
	1 Introduction
	2 Preliminaries
	3 Results
	4 Future Work
	References

	Event Handling in Business Process Enactment
	1 Introduction and Motivation
	2 Foundations
	3 Flexible Event Handling Model
	3.1 Event Constructs
	3.2 Point of Subscription

	4 Petri Net Mapping
	4.1 Petri Nets for Mandatory Event
	4.2 Petri Nets for Boundary Event
	4.3 Petri Nets for Racing Event
	4.4 Petri Nets for Exclusive Event

	5 Application to Use Case
	6 Conclusion and Future Work
	References

	Scenograph: Fitting Real-Walking VR Experiences into Various Tracking Volumes
	1 Introduction
	2 SCENOGRAPH
	3 Contribution
	4 Related Work
	5 Discussion
	6 Conclusion
	References

	Employing Software Development Data to Drive Process Change
	1 Introduction
	1.1 Research Questions

	2 Case Study Context
	3 Surveys
	3.1 End-of-term Survey
	3.2 Kanban Survey
	3.3 Discussion

	4 Development Artifact Analysis
	4.1 Data Collection
	4.2 Discussion

	5 Related Work
	6 Conclusion
	References

	Mining Concepts from Code to Support Program Comprehension and Software Modularity
	1 Introduction
	2 Mining Concepts from Code
	2.1 Background: Concepts and Names
	2.2 Inferring Concept Models

	3 Related Work
	4 Future Work
	References

	GraalSqueak: A Fast Squeak/Smalltalk Implementationfor the GraalVM
	1 Introduction
	2 Context
	2.1 Squeak/Smalltalk
	2.2 Truffle and GraalVM

	3 Approach
	3.1 Building a Bytecode Interpreter with Truffle
	3.2 Providing Support for Squeak/Smalltalk Context Objects
	3.3 Primitives and VM Plugins

	4 Implementation
	4.1 High-level Overview
	4.2 Implementing the Bytecode Interpreter
	4.3 Partial Primitives

	5 Evaluation
	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

	Examining Dependability in the Internet of Things
	1 Overview
	2 Research Activities
	References

	Evolutionary Algorithms and Local Search in Combinatorial Optimization
	1 Overview
	2 Approach
	3 Related Work
	4 Future Work
	References

	A Comparison of Implementation Techniques for Implicit Layer Activation
	1 Introduction
	2 Background
	2.1 Context-oriented Programming
	2.2 Implicit Layer Activation
	2.3 Active Expressions

	3 Implementing Implicit Layer Activation in ContextJS
	3.1 Imperative Implementation
	3.2 Reactive Implementation

	4 Implementation Complexity
	5 Performance Evaluation
	5.1 Performance Benchmark Setup and Statistical Methods
	5.2 Overhead for Initial Association
	5.3 Frequent Context Switches
	5.4 Frequent Message Sends

	6 Conclusion and Future Work
	References

	Deep Learning from Unbalanced Medical Imaging
	1 Overview
	2 Background
	3 Methods for Handling Imbalanced Medical Imaging
	3.1 Cost-sensitive Learning
	3.2 Deep Ensemble Learning
	3.3 Deep Mutual Learning
	3.4 Patient-wise mini-batch Normalization
	3.5 Complementary Labels

	4 Experiments
	4.1 Dataset and Pre-processing
	4.2 Implementation
	4.3 Evaluation Results and Discussion

	5 Conclusion and Future Work
	References

	Comparative Text Mining and News Comment Analysis
	1 Overview
	1.1 Digital Libraries
	1.2 Comment Analysis
	1.3 Outlook

	References

	Power-Law Distributions in Random Satisfiability
	1 Overview
	2 Preliminaries and Related Work
	3 Our Results
	3.1 Power-Law Random k-SAT
	3.2 More recent results

	4 Conclusion and Future Work
	References

	Mobile Fabrication
	1 Overview
	2 Approach
	2.1 Survey one: scenarios worth solving with fabrication
	2.2 Survey two: prioritizing the scenarios
	2.3 Engineering and practicality check 1: modified 3D printer
	2.3.1 Limitation: Objects that have to fit the environment

	2.4 Engineering and Practicality check 2: hand-held
	2.4.1 The second prototype
	2.4.2 Walkthrough

	2.5 Editor
	2.6 Contribution and Conclusions

	3 Related Work
	4 Future Work
	References

	Semantic Enrichment of Indoor 3D Point Cloud Models
	1 Introduction
	2 Overview of Methodology
	2.1 Point Cloud Acquisition
	2.2 Reconstruction
	2.3 Classification
	2.4 Visualization
	2.5 Service Oriented Approach

	3 Conclusion and Outlook
	References

	Multi-Source 3D Geodata Analysis
	1 Introduction
	2 Data Sources
	2.1 3D Point Clouds
	2.2 Panoramic Photos
	2.3 Ground Penetrating Radar (GPR)

	3 Data combination
	3.1 3D Point Cloud and Panoramic Photos
	3.1.1 Visualization
	3.1.2 Analysis

	3.2 3D Point Cloud and GPR
	3.2.1 Visualization
	3.2.2 Analysis

	4 Conclusions and Future Work
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

