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Summary

Most quantum field theories (QFT) that are defined on space-time can
be formulated in two conceptually di↵erent ways: the covariant — in
terms of (Euclidean) functional integrals — and the canonical — in
terms of operators on Hilbert spaces. Hereby, covariant formulation is
conceptually easier and often better suited for (numerical) calculations,
but it often lacks an intuitive physical interpretation. The canonical
formulation, on the other hand, provides a better physical intuition of
particles, conservation laws and observables but is sometimes less con-
venient for explicit calculations. However, both formalism are related
and we can go from one to the other by Wick rotation and a subsequent
time slicing. Evidently, for this relation the time variable is fundamen-
tally important. But can we relate these two formulation if the time
variable does not exist? This question appears in group field theory.

Group field theory (GFT) is one candidate theory for quantum grav-
ity, formulated as quantum field theory. The theory is, however, not
defined on space-time; but instead it is constructed to produce space-
time as one of its outcomes. Nevertheless, just as the QFT’s on space-
time, GFT exists in two di↵erent formulations— the functional and the
operator one. The functional formalism is the statistical formulation in
terms of a functional integral and a generating partition function. It is
used for renormalization analysis and relates to spin foam models and
tensor models. Its ingredients are, however, not easily interpreted in
physical terms, which permits an intuitive guidance for theory build-
ing. The operator formulation, on the other hand, is given in terms of
operators on Hilbert spaces. It provides a physically intuitive defini-
tion of GFT-particles and describes the whole theory in the language
of many body quantum physics. Its relation to the functional approach
and to other related formulations of quantization of gravity, however, is
not clear. An explicit relation between the two formalisms would allow
us to combine the best of each.

Unfortunately, the relation via Wick rotation and time-slicing can
not be applied in the GFT case. This is because GFT does not have any
notion of time, since it suppose to describe the emergence of space-time
only as one of the outputs of the formalism but does not presume time
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as a fundamental ingredient of the theory.
In this thesis we provide a construction of the operator framework

starting from the functional formulation of GFT. We define operator
algebras on Hilbert spaces whose expectation values in specific states
provide correlation functions of the functional formulation. Our con-
struction allows us to give a direct relation between the ingredients
of the functional GFT and its operator formulation in a perturbative
regime. Using this construction we provide an example of GFT states
that can not be formulated as states in a Fock space and lead to math-
ematically inequivalent representations of the operator algebra. We
show that such inequivalent representations can be grouped together
by their symmetry properties and sometimes break the left translation
symmetry of the GFT action. We interpret these groups of inequivalent
representations as phases of GFT, similar to the classification of phases
that we use in QFT’s on space-time.

For our construction we need to find minima of the GFT action on
the space of tempered distributions. To simplify this task we perform
the symmetry analysis of several models in GFT and fully classify their
point-symmetry groups in a structured way.

The structure of the thesis is as follows: in chapter 1 we introduce a
general problem of quantum gravity and present some direct compli-
cations that appear when we try to combine the principles of general
relativity and quantum field theory; in chapter 2, we motivate and dis-
cuss the framework of group field theory in its functional and operator
formulation; in chapter 3 we derive an algebraic formulation of group
field theory and construct operator algebras starting from the func-
tional formulation; in chapter 4 we develop a local symmetry analysis
for multi-local actions of GFT and apply it to simplicial and geomet-
ric GFT models; in chapter 5 we summarize and combine the results
of previous chapters, arguing that a classification of phases in GFT can
be given in terms of symmetry breaking of left translation on the base
manifold.



1Introduction to Quantum Gravity

Our contemporary understanding of physics is governed by two theo-
ries: the classical theory of gravitation — general relativity (GR) — and
the quantum theory of strong, weak and electromagnetic interactions
— the standard model (SM). Together they cover all known fundamental
forces and give extremely precise predictions for all present-day exper-
iments. And yet, as we will see below, these two formalisms seem to be
incompatible and the fundamental principles of one appear to contra-
dict those of the other.

The reason why we do not experience any such contradictions in
experiments lies in the fact that gravitational and quantum mechan-
ical interactions operate at di↵erent scales. Gravitation is by far the
weakest of the four fundamental forces. The gravitational fine struc-
ture constant1 ag is about 33 orders of magnitude smaller than that 1 The fine structure constant of gravity ag is

given by [1]

ag “
Gm2

pr

h̄c
,

where mpr denotes the proton mass.

of the strong interaction, 31 orders of magnitude smaller than that of
electro-magnetic interactions and 27 orders of magnitude smaller than
that of the weak interaction.

Interactions Coupling constants

Strong as « 1

Electromagnetic a « 10´2

Weak aw « 10´6

Gravitational ag « 10´45

Table 1.1: Estimate of the fine structure
constants for the four fundamental inter-
actions of nature.

For that reason we need substantial gravitational sources to get into
regimes in which quantum field theory (QFT) and general relativity be-
come equally important. At low energy scales gravitation can be gener-
ated either by the gravitational mass or by its energy density. However:

Massive objects are composed of a large number of particles and for
that reason have very short decoherence times [2]. Even if we were
able to create a very massive quantum object, its quantum nature
would disappear within a fraction of a second and we would be left
with classical systems subjected only to laws of general relativity,
one example of which is classical cosmology.

Highly energetic objects do not need to have large gravitational masses
(for example collision experiments at the Large Hadron Collider),
and therefor may be more relevant for quantum and gravity exper-
iments. However, the amount of energy needed to overcome that
immense gap between the strength of coupling constants exceeds all
our current resources by many orders of magnitude.

In other words: our current detectors are not sensible enough to cap-
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ture the e↵ects of quantum mechanics and general relativity in the
same measurement. This is the reason why we do not encounter any
experimental violations of seemingly contradictory theories.

A contemporary technical inability of having sensible detectors, how-
ever, does not provide a satisfactory resolution to our incomplete un-
derstanding of nature. To complete our understanding we need to con-
struct a theory that reconciles the geometrical description of general
relativity with fundamental principles of quantum mechanics — the
theory of quantum gravity (QG).

The aim of quantum gravity is to provide a quantummechanical de-
scription for a theory of gravity coupled to matter. A successful theory
would be an extension of the standard model by an additional force,
but will not yet unify all four fundamental forces to a single one and
hence should not be confused with the so called theory of everything2.2 The di↵erence between the theory of ev-

erything and quantum gravity is similar
to that between standard model and grand
unified theories.

The scale at which this theory becomes dominant is called the scale of
quantum gravity [3].

1.1 The scale of quantum gravity

Retrospectively we attribute the first encounter with quantum gravity
toMax Planck [4], who realized that one can use the speed of light c, the
Planks constant h̄ and the gravitational constant G to define universal
unites of length, time and mass — the Planck unites ,

lp “
c

h̄G
c3 « 10´35 m, (1.1)

tp “
c

h̄G
c5 « 10´44 s, (1.2)

mp “
c

h̄c
G

« 1032 eV « 10´5 g. (1.3)

But it was Bronstein [5, 6] 3 who first observed, that the Planck unites3 His discussion dates back to 1936.

provide a scale at which quantum mechanical and general relativistic
principles mingle and impose fundamental bounds on the notion of
distance. Roughly his argument goes as follows (from [7]):

Let us say we want to localize a particle within a region L. By the
Heisenberg uncertainty principle the variances of particles position and
momentum are related by

Dx ° h̄
Dp

. (1.4)

In order to resolve its position with accuracy, L ° Dx, we need to satisfy
Dp ° h̄L´1 and hence “inject” energy in the particle,

p2 ° Dp2 °
ˆ

h̄
L

˙2
.
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The higher the precision of our measurement, the more energetic the
particle gets. In GR, however, energy provides a gravitational source,
E “ mc2, and therefore distorts space-time. In conclusion a higher
space resolution implies a larger space-time distortion. This process
has a natural bound when space-time curves strongly enough to pro-
duces a black hole. This happens when the Schwarzschild radius (up
to the factor of 2)
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Figure 1.1: Typical energies related to
the scale of quantum gravity. The Planck
energy is of the same order of magnitude
as the energy of a lightning bolt concen-
trated at a volume of an elementary par-
ticle. The relation between the Planck
energy and the currently highest achiev-
able energy at LHC is roughly the same
as that of a lightning bolt compared to
the kinetic energy of a flying mosquito.

R9 Gm
c2 , (1.5)

becomes larger than the region that we resolve with our measurement.
In this case L becomes hidden beyond the black hole event horizon and
any further specification of particles position loses its meaning. Using
the uncertainty principle for particle’s position and momentum we can
relate the mass and the precision of the measurement by

m “ p
c

° h̄
Lc

, (1.6)

And the critical resolution length LC becomes the Planck length,

LC “ lp. (1.7)

Bronstein realized that beyond this scale the notion of length loses its
meaning and the quantum mechanical uncertainty of space-time be-
comes dominant.

At this scale we expect new physics to take place, due to the incom-
patible nature of two theories. Currently, however, we do not have a
complete theory of quantum gravity and hence we do not know what
is the physics at the Planck scale. The problem of not having predic-
tions for experimental outcomes of extremely energetic gravitational
systems is sometimes referred to as the problem of quantum gravity [8].

1.2 Is quantum gravity observable?

The energy scale of quantum gravity seems to be beyond any reach (fig.
1.1), and we need to ask ourselves the question how to test a possible
candidate for a theory of quantum gravity.

To answer this question in a structured way we need to distinguish
between di↵erent limits of quantum gravity, the classical, the semi-classical,
the weak field and the strong field limits:

the classical limit where the gravitational field is described by GR
or Newtonian gravity:

Every theory of quantum gravity should reduce to the classical the-
ory of gravitation in an appropriate limit. We call this limit the classical
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limit of quantum gravity. Perturbative approaches to QG [9–11] natu-
rally satisfy this criteria. However, in non-perturbative approaches, for
example those that we will present in the next chapter, a clear deriva-
tion of the correct classical limit is still unknown4. For that reason this4 See [12, 13] for recent progress.

theoretical test of quantum gravity provides a very non-trivial consis-
tency check for any non-perturbative theory of quantum gravity.

The semi-classical limit in which gravity is introduced as an exter-
nal classical field in a quantum system:

For example we can consider a neutron beam send through an inter-
ferometer, whose arms are rotated about 90 degrees such that each of
them experiences a slightly di↵erent gravitational force. The outcome
of such an experiment would give first insights into a regime in which
quantum and gravitational interactions interfere.

This experiment was realized by Colella, Overhauser and Werner
(COW-experiment [14]) and the results turned out to be in full agree-
ment with quantummechanical predictions. According to calculations,
the phase shift of the neutron beam is proportional to the experimental
result. The proportionality constant is the ratio between the gravita-
tional and inertial mass of the neutron [15], which has to be equal to 1
in order to agree with experiments. Hence, this result is understood as
a verification of the weak equivalence principle in the quantum regime
— equivalence between the gravitational and inertial masses.

The weak field limit (WFL) where gravity is quantized but the grav-
itational field is considered small:

In this regime, the gravitational field is weak and can be reliably
treated with perturbation theory. The perturbations around a back-
ground metric are called gravitons.

In principle this regime can be tested by various experiments and re-
cently many table top experiments have been suggested for a potential
verification of that limit in the near future:

FG FG

FGFG

(a) Classical gravitation source.

FQG

FQG

FQG

(b)Quantum gravitational source in a su-
perposition state.

Figure 1.2: Classical vs. quantum gravi-
tational source.

Gravitational quantum source: The simplest way to access this regime
in a table top experiment is to measure the gravitational field of a
massive quantum object that is in a superposition between two dif-
ferent position states (fig. 1.2). Practically, however, this approach
is quite challenging since one needs to create very massive quan-
tum systems with very long decoherence times. The requirement on
the mass is dictated by the sensibility of the current detectors that
measure the gravitational pull. And at the present moment the gap
between the size of a quantum mechanical system and the sensibil-
ity of the detector is about 12 orders of magnitude [16]. However,
it has been shown, that one can use modern nano-technologies [16]
and improve the isolation methods for quantum systems [17, 18] to
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bring the gap down to 5 orders of magnitude within the next few
years. With further advances in technology the gap is expected to
close within the next few decades.

Gravity as a source of coherence: A very recent experiment suggests to
probe the quantum nature of gravity by a coherence experiment.
The idea hereby is to look at the entanglement between two, initially
uncorrelated, massive spin particles after they have been subjected
to each others gravitational field [19]. The amount of resulting cor-
relations between the spins will be due to the quantum nature of
gravitation which can be measured by interference. The necessary
amount of isolation and the size of required quantum systems is
claimed to be achievable in separate experiments even today. For
that reason it is estimated that such an experiment can be carried
out in the near future.

strong field limit, (SFL) where the gravitational field plays a domi-
nant role:

This is the regime of non-perturbative quantum gravity, in which
the space-time geometry has to be fully quantized. The strong quan-
tum fluctuations of the gravitational field prohibit a reliable use of per-
turbation techniques. It is this regime that is described by the Planck
scale, and whose direct observations are very di�cult to achieve. Here
the hope of having a reliable laboratory experiment within our life time
rapidly decreases. Nevertheless, indirect tests of this regime might ex-
ist even today. The most natural realm of such experiments is cosmol-
ogy, and the laboratory is the Universe. This makes the problem of
reproducible experiments a bit di�cult:

Cosmological varification of SFL: The fact that we can not produce ex-
periments for testing the SFL does not imply that processes on that
scale never happen in nature. More specifically, we know that this
regime was dominant during the Big Bang. Our goal is to under-
stand the implications of that regime on our todays observations of
the sky— the so-called imprints of quantum gravity. There are a num-
ber of proposals for the indirect tests of QG, reaching from observa-
tion of gamma ray bursts [20], to the search of Lorentz violations in
the spectrum of the cosmic microwave background [21].

For example, some theories of quantum gravity predict a breakdown
of Lorentz symmetry at the Planck scale [22]. This violation, if present,
could lead to observable e↵ects even in the low energy regime [23].
These theories, predict a variation of the speed of light, c, depending
on the photon energy according to the modification [22],

c “ 1 ˘ a
E
Ep

, (1.8)
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where E is the energy of the photon, Ep is a Planck energy and a
is a constant real number. This modified dispersion relation can
be tested for high-energy-photons traveled over very long distances.
Gamma ray bursts are the most suitable physical phenomenon to
check for this modification and put experimental bounds on the pa-
rameter a [20].

However, to this day no conclusive evidence of truly quantum grav-
itational e↵ects has been found. This may change soon due to the
modern developments in the gravitational wave and 21 cm astron-
omy5.5 The Hawking radiation of black holes is

believed to be a good candidate for the di-
rect observations of SFL. The Hawking ra-
diation of contemporary black holes is or-
ders of magnitude smaller than the cosmic
microwave background and therefore is cur-
rently not detectable. However, the radia-
tion of primordial black holes of about 1018

g should currently result in observable x-
ray bursts. Some of the candidate theories
for QG predict a discrete spectrum of such
x-ray bursts. An observation of the cosmic
x-ray spectrum would be a direct evidence
for the QG regime. These observations may
become accessible due to 21 cm astronomy
[24].

The problem of reproducible experiments in cosmology complicates
the detection of such imprints and sometimes we need to be lucky
enough to look at the right spot of the sky at the right time. Recently,
however, also table top experiments have been suggested that, if not
testing SFL directly, can at least provide new bounds for any future
theory of quantum gravity:

Table top SFL gravity: Many theories of quantum gravity suggest a fun-
damental discreteness of space-time at the Planck scale, which leads
to modified commutation relation [25–29]. In [30] the authors sug-
gest to use coherent states of light to check for the violation of such
commutation relations between conjugate operators at the Planck
scale. They show that a number of photons in a light beam can be
used to amplify the tiny corrections of the commutator, resulting
in a measurable e↵ect. Such measurements could potentially put a
bound on the violation of the commutation relations at the Planck
scale.

Theoretical improvement: Contemporary fundamental physics is based
on the assumption of separation of scales. This assumption says that
processes at largely separated energy scales do not a↵ect each other
and therefore can be treated independently. However, a phenomeno-
logical discussion of gravitational theories suggests that this princi-
ple may not work for the gravitational interaction and physics at the
Planck scale could a↵ect to macroscopic scales. If this is true, quan-
tum gravitational e↵ects may be observable in every day life without
us realizing it. An example for such e↵ects in cosmology could be
the phenomenon of dark matter [31], the small value of the cosmo-
logical constant [32] or the need for inflation in the description of
our universe [33]. A theoretical development of the framework may,
for that reason, eventually lead to an experimental verification of the
theory.

As we can see a measurement of a quantum gravitational e↵ect is di�-
cult but may not be as hopeless as it seems at the first sight. After all,
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the history of physics is full of experiments that have been long consid-
ered impossible; the latest being the direct detection of gravitational
waves.

1.3 Conceptual problems of quantum gravity

General relativity and quantumfield theory rely on very di↵erentmath-
ematical structures and physical assumptions. For that reason, a com-
bination of their principles in one framework leads to a number of very
challenging conceptual and technical issues. We will discuss some ex-
plicit issues of GR quantization in the next chapter, but here we want
to emphasize the major di↵erences between quantum field theory and
general relativity that make the development of QG so complicated.

General relativity is a covariant theory, which complicates its quan-
tization. Before we discuss the explicit problems of quantization, we
want to clarify what we mean by the covariance of GR.

1.3.1 Di↵eomorphism invariance of GR

Very often covariance of GR is described as invariance under local chart
transformations. Even though this statement is not wrong, it is a little
confusing, since the principle of invariance under chart transforma-
tions is a general feature of di↵erential geometry. In fact chart indepen-
dence is in the very definition of the concept of manifolds, and there-
fore does not sound as a particularly strong physical requirement. Any
physical theory that can be formulated on amanifold is invariant under
chart transformations6. For that reason this can not be the distinctive 6 For example electro-dynamics can be for-

mulated in terms of forms on Minkowski
space-time and hence independent of charts.

feature of gravitation.
Charts and their transformations simplify our comprehension of curved

manifolds but they themselves do not have a physical meaning. Di↵eo-
morphisms of space-time, on the other hand, (sometimes called active
di↵eomorphisms) do have a physical meaning, at least in cases when
the space-time manifold is considered a physical object. For example,
chart transformations in electro-dynamics leave the theory invariant,
whereas local di↵eomorphisms of space-time do not.

In general relativity, covariance implies that local di↵eomorphisms
of space-time are indistinguishable from chart transformations and can
be used interchangeably. This statement is not about invariance of the
theory under unphysical chart changes, it is about the fact that di↵eo-
morphisms are just as much unphysical [34]. In other words it says that
the space-time manifold does not have a physical meaning.

This problem was recognized by Einstein during his construction of
the theory. Apparently, even though he had the formulation of GR al-
ready by 1912, he discarded it due to the above realization [35]. It took
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him three more years to understand that this is not a bug of his formu-
lation but rather a feature of gravitation. His argument is nowadays
known as the hole argument [35, 36] .

The above discussion, however, also does not fully capture the full
meaning of di↵eomorphism invariance. Indeed any (non-covariant)
theory can be formulated in a covariant waywhenwe parametrize space-
time with some other four dimensional parameter-manifold (fig 1.3).
Such parametrization may or may not simplify the formulation of the
theory but it does not contain physical information and because of this
the physics is invariant under reparametrizations.

Parameter space

c

f

Space-time

R

j
.“ f ˝ c

M

P

Figure 1.3: Field of the non-covariant
theory f can be reparametrized by arti-
ficial coordinates c. The resulting theory
for the fields j “ f ˝ c is then covariant
under di↵eomorphisms on the parame-
ter space.

Conversely, if we started with the parametrized theory we would
observe its symmetry under reparametrizations and from this conclude
that the parameter manifold is unphysical. However, if the theory in
question is just a parametrized, initially non-covariant, theory it can be
reduced back to a non-covariant formulation.

In GR the space-time itself plays a role of a parameter space and
its truly distinctive feature is that it can not be formulated in a non-
covariant way [34, 37]. This meaning of di↵eomorphism invariance is
what distinguishes GR from an artificially parametrized theory.

In summary: di↵eomorphism invariance of general relativity says,
that the space-time manifold does not have a physical interpretation —
it is a parameter space that parametrizes a theory of geometry.

1.3.2 Gravity vs. quantum mechanics

Di↵eomorphism invariance is a very di�cult technical complication
that obscures the procedure of quantization of gravity. The resulting
technical problems accompany fundamental issues that come up when
we start thinking about the quantum nature of space-time. For exam-
ple:

geometry instead of metric field: Due to the di↵eomorphism in-
variance, the metric field does not have a physical meaning. What is
physical instead, is the equivalence class of metric fields, where any
two of them are called equivalent if they can be transformed into
each other by a di↵eomorphism. This equivalence class is what we
call geometry. This implies that the actual physical degrees of free-
dom of quantum gravity should be the geometry and not the metric
field. However, we are not used to a purely geometrical formulation
of physical theories. Moreover, the di↵eomorphism group of four
dimensional manifolds is very large and even a complete character-
ization of the above equivalence classes is practically unknown.

qft on many curved space-times at once: In a rigorous formula-
tion, quantum field theory is formulated in terms of five axioms,
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called the Wightman axioms [38]. Despite the fact that it is very di�-
cult to find a non-trivial theory that satisfies all five of them, Wight-
man’s formulation is generally accepted as a definition of quantum
field theory on Minkowski space-time. Unfortunately, there is no
such agreement for quantum field theories on curved space-times7. 7 Recent developments in algebraic quan-

tum field theory provide a rigorous math-
ematical description of quantum field the-
ory on curved space-times. This formalism,
however, has only recently been applied to
the case of quantum gravity [10, 39].

It turns out that quantum mechanical structures, such as the defini-
tion of fields, particles or Hilbert spaces are extremely sensible even
to slightest changes in the geometry of space-time. A single quan-
tum theory that describes interactions of matter on any geometry
seems to be incompatible with our understanding of QFT’s.

the problem of time: Another closely related problem is the so-called
problem of time [40, 41]. Due to di↵eomorphism invariance, gen-
eral relativity does not posses a conventional time evolution. Even
though the Einstein field equations can be recast in the Hamiltonian
form, this Hamiltonian takes the form of a pure constraint, meaning
that it generates the orbits of the gauge symmetry and hence imple-
ments di↵eomorphism invariance. In the quantum formulation such
constraint operators have to be implemented in the Dirac way such
that the physical states satisfy8 8 Here and throughout the thesis we use |¨q

for the usual Dirac-Bra-Ket notation.
H|yq “ 0, (1.9)

and the relevant quantum operators fulfill

rf, Hs “ 0. (1.10)

From the point of view of quantum field theory this formulation is
completely static, since all Heisenberg equations of motion vanish.
In a covariant theory this is to be expected, since there is no distinct
time direction, with respect to which we can define a dynamical evo-
lution. The resulting Hilbert space does not describe states at par-
ticular time but rather states at all times. The problem of time is the
fact that we do not know how to interpret operators in/or extract
physical information from such a quantum mechanical theory.

causality: The so-called locality or micro causality principle is at the
core of any quantum field theory [38, 39, 42]. In its non-rigorous for-
mulation, it reads as follows: let x and y be two space-like separated
points of space-time, than all commutators between observables at
these points have to vanish, i.e.

rg pxq , g pyqs “ rp pxq , p pyqs “ rg pxq , p pyqs “ 0, (1.11)

where g pxq is the (would be) operator for the gravitational field and
p pxq is its canonical conjugate. Yet, without a fixed causal structure
we can not define space-like separation and the above commutation
relations can not be formulated.
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causality 2.0: Another fundamental issue is the understanding of
the causal structure in cases when the gravitational field obtains
quantum fluctuations. In this case it can happen, that two points are
time-like and also space-like separated, due to the fluctuations of the
causal cone of the metric field. A classical outcome of such theory
could randomly assign time- or space-like properties to curves and
hence mess up causality9.9 See [43] for recent results.

The above listed problems form only a very small portion of di�culties
one encounters on the way to quantum gravity, and many more mathe-
matical issues and physical complications arise when we begin to think
about the gravitational field in the quantum way. Some of the above
mentioned problems are answered in the context of background inde-
pendent theories that we are going to introduce in the next section and
some of them still remain unsolved. But the “take away message” is
this: in order to provide a consistent and sensible theory of quantum
gravity we need to develop radically new ideas. This is what makes the
quest of searching for this theory so exciting — we can be pretty sure
of the fact, that any theory that will resolve all of the above problems
will be nothing like what we already know, and will drastically change
our understanding of nature once again.

In this thesis we are focusing on the development of a specific ap-
proach coming from the direction of the so-called background inde-
pendent quantization of the gravitational field. But to provide a small
impression on the diversity of models we conclude this chapter with a
very nice flow chart, kindly provided us by Lisa Glaser.
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Figure 1.4:

A mind map of quantum gravity (cc Lisa Glaser). Start in the middle of the chart and find your favorite theory of
quantum gravity. The road we prefer and the one the reader should be interested in order to find the following work

appealing is outlined with the bold path that amounts in group field theory.





2Group field theory

In this chapter we are going to discuss group field theory (GFT), its con-
ceptual ideas and some of its technical details. It is a challenging task
to describe a very technical and ill-understood subject without being
drowned in mathematical nomenclature. To prevent this from hap-
pening we will leave out most of the mathematical details that are not
needed for the understanding of the following work. Nevertheless,
even in this version it is inevitable that some of the following discussion
still remains a little technical.

Apart from matrix- and tensor-models [44–46], group field theory
[47–49] is historically rooted in loop quantum gravity (LQG) [50–53]
and spin foam models [54, 55] — sometimes called covariant LQG. Even
though the contemporary development of group field theory suggests
to treat it as an independent, self-contained quantum field theory [56–
58], we feel that its ideas, motivations, and intuition are still best pre-
sented in the context of covariant LQG and for that matter, we choose
this path for our introduction of the subject. Nevertheless, since our
focus is on group field theory, covariant loop quantum gravity is intro-
duced only for the sake of better conceptual understanding and for that
reason is not discussed in details. For further information on LQG we
refer to [3, 50, 59, 60] for the canonical approach and to [7, 54, 61, 62]
for the covariant formulation.

In this chapter we will introduce and motivate the concepts of GFT
starting with the basic idea of a path integral for quantum gravity. The
chapter is structured in the following way1: 1 In QFT’s on space-time we distinguish be-

tween the covariant and canonical formu-
lation of QFT. The first is written in terms
of functional integrals, whereas the second
is given in terms of operators on Hilbert
spaces. In GFT we call these formulations
the functional GFT and the operator GFT,
respectively — to prevent any confusion
with the underling symmetry-association of
the name giving.

1. misner quantization ( on the following page)

2. spin foam gravity ( on page 27)

3. functional group field theory ( on page 32)

4. operator group field theory ( on page 37)

We will begin with the conceptually simple but mathematically chal-
lenging idea of Misner that suggests to define quantum gravity via the
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usual path integral [63],

Z “
ª
Dg e

ı
h̄ SHErgs,

with the Hilbert-Einstein action SHE, eq. (2.1), and the formal integral
measure, Dg, over the space of all geometries. Quantum gravity can
than be summarized as an attempt to provide meaning to this, rather
formal, expression. This turns out to be a very daring endeavor.

From the point of view of mathematics, the di�culties to define the
above expression are severe and require a development of new compu-
tational tools; from the point of view of physics, the problems of un-
derstanding the fundamental concepts of the resulting theory are also
very challenging and urge the need for new ideas. Some of those ideas
and mathematical techniques we will present in this chapter.

2.1 Misner quantization of GR

Misner’s idea for quantization of gravity suggests to use covariant for-
mulation of quantum field theories for GR [63]. In this formulation
the starting point is the classical theory given by the Hilbert-Einstein
action SHE in four dimensions,

SHE rgs “ ´ c4

16pG

ª

M
volM R pgq , (2.1)

where g is the metric field, R pgq is the scalar curvature, and volM de-
notes the volume density on the Lorentzian manifold given in chart
coordinates by

volM “ d4x
b

´ det
`
gµn

˘
. (2.2)

The corresponding quantum theory is then defined by the formal
integral ª

q
Dg e

ı
h̄ SHErgs, (2.3)

where the integration is performed over all geometries of a four dimen-
sional (4D), di↵erentiable manifold M. The boundary value q “ g pBWq
specifies the metric, or rather, the geometry2 on the boundary of W —2Reminder

We refer to the space of geometries as the
space of equivalence classes of metric fields
rgs, where two metric fields are consid-
ered equivalent if they di↵er by a di↵eomor-
phism,

g „ g̃ ô g̃ “ j‹g, (2.4)

where j is a local di↵eomorphism on M and
j‹ denotes the pull back.

a three dimensional (3D) sub-manifold of M (fig. 2.1). The value of the
integral (2.3) gives the probability amplitude for the transition between
the fixed boundary geometries of M. Heuristically, in the classical limit,
h̄ Ñ 0, one finds by the argument of steepest descent that the integral is
dominated by the classical extrema of the Hilbert-Einstein action, lead-
ing to field configurations that solve the Einstein field equations with
fixed boundary conditions.

Overall, this prescription is intuitive and provides a straightforward
adaptation of the covariant quantization methods of ordinary field the-
ories. And just as in these more familiar cases, it is purely formal. The
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typical problem of this formulation is the lack of any measure theoret-
ical notion of the above integral. And in the above case this notion is
even more complicated due to the di↵eomorphism invariance of GR.

The Hilbert-Einstein action is invariant under local di↵eomorphisms
and their field equations are covariant. As we already mentioned in the
previous chapter, this implies that the true degree of freedom of GR is
the geometry and not the metric.

Since physical quantities are invariant under the group of di↵eomor-
phisms, gravity can be seen as a peculiar type of a gauge theory. In con-
trast to usual gauge theories, however, the gauge group of gravity is not
finite dimensional and is poorly characterized. Because of this we can
not specify the equivalence classes of the metric field. Practically, this
means that we can not decide (except for some special cases) if any two
solutions of the Einstein field equations describe the same geometry or
not.

W gpBWq

BW

M

Figure 2.1: Functional integral of grav-
ity would provide a probability for the
space-time geometry in W with boundary
geometries given by g pBWq.

Unfortunately, geometry without any reference to coordinate system
may be unintuitive and the concept of the space of geometries is even
less clear. This complicates our understanding of the already ill de-
fined measure D rgs (the measure over the space of metric classes) even
more. Moreover, one could assume, that the integration in (2.3) should
include not only geometries rgs but also topologies of a four dimen-
sional manifold [64], which can not be done even in principle [65].

The definition of the measure is a serious issue and it is only the
tip of the problems that we begin to encounter when we embark on
the quantization of the gravitational field. For example, in ordinary
quantum field theories on Minkowksi space-time the above functional
integral is not well defined either and is used only for a structured
derivation of perturbation theory. Many physical phenomena, how-
ever, are not captured within the perturbative approach and require a
non-perturbative definition of the theory. To manage these problems in
particle physics we typically perform the Wick rotation, by going from
the real to imaginary time. Due to this rotation, the action S transforms
to the so called Euclidean action ıSE and the exponent in the functional
integral obtains some nice convergent properties

ª
Df e

ı
h̄ Srfs Wick›Ñ

ª
Df e´ 1

h̄ SErfs. (2.5)

The resulting integral can sometimes be given a rigorous meaning [66–
69] or at least can be numerically approximated [70] and provides ac-
cess to non-perturbative e↵ects. Wick-rotating the final results back
to the Lorentzian time captures non-perturbative e↵ects of the integral
(2.3) [70, 71].

In gravity, Wick rotation is complicated. Contrary to the ordinary
case, a generic Lorentzian metric g with the signature p´, `, `, `q can
not be rotated to the Riemannian one without obtaining complex val-



26

ues in some of its components [72]. Hence, under such rotations the
Hilbert-Einstein action will become complex-valued and the problem
of the oscillating factor in the exponent can not be resolved [73, 74].

In order to avoid this problem we can try to define our theory of
gravity directly in the Euclidean language, with the hope that the re-
sulting equations can be eventually Wick rotated. However, even in
this case we encounter problems; the Euclidean Hilbert-Einstein action
SEHE

3 is not bounded from below [74, 75], sometimes called bottomless.3 The Euclidean Hilbert-Einstein action has
the same form as the original Hilbert-
Einstein action,

SEHE rgs “ ´ c4

16pG

ª

M
volM R pgq ,

but defined on the space of Riemannian
metric fields g.

This means that we can find field configurations that make the expo-
nent of the integrand in equation (2.5) arbitrary large. Clearly, these
configurations dominate the integral — as a result it can not be given
any rigorous meaning again. If the action SEHE had a local minimum
we could define a perturbative theory, however, the Euclidean Hilbert-
Einstein action does not even have those. The only extreme points of
SEHE are saddle points, due to the presence of the conformal mode in
the metric. This is known as the conformal-factor problem [75].

This fact was realized by Hawking and Gibbons in the late 70s [75,
76] when they suggested a regularization scheme to bound the Hilbert-
Einstein action, but up to now there is no common agreement on this
procedure. In [77] the authors claim that the conformal divergence can
be canceled by contributions in the definition of the functional mea-
sure, but also this still needs to be clarified more carefully.

We see that techniques from ordinary QFT seem to be inapplicable
for gravity and we need to develop new mathematical tools in order to
get the quantization of GR under control. Some of the new tools were
introduced in the framework of loop quantum gravity in its canonical
and covariant formulation. But before we move on to this, we summa-
rize the variations of the Misner integral that we already encountered
and that will reappear in what follows.

lorentzian quantum gravity: Quantization of the Hilbert-Einstein
action with a Lorentzian metric and an oscillating integrand,

ª
Dg eıSHErgs.

Typically, this is just a formal expression that can not be used for
rigorous non-perturbative calculations.

riemannian quantum gravity: A version of quantum gravity, in which
the Lorentzian metric is replaced by the Riemannian one,

ª
Dg eıSHErgs.

This provides a technical simplification of the above case where the
non-compact Lorentz symmetry group of the Lorentz metric is re-
placed by the compact rotational group of the Riemannian one. It is
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not clear how the results from Riemannian quantum gravity can be
used for the Lorentzian case, but we are still interested in this for-
mulation because we hope to gain useful intuition for quantization
of covariant systems even in this case.

euclidean quantum gravity: A “would be” Wick rotated version of
Lorentzian quantum gravity with better convergence properties

ª
Dg e´SEHErgs.

The action SEHE has the same form as the usual Hilbert-Einstein ac-
tion but is defined on the space of Riemannian metric fields. This
integral should be much better under control, but it diverges due to
the conformal mode of the metric field. Even if the conformal-factor
problem can be overcome, it is still not fully understood how much
this theory will relate to the Lorentzian quantum gravity since the
Wick rotation back to the Lorentzian signature in general does not
exist.

2.2 Covariant loop quantum gravity

Spin foam models — sometimes called covariant loop quantum grav-
ity — regularize the Lorentzian quantum gravity path integral using
a di↵erent set of variables other than the metric field. The idea is to
discretize the Misner integral in a gauge invariant way and then sub-
sequently remove the regulator. The spirit of the construction can be
captured in the following equation4 4 From now on we will assume units for

with h̄ “ 1. If powers of h̄ will be needed
for calculations we will explicitly state this
in the text.

ª q2

q1

Dg eıSHErgs “
ÿ

F
A

“
Fq1,q2

‰
, (2.6)

where the left hand side is the transition amplitude between two 3D
geometries specified by q1 and q2 and the right hand side provides a
corresponding definition of a spin foam model that we will explain be-
low. But first we spend a few words on the classical reformulation of
GR.

2.2.1 Classical reformulation of GR — the Plebanski action

It is well known that the choice of the right classical degrees of free-
dom can significantly simplify quantization. In the Hilbert-Einstein
formulation of GR the degree of freedom is the metric field. But it is
sometimes not the most convenient one for canonical quantization. It
turns out that for covariant quantization there is a more suitable set of
variables — the frame field and the connection [78].

Mathematically, the frame field is a local trivialization5 of the tan- 5 In general the local trivialization is not
global. But, here for the purpose of better
readability, we restrict ourselves to the sim-
ple case in which the tangent bundle is dif-
feomorphisc to the trivial bundle.
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gent bundle, or alternatively a vector valued one form. That is,

e : TM Ñ M ˆ R4.

Its physical interpretation is that of a reference frame of a free falling
observer at each point of space-time. In this frame the observer does
not feel any gravitational force and to him the metric at the given point
looks flat. This can be expressed by the following relation,

g “ e‹h, (2.7)

where h is the Minkowski metric, e is the frame field, g is a solution
of the Einstein field equations and ‹ denotes the pull back. We can
imagine e as a local “flattening” of space-time; to keep track of geome-
try on the resulting flat space we then need to introduce an additional
variable — the connection field A.

g

x1

x2

v1

v2

ppggq ¨ v1

Figure 2.2: Transport of the vector v1
along a curve g using connection A. The
idea of that transport is the same as that
of the usual parallel transport of the
Levi-Civita connection, however, in this
setting there is no natural structure to
define the “parallel” part.

The connection field A : TM Ñ so p3, 1q is a di↵erential one-form on
M with values in the Lie algebra of the symmetry group SO p3, 1q. To
vividly understand its role take two points6 on M ˆ R4, say px1, v1q and

6 Products of the form M ˆ V, with M a dif-
ferential manifold and V a vector space are
called trivial vector bundles, see chapter 4
for a brief introduction to vector bundles

px2, v2q, and compare the vectors v1 and v2 (fig. 2.2). Since we can only
relate vectors at the same base point we need to transport v1 from the
base point x1 to the base point x2. For this we use the connection A and
a curve g on the manifold along which we transport the vector. Since A
is valued in the Lie algebra so p3, 1q its transport along g is an element
of the Lie group SO p3, 1q, given by gg “ P

´
e
≥

g A
¯
, where P is a path

ordering7. Hence, we transport the vector v1 along g by rotating it with

7 Path ordering is a way of ordering the ex-
ponential integrals such that

P
´

e
≥
g A,

¯

“
8ÿ

n“0

ª

1•t•t1•¨¨¨•tn•0
A p 9gq dtn ¨ ¨ ¨ dt1,

where A p 9gq .“ xA pg ptqq , 9g ptqy and g is a
curve parametrized by t P p0, 1q.

the group element gg in a suitable representation of the Lie group. The
vector v1 at the base point x2 takes the form

v̄1 “ p
`
gg

˘
¨ v1, (2.8)

where p
`
gg

˘
is the four dimensional representation of the Lie group

SO p3, 1q and ¨ denotes the matrix multiplication. Such rotational ma-
trices p

`
gg

˘
for (all) curves on the space-time M encode the geometry.

A trivial connection A pxq “ 0, for example, leads to a trivial rotation
g “ 1 along any curve and therefore corresponds to a flat geometry.
The idea of the generalized connection A is hence very similar to that
of the Levi-Civita connection on TM. However, for a generic manifold,
the Levi-Civita connection is not Lie algebra-valued and in general co-
ordinate dependent.

The role of the generalized connection field A is to keep track of the
curvature of space-time by imitating the Levi-Civita connection on the
trivial bundle M ˆ R4 [40]. For that reason A is sometimes called the
imitation connection. In summary we can say, that: the field e flattens
the space-time, whereas A imitates the Levi-Civita connection.
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Using e and A as an independent pair of variables the Hilbert-Einstein
action can be rewritten in the form of a gauge theory, called the Pleban-
ski action [79],

S re, A, Bs “ 1
8pG

ª

M

¨

˝
ÿ

ijkl

ÿ

a,b,g,d
eijkleabgdBab

ij Fgd
kl pAq ` lC pe, Bq

˛

‚dx.

(2.9)
where, i, j, k, l P t1, 2, 3, 4u are the indexes of the R4 fiber, a, b, g, d P
t1, 2, 3, 4u are space-time indices, F pAq is the curvature two form much
like the electro-magnetic field tensor in Maxwell’s and Yang-Mills the-
ories8, A is the imitating connection, and B is an auxiliary field that is 8 In a suitable chart xµ the curvature of the

connection A is given by

Fij
µn “ Bµ Aij

n ´ Bn Aij
µ `

ÿ

k
Aik

µ Akj
n ´ Aik

n Akj
µ ,

where Aµ denote the generators of the four
dimensional representation of the Lie alge-
bra.

related to the frame field e by the constraint C pe, Bq with a Lagrange
multiplier l. The factor eijkl is the Levi-Civita symbol in four dimen-
sions.

Solutions of equations of motion of the Plebanski action impose the
dynamical relations of GR on the variables e and A and become equiv-
alent to solutions of the Einstein field equations [80].

We already mentioned that the variables e and A are di↵erential
forms on M. This fact becomes especially useful in the covariant for-
malism. This is because di↵erential forms can be naturally integrated.
Locally, around any point of space-time and in some suitable chart xµ,
the variables e and A can be written as

e pxq “ eI
µ pxq dxµ A pxq “ AI J

µ pxq dxµ, (2.10)

where eI
µ pxq and AI J

µ pxq are their components in the chart, and dxµ de-
notes a chart-induced one-form on the tangent space of space-time. In
this sense they bring their own notion of the integral measure, dxµ, as
opposed to functions that require the volume form, vol “ d4x

a
´ det pgq.

(a) Smearing of the connection along a
path g leads to a parallel transport g P G.
Where G is the symmetry group of the
metric field.

(b) Smearing of the curvature around an
area W gives a holonomy h P G around
the loop BW.

Figure 2.3: Smearing of the connection-
one-form A and the curvature-two-form
F pAq.

In general we say, one-forms can be integrated (or smeared) over 1D
lines, two-forms can be integrated (smeared) over 2D surfaces and so
on. Such smearing does not require the notion of a metric and hence
we call them natural. In particular, in the case of the connection form
A, we can define its integral along curves, which leads to the definition
of the “parallel” transport (fig. 2.2 and fig. 2.3a). We can do the same
with the curvature F pAq if we smear it over surfaces. The result of
this integral is a “parallel” transport along the boundary of the integral
surface, which is called holonomy (fig. 2.3b). In this sense the “smear-
ing” of forms on extended objects can be understood as a discretization
procedure.

Hence, by this “natural” smearing, the BF part of the action9 (2.9) 9 The part of the action that is proportional
to the B and F fields. This is known in the
literature as the BF-action. We adopt this
notation for rest of the thesis.

can be regularized, once we fix the line elements (called edges) and
surfaces (called faces) used for the smearing of A and F, respectively.
This combination of edges and faces in a mathematical jargon is called
a two-complex. It turns out that also the B field can be discretized in the
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same way and corresponds to a choice of representation for each link
of the two complex [62]. In order to implement the regularization of
the B field we need also to label the faces of this two-complex by repre-
sentations of the symmetry group of the metric field. For further rea-
sons, that we do not want to discuss here, the edges of the two-complex
have to be labeled by intertwiners between the representations of adja-
cent faces; the resulting labeled two-complex is called a spin foam [54].
Hence if we fix a spin foam over the manifold M, we can give a discrete
meaning to almost all ingredients of the Plebanski action — all except
for C pe, Bq. The constraint C pe, Bq is more complicated to deal with but
in this text we will not need its explicit implementation.

2.2.2 Covariant quantization

We come back to the discussion of the quantization and write the co-
variant integral for gravity in the new variables e and A using the Ple-
banski action, eq. (2.11),

ª
DB De DA eıSre,A,Bs. (2.11)

At this point we will deal with the Riemannian gravity in order to avoid
additional technical complications. That is, we assume the metric to be
Riemannian with a compact symmetry Lie group, SO p4q, which im-
plies that the connection field A is valued in the Lie algebra so p4q in-
stead of so p3, 1q. The above integral is the Riemannian version of Mis-
ner’s definition, formulated in terms of the connection, the frame and
the auxiliary fields. Using the discretization we described above we can
give it a rigorous meaning. Fixing a spin foam F , whose faces are la-
beled with representations of SO p4q and whose edges are labeled with
intertwiners, the functional integral reduces to products of Haar mea-
sure integrals and for the BF part of the action, can be calculated in the
closed form10 [54]. This regularization is very similar to the discretiza-

10 The constraint C pe, Bq, however, com-
plicates the expressions such that the dis-
cretized version of (2.9) can not be easily in-
tegrated. For that reason we first formulate
the spin foam amplitudes for the BF part
of the action and subsequently modify them
according to our physical interpretation of
the constraint C pe, Bq.

tion used in lattice gauge theories, where the role of a lattice is replaced
by a labeled two-complex, F .

The result of the Haar measure integrals is denoted

A rF s , (2.12)

and called the spin foam amplitude.
In order to remove the notion of the two-complex from the final re-

sult, that is to remove the discretization, we need to sum over all pos-
sible two-complexes that discretize space-time. This defines the spin
foam model11

11 Alternatively, a spin foam model can be
defined by some suitable refinement limit
procedure [81].

Figure 2.4: Spin foam with faces shaded
in gray, edges shown with dark lines, and
vertices shown with dark dots.

ÿ

F
A rF s . (2.13)
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If we specify the boundary geometry q1 and q2 on some boundary of a
space-time region W, as we did above, we would have to sum only over
those two-complexes that fix the discretized boundary geometry (fig.
2.4). In this case we write

ÿ

Fq1,q2

A
“
Fq1,q2

‰
(2.14)

So far goes the theoretical construction of a spin foam model. In prac-
tice, the situation is not as simple as we presented above. The problem
is the constraint function C pe, Bq, that typically prevents the reduction
of eq. (2.11) to closed expression of Haar measure integrals. For that
reason we first perform the regularization steps for the BF-action, ob-
tain the amplitudes A rF s, and then modify the amplitudes according
to our understanding of the constraint C pe, Bq. At this point there are
di↵erent suggestions for the modification of the amplitudes that lead
to di↵erent spin foam models [82–84]. These di↵erent models suppose
to capture di↵erent features of gravity and the decision for one model
over the other has to be done based on the results. Especially, the clas-
sical continuum limit of the theory has to reduce to classical GR. Un-
fortunately, we lack the necessary technical control to check explicitly
for this condition in any of the realistic spin foam models12. 12 Instead of performing the classical limit

of the continuous theory, we can take the
classical limit of its discrete version, that
is without performing the sum over com-
plexes. In this case it was shown that some
models [85] relate to a discrete version of
the Hilbert-Einstein action evaluated at the
solutions of the discrete Einstein field equa-
tions.

In order to check for the continuum limit we need to remove the
regulator, which implies that we need to calculate the sum in equation
(2.13). More specifically, for a meaningful definition of a theory this
sum should converge. This, however, is not the case in most of the
existing models, and the question arises if it is possible to renormalize
the model in a similar spirit as it happens in lattice gauge theory. This
is a current, active field of research [86–88].

A problem of the spin foam quantization is the unordered struc-
ture of the sum (2.13). It is di�cult to define the domain of summa-
tion [55]. Even if we restrict ourselves only to a specific type of spin
two-complexes, namely to those that appear as dual complexes of tri-
angulations of space-time, we are still missing a practical prescription
to perform the sum. Usually, we would try to use perturbation the-
ory and truncate the sum with some regulator, however, in the general
prescription (2.13) it is not clear which configurations contribute most
to the sum. Especially, since we are missing a structured way to sum
over the two-complexes, we cannot order the amplitudes by their im-
portance, and thus we cannot trivially truncate the theory.

At this point the formalism of group field theory enters the game
and provides a prescription to sort the amplitudes in a particularly nice
way such that we can deal with the sum (2.13) using the methods of
quantum field theory [47, 89, 90].
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remark In three dimensions, the Plebanski action takes the form

S rB, As “
ª

M

ÿ

i,j,k

ÿ

ab,g
eabgeijkBa

i Fjk
bg pAq dx, (2.15)

without additional constraints [54]. In this case the above
procedure can be carried out without much ambiguities
and we obtain a spin foam model of 3D gravity [54].

2.3 Group field theory — functional formulation

Group field theory [47, 48, 91, 92] provides a structured way to sum
over two-complexes such that the resulting theory can be formulated
in the language of quantum field theory. For the BF action in 3D it has
been realized that one obtains a sum over 2 complexes with the same
spin foam amplitudes, starting from a scalar field theory defined on 3
copies of the group SU p2q, that is with the fields f : SU p2qˆ3 Ñ R. The
action for this field theory is known as the Boulatov action [93] defined
as

S rfs “
ª

SUp2qˆ3
dg f pg1, g2, g3q f pg3, g2, g1q (2.16)

` l

ª

SUp2qˆ6
dg f pg1, g2, g3q f pg1, g4, g5q f pg6, g2, g5q f pg6, g4, g3q ,

where dg denotes the Haar measure on all the group elements involved
in the integrand. The spin foam model for the 3D Plebanski action
(2.15) is then defined in terms of the perturbative expansion of the par-
tition function

Z “
ª
Df e´Srfs. (2.17)

We will describe the detailed relation below, but to see the formal con-
nection we recall that Feynman diagrams are graphs made of lines
(propagators), vertices (interaction vertices) and faces (loops of the di-
agram) and hence can be seen as two-complexes. If, in addition, the
fields f satisfy a symmetry such that for any h P SU p2q the fields are
invariant under the diagonal action of h, that is,

f pg1, g2, g3q “ f pg1h, g2h, g3hq (2.18)

at any point pg1, g2, g3q P SU p2qˆ3, these two-complexes obtain a re-
quired labeling by intertwiners and hence define spin foams. For rea-
sons that we will mention below (see margin note on page 38) this sym-
metry of the fields is called the closure constraint.

The Feynman amplitudes — evaluation of the Feynman diagrams—
define the spin foam amplitudes of the 3D Plebanski action discretized
over the two complex defined by the Feynman diagrams. Moreover, the
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sum over Feynman diagrams provides a sum over two complexes, such
one formally expects an expression like

ÿ

F
A rF s “

ª
Df e´Srfs “

ÿ

n

ÿ

Diagpnq
SymDiagpnq F pDiag pnqq . (2.19)

The left hand side is formulated in terms of spin foam amplitudes,
whereas the right hand side is a perturbative, diagrammatic expansion
of a GFT where the second sum ranges over all inequivalent Feynman
diagrams with n vertices, SymDiagpnq refers to the symmetry factor of
that diagram and F pDiag pnqq denotes its Feynman amplitude.

The action in eq.(2.16) has a very specific structure that is quite dif-
ferent from the usual cases in QFT. The peculiarity is twofold:

1. the quadratic part of the action does not involve any di↵erential
operator, we say it has a trivial propagator, and

2. the interaction part is a non-local combination of fields with mixed
variables. We call this type of interactions combinatorially multi-
local.

2.3.1 Geometric interpretation of the Boulatov interaction

In order to understand the interaction of the Boulatov model, it is en-
lightening to introduce a pictorial association to fields.

g3 f g1

g2

fpg1, g2, g3q

(a) Representation of the field as a trian-
gle with labeled edges.

f

f

g1

g2

g3

g1

g2

g3

fpg1, g2, g3q

fpg3, g2, g1q

(b)Multiplication of two fields. The order
of variables need to be reversed in order to
maintained the same orientation.

Figure 2.5: Interpretation of the field as
a triangle.

Let us picture the field f by a triangle, whose edges are labeled with
the variables of the field as in figure 2.5a. If the variables of the two
fields coincide, the triangles touch each other edge to edge. If all of the
variables coincide, all three edges of the triangles overlap, we say: the
triangles are glued together.

With this association the quadratic part of the action represents two
triangles glued together face to face as shown in figure (2.5b).

The interaction

g3
g2

g2

g5

g5

g4

g3 g6

g4

fpg1, g2, g3q

fpg6, g2, g5q

fpg1, g4, g5q

fpg6, g4, g3q

g1

g1

Figure 2.6: Fields represented as trian-
gles close together to form a tetrahedron.

f pg1, g2, g3q f pg1, g4, g5q f pg6, g2, g5q f pg6, g4, g3q (2.20)

then corresponds to four triangles glued along their edges to form a
tetrahedron shown in figure 2.6.

Let us look at the quantum case and perturbatively expand the four
point function

@
f

`
g1˘

f
`
g2˘

f
`
g3˘

f
`
g4˘D

, with gi P SU p2qˆ3 for i P
t1, 2, 3, 4u. The series that we get from this expansion can be formally
written as

xffffy “ xffffy0 ` xVffffy0 ` xVVffffy0 ` ¨ ¨ ¨ , (2.21)

where x¨y0 “ ≥
Df ¨ e´ ≥

ff denotes the expectation value with respect
to the quadratic part of the action and that can be calculated using the
usual Wick contraction. The Feynman diagram for the xVffffyF term
can now be understood as follows:



34

1. begin with the usual Feynman diagram (figure 2.7a),

2. replace the fields by triangles (figure (2.7b)),

3. replace the vertex by the tetrahedron (figure (2.7c)).

The resulting diagram is a combination of triangles and tetrahedra. Di-
agrams with nth power in the interaction, correspond to n tetrahedra
glued together face to face. Such constructions are called simplicial com-
plexes, and we can interpret them as discrete pictures of space-time.
Sometimes it can happen, that tetrahedra are glued to themselves lead-
ing to some non-geometrical structures. To avoid this, we can color the
faces of the tetrahedron in four di↵erent colors and require that only
two triangles with the same color can be glued together [44, 94]. Such
models are called colored models and are much better behaved in the
perturbative expansion. But for the further conceptual understand-
ing these details are not important. The above pictorial identification
shows, that we can view Feynman diagrams of GFT as graphs, that are
dual to simplicial complexes. Such graphs define two-complexes, and
due to the closure constraint of the fields they become labeled in the
correct way to produce spin foams.

f
f

f f

V

(a) Typical four-valent Feynman vertex.

f
f

f
f

V

(b) Replacing the external legs by the tri-
angular representation of the fields.

f
f

f
f

V

(c) Replacing the vertex according to the
combinatorial pattern of a tetrahedron
triangles.

Figure 2.7: Beginning with the usual
Feynman diagram and subsequently re-
placing their ingredients according to
the above prescription we obtain a Feyn-
man diagram of GFT.

All in all we can understand the relation between spin foam mod-
els and group field theory as follows: spin foams rely on the two-
complexes that can be understood as discretization of space-time, whereas
group field theory provides a construction of the same two complexes
frommore fundamental degrees of freedom described by the fields (tri-
angles).

So far goes the discussion of the 3D Plebanski gravity. In the 4D case
the BF part of Plebanski action can be formulated in terms of scalar
fields in the similar way, with minor modifications: the fields become
functions on four copies of Spin p4q and can be pictured as tetrahe-
dra (instead of triangles). The interaction part is then a combination
of 5 tetrahedra to a pentatope — a four dimensional tetrahedron. But
unlike in the 3D case, the 4D Plebanski action has an additional con-
straint term, that needs to be implemented in the model on the level
of the action S rfs. Just as in the spin foam formulation, it is an open
field of research, to understand the modifications that need to be made.
This freedom inspires us to develop di↵erent models, some of which
are more physically motivated than others [93, 95, 96]. Such variety of
models allows us to experiment with the theoretical structure of combi-
natorially non-local theories and to develop appropriate mathematical
techniques. The variations in the models consider di↵erent choices of
the Lie group, di↵erent types of the quadratic and the interaction terms
in the action or the real of complex type of fields. For example for the
4D case we often consider the Lie group to be SL p2, Cq [97], Spin p4q
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[98] or SO p4q ˆ SU p2q [99, 100]. We will introduce some 4Dmodels in
chapter 4, when we discuss their symmetries.

In summary: we can reformulate a spin foam model of Plebanski
action in terms of a perturbative expansion of a scalar field theory that
has the following features:

1. The action of the theory is combinatorially multi-local.

2. Feynman diagrams are associated with two complexes and Feynman
amplitudes define spin foam amplitudes.

3. In models whose diagrams should have the right labeling by inter-
twiners, the scalar fields need to be symmetric under the diagonal
action of the group G — in short satisfy the closure constraint (2.18).

The relation between spin foam models and group field theory hap-
pens therefore on the perturbative level. More precisely, it is the per-
turbative expansion around the trivial expectation values of the field,
xfy “ 0, that relates to spin foams. Being a statistical field theory,
GFT, however, may have a non-perturbative definition as well. A non-
perturbative definition could be understood as a sum over all two-
complexes and hence resolve the regularization dependence problem
of spin foams.

We want to remark here, that this step presents a non-trivial shift in
the interpretation of group field theory. The original idea of GFT was to
repackage spin foam amplitudes in a structured way. Giving a meaning
to a non-perturbative definition of GFT, however, puts it on the level of
an independent, self contained quantum (statistical) field theory, that
relates to spin foam models only in the perturbative regime.

In order to have at least some hope for a non-perturbative definition
of the theory, the partition function (2.17) has to be renormalizable.
In fact this is one of the first criteria for any fundamental quantum
field theory — even the perturbative one. The problem of perturbative
as well as non-perturbative renormalization of GFT is one of the most
active research areas in the community [56, 101–110].

We will not touch on this part of research, but want at least men-
tion that a requirement of renormalizability can imply some non-trivial
changes to GFT models. For example in the Boulatov action the re-
quirement of perturbative renormalizability generates a non-trivial dy-
namical operator, adding a Laplace term to the quadratic one in the
action [56]. For that reason the action gets modified and becomes

S rfs “
ª

Gˆ3
dg f pg1, g2, g3q

´
´D ` m2

¯
f pg3, g2, g1q (2.22)

` l

ª

Gˆ6
dg f pg1, g2, g3q f pg1, g4, g5q f pg6, g2, g5q f pg6, g4, g3q ,
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where G “ SU p2q and D denotes a Laplace-Beltrami operator on SU p2qˆ3.
This new quadratic term provides a non-trivial kinetic part to the ac-
tion that modifies the propagator in the Feynman diagrams. This af-
fects the mathematics of the model but it does not change much the
pictorial interpretation we presented above.

2.3.2 Complications of the formalism

Perturbative GFT provides a structuredway to sum over two-complexes
and to evaluate the amplitudes of spin foam models. But as quan-
tum field theory with a possible non-perturbative meaning, the orig-
inal models can get modified due to QFT principles, for example due
to renormalizability requirements. As a result the Feynman amplitudes
of renormalized models may di↵er from the original spin foam ampli-
tudes, and may not relate to Plebanski action. Instead, the theory may
relate to some quantum corrected gravity action and needs to be inter-
preted in a quantum mechanical way — in terms of expectation values
of observables.

Apart from the technical problems of renormalizability GFT encoun-
ters some conceptual issues that need to be understood for a meaning-
ful model building process. Two of these issues we mention below.

Theory space of GFT

In ordinary field theories the theory space is the space of possible in-
teraction terms that are compatible with the fundamental symmetry
principles. In non-perturbative renormalization this space defines the
space of possible coupling constants in which the renormalization group
flow takes place. In ordinary field theories the theory space is the
space of all interaction terms that respect the Lorentz symmetry and
do not violate causality. In algebraic renormalization, this principle is
then modified by model dependent symmetries and is used to prove
renormalizability of models without explicit calculations of divergent
counter terms [111].

In group field theory the theory space is not known. One approach
to restrict the theory space is first to understand the symmetries of
unrenormalized GFT models and subsequently try to generalize them
to some fundamental principles. But GFT models are combinatorially
multi-local and a symmetry analysis for such actions is not fully under-
stood13. In chapter 4 we will develop a symmetry analysis for multi-13 See [112, 113] for recent results.

local actions and apply it to GFT models.

Bottomless action
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Another issue is the bottomless action. Even in 3D models, where the
interaction part of S is quartic in the fields, it can be shown that the
action is unbounded from below [114]. That means that for any real
number C there are field configurations f` and f´ such that

S
“
f`‰

° C S
“
f´‰

† ´C (2.23)

This makes the expressions in the functional integral ill defined be-
cause such f´ configurations dominate the integral,

ª
Df e´Srfs « lim

fÑf´
e´Srfs Ñ 8. (2.24)

Perturbativelly, around local minima of the action S, the above expres-
sion still makes sense in the form of a formal power series. But non-
perturbativelly it may appear that the quantum e↵ective action does
not have a global minimum. The problem of Euclidean field theory
with an unbounded action is known for a long time even in ordinary
field theories and especially in the case of gravity [75]. In the next
chapter we will discuss the implications of this problem on the oper-
ator formulation of GFT, but the main message is that bottomless ac-
tion presents a serious obstacle in the formulation of non-perturbative
quantum field theories.

2.4 Group field theory — operator formulation

The operator formulation of GFT is a quite recent development that
suggests to formulate a theory based on Hilbert spaces and operators
to reproduce the expectation values of the functional formulation of
GFT. Structurally, we would write,

ª
Df q pfq q1 pfq e´Srfs “ pW|P̂q,q1 |Wq. (2.25)

The left hand side defines an expectation value of qq1 in the functional
formulation and the right hand side suppose to reproduce the same
expectation values in the operator approach. Hereby the ingredients
on the right hand side can be summarized as follows:

The Hilbert space Hph with a cyclic14 state |Wq P Hph . This 14 A state is called cyclic with respect
to some operator algebra, if every other
state can be reached by an application
of a suitable algebra element on it. We
will discuss the precise definition of
cyclic states in the next chapter.

Hilbert space is the space of states that satisfy the dynamical laws for
the GFT degrees of freedom. Because these degrees of freedom corre-
spond to “atoms” of space-time, the dynamical equations are not those
of GR. For the same reason states of this Hilbert space do not necessar-
ily correspond to geometrical states (smooth, continuous or discrete),
just as not every state of a collection of atoms corresponds to a fluid15. 15 The Hilbert space Hph is closely related to

the physical Hilbert space of LQG, however,
it is structured in a di↵erent way and the re-
lation between these two theories is not fully
understood [92, 115].
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kinematical hilbert space

physical hilbert space

phases of gft

quantum corrected gr

continuousdiscreteother

atoms of space-time

implementation of dynamics

further classification of dynamical states

identification of geometrical observables

Figure 2.8: Conceptual construction of
operator group field theory.

The algebra of self-adjoint operators

!
Pq,q1

)
on the Hilbert space

Hph. These operators suppose to encode the information about the in-
sertions in the functional integral in the sense that

Pq|Wq (2.26)

creates a state |qq such that the expectation value of the insertion q can
be understood as a transition amplitude pW|qq. Ideally, a subclass of
these operators would correspond to geometrical measurements and
create geometrical states once applied on |Wq.

As we will discuss in the following, the explicit construction of the
Hilbert space and the related algebra closely follows the spirit of sec-
ond quantization of non-relativistic many body quantum physics and
statistical field theories. The particles of GFT are considered as build-
ing blocks of space-time that arrange themselves in di↵erent phases.
Some of these phases would then contain states that relate to continu-
ous geometry, some of them may correspond to discrete geometry and
some of themmay correspond to no geometry at all. But in any case the
space-time becomes an e↵ective quantity that emerges only in some of
the phases of GFT.

The conceptual idea of the construction is summarized in figure 2.8,
and can be understood in four steps:

step i: kinematical hilbert space

The space of GFT degrees of freedom without dynamical informa-
tion. It is a Fock space, whose one particle Hilbert space is that of
a quantized polyhedron16. The creation and annihilation operators

16Quantization of a triangle

(see for example [82, 116]) To quantize a
triangle we consider the normal vectors to
each of its edges, which are three, 3D vec-
tors. These vectors we associate with ele-
ments of the Lie algebra of the rotational
symmetry group of the triangle, so p3q »
su p2q. Then we can associate a phase space
of a triangle to the dual of the Lie alge-
bra, su‹ p2q. The Lie bracket on su p2q
gives a natural way to define a Poisson
bracket on the space of smooth functions on
the phase space. By deformation quantiza-
tion this Poisson algebra gets deformed to a
non-commutative algebra of observables on
the Hilbert space L2

´
SU p2qˆ3 {SU p2q

¯
of

square integrable functions on three copies
of SU p2q modulo the diagonal action of
SU p2q. This diagonal symmetry is the clo-
sure constraint and it appears from the fact
that the faces of a triangle have to close in
order to form a geometrical figure.
From this single particle Hilbert space H,

we then construct the Fock space in the
usual way as a collection of symmetric n-
fold tensor products of the single particle
Hilbert space,

H “
8à

n“0
S

`
Hbn˘

. f: and f describe creation of polyhedra over the Fock vacuum— the
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state of no atoms of space-time — and satisfy canonical commuta-
tion relations, ”

f pgq , f: phq
ı

“ d pg, hq , (2.27)

with g, h P G, for a suitable Lie group G. This space sets the stage for
the further construction of the physical Hilbert space.

step ii: physical hilbert space

We identify a set of constraint operators C1, ¨ ¨ ¨ , Cn that should im-
plement the dynamical relations of the GFT degrees of freedom and
reduce the kinematical Hilbert space down to the physical Hilbert
space Hph by

Hph “ t|yq | Ci|yq “ 0u . (2.28)

The zero eigenvalue of Ci’s may not belong to the discrete part of
their spectrum. In this case the Hilbert space Hph will not be a
subspace of Hkin but should be constructed in a more complicated
way17. However, for the understanding of the conceptual idea this

17 For example following the Gelfand proce-
dure [117].

technical details do not matter.

The algebra of operators has to be filtered by the constraint operators
as well, such that the relevant algebra is given by

A “
!

P
´

f, f:
¯

|
”
Ci, P

´
f, f:

¯ı
“ 0

)
, (2.29)

where P stands for polynomials of creation and annihilation oper-
ators18. The resulting physical Hilbert space is not yet a space of 18 This procedure can be heuristically un-

derstood in ordinary quantum mechanics if
we choose the constraint operator to be

C “ ıBt ´ H. (2.30)

The space of physical states is then the space
of states that satisfy the relation

C|y ptqq “ ıBt|y ptqq ´ H|y ptqq “ 0,
(2.31)

which is the usual Schroedinger equation.
The dynamical equation for the operators is
given by

rC,Os “ ıBtO ´ rH,Os “ 0, (2.32)

and is the usual Heisenberg equation of mo-
tion for the operators.

states that encode information about geometries, but rather a space
of dynamical space-time atoms. However, because the degrees of
freedom inGFT are assumed to bemore fundamental than the space-
time itself, the dynamics is not that of GR and there might be states
in Hph that do not correspond to any geometrical space-times.

In principle this step can include some idealization procedures such
as a requirement of infinite number of particles or removal of any
possible cut o↵s on the constraint operators (if they were needed
for a rigorous definition). Due to this, the resulting physical Hilbert
space is expected to split in a direct sum of Hilbert spaces each of
which corresponds to a di↵erent phase of GFT. Without such ideal-
ization the statesmay not have a clear-cut distinction between phases
and the question of phases becomes mathematically di�cult to han-
dle, just as it is the case in many body quantum mechanics [118].

step iii: phases of gft

We expect that the space Hph will split in sub-sectors. We call these
sub-sectors phases of GFT. These phases correspond to inequivalent
representations of the algebra A from equation (2.29). However,
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within this algebra, some operators may be more relevant for physi-
cal observations than others, and the actual relevant measurements
could be a very complicated composition of observables of the fun-
damental GFT degrees of freedom. This is similar to situations in
many body theories in which e↵ective observables of a composed
system lead to more (or even the only) relevant observations. For
example in a gas phase of a many particle system a one-particle ve-
locity may not be relevant whereas the temperature is. We call the
e↵ective, relevant observables geometric.

step iv: quantum corrected gr

The last step is an extraction of physical information from expec-
tation values of geometrical observables. Hereby, it can happen,
that some observables will directly correspond to geometrical quan-
tities, for example curvature, volume or area of the state, but it is
also expected that some geometrical quantities should be extracted
from relations between expectation values in the same spirit as emer-
gent quantities appear inmacroscopic physics (for example viscosity,
susceptibility etc.). For those states that contain information about
smooth geometries, resulting expectation values should correspond
to degrees of freedom of GR with additional quantum corrections.
Such states may belong to di↵erent phases, and hence the set of geo-
metric observables may di↵er.

At this stage we need to point out, that this construction is quite heuris-
tic. Partially, it follows the construction of condensed matter physics
and partially that of loop quantum gravity. However, there does not
exist any model of GFT that utilizes all the above steps.

The major di�culty is to define the operators C1, ¨ ¨ ¨ , Cn. Here is
where the relation to the functional formulation should enter. The op-
erators C1, ¨ ¨ ¨ , Cn have to be defined such that each correlation func-
tion of the functional formulation can be uniquely identified with an
operator P P A and a state |Wq that produces the same expectation val-
ues by the relation (2.25). However, so far there is no formulation of
operator GFT that successfully satisfies this relation.

Without any correspondence between the functional and operator
formulation these two formalisms really describe two di↵erent theo-
ries. And wheras the functional approach is still motivated by spin
foam models the operator formulation is independent of it. For that
reason it is very important to provide a relation between the functional
and operator formulation of GFT.

In ordinary quantum field theories, the relation between the opera-
tor and statistical formulation are given by the Osterwalder-Schrader
axioms [119] that, however, rely on the Minkowski space-time struc-
ture and the Lorentz invariance. Already for quantum field theories on
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curved space-times this relation was not known for a long time [120].
In GFT the abstraction level is even higher, as the base manifold does
not represent space-time and therefore does not assume any Lorentz
symmetry.

An explicit relation between the functional and operator formalism
of GFT is desirable, since the dynamics of GFT is only understood in
the functional formulation, whereas the particle interpretation is more
intuitive from the physical point of view. Hence, a relation may boost
our intuition of GFT models as well as its technical and conceptual
development.

In the next chapter we will provide a construction of the physical
Hilbert space directly from the dynamical definition of the functional
theory circumventing an explicit construction of the constraint opera-
tors. Our construction will not resolve the problem of finding the right
dynamics, but it will provide a direct relation between the functional
and the operator formulation of GFT on the perturbative level.





3Algebraic formulation of
group field theory

In the previous chapter we introduced the GFT framework in its func-
tional and operator formulation. However, as we also discussed, there
is yet no explicit relation between these formulations and with this re-
gard they should be considered as two di↵erent theories. A suggestion
of a possible relation between the formalisms was put forward in [92]
but an explicit relation, as well as a rigorous proof of its existence was
not shown.

A connection between the operator and functional formulation should
be given by a dictionary; a dictionary that relates the dynamical evolu-
tion of the functional formulation — given by the action S in the func-
tional integral — and states in the operator formulation that provide
the same correlation functions in terms of expectation values of field
operators.

In this section we will suggest such a relation, construct an operator
theory that matches the perturbative expansion of the partition func-
tion and explicitly provide the desired dictionary. At the end of this
chapter we will argue that this construction can be used as a definition
of an e↵ective operator formalism of GFT. And in chapter 5 we will
discuss a possible characterization of GFT phases in terms of symme-
try breaking.

We will begin our discussion with a brief reminder of field theories
on space-time and their corresponding relation between the canonical
and covariant formulation. Then (on page 46) we introduce the con-
cept of algebraic quantum field theory (AQFT) and apply this formalism
to GFT (on page 54). At the end of this chapter we provide an explicit
example for our construction based on a simplified model of the Boula-
tov action.

3.1 Covariant and canonical formulation of QFT

Formally, covariant QFT is defined by the generating functional
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Z rJs “
ª
Df eıSrfs`≥

Jf. (3.1)

The n-particle correlators can be derived from this expression by func-
tional derivatives with respect to J — the external source field. For ex-
ample the Feynman propagator G px, yq is given by

G px, yq “ d

dJ pxq
d

dJ pyq Z rJs |J“0. (3.2)

In the canonical formulation of QFT — a theory of field operators on
Hilbert spaces with existing notion of time — the n-particle correlators
are given by time-ordered expectation values of n-field operators in the
vacuum, that is we can write (see for example [121])

d

dJ pxq
d

dJ pyq Z rJs |J“0. “ G px, yq “ po|T rf pxq f pyqs |oq. (3.3)

This formal equality provides the connection between the covariant
and canonical formulation of QFT on Minkowski space-time.

As we already discussed above, the formulation of QFT in terms of
path integrals is not rigorous, since we do not have a good notion of
the integral measure for the space of fields. For that reason we usually
use the Wick rotated version of the integral, in which the generating
functional becomes a statistical partition function

Z rJs “
ª
Df e´SErfs`≥

Jf. (3.4)

Derivatives of that partition function with respect to J define the n-
point correlation functions, and after Wick rotation, back to Lorentzian
time, they define time-ordered expectation values of field operators.
This gives a relation between the (more or less) rigorously defined co-
variant and canonical theory.

This relation, however, relies on the time-notion of space-time; we
use it in the definition of the time-ordered products in the canonical
theory and also in the definition of the Wick rotations in the covariant
integral.

In GFT — a theory without the notion of time nor space — the for-
mulation of time-ordered products and Wick rotations is not clear, and
hence the usual relation that we described above, does not hold. More-
over, due to the bottomless nature of the GFT action (at least for most
commonmodels), the statistical functional formulation may be defined
only perturbatively. For that reason we need more care in formulating
the operator GFT and requiring a match between the formulations.

To avoid problems stemming from the bottomless nature of the ac-
tion, we will assume a perturbative definition of Z rJs and use the back-
ground field method (see for example [121, 122]) to expand the the-
ory around di↵erent (if they exist) local minima of the action S. Even
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though this is a common technique in quantum and statistical field the-
ory, we briefly discuss it here for self consistency.

If j is a local minimum of the action S the first derivative of the
action at j — that we denote S1

j — vanishes, S1
j “ 0. Hence, the Taylor

series of S around j reads

S rjs ` 1
2

S
2
j pf, fq ` O

´
f3

¯
, (3.5)

where f is a (small) fluctuation around the background field j, and
S2

j pf, fq .“ ≥
dx dy f pxq

”
d2

dfpxqdfpyq S pjq
ı

f pyq. Shifting the integral

variable in eq. (3.4) as f fiÑ j `
?

h̄f, and using the Taylor expansion
for S we obtain

Z rJs “
ª
Df e

´ 1
h̄ Srjs´ 1

2 S2
j pf,fq´O

ˆ
h̄

3
2

˙
`

?
h̄
≥

Jf`≥
Jj

« e´ 1
h̄ Srjs`≥

Jj
8ÿ

n

p´1qn

n!

ª
Df e´ 1

2 S2
j pf,fq`≥

Jf O
´

h̄
3
2 n

¯
, (3.6)

where we explicitly wrote out all h̄ appearances in the exponent. We
neglect for now the perturbation terms in h̄ — since we can deal with
them as insertions — and calculate the integral

Zj rJs “ e´ 1
h̄ Srjs`≥

Jj
ª
Df e´ 1

2
≥

f
´

S2
j

¯
f`

?
h̄
≥

Jf. (3.7)

This generating functional defines a free theory with modified dynam-
ics given by S2

j (see figure (3.1)). If j is a local minimum of the action S,
then S2

j ° 0, and the integral can be performed with standard Gaussian
integral techniques leading to the closed expression for the partition
function,

j0
j1

S

S2
j1

S2
j0

Figure 3.1: Approximation of the classi-
cal action by quadratic term of the Tay-
lor expansion. The actual shape of the
quadratic expansion is di↵erent for dif-
ferent minima j, which leads to di↵er-
ent quantum fluctuations described by
Zj rJs.

Zj rJs :“ e
≥

Jj e
1
2
≥

JCJ , (3.8)

where C is the Green’s function for the operator S2
j. If the action S

has more than one minimum labeled ji we will have di↵erent theories
given by partition functions Zji rJs. This implies that we have to ex-
pect di↵erent operator theories each of which relating to the covariant
formulation with the partition function Zji rJs: some of these operator
theories will di↵er only by the choice of the vacuum state but as we will
show below, generally, not even this is true.

In the following we will take the expression (3.8) as a definition of
the statistical expectation values and construct an operator theory that
reproduces the same n-point correlation functions1. We will see that if

1 of course at this level the action S has to be
the renormalized one. However, through-
out this work we do not discuss the issue of
renormalizability and whenever necessary,
we assume that the action can be perturba-
tively renormalized to finite order in pertur-
bation theory.

the action S has more than one local minimum the relation between the
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functional and operator approach will be of the type:

Zj1 rJs
Zj2 rJs

...

,
//.

//-
Ø

$
’’’&

’’’%

`
A1, |j1q,H1

˘
for the local minimum at j1`

A2, |j2q,H2
˘

for the local minimum at j2
...

...

. (3.9)

where we denote the collection of observables by Ai, the vacuum state
by |jiq and the corresponding Hilbert spaces byHi. In this formulation
we can interpret the right hand side as di↵erent phases of GFT.

The states |jiq may belong to di↵erent Hilbert spaces and we need
a formalism, that captures all those Hilbert spaces at once. Ever more,
there is no reason to believe that the local minima of S will be square
integrable functions and therefore the scalar product ofHi may be non-
trivial.

We will use the framework of non-relativistic algebraic quantum
field theory [118, 123, 124] to construct the operator theory of GFT
with the above properties. We begin with the brief introduction of the
algebraic framework.

3.2 Non-relativistic algebraic quantum field theory

Algebraic quantum field theory [42, 123–125] is based on two major
ingredients: the set of observables and the set of algebraic states.

The observables represent measurements that we can perform on a
system and, mathematically, are described as elements of a C‹-algebra2

2C‹-algebra

A C‹-algebra is a Banach star algebra such
that, for any A P A, the norm } ¨ } satisfies,

}A‹ A} “ }A}}A‹}.

‹-algebra
A ‹-algebra is an algebra with involution,
that is a map ‹ : A Q A Ñ A‹ P A, with
the following properties:

1. for all A P A: A‹‹ “ A ,

2. for all A, B P A: pA ` Bq‹ “ A‹ ` B‹

and pA ¨ Bq‹ “ B‹ ¨ A‹,

3. for every complex number l P C and
every A P A: plAq‹ “ l̄A‹.

Banach algebra

A Banach algebra is a Banach space (com-
plex of real) and at the same time an algebra
such that the multiplication is continuous.
That is for any A, B P A, the norm } ¨ } sat-
isfies,

}A ¨ B} § }A} ¨ }B}.

(see for example [126]). Unlike the canonical quantum field theory,
where observables are given by linear operators on some Hilbert space,
the algebraic formulation does not require a Hilbert space and uses
only the algebraic relations between observables. However, the Hilbert
space and the usual formulation in terms of field operators can be de-
rived from the abstract algebraic relations.

The states — called algebraic states — are continuous positive and
normalized functionals (see the margin note on page 50) from the C‹-
algebra to complex numbers (see for example [126]). We give an explicit
definition of algebraic states below, when we discuss coherent states of
GFT but it is important to remark already here that algebraic states
play two roles in algebraic field theory:

First, an algebraic state fixes all expectation values of all observables.

Being a functional on the algebra of observables, an algebraic state
assigns a number to each physical measurement. This number is
understood as the expectation value of that measurement. Since an
algebraic state is supported on the whole algebra it fully specifies a
physical state, by fixing all polynomials of each observable [126].
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Second, an algebraic state defines a representation for the C‹-algebra.

Due to the theorem by Gelfand, Naimark and Segal [127, 128] (GNS
theorem see margin note on page 50) any algebraic state provides a
notion of a Hilbert space on which the algebra of observables acts
as an algebra of linear bounded operators. This theorem connects
the abstract algebraic framework with the canonical description of
quantum field theory — the theory of operators on Hilbert spaces.

Due to the GNS theorem, the Hilbert space becomes a derived con-
cept of a more fundamental underling algebraic structure. Moreover,
di↵erent algebraic states can correspond to di↵erent, mathematically
inequivalent, representations of the observable algebra and provide a
consistent treatment of several representations within one framework;
this becomes unavoidable when dealing with systems with infinitely
many degrees of freedom [42]. Inequivalent representations of the ob-
servable algebra often correspond to di↵erent phases of a model and
provide a mathematically rigorous construction for the theory of phase
transitions [118, 129, 130] and symmetry breaking.

It is also important to remark that the set of algebraic states does not
form a Hilbert space — it does not have a natural notion of a scalar
product. This gives a more general formulation of states, especially in
field theories in which the volume of the base manifold is infinite [131].

Motivated by statistical field theory we choose the Weyl algebra as
the algebra of observables in GFT. In the following we will discuss a
detailed construction of that Weyl algebra and algebraic states in GFT.

3.2.1 Weyl algebra of GFT

We begin with the definition of theWeyl algebra in GFT. The procedure
is quite common in the algebraic approach, but we recall it here tomake
the construction more accessible for the unfamiliar reader.

The Weyl construction is a map from the phase space, or more gen-
erally symplectic space of the classical theory, to a C‹-algebra. We,
therefore, need to start with the formulation of a suitable symplectic
space in our case.

Symplectic space of GFT

The construction of the Weyl algebra begins with the definition of the
symplectic space. Even though this space can be understood as the
phase space of the theory, it is only its closure that has an interpretation
of the one particle Hilbert space. For that reason we have a certain
freedom in its choice.

In our case we choose that space to be S8 — the space of smooth,
complex valued functions on the base manifold M “ SU p2qˆd with the
topology induced by the family of semi-norms3

3Pull-backs and Lie derivatives

Let Lh and Rh denote the left and right mul-
tiplication on SU p2q by h P SU p2q, i.e. for
any g P SU p2q

Lh pgq “ hg Rh pgq “ gh, (3.10)

The pull back of a smooth function f by the
left/right multiplication is given by

pL‹
h f q pgq “ f phgq pR‹

h f q pgq “ f pghq .

Let X P su p2q and t P I Ä R a real pa-
rameter then we define the action of the Lie
algebra on the space of functions as

pX f q :“ Bt R‹
etX f |t“0.
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} f }k,8 “ }X1 ¨ ¨ ¨ Xk f pgq }8 : k P N; X1, ¨ ¨ ¨ , Xk P su p2q

(
,

where Xi’s denote the Lie algebra elements and act on f as Lie deriva-
tives. With this topology S8 is a complete, topological, locally convex,
vector space [132]. When the topology will be not important in our dis-
cussion we will denote the space of smooth functions on M simply S .
Further we choose a symplectic form4 s : S ˆ S Ñ R. As we will see4 Symplectic form

A symplectic form s on a vector space V is a
two-form which is:

1. real bi-linear: for all v, w, z P V and
l1, l2 P R we have

s pl1v ` z, l2wq
“ l1l2s pv, wq ` l2s pz, wq,

2. skew-symmetric: for all v, w P V

s pv, wq “ ´s pw, vq ,

3. non-degenerate: if for any v P V

s pv, wq “ 0, (3.11)

then w “ 0.

in the following the symplectic form will be defined by the GFT action,
but in general it will always be of the form

s p f , gq “ = p f ,Ogq , (3.12)

where f , g P S are integrable functions and O is a continuous operator
on S , = refers to the imaginary part of the expression and p¨, ¨q is the
L2-scalar product with respect to the Haar measure, such that for any
f , g P S ,

p f , gqL2 “
ª

M
dx f̄ pxq g pxq . (3.13)

Here and in the following we will denote the points of M by x and y,
however, keeping in mind that they belong to a non-commutative Lie
group. Also dx will refer to the Haar measure integral on M whereas
dh will refer to the Haar measure on the single copy of SU p2q.

Since M is compact, every smooth function is integrable and the
scalar product induces the norm

} f }L2 “
ª

M
dx f̄ pxq f pxq . (3.14)

We denote S with the topology induced by this norm as SL2 . This space
is not complete and its completion is the space of square integrable
functions L2 pM,dxq [132]. The space S splits in a direct sum as S “
SR ` ıSR, where SR is the restriction of S to real valued functions.

The space S has two important features. It is:

Closed under translations: Let Ly : M Ñ M denote the left multiplica-
tion on M by some y P M, and let L‹

y f .“ f ˝ Ly denote the pull back
of f , then Ly f P S8 [132].

Direct sum: Let h P SU p2q and D : SU p2q Ñ SU p2qˆn be a diagonal
map such that D phq “ ph, ¨ ¨ ¨ , hq. Then f P S satisfies the closure
constraint (see chapter 2 eq. (2.18)) if

R‹
Dphq f “ f @h P SU p2q . (3.15)

We denote the space of functions that satisfy the closure constraint
by SG. Then the space S8 splits in an (internal) direct sum as S8 “
SG ‘ SNG where SNG is the complement of SG in S8. See appendix
A.4 for the proof.

The space SG is, however, not closed under right multiplications.
That is in general for f P SG and y P M, R‹

y f R SG.



49

We will call the space S8 the space of smearing or test functions.
With this definition of the symplectic space we can now construct

the Weyl algebra of GFT.

Weyl algebra of GFT

The construction of the Weyl algebra from the symplectic space is a
standard procedure presented for example in [133, 134]. However,
to make our discussion easy readable, we provide the construction in
the margin note5 and summarize the most important properties of the

5Weyl algebra

First we define the space A pSq such that:

1. The elements of A pSq are complex val-
ued functions on S with support con-
sisting of a finite subset of S . Obviously,
A pSq is a vector space.

2. Define a `1 norm on A pSq by

}A}1 “
ÿ

f PS
|A p f q |.

3. Functionals of the form Wp f q such that

Wf pgq “
#

1 if f “ g pointwise
0 otherwise

,

form a dense linear basis for A pSq.
4. Define the multiplication law on the ba-

sis of A pSq as

Wp f q ¨ Wpgq “ e´ ı
2 sp f ,gq Wp f `gq.

and extend it to the fullA pSq by linear-
ity.

5. Define the involution W‹ p f q “
W p´ f q. With this, A pSq becomes a ‹-
algebra.

Closing A pSq in the `1 norm provides
a Banach‹-algebra that we denote A pSq.
This algebra can be represented by bounded
linear operators on some Hilbert space. De-
noting the space of all non degenerate rep-
resentation by Rep, we define the Weyl al-
gebra.

Definition 1. The Weyl C‹-algebra over
S is the completion of A pSq in the norm

}W} “ sup
pPRep

}p pWq }. (3.16)

We denote it byA pSq and call it theWeyl
algebra.

Weyl algebra in plain text below.
In the following we will denote the Weyl algebra as A pSq or simply

A, when no confusion is possible. It is a C‹-algebra generated by the
Weyl elements Wp f q for f P S . The product is defined by

Wp f qWpgq “ e´ ı
2sp f ,gqWp f `gq , (3.17)

and the involution ‹ : A Ñ A is given by

W‹
p f q “ Wp´ f q. (3.18)

Since S is closed under left and right translations the maps ay : A Ñ
A and by : A Ñ A

ay

´
Wp f q

¯ .“ WpL‹
y f q, by

´
Wp f q

¯ .“ WpR‹
y f q (3.19)

define algebra automorphisms of A (see appendix A.5 for the proof).
We can represent A in terms of bounded linear operators on some

Hilbert space, and denote the corresponding operators Wp
p f q. Due to

the Hilbert space structure we get access to the operator norm6 on

6Operator norm

Let A be a bounded linear operator on a
Hilbert space H. An operator norm of A
is given by

}A} “ sup
xPH

}Ax}
}x} .

the Hilbert space, which is weaker than the C‹-norm [123], and hence
makes a larger number of sequences convergent. Because of this the
Weyl algebra A is not closed in the operator norm. Its closure is called
the von Neumann algebra that contains operators Wp

p f q for f in the clo-
sure of SL2 .

Due to the direct sum decomposition of S8 we can define a gauge
invariant Weyl algebra AG “ A pSGq, by restricting the space of test
functions to SG. AG is the maximal C‹-sub-algebra of A that satisfies
the closure constraint (for the precise statement and the proofs see ap-
pendix A.5). In the following, we will not distinguish the gauge invari-
ant and the gauge variant algebra and simply write A. Whenever an
explicit distinction will be in order we will denote this in the text.

3.2.2 Algebraic states

An algebraic state is a linear, positive, normalized functional on the
Weyl algebra A,

w : A Ñ C.
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The set of algebraic states — that we denote by S — is a convex subset
of the Banach space of continuous, positive, linear functionals on A77Positive functional

A positive functional w on a C‹-algebra A
is a functional such that for all A P A

w pA‹ Aq • 0.

It is normalized if

sup
APA

|w pAq | “ 1.

If the algebra is unital, that means it con-
tains the identity element with respect to
the product, then the normalization condi-
tion reads w p1q “ 1.
The Weyl algebra is unital with the iden-

tity element Wp0q.

[135].
By the GNS construction 8, every algebraic state provides:

8GNS Theorem

Given an unital C‹-algebra A and an alge-
braic state w, there is a Hilbert space Hw

and a representation pw : A Ñ L pHwq,
such that

1. Hw contains a cyclic vector |Wq,
2. w pAq “ pW|p pAq |Wq for any A P A,

3. every other representation p in a
Hilbert spaceHp with a cyclic vector |oq
such that for any A P A

w pAq “ po|p pAq |oq,

is unitarily equivalent to pw , i.e. there
exists an isometry U : Hp Ñ Hw such
that

Up pAq U´1 “ pw pAq ,

U|oq “ |Wq.

a Hilbert space Hw on which the algebra elements act as bounded lin-
ear operators,

a unique (up to isomorphism) representation pw : A Ñ L pHwq of the
Weyl algebra on Hw,

a state vector |Wq P Hw that is cyclic. That means for any state |yq P Hw

and any e ° 0 we can find a finite number of test functions t fnu and
complex coe�cients tanu such that the polynomial

Poly pWpq :“
Nÿ

n“1
anWp

p fnq

satisfies
}|yq ´ Poly pWpq |Wq} † e.

The triple, consisting of the Hilbert space, representation and a cyclic
state vector is sometimes called the GNS triple and is denoted

pHw, pw, |Wqq . (3.20)

Informally, we can say that the GNS construction implies that physical
observations uniquely determine the “Bra-Ket” notation by relation,

w pAq “ pW|p pAq |Wq . (3.21)

The concept of the Hilbert space becomes derived from expectation val-
ues of measurements.

A state w is called regular if for some parameter t P I Ä R, with I
an interval containing zero, and any fixed f P S the function W ptq :“
w

´
Wpt f q

¯
: I Ñ C is smooth. For a regular w the generators of Wpt f q

exist in the corresponding GNS representation and can be defined by
[136]

pW|F p f q |Wq :“ p´ıBtq w
´

Wpt f q
¯

|t“0. (3.22)

The generator F p f q is an unbounded operator defined on the dense
domain D pF p f qq Ä Hw. From this definition we can obtain properties
of generators in the strong operator topology. That is for any |yq P
D pF p f qq,

}F p f q |yq}2 :“
`
W|Poly pW‹q F p f q F p f q Poly pWq |W

˘

“
´

´B2
t

¯
w

´
Poly pW‹q Wpt f qPoly pWq

¯
.
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Fock state and the Fock representation

To get acquainted with the formalism and to show the relation between
the algebraic verses operator formulation of GFT we discuss the Fock
representation of the Weyl algebra.

The Fock algebraic state that, by GNS theorem, leads to the Fock rep-
resentation is given by [130],

wF

´
Wp f q

¯
“ e´ } f }2

4 . (3.23)

By continuity and linearity of wF and the product of the Weyl algebra
(eq. (3.17)) this equation defines the acton of wF on the whole algebra
A. For example, the action of wF on Wp f qWpgq is

wF

´
Wp f qWpgq

¯
“ wF

´
Wp f `gq

¯
e´ ı

2sp f ,gq “ e´ } f `g}2
4 e´ ı

2sp f ,gq. (3.24)

We denote the GNS triple for the Fock representation by pHF, pF, |oqq.
Clearly the algebraic Fock state is regular since the function

W ptq “ e´t2 } f }2
4 , (3.25)

is smooth in t. Hence, we can define generators of Weyl operators by
di↵erentiation, as described above. We call these generators FF p f q and
write the represented Weyl element as

WF
p f q

.“ pF

´
Wp f q

¯
“ eıFFp f q. (3.26)

By construction FF p f q is a self-adjoint, unbounded operator, defined
on a dense domain D pFF p f qq Ä HF [136]. It is real linear; that is for
l P R and f , g P S ,

FF pl f ` gq “ lFF p f q ` FF pgq . (3.27)

The action of FF p f q on D pFF p f qq can be determined by derivation as
we discussed above

po|FF p f q |yq :“ p´ıBtq |t“0 w
´

WF
pt f q Poly

´
WF

¯¯
. (3.28)

In the similar fashion we can derive the commutators between FF p f q
and FF pgq for f , g P S ,

rFF p f q , FF pgqs “ ı= p f , gq . (3.29)

We can also define creation and annihilation operators by

yF p f q :“ 1?
2

rFF p f q ` ıFF pı f qs (3.30a)

y:
F p f q :“ 1?

2
rFF p f q ´ ıFF pı f qs , (3.30b)
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with yF p f q: “ y:
Fp f q. It follows that y p f q is anti-linear9 in f , y: p f q9 For l P R we have

y pıl f q “ 1?
2

rF pıl f q ` ıF p´l f qs

“ l?
2

rF pı f q ´ ıF p f qs

“ ´ıl?
2

r`ıF pı f q ` F p f qs

“ ´ıl y p f q .

is linear in f , both are closed on the domain D pfq of f and fulfill the
canonical commutation relations [137],

ryF p f q , yF pgqs “
”
y:

F p f q , y:
F pgq

ı
“ 0 (3.31)

and ”
yF p f q , y:

F pgq
ı

“ p f , gq1 , (3.32)

where 1 is the identity on the Fock space. It follows from the definition
of the state (3.23) that1010 Explicitly, we get

}yF p f q |oq}2 “ po|y:
F p f q yF p f q |oq.

Rewriting this expectation value in terms of
the field F p f q using the definition (3.30)
the above expression is up to the global fac-
tor of 1

2

po|F p f q F p f q |oq
`po|F pı f q F pı f q |oq

´ıpo| rF p f q , F pı f qs |oq.

Using the commutation relations for

rF p f q , F pı f qs “ ´} f }2,

the above expectation values become

´B2
t w

´
Wpt f q

¯
|t“0

´B2
t w

´
Wpt ı f q

¯
|t“0

´} f }2.

And by the definition of the state we obtain

}yF p f q |oq}2 “ 1
2

´
} f }2 ´ } f }2

¯
“ 0.

yF p f q |oq “ 0, (3.33)

for any f P S . Hence, |oq corresponds to the Fock vacuum on which
yF and y:

F act as creation and annihilation operators and we obtain the
GFT Fock space from the algebraic Fock state wF.

Coherent states and non-Fock representations

As we have seen above, the algebraic Fock state corresponds to the Fock
vacuum state |oq. In this section we want to construct algebraic states
wj that correspond to coherent states |jq. Using the algebraic construc-
tion we will be able to construct coherent states, whose “order parame-
ter” is a tempered distribution, and hence not necessarily normalizable
in L2. Such states will lead to Fock inequivalent representations.

Usually coherent states are characterized by the condition to be eigen-
states of the annihilation operator in the Fock representation [138].
That is for x P M,

yF pxq |jq “ j pxq |jq. (3.34)

This definition does, however, require the Fock space and therefore
needs to be modified for a representation independent, algebraic for-
mulation.

In the algebraic approach coherent states can be introduced in a rep-
resentation independent way. This has been done for example in [137,
139], where the authors provide a classification of algebraic coherent
states in Fock and non-Fock coherent states — those that lead to the
Fock representation and those that do not. The definition goes as fol-
lows.

Definition 2. Let j : S8 Ñ C be a continuous linear functional on the
space of test functions S8. A state w of the form

wj

´
Wp f q

¯
“ wF

´
Wp f q

¯
eı

?
2<rjp f qs, (3.35)

where < denotes the real part of the expression, is called a coherent
state11. It is pure and regular [137].

11 There exist an even more general defini-
tions of a coherent state provided by the
same authors in [139], but the definition we
use here is the one that most closely reflect
the condition of being eigenfunction to the
annihilation operator, and will fit our needs
for the reconstruction of the n-point corre-
lation functions.
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We see that the Fock state is the special case of the above family of
coherent states for j “ 0.

Any continuous linear functional j on S8 corresponds to a well de-
fined coherent state [137].

Proposition 3 ([139, Proposition 2.5]). The state w of the above form is
equivalent to the Fock representation, i↵12 j is continuous on SL2 .

12An intuition of proposition 3

If the representation is Fock the particle
number expectation value is given by the
L2-norm of the order parameter

pW|N|Wq “ }j}2
L2 .

If j is, however, not continuous on SL2 its
formal L2-norm is unbounded and, heuris-
tically, we can interpret it as an indication
for the divergent particle number.

The non-Fock coherent states are hence classified by functionals j

which are continuous on S8 — given by the space of (tempered) dis-
tributions — but discontinuous (or unbounded) on SL2 . This implies
that non-Fock coherent states are characterized by the quotient space
S 1 zL2 pM,dxq, sometimes called the space of tempered micro-functions.
Here and in the following S1

denotes the topological dual of S8.
By Riesz-Markow theorem [136] every functional j on S8 is of the

form
j p f q “

ª

M
f dn, (3.36)

for some Baire measure n. And we get the following corollary.

Corollary 4. If j is invariant under left multiplication i.e. j pL‹
x f q “ j p f q

for any f P S and x P SU p2qˆd, then the coherent state wj is Fock13. 13Proof

Let j be invariant under left translations.
Then for any f P S we have

j
´

L‹
g f

¯
“

ª

M
L‹

g f dµ “ j p f q “
ª

M
f dµ,

hence the measure µ is a left invariant mea-
sure on SU p2q, which is identical with the
Haar measure up to rescaling,

µ “ c ¨ µH , (3.37)

for some c P R. But then we have

|j p f q| § c} f },

and j is continuous on L2 pM, dxq.

By this corollary, translation invariant coherent states are always
Fock. In order to have a rich phase structure in GFT we would like
to have non-Fock representations as well, which — if coherent — can
not be translation invariant.

Physical remark

For j to be a tempered micro-function the integral measure in eq.
(3.36) has to be singular with respect to the Haar measure on M. On
a compact manifold this can happen only due to local behavior of the
measure, for example, when n develops pure points. From the physi-
cal point of view, such point singularities of the measure correspond to
states in which an infinite number of particles is concentrated in a local
region of M. For field theories on space(-time), this situation is clearly
not desirable since an infinite number of particles in a finite region cor-
responds to infinite energy density. Accordingly, in QFT’s on compact
space(-time) we require a finite particle number. This requirement is
usually captured in the statement that no phase transition can occur in
field theories on finite volume [118, 121, 140].

In GFT, on the other hand, there is no reason to prohibit states with
divergent particle density. This is because the base manifold of GFT
is not space-time and should be more generally understood as a set of
particle labels (in the sense, that j: pxq creates a particle with label x).
From this perspective an infinite number of particles with the same
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label is not problematic if x does not have a meaning of a space-time
point. The micro-local behavior of j could even be desirable, or at least
reasonable, from the point of view of the interpretation of GFT parti-
cles as “building blocks of space-time and geometry”. This is because,
intuitively, we need an infinite number of discrete building blocks to
define smooth objects.

3.3 Algebraic group field theory

We turn to the construction of an operator theory from functional GFT.
Our treatment is based on known and well developed concepts of Eu-
clidean field theory (for example [66, 124]) but to our knowledge they
have not yet been applied to GFT.

Our procedure will be to use algebraic coherent states that corre-
spond to the local minima of the action S. The concurrent GNS repre-
sentation of the Weyl algebra will lead to field operators, whose expec-
tation values provide the n-point correlation functions of the functional
approach.

Before we start with the details of the construction we summarize
the idea of the following procedure:

The correlation function of the functional formulation of GFT in-
clude the dynamics of the model. This is because they are defined by
the functional integral whose weights are given by the action S. Hence,
an operator formulation that produces the same correlation functions
needs to follow the same dynamical relations. Such dynamical relations
should be encoded in the algebra of observables, and hence, we need to
modify the Weyl algebra of GFT. We do this by putting the linearized
dynamics from the action S in the symplectic structure on the space
of smearing function S . After this construction the algebra will cap-
ture the dynamics of the functional formulation of GFT, which is one
necessary step in order to reproduce the correct correlation function.

The other necessary step is the definition of the state. Our construc-
tion is perturbative around a classical field configuration and hence,
coherent states seem to be appropriate, since they can be seen as the
“most classical” states of a quantum theory. Indeed, as we will show,
coherent states provide exactly the right structure in order to obtain
the correct correlation functions.

We begin our construction with some realizations about the minimal
field configurations of the action that will be needed to implement the
linearized dynamical relations in the algebra.

Let j be a real valued distribution on SR, which is an extremum of
S on SR, meaning that j P S 1

R satisfies

S
1
j p f q .“ BeS rj ` e f s |e“0 “ 0 @ f P SR. (3.38)
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For a local action this condition would not make sense if j is a delta
distribution. However, in our case we assume that this expression is
well defined for suitable j P S 1

R due to the multi-local structure of S.
The second derivative of the action is a distribution on SR ˆ SR , such
that for f , g P SR

S
2
j p f , gq “

ª
dxdy f pxq

„
d

df pxq
d

df pyq S rfs
⇢

f“j
g pyq . (3.39)

We can extend this distribution to the whole S by defining

S
2
j p f , gq “

ª
dxdy f pxq

„
d

df pxq
d

df pyq S rfs
⇢

g pyq . (3.40)

Since functional derivatives commute, S2
j is symmetric on SR, i.e.

S
2
j p f , gq “ S

2
j pg, f q , (3.41)

and on S it satisfies
S

2
j p f , gq “ S2

j pg, f q. (3.42)

If j is a local minimum it is positive on SR, such that for any f P SR,

S
2
j p f , f q ° 0, (3.43)

and it follows that S2
j is positive on the whole S14. By Schwartz-Kernel 14 This is because for any f P S we can find

an h, g P SR such that f “ h ` ı g. Then

S
2
j p f , f q “ S

2
j ph, hq ` S

2
j pg, gq • 0.

theorem [38], S2
j defines a continuous linear map Kj : S Ñ S 1

such
that

S
2
j p f , gq “ Kj pgq r f s “

ª
f̄ pxq

“
Kjg

‰
pxq . (3.44)

We will assume that Kj is an elliptic di↵erential operator on S . It fol-
lows that Kj is self-adjoint on SL2

15, moreover, Kj is positive and non- 15 This is because for any f , g P S

S
2
j p f , gq “ `

f , Kjg
˘

L2 “ S2
j pg, f q

“ `
g, Kj f

˘
L2 “ `

Kj f , g
˘

L2 .

degenerate due to eq. (3.43) and therefore can be inverted on S . The
Green’s function of Kj denoted by Cj : S Ñ S satisfies

Kj ˝ Cj|S “ 1S Cj ˝ Kj|S “ 1S , (3.45)

where 1S is the identity operator on S . We call Cj the propagator, it
follows from the properties of Kj, that Cj is positive and self-adjoint

on S . By functional calculus we can define the square roots, K
1
2
j and

C
1
2
j , which are both self-adjoint operators on S . In the following we

will drop the subscript j for clearer notation but we shell keep in mind
that K as well as the propagator C depend on the minimum j.

Since C is positive and non-degenerate on S it defines an inner prod-
uct16 16 The two-form p˝, C ˝q is linear in the sec-

ond and anti-linearity in the first compo-
nent by definition. Since C is invertible on
S it does not have non-trivial zero modes
and

p f , Cgq “ 0 @ f P S , (3.46)

implies g “ 0. Since C is positive the two-
form is positive, p f , C f q • 0.

p f , gqC :“ p f , CgqL2 . (3.47)

We denote the corresponding norm }.}C, and define the resulting sym-
plectic form on S8 by

s p f , gq “ = p f , gqC . (3.48)
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With this definition the multiplication in the Weyl algebra A pSq be-
comes

Wp f q ¨ Wpgq “ e´ ı
2=pp f ,gqCqW p f ` gq . (3.49)

On this algebra we choose a coherent state1717 This state di↵ers from those defined above
by the factor of

?
2 in the phase factor. This

is because the function in the phase of the
coherent state has to be 1?

2
j if the mini-

mum of S is given by j, if we want to match
the expectation values in wj with the n-
point correlation functions of Zj rJs.

wj

´
Wp f q

¯
“ e´ } f }2

C
4 eı<pjp f qq. (3.50)

The one-particle Hilbert space in the corresponding GNS representa-
tion is then given by the completion of S in the norm18 } ¨ }C.18 The closure of S in the correlator norm

can be larger then L2 and consists of distri-
butions.

The generators of the Weyl algebra are defined in the same way as
we did in the Fock representation; we denote them Fj p f q. It follows
that they satisfy the following commutation relations

“
Fj p f q , Fj pgq

‰
“ ıs p f , gq . (3.51)

As above, we can also define the creation and annihilation operators
by

Fj p f q “ 1?
2

´
yj p f q ` y:

j p f q
¯

. (3.52)

However, the commutation relations for yj p f q and y:
j p f q now read

”
yj p f q , y:

j pgq
ı

“ p f , Cgq , (3.53)

and therefore yj and y:
j can not be interpreted as creation and annihi-

lation operators on a Fock space.
To see the particle content we introduce the operators

A
´

qf
¯

“
ÿ

J,a,b
AJ,a,b dJ q̄f J,a,b “ yj

´
K

1
2 f

¯
(3.54a)

A:
´

qf
¯

“
ÿ

J,a,b
A:

J,a,b dJ qf J,a,b “ y:
j

´
K

1
2 f

¯
(3.54b)

where qf denotes the Fourier transform of f (for details and properties
of the Fourier transform on SU p2q see appendix A.2). It follows from
(3.53) that A and A: satisfy the usual commutation relations, since for
all f , g P S ,

”
A

´
qf

¯
, A:

´
qg

¯ı
“

”
y

´
K

1
2 f

¯
, y:

´
K

1
2 g

¯ı
“ p f , gq .

Denoting with qC the Peter-Weyl transform of C, the field operator can
be written in terms of A and A: as19

19We define the Peter-Weyl transform of C
as the kernel of the two from p¨, C¨q in the
Peter-Weyl representation. Dropping the
magnetic indices in the notation we obtain

ª
dxdy f̄ pxq C px, yq g pyq

“
ÿ

J,K
fK dK qCk;J dJ gJ .

Inserting the magnetic indices qCK,J is given
by

qCK,g,d;J,a,b “
ª
dxdy D̄K

g,d pxq C px, yq DJ
a,b pyq . F pxq “

ÿ

J,a,b

ÿ

K,g,d

qC
1
2
J,a,b;K,g,d dJ dK

´
A:

J,a,b
qfK,g,d ` AK,g,d

q̄f J,a,b

¯
, (3.55)
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For the product of the field operators at the same point, F p f qn, we use
the Wick product, which is given (neglecting magnetic indices) by the
normal ordered product

: F p f qn : “
ÿ

J,K
dK1 dJ1 ¨ ¨ ¨ dKn dJn

qC
1
2
J1,K1

¨ ¨ ¨ qC
1
2
Jn ,Kn

ˆ
nÿ

s“1

˜
n
s

¸
A:

J1
¨ ¨ ¨ A:

Js
AKs`1 ¨ ¨ ¨ AKn

qfK1 ¨ ¨ ¨ qfKs
q̄f Js`1 ¨ ¨ ¨ q̄f Jn ,

We want to remark here, that due to the multi-local structure of the
interactions, it is not obvious that we will need this product for the cal-
culation of perturbative corrections. This is because in the combinato-
rially multi-local interaction all fields are evaluated at di↵erent points.

Restricting S to the subspace of real valued functions, SR, gives a
(maximal) abelian20 C‹-sub-algebra A pSRq and the algebraic state wj

20 If f , g P SR the imaginary part of the
scalar product p f , Cgq is zero and we obtain
an abelian C‹-algebra A pSRq

Wp f qWpgq “ Wp f `gq “ WpgqWp f q.

That this algebra is maximal follows from
the fact that the space S can be decomposed
as

S “ SR ` ıSR .

corresponds to a probability measure on A pSRq [135]. This probability
measure is equivalent to the Gaussian measure of the functional inte-
gral around the field configuration j in the sense that it provides the
same correlation functions. To see this we calculate the expectation
value of the generator Fj p f q,

pj|Fj p f q |jq “ p´ıBtq wj

´
Wpt f q

¯
|t“0 “ j p f q , (3.56)

for all f P SR. Using eq. (3.8) and formally evaluating the fields F at
single points x P M we get

pj|Fj pxq |jq “ j pxq “ dJpxqZ rJs |J“0. (3.57)

In the same way we obtain for the two point function

pj|F pxq F pyq |jq “ 1
2

C px, yq ` j pxq j pyq “ dJpxqdJpyqZ rJs |0. (3.58)

It is straightforward to convince oneself that the following equality
holds (see Appendix A.6)

Bt1 ¨ ¨ ¨ Btn wj

´
Wpt1 f1q ¨ ¨ ¨ Wptn fnq

¯
|t“0

“
ª
dx1 f1

´
x1

¯
dJpx1q ¨ ¨ ¨

ª
dxn fn pxnq dJpxnqZ rJs |J“0.

This equality holds true if products of fields at the same point do not
appear. If they do, we have to use Wick products, that define the renor-
malized expectation values of the partition function. This concludes
our construction of the operator GFT.

Summary:

Choosing the coherent state wj and the Weyl algebra A pSq with the
symplectic form given by the second variation of the GFT action we
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obtain an operator description of GFT, with operators yj and y:
j that

satisfy the commutation relations
”
yj pxq , y:

j pyq
ı

“ C px, yq . (3.59)

The expectation values of polynomials of field operators

Fj pxq “ 1?
2

´
yj pxq ` y:

j pyq
¯

,

are equal to the correlation functions from the perturbative canonical
approach around the minimum j. Hereby the minimum j does not
need to be a smooth function but can be extended to a distribution on
S .

3.4 Application of the algebraic formulation

A rigorous analysis of local minima of combinatorially multi-local ac-
tions such as those that we presented in chapter 2 is yet to be per-
formed. The problem is that the variational equations for such func-
tionals reduce to non-linear integro-di↵erential equations, that are very
di�cult to solve in general. In order to avoid this problem here, we use
a simplified action on M “ SU p2q ˆ SU p2q,

S rfs “ ´ m
ª
dx f pxq f pxq (3.60)

` l

ª
dxdydzdv f pxq f pyq f pzq f pvq

ˆ d
´

x1y´1
1

¯
d

´
x2v´1

2

¯
d

´
y2z´1

2

¯
d

´
z1v´1

1

¯
,

where d
´

x1 ¨ x´1
2

¯
denotes the Dirac-Delta distribution on SU p2q that

satisfies
≥
dx f pxq d

´
x1 ¨ x´1

2

¯
“ ≥

dx1 f px1, x1q. This action arises from
the Boulatov equation that we introduced earlier in eq. (2.16) if we
assume that the fields are constant in the middle variable,

f px1, x2, x3q “ f px1, x3q . (3.61)

Even in this simplified case that represents a matrix model the discus-
sion of saddle points is not trivial and our arguments are rather heuris-
tic. Nevertheless, we do not go into details of the variational problem,
since this is not the point of discussion here. Instead we will show, that
some distributional configurations can be seen as local minima. And
use those for our explicit construction of an operator theory.

The variation of the action with respect to the field f leads to the
following extremal condition

S
1
f px, yq “ ´2mf pxq ` 4l

ª
dy f px1, y1q f py1, y2q f py2, x2q “ 0.
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And the following field configuration can be seen as a solution of that
integral equation

j pxq “
c

m
2l

d
´

x1 ¨ x´1
2

¯
. (3.62)

The second variation of S at j reads

S
2 |j “ 4m d

´
x1y´1

1

¯
d

´
x2y´1

2

¯
, (3.63)

and K becomes, K “ 4m1S , where 1S is the identity operator on S and
C “ 1

4m1.
This operator is diagonal, positive and invertible and hence we can

use our construction.

3.4.1 Coherent d states

The field configuration that we take as a local minimum of S is given in
equation (3.62). An algebraic state that corresponds to j is defined by
equation (3.35) with j p f q “ 1?

2

≥
dx j pxq f pxq,

wj

´
Wp f q

¯
“ e´ } f }2

C
4 e´ı

? m
2l <

”≥
dh d

´
x1¨x´1

2

¯
f pxq

ı

. (3.64)

Where the new scalar product is simple the rescaled L2 product given
by

p f , gqC “ 1
4m

ª
dx f̄ pxq g pxq . (3.65)

In order to construct an explicit representation that corresponds to
this algebraic state we use the construction by Araki and Woods [131]
that we applied to GFT in [141]. We take a one dimensional space of
real numbers R with multiplication as a scalar product and introduce
commutative operators as

P p f q r “ FD r Q p f q r “ FD r, (3.66)

where FD “ ≥
dx1 f px1, x1q denotes the diagonal integral of f and r P R.

Let yF p f q and y:
F p f q be the Fock creation and annihilation operators

from Eq. (3.30) and let |oq denote their Fock vacuum. We define unitary
operators on the Hilbert space, HF b R by

Wd
p f q “ e

ı?
8m

”
yFp f q`y:

Fp f q
ı

b e
ı
2
? m

2l rPp f q`Qp f qs, (3.67)

and a state
|dq “ |oq b 1 P HF b R. (3.68)

where 1 P R is a normalized state on R. We can readily verify that the
expectation values of Wp f q on |dq are given for any f P S by,

pd|Wd
p f q|dq “ e´ } f }2

C
4 eı

? m
2l <rFDs

“ wj

´
Wp f q

¯
. (3.69)
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By linearity this equality extends to the whole algebra, and hence, it
provides a representation of the Weyl algebra that is equivalent to the
GNS representation given by wj. Irreducibility and cyclicity of this
representation are inherited from the Fock representation since R is
one-dimensional.

The generators of Weyl operators are isomorphic to

Fd p f q “
ˆ

1?
4m

yF p f q `
c

m
4l

Q p f q
˙

`
ˆ

1?
4m

y:
F p f q `

c
m
4l

P p f q
˙

,

that act on the Fock space. And the creation and annihilation operators
can be read of as

yd p f q “ 1?
4m

yF p f q `
c

m
4l

Q p f q y:
d p f q “ 1?

4m
y:

F p f q `
c

m
4l

P p f q .

From eq. (3.54) the Euclidean creation and annihilation operators fol-
low,

A:
J,a,b “ y:

d

´?
4mDJ

a,b

¯
“ y:

F

´
DJ

a,b

¯
` m dJ?

l
da,b (3.70)

AJ,a,b “ yd

´?
4mDJ

a,b

¯
“ yF

´
DJ

a,b

¯
` m dJ?

l
da,b. (3.71)

WhereDJ
a,b pgq are the product Wigner-Matrix representations (see ap-

pendix A.1 and A.3) used to smear the Fock creation and annihilation
operators. The operators A and A: satisfy the canonical commutation
relations, and hence can be used as a definition of a particle.

3.5 Conclusion

As we pointed out at the end of the last chapter, the general idea of
the operator GFT formalism is to construct a theory of operators and
Hilbert spaces that provide a reformulation of functional GFT. How-
ever, despite the use of the operator framework in numerous appli-
cations [57, 58, 97, 142–148], an explicit relation between functional
and operator GFT remains an open issue. The problem of this relation
stems from the fact that group field theory does not have a concept of
time and for that reason can not rely on the usual relation between co-
variant and canonical formulation of QFT. In our work we suggested
a solution to this problem at the perturbative level and explicitly pro-
vided a relation between the two theories.

We can try to apply our construction to ordinary field theories on
space-time, however, there we face the following problems:

The action S of QFT on space-time is typically required to be bounded
from below to avoid vacuum instability problems. In this case the
global minimum of the classical theory exists, and we can perform our
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construction around this minimum. The quantum e↵ective action —
denoted G — will in this case be a convex function [118, 125] and for
that reason will have a unique global minimum — the true vacuum of
the quantum theory. If this minimum coincides with that of the classi-
cal action we again can use our construction for perturbative formula-
tion of the operator theory. However, if this minimum is di↵erent, the
second derivative of the action, S2

, evaluated at the true vacuum of the
quantum theory will not be a positive operator, and our construction
will fail. In this case we should expand our theory around the mini-
mum of G, which in principle is possible but in practice requires the
knowledge of the whole quantum e↵ective action. Moreover, in this
case there is no reason to assume that the vacuum state of the theory
will be adequately described by a coherent state which would lead to
additional complications in our construction. For that reason, our con-
struction works best, when we define a perturbative theory around the
classical action S. The bottomless structure of the GFT action, however,
does not allow us to do anything else even in the functional formula-
tion. For that reason our construction seems adequate21. 21 In AQFT the same construction suggests

a rigorous reformulation of the Lorentzian
path integral. However, the algebra of ob-
servables in AQFT is much more compli-
cated to construct and is missing a clear no-
tion of a norm. The resulting formulation
leads to a rigorous, perturbative definition
of QFT on Lorentizan space-time. Our sug-
gested formulation is strongly motivated by
this treatment.

of course a regularization of the bottomless action S needs to be in-
vestigated in future works and non-perturbative definition of the the-
ory should be provided.

Our explicit construction provides a definition of an operator theory
directly from functional GFT. Tempered micro-functions that are the
minima of the action S correspond to Fock-inequivalent operator the-
ories. These theories could be understood as e↵ective theories in dif-
ferent phases of GFT, which we mentioned at the end of the previous
chapter. The operator algebras define suitable operators in the corre-
sponding phase, and the coherent states play the role of the vacuum. To
see how our construction fits the conceptual idea of the operator GFT,
which we presented in the previous chapter, we summarize the steps
according to figure 3.2:

step i: kinematical hilbert space

Instead of the Hilbert space, we deal with the more general space
of algebraic states. In our construction, the kinematical degrees of
freedom are captured by the choice of the Weyl algebra, that is mo-
tivated by the quantization of a simplex and that relates to the GFT
Fock space by the choice of an appropriate state.

step ii: physical hilbert space

A restriction of the kinematical space by dynamical relations is not
explicitly present in our formulation. Instead, the dynamics is di-
rectly encoded in the algebraic product and in the choice of the co-
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herent state

wj

´
Wp f q

¯
“ e´ } f }2

4 eı<r≥ j f s, (3.72)

The product of the algebra results from the choice of symplectic
structure on S , which (in suitable representations) leads to modified
commutation relations between creation and annihilation operators

II

III

I

IV

Figure 3.2: Reminder of the conceptual
idea of operator GFT.

”
y p f q , y: pgq

ı
“ p f , Cgq . (3.73)

An explicit equality between n-point correlation functions then di-
rectly shows that our theory knows the dynamical relations of the
functional formulation. But it remains to be understood if and how
this construction can be recast in the language of constraints as in-
troduced in the previous chapter.

In our case the idealization step is the infinite number of particles in
the state wj. If the particle number were finite all coherent states
would be equivalent to Fock and the distinction between phases
would be not clear. This does not imply that the phases with di↵er-
ent physical properties would not be present in the model, but their
distinction would bemuchmore complicated. On the other hand the
assumption of infinitely many particles could be a real physical re-
quirement that is needed in order to describe states that correspond
to smooth geometries using discrete particles.

step iii: phases of gft

A notion of di↵erent phases is very clearly presented by the choice of
the local minimum of S. Moreover, if that minima are given by tem-
pered micro-functions, the phases will not be Fock. On the other
hand, algebraic coherent states with finite particle number will al-
ways lead to the Fock phase. Hence, in order to have other phases,
the particle number has to be infinite, which is in direct relation to
the usual description of phase transitions in statistical field theory.

step iv: quantum corrected gt

The final step of e↵ective definition of approximate gravitational
equations is absent at the current stage and has to be done in fu-
ture works. A possible test would be to follow the cosmological cal-
culations in GFT [148]. However, whereas the existing calculations
approximate the dynamics of GFT by neglecting the interaction part,
our approach will lead to calculations that include the full linearized
dynamics and whose corrections can be included in the perturbative
series.

Most of our steps were based on known and developed methods in the
context of algebraic field theory [39, 123, 124], but needed some modi-
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fications due to the conceptual and technical di↵erences between group
field theory and ordinary QFT on space-time.





AAppendix

A.1 Group theory of SU p2q in a nutshell

In this chapter, we used some basic features of group theory on SU p2q.
Here, we provide the properties of the SU p2q group and its irreducible
representations that we used throughout the chapter. For more details
we refer to the literature [132, 149].

The group SU p2q
1. The group SU p2q is a compact, connected, simply connected three

dimensional Lie group. The Haar measure µH on SU p2q is a unique
normalized, left and right translation invariant Borel measure. That
is, for any integrable function f : SU p2q Ñ R and for any R, L P
SU p2q we have

ª

SUp2q
dµH f pLgRq “

ª

SUp2q
dµH pgq f pgq , (A.1)

and ª

SUp2q
dµH “ 1. (A.2)

We denote this measure dh.

2. The unitary, irreducible representations of SU p2q are labeled by
their dimension that we denote dj “ 2j ` 1 for j P N

2 . Any two uni-
tary irreducible representations with the same dimension are equiv-
alent. Therefore it is enough to provide one irreducible representa-
tion for each dimension.

Wigner matrices

1. TheWignermatrix representation of SU p2q is an unitary irreducible
representation of SU p2q in terms of matrices of rank dj. We write

Dj
a,b pgq P Mat

`
dj ˆ dj, C

˘
, (A.3)

where j is called the spin, and a, b P t´j, ¨ ¨ ¨ , ju are the spin-z com-
ponents of the representation. Usually a and b are referred to as
magnetic indices.
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2. Wigner matrix coe�cients are smooth, complex valued functions on
SU p2q.

3. The complex conjugation of the Wigner matrices satisfy

Dj
a,b pgq “ p´1qa´b Dj

´a,´b pgq , (A.4)

and their adjoint is

´
D:

¯j

a,b
pgq “ Dj

a,b

´
g´1

¯
“ Dj

b,a pgq . (A.5)

4. By Peter-Weyl theorem the Wigner matrix coe�cients are dense in
L2. They form an orthogonal system in L2 normalized to the inverse
of dimension of the representation (Schur lemma)

ª
dg Dj

a,b pgq Dj̃
ã,b̃ pgq “ 1

dj
dj, j̃da,ãdb,b̃, (A.6)

moreover, this system is complete
ÿ

j,a,b
djD

j
a,b pgq Dj

a,b phq “
ÿ

J,a
djD

j
a,a

´
gh´1

¯
“ d pg, hq , (A.7)

where d pg, hq denotes a Dirac-Delta distribution such that for any
smooth function f we have

ª
dg f pgq d pg, hq “ f phq . (A.8)

Hence, the set
!b

djD
j
a,b pgq

)

j,a,b
is an orthonormal basis in L2 pSU p2qq

and it follows

lim
NÑ8

} f ´
Nÿ

J
dJ

jÿ

a,b“´j

´
Dj

a,b, f
¯

L2
Dj

a,b} “ 0. (A.9)

5. By the Peter-Weyl theorem the set of Wigner matrix coe�cients is
also dense in S8 (see for example [149]), i.e.

lim
NÑ8

} f ´
Nÿ

j
dj

jÿ

a,b“´j
f j,a,b Dj

a,b pgq }k,8 “ 0. (A.10)

A.2 Fourier transform on SU p2q

1. There exists a notion of Fourier transform F on S — that we call the
Peter-Weyl transform — defined by

F p f q pj, a, bq “
´

Dj
a,b f

¯

L2

.“ qf j,a,b. (A.11)
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Meaning a point wise equality we define the function qf as

qf .“ F p f q , (A.12)

and write
qf pj, a, bq “ qf j,a,b. (A.13)

2. The inverse of F is given by (A.9)

F´1
´

qf
¯

pgq “
ÿ

jP N
2

dj

jÿ

a,b“´j

qf j,a,b Dj
a,b pgq (A.9)“ f pgq . (A.14)

3. F is a topological isomorphism between S and the space of rapidly
decreasing sequences [132], that we denote S pNq. A sequence

 
f j,a,b

(

with j P N
2 and a, b P t´j, ¨ ¨ ¨ , ju is called rapidly decreasing if for

any n P N

lim
jÑ8

|jn| } f j} † 8, (A.15)

with } f j}2 “ ∞j
a,b“´j f̄ j,a,b f j,a,b.

4. The Peter-Weyl transform can be extended to the space of square in-
tegrable functions on which it defines an isomorphisms between L2

and the space of square summable sequences `2. Moreover, it can be
extended to the dual space of S8 which is the space of distributions
S 1

8

A.3 Notation suitable for GFT

Since the domain of fields in GFT is usually an n-fold product of Lie
groups, we will use product representations with the following proper-
ties, to simplify the notation:

1. The group SU p2qˆn is a connected (in the product topology), simply
connected, compact Lie group, with the Haar measure defined as

µH

´
SU p2qˆn

¯
“ µH pSU p2qq ˆ µH pSU p2qq ˆ ¨ ¨ ¨ ˆ µH pSU p2qq .

We call the domain of fields the base manifold of GFT, and denote it
with M .“ SU p2qˆn. To make our notation as close as possible to
ordinary cases we will denote the points of M by x and y. Neverthe-
less, we should always keep in mind that x and y are elements of a
non-commutative Lie group. When we need to refer to single com-
ponents of x or y we use the subscript notation, such that xj P SU p2q
and

x “ px1, ¨ ¨ ¨ , xnq P M “ SU p2qˆn . (A.16)

With this notation we denote the Haar measure on M by dx. When
we need to refer to n points on M we use the superscript notation
such that xj P M.
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2. The product Wigner matrix representations of SU p2qˆn are defined
as products such that

D
pj1,¨¨¨ ,jnq
pa1,¨¨¨ ,anq,pb1,¨¨¨ ,bnq pxq “ Dj1

a1,b1
px1q ¨ ¨ ¨ Djn

an ,bn
pxnq . (A.17)

To shorten the notation we use the multi index notation, such that
J “ pj1, j2, ¨ ¨ ¨ , jnq with each ji P N

2 , a “ pa1, ¨ ¨ ¨ , anq and b “
pb1, ¨ ¨ ¨ , bnq, where ai, bi P t´ji, ¨ ¨ ¨ , jiu. Hence for any x P M we
write

DJ
a,b pxq “ Dj1

a1,b1
px1q ¨ ¨ ¨ Djn

an ,bn
pxnq . (A.18)

The dimension of the product representation DJ is

dJ “ p2j1 ` 1q ¨ ¨ ¨ p2jn ` 1q . (A.19)

3. It is straightforward to verify that the above properties of Wigner
coe�cients and Peter-Weyl transform translate one-to-one to the prod-
uct representation D. In particular, the Peter-Weyl coe�cients for a
field j can be written as

qj pJ, a, bq “
ª
dx D

J
a,b pxq j pxq (A.20)

and the inverse is given by

j pxq “
ÿ

J,a,b
dJ qjJ

a,b D
J
a,b pxq . (A.21)

A.4 Proof of lemmas for S

Lemma 5. S is closed under translations; that is for any y P M and f P S
the functions L‹

y f and R‹
y f are again in S . Moreover, L‹

y and R‹
y leave the

L2-bracket, p¨, ¨qL2 , invariant.

Proof. The first statement follows from smoothness of the maps Lx and
Rx. The second statement is a direct consequence of the left (respec-
tively right) invariance of the Haar measure dx. That is for f , g P S and
y P M,

´
L‹

y f , L‹
y g

¯

L2
“
ª

M
f pyxq g pyxq dx

“
ª

M
f pxq g pxq dx

“ p f , gqL2 .

And similar for R‹
y f .

Let Xi P m be a Lie algebra element of M, then Xi acts as a derivation
on smooth functions such that for f P S , I Ä R an interval containing
zero and t P I,

Xi f pxq .“ Bt f
´

etXi x
¯

|t“0, (A.22)
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where etXi denotes the exponential map on M [132].

Lemma 6. S equipped with topology induced by the family of semi-norms
 

} f }k,8 “ }X1 ¨ ¨ ¨ Xk f pgq }8 : X1, ¨ ¨ ¨ , Xk P m; @k P N
(

,

is a complete, topological, locally convex, vector space.

Proof. See reference1 [132]. 1 In this reference the authors define the Lie
algebra by left invariant vector fields as op-
posed to our definition as right invariant
vector fields. For that reason in the origi-
nal paper eq.(A.22) is defined by right mul-
tiplication with the exponential map. This
small change, however, does not change the
results of the paper.

When the topology of S will be important in our discussion we will
denote this topological space by S8.

Since M is compact, every smooth function on it is finite integrable
and we can equip S with the norm-topology induced by the norm,

} f }2
L2 “

ª

M
f̄ pxq f pxq dx. (A.23)

Lemma 7. S equipped with the norm topology is not complete and its com-
pletion is the space of square integrable functions on M.

Proof. See reference [132].

Let h P SU p2q and D : SU p2q Ñ M be a diagonal map such that
Dh ” D phq “ ph, ¨ ¨ ¨ , hq. We say f satisfies the closure constraint (or f
is gauge invariant) if

R‹
Dh

f “ f @h P G. (A.24)

We denote the space of functions that satisfy the closure constraint by
SG.

Proposition 8. S can be decomposed in complementary subspaces SG and
SNG such that

S8 “ SG ` SNG, (A.25)

and SG X SNG “ t0u. Where SG is a space of gauge invariant functions
and SNG is a space of functions that do not satisfy the closure constraint.

Proof. Let P define an operator on S point wise by

pP f q pxq “
ª

G

´
R‹

Dh
f
¯

pxq dh.

P is linear since it is a combination of linear operators, R‹
Dh

and
≥

G p¨q dh.
We show that the image of P is in S8. By [132, lemma 2.1] it is enough
to show that }P f }k,8 † 8 for any k P N. For an arbitrary fixed k we get

}P f }k,8 “ sup
xPM

|X1 ¨ ¨ ¨ Xk pP f q pxq|

“ sup
xPM

ˇ̌
ˇ̌X1 ¨ ¨ ¨ Xk

ª

G

´
R‹

Dh
f
¯

pxq dh
ˇ̌
ˇ̌ .
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By lemma (5) the integrand is a smooth function and can be upper
bounded by supxPM

ˇ̌
ˇ
´

R‹
Dh

f
¯

pxq
ˇ̌
ˇ. Hence, by dominant convergence

theorem

}P f }k,8 §
ª

G
sup
xPM

ˇ̌
ˇX1 ¨ ¨ ¨ Xk

´
R‹

Dh
f
¯

pxq
ˇ̌
ˇ dh

For any fixed h P G we have

X1 ¨ ¨ ¨ Xk

´
R‹

Dh
f
¯

pxq “ Bt1 ¨ ¨ ¨ Btk f
´

et1X1 ¨ ¨ ¨ etkXx x Dh

¯
,

where all derivatives are taken at zero. Since x Dh P M it follows that

sup
xPM

ˇ̌
ˇX1 ¨ ¨ ¨ Xk

´
R‹

Dh
f
¯

pxq
ˇ̌
ˇ “ sup

xPM
|X1 ¨ ¨ ¨ Xk f pxq| .

and we obtain
}P f }k,8 § } f }k,8.

Therefore, P : S8 Ñ S8, is a continuous linear operator on S .
Further, by right invariance of the Haarmeasure it follows that P2 f “

P f . By [135, theorem 1.1.8] it follows that S8 can be decomposed as

S8 “ SG ` SNG,

where SG “ PS8 and SNG “ p1 ´ PqS8 and SG X SNG “ t0u.

Lemma 9. P is an orthogonal projector on L2 pM, dxq.
Proof. P is bounded on SL2 since for any f P S we have by right invari-
ance of the Haar measure

}P f }L2 “
ª

M

ª

G
f px Dhq dh dx “

ª

M
f pxq dx “ } f }L2 .

Let f , g P S . Then by Fubini and the invariance of the Haar measure
under right multiplication and inversion, we have

p f , PgqL2 “
ª

M
f pxq

ˆª

G

´
R‹

Dh
g

¯
pxq dh

˙
dx

“
ª

M

ˆª

G

´
R‹

Dh
f
¯

pxq dh
˙

g pxq dx

“ pP f , gqL2 .

And for h1, h2 P G we have

pPP f q pxq “
ª

G

ª

G

´
R‹

Dph1qR‹
Dph2q f

¯
pxq dh1 dh2

“
ª

G

ª

G

´
R‹

Dph1qR‹
Dph2q f

¯
pxq dh1 dh2

“
ª

G

ª

G

´´
RDph1h2q

¯‹
f
¯

pxq dh1 dh2

“
ª

G

´`
RDh

˘‹ f
¯

pxq dh “ pP f q pxq .

Therefore, P is an orthogonal projection on the dense domain of L2 pM,dxq
and extends uniquely to the whole L2 pM,dxq by continuity.
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Theorem 10. The space SG “ PS is dense in PL2 pM, dxq — the image of
the orthogonal projection P on L2 pM, dxq.

Proof. Since PL2 pM,dxq is given by the projection P, it is a closed sub-
space of L2 pM,dxq. By lemma (7) the set PL2 pM,dxq X S is dense in
PL2 pM,dxq. Further, any f P PL2 pM,dxq X S is an almost-everywhere
gauge invariant function that is smooth. Define g “ f ´ P f . Then
g vanishes almost everywhere and is smooth. Hence g is zero every-
where, and we get f P SG and PL2 pM,dxq X S Ñ SG. The opposite
inclusion, SG Ñ PL2 pM,dxq X S , is obvious since any f P SG is square
integrable and SG Ñ S by lemma (8).

A.5 Weyl algebra with closure constraints

Lemma 11. For any x P M the maps ax and bx fromA pSq toA pSq defined
such that for any f P S

ax

´
Wp f q

¯
“ WpL‹

x f q, bx

´
Wp f q

¯
“ WpR‹

x f q, (A.26)

and extended to the whole A pSq by linearity are ‹-automorphisms.

Proof. By definition ax and bx are linear. Further let f , g P S , then by
lemma (3.2.1)

ax

´
Wp f qWpgq

¯
“ ax

´
Wp f `gqe´ ı

s =p f ,gq
¯

“ e´ ı
2=p f ,gqL2 WpL‹

x f `L‹
x gq

“ e´ i
2=pL‹

x f ,L‹
x gqL2 WpL‹

x f `L‹
x gq

“ WpL‹ f qWpL‹gq

“ ax

´
Wp f q

¯
ax

´
Wpgq

¯
.

Also

ax

´
W‹

p f q
¯

“ ax

´
Wp´ f q

¯

“ Wp´L‹
x f q

“
”
ax

´
WpL‹

x f q
¯ı‹

.

And similar for bx.

Restricting S to SG we obtain a subset AG defined as

AG “ span
!

Wp f q P A pSq | f P SG

)}.}ApSq
, (A.27)

where ˝}.}ApSq denotes the closure in the A pSq-C‹-algebra norm.

Theorem 12. AG is a maximal C‹-sub-algebra of A pSq that satisfies @A P
AG, bDh pAq “ A for any h P G.
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Proof. AG is spanned byWeyl elements of the form Wp f q with f P SG Ä
S , hence, AG Ä A pSq. Since SG is closed under addition, and multipli-
cation by real numbers, AG is closed under multiplication and involu-
tion,

Wp f qWpgq “ Wp f `gqe´ ı
2=p f ,gq P AG,

W‹
p f q “ Wp´ f q P AG.

To show that AG is invariant under bDh for any h P G let pAnqnPN be a
Cauchy sequence in AG such that

An “
nÿ

i“0
ciWp fiq with ci P C, fi P SG

and that converges to A P AG. Choose h P G. Then by lemma 11
bDh is a ‹-automorphism on A pSq and the sequence

`
bDh pAnq

˘
nPN

is a
Cauchy sequence in A pSq that converges to bDh pAq P A pSq. However,

if fi P SG then bDh

´
Wp fiq

¯
“ W´

R‹
Dh

fi

¯ “ Wp fiq and the two sequences

are identical in AG. Thus, the limit points have to be equal and we get,
bDh pAq “ A. The fact that AG is maximal follows from proposition
3.2.1 and the fact that we can decompose, S “ SG ` SNG with SG X
SNG “ t0u.

Corollary 13. The Weyl algebra over SG, denoted A pSGq, is a maximal
C‹-sub-algebra of A pSq that is invariant under bDh for any h P G.

Proof. This follows from the fact that h : A pSq Ñ A pSGq defined on
Weyl elements by

h
´

Wp f q
¯

“ WpP f q, (A.28)

and extended to A pSq by linearity is an invertible ‹-homomorphism
from AG to A pSGq. The later is obvious since on AG, h acts as an iden-
tity.

A.6 Proof of the equality between the correlation functions

We show that the following equality holds for any fi P SR,

Bt1 ¨ ¨ ¨ Btn wj

´
Wpt1 f1q ¨ ¨ ¨ Wptn fnq

¯
|t“0

“
ª
dx1 f1

´
x1

¯
dJpx1q ¨ ¨ ¨

ª
dx1 fn pxnq dJpxnqZ rJs |J“0,

where xi P M for i P t1, ¨ ¨ ¨ , nu.
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We proceed by induction: assuming that the assertion holds true for some arbitrary but fixed n • 2 we have

Bt1 ¨ ¨ ¨ Btn´1 wj

´
Wpt1 f1q ¨ ¨ ¨ Wptn´1 fn´1q

¯
|t“0

“
ª
dx1 f1

´
x1

¯
dJpx1q ¨ ¨ ¨

ª
dxn´1 fn´1

´
xn´1

¯
dJpxn´1qZ rJs |J“0,

We begin with the induction step

pıBtn q ın´1Bt1 ¨ ¨ ¨ Btn´1 wj

´
Wpt1 f1q ¨ ¨ ¨ Wptn´1 fn´1qWptn fnq

¯
|t“0. (A.29)

Since fi P SR we have by the product of the Weyl algebra

Wpt1 f1q ¨ ¨ ¨ Wptn´1 fn´1qWptn fnq “ Wpt1 f1`¨¨¨`tn fnq. (A.30)

By the definition of the state wj we obtain

(A.29) “ ınBtn Bt1 ¨ ¨ ¨ Btn´1 e´ }t1 f1`¨¨¨`tn fn}2
j

4 eı<pjpt1 f1`¨¨¨`tn fnqq|t“0

“ ın´1Bt1 ¨ ¨ ¨ Btn´1

˜
e´ }t1 f1`¨¨¨`tn´1 fn´1}2

j
4 eı<pjpt1 f1`¨¨¨`tn´1 fn´1qqıBtn

ˆ
e´ ptn fn ,Cpt1 f1`¨¨¨`tn fnqq

2 eı<pjptn fnqq
˙¸

|t“0,

where in the last equality we used the definition of the norm } ¨ }j and the linearity of j p¨q to separate the fn

dependent part. Hence we obtain

ın´1Bt1 ¨ ¨ ¨ Btn´1

˜
e´ }t1 f1`¨¨¨`tn´1 fn´1}2

j
4 eı<pjpt1 f1`¨¨¨`tn´1 fn´1qq

¸
ıBtn

ˆ
e´ ptn fn ,Cpt1 f1`¨¨¨`tn fnqq

2 eı<pjptn fnqq
˙

|t“0

`ın´1
ÿ

j
Bt1 ¨ ¨ ¨ B̂tj ¨ ¨ ¨ Btn´1

˜
e´ }t1 f1`¨¨¨`tn´1 fn´1}2

j
4 eı<pjpt1 f1`¨¨¨`tn´1 fn´1qq

¸
ıBtn Btj

ˆ
e´ ptn fn ,Cpt1 f1`¨¨¨`tn fnqq

2 eı<pjptn fnqq
˙

|t“0,

where B̂tj denotes that the missing derivative with respect to the parameter tj. By the inductive assumption
we have

ª
dx1 f1

´
x1

¯
dJpx1q ¨ ¨ ¨

ª
dxn´1 fn´1

´
xn´1

¯
dJpxn´1qZ rJs |J“0 ¨ < pj p fnqq

`
ÿ

j

ª
dx1 f1

´
x1

¯
dJpx1q ¨ ¨ ¨

ª
dhj fj

´
xj

¯
d̂Jpxjq ¨ ¨ ¨

ª
dxn´1 fn´1

´
xn´1

¯
dJpxn´1qZ rJs |J“0 ¨

`
fn, f j

˘
C

2
.

Since fn P SR we have < pj p fnqq “ j p fnq “ ≥
dxn f pxnq dJpxnq e

≥
Jj|J“0. And similarly

`
fn, f j

˘
C

2
“
ª
dxn f pxnq dJpxnq

ª
dxj f

´
xj

¯
dJpxjqe

1
2
≥

JCJ |J“0.

Due to this replacements the above equation becomes
ª
dx1 f1

´
x1

¯
dJpx1q ¨ ¨ ¨

ª
dxn fn pxnq dJpxnqZ rJs |J“0.

Equation (3.56) verifies the inductive assumption for n “ 2, which completes the proof.





4Symmetry analysis of
group field theory

In the last chapter we discussed how to obtain an operator formula-
tion of GFT from the action S — the action for the definition of the
covariant formulation. We have seen that the local minima of S play a
central role in this construction. Moreover, we have shown that these
extrema need to be from the space of tempered micro-functions in or-
der to lead to Fock inequivalent phases of GFT. As we have shown in
chapter 2, the action of GFT is multi-local and the corresponding equa-
tions of motion involve integrals alongside di↵erential operators, called
integro-di↵erential equations. Hence, for a perturbative definition of an
operator theory for GFT we need to solve integro-di↵erential equations
on the space of (tempered) distributions — this, however, is in general
a di�cult task.

For partial di↵erential equations, symmetries often provide the nec-
essary tools for a characterization of solutions [150] and the symmetry
analysis for local theories is well developed. For integro-di↵erential
equations the symmetry analysis is understood only for some specific
cases [151, 152] but general algorithms to find symmetry groups of
integro-di↵erential equations are not known.

On the other hand, one of the open issues of GFT is a characteriza-
tion of the theory space. Here again, the usual characterization is done
in terms of symmetries. It is not clear if the theory space of GFT should
be also done in terms of symmetries, or rather in terms of combinatorics
or some other principles, but it is worth performing the symmetry anal-
ysis, to clarify the situation. For this reason, a symmetry analysis for
GFT models is important for conceptual as well as technical reasons
[112].

In this chapter we will develop and perform a symmetry analysis for
GFT actions using a very basic notion of point symmetries. It will turn
out that the definition of point symmetries is too restrictive, but it will
also allow us to classify all existing point symmetries of the models.

The discussion of this chapter is purely classical since our goal is
the symmetry analysis of a classical action S. To address this problem
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we will use the geometrical formulations of field theories. We will be-
gin this chapter by reviewing the geometrical formulation of local field
theories and then extend it to multi-local actions as used in GFT. In
the second part of this chapter we apply the developed framework to
specific GFT models and derive their symmetry groups.

4.1 Geometrical construction of local field theories

For the definition of symmetries and the symmetry analysis of GFT
models we will use the geometrical formulation of field theory. In this
formulation the Lagrangian is defined as a di↵erentiable function on a
jet bundle and physical degrees of freedom — the fields — are sections
in the underling vector bundle. A precise definition of vector bundles,
jet bundles, sections and other necessary ingredients for classical field
theory, is presented in any standard text book on this subject. For this
reason we will provide only the basic intuition for the geometric ingre-
dients needed but we refrain from stating a comprehensive and precise
definition of all concepts to avoid a creation of copies of known text
books. For a rigorous definition of vector bundles and jet bundles we
suggest [153, 154] and for their application in field theory we refer to
[150, 155].

In the following we will need three ingredients from the di↵erential
geometry and the theory of Lie groups: the concept of vector bundles,
the concept of jet bundles and the concept of a local group of transfor-
mations.

4.1.1 Vector bundles

A vector bundle is a generalization of the direct product between a dif-
ferentiable manifold and a (finite dimensional) vector space,

E “ M ˆ V. (4.1)

In fact the simplest vector bundles — called trivial — are exactly of
this form. The usual nomenclature is as follows: the vector bundle
is denoted by the tuple pE, p, M, Vq sometimes simply denoted by p,
where E is a di↵erential manifold called the total space, M is a di↵eren-
tial manifold called the base space, V is a vector space called the fiber and
p : E Ñ M is a submersion1 called the projection. In general, a vector1 A di↵erential map p between to di↵eren-

tiable manifolds E and M is called a sub-
mersion at point p P E if its di↵erential at
p

Dp|p : TpE Ñ Tpppq M (4.2)

is surjective. The map p is called a submer-
sion if it is a submersion at each point of E.
In this chapter we use the symbol p as the
submersion for the vector bundle and not as
the symbol for the representation as we did
this in the previous chapter. This should not
lead to any confusion, since in this chapter
we will not deal with any representations of
the algebra and p will exclusively refer to
the submersion.

bundle can not be written as a direct product, but locally — in a small
open neighborhood of each point — every vector bundle is di↵eomor-
phic to a trivial one; the di↵eomorphism is called a local trivialization,
loc´1

W : E Å W Ñ U ˆ V, where U “ p pWq. Typically, a local trivializa-
tion is not unique, and hence, there is no canonical way of decomposing
the total space into a Cartesian product. However, the change between
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two local trivializations on the same region of E is a group element of
the so called structure group of p. This allows us to cover the whole E
with local trivializations switching from one to the other on the inter-
sections of their domains. Hence, if we restrict our statements to local
regions on E we can always work with Cartesian products.

Physical degrees of freedom are described by di↵erentiable func-
tions f : M Ñ V from the base space to the fiber. Going slightly
against the usual convention we call these functions fields. If the vec-
tor bundle is trivial we can define a graph of a field f in E as a set
gr pfq “ tpx, f pxqq |x P Mu. On a generic vector bundle the notion of
a field and its graph, depends on the local trivialization. A section in
the vector bundle p is a generalization of the concept of a graph, that
is independent of the local trivialization. Locally, however, a (smooth)
section can always be represented as a graph of some (smooth) field
f and conversely, given a local trivialization, every (smooth) field f

defines a (smooth) section by its graph gr pfq. In the following we will
consider only smooth sections and therefore drop this specification. We
will denote the space of all sections of a vector bundle p by G ppq and
use the same notation for the space of smooth fields assuming a local
trivialization. For the space of local sections and fields — those that are
defined only in a local region on M — we use the notation Gloc ppq.

Choosing coordinates on M, a basis on V and suitably adjusting the
domains of the chart and the local trivialization we can define coordi-
nates on E such that

E Q p
loc´1

pfiÑ px, uq chartfiÑ
´

xµ, ui
¯

P Rm ˆ Rn, (4.3)

where m “ dim pMq and n “ dim pVq. As in the previous chapter,
we will reserve the letters x and y for the elements of the base space.
However, the same characters with superscript will refer to coordinates
on M. Similarly with the fiber components for which we use the letter
u P V and after choosing a coordinate basis denote them as ui. Due
to local trivialization, when working with vector bundles we can think
about the Cartesian products of local regions in M ˆ V or equivalently
in local charts on Rm ˆ Rn. This is what we will do in the rest of this
chapter.

4.1.2 Jet bundles

A vector bundle, p, provides an appropriate space for the definition
of fields in a geometrical way as section of p. The next step is the
construction of the appropriate geometrical space for the description
of derivatives of functions. This space is called the (first) jet bundle.

A (first) jet bundle is a generalization of the tangent space of a man-
ifold. It is a vector bundle, and hence consists of the total space that
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we denote JE, the base manifold M, the fiber J and the projection
pJ : JE Ñ M. Locally, it takes a structure of the Cartesian product

JE “ M ˆ V ˆ J (4.4)

where J is the fiber of the jet bundle called the (first) jet space.
The jet space is an equivalence class of local sections on E, just as a

tangent space is an equivalence space of local curves on the manifold.
Elements of the jet space, can be understood as di↵erentials of local
fields f : M Ñ V; that is at some point x P M, Df|x is an element of
the jet space at x. Locally, we can therefore write an element of the jet
bundle as

px, f pxq , Df|xq , (4.5)

and if we do not want to refer to sections we write px, u, uxq P JE, where
ux denote the points of J. Generalization to higher order di↵erentials
define then higher order jet spaces, and corresponding higher order jet
bundles. In the following we will use only first jet bundles and refer to
them simply as jet bundles.

Local coordinates of the vector bundle p can be extended to local
coordinates on the jet bundle pJ such that

JE Q j
loc´1

jfiÑ px, u, uxq chartfiÑ
´

xµ, ui, ui
µ

¯
P Rm ˆ Rn ˆ Rm¨n. (4.6)

These coordinates are constructed in the following way: the coordi-
nates on M induce a coordinate basis on TM, whereas coordinates on
V define a basis in the fiber, hence the linear map, Df|p : Tp M Ñ V,
becomes a matrix with components ui

µ. Hence, in a chart the jet space
can be understood as the space of matrices Mat pn ˆ m, Rq.

The jet bundle allows us to define the Lagrangian as a smooth, real
valued function,

L : JE Ñ R. (4.7)

It is a function on a finite dimensional space of points of the form´
xµ, ui, ui

µ

¯
, but in this geometrical formulation it is not a function on

G ppq, the infinite dimensional space of fields. This makes it possible
to use the usual di↵erential calculus for variation of the Lagrangian. In
the following we will distinguish between four di↵erent derivatives:

partial derivative: is a derivative of the Lagrangian with respect to
the base space. In a chart

´
xµ, ui, ui

µ

¯
this derivative is given by the

derivative with respect to the coordinates xµ. We write for I Ä R an
interval containing zero, t P I, and teµu the canonical basis in Rm,

BnL|px,u,uxq
.“ d

dt
L

´
xµ ` ten, ui, ui

µ

¯
|t“0. (4.8)
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fiber derivative: is a derivative of the Lagrangian with respect to the
fiber coordinate. In a chart this derivative is given by the partial
derivative with respect to the coordinates ui. For I Ä R an interval
containing zero, t P I, and

 
ej( the canonical basis in Rn,

Buj L|px,u,uxq
.“ d

dt
L

´
xµ, ui ` tej, ui

µ

¯
|t“0. (4.9)

jet derivative: is a derivative of the Lagrangian with respect to the
jet space. In a chart this derivative is given by the partial derivate
with respect to the coordinate ui

µ. For I Ä R an interval containing
zero, t P I, teµu the canonical basis in Rm and

 
ei( the canonical

basis in Rn,

B
uj

n
Lpx,u,uxq

.“ d
dt

L
´

xµ, ui, ui
µ ` t

´
en b ej

¯¯
|t“0. (4.10)

total derivative: is a derivative of a function on JE, in the case when
the points of the jet bundle are given by some smooth section gr pfq “
pxµ, f pxµq , Df|xµ q and we have to take into account the dependence
of f on xµ. We write

DµL|px,u,uxq
.“ BµL `

nÿ

i“1
Bui L ¨ Bxµ fi `

nÿ

i“1
Bui

µ
L ¨ Bxµ Dfi, (4.11)

where the right hand side is evaluated at the point px, u, uxq.

The last necessary piece in the formulation of the field theory is the
action. An action SW is a functional on Gppq given by an integral over a
local region W Ä M of a Lagrangian such that in coordinates we get

S rfs “
ª

W
dxµ ?

g L
´

xµ, ui, ui
µ

¯
, (4.12)

where g refers to the determinant of the metric in the coordinate chart
xµ and the points u and ux are implicitly assumed to be given by the
smooth section gr pfq “ px, f pxq , Df|xq.

4.1.3 Continuous symmetry and the local group of transformations

In order to discuss the notion of symmetries of the action SW in the ge-
ometrical langue we need to introduce the local group of transformations
[150].

A local group of transformations is a Lie group GT that acts on the
vector bundle p. That means, for g P GT and any x P M , u P V we get
new points x̃ P M and ũ P V such that

g ¨ px, uq “ px̃, ũq “ pC px, uq , Q px, uqq . (4.13)

where the functions C : E Ñ M and Q : E Ñ V specify the group
action: C prescribes the new point of the base manifold and Q gives the
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new point of the fiber. Both functions are not invertible in general, but
if g is su�ciently close to the identity the inverse of C ˝ p1ˆ fq exists
due to the inverse function theorem [150].

If the point in the bundle is given by a (local) section px, f pxqq and
g is close to identity, 1, the transformed point px̃, ũq will be also given
by some section such that px̃, ũq “

`
x̃, f̃ px̃q

˘
. It is a well known result

[150] that the transformed field f̃ is given by

f̃ px̃q “ Q ˝ p1ˆ fq ˝ rC ˝ p1ˆ fqs´1 px̃q , (4.14)

The transformation of f under the group GT induces a transformation
of Df, which can be calculated in a straight forward way and the action
of the group GT prolongs to the jet bundle, such that

g ¨ px, u, uxq “ g ¨ px, f pxq , Df|xq “
`
x̃, f̃ px̃q , Df̃|x̃

˘
“ px̃, ũ, ũx̃q . (4.15)

The algebra of GT is associated with vector fields on p, such that
for each g close to 1 there exists a vector field W on TE and e P R

su�ciently close to zero such that g “ exp peWq .“ ge. The vector
field W can be split in its components tangent to the base manifold and
parallel to the fiber as follows,

W “ XM px, uq Bx ` XV px, uq Bu, (4.16)

and we refer to XM as the generator of C and XV as the generator of Q
— even though in the strict sense neither C nor Q are elements of GT.

A symmetry of the action SW is a local group of transformations such
that for any U Ä W and any f P G ppq.

SU rfs “
ª

U
dxµ ?

g L
´

xµ, ui, ui
µ

¯

“
ª

Ũ
dx̃µ

a
g̃ L

´
x̃µ, ũi, ũi

µ

¯
“ S̃Ũ

“
f̃

‰
, (4.17)

where, Ũ “ rC ˝ p1ˆ fqs pUq , is the transformed domain of integra-
tion, that in general depends not only on g P GT but also on the whole
field configuration f in U. These transformations are called Lie point
symmetries or “geometrical” symmetries, because they admit a geo-
metrical interpretation of a flow, being generated by vector fields of the
vector bundle p.

The requirement that the symmetry does not change the action for
any sub-domain of W is essential in order to derive a point-wise criteria
for the symmetry. Such point-wise statements are much easier to treat
than equation (4.17) that involves integrals.

It is a well known result, based on properties of Lie groups, that C
and Q define a symmetry of the action if and only if the infinitesimal
generators XM and XV satisfy the following equation

mÿ

µ“1

nÿ

i“1
DµBui

µ
L ¨ Xi

Q `
mÿ

µ“1
Dµ

´
LXµ

M

¯
`

nÿ

i“1
Ei

L ¨ Xi
Q “ 0 . (4.18)
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Where XQ is the characteristic of the symmetry defined in local co-
ordinates as Xi

Q px, uq “ Xi
V px, uq ´ ∞m

µ“1 Xµ
M px, uq Bµfi pxq, and the

equations of motion for the Lagrangian L are denoted by Ei
L. For better

readability we summarize equation (4.18) as

Div
`
BuL ¨ XQ ` LXM

˘
` EL

`
XQ

˘
“ 0. (4.19)

The vector fields XM and XV generate a symmetry of the action S if and
only if they satisfy the above equation [150]. Due to the “only if” part
of this relation, equation (4.19) can be used as a defining equation for
the symmetry group. We will show explicitly how this is used in the
symmetry analysis in the second part of this chapter.

When the equations ofmotion are satisfied, Ei
L “ 0 for all i P t1, ¨ ¨ ¨ , nu,

the equation (4.19) defines a conservation law,

Div
`
BuL ¨ XQ ` LXM

˘
“ 0.

Indeed, equation (4.19) is a special case of a more general Noether the-
orem that relates the symmetries of the action and conservation laws
[156].

4.2 Multi-local action and its symmetry group

We now turn to the multi-local case and modify the above formalism,
to apply it in the context of GFT, or more generally, a theory with multi-
local interactions. We begin by formulating GFT in the above language.

4.2.1 Vector bundle for GFT

The vector bundle of GFT is a trivial bundle pE, p, M, Vq with the base
space M “ Gˆd, for a Lie group G of dimension r “ dim pGq. As before
we will denote the elements of the base space by x and by slight abuse
of notation denote the coordinates by xµ, where µ P t1, ¨ ¨ ¨ , mu, m “
dim pMq “ r ¨ d. The components of x will be denoted by subscripts
such that

M Q x “ px1, ¨ ¨ ¨ , xdq . (4.20)

with xj P G for j P t1, ¨ ¨ ¨ , du. If we need to refer to the coordinates of
a single component we denote them by xa

j , where a P t1, ¨ ¨ ¨ , ru. The
measure dx will refer to the Haar measure on M. In coordinates the
Haar measure will be denoted dxa ?g, with the metric determinant g in
the chart xa and where the metric is given by the Killing form. Notably,
since the base space is a Cartesian product of di↵erential manifolds
each of which can be equipped with the metric, we have the following
relation between the Haar measure on M and the Haar measure on G,

dx “dxa ?
g “

dπ

j“1
dxa

j
a

gj “
dπ

j“1
dxj, (4.21)
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where gj refers to the determinant of the metric on the jth component
of M in the chart xa

j and dxj is the Haar measure on it.
In the following we will chose the fiber to be either, V “ Rˆc, or

V “ Cˆc with some c P N and denote the field components by fi for
i P t1, ¨ ¨ ¨ cu. In the GFT literature the components of the field are called
colors, and when we define a model with c ° 1 such that the interaction
of the model is linear in each component we speak about a colored GFT
model.

To save space in rather lengthy equations we will use a short notation
for a field at a point x such that

f1,2,¨¨¨ ,d
.“ f px1, ¨ ¨ ¨ , xdq “ f pxq . (4.22)

We will denote the gradient on M by r. In local coordinates the gradi-
ent for a smooth function f on M is given by

r f .“
mÿ

µ,n“1
Bµ f gµn Bn. (4.23)

The divergence on M is denoted div and defined on a tangent vector
X P TM in local coordinates as

div pXq pxq “ 1?g
Bµ

`?
g Xµ˘

|x. (4.24)

If X is a tangent vector and L is a function on the jet bundle, we will
distinguish between div and Div such that

div pL ¨ Xq “ 1?g
Bµ

`?
g L ¨ Xµ˘

, (4.25)

Div pL ¨ Xq “ 1?g
Dµ

`?
g L ¨ Xµ˘

, (4.26)

where div refers to the partial derivatives and Div implies the total
derivative on L. The Laplace-Beltrami operator on M is defined as D “
Div ˝ r.

For better presentation we will discuss the general procedure on a
specific example, but it should be clear that the construction can be ap-
plied to a large class of multi-local actions. The action we choose for
our discussion is the Boulatov action augmented by a Laplacian term
that we introduced in chapter 2, that we rewrite such that the combi-
natorics of the model becomes explicit,

SM rfs “
ª

M
dx f pxq ¨ p´D ` mq f pxq (4.27)

` l

ª

Mˆ4
dxdydzdw f pxq f pyq tet px, y, z, wq f pzq f pwq ,
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where

tet px, y, z, wq .“d
´

x1y´1
1

¯
d

´
x2z´1

2

¯
d

´
x3w´1

3

¯
(4.28)

ˆ d
´

y2w´1
2

¯
d

´
y3z´1

3

¯
d

´
z1w´1

1

¯
,

denotes the combinatorics of the tetrahedron. In the following we re-
strict our discussion to real valued scalar fields. The equation of motion
for the Boulatov action reads then

p´D ` mq f pxq ` 4l

ª

Mˆ3
dydzdw tet px, y, z, wq f pyq f pzq f pwq “ 0.

(4.29)
As we already pointed out this equation is an integro-di↵erential equa-
tion, because the second term will contain integrals even after the ex-
plicit use of the delta distributions. Because of this, the action can not
be written as an integral over a Lagrangian defined over some jet bun-
dle. Nevertheless, we can split the action in two separate parts as

SM rfs “ S0
M rfs ` S1

Mˆ4 rfs . (4.30)

The first part is the local action, induced by the local Lagrangian

S0
M rfs “

ª

M
dx f pxq p´D ` mq f pxq ,

or after integration by parts and in coordinates

S0
M rfs “

ª

M
dxµ ?

g L0 `
xµ, u, uµ

˘
(4.31)

L0 `
xµ, u, uµ

˘
“

mÿ

µ“1
uµuµ ` m uu, (4.32)

where the Lagrangian is defined on the first jet bundle over the vector
bundle p : M ˆ R Ñ M.

The second part of eq.(4.30) is given by

S1
Mˆ4 rfs “ l

ª

Mˆ4
dxdydzdw f pxq f pyq f pzq f pwq tet px, y, z, wq ,

and as such can not be written as an integral of a di↵erentiable func-
tion defined on the vector bundle p. However, we can construct a new
vector bundle with the base space M such that the action becomes of
the form

S1
M rfs “

ª

M
dX g L1

´
X g,U d

¯
L1

´
X g,U d

¯
“ U 1U 2U 3U 4, (4.33)

where X µ
j are coordinates of M and U i

j are coordinates on the suitable
fiber. In the following section we detail the construction of the suitable
vector bundle for the multi-local interaction.
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4.2.2 Vector bundle for the multi-local interaction

We begin with the vector bundle of the local part, p, and define the 4
fold direct product of p, such that the total space is Eˆ4, the base space
is Mˆ4, the fiber is Vˆ4 and the projection is p4 “ p ˆ p ˆ p ˆ p.
This product

`
E4, p4, M4, V4˘

is again a vector bundle [154] that we
denote p4. On M4 we have canonical projections prj : M4 Ñ M for
j P t1, 2, 3, 4u such that

pr1 px, y, z, wq “ x pr2 px, y, z, wq “ y

pr3 px, y, z, wq “ z pr4 px, y, z, wq “ w.

Sections in p4 give smooth fields j : M4 Ñ R4, with components ji :
M Ñ R for i P t1, 2, 3, 4u.

Next we define a map ftet from Gˆ6 Ñ M4 as follows,

ftet : px1, x2, x3, x4, x5, x6q fiÑ ppx1, x2, x3q , px1, x4, x5q ,

px6, x2, x5q , px6, x4, x3qq (4.34)

This map encodes the combinatorics of the tetrahedron and is a combi-
nation of diagonalmaps, pxq fiÑ px, xq, and permutationmaps px1, x2q fiÑ
px2, x1q and hence is di↵erentiable. More precisely, ftet is an embedding
from Gˆ6 in M4. Therefore the pull back of p4 by ftet is again a vector
bundle [154] — the pull back bundle of p4 that we denote

`
E , f ‹

tetp
4,M

˘

or simply f ‹
tetp

4, with the total space E and the base space M “ Gˆ6.
Smooth sections of p4 are mapped to smooth section of f ‹

tetp
4 by the

pull back with ftet, such that for a smooth field j : M4 Ñ R4, its pull
back y : M Ñ R4 is given by

y px1, x2, x3, x4, x5, x6q “ pj ˝ f q px1, x2, x3, x4, x5, x6q . (4.35)

In local trivialization we denote the points of the product bundle
f ‹
tetp

4 by pX ,Uq and in a chart wewrite
`
X a

i ,Uj
˘
, where a P t1, ¨ ¨ ¨ , ru , j P

t1, ¨ ¨ ¨ , 4u and i P t1, ¨ ¨ ¨ , 6u. Since the base manifold of f ‹
tetp

4 is a direct
product of the group G we get

X “ px1, ¨ ¨ ¨ , x6q . (4.36)

For a fixed a and j we get in local coordinates

X a
j : M Ñ R px1, ¨ ¨ ¨ , x6q fiÑxa

j , (4.37)

where xa
j is the a’s chart component of the jth group G in M.

We define the Lagrangian for the interaction of the Boulatov model
in local coordinates as

L1
´
X µ

j ,U i
j

¯
“ U1U2U3U4. (4.38)
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Again, the Lagrangian is a function on the pull back vector bundle, and
not on smooth fields. Moreover, sections in f ‹

tetp
4 are not always given

by physical field degrees of freedom, which are sections in p. To ensure
a connection between sections in f ‹

tetp
4 and sections in p we choose a

subset, GD
`

f ‹
tetp

4˘
, of smooth sections on f ‹

tetp
4 such that

GD

´
f ‹
tetp

4
¯

“
!

yf P G
´

f ‹
tetp

4
¯

|Df P G ppq : yf “ pf, f, f, fq ˝ ftet
)

(4.39)
It is a closed subspace of the space of all sections on f ‹

tetp
4 that we call

the space of diagonal sections.
If U is given by a diagonal section in f ‹

tetp
4 we obtain for the La-

grangian,

L1 pX ,Uq “
4π

j“1

“`
yf ˝ ftet

˘
pX q

‰j

“ f px1, x2, x3q f px1, x4, x5q f px6, x2, x5q f px6, x4, x3q .

This is precisely the interaction term of our multi-local action where
the delta distributions of tet have been integrated out. Hence, on the
pull back bundle f ‹

tetp
4 the action S1

Mˆ4 is given by an integral over a
local Lagrangian and we can perform its symmetry analysis by follow-
ing the standard procedure from local theories. In summary: we can
view the multi-local action SM as a sum of local actions S0 and S1 on
which we can separately use the local construction for the symmetry
analysis.

In order to perform symmetry analysis of SM we need first to define
the local group of transformations on f ‹

tetp
4 in a consistent way.

4.2.3 The local group of transformations for multi-local actions

The function ftet encodes the combinatorial structure of the interaction
and provides a relation between di↵erent vector bundles. We need to
take this relation into account when we discuss the local group of trans-
formations, to make sure that g P GT applies the same transformation
on both bundles.

A local group of transformations on f ‹
tetp

4 is a (local) di↵eomor-
phism that acts in local trivialization as

g ¨ pX ,Uq “
`
X̃ , Ũ

˘
“ pC pX ,Uq ,Q pX ,Uqq . (4.40)

for some X̃ P M and Ũ P V . However, since f ‹
tetp

4 is related to p we
need to ensure that C and Q on f ‹

tetp
4 are consistent with the trans-

formations C and Q on p. To do this we examine the action of GT on
sections in f ‹

tetp
4.

Let gr pfq P Gloc ppq be a (local) section in p with the corresponding
smooth field f. And let gr

`
yf

˘
P GD

`
f ‹
tetp

4˘
be a diagonal section in



86

f ‹
tetp

4 such that the smooth field yf is related to f as

yf “ fˆ4 ˝ f . (4.41)

Let pX ,Uq be given by a section gr
`
yf

˘
, that is U “ yf pX q. By defini-

tion of the pull back bundle we can write

U “ pU1,U2,U3,U4q “
´

fˆ4 ˝ f
¯

pX q . (4.42)

For better presentation let us assume that the image of f pX q is given by
px, y, z, wq P Mˆ4, then U “ pf pxq , f pyq , f pzq , f pwqq. Since we know
the action of GT on p we know that the points of M will transform un-
der g P GT to x̃ “ C

`
x, u1˘

, ỹ “ C
`
y, u2˘

, z̃ “ C
`
z, u3˘

, w̃ “ C
`
w, u4˘

.
Hence for consistency we need to require that

f pC pX ,Uqq “
´

C
´

x, u1
¯

, C
´

y, u2
¯

, C
´

z, u3
¯

, C
´

w, u4
¯¯

, (4.43)

or more generally

f ˝ C ˝
`
1ˆ yf

˘
“ rC ˝ p1ˆ fqsˆ4 ˝ f . (4.44)

Similarly, due to the action of GT on p we know that the fiber points
transform to ũ “ Q px, uq and, hence, we need to require that

Q ˝
`
1ˆ yf

˘
“ rQ ˝ p1ˆ fqs´1 ˝ f . (4.45)

From these transformations it follows with the same arguments as in
the local case that the fields transform as

yf fiÑ
!

rQ ˝ p1ˆ fqs ˝ rC ˝ p1ˆ fqs´1
)ˆ4

˝ f , (4.46)

The above equations provide a relation between the action of the local
transformation group GT on di↵erent vector bundles. However, equa-
tion (4.44) does not always lead to a well defined C on M. If C were
well defined, equation (4.44) would imply that, once f P G ppq is fixed,
for any X P M, there exists a Y P M such that

f pYq “ rC ˝ p1ˆ fqs ˝ f pX q . (4.47)

This however, is not always possible. As an example consider a trans-
formation

C px1, x2, x3q “ px1 ¨ x2, x2, x3q , (4.48)

then
´

Cˆ4 ˝ f
¯

px1 ¨ ¨ ¨ x6q “ C px1, x2, x3q C px3,x,4, x5q C px5, x2, x6q C px6, x2, x1q ,

“ ppx1 ¨ x2, x2, x3q px3 ¨ x4, x4, x5q
px5 ¨ x2, x2, x6q px6 ¨ x2, x2, x1qq (4.49)
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and if x4 ‰ 1 the above point is not in the image of f . For that reason
the transformation C is not consistent with the relation between the
bundles and can not define a local group of transformations for the
Boulatov action. We call a local group of transformations admissible
with f or simply admissible if it satisfies the conditions in eq. (4.44)
and eq. (4.45).

4.2.4 Symmetries of non-local actions

We define a symmetry group of the multi-local action SM as an admis-
sible local transformation group GT such that for each g P GT and each
field f P G ppq the following relations hold

S0
W rfs “ S̃0

W̃

“
f̃

‰
@W Ä M, S1

W
“
yf

‰
“ S̃1

W̃

”
yf̃

ı
@W Ä M, (4.50)

where f̃ is the transformed field and W̃ is the transformed domain. In
other words GT is a symmetry of the multi-local action if it is a symme-
try for each individual part of the action.

Since each of the action parts is local on its own jet bundle we can
apply the point-wise symmetry condition (4.18). If we call XM and XV
the generators of C and Q and denote the generators of C and Q, by
XM and XV respectively we can state: GT is a symmetry group of SM if
and only if

DivM

´
BuL0 ¨ XQ ` L0XM

¯
pxq ` EL0

`
XQ

˘
pxq “ 0, (4.51)

DivM
´

BU L1 ¨ XQ ` L1XM
¯

pX q ` EL1 pXQq pX q “ 0, (4.52)

where DivM refers to the divergence on the base space M and DivM
denote the divergence on the base space M. It is important to stress
that, EL1 , is the equation of motion for the action L1 treated as a local
Lagrangian. Hence the operator EL1 does not involve integrals. Since
the sections in the pull back bundle are valued in R4 we have four
equations of motion, one for each of the components of the field. On
the diagonal sections these equations read

E1
L1 pX q “ p1 ˆ f ˆ f ˆ fq p f pX qq (4.53)

E2
L1 pX q “ pf ˆ 1 ˆ f ˆ fq p f pX qq (4.54)

E3
L1 pX q “ pf ˆ f ˆ 1 ˆ fq p f pX qq (4.55)

E4
L1 pX q “ pf ˆ f ˆ f ˆ 1q p f pX qq (4.56)

Where 1 P G ppq is a constant one-function on M. These equations are
the equations of motion for the action S1 if the degree of freedom is
the field y, however, they do not correspond to the physical equation
of motion for the physical degree of freedom f, eq. (4.29). The later,
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however, can be written in terms of EL1 . For x P M, the equation of
motion for the field f reads

EL0 pxq `
ª
dy E1

L1 px1, x2, x3, y1, y2, y2q (4.57)

`
ª
dy E2

L1 px1, y1, y2, x2, x3, y3q

`
ª
dy E3

L1 py1, x2, y2, y2, x3, x1q

`
ª
dy E4

L1 py1, y2, x3, x2, y3, x5q “ 0.

We denote this special class of points in M by

P1 “ px1, x2, x3, y1, y2, y2q
P2 “ px1, y1, y2, x2, x3, y3q
P3 “ py1, x2, y2, y2, x3, x1q
P4 “ py1, y2, x3, x2, y3, x5q ,

and summarize the above equation as

EL0 pxq `
ª
dy

4ÿ

j“1
Ej

L1

`
Pj

˘
“ 0 (4.58)

In local field theories, symmetries always correspond to conservation
laws by the Noether theorem. To investigate a similar statement in the
multi-local case we use these equation of motion in eq. (4.51), evaluate
eq. (4.52) at P1 (or any other of Pj) and integrate it over dy, subse-
quently summing both equation to obtain

DivM

´
BuL0 ¨ XQ ` L0XM

¯
px, uq

`
ª
dy DivM

´
BU L1 ¨ XQ ` L1 XM

¯
pP1,Uq (4.59)

`
ª
dy

4ÿ

j“1

´
Ej

L1 pP1q ¨ Xj
Q pP1,Uq ´ Ej

L1

`
Pj

˘
¨ XQ px, uq

¯
“ 0.

The last line does not vanish in general and the conservation law, Div pJq “
0, is not satisfied. As the result a symmetry of a multi-local action
does not lead to a conservation law, unlike in the local case. Defin-
ing D pxq “ ≥

dy
∞4

j“1

´
Ej

L1

`
Pj

˘
¨ XQ px, uq ´ Ej

L1 pP1q ¨ Xj
Q pP1,Uq

¯
we

can summarize the non-conserved equations a la Noether as,

D pxq ´ EL
“
XQ

‰

“ DivM

´
BuL0 ¨ XQ ` L0XM

¯
px, uq (4.60)

`
ª
dy DivM

´
BU L1 ¨ XQ ` L1 XM

¯
pP1,Uq
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For the local theory we would have, Ej Xj
Q

`
Pj,U

˘
“ E XQ px, uq, and

hence,D pxq “ 0. Moreover, DivM “ DivM and the integral over dy
vanishes, leading to

´EL
“
XQ

‰
“ DivM

´
Bu

´
L0 ` L1

¯
`

´
L0 ` L1

¯
XM

¯
, (4.61)

which is the usual Noether conservation law.
This concludes our geometric construction for multi-local GFT ac-

tions. It should be clear from the above discussion that we can apply
this procedure to a general class of multi-local field theories, whenever
the split in local parts is possible. As we have shown in [157] the same
construction can be applied to cases in which the interaction part de-
pends also on derivatives of fields. In this case we need to formulate
the jet bundle over f ‹

tetp
4 but apart from some minor technicalities the

constructions remains unchanged. In the next section we will present
applications of our method to several models of GFT.

4.3 Overview of the models

We are now going to apply the analysis developed above to several
models in group field theory. Our main goal of this chapter is to use
the point-wise formulation of the definition of a symmetry group for
the GFT action to classify all symmetries of given models. We begin by
introducing the models.

As already discussed the general structure of the GFT actions takes
the form,

S rfs “ Sloc
k rfs ` SI rfs , (4.62)

with a local and a multi-local part of the action split as in the previous
section. We assume that the local, quadratic part of the action is defined
as

Sloc
k rfs “

ª

M
dx f̄ pxq p´kD ` mq f pxq . (4.63)

We will treat cases in which k can be zero, meaning that the model is
static and consider the following two types of interactions.

4.3.1 Simplicial interactions

We discussed this interaction type in chapter 2. In these models the in-
teraction is constructed using the combinatorial structure of simplexes.
In the 3D case this interaction is given by the Boulatov model that we
already used several times

SI rfs “ l

ª

Mˆ4
dxdydzdw tet px, y, z, wq f pxq f pyq f pzq f pwq ,

(4.64)
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where as in eq. (4.28)

tet px, y, z, wq “ d
´

x1y´1
1

¯
d

´
x2z´1

2

¯
d

´
x3w´1

3

¯

ˆ d
´

y2w´1
2

¯
d

´
y3z´1

3

¯
d

´
z1w´1

1

¯
.

In 4D the interaction type represents the combinatorics of a pen-
tatope2 and is called the Ooguri model given by the interaction2 The action that we use here represents

the combinatorics of the pentatope without
paying attention to the orientation of its
faces. As we will see below this will result
in a slight reduction of its symmetry group.
However, this interaction is the one that is
most frequently used in the literature and
for that reason we use it here.

SI rfs “ l

ª

Mˆ5
dx dy dz dw dq pent px, y, z, w, qq

ˆ f pxq f pyq f pzq f pwq f pqq ,

with

pent px, y, z, w, qq “ d
´

x1q´1
4

¯
d

´
x2w´1

3

¯
d

´
x3z´1

2

¯
d

´
x4y´1

1

¯

ˆ d
´

y2q´1
3

¯
d

´
y3w´1

2

¯
d

´
y4z´1

1

¯

ˆ d
´

z3q´1
2

¯
d

´
z4w´1

1

¯

ˆ d
´

w4q´1
1

¯
.

The vector bundle is again a trivial bundle with the total space E “
Spin p4qˆ4 ˆ C. We will treat this model for k “ 0.

Explicitely, the simplicial models we treat are:

Boulatov like: with the Laplace operator and the Boulatov interaction
and without the closure constraints

S rfs “
ª

M
dx f̄ pxq p´kD ` mq f pxq (4.65)

` l

ª

Mˆ4
dxdydzdw tet px, y, z, wq

ˆ f pxq f pyq f pzq f pwq ` c.c.,

with M “ SU p2qˆ3 and E “ M ˆ C. We choose here complex fields
in order to perform the standard symmetry analysis for the most
general case.

Boulatov action: the original Boulatov action

S rfs “ m
ª

M
dx f pxq2 (4.66)

` l

ª

Mˆ4
dxdydzdw tet px, y, z, wq

ˆ f pxq f pyq f pzq f pwq ,

with M “ SU p2qˆ3 and E “ M ˆ R and the requirement for the
fields to satisfy the closure constraint3.

3Reminder

The closure constraint is a requirement on
the field f to be invariant under the right
multiplication by the diagonal group ele-
ment. That is for h P G and D : G Ñ
M “ Gˆd as in the previous chapter, the
fields satisfy

f ˝ RDh “ f. (4.67)
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Ooguri action: the 4D version of the Boulatov action

S rfs “ m
ª

M
dx f pxq2

` l

ª

Mˆ5
dx dy dz dw dq

ˆ pent px, y, z, w, qq f pxq f pyq f pzq f pwq f pqq ,

with M “ Spin p4qˆ4 and E “ M ˆ R and the closure constraint on
the fields.

4.3.2 Extended Barrett-Crane model

As we discussed in chapter 2, in four dimensions, gravity can be for-
mulated as a BF theory with additional constraints [158], which are
labeled simplicity constraints. One GFT model that implements the
simplicity constrains is the so-called Barrett-Crane model [82], whose
detailed treatment in the language of GFT for the euclidean signature
was presented in [100]. Here we show just the main construction of the
model and refer to the literature for more details.

The starting point for the Barrett-Crane (BC) model is the Ooguri
action with E “ Spin p4qˆ4 ˆ C with the closure constraint. This is the
GFT action for the BF part of the Plebanski action. To implement the
simplicity constraints the base manifold is extended to M ˆ S3, how-
ever, since the 3-sphere S3 is isomoprhic to SU p2q we deal with the
extended base manifold M ˆ SU p2q.With the shorthand notation

f px, kq “ f px1, x2, x3, x4, kq “: f1,2,3,4,k, (4.68)

the interaction of the model can be written as

SI rfs “
ª

Mˆ5
ext

dxe dye dze dwe dqe

ˆ pent px, y, z, w, qq (4.69)

ˆ f px, k1q f py, k2q f pz, k3q f pw, k4q f pq, k5q ,

with Mext “ Spin p4qˆ4 ˆ SU p2q and E “ Mext ˆ R and where the
index e on the measure denote the extended measure dxe “ dx ˆ dk
with dx the Haar measure on M and dk the Haar measure on SU p2q.
The simplicity constraints are imposed by requiring invariance of the
fields

f ˝ Su “ f, (4.70)

for any u P SU p2qˆ4 where Su : M ˆ SU p2q Ñ M ˆ SU p2q is given as
follows: if we write a Spin p4q element in its selfdual and anti-selfdual
SU p2q components as xi “ pxi´, xi`q then the action of Su on the ex-



92

tended base manifold can be written as

Su px, kq “
´

x1´ ku1k´1, x1` u1, (4.71)

x2´ ku2k´1, x2` u2,

x3´ ku3k´1, x3` u3,

x4´ ku4k´1, x4` u4,

k
¯

P M ˆ SU p2q .

We write in short

Su px, kq “
´

x´ ¨ k u k´1, x` ¨ u, k
¯

, (4.72)

where ¨ denotes the component wise multiplication between the com-
ponents of x and the components of u. In [100] it has been shown that
Su and Rh can be combined to a single transformation Su,h,

Su,h : px, kq fiÑ
´
1, h´1

´
¯

¨ px´, x`, kq ¨
´´

k u k´1, u
¯

,1
¯

¨ ph´, h`q ,

where h P Spin p4q, h` and h´ are its self dual and anti-selfdual com-
ponents, u P SU p2qˆ4, x P M and k P SU p2q. In this formulation the
fields have to be invariant under the above transformation, such that

f ˝ Su,h “ f. (4.73)

The explicit Barrett-Crane action for 4D Riemannian gravity is then
given by

S rfs “m
ª

Mext

dxe f px, kq2

` l

ª

Mˆ5
ext

dxe dye dze dwe dqe

ˆ pent px, y, z, w, qq f px, k1q f py, k2q f pz, k3q f pw, k4q f pq, k5q ,

with Mext “ Spin p4qˆ4 ˆ SU p2q and E “ Mext ˆ R and where the
index e on the measure denote the extended measure dx ˆ dk with dx
the Haar measure on M and dk the Haar measure on SU p2q.
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4.4 Applications of the symmetry analysis in GFT

4.4.1 Boulatov like model

We will use the standard Lie group analysis of point symmetries [150],
based on point-wise criteria from eq. (4.52). This analysis can be sum-
marized as follows:

i) We assume a most general vector field W on the vector bundle p

and insert it in (4.52), ii) we rearrange the resulting equation by di↵er-
ent powers in derivatives of fields. Since the coe�cients Xi

M and Xi
V

do not depend on derivatives of the fields, it is possible to extract all
powers explicitly, iii) di↵erent powers of derivatives of f are linearly
independent since the condition (4.52) has to be satisfied for all fields.
For this reason the coe�cients in front of each term have to vanish
separately. This results in a set of simple di↵erential equations for the
components of the vector field W which can then be easily solved.

By partial integration the local part of the action is written as

L
´

xµ, ui, ui
µ

¯
“

cÿ

i“1

¨

˝
dÿ

j“1

rÿ

a“1
kūi

jaui
ja ` m ūiui

˛

‚, (4.74)

where c is the number of colors in the model, d is the number of copies
of the group G in the definition of M “ Gˆd and r “ dim pGq is the
dimension of the group G. In our case c “ 1 but for now, we leave the
color unspecified to keep the discussion more general.

The indices in the following equations range over the following do-
mains: i, t P t1, ¨ ¨ ¨ , cu the color index, j, k P t1, ¨ ¨ ¨ , du the copy of G in
M, and a, b, g P t1, ¨ ¨ ¨ , ru components of the chart of G. Further we
use the following notation for the generators of the symmetry group on
E,

W “
dÿ

j“1

rÿ

a“1
Xja

MBxa
j

`
cÿ

i“1

´
Xi

VBui ` X̄i
VBūi

¯
. (4.75)

With this notation the symmetry condition from eq. (4.52) implies

XM pLq ` LDiv pXMq ` 2k
cÿ

i“1

dÿ

j“1

rÿ

a“1
Bjafi ¨ Dja

´
Xi

Q

¯
` 2m

cÿ

i“1
fi

´
Xi

Q

¯
“ 0,

(4.76)
where the whole equation is evaluated at the point px, f pxq , Df|xq for
some x P M. Explicitly sorting the terms by powers of ui

ja “ Bj,afi|x we
get (in the following equation all indices are summed over)
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0 “
„

m
ˇ̌
ˇui

ˇ̌
ˇ
2
div pXMq ` mūiXui ` muiXūi

⇢
(4.77)

`<
”
ut

ja

ı „
m

ˇ̌
ˇui

ˇ̌
ˇ
2 ´

Būt Xja
M ` But Xja

M

¯
` kgab

j

´
BjbXt

V ` BjbX̄t
V

¯⇢
(4.78)

`ı=
”
ut

ja

ı „
m

ˇ̌
ˇui

ˇ̌
ˇ
2 ´

But Xja
M ´ Būt Xja

M

¯
` kgab

j

´
BjbX̄t

V ´ BjbXt
V

¯⇢
(4.79)

`k<
”
ūi

aju
i
bj

ı „
1
2

Xkg
M Bkggab

j ´ 2gag
j BjgXjb

M ` gab
j

!´
Bui Xi

V ` Būi X̄i
V

¯
` div pXMq

)⇢
(4.80)

´2k<
”
ūi

jaui
pk‰jqb

ı ”
gag

j BjgXpk‰jqb
M

ı
(4.81)

`kgab
j <

”
ūi

jaut‰i
jb

ı ”
But‰i Xi

V ` Būi X̄t‰i
V

ı
(4.82)

`ıkgab
j =

”
ūi

jaut‰i
jb

ı ”
But‰i Xi

V ´ Būi X̄t‰i
V

ı
(4.83)

`kgab
j <

”
ūi

jaūt
jb

ı ”
Būt Xi

V ` But X̄i
V

ı
(4.84)

`ıkgab
j =

”
ūi

jaūt
jb

ı ”
Būt Xi

V ´ But X̄i
V

ı
(4.85)

`2kūi
aju

i
gj <

”
ut

jb

ı ”
´2gab

j

´
But Xjg

M ` Būt Xjg
M

¯
` gag

j

´
But Xjb

M ` Būt Xjb
M

¯ı
(4.86)

`ı2kūi
jaui

jg =
”
ūt

jb

ı ”
´2gab

j

´
But Xjg

M ´ Būt Xjg
M

¯
` gag

j

´
But Xjb

M ´ Būt Xjb
M

¯ı
(4.87)

`ūi
jaui

pk‰jqg <
”
ut

jb

ı ”
´2kgab

j

´
But Xpk‰jqg

M ` Būt Xpk‰jqg
M

¯ı
(4.88)

`ıūi
jaui

pk‰jqg =
”
ūt

jb

ı ”
´2kgab

j

´
But Xpk‰jqg

M ´ Būt Xpk‰jqg
M

¯ı
. (4.89)

The above equation is sorted such that each line is multiplied with a
di↵erent power and combination of the coordinates ui and uc

ja. More-

over, it has to hold true for arbitrary fields f and hence for arbitrary ui

and ui
ja, hence each line has to vanish independently. From this condi-

tion we obtain the following relation for the vector fields:

1. Equations (4.82) and (4.83) imply that the vector field component
Xi

V depend only on the field colors they transform, that is (without
summation)

Xi
V “ Xi

V

´
x, ui, ūi

¯
X̄i

V “ X̄i
V

´
x, ui, ūi

¯
.

2. Equations (4.84) and (4.85) additionally imply that the vector fields
Xi do not depend on the complex conjugate of the field, that is

Xi
V “ Xi

V

´
x, ui

¯
X̄i

V “ X̄i
V

´
x, ūi

¯
.

3. Equations (4.88) and (4.89) tell us that the vector fields that trans-
form the base manifold do not depend on the field values ui i.e.
XM “ XM pxq. From this condition, equations (4.86) and (4.87) are
automatically satisfied.

4. Due to the above, equations (4.78) and (4.79) reduce to (without
summation)

BjaXi
V “ 0 “ BjaX̄i

V . (4.90)
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for any fixed i,j and a. That is, the vector fields do not explicitly
depend on the points in the base manifold (without summation)

Xi
V “ Xi

V

´
ui

¯
X̄i

V “ Xi
V

´
ūi

¯
.

5. Equation (4.77), together with the above conclusions, restricts the
vector fields to a specific form

Xi
V “ C ui X̄i

V “ C̄ ūi, (4.91)

where C is an arbitrary constant, C̄ its complex conjugate and both
satisfy

div pXMq “ ´C ´ C̄. (4.92)

6. The above condition reduces equations (4.80) and (4.81) to

rÿ

g“1

˜
dÿ

k“1
Xkg

M Bkggab
j ´ 2 gag

j BjgXjb
M ´ 2 ggb

j BgjX
ja
M

¸
“ 0

gag
j BjgXpk‰jqb

M ` gag
k BjgXpj‰kqb

M “ 0.

These two equations are the only ones that are not trivial to solve. How-
ever, their solution can be found in a straightforward way. The solution
in Hopf coordinates for a 3-sphere ph, x, cq4 reads as (without summa- 4 In this coordinates the elements of SU p2q

can be parametrized as
ˆ

eıx sin h ´e´ıc cos h
eıc cos h e´ıx sin h

˙
(4.93)

and the metric on SU p2q in this coordinates
becomes g “ dh2 ` sin2 h dx2 ` cos2 h dc2.

tion)

Xjh
M “ C1 sin x j sin cj ` C2 cos x j sin cj (4.94)

`C3 sin x j cos cj ` C4 cos x j cos cj

Xjx
M “ cos hj

sin hj
Bjx Xjh

M ` C5 (4.95)

Xjc
M “ ´ sin hj

cos hj
BjcXjh

M ` C6, (4.96)

where Ci’s are arbitrary constants.
Setting subsequently Ci to one and the rest of the coe�cients to zero

we obtain, for each j P t1, ¨ ¨ ¨ , du, six linearly independent vector fields
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given by

v1 “

¨

˚̋
sin pxq sin pcq

cot phq sin pxq cos pcq
´ tan phq sin pxq cos pcq

˛

‹‚ (4.97)

v2 “

¨

˚̋
cos pxq sin pcq

´ cot phq sin pxq sin pcq
´ tan phq cos pxq cos pcq

˛

‹‚ (4.98)

v3 “

¨

˚̋
sin pxq cos pcq

cot phq cos pxq cos pcq
tan phq sin pxq sin pcq

˛

‹‚ (4.99)

v4 “

¨

˚̋
cos pxq cos pcq

´ cot phq sin pxq cos pcq
tan phq cos pxq sin pcq

˛

‹‚, (4.100)

and

v5 “

¨

˚̋
0
1
0

˛

‹‚ v6 “

¨

˚̋
0
0
1

˛

‹‚. (4.101)

It is a direct calculation to check that these vector fields are divergence
free, div pviq “ 0 for i P t1, 2, 3, 4, 5, 6u. This fact, together with equation
(4.92), implies

Xi
V “ ıC ui X̄i “ ´ıC ūi , (4.102)

which generates the usual U p1q symmetry of fields for each color.
In order to find the symmetry group generated by the fields v1, ¨ ¨ ¨ , v6

we look at their algebra. The six dimensional Lie algebra of v1, ¨ ¨ ¨ , v6

is given in table (4.1)

Table 4.1: Lie algebra of symmetry vec-
tor fields

v1 v2 v3 v4 v5 v6

v1 0 v5 v6 0 ´v2 ´v3

v2 ´v5 0 0 v6 v1 ´v4

v3 ´v6 0 0 v5 ´v4 v1

v4 0 ´v6 ´v5 0 v3 v2

v5 v2 ´v1 v4 ´v3 0 0

v6 v3 v4 ´v1 ´v2 0 0

We can split this algebra into su p2q ˆ su p2q by taking the following
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linear combinations

l1 “ v5 ´ v6
2

r1 “ v5 ` v6
2

l2 “ v3 ´ v2?
2

r2 “ v3 ` v2?
2

(4.103)

l3 “ v4 ` v1?
2

r3 “ v4 ´ v1?
2

.

The commutators for li and ri become

rl1, l2s “ l3 rr1, r2s “ r3 (4.104)

rl1, l3s “ ´l2 rr1, r3s “ ´r2 (4.105)

rl2, l3s “ 2l1 rr2, r3s “ 2r1 (4.106)

and “
li, rj

‰
“ 0 @i, j P t1, 2, 3u (4.107)

A closer inspection shows that li and ri form a set of left and right in-
variant vector fields on SU p2q, respectively [159].

Since the above algebra was derived for each copy of the group, the
whole symmetry group of the local part of the action becomes

rSU p2q ˆ SU p2qsˆ3 ˆ U p1q , (4.108)

acting on the base manifold by left and right multiplication as

LaRb pxq “ a ¨ x ¨ b, (4.109)

for a, b P SU p2qˆ3 and on fields by multiplication with a U p1q phase.
It is straight forward to check that the above symmetry group is

an admissible group of transformations for the Boulatov interaction.
However, the U p1q symmetry is not respected by the interaction term
and the symmetry group for this model becomes

GT “ rSU p2q ˆ SU p2qsˆ3 ,

implementing the symmetry under left and right translations on the
group.

4.4.2 Models with closure constraints

We now turn to the symmetry analysis of GFTmodels with closure con-
straints. In principle it is still possible to use the same procedure that
we used above, however, the closure constraint on the fields makes it
more di�cult to identify independent variables. For that reason, con-
trary to the previous case, we will use the interaction part to classify
the symmetry group.
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Boulatov model

We begin our analysis by examining the admissible group of transfor-
mations. The combinatorics of the Boulatov interaction is encoded in
the function f from equation (4.34)

f : pX q fiÑ ppx1, x2, x3q , px1, x4, x5q , px6, x2, x5q , px6, x4, x3qq . (4.110)

for X “ px1, ¨ ¨ ¨ , x6q P M. Admissible transformations of the base
manifold are given by those functions C : E Ñ M that satisfy the re-
lation (4.44). Therefore, for any X P M, there should exist a point
X̃ P M such that

Cˆ4 ˝ f pX q “ f
`
X̃

˘
. (4.111)

Writing C in components as

C px, uq “
´

C1 px, uq , C2 px, uq , C3 px, uq
¯

P M, (4.112)

condition (4.111) implies

C1 px1, x2, x3, u1q “ C1 px1, x4, x5, u2q (4.113)

C2 px1, x2, x3, u3q “ C2 px6, x2, x5, u4q (4.114)

C3 px1, x2, x3, u5q “ C3 px6, x4, x3, u6q , (4.115)

where ui are given by f evaluated at the corresponding points of the
base manifold. This implies the following decomposition of C,

C px1, x2, x3, uq “ C1 px1q C2 px2q C3 px3q . (4.116)

In this case the di↵eomorphism properties of C carry over to the com-
ponents Ci.

According to equation (4.46), the fields transform as

f fiÑ f̃ “ rQ ˝ 1ˆ fs ˝ C´1. (4.117)

The field f̃ needs to satisfy the closure constraint as well, otherwise
the transformations C, Q would leave the allowed space of fields. The
gauge invariance of f̃ reads

f̃ ˝ Rh “ rQ ˝ p1ˆ fqs ˝ C ˝ RDh
!“ rQ ˝ p1ˆ fqs ˝ C “ f̃ @h P G.

(4.118)
Since this has to be true for all gauge invariant fields f, the point C ˝
RDh pxq needs to be in the same orbit (under the multiplication from
the right by the diagonal group) as the point C pxq. This means that, for
any h P G, there should exist an h̃ P G such that

C ˝ RDh “ RDh̃
˝ C, (4.119)

or point-wise
C pxDhq “ C pxq Dh̃. (4.120)
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As we show in the appendix B.1, this restricts the C, up to discrete
transformations, to be of the form

C pxq “ Lz ¨ ConDh pxq , (4.121)

for some z P Gˆ3 and h P G and where ConDh is the conjugation by Dh
such that ConDh pxq “ D´1

h ¨ x ¨ Dh and L is the left multiplication. The
transformation group of the interaction part becomes

Gˆ3 ˆ G, (4.122)

where Gˆ3 acts by left multiplication and the single G acts by conjuga-
tion with diagonal elements. It is evident that this group already forms
a symmetry group of the Boulatov action, due to the left and right in-
variance of the Haar measure. We can summarize the role of combina-
torial structure and the gauge invariance on the transformation group
of the base manifolds as follows

Di↵ pMq ›Ñ
combinatorics

Di↵ pGqˆ3 ›Ñ
clusre constraint

Gˆ3 ˆ G. (4.123)

To make sure that the above group is already the whole symmetry
group of the Boulatov action we now follow the procedure of the previ-
ous section to obtain possible generators for the Q transformation. The
infinitesimal symmetry condition for the simplicial interaction in three
dimensions takes the form

0 “ BU i L ¨ Xi
Q ` DivM pL XMq , (4.124)

Using the fact that the only admissible base manifold transformations
are generated by divergence free vector fields, the above equation re-
duces to

U 2U 3U 4 X1
V ` U 1U 3U 4 X2

V ` U 1U 2U 4 X3
V ` U 1U 2U 3 X4

V “ 0 (4.125)

Hereby Xi
V is evaluated at the point pX ,Uq. Equation (4.125) needs to

hold true for any fi and any point of the base manifold, and hence for
any value of U 1,U 2,U 3,U 4. From this it directly follows that

Xi
V pX ,Uq “ 0. (4.126)

Hence, no further symmetries can be added to the above and the overall
symmetry group for the Boulatov action with real fields is

GT “ SU p2qˆ3 ˆ SU p2q , (4.127)

acting by left translation and conjugation, respectively,
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Symmetries of Ooguri model

For the Ooguri model with combinatorics

f : px1, ¨ ¨ ¨ , x10q fiÑ ppx1, x2, x3, x4q , px4, x5, x6, x7q , px7, x3, x8, x9q ,

ˆ px9, x6, x2, x10q , px10, x8, x5, x1qq ,

the above approach results in the transformation group

Spin p4qˆ2 ˆ Spin p4q , (4.128)

where Spin p4qˆ2 acts by left multiplication as

pG1, G2q ¨ x “ pG1x1, G2x2, G2x3, G1x4q . (4.129)

The fact that the symmetry group is not Spin p4qˆ4 ˆ Spin p4q stems
from the particular combinatorics that is typically used in the litera-
ture. Even though the combinatorial pattern of the pentatope is en-
coded in the interaction, the orientation of the faces of the pentatope is
di↵erent. This results in a di↵erent combination of the variables of the
field f and consequently in a reduction of the symmetry group from
Spin p4qˆ4 ˆ Spin p4q down to Spin p4qˆ2 ˆ Spin p4q.

Barrett-Crane model

Applying the above analysis to the BC model from equation (4.69) de-
fined by the following combinatorics

f : px1, ¨ ¨ ¨ x10; k1, ¨ ¨ ¨ , k5q fiÑ ppx1,2,3,4; k1q , px4,5,6,7; k2q , px7,3,8,9; k3q ,

ˆ px9,6,2,10; k4q , px10,8,5,1; k5qq ,

we realize that the symmetry group for the gauge invariant BC model
without simplicity constrains would be that of an extended Ooguri
model from equation (4.128) with an additional SU p2q symmetry for
the extended component,

”
Spin p4qˆ2 ˆ Spin p4q

ı
ˆ SU p2q , (4.130)

where the additional group SU p2q denotes a group of transformations
of the SU p2q element ki.

In order to obtain the symmetry group of the BC model we need
to impose simplicity constraints. As we show in appendix B.2, the re-
quirement on the fields to satisfy

f ˝ Su,h “ f, (4.131)

for u P SU p2qˆ4 and h P SU p2q reduce the symmetry group of the
Ooguri model (for the chosen combinatorics) down to

Spin p4qˆ2 ˆ SU p2q , (4.132)
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that acts on the elements of the local base manifold of the BC model
M ˆ SU p2q by conjugation such that in the selfdual and anti-selfdual
components of Spin p4q the action of the SU p2q group is given by

px´, x`, kq SUp2qfiÑ Dh ¨ px´, x`, kq ¨ Dh´1 .

And Spinp4qˆ2 acts by the left multiplication as

px, kq Spinp4qˆ2

fiÑ pG1x1, G2x2, G2x3, G1x4, kq .

4.5 Summary and Conclusion

In the first part of this chapter we presented a modification of the sym-
metry analysis of local theories to theories with multi-local actions. We
argued that the multi-local action in GFT can not be written as an in-
tegral of a smooth function on a single jet bundle. However, we have
shown that it is possible to construct a vector bundle that encodes the
combinatorial structure of the interaction and on which the interaction
Lagrangian can be defined as a smooth function. The multi-local action
can then be split in a sum of actions each of which is an ordinary local
action on a suitable vector bundle.

We applied our approach to explicit GFT models with and without
closure constraints. For models without closure constraints we used
the standard symmetry analysis for the local part of the action and
reduced the resulting group of symmetries using the interaction part.
For models with closure constraints our approach went the other way
around: we started with the interaction part and the condition for ad-
missible transformation groups. This allowed us to derive the whole
group of point symmetries for actions with closure constraints even in
cases when the local part of the action did not contain derivative op-
erators. This is especially interesting because the ordinary approach
would fail in this case.

The definition of point symmetries for multi-local actions seems,
however, too strong, since the resulting symmetry groups merely rep-
resent the invariance of the Haar measure. For that reason we believe
that the notion of point symmetry for multi-local actions is inappro-
priate. The equations of motion of a multi-local theory depend on inte-
grals over the entire domain of definition and therefore depend on the
whole field configuration in the domain. The Lagrangian of this theory
is, hence, more appropriately written as a functional on the space of
fields, rather than a function of a jet bundle. The geometrical construc-
tion of vector bundles and jet bundles should, therefore, be replaced
by infinite dimensional manifolds [160]. A group of transformations
would act directly on fields, but possibly will not have any interpreta-
tion in terms of vector fields on the vector bundle. For this reason the
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compatibility conditions will not be necessary and will not restrict the
possible group of transformation. Such symmetry groups are already
present in local field theories and are called the Lie-Baecklund symme-
tries [150, 161]. However, whereas the Lie-Baecklund symmetries are
still local (in a curtain sense), there is no reason to require the same for
the multi-local action. Under these considerations the resulting sym-
metry group is expected to grow significantly.

In fact, the symmetry group of some studied equations in plasma
physics (for example Vlasow and Landau equations [162]) and in hy-
drodynamics (for example the Boltzmann equation [163]) have been
shown to be infinite dimensional. The fact that the symmetry group
of integro-di↵erential equation is larger than that of partial di↵erential
equations is intuitive, since an integration procedure could make even
those transformations to symmetries which fail to conserve the action
in local subregions of the domain.

In conclusion, our analysis provides a structured method for the
derivation of point symmetries for multi-local actions but it also shows
that a point definition of symmetries is too restrictive for multi-local
models. A symmetry analysis of GFT action needs to be performed us-
ing the framework of infinite dimensional manifolds and we hope that
this issue will be addressed in future works.



BAppendix

B.1 Reduction of transformations due to gauge invariance

From equation (4.120) the requirement on the transformation reads

C px ¨ Dhq “ C pxq Dh̃. (B.1)

Writing out this equation in components we get

C1 px1hq “ C1 px1q h̃

C2 px2hq “ C2 px2q h̃ (B.2)

C3 px3hq “ C3 px3q h̃,

with Ci being a di↵eomorphism on the group G. At this point we em-
ploy the known relation

Di↵ pGq » G ˆ Di↵1 pGq , (B.3)

that states that the group of di↵eomorphisms on G is di↵eomorphic (as
a manifold) to the group G itself (that acts by left multiplication) times
a group of di↵eomorphisms that stabilizes the identity of G, denoted
Di↵1 pGq. This implies that every Ci can be written by some ci P G and
Di P Di↵1 pGq such that Ci pxq “ ci Di pxq with Di p1q “ 1. Inserting
this relation in equations B.2 and evaluating it at the point x1 “ x2 “
x3 “ 1 we observe

c1 ¨ D1 phq “ c1 ¨ h̃ (B.4)

c2 ¨ D2 phq “ c2 ¨ h̃ (B.5)

c1 ¨ D3 phq “ c1 ¨ h̃, (B.6)

which, in tern, implies

D1 phq “ D2 phq “ D3 phq “ h̃ “: D phq . (B.7)

Inserting this relation again in (B.2) at an arbitrary point x we get forD

D pxihq “ D pxiqD phq . (B.8)
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In other wordsD is an homomorphism and therefore an automorphism.
On G however, the group of automorphisms splits in the inner auto-
morphisms which are given by a conjugation with a fixed group ele-
ment and outer automorphisms, which relate to the discreet symme-
tries. Focusing on continues transformations we get

D pgq “ d ¨ g ¨ d´1 (B.9)

for some fixed d P SU p2q.

B.2 Barrett-Crane model

In this section we are going to show what are the admissible transfor-
mation in the Barrett-Crane model.

In the following we will denote a group element of Spin p4q by its
two copies of SU p2q as

Spin p4q Q g “ pg´, g`q P SU p2q ˆ SU p2q ,

a tuple of four elements is referred to by the vector notation

~g “ p~g´,~g`q .

For points of the base manifold M “ Spin p4qˆ4 we use x and some-
times write x1,2,3,4 referring to px1, x2, x3, x4q.

A basemanifold transformation of themodel is denoted by C : Spin p4qˆ4 ˆ
SU p2q Ñ Spin p4qˆ4 ˆ SU p2q. We denote the components of this trans-
formation as

C p~g, kq “
``

C´
1 , C`

1
˘

, ¨ ¨ ¨ ,
`
C´

4 , C`
4

˘
, Ck

˘
.

Here all the component functions C˘
i are functions on the base man-

ifold and therefore depend on points of the form p~g, kq. However, the
combinatorial structure of the BC model dictates the following condi-
tions on the components

C1 px1,2,3,4, k1q “ C4 px10,8,5,1, k5q
C2 px1,2,3,4, k1q “ C3 px9,6,2,10, k4q .

From the above relations we see that the components of the transfor-
mation have the following dependences

C px1,2,3,4, kq “ pC1 px1q , C2 px2q , C3 px3q , C4 px4q , Ck pkqq .

A priori we do not have any additional constrains on the component
Ck. However, since C is a di↵eomorphism and Ci are di↵eomorphisms,
the transformation of the normal has to be a di↵eomorphism as well
1. Again invoking the di↵eomorphism of manifolds Di↵ pSpin p4qq »1 Notice, that it would not be true if we

didn’t have restriction on Ci, since then Ci
would not be a di↵eomorphism and hence
neither needs to be Ck.
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Spin p4q ˆDi↵1 we denote the components of C that belong to Di↵1 by
the lower case c.

To implement simplicity constraints we need to require the invari-
ance of fields such that

f ˝ Su,h “ f.

for any u P SU p2qˆ4 and h P Spin p4q . Since the fields are transformed
under C as f fiÑ f ˝ C´1, we again get the following relations for the
transformation C

f ˝ CDh ˝ Su “ f ˝ C,

or equivalently for each h P Spin p4q, u P SU p2qˆ4 and x P M there
exist ũ P SU p2qˆ4 and h̃ P Spin p4q and k̃ P SU p2q such that

Ci px ¨ uk ¨ hq “ Ci pxq ¨ ũCk ¨ h̃ (B.10)

Ck

´
h´1

´ kh`
¯

“ h̃´1
´ Ck pkq h̃`, (B.11)

where we write uk “
`
kuk´1, u

˘
. The left multiplication by Spin p4q

is untouched by this transformation, however this is not true for the
normal component Ck. We first focus on the transformations Ci and
treat the normal component Ck afterwards.

From the form of uk we notice that for u “ 1 the left hand side does
not depend on k and so the right hand side also should not. It follows
that for u “ 1 we have ũ “ 1. Equation (B.10) then reads for the Di↵1
part,

ci pg ¨ hq “ ci pgq ¨ h̃.

It follows that ci is a homomorphism on Spin p4q and therefore is either
conjugation by a fixed element of Spin p4q or a flip of the SU p2q parts,
which is a discrete transformation. Hence, if ci is continuous it can be
written as

ci pgq “ s ¨ g ¨ s´1,

where g, s P Spin p4q. This implies

h̃ “ s ¨ h ¨ s´1.

Inserting this relation now in equation (B.11) we obtain

Ck

´
h´1

´ kh`
¯

“
´

s´h´1
´ s´1

´
¯

Ck pkq
´

s`h`s´1
`

¯
.

Splitting Ck in the left multiplication by SU p2q and Di↵1 we get for
some fixed w P SU p2q

w ck

´
h´1

´ kh`
¯

“
´

s´h´1
´ s´1

´
¯

w ck pkq
´

s`h`s´1
`

¯
. (B.12)

Choosing h´ “ h` and setting k “ 1 we get

w “
´

s´h´1
´ s´1

´
¯

w
´

s`h´s´1
`

¯
,
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which can only be satisfied if w “ 1.
Inserting equation (B.12) in (B.10) and using the fact that ci is a ho-

momorphism yields

ci pukq “ ci pk,1q ¨ ci pu, uq ¨ ci

´
k´1,1

¯

“ ck pkq ci pu, uq ck

´
k´1

¯
.

Hence, ci pa, bq “ pck paq , ck pbqq and ck is a homomorphisms itself. There-
for

ci pgq “ ps, sq ¨ g ¨ ps, sq´1 ,

and ck pkq “ sks´1.
These are the only admissible transformations that preserve the com-

binatorial structure of the theory and respect the simplicity constraints
together with gauge invariance. Notice that S itself would fail the re-
quirement of admissible transformations and therefor can not be seen
as a symmetry.



5Conclusion and future work

5.1 Summary of the thesis

In this chapter we recapitulate the work presented in this thesis and
provide an outlook for future work in the development of group field
theory.

In this thesis we discussed the formalism of group field theory in
applications to quantum gravity — a framework that suggests an emer-
gence of space-time from more fundamental degrees of freedom. In
chapter 1 we introduced a general problem of quantum gravity and
presented some direct complications that appear when we try to com-
bine the principles of general relativity and quantum field theory. In
chapter 2, we motivated and discussed the framework of group field
theory in its functional and operator formulation. The final result of
this chapter was the conceptual idea of the operator framework, fol-
lowed by a realization that an explicit relation between functional and
operator GFT does not exist. Nevertheless, this relation is highly desir-
able for the following reason:

The motivation and explicit form of GFT dynamics is conceptually
justified only in the functional approach, but the cosmological calcu-
lations and the many body interpretation of GFT is performed only in
the functional formulation. Without an explicit dictionary between the
ingredients, the dynamics of the operator theory is not justified and
could cast doubts on cosmological calculations. On the other hand,
an interpretation of geometrically meaningful observables seems to be
more easily done in the operator formulation using the intuition from
many body physics. For that reason, our final conclusion of chapter 2
was to pose the question for an explicit relation between the functional
and the operator approach.

In chapter 3 we provided a perturbative answer to this question and
explicitly constructed a correspondence between the formalisms. Our
construction uses the framework of algebraic non-relativistic quantum
field theory. Our main result was to show that we need to modify the
commutator between the field operators in order to include the dynam-
ical relations of the functional GFT. By choosing a coherent state on the
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resulting algebra and restricting the space of smearing functions to a
sub-space of real valued functions we obtain a one-to-one correspon-
dence between the expectation values of field operators and correlation
functions of the functional integral. Moreover, due to the corollary ( 4
on page 53) these coherent states correspond to the Fock representa-
tion of the algebra whenever they are translation invariant. We have
also shown, that local minima of the action may lead to di↵erent oper-
ator algebras. We characterized the space of Fock-inequivalent coher-
ent states by the space of tempered micro-functions. At the end of the
chapter 3 we suggested an interpretation of Fock-inequivalent repre-
sentations as phases of the GFT and the modified algebras as the space
of e↵ective observables in corresponding phase. We will discuss the
concept of phases below in more details, after we recap the results of
chapter 4.

A necessary ingredient of our construction is the classification of
minima of the action of GFT. To simplify this task we suggested to use
symmetry analysis. For this reason we developed the local symmetry
analysis for multi-local actions in the first part of chapter 4 and derived
the full local point-symmetry group for di↵erent GFT models in the
second part of this chapter. Our analysis has shown, however, that the
concept of point symmetry is too restrictive in the case of multi-local
theories. And the (almost) only symmetries we obtained were captured
by the left and right invariance of the Haar measure. Nevertheless,
all models in question were symmetric under left translations. Even
though this result is fairly trivial, its combination with the suggested
definition of phases in GFT leads to an interesting consequence that we
discuss below.

5.2 Broken symmetry phases of GFT

Due to the corollary 4 in chapter 3 we know that coherent states lead-
ing to an infinite particle states can not be symmetric under left trans-
lations. At the same time, however, we observed the left translation
invariance of all discussed actions in functional GFT. This suggests the
classification of phases of GFT in terms of symmetry breaking in the
following way.

Assume that we have a tempered micro-function that corresponds
to a minimum of the Boulatov action; for example the one that we have
used at the end of chapter 3. In this case the solution is not invari-
ant under left translation (even though the action is). For that rea-
son the coherent state, wd, that corresponds to that minimum, will not
be translation invariant as well. Using the left translation automor-
phism ay on the algebra of observables we can define a family of states 

wy “ wd ˝ ay | y P M
(
. It can be shown that each of this states leads
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to an inequivalent representation of the algebra [141], despite the fact
that they are related by a symmetry of the action. In QFT’s on space-
time this process is called spontaneous symmetry breaking, and it is
often used for characterization of phases [118, 164]. There, the phe-
nomenon is usually described as an invariance of the Hamiltonian, but
non-invariance of the ground state of the model under the symmetry
transformation. Even though, in our case the dynamical operator is not
directly introduced in the operator formalism, the symmetry breaking
is still present. This allows us to make the following classification of
phases in GFT (fig. 5.1): the Fock-phase — the one with finitely many
particles — is the left translation invariant phase; the non-Fock phases
— those with infinitely many particles — correspond to phases that
break left translation invariance.

Fock
breaking

finite particle phase infinite particle phases

≥
Df e´Srfs

lef
t t
ra
ns
lat
ion

s

symmetry

wj1
wj2

Figure 5.1: Perturbative phase diagram
of GFT. Hereby, the whole family of
states that appear from left translations
of wji define a single phase, just as in
the case of statistical physics [118, 131].
Also phases that correspond to tempered
micro-functions break translation invari-
ance.

As we discussed above at least some of the phases with infinitely
many particles are expected to contain states that describe smooth ge-
ometries. This intuition combined with the above symmetry breaking
suggests the following question: can translation invariance of the GFT
base manifold be related to discrete geometric information, whereas its
breaking signals the phase transition to smooth geometries? We sug-
gest to pursuit this question in future works.
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5.3 Further research directions in GFT

Wewant to conclude this theses with a list of research directions in GFT
that, from our point of view, are important to make significant progress
in the field. The list is not meant to be complete nor comprehensive.
Instead we restrict ourselves only to those directions that directly relate
to topics that we discussed in this thesis:

cosmology from gft phases: Starting with the geometric GFTmod-
els — such as Barrett-Crane model that we mentioned in chapter 4
— and following the procedure in [142, 148], we should investigate
resulting cosmological equations of GFT. In contrast to existing work
the dynamics of the model will directly stem from functional GFT
and, hence, could be directly related and justified from spin foam
models. This will provide a solid basis for cosmological calculations.
Moreover, unlike in [58, 97, 142, 144, 147, 148], the included dy-
namics will not be truncated to the kinetic part of the action but will
include the linearized version of the multi-local interactions of the
model.

non-local symmetries of gft: The concept of point symmetries as
we introduced them in our work is too strong for the multi-local
models of GFT. For that reason we suggest to extend the definition
of symmetries in two ways:

Lie-Baecklund symmetries: This type of symmetries is already present
in the analysis of partial di↵erential equations and generalizes the
concept of point symmetries. The main idea is to use the genera-
tors of the symmetry transformation such that

XLB
M px, f pxq , Bxf pxq , ¨ ¨ ¨ q XLB

V px, f pxq , Bxf pxq , ¨ ¨ ¨ q .

These generators depend on an arbitrary but finite order of field
derivatives and generalize the concept of point symmetries that
are generated by XM px, f pxqq and XV px, f pxqq. However, this
generalization also prohibits us to give a geometrical interpreta-
tion to the new generators XLB

M and XLB
V , since they can no longer

be seen as vector fields on the vector bundle of the model. Even in
the local case of partial di↵erential equations this generalization
leads to a large number of new symmetries. In GFT this may en-
large the symmetry group leading to non-trivial symmetries that
could be further used for classification of solutions.

Infinite dimensional calculus: Another approach to symmetries could
take on a di↵erent lead: a muli-local action S can be rewritten as
an integral over a Lagrangian L such that

S rfs “
ª

M
dx L rx, fs . (5.1)
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However, here L itself would be a functional that depends on the
whole field configuration f on M rather than on local points of the
form px, f pxq , Df|xq. In this case a formulation of the theory on
vector and jet bundles does not seem to be appropriate. The for-
malism of infinitely dimensional manifolds [160] can, however,
be more suitable for this case. Using this formulation a symme-
try of S should be formulated purely in terms of field transfor-
mations, f fiÑ f̃, and will not need to satisfy the compatibility
conditions eq. (4.44) and eq. (4.45). We expect the resulting sym-
metry to be very large and general enough to capture the truly
multi-local features of GFT.

regularization of the bottomless action: The bottomless struc-
ture of GFT action prevents us from a non-perturbative definition of
functional and operator GFT. Moreover, for renormalization analysis
even using non-perturbative methods such as the functional renor-
malization group flow [104, 165], the bound from below is highly de-
sired. In the literature a procedure of regularizing a bottomless ac-
tions exists [166]. The construction suggests to exchange the original
action of the model by one that is bounded from below such that the
perturbative expansion of the quantum theory remains untouched.
To our knowledge this formulation has not yet been applied in GFT.
We believe it is an important direction of development in GFT that
should be investigated in future work if a non-perturbative formu-
lation of GFT is desirable.

full classification of minima for gft models: This is one of the
most important technical aspects for our construction. Even if the
current symmetry analysis does not provide much insight in the
characterization of the minima the problem can be addressed in a
straight forward way using Fourier analysis on Lie groups [132]. The
characterization of local minima for the Boulatov and the Boulatov-
like action with the Laplace-Beltrami operator is the current work in
progress by the author and collaborators [Ben-Geloun:aa].

formulation of the constraint operators in gft: This problem is
important for better understanding of the operator formulation of
GFT. A construction of constraint operators directly on the level of
the algebra may lead to better intuition of the dynamics of GFT in
the language of many body physics. A step in this direction could
be achieved by taking the direct sum over all algebras for each min-
imum of the action S. A constraint operator would, then, act as a
projector on the suitable sub-algebra. The problem with this naive
formulation is that the direct-sum-algebra will not be primitive, and
hence does not admit faithful irreducible representations. The later,



112

however, are of fundamental importance for the formulation of al-
gebraic QFT [42].



Bibliography

[1] C. Kiefer. Quantum Gravity. Oxford University Press UK, 2004.

[2] T. Dass.Measurements and decoherence. arXiv:quant-ph/0505070.
2005.

[3] S. Mercuri. “Introduction to Loop Quantum Gravity”. In: Pro-
ceeding of science ISFTG (2009), p. 016.

[4] M. Planck. “Über irreversible Strahlungsvorgänge”. In:Annalen
der Physik 306.1 (1900), pp. 69–122.

[5] M. Bronstein. “Kvantovanie gravitatsionnykh voln [Quantizing
of gravitational waves]”. In: Journal of Experimental and Theo-
retical Physics 6 (1936), pp. 195–236.

[6] M. Bronstein. “Republication of: Quantum theory of weak grav-
itational fields”. In:General Relativity and Gravitation 44.1 (2012),
pp. 267–283.

[7] C. Rovelli and F. Vidotto. Covariant loop quantum gravity: an
elementary introduction to quantum gravity and spinfoam theory.
Cambridge University Press, 2014.

[8] P. Dona and S. Speziale. “Introductory lectures to loop quan-
tum gravity”. In: Gravitation Théorie et Expérience.Proceedings,
Troisième école de physique théorique de Jijel: Jijel, Algeria, Septem-
ber 26–October 03, 2009. 2013, pp. 89–140.

[9] R. Brunetti et al. “Cosmological perturbation theory and quan-
tum gravity”. In: Journal of High Energy Physics 2016.8 (2016),
p. 32.

[10] R. Brunetti, K. Fredenhagen, and K. Rejzner. “Quantum gravity
from the point of view of locally covariant quantum field the-
ory”. In: Communications in Mathematical Physics 345.3 (2016),
pp. 741–779.

[11] M. B. Fröb. “Gauge-invariant quantum gravitational corrections
to correlation functions”. In:Classical and QuantumGravity 35.5
(2018), p. 055006.



114

[12] B. Dittrich. “The Continuum Limit of Loop Quantum Gravity:
A Framework for Solving the Theory”. In: Loop Quantum Grav-
ity. World Scientific, 2017. Chap. Chapter 5, pp. 153–179.

[13] C. Delcamp and B. Dittrich. “Towards a phase diagram for spin
foams”. In:Classical and QuantumGravity 34.22 (2017), p. 225006.

[14] R. Colella, A. W. Overhauser, and S. A. Werner. “Observation
of gravitationally induced quantum interference”. In: Physical
Review Letters 34.23 (1975), p. 1472.

[15] L. Ford. “Gravitational radiation by quantum systems”. In: An-
nals of Physics 144.2 (1982), pp. 238–248.

[16] J. Schmöle et al. “A micromechanical proof-of-principle experi-
ment formeasuring the gravitational force ofmilligrammasses”.
In: Classical and Quantum Gravity 33.12 (2016), p. 125031.

[17] N. Kiesel and E. Lutz. “Nanoparticles jumping high”. In:Nature
Nanotechnology 12 (2017), 1119 EP.

[18] J. Cripe et al. Observation of a room-temperature oscillator’s mo-
tion dominated by quantum fluctuations over a broad audio-frequency
band. arXiv:quant-ph/1802.10069. 2018.

[19] S. Bose et al. “Spin Entanglement Witness for Quantum Grav-
ity”. In: Physical Review Letters 119 (24 2017), p. 240401.

[20] G. Amelino-Camelia et al. “Tests of quantum gravity from ob-
servations of gamma-ray bursts”. In:Nature 393 (1998), pp. 763–
765.

[21] G. Amelino-Camelia et al. “Distance measurement and wave
dispersion in a Liouville string approach to quantum gravity”.
In: International Journal of Modern Physics A12 (1997), pp. 607–
624.

[22] G. Amelino-Camelia and L. Smolin. “Prospects for constrain-
ing quantum gravity dispersion with near term observations”.
In: Physical Review D 80.8 (2009), p. 084017.

[23] R. Gambini and J. Pullin. “Nonstandard optics from quantum
space-time”. In: Physical Review D 59 (1999), p. 124021.

[24] M. H. Ansari. “Spectroscopy of a canonically quantized hori-
zon”. In: Nuclear Physics B 783.3 (2007), pp. 179–212.

[25] L. J. Garay. “Quantum gravity and minimum length”. In: Inter-
national Journal of Modern Physics A10 (1995), pp. 145–166.

[26] D. Amati, M. Ciafaloni, and G. Veneziano. “Superstring Col-
lisions at Planckian Energies”. In: Physics Letters B197 (1987),
p. 81.



115

[27] D. J. Gross and P. F. Mende. “String theory beyond the Planck
scale”. In: Nuclear Physics B 303.3 (1988), pp. 407–454.

[28] G. J. Milburn. “Lorentz invariant intrinsic decoherence”. In:
New Journal of Physics 8.6 (2006), p. 96.

[29] A. Kempf. “Information-theoretic natural ultraviolet cuto↵ for
spacetime”. In: Physical Review Letters 103 (2009), p. 231301.

[30] I. Pikovski et al. “Probing Planck-scale physics with quantum
optics”. In: Nature Physics 8 (2012), 393 EP.

[31] E. P. Verlinde. “Emergent Gravity and the Dark Universe”. In:
SciPost Physics 2.3 (2017), p. 016.

[32] J. W. Mo↵at. “Quantum Gravity and the Cosmological Con-
stant Problem”. In: Springer Proceedings in Physics 170 (2016),
pp. 299–309.

[33] J. P. Conlon. “Quantum Gravity Constraints on Inflation”. In:
Journal of Cosmology and Astroparticle Physics 1209 (2012), p. 019.

[34] H.Westman and S. Sonego. “Coordinates, observables and sym-
metry in relativity”. In:Annals of Physics 324.8 (2009), pp. 1585–
1611.

[35] A. Einstein and M. Grossmann. “Entwurf einer verallgemein-
erten Relativitätstheorie und einer Theorie der Gravitation”. In:
Monatshefte für Mathematik und Physik 26.1 (1915), A38–A38.

[36] J. Stachel. “The Hole Argument and Some Physical and Philo-
sophical Implications”. In: Living Reviews in Relativity 17.1 (2014),
p. 1.

[37] C. G. Torre. The Problems of time and observables: Some recent
mathematical results. arXiv:gr-qc/9404029. 1994.

[38] R. F. Streater and A. S. Wightman. PCT, spin and statistics, and
all that. Princeton University Press, 2000.

[39] K. Fredenhagen and K. Rejzner. “Quantumfield theory on curved
spacetimes: Axiomatic framework and examples”. In: Journal of
Mathematical Physics 57.3 (2016), p. 031101.

[40] J. Baez and J. P. Muniain. Gauge fields, knots and gravity. Vol. 4.
World Scientific Publishing Company, 1994.

[41] T. Thiemann. Solving the Problem of Time in General Relativity
and Cosmology with Phantoms and k-Essence. arXiv:astro-ph/0607380.
2006.

[42] R. Haag and D. Kastler. “An Algebraic Approach to Quantum
Field Theory”. In: Journal of Mathematical Physics 5.7 (1964),
pp. 848–861.



116

[43] D. Jia.Analogue of Null Geodesic in Quantum Spacetime. arXiv:1801.07673.
2018.

[44] R. Gurau and J. P. Ryan. “Colored Tensor Models - a review”.
In: SIGMA 8 (2012), p. 020.

[45] V. Rivasseau. “QuantumGravity and Renormalization: The Ten-
sor Track”. In: AIP Conference Proceedings 1444 (2011), pp. 18–
29.

[46] R. Gurau. “Invitation to RandomTensors”. In: SIGMA 12 (2016),
p. 094.

[47] D. Oriti. The Group field theory approach to quantum gravity.
Ed. by D. Oriti. Cambridge: Cambridge University Press, 2009,
pp. 310–331.

[48] D. Oriti. “The microscopic dynamics of quantum space as a
group field theory”. In: Proceedings, Foundations of Space and
Time: Reflections on Quantum Gravity: Cape Town, South Africa.
2011, pp. 257–320.

[49] T. Krajewski. “Group field theories”. In: Proceeding of science
QGQGS (2011), p. 005.

[50] T. Thiemann. “Lectures on loop quantum gravity”. In: Lecture
Notes in Physics 631 (2003), pp. 41–135.

[51] C. Rovelli. “Loop Quantum Gravity”. In: Living Reviews in Rel-
ativity 11.1 (2008), p. 5.

[52] A. Ashtekar and J. Pullin. “Loop Quantum Gravity”. In: ed. by
A. Ashtekar and J. Pullin. World Scientific, 2017.

[53] N. Bodendorfer.An elementary introduction to loop quantum grav-
ity. arXiv:1607.05129. 2016.

[54] J. C. Baez. “An Introduction to spin foam models of quantum
gravity and BF theory”. In: Lecture Notes in Physics 543 (2000),
pp. 25–94.

[55] A. Perez. “The Spin Foam Approach to Quantum Gravity”. In:
Living Reviews in Relativity 16 (2013), p. 3.

[56] J. Ben Geloun and V. Bonzom. “Radiative corrections in the
Boulatov-Ooguri tensor model: The 2-point function”. In: In-
ternational Journal of Theoretical Physics 50 (2011), pp. 2819–
2841.

[57] S. Gielen and L. Sindoni. “Quantum Cosmology from Group
Field Theory Condensates: a Review”. In: SIGMA 12 (2016),
p. 082.

[58] D. Oriti, L. Sindoni, and E. Wilson-Ewing. “Bouncing cosmolo-
gies from quantum gravity condensates”. In:Classical and Quan-
tum Gravity 34 (2017), p. 04.



117

[59] T. Thiemann. “Lectures on loop quantum gravity”. In: Quan-
tum Gravity (2003), pp. 219–229.

[60] T. Thiemann. “Loop Quantum Gravity: An Inside View”. In:
Approaches to Fundamental Physics: An Assessment of Current
Theoretical Ideas. Ed. by I.-O. Stamatescu and E. Seiler. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 185–263.

[61] J. C. Baez. “Spin foammodels”. In:Classical and QuantumGrav-
ity 15 (1998), pp. 1827–1858.

[62] J. C. Baez et al. “Spin foam models of Riemannian quantum
gravity”. In:Classical and QuantumGravity 19 (2002), pp. 4627–
4648.

[63] C. W. Misner. “Feynman quantization of general relativity”. In:
Reviews of Modern Physics 29.3 (1957), p. 497.

[64] R. D. Sorkin. “Causal sets: Discrete gravity”. In: Lectures on
quantum gravity. Ed. by A. Gombero↵ and D. Marolf. Boston,
MA: Springer, 2005, pp. 305–327.

[65] R. Geroch and J. B. Hartle. “Computability and physical theo-
ries”. In: Foundations of Physics 16.6 (1986), pp. 533–550.

[66] K. Symanzik. “Euclidean quantum field theory. I. Equations for
a scalar model”. In: Journal of Mathematical Physics 7.3 (1966),
pp. 510–525.

[67] A. Ja↵e. “Euclidean quantum field theory”. In: Nuclear Physics
B 254 (1985), pp. 31–43.

[68] M. Hairer. An introduction to stochastic PDEs. arXiv:0907.4178.
2009.

[69] A. Ja↵e. Quantum Fields, Stochastic PDE, and Reflection Proceed-
ing of scienceitivity. arXiv:1411.2964. 2014.

[70] R. Gupta. “Introduction to lattice QCD: Course”. In: Probing
the standard model of particle interactions. Proceedings, Summer
School in Theoretical Physics, NATO Advanced Study Institute,
68th session, Les Houches, France, July 28-September 5, 1997. Pt.
1, 2. 1997, pp. 83–219.

[71] É. Roldán and S. Gupta. “Path-integral formalism for stochas-
tic resetting: Exactly solved examples and shortcuts to confine-
ment”. In: Physical Review E 96 (2 2017), p. 022130.

[72] M. Visser.How toWick rotate generic curved spacetime. arXiv:1702.05572.
2017.

[73] J. B. Hartle and S. W. Hawking. “Wave function of the Uni-
verse”. In: Physical Review D 28 (12 1983), pp. 2960–2975.



118

[74] P. O. Mazur and E. Mottola. “The path integral measure, con-
formal factor problem and stability of the ground state of quan-
tum gravity”. In: Nuclear Physics B 341.1 (1990), pp. 187–212.

[75] G. Gibbons, S. Hawking, and M. Perry. “Path integrals and the
indefiniteness of the gravitational action”. In: Nuclear Physics B
138.1 (1978), pp. 141–150.

[76] G. W. Gibbons and S. W. Hawking. “Action integrals and parti-
tion functions in quantum gravity”. In: Physical Review D 15.10
(1977), p. 2752.

[77] R. Loll. “Discrete Approaches to Quantum Gravity in Four Di-
mensions”. In: Living Reviews in Relativity 1.1 (1998), p. 13.

[78] L. Freidel and A. Starodubtsev.Quantum gravity in terms of topo-
logical observables. arXiv:hep-th/0501191. 2005.

[79] J. F. Plebafiski. “On the separation of Einsteinian substructures”.
In: Journal of Mathematical Physics 18.12 (1977), pp. 2511–2520.

[80] K. Krasnov. “Plebanski Formulation of General Relativity: A
Practical Introduction”. In: General Relativity and Gravitation
43 (2011), pp. 1–15.

[81] M. Smerlak and C. Rovelli. “Spinfoams: summing or refining?”
In: Journal of Physics: Conference Series 360.1 (2012), p. 012053.

[82] J.W. Barrett and L. Crane. “Relativistic spin networks and quan-
tum gravity”. In: Journal of Mathematical Physics 39 (1998), pp. 3296–
3302.

[83] J. Engle et al. “LQG vertex with finite Immirzi parameter”. In:
Nuclear Physics B799 (2008), pp. 136–149.

[84] L. Freidel and K. Krasnov. “A New Spin Foam Model for 4d
Gravity”. In:Classical and QuantumGravity 25 (2008), p. 125018.

[85] G. Ponzano and T. Regge. “Semiclassical limit of Reach coe�-
cients in Spectroscopic andGroup TheoreticalMethods in Physics”.
In: ed. by F. Bloch. New York: John Wiley and Sons Inc., 1969,
pp. 1–58.

[86] B. Dittrich, M. Martín-Benito, and E. Schnetter. “Coarse grain-
ing of spin net models: dynamics of intertwiners”. In:New Jour-
nal of Physics 15 (2013), p. 103004.

[87] B. Dittrich, S. Mizera, and S. Steinhaus. “Decorated tensor net-
work renormalization for lattice gauge theories and spin foam
models”. In: New Journal of Physics 18.5 (2016), p. 053009.

[88] B. Bahr, B. Dittrich, andM. Geiller.A new realization of quantum
geometry. arXiv:1506.08571. 2015.



119

[89] D. Oriti. “Generalised group field theories and quantum grav-
ity transition amplitudes”. In: Physical ReviewD 73 (2006), p. 061502.

[90] L. Freidel. “Group field theory: An Overview”. In: International
Journal of Theoretical Physics 44 (2005), pp. 1769–1783.

[91] D. Oriti. “The Group field theory approach to quantum grav-
ity: Some recent results”. In: AIP Conference Proceedings 1196
(2009), pp. 209–218.

[92] D. Oriti. “Group field theory as the 2nd quantization of Loop
QuantumGravity”. In: Classical and QuantumGravity 33.8 (2016),
p. 085005.

[93] D. V. Boulatov. “A Model of three-dimensional lattice gravity”.
In: Modern Physics Letters A7 (1992), pp. 1629–1646.

[94] R. Gurau. “Colored Group Field Theory”. In: Communications
in Mathematical Physics 304 (2011), pp. 69–93.

[95] D. Oriti and H. Pfei↵er. “A Spin foam model for pure gauge
theory coupled to quantum gravity”. In: Physical Review D 66
(2002), p. 124010.

[96] J. Ben Geloun, R. Gurau, and V. Rivasseau. “EPRL/FK Group
Field Theory”. In: Europhysics Letters 92 (2010), p. 60008.

[97] S. Gielen, D. Oriti, and L. Sindoni. “Homogeneous cosmologies
as group field theory condensates”. In: Journal of High Energy
Physics 06 (2014), p. 013.

[98] H. Ooguri. “Topological lattice models in four-dimensions”. In:
Modern Physics Letters A7 (1992), pp. 2799–2810.

[99] A. Baratin andD. Oriti. “Group field theory and simplicial grav-
ity path integrals: A model for Holst-Plebanski gravity”. In:
Physical Review D 85 (2012), p. 044003.

[100] A. Baratin and D. Oriti. “Quantum simplicial geometry in the
group field theory formalism: reconsidering the Barrett-Crane
model”. In: New Journal of Physics 13 (2011), p. 125011.

[101] J. Ben Geloun. “On the finite amplitudes for open graphs in
Abelian dynamical colored Boulatov–Ooguri models”. In: Jour-
nal of Physics A:Mathematical and Theoretical 46 (2013), p. 402002.

[102] J. Ben Geloun, R. Martini, and D. Oriti. “Functional Renormal-
ization Group analysis of a Tensorial Group Field Theory on
R3”. In: Europhysics Letters 112.3 (2015), p. 31001.

[103] J. Ben Geloun, R. Martini, and D. Oriti. “Functional Renormal-
isation Group analysis of Tensorial Group Field Theories on
Rd”. In: Physical Review D 94.2 (2016), p. 024017.



120

[104] D. Benedetti, J. Ben Geloun, and D. Oriti. “Functional Renor-
malisation Group Approach for Tensorial Group Field Theory:
a Rank-3 Model”. In: Journal of High Energy Physics 03 (2015),
p. 084.

[105] S. Carrozza and D. Oriti. “Bounding bubbles: the vertex rep-
resentation of 3d Group Field Theory and the suppression of
pseudo-manifolds”. In: Physical Review D 85 (2012), p. 044004.

[106] S. Carrozza, D. Oriti, and V. Rivasseau. “Renormalization of
Tensorial Group Field Theories: Abelian U(1) Models in Four
Dimensions”. In: Communications in Mathematical Physics 327
(2014), pp. 603–641.

[107] S. Carrozza. “Tensorial methods and renormalization in Group
Field Theories”. PhD thesis. Orsay, LPT, 2013.

[108] S. Carrozza and V. Lahoche. “Asymptotic safety in three-dimensional
SU(2) Group Field Theory: evidence in the local potential ap-
proximation”. In: Classical and Quantum Gravity 34.11 (2017),
p. 115004.

[109] S. Carrozza. “Flowing in Group Field Theory Space: a Review”.
In: SIGMA 12 (2016), p. 070.

[110] S. Carrozza, V. Lahoche, and D. Oriti. Renormalizable Group
Field Theory beyondmelons: an example in rank four. arXiv:1703.06729.
2017.

[111] O. Piguet and S. P. Sorella. Algebraic renormalization: Perturba-
tive renormalization, symmetries and anomalies. Vol. 28. Springer
Science & Business Media, 2008.

[112] J. Ben Geloun. “Classical Group Field Theory”. In: Journal of
Mathematical Physics 53 (2012), p. 022901.

[113] A. Kegeles andD. Oriti. “Continuous point symmetries in group
field theories”. In: Journal of Physics A: Mathematical and Theo-
retical 50.12 (2017), p. 125402.

[114] J. Ambjorn, B. Durhuus, and T. Jonsson. “Three-dimensional
simplicial quantum gravity and generalized matrix models”.
In: Modern Physics Letters A6 (1991), pp. 1133–1146.

[115] D. Oriti.Group Field Theory and Loop QuantumGravity. arXiv:1408.7112.
2014.

[116] J. C. Baez and J.W. Barrett. “The Quantum tetrahedron in three-
dimensions and four-dimensions”. In: Advances in Theoretical
and Mathematical Physics 3 (1999), pp. 815–850.



121

[117] J.-P. Antoine. “Quantum mechanics beyond Hilbert space”. In:
Irreversibility and Causality Semigroups and Rigged Hilbert Spaces.
Ed. by A. Bohm, H.-D. Doebner, and P. Kielanowski. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 1–33.

[118] G. L. Sewell. Quantum theory of collective phenomena. Courier
Corporation, 2014.

[119] K. Osterwalder and R. Schrader. “Axioms for Euclidean Green’s
functions”. In:Communications inMathematical Physics 31.2 (1973),
pp. 83–112.

[120] A. Ja↵e and G. Ritter. “Quantum Field Theory on Curved Back-
grounds. I. The Euclidean Functional Integral”. In: Communi-
cations in Mathematical Physics 270.2 (2007), pp. 545–572.

[121] V. P. Nair. Quantum field theory: A modern perspective. Springer
Science & Business Media, 2005.

[122] N. N. Bogolubov and N. Bogolubov Jr. Introduction to quan-
tum statistical mechanics. World Scientific Publishing Company,
2009.

[123] O. Bratteli and D. Robinson. Operator Algebras and Quantum
Statistical Mechanics 1: C*- and W*-Algebras. Symmetry Groups.
Decomposition of States. Operator Algebras and Quantum Sta-
tistical Mechanics. Springer-Verlag, 1997.

[124] O. Bratteli and D. Robinson. Operator Algebras and Quantum
Statistical Mechanics 2: Equilibrium States. Models in Quantum
Statistical Mechanics. Theoretical andMathematical Physics. Springer
Berlin Heidelberg, 2003.

[125] H. Araki. Mathematical theory of quantum fields. Vol. 101. Ox-
ford University Press, 1999.

[126] F. Strocchi.An introduction to the mathematical structure of quan-
tum mechanics: a short course for mathematicians. Vol. 28. World
Scientific, 2008.

[127] I. Gelfand and M. Neumark. “On the imbedding of normed
rings into the ring of operators in Hilbert space”. In: Matem-
aticeskij sbornik 54.2 (1943), pp. 197–217.

[128] I. E. Segal. “Irreducible representations of operator algebras”.
In: Bulletin of the American Mathematical Society 53.2 (1947),
pp. 73–88.

[129] F. Strocchi. “Spontaneous symmetry breaking in local gauge
quantum field theory; the Higgs mechanism”. In: Communica-
tions in Mathematical Physics 56.1 (1977), pp. 57–78.

[130] F. Strocchi. Symmetry breaking. Vol. 643. Springer Science &
Business Media, 2005.



122

[131] H. Araki and E. Woods. “Representations of the canonical com-
mutation relations describing a nonrelativistic infinite free Bose
gas”. In: Journal of Mathematical Physics 4.5 (1963), pp. 637–
662.

[132] M. Sugiura. “Fourier series of smooth functions on compact Lie
groups”. In:Osaka Journal of Mathematics 8.1 (1971), pp. 33–47.

[133] H. B. Grundling and C. Hurst. “Algebraic quantization of sys-
tems with a gauge degeneracy”. In: Communications in Mathe-
matical Physics 98.3 (1985), pp. 369–390.

[134] H. Grundling and F. Lledó. “Local quantum constraints”. In:
Reviews in Mathematical Physics 12.09 (2000), pp. 1159–1218.

[135] R. V. Kadison and J. R. Ringrose. Fundamentals of the Theory of
Operator Algebras Volume I: Elementary Theory. Vol. 1. Pure and
applied mathematics. Academic Press, 1983.

[136] M. Reed and B. Simon.Methods of modern mathematical physics.
vol. 1. Functional analysis. Academic New York, 1980.

[137] R. Honegger and A. Rapp. “General Glauber coherent states on
the Weyl algebra and their phase integrals”. In: Physica A: Sta-
tistical Mechanics and its Applications 167.3 (1990), pp. 945–961.

[138] R. J. Glauber. “Coherent and incoherent states of the radiation
field”. In: Physical Review 131.6 (1963), p. 2766.

[139] R. Honegger and A. Rieckers. “The general form of non-Fock
coherent boson states”. In: Publications of the Research Institute
for Mathematical Sciences 26.2 (1990), pp. 397–417.

[140] G. G. Emch. Algebraic methods in statistical mechanics and quan-
tum field theory. Courier Corporation, 2009.

[141] A. Kegeles, D. Oriti, and C. Tomlin. “Inequivalent coherent state
representations in group field theory”. In: Classical and Quan-
tum Gravity 35.12 (2018), p. 125011.

[142] S. Gielen, D. Oriti, and L. Sindoni. “Cosmology from Group
Field Theory Formalism for Quantum Gravity”. In: Physical Re-
view Letters 111.3 (2013), p. 031301.

[143] S. Gielen. “Quantum cosmology of (loop) quantum gravity con-
densates: An example”. In: Classical and Quantum Gravity 31
(2014), p. 155009.

[144] S. Gielen and D. Oriti. “Quantum cosmology from quantum
gravity condensates: cosmological variables and lattice-refined
dynamics”. In: New Journal of Physics 16.12 (2014), p. 123004.

[145] S. Gielen. “Perturbing a quantum gravity condensate”. In: Phys-
ical Review D 91.4 (2015), p. 043526.



123

[146] S. Gielen. “Identifying cosmological perturbations in group field
theory condensates”. In: Journal of High Energy Physics 08 (2015),
p. 010.

[147] S. Gielen. “Emergence of a low spin phase in group field theory
condensates”. In: Classical and Quantum Gravity 33.22 (2016),
p. 224002.

[148] D. Oriti, L. Sindoni, and E. Wilson-Ewing. “Emergent Fried-
mann dynamics with a quantum bounce from quantum gravity
condensates”. In: Classical and Quantum Gravity 33.22 (2016),
p. 224001.

[149] D. Bump. Lie groups. Springer, 2004.

[150] P. J. Olver. Applications of Lie groups to di↵erential equations.
Vol. 107. Springer Science & Business Media, 2000.

[151] N. H. Ibragimov, V. Kovalev, and V. Pustovalov. “Symmetries of
integro-di↵erential equations: A survey of methods illustrated
by the Benny equations”. In: Nonlinear Dynamics 28.2 (2002),
pp. 135–153.

[152] S. V. Meleshko et al. Symmetries of integro-di↵erential equations:
with applications in mechanics and plasma physics. Vol. 806. Springer
Science & Business Media, 2010.

[153] R. Abraham and J. E. Marsden. Foundations of mechanics. Vol. 36.
Benjamin/Cummings Publishing Company Reading,Massachusetts,
1978.

[154] D. J. Saunders. The Geometry of Jet Bundles. London Mathemat-
ical Society Lecture Note Series. Cambridge University Press,
1989.

[155] M. Nakahara. Geometry, topology and physics. CRC Press, 2003.

[156] E. Noether. “Invariant variation problems”. In: Transport The-
ory and Statistical Physics 1 (1971), pp. 186–207.

[157] A. Kegeles and D. Oriti. “Generalized conservation laws in non-
local field theories”. In: Journal of Physics A: Mathematical and
Theoretical 49.13 (2016), p. 135401.

[158] L. Freidel, K. Krasnov, and R. Puzio. “BF description of higher
dimensional gravity theories”. In: Advances in Theoretical and
Mathematical Physics 3 (1999), pp. 1289–1324.

[159] S. J. Akhtarshenas.Di↵erential geometry on SU(N): Left and right
invariant vector fields and one-forms. Applied Mathematics and
Information Sciences. 2010.

[160] H. Glöckner and K.-H. Neeb. “Infinite-dimensional Lie groups”.
In: book in preparation (2005).



124

[161] S. Lie. “Theorie der Transformationsgruppen I”. In: Mathema-
tische Annalen 16.4 (1880), pp. 441–528.

[162] R. Balescu and T. Kotera. “On the covariant formulation of clas-
sical relativistic statistical mechanics”. In: Physica 33.3 (1967),
pp. 558–580.

[163] L. Boltzmann. “Further studies on the thermal equilibrium of
gas molecules”. In: The kinetic theory of gases: an anthology of
classic papers with historical commentary. World Scientific, 2003,
pp. 262–349.

[164] F. Strocchi. “Spontaneous Symmetry Breaking in Quantum Sys-
tems. A review for Scholarpedia”. In: Scholarpedia 7.1 (2012),
p. 11196.

[165] D. Benedetti and V. Lahoche. “Functional Renormalization Group
Approach for Tensorial Group Field Theory: A Rank-6 Model
with Closure Constraint”. In: Classical and Quantum Gravity
33.9 (2016), p. 095003.

[166] J. Greensite andM.Halpern. “Stabilizing bottomless action the-
ories”. In: Nuclear Physics B 242.1 (1984), pp. 167–188.



6Index

admissible transformations, 87
algebra

C‹, 46
von Neumann, 49

algebraic states, 46
Fock, 51

background field, 45
background independence, 20
base manifold, 76
base space, 76
bottomless action, 26, 36, 44, 61
Boulatov action, 32

classical limit of quantum gravity, 14
closure constraint, 32
coherent states, 52

non-Fock, 53
colored GFT, 82
colored models, 34
connection, 27
correlation functions, 44
cyclic state, 37

diagonal sections, 85
di↵eomorphism invariance, 17

Euclidean action, 25
external source field, 44

fiber, 76
fields, 77

GFT, 33
frame field, 27
functional GFT, 23, 32

geometric observables, 40
glueing of triangles, 33
GNS construction, 50
group field theory, 23

algebraic, 54
concept, 38
functional, 32
operator, 37
Weyl algebra, 49

Haar measure, 65
Hilbert-Einstein action, 24
hole argument, 18
holonomy, 29

integro-di↵erential equations, 75

jet bundle, 76, 77
jet space, 78

kinematical Hilbert space, 61

local group of transformations, 79
local trivialization, 76
locality, 19
loop quantum gravity, 23

micro causality, 19
Misner quantization, 24

observables, 46
Ooguri model, 90
operator GFT, 23, 37

Peter-Weyl transform, 66
physical Hilbert space, 61
Planck unites, 12
Plebanski action, 29
problem
conformal-factor, 26
of quantum gravity, 13
of time, 19
quantum gravity, 17

product representation, 67

projection, 76
prolonged group action, 80
propagator, 55
pull back bundle, 84

quantum gravity, 12
Bronstein argument, 12
classical limit, 13
Euclidean, 27
Lorentzian, 26
observations, 13
problems, 17
Riemannian, 26
scale, 12
semi-classical limit, 13, 14
strong field limit, 13–15
table top experiments, 14, 16
weak field limit, 13

scale of quantum gravity, 12
sections, 77
simplicial complexes, 34
smearing functions, 49
smearing of forms, 29
spin foam, 30
amplitude, 30
model, 23, 27

structure group, 77

tempered micro-functions, 53
test functions, 49
total space, 76
trivial bundle, 76
trivial vector bundles, 28
two-complex, 29

vector bundle, 76

Weyl algebra, 49
Wigner matrix representation, 65


	Title
	Imprint

	Contents
	Summary
	1 Introduction to Quantum Gravity
	1.1 The scale of quantum gravity
	1.2 Is quantum gravity observable?
	1.3 Conceptual problems of quantum gravity
	1.3.1 Diffeomorphism invariance of GR
	1.3.2 Gravity vs. quantum mechanics


	2 Group field theory
	2.1 Misner quantization of GR
	2.2 Covariant loop quantum gravity
	2.2.1 Classical reformulation of GR — the Plebanski action
	2.2.2 Covariant quantization

	2.3 Group field theory — functional formulation
	2.3.1 Geometric interpretation of the Boulatov interaction
	2.3.2 Complications of the formalism

	2.4 Group field theory — operator formulation

	3 Algebraic formulation of group field theory
	3.1 Covariant and canonical formulation of QFT
	3.2 Non-relativistic algebraic quantum field theory
	3.2.1 Weyl algebra of GFT
	3.2.2 Algebraic states

	3.3 Algebraic group field theory
	3.4 Application of the algebraic formulation
	3.5 Conclusion

	A Appendix
	A.1 Group theory of SU p2q in a nutshell
	A.2 Fourier transform on SU p2q
	A.3 Notation suitable for GFT
	A.4 Proof of lemmas for S
	A.5 Weyl algebra with closure constraints
	A.6 Proof of the equality between the correlation functions

	4 Symmetry analysis of group field theory
	4.1 Geometrical construction of local field theories
	4.1.1 Vector bundles
	4.1.2 Jet bundles
	4.1.3 Continuous symmetry and the local group of transformations

	4.2 Multi-local action and its symmetry group
	4.2.1 Vector bundle for GFT
	4.2.2 Vector bundle for the multi-local interaction
	4.2.3 The local group of transformations for multi-local actions
	4.2.4 Symmetries of non-local actions

	4.3 Overview of the models
	4.3.1 Simplicial interactions
	4.3.2 Extended Barrett-Crane model

	4.4 Applications of the symmetry analysis in GFT
	4.4.1 Boulatov like model
	4.4.2 Models with closure constraints

	4.5 Summary and Conclusion

	B Appendix
	B.1 Reduction of transformations due to gauge invariance
	B.2 Barrett-Crane model

	5 Conclusion and future work
	5.1 Summary of the thesis
	5.2 Broken symmetry phases of GFT
	5.3 Further research directions in GFT

	Bibliography
	6 Index

