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Abstract

Background: High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of
healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of
impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism
is so far insufficiently understood. The development of so called ‘omics’ approaches in the recent years promises to
identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and
type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the
application of multivariate statistical approaches is highly recommended to fully capture the complexity of data
gained using high-throughput methods.

Methods: We took blood plasma samples from 172 subjects who participated in the prospective Metabolic
Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up). We analysed these samples using Gas
Chromatography coupled with Mass Spectrometry (GC-MS), and measured 286 metabolites. Furthermore, fasting
glucose levels were measured using standard methods at baseline, and after an average of six years. We did
correlation analysis and built linear regression models as well as Random Forest regression models to identify
metabolites that predict the development of fasting glucose in our cohort.

Results: We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development
with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding
established risk markers did not improve the model accuracy. However, external validation is eventually desirable.
Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to
amino acid metabolism, energy metabolism and redox homeostasis.

Conclusions: We demonstrate that metabolites identified using a high-throughput method (GC-MS) perform well
in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex
pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular
mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we
highly recommend the usage of statistical methods that seize the complexity of the information given by high-
throughput methods.

Keywords: prediction, fasting glucose, type 2 diabetes, metabolomics, plasma, random forest, metabolite, regres-
sion, biomarker
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Background
High blood glucose reduces life expectancy worldwide
[1], and numerous studies have been performed to iden-
tify risk factors of impaired glucose metabolism and
type 2 diabetes. Nevertheless, this is a topic that is sub-
ject to continuing discussion [2-5]. Established classical
markers include: family history of diabetes, markers of
adiposity, age and glycemic control itself. In recent
years, high-throughput methods have been increasingly
applied in clinical research [6-10]. In a recent article
Wang et al. used a metabolomics approach for diabetes
risk assessment [11]. They analysed baseline blood sam-
ples from 189 individuals that developed type 2 diabetes
during a 12 year follow-up period as well as 189
matched control subjects. Using Liquid Chromatography
coupled with Mass Spectrometry (LC-MS), they mea-
sured 61 metabolites. Applying paired t-test and McNe-
mar’s test, they identified isoleucine, leucine, valine,
tyrosine and phenylalanine as being highly associated
with future diabetes. We here show that multivariate
statistical methods should be applied to account for
dependencies within the metabolome. In doing so, we
were able to define a complex pattern of metabolites
that predicts future development of fasting plasma glu-
cose levels with high accuracy. We also compare the
quality of prediction between this metabolic pattern and
established risk markers.

Methods
Fasting plasma samples were taken at baseline and at
follow-up after an average of six years in subjects who
participated in the prospective follow-up of the Meta-
bolic Syndrome Berlin Potsdam (MESY-BEPO) study
[12]. We took the samples under standardised condi-
tions in the morning between 8 and 9 a.m. local time
after an overnight fast. All patients gave written
informed consent and the study was approved by the
local ethical committee.
Fasting plasma glucose levels were measured applying

a standard hexokinase assay. Furthermore, we analysed
metabolic profiles of baseline fasting plasma samples in
a random sub-cohort (n = 172; for characterisation see
Table 1) using Gas Chromatography coupled with time-
of-flight Mass Spectrometry (GC-MS) according to stan-
dard operating procedure [10]. We excluded subjects
with type 1 or type 2 diabetes at baseline and subjects
treated with oral anti-diabetics or insulin. We measured
in total 286 metabolites, some of them are not yet iden-
tified. The measurements cover various biochemical
classes, such as amino acids, carbohydrates, organic
acids, fatty acids and steroids.
The chromatographic peaks were picked and identified

using the Golm Metabolome Database (GMD) [13] and

the R package TargetSearch [14]. Since missing values
only occurred if metabolite concentration went below
detection limit, these values were replaced by a value 0.7
times the minimum measured value. Log-transformation
and normalisation of the measured relative intensities
were performed according to Lisec et al. [15].
To quantify the development of fasting glucose levels

we calculated the difference between glucose levels nor-
malised by the elapsed time:

�glucose =
glucosefollow−up − glucosebaseline

yearfollow−up − yearbaseline

in (mg/dl)/a. We computed Spearman’s rank correla-
tion coefficient and p-values to identify significant corre-
lation between Δglucose and single metabolites with a
significance level of a = 0.05. Significantly correlating
metabolites were used to build linear regression models
using the R package stats as well as Random Forest
regression models [16,17] using the R package random-
Forest. The correlation matrix was drawn using the R
package corrplot. We also performed a nested feature
selection based on the Random Forest importance mea-
sure as proposed by Svetnik et al. [18]. The importance
measure is based on the decrease of accuracy, i.e. the
increase of the mean square error (MSE), for the out-of-
bag portion for each tree. The MSE was calculated for
both the true as well as a permuted predictor variable.
The difference between them was calculated for all
trees, averaged and normalised and hence resulted in
the importance measure. By removing the 50% of meta-
bolites with the smallest importance measure, we itera-
tively bisected the number of metabolites used to
predict Δglucose and thus removed irrelevant metabo-
lites. During this reduction the average Random Forest
model accuracy remained stable up to a pattern of nine
metabolites. Thus, we employed this number to select
metabolites for a Random Forest regression analysis to
predict Δglucose. Furthermore, we added established risk
markers to the Random Forest regression model. These

Table 1 Characterisation of the investigated MESY-BEPO
sub-cohort

Clinical Characteristics Baseline Follow-up

Age [years] 55.7 ± 11.7 61.5 ± 11.5

Gender [% female] 62.2

Waist circumference [cm] 93.8 ± 13.8 94.6 ± 17.3

Body mass index [kg/m2] 28.6 ± 5.2 29.1 ± 5.3

Fasting glucose [mg] 92.1 ± 11.6 100.5 ± 13.6

Δglucose [mg/(dl · a)] 1.0 ± 2.3

Time between baseline and follow-up [years] 5.6 ± 0.7

Characterisation of the investigated MESY-BEPO sub-cohort (n = 172) at
baseline and follow-up. Data are presented as mean ± standard deviation.
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risk markers were: gender, waist circumference, body
mass index (BMI), age and baseline fasting glucose
levels.
To evaluate the performance of all the regression

models, we calculated the Pearson product-moment cor-
relation coefficient between the real and calculated
Δglucose. All feature selection and regression modeling
was performed and validated on all samples as well as in
the subsets of tenfold cross-validation [19]. To test for
reliability the cross-validation including the metabolite
selection and regression model building was repeated
100 times. Hence, the given cross-validation accuracies
reflect the median of this replication.

Results
Fasting glucose development
We observed a median Δglucose of 0.8mg/(dl · a), within
the range from -3.7mg/(dl · a) to 8.2mg/(dl · a). The
standard deviation was 2.3mg/(dl · a). Compared to the
baseline level, 61 subjects had a decreased fasting glu-
cose level (Δglucose ≤ 0mg/(dl · a)), whereas 111 sub-
jects showed an increased fasting glucose level (Δglucose
>0mg/(dl · a)).

Correlation
To identify metabolites that are associated with the
development of fasting plasma glucose levels, we calcu-
lated the Spearman’s rank correlation coefficient
between the single metabolites and Δglucose. We used
the Spearman correlation since not all metabolites were
normally distributed. All 30 metabolites that are signifi-
cantly correlated with Δglucose are shown in Table 2.
The observed correlation ranges from -0.27 to 0.40.
Therefore, a single metabolite explains up to 16.2% of
the observed variance in Δglucose (see Table 2). Conse-
quently, the question arose whether the metabolites are
not only capable of explaining but also predicting Δglu-
cose. Thus, we applied a multivariate approach.

Linear Model
We used the Spearman correlation as a filter and
included all metabolites significantly correlated with
Δglucose to build a linear regression model. The accu-
racy (i.e. the Pearson correlation between true and esti-
mated Δglucose) using all samples was 0.57, the median
accuracy after tenfold cross-validation was 0.22. This
accuracy is unsatisfactorily poor. Despite the weak accu-
racy of the linear model, it is known that multicollinear-
ity often leads to an unstable model and affects the
correct calculation of coefficients of linear regression
models [20]. The calculated condition number of the
correlation matrix K > >1000 indicated the strong colli-
nearity within the chosen metabolites. However, high
correlation within a metabolite matrix is not surprising,

since the observed metabolites are not independent but
connected via metabolism. The detected multicollinear-
ity is illustrated with the correlation matrix in Figure 1.
Hence, we had to find a regression model that is robust
against multicollinearity. This characteristic is given for
Random Forest models [21].

Random Forest Regression Models
We built a Random Forest regression model using the
metabolites selected by significant correlation to predict
Δglucose. Compared to the linear model, the accuracy
increase was noteworthy: using all samples the accuracy
was 0.97, and after tenfold cross-validation the median
accuracy was 0.41. Nevertheless, we investigated the
scale of restriction due to using only metabolites that
correlate with Δglucose.
Thus, we performed a nested feature selection based

on the Random Forest importance measure. To define a
minimum number of metabolites necessary for accurate
prediction of Δglucose, we stepwise bisected the number
of metabolites. During this reduction the average model
accuracy remained stable up to a pattern of nine meta-
bolites (see Figure 2). Therefore, it is legitimate to use
only the nine metabolites with the highest importance
in the Random Forest model. These nine metabolites
are shown in Table 3. The accuracy using these metabo-
lites in a Random Forest regression model was 0.97.
The median cross-validation accuracy was 0.47.
Although the current selection of metabolites is smaller
than the correlation based selection, the accuracy
improved. Detailed examination of the two metabolite
selections revealed an incomplete overlap. Metabolites
highly correlated with Δglucose also showed a high Ran-
dom Forest importance. However, some metabolites (e.g.
the putative allantoin, citric acid and an unknown)
showed high importance but no significant correlation
with Δglucose. We assume that these metabolites are
responsible for the increase in accuracy. Therefore, we
conclude that not only linear but more complex rela-
tions may exist between metabolites and the fasting glu-
cose development. Moreover, this assumption of
complexity is underlined by the selected metabolites
themselves and their location in biochemical pathways.
The identified metabolites of the pattern are part of
multiple metabolic pathways, e.g. purine degradation,
energy metabolism and amino acid metabolism.
Furthermore, we added established risk markers (gen-

der, waist circumference, BMI, age, baseline fasting glu-
cose) to the metabolites and again performed feature
selection based on Random Forest importance and built
a Random Forest regression model. Surprisingly, these
established risk markers did not improve the accuracy
of the model. To further analyse this observation, we
built a Random Forest regression model using only the
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established risk factors. This model had a cross-valida-
tion accuracy of 0.05, and therefore was not able to pre-
dict Δglucose.
All results of the different regression models can be

found in Table 4. For identification of the so far
unknown metabolites of our pattern, we revised the ori-
ginal spectra data using the Decision Tree tool provided
by Hummel et al. [22] and added the information in
Table 3.

Discussion
In conclusion, our work demonstrates that metabolic
profiles have a high performance in predicting fasting
glucose level development (Table 4). However, this pre-
diction ability was captured by using non-parametric
Random Forest regression. This indicates that a rather
complex non-linear pattern allows the prediction of
Δglucose.

We also observed that metabolic profiles hold consid-
erably more information than established markers. This
may result from the different scopes of these variables:
established markers describe a macroscopic phenotype
that is underpinned by the molecular level. Although
established markers may differ between healthy and dis-
eased subjects, understanding diseases on their molecu-
lar level will support the development of individualised
medicine and hence lead to better prevention and treat-
ment in clinical practice.
We are aware that diurnal variation or other factors

(e.g. physical activity or nutrition during the days before
phenotyping) might have affected measurements of
metabolite and glucose concentrations in our samples.
We have tried to minimise this variation by sampling
under standardised conditions. Due to the potentially
remaining variance, important metabolites might not be
included in the model, thus causing false negatives.

Table 2 Spearman’s rank correlation

Spearman Correlation p-value % variance explained

Hypoxanthine 0.40 <0.0001 16.20

Aspartic acid 0.30 0.0001 9.18

Pyroglutamic acid 0.29 0.0001 8.34

2-methyl-Malic acid 0.27 0.0004 7.21

NA 1033 (trisaccharide) -0.27 0.0004 7.05

NA 1034 -0.23 0.0026 5.23

NA 1052 (carbohydrate) -0.22 0.0046 4.64

Myo-inositol 0.21 0.0052 4.51

NA 1027 (sterol phosphate) 0.21 0.0061 4.34

Threonic acid 0.21 0.0063 4.31

NA 997 (Uridine-5’-monophosphate) 0.20 0.0078 4.09

Glutamic acid 0.19 0.0104 3.80

NA 831 0.19 0.0119 3.67

NA 653 0.18 0.0179 3.25

Ketopentose 0.18 0.0181 3.24

Fucose 0.18 0.0192 3.18

Uracil 0.18 0.0213 3.08

Fructose -0.17 0.0233 2.99

NA 631 (D-Glucopyranose) -0.17 0.0235 2.98

NA 613 0.17 0.0251 2.91

NA 597 (pyranose) -0.16 0.0312 2.70

Isoleucine 0.16 0.0358 2.57

NA 275 0.16 0.0379 2.51

NA 639 0.16 0.0388 2.49

NA 442 0.16 0.0395 2.47

NA 560 0.16 0.0402 2.45

NA 854 (carbohydrate) 0.16 0.0413 2.43

Tartaric acid 0.15 0.0429 2.39

Fructose -0.15 0.0466 2.31

NA 632 -0.15 0.0486 2.27

Spearman’s rank correlation coefficient, p-values and % of explained variance for all metabolites significantly correlated with Δglucose (significance level a =
0.05). Not yet identified metabolites are marked with NA, putative biochemical structures are given in round brackets.
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Figure 1 Correlation matrix. This correlation matrix visualises not only the significant correlations between Δ glucose and the metabolites (first
row/column) but also the correlation among the metabolites. The colour intensity and tile size indicate the strength of correlation. Positive
correlation are marked blue, negative correlation are marked red.

Figure 2 Random Forest feature selection. Iterative bisection of the number of metabolites by removing the 50% of metabolites with the
smallest importance measure. The remaining metabolites were used to build the Random Forest regression model. Shown is the median cross-
validation accuracy. The accuracy remains stable up to a pattern of nine metabolites.
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Consequently, we might have underestimated the capa-
city of metabolites to predict glycemic control.
To put the metabolites belonging to the final pattern

(Table 3) into a biochemical context, we reviewed exist-
ing literature.
Among all metabolites hypoxanthine showed the high-

est importance regarding fasting glucose development. It
is a central intermediate in purine degradation and bio-
synthesis. Hypoxanthine is either enzymatically metabo-
lised via xanthine to uric acid, or re-utilised to inosine
monophosphate in the nucleotide salvage pathway. In
the past decades several studies have shown an associa-
tion between the purine degradation pathway and type 2
diabetes or the metabolic syndrome [23]. However, the
causality of this association remains unclear. In their
recent meta-analysis Pfister et al. did not observe a
direct effect of serum uric acid or associated genetic var-
iants on development of type 2 diabetes [24]. Neverthe-
less, other ways of interaction may exist [25,26]. As
early as 30 years ago, Harkness et al. described that pur-
ine degradation is increased under ATP depleting condi-
tions and small changes in hypoxanthine may reflect

alterations of ATP turnover [27]. Whereas glucose
uptake does not change hypoxanthine levels or purine
degradation [28], fructose uptake leads to hepatic ATP
degradation [25] and may play a major role in epidemic
of metabolic syndrome and obesity [29]. The link
between insulin resistance and increased serum urate
might be mediated by the hexose phosphate shunt [26].
Elevated hypoxanthine levels might reflect an early stage
of this mechanism.
The unknown NA611 is most likely allantoin. This

metabolite is also closely related to purine degradation:
Although it is not enzymatically produced in human
body (due to knock-out mutation in urate oxidase
gene [30]), it was referenced before in human blood,
cerebrospinal fluid and urine. It is generated by spon-
taneous reaction of uric acid with radical oxygen spe-
cies (ROS) [31]. Thus, allantoin levels reflect uric acid
action as a ROS scavenger. The role of oxidative stress
and ROS in diabetes development has been reviewed
elsewhere [32].
Pyroglutamic acid (or 5-oxoproline) is a cyclised deri-

vative of L-glutamic acid. In biological context it can be
formed non-enzymatically from glutamate, glutamine
and g-glutamylated peptides or enzymatically by g-gluta-
mylcyclotransferase. The latter is part of the g-glutamyl
cycle, which synthesises and degrades glutathione. Glu-
tathione is a main intracellular antioxidant [33] and thus
plays an important role in maintaining redox homeosta-
sis and eliminating ROS in the cell. S-glutathionylation
of proteins as result of redox imbalance is thought to be
a biological switch [34]. In our measurements pyrogluta-
mic acid might also be derived from glutamic acid or
glutamine during the derivatisation process. Both amino
acids act not only in protein synthesis and degradation.
Due to their potential to transfer amino groups, they
occur in numerous pathways. The activity of several Glx
consuming or producing enzymes (e.g. g-glutamyltrans-
ferase [35-42], glutamine fructose-6-phosphate amido-
transferase [43], glutamate pyruvate transaminase [40])
were reported to be associated with diabetes mellitus,
impaired glucose tolerance and insulin resistance and
are used as biomarkers to monitor liver functionality.
Glutamate links the tricarboxylic acid (TCA) cycle with
amino acid biosynthesis and degradation. Furthermore,
several animal models were described that develop obe-
sity and/or diabetes after injection of monosodium glu-
tamate [44-48]. In such an animal model reduced nitric
oxide and increased ROS production were also observed
[49]. In addition, dietary monosodium glutamate
increases weight gain, adiposity and reduces insulin sen-
sitivity in an animal model [50]. According to Samocha-
Bonett et al., oral glutamine reduced postprandial glyce-
mia in type 2 diabetic subjects [51]. Finally, due to its
role as neurotransmitter, glutamate is involved in

Table 3 Random Forest Importance of the highest ranked
metabolites

Metabolite Random Forest Importance

Hypoxanthine 12.52

Pyroglutamic acid 9.37

NA 1027 (sterol phosphate) 8.13

NA 611 (Allantoin) 7.80

NA 718 (carboxylic acid) 7.56

NA 1033 (trisaccharide) 6.28

Aspartic acid 5.34

NA 1034 5.26

Citric acid 4.60

Metabolites belonging to the pattern identified using Random Forests and
their Importance. Not yet identified metabolites are marked with NA, putative
biochemical structures are given in round brackets.

Table 4 Regression model accuracy

Metabolite Selection Model all
samples

CV

Spearman Correlation linear Model 0.57 0.22

Spearman Correlation Random
Forest

0.97 0.41

RF importance Random
Forest

0.97 0.47

RF importance + Established
markers

Random
Forest

0.97 0.46

Established markers Random
Forest

0.90 0.05

Accuracy of the models (median Pearson correlation between real and
estimated Δglucose levels) based on metabolites and/or established risk
markers was calculated using all samples of the training set and after tenfold
cross-validation (CV). The established risk markers are: gender, waist
circumference, BMI, age and baseline fasting glucose levels.
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numerous signaling processes [52,53] but is also poten-
tially neurotoxic [54].
Aspartic acid is involved in protein synthesis and

degradation and also acts in transamination reactions. It
is directly linked to the TCA cycle via the malate shut-
tle. The aspartate aminotransferase was reported to be
associated with glucose metabolism and insulin resis-
tance [38]. Bousova et al. reported reduced aspartate
amino transferase activity induced by fructose and the
resulting glycation in vitro and observed beneficial
effects of uric acid in that context [55]. Hageman et al.
reported that feeding an aspartate rich protein blend
decreased the postprandial glucose response in rats [56].
According to Arai et al. monosodium aspartate induces
obesity, increased plasma insulin and increased acetyl-
CoA carboxylase in animal models [57].
Citric acid is an intermediate of the TCA cycle, which

is a central pathway in the organisms energy preserva-
tion. The TCA cycle oxidatively degrades acetyl-CoA,
which originates from carbohydrate, amino acid or fatty
acid degradation. An animal model for diabetes showed
increased gluconeogenesis by increased TCA cycle sub-
strate uptake and fluxes [58]. Citric acid is produced by
citrate synthase. Ortenblad et al. [59] reported a reduced
basal citrate synthase activity, reduced lipid oxidation
and reduced insulin-mediated glucose oxidation in cul-
ture skeletal muscle cells from type 2 diabetic persons.
They increased citrate synthase activity by incubation
with insulin in cells from non-diabetic but not in cells
from diabetic subjects. Co-incubation with palmitate
abolished the stimulatory effect [59]. Furthermore, maxi-
mum velocity of citrate synthase was reduced in cul-
tured pancreatic islet cells cultured with long-chain fatty
acids or high dose glucose, which may play a role for
glucotoxicity and lipotoxicity in b-cells [60]. Citrate also
connects the TCA cycle with hepatic fatty acid and cho-
lesterol synthesis by being exported via transport pro-
teins from mitochondrion to cytosol where it is cleaved
to acetyl-CoA by ATP-citrate lyase. The citrate carrier is
the key component of citrate-malate-shuttle and it is
located in the mitochondrial inner membrane. High
levels of the citrate carrier can be found predominantly
in liver, pancreas and kidney [61]. A reduction of citrate
carrier activity and protein levels, both affected by insu-
lin and glucose levels at different regulatory steps, was
found in diabetic mice [62]. Knockout of gene
SLC13A5, encoding for a sodium-coupled plasma mem-
brane citrate transporter, protects mice from adiposity
and insulin resistance [63]. The same group reported a
3-fold increased expression of SLC13A3, encoding
another hepatic plasma membrane tri/dicarboxylate
transporter, in the knockout mice. ATP-citrate lyase is
the key enzyme in cellular lipid production. Its activity
and mRNA levels are decreased in pancreatic islets of

diabetic rats [64]. Administration of insulin increased
ATP-citrate lyase activity and mRNA levels in liver of
diabetic rats [65]. Chu et al. reported a suppression of
ATP-citrate lyase expression and activity by palmitate
and its critical role in pancreatic b-cell survival based on
increased b-cell apoptosis in knockdown mutation [66].
A liver specific ATP-citrate lyase abrogation improved
the systemic glucose metabolism in leptin receptor defi-
cient mice [67]. Moreover, human platelets showed
increased ATP-citrate lyase activity in diabetic subjects
[68]. Furthermore, a decrease of adipose tissue and
plasma insulin concentration were observed in diabetic
mice fed with citric acid [69]. In addition, reduced urin-
ary citrate excretion induced by insulin resistance may
mediate the development of kidney stones in patients
with the metabolic syndrome [70].
Taken together, the metabolites identified so far were

reported to be associated with type 2 diabetes and fast-
ing plasma glucose in numerous studies. The metabo-
lites of our pattern seem to be representatives of an
early stage of a perturbed energy metabolism. This is
reflected by metabolites that are among other pathways
closely linked to the TCA cycle as well as by metabolites
of the purine degradation. The metabolites linked to the
TCA cycle are also involved in many other pathways.
Thus, they might be metabolic hubs that transfer the
perturbation in energy metabolism to other pathways (e.
g. amino acid metabolism) or vice versa. Subsequently,
this perturbation transfer results in the complexity of
fasting plasma glucose development. Furthermore, redox
homeostasis seems to be involved in this development.
For a complete interpretation of our results the identi-

fication of the unknowns is desirable. However, the pro-
blem of a high number of unknown metabolites is still
an intrinsic problem of metabolite profiling methods. In
fact, many studies do not even consider the unknowns
to circumvent this problem. However, our study demon-
strates the potential importance of such unknowns, even
if a complete identification is beyond the scope of this
manuscript.
The identified metabolic pattern includes metabolites

that are not part of a single pathway, but spread over
several pathways. We conclude that glucose level devel-
opment is comparable to a complex ‘clockwork’ with
multiple key regulators. Small perturbations to single
regulators can be buffered by the system, whereas bigger
perturbation at several parts disturb the fine tuned bal-
ance and lead to elevated blood glucose levels. We inter-
pret the metabolites that are part of the identified
metabolic pattern as representatives for the regulatory
parts of the ‘clockwork’.
This complexity reflects the diabetes research results

made on the genome level during the past years: no sin-
gle gene, but rather a high number of genes are
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associated with type 2 diabetes [71-73] and fasting glu-
cose development [74].
Finally, this complexity is the challenge for develop-

ment of individualised medicine. For proper treatment,
all disturbed metabolic regulators have to be identified
and brought back to normal parameters.
We have mentioned above a recent study investigating

the ability of single metabolites measured using LC-MS
to predict type 2 diabetes and finally identifying five
amino acids [11]. Although their approach is similar in
style to ours, there are some differences that make a
direct comparison delicate. These differences concern
the technical platforms to measure metabolite levels, the
number of metabolites measured, the number of
patients, observation period, the prediction endpoints
and the statistical approaches. Thus, further studies are
needed to confirm the results.
Finally, to comment on the practical value of our

work: We interpret our results as a first hint that com-
plex metabolite pattern can predict clinical relevant end-
points and thus reveal new insights in molecular
mechanisms at early stages of disease development.
With respect to diabetes our results need to be con-
firmed in external cohorts before any application in a
clinical setting.

Conclusions
Taken together, our results indicate that specific meta-
bolites are able to predict development of fasting glu-
cose. However, this prediction is primarily driven by a
complex pattern of metabolites rather than single meta-
bolites, demonstrating the interrelation between differ-
ent metabolic pathways in the regulation of circulating
metabolite profiles and in the development of type 2
diabetes.
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