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Self-association and subcellular 
localization of Puumala hantavirus 
envelope proteins
Hannah Sabeth Sperber1,2, Robert-William Welke1, Roberto Arturo Petazzi3, 
Ronny Bergmann1, Matthias Schade1, Yechiel Shai4, Salvatore Chiantia3, Andreas Herrmann  1 
& Roland Schwarzer  1,4,5

Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, 
we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, 
using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their 
intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-
cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy 
imaging and Number&Brightness analysis. We demonstrate that Gc is significantly enriched in the 
Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic 
reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. 
Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of 
Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, 
mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within 
the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and 
Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.

Hantaviruses (HVs) pose a global health threat, infecting ca. 30000 individuals each year worldwide1. They are 
considered emerging pathogens which, due to changing climate conditions and therefore redistribution of their 
natural hosts, have the potential to cause major outbreaks in human populations2. Depending on the HV spe-
cies, infections can lead to HV cardiopulmonary syndrome (HCPS) or hemorrhagic fever with renal syndrome 
(HFRS)2–4. HCPS is caused by New World HVs, and occurs in America, whereas HFRS origins from Old World 
HVs, found in Europe and Asia5–7. Most infections in Europe are caused by the Old World species Puumala virus 
(PUUV)8.

All HVs harbor a trisegmented, negative sensed, single stranded RNA genome. The medium size vRNA seg-
ment (M-vRNA) encodes for two glycoproteins, Gn and Gc, which together form the spike complexes of the viral 
envelope9. Gn and Gc play key roles in virus entry, assembly and budding10,11. Unlike most enveloped viruses, 
HVs lack a matrix protein and it has been proposed that the cytoplasmic tails (CTs) of the glycoproteins, espe-
cially that of Gn, functions as matrix protein surrogate10,11. Through its interaction with the viral nucleocapsid 
protein and the vRNA segments, Gn mediates the assembly and budding of infectious virus particles12–17. Where 
this process takes place is still under debate11, but the Golgi complex is generally believed to be the major bud-
ding site of HVs18–20. However, for some species, assembly and budding may occur at the plasma membrane 
instead21,22.

The first 24 amino acids (aa) of the glycoprotein precursor (GPC) encode for a signal peptide (SP)23, which 
targets the nascent GPC to the ER membrane11. After synthesis of GPC23, Gn and Gc emerge as independent 
proteins in the endoplasmic reticulum (ER) due to a co-translational cleavage at the highly conserved WAASA 
motif 24. Following cleavage, Gn and Gc remain anchored to the ER membrane by their transmembrane domains 
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(TMDs), with their N-terminal ectodomains protruding into the ER lumen and the shorter C-terminal moieties 
facing the cytoplasm (Fig. 1a). In recent years, different functional motifs in both glycoproteins have been iden-
tified and characterized, including N-protein binding site13,16, zinc finger motifs25,26, ITAM motif27, and fusion 
loop28.

The mature HV spike complex consists of four Gn and four Gc subunits and displays a four-fold rotational 
symmetry29–31. So far, the genesis of the spike complex has been only insufficiently characterized and novel studies 
of other members of the Bunyaviridae family revealed a surprisingly high diversity in the organization of the spike 
complexes31–35.

In this work, we generated fluorescent, chimeric protein variants of the two PUUV glycoproteins Gn and Gc 
for separate expression in mammalian cells. This strategy enabled investigating specific properties of the individ-
ual viral proteins in absence of other viral components and allowed for the identification of specific functional 
motifs. By integrating the SP of GPC (GnSP) in the open reading frame of both proteins, we enabled a correct and 
physiological targeting of their translation, a factor that may have been disregarded in previous studies. We per-
formed localization studies, utilizing fluorescence microscopy and quantitative image analysis, showing that Gc 
translocates to the Golgi apparatus in absence of other viral components. In contrast, we found that Gn localizes 
in the Golgi region only upon co-expression with Gc. Of note, co-expression led to a significant increase in Golgi 
localization of both proteins, demonstrating a mutual enhancement of their Golgi targeting. By site-directed 
mutagenesis and C-terminal truncations, we identified the GcCT to be necessary, but not sufficient for Golgi 
localization of the viral glycoproteins. Finally, by assessing the oligomerization of the chimeric proteins via fluo-
rescence anisotropy imaging microscopy (FAIM) and Number&Brightness (N&B) analysis, we demonstrate that 
Gn possesses a significantly higher tendency to oligomerize than Gc, supporting previous data that suggests that 
Gn may form the tetrameric spikes on the hantavirus surface16,36. Taken together, our results indicate that Gn 

Figure 1. Topological and structural organization of HV glycoproteins Gn and Gc, emerging from the 
glycoprotein precursor GPC. (a) Shown is the aa sequence of the PUUV glycoprotein (UniProt: P27312) 
from the Sotkamo strain (V-2969/81). The GPC SP is displayed in green (aa 1–24), glycosylation sites in grey, 
the putative TMDs in light blue (Gn: aa 485–590 and aa 637–656, Gc: aa 1108–1129), the N-protein binding 
sites in dark blue (NBS1: aa 526–543, NBS2: aa 602–614, NBS3: aa 629–635, NBS4: aa 1131–1148), the zinc 
finger motifs in yellow (aa 548–594), a YXXL ITAM motif in orange (aa 625–628), the intraprotein cleavage 
site - WAASA - in pink (aa 654–658), and the fusion loop FL - WGCNPPD in red (aa 773–779). The figure was 
generated with Protter75, motifs were obtained from Andes virus (ANDV) data11 and assigned to the PUUV 
sequence by string alignment between UniProt sequences from ANDV (Q80DP7) and PUUV (Q9WJ31) GPC. 
Transmembrane sequences were determined by in silico prediction using Phobius76. (b) Structural elements 
of the chimeric PUUV glycoproteins created in this study. The highlighted domains are described above. Aa 
positions and size of the individual domains are drawn to scale. Depending on the experimental requirements, 
XFP represents a monomeric yellow fluorescent protein (mYFP) or turquoise fluorescent protein (Turq).
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and Gc have complementary biological activities that enable a tightly controlled organization of the intracellular 
targeting of the glycoproteins and the assembly of the homomeric subunits.

Results
Construction of N-terminal labeled chimeric PUUV glycoproteins. The fluorescent tag was attached 
to the N-termini of the PUUV glycoproteins (Fig. 1b) to minimize any interference with putative interactions of 
cytoplasmic factors that could be required for glycoprotein trafficking and localization, since several important 
interaction sites and functional motifs have been identified within the CTs of Bunyavirus glycoproteins13,16,27,37,38. 
Particularly in the case of Gc, which possesses a very short CT, a bulky label being linked to the C-terminus of the 
protein would impact the biological activity of this important protein domain.

mYFP-Gc cloning strategy. The N-terminal signal peptide is targeting the nascent precursor protein GPC 
to the ER, thus determining the ER as synthesis site of both emerging glycoproteins. Taking this into consider-
ation, both of our glycoprotein variants were designed to contain the GnSP attached to the N-terminus of the 
respective chimeric construct (Fig. 1b). Therefore, the GnSP is translated first and then co-translationally cleaved 
from the following chimeric protein, comprised of a fluorescent protein (XFP) and the respective glycoprotein 
sequence. This cloning strategy (including a SP at the N-terminus of both proteins) is required to ensure proper 
targeting of the expression and thus subcellular localization for both constructs and should reproduce a physio-
logical expression of HV glycoproteins.

mYFP-Gn and mYFP-Gc differ in their intracellular localization when expressed inde-
pendently. First, we investigated the intracellular distribution of the constructs by co-localization analysis 
with markers for cellular compartments that are putatively involved in the PUUV life cycle: ER, Golgi apparatus 
and plasma membrane (PM). To enable live-cell imaging we co-transfected mYFP-Gn or mYFP-Gc with the 
marker proteins pmTurquoise2-Golgi (Golgi-Turq, see SI Fig. 1) and a glycosylphosphatidylinositol-anchored 
cyan FP (GPI-CFP) to stain Golgi apparatus and PM, respectively. The ER was stained with ER-tracker Red prior 
to live-cell microscopy.

When expressed seperately, both glycoproteins strongly co-localized with the ER marker but not with 
GPI-CFP at the PM (Fig. 2a,b). Interestingly, we found a significant co-localization of mYFP-Gc with the 
Golgi-marker (Fig. 2b), whereas mYFP-Gn appeared to be excluded from the Golgi apparatus (Fig. 2a).

To quantify our visual observation, we assessed co-localization of Golgi-Turq and the chimeric glycoproteins 
using ImageJ (Fig. 2c). Determined pixel intensities in the Golgi and ER region were expressed as the ratiometric 
value (IGolgi/IER), which directly reflects Golgi accumulation of the protein under study. This analysis revealed a 
highly significant enrichment of mYFP-Gc in the Golgi apparatus compared to mYFP-Gn (Fig. 2c), thus confirm-
ing our previous observation. To test whether this finding resulted from differences in the kinetics of mYFP-Gn 
and mYFP-Gc protein synthesis and trafficking, we analyzed different time points post transfection (SI Fig. 2). 
However, we found comparable intracellular distributions for both proteins at 12, 24 and 48 hours post transfec-
tion, indicating that the protein localization is in a steady-state already after 12 hours and suggesting that differ-
ences in the subcellular localization indeed reflect distinct trafficking properties of the two viral glycoproteins. We 
also expressed both proteins in two additional cell types, Human embryonic kidney 293 cells (HEK-293 cells) or 
African green monkey kidney epithelial cells (Vero E6 cells), in order to investigate cell and species dependency of 
the protein properties. In both cell lines, the intracellular localization of mYFP-Gn and mYFP-Gc again differed 
greatly, similar to CHO-K1 cells, with a strong perinuclear enrichment of mYFP-Gc and a broader distribution 
of mYFP-Gn (SI Fig. 3).

Co-expression of mYFP-Gn and Turq-Gc leads to a significant enrichment of both proteins 
in the Golgi apparatus. Next, we studied the intracellular distribution of mYFP-Gn and Turq-Gc upon 
co-transfection. In co-expressing cells, Turq-Gc emerged in the ER and Golgi apparatus resembling the subcel-
lular distribution of mYFP-Gc in absence of mYFP-Gn (compare Figs 2b and 3). In contrast, the intracellular 
localization of mYFP-Gn changed markedly (Fig. 3). Whereas in absence of Turq-Gc, mYFP-Gn was mainly 
localized in the ER (Fig. 2), it strongly accumulated in the perinuclear region upon co-expression, showing strong 
co-localization with Turq-Gc (Fig. 3a). To verify the identity of this accumulation site, we additionally stained 
the cells after co-transfection with an anti-membrin antibody39,40 as a reporter of endogenous Golgi proteins. 
Both glycoproteins clearly co-localized with membrin (Fig. 3b), thus confirming that mYFP-Gn and Turq-Gc 
accumulate in the Golgi apparatus.

Image quantification revealed a significant increase in the Golgi accumulation for both glycoproteins in 
co-expressing cells (Fig. 3c), suggesting that co-expression is promoting ER exit and Golgi targeting of mYFP-Gn 
and Turq-Gc, and thus enabling efficient delivery of both spike components to the putative site of PUUV assem-
bly and budding.

The full-length GcCT is necessary for a proper Golgi localization of mYFP-Gc. In a next step, 
we focused on mYFP-Gc and its ability to accumulate in the Golgi. We hypothesized that the CT is responsible 
for Golgi enrichment due to its exposure to cytoplasmic cellular factors, which may promote mYFP-Gc trans-
port. We therefore generated chimeric Gc variants that featured different truncations of the CT (Fig. 4a) and 
quantified Golgi localization of each construct by ImageJ analysis. The new protein variants, mYFP-Gc_½CT, 
mYFP-Gc_¼CT and mYFP-Gc_ΔCT lack half, three quarters or the entire CT, respectively.

mYFP-Gc_ΔCT displayed a negligible co-localization with the Golgi-, and a high co-localization with the 
ER-marker (Fig. 4c). This observation was confirmed by quantitative image analysis, revealing a highly significant 
decrease in Golgi localization of mYFP-Gc upon truncation of its CT (Fig. 4d: mYFP-Gc vs. mYFP-Gc_∆CT). 
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Of note, already the modest truncation of the CT, introduced in the variant mYFP-Gc_½CT, resulted in a sig-
nificantly decreased Golgi localization (Fig. 4d: mYFP-Gc vs. mYFP-Gc_½CT, SI Fig. 4). This reduction was 
even more pronounced for mYFP-Gc_¼CT (SI Fig. 4). Both however, mYFP-Gc_½CT and mYFP-Gc_¼CT, 
co-localized to a significantly higher degree with the Golgi apparatus than mYFP-Gc_∆CT (Fig. 4d). Altogether, 
our data revealed a successive reduction of the Golgi-localization upon stepwise truncation of the CT, suggesting 
that the entire CT is engaged in Golgi targeting rather than specific residues or motifs within the CT.

To extend and verify our confocal microscopy experiments, we applied imaging flow cytometry, a technique 
that enables high throughput, fluorescence microscopy and automated single-cell analysis (Fig. 4g–i). Using this 
approach, we evaluated and compared the intracellular localization of our glycoprotein constructs with respect to 
the Golgi-marker Golgi-Turq, based on their bright detail similarity (BDS) (Fig. 4h). The BDS function correlates 
the small bright image detail of two images and can be used to quantify the co-localization of two fluorescently 
labeled proteins. The BDS results were consistent with our data obtained by image analysis (compare Fig. 4d,f 
with Fig. 4h). Again, the full length mYFP-Gc was found to strongly co-localize with the Golgi apparatus and this 
property decreased upon truncation of its CT (Fig. 4h). Furthermore, mYFP-Gn was significantly less associated 
with the Golgi complex compared to mYFP-Gc (Fig. 4h, SI Table 1).

Co-expression of mYFP-Gn and Turq-Gc_∆CT does not rescue Golgi localization. We next 
investigated the effect of eliminating the entire CT of our chimeric Gc on Golgi targeting function in the con-
text of glycoprotein co-expression and asked whether mYFP-Gn can rescue Turq-Gc_ΔCT trafficking defects. 
Golgi staining of cells co-transfected with mYFP-Gn and Turq-Gc_ΔCT revealed no enrichment of mYFP-Gn 

Figure 2. Intracellular localization of separately expressed PUUV chimeric glycoproteins mYFP-Gn and 
mYFP-Gc. CHO-K1 cells were co-transfected with either (a) mYFP-Gn or (b) mYFP-Gc and different cellular 
markers of the Golgi apparatus (Golgi, marker: Golgi-Turq) or plasma membrane (PM, marker: GPI-CFP), 
respectively. The endoplasmic reticulum (ER) was stained after transfection using ER-tracker Red. Fluorescence 
images represent equatorial slices of cells and were obtained by confocal microscopy 24 hours post transfection. 
Insets show magnifications of the boxed regions. High degrees of co-localization appear white in overlay images. 
Scale bar = 10 µm. (c) Quantification of mYFP-Gn and mYFP-Gc enrichment in the Golgi apparatus by ImageJ 
analysis. The Golgi region was identified based on the compartment marker Golgi-Turq. The columns show 
the mean of 28 cells expressing mYFP-Gn and 60 cells expressing mYFP-Gc from at least four independent 
experiments. Error bars show the standard error of the mean (SEM) of individually analyzed cells. The asterisks 
denote ****p ≤ 0.0001 by Student’s test for unpaired data.
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or Turq-Gc_ΔCT in the Golgi region, and both constructs exhibited intracellular patterns as observed when 
expressed separately. (compare Figs 2a and 4e, and Fig. 4c,e). This result, corroborated by our quantitative anal-
ysis (Fig. 4f), again emphasized the importance of an intact GcCT for a proper intracellular distribution of the 
chimeric Gn and Gc constructs.

GcCT is not sufficient for Golgi targeting. Our previous results suggested that GcCT may be necessary 
for an efficient Golgi accumulation of both PUUV glycoproteins. To test if the GcCT alone is sufficient to permit 
Golgi targeting, we replaced the CT of Gn by GcCT (Fig. 4b, mYFP-Gn_GcCT) and investigated mYFP-Gn_
GcCT by confocal microscopy and imaging flow cytometry. Both assays showed that substituting the GnCT with 
the GcCT did not lead to a pronounced accumulation of mYFP-Gn_GcCT in the Golgi complex. mYFP-Gn_
GcCT remained in the ER, displaying a similar distribution pattern as observed for the original mYFP-Gn con-
struct (Figs 2a and 4e,f,h).

GnCT but not GcCT influences protein expression. We analyzed the overall fluorescence inten-
sities of the YFP-tagged proteins using imaging flow cytometry to assess the expression level of the different 
YFP-tagged Gn and Gc variants. Our data indicated that the successive truncation of the GcCT did not consider-
ably alter the expression of mYFP-Gc, reflected by similar YFP intensities for the glycoprotein variants mYFP-Gc, 

Figure 3. Intracellular distribution of co-expressed PUUV glycoproteins in living CHO-K1 cells. (a) Co-
transfection of mYFP-Gn (green) and Turq-Gc (purple). Samples were analyzed 24 hours post transfection. 
Three typical cells are displayed. White areas indicate co-localization. (b) Immunofluorescence staining of 
CHO-K1 cells, co-transfected with mYFP-Gn (green) and Turq-Gc (blue), utilizing anti-membrin-Alexa647 
as marker of the Golgi-apparatus (red). Insets show magnifications of the boxed regions. Scale bar = 10 µm. 
(c) Quantification of mYFP-Gn and mYFP-Gc enrichment in the Golgi apparatus upon co-expression using 
ImageJ. The Golgi apparatus was identified based on anti-membrin staining in fixed cells. Columns show the 
mean of 36 cells expressing mYFP-Gn only, 23 cells expressing mYFP-Gn and Turq-Gc, 35 cells expressing 
mYFP-Gc only, and 27 cells expressing mYFP-Gc and Turq-Gn, from three independent experiments. Brackets 
indicate Turq-tagged proteins. Error bars show SEM of individually analyzed cells. The asterisks denote 
****p ≤ 0.0001 and **p ≤ 0.01 by Student’s test for unpaired data.
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Figure 4. Intracellular localization of mYFP-GcCT and mYFP-GnCT variants. (a) + (b) Schematic 
representation of GnCT and GcCT variants. (a) The CT of mYFP-Gc is represented in red, (b) the CT of 
mYFP-Gn is represented in dark green, the WAASA sequence is shown in pink. TMD = transmembrane 
domain (light blue). (c) Intracellular localization of mYFP-Gc_ΔCT (green), co-stained with the ER tracker 
Red (upper panel) or co-transfected with Golgi-Turq (lower panel). Co-localization appears white in overlay 
images. (d) Quantification of glycoprotein co-localization with Golgi-Turq using ImageJ. Columns show the 
mean of 60 cells expressing mYFP-Gc, 65 cells expressing mYFP-Gc_½CT, 46 cells expressing mYFP-Gc_¼CT 
and 70 cells expressing mYFP-Gc_ΔCT from at least four independent experiments. (e) The upper panel 
displays immunofluorescence staining of fixed cells that were co-transfected with mYFP-Gn (green) and 
Turq-Gc_ΔCT (blue) utilizing anti-membrin-Alexa647 as a Golgi-marker (red). The lower panel shows co-
transfection of mYFP-Gn_GcCT (green) and Golgi-Turq (purple). Insets show magnifications of the boxed 
regions. (f) Quantification of the Golgi enrichment of the mYFP-Gn and mYFP-Gn_GcCT in presence and 
absence of the Gc variants Turq-Gc and Turq-Gc_ΔCT. The Golgi apparatus was identified based on anti-
membrin staining (in fixed cells) or Golgi-Turq co-expression. The YFP mean fluorescence ratio IGolgi/IER 
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mYFP-Gc_½CT, and mYFP-Gc_¼CT (Fig. 4i, SI Table 2). In contrast, mYFP-Gc_∆CT exhibited a significant 
reduction in protein expression, presumably a result of an impaired stability of the truncated protein, an increased 
likelihood of folding defects and premature degradation of the protein.

We consistently observed a significantly lower fluorescence intensity for mYFP-Gn than for mYFP-Gc, a 
finding that may indicate differences in the kinetics of synthesis and/or degradation. Interestingly, an increased 
protein expression was assessed for mYFP-Gn_GcCT compared to mYFP-Gn, even though we did not detect 
an accumulation of mYFP-Gn_GcCT in the Golgi region (Fig. 4h,i). This implies that mYFP-Gn_GcCT either 
exhibits a higher protein stability or a more efficient expression than the original mYFP-Gn variant.

mYFP-Gc and mYFP-Gn are exposed at the cell surface and GcCT truncations increase PM 
localization. We analyzed the PM localization of YFP-tagged PUUV glycoproteins by flow cytometry. To this 
aim, CHO-K1 cells, transfected with different protein constructs were stained with anti-GFP antibodies (being 
cross-reactive to all variants of Aequorea victoria GFP) to specifically label surface exposed, chimeric proteins. 
We used GPI-mYFP, a known Golgi apparatus and PM marker, as a positive control, normalizing all proteins 
under study to this construct. We observed a detectable antibody signal for all constructs (Fig. 5), whereas for 
mock transfected cells the signal was virtually undetectable (not shown). This finding clearly demonstrates sur-
face exposure of the glycoprotein constructs. However, in contrast to the positive control GPI-mYFP (SI Table 3), 
the signals were significantly lower, supporting our previous observation of an only minor PM exposure of the 
PUUV glycoproteins (Figs 2 and 5, SI Table 3). Interestingly, all GcCT truncation variants were weakly, but sig-
nificantly enriched at the PM compared to mYFP-Gc, suggesting that the 6 C-terminal amino acids of mYFP-Gc 
may be involved in a regulated restriction of mYFP-Gc surface exposure. Of note, mYFP-Gc_ΔCT showed sig-
nificantly lower surface expression than the other two truncation variants, mYFP-Gc_½CT, and mYFP-Gc_¼CT. 
This may be, as suggested before, a result of an impaired stability of the truncated protein, which supposedly 
increases misfolding and leads to partial ER retention and degradation. We also analyzed two previously pub-
lished variants of the human immunodeficiency virus (HIV) glycoprotein gp4141. As expected, gp41 showed a 
weak surface exposure (relative to GPI-mYFP) that is significantly increased upon removal of the protein’s CT 
(∆1-mYFP), containing several known endocytosis motifs.

mYFP-Gn exhibits a higher degree of oligomerization than mYFP-Gc. To investigate the 
self-association properties of PUUV glycoproteins, we applied fluorescence anisotropy imaging microscopy 
(FAIM) (Fig. 6a,b). This method enables a reliable and rapid detection of homo-FRET - Förster resonance energy 
transfer between interacting proteins that harbor identical fluorophores42 - and was used before to investigate 
self-clustering and oligomerization of fluorescently labeled proteins41,42. In this assay, self-association/oligomeri-
zation is reported by a decrease of the fluorescence anisotropy values due to homo-FRET. Our experiments show 
that mYFP-Gn expressing cells exhibited significantly lower YFP anisotropy values than mYFP-Gc expressing 
cells (Fig. 6b), indicating a higher tendency of mYFP-Gn to self-associate and suggesting that Gn oligomerizes in 
absence of other viral factors.

mYFP-Gn assembles into dimers and tetramers in the ER. To quantitatively assess the oligomeri-
zation state of mYFP-Gn and mYFP-Gc, we additionally performed N&B analysis in a live, single-cell format. 
This technique allows quantification of the oligomerization state of fluorescent molecules by determining their 
molecular brightness. Through comparison to the brightness of fluorescent monomer and dimer references (i.e. 
by calculating a normalized brightness), N&B directly provides the average amount of fluorescent proteins in 
a complex that is diffusing within a cell43,44. Fig. 6c shows brightness maps of typical CHO-K1 cells expressing 
YFP-tagged Gn or Gc, respectively. In this representation, the pixel intensity indicates the average amount of pho-
tons per pixel (i.e. fluorescence intensity). The color represents the average brightness of molecules in the pixel, 
in units of photons per molecule per 100 µs (pixel dwell time). In each of the analyzed maps, a region of interest 
was chosen corresponding to the ER (for mYFP-Gn), or to the Golgi (for mYFP-Gc). Cellular organelles were 
identified by co-expression of the markers mCherry-ER and mCherry-Golgi (see SI Fig. 7). Fig. 6d shows the 
normalized brightness measured in 25–40 cells expressing mYFP-Gn or mYFP-Gc, averaged over all the pixels 
enclosed in the selected regions of interest. The normalization through mYFP monomer and dimer brightness 
references implies that the values shown here give a direct measure of the average multimerization state of the 
glycoprotein constructs in the examined samples (see Materials and Methods). For example, a mixture of mon-
omers and dimers would correspond to a normalized brightness value between 1 and 2 (see equation (4)). Our 

was determined from 36 cells expressing mYFP-Gn, 24 cells expressing mYFP-Gn_GcCT, 28 cells expressing 
mYFP-Gn and Turq-Gc_ΔCT, and 23 cells expressing mYFP-Gn and Turq-Gc, from three independent 
experiments. Brackets indicate Turq-tagged proteins. (g–i) Imaging flow cytometry analysis of glycoproteins 
co-transfected with Golgi-Turq. (g) Representative cells co-expressing Golgi-Turq (in pink) and different 
constructs (in green). Golgi-YFP, mYFP-Gc and mYFP-Gc_ΔCT are shown as examples for strong, moderate 
and low co-localization with Golgi-Turq. (h) Quantitative co-localization analysis of Golgi-Turq with different 
chimeric proteins, expressed as bright detail similarity (BDS). (i) Expression analysis of chimeric proteins by 
assessing single-cell fluorescence intensities from at least three independent experiments. In imaging flow 
cytometry experiments, a minimum of 2000 cells were analyzed per transfection sample. Error bars show SEM 
from independent experiments. Asterisks denote: ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05, p > 0.05 
(ns) by Student’s test for unpaired data. For statistics of BDS (h) and YFP intensity (i) see SI Table 1 and SI 
Table 2, respectively. Scale bars = 10 µm. All experiments were performed 24 hours post transfection.
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results indicate that mYFP-Gc forms small oligomers, while mYFP-Gn assembles into larger complexes. Such 
outcome is in full agreement with the results obtained from anisotropy measurements. To allow for quantitative 
conclusions regarding the multimerization state of the analyzed constructs, some simplifying assumptions must 
be made. Assuming that mYFP-Gc is present as a mixture of monomers and dimers within the Golgi complex, 
the observed normalized brightness of 1.43 ± 0.06 (average ± SEM, n = 28) would indicate a ~73:27 monomer to 
dimer molar ratio, according to equation (4). Similarly, based on previous biochemistry findings suggesting the 
organization of Gn in dimers and tetramers35,44, the observed normalized brightness value of 2.91 ± 0.17 (aver-
age ± SEM, n = 39) for mYFP-Gn would indicate that this protein is present as a mixture of 70 molar% dimers and 
30 molar% tetramers (see equation (4)).

Discussion
Intracellular targeting and assembly of viral proteins is a prerequisite of a successful virus proliferation. In this 
study, we investigated the subcellular localization and oligomerization of the PUUV glycoproteins Gn and Gc in 
single, living CHO-K1 cells by using different state-of-the art fluorescence microscopy techniques. The intracellu-
lar distribution of both proteins was studied by confocal microscopy and quantitative image analysis. In addition, 
we performed imaging flow cytometry to verify and expand microscopy-based data, by analyzing thousands of 
cells in an unbiased, user-independent fashion. For the chimeric PUUV glycoprotein mYFP-Gn, we found a high 
co-localization with ER markers, but only a minor spatial correlation with Golgi markers. mYFP-Gc, on the other 
hand, was shown to exhibit a distinct accumulation in the Golgi apparatus. Furthermore, we show that a complete 
GcCT is required for proper Golgi targeting of mYFP-Gc, since a stepwise truncation of the GcCT led to a corre-
sponding reduction of Golgi localization.

In recent years, several studies attempted to elucidate the intracellular trafficking of HV glycoproteins, mainly 
using recombinant protein constructs and fluorescence based techniques17,18,45–49. Surprisingly, different pub-
lications reported partially conflicting results: Pensiero et al.46 found that Gn of Hantaan virus (HNTV) local-
izes to the Golgi in absence of other viral components. Shimizu et al.17 reported a strong co-localization of Gn 
with the cis-Golgi and a rather diffuse distribution of Gc in the context of a full-length GPC expression. Upon 
co-transfection with the nucleocapsid protein (NP), Gc was observed to be significantly enriched in the Golgi 
apparatus. Interestingly, Shimizu et al. found that the Golgi-targeting effect on Gc was least pronounced for the 
PUUV NP, whereas HTNV, Seoul Virus (SEOV) and Sin Nombre Virus (SNV) NP strongly reduced the num-
ber of cells with diffused Gc distribution. This may suggest that the targeting of PUUV glycoproteins might be 
more dependent on intrinsic factors of the PUUV GPC complex. Ruusala et al.47 and Shi et al.48 showed that 
co-expression of HNTV Gn and Gc is required for both proteins to localize to the Golgi apparatus. Similarly, 
Spiropoulou et al.18 and Deyde et al.49 demonstrated for ANDV and SNV, respectively, that co-expression of 
the glycoproteins is necessary for Golgi localization. Studies focusing on other Bunyaviridae family members 
reported that Gn is capable of localizing to the Golgi complex in absence of Gc or other viral components50–53. 
However, we are the first to demonstrate that a chimeric Gc (and not Gn) of PUUV can be found in the Golgi 
complex in absence of other viral components. Further, we showed that co-expression of the glycoprotein chimera 

Figure 5. Surface exposure analysis by flow cytometry. Cells transfected for 24 hours were stained with anti-
GFP fluorescent antibodies and the mean fluorescence intensity of the antibody was assessed as a reporter of 
PM exposure. Samples were normalized to the positive control GPI-mYFP. Two previously published HIV 
gp41 fusion proteins were analyzed for comparison. Error bars show the SEM of independent experiments. For 
statistics see SI Table 3.
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markedly enhanced Golgi localization of both glycoproteins. In contrast, upon truncation of the GcCT, our chi-
meric Gn and Gc constructs are excluded from the Golgi. Based on these results, we conclude that Gc is the 
determining factor for Golgi targeting of both PUUV glycoproteins. Our findings emphasize the interdependency 
of the two glycoproteins and, regarding intracellular targeting, are in agreement with previous studies, showing 
most efficient trafficking of both glycoproteins to the Golgi apparatus upon co-expression18,46–49. One explanation 
for a mutual promotion of the Golgi localization of both glycoproteins might be a more efficient translocation of 
the glycoproteins from the ER to the Golgi apparatus upon formation of mature oligomeric complexes. Another 
possibility is that the interaction between both glycoproteins prevents premature cellular degradation processes, 
i.e. autophagosomal degradation (as described for Gn of SNV54,55) that might precede intracellular trafficking. 
However, we could neither detect co-localization of our chimeric Gn construct with autophagosomes nor an 
enrichment in the Golgi apparatus upon autophagy inhibition (SI Fig. 5). While our findings demonstrated that 
the GcCT is required for Golgi localization of mYFP-Gc, it was not sufficient to promote Golgi localization of 
the respective Gn chimera, mYFP-Gn_GcCT. Nevertheless, the significant increase of the expression levels of 
mYFP-Gn_GcCT compared to mYFP-Gn suggests a role of the CTs in protein expression and/or stability. Indeed, 
previous publications on NY-1 virus (NY-1V), HNTV, ANDV, TULV, and Prospect Hill virus (PHV) reported 
that the GnCT is ubiquitinated and involved in subsequent proteasomal degradation27,37,38 of the protein. Further 
studies must determine the role of the CTs for expression and stability of PUUV glycoproteins.

Figure 6. Oligomerization of PUUV glycoproteins expressed in living CHO-K1 cells studied via fluorescence 
anisotropy and brightness mapping. (a) CHO-K1 cells were transfected with mYFP-Gn or mYFP-Gc and 
investigated by FAIM. The pseudo-colored images display the degree of oligomerization of the respective 
chimera in each cell based on the measured fluorescence anisotropy. (b) Bars show the mean, single cell 
anisotropy values of 52 cells expressing mYFP-Gn and 96 cells expressing mYFP-Gc from at least four 
independent experiments per specimen. Error bars show the standard error of the mean. The significance was 
assessed by Student’s test for unpaired date and is displayed by asterisks: ****p ≤ 0.0001. (c) Brightness maps 
of typical CHO-K1 cells expressing mYFP-Gn or mYFP-Gc, respectively. The color bar shows the brightness 
scale expressed as photon counts per molecule per 100 µs (pixel dwell time). Scale bar = 5 µm. (d) Brightness 
normalized using the corresponding monomer value extracted from the analysis of mYFP-ER or mYFP-Golgi 
(see main text for details). For each cell, an ROI enclosing the ER or the Golgi was defined and analyzed. The 
graph shows the mean values of the normalized brightness measured over 25–40 cells transfected with YFP-
tagged fusion proteins from at least three independent experiments. Error bars represent the SEM. The asterisks 
denote ****p ≤ 0.001 as defined by MATLAB’s ttest2 function for unpaired data.
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In agreement with previous studies18,28,56,57, we show that both proteins, mYFP-Gn and mYFP-Gc, exhibit 
a detectable degree of plasma membrane expression. However surface exposure was not very pronounced and 
only minor co-localization with a PM marker was found, which supports earlier publications, reporting primar-
ily intracellular assembly and budding of Hanta- and Bunyaviruses9,20,46,47,58. Interestingly, we observed a small, 
but significant increase in the cell surface exposure of all CT-truncation variants of Gc. This may indicate that 
the C-terminal section of the GcCT contains a Golgi-retention or re-internalization motif, comparable to the 
C-terminal dileucine and YSPL motifs that were identified in the HIV-1 glycoprotein gp4159,60. In fact, we found 
comparable increases in surface exposure (4–5 fold) upon partly removal of the CTs of gp41 and Gc (mYFP-Gc 
vs. mYFP-Gc_¼ CT and gp41-mYFP vs. ∆1-mYFP in Fig. 5, SI Table 3). Interestingly, a previous study on new 
world HVs demonstrated that GcCT truncations do not affect surface exposure and virus like particle formation 
in context of ANDV GPC expression56. At this point we can only speculate that this difference is indicative of 
structural and functional distinctions between new world and old world HV glycoproteins that render the PUUV 
GcCT indispensable for intracellular trafficking whereas the ANDV counterpart can be removed without intro-
ducing obvious defects.

We conducted FAIM as well as N&B analysis to study the oligomerization status of mYFP-Gn and mYFP-Gc 
individually in a live-cell context. Both methods independently revealed a lower degree of self-association for 
mYFP-Gc than for mYFP-Gn. Moreover, N&B analysis indicated that mYFP-Gc is present as a mixture of mostly 
monomers and dimers within the Golgi apparatus, whereas mYFP-Gn was found to form mostly dimers and 
larger oligomers (e.g. tetramers) in the ER. Of note, an investigation of the CT mutants mYFP-Gn_GcCT and 
mYFP-Gc_∆CT suggested an involvement of GnCT in the protein’s self-association (SI Fig. 6).

Our study is, to the best of our knowledge, the first to investigate HV glycoprotein oligomerization in a live, 
single cell context. While in recent years the spike complex structure and composition of two Old World HV spe-
cies, the non-pathogenic Tula virus (TULV)29 and pathogenic HNTV30, could be unraveled in detail, it remains 
largely unknown how the tetrameric and mature hetero-oligomeric complexes are initially assembled in the 
infected cell. Based on our results, we speculate that Gn is the primary trigger and driving factor of spike complex 
assembly. This would be in line with a model that has been previously formulated, suggesting an initial formation 
of Gn homo-oligomers (i.e. dimers or tetramers) that is followed by the recruitment of Gc subunits16,36,61.

In summary, we report distinct functionalities and biological activities assigned to PUUV glycopro-
teins: Gc predominantly determines the intracellular trafficking of both glycoproteins and Gn mediates the 
homo-oligomerization to finally form part of the spike complexes. We want to emphasize that preceding studies 
investigating different HV species obtained varying results concerning intracellular localization, interaction and 
oligomerization of HV envelope proteins. This strain specific behavior could be based on a broad evolutionary 
diversity of HVs which might be a result of the tight co-evolution of HVs and their respective hosts, causing an 
independent, highly adaptive development of the different HV species. Further studies are necessary to deepen 
our understanding of this aspect, as well as maturation and functions of the glycoproteins.

Materials and Methods
Cloning and generation of chimeric proteins. Puumala virus (PUUV) glycoprotein encoding viral 
RNA was purified from Vero E6 cells, infected with the PUUV, Sotkamo strain (V-2969/81), an Orthohantavirus 
from the family of the Hantaviridae. After RNA extraction (RNeasy, Qiagen) and reverse transcription, cDNA 
was used for amplification via PCR. Gc and Gn were independently cloned into pmYFP-N1 vectors including 
A206K monomeric mutation of the fluorescent tag62. At the N-terminus of the fluorophore, the HV glycopro-
tein signal peptide (SP) was introduced to ensure a physiological membrane incorporation and localization of 
the fusion protein constructs. The obtained expression plasmids, termed mYFP-Gn and mYFP-Gc, were fur-
ther modified in our laboratory by site-directed mutagenesis. C-terminal truncations were introduced by classic 
PCR amplification. Mutations and exchange of the Gn cytoplasmic tail (GnCT) were performed by Quickchange 
(Stratagene) cloning. All clonings were tested by Sanger sequencing of expression plasmids. pmTurquoise2-Golgi 
(Golgi-Turq) was a gift from Dorus Gadella (Addgene plasmid #36205) and has been described before63. 
MyrPalm-mYFP (myristoylated and palmitoylated peptide fused to YFP) contains the amino acid sequence 
MGCIKSKRKDNLNDDEPPVAT derived from the N-terminus of the Lyn kinase. The myristoylation/palmitoy-
lation sequence was then subcloned into pmYFP-N1. mYFP-ER and mYFP-Golgi were obtained from pmTur-
quoise2-ER (gift from Dorus Gadella, Addgene plasmid #36204) and Golgi-Turq (Addgene plasmid #36205), 
respectively, by exchange of the fluorophore. For co-expression experiments, chimeric Gc and Gn constructs 
were generated and fluorescently labeled with Turquoise instead of YFP. Fluorophore exchange was conducted by 
restriction-based subcloning.

Cell culture and transfection. Chinese hamster ovary (CHO-K1) cells, Human embryonic kidney 293 cells 
(HEK-293 cells) or African green monkey kidney epithelial cells (Vero E6 cells) were maintained in Dulbecco’s 
modified Eagle’s medium (DMEM, PAA Laboratories GmbH, Austria) containing 10% fetal bovine serum. 24 
hours prior to experiments, fusion protein expression plasmids were transfected into cell lines in 35 mm-diameter 
plates utilizing Turbofect (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.

Immunofluorescence staining. If not otherwise stated, cells were subjected to microscopy and flow 
cytometry without prior fixation. For intracellular immunofluorescence staining however, cells were washed three 
times with phosphate-buffered saline with calcium and magnesium (PBS+/+) and fixed with 3.7% paraformalde-
hyde for 25 min at room temperature. Afterwards, the cells were washed three times with PBS+/+ before perme-
abilization with 0.2% Triton X-100 and 0.2% bovine serum albumin (BSA) for 20 min. After three more washing 
steps, cells were incubated with anti-membrin antibody (Abcam, ab13511) for 1 h. This procedure was repeated 
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for the AlexaFlour647 conjugated secondary antibody (goat anti mouse IgG, Invitrogen) and the immunostaining 
was concluded with three washing steps.

Confocal fluorescence microscopy. Differential interference contrast (DIC) and fluorescence intensity 
images were obtained with a 60x water immersion objective (numerical aperture 1.2) at 25 °C with a frame size of 
512 × 512 pixels. For confocal imaging, CFP or Turquoise were excited at 405 nm using a laser diode and observed 
in 475–490 nm detection range. YFP was excited at 515 nm using an argon laser and detected in the range of 
535–575 nm. AlexaFluor647 was excited at 635 nm using a laser diode and observed in 655–755 nm detection 
range. Signals of co-expressing cells were recorded sequentially and obtained intensities were analyzed with the 
ImageJ analysis program.

Quantitative image analysis. Colocalization of HV proteins with compartment markers was quantified by 
manual image analysis using ImageJ. Initially, regions of interest (ROIs) were defined, based on the fluorescence 
signal of fluorescently labeled Golgi marker proteins or fluorescent antibodies (identifying the Golgi apparatus) 
and DIC images (cell outlines). The ratio IGolgi/IER of mYFP expressing proteins in individual cells was determined 
by assessing mean mYFP pixel intensity in the Golgi apparatus relative to the mean mYFP pixel intensity in the 
remaining cell (reflecting the ER).

Fluorescence anisotropy imaging microscopy (FAIM). The experimental setup for confocal micros-
copy is described above. An expanded setup explicitly described on the manufacturer website64 was used for 
fluorescence anisotropy imaging. After removal of DIC depolarization filters, images were obtained with a 60x 
water objective (numerical aperture 1.2) with a frame size of 512 × 512 pixel. A pulsed 470 nm laser diode with 
a repetition frequency of 20 MHz was applied to excite mYFP. The polarized emitted light was separated with 
a polarization beam splitter and parallel and perpendicular fluorescence signals were detected using a 540/40 
emission filter for the perpendicular polarized light and a 540/30 emission filter for the parallel polarized light 
prior to a τ-SPAD and Perkin/Elmer SPAD respectively. The g-factor for this microscope setup was calculated 
from point scans of the emission signals on both channels with an Alexa488 solution. A value of 1.65 was found 
for the setup described above. Fluorescence steady state anisotropy pictures were accumulated for 90 s with an 
average photon count rate of 50,000–100,000 counts per second. Images were analyzed using the SymPhoTime 
software after selection of suitable regions of interest. The obtained pixel weighted values were summed up into 
average anisotropy values.

Statistical test. To address cell-to-cell variance in the parameter under study, for quantitative evaluation of 
microscopy experiments single cells were analyzed separately. If not otherwise stated, experimental data represent 
the mean ± SEM of individually analyzed cells. Statistical significance was assessed using a parametric, unpaired, 
two-tailed Student’s t-test with a 95% confidence interval and significance displayed as follows: ****P < 0.0001; 
***P < 0.001; **P = 0.001–0.01; *P = 0.01–0.05.

Imaging flow cytometry. CHO-K1 cells were first co-transfected with different HV glycoprotein vari-
ants and Golgi-Turq for 24 hours, detached using PBS/EDTA (5 mM), washed with PBS without calcium and 
magnesium (PBS−/−), spun down (200 g, 10 min) and resuspended in PBS−/−. Cells were then subjected to 
ImageStreamX (Amnis/EMD Millipore) analysis using the IDEAS software (Amnis, EMD millipore)65 without 
previous fixation. Samples were analyzed with a 60x lens, numerical aperture 0.9 generating 40 × 170 µm images 
with a 330 nm pixel size. Images were compensated for fluorescent dye overlap by using single-stain controls. 
Cells were gated for single cells or doublets using the area and aspect ratio features, and for focused cells using the 
GradientRMSfeature as described previously66. Co-localization of the Golgi-marker and the protein of interest 
was determined using the bright detail similarity feature (BDS)67. The BDS correlates the small bright image 
detail of two images and can be used to assess co-localization of two labels. BDS is defined as the log transformed 
Pearson’s correlation coefficient of localized bright spots with a radius of 3 pixels or less within the masked area 
in the two analyzed images. The initial correlation coefficient varies between 0 (uncorrelated) and 1 (perfect 
correlation) and is log transformed to increase the range between zero and infinity (0, inf)68,69. In this experi-
mental setup, high values report a strong correlation of the fluorescence signal in both investigated channels (one 
of which shows a Golgi marker) and therefore an enrichment of the protein of interest in the Golgi-apparatus. 
Overall glycoprotein expression was assessed by calculating the mean fluorescence intensity of mYFP.

Flow cytometer membrane expression experiments. CHO-K1 cells were transfected with chimeric 
proteins for 24 hours, detached using PBS/EDTA (5 mM) and then incubated with AlexaFluor647 anti-GFP anti-
body (Biolegend, 338005) and Zombie Red (Biolegend, 423109) for 15 min at room temperature. Then, cells 
were washed, spun down (300 g, 5 min) and resuspended in PBS−/− for flow cytometry analysis. Samples were 
initially gated for singlets, Zombie negative (viable) populations. Then, mYFP positive cells were gated based on 
mock transfected samples. The mean fluorescence intensity (MFI) was assessed in the YFP and AlexaFluor647 
channel. The MFI in the antibody channel was normalized to the mYFP MFI in order to account for differences in 
the overall expression of the chimeric proteins for the evaluation of the surface exposure. Finally, the results from 
all protein variants were normalized to the positive control GPI-mYFP.

Number and Brightness (N&B). N&B was performed as previously described70. Briefly, CHO-K1 cells 
were plated onto 35 mm glass-bottom dishes from Ibidi (Ibidi, Planegg, Munich, Germany) 48 h prior to the 
experiment and transfected utilizing Turbofect (Thermo Scientific, Waltham, MA, USA) according to the man-
ufacturer’s protocol 20–24 h prior to the experiment. Cell imaging was performed at 25 °C. Confocal images 
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were acquired using a Zeiss LSM780 microscope. The 488 nm excitation from a CW Argon laser (Lasos, Jena, 
Germany) was focused with a 40× UPLS Apocromat 1.2 NA water objective into the sample. The fluorescence sig-
nal was collected by a Zeiss QUASAR multichannel GaAsP detector in a 508–597 nm range. Images of 128 × 128 
pixels were acquired with pixel dimensions ∼400 nm and a pixel dwell time of 100 μs. Image time-stacks of 100 
scans were collected in photon counting mode using the Zeiss Black ZEN software. The intensity time-stacks data 
were analyzed using self-written Matlab code (The MathWorks, Natick, MA, USA). The Matlab algorithm imple-
ments the equations from Digman et al.71 for the specific case of true photon-counting detectors72, thus obtaining 
the true molecular brightness (referred to simply as ‘brightness’ in what follows) as a function of pixel position. 
The pixel brightness is a measure of the multimerization state of fluorescent objects diffusing in and out of the 
pixel. Regions of interest were selected in cell images based on the distribution of specific intracellular markers 
(i.e. mCherry-ER or mCherry-Golgi, see SI Fig. 7). The selected pixel brightness values were pooled to calculate 
occurrence histograms. Thereafter, brightness values were normalized in every separate experiment using the 
brightness value ε_1 of a mYFP monomer localized either in the ER or Golgi (i.e., mYFP-ER or mYFP-Golgi). 
Since it is not known whether these markers might form dimers, before measuring monomer brightness, cells 
were subjected to several bleaching cycles with high laser power until the brightness did not decrease anymore. 
At this point, only monomers or partially bleached dimers (with the same apparent brightness ε_1 of a monomer) 
should contribute to the measurement.

In order to improve the precision of the brightness calibration, we also took into account the probability of 
maturation of the fluorescent tag (pm)44,73. To this aim, it suffices to determine pm for the fluorescent protein of 
interest in constructs with two known multimerization states and in the typical experimental conditions44. This 
was accomplished by determining the brightness for a membrane bound fluorescent monomer (e.g. 
MyrPalm-mYFP) or a dimeric tandem (e.g. MyrPalm-mYFP-mYFP, see SI Fig. 8). The latter can be modeled as a 
mixture of fluorophores with different brightness (ε = ε2full 1 for a fully formed mature dimer; ε = εpartial 1 for a 
partially fluorescent dimer), with corresponding brightness given by the formula:

ε =
ε ⋅ + ε ⋅

ε ⋅ + ε ⋅
(n , n )

n n
n n (1)

2 partial full
partial

2
partial full

2
full

partial partial full full

where n and npartial full are the numbers of mature dimers and partially mature dimers, respectively.
Assuming that n and npartial full follow a binomial probability distribution defined by pm, the final brightness of 

a nominal fluorescent dimer with maturation probability pm is given by:

ε ε= + ⋅p p( ) ( 1) (2)m m2 1

Note that ε ε= 22 1, only if pm = 1.
And in general, for higher multimerization states of the n-th order:

ε ε= − ⋅ + ⋅p n p( ) (( 1) 1) (3)n m m 1

Measuring the brightness of the dimeric and monomeric controls directly provides the value of pm for mYFP, 
which is then used to normalize all following measurements. In our experimental conditions, we obtained a pm 
value of ca. 0.65, as expected for mYFP in general44. The value of was measured for each experiment using the 
above-mentioned ER and Golgi markers (rather than MyrPalm-mYFP), to take into account geometry-related 
changes in monomer brightness. In conclusion, in all the reported results, a normalized brightness value of 1 cor-
responds to the brightness ε1 of a mYFP monomer control; a normalized brightness value of 2 corresponds to the 
brightness ε2 of a mYFP dimer control; a normalized brightness of 3 corresponds to the brightness expected for 
a mYFP trimer ε3; and so on. This simple correction was shown to provide reliable values up to, at least, 12-mer 
complexes44.

In the case of simple mixtures of two oligomeric species with molar concentrations ni and nj, with correspond-
ing brightness values εi and εj, the measured brightness in a pixel will be:

ε
ε ε
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Measurements on the Gn and Gc constructs were performed at low excitation intensity. The laser power was 
set so that the photon count rate remained below 1 MHz (i.e. typical values were ≤4 μW). To correct for residual 
photobleaching effects and minor cell movements, we used a boxcar-filter pixel-wise with a 8-frame length, as 
previously described74. In our experimental condition, bleaching remained usually below 10–15% of the ini-
tial measured intensity. In order to avoid concentration-dependent effects on multimerization determination, 
all experiments (including those on the monomer and dimer controls) were performed on cells expressing the 
fluorescent proteins at comparably low concentration levels (i.e. ~10–50 proteins per pixel, corresponding to 
~10 nM). Saturation of detectors leading to artefactual reduction in brightness was avoided by excluding pixels 
in which photon-counting rates exceeded 1 MHz71. Using this selection criterion, saturation induced brightness 
decrease was kept below 10%. Finally, to further correct the weak residual negative correlation between brightness 
and pixel intensity, we measured the detector response analyzing the signal from a dried Alexa488 solution. The 
thus obtained brightness vs. intensity plot (which should be constant and equal to 0 for all intensity values, since 
the fluorophore is immobile) was used to correct the actual experimental data.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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