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Summary
Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current

potato varieties are highly susceptible to drought stress. In view of global climate change,

selection of cultivars with improved drought tolerance and high yield potential is of paramount

importance. Drought tolerance breeding of potato is currently based on direct selection

according to yield and phenotypic traits and requires multiple trials under drought conditions.

Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by

noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and

reduced water supply in six independent field trials. Drought tolerance was determined as tuber

starch yield. Leaf samples from young plants were screened for preselected transcript and

nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript

marker candidates were selected from a published RNA-Seq data set. A Random Forest machine

learning approach extracted metabolite and transcript markers for drought tolerance prediction

with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and

metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random

Forest models allowed model minimization, yielding a minimal combination of only 20

metabolite and transcript markers that were successfully tested for their reproducibility in 16

independent agronomic field trials. We demonstrate that a minimum combination of transcript

and metabolite markers sampled at early cultivation stages predicts potato yield stability under

drought largely independent of seasonal and regional agronomic conditions.

Introduction

Potato (Solanum tuberosum L.) is an important food crop that is

mainly grown in Europe and Asia (Haverkort and Struik, 2015). In

addition, potato tubers are important as animal feed and

industrial raw material (Kirkman, 2007; McGregor, 2007).

Climate change scenarios predict more frequent and intense

periods of drought in Europe (Jones et al., 2003) and many other

regions of the world (IPCC, 2013). Current potato varieties are

highly susceptible to drought stress, which could lead to

significant tuber yield losses (Hijmans, 2003). Potato yield under

drought stress is influenced by a combination of morphophysi-

ological processes, such as photosynthesis, leaf area expansion,

leaf senescence, partitioning of assimilates, tuber initiation,

bulking and tuber growth (van Loon, 1981).

Thus, approaches to select genotypes with improved drought

tolerance while retaining the present yield potential are of great

interest. In the past, most of the breeding for drought tolerance in

potato was based on selection for high yield under stress and

other phenotypic traits. However, this is time-consuming, labo-

rious and requires field trials under drought conditions, which

suffer from high weather variability (Monneveux et al., 2013). By

contrast, marker-assisted selection (MAS) is cheaper, faster and

may be less prone to errors caused by environmental variability

(Slater et al., 2013). The number of genotypes that have to be

tested in field trials can be strongly reduced by screening breeding

material for markers early during the selection cycle (Gebhardt,

2013). Molecular markers, such as transcripts or metabolites,

provide an advantage because they integrate over many genes

and environmental effects. This has clear advantages for complex

phenotypes such as drought tolerance (Schudoma et al., 2012).

In addition, DNA polymorphism markers may be used for the

same purpose. However, while this is routinely performed in

diploid crops, the use of such markers in polyploid plants such as

tetraploid potato remains problematic. Nevertheless, the large-

scale application of metabolite and transcript markers in breeding

will still be challenging due to the necessity of highly reproducible

sampling in the field directly into liquid nitrogen to rapidly arrest

all metabolic activity. Also, access to the specialized analysis

platforms for qRT-PCR and GC-MS may be limiting.

Recent advances in ‘omics’ technologies have made the

discovery of new candidate genes or metabolites for MAS

possible in crops with limited or even unavailable genomic

information (Gebhardt, 2013; Zabotina, 2013). However, marker

candidates and the respective prediction models need to be

tested with an independent set of samples to ensure robustness
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and generalizability (Schudoma et al., 2012; Zabotina, 2013). The

first implementation and validation of MAS for polygenic tuber

quality traits in potato was conducted by Li et al. (2013).

Here, we used 31 potato cultivars to identify a set of highly

predictive markers for superior drought tolerance. These Euro-

pean potato cultivars were chosen based on their significant

variation in drought tolerance (Sprenger et al., 2015), a prereq-

uisite for the discovery and identification of predictive markers.

Metabolite and transcript profiling was applied to leaf samples

from all cultivars grown under drought stress and control

conditions in field experiments. A Random Forest machine

learning approach was applied to predict drought tolerance that

was experimentally determined as tuber starch yield and to select

optimal sets of predictive markers. These markers were tested for

reproducibility on samples from independent agronomic field

trials. Importantly, these markers could be used to predict

drought tolerance in unstressed plants, thus making time-

consuming and expensive drought stress trials unnecessary for

the breeding process.

Results

Characterization of drought tolerance

For the quantification of drought tolerance, six independent

experimental field trials on 31 potato cultivars (Table S1) were

performed. They were conducted in the years 2011–2013 at

three locations in Germany (Table S2). Plants were grown under

optimal and reduced water supply to determine tuber starch yield

and estimate drought tolerance based on the previously validated

‘deviation of relative starch yield from the experimental median’

(DRYM) index (Sprenger et al., 2015). The most tolerant cultivar

showed a DRYM of +10% compared to the most sensitive with

�6% (Figure 1). ANOVA identified cultivar as a main factor

significantly influencing drought tolerance (Table 1, P < 0.0001).

Selection of reference genes for qRT-PCR

Reference genes are crucial for the accurate analysis of gene

expression data by qRT-PCR. To identify suitable reference genes

that show stable expression across all cultivars, growth conditions

and treatments, genes with a minimal variation in expression

were selected from our previously published RNA-Seq data

(Sprenger et al., 2016). These data were obtained from 48 leaf

samples of drought-stressed and well-watered plants from three

glasshouse and three field trials covering four selected cultivars.

Another criterion for selection as a reference gene was an

expression level in an easily measurable range for qRT-PCR. Based

on these criteria, 15 candidate genes were chosen from a FPKM

(fragments per kilobase of transcript per million mapped reads)

interval ranging from 5 to 45 and displaying minimal variance

across all samples (Figure 2a). These genes were tested by qRT-

PCR using 124 samples from glasshouse-grown and field-grown,

well-watered and drought-stressed plants of all 31 cultivars

(Figure 2b). Finally, four reference genes (paramyosin, ATP

binding protein, b-adaptin B and zinc finger CCCH domain-

Figure 1 Drought tolerance of 31 potato cultivars (Table S1) based on six field experiments (F1–F5 and F7; Table S2). Drought tolerance was calculated as

deviation of relative starch yield from the experimental median (DRYM). DRYM values represent mean values across experiments, and error bars represent

the SE of the means. Zero indicates average tolerance, negative values indicate sensitivity, and positive values indicate tolerance.
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containing protein 17) were chosen based on a minimal coeffi-

cient of variation (CV) across all tested samples (Table 2) and a

nonsignificant effect of the factors cultivation type, cultivar and

treatment in an ANOVA test (Table S3). To normalize the

expression values for the genes of interest, the mean expression

of the four reference genes was calculated.

Selection of marker candidate genes for drought
tolerance

To select suitable transcript marker candidates, we used the

previously published RNA-Seq data set (Sprenger et al., 2016). A

subset of 298 genes exhibited higher expression in tolerant than

in sensitive cultivars under control conditions in both field and

glasshouse experiments. We focused on genes with higher

expression in tolerant than in sensitive cultivars, because practi-

cally, the breeding process requires the identification of tolerant

cultivars from a population and high transcript levels can be

measured more accurately than low levels. Among those marker

candidates, we identified 169 genes with a median expression

level above five counts per million (CPM) across all samples from

tolerant cultivars (Table S4). Finally, primer pairs targeted at 88

candidates (Table S5) were selected and transcript abundance

was assessed in 202 samples from well-watered and drought-

stressed plants of all cultivars from three independent exper-

imental field trials (F1, F3 and F4).

To assess the concordance between the qRT-PCR and RNA-Seq

data, we compared results for the 88 marker candidates from the

four selected cultivars that were previously analysed by RNA

sequencing (Sprenger et al., 2016). Gene expression measured as

log2(2
�DCt ) by qRT-PCR was highly significantly (P = 1.8E-13,

r = 0.685) correlated with log2 FPKM values gained by RNA-Seq

(Figure 3), indicating a high concordance between both methods.

Characterization of metabolite and transcript profiles

The full metabolome data set in the present study comprised 913

samples from five independent experimental field trials (F1–F4,
F7; F5 was not used for metabolomic analysis) and 490 samples

from all 16 agronomic field trials covering all 31 cultivars.

Experimental field samples equally represented drought-stressed

and well-watered conditions, while agronomic field trials

reflected the variation in cultivation at eight different field sites

in Germany (Table S2). In total, 115 metabolites were detected by

GC-MS across all field trials. To allow the joint analysis of data

that were collected throughout 3 years, we removed systematic

differences by an ANOVA-based procedure (Lisec et al., 2011).

The technical variance and the trial-specific variance were

reduced after applying this correction procedure (Figure S1).

Subsequent principal components analysis (PCA) of the metabo-

lite data showed a separation of samples from control and

drought-stressed plants from experimental field trials by PC2

explaining approximately 10% of the variance (Figure 4a).

Samples from agronomic field trials clustered together with

control samples from experimental field trials. However, the main

variance of the metabolite profiles was due to the genetic

differences among the cultivars, as they were separated by PC1

(14.8%) and PC3 (9.6%; Figure S2a).

The complete transcript data set consisted of 202 samples from

three experimental field trials (F1, F3 and F4) and 185 samples

Table 1 Results of ANOVA on drought tolerance in 31 potato

cultivars

Source DF F Pr > F

Cultivar 33 3.52 <0.0001

SI 1 0.02 0.8876

NSY 1 354.79 <0.0001

Degrees of freedom (DF), F-statistics and error probability (Pr > F) for the effect

of cultivar, stress index (SI) and starch yield under drought conditions

normalized to the median starch yield under control conditions over all cultivars

(NSY) on DRYM in six field experiments (DF (error) = 532).

(a) (b)

Figure 2 Expression plots for the selection of reference genes. (a) Relation between log2 FPKM mean and log2 FPKM variance measured by RNA-Seq.

Vertical lines indicate the expression range from 5 to 50 FPKM by an interval of 5. Selected candidates as reference genes are highlighted in red. (b)

Expression of 15 candidate genes measured as Ct value by qRT-PCR. The final selection of four reference genes is indicated in grey.
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from six agronomic field trials covering all 31 cultivars. These trials

were selected from three locations, one with low yield and

rainfall, second with high yield and rainfall in both years and third

location with different yield and rainfall in the 2 years. Gene

expression was measured for a common overlap of 43 transcript

marker candidates. Part of the variance in the transcript data was

due to a trial effect as PC1 (27.3%) separated the agronomic

trials A6 and A8 from all other experiments (Figure S3a). In

contrast to the metabolite data, the PCA scores plot of transcript

data showed no separation of drought stress and control

conditions (Figure 4b), in agreement with the selection criterion

for these genes. Also, the genotype effect was less pronounced

for the transcript compared to the metabolite data (Figure S2b).

Metabolite markers for drought tolerance

We applied Random Forest analysis (Breiman, 2001), a machine

learning method, to obtain predictive models for the drought

tolerance of potato cultivars and to select metabolite markers for

this trait. Training of the models was performed with metabolite

data from the experimental field trials, while data from the

agronomic field trials were used to test the reproducibility of the

predictions. The Random Forest approach was implemented for

the classification of drought tolerance into three groups: low,

intermediate and high. Using the full training set including 115

metabolites as predictors, the out-of-bag (OOB) estimate of error

rate was only 6%, corresponding to an accuracy of 94%.

In a next step, the minimal set of informative predictors in the

Random Forest model was determined. Iteratively, the least

important predictors were removed from the full model, and

finally, the solution with the smallest number of metabolites,

whose OOB error rate was within one standard error of the

minimum OOB error rate of all Random Forests (‘1 SE rule’), was

chosen. Variable selection resulted in a subset of 24 metabolites

from a Random Forest model of the experimental field training

data (Figure 5). Interestingly, the predictive accuracy was not

changed compared to the full model with 115 metabolites

(Table 3).

The Random Forest model estimates the importance of each

predictor by the mean decrease in Gini index, where high values

indicate high importance (Figure 5b). Of the 24 predictive

metabolites, 10 were unidentified mass spectral tags (indicated

by MST identifiers accessible at the Golm Metabolome Database,

http://gmd.mpimp-golm.mpg.de/) and 10 were organic acids,

such as galactaric, galactonic, glyceric and saccharic acid.

Furthermore, ribitol, arbutin (4-hydroxyphenyl-b-D-glucopyrano-
side), dopamine and tyramine were selected as highly predictive

metabolite markers.

Transcript markers for drought tolerance

Analogous to the prediction of drought tolerance by metabolite

data, gene expression data of 43 transcript marker candidates

were used to build Random Forest models and to select highly

informative predictors. The training of the models was performed

with transcript data of three experimental field trials (F1, F3 and

F4), while data of six agronomic field trials from three locations

(Table S2) were used for testing the reproducibility of the

predicted markers.

Using the full training set of 43 transcripts as predictors, the

OOB error rate was 8.9%, slightly higher than for the model

based on metabolite data. The number of informative transcript

markers for prediction of drought tolerance was determined by

successively eliminating the least important predictors as

described for the metabolite model. This resulted in a set of 14

transcript markers as indicated by the OOB error rate in Figure 6a.

As already observed for the metabolite marker model, the OOB

error rate of the reduced model (10.9%) was nearly the same as

for the full model including all transcripts (Table 3).

Importance of each transcript in the Random Forest model was

evaluated by the mean decrease in Gini index. Table 4 lists the

top 20 transcripts sorted by importance with a transcript

annotated as glucosyltransferase exhibiting the highest impor-

tance. Furthermore, there are six genes in the top 20 list, which

belong to the MapMan annotation bin ‘signalling receptor

kinases’ (highlighted in red in Table 4). Three other genes

(highlighted in blue) are classified as biotic stress-related (BED

finger-NBS-LRR resistance protein, bacterial spot disease resis-

tance protein 4, TMV resistance protein N).

Combined markers for drought tolerance

Finally, metabolite and transcript data from the three experimen-

tal field trials (F1, F3 and F4) were merged to build a combined

model. The PCA scores plot of the combined data shows two

Table 2 Selected reference genes for qRT-PCR with their annotated

function and coefficient of variation (CV) across 124 tested samples

Number PGSC Gene Identifier Functional annotation CV

4 PGSC0003DMG400011723 Paramyosin 0.050

9 PGSC0003DMG400026492 ATP binding protein 0.056

27 PGSC0003DMG400014497 AP-2 complex subunit

b1 (b-adaptin B)

0.064

50 PGSC0003DMG400031374 Zinc finger CCCH

domain-containing

protein 17

0.064

Figure 3 Results of qRT-PCR using 88 selected marker candidates for

drought tolerance. Correlation between gene expression measured by

qRT-PCR (log2(2
�DCt )) and RNA-Seq (log2FPKM) from Sprenger et al.

(2016).
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main effects (Figure S3b). As already observed for metabolite

data, PC1 separates samples from control and drought-stressed

plants. Additionally, samples from agronomic field trials in 2011

(A5, A6, A8) cluster together, while samples from 2012 (A9, A14,

A15) are more similar to the experimental field trial samples, as

already seen for the transcript data.

The combined Random Forest model including all metabolites

(115) and transcripts (43) resulted in a low OOB error rate of

4.3% within the experimental field training set (Table 3). This

performance was slightly improved compared to the models

using either metabolite or transcript data alone for the training

set, pointing to a complementing effect in the combined model.

As described for the models of single data sets, the number of

informative predictors was determined by successively eliminating

(a) (b)

Figure 4 PCA scores plots of metabolite (a) and transcript (b) data of samples from field experiments and agronomic trials. PCA results indicating the

difference between well-watered control (blue) and drought-stressed plants (red) as well as 2 years of agronomic trials (2011: green, 2012: orange) are

shown for PC1 and PC2.

Figure 5 Plots illustrating the metabolite marker selection. (a) Plot of out-of-bag (OOB) error rate and its standard deviation (dashed lines) of the Random

Forest model in relation to number of metabolite markers (predictors). The model was based on field training data. The least important predictors were

eliminated successively from the model resulting in a set of 24 predictors (red diamond) according to the ‘1 SE rule’. (b) Importance of the selected 24

metabolite markers measured as mean decrease in Gini index for Random Forest models of field trial data.

Table 3 Random Forest model performance for training and

validation estimated by out-of-bag (OOB) error rate and overall

accuracy. Full models based on metabolite, transcript and combined

data are compared to reduced models with selected predictors

Training (OOB error

rate) Validation (overall accuracy)

Full model

Reduced

model Full model Reduced model

Metabolite data 6.02% 5.81% 91.6% 90.0%

Transcript data 8.91% 10.89% 69.7% 66.5%

Combined data 4.3% 4.3% 82.6% 77.7%
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the least important ones. This approach resulted in a set of 27

predictors (Table 5), indicated by the OOB error rate shown in

Figure 6b. The error rates slightly increased with a higher number

of predictors in the model, most probably due to higher noise of

less informative markers. Similar to the separate transcript and

metabolite models, the reduced combined model including 19

transcripts and eight metabolites showed similar performance as

the full model with 158 predictors (Table 3).

Testing model reproducibility

To test the reproducibility of the prediction models trained on

data from field experiments, an independent data set comprising

samples from agronomic field trials was chosen. These trials were

conducted at eight locations across Germany in the years 2011

and 2012 and were managed by breeding companies under

realistic commercial cultivation conditions without a specific stress

treatment. Metabolite profile data were obtained from all 16

trials, while transcripts were measured from six selected trials,

including three from each year (A5, A6, A8, A9, A14 and A15).

As a measure of the predictive power of the Random Forest

models, we used the overall accuracy (ratio of true-positive and

true-negative cases to all). These values are summarized in

Table 3 for the metabolite, transcript and combined models,

using either full or reduced models as described in detail above. In

(a) (b)

Figure 6 Plot of out-of-bag (OOB) error rate and its standard deviation (dashed lines) of the Random Forest model in relation to number of transcript

markers (a). Equivalent plot of OOB error rate of the Random Forest model for combination of metabolite and transcript data (b). The models were based on

field training data. The least important predictors were eliminated successively from the model resulting in a set of 14 transcripts (a) and 27 transcripts/

metabolites (b), respectively (indicated by red diamond).

Table 4 Importance of the top 20 transcript marker candidates in Random Forest models for drought tolerance prediction based on field training

data

Identifier Functional annotation MapMan BIN Importance

400021019 Glucosyltransferase 26.2-misc.UDP glucosyl and glucuronyl transferases 7.966

400031370 O-Methyltransferase 16.2-secondary metabolism.phenylpropanoids 5.263

400028434 Serine/threonine protein kinase, plant-type 35.2-not assigned.unknown 5.235

400082012 Extensin 35.2-not assigned.unknown 5.234

400008092 Glutamyl-tRNA (Gln) amidotransferase subunit A 26.8-misc.nitrilases 5.219

400035714 BED finger-NBS-LRR resistance protein 20.1-stress.biotic 4.988

400083025 Betaine aldehyde dehydrogenase 5.10-fermentation.aldehyde dehydrogenase 4.551

400082023 Lipoxygenase 17.7.1.2-hormone metabolism.jasmonate.synthesis-degradation.lipoxygenase 4.216

400068787 Serine/threonine protein kinase, plant-type 30.2.11-signalling.receptor kinases.leucine rich repeat XI 4.202

400075512 Poly(ADP-ribose) glycohydrolase 29.5-protein.degradation 4.154

400068776 Flagellin-sensing 2 30.2.11-signalling.receptor kinases.leucine rich repeat XI 3.690

400071885 LRR receptor-like serine/threonine protein kinase 30.2.11-signalling.receptor kinases.leucine rich repeat XI 3.451

400045689 Receptor protein kinase 30.2.11-signalling.receptor kinases.leucine rich repeat XI 3.387

400062379 Gene of unknown function 35.2-not assigned.unknown 3.227

400004539 Glutathione S-transferase 26.9-misc.glutathione S transferases 3.190

400020366 Ethylene-inducing xylanase 30.2.11-signalling.receptor kinases.leucine rich repeat XI 3.092

400046899 TMV resistance protein N 20.1.7-stress.biotic.PR-proteins 3.089

400046308 Reticuline oxidase 26.8-misc.nitrilases 3.072

400046445 Serine/threonine protein kinase, plant-type 30.2.11-signalling.receptor kinases.leucine rich repeat XI 3.033

400006231 Bacterial spot disease resistance protein 4 20.1.7-stress.biotic.PR-proteins 3.011

Variable importance was estimated by the varImp function based on the Gini index. Transcripts highlighted in grey resulted from the variable selection using the

varSelRF function. Genes in the biotic stress bin are highlighted in blue, and signalling receptor kinases in red.
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general, both the full and the reduced models resulted in a similar

accuracy, indicating that a set of approximately 20 predictors was

sufficient for robust models in all cases. The prediction for full

model validation was more accurate with metabolite data

(91.6%) than with transcript data (69.7%), while the combined

model showed an intermediate accuracy of 82.6%.

Tables 6 and 7 give a more detailed overview of the sensitivity

(true-positive rate) and specificity (true-negative rate) of drought

tolerance prediction using the full models. The metabolite model

exhibited high sensitivity and specificity values above 90% for all

tolerance classes (low, intermediate, high). In contrast, the

transcript model performed with a lower sensitivity of ~80% for

low and high tolerance and of only 51.5% for the intermediate

tolerance class. This observation indicates that half of the

intermediate samples were falsely classified as samples of either

low or high tolerance.

Finally, the prediction accuracy of all models was specified for

the single agronomic field trials (Table 8). The overall accuracy of

the metabolite models ranged from 80.6% to 100%, indicating

moderate differences between the single experiments regarding

the robustness of drought tolerance prediction. However, the

variability of prediction accuracy of the transcript models was

larger, ranging from 45.2% to 87.1%. In particular for trials A6,

A8 and A15, rather low accuracies were obtained. Mostly, the

results of the combined models (82.6% accuracy) were more

accurate than the transcript (69.7%), but less accurate than the

metabolite models (91.6%).

Table 5 Importance of metabolite and transcript marker candidates

in the combined Random Forest model for drought tolerance

prediction based on field training data

Predictor identifier Name Importance

400021019 Glucosyltransferase 3.697

400031370 O-Methyltransferase 2.908

400035714 BED finger-NBS-LRR resistance protein 2.704

400008092 Glutamyl-tRNA (Gln)

amidotransferase subunit A

2.610

A175010-101 A175010-101 2.585

400082012 Extensin 2.467

400075512 Poly(ADP-ribose) glycohydrolase 2.383

400028434 Serine/threonine protein kinase, plant-type 2.281

400082023 Lipoxygenase 1.933

400083025 Betaine aldehyde dehydrogenase 1.857

400068787 Serine/threonine protein kinase, plant-type 1.750

400052517 70-kDa subunit of replication protein A 1.742

A158004-101 Glutaric acid, 2-oxo- 1.674

400068776 Flagellin-sensing 2 1.653

400045689 Receptor protein kinase 1.590

A177001-101 Ribonic acid 1.532

400046308 Reticuline oxidase 1.524

A179012-101 A179012-101 1.521

A228001-101 A228001-101 1.518

400062379 Gene of unknown function 1.511

400030682 Gamma aminobutyrate

transaminase isoform1

1.387

400004539 Glutathione S-transferase 1.346

A308004-101 A308004-101 1.278

A250002-101 A250002-101 1.239

A199002-101 Galactonic acid 1.186

400027201 Acidic class II 1 3-beta-glucanase 1.152

400071885 LRR receptor-like serine/

threonine protein kinase

1.140

Variable importance was estimated by the varImp function based on the

Gini index. Metabolites are highlighted in grey.

Table 6 Drought tolerance prediction accuracy for all cultivars from

samples taken in 16 agronomic field trials using the full Random

Forest model based on metabolite data

Observed Low Intermediate High

Predicted

Low 143 5 3

Intermediate 13 157 7

High 2 10 150

Total 158 172 160

Sensitivity (%) 90.5 91.3 93.1

Specificity (%) 97.6 93.4 96.4

Table 7 Drought tolerance prediction accuracy for all cultivars from

samples taken in six agronomic trials using the full Random Forest

model based on transcript data

Observed Low Intermediate High

Predicted

Low 48 18 11

Intermediate 1 34 1

High 11 14 47

Total 60 66 59

Sensitivity 80.0 51.5 79.7

Specificity 76.8 98.3 80.2

Table 8 Results of model reproducibility measured as overall

accuracy for the prediction of drought tolerance using agronomic

field trials

Accuracy was color coded from dark green (100%) to dark red (40%).
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Discussion

Characterization of drought tolerance

Drought tolerance was defined here as the deviation of relative

starch yield under control and drought conditions from its

experimental median (DRYM). This distinguishes drought-tolerant

from drought-sensitive genotypes independent of their yield

potential, defining drought tolerance as starch yield stability

under limited water supply. DRYM was not correlated with starch

yield under drought (Sprenger et al., 2015). It should be noted

that this approach differs from the traditional breeder’s approach

to identify genotypes that are both high yielding and highly

tolerant to drought. In the set of six experimental field trials,

variation in drought tolerance was significant within the popu-

lation of 31 potato cultivars and can thus be used as a basis for

the discovery of drought tolerance markers.

Selection of reference genes for qRT-PCR

Quantification of gene expression by qRT-PCR requires adequate

reference genes, which show stable expression across the

diversity of cultivars and growth conditions (Bustin et al., 2009;

Remans et al., 2014). Hruz et al. (2011) showed that no single

gene is universally stably expressed. Therefore, reference genes

have to be validated for the particular biological context. Based

on a previously published RNA-Seq data set (Sprenger et al.,

2016), we selected four genes whose expression was most stable

across all 31 cultivars under control and drought stress conditions.

These genes also exhibit a very low coefficient of variation (CV) in

a RNA-Seq data set of 6386 constitutively expressed genes for 32

tissues and growth conditions from the doubled monoploid

S. tuberosum group Phureja clone DM1-3 516R44 (Massa et al.,

2011). This indicates that these validated reference genes will also

be useful for other studies in potato.

Selection of marker metabolites and transcripts

For the discovery and validation of meaningful and robust

markers, we sampled the first fully expanded leaf from plants

grown in several independent field trials at different locations and

during several years. The precise definition of the sampling

material and the sampling time in terms of developmental stage

and time during the day minimized the confounding variation.

Further confounding factors specific to GC-MS profiling were

successfully eliminated by an ANOVA-based data preprocessing.

There was only a slight separation between drought-stressed and

control samples from experimental field trials, while the latter

tended to cluster with samples from agronomic field trials.

However, most of the metabolic variance was due to genetic

differences among the cultivars.

To select candidate genes as drought tolerance markers, we

used a nontargeted approach based on RNA-Seq transcript

profiles from two tolerant and two sensitive test cultivars

(Sprenger et al., 2016). We tested the expression of 88 of these

genes in a set of 31 cultivars. The highly significant correlation

between gene expression measured by qRT-PCR and RNA-Seq

indicated a high degree of consistency between these methods

that had also been reported in humans, maize and potato (Gao

et al., 2013; Li et al., 2010, 2015; Roberts et al., 2011).

Our approach of preselecting putative markers from a genome-

wide analysis was a critical step, because only this untargeted

global transcriptome analysis allows the discovery of novel marker

candidates that can then be tested in a targeted qRT-PCR

approach. Similar to this strategy, other studies used preselection

to enable high-throughput screening of large sample sets. For

example, 184 candidate genes for flesh colour of potato tubers

were selected from microarray experiments (Kloosterman et al.,

2010), and subsequently, candidates were successfully checked

for an association with the trait of interest by qRT-PCR.

Another strategy for the identification of marker candidates is

based on a significant genotype 9 environment interaction. From

a microarray study on four rice cultivars with contrasting drought

tolerance (Degenkolbe et al., 2013), 46 (of 108) potential

markers were selected and tested by qRT-PCR in 21 cultivars

with varying drought tolerance. Gene expression levels of 28 of

these candidates correlated significantly with performance

parameters under drought stress. However, this approach does

not involve a prediction model and therefore does not allow the

selection of optimal marker combinations. Also, such markers are

identified by their differential stress responsiveness, while the

marker candidates identified here were not differentially

expressed in response to drought stress. Genes whose expression

is significantly associated with drought tolerance already under

control conditions are better suited for large-scale breeding

programmes, as they can be used without the imposition of

environmental stress conditions. In the field, such conditions are

difficult to control and may vary significantly from year to year

due to interactions with other abiotic and biotic factors.

Prediction models for drought tolerance

To identify the most informative markers and to generate robust

prediction models from large omics data sets, machine learning

methods are frequently applied (Schudoma et al., 2012). Here,

we used Random Forest models to predict drought tolerance

classes and identify molecular markers. Random Forest shows

similar performance as other classification methods (SVM, LDA,

PLS and KNN) or even outperforms them using metabolomics

data (Chen et al., 2013; Nam et al., 2009; Wu et al., 2003). It is

suitable for multiclass problems and allows the selection of small

sets of markers while maintaining predictive accuracy

(D�ıaz-Uriarte and Alvarez de Andr�es, 2006). Using the full training

set resulted in surprisingly high prediction accuracies of 94% and

91% for metabolite- and transcript-based classification models,

given the approximately 2 months time lag between sampling for

marker analysis and tuber harvest for the analysis of starch yield.

Korn et al. (2010) established PLS models to predict the freezing

tolerance of different Arabidopsis genotypes from metabolite

composition with high accuracy (82%–87%). The performance of

Random Forest models for the prediction of late blight resistance

and tuber yield of potato by peptide markers was comparable

with accuracy values of 78% and 76% (Chawade et al., 2016).

Also, in rice, the prediction accuracy of PLS regression using

metabolite markers ranged from 86% to 98% for the multigenic

traits yield, heading date and plant height (Dan et al., 2016).

Even though the accuracy was already above 90% for the

single-variable models, the performance of the combined Ran-

dom Forest model was still slightly higher. Similarly, the combi-

nation of metabolic and genetic markers leads only to moderate

improvement of the prediction of hybrid biomass in Arabidopsis

by PLS regression (G€artner et al., 2009; Steinfath et al., 2010a).

The application of high-throughput methods results in a large

number of variables in prediction models often derived from small

numbers of samples, possibly leading to a high degree of

multicollinearity and bearing the risk of overfitting (Jannink et al.,

2010). As Random Forests employ a built-in cross-validation, the
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risk of overfitting was already reduced by the choice of

classification method and the reduction in variables included in

the prediction models further reduced this risk. At the same time,

this reduced model complexity improves applicability for breeding

programmes. Remarkably, we observed only marginal differences

in performance between full models and models where the

number of markers was reduced by 70%–80%. As Random

Forests contain a random selection of training samples and

associated identification of informative variables, the perils of

erroneously assigning low importance to variables that correlate

with others may also be reduced as correlated variables will have

similar chances of being selected in the different random trials.

Comparable results were reported by Dan et al. (2016), Steinfath

et al. (2010a) and G€artner et al. (2009), while Korn et al. (2010)

even observed a slight increase in the predictive power for the

optimal selection of metabolites. The prediction of potato chip

quality was successfully applied on a segregating breeding

population confirming two sugars as metabolite markers (Stein-

fath et al., 2010b).

Most of the informative metabolite markers for drought

tolerance are organic acids (e.g. galactaric, galactonic, glyceric

and saccharic acid) in addition to 10 unidentified mass spectral

tags. Eight of these 24 metabolites (arbutin, tyramine, fumaric

acid, galactonic acid, ribitol, A179012, A228001 and A237001)

were also present in significantly different amounts in tolerant

and sensitive cultivars under control conditions in field trials with

four cultivars in our previous study (Sprenger et al., 2016).

Arbutin has not only been linked to drought, but also to

desiccation tolerance and pathogen resistance, as discussed in

detail previously (Sprenger et al., 2016). Mane et al. (2008)

reported higher concentrations of 2-oxo-glutaric acid in a

drought-tolerant than in a sensitive Andean potato genotype.

Interestingly, a study of rice cultivars discovered a positive

correlation between levels of galactaric acid and drought toler-

ance, but negative correlations for erythronic and galactonic acid

(Degenkolbe et al., 2013). In addition, 2-oxo-glutaric acid and

succinic acid are positively associated with high night temperature

(HNT) tolerance of rice, whereas saccharic acid shows a negative

correlation (Glaubitz et al., 2017).

Further highly predictive markers were the catecholamines

dopamine and tyramine that are involved in many aspects of plant

growth and development. They may affect the regulation of plant

hormones and carbohydrates, protect plants against pathogens

and influence nitrogen detoxification (Kulma and Szopa, 2007).

Their synthesis is up-regulated by stress conditions, such as

wounding, ABA treatment and drought in potato leaves

(�Swiezdrych et al., 2004; Szopa et al., 2001).

Among the identified most informative transcript markers, six

genes are related to signalling and receptor kinases. Additionally,

we identified marker transcripts annotated as pathogen defence

related that have already been suggested as potential drought

tolerance markers previously (Sprenger et al., 2016). Interest-

ingly, most of the top 20 transcript markers also showed higher

abundance under different biotic stress treatments in S. tubero-

sum group Phureja clone DM1-3 516R44 (Massa et al., 2011) and

upon BABA treatment of potato cultivar Desiree (Bengtsson

et al., 2014), which was also included in the population inves-

tigated here. This further substantiates our previous conclusion

(Sprenger et al., 2016) that constitutive differences in metabolite

and transcript levels between tolerant and sensitive potato

cultivars indicate interactions of drought tolerance and pathogen

resistance. Here, cross-talk between abiotic and biotic stress

signalling may be explained by expression of partially overlapping

sets of genes (Fujita et al., 2006; Rejeb et al., 2014), leading, for

example, to enhanced resistance to the fungus Botrytis cinerea in

tomato under drought stress (Achuo et al., 2006; Mohr and

Cahill, 2003). Also, cucumber mosaic virus infection improved

drought and freezing tolerance of beet and tobacco plants (Xu

et al., 2008).

Reproducibility of model predictions

Both the transcriptome and metabolome are highly dynamic and

change in response to varying environmental conditions. To be

practically useful, the predictive power of molecular biomarkers

should be independent of environmental factors. We tested the

prediction models derived from experimental field trials using a

wide range of agronomic field trial conditions. The resulting gene

expression and metabolite profiling data were used to predict the

drought tolerance of our study population. The metabolite model

successfully predicted drought tolerance of the cultivars from

samples taken in all 16 agronomic field trials. Constraining the

model to the reduced set of 24 markers resulted in similar

accuracy values.

The application of the transcript model trained on samples

from three experimental field trials led to a high prediction

accuracy for six selected agronomic field trials, although predic-

tion accuracy was lower compared to the metabolite model.

However, the selection of transcript markers was based on only

four cultivars (Sprenger et al., 2016), while metabolite markers

were measured for all 31 cultivars. In addition, the transcript

model was only built on samples from three experimental field

trials, compared to the five trials for the metabolite model. Thus,

including more cultivars for the selection of transcript markers

and more experimental data for the model training might further

improve the predictive performance.

Steinfath et al. (2010b) confirmed the predictive power of

metabolite markers for the susceptibility to black spot bruising

and potato chip quality by comparison with an independent data

set, while DNA-based markers for potato tuber quality showed

only limited reproducibility (Li et al., 2013). In general, there still is

a lack of studies that incorporate the challenging but important

step of testing marker reproducibility on independent data to

avoid overly optimistic predictions of marker efficiency.

Overall, our study demonstrates the feasibility of predicting

drought tolerance from a small number of transcript or metabo-

lite markers. In future, validation of our prediction models with

additional genotypes could be used to check the transferability to

independent populations to facilitate potato breeding by MAS

(Slater et al., 2014). Finally, the successful evaluation with

independent agronomic field trials demonstrates the high robust-

ness of the prediction models in diverse environments. Thus, the

requirement for expensive controlled drought stress experiments

may be reduced by early prediction of drought tolerance using

transcript or metabolite markers.

Experimental procedures

Plant material and stress treatment

Six experimental field trials (F1–F5, F7, Table S2) were conducted

using 31 potato (Solanum tuberosum L.) cultivars as described by

Sprenger et al. (2015). In F1 and F3, control plants were drip-

irrigated from the top of the ridges with 10 L/m2 water during

the night when plants showed signs of decreased turgor at noon.

Drought-stressed plants were irrigated when they showed visible
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wilting 2 h after sunrise. F4 and F7 were carried out under a rain-

out-shelter where drought stress was applied by stopping

watering at the beginning of emergence of tubers. In F2 and

F5, two control blocks were irrigated when soil water content fell

below 50% field capacity. Two blocks were irrigated at 30% field

capacity and two were not irrigated.

For the agronomic field trials, all 31 cultivars were cultivated in

duplicate plots on eight sites managed by breeding companies in

Germany in 2011 and 2012 under their routine conditions. For

details on the location, duration and water supply, see Table S2.

Sampling and phenotypic characterization

Approximately 65 days after planting, leaf samples were har-

vested as described in detail previously (Sprenger et al., 2016).

Two leaflets of the first fully developed compound leaf were

immediately frozen in liquid nitrogen and stored at �80 °C until

use. Subsequently, all samples were homogenized using a

cryogenic grinding robot (Labman Automation, http://www.

labman.co.uk). Tubers were harvested after approximately

100 days of cultivation. The stress index (SI) of Experiment i

was calculated from the average starch yield in Experiment i for all

cultivars under drought (Td) or control treatment (Tc) as follows:

SIi ¼ 1�
mean StarchyieldEi ;Td

� �

mean StarchyieldEi ;Tc
� �

0
@

1
A:

DRYM was calculated as described recently (Sprenger et al.,

2015).

GC-MS analysis of primary metabolites

Metabolite profiling was performed as in Sprenger et al. (2016)

by gas chromatography coupled to electron impact ionization

time of flight-mass spectrometry (GC/EI-TOF-MS). Plant material

from two to four replicate plants per cultivar and condition was

pooled. The number of biological replicates per cultivar and

condition is given in Table S6. Metabolite intensities were log10-

transformed to approximate normal distribution. ANOVA was

applied within the R software using genotype, measurement

batch and sample sequence as well as averaged original intensity

(response) of all annotated analytes as factors. Systematic

differences due to the three latter factors were removed by

ANOVA to enable joint analysis of individual measurement

campaigns (Lisec et al., 2011).

qRT-PCR analysis of gene expression

Homogenized leaf material of two to four replicates per cultivar

and treatment was pooled to approximately 100 mg in 96-well

plates (Collection Microtubes, Qiagen, Hilden, Germany). Total

RNA was isolated using a TRIzol protocol based on the ‘single

step’ method (Chomczynski and Sacchi, 1987). For extraction,

500 lL TRIzol reagent (Ambion, Life Technologies, Carlsbad, CA)

and 200 lL chloroform were used. RNA was precipitated by

adding 125 lL isopropanol and 125 lL 2 M NaCl. After washing

the pellets twice with 70% ethanol, they were resuspended in

50 lL RNase-free water. RNA concentration and integrity were

determined with the NanoDrop 1000 UV-VIS spectrometer

(Thermo Scientific, Wilmington, DE) and on a 1.7% (w/v) agarose

gel. Four microgram of each RNA sample was further treated with

RapidOut DNA Removal kit (Thermo Scientific). Absence of

genomic DNA contamination was confirmed by quantitative

PCR using an intron-specific primer pair for Rubisco small subunit

(Table S5). One microgram of total RNA was transcribed into

cDNA by SuperScript III Reverse Transcriptase (Thermo Scientific).

The quality and yield of cDNA were assessed by qRT-PCR with

primers for the 50 and 30 ends of GAPDH (Table S5). GAPDH

primer pair version 1 (Degenkolbe et al., 2005) was used for all

cultivars, except for cultivars 2868 and 2875, for which version 2

was used.

Primers to detect candidate marker transcripts were designed

using the Primer3 online tool (http://primer3.wi.mit.edu/). Primer

sequences were checked against the PGSC S. tuberosum group

Phureja clone DM1-3 516R44 transcript reference sequences

(v3.4) using an online search tool (http://solanaceae.plantbiology.

msu.edu/integrated_searches.shtml). All primer pairs were tested

against cDNA from all 31 cultivars under both control and

drought stress conditions prior to the actual experiments. Melting

curves of the PCR products were inspected to ensure that only

one unique product was produced.

Finally, qRT-PCR was performed in 384-well plates with an ABI

PRISM 7900 HT Sequence Detection System (Applied Biosystems,

Foster City, CA). Reactions contained 2.5 lL Power SYBR Green

reagent (Applied Biosystems), 0.5 lL cDNA (diluted fivefold) and

2 lL of 0.5 lM primers in a total volume of 5 lL. A pipetting

robot Evolution P3 (Perkin Elmer, Zaventem, Belgium) was used to

dilute and dispense the primers and to add sample mix (cDNA and

SYBR Green). Cycle threshold (Ct) values for marker candidate

genes were normalized by subtracting the mean Ct of four

reference genes that were included on each plate. Relative gene

expression was calculated as 2�DCt and log10-transformed to

approximate normal distribution. Primer sequences are listed in

Table S5, including primers for the four reference genes.

Expression values for tested reference genes and normalized

expression values for all candidate genes are given in Tables S3

and S7, respectively.

Predictive model of drought tolerance

Drought tolerance of the 31 cultivars was assessed by DRYM

calculated for each cultivar and trial by subtracting the median of

the relative starch yield of each trial from the relative starch yield

for the respective cultivar and trial (Sprenger et al., 2015). DRYM

values of six independent field experiments (F1–F5, F7) were

averaged and classified into three levels (high, medium and low)

based on tertiles of the probability distribution.

Missing values in the metabolite (5.5%) and transcript (2.2%)

data were estimated by PCA using the Nipals method

(R-package pcaMethods; Stacklies et al., 2007).

For drought tolerance prediction by Random Forest models,

data from the experimental field trials were used as a training set,

while samples of 16 independent agronomic field trials were used

for metabolite model validation. Samples from six agronomic field

trials were used for transcript model validation. The training set

included 913 samples for metabolite data (115 predictors) and

202 samples for transcript data (43 predictors). The validation set

was comprised of 490 samples for metabolite data and 185

samples for transcript data.

Random Forest is a machine learning method that uses a

collection of unpruned decision trees, each of which is built on a

bootstrap sample of the training data using a randomly selected

subset of predictors (Breiman, 2001). In this study, the R-package

randomForest (Liaw and Wiener, 2002) was used to implement

the prediction model with the two main parameters

ntree = 1000 and mtry set to default (=
ffiffiffi
p

p
, where p is

the number of predictors). Variable importance was estimated by
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the varImp function and is based on the Gini index. The

number of predictors was reduced by the varSelRF function

of the R-package varSelRF (D�ıaz-Uriarte, 2007) to minimize the

out-of-bag (OOB) error rate (a measure for the prediction error

that uses bootstrap aggregating, also called bagging). Iteratively,

the least important variables were removed from the full model,

and finally, the solution with the smallest number of predictors,

whose OOB error rate was within one standard error of the

minimum OOB error rate of all Random Forests (‘1 SE rule’), was

chosen. Precision measures of the models (accuracy, sensitivity

and specificity) were obtained by the confusionMatrix
function from the R-package caret (Kuhn, 2008).
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