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Introduction

The present dissertation is devoted to new developments in the analysis of operators on
manifolds with singularities, especially differential and pseudo-differential operators of elliptic
type when the geometry of the underlying space may be characterized by stratifications. On
one hand our approach is based on the symbolic structure of operators, according to the
background of micro-local analysis, on the other hand we focus on exciting new developments
of the analysis on underlying spaces, roughly characterized by stratifications. The latter notion
covers singularities of conical, edge, or corner type, and the context is altogether motivated
by applications of partial differential equations in physics and technical sciences.

Let us first give some references on the involved fields in general. Both applications as well as
the purely analytic content and also geometric/topological interpretations have a long history.
Below we come back to more references, but let us already mention names of researchers,
namely, Grisvard, Sanchez-Palencia, Dauge, Hörmander, Egorov, Treves, Boutet de Monvel,
Vǐsik, Eskin, Sternin, Agranovich, Atiyah, Singer, Bott, Melrose, Nistor, and many others. Our
research is embedded into the achievements of different specific schools which are connected
with the mentioned authors.

A formal element of approaching our concrete results is the program of operator algebras
with symbolic structures which can be described in the simplest form by the task to express
parametrices of elliptic elements within the operator algebra in consideration. Such a program
is related to the process of solving an equation of the form

Au = f

where A is just an elliptic operator in the algebra, u is the solution under some prescribed
right-hand side f . In the simplest classical case A may be the Laplacian on a closed smooth
manifold M , and the algebra the space of classical pseudo-differential operator of any real
order. Then, a well-known result of pseudo-differential analysis is that there is an operator P
of opposite order, namely, −2, such that

PAu = Pf (0.0.1)

transforms the right-hand side to something known, while P satisfies a relation of the form
PA = I − G for the identity operator I and a remainder G which is in our context a Green
operator, with a smooth kernel. Thus (0.0.1) gives us u = Gu + Pf , but the particularly
regularizing property of G maps any distribution u into some smooth function. This gives
us altogether a characterization of solutions u in terms of the structure of the parametrix P
which incorporates all essential properties of solutions.

6
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The program of this thesis follows such an idea, both for boundary value problems (BVPs)
in the smooth case which is outlined in Chapter 2, edge problems in Chapter 3, and BVPs
on a manifold with edge and boundary in Chapter 4. The other Chapters are continuing the
strategy.

Chapter 1 is devoted to basic notions on the analysis of pseudo-differential operators (PDOs)
first in local form in Rn, then on a smooth manifold. We present material in a concise way
and we also refer to standard text books, e.g., on Fourier and Mellin transform, distribu-
tions, Sobolev spaces and other necessary tools. From Section 1.3 on we pass to introducing
parameter-dependent variants of PDOs which will become essential for different levels of
quantization. This gives rise to operator-valued symbols and edge Sobolev spaces which are
necessary in several generalizations, both in “abstract” functional-analytic set-up with in-
volved, Hilbert spaces with group action and specific realizations. Chapter 1 ends by studying
examples and concrete realizations occurring in the framework of boundary symbols associ-
ated with BVPs.

Chapter 2 gives an introduction to Boutet de Monvel’s calculus. According to the general task
to single out specific algebras of pseudo-differential operators on an open manifold, containing
“all” differential operators together with parametrices of elliptic elements, the corresponding
step in the “hierarchy” of more sophisticated realizations of this idea is the case of a manifold
with smooth boundary. In the above-mentioned process the optimal outcome of the discussion
is to achieve a “minimal” algebra satisfying the indicated criteria. Since in the present con-
text we still start with relatively simple objects, namely, differential operators with smooth
coefficients up to the boundary, and since those have the so-called transmission property at
the boundary, the parametrices will also have such a property, though pseudo-differential,
and hence, up to some specific observations, going back to Boutet de Monvel [7], the cor-
responding operator algebra is dominated by the transmission property see also the works
of Grubb [19], Rempel, Schulze [48], Eskin [14]. We outline details from this calculus which
give a first impression of operators having a principal symbolic hierarchy, consisting of the
usual interior principal symbol, coming from the open interior of the underlying manifold X
with boundary ∂X, and in addition of the principal boundary symbol, associated with ∂X.
Both symbolic components determine operators up to lower order terms, compact when X
itself is compact. In any case the respective pairs of symbols are responsible for ellipticity and
parametrices, belonging to (Leibniz) inverted symbolic tuples, and give rise to the Fredholm
property when X is compact. There are several natural extensions of this concept, in particu-
lar, parameter-dependent versions, which are the basis of higher cone and edge quantizations,
when our manifold with boundary is not smooth, but has conical or edge singularities. In
order to make this process more transparent we introduce in

Chapter 3 an operator calculus where we ignore the boundary and study what we need for
unifying Boutet de Monvel’s calculus with the so-called edge calculus. In other words the
program of this part of the thesis is the edge-calculus on a manifold with edge “without
boundary”. The edge-calculus is a specific pseudo-differential calculus on a manifold with
edge (or conical singularities) which satisfies the program to contain interesting classes of
differential operators together with the parametrices of elliptic elements. “Interesting” means
here that the differential operators are locally generated by vector fields of the form

∂

∂x1

, . . . ,
∂

∂xn
, r
∂

∂r
, r

∂

∂y1

, . . . , r
∂

∂yq
(0.0.2)
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expressed in stretched variables (r, x, y) ∈ R+ × Rn × Rq belonging to the open interior of
the corresponding model wedge R+ ×X × Rq for a closed smooth X with local coordinates
x ∈ Rn, and where r−µ with µ being the order, appears as a multiplicative factor. Examples
of such operators for µ = 2 are Laplace Beltrami operators for Riemannian metric of the form

dr2 + r2gX + dy2

for any Riemannian metric in Rn (or globally on a smooth manifold X with local coordinates
x). Because of (0.0.2) the operators are characterized close to r = 0, and hence, ellipticity
degenerates locally near the edge which requires a completely new machinery for establishing
the corresponding operator algebra. There are world-wide various schools of active research,
especially around the work of Melrose, cf. [43], [42], based on the idea of blowing up singulari-
ties. In the present exposition we follow the achievements of work of Schulze [54], [53], see also
[62]-[65] jointly with Schrohe, and by other authors of the research team in Potsdam, in par-
ticular, Hirschmann [21], Dorschfeldt [13], Gil, Seiler [18], [67], [68]. The approach is relatively
complex it refers to the tradition of BVPs of Boutet de Monvel or of other important schools
of PDE such as of Vǐsik, Eskin [71], [72], or Agmon, Douglis and Nirenberg [1]. Nevertheless,
the so-called edge algebra equipped with scalar interior and operator-valued edge symbols is
not easy to communicate because of the large variety of notions which are necessary to reflect
the behaviour of degenerate operators and the adequate weighted distribution spaces and sub-
spaces with asymptotics as r → 0. Observe that in the case of a one-dimensional model cone,
one the essential aspects is that the edge algebra also contains the algebra of usual BVPs,
i.e., it admits arbitrary non-degenerate symbols, without the transmission property, smooth
up to the respective boundary, though a manifold with edge in this case is nothing else than
a manifold with smooth boundary. The edge operators in this variant form a calculus which
contains Boutet de Monvel’s BVPs as a very specific subclass.

Chapter 4 contains the new results of this thesis, namely, a comprehensive calculus of bound-
ary value problems with the transmission property on a manifold N with edge Y and boundary
∂N , where the transmission property refers to the smooth part of ∂N which is itself together
with Y a manifold with edge Y and without boundary. Note that there is an earlier singular
case of boundary value problems [62], [63], where the manifold with boundary has conical
singularities. This is a rather specific case which is also involved in the present thesis, how-
ever in more convenient quantizations, compared with the “traditional one”. Here we carry
out the program outlined at the beginning. We achieve the full calculus of boundary value
problems on N , including boundary, trace and potential conditions on ∂N \Y by using a new
Mellin-edge quantization, similarly as in [18] where such an approach has been demonstrated
in the closed case. There are also edge conditions along Y , again of trace and potential type,
where here the trace operators appear in integral form, not as restrictions to Y after possible
differentiations. A new feature in this edge-“variant” of Boutet de Monvel’s calculus is that
instead of 2× 2-block matrix we have 3× 3-block matrix operators

A = (Aij)i,j=1,2,3. (0.0.3)

Clearly some entries may also vanish. A particularly interesting point is like in the edge
algebra in the boundary less case that in contrast to Green contributions in upper left corners
A11, motivated by operator compositions or in parametrices, in the edge case we also have
so-called smoothing Mellin plus Green operators, both in A11 and A22. Various trace and
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potential parts are represented by A21, A31, and A12, A13 and A32 and A23, respectively, while
A22 is an edge operator on ∂N ∪ Y inducing smoothing Mellin plus Green operators, A33 are
classical block-matrix valued pseudo-differential operators on Y . In other words the complete
calculus of operators (0.0.3) altogether forms a rich structure, but all entries are necessary in
general, and the properties of solutions to elliptic equations

Au = f

with u and f being vectors of distributions with 3 components are incorporated in respective
parametrices, constructed in Section 4.8. In addition we formulate properties such as charac-
terization of remainders of solutions under natural conditions on the meromorphic structure of
inverted holomorphic Mellin symbols. The recently published article [29] contains the crucial
aspects of our new Mellin-edge approach which is much easier accessible than the one, called
“traditional”, see also more references in [29].
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Chapter 1

Pseudo-Differential Operators

Pseudo-differential operators generalize the family of differential operators in a natural way.
This part of the exposition is mainly devoted to notation and results. Proofs may be found
in textbooks on pseudo-diffrerntial operators, e.g., [69] though we indicate the arguments in
some exceptional cases.

1.1 Basics on pseudo-differential operators

In this section we introduce notation and results on scalar amplitude functions in a corre-
sponding pseudo-differential calculus. We frequently use the Fourier transform

û(ξ) := Fu(ξ) :=

∫
Rn

e−ixξu(x) dx

with its inverse

(F−1g)(x) =

∫
eixξg(ξ) d̄ξ,

d̄ξ = (2π)−ndξ. Let

A =
∑
|α|≤µ

aα(x)Dα
x

be a differential operator in a domain Ω ⊆ Rn with coefficients aα(x) ∈ C∞(Ω), regarded as
an operator A : C∞(Ω)→ C∞(Ω). Then A can be expressed by the Fourier transform F as

A = F−1 a(x, ξ)F with a(x, ξ) =
∑
|α|≤µ

aα(x) ξα,

using the elementary identity
Dα
x = F−1ξαF. (1.1.1)

Here

Dα
x :=

(
1

i

∂

∂x1

)α1

. . .

(
1

i

∂

∂xn

)αn
for i =

√
−1 and α = (α1, . . . , αn) ∈ Nn; here N = {0, 1, 2, . . . }. Later on we also use

differentiations without factors i−1 and write

∂αx :=

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn
.
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2 Pseudo-Differential Operators

Thus

Au(x) =

∫
eixξa(x, ξ)

{∫
e−ix

′ξu(x′) dx′
}
d̄ξ. (1.1.2)

This gives us a relation between A and its so-called complete symbol a(x, ξ). The operator A
is determined by a(x, ξ). Conversely, by knowing A : C∞(Ω)→ C∞(Ω), the complete symbol
a(x, ξ) can be recovered as

a(x, ξ) = e−ixξAeix
′ξ,

where A acts with respect to x′.

Now the idea behind pseudo-differential operators is just to allow more general symbols than
polynomials in ξ in the defining relation (1.1.2). For the calculus it will be more convenient to
write (1.1.2) formally as a double integral. It will also be natural to permit so-called amplitude
functions a(x, x′, ξ) that are C∞-dependent on (x, x′) ∈ Ω × Ω. We begin by studying the
appropriate classes of amplitude functions; for simplicity we also refer to these as symbols.

Definition 1.1.1. (i) The space Sµ(Ω×Rn) of symbols a(x, ξ) of order µ ∈ R on an open
set Ω ⊆ Rm is defined as the set of all a(x, ξ) ∈ C∞(Ω× Rn) such that

sup
(x,ξ)∈K×Rn

|Dα
xD

β
ξ a(x, ξ)| 〈ξ〉−µ+|β| (1.1.3)

is finite for every K b Ω, and arbitrary multi-indices α ∈ Nm, β ∈ Nn, here 〈ξ〉 :=

(1 + |ξ|2)
1
2 . Equivalently we define Sµ(Ω × Rn) as the set of all a(x, ξ) ∈ C∞(Ω × Rn)

satisfying the symbolic estimate

|Dα
xD

β
ξ a(x, ξ)| ≤ c 〈ξ〉µ−|β| (1.1.4)

for all (x, ξ) ∈ K × Rn, α ∈ Nm, β ∈ Nn, as mentioned before, for constants c =
c(α, β,K) > 0.

(ii) Let S(µ)(Ω× (Rn \{0})) denote the space of all elements a(µ)(x, ξ) ∈ C∞(Ω× (Rn \{0}))
such that

a(µ)(x, δξ) = δµa(µ)(x, ξ) (1.1.5)

for all δ ∈ R+, (x, ξ) ∈ Ω× (Rn \ {0}).

Observe that there is an isomorphism

S(µ)(Ω× (Rn \ {0})) −→ C∞(Ω× Sn−1),

a(µ)(x, ξ) −→ a(µ)(x,
ξ

|ξ|
).

(1.1.6)

Here Sn−1 is the unit sphere in Rn. Then Sµcl(Ω × Rn), the space of classical symbols of
order µ, is defined as the subspace of all a(x, ξ) ∈ Sµ(Ω × Rn), such that there are elements
a(µ−j)(x, ξ) ∈ S(µ−j)(Ω× (Rn \ {0})), j ∈ N, with the property

rN+1 := a(x, ξ)− χ(ξ)
N∑
j=0

a(µ−j)(x, ξ) ∈ Sµ−(N+1)(Ω× Rn) (1.1.7)
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for every N ∈ N and any excision function χ(ξ) (i.e., χ(ξ) ∈ C∞(Rn) such that χ(ξ) = 0 for
|ξ| < c0, χ(ξ) = 1 for |ξ| > c1 for certain 0 < c0 < c1). Note that

a(µ)(x, ξ) = lim
δ→∞

δ−µa(x, δξ) (1.1.8)

which is an immediate consequence of relation (1.1.7). The homogeneous components
a(µ−j)(x, ξ) can also be recovered, by an iterative process.

Remark 1.1.2. (i) The space Sµ(Ω×Rn) is a Fréchet space with the system of semi-norms
(1.1.3), α ∈ Nm, β ∈ Nn, K b Ω.

(ii) The (so-called) homogeneous components a(µ−j)(x, ξ), j ∈ N, of classical symbols
a(x, ξ) ∈ Sµcl(Ω× Rn) are uniquely determined by a(x, ξ).

(iii) The space Sµcl(Ω × Rn) is Fréchet in the projective limit topology with respect to the
system of operators

Sµcl(Ω× Rn) ↪→ Sµ(Ω× Rn)

(the embedding),

Sµcl(Ω× Rn) −→ S(µ−j)(Ω× (Rn \ {0})), j ∈ N, (1.1.9)

determined by a −→ a(µ−j), (producing the unique homogeneous components), and

Sµcl(Ω× Rn) −→ Sµ−(N+1)(Ω× Rn), N ∈ N,

determind by a −→ rN+1, cf. (1.1.7). If a consideration is valid both in the general and
classical case we write as subscript “(cl)” and we use a notation Sµ(cl)(Ω×Rn). The space

Sµ(cl)(R
n) of all elements a(ξ) with constant coefficient (i.e., independent of x) is closed

in Sµ(cl)(Ω× Rn). Then we have

Sµ(cl)(Ω× Rn) = C∞(Ω, Sµ(cl)(R
n)). (1.1.10)

Let S(Rn) ⊂ C∞(Rn) be the subspace of all u such that

sup
x∈Rn
|xαDβ

xu(x)| for all α, β ∈ Nn

are finite. S(Rn) is called the Schwartz space of rapidly decreasing functions. Setting S−∞(Ω×
Rn) :=

⋂
µ∈R S

µ(Ω× Rn), we have

S−∞(Ω× Rn) = C∞(Ω,S(Rn)). (1.1.11)

Theorem 1.1.3. Let aj(x, ξ) ∈ S
µj
(cl)(Ω × Rn), j ∈ N, be an arbitrary sequence, where µj →

−∞ as j → ∞, and µj := µ − j in the classical case. Then there is a symbol a(x, ξ) ∈
Sµ(cl)(Ω×Rn) with µ = maxj∈N{µj} such that for every M there is an N(M) such that for all

N ≥ N(M)

a(x, ξ)−
N∑
j=0

aj(x, ξ) ∈ Sµ−M(Ω× Rn). (1.1.12)

The element a(x, ξ) ∈ Sµ(cl)(Ω×Rn) is uniquely determined by this property modS−∞(Ω×Rn).
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We call any such a(x, ξ) asymptotic sum of the aj(x, ξ), j ∈ N, and write

a(x, ξ) ∼
∞∑
j=0

aj(x, ξ).

Remark 1.1.4. We can construct an asymptotic sum in the sense of Theorem 1.1.3 as a
convergent sum in Sµ(cl)(Ω× Rn)

a(x, ξ) =
∞∑
j=0

χ

(
ξ

cj

)
aj(x, ξ),

for some excision function χ and constant cj > 0, cj →∞ sufficiently fast as j →∞.

Definition 1.1.5. Let Ω ⊆ Rn be open and µ ∈ R. An operator of the form

Op(a)u(x) =

∫∫
ei(x−x

′)ξa(x, x′, ξ)u(x′) dx′ d̄ξ, (1.1.13)

for d̄ξ := (2π)−ndξ, with symbol (or amplitude function) a(x, x′, ξ) ∈ Sµ(Ω×Ω×Rn) is called
a pseudo-differential operator on Ω of order µ. Instead of Op(a) we often write Opx(a) in
order to indicate the special variable in the respective oscillatory integral. We set

Lµ(cl)(Ω) = {Op(a) : a(x, x′, ξ) ∈ Sµ(cl)(Ω× Ω× Rn)}, (1.1.14)

here, similarly as before, we write Lµ(cl)(Ω) when a consideration on pseudo-differential opera-

tors is valid both in the general and classical case. The elements of (1.1.14) are called classical
pseudo-differential operators. Let L−∞(Ω) :=

⋂
µ∈R L

µ(Ω), consisting of smoothing operators,
i.e., any such operator C can be expressed by a kernel c(x, x′) ∈ C∞(Ω× Ω) such that,

Cu(x) =

∫
c(x, x′)u(x′) dx′.

Occasionally, if A ∈ Lµ(Ω) is written as A = Op(a) for a(x, ξ) ∈ Sµ(Ωx × Rn) (a(x′, ξ) ∈
Sµ(Ωx′ × Rn)) we call a a left symbol, also denoted by

aL(x, ξ) and aR(x′, ξ), (1.1.15)

respectively. For A = Op(a), a(x, x′, ξ) ∈ Sµ(Ω × Ω × Rn), we also call a(x, x′, ξ) a double
symbol. Instead of (1.1.13) for A = Op(aL) we may also write

Au(x) =

∫
eixξaL(x, ξ)û(ξ) d̄ξ. (1.1.16)

Moreover, for A = Op(aR) we have

Au(x) =

∫
eixξ
{∫

e−ix
′ξaR(x′, ξ)u(x′)dx′

}
d̄ξ. (1.1.17)

Let us formulate some mapping properties of pseudo-differential operators. First it is an
elementary fact that an A ∈ Lµ(Ω) induces a continuous operator

A : C∞0 (Ω) −→ C∞(Ω).
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Thus A has a distributional kernel KA(x, x′) ∈ D′(Ω × Ω) which is uniquely determined on
test functions of the form ϕ(x)ϕ′(x′) for ϕ, ϕ′ ∈ C∞0 (Ω) by

〈KA(x, x′), ϕ(x)ϕ′(x′)〉 =

∫
Ω

(Aϕ)(x)ϕ′(x′) dx. (1.1.18)

We call A is properly supported if suppKA has proper support, i.e., for arbitraryM b Ω, M ′ b
Ω, the intersections suppKA∩ (M ×Ω), suppKA∩ (Ω×M ′) are compact in Ω×Ω. By virtue
of

sing suppKA ⊆ diag (Ω× Ω), (1.1.19)

for diag := {(x, x) : x ∈ Ω}. Every A ∈ Lµ(Ω) can be written as a sum

A = A0 + C, (1.1.20)

where A0 ∈ Lµ(Ω) is properly supported and C ∈ L−∞(Ω). In fact, if ω(x, x′) ∈ C∞(Ω × Ω)
an arbitrary function such that ω ≡ 1 in an open neighbourhood of diag(Ω × Ω) and such
that both (Ω ×M)

⋂
suppω and (Ω ×M ′)

⋂
suppω are compact for arbitrary M,M ′ b Ω.

Then, for A = Op(a) with a(x, x′, ξ) ∈ Sµ(Ω × Ω × Rn), we can set A0 = Op(ωa) which is
properly supported, and C = Op((1− ω)a). It follows that

Lµ(cl)(Ω) = {Op(a) + C : a(x, ξ) ∈ Sµ(cl)(Ω× Rn), C ∈ L−∞(Ω)},

is an equivalent to Definition 1.1.5. Note that when A ∈ Lµ(Ω) is properly supported the
operator induces continuous maps

A : C∞0 (Ω)→ C∞0 (Ω), C∞(Ω)→ C∞(Ω).

Remark 1.1.6. Let A ∈ Lµ(cl)(Ω) be properly supported. Then there is a unique a(x, ξ) ∈
Sµ(cl)(Ω× Rn) such that

A = Op(a).

In fact, the Fourier inversion formula

u(x) =

∫
eixξ û(ξ) d̄ξ

can be composed from the left with A and it follows that

Au(x) =

∫
Aeixξ û(ξ) d̄ξ

=

∫
eixξ(e−ixξAeixξ)û(ξ) d̄ξ = Op(a)u

(1.1.21)

for a(x, ξ) := e−ixξ(Aeixξ). Here for convenience, we do not explicitly show that a(x, ξ) ∈
Sµ(cl)(Ω× Rn). Details may be found in Šhubin’s book [69]. Because of (1.1.20) we can write

Lµ(cl)(Ω) = Lµ(cl)(Ω)N + L−∞(Ω) (1.1.22)

where subscriptN indicates the subspace of all properly operators A such thatKA is supported
by a fixed compact set N ⊂ Ω× Ω. Then (1.1.21) induces an isomorphism of

Lµ(cl)(Ω)N −→ Sµ(cl)(Ω× Rn)N , (1.1.23)
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where the symbol space on the right-hand side is Fréchet, and hence also Lµ(cl)(Ω)N . Since

L−∞(Ω) ∼= C∞(Ω× Ω)

is Fréchet as well also (1.1.22) is Fréchet.

Theorem 1.1.7. (i) Let A ∈ Lµ(cl)(Ω), B ∈ Lν(cl)(Ω), and assume that A or B is prop-

erly supported. Writing A = Op(a), B = Op(b),modL−∞(Ω) for a corresponding left
symbols a, b, then for the composition we have AB ∈ Lµ+ν

(cl) (Ω), and

AB = Op(c) modL−∞(Ω),

for a symbol c(x, ξ) ∈ Sµ+ν
(cl) (Ω× Rn), where

c(x, ξ) ∼
∑
α∈Nn

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ). (1.1.24)

(ii) Let A ∈ Lµ(cl)(Ω) and A∗ be its formal adjoint of A defined by

(u,A∗v) = (Au, v) (1.1.25)

for all u, v ∈ C∞0 (Ω), with (. , .) being the sesquilinear L2(Ω)-scalar product. Then we
have A∗ ∈ Lµ(cl)(Ω). Writing A = Op(a) modL−∞(Ω) for a left symbol a, then we have

A∗ = Op(a∗), where

a∗(x, ξ) ∼
∑
α∈Nn

1

α!
∂αξD

α
x ā(x, ξ). (1.1.26)

Remark 1.1.8. The operation (1.1.24), i.e., the correspondence

(a, b)→ a#b := c

between symbols a, b is called the Leibniz product between a and b. It is well-defined
modS−∞(Ω× Rn).

Observe that the Leibniz multiplication is associative, i.e.,

(a1#a2)#a3 = a1#(a2#a3)

modS−∞(Ω×Rn). Let us briefly recall the definition of Sobolev spaces, first in Rn. The space
Hs(Rn), s ∈ R, is defined as the completion of C∞0 (Rn) with respect to the norm

‖u‖Hs(Rn) :=

{∫
〈ξ〉2s|û(ξ)|2 d̄ξ

} 1
2

, (1.1.27)

with û(ξ) := (Fu)(ξ) being the Fourier transform. Equivalently we can define Hs(Rn) as the
set of those u ∈ S ′(Rn) and that Fu(ξ) locally integrable in Rn and the norm (1.1.27) is finite.
We usually identify H0(Rn) with L2(Rn). The scalar product

(u, v) =

∫
u(x)v̄(x) dx
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of L2(Rn) gives rise to a pairing

(. , .) : C∞0 (Rn)× C∞0 (Rn) −→ C (1.1.28)

which extends to a non-degenerate sesquilinear pairing

Hs(Rn)×H−s(Rn) −→ C (1.1.29)

for every s ∈ R. Note that the space Hs(Rn) for s ∈ N can be characterized as the set of all
u ∈ L2(Rn) such that

Dα
xu ∈ L2(Rn)

for all |α| ≤ s. Moreover, on an open set Ω ⊆ Rn we define Hs
comp(Ω) to be the subset of all

u ∈ Hs(Rn) such that suppu is compact in Ω. Let Hs
loc(Ω) be the subset of all u ∈ D′(Ω) such

that ϕu ∈ Hs
comp(Ω) for every ϕ ∈ C∞0 (Ω). We often write

H−∞loc (Ω) :=
⋃
s∈R

Hs
loc(Ω), H∞loc(Ω) :=

⋂
s∈R

Hs
loc(Ω).

Observe that
H∞loc(Ω) = C∞(Ω), H−∞loc (Ω) = D′(Ω).

Theorem 1.1.9. Every A ∈ Lµ(Ω) induces continuous operators

A : Hs
comp(Ω) −→ Hs−µ

loc (Ω), (1.1.30)

for all s ∈ R. Moreover, if A is properly supported then A induces continuous operators

A : Hs
comp(Ω) −→ Hs−µ

comp(Ω), Hs
loc(Ω) −→ Hs−µ

loc (Ω), (1.1.31)

for all s ∈ R.

More generally we can say that any A induces an operator

A : E ′(Ω) −→ D′(Ω)

and in the properly supported case

A : E ′(Ω) −→ E ′(Ω), D′(Ω) −→ D′(Ω). (1.1.32)

Remark 1.1.10. For Ω = Rn we have different specific continuity results in Sobolev spaces in
Rn. In the simplest case, if A = Op(a) has a symbol a(ξ) ∈ Sµ(Rn) with constant coefficients,
then we have continuity

A : Hs(Rn) −→ Hs−µ(Rn) (1.1.33)

for all s ∈ R. Another result in this direction is that (1.1.33) is continuous when a(x, ξ) is
independent of x for large |x|.

The definition of pseudo-differential operators is based on the chosen coordinates
x = (x1, . . . , xn) in Rn and the Fourier transform with covariables ξ = (ξ1, . . . , ξn). However
there is invariance under substituting a diffeomorphism

χ : Ω −→ Ω̃
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from Ω to another open set Ω̃. First note that the function pull backs

χ∗ : C∞0 (Ω̃) −→ C∞0 (Ω)

or
χ∗ : C∞(Ω̃) −→ C∞(Ω)

define isomorphisms between the respective spaces. This allows us to form

Ã := χ∗A := (χ−1)∗Aχ∗ : C∞0 (Ω̃) −→ C∞(Ω̃),

called the operator push forward under χ.

Theorem 1.1.11. The operator push forward under χ induces isomorphisms

χ∗ : Lµ(cl)(Ω) −→ Lµ(cl)(Ω̃),

for every µ ∈ R. If A is written as A = Op(a) + C for a symbol a(x, ξ) ∈ Sµ(cl)(Ω × Rn) and

some C ∈ L−∞(Ω), then we have

χ∗A = Op(ã) + C̃

for some ã(x̃, ξ̃) ∈ Sµ(cl)(Ω̃× Rn) and C̃ ∈ L−∞(Ω̃), and there is an asymptotic expansion

ã(x̃, ξ̃)|x̃=χ(x) ∼
∑
α

1

α!
(∂αξ a)(x, t(dχ(x))ξ̃)Φα(x, ξ̃), (1.1.34)

where dχ(x) is the Jacobian matrix of χ at x and Φα(x, ξ̃) is a polynomial in ξ̃ of degree ≤
|α|/2 of the form

Φα(x, ξ̃) = Dα
z eiδ(x,z)ξ̃|x=z (1.1.35)

for
δ(x, z) := χ(z)− χ(x)− dχ(x)(z − x). (1.1.36)

Remark 1.1.12. For
x̃ = χ(x), ξ̃ = tdχ(x)−1ξ

we have the following relation between the symbols a(x, ξ) and ã(x̃, ξ̃) in Theorem 1.4, namely,

ã(χ(x), tdχ(x)−1ξ) = a(x, ξ) (1.1.37)

modSµ−1
(cl) (Ω× Rn). In the classical case for the principal homogeneous components ã(µ)(x̃, ξ̃)

and a(µ)(x, ξ) we have
ã(µ)(χ(x), tdχ(x)−1ξ) = a(µ)(x, ξ). (1.1.38)

Relation (1.1.37) can be interpreted as a symbol push forward

Sµ(cl)(Ωx × Rn
ξ ) −→ Sµ(cl)(Ω̃x̃ × Rn

ξ̃
). (1.1.39)

In fact, (1.1.37) is a consequence of relation (1.1.34) and Φ0(x, ξ̃) = 1. Then (1.1.38) for
classical symbols follows from (1.1.37).
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Remark 1.1.13. The correspondence (1.1.34) a → ã will also be referred to as the sym-
bol push forward under the diffeomorphism χ, written ã = χ∗a which uniquely determines
ãmodS−∞(Ω̃× Rn). Then, in particular, we have

χ∗(a#b) = χ∗a#χ∗b.

This is a consequence of relation

χ∗(AB) = χ∗Aχ∗B

and Theorem 1.1.7.

Definition 1.1.14. A pseudo-differential operator A ∈ Lµ(Ω) represented as

A = Op(a) + C (1.1.40)

for a left symbol a(x, ξ) ∈ Sµ(Ω × Rn) and some C ∈ L−∞(Ω) is called elliptic if there is a
p(x, ξ) ∈ S−µ(Ω× Rn) such that

a(x, ξ)p(x, ξ) = 1 modS−1(Ω× Rn). (1.1.41)

Clearly this definition is not affected by the choice of the decomposition (1.1.40). In the case
A ∈ Lµcl(Ω) the homogeneous principal part a(µ)(x, ξ) remains unchanged when we change
(1.1.40) and A is elliptic if and only if

a(µ)(x, ξ) 6= 0 for all (x, ξ) ∈ Ω× (Rn \ {0}).

Definition 1.1.15. Let A ∈ Lµ(cl)(Ω), P ∈ L−µ(cl)(Ω), and assume that A or P is properly
supported. Then P is called a parametrix of A if

PA = 1− CL, AP = 1− CR, (1.1.42)

for certain CL, CR ∈ L−∞(Ω). Here 1 indicates the identity operator.

Theorem 1.1.16. An elliptic A ∈ Lµ(cl)(Ω) has a properly supported parametrix P ∈ L−µ(cl)(Ω).

Proof. By definition we have a p(x, ξ) ∈ S−µ(Ω×Rn) such that (1.1.41) holds. At the same
time we have

p(x, ξ) a(x, ξ)− 1 ∈ S−1(Ω× Rn).

This implies
p(x, ξ)#a(x, ξ)− 1 ∈ S−1(Ω× Rn),

using relation (1.1.24). Here and in the following we interpret the Leibniz product in terms
of any fixed choice of the corresponding asymptotic sum, i.e., we ignore remainders of order
−∞; those do not affect the conclusions. Thus, writing

c(x, ξ) := p(x, ξ)#a(x, ξ)− 1

we have
p(x, ξ)#a(x, ξ) = 1− c(x, ξ). (1.1.43)
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This allows us to Leibniz invert the right-hand side, we find a d ∈ S−1(Ω× Rn) such that

(1− d)#(1− c) = 1 modS−∞(Ω× Rn).

In fact, it suffices to form the asymptotic sum

d :=
∞∑
j=1

(−1)jc#j

where c#j := c#c# . . .#c (j times). Multiplying (1.1.43) by 1− d we obtain

((1− d)#p)#a = 1.

The method which is used here is also referred to as a formal Neumann series argument. For
convenience we drop remainders of order −∞. Thus, since

(1− d)#p := pL ∈ S−µ(Ω× Rn)

we constructed a pL such that pL#a = 1. Set PL := Op(pL). Let us now assume that A is
properly supported. Then a(x, ξ) may be chosen as in Remark 1.1.6. Thus we can form the
composition

PLA = Op(pL#a) = 1 modL−∞(Ω), (1.1.44)

cf. Theorem 1.1.7. By interchanging factors we can also construct pR ∈ S−µ(Ω × Rn) and
PR = Op(pR) with similar properties. A standard algebraic argument then gives us

pL = pR modS−∞(Ω× Rn)

and we may set P = PL.

Corollary 1.1.17. Let A ∈ Lµ(cl)(Ω) be elliptic and consider the equation

Au = f (1.1.45)

for u ∈ H−∞comp(Ω), f ∈ Hs−µ
loc (Ω), s ∈ R fixed. Then it follows that u ∈ Hs

comp(Ω).

In fact, Theorem 1.1.16 gives us a properly supported parametrix of A. Then we can multiply
(1.1.45) from the left by P and obtain

PAu = Pf ∈ Hs
loc(Ω),

using (1.1.31). Thus, from (1.4.11) we obtain

PAu = u− CLu ∈ Hs
loc(Ω),

and hence u = CLu+ Pf ∈ Hs
comp(Ω) because of CLu ∈ H∞loc(Ω).

The effect that solutions u to elliptic equations (1.1.45) are of a Sobolev regularity shifted by
the order µ of A is also-called elliptic regularity.
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1.2 Pseudo-differential operators on C∞ manifolds

It will be essential also to formulate operators and distribution spaces on a smooth manifold
M of dimension n. For convenience we first assume that M is closed and compact, with a
fixed Riemannian metric. Let L−∞(M) be the space of smoothing operators C on M , defined
by

Cu(x) =

∫
M

c(x, x′)u(x′) dx′ (1.2.1)

for a kernel c(x, x′) ∈ C∞(M ×M), with dx′ being determined by the Riemannian metric.
Moreover, choose an open covering (U1, . . . , UN) of M by coordinate neighbourhoods Uj, fix
a subordinate partition of unity (ϕ1, . . . , ϕN). Moreover, choose functions ϕ′j ∈ C∞0 (Uj) such
that ϕj ≺ ϕ′j for all j (where f ≺ g for functions f, g means that g ≡ 1 on supp f). Let
χj : Uj −→ Ωj, be a system of charts. For B ∈ Lµ(cl)(Ω), Ω ⊆ Rn open, and a chart

χ : U −→ Ω

on M we define
χ−1
∗ B = A,

the operator push forward of B under the deffeomorphism

χ−1 : Ω −→ U,

by setting
χ−1
∗ B := χ∗B(χ−1)∗.

We then define
Lµ(U) := {A := (χ−1)∗B : B ∈ Lµ(Ω)}. (1.2.2)

This gives us a space of continuous operators

A : C∞0 (U) −→ C∞(U).

It is obvious that the push forward yields an isomorphism

χ−1
∗ : Lµ(Ω) −→ Lµ(U).

Then Lµ(cl)(M), µ ∈ R, is defined as the set of all operators

A : C∞0 (M) −→ C∞(M)

of the form

A =
N∑
j=1

ϕjAjϕ
′
j + C (1.2.3)

for arbitrary Aj ∈ Lµ(cl)(Uj) and C ∈ L−∞(M). Note that we have

Aj =
N∑
j=1

ϕjA|Ujϕ′j modL−∞(M). (1.2.4)

Let us set

Lµ(cl)(M) =

{
A :=

N∑
j=1

ϕjAjϕ
′
j + C : Aj ∈ Lµ(cl)(Uj), C ∈ L

−∞(M)

}
(1.2.5)
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Remark 1.2.1. Note that latter notation admits to choose Aj ∈ Lµ(cl)(Uj) in a quite arbitrary

manner. However, we may replace Aj by Ãj ∈ Lµ(cl)(Uj) such that the space Lµ(cl)(M) remains
unchanged but

(χjk)∗Ãj = (χkj)∗Ãk modL−∞(Ωj ∩ Ωk) (1.2.6)

where (χjk) : Uj ∩Uk −→ Ωj ∩Ωk, (χkj) : Uk ∩Uj −→ Ωk ∩Ωj, for any j, k = 1, . . . , N . Thus
local complete symbols of A over χjUj = Ωj modulo symbols of order −∞ for all j, which
means that we may assume without loss of generality that the operators Aj from the very
beginning have such compatibility properties. Then, denoting by aj(x, ξ) corresponding local
left symbols of Aj over Ωj, (i.e.,Aj := Op(aj)), the above mentioned symbol push forwards
induce transformations

aj|Ωj∩Ωk −→ ak|Ωk∩Ωj

for all j, k.

Note that from (1.1.38) it follws that the homogeneous principal symbols of Aj|Uj behave like
invariantly defined functions on T ∗M \ 0 (the cotangent bundle minus zero section). More
precisely, computing the principal symbols of

(χj)∗A|Uj and (χk)∗A|Uk

in the corresponding local coordinates of Ωj = χjUj and Ωk = χkUk, respectively, then the
rule (1.1.38) tells us that the principal symbols transform as functions on T ∗M \ 0 under the
transition diffeomorphisms

κkj : Ωjk −→ Ωkj

for
Ωjk = χj(Uj ∩ Uk), Ωkj = χk(Uk ∩ Uj).

In other words writing

χjk := χj|Uj∩Uk : Uj ∩ Uk −→ Ωjk, χkj := χk|Uj∩Uk : Uj ∩ Uk −→ Ωkj

it follows that
κkj = χkj ◦ χ−1

jk : Ωjk −→ Ωkj

like
(x, ξ) −→ (κkj(x), tdκ−1

kj (x)ξ).

Which just corresponds to transition diffeomorphism

Ωjk × Rn −→ Ωkj × Rn

of the cotangent bundle. Then for A ∈ Lµcl(M) the local homogeneous principal symbols
a(µ)(x, ξ) of A|Uj as functions of (x, ξ) ∈ Ωj × (Rn \ {0}) are invariantly defined as functions
on T ∗M \ 0, i.e., we have

a(µ)(x, ξ) = a(µ)(x̃, ξ̃) (1.2.7)

as soon as

x̃ = κkj(x),

ξ̃ = tdκkj
−1

(x)ξ.
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Definition 1.2.2. For s ∈ Rn we define the Sobolev space Hs(M) by

Hs(M) =
{ N∑
j=1

ϕjuj : uj ◦ χ−1
j ∈ Hs

loc(Ωj), j = 1, . . . , N
}
.

We can easily define Hilbert space scalar product in Hs(M) where we identify H0(M) with
L2(M), with the standard scalar product

(u, v)L2(M) =

∫
M

u(x)v̄(x) dx. (1.2.8)

Then (1.2.8) induces a non-degenerate sesquilinear pairing

(. , .) : Hs(M)×H−s(M) −→ C (1.2.9)

for every s ∈ R. For any A which is continuous as an operator

A : Hs(M) −→ Hs−µ(M)

for all s ∈ R we find an
A∗ : Hs(M) −→ Hs−µ(M),

called the formal adjoint of A which is uniquely determined by the relation

(Au, v) = (u,A∗v)

for all u, v ∈ C∞(M).

Theorem 1.2.3. An A ∈ Lµ(M) induces continuous operators

A : Hs(M) −→ Hs−µ(M)

for all s ∈ R.

Theorem 1.2.4. (i) A ∈ Lµ(cl)(M), B ∈ Lν(cl)(M) implies AB ∈ Lµ+ν
(cl) (M).

(ii) A ∈ Lµ(cl)(M) implies A∗ ∈ Lµ(cl)(M).

Remark 1.2.5. By virtue of the rule (1.2.2) of symbol push forward it follows that ellipticity
of an operator is an invariant property, i.e., globally defined on the manifold M .

In other words the following definition makes sense.

Definition 1.2.6. An A ∈ Lµ(cl)(M) is called elliptic if (χj)∗A|Uj ∈ L
µ
(cl)(Ωj) for Ωj := χjUj

is elliptic in the sense of Definition 1.1.14, for all j.

Theorem 1.2.7. An elliptic operator A∈Lµ(cl)(M) has a parametrix P ∈L−µ(cl)(M), i.e.,

PA = 1− CL, AP = 1− CR (1.2.10)

for some CL, CR ∈ L−∞(M).
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Proof. Assuming that the local operators Aj of A in formula (1.2.5) satisfy the compatibility
condition of Remark 1.2.1 then it suffices to construct parametrices Pj of A|Uj ∈ L

−µ
(cl)(Uj) by

applying Theorem 1.1.16 in corresponding local coordinates and then to set

P :=
N∑
j=1

ϕjPjϕ
′.

Definition 1.2.8. An operator A : H −→ H̃ between Hilbert spaces H, H̃ is called a Fredholm
operator, if

kerA := {u ∈ H : Au = 0} (1.2.11)

and cokerA = H̃/imA are both of finite dimension. Then

indA := dim kerA− dim cokerA (1.2.12)

is called the index of A.

Theorem 1.2.9. For an operator A ∈ Lµ(M), the following conditions are equivalent:

(i) A is elliptic,

(ii) A induces a Fredholm operator

A : Hs(M) −→ Hs−µ(M) (1.2.13)

for some s = s0 ∈ R.

The Fredholm property (1.2.13) of A for an s = s0 entails the Fredholm property for all s ∈ R.

Proof. Let us show (i)⇒ (ii) i.e., the ellipticity of A gives rise to the Fredholm property of
(1.2.13). From Theorem 1.2.7 we find a parametrix P of A. Thus the first relation of (1.2.10)
shows that kerA is of finite dimension, since 1 − CL is Fredholm in Hs0(M), using that CL

as a smoothing operator is compact. In other words, (1 − CL)u = 0 entails PAu = 0. Using
kerPA ⊇ kerA, and hence dim kerA <∞. From the second relation of (1.2.10) we obtain for
the formal adjoint

(AP )∗ = P ∗A∗ = 1− C∗R.
Then, similarly as before dim kerA∗ <∞. Together with dim kerA∗ = dim cokerA we conclude
that A is a Fredholm operator. This holds for s = s0. However, kerA as well as kerA∗ are
finite dimensional subspaces of H∞(M) = C∞(M) and hence independent of s. Concerning
(ii)⇒ (i) we refer to standard textbook, cf. [48, Page 197 Theorem 7].

Theorem 1.2.10. (i) Let A ∈ Lµ(cl)(M) be an operator such that (1.2.13) is an isomor-
phism for some s = s0 ∈ R. Then A is an isomorphism for all s ∈ R, and we have
A−1 ∈ L−µ(cl)(M).

(ii) For every µ ∈ R there exists an elliptic operator A ∈ Lµcl(M) such that

A : Hs(M) −→ Hs−µ(M) (1.2.14)

is an isomorphism for every s ∈ R.
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1.3 Parameter-dependent pseudo-differential operators

In applications below we need a generalization of Lµ(cl)(M) to the case of pseudo-differential

operators with parameters λ ∈ Rl, l ∈ N. The corresponding class Lµ(cl)(M ;Rl) is defined as
follows. First we form

Lµ(cl)(Ω;Rl) := {Op(a)(λ) : a(x, x′, ξ, λ) ∈ Sµ(cl)(Ω× Ω× Rn+l
ξ,λ )} (1.3.1)

where analougosly as (1.1.13)

Op(a)(λ)u(x) =

∫∫
ei(x−x

′)ξa(x, x′, ξ, λ)u(x′) dx′d̄ξ. (1.3.2)

For the respective definition on a manifold M we also need parameter-dependent smoothing
operators, namely,

C(λ) ∈ L−∞(M ;Rl) := S(Rl, L−∞(M))

with L−∞(M) being identified with C∞(M ×M), cf. (1.2.1). In the following definition we
employ similar notation as in (1.2.3).

Definition 1.3.1. We define

Lµ(cl)(M ;Rl) :=

{ N∑
j=1

ϕjAj(λ)ϕ′j + C(λ) :Aj(λ) ∈ Lµ(cl)(Uj;R
l),

C(λ) ∈ L−∞(M ;Rl)

} (1.3.3)

where
Lµ(cl)(Uj;R

l) := {A(λ) = (χ−1)∗B(λ) : B(λ) ∈ Lµ(cl)(Ω;Rl)} (1.3.4)

Similarly as in pseudo-differential operators without parameter every A(λ) ∈ Lµ(cl)(Ω;Rl) has
left and right symbols

aL(x, ξ, λ) and aR(x′, ξ, λ), (1.3.5)

respectively, cf. (1.1.15). Most of the constructions have a parameter-dependent analogue. We
tacitly employ this generalization when we do not recall explicit definitions. In particular, we
have parameter-dependent ellipticity of an operator A(λ) ∈ Lµ(Ω;Rl) which means that for
a(x, ξ, λ) ∈ Sµ(Ω × Rn+l) with A(λ) = Op(a)(λ) there is a p(x, ξ, λ) ∈ S−µ(Ω × Rn+l) such
that

a(x, ξ, λ)p(x, ξ, λ) = 1 modS−1(Ω× Rn+l) (1.3.6)

For A(λ) ∈ Lµcl(Ω;Rl) we have the parameter-dependent homogeneous principal symbol

a(µ) ∈ S(µ)(Ω× (Rn+l \ {0})), (1.3.7)

and parameter-dependent ellipticity in this case means

a(µ)(x, ξ, λ) 6= 0 for all a(x, ξ, λ) ∈ Ω× (Rn+l \ {0}). (1.3.8)

There are then corresponding generalizations of Definition 1.1.15 and Theorem 1.1.16. It will
be necessary also to have such constructions on a smooth manifold M . For convenience we
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consider the case of a closed manifold M . Because of the transformation behaviour of symbols
under coordinate diffeomorphisms which is valid in analogous form also in the parameter-
dependent case the ellipticity with parameters of an A(λ) ∈ Lµ(cl)(M ;Rl) can be defined for
local symbols over any coordinate neighbourhood U on M . To be more precise, looking at an
element in (1.3.3), it we can push forward A(λ)|U under a chart

χ : U −→ Ω,

i.e., form χ∗A(λ) ∈ Lµ(cl)(Ω;Rl), which can be written as Opx(a)(λ) for an a(x, ξ, λ) ∈ Sµcl(Ω×
Rn+l). Then, in order to define parameter-dependent ellipticity of A(λ) it suffices to apply it
locally to a. This make sense because of the coordinate invariance of the condition.

Theorem 1.3.2. Let M be a closed smooth manifold and A(λ) ∈ Lµ(cl)(M ;Rl) parameter-
dependent elliptic. Then

(i) A(λ) has a parameter-dependent parametrix P (λ) ∈ L−µ(cl)(M ;Rl) which means

P (λ)A(λ)− 1, A(λ)P (λ)− 1 ∈ L−∞(M ;Rl); (1.3.9)

(ii) For every s ∈ R the operators A(λ) form a family of Fredholm operators

A(λ) : Hs(M) −→ Hs−µ(M), (1.3.10)

and there is a constant C > 0 such that (1.3.10) are isomorphisms whenever |λ| ≥ C.

Corollary 1.3.3. For every µ there exists an elliptic operator Rµ ∈ Lµcl(M) which induces
isomorphisms

Rµ : Hs(M) −→ Hs−µ(M) (1.3.11)

for all s ∈ R. Any such Rµ will also be called an order reducing operator or a reduction of
orders on M .

In fact, we can construct a parameter-dependent elliptic operator Rµ(λ) ∈ Lµcl(M ;Rl
λ) for

l ∈ N \ {0} by using parameter-dependent elliptic local symbols

a(x, ξ, λ) := (1 + |ξ|2 + |λ|2)µ/2

and form an associated operator via (1.3.3). Then using the above-mentioned notation (1.3.8)
we have

a(µ)(x, ξ, λ) = (|ξ|2 + |λ|2)µ/2,

cf. (1.3.8). Applying now Theorem 1.3.2 (ii) to Rµ(λ) the operator Rµ := Rµ(λ1) for λ1 of
sufficiently large absolute value induces isomorphisms (1.3.11) for all s. Note that L0

cl(M) =
RµLµcl(M); clearly the latter notation means {RµA : A ∈ Lµcl(M)}.
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1.4 Operators with operator-valued symbols

Let us first consider symbols with values in a Fréchet space E with semi-norm system (πj)j∈N
we define the space

Sµ(Ω× Rq, E) (1.4.1)

for µ ∈ R,Ω ⊆ Rq open, as the set of all a(y, η) ∈ C∞(Ω× Rq, E) such that

πj(D
α
yD

β
ηa(y, η)) ≤ c〈η〉µ−|β| (1.4.2)

for all (y, η) ∈ K × Rq, K b Rp, all α ∈ Np, β ∈ Nq, and for all j ∈ N, for constants
c = c(α, β, j,K) > 0. In addition spaces of classical E-valued symbols

Sµcl(Ω× Rq, E) (1.4.3)

are defined by asymptotic expansions

a(y, η) ∼
∞∑
j=0

a(µ−j)(y, η) (1.4.4)

where a(ν) ∈ C∞(Ω× (Rq \ {0}), E), ν ∈ R, is asked to satisfyies the homogeneity condition

a(ν)(y, δη) = δνa(ν)(y, η), δ ∈ R+.

We now pass to pseudo-differential operators with operator-valued symbols. Those will be
necessary in applications in singular analysis below.

A (separable) Hilbert space H is said to be endowed with a group action

κ = {κδ}δ∈R+

if
κδ : H −→ H

are isomorphisms, κδ κν = κδν for all δ, ν ∈ R+, and if δ −→ κδh represents an element of
C(R+, H) for every h ∈ H.

Proposition 1.4.1. If κ is a group action in H, then we have

‖κδ‖L(H) ≤ cmax{δ, δ−1}M

for suitable constant c > 0, M > 0.

Example 1.4.2. (i) For H := L2(Rn) the operators

κδu(x) := δn/2u(δx), δ ∈ R+, (1.4.5)

are unitary for all δ.

(ii) For H := Hs(Rn), s ∈ R the operators (1.4.5) represents a group action. More generally
we can endow H := 〈x〉−gHs(Rn) with the group action (1.4.5).
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(iii) For every H the identity map is an admitted group action. This is often chosen when
H is of finite dimension.

Note that the constant M = M(κ) and c = c(κ) in Proposition 1.4.1 may depend on the
space H, e.g., on s and g in Example 1.4.2 (ii).

It will be necessary also to consider the case of Fréchet spaces E with group action κ. Here
we assume that

E = lim←−
j∈N

Ej (1.4.6)

is a projective limit of Hilbert spaces Ej continuously embedded in E0 for all j, where E0 is
endowed with the group action κ and κ|Ej is a group action on Ej for every j.

Example 1.4.3. The Schwartz space

S(Rn) = lim←−
k∈N
〈x〉−kHk(Rn),

is Fréchet with group action (1.4.5), using a generalization of Example 1.4.2 (ii) for g = s = k.

In the following consideration, we frequently employ functions on an open set U ⊆ Rn taking
values in a Fréchet space E, endowed with a countable system (ρj)j∈N of semi-norms. In
particular, we have the space C∞(U,E) defined as the set of all functions

u : U −→ E,

such that
ξj,K(u) := sup

x∈K
ρj(D

α
x )u(x) <∞ (1.4.7)

for all j ∈ N, K b U . Then C∞(U,E) is Fréchet with the semi-norm system (1.4.7). Another
example is the Schwartz space S(Rn, E) defined as the set of all u : Rn −→ E

σj,α,β(u) := sup
x∈K

ρj
(
xαDβ

xu(x)
)
<∞ (1.4.8)

for every j ∈ N, α, β,K b Rn ∈ Nm. Then S(Rn, E) is Fréchet in the semi-norm system
(1.4.8), j ∈ N, α, β ∈ Nn. There are other equivalent systems of semi-norms which define
S(Rn, E). For instance, for E = C we can write

S(Rn) :=
⋂
k∈N

〈x〉−kHk(Rn)

and with the semi-norms
σk(u) := ‖〈x〉ku‖Hk(Rn), k ∈ N.

Definition 1.4.4. Let H and H̃ be Hilbert spaces with group actions κ and κ̃, respectively.

(i) The space Sµ(Ω × Rq;H, H̃) of symbols a(y, η) of order µ ∈ R on an open set Ω ⊆ Rp

is the set of all a(y, η) ∈ C∞(Ω× Rq,L(H, H̃)) such that

‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(H,H̃) ≤ c 〈η〉µ−|β| (1.4.9)

for all (y, η) ∈ K × Rq, K b Ω, α ∈ Np, β ∈ Nq, for constants c = c(α, β,K) > 0. The
elements of Sµ(Ω × Rq;H, H̃) are called operator-valued symbols, referring to twisted
symbolic estimates (1.4.9).
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(ii) Let S(µ)(Ω× (Rq \ {0});H, H̃), µ ∈ R, denote the space of all a(µ)(y, η) ∈ C∞(Ω× (Rq \
{0}),L(H, H̃)) such that

a(µ)(y, δη) = δµκ̃δ a(µ)(y, η)κ−1
δ (1.4.10)

for all δ ∈ R+, (y, η) ∈ Ω × (Rq \ {0}). Relation (1.4.10) is also referred to as twisted
homogeneity of order µ.

(iii) The space Sµcl(Ω × Rq;H, H̃) of classical symbols of order µ is the set of all a(y, η) ∈
Sµ(Ω×Rq;H, H̃) such that there are elements a(µ−j)(y, η) ∈ S(µ−j)(Ω×(Rq\{0});H, H̃),
j ∈ N, such that

rN+1 := a(y, η)− χ(η)
N∑
j=0

a(µ−j)(y, η) ∈ Sµ−(N+1)(Ω× Rq;H, H̃) (1.4.11)

for every N ∈ N and any excision function χ(η).

Remark 1.4.5. Note that for any excision function χ(η) and a(µ)(y, η) ∈ S(µ)(Ω × (Rq \
{0});H, H̃) we have χ(η)a(µ)(y, η) ∈ S(µ)(Ω× Rq;H, H̃).

In fact we have
a(µ)(y,

η

〈η〉
) = 〈η〉−µκ̃−1

〈η〉a(µ)(y, η)κ〈η〉

i.e.,
‖κ̃−1
〈η〉
(
χ(η)a(µ)(y, η)

)
κ〈η〉‖L(H,H̃) ≤ c〈η〉µ,

i.e., χ(η)a(µ)(y, η) satisfies the first symbolic estimate of (1.4.9). For the derivatives we can
argue in a similar manner, using that

Dα
yD

β
η : S(µ)(Ω× (Rq \ {0});H, H̃) −→ S(µ−|β|)(Ω× (Rq \ {0});H, H̃).

Remark 1.4.6. Let η → [η] be any strictly positive function in C∞(Rq) such that [η] = |η|
for |η| > constant for a constant > 0; then we obtain the same space Sµ(Ω×Rq;H, H̃) as in
Definition 1.4.4 (i) when we replace 〈η〉 by [η] in relation (1.4.9).

Remark 1.4.7. For any a(y, η) ∈ Sµcl(Ω×Rq;H, H̃) we can recover the homogeneous compo-
nents a(µ−j)(y, η), j ∈ N, in a unique way. For a(µ)(y, η) we obtain

a(µ)(y, η) = lim
δ→∞

δ−µκ̃−1
δ a(y, η)κ−µδ . (1.4.12)

Then a(µ−1)(y, η) can be recovered by applying an analogous conclusion to

a(y, η)→ χ(η)a(µ)(y, η)

which is of order µ− 1, etc.

Let us observe some useful properties of the spaces S(µ)(Ω× (Rq \ {0});H, H̃). First we have
a linear operator

S(µ)(Ω× (Rq \ {0});H, H̃) −→ C∞(Ω× Sq−1,L(H, H̃)) (1.4.13)
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defined by

a(µ)(y, η) −→ a(µ)(y,
η

|η|
).

Here Sq−1 is the unit sphere in Rq, and C∞(Ω × Sq−1,L(H, H̃)) the corresponding Fréchet
space of smooth functions

Ω× Sq−1 −→ L(H, H̃).

The operator (1.4.13) is an isomorphism. Its inverse has the form

a(µ)(y,
η

|η|
) −→ κ̃|η||η|µa(µ)(y,

η

|η|
)κ−1
|η| = a(µ)(y, η) (1.4.14)

because of
a(µ)(y,

η

|η|
) = |η|−µκ̃|η|−1a(µ)(y, η)κ−1

|η|−1 .

The right-hand side of (1.4.14) is refered to as extension of a(µ)(y,
η
|η|) by homogeneity from

the unit cosphere Sq−1 to Rq \ {0}.

In particular, because of the bijection (1.4.13) the space S(µ)(Ω× (Rq \ {0});H, H̃) is induced
by C∞(Ω× Sq−1,L(H, H̃)).

Remark 1.4.8. The space of functions

f(µ)(η) ∈ S(µ)(Rq \ {0};H, H̃)

(i.e., constant with respect to y ∈ Ω) is a closed subspace of S(µ)(Ω × (Rq \ {0});H, H̃), and
we have

S(µ)(Ω× (Rq \ {0});H, H̃) = C∞(Ω, S(µ)(Rq \ {0};H, H̃)).

Remark 1.4.9. The operators Dα
yD

β
η , α, β ∈ Nq, induce continuous operators

Dα
yD

β
η : S(µ)(Ω× (Rq \ {0});H, H̃) −→ S(µ−|β|)(Ω× (Rq \ {0});H, H̃)

for all µ ∈ R.

Remark 1.4.10. (i) The space Sµ(Ω × Rq;H, H̃) is a Fréchet space with the semi-norm
system

a −→ sup
y∈K
η∈Rq

〈η〉−µ+|β|‖κ̃−1
〈η〉
{
Dα
y D

β
ηa(y, η)

}
κ〈η〉‖L(H,H̃)

α ∈ Np, β ∈ Nq, K b Ω.

(ii) The (so-called) homogeneous components a(µ−j)(y, η), j ∈ N, of classical symbols

a(y, η) ∈ Sµcl(Ω× Rq;H, H̃) are uniquely determined by a(y, η). Thus

cj : Sµcl(Ω× Rq;H, H̃) −→ S(µ−j)(Ω× (Rq \ {0});H, H̃), (1.4.15)

determined by cj := a(µ−j), j ∈ N and rN+1 in formula (1.4.11) allow us to endow

Sµcl(Ω×Rq;H, H̃) with the Fréchet topology with respect to the maps cj, j ∈ N, rN+1, N ∈
N and the canonical embedding

Sµcl(Ω× Rq;H, H̃) ↪→ Sµ(Ω× Rq;H, H̃).
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(iii) The space Sµcl(Rq; H, H̃), of all y-independent elements is closed in Sµcl(Ω × Rq;H, H̃).
Setting S−∞(Ω × Rq;H, H̃) =

⋂
µ∈R S

µ(Ω × Rq;H, H̃) we have S−∞(Ω × Rq;H, H̃) =

C∞(Ω,S(Rq,L(H, H̃)).

Similarly as for scalar symbols, if a consideration is valid both in the general and classical
case we write “(cl)” as subscript. Let Sµ(cl)(R

q;H, H̃) denote the subspace of all a(y, η) ∈
Sµ(cl)(Ω×Rq;H, H̃) that are independent of y. It can be easily verified that Sµ(cl)(R

q;H, H̃) are

closed subspace of Sµ(cl)(Ω× Rq;H, H̃) and we have

Sµ(cl)(Ω× Rq;H, H̃) = C∞(Ω, Sµ(cl)(R
q;H, H̃)). (1.4.16)

Because of nuclearity of C∞(Ω) we have

Sµ(cl)(Ω× Rq;H, H̃) = C∞(Ω)⊗̂πSµ(cl)(R
q;H, H̃) (1.4.17)

where ⊗̂π denotes the projective tensor product between the respective Fréchet spaces, cf.
Theorem 1.7.1.

Remark 1.4.11. Let a(y, η) ∈ C∞(Ω× Rq,L(H, H̃)) such that

a(y, δη) = δµ κ̃δ a(y, η)κ−1
δ (1.4.18)

for all |η| ≥ c for some c > 0 and δ ≥ 1, then we have a(y, η) ∈ Sµcl(Ω× Rq;H, H̃).

In fact, by virtue of (1.4.18) we have

a(y, η) = χa(µ)(y, η) + ϕ(y, η) (1.4.19)

for
a(µ)(y, η) = lim

δ→∞
δ−µκ̃−1

δ a(y, δη)κδ ∈ S(µ)(Ω× (Rq \ {0});H, H̃)

and some ϕ(y, η) ∈ C∞(Ω × (Rq \ {0}),L(H, H̃)) that vanishes for |η| ≥ constant for a
constant > 0. Thus ϕ(y, η) ∈ S−∞(Ω × Rq;H, H̃), and hence (1.4.19) shows that a(y, η) is
classical of order µ. In addition we see that in this case a(µ−j)(y, η) = 0 for all j ∈ N, j > 0.

Remark 1.4.12. (i) Spaces Sµ(cl)(Ω × Rq) of scalar symbols can be identified with spaces

Sµ(cl)(Ω × Rq;C,C) where C is equipped with the trivial group action κ1, determined by

κ1
δ = idC for every δ ∈ R+.

(ii) The (y, η)-wise composition of operator functions gives rise to bilinear maps

Sµ(cl)(Ω× Rq;H0, H̃) · Sν(cl)(Ω× Rq;H,H0) −→ Sµ+ν
(cl) (Ω× Rq;H, H̃) (1.4.20)

for every µ, ν ∈ R.

(iii) The (y, η)-wise multiplication gives us bilinear maps

Sµ(cl)(Ω× Rq) · Sν(cl)(Ω× Rq;H, H̃) −→ Sµ+ν
(cl) (Ω× Rq;H, H̃),

Sν(cl)(Ω× Rq;H, H̃) · Sµ(cl)(Ω× Rq) −→ Sµ+ν
(cl) (Ω× Rq;H, H̃).

(1.4.21)
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Example 1.4.13. Let p(x, ξ) ∈ Sµ(Rn × Rn), µ ∈ R, and assume p is independent of x for
|x| ≥ C for some C > 0; then the associated pseudo-differential operator

Opx(p) : Hs(Rn) −→ Hs−µ(Rn) (1.4.22)

for every s ∈ R. Consider the involved Sobolev spaces with the group action of Example 1.4.2
(ii). This allow us to form the family of operators

b(δ) := κ̃δ Opx(p)κ
−1
δ ∈ C

∞(R+,L(Hs(Rn), Hs−µ(Rn))). (1.4.23)

Because of

b(λδ) = κ̃λδ Opx(p)κ
−1
λδ

= κ̃λ
(
κ̃δ Opx(p)κ

−1
δ

)
κ−1
λ

= κ̃λ b(δ)κ
−1
λ

(1.4.24)

we have
b(|η|) ∈ S(0)(Rq \ {0};Hs(Rn), Hs−µ(Rn)),

for δ = |η|, cf. Definition 1.4.4 (ii). Thus, if η −→ [η] is defined as in Remark 1.4.6, then we
have

a(η) := [η]µ b([η]) ∈ Sµcl(R
q
η;H

s(Rn), Hs−µ(Rn)),

cf. Remark 1.4.11.

Other examples of operator-valued symbols are as follows. Consider the case

H := Hs(R), H̃ = C

where on Hs(R) we impose the group action of Example (1.4.2) (ii) for n = 1 and on C the
trivial group action, i.e., κ̃δ = id for all δ ∈ R+. Then, as is well-known, the operator of
restriction

r′ : S(R) −→ C, r′u := u(0)

extends by continuity to a continuous map

r′ : Hs(R) −→ C (1.4.25)

for every s ∈ R, s > 1/2.

u(x) =

∫
R

eixξû(ξ) d̄ξ,

u(0) =

∫
R
û(ξ) d̄ξ =

∫
R
〈ξ〉−s〈ξ〉sû(ξ) d̄ξ,

|u(0)| = |
∫
R
〈ξ〉−s〈ξ〉sû(ξ) d̄ξ| ≤

(∫
R
〈ξ〉−2s d̄ξ

)1/2(∫
R
〈ξ〉2s|û(ξ)|2 d̄ξ

)1/2

,

|u(0)| ≤ c‖u‖Hs(R),

for s > 1
2
. This yields (1.4.25). Then we have

r′ ∈ S1/2
cl (Rq

η;H
s(R),C). (1.4.26)
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In fact, for u(x) ∈ Hs(R) and (κδu)(x) = δ1/2u(δx), δ ∈ R+ and by Remark 1.4.11 we obtain
(1.4.26).

In the following definition we employ the Schwartz space S(Rq, H) with values in Hilbert
space, defined as the set of all u ∈ C∞(Rq, H) such that

sup
y∈Rq
‖yαDβ

yu(y)‖H <∞

for all α, β ∈ Nq. Further examples come frome differentiations

∂k :=

(
d

dt

)k
: Hs(R) −→ Hs−k(R).

In this case we have ∂k = δkκδ∂
kκ−1

δ , for every δ ∈ R+.

∂k ∈ Skcl(Rq;Hs(R), Hs−k(R)).

More generally, the differentiation in Rn

Dα
x : Hs(Rn) −→ Hs−|α|(Rn)

is a symbol in S
|α|
cl (Rq;Hs(Rn), Hs−|α|(Rn)).

1.5 Edge Sobolev spaces

Definition 1.5.1. (i) Let H be a Hilbert space with a group action κ. ThenWs(Rq, H), s ∈
R, is defined as the completion of S(Rq, H) with respect to the norm

‖u‖Ws(Rq ,H) =

{∫
〈η〉2s ‖κ−1

〈η〉(Fu)(η)‖2
H d̄η

}1/2

(1.5.1)

for d̄η := (2π)−qdη.

(ii) If E is a Fréchet space with group action, cf. (1.4.6), by (i) we have the spaces
Ws(Rq, Ej), and we define

Ws(Rq, E) = lim←−
j∈N
Ws(Rq, Ej).

It can be proved, cf. [21], that the space Ws(Rq, H) can be equivalently defined as the set of
all u ∈ S(Rq, H) such that (1.5.1) is finite.

Remark 1.5.2. Observe that the spacesWs(Rq, H) depend on κ. If necessary we use notation

Ws(Rq, H)κ.

For κδ = idH for all δ we have

Ws(Rq, H)id = Hs(Rq, H).
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In particular, if H = C endowed with the trivial group action we have

Ws(Rq,C) = Hs(Rq). (1.5.2)

Remark 1.5.3. There are many ways to introduce in Ws(Rq, H)κ equivalent norms. For
instance, in (1.5.1) we can replace 〈η〉 by [η] for any strictly positive smooth function in Rq

such that [η] = |η| for all η ≥ const, for some const > 0. Then (1.5.1)turns to an equivalent
norm.

Proposition 1.5.4. For every p, q ∈ N and s ∈ R we have

Ws(Rq, Hs(Rp)) = Hs(Rp+q). (1.5.3)

according to Example 1.3.23 in [53], where Hs(Rp) is endowed with the group action

κδ : u(x) −→ δp/2u(δx), δ ∈ R+.

A similar result of this type concerns the case Hs(R+) with group action

κδ : u(t) −→ δ1/2u(δt), δ ∈ R+.

Then
Ws(Rq, Hs(R+)) = Hs(Rq × R+) = Hs(Rq+1

+ ). (1.5.4)

Here Hs(R1+q
+ ) := {u(t, y) ∈ Hs(R1+q) : u(t, y)|t>0}.

For an open set Ω ⊆ Rq we define Ws
comp(Ω, H) to be the space of all u ∈ D′(Rq, H) such

that suppu is a compact subset of Ω (here we tacitly identify distributions in Ω supported by
such a compact set with distributions in Rq supported by that set). Moreover, Ws

loc(Ω, H) is
defined as the set of all u ∈ D′(Ω, H) such that ϕu ∈ Ws

comp(Ω, H) for every ϕ ∈ C∞0 (Ω), cf.
Proposition 1.5.5 below. Similar notation is used for edge spaces referring to a Fréchet space
E with group action.

The following result has been proved by Hirschmann [21]. By Mϕ we denote the operator of
multiplication by a function ϕ. Instead of Mϕu we also write ϕu.

Proposition 1.5.5. For any Hilbert space H with group action κ and ϕ ∈ S(Rq
y) the operator

Mϕ :Ws(Rq, H) −→Ws(Rq, H)

is continuous for every s ∈ R.

Proof. The Schwartz space S(Rq, H) is dense in Ws(Rq, H); cf. Definition 1.5.1. Thus it
suffices to show

‖Mϕu‖Ws(Rq ,H) ≤ cϕ‖u‖Ws(Rq ,H) (1.5.5)

for all u ∈ S(Rq, H), for some constant cϕ ≥ 0. We have (up to equivalence of norms)

‖ϕu‖2
Ws(Rq ,H) =

∫
[η]2s‖κ−1

[η]F (ϕu)(η)‖2
H dη = ‖m(η)‖2

L2(Rq) (1.5.6)

for

m(η) := ‖[η]sκ−1
[η]

∫
(Fϕ)(η − ξ)Fu(ξ) d̄ξ‖H ,
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using that F (ϕu)(η) =
∫

(Fϕ)(η − ξ)Fu(ξ) d̄ξ. Peetreś inequality, cf. Lemma 1.7.2 in Section
1.7, we have

[η]s ≤ c|s|[η − ξ]|s|[ξ]s (1.5.7)

for every ξ, η ∈ Rq, s ∈ R for a constant c > 0. Applying (1.5.7) for s = 1 we obtain

K(δ) :=

{
δ δ ≥ 1

δ−1 0 ≤ δ ≤ 1

the estimate
K([ξ]/[η]) ≤ c[η − ξ] (1.5.8)

for some c > 0, for all ξ, η ∈ Rq, from (1.5.7) it follows that

m(η) ≤ cs‖κ−1
[η]

∫
[η − ξ]|s|ϕ̂(η − ξ)[ξ]sû(ξ) d̄ξ‖H (1.5.9)

for a constant cs > 0. Thus the right-hand side of (1.5.9) is equal to

cs‖
∫
κ−1

[η]/[ξ][η − ξ]
|s|−k[η − ξ]kϕ̂(η − ξ)[ξ]sκ−1

[ξ] û(ξ)‖H d̄ξ. (1.5.10)

From proposition 1.4.1 and (1.5.8) it follows that

‖κ−1
[η]/[ξ]‖L(H) ≤ cK([ξ]/[η])M ≤ c[η − ξ]M (1.5.11)

for some c > 0. Thus (1.5.10) can be estimated by

cs

∫
‖κ−1

[η]/[ξ]‖L(H)[η − ξ]|s|−k[η − ξ]k|ϕ̂(η − ξ)|[ξ]s‖κ−1
[ξ] û(ξ)‖H d̄ξ

≤ ccs

∫
[η − ξ]|s|−k+M [η − ξ]k|ϕ̂(η − ξ)|[ξ]s‖κ−1

[ξ] û(ξ)‖H d̄ξ

≤ ccs

∫
[η − ξ]|s|−k+M [ξ]s‖κ−1

[ξ] û(ξ)‖H d̄ξ

for Ck(ϕ) := supξ∈Rq [ξ]
k|ϕ̂(ξ)|. Let us set

g(η) = [η]|s|−k+M , h(η) = [η]s‖κ−1
[η] û(η)‖H ,

and choose k ∈ N so large such that |s| − k + M < −q, and hence g ∈ L1(Rq). Moreover,
‖h‖L2(Rq) = ‖u‖Ws(Rq ,H) we have

m(η) ≤ ccsCk(ϕ)(g ∗ h)(η)

for η ∈ Rq. From Youngs’ inequality, cf. ... below, we obtain, using (1.5.6),

‖ϕu‖Ws(Rq ,H) ≤ ccsCk(ϕ)‖g ∗ h‖L2(Rq) ≤ ccsCk(ϕ)‖g‖L1(Rq)‖h‖L2(Rq)

= CsCk(ϕ)‖u‖Ws(Rq ,H)

Cs := ccs‖g‖L1(Rq), which just corresponds to (1.5.5).



26 Pseudo-Differential Operators

Similarly as (1.1.13) we form pseudo-differential operators Opy(a) = Op(a) in the variable

y ∈ Ω, where a(y, y′, η) is a symbol in Sµcl(Ω × Ω × Rq;H, H̃), cf. Definition 1.4.4 for Ω × Ω
instead of Ω, now for open Ω ⊆ Rq.

Proposition 1.5.6. For every
a(η) ∈ Sµ(Rq;H, H̃)

the associated pseudo-differential operator Opy(a) induces a continuous operator

Opy(a) :Ws(Rq, H) −→Ws−µ(Rq, H̃) (1.5.12)

for every s ∈ R. Moreover, the map a −→ Opy(a) generates a continuous map

Sµ(Rq;H, H̃) −→ L(Ws(Rq, H),Ws−µ(Rq, H̃)) (1.5.13)

for every s ∈ R.

Proof. We have for u ∈ Ws(Rq, H), using that Op(a) = F−1a(η)F

‖Op(a)u‖2
Ws−µ(Rq ,H̃)

=

∫
〈η〉2(s−µ) ‖κ̃−1

〈η〉 F Op(a)u(η)‖2
H̃
d̄η

=

∫
〈η〉2(s−µ) ‖κ̃−1

〈η〉 a(η)Fu(η)‖2
H̃
d̄η

=

∫
〈η〉2(s−µ) ‖κ̃−1

〈η〉 a(η)κ〈η〉 κ
−1
〈η〉Fu(η)‖2

H̃
d̄η

≤
∫
〈η〉2(s−µ)‖κ̃−1

〈η〉a(η)κ〈η〉‖2
L(H,H̃)

‖κ−1
〈η〉Fu(η)‖2

H d̄η

≤ sup
η∈Rq
〈η〉−2µ‖κ̃−1

〈η〉a(η)κ〈η〉‖2
L(H,H̃)

∫
〈η〉2s‖κ−1

〈η〉(Fu)(η)‖2
H d̄η ≤ c2‖u‖2

Ws(Rq ,H).

This shows the claimed continuity (4.1.5). Moreover,

‖Op(a)||L(Ws(Rq ,H),Ws−µ(Rq ,H̃)) ≤ sup
η∈Rq
〈η〉−µ||κ̃−1

〈η〉a(η)κ〈η〉‖L(H,H̃),

shows the continuity of (1.5.13), because a(η) ∈ Sµ(Rq;H, H̃) −→ 0 entails c(a) −→ 0 and
hence

||Op(a)||L(W s(Rq ,H),W s−µ(Rq ,H̃)) −→ 0.

Note that, as a corollary of relation (1.4.26),

Opy(r
′) :Ws(Rq, Hs(R)) −→ Hs−1/2(Rq,C)

is continuous for s > 1
2
. However, from (1.5.2) and (1.5.3), we get the continuity of the

restriction
Opy(r

′) : Hs(Rq+1) −→ Hs−1/2(Rq), (1.5.14)

for s > 1/2, where Opy(r
′) has the meaning of restriction

u(y1, . . . , yq, yq+1) −→ u(y1, . . . , yq, 0).
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Another continuity result concerns symbols a(y, η) that are not necessarily constant with
respect to y. There are many different situations of that kind, where we either control the
behavior of symbols for |y| −→ ∞ or the nature of distribution spaces for |y| −→ ∞.

The spaces of symbols in Definition 1.4.4 can be specified for an open set Ω ⊆ Rq in variables
y or Ω×Ω for open Ω ⊆ Rq, in variables (y, y′). Symbols a(y, y′, η) are called double symbols,
and for those we form associated operators

Op(a)u(y) =

∫∫
ei(y−y

′)ηa(y, y′, η)u(y′) dy′d̄η, (1.5.15)

first for u ∈ C∞0 (Ω, H), and later on for more general H-valued distributions, such as
Ws

loc(Ω, H). Clearly symbols a(y, η) and a(y′, η) are admitted as special cases, and analo-
gously as in the scalar case, in this connection we call a(y, η) =: aL(y, η) a left symbol,
a(y′, η) := aR(y, η) a right symbol.

Theorem 1.5.7. Assume that a(y, η) ∈ Sµ(Rq × Rq;H, H̃) vanishes for large |y|, i.e.,

a(y, η) = b(y, η) + a1(η)

for b(y, η) ∈ Sµ(Rq×Rq;H, H̃) such that b(y, η) ≡ 0 for |y| > R for some R > 0. Then Op(a)
induces a continuous operator

Op(a) :Ws(Rq, H) −→Ws−µ(Rq, H̃) (1.5.16)

for every s ∈ R.

Proof. By virtue of Proposition 1.5.6 it suffices to consider Op(b). By assumption we have

b(y, η) ∈ C∞0 (BR, S
µ(Rq;H, H̃))

for BR := {y ∈ Rq : |y| ≤ R} and C∞0 (BR) is the Fréchet space of all ϕ ∈ C∞(Rq) such that
suppϕ ⊆ BR. Because of

C∞0 (BR, S
µ(Rq;H, H̃)) = C∞0 (BR)⊗̂πSµ(Rq;H, H̃),

applying Theorem 1.7.1in Section 1.7, we can write

b(y, η) =
∞∑
j=0

λjϕj(y)bj(η)

for λj ∈ C,
∑∞

j=0 |λj| < ∞, ϕj ∈ C∞0 (BR), bj(η) ∈ Sµ(Rq;H, H̃), tending to zero in the
respective spaces, as j →∞. The functions ϕj(y) are interpreted as operators of multiplication
Mϕj . We now apply Proposition 1.5.5 which tells us that

Mϕj : u −→ ϕju

induces a continuous operator

Mϕj :Ws−µ(Rq, H̃) −→Ws−µ(Rq, H̃)
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where
||Mϕj ||L(Ws−µ(Rq ,H̃)) −→ 0 (1.5.17)

as j →∞. Then, writing

Op(b) =
∞∑
j=0

λjMϕjOp(bj)

we obtain

‖Op(b)‖L(Ws(Rq ,H),Ws−µ(Rq ,H̃))

≤
∞∑
j=0

|λj|‖Op(bj)‖L(Ws(Rq ,H),Ws−µ(Rq ,H̃))‖Mϕj‖L(Ws−µ(Rq ,H̃)).
(1.5.18)

From bj → 0 and Proposition 1.5.6 we obtain

‖Op(bj)‖L(Ws(Rq ,H),Ws−µ(Rq ,H̃)) −→ 0 (1.5.19)

as j → ∞. Moreover, (1.5.17) and
∑∞

j=0 |λj| < ∞ show that the right-hand side of (1.5.18)
converges. This yields the continuity of (1.5.16).

Conclusions using projective tensor product structure of involved spaces as in the previous
proof are often referred to as tensor product argument.

Example 1.5.8. Let E = C∞(Ω), F = Sµ(cl)(R
q;H, H̃), then relations (1.4.17) mean

E⊗̂πF = Sµ(cl)(Ω× Rq;H, H̃)

and hence we can apply Theorem 1.7.1.

There are other continuity results for operators with operator-valued symbols. For purposes
below we discuss a few cases.

Theorem 1.5.9. For a(y, η) ∈ Sµ(Ω× Rq;H, H̃), Ω ⊆ Rq open, the operator

Opy(a) : C∞0 (Ω, H) −→ C∞(Ω, H̃) (1.5.20)

extends to a continuous operator

Opy(a) :Ws
comp(Ω, H) −→Ws−µ

loc (Ω, H̃) (1.5.21)

for every s ∈ R.

Note that when we consider a double symbol

a(y, y′, η) ∈ Sµ(Ω× Ω× Rq;H, H̃)

rather than a(y, η) as in Theorem 1.5.9 we also have continuous operators Op(a) in the sense
of (1.5.20) and (1.5.21).

By L−∞(Ω;H, H̃) we denote the space of operators C acting by kernels c(y, y′) ∈ C∞(Ω ×
Ω,L(H, H̃)), namely

Cu(y) =

∫
c(y, y′)u(y′) dy′,

u ∈ C∞0 (Ω, H).
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Definition 1.5.10. We set

Lµ(cl)(Ω;H, H̃) := {Op(a) + C : a(y, η) ∈ Sµ(cl)(Ω;H, H̃), C ∈ L−∞(Ω;H, H̃)}. (1.5.22)

A vector-valued analogue of the Schwartz kernel theorem then gives us an operator-valued
distributional kernel for A := Op(a), namely,

KA(y, y′) =

∫
ei(y−y

′)ηa(y, y′, η) d̄η (1.5.23)

which belongs to D′(Ω× Ω,L(H, H̃)).

Proposition 1.5.11. We have

sing suppKA(y, y′) ⊆ diag (Ω× Ω). (1.5.24)

Proof. Using the identity

∆N
η ei(y−y

′)η = −|y − y′|2Nei(y−y
′)η.

We may write

Op(a)u(y) =

∫∫
−|y − y′|−2N∆N

η ei(y−y
′)ηa(y, y′, η)u(y′) dy′d̄η,

u ∈ C∞0 (Ω, H). Integrating by part in η gives us

Op(a)u(y) =

∫∫
ei(y−y

′)η(−|y − y′|−2N∆N
η a(y, y′η))u(y′) dy′d̄η.

Writing
Op(a)u(y) = Op((ω + (1− ω))a)u(y)

for an ω(y, y′) ∈ C∞(Ω× Ω) such that ω ≡ 1 in a neighbourhood of diag (Ω× Ω) we obtain

Op(a)u(y) = Op(ωa)(y, η) +

∫∫
ei(y−y

′)η(−|y − y′|−2N(1− ω(y, y′))∆N
η a(y, y′, η)u(y′) dy′d̄η.

(1.5.25)
Since 1− ω vanishes in a neighbourhood of diag(Ω× Ω) we have

−|y − y′|−2N(1− ω(y, y′)) ∈ C∞(Ω× Ω).

Moreover, as a consequence of Definition 1.4.4 (i) we have

∆N
η a(y, y′, η) ∈ Sµ−2N(Ω× Ω× Rq;H, H̃)

for every N ∈ N. Now for every k ∈ N there exists an N = N(k) such that the kernel of
Op((1 − ω)a) belongs to Ck(Ω × Ω,L(H, H̃)). Since N in (1.5.25) is arbitrary, the kernel of
Op((1−ω)a) belongs to C∞(Ω×Ω,L(H, H̃)). Since for every neighbourhood of diag (Ω×Ω)
we can choose ω(y, y′) in such a way that ω vanishes outside this neighbourhood, we obtain
relation (1.5.24).
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Remark 1.5.12. Similarly as (1.1.20) an operator A ∈ Lµ(cl)(Ω;H, H̃) can be written in the
form

A = A0 + C (1.5.26)

where A0 ∈ Lµ(cl)(Ω;H, H̃) is properly supported in the variables (y, y′) and C ∈ L−∞(Ω;H, H̃).

Similarly as Remark 1.1.6 we have a recovering process for symbols.

Remark 1.5.13. Let A ∈ Lµ(cl)(Ω;H, H̃) be properly supported. Then there is a unique

a(y, η) ∈ Sµ(cl)(Ω;H, H̃) such that

A = Opy(a).

In fact, for any u ∈ C∞0 (Ω, H), using the Fourier inversion formula

u(y) =

∫
eiyηû(η) d̄η (1.5.27)

we obtain

Au(y) =

∫
Aeiyηû(η) d̄η = Opy(a)u (1.5.28)

and we may set a(y, η) = e−iyηAeiyη belonging to C∞(Ω × Rq,L(H, H̃)). An additional con-
sideration (which is left to the reader) shows that in fact a(y, η) is a symbol as asserted see
also Shubin’s book [69].

1.6 Applications of operator-valued symbols

For applications below we consider some concrete examples of operator-valued symbols. Let
us form trace symbols γj defined by

γj(ζ)u := [ζ]−j−1/2∂
ju

∂tj
∣∣
t=0

(1.6.1)

acting on functions u ∈ Hs(R), for the meaning of notation ζ → [ζ] see Example 1.4.13. Then,
for large |ζ| we obtain

γj(δζ)u(t) = δj+1/2γj(ζ)κ−1
δ u(t)

= δj+1/2[ζ]−j−1/2 ∂
j

∂tj
δ−1/2u(δ−1t)|t=0 = γj(ζ)

(1.6.2)

for every δ ∈ R+. Therefore, according to Remark 1.4.11, we have γj ∈ S0
cl(Rd

ζ ;H
s(R),C) for

any s− j > 1
2
. If is also useful to form potential symbols

kj(ζ) : c −→ ω([ζ]t)tj[ζ]j+1/2c

mapping c ∈ C to Hs(R) for any s ∈ R. Here ω is any cut-off function. Then we have

γj(ζ)kj(ζ) = idC

for every ζ ∈ Rd and
kj(ζ)γj(ζ) = ω(t).

In addition we have

kj(δζ)c = δ−j−1/2κδkj(ζ)c = δ−j−1/2δ1/2ω([ζ]δt)δjtj[ζ]j+1/2c = κδkj(ζ) (1.6.3)

for all δ ∈ R+ and large |ζ|, κδu(t) := δ1/2u(δt). Thus, because of Remark 1.4.11 we have
kj(ζ) ∈ S0

cl(Rd
ζ ;H

s(R),C).
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1.7 Appendix

In general, if E0, E1 are Fréchet spaces embedded in a Hausdorff topological vector space H
we have the non-direct sum

E0 + E1 := {e0 + e1 : e0 ∈ E0, e1 ∈ E1}. (1.7.1)

Then, setting
∆ := {(e,−e) : e ∈ E0 ∩ E1}

we have an isomorphism
E0 + E1

∼= E0 ⊕ E1/∆.

The quotient space is defined as space of equivalence classes of pairs (e0, e1) where

(e0, e1) ∼ (f0, f1)←→ (e0 − f0, e1 − f1) ∈ ∆.

∆ is closed in the Fréchet space E0 ⊕ E1; then E0 ⊕ E1/∆ is again a Fréchet space, called
the non-direct sum of the involved Fréchet spaces. In particular, if E0, E1 are Hilbert spaces,
then E0 ⊕ E1 is also a Hilbert space, and ∆ is a closed subspace. Then E0 ⊕ E1/∆ can be
identified with ∆⊥, the orthogonal complement of ∆, i.e., E0 + E1 is also a Hilbert space. In
addition if a Fréchet space F is a module over an algebra A, we denote by [a]F the completion
of {af : f ∈ F} in F .

Theorem 1.7.1. [51] Let E,F be Fréchet spaces. Then every g ∈ E⊗̂πF in the respective
projective tensor product (which is again as Fréchet space) can be written as convergent sum
in E⊗̂πF of the form

g =
∞∑
j=0

λjej ⊗ fj (1.7.2)

for λj ∈ C,
∑∞

j=0 |λj| <∞ and ej ∈ E, fj ∈ F tends to zero as j →∞.

The convergence of (1.7.2) refers to the system of projective tensor projects p⊗̃πq where p
and q sum over the semi-norm systems of the space E and F , respectively. In this sense we
have

p⊗̂πq (g) ≤
∞∑
j=0

λjp(ej)q(fj) (1.7.3)

which is convergent.

Lemma 1.7.2 (Peetreś inequality). We have

(1 + |ξ − η|)s ≤ (1 + |η|)s(1 + |ξ|)|s| (1.7.4)

for all ξ, η ∈ Rn and every s ∈ R.



Chapter 2

Outline of Boutet de Monvel’s
Calculus

2.1 Boundary value problems for differential operators

Consider a smooth manifold X with boundary ∂X, endowed with a Riemannian metric there
is the product metric of ∂X × [0, 1) in a collar neighbourhood of the boundary for some
Riemannian metric on ∂X. We also consider 2X, the double of X obtained by gluing together
two copies X+ and X− of X along the common boundary to a smooth manifolds. 2X locally
close to the boundary from ∂X× [0, 1), we have a splitting of variables x = (x′, xn) ∈ Ω× [0, 1)
for an open set Ω ⊆ Rn−1 for n = dimX. In order to understand operators on X near the
boundary it is convenient first to look at the half-space Ω × R+. A basic issue will be to
understand on how a differential operator

A =
∑
|α|≤µ

aα(x)Dα
x

of order µ with coefficients aα ∈ C∞(Rn) acquires an operator-valued symbol from the bound-
ary. From Section 1.1 we have the usual symbol

a(x, ξ) =
∑
|α|≤µ

aα(x) ξα,

and its homogeneous principal symbol

σψ(A) (x, ξ) =
∑
|α|=µ

aα(x) ξα,

ξ 6= 0. Recall that σψ(A)(x, δξ) = δµσψ(A)(x, ξ), δ ∈ R+ (homogeneity property). Moreover,
we have the homogeneous principal boundary symbol, defined as

σ∂(A)(x′, ξ′) :=
∑
|α|=µ

aα(x′, 0) (ξ′, Dxn)α (2.1.1)

or equivalently,
σ∂(A) (x′, ξ′) = σψ(A) (x′, 0, ξ′, Dxn) (2.1.2)

32
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for Dxn = 1
i

∂
∂xn

, ξ′ 6= 0. The boundary symbol is regarded as a family of differential operators
on the half-axis, say, between Sobolev spaces Hs(R+) = Hs(R)|R+ , s ∈ R, namely,

σ∂(A)(x′, ξ′) : Hs(R+) −→ Hs−µ(R+), (2.1.3)

ξ′ 6= 0. Homogeneity in the case of boundary symbols is connected with the action of a
one-parameter-dependent group κ = {κδ}δ∈R+ of isomorphisms

κδ : Hs(R+) −→ Hs(R+), (κδ u)(xn) = δ1/2u(δxn). (2.1.4)

Then

σ∂(A)(x′, δξ′) = δµκδσ∂(A)(x′, ξ′)κ−1
δ , (2.1.5)

for all δ ∈ R+.

Example 2.1.1. For A = ∆ =
∑n

j=1
∂2

∂xj
2 , i.e., the Laplacian in Rn, we have

σψ(∆)(ξ) = −|ξ|2,

and for x = (x′, xn), ξ = (ξ′, ξn),

σ∂(∆)(ξ′) = −|ξ′|2 +
∂2

∂x2
n

. (2.1.6)

In this case (2.1.5) turns to

σ∂(∆)(δξ′) = δ2κδσ∂(∆)(ξ′)κ−1
δ , δ ∈ R+.

First observe that A in Rn = Rn−1 × R, can be written in iterated form

A = Opx′(Opxn(a)), (2.1.7)

using that a(x, ξ) = a(x′, xn, ξ
′, ξn) for fixed (x′, ξ′) is a symbol in (xn, ξn).

Proposition 2.1.2. Let a(x, ξ) ∈ Sµ(Ω×Rn
ξ ) for an open set Ω ⊆ Rn, and form the (x′, ξ′)-

dependent operator function

p(x′, ξ′) := Opxn(a)(x′, ξ′) : Hs(R) −→ Hs−µ(R)

between Sobolev spaces on the xn-axis, assuming that a(x′, xn, ξ
′, ξn) is independent of xn for

large |xn|. Then p(x′, ξ′) is an operator-valued symbol, in the sense of the following general-
ization of symbolic estimates (1.1.4), namely,

‖κ−1
〈ξ′〉{D

α
x′D

β
ξ′p(x

′, ξ′)}κ〈ξ′〉‖L(Hs(R),Hs−µ(R)) ≤ c 〈ξ′〉µ−|β|

for all (x′, ξ′) ∈ K × Rn−1, K b Ω′,Ω′ ⊆ Rn−1, and arbitrary multi-indices α, β ∈ Nn−1 for
constant c = c(α, β,K) > 0. The group action κ = {κδ}δ∈R+ here refers to Hs(R) rather than
Hs(R+), cf. (2.1.4).
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Remark 2.1.3. The boundary symbol (2.1.6) is a surjective family of Fredholm operators

σ∂(∆)(ξ′) : Hs(R+) −→ Hs−2(R+) (2.1.8)

for every s > 3
2
, ξ′ 6= 0 and

kerσ∂(∆)(ξ′) =
{
ce−|ξ

′|xn : c ∈ C
}
. (2.1.9)

Thus, denoting by r′ the operator of restriction to xn = 0 we have an isomorphism

r′ : kerσ∂(∆)(ξ′) −→ C.

In fact, the surjectivity of (2.1.8) follow from the existence of a right inverse of σ∂(∆)(ξ′)
which is of the form

r+Opxn(−|ξ′|2 − ξ2
n)−1e+ (2.1.10)

where
e+ : Hs−2(R+) −→ D′(R)

is the operator of extension by 0 from R+ to R, and r+ is the operator of restriction of
distribution from R to R+. Then interpreting (2.1.8) as operator r+

(
− |ξ′|2 + ∂2

∂x2n

)
e+ we

obtain
r+Opxn

(
− |ξ′|2 − ξ2

n

)
e+ r+Opxn

(
− |ξ′|2 − ξ2

n

)−1
e+

= r+Opxn
(
− |ξ′|2 − ξ2

n

)
Opxn

(
− |ξ′|2 − ξ2

n

)−1
e+ = idHs−2(R+).

Let us now consider the ξ′-dependent operators

σ∂(A0)(ξ′) :=

(
σ∂(∆)(ξ′)

r′

)
: Hs(R+) −→

Hs−2(R+)
⊕
C

, (2.1.11)

ξ′ 6= 0, where

A0 =

(
∆
T0

)
(2.1.12)

indicates the operator representing the Dirichlet problem. In order to fix notation, the Dirichlet
problem for the Laplacian in a bounded domain G ⊂ Rn with smooth boundary ∂G means
to solve

∆u = f, (2.1.13)

T0u = g (2.1.14)

where T0 means the restriction of a function to ∂G. We identify (2.1.13) with a column
matrix (2.1.12) of operators between spaces of smooth functions, or, alternatively, functions
in Sobolev spaces for s > 3/2,

A0 : C∞(G) −→
C∞(G)
⊕

C∞(∂G)
, Hs(G) −→

Hs−2(G)
⊕

Hs−1/2(∂G)
. (2.1.15)

Here, Hs(G) := Hs(Rn)|G. Operators (2.1.15) (either realized in spaces of smooth functions
or in Sobolev spaces) represent specific boundary value problems, both called the Dirichlet
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problem for the Laplacian. If is called elliptic, since both components of the principal symbolic
hierarchy

σ(A0) =
(
σψ(A0), σ∂(A0)

)
(2.1.16)

for σψ(A0) := σψ(∆), are bijective, cf. Lemma 2.1.4, and the subsequent material.
The operator function (2.1.11) is called the boundary symbol of A0 in corresponding coordi-
nates, where r′ := σ∂(T0).
(2.1.11) is a family of isomorphisms, ξ′ 6= 0, according to the following general observation.

Lemma 2.1.4. Let (
A
T

)
: H −→

H̃
⊕
L

(2.1.17)

be a linear operator for Hilbert spaces H, H̃ and L. Then (2.1.17) is an isomorphism if and
only if

A : H −→ H̃

is surjective and T induces an isomorphism

T |kerA : kerA −→ L. (2.1.18)

According to the general terminology the isomorphism (2.1.11) means that the Dirichlet con-
dition T0 in connection with the Laplacian ∆ is an elliptic boundary condition.

Another example is T1, the Neumann condition, defined as T1u := ∂
∂ν
u|∂G where ∂

∂ν
is the

derivative of u in normal direction to the boundary ∂G. Instead of (2.1.15) we have operators

A1 =

(
∆
T1

)
(2.1.19)

A1 : C∞(G) −→
C∞(G)
⊕

C∞(∂G)
, Hs(G) −→

Hs−2(G)
⊕

Hs−3/2(∂G)
. (2.1.20)

Then

σ∂(A1)(ξ′) :=

(
σ∂(∆)(ξ′)

r′ ∂
∂xn

)
: Hs(R+) −→

Hs−2(R+)
⊕
C

, (2.1.21)

which is also a family of isomorphisms, since r′ ∂
∂xn

:= σ∂(T1) maps kerσ∂(∆)(ξ′) isomorphically
to C, cf. Lemma 2.1.4. We will see later on that the operators (2.1.15) induce isomorphisms
between the respective spaces. In addition we will produce the pseudo-differential structure
of inverse operators. In the present case we write

P0 := A−1
0 , P0 = (P0 K0).

In potential theory P0 is called Green’s function and K0 the double layer potential. We will
have

P0 = E +G0
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for a fundamental solution of the Laplacian and G0 will be called later on a Green operator.

A0P0 =

(
1 0
0 1

)
, P0A0 = P0∆ +K0T0 = 1. (2.1.22)

In particular, we have

∆P0 = 1, ∆K0 = 0,

T0P0 = 0, T0K0 = 1.

Thus

A1P0 =

(
1 0

T1P0 T1K0

)
. (2.1.23)

2.2 Green, trace and potential symbols

We now study specific operators-valued symbols in the sense of Definition 1.4.4 .

Definition 2.2.1. An element k(x′, ξ′) ∈ Sµcl(Ω × Rn−1;C,S(R+)), Ω ⊆ Rn−1, is called a
potential symbol. Here C is equipped with the trivial group action κ1

δ := idC and S(R+)) with
κδu(xn) = δ1/2u(δxn) δ ∈ R+, with S(R+)) being represented as

S(R+) = lim←−
N∈N

HN,N(R+) for HN,N(R+) = 〈xn〉−NHN(R+), (2.2.1)

where HN(R+) = HN(R)|R+, cf. Example 1.4.3.

Consider a function g(x′, xn[ξ′]) where g(x′, xn) ∈ C∞(Ω,S(R+)). Then

k(x′, ξ′) : c −→ g(x′, xn[ξ′])c (2.2.2)

represents a potential symbol k(x′, ξ′) of order −1
2
. In fact, we have the identity

k(x′, δξ′)c = δ−
1
2κδk(x′, ξ′)(κ1

δ)
−1c

for |ξ′| ≥ C, δ ≥ 1, i.e.,

k(x′, δξ′)c = δ
1
2 δ−1

2
g(x′, xn[δξ′])c = δ−

1
2κδk(x′, ξ′)c. (2.2.3)

Thus
k(x′, ξ′) ∈ S−

1
2

cl (Ω× Rn−1;C,S(R+)),

cf. Remark 1.4.11.

Lemma 2.2.2. The relation
g(x′, xn) −→ k(x′, ξ′)

defines a continuous operator

C∞(Ω,S(R+)) −→ S
−1/2
cl (Ω× Rn−1;C,S(R+)). (2.2.4)
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Lemma 2.2.3. The (x′, ξ′)-dependent family of mappings (2.2.6), i.e.,

k(x′, ξ′) : C −→ S(R+)

determines an operator-valued symbol

k(x′, ξ′) ∈ S−1/2
cl (Ω× Rn−1;C,S(R+))⊗̂πSµcl(R

n−1) = S
µ−1/2
cl (Ω× Rn−1;C,S(R+))

.

Proof. By definition we have relation

g(x′, xn, ξ
′) ∈ C∞(Ω,S(R+))⊗̂πSµcl(R

n−1).

Applying Theorem 1.7.1 to E := C∞(Ω,S(R+)), F := Sµcl(Rn−1), we obtain a convergent sum

g(x′, xn, ξ
′) =

∞∑
j=0

λjgj(x
′, xn)pj(ξ

′)

for λj ∈ C,
∑∞

j=0 |λj| < ∞ and elements gj(x
′, xn) ∈ C∞(Ω,S(R+)), pj(ξ

′) ∈ Sµcl(Rn−1),
tending to zero in the respective spaces, as j → ∞. From Lemma 2.2.2 from gj(x

′, xn) we
obtain potential symbols

kj(x
′, ξ′) ∈ S−1/2

cl (Ω× Rn−1;C,S(R+)),

tending to zero in this symbol space as j −→ ∞. From Remark 1.4.12 (iii) together with
evident continuity product in the involved factors it follows that

k(x′, ξ′) =
∞∑
j=0

λjkj(x
′, ξ′)pj(ξ

′)

converges in the space S
−1/2
cl (Ω× Rn−1;C,S(R+))⊗̂πSµcl(Rn−1).

In other words, for every

g(x′, xn, ξ
′) ∈ C∞(Ω,S(R+))⊗̂πSµcl(R

n−1) = S(R+, S
µ
cl(Ω× Rn−1)) (2.2.5)

by
k(x′, ξ′) : c −→ g(x′, xn[ξ′], ξ′)c, (2.2.6)

we obtain a potential symbol k(x′, ξ′) of order µ− 1
2
. Then we obtain a continuous operator,

called a potential operator,

Opx′(k) :Ws
comp(Ω,C) −→Ws−µ+ 1

2
loc (Ω,S(R+)), (2.2.7)

for every s ∈ R, cf. Theorem 1.5.9.
The counterpart of potential operators in Boutet de Monvel’s calculus of boundary value
problems are trace operators, belonging to trace symbols. Such a symbol is obtained by an
operator function g(x′, xn[ξ′]) for a

g(x′, xn) ∈ C∞(Ω,S(R+)),
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where the associated (operator-valued) trace symbol acts on Hs(R+) for s > −1
2

by

b(x′, ξ′)u :=

∫ ∞
0

g(x′, xn[ξ′])u(xn) dxn. (2.2.8)

Note that for u ∈ Hs(R+), −1
2
< s < 1

2
, the extension of u by 0 to the negative half-axis,

denoted by e+u, gives us e+u ∈ Hs(R). More generally, similarly as in the discussion on
potential symbols we admit functions (2.2.5) and the associated trace symbol has the form

b(x′, ξ′)u :=

∫ ∞
0

g(x′, xn[ξ′], ξ′)u(xn) dxn. (2.2.9)

Lemma 2.2.4. The (x′, ξ′)-dependent family of mappings (2.2.9), i.e.,

S(R+) −→ C

determines an operator-valued symbol b(x′, ξ′) ∈ Sµ−1/2
cl (Ω× Rn−1;S(R+),C) and

b(x′, ξ′) ∈ Sµ−1/2
cl (Ω× Rn−1;Hs(R+),C)

for every s ∈ R, s > −1/2.

Proof. We first consider the special case (2.2.8) and show that we get a symbol in S
− 1

2
cl (Ω×

Rn−1;S(R+),C). Similarly as in the proof of Lemma 2.2.3 it suffices to check the property

b(x′, ξ′) ∈ C∞(Ω× Rn−1,L(S(R+),C))

which is evident. The homogeneity

b(x′, δξ′) = δ−1/2b(x′, ξ′)κ−1
δ

for all δ ≥ 1 and |ξ′| > C, cf. Remark 1.4.11, is obtained as follows :

b(x′, δξ′)u =

∫ ∞
0

g(x′, xn[δξ′])u(xn) dxn

=

∫ ∞
0

g(x′, xn[δξ′])u(xn) dxn

=

∫ ∞
0

g(x′, x̃n[ξ′])u(δ−1x̃n)δ−1 dx̃n

=

∫ ∞
0

g(x′, x̃n[ξ′])(κ−1
δ u)(x̃n)δ−1/2 dx̃n = δ−1/2b(x′, ξ′)κ−1

δ u.

In Boutet de Monvel’s boundary symbolic calculus there are also singular trace operators,
namely,

γk : u(xn) −→ r′
(

∂k

∂xn
k

)
(2.2.10)

for some k ∈ N.
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Lemma 2.2.5. We have
γk ∈ Sk+1/2

cl (Rn−1;S(R+),C)

and also
γk ∈ Sk+1/2

cl (Rn−1;Hs(R+),C)

for all s ∈ R, s− k > 1
2
.

Proof. Applying Remark 1.4.11 it suffices to show that

γk ∈ C∞(Rn−1
ξ′ ,L(S(R+),C)) or γk ∈ C∞(Rn−1

ξ′ ,L(Hs(Rn−1
ξ′ ),C)),

s > k+ 1
2
. This is clear since γk does not depend on ξ′. Moreover, we have twisted homogeneity

γku = δk+ 1
2κ1

δγ
kκ−1

δ u (2.2.11)

for δ ∈ R+, ξ
′ ∈ Rn−1. Recall that κ1

δ = idC for all δ. Thus

γkκ−1
δ u = γkδ−1/2u(δ−1xn) = δ−1/2δ−ku(0),

i.e., we obtain relation (2.2.11), as desired.

The trace symbols of the form (2.2.9) or (2.2.10) are special examples of trace symbols in
general. The x′-dependence is not so essential for the structure; so we now omit x′. In order
to generate such symbols in unified form we consider families of maps

b(ξ′) : u(xn) −→
∫ ∞

0

g(xn[ξ′], ξ′)Dk
xnu(xn) dxn.

Integration by parts gives us

b(ξ′)u =

∫ ∞
0

Dxn(g(xn[ξ′], ξ′)Dk−1
xn u(xn)) dxn −

∫ ∞
0

g1(xn[ξ′], ξ′)Dk−1
xn u(xn) dxn

= g(xn[ξ′], ξ′)Dk−1
xn u(xn)

∣∣∣∣∞
0

−
∫ ∞

0

g1(xn[ξ′], ξ′)Dk−1
xn u(xn) dxn

= −g0(0, ξ′)γk−1u−
∫ ∞

0

g1(xn[ξ′], ξ′)Dk−1
xn u(xn) dxn

(2.2.12)

for
g0(0, ξ′) := g(0, ξ′) ∈ Sµcl(R

n−1
ξ′ ),

g1(xn[ξ′], ξ′) := [ξ′](Dxng0)(xn[ξ′], ξ′)

for g0 := g0(xn[ξ′], ξ′). By iteration of this computation it follows that

b(ξ′)u =
k−1∑
j=1

(−1)jgj−1(0, ξ′)γk−ju+

∫ ∞
0

(−1)kgk(xn[ξ′], ξ′)u(xn) dxn (2.2.13)

for

gj(0, ξ
′) = Dxngj−1(xn[ξ′], ξ′)

∣∣∣∣
xn=0

∈ Sµ+j
cl (Rn−1

ξ′ ).

Here gj−1(0, ξ′)γk−j belong to S
µ+k+1/2
cl (Rn−1;S(R+),C) for all j. Let us consider other specific

operator-valued symbols occurring in boundary value problems, namely, Green symbols.
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Definition 2.2.6. (i) A Green symbol g(x′, ξ′) of order ν ∈ R and of type 0 is a symbol

g(x′, ξ′) ∈ Sνcl(Ω× Rn−1;L2(R+), L2(R+)) (2.2.14)

referring to κ = {κδ}δ∈R+ , (κδu)(xn) = δ1/2u(δxn), acting in L2(R+), such that

g(x′, ξ′) ∈ Sνcl(Ω× Rn−1;L2(R+),S(R+))

and
g∗(x′, ξ′) ∈ Sνcl(Ω× Rn−1;L2(R+),S(R+))

with indicating the (x′, ξ′)-wise adjoint in L2(R+).

(ii) A Green symbol g(x′, ξ′) of order ν and type e ∈ N is defined as a symbol of the form

g(x′, ξ′) :=
e∑
j=0

gj(x
′, ξ′)

dj

dxjn
(2.2.15)

for Green symbols gj(x
′, ξ′) of order ν − j and of type 0, in the sense of (i).

Let Rν,e
G (Ω × Rn−1) denote the space of all Green symbols of order ν ∈ R and type e ∈ N.

Observe that we have natural inclusions

Rν,e
G (Ω× Rn−1) ⊂ Sνcl(Ω× Rn−1;Hs(R+),S(R+)) (2.2.16)

for all s > e− 1
2
.

Let us investigate the internal structure of such symbols. First we have the following Theorem.

Theorem 2.2.7. For an operator g ∈ L(L2(R+)) the following properties are equivalent:

(i) g induces continuous operators

g, g∗ : L2(R+) −→ S(R+).

(ii) There exists a c(xn, x
′
n) ∈ S(R+ × R+) = S(R× R)|R+×R+

= S(R+)⊗̂πS(R+) such that

gu(xn) =

∫ ∞
0

c(xn, x
′
n)u(x′n) dx′n.

Proof. (ii)⇒ (i) is evident. Thus it remaines to show (i)⇒ (ii). The continuity of

g : L2(R+) −→ S(R+) (2.2.17)

implies that

gu(xn) =

∫ ∞
0

c(xn, x
′
n)u(x′n) dx′n (2.2.18)

for some c(xn, x
′
n) ∈ S(R+)⊗̂πL2(R+). Analogously

g∗ : L2(R+) −→ S(R+) (2.2.19)
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where

g∗v(x′n) =

∫ ∞
0

c(xn, x
′
n)v(xn) dxn (2.2.20)

implies c(xn, x
′
n) ∈ L2(R+)⊗̂πS(R+). Thus

c(xn, x
′
n) ∈

(
S(R+)⊗̂πL2(R+)

)
∩
(
L2(R+)⊗̂πS(R+)

)
.

It follows that g is Hilbert-Schmidt operator, i.e., c(xn, x
′
n) ∈ L2(R+×R+). Moreover, (2.2.18),

(2.2.20) implyes

〈xn〉lg : L2(R+) −→ S(R+),

〈x′n〉l
′
g∗ : L2(R+) −→ S(R+),

(2.2.21)

for every l, l′ ∈ N. Thus, 〈xn〉lc(xn, x′n), 〈x′n〉l
′
c(xn, x

′
n) ∈ L2(R+×R+). For every N ∈ N there

are l, l′ ∈ N such that

(1 + |xn|2 + |x′n|2)N/2 = 〈xn, x′n〉N ≤ c
(
〈xn〉l + 〈x′n〉l

′)
(2.2.22)

for some constant c > 0, we can replace the left-hand side by

(1 + |xn|2 + |x′n|2)N/2.

In addition, it suffices to estimate the expression by (1 + |xn|2 + |x′n|2)N . Choosing l, l′ large
enough for N rather than N/2 we btain the desired estimate. Since l, l′ are to be chosen large,
we can again replace l, l′ by 2l, 2l′. Thus (2.2.22) will follow from(

1 + |xn|2 + 1 + |x′n|2
)N ≤ c

(
(1 + |xn|2)L + (1 + |x′n|2)L

)
for sufficiently large L. Applying the binomial formula for L := N we have(

1 + |xn|2 + 1 + |x′n|2
)N

(1 + |xn|2)N + (1 + |x′n|2)N
≤ c

for all xn, x
′
n ∈ R+. It follows that 〈xn, x′n〉Nc(xn, x′n) ∈ L2(R+ × R+) for every N ∈ N.

Applying once again (2.2.17), (2.2.19) we obtain that the operators with kernels

∂kxnc(xn, x
′
n), ∂k

′

x′n
c(xn, x

′
n)

also induce continuous operators

L2(R+) −→ S(R+),

for arbitrary k, k′ ∈ N. Combined with the conclusion before we also have

∂kxn〈xn, x
′
n〉Nc(xn, x′n), ∂k

′

x′n
〈xn, x′n〉Nc(xn, x′n) ∈ L2(R+ × R+) (2.2.23)

for all k, k′, N ∈ N. It remains to verify also

∂mxn∂
m′

x′n
〈xn, x′n〉Nc(xn, x′n) ∈ L2(R+ × R+),



42 Outline of Boutet de Monvel’s Calculus

for arbitrary m,m′ ∈ N. We first consider the case m = m′ = 1. Here we employ the identity(
∂xn + ∂x′n

)2
= ∂2

xn + ∂2
x′n

+ 2∂xn∂x′n .

From (2.2.23) for k = k′ = 1 we conclude(
∂xn + ∂x′n

)
〈xn, x′n〉Nc(xn, x′n) ∈ L2(R+ × R+).

However, since the mapping property of the operator with the latter kernel has again the
mapping properties (2.2.18), (2.2.20), we may repeat the conclusion and arrive at the kernel(

∂xn + ∂x′n
)2〈xn, x′n〉Nc(xn, x′n) ∈ L2(R+ × R+). (2.2.24)

with the above-mentioned mapping property. Then subtracting from the kernel in (2.2.24)
the kernels (2.2.23) for k = 2 gives us the kernel

2∂xn∂x′n〈xn, x
′
n〉Nc(xn, x′n) ∈ L2(R+ × R+).

Iterating this process and combinis it with (2.2.23) yields

∂mxn∂
m′

x′n
〈xn, x′n〉Nc(xn, x′n) ∈ L2(R+ × R+)

for arbitrary m,m′, N ∈ N, which is just the claimed property c(xn, x
′
n) ∈ S(R+ × R+).

Theorem 2.2.8. A g(x′, ξ′) is Green symbol of order ν and type zero if and only if there is
a function

f(x′, xn, ξ
′, x′n) ∈ C∞(Ω,S(R+))⊗̂πS(R+)⊗̂πSν+1

cl (Rn−1)

such that

g(x′, ξ′)u(xn) =

∫ ∞
0

f(x′, ξ′, xn[ξ′], x′n[ξ′])u(x′n) dx′n. (2.2.25)

Proof. Let us first check that g(x′, ξ′) given by (2.2.25) determines a symbol (2.2.14). We
have to check the symbolic estimates, namely,

‖κ−1
〈ξ′〉
{
Dα
xD

β
ξ′g(x′, ξ′)

}
κ〈ξ′〉‖L(L2(R+)) ≤ c〈ξ′〉ν−|β| (2.2.26)

for (x′, ξ′) ∈ K × Rn−1, K b Ω, and all α, β ∈ Nn−1, for some constants c = c(α, β,K) > 0.
Let us first look at the case α = β = 0. Then we have

κ−1
〈ξ′〉g(x′, ξ′)κ〈ξ′〉u(xn) =

∫ ∞
0

〈ξ′〉−1/2
f(x′, ξ′, 〈ξ′〉−1

xn[ξ′], x′n[ξ′])〈ξ′〉1/2u(〈ξ′〉x′n) dx′n. (2.2.27)

Substituting x̃n := 〈ξ′〉x′n it follows that dx̃n = 〈ξ′〉dx′n and (2.2.27) takes the form∫ ∞
0

f(x′, ξ′,
[ξ′]

〈ξ′〉
xn,

[ξ′]

〈ξ′〉
x̃n)u(x̃n)〈ξ′〉−1

dx̃n.
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Thus∥∥∥∥∫ ∞
0

f(x′, ξ′,
[ξ′]

〈ξ′〉
xn,

[ξ′]

〈ξ′〉
x′n)u(x′n)〈ξ′〉−1

dx′n

∥∥∥∥2
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(2.2.28)

In other words we proved the estimate (2.2.26) for α = β = 0. The corresponding estimates
for arbitrary α, β are straightforward. More generally, if p(·) is a semi-norm on the space
S(R+), i.e.,

p(v) := sup
xn∈R+

〈xn〉k|∂lxnv(xn)|, k, l ∈ N, (2.2.29)

we have to show that
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The corresponding estimates for (2.2.29) for arbitrary k, l ∈ N are easy as well and also those
for arbitrary α, β. Conversely, let g(x′, ξ′) be a Green symbol of order ν and type 0, we can
generate a function f as follows.

From Definition 2.2.6 the operator-valued symbol g(x′, ξ′) has a sequence of twisted homoge-
neous components

g(ν−j)(x
′, ξ′) ∈ S(ν−j)(Ω× (Rn−1 \ {0});L2(R+),S(R+)).

By virtue of Theorem 2.2.7, applied for every (x′, ξ′) ∈ Ω× (Rn−1 \ {0}) we find an
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′
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Analogously,
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(2.2.31)

The latter relation holds for every δ ∈ R+. Inserting δ = [ξ′]−1 yields the kernel function
of g(ν−j)(x

′, ξ′) of the form [ξ′]ν−j+1f(x′, ξ
′

[ξ′]
;E) where E = S(R+,x̃n × R+,x̃′n) for x̃n :=

[ξ′]xn, x̃
′
n := [ξ′]x′n. Thus for any excision function χ(ξ′) we have
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ξ′
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we can form the asymptotic sum
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f1(x′, ξ′) is uniquely determined modulo S−∞(Ω× Rn−1, E), i.e.,

g((x′, ξ′)u(xn) =

∫
f1(x′, ξ′; [ξ′]xn, [ξ

′]x′n)u(x′n) dx′n + g−∞(x′, ξ′)u(x′n),

g−∞(x′, ξ′)u(xn) =

∫
f−∞(x′, ξ′; [ξ′]xn, [ξ

′]x′n)u(x′n) dx′n,

for an f−∞(x′, ξ′; x̃n, x̃
′
n) ∈ S−∞(Ω× Rn−1,S(R+ × R+)). Then we may set

f(x′, ξ′; [ξ′]xn, [ξ
′]x′n) := f1(x′, ξ′; [ξ′]xn, [ξ

′]x′n) + f−∞(x′, ξ′; [ξ′]xn, [ξ
′]x′n).

By construction we have

f(x′, ξ′; x̃n, x̃
′
n) ∈ S(Ω× R+ × R+, S

ν+1
cl (Rn−1)) (2.2.32)

for S(Ω× R+ × R+) := C∞(Ω,S(R+ × R+)). The map

σν+1−j : Sν+1
cl (Rn−1) −→ S(ν+1−j)(Rn−1 \ {0}) (2.2.33)

induces a map

S(Ω× R+ × R+, S
ν+1
cl (Rn−1)) −→ S(Ω× R+ × R+, S

(ν+1−j)(Rn−1 \ {0})). (2.2.34)

Then the twisted homogeneous component of order ν + 1− j of the operator-valued symbol
f(x′, ξ′;xn[ξ′], x′n[ξ′]) is equal to σ̃ν+1−j(f)(x′, ξ′, xn|ξ′|, x′n|ξ′|). Moreover, observe that when
we choose different functions ξ′ → [ξ′], ξ′ → [ξ̃′] which equal to |ξ′| for large |ξ′|, then

f(x′, ξ′;xn[ξ′], x′n[ξ′]) = f(x′, ξ′;xn[ξ̃′], x′n[ξ̃′]) modR−∞G (Ω× Rn−1).

Remark 2.2.9. If g(x′, ξ′) ∈ Rν,e
G (Ω× Rn−1) we have

xlng(x′, ξ′) ∈ Rν−l,e
G (Ω× Rn−1) (2.2.35)

for every l ∈ N. More generally, for any ϕ(xn) ∈ C∞(R+) such that the operator of multipli-
cation by ϕ preserves the space S(R+) we have

ϕ(xn)g(x′, ξ′) ∈ Rν,e
G (Ω× Rn−1). (2.2.36)

In particular, if ϕ vanishes of order l at xn = 0 instead of (2.2.36) we have

ϕ(xn)g(x′, ξ′) ∈ Rν−l,e
G (Ω× Rn−1).

Definition 2.2.10. (i) A potential symbol k(x′, ξ′) of order ν ∈ R is a symbol

k(x′, ξ′) ∈ Sνcl(Ω× Rn−1;C,S(R+)).

(ii) A trace symbol b(x′, ξ′) of order ν ∈ R and type 0 is a symbol

Sνcl(Ω× Rn−1;L2(R+),C)

such that the (x′, ξ′)-wise adjoint b∗(x′, ξ′) is a potential symbol in the sense of (i).
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(iii) A trace symbol b(x′, ξ′) of order ν and type e ∈ N is defined as a symbol

b(x′, ξ′) :=
e∑
j=0

bj(x
′, ξ′)

dj

dxjn
(2.2.37)

for trace symbols bj(x
′, ξ′) of order ν − j and type 0.

Proposition 2.2.11. Every Green symbol g(x′, ξ′) ∈ Rν,e
G (Ω×Rn−1) cf. Definition 2.2.6, can

be written in the form

g(x′, ξ′) =
e−1∑
j=0

kj(x
′, ξ′) ◦ γj + g0(x′, ξ′) (2.2.38)

for γju := ( dj

dxjn
u)(0), potential symbols kj(x

′, ξ′) of order ν − j − 1
2

and some g0(x′, ξ′) ∈
Rν,0

G (Ω × Rn−1). In this representation the symbols kj and g0 are unique. Conversely, every
g(x′, ξ′) of the form (2.2.38) belong to Rν,e

G (Ω× Rn−1).

Proof. Every g(x′, ξ′) ∈ Rν,e
G (Ω × Rn−1) can be written as (2.2.15) for elements gj(x

′, ξ′) ∈
Rν−j,0

G (Ω × Rn−1). It suffices to rephrase every summand for j > 0 in the asserted form. We
have ∫ ∞

0
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=

∫ ∞
0

d
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−
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[ξ′](
d

dx′n
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j−1u(x′n) dx′n
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′, ξ′, xn[ξ′], x′n[ξ′])
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dx′n
j−1u(x′n)

∣∣∣∣∞
0

−∫ ∞
0

[ξ′](
d
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′, ξ′, xn[ξ′], x′n[ξ′])
dj−1
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j−1u(x′n) dx′n

= −fj(x′, ξ′, xn[ξ′], 0)γj−1u−∫ ∞
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[ξ′](
d

dx′n
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(2.2.39)

By iterating the computation concerning the second summand on the right-hand side we
obtain after finitely many steps the required form, namely, (2.2.38). The arguments work in
both directions which gives us the assertion in converse direction.

Proposition 2.2.12. Every trace symbol b(x′, ξ′) of order ν and type e, cf. Definition 2.2.10
(iii) can be written in the form

b(x′, ξ′)u(xn) =
e−1∑
j=0

cj(x
′, ξ′)γj + xn,0(x′, ξ′) (2.2.40)

for classical symbols cj(x
′, ξ′) ∈ Sν−j−1/2

cl (Ω × Rn−1), and a trace symbol xn,0(x′, ξ′) of order
ν and type 0. In this representation the symbols cj and xn,0 are unique. Conversely every
expression (2.2.40) determines a trace symbol of order ν and type e. The proof is similar to
the one of Proposition 2.2.11.
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Definition 2.2.13. By Rν,e
G (Ω× Rn−1; j1, j2), we denote the set of all operator families

g(x′, ξ′) :=

(
g11 g12

g21 g22

)
(x′, ξ′) (2.2.41)

for arbitrary g11(x′, ξ′) ∈ Rν,e
G (Ω× Rn−1), cf. Definition 2.2.6, and column vectors

g21(x′, ξ′) = t
(
g21,1(x′, ξ′), . . . , g21,j2(x

′, ξ′)
)

for trace symbols g21,i(x
′, ξ′) of order ν and type e, i = 1, . . . , j2, cf. Definition 2.2.10 (iii),

row vectors
g12(x′, ξ′) =

(
g12,1(x′, ξ′), . . . , g12,j1(x

′, ξ′)
)

of potential symbols g12,i(x
′, ξ′) of order ν, i = 1, . . . , j1, cf. Definition 2.2.10 (i), and a j2× j1

matrix g22(x′, ξ′) of elements in Sνcl(Ω× Rn−1), cf. Section 1.1.

Remark 2.2.14. From Definition 2.2.13 it follows that

Rν,e
G (Ω× Rn−1; j1, j2) ⊂ Sνcl

(
Ω× Rn−1;

Hs(R+)
⊕
Cj1

,
S(R+)
⊕
Cj2

)
(2.2.42)

for any s > ν− 1/2, cf. Definition 1.4.4 (iii), where
Hs(R+)
⊕
Cj1

is equipped with the group action

diag (κ, idCj) for κ = {κδ}δ∈R+, (κδu)(xn) = δ1/2u(δxn), δ ∈ R+, cf. formula (1.4.5). Similarly,

S(R+)
⊕
Cj2

is equipped with such a group action, see also Example 1.4.2.

Recall that for a classical operator-valued symbol such as (2.2.42) 3 g(x′, ξ′) we have a
sequence of twisted homogeneous components g(µ−j)(x

′, ξ′), j ∈ N, cf. notation in Remark
1.4.11. Those are uniquely determined by g. In particular, there is the principal part g(µ)(x

′, ξ′)
which can be computed as a limit like (1.4.12), i.e.,

g(µ)(x
′, δξ′) = δν

(
κδ 0
0 idCj2

)
g(µ)(x

′, ξ′)

(
κ−1
δ 0
0 idCj1

)
(2.2.43)

for all δ ∈ R+, ξ
′ 6= 0.

2.3 The boundary symbolic calculus

In this section we develop the boundary symbolic calculus, first in the one-dimensional case.
Let us ignore for the moment (x′, ξ′), variables x′ and covariables ξ′ on the boundary.

Let us define the space BeG(R+; j1, j2) of operators

g =

(
g11 g12

g21 g22

)
:
S(R+) S(R+)
⊕ −→ ⊕
Cj1 Cj2

(2.3.1)

where g11 is a Green operator of type e on R+, while g21 is a trace operator of type e, g12 a
potential operator, g22 a j2 × j1 matrix of complex numbers.
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Definition 2.3.1. Let BeG(R+) denote the space of upper left corners in (2.3.1).

In the preceding section we studied the case with dependence on (x′, ξ′). If we ignore this for
a while we have simply operators (2.3.1). Recall that, say for j1 = j2 = 1,

g11u =
e∑
j=0

∫ ∞
0

fj(xn, x
′
n)

dj

dx′n
j u(x′n) dx′n (2.3.2)

for some fj(xn, x
′
n) ∈ S(R+ × R+) ,

g21u =
e∑
j=0

∫ ∞
0

bj(x
′
n)

dj

dx′n
j u(x′n) dx′n (2.3.3)

for bj(x
′
n) ∈ S(R+),

g12c := ck(xn) (2.3.4)

and k(xn) ∈ S(R+), c ∈ C. The operator g22 in this case is simply the multiplication by a
complex number.

Remark 2.3.2. An operator g11 ∈ BeG(R+), cf. formula (2.3.2) induces continuous operators

g11 : S(R+) −→ S(R+) (2.3.5)

and
g11 : Hs(R+) −→ S(R+) (2.3.6)

for every s > e− 1/2. Interpreting (2.3.6) as an operator

g11 : Hs(R+) −→ Hs(R+), s > e− 1/2, (2.3.7)

by composing (2.3.6) with the embedding

S(R+) −→ Hs(R+)

then (2.3.7) is compact.

In fact, the embedding can be seen as a chain of embedding, namely,

S(R+) ↪→ 〈xn〉−kHs′(R+)

for any k > 0, s′ > s, and
〈xn〉−kHs′(R+) ↪→ Hs(R+).

We now study 2× 2 block-matrices of the form

a =

(
Op+(a) 0

0 0

)
+ g (2.3.8)

where g is of the form (2.3.1) and

Op+(a) := r+Op(a)e+ : S(R+) −→ S(R+), (2.3.9)
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a(ξn) ∈ Sµcl(Rξn), µ ∈ Z, (2.3.10)

where

Op(a)u(xn) =

∫∫
ei(xn−x

′
n)ξna(ξn)u(x′n) dxnd̄ξn. (2.3.11)

Let Bµ,e(R+) denote the space of upper left corners in (2.3.8), i.e., the space of operators
Op+(a)+g11 for a as in (2.3.10) and g11 ∈ BeG(R+). In boundary value problems we assume that
a(ξn) has the transmission property which means (in one of the various equivalent definitions)
that in the asymptotic expansion

a(ξn) ∼
∞∑
j=0

a±j (iξn)µ−j, for ξn → ±∞

we have

a+
j = a−j for all j ∈ N. (2.3.12)

Let Sµtr(R) for µ ∈ Z denote the space of all a(ξn) ∈ Sµcl(R) satisfying condition (2.3.12).

Remark 2.3.3. The space Sµtr(R) is closed in the Fréchet topology induced by Sµcl(R).

Note that a general symbol (2.3.10) for µ = 0 determines a map

a : R −→ C

such that

|a(ξn)| ≤ const

for all ξn ∈ R. Condition (2.3.12) for µ = 0 has the consequence that the curve {a(ξn) ∈ C :
ξn ∈ R} is smooth, including the endpoints a−0 = a+

0 .

Remark 2.3.4. Every a(ξn) ∈ Sµtr(R), µ ∈ N, has a decomposition

a(ξn) = a0(ξn) + p(ξn) (2.3.13)

where a0(ξn) ∈ S0
tr(R) and p(ξn) is a polynomial in ξn of order µ.

In the following definition we set

C∓ := {ζ ∈ C : Im ζ ≶ 0}.

Definition 2.3.5. (i) An a(ξn) ∈ Sµcl(R), µ ∈ R, is called a plus-symbol if it has an analytic
extension to a function a+(ζ) in the complex variable ζ = ξn + iϑ for Im ζ < 0, where

a+(ζ) ∈ C∞(C−) ∩ A(C−),

in particular, a(ξn) = a+(ζ), and if

|a+(ζ)| ≤ c(1 + |ζ|2)µ/2 (2.3.14)

for all ζ ∈ C−.
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(ii) An a(ξn) ∈ Sµcl(R), µ ∈ R, is called a minus-symbol if it extends to an

a−(ζ) ∈ C∞(C+) ∩ A(C+),

and (2.3.14) holds for all ζ ∈ C+.

Example 2.3.6. For any fixed δ ∈ R+, the symbols

(δ + iξn)k, k ∈ Z, (2.3.15)

are plus, and
(δ − iξn)k, k ∈ Z (2.3.16)

minus symblos. Thus symbols (2.3.15) and (2.3.16) have the transmission property.

In fact, for k ∈ N, we have polynomials; those are plus and minus-symbols at the same time.
For −k ∈ N we see the plus/minus property from the following analytic extensions to the
respective complex half-planes namely, in the plus/minus case as

(δ + i(ξn + iϑ))k = (δ + iξn − ϑ)k

where ϑ < 0, then Im ζ < 0 and ϑ > 0 then Im ζ > 0.

For references below we now formulate the Palay-Wiener theorem. Concerning an explicit
proof, cf. [14].

Let Hs
0(R±) denote the subspace of all u(xn) ∈ Hs(R) such that suppu ⊆ R±.

Theorem 2.3.7. Let u(xn) ∈ Hs
0(R+), s ∈ R. Then the Fourier transform

û(ξn) =
∫∞

0
e−ixnξnu(xn) dxn has an extension to a function

h+(ζ) =

∫
e−ixnξn(exnϑu(xn)) dxn (2.3.17)

∈ C(Im ≤ 0) ∩ A(Im ζ < 0), ζ = ξn + iϑ, such that∫
(1 + |ξn|+ |ϑ|)2s|h+(ξn + iϑ)|2 dξn ≤ C (2.3.18)

for all ϑ ≤ 0, for some C > 0, independent of ϑ.

Conversely, if h+(ξn + iϑ) is a locally integrable function in ξn for −∞ < ϑ < 0, satisfying
(2.3.18) for all s ∈ R, for some C > 0 independent of ϑ and belonging to A(Im ζ < 0), then
there is a u(xn) ∈ Hs

0(R+), such that (2.3.17) holds.

An analogous theorem holds for functions in Hs(R−).

Theorem 2.3.8. (i) Let a(ξn) ∈ Sµcl(R), µ ∈ R, be a plus-symbol. Then Op(a) induces a
continuous operator

Op(a) : Hs
0(R+) −→ Hs−µ

0 (R+) (2.3.19)

for every s ∈ R. Analogously, if a(ξn) ∈ Sµcl(R) is a minus-symbol, then

Op(a) : Hs
0(R−) −→ Hs−µ

0 (R−) (2.3.20)

is continuous for every s ∈ R.
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(ii) Let a(ξn) ∈ Sµcl(R), µ ∈ R be a minus-symbol, and let

e+
s : Hs(R+) −→ Hs(R) (2.3.21)

be a continuous extension operator for fixed s ∈ R (i.e., r+e+
s = idHs(R+)) with Hs(R+)

being identified with Hs(R)/Hs
0(R+). Then

r+Op(a)e+
s : Hs(R+) −→ Hs−µ(R+) (2.3.22)

is continuous and independent of the choice of e+
s . Moreover, we have

r+Op(a)e+
s = r+Op(a)e+

for every s ∈ R, s > −1/2.

Proof. (i) Op(a) for any symbol a(ξn) is defined as F−1a(ξn)F . If a(ξn) is a plus-symbol then
the operator of multiplication by a induces a continuous map

FHs
0(R+) −→ FHs−µ

0 (R+),

which is consequence of Theorem 2.3.7, the Palay-Wiener theorem. Thus Op(a) itself defines a
continuous operator (2.3.19). In fact, Theorem 2.3.7 tells us that û ∈ FHs

0(R+) is characterized
by (2.3.18) in ϕ ≤ 0. Moreover, since a(ξn) is a plus-symbol, we have the estimate (2.3.14),
i.e.,

|a(ξn + iϑ)| ≤ c(1 + |ξn|+ |ϑ|)µ

for a constant c > 0, independent of ϑ ≤ 0. Thus

a(ξn)û(ξn) ∈ Ĥs−µ(Rξn)

extends to a holomorphic function a(ξn + iϑ)û(ξn + iϑ) in ϑ < 0, which satisfies the relation∫
(1 + |ξn|+ |ϑ|)2(s−µ)|a(ξn + iϑ)û(ξn + iϑ)|2 dξn ≤ 0

≤
∫

(1 + |ξn|+ |ϑ|)2(s−µ)|a(ξn + iϑ)|2|û(ξn + iϑ)|2 dξn

≤ c

∫
(1 + |ξn|+ |ϑ|)2s|û(ξn + iϑ)|2 dξn.

For the case of a minus-symbol a(ξn) (2.3.20) by analogous conclusions.

(ii) If e+
s is a continuous extension operator (2.3.21) then (2.3.22) is obviously continuous,

since both
Op(a) : Hs(R) −→ Hs−µ(R)

and
r+ : Hs−µ(R) −→ Hs−µ(R+)

are continuous. In other words

r+Op(a)e+
s u ∈ Hs−µ(R+) (2.3.23)
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for every s ∈ R. If we now replace e+
s for s > −1/2 by e+, the extension operator by zero,

then we know that
(e+
s − e+)u ∈ H s̃

0(R−) (2.3.24)

for some s̃ ∈ R, where s̃ = 0 for s ≥ 0 and s̃ = s for −1/2 < s ≤ 0. Thus we have (2.3.24) for
s̃ := min{0, s}. It follows from (2.3.20) that

Op(a)(e+
s − e+)u ∈ H s̃−µ

0 (R−).

However, r+H s̃−µ
0 (R−) = {0}. It follows altogether

r+Op(a)(e+
s − e+)u = 0,

i.e.,
r+Op(a)e+

s u = r+Op(a)e+u.

Proposition 2.3.9. For every a(ξn) ∈ Sµtr(R) and every N ∈ N, there exists plus and minus-
symbols pN(ξn) and mN(ξn) in Sµtr(R), respectively, such that

a(ξn)− pN(ξn) ∈ Sµ−(N+1)
cl (R), a(ξn)−mN(ξn) ∈ Sµ−(N+1)

cl (R). (2.3.25)

Proof. Without loss of generality we may assume µ = 0, since for µ ∈ N we can omit the
corresponding polynomial part which is a plus- and minus-symbl at the same time. From the
definition of the transmission property we know that there are coefficients aj ∈ C, j ∈ N, such
that

a(ξn)− χ(ξn)
N∑
j=0

aj(iξn)−j ∈ S−(N+1)
cl (R). (2.3.26)

In order to show the existence mN(τ) we observe that

(iξn)−1 = −(1− iξn)−1 + (iξn)−1(1− iξn)−1 = . . .

= −
N∑
k=1

(1− iξn)−k + (iξn)−1(1− iξn)−N .
(2.3.27)

This gives us

χ(ξn)(iξn)−1 = −
N∑
k=1

(1− iξn)−k modS
−(N+1)
cl (R).

More generally,

χ(ξn)(iξn)−j = (−
N∑
k=1

(1− iξn)−k)−j modS
−(N+1)
cl (R). (2.3.28)

Thus, if we replace χ(ξn)(iξn)−1 on the left-hand side of (2.3.26) by (2.3.28) we obtain a
minus-symbol

mN(ξn) :=
N∑
j=0

aj(−
N∑
k=1

(1− iξn)−k)−j (2.3.29)

with the desired property, cf. also Example 2.3.6. The construction of PN(ξn) is analogous.
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Proposition 2.3.10. Every a(ξn) ∈ Sµtr(R) induces continuous operators

r+Op(a)e+ : Hs(R+) −→ Hs−µ(R+) (2.3.30)

for every s ∈ R, s > −1/2.

Proof. From Theorem 2.3.8 (ii) we know that (2.3.30) is continuous for s > −1/2 when
a(ξn) is a minus-symbol. For a(ξn) ∈ Sµtr(R) we employ the second decomposition of (2.3.25),
namely,

a(ξn) = mN(ξn) + cN(ξn)

for a minus-symbol mN(ξn) and a remainder cN(ξn) ∈ Sµ−(N+1)
cl (R). This will be used for N

sufficiently large. Then
Op(a) = Op(mN) + Op(cN)

gives rise to
r+Op(a)e+ = r+Op(mN)e+ + r+Op(cN)e+.

Form the minus property of mN we already know the claimed continuity property
of r+Op(mN)e+. Moreover, cN(ξn) ∈ Sµ−(N+1)

cl (R) shows the continuity of

Op(cN) : Hs(R) −→ Hs−µ+N+1(R) (2.3.31)

for any s ∈ R. In the case s ≥ 0 it follows that

e+ : Hs(R+) −→ L2(R) = H0(R) (2.3.32)

is continuous, for −1/2 < s ≤ 0 we now

e+ : Hs(R+) −→ Hs(R) (2.3.33)

see [14]. From (2.3.31), (2.3.32) it follows that

Op(cN)e+ : Hs(R+) −→ Hs−µ+N+1(R)

for −1/2 < s ≤ 0, and thus

r+Op(cN)e+ : Hs(R+) −→ Hs−µ+N+1(R+) ↪→ Hs−µ(R+).

Let us set
lν±(ξn) := (δ ± iξn)ν (2.3.34)

for some ν ∈ R and fixed δ ∈ R+. The following proposition is related to Theorem 2.3.8.

Proposition 2.3.11. The operator Op+(lν−), ν ∈ R, induces a continuous operator

Op+(lν−) : S(R+) −→ S(R+) (2.3.35)

which is invertible, and we have

(Op+(lν−))−1 = Op+(l−ν− ). (2.3.36)



54 Outline of Boutet de Monvel’s Calculus

Moreover, for any choice of an extension (2.3.21) the operator

r+Op(lν−)e+
s : Hs(R+) −→ Hs−ν(R+) (2.3.37)

is an isomorphism for every s ∈ R, and

(r+Op(lν−)e+
s )−1 = r+Op(l−ν− )e+

s−ν (2.3.38)

again for any choice of e+
s−ν. The operators (2.3.37), (2.3.38) are independent of the involved

extension operators, and they may be replaced by e+, whenever s > −1/2, s− ν > −1/2.

Proof. By virtue of Seeleyś extension theorem [66] there is a continuous extension operator

E : S(R+) −→ S(R).

For u ∈ S(R+) we have
Op+(lν−)u = r+Op(lν−)Eu,

independently of the choice of the operator E. This holds for similar reasons as in the proof
of Theorem 2.3.8 (i). In order to express the inverse (2.3.36) we can employ the operator e+

as well. Then we obtain,(
r+Op(l−ν− )e+

)(
r+Op(lν−)e+

)
=

r+Op(l−ν− lν−)e+ − r+Op(l−ν− )(1− e+r+)Op(lν−)e+ = 1

using the minus property of the involved symbols. In a similar manner we show that
r+Op(l−ν− )e+ is a right inverse, and hence (2.3.36) is verified. The second part of Proposition
2.3.11 concerning Sobolev spaces is simple as well if we use arguments from the proof of
Theorem 2.3.8.

Proposition 2.3.12. Let F = Fxn→ξn be the Fourier transform on R, i.e.,

(Fu)(ξn) =

∫
e−ixnξnu(xn) dxn,

applied to u ∈ L2(R). Then the following conditions are equivalent:

(i)
a(ξn) ∈ F (e+S(R+))

for S(R+) := {u|R+ : u ∈ S(R)},

(ii) a(ξn) is a plus-symbol of order −1

a(ξn) ∈ S−1
cl (Rξn),

and there is an extension a+(ζ) of a(ξn) into the complex ζ half-plane C−, where ξn =
Re ζ, such that

a+(ζ) ∈ C∞(Im ζ ≤ 0) ∩ A(Im ζ < 0)

and there is an asymptotic expansion

a+(ζ) ∼
∑
k≤−1

akζ
k for |ζ| → ∞, Im ζ ≤ 0. (2.3.39)

Moreover, all derivatives (∂lξna)(ξn), l ∈ N, extend to ∂lζa+(ζ) with analogous properties
i.e., as functions in C∞(Im ζ ≤ 0) ∩ A(Im ζ < 0) and asymptotic expansions, obtained
by applying ∂lζ to (2.3.39).
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An analogous characterization holds for the space F (e−S(R+))) where C− is replaced by C+.

Proof. (i) ⇒ (ii). From the Paley-Wiener Theorem, cf. [14], we know that since u(xn) ∈
e+S(R+) ⊂ L2(R), vanishes for xn < 0, a(ξn) = Fu(ξn) extends in the Fourier covariable ξn
to an element in A(Im ζ < 0) ∩ C∞(Im ζ ≤ 0) where∫

|a(ξn + iϑ)|2 dξn ≤ C

for all ϑ ≤ 0 for some constent C > 0 independent of ϑ. In the present case we can easly
verify that a(ζ) ∈ C∞(Im ζ ≤ 0), we have

a(ξn) =

∫ ∞
0

e−ixnξnu(xn) dxn,

and integration by parts for ξn 6= 0

a(ξn) = − 1

iξn
e−ixnξnu(xn)

∣∣∞
0

+
1

iξn

∫ ∞
0

eixnξn∂xnu(xn) dxn = · · · =

= − 1

iξn
u(0) +

1

(iξn)2
∂xnu(0) + · · ·+

1

(iξn)k+1
∂kxnu(0) +

1

(iξn)k+1

∫ ∞
0

e−ixnξn∂k+1
xn u(xn) dxn.

(2.3.40)

We thus obtain an asymptotic expansion

a(ξn) ∼
∞∑
j=0

∂jxnu(0)(iξn)−(j+1). (2.3.41)

For the derivatives similar conclusions yield

a′(ξn) = −ixn
∫ ∞

0

e−ixnξnu(xn) dxn ∼ −i
∞∑
k=0

∂kxn(xnu)(0)(iξn)−(k+1), (2.3.42)

using

∂lxn(xnu)(0) = l∂l−1
xn (u)(0)

it follows that a′(ξn) :=
∑∞

k=1 k(∂k−1
xn u)(0)(iξn)−(k+1). Thus the expansion for a′(ξn) follows

by differentiating (2.3.41) summandwise. An analogus computation gives us asymptotic ex-
pansions for arbitrary derivatives of a(ξn) by summandwise differentiating (2.3.41). Since the
involved the integrals also converge in Im ζ < 0 rather than in ξn = Re ζ and can be differen-
tiated with respect to the complex parameter ζ, the claimed asymptotic expansion also holds
with respect to ζ for Im ζ < 0. Summing up we proved that a(ξn) is a plus-symbol of order
−1, and (i)⇒ (ii) is complete.

For (ii)⇒ (i) we argue as follows. Applying the inverse Fourier transform to a(ξn) gives us

u(xn) :=

∫
eixnξna(ξn) d̄ξn ∈ L2(R).
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From the Paley-Wiener Theorem 2.3.7 and the properties of a(ξn) listed in (ii) we con-
clude that u(xn) vanishes for almost all xn ∈ R−. From the properties in (ii) we know that
ξknD

l
ξn
a(ξn) ∈ C∞(R) is equal to the summ of a polynomial in ξn and a function hkl(ξn) with

the properties in (ii), for all k, l ∈ N. Thus F−1ξknD
l
ξn
a(ξn)(xn) is equal to a derivative of the

Dirac distribution at xn = 0 plus a function in L2(R). It follows that Dk
xnx

l
nu(xn)|xn>0 is in

L2(R+). This shows that u ∈ S(R+).
The second assertion of Proposition 2.3.12 concerning e−S(R−) can be proved in an analogous
manner.

Definition 2.3.13. Let Bµ,e(R+; j1, j2) be the space of all 2×2 operator block-matrices (2.3.8)
where Op+(a) is given by a symbol (2.3.9) with the transmission property and g is of the form
(2.3.1).

The operators a ∈ Bµ,e(R; j1, j2) induce continuous maps

a :
S(R+) S(R+)
⊕ −→ ⊕
Cj1 Cj2

, (2.3.43)

or

a :
Hs(R+) Hs−µ(R+)
⊕ −→ ⊕
Cj1 Cj2

(2.3.44)

for s > e− 1/2.

Proposition 2.3.14. For every a(ξn) ∈ Sµtr(R), µ ∈ Z, the truncated operator Op+(a) induces
a continuous map

Op+(a) : S(R+) −→ S(R+). (2.3.45)

Proof. Without loss of generality we assume µ ≤ −1. In fact, in general we can write

a(ξn) = a0(ξn) + p(ξn)

for a polynomial p(ξn) of order µ (when µ ∈ N) and a symbol a0(ξn) ∈ S−1
tr (R). Then

Op+(a) = Op+(a0) + Op+(p),

and Op+(p)u for u ∈ S(R+) is equal to p(Dxn)u
∣∣
R+

+ r+v where v ∈ E ′(R) is supported by

the origin {0}. Since r+ restrict to the open half-axis R+ we have r+v = 0. Moreover, we have

Op+(a0) = r+Op(a0)e+ = r+F−1a0(ξn)F e+,

and

S−1
tr (R) = F (e+S(R+) + e−S(R−)). (2.3.46)

For u ∈ S(R+) the Fourier transform of e+u belongs to S−1
tr (R). And u −→ F e+u defines a

continuous operator

S(R+) −→ S−1
tr (R) (2.3.47)
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which is the proof of Proposition 2.3.12. Moreover, the space S−1
tr (R) is an algebra which

follows from condition (2.3.12), and it is also easy to verify that the operator Ma0 of multi-
plication by a0 induces a continuous operator

Ma0 : S−1
tr (R) −→ S−1

tr (R) (2.3.48)

Moreover, (2.3.46) defines an isomorphism

F : e+S(R+) + e−S(R−) −→ S−1
tr (R),

between the respective Fréchet spaces, in particular,

F−1 : S−1
tr (R) −→ e+S(R+) + e−S(R−) (2.3.49)

is continuous, and finally

r+ : e+S(R+) + e−S(R−) −→ e+S(R+) (2.3.50)

is continuous. Thus
Op+(a0) : S(R+) −→ S(R+)

is the composition of continuous operator (2.3.47), (2.3.48), (2.3.49), (2.3.50), and hence
(2.3.45) itself is continuous.

Proposition 2.3.15. Let c(xn, x
′
n) ∈ S(R+)⊗̂πS(R+), and let µ ∈ R, s ∈ N, s > j − 1/2 for

some j ∈ N. Then

g : u −→ Op+(ls−µ− )

∫ ∞
0

c(xn, x
′
n)∂jx′nOp+(l−s− )u(x′n) dx′n (2.3.51)

u ∈ L2(R+), define an operator g ∈ B0
G(R+).

Proof. From the continuity (2.3.35) we have

Op+(ls−µ− )c(xn, x
′
n) = e(xn, x

′
n)

for an e(xn, x
′
n) ∈ S(R+)⊗̂πS(R+). Moreover, Proposition 2.3.10 gives us the continuity

Op+(l−s− ) : L2(R+) −→ Hs(R+),

and then
∂jx′nOp+(l−s− ) : L2(R+) −→ Hs−j(R+).

is continuous as well. Since s− j > −1/2 the integral∫
e(xn, x

′
n)∂jxnOp+(l−s− )u(x′n) dx′n

yields an element of S(R+); this shows the continuity g : L2(R+) −→ S(R+). Moreover, for
the adjoint g∗ we have

g∗v(x′n) = Op+(b)

∫ ∞
0

e(xn, x
′
n)v(xn) dxn
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for the symbol b(ξn) = (iξn)jl−s− (ξn) with b(ξn) being the complex conjugate. Then, using the
continuity

Op+(b) : S(R+) −→ S(R+),

cf. Proposition 2.3.14, it follows that

g∗ : L2(R+) −→ S(R+)

is continuous. By virtue of Theorem 2.2.7 we proved g ∈ B0
G(R+).

Theorem 2.3.16. (i) For every a(ξn) ∈ Sµtr(R), b(ξn) ∈ Sνtr(R), µ, ν ∈ Z, we have

Op+(a)Op+(b) = Op+(ab) + g

for some g ∈ BeG(R+), for e = max {ν, 0}.

(ii) We have
a(ξn) ∈ Sµtr(R), g ∈ BeG(R+)⇒ Op+(a)g ∈ BeG(R+), (2.3.52)

k ∈ BeG(R+), b(ξn) ∈ Sνtr(R)⇒ kOp+(b) ∈ BhG(R+), (2.3.53)

for h = max{ν + e, 0} and

k ∈ BdG(R+), g ∈ BeG(R+)⇒ kg ∈ BeG(R+). (2.3.54)

For the proof we employ the following result.

Lemma 2.3.17. Let ε := R± −→ R∓ be defined as ε(xn) := −xn, and let

ε∗ := L2(R∓) −→ L2(R±)

be the corresponding function pull back. Then for any a(ξn) ∈ S0
tr(R) the operators

r+Op(a)e−ε∗, ε∗r−Op(a)e+

induce continuous maps
L2(R+) −→ S(R+).

In addition
a −→ r+Op(a)e−ε∗, a −→ ε∗r−Op(a)e+

are continuous as operators

S0
tr(R) −→ L(L2(R+),S(R+)).

Proof of Theorem 2.3.16.. We write

a(ξn) = a0(ξn) + p(ξn), b(ξn) = b0(ξn) + q(ξn)

for a0, b0 ∈ S0
tr(R) and polynomials p and q of order µ and ν, respectively. We have

Op+(a)Op+(b) =Op+(a0)Op+(b0) + Op+(a0)Op+(q)

+ Op+(p)Op+(b0) + Op+(p)Op+(q).
(2.3.55)
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The first summand on the right of (2.3.55) can be written in the form

Op+(a0)Op+(b0) = Op+(a0b0) + r+Op(a0)(1− e+r+)Op(b0)e+.

We show that g0 := r+Op(a0)(1− e+r+)Op(b0)e+ belongs to B0
G(R+), i.e., induces continuous

operators

g0, g
∗
0 : L2(R+) −→ S(R+).

Using the isomorphism ε∗ := L2(R∓) −→ L2(R±) coming from ε := R± −→ R∓, ε(xn) = −xn,
we obtain

g0 = r+Op(a0)e−ε∗ε∗r−Op(b0)e+, g∗0 = r+Op(b0)e−ε∗ε∗r−Op(a0)e+.

Moreover, if q(ξn) is a polynomial of order ν we have Op+(q)Op+(a0) = Op+(qa0), and

Op+(a0)Op+(q) = Op+(a0q) + h for someh ∈ BνG(R+). (2.3.56)

For the proof of (2.3.56) we assume q(ξn) := ξn. The general case easily follows by iterating
the arguments, while ν = 0 is trivial where h = 0. In the computation we may assume
u ∈ C∞0 (R+); then

Op+(a0)Op+(q)u(xn) = r+

∫
eixnξna0(ξn)

{∫ ∞
0

e−ix
′
nξni−1∂x′nu(x′n) dx′n

}
d̄ξn

= r+

∫
eixnξn

{
e−ix

′
nξnu(x′n)|∞0 +

∫ ∞
0

e−ix
′
nξnξnu(x′n) dx′n

}
d̄ξn

= Op+(a0ξn)u(xn) + r+

∫
eixnξn(−iξn)a0(ξn) d̄ξn(γ0u).

Observe that the second term on the right of the latter relation represents an element of
B1

G(R+). Finally, we have Op+(p)Op+(q) = Op+(pq) which is evident. Let a(ξn) ∈ Sµtr(R) and
g ∈ BeG(R+). Then

gu(xn) =
e∑
j=0

∫ ∞
0

cj(xn, x
′
n)∂jx′nu(x′n) dx′n (2.3.57)

for kernels cj(xn, x
′
n) ∈ S(R+)⊗̂πS(R+). Moreover, we have a continuous operator (2.3.45),

and it follows that Op+(a)cj(xn, x
′
n) ∈ S(R+)⊗̂πS(R+). This implies Op+(a)g ∈ BeG(R+).

Next let k and b be as in (2.3.53), and assume for simplicity

kv(xn) =

∫ ∞
0

h(xn, x
′
n)∂ex′nv(x′n) dx′n, (2.3.58)

where h(xn, x
′
n) ∈ S(R+)⊗̂πS(R+). Then

kOp+(b)v(xn) =

∫ ∞
0

h(xn, x
′
n)Op+((iξn)eb)v(x′n) dx′n.

If e+ ν ≤ 0 we have

Op+((iξn)eb) : L2(R+) −→ L2(R+),



60 Outline of Boutet de Monvel’s Calculus

and it follows that kOp+(b) ∈ BeG(R+). In the case e + ν ≥ 0 we can write (iξn)eb(ξn) =
f0(ξn)+r(ξn) for some f0(ξn) ∈ S−1

tr (R) and a polynomial r(ξn) of order e+ν. We then obtain

kOp+(b)v(xn) =

∫ ∞
0

h(xn, x
′
n)Op+(f0)v(x′n) dx′n + kOp+(r)v.

The first summand in the latter expression defines an element of B0
G(R+) and the second one

an element of Be+νG (R+).

Finally, for (2.3.54) we form

gu(xn) :=
e∑
j=0

∫ ∞
0

cj(xn, x
′
n)∂jx′nu(x′n) dx′n,

and assume again (2.3.58). Then

(kg)u(xn) =

∫ ∞
0

h(xn, x
′′
n)

e∑
j=0

∫ ∞
0

∂dx′′ncj(x
′′
n, x

′
n)∂jx′nu(x′n) dx′ndx

′′
n (2.3.59)

gives us the claimed structure of the composition.

Theorem 2.3.18. Let a ∈ Bµ,d(R+; j0, j2), b ∈ Bν,e(R+; j1, j0), then

ab ∈ Bµ+ν,h(R+; j1, j2),

for h := max {d+ ν, e}.

Proof. For simplicity we assume j0 = j1 = j2 = 1. The composition of upper left corners,
namely, a11, b11 for

a11 := Op+(a) + g11, b11 := Op+(b) + h11,

for
g11 ∈ BdG(R+), h11 ∈ BeG(R+)

and a(ξn) ∈ Sµtr(R), b ∈ Sνtr(R) has been characterized by Theorem 2.3.16. The remaining
entries in ab for

a =

(
a11 g12

g21 g22

)
, b =

(
b11 h12

h21 h22

)
(2.3.60)

are
g12h21, a11h12 + g12h22, (2.3.61)

g21b11 + g22h21, g21h12 + g22h22. (2.3.62)

The first operator in (2.3.61) is the composition of a potential operator and a trace operator
of type e. Such a composition is then Green of type e. Moreover, by assumption h12 and g12

are potential symbol; then both a11h12 and g12h22 are potential symbols, because of (2.3.45),
and h22 ∈ C. Moreover, g21 is a trace symbol of type d, cf. formula (2.3.57), then for the first
operator in (2.3.62) we have

g21b11 = g21Op+(b) + g21h11 (2.3.63)
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where g21h11 is a trace operator of type d and g22h21 is a trace operator of type e. In order
to characterize (2.3.63) it remains to verify that g21Op+(b) is a trace perator of type d + ν.
Without loss of generality we assume ν ≥ 0. Then we write

b(ξn) = q(ξn) + b0(ξn)

for a polynomial q(ξn) of degree ν and some b0(ξn) ∈ S0
tr(R). It follows that

Op+(b) = Op+(q) + Op+(b0).

g21 is a trace operator of type d, i.e., of the form

g21u(xn) =
d∑
j=0

∫ ∞
0

cj(xn, x
′
n)∂jx′nu(x′n) dx′n,

cf. formula (2.3.57). Then

g21Op+(q)u =
d∑
j=0

∫ ∞
0

cj(xn, x
′
n)∂jx′n

ν∑
l=0

∂lju(x′n) dx′n

=
d∑
j=0

ν∑
l=0

∫ ∞
0

cj(xn, x
′
n)∂j+lx′n

u(x′n) dx′n,

(2.3.64)

i.e., g21Op+(q) is a trace operator of order d+ν. Moreover, applying g21Op+(b0) to u ∈ S(R+),
gives us

g21Op+(b0)u =
d∑
j=0

∫ ∞
0

cj(xn, x
′
n)Op+

(
(iξn)jb0(ξn)

)
u(x′n) dx′n

=
d∑
j=0

∫ ∞
0

cj(xn, x
′
n)Op+(b0)∂jx′nu(x′n) dx′n.

(2.3.65)

Here we employed the fact that the differentiations ∂jx′n applied to Op+(b0) can be translated

to Op+(iξn)j and, since (iξn)j are minus-and plus-symbols at the same time, we have

∂jx′nOp+(b0) = Op+((iξn)j)Op+(b0) = Op+
(
(iξn)jb0(ξn)

)
= Op+(b0)Op+((iξn)j) = Op+(b0)∂jx′n .

(2.3.66)

This explains the right hand side of (2.3.65). It remains to recognize that the composition be-
tween a green operator of type zero, represented by the Schwartz kernels cj(xn, x

′
n), composed

with Op+(b0) from the right, is again a Green operator, with such a kernel. Here we apply
Theorem 2.2.7. Summing up we characterized the first operator in (2.3.62). Concerning the
second one it is simply a complex number, using that g22h22 is the multiplication of complex
numbers which g21h12 is the composition of operators

h12 : C −→ S(R+), g21 : S(R+) −→ C,

i.e.,
g21h12 : C −→ C

by a complex number.
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Proposition 2.3.19. (i) Let a(ξn) ∈ Sµtr(R), s ∈ N, and consider the operator

Op+(a) : Hs(R+) −→ Hs−µ(R+). (2.3.67)

Then we have

a := r+Op(ls−µ− )e+
s−µOp+(a)Op+(l−s− ) = Op+(l−µ− a) + g0 (2.3.68)

for a g0 ∈ B0
G(R+). For s− µ ≥ 0 the operator a coincides with

Op+(ls−µ− )Op+(a)Op+(l−s− ).

(ii) For g ∈ BeG(R+), s ∈ N, s > e− 1/2, we have

g1 := Op+(ls−µ− )gOp+(l−s− ) ∈ B0
G(R+).

Proof.

(i) We have

r+Op(ls−µ− )e+
s−µr+Op(a)e+

= r+Op(ls−µ− a)e+ − r+Op(ls−µ− )(1− e+
s−µr+)Op(a)e+.

(2.3.69)

By virtue of (1 − e+
s−µr+)Op(a)e+ ∈ Hs−µ

0 (R−) the right hand side of (2.3.69) is equal to

r+Op(ls−µ− a)e+, cf. Theorem 2.3.8. For s − µ ≥ 0 we may replace e+
s−µ by e+ with the same

result. From Theorem 2.3.18 we obtain

a = Op+(ls−µ− a)Op(l−s− ) = Op+(l−µ− a) + g0

for a g0 ∈ B0
G(R+). Assertion (ii) is a consequence of Proposition 2.3.15.

Theorem 2.3.20. Let a ∈ Bµ,e(R+), s ∈ N, s ≥ max {e, µ}. Then

R : a 7−→ Op+(ls−µ− )aOp+(l−s− ) =: b (2.3.70)

induces an isomorphism

R : Bµ,e(R+) −→ B0,0(R+) (2.3.71)

with the inverse

R−1 : b 7−→ Op+(l−s+µ− )bOp+(ls−). (2.3.72)

Proof. The map (2.3.71) is a consequence of Proposition 2.3.19. In order to show RR−1 = id
we observe that

RR−1b = Op+(ls−µ− )Op+(l−s+µ− )aOp+(ls−)Op+(l−s− ) = a

because of Op+(l−s+µ− )Op+(ls−µ− ) = 1, Op+(ls−)Op+(l−s− ) = 1, cf. Proposition 2.3.11. Relation
RR−1 = id can be proved in an analogous manner.
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Remark 2.3.21. Similarly as Propositions 2.2.11 and 2.2.12 for Green and trace operators
of some type e ∈ N we have unique representations of (2.3.2) and (2.3.3) in the form

g11 =
e−1∑
j=0

kj ◦ γj + g0 (2.3.73)

and

g21 =
e−1∑
j=0

cjγ
j + xn0 (2.3.74)

for suitable potential operators kj, Green and trace operators g0 and xn0 of type 0.

Lemma 2.3.22. Assume g ∈ B0
G(R+) and let

1 + g : L2(R+) −→ L2(R+)

be an isomorphism. Then there is an h ∈ B0
G(R+) such that

(1 + g)−1 = 1 + h. (2.3.75)

Proof. By virtue of (1 + g)−1 ∈ L(L2(R+)) we have

h := (1 + g)−1 − 1 ∈ L(L2(R+)).

According to Theorem 2.2.7 we have to show that

h, h∗ : L2(R+) −→ S(R+)

are continuous, using a similar property of g, g∗. From (2.3.75) it follows that 1 = (1+g)(1+h),
i.e., 0 = g + h+ gh, i.e., h = −g(1 + h). Thus,

h : L2(R+) −→ S(R+)

is continuous, since 1 + h ∈ L(L2(R+)). Moreover, we have 1 = (1 + h)(1 + g), i.e.,

1 = (1 + g∗)(1 + h∗) = 1 + g∗ + h∗ + g∗h∗

which entails h∗ = −g∗(1 + h∗) and hence the continuity of

h∗ : L2(R+) −→ S(R+).

Proposition 2.3.23. Let g ∈ BeG(R+; j, j) and assume that(
1 0
0 0

)
+ g :

Hs(R+) Hs(R+)
⊕ −→ ⊕
Cj Cj

(2.3.76)

is an isomorphism for some s = s0 > e − 1
2
. Then (2.3.76) is an isomorphism for every

s > e− 1
2
, and the inverse has analogous form, namely,(

1 0
0 0

)
+ k (2.3.77)

for some k ∈ BeG(R+; j, j).
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Proof. Let us write the operator g in (2.3.76) form

g =

(
f k
b q

)
. (2.3.78)

Then for (2.3.76) we obtain (
1 + f k
b q

)
(2.3.79)

which is invertible by assumption. We now use the fact that in the space of all j × j matrices
(identified with Rj2

) the invertible elements are open and dense. Therefore, there is a j × j
matrix which is invertible and dist (q, r) < ε for a given ε > 0. We now employ the fact that
then also (

1 + f k
b r

)
(2.3.80)

is invertible when ε > 0 is sufficiently small. This can be proved by applying the Neumann
series. In order to express the inverse of (2.3.79) we first assume that we already constructed
the inverse of (2.3.80), cf. the expression below. Setting(

d11 d12

d21 d22

)
:=

(
1 + f k
b r

)−1

(2.3.81)

we obtain (
1 + f k
b q

)(
d11 d12

d21 d22

)
=

(
1 0
n m

)
(2.3.82)

where the right-hand side is invertible since both factors on the left-hand side are invertible.
Since the right-hand side is a triangular matrix the operator m is an invertible j × j-matrix,
and we have n := bd11 + qd21. Then, since(

1 0
n m

)(
1 0

−m−1n m−1

)
=

(
1 0
0 1

)
(2.3.83)

it follows that (
1 + f k
b q

)−1

=

(
d11 d12

d21 d22

)(
1 0

−m−1n m−1

)
. (2.3.84)

The invertibility of the matrix r allows us to form(
1 −kr−1

0 1

)(
1 + f k
b r

)(
1 0

−r−1b r−1

)
=

(
1 + g 0

0 1

)
(2.3.85)

for g := f − kr−1b ∈ BeG(R+), becomes of f ∈ BeG(R+)and −kr−1b ∈ BeG(R+), cf. the first
operator in the (2.3.61). Then (2.3.85) gives us(

d11 d12

d21 d22

)
=

(
1 0

−r−1b r−1

)(
(1 + g)−1 0

0 1

)(
1 −kr−1

0 1

)
, (2.3.86)

and the next step is to compute (1 + g)−1. From (2.3.86) we see that

1 + g = 1 + f − kr−1b : Hs(R+) −→ Hs(R+) (2.3.87)
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is isomorphism. By virtue of (2.3.73) we can write

1 + g = 1 + g0 +
e−1∑
i=0

ki ◦ γi

for unique g0 ∈ B0
G(R+) and potential operators ki, i = 0, . . . , d − 1. We now choose some

g1 ∈ B0
G(R+) such that

1 + g0 + g1 : L2(R+) −→ L2(R+) (2.3.88)

is an isomorphism. The construction of g1 is as follows. Then, using generalities on Fredholm
operators and since g0 is a compact operator in L2(R+) we observe that

1 + g0 : L2(R+) −→ L2(R+)

is Fredholm of index 0. The spaces

V := ker (1 + g0), W := ker(1 + g∗0)

which are of the same finite dimension e and V,W ⊂ S(R+). This allows us to form an
isomorphism (

1 + g0 w
v 0

)
:
L2(R+) L2(R+)
⊕ −→ ⊕
Ce Ce

(2.3.89)

wher v : V −→ Ce and w : Ce −→ W . Thus for some sufficiently small ε > 0, the operator

(
1 + g0 w
v ε idCe

)
:
L2(R+) L2(R+)
⊕ −→ ⊕
Ce Ce

(2.3.90)

is also an isomorphism. In a similar manner as we saw that (2.3.87) is an isomorphism we
obtain an isomorphism (2.3.88) for g1 = −wε−1idCe v. From Lemma 2.3.22 we obtain

(1 + g0 + g1)−1 = 1 + h

for some h ∈ B0
G(R+). Therefore, writing

1 + g = 1 + g0 + g1 − g1 +
d−1∑
i=0

ki ◦ γi

gives us

(1 + h)(1 + g) = 1 + (1 + h)(−g1 +
d−1∑
i=0

ki ◦ γi) : Hs(R+) −→ Hs(R+). (2.3.91)

By construction the operator −g1 is of finite rank, namely,

−g1 =
e∑
i=1

limi
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for some potential operators
li : C −→ S(R+)

and trace operators
mi : L2(R+) −→ C

of type 0. Then

(1 + h)(−g1 +
d−1∑
i=0

kiγ
i) =

e∑
i=1

(1 + h)limi +
d−1∑
i=0

(1 + h)kiγ
i (2.3.92)

where (1 + h)li and (1 + h)ki are potential operators. This allows us to write (2.3.92) in the
form

(1 + h)(1 + g) = 1 +
e+d∑
j=1

pjsj = 1 + PS : Hs(R+) −→ Hs(R+) (2.3.93)

for the vectors of operators P := (p1, . . . , pe+d), S := (s1, . . . , se+d), and 1 + PS is invertible.
Consider the operators

1 + SP : Ce+d −→ Ce+d. (2.3.94)

Let us show that (2.3.94) is invertible if and only if 1 + PS is invertible. In fact writing

P :=

(
1 P
0 1

)
, S :=

(
1 0
−S 1

)
, F :=

(
1 −P
S 1

)
with 1 denoting the respective identity maps, we have

PFS =

(
1 + PS 0

0 1

)
, SFP =

(
1 0
0 1 + SP

)
.

Simple computations show that

(1− SP)−1 = 1− S(1 + PS)−1P

and
(1 + PS)−1 = 1− P(1 + SP),

where
g3 := −P(1 + SP)−1S ∈ BdG(R+).

Thus the inverse of (2.3.92), or equivalently the inverse of (2.3.93) has the form

1 + g3 =
(
(1 + h)(1 + g)

)−1
= (1 + g)−1(1 + h)−1

which gives us
(1 + g)−1 = (1 + h)(1 + g3) = 1 + g4

for g4 ∈ BdG(R+). Using Remark 2.3.2 the operator

g : Hs(R+) −→ Hs(R+) (2.3.95)

is compact and induces a continuous operator

g : Hs(R+) −→ S(R+). (2.3.96)

Thus 1 + g is Fredholm in Hs(R+) of index 0. From (2.3.96) we obtain ker (1 + g) ⊂ S(R+).
Because (1 + g)u = 0, u ∈ Hs(R+), entails u ∈ S(R+) and ker(1 + g) is independent of s.
Since 1 + g is an isomorphism in Hs(R+) we have ker (1 + g) = {0}; then the coker is also
trivial, and hence the computation is independent of s.
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Definition 2.3.24. (i) An a(ξn) ∈ Sµtr(R) is called elliptic, if a(ξn) 6= 0 for all ξn ∈ R and
a(µ)(ξn) 6= 0 for ξn 6= 0.

(ii) An operator

a :=

(
Op+(a) + g k

b q

)
∈ Bµ,e(R+; j1, j2) (2.3.97)

(cf. notation (2.3.8) and (2.3.1) where g play the role of g11) is called elliptic, if a(ξn)
is elliptic as in (i).

(iii) An operator

p :=

(
Op+(p) + h c

w m

)
∈ B−µ,h(R+; j2, j1) (2.3.98)

for some type h ∈ N is called a parametrix of a ∈ Bµ,e(R+; j1, j2) if

pa = diag(1, 0) + gL, ap = diag(1, 0) + gR (2.3.99)

for certain gL ∈ B
eL
G (R+; j1, j1), gR ∈ B

eR
G (R+; j2, j2) for some resulting types eL =

max {µ, e}, eR = max {e− µ}.

Proposition 2.3.25. Let b(ξn) ∈ S0
tr(R), k ∈ B0

G(R+), and interpret Op+(b) + k either as a
continuous operator

b : L2(R+) −→ L2(R+) (2.3.100)

or
bS : S(R+) −→ S(R+). (2.3.101)

If b(ξn) is elliptic in the sense of Definition 2.3.24 (i), then (2.3.100), (2.3.101) are both
Fredholm operators, and there is a parametrix q := Op+(b−1) such that

qb = 1 + kL, bq = 1 + kR (2.3.102)

for some kL, kR ∈ B0
G(R+). There are finite-dimensional subspaces K,L ⊂ S(R+) such that

K = ker b, L ∩ im b = {0}, L+ im b = L2(R+), (2.3.103)

K = ker bS , L ∩ im bS = {0}, L+ im bS = S(R+). (2.3.104)

Thus ind b = ind bS . In particular, (2.3.100) is an isomorphism if and only if (2.3.101) is an
isomorphisim, and we have in this case b−1 ∈ B0,0(R+).

Proof. If b is elliptic, b = Op+(b) + k, and q := Op+(b−1), then we have relations (2.3.102)
for some kL, kR ∈ B0

G(R+), cf. Theorem (2.3.16) (i). Since Green operators are compact in
L2(R+), cf. Remark 2.3.2, the operator (2.3.100) is Fredholm. This is a general information
on Fredholm operators in Hilbert spaces. In particular, there are finite-dimensional spaces
K,L ⊂ L2(R+) such that K = ker b, L⊕ im b = L2(R+). We have K ⊂ S(R+) since u ∈ ker b
implies Op+(b)u = −ku ∈ S(R+). Moreover,

Op+(b−1)Op+(b)u = (1 + kL)u

for some kL ∈ B0
G(R+), and Op+(b)u = −ku yields

Op+(b−1)(−ku) = (1 + kL)u (2.3.105)
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and hence, since Op+(b−1)− k := k1 ∈ B0
G(R+) it follows that

k1u = (1 + kL)u.

Thus
u = (k1 − kL)u ∈ S(R+),

and we see that K ⊂ S(R+). For the cokernel which we may idintify with L we can proceed
in analogous manner by passing to adjoint operators. In other words we conclude L ⊂ S(R+).
Thus together with (2.3.103) we obtain relations (2.3.104), and hence indb = indbS . In par-
ticular, we see (2.3.100) is an isomorphism if and only if (2.3.101) is an isomorphism. Let us
show that the invertibility of (2.3.100) has the consequence that b−1 ∈ B0,0(R+). From the
considerations before we know in this case that ind b = 0. This implies, because of

q1 := Op+(b−1)Op+(b) = 1 + kL

for some kL ∈ B0
G(R+) that ind Op+(b) = 0. In fact, we have ind (Op+(b) + k) = 0, and since

k ∈ B0
G(R+) is compact in L2(R+) also ind Op+(b) = 0. Thus also Op+(b−1) has index 0, since

ind Op+(b−1)Op+(b) = ind(1 + kL) = 0

= ind Op+(b−1) + ind Op+(b)

i.e.,
ind Op+(b−1) = ind(1 + kL)− ind Op+(b).

From the considerations before in L2(R+), now applied to the elliptic symbol b−1, we have
finite-dimentional subspaces K1, L1 ⊂ S(R+) such that

K1 = ker Op+(b−1), L1 ∩ im Op+(b−1) = 0, (2.3.106)

L1 + im Op+(b−1) = L2(R+). (2.3.107)

The next step of the proof is to find an l ∈ B0
G(R+) such that

Op+(b−1) + l : L2(R+) −→ L2(R+)

is an isomorphism. This is done as follows. We set m = dimK1 = dimL1 and choose isomor-
phisms

k1 : Cm −→ L1, d1 : K1 −→ Cm

and then (
Op+(b−1) k1

d1 0

)
:
L2(R+) L2(R+)
⊕ −→ ⊕
Cm Cm

(2.3.108)

is an isomorphism. In fact, (2.3.107) shows that

(Op+(b−1) k1) :
L2(R+)
⊕ −→ L2(R+)
Cm

(2.3.109)

is surjective. Moreover, we see that

(Op+(b−1))u+ k1v = 0
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implies Op+(b−1)u = −k1v which entails that both sides are zero, cf. the second identity of
(2.3.106). Then, since k1 is injective, we conclude v = 0, thus Op+(b−1)u = 0 gives us u ∈ K1.
Then, (2.3.108) is an isomorphism if and only if the second row induces an isomorphism

(d1 0) : ker(Op+(b−1) k1) −→ Cm.

Which is equivalent to the isomorphism

d1 : K1 −→ Cm.

Here we applied Lemma 2.1.4. Using openess of isomorphisms in a Hilbert space we find an
ε > 0 such that also (

Op+(b−1) k1

d1 ε

)
:
L2(R+) L2(R+)
⊕ −→ ⊕
Cm Cm

(2.3.110)

is an isomorphism. Let us now pass to the isomorphism(
1 −k1ε

−1

0 1

)(
Op+(b−1) k1

d1 ε

)(
1 0

−ε−1d1 1

)
=

(
Op+(b−1)− k1ε

−1d1 0
0 ε

)
on the left-hand side we have a composition of isomorphisms; so the right-hand side is an
isomorphism as well. Thus, since ε : Cm −→ Cm is an isomorphism also

Op+(b−1)− k1ε
−1d1 : L2(R+) −→ L2(R+)

is an isomorphism. Here g := −k1ε
−1d1 ∈ B0

G(R+). Now, since b = Op+(b) + k is an isomor-
phism also

(Op+(b−1) + g)(Op+(b) + k) = 1 + h+ gOp+(b)+ = Op+(b−1)k = 1 + h1

for h1 = h + gOp+(b) + Op+(b−1)k ∈ B0
G(R+) is an isomorphism. Now it remains to recall

that we have (1 + h1)−1 = 1 + h2 cf. Lemma 2.3.22. Thus we obtain

(1 + h2)(Op+(b−1) + g) = Op+(b−1) + h2Op+(b−1) + g + h2g

= Op+(b−1) + h3 = (Op+(b) + k)−1,

for h3 ∈ B0
G(R+).

Proposition 2.3.26. Let b := Op+(b) + k ∈ B0,0
G (R+) as in Proposition 2.3.25 be ellipticity,

and realize b as a continuous operator

b : Hs(R+) −→ Hs(R+) (2.3.111)

s ∈ R, s > −1/2. Then (2.3.111) is a Fredholm operator, and q := Op+(b−1) is a parametrix
of b, also in the sense of a map (2.3.111). Moreover, The finite-dimensional subspaces K,L ⊂
S(R+) of Proposition 2.3.25 have analogous properties with respect to (2.3.111) namely,

K = ker b, L ∩ im b = {0}, L+ im b = Hs(R+) (2.3.112)

and we als have relations (2.3.101) is an isomorphism.
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Proof. As we know from Proposition 2.3.10 the operator Op+(b) + k induces a continuous
operator (2.3.111). If b(ξn) is elliptic then (2.3.111) is Fredholm. In fact, q is a parametrix and
the remainders are the same as in Proposition 2.3.25, namely, kL and kR. Those are compact
in Hs(R+) for s > −1/2, see also Remark 2.3.2. Similarly as in the proof of Proposition 2.3.25
it follows that K = ker b ⊂ S(R+), and we obtain the first relation of (2.3.112). The second
one follows by passing to the formal adjoint, namely, (Op+(b) + k)∗ = Op+(b) + k∗ which
is of the same structure as the original operator. In particular, we see that (2.3.111) is an
isomorphism exactly if (2.3.101) is an isomorphism. Moreover, the inverse of (2.3.112) is of
the same shape as the one computed in the proof of Proposition 2.3.25.

Proposition 2.3.27. Let a(ξn) ∈ Sµtr(R), g ∈ BeG(R+) and interpret Op+(a) + g either as a
continuous operator

a : Hs(R+) −→ Hs−µ(R+) (2.3.113)

for s > max{µ, e} − 1/2, or

aS : S(R+) −→ S(R+). (2.3.114)

If a(ξn) is elliptic in the sense of Definition 2.3.24 (i), then both (2.3.113) and (2.3.114) are
Fredholm operators, and there is a parametrix p := Op+(a−1) such that

pa = 1 + gL, ap = 1 + gR (2.3.115)

for some gL ∈ BeLG (R+), gR ∈ BeRG (R+) for eL = max{µ, e}, eR = max{e − µ, 0}. There are
finite-dimensional subspaces V,W ⊂ S(R+) such that

V = kera, W ∩ ima = {0}, W + ima = Hs−µ(R+), (2.3.116)

V = keraS , W ∩ imaS = {0}, W + imaS = S(R+). (2.3.117)

Thus inda = indaS . In particular, (2.3.113) is an isomorphism if and only if (2.3.114) is an
isomorphism, and in that case we have a−1 ∈ B−µ,h(R+) for h = max {e− µ, 0}.

Proof. Using Theorem 2.3.20 we pass to the operator

bs1 := Op+(ls1−µ− )aOp+(l−s1− ) ∈ B0,0(R+),

bs1 : Hs0(R+) −→ Hs0(R+), s0 > −1/2

for s1 := max{µ, e}, s0 = s− s1 > −1/2, according to the assumption of Proposition 2.3.26,
for

bs1(ξn) = ls1−µ− (ξn)a(ξn)l−s1− (ξn)

which is elliptic. We then obtain a parametrix of bs1 of the form q = Op+(b−1
s1

) such that

qbs1 = 1 + kL, bs1q = 1 + kR.

This means

qOp+(ls1−µ− )aOp+(l−s1− ) = 1 + kL,

Op+(ls1−µ− )aOp+(l−s1− )q = 1 + kR.
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For p := Op+(l−s1− )qOp+(ls1−µ− ), we thus obtain

pa = Op+(l−s1− )qOp+(ls1−µ− )a

= Op+(l−s1− )qOp+(ls1−µ− )Op+(l−s1+µ
− )bs1Op+(ls1− )

= Op+(l−s1− )qbs1Op+(ls1− ) = Op+(l−s1− )(1 + kL)Op+(ls1− )

= 1 + Op+(l−s1− )kLOp+(ls1− ) = 1 + gR

and, analogously,

ap = Op+(l−s1+µ
− )bs1Op+(ls1− )Op+(l−s1− )qOp+(ls1−µ− )

= Op+(l−s1+µ
− )bs1qOp+(ls1−µ− ) = Op+(l−s1+µ

− )(1 + kR)Op+(ls1−µ− )

= 1 + Op+(l−s1+µ
− )kROp+(ls1−µ− ) = 1 + gR.

Here we employed relations of the type (2.3.36). From Theorem 2.3.18 we obtain gL ∈
BeLG (R+), gR ∈ BeRG (R+) for eL = max{µ, e}, eR = max{e − µ, 0}. Finally we have isomor-
phisms

Op+(l−s1− ) : Hs0(R+) −→ Hs(R+),

Op+(l−s1+µ
− ) : Hs0(R+) −→ Hs−µ(R+)

for s = s0 + s1. Thus
a = Op+(l−s1+µ

− )bs1Op+(ls1− ),

defines a Fredholm operators (2.3.113) and (2.3.114). At the same time we obtain relations
(2.3.116), (2.3.117) for the spaces

V := Op+(l−s1− )K, W := Op+(l−s1+µ
− )L

are an immediated consequence. In particular, the operator (2.3.114) is an isomorphism if and
only (2.3.115) is an isomorphis. We then have

a−1 = Op+(l−s1− )bs1Op+(ls1−µ− )

and from Theorem 2.3.18 we obtain the types in a−1 ∈ B−µ,h(R+) for h = max{e− µ, 0}.

Theorem 2.3.28. Let a ∈ B0,0(R+; j1, j2), be interpreted as a continuous operator

a :
L2(R+) L2(R+)
⊕ −→ ⊕
Cj1 Cj2

, (2.3.118)

and let a∗ be the adjoint of a in the sense of the identity

(au, v)L2(R+)⊕Cj2 = (u,a∗v)L2(R+)⊕Cj1 (2.3.119)

for all u ∈ L2(R+)⊕ Cj1 , v ∈ L2(R+)⊕ Cj2. Then we have a∗ ∈ B0,0(R+; j2, j1).

Proof. Is straightforward.
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Corollary 2.3.29. For a ∈ B0,0(R+) we have a∗ ∈ B0,0(R+). Moreover, writing

a =

(
a k
t q

)
(2.3.120)

the operators t∗ and k∗ are potential and trace operators, respectively.

Definition 2.3.30. By Bµ,e(R+; j1, j2) we denote the space of all block-matrix operators

a =

(
b+ g k
t q

)
(2.3.121)

for b := Op+(a), a(xn, ξn) ∈ Sµtr(R+ × R), a(xn, ξn) independent of xn for large xn, and(
g k
t q

)
∈ BeG(R+; j1, j2). (2.3.122)

Definition 2.3.30 extends Definition 2.3.24 to the case of symbols a(xn, ξn) with non-constant
coefficients. The above-mentioned result can be used to investigate the space of Definition
2.3.30 with respect to its mapping properties, symbolic structure, ellipticity, etc. .

First it is clear that any a ∈ Bµ,e(R+; j1, j2) induces continuous operators

a :
Hs(R+) Hs−µ(R+)
⊕ −→ ⊕
Cj1 Cj2

(2.3.123)

for any s > max {µ, e} − 1
2
. In particular, we have continuity

a :
S(R+) S(R+)
⊕ −→ ⊕
Cj1 Cj2

. (2.3.124)

Definition 2.3.31. (i) An a ∈ Bµ,e(R+) is called elliptic if a(xn, ξn) ∈ Sµtr(R+ × R) is
elliptic in the sense a(µ)(xn, ξn) 6= 0 for all xn ∈ R+, ξn ∈ R \ {0}, and if a(0, ξn) is
elliptic in the sense of Definition 2.3.24 (i).

(ii) A P ∈ B−µ,h(R+, j2, j1) of the form (2.3.98) for some type h ∈ N is called a parametrix
of a if relations (2.3.99) hold for some types eL and eR ∈ N.

Theorem 2.3.32. An elliptic opeartore a ∈ Bµ,e(R+, j1, j2) has a parametrix
P ∈ B−µ,h(R+, j2, j1) for h = max {e− µ, 0}.

2.4 Complete symbolic structures

We now investigate both interior symbols with the transmission property at the boundary and
complete operator-valued symbols describing boundary value problems close to the boundary.
In this section we focus on a neighbourhood of a point on the boundary of the form

(x′, xn) ∈ Ω× R+ (2.4.1)
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for an open set Ω ⊆ Rn−1. In notation from the beginning of Section 2.1 the set Ω represents
a chart on the boundary ∂X, while xn ∈ R+ comes from the splitting of variables close to the
boundary direction. In our consideration we take into account that the normal half-axis has a
negative counterpart, and similarly as in the preceding section we observe distributions as well
as symbols also in terms of the xn-axis. The notation refers to variables x ∈ Rn, and (2.4.1)
means x = (x′, xn), with covariable ξ = (ξ′, ξn). In the following definition symbols a(x, ξ) ∈
Sµcl(Ω × R × Rn) will be specified in terms of what we call the transmission property at the
boundary, expressed in terms of the sequence of homogeneous components a(µ−j)(x, ξ), j ∈ N.

Definition 2.4.1. A symbol a(x′, xn, ξ
′, ξn) ∈ Sµcl(Ω × R × Rn

ξ′,ξn
) for µ ∈ Z is said to have

the transmission property at xn = 0 if(
Dk
xnD

α
ξ′a(µ−j)

)
(x′, 0, 0, 1) = (−1)µ−j

(
Dk
xnD

α
ξ′a(µ−j)

)
(x′, 0, 0,−1) (2.4.2)

for all x′ ∈ Ω, k, j ∈ N. Let
Sµtr(Ω× R× Rn)

denote the space of all symbols with the transmission property. Set

Sµtr(Ω× R+ × Rn) := {a|Ω×R+×Rn : a ∈ Sµtr(Ω× R× Rn)}. (2.4.3)

By Sµtr(Rn) we denote the subspace of all a(x, ξ) ∈ Sµtr(Ω×R+ ×Rn) that are independent of
x.

Remark 2.4.2. The space Sµtr(Ω×R×Rn) is closed in Sµcl(Ω×R×Rn) in the corresponding
Fréchet topology of classical symbols; the same is true of Sµtr(Rn

ξ ) with respect to the space
Sµcl(Rn

ξ ) of symbols with constant coefficients.

Remark 2.4.3. The space Sµtr(Ωx′ × Rxn × Rn
ξ′,ξn

) can be specialized for the case n = 1, i.e.,
symbols a(xn, ξn) ∈ Sµtr(R×R). The latter space can be identified with C∞(Rxn , S

µ
tr(R)) where

Sµtr(R) has been defined after relation (2.3.12).

Let us also discuss the coordinate invariance, to be used later on, concerning operators globally
on a manifold with boundary. Let

χ = (χ′, id) : Ω× R −→ Ω̃× R (2.4.4)

be a diffeomorphism, where id : R −→ R is the identity operator and χ′ : Ω −→ Ω̃ a
diffeomorphism. In a similar sense we employ notation

χ = (χ′, id) : Ω× R+ −→ Ω̃× R+ (2.4.5)

with χ′ as before and id is the identity map. Then, according to general transformation rules
of symbols we have a symbol push forward

χ∗ : Sµtr(Ω× R× Rn) −→ Sµtr(Ω̃× R× Rn),

χ∗ : Sµtr(Ω× R+ × Rn) −→ Sµtr(Ω̃× R+ × Rn).
(2.4.6)

Let us associate with symbols a(x′, xn, ξ
′, ξn) ∈ Sµtr(Ω × R × Rn) operator-valued symbols

which contribute later on to the upper left corners of boundary symbols.
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The constructions refer to what we call decoupling of symbols which makes sense also in a
slightly more general context, namely, when we replace R by Rd for a d-dimensional variable
xn with the corresponding covariable ξn ∈ Rd. Starting with

a(x′, xn, ξ
′, ξn) ∈ Sµ(Ω× Rd × Rn−1+d

ξ′,ξn
) (2.4.7)

we form
a(x′, xn, ξ

′, ξn) := a(x′, 〈ξ′〉−1xn, ξ
′, 〈ξ′〉ξn) (2.4.8)

referred to as the decoupled symbol. For decoupling of symbols there are well-known theorems
which we use for the moment without proof; the details will be given later on. In the following
theorem we employ symbols taking values in Fréchet spaces, cf. (1.4.1), (1.4.3).

Theorem 2.4.4. The decoupling map

a(x′, xn, ξ
′, ξn) −→ a(x′, xn, ξ

′, ξn) (2.4.9)

induces continuous operators

Sµ(Ω× Rd × Rn−1+d
ξ′,ξn

) −→ Sµ(Ωx′ × Rn−1
ξ′ , Sµ(Rd

xn × Rd
ξn)) (2.4.10)

as well as
Sµcl(Ω× Rd × Rn−1+d

ξ′,ξn
) −→ Sµcl(Ωxn × Rn−1

ξ′ , Sµcl(R
d
xn × Rd

ξ′)). (2.4.11)

Note that Theorem 2.4.4 gives rise to some particular symbol spaces, e,g.,

Sµ(Rn−1
ξ′ , C∞(Rd

xn)) (2.4.12)

as a special case of the right-hand side of (2.4.10) where the elements do not depend on x′

and on ξn.

With (2.4.8) we associate the family of operators Opxn(a)(x′, ξ′) by forming

Opxn(a)(x′, ξ′)v(xn) =

∫∫
ei(xn−x

′
n)ξna(x′, xn, ξ

′, ξn)v(x′n) dx′nd̄ξn. (2.4.13)

In the following consideration we assume that the xn-dependence of a(x′, xn, ξ
′, ξn) for large

|xn| is specified in such a way that

Opxn(a)(x′, ξ′) : Hs(Rd) −→ Hs−µ(Rd) (2.4.14)

is continuous for every s ∈ R and (x′, ξ′) ∈ Ω× Rn−1. For our purposes it suffices to assume
that a(x′, xn, ξ

′, ξn) is independent of xn for |xn| ≥ C for some C > 0. Then (2.4.14) represents
an element

Opxn(a)(x′, ξ′) ∈ C∞(Ω× Rn−1,L(Hs(Rd), Hs−µ(Rd))) (2.4.15)

for every s ∈ R.

Lemma 2.4.5. We have

Opxn(a)(x′, ξ′) = κ−1
〈ξ′〉Opxn(a)κ〈ξ′〉. (2.4.16)
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Proof. We have

κ−1
δ Opxn(a)κδ = κ−1

δ

∫∫
ei(xn−x

′
n)ξna(x′, xn, ξ

′, ξn)κδu(x′n) dx′nd̄ξn

=

∫∫
ei(δ

−1xn−x′n)ξ′a(x′, δ−1xn, ξ
′, ξn)u(δx′n) dx′nd̄ξn

=

∫∫
eiδ
−1(xn−δx′n)ξna(x′, δ−1xn, ξ

′, ξn)u(δx′n) dx′nd̄ξn

=

∫∫
ei(xn−x̃n)ξ̃na(x′, δ−1xn, ξ

′, δξ̃n)u(x̃n) dx̃n d̄ξ̃n.

The proof is complete when we insert δ = 〈ξ′〉.

Lemma 2.4.6. Let a(x′, xn, ξ
′, ξn) ∈ Sµ(Ω×Rd×Rn−1+d

ξ′,ξn
) be independent of xn for large |xn|.

Then we have
Opxn(a)(x′, ξ′) ∈ Sµ(Ω× Rn−1;Hs(Rd), Hs−µ(Rd))

for all s ∈ R. In addition if a = a(x′, ξ′, ξn) is independent of xn and a(x′, ξ′, ξn) ∈ Sµcl(Ω ×
Rn−1+d) then

Opxn(a)(x′, ξ′) ∈ Sµcl(Ω× Rn−1;Hs(Rd), Hs−µ(Rd)). (2.4.17)

Proof. Let us first assume a to be independent of xn. From the symbolic estimate

|a(x′, ξ′, ξn)| ≤ 〈ξ′, ξn〉µ

for x′ ∈ K b Ω, where c = c(K) > 0 is a constant it follows that

|a(x′, ξ′, 〈ξ′〉ξn)| ≤ c〈ξ′, 〈ξ′〉ξn〉µ = c〈ξ′〉µ〈ξn〉µ

using that 〈ξ′, 〈ξ′〉ξn〉 = 〈ξ′〉〈ξn〉. Thus, by virtue of Lemma 2.4.5 we have

‖κ−1
〈ξ′〉Opxn(a)(x′, ξ′)κ〈ξ′〉v‖2

Hs−µ(Rd) = ‖Opxn(a)(x′, ξ′)v‖2
Hs−µ(Rd)

=

∫
〈ξn〉2(s−µ)|a(x′, ξ′, ξn)v̂(ξn)|2 d̄ξn ≤ c

∫
〈ξn〉2(s−µ)〈ξ′〉2µ〈ξn〉2µ|v̂(ξn)|2 d̄ξn

= c〈ξ′〉2µ
∫
〈ξn〉2s|v̂(ξn)|2 d̄ξn = c〈ξ′〉2µ‖v‖2

Hs(Rd).

This implies
‖κ−1
〈ξ′〉Opxn(a)(x′, ξ′)κ〈ξ′〉‖L(Hs(Rd),Hs−µ(Rd)) ≤ c〈ξ′〉µ.

In an analogous manner we get estimates

‖κ−1
〈ξ′〉D

α
x′D

β
ξ′

(
Opxn(a)(x′, ξ′)

)
κ〈ξ′〉‖L(Hs(Rd),Hs−µ(Rd)) ≤ c〈ξ′〉µ−|β|.

If a depends on xn, because of the first part of the proof we may assume that a vanishes for
|xn| ≥ R for some R > 0. Then it follows that

a(x′, xn, ξ
′, ξn) ∈ C∞0 (Rd

xn)R⊗̂πSµ(Ω× Rn−1+d
ξ′,ξn

)

where C∞0 (Rd
xn)R is Fréchet space of all ϕ ∈ C∞(Rd

xn) vanishing for |xn| ≥ R. By virtue of
Theorem 1.7.1 we can write the symbol as a convergent sum

a(x′, xn, ξ
′, ξn) =

∞∑
j=0

λjaj(x
′, ξ′, ξn)cj(xn) (2.4.18)
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for λj ∈ C,
∑
|λj| <∞, aj ∈ Sµ(Ω× Rn−1+d

ξ′,ξn
), cj ∈ C∞0 (Rd

xn)R, tending to 0 as j →∞ in the
respective spaces. From (2.4.18) we obtain

a(x′, 〈ξ′〉−1xn, ξ
′, 〈ξ′〉ξn) =

∞∑
j=0

λjaj(x
′, ξ′, 〈ξ′〉ξn)cj(〈ξ′〉−1xn) (2.4.19)

which is first a formal conclusion, but we will obtain convergence. From the continuity of

a(x′, ξ′, ξn) −→ a(x′, ξ′, ξn)

stated in Theorem 2.4.4 we see that

aj(x
′, ξ′, ξn) −→ 0

in Sµ(Ω× Rn−1+d) entails
aj(x

′, ξ′, ξn) −→ 0

in Sµ(Ω×Rn−1, Sµ(Rd
ξn

)) as j → 0. In addition it can easily be proved that c ∈ C∞0 (Rd
xn)R gives

rise to c(〈ξ′〉−1xn) ∈ S0(Rn−1
ξ′ , C∞(Rd

xn)) and cj(xn) −→ 0 in C∞0 (Rd
xn)R entails c(〈ξ′〉−1xn) −→

0 in S0(Rn−1
ξ′ , C∞(Rd

xn)) as j →∞. Thus (2.4.19) converges in the space (2.4.10) of decoupled
symbols.

Now let us pass to the second statement of Lemma 2.4.6. If a = a(x′, ξ′, ξn) for ξ′ 6= 0

κ−1
δ Opxn(a(µ))(x

′, ξ′)κδ = κ−1
δ

∫∫
ei(xn−x

′
n)ξna(µ)(x

′, ξ′, ξn)κδu(x′n) dx′nd̄ξn

=

∫∫
ei(δ

−1xn−x′n)ξna(µ)(x
′, ξ′, ξn)u(δx′n) dx′nd̄ξn

=

∫∫
eiδ
−1(xn−δx′n)ξna(µ)(x

′, δ−1ξ′, ξn)u(δx′n) dx′nd̄ξn

= δµ
∫∫

ei(xn−x̃n)ξ̃na(µ)(x
′, δ−1ξ′, δξ̃n)u(x̃n) dx̃n d̄ξn.

which yields
κ−1
δ Opxn(a(µ))(x

′, ξ′)κδ = δµOpxn(a(µ))(x
′, δ−1ξ′)

so
δµκ−1

δ Opxn(a(µ))(x
′, ξ′)κδ = Opxn(a(µ))(x

′, δξ′, )

In similar manner we can proceed with a(µ−j) for all j.

Note that we can also analyze the xn-dependent case by applying the Taylor expansion

a(x′, xn, ξ
′, ξn) =

∑
|α|≤N

1

α!

(
∂α

∂xn
αa

)
(x′, 0, ξ′, ξn)xαn + rN+1(a)(x′, xn, ξ

′, ξn) (2.4.20)

where we have rN+1(a)(x′, xn, ξ
′, ξn) ∈ Sµ(Ω×Rd×Rn−1+d

ξ′,ξn
) as a difference of symbols of that

kind.

Expression (2.4.20) will be a part of characterizing (2.4.17) as a classical operator-valued
symbol also when a = a(x′, xn, ξ

′, ξn) depends on xn. Assume for simplicity d = 1.
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First, using the form of the remainder in (2.4.17) we have

rN+1(a)(x′, xn, ξ
′, ξn) = xN+1

n r̃N+1(a)(x′, xn, ξ
′, ξn) (2.4.21)

for a symbol r̃N+1(a)(x′, xn, ξ
′, ξn) ∈ Sµ(Ω× Rd × Rn−1+d

ξ′,ξn
). Then using the first statement of

Lemma 2.4.6 we have

Opxn(r̃N+1(a)(x′, ξ′)) ∈ Sµ(Ω× Rn−1, Hs(Rd), Hs−µ(Rd)). (2.4.22)

Another Lemma tells us that

Opxn(xN+1
n r̃N+1(a)(x′, ξ′) =

Opxn(rN+1)(x′, ξ′) ∈ Sµ−(N+1)(Ω× Rn−1, Hs(Rd), Hs−µ(Rd)).
(2.4.23)

Thus it remains to look at the finite sum on the right of (2.4.20) and to show that it consists of
homogeneous terms. Let us look at a(µ) rather than a and determine the twisted homogeneity

of Opxn(a
(α)
(µ)x

α
n)(x′, ξ′) for

a
(α)
(µ)(x

′, 0, ξ′, ξn) :=
∂α

∂xn
αa(µ)(x

′, 0, ξ′, ξn).

Then (for ξ′ 6= 0) an elementary computation gives us

Opxn(a
(α)
(µ)x

α
n)(x′, δξ′)u(xn) =

∫∫
ei(xn−x

′
n)ξna

(α)
(µ)(x

′, 0, δξ′, ξn)xαnu(x′n) dx′nd̄ξn

= δµ
∫∫

ei(xn−x
′
n)ξna

(α)
(µ)(x

′, 0, ξ′, δ−1ξn)xαnu(x′n) dx′nd̄ξn

= δµ
∫∫

ei(xn−x
′
n)δξna

(α)
(µ)(x

′, ξ′)xαnu(x′n) dx′nδ d̄ξn

= δµ
∫∫

ei(xn−δ
−1x̃n)δξna

(α)
(µ)(x

′, ξ′)xαnu(δ−1x̃n) dx̃n d̄ξn

= δµ
∫∫

ei(δxn−x̃n)ξna
(α)
(µ)(x

′, ξ′, )δ−|α|(δxn)αu(δ−1x̃n) dx̃n d̄ξn

= δµ−|α|κδOpxn(a
(α)
(µ)x

α
n)κ−1

δ u(xn).

(2.4.24)

Remark 2.4.7. The map a −→ Opxn(a)(x′, ξ′) induces a continuous operator

Sµ(Ω× Rd × Rn−1+d) −→ Sµ(Ω× Rn−1;Hs(Rd), Hs−µ(Rd)). (2.4.25)

For classical a which is independent of xn we obtain a continuous operator

Sµcl(Ω× Rd × Rn−1+d) −→ Sµcl(Ω× Rn−1;Hs(Rd), Hs−µ(Rd)). (2.4.26)

In the following theorem we employ edge spaces introduced in Definition 1.5.1 and their local
versions Ws

comp(Ω, H),Ws
loc(Ω, H), and we refer to Theorem 1.5.9. In the present case we

consider the spaces Hs(R) or Hs(R+) with group action (κδu)(xn) = δ1/2u(δxn), δ ∈ R+.
Then, using Theorem 1.5.9 every

a(x′, ξ′) ∈ Sµ(Ω× Rn−1;Hs(R), Hs−µ(R))
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induces a continuous operator

Op(a) : Hs
comp(x′)(Ω× R) −→ Hs−µ

loc(x′)(Ω× R) (2.4.27)

where

Hs
comp(x′)(Ω× R)=

{
u ∈ Hs(Rn−1 × R) :u(x′, xn)=0 forx′ ∈ Rn−1 \K for someK b Ω

}
Hs

loc(x′)(Ω× R)=
{
u ∈ Hs

loc(x′)(Ω× R) :ϕu ∈Hs
comp(x′)(Ω× R) for everyϕ ∈ C∞0 (Ω)

}
.

From Theorem 1.5.9 for H = Hs(R), H̃ = Hs−µ(R) and a(x′, ξ′) ∈ Sµ(Ω × Rn−1;H, H̃) we
obtain continuity of Opx′(.) as operators

Opx′(a) :Ws
comp(Ω, Hs(R)) −→Ws−µ

loc (Ω, Hs−µ(R)) (2.4.28)

or equivalently,
Opx′(a) : Hs

comp(x′)(Ω× R) −→ Hs−µ
loc(x′)(Ω× R). (2.4.29)

Let us set Hs
comp(x′)(Ω × R+) :=

{
u|Ω×R+ : u ∈ Hs

comp(x′)(Ω × R)
}

and Hs
loc(x′)(Ω × R+) :={

u|Ω×R+ : u ∈ Hs
loc(x′)(Ω× R)

}
.

Theorem 2.4.8. For every a(x′, xn, ξ
′, ξn) ∈ Sµtr(Ω × R × Rn) such that a is independent of

xn for |xn| > C for some C > 0, we have

Op+(a)(x′, ξ′) := r+Opxn(a)(x′, ξ′)e+ ∈ Sµ(Ω× Rn−1;Hs(R+), Hs−µ(R+)). (2.4.30)

These symbols induce continuous operators

Opx′
(
r+Opxn(a)(x′, ξ′)e+

)
: Hs

comp(x′)(Ω× R+) −→ Hs−µ
loc(x′)(Ω× R+) (2.4.31)

for every s ∈ R, s > −1/2.

Proof. Use Remark 1.5.7.

Theorem 2.4.9. Let a(x′, xn, ξ
′, ξn) ∈ Sµtr(Ω×R×Rn) be as in Theorem 2.4.8. Then we have

r+Opxn(a)e+(x′, ξ′) ∈ Sµ(Ω× Rn−1;S(R+),S(R+))

and continuous operators

Opx′
(
r+Opxn(a)e+(x′, ξ′)

)
: C∞0 (Ω,S(R+)) −→ C∞(Ω,S(R+)). (2.4.32)

Remark 2.4.10. As a byproduct of Theorems 2.4.8, 2.4.9 we obtain continuous operators

Sµtr(Ω× R× Rn)C −→ Sµ(Ω× Rn−1;Hs(R+), Hs−µ(R+)) (2.4.33)

and
Sµtr(Ω× R× Rn)C −→ Sµ(Ω× Rn−1;S(R+),S(R+)). (2.4.34)

Here subscript C indicates spaces of symbols which are independent of xn for |xn| > C.

We set

Lµtr(Ω× R+) = {Op+(a) : a(x′, xn, ξ
′, ξn) ∈ Sµtr(Ω× R+ × Rn)}. (2.4.35)
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Theorem 2.4.11. The spaces Lµtr(Ω×R+), µ ∈ Z, are coordinate invariant under diffeomor-
phisms (2.4.5) and the operator push forward induces isomorphisms

χ∗ : Lµtr(Ω× R+) −→ Lµtr(Ω̃× R+) (2.4.36)

and we have
χ∗(Op+(a)) = Op+(χ∗(a)) (2.4.37)

with obvious meaning of notation, cf. formula (1.1.34).

Definition 2.4.12. We define
Rµ,e(Ω× Rn−1; j1, j2) (2.4.38)

for µ ∈ Z, e ∈ N, as the space of all operator families

a(x′, ξ′) :=

(
Op+(a)(x′, ξ′) 0

0 0

)
+ g(x′, ξ′) (2.4.39)

for arbitrary a(x′, xn, ξ
′, ξn) ∈ Sµtr(Ω×R×Rn

ξ′,ξn
), cf. Definition 2.4.1, and g(x′, ξ′) ∈ Rµ,e

G (Ω×
Rn−1; j1, j2), cf. Definition 2.2.13. The elements of (2.4.38) are called boundary amplitude
functions. In addition by

Rµ,e
G (Ω× Rn−1; j1, j2) (2.4.40)

we denote the set of all g(x′, ξ′) in formula (2.4.39), called Green symbols. The space of Green
symbols of order µ ∈ Z and type e ∈ N is denoted by Rµ,e

G (Ω× Rn−1; j1, j2).

We define

Bµ,eG (Ω× R+; j1, j2) := {Opx′(g) : g(x′, ξ′) ∈ Rµ,e
G (Ω× Rn−1; j1, j2)}. (2.4.41)

Recall that this notation is introduced in Definition 2.4.12.

Theorem 2.4.13. The spaces Bµ,e(Ω × R+; j1, j2) is coordinate invariant under diffeomor-
phisms (2.4.5) and under operator push forward χ∗ induces isomorphisms

χ∗ : Bµ,eG (Ω× R+; j1, j2) −→ Bµ,eG (Ω̃× R+; j1, j2), (2.4.42)

where
χ∗(Opx′(g)) = Opx̃′(χ∗g) (2.4.43)

with obvious meaning of notation.

Remark 2.4.14. As a consequence of Theorem 2.4.8, 2.4.9, and the properties of Green, trace
and potential entries in a(x′, ξ′) ∈ Rµ,e(Ω× Rn−1; j1, j2), cf. Remark 2.2.14, we have

Rµ,e(Ω× Rn−1; j1, j2) ⊂ Sµ(Ω× Rn−1;H1, H2)

for

H1 :=
Hs(R+)
⊕
Cj1

, H2 :=
Hs−µ(R+)
⊕
Cj2

(2.4.44)

for any s > e− 1/2 as well as

Rµ,e(Ω× Rn−1; j1, j2) ⊂ Sµ(Ω× Rn−1;E1, E2)

for

E1 :=
S(R+)
⊕
Cj1

, E2 :=
S(R+)
⊕
Cj2

. (2.4.45)



80 Outline of Boutet de Monvel’s Calculus

The operator functions a(x′, ξ′) in (2.4.38) have a principal symbolic hierarchy

σ(a) :=
(
σψ(a), σ∂(a)

)
(2.4.46)

consisting of the interior principal symbol

σψ(a)(x′, xn, ξ
′, ξn) := a(µ)(x

′, xn, ξ
′, ξn),

for (ξ′, ξn) 6= 0, the homogeneous principal component of a(x′, xn, ξ
′, ξn) in the usual sense,

and

σ∂(a)(x′, ξ′) :=

(
σ∂(Op+(a))(x′, ξ′) 0

0 0

)
+ g(µ)(x

′, ξ′) (2.4.47)

for ξ′ 6= 0 where
σ∂(Op+(a))(x′, ξ′) := Op+(a|xn=0)(x′, ξ′)

and g(µ)(x
′, ξ′) is the principal part of g cf. Remark 2.2.14. Observe that

σ∂(a)(x′, δξ′) = δµ
(
κδ 0
0 idCj2

)
σ∂(a)(x′, ξ′)

(
κ−1
δ 0
0 idCj1

)
(2.4.48)

for every δ ∈ R+, cf. also relation (2.2.42). The group action

(κδu)(xn) = δ1/2u(δxn), δ ∈ R+,

refers either to u ∈ Hs(R+) for s > e − 1/2, or u ∈ S(R+). In other words the boundary
symbol of a ∈ Rµ,e(Ω× Rn−1; j1, j2) is interpreted either as a family of operators

σ∂(a)(x′, ξ′) :
Hs(R+) Hs−µ(R+)
⊕ −→ ⊕
Cj1 Cj2

, (2.4.49)

or

σ∂(a)(x′, ξ′) :
S(R+) S(R+)
⊕ −→ ⊕
Cj1 Cj2

. (2.4.50)

,
Definition (2.4.46) gives rise to the principal symbolic map

Rµ,e(Ω× Rn−1; j1, j2) −→ symbRµ,e(Ω× Rn−1; j1, j2), (2.4.51)

a(x′, ξ′) 7−→ σ(a) = (σψ(a), σ∂(a)).

The map (2.4.51) is well-defined if we can produce the components from a. The reconstruction
procedure for the first component can be performed in terms of∫∫

ei(x
′−x′′)ξ′

{
r+

∫∫
ei(xn−x

′
n)ξna(x′, xn, ξ

′, ξn)u(x′n, x
′′) dx′nd̄ξne+

}
dx′′d̄ξ′

which represents an element A ∈ Lµcl(Ω×R+). According to (1.1.20) we have a decomposition
A = A0 + C wher A0 is properly supported, C is smoothing operator. Then Remark 1.1.6
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allows us to produce a unique element a0 ∈ Sµcl(Ω×R+ ×Rn
ξ′,ξn

) such that A0 = Opx′,xn,(a0).
Then we obtain

a(µ)(x
′, xn, ξ

′, ξn) = lim
δ→∞

δ−µa0(x′, xn, δξ
′, δξn).

In a similar manner we obtain σ∂(a)(x′, ξ′) by a limit

σ∂(a)(x′, ξ′) = lim
δ→∞

δ−µ
(
κ−1
δ 0
0 idCj2

)
a(x′, δξ′)

(
κδ 0
0 idCj1

)
.

In other words (2.4.51) is well-defined.

Let us set for the moment

σµ(a) := σ(a), σµψ(a) = σψ(a) , σµ∂ (a) = σ∂(a).

Remark 2.4.15. For a ∈ Rµ,e(Ω× Rn−1; j1, j2) satisfying σµ(a) = 0 it follows that

a ∈ Rµ−1,e(Ω× Rn−1; j1, j2).

Applying the reproducing process of symbols again we can determine

σµ−1(a) := (σµ−1
ψ (a), σµ−1

∂ (a)),

and then, successively, for

Rµ−j,e(Ω× Rn−1; j1, j2) := {a ∈ Rµ−(j−1),e(Ω× Rq; j1, j2) : σµ−(j−1)(a) = 0}, (2.4.52)

j ≥ 1, we obtain σµ−j(a) for every a ∈ Rµ−j,e(Ω× Rn−1; j1, j2).

Note that
a(µ)(x

′, xn, δξ
′, δξn) = δµa(µ)(x

′, xn, ξ
′, ξn)

for δ = |ξ′, ξn|−1 gives us

a(µ)(x
′, xn, ξ

′, ξn) = |ξ′, ξn|µa(µ)

(
x′, xn,

ξ′

|ξ′, ξn|
,

ξn
|ξ′, ξn|

)
, (2.4.53)

i.e., a(µ) is determined by its values on the unit cosphere bundle

S∗(Ω× R+) :=
{

(x′, xn, ξ
′, ξn) ∈ Ω× R+ × (Rn−1

ξ′ × Rξn) : |ξ′, ξn| = 1
}
.

Relation (2.4.53) can be regarded as an extension by homogeneity µ of

a(µ)|S∗(Ω×R+) ∈ C∞(S∗(Ω× R+)) (2.4.54)

to Ω× R+ × (Rn−1 × R \ {0}). The subspace of C∞(S∗(Ω× R+)) determined by restrictions
a(µ)|S∗(Ω×R+) for symbols

a(x′, xn, ξ
′, ξn) ∈ Sµtr(Ω× R× Rn

ξ′,ξn)

closed in C∞(S∗(Ω × R+)) and hence is a Fréchet subspace. If πψ,j, j ∈ N, is the semi-norm
system of their space, then

πψ,j(σ
µ
ψ(a)|S∗(Ω×R+)) =: pµψ,j(a)
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is a semi-norm on the space Rµ,e(Ω× Rn−1; j1, j2).

Moreover, we have

σµ∂ (a)(x′, δξ′) = δµ
(
κδ 0
0 1

)
σµ∂ (a)(x′, ξ′)

(
κ−1
δ 0
0 1

)
(2.4.55)

(with 1 being the respective identity maps) and hence, for δ = |ξ′|−1 we obtain

σµ∂ (a)(x′, ξ′) = |ξ′|µ
(
κ−1
|ξ′| 0

0 1

)
σµ∂ (a)(x′,

ξ′

|ξ′|
)

(
κ|ξ′| 0
0 1

)
. (2.4.56)

Relation (2.4.56) is an extension by twisted homogeneity µ of

σµ∂ (a)|S∗Ω ∈ C∞(S∗Ω,Bµ,e(R+; j1, j2))

to Ω × (Rn−1 \ {0}), where Bµ,e(R+; j1, j2)) defined in Definition 2.3.13 is equipped with its
natural Fréchet topology, and

S∗Ω = {(x′, ξ′) ∈ Ω× Rn−1 : |ξ′| = 1}

is the unit cosphere bundle of Ω. Then, if π∂,j, j ∈ N, is the system of semi-norms of the
Fréchet topology of C∞(S∗Ω,Bµ,e(R+; j1, j2)), then

π∂,j(σ
µ
∂ (a)|S∗Ω) =: pµ∂,j(a). (2.4.57)

We now obtain on the space Rµ,e(Ω × Rn−1) a semi-norm system (2.4.57). Applying this
construction also to all lower order symbolic components we obtain in an analogous manner
semi-norms

pµ−kψ,j (a), pµ−k∂,j (a), j ∈ N, k ∈ N. (2.4.58)

This yields altogether a semi-norm system on the space Rµ,e(Ω × Rn−1) which turns it to a
Fréchet space.

Theorem 2.4.16. Let aj(x
′, ξ′) ∈ Rµ−j,e(Ω × Rn−1; j1, j2) be an arbitrary sequence. Then

there is an a(x′, ξ′) ∈ Rµ,e(Ω× Rn−1; j1, j2) such that

a(x′, ξ′)−
N∑
j=0

aj(x
′, ξ′) ∈ Rµ−(N+1),e(Ω× Rn−1; j1, j2)

for every N ∈ N, and a is unique modulo

R−∞,e(Ω× Rn−1; j1, j2) :=
⋂
j∈N

Rµ,e(Ω× Rn−1; j1, j2).

We then write

a ∼
∞∑
j=0

aj

and call a an asymptotic sum of the aj.
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Remark 2.4.17. Note that analogously as in Remark 1.1.4 we can produce an asymptotic
sum of the aj by the convergent sum in the Fréchet space Rµ,e(Ω× Rn−1; j1, j2)

a(x′, ξ′) =
∞∑
j=0

χ
( ξ′
cj

)
aj(x

′, ξ′)

where χ(ξ′) is any excision function and cj a sequence of positive numbers increasing suffi-
ciently fast as j →∞.

Theorem 2.4.18. a(x′, ξ′) ∈ Rµ,d(Ω× Rn−1; j0, j2), b(x′, ξ′) ∈ Rν,e(Ω× Rn−1; j1, j0) implies

(ab)(x′, ξ′) ∈ Rµ+ν,h(Ω× Rn−1; j1, j2) (2.4.59)

for h = max {d+ ν, e} and we have

σψ(ab) = σψ(a)σψ(b), σ∂(ab) = σ∂(a)σ∂(b)

with componentwise composition, cf. analogously, Theorem 2.3.18.

Remark 2.4.19. Observe that differentiations in x′, ξ′ give rise to linear operators

Dα
x′D

β
ξ′ : Rµ,d(Ω× Rn−1; j1, j2) −→ Rµ−|β|,d(Ω× Rn−1; j1, j2) (2.4.60)

for every α, β ∈ Nn−1.

An example of asymptotic summation is the Leibniz product between symbols a(x′, ξ′) ∈
Rµ,d(Ω× Rn−1; j0, j2), b(x′, ξ′) ∈ Rν,e(Ω× Rn−1; j1, j0),

a(x′, ξ′)#b(x′, ξ′) ∈ Rµ+ν,h(Ω× Rn−1; j1, j2) (2.4.61)

for h = max {d+ ν, e}, defined by twisted homogeneity of order µ.

a(x′, ξ′)#b(x′, ξ′) ∼
∑

α∈Nn−1

1

α!
∂αξ′a(x′, ξ′)Dα

x′b(x
′, ξ′). (2.4.62)

The asymptotic summation makes sense because of

∂αξ′a(x′, ξ′)Dα
x′b(x

′, ξ′) ∈ Rµ+ν−|β|,h(Ω× Rn−1; j1, j2) (2.4.63)

cf. Theorem 2.4.18. and Remark 2.4.19.

Theorem 2.4.20. a(x′, ξ′) ∈ R0,0(Ω× Rn−1; j1, j2) implies a∗(x′, ξ′) ∈ R0,0(Ω× Rn−1; j2, j1)
in the sense of

(a(x′, ξ′)f, g)L2(R+)⊕Cj2 = (f,a∗(x′, ξ′)g)L2(R+)⊕Cj1 (2.4.64)

for all
f ∈ C∞0 (R+)⊕ Cj1 , g ∈ C∞0 (R+)⊕ Cj2 (2.4.65)

and we have
σψ(a∗) = σψ(a)∗, σ∂(a

∗) = σ∂(a)∗ (2.4.66)

where
σψ(a)∗(x′, xn, ξ

′, ξn) = σψ(a)(x′, xn, ξ
′, ξn)

and
(σ∂(a(x′, ξ′)f, g)L2(R+)⊕Cj2 = (f, σ∂(a)∗(x′, ξ′)g)L2(R+)⊕Cj1 (2.4.67)

(x′, ξ′) ∈ Ω× (Rn−1 \ {0}), for all f, g as in (2.4.65).
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The operator-valued symbols g(x′, ξ′) ∈ Rµ,e
G (Ω × Rn−1; j1, j2) take values in block-matrices

of the form

g(x′, ξ′) =

(
g k
b q

)
(x′, ξ′) ∈ Bµ,eG (R+; j1, j2) (2.4.68)

cf. notation in (2.3.97).

2.5 Local operators of Boutet de Monvel’s type

We now turn to pseudo-differential boundary value problems referring to Ω × R+,Ω ⊆ Rn−1

open, which corresponds to a chart on a smooth manifold with boundary. We will give a
definition of Bµ,e(Ω× R+; j−, j+) which are 2× 2-block matrices.

Let us first define the class B−∞,e(Ω× R+; j−, j+) of smoothing operators

C =

(
C11 +G11 C12

C21 C22

)
:
C∞0 (Ω× R+) C∞(Ω× R+)

⊕ −→ ⊕
C∞0 (Ω,Cj−) C∞(Ω,Cj+)

.

Later on, in order to simplify formulas we consider the case j− = j+ = 1; the extension of
notation to arbitrary j−, j+ ∈ N is straightforward. Smoothing operators of the kind C11 are
defined by kernels

c11(x′, xn, x
′′, x′n) ∈ C∞(Ω× R+ × Ω× R+)

where

C11u(x′, xn) =

∫
Ω

∫
R+

c11(x′, xn, x
′′, x′n)u(x′′, x′n) dx′′dx′n (2.5.1)

for u ∈ C∞0 (Ω× R+). Moreover, we define smoothing Green operators G11 of type e ∈ N by

G11u(x′, xn) =
e∑

k=0

∫
Ω

∫
R+

g11,k(x
′, xn, x

′′, x′n)
∂k

∂x′n
k
u(x′′, x′n) dx′′dx′n (2.5.2)

where g11,k(x
′, xn, x

′′, x′n) ∈ C∞(Ω×R+×Ω×R+) for k = 0, . . . , e. A smoothing trace operator
C21 of type e is defined as a column vector of operators C21 = t(C1

21, . . . , C
l
21) by

(C l
21u)(x′) =

e∑
k=0

∫
Ω

∫
R+

cl21,k(x
′, x′′, x′n)

∂k

∂x′n
k
u(x′′, x′n) dx′′dx′n, (2.5.3)

where l = 1, . . . , j+, cl21,k(x
′, x′′, x′n) ∈ C∞(Ω× Ω× R+), k = 0, . . . , e. Moreover, a smoothing

potential operator C12 is defined as a row vector of operators (C1
12, . . . , C

j−
12 ) by

(Cm
12v)(x′, xn) =

j−∑
m=1

∫
Ω

cm12(x′, xn, x
′′)v(x′′) dx′′ (2.5.4)

where m = 1, . . . , j−, cm12(x′, xn, x
′′) ∈ C∞(Ω× R+ × Ω), v := t(v1, . . . , vj−), v ∈ C∞0 (Ω),m =

1, . . . , j−. Finally C22 is a standard smoothing operator, namely, a j+ × j− matrix

(C l
22v)(x′) =

j−∑
m=1

∫
Ω

clm22 (x′, x′′)v(x′′) dx′′, l = 1, . . . , j+ (2.5.5)

for kernels clm22 (x′, x′′) ∈ C∞(Ω× Ω), l = 1, . . . , j+, m = 1, . . . , j−.
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Definition 2.5.1. For every µ ∈ Z, e ∈ N, we define Bµ,e(Ω× R+; j−, j+) as the space of all
operators of the form

A = Opx′(a) + C (2.5.6)

for arbitrary a(x′, ξ′) ∈ Rµ,e(Ω × Rn−1; j−, j+) and C ∈ B−∞,e(Ω × R+; j−, j+). Operators of
this kind are called smoothing operators of Boutet de Monvel’s calculus of order µ and type e.

In local considerations over Ω × R+ for convenience we impose some assumptions on the
behaviour of kernels involved in C ∈ B−∞,e(Ω×R+; j−, j+) for large xn or x′n. We also impose
a similar assumption on a(x′, ξ′) ∈ Rµ,e(Ω × R+; j−, j+). In order to make such precautions
easy in future we tacitly assume that the upper left corner (2.4.39) is defined for a symbol
a(x′, xn, ξ

′, ξn) ∈ S(Rxn , S
µ
tr(Ω × Rn

ξ′,ξn
)), i.e., with a strong decay for |xn| → ∞. The other

ingredients of Green, trace or potential operators in Bµ,e(Ω × R+; j−, j+) have such a strong
decay for large |xn| by definition. Concerning the kernels involved in C we also assume the
Schwartz property in xn, x

′
n tending to infinity. Later on, in the global calculus of operators

on a smooth manifold with boundary such a behaviour will be automatic, since localizations
by multiplications by factors from a partition of unity, etc. will cause the desired properties.

Theorem 2.5.2. Every A ∈ Bµ,e(Ω× R+; j−, j+), first realized as a continuous operator

A :
C∞0 (Ω× R+) C∞(Ω× R+)

⊕ −→ ⊕
C∞0 (Ω,Cj−) C∞(Ω,Cj+)

(2.5.7)

extends to a continuous operator

A :
Hs

comp(Ω× R+) Hs−µ
loc (Ω× R+)

⊕ −→ ⊕
Hs

comp(Ω,Cj−) Hs−µ
loc (Ω,Cj+)

(2.5.8)

for every s ∈ R, s > e− 1/2.

Let us now formulate the principal symbols

σ(A) := (σψ(A), σ∂(A)) (2.5.9)

of operators A ∈ Bµ,e(Ω × R+; j−, j+). Writing A = (Aij)i,j=1,2, and A11 = A + G for A =
Op+(a), a ∈ Sµtr(Ω× R+ × Rn), and G ∈ Bµ,eG (Ω× R+), we define

σψ(A) := σψ(A)

which is just the homogeneous principal symbol of a(x′, xn, ξ
′, ξn) as a classical symbol of order

µ. Moreover, looking at (2.5.6) we have an a(x′, ξ′) ∈ Rµ,e(Ω × Rn−1; j−, j+) which is of the
form (2.4.39), where g(x′, ξ′) ∈ Rµ,e

G (Ω× Rn−1
+ ; j−, j+) is an element of Sµcl(Ω× Rn−1;H1, H2)

for the spaces (2.4.44), and we have the corresponding principal symbol g(µ)(x
′, ξ′) of twisted

homogeneity µ, for T ∗Ω \ 0. Moreover, we define

σ∂(Op+(a))(x′, ξ′) := r+Op(a|xn=0)e+(x′, ξ′), (2.5.10)

i.e., in terms of a(x′, xn, ξ
′, ξn), frozen at xn = 0. We set

σ∂(A)(x′, ξ′) :=

(
σ∂(Op+(a))(x′, ξ′) 0

0 0

)
+ g(µ)(x

′, ξ′). (2.5.11)
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From this definition we easily see that

σ∂(A)(x′, δξ′) = δµ
(
κδ 0
0 idCj+

)
σ∂(A)(x′, ξ′)

(
κ−1
δ 0
0 idCj−

)
(2.5.12)

for every δ ∈ R+, (x
′, ξ′) ∈ T ∗Ω \ 0.

For any ω(x′, x′′) ∈ C∞(Ω × Ω) such that suppω is proper (i.e., suppω ∩ {(x′, x′′) ∈ Ω ×
Ω : x′ ∈ M} and suppω ∩ {(x′, x′′) ∈ Ω × Ω : x′′ ∈ M ′} are compact sets for arbitrary
M b Ω,M ′ b Ω) and suppω contains diag (Ω×Ω) in its open interior, we can represent any
A ∈ Bµ,e(Ω× R+; j−, j+) in the form

Op(a) = Op(ωa) + Op((1− ω)a) (2.5.13)

modulo B−∞,e(Ω × R+; j−, j+). Then Op(ωa) is properly supported in the sense that its
distributional kernel has proper support in a similar sense as indicated before in connection
with ω. From (2.5.13) we see that every A ∈ Bµ,e(Ω× R+; j−, j+) can be decomposed in the
form

A = A0 + C,

where A0 ∈ Bµ,e(Ω× R+; j−, j+) is properly supported and C ∈ B−∞,e(Ω× R+; j−, j+).

Theorem 2.5.3. Let A ∈ Bµ,e(Ω×R+; j0, j2), B ∈ Bν,l(Ω×R+; j1, j0) and assume that either
A or B is properly supported. Then we have AB ∈ Bµ+ν,h(Ω×R+; j1, j2) for h = max {e+ν, l},
and

σψ(AB) = σψ(A)σψ(B), σ∂(AB) = σ∂(A)σ∂(B). (2.5.14)

If A or B belongs to Bµ,eG then so is the composition AB.

2.6 Global calculus and ellipticity

In the global formulation of pseudo-differential BVPs we assumed that X is a smooth and not
necessarily compact manifold with boundary ∂X. Then, as is well-known, that ∂X has a collar
neighbourhood V in X which can be identified with V = ∂X×[0, 1) in the splitting of variables
(x′, xn) and with covariables (ξ′, ξn). We choose an open covering (U1, . . . , UN , UN+1, . . . , UL)
by coordinate neighbourhoods and charts

χj : Uj −→ Rn−1 × R+, j = 1, . . . , N,

χl : Ul −→ Rn, l = N + 1, . . . , L
(2.6.1)

and a subordinate partition of unity (ϕ1, . . . , ϕN , ϕN+1, . . . , ϕL) where for functions ϕj := ϕ′jω,
for a partition of unity (ϕ′1, . . . , ϕ

′
N) on ∂X subordinate to the open covering (U ′1, . . . , U

′
N) for

U ′j = Uj ∩ V and a cut-off function ω(xn) (i.e., ω ∈ C∞0 ([0, 1)), ω(xn) ≡ 1 close to xn = 0).
For l = N + 1, . . . , L we simply assume ϕl ∈ C∞0 (Ul) such that (ϕ1, · · · , ϕN , ϕN+1, . . . , ϕL)
are a subordinate partition of unity to (U1, . . . , UL). Note that every U ∈ (U1, . . . , UN) has
the form U ′ × [0, 1) charts for U ′ = U ∩ V and admits

(χ′, χ′′) : U ′ × [0, 1) −→ Rn−1 × R+ (2.6.2)
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where χ′ : U ′ −→ Rn−1 is a chart on the boundary and χ′′ : [0, 1) −→ R+ a diffeomorphism
which is the identity on [0, 1

2
).

Let M be a closed smooth manifold, for simplicity arc-wise connected. Then by Vect(M)
we denote the set of smooth complex vector bundles over M . Concerning generalities we
refer to Atiyah’s exposition [3] or any other text book such as Husemoller [22]. We then
have a canonical projection p : E → M of the total space of the bundle, again denoted
by E to the base manifold which projects fiberwise to a corresponding point of M , i.e.,
p−1(m) ∼= Ck, and k ∈ N is the fiber dimension. Clearly, compactness of M is not necessary
for the definition, and we also have the case of real vector bundles, i.e., with C replaced
by R. In particular, tangent and cotangent bundles TM and T ∗M of M are real vector
bundles, and the canonical projection π projects the real fibers to corresponding base points.
From now freely employ here such standard notation; if necessary we recall some aspects.
If we have to point out complex or real fibers we also write VectC(M) and VectR(M) for
the respective sets of complex or real vector bundles, otherwise we also drop C. Several
generalizations will occur in the present exposition. For instance, if X is a smooth manifold
with boundary from the above consideration we have the double 2X which is closed and then
Vect(X) means the set of all Ẽ|X with Ẽ ∈ Vect(2X) in the former sense, where |X means
the restriction of the corresponding bundle to X. In particular, we employ such notation for
different base manifolds, e,g., Vect(∂X). In the following definition for abbreviation we write
v := (E,F ; J−, J+) for any E,F ∈ Vect(X), J−, J+ ∈ Vect(∂X). First we briefly say what

are smoothing operators B−∞,0G

 X
× ;v
∂X

of type 0, namely, 2× 2-block matrix operators

G :
C∞(X,E) C∞(X,F )
⊕ −→ ⊕

C∞(∂X, J−) C∞(∂X, J+)
(2.6.3)

with smooth kernels. Let us illustrate the kernels first for the case of trivial bundles of fiber
dimension 1, where we also omit E, J−, etc. in the notation (2.6.3) and write in this case
v := v1, v1 = (1, 1; 1, 1).

As at the very beginning we fix Riemannian metrics gX and g∂X on X and ∂X, respectively,
where a collar neighbourhood V of ∂X in X can be identified with ∂X× [0, 1) with g∂X being
the restriction of gX to the boundary. In that case, as is common in pseudo-differential ope-
rators we can identify smoothing operators with kernels, but here we control the smoothness

up to ∂X. The space B−∞,0G

 X
× ;v1

∂X

 is defined as the set of all 2× 2-block matrices

G :=

(
G11 G12

G21 G22

)
(2.6.4)

where the interior part G11 is asked to have a kernel g11 ∈ C∞(X ×X) and with smoothness
in x, x′ up to ∂X, i.e.,

G11u(x) =

∫
X

g11(x, x′)u(x′) dx′, (2.6.5)
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u(x′) ∈ C∞(X) with dx′ being the measure associated with gX . Similarly, the potential part
G12 has a kernel g12 ∈ C∞(X × ∂X) and

G12v(x) =

∫
X

g12(x, x′′′)v(x′′′) dx′′′, (2.6.6)

where dx′′′ is associated with g∂X . Similarly, the smoothing trace part has a kernel g21 in
C∞(∂X × X) and the right lower corner G22 has a kernel in C∞(∂X × ∂X). In the case of

e ∈ N, e 6= 0, we define the space B−∞,eG

 X
× ;v1

∂X

 of elements of order −∞ and type e to

be the space of all operators

G :=
e∑
j=0

Gj diag(Dj, 0) (2.6.7)

for any Gj ∈ B−∞,0G

 X
× ;v1

∂X

 and Dj differential operators of order j supported close to

∂X and of the form Djv = ∂j

∂xjn
v, v ∈ C∞(∂X).

The case B−∞,eG

 X
× ;v
∂X

 of smoothing operators referring to arbitrary v = (E,F ; J−, J+)

is straightforward. Nevertheless, because of construction below we sketch a few points. We
fix Hermitean matrices in E,F over X and in J−, J+ over ∂X and express kernels in terms
of external products of the involved bundles. In the case of smoothing operators between
distributional sections or, in particular, smooth sections as in (2.6.7) of bundles we employ
an analoguous definition as (2.6.7).

Definition 2.6.1. The space B−∞,eG

 X
× ;v
∂X

 of global smoothing operators referring to

v = (E,F ; J−, J+) of type e ∈ N consists of all operators of the form (2.6.7) where Gj and Dj

have the following new interpretation,

g11 ∈ C∞(X ×X,F � E∗), g12 ∈ C∞(X × ∂X, F � J∗−)

g21 ∈ C∞(∂X ×X, J+ � E
∗), g22 ∈ C∞(∂X × ∂X, J+ � J

∗
−)
. (2.6.8)

The meaning of � is the respective exterior tensor product between liftings of bundles of
one factor of the Cartesian product to the Cartesian product itself, where upper star denotes
Hermitean adjoints which determines sesquilinear pairing

(E,E∗) = E × E∗ −→ C, (2.6.9)

etc. which extent to exterior tensor products between lifted bundles, such as

F � E∗ := π∗2F ⊗ π∗1E∗ (2.6.10)

and the integration in upper left corners has the interpretation

G11u =

∫
(g11(x, x′), u)(E∗,E) dx

′ ∈ C∞(X,F ) (2.6.11)
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for u ∈ C∞(X,E), with (2.6.10) being interpreted as the standard tensor product between
bundles over X ×X, obtained by lifting from

π1 : X ×X −→ X, π2 : X ×X −→ X

from X ×X to the first/second factor. In an analogous manner the other entries are defined.

Every A ∈ Bµ,e
 X
× ;v
∂X

 for v = (E,F ; J−, J+), E,F ∈ Vect(X), J−, J+ ∈ Vect(∂X), has

a properly supported representative, i.e., every A ∈ Bµ,e
 X
× ;v
∂X

 admits a representation

A = A0 + G

for a properly supportedA0 ∈ Bµ,e
 X
× ;v
∂X

 and G ∈ B−∞,e
 X
× ;v
∂X

, where by properly

supported we understand proper support of the kernel of the upper left corner
∈ Lµcl(intX;E,F ) and the operator-valued distributional kernel of Opx′(a) for a(x′, ξ′) ∈
Rµ,e(Ω× Rn−1;v) close to the boundary is asked to have a proper support.

Theorem 2.6.2. Every A ∈ Bµ,e
 X
× ;v
∂X

 for v = (E,F ; J−, J+) induces continuous

operators

A :
Hs

comp(intX,E) Hs−µ
loc (intX,F )

⊕ −→ ⊕
Hs

comp(∂X, J−) Hs−µ
loc (∂X, J+)

(2.6.12)

for every s > max {µ, e} − 1
2
. Moreover, if A is properly supported then in (2.6.12) we may

write “comp” or “loc” on both sides.

Operators A ∈ Bµ,e
 X
× ;v
∂X

 for v = (E,F ; J−, J+) have a pair of principal symbols

σ(A) = (σψ(A), σ∂(A))

where
σψ(A) : π∗XE −→ π∗XF (2.6.13)

for the canonical projection
πX : T ∗X \ 0 −→ X

only depends on the upper left corner σψ(A), and

σ∂(A) : π∗∂X

Hs(R+, E
′)

⊕
J−

 −→ π∗∂X

Hs−µ(R+, F
′)

⊕
J+

 (2.6.14)
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the boundary symbol, s > max {µ, e} − 1
2
, where E ′ := E|∂X , F ′ := F |∂X , and

π∂X : T ∗∂X \ 0 −→ ∂X,

is the canonical projection. Alternatively, we can identify σ∂(A) with a bundle morphism

σ∂(A) : π∗∂X

S(R+, E
′)

⊕
J−

 −→ π∗∂X

S(R+, F
′)

⊕
J+

 . (2.6.15)

Theorem 2.6.3. Let A ∈ Bµ,e
 X
× ;a
∂X

, for a := (E0, F ; J0, J2), B ∈ Bν,l
 X
× ; b
∂X

 for

b := (E,E0; J1, J0). If A or B be properly supported. Then we have

AB ∈ Bµ+ν,h

 X
× ;a ◦ b
∂X

 for h = max (ν + e, l)

a ◦ b = (E,F ; J1, J2)

and
σψ(AB) = σψ(A)σψ(B), σ∂(AB) = σ∂(A)σ∂(B). (2.6.16)

If A or B belongs to subclass with subscript “G” then also AB is Green in such a sense.

Definition 2.6.4. An operator A ∈ Bµ,e(X;v) is called elliptic if (2.6.13) and (2.6.14) are
isomorphism. Observe that (2.6.14) is isomorphism if and only if (2.6.15) is an isomorphism.

The isomorphism (2.6.13) is also called interior ellipticity of A and (2.6.14)
Shapiro-Lopatinskij condition of the contributions from the boundary with respect to the
interior, see also Agmon, Douglis, Nirenberg [1] for a differential operators A and Boutet de
Monvel [7] for pseudo-differential operators.

Remark 2.6.5. Interior ellipticity, together with standard homogeneity

σψ(A)(x, δξ) = δµσψ(A)(x, ξ) (2.6.17)

for δ > 0 remains preserved under reduction of orders, up to shifting the order, cf. Example
2.6.7 below. So we may conclude, by reducing with order −µ that the resulting order is zero,
cf. the first relation of (2.6.16) we may look at the case of order zero. Let A0 the respective
operator of order zero. Then the transmission property means

σψ(A0)(x, ξ) = σψ(A0)(x,−ξ)

for any ξ 6= 0. Together with (2.6.17) in this case that means, when σψ(A0)(x, 0) is also an
isomorphisms

E ′ −→ F ′. (2.6.18)

Thus in ellipticity of BVPs we may assume, without loss of generality, property (2.6.18).

This observation and more details may be found in [7] and also [48].
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Theorem 2.6.6. Let A ∈ Bµ,e
 X
× ;v
∂X

 be elliptic. Then A has a parametrix

P ∈ B−µ,l
 X
× ;v−1

∂X

 for v−1 := (F,E; J+, J−), l = max {e− µ, 0}, and

σψ(P) = σψ(A−1), σ∂(P) = σ∂(A−1). (2.6.19)

The information of Chapter 2 is necessary for treating BVPs on manifolds in this exposition
from Chapter 4 on. Although the material in Chapter 2 is entirely classical it is, as we
shall see, a challenge to formulate the right approach on singular manifolds, from the conical
case on. In addition it is important to recall that classical examples, such as Dirichlet or
Neumann problems for Laplace operators and other BVPs with Shapiro-Lopatinskij-ellipticity
are covered by the calculus. Most of those examples show that the ellipticity of homogeneous
boundary symbols require the indicated extra entries, i.e., at least J− or J+ are of fiber
dimension 6= 0, one of them may vanish. However, for elliptic operators on X it happens
that both dimensions vanish, i.e., those Shapiro-Lopatinskij-elliptic ellements only consist of
left upper corners. Since we need this case below we briefly formulate such order reducing
examples. For references below, and in order to complete the construction in Remark 2.6.5
we explicitely give the corresponding.

Example 2.6.7. For every µ ∈ Z and any E,F ∈ Vect(X), there exists Shapiro-Lopatinskij-
elliptic elements of upper left corner form

Rµ
E ∈ B

µ,0

 X
× ;v
∂X


for v = (E,F ; 0, 0) such that

Rµ
E : Hs(X,E) −→ Hs−µ(X,E) (2.6.20)

induces isomorphisms for all s > −1/2.

This example goes back to Grubb [19] also studied in detail in Harutyunyan [20, Section 4.1].
Operators with the required properties are based on local symbols which are close to ∂X of
the form

rµ−(ξ′, ξn) =

(
ϕ

(
ξn

C〈ξ′〉

)
〈ξ′〉 − iξn

)µ
(2.6.21)

for the splitting ξ = (ξ′, ξn) of the covariable ξ close to the boundary, C > 0 is a constant
sufficiantly large, while far from ∂X the respective operator is glued to the one with symbol
(2.6.21) with an elliptic operator with symbol (1+ |ξ|2)

µ
2 . Clearly, there are involved localizing

factors from a partition of unity on X, and this creates lower order terms. This concerns trivial
bundles E of fiber dimension 1. The general case is obtained in a similar manner as Boutet de
Monvel in [7] constructed his reductions of orders, but with symbols which are not precisely
as (2.6.21). In a final step of the construction we replace ξ′ by (ξ′, ζ) for an extra covariable
ζ ∈ Rd. Then we obtain parameter-dependent ellipticity, in Bµ,e, and then, by taking |ζ|
sufficiently large and fixed, we obtain indeed the claimed order-reducing property (2.6.20). In
[62] it is proved in detail that symbols like (2.6.21) are also classical.
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2.7 Ellipticity and Fredholm property

We now discuss the aspect of whether or not a σψ-elliptic operator A ∈ Bµ,e(X;E,F ; 0, 0)
admits an element A ∈ Bµ,e(X;v) for v = (E,F ; J1, J2) for suitable J1, J2 ∈ Vect (∂X) such
that A is elliptic in the sense of Definition 2.6.4.

Remark 2.7.1. If A ∈ Bµ,e(X;E,F ; 0, 0) is σψ-elliptic, then

σ∂(A) : π∗∂XH
s(R+, E

′) −→ π∗∂XH
s−µ(R+, E

′), (2.7.1)

is a family of Fredholm operators for s > e− µ− 1
2
, parametrized by (x′, ξ′) ∈ T ∗∂X \ 0, i.e.,

σ∂(A)(x′, ξ′) : Hs(R+, E
′
x′) −→ Hs−µ(R+, F

′
x′) (2.7.2)

is Fredholm for every x′ ∈ ∂X and ξ′ ∈ T ∗x′∂X \ 0. We have

σ∂(A)(x′, δξ′) = δµκδσ∂(A)(x′, ξ′)κ−1
δ (2.7.3)

for all δ ∈ R+.

The situation of elliptic boundary symbols in block matrix form is close to a possible definition
of the K = functor for a compact topological space X. The situation is as follows. Given such
an X and a family of Fredholm operators

a(x) : H −→ H̃ (2.7.4)

between Hilbert spaces H, H̃ continuously depending on x ∈ X. In the case of Remark 2.7.1 we
can assume X = S∗∂X which is the unit cosphere bundle induced by T ∗∂X \0, equipped with
a Riemannian metric. In the above-mentioned Dirichlet or Neumann problems the boundary
symbols are surjective. This is a relevant case.

Lemma 2.7.2. A ssume that the Fredholm operators (2.7.4) are surjective for all x ∈ X.
Then

{ker a(x) : x ∈ X}

is a (locally trivial continuous) complex vector bundle.

Proof. see the book [20].

Lemma 2.7.3. For every family (2.7.4) of Fredholm operators there is an N ∈ N and a map

(a(x) k) :

H

⊕ −→ H̃
CN

(2.7.5)

which is surjective for every x ∈ X.

Proof. Let x0 ∈ X. Then there is an N(x0) ∈ N and a

k(x0) : CN(x0) −→ H̃
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such that

(a(x) k(x0)) :

H

⊕ −→ H̃
CN(x0)

(2.7.6)

is surjective for x = x0. Then there is an open neighbourhood U(x0) of x0 such that (2.7.6)
is surjective for all x ∈ U(x0). This construction can be carried on for all x0 ∈ X. This gives
us an open covering of X by corresponding neighbourhoods U(x0). Thus there is a finite
subcovering (U(x0), U(x1), . . . , U(xm)) of X, since X is compact. Then the block matrix

(a(x) k(x0) k(x1) · · · k(xm)) :

H
⊕

CN(x0)

⊕ −→ H̃
CN(x1)

⊕
...
⊕

CN(xm)

(2.7.7)

is surjective for all x ∈ X. Thus it suffices to set

k := ⊕mj=0k(xj).

Combining Lemma 2.7.2 and 2.7.3 gives us a family of isomorphisms

a :=

(
a(x) k(x)
t(x) q(x)

)
:
H H̃
⊕ −→ ⊕
G1,x G2,x

(2.7.8)

for every Fredholm family (2.7.4) and some G1, G2 ∈ Vect(X). We call

indXa := [G2]− [G1] ∈ K(X). (2.7.9)

For X = S∗∂X as noted before we have the canonical projection

π∂X : S∗∂X −→ ∂X.

Then the pull back of J ∈ Vect(∂X) to π∗∂XJ ∈ Vect(S∗∂X) extends to a group homomor-
phism

π∗∂X : K(∂X) −→ K(S∗∂X).

The condition
indS∗∂Xσ∂(A) ∈ π∗∂XK(∂X) (2.7.10)

is called Atiyah-Bott obstruction.

Theorem 2.7.4. The σψ−elliptic operator A ∈ Bµ,e(X;E,F ; 0, 0) admits an (σψ, σ∂)−elliptic
operator A ∈ Bµ,e(X;v) for suitable v = (E,F ; J1, J2) if and only if condition (2.7.10) is
satisfied.



Chapter 3

Operators on Manifolds with Edge

3.1 Manifolds with higher singularities

Manifolds with edge are defined as specific stratified spaces of singularity order 1. That means
the respective topological space M is written as a disjoint union of subspaces

M = s0(M)
⋃

s1(M)

where sj(M) are smooth manifolds of dimension

dim s1(M) < dim s0(M).

Moreover, s1(M) has a neighbourhood V in M which has the structure of a locally trivial
XM-bundle over s1(M) for some closed manifold X of dimension n. Here

XM = (R+ ×X)/({0} ×X), (3.1.1)

is a regular cone with base X, and {0} × X in the quotient space (3.1.1) is collapsed to a
point, the vertex of the cone. An example is the wedge

M := XM × Ω

for an open set Ω ⊆ Rq. In this case we have

s0(M) = M \ s1(M), for s1(M) = Ω. (3.1.2)

For the stratification of M we also write

s(M) = (s0(M), s1(M)). (3.1.3)

Operators on a general manifold M with edge Y := s1(M) will be locally near Y expressed
as operators on open stretched wedges

X∧ × Ω, X∧ := R+ ×X,

coming from (3.1.2) with corresponding local splitting of variables

(r, x, y) ∈ X∧ × Ω.

94
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By Diffν(·) we denote the Fréchet space of all differential operators of order ν ∈ N with smooth
coefficients on the respective open smooth manifold, indicated by dot. First a differential
operator A ∈ Diffµ(s0(M)), µ ∈ N, is called edge-degenerate if close to Y in the above-
mentioned splitting of variables (r, x, y) ∈ R+ ×X × Ω it has the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)

(
− r ∂

∂r

)j(
rDy

)α
(3.1.4)

for coefficients
ajα ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)).

Examples of such operators appear when we introduce polar coordinates with respect to
x̃ ∈ Rn+1

x̃ \ {0} into a differential operator

Ã =
∑
|γ|≤µ

cγ(x̃, y)Dγ
x̃,y, (3.1.5)

cγ(x̃, y) ∈ C∞(Rn+1 × Ω), in (x̃, y) ∈ Rn+1
x̃ × Ω. Then the respective bijection

(Rn+1
x̃ \ {0})× Ω −→ R+ × Sn × Ω (3.1.6)

turns Ã|(Rn+1\{0})×Ω to an edge-degenerate operator (4.4.5), where X = Sn. Other important
examples of operator (3.1.4) of order µ = 2 Laplace-Beltrami operators to Riemannian metrics
of the form

dr2 + r2gX + dy2 (3.1.7)

where gX is a Riemannian metric on X. Parallel to the stratification (3.1.3) for operators
(3.1.4) we have a principal symbolic hierarchy

σ(A) = (σ0(A), σ1(A)), (3.1.8)

where σ0(A) is the standard homogeneous principal symbol of A over s0(M) living on
T ∗s0(M) \ 0. Moreover,

σ1(A)(y, η) := r−µ
∑

j+|α|≤M

ajα(0, y)

(
− r ∂

∂r

)j(
rη
)α

(3.1.9)

is called the homogeneous edge symbol, (y, η) ∈ T ∗Y \ 0 regarded as a family of

σ1(A)(y, η) := Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (3.1.10)

between weighted Kegel-spaces, to be defined below. For the moment we can also look at
operators

σ1(A)(y, η) : C∞(X∧) −→ C∞(X∧), (3.1.11)

(or also between spaces C∞0 (X∧)). Homogeneity in operator- valued symbols means

σ1(A)(y, δη) = δµκδσ1(A)(y, η)κ−1
δ , (3.1.12)

where
(κδu)(r, x) := δ(n+1)/2u(δr, x), (3.1.13)
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δ ∈ R+, n = dimX.

Note that conical singularities also may be subsumed under edge singularities when the edge
is of dimension 0. Instead of (3.1.4) we then talk about operators of Fuchs type. Those are of
the form

A = r−µ
µ∑
j=0

aj(r)

(
− r ∂

∂r

)j
(3.1.14)

for coefficients aj(r) ∈ C∞(R+,Diffµ−j(X)), for a closed manifold X as before. The stratifi-
cation of a manifold B with conical singularities

s(B) = (s0(B), s1(B))

in this case means, that s1(B) consists of finitely many points and s0(B) = B \ s1(B) is an
open manifold. The analogue of (3.1.8), i.e., the symbols to be controlled, are

σ(A) = (σ0(A), σc(A))

with σ0(A) being the homogeneous principal symbol of A over s0(M), while σc(A) will be
called here the principal conormal symbol,

σc(A)(v) =

µ∑
j=0

aj(0)vj : Hs(X) −→ Hs−µ(X) (3.1.15)

which is a family of continuous operators between standard Sobolev spaces over X, depending
on the complex Mellin covariable v, often specified for

v ∈ Γn+1
2
−γ =

{
v ∈ C : Re v =

n+ 1

2
− γ
}

for a weight γ ∈ R and n = dimX. Note that in contrast to (3.1.9) we drop here the weight
factor r−µ in front of the expression which is in this connection more convenient. The situation
becomes more clear if we include spaces with higher singularities k ∈ N = {0, 1, 2, . . . } into
the consideration. It is obvious that simple constructions which generate cones or wedges, or
other set-theoretical manipulations such as Cartesian products give rise to higher singularities.

Examples are, for instance, spaces like

XM ×XM × . . . XM (k factors)

for a closed manifold X. We can also look at the case when the spaces X depend on the
respective factor. The following definition singles out a category of so-called stratified spaces
of singularity order k where pseudo-differential operator theories similar to those for conical
or edge singularities are motivated by numerous applications to physics and engineering. We
denote the category of those topological spaces by Mk and the definition will be iterative,
starting from spaces in M0 (k = 0 means smoothness), and repeatedly forming cones and
wedges, followed by some globalization and then passing again to higher cones and wedges,
using the spaces defined in the step before. In this scheme the above-mentioned spaces with
conical singularities and edges belong to M1. The formal definition of Mk for k ≥ 1 is as
follows.
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The category Mk of topological spaces M (with some basic properties concerning paracom-
pactness, etc.) is characterized by the following properties. There is singled out a subspace
sk(M) ∈ M0 such that M \ sk(M) ∈ Mk−1, and sk(M) has a neighbourhood V in M with
the structure of a locally trivial BMk−1-bundle over V for a base Bk−1 ∈Mk−1. The transition
maps of fibers BMk−1 inductively use isomorphisms in Mk−1. For BMk−1 they are defined via
isomorphisms

R+ ×Bk−1 −→ R+ ×Bk−1 (3.1.16)

in Mk−1 which are well-defined on the level of singularity k − 1, such that (3.1.16) is a
restriction of an isomorphism

R×Bk−1 −→ R×Bk−1

to R+×Bk−1. After having transition maps between the fibers we can easily define transitions
of local wedges, say

R+ ×Bk−1 × Rqk −→ R+ ×Bk−1 × Rqk (3.1.17)

in Mk−1. In a next step we can repeat the requirements, i.e., for M \ sk(M) there exists an
sk−1(M \ sk(M)) := sk−1(M) ∈M0 such that

(M \ sk(M)) \ sk−1(M) ∈Mk−2. (3.1.18)

Moreover, (3.1.18) has close to sk−1(M) a BMk−2-bundle structure for Bk−2 ∈Mk−2.

After finitely many steps we arrive at a sequence of strata in M0

s(M) := (s0(M), s1(M), . . . , sk(M)) (3.1.19)

of dimensions
dim s0(M) > dim s1(M) > · · · > dim sk(M). (3.1.20)

Only dim sk(M) may be zero; then it represents a corner singularity, otherwise sk(M) is an
edge singularity of singularity order k. From the construction it follows that M =

⋃k
j=0 sj(M)

is a disjoint union.

The spaces M ∈ Mk, k ≥ 1, admit a natural definition of spaces Diffµdeg(M) of degenerate
differential operators, similarly as those described in formulas (3.1.4) or (3.1.14). In the case
of singularity k where M locally close to sk(M) is modeled on BM×Rq for q := dim sk(M) and
B ∈Mk−1 we say that an A ∈ Diffµ(s0(M)) belongs to Diffµdeg(M) if in the splitting (r, x, y)
of variables in R+ × Bk × Rq the operator A has the form (3.1.4) where now the coefficients
ajk belong to

C∞(R+ × Rq,Diff
µ−(j+|α|)
deg (B)) (3.1.21)

where Diff
µ−(j+|α|)
deg (B) is inductively defined in the iteration step before, including its natural

Fréchet topology which makes it possible to talk about smoothness in (3.1.21) with respect
to (r, y) up to r = 0. Then in terms of an expression similarly as in (3.1.9) we get the “most
singular” component σk(A)(y, η), η 6= 0 which is the kth component of the principal symbolic
hierarchy

σ(A) := (σ0(A), σ1(A), . . . , σk(A)). (3.1.22)

In the next step we interpret A as an element of Diffµdeg(M \ sk(M)) where M \ sk(M) has the
main stratum sk−1(M) and apply the same process. This gives us σk−1(A) in the sequence
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(3.1.22). After finitely many steps we arrive at σ0(A) which is the standard scalar homogeneous
principal symbol of A ∈ Diffµ(s0(M)). In this way the components of (3.1.22) are associated
with the strata in (3.1.19) in a natural way. This scheme of relations is reproduced in an
analogous manner in the corresponding pseudo-differential concept.

In order to illustrate the situation we can look at the unit cube M in R3 which belong to M3.
Then s3(M) consists of the 8 corner points, s2(M) is the disjoint union of 12 one-dimentsional
open edges, s1(M) is the disjoint union of 6 two-dimensional faces, and s0(M) is the open
interior of the cube.

In the consideration of operators on singular spaces it is often useful to look at two copies of
M \ sk(M), locally close to sk(M) identified with R−×Bk−1×Rqk and R+×Bk−1×Rqk and
then to glue these spaces together along the intersection

R− ×Bk−1 × Rqk
⋂

R+ ×Bk−1 × Rqk = {0} ×Bk−1 × Rqk

which yields R×Bk−1×Rqk in Mk−1. This can be done in an invariant manner, and globally
we obtain a space 2M ∈Mk−1 for the stretched space M of M which is locally identified with
R+ ×Bk−1 × Rqk .

The above-mentioned categories Mk of spaces with singularities of order k can be studied in
more detail under different aspects, e.g., analogous of relations from differential geometry. This
seems to be not completely done in topological investigations on stratified spaces. Moreover,
the description of degenerate differential operators on M ∈Mk opens the program of studying
ellipticity in terms of suitable Fredholm or bijectivity conditions of the symbols containing
(or not containing) extra trace and potential conditions and Green operators referring to the
above lower-dimensional strata contained in (3.1.19). As soon as we have established such
a program of ellipticity it is adequate to ask parametrices of elliptic differential operators,
also having corresponding principal symbolic hierarchies. This program should be pursued
along a functional-analytic description of adequate distribution spaces on M as well on its
lower-dimensional strata, and we should observe Fredholm property, index, and other inter-
esting features which extend corresponding observations on ellipticity on smooth manifolds. A
particularly interesting aspect in this framework is elliptic regularity of solutions in weighted
distribution spaces with asymptotics. For the case of boundary value problems for differential
operators there is a comprehensive monograph of Nazarov and Plamenevskij [45], devoted
to the problem of computing asymptotics of solutions. Remember that parametrices should
belong to operator algebras with corresponding symbolic structures. A particularly important
feature of such theories, parallel to the geometric process of forming cones and wedges, is the
construction of higher (here called) Kegel spaces and also of subspaces with different kind of
asymptotics (discrete and continuous). This is well-motivated for the case of a base manifold
with or without boundary which, also concerns the material in Chapter 3. These working
directions form a huge bunch of investigations, which are also to a large extent topic of the
present thesis. Chapter 3 is devoted to basic knowledge on pseudo-differential theories for M1,
i.e., conical or edge singularities.
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3.2 Edge-degenerate pseudo-differential operators

The calculus of operators on a manifold M with edge Y where dimY = q is aimed at con-
structing an algebra of edge-degenerate pseudo-differential operators containing the operators
(3.1.4) together with the parametrices of elliptic elements. Ellipticity will be a property of
both components of the principal symbolic hierarchy. Similarly as in boundary value prob-
lems we also need pseudo-differential trace and potential operators. Edge-degenerate pseudo-
differential operators in X∧ × Ω are defined in terms of operator-valued symbols

p(r, y, ρ, η) := p̃(r, y, rρ, rη) (3.2.1)

for families
p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X;R1+q

ρ̃,η̃ )). (3.2.2)

X is a closed manifold of dimension n. In this formulation we employ the fact that Lµcl(X;R1+q
ρ̃,η̃ )

is a Fréchet space in a natural way. Then the associated pseudo-differential operator, first
based on the Fourier transform, takes the form

Au = r−µ
∫∫

ei(r−r
′)ρ+i(y−y′)ηp(r, y, ρ, η)u(r′, y′) dr′dy′d̄ρ d̄η

= r−µOpy(Opr(p)(y, η))u.

(3.2.3)

Here

Opr(p)(y, η)v(r) =

∫∫
ei(r−r

′)ρp(r, y, ρ, η)v(r′) dr′d̄ρ. (3.2.4)

The operator functions (3.2.2) for edge-degenerate differential operators (3.1.4) have the form

p̃(r, y, ρ̃, η̃) =
∑

j+|α|≤µ

ajα(r, y)(−iρ̃)j η̃α.

3.3 Mellin transform and weighted spaces

If we consider operators of the form Opr(p)(y, η) or Opy(Opr(p)) with p characterized by
(3.2.1), (3.2.2) we have continuity like

Opr(p)(y, η) : Hs
comp(R+ ×X) −→ Hs−µ

loc (R+ ×X) (3.3.1)

for every fixed (y, η) and

Opy(Opr(p)(y, η)) : Hs
comp(R+ ×X × Ω) −→ Hs−µ

loc (R+ ×X × Ω), (3.3.2)

cf. Theorem 1.1.9. However, in order to control continuity up to r = 0 we pass to representa-
tions of our operators based on the Mellin transform in r. Let us first formulate some tools
around the Mellin transform on the half-axis R+,

Mu(v) =

∫ ∞
0

rvu(r)
dr

r
. (3.3.3)

For u ∈ C∞0 (R+) we have Mu(v) ∈ A(C); here A(C) means the space of entire functions in C
in the Fréchet topology of uniform convergence on compact subsets. More precisely, setting

Γβ := {v ∈ C : Re v = β} (3.3.4)
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for any β ∈ R, we have
Mu|Γβ ∈ S(Γβ) (3.3.5)

for every β, uniformly on compact intervals. That means, that Mu(β + iρ) for v = β + iρ is
a bounded family in S(Rρ) for c ≤ β ≤ c′, c ≤ c′. Observe that

(Mrβf)(v) = Mf(v + β) (3.3.6)

for any f ∈ C∞0 (R+), β ∈ R. We often call

Mγ : u −→Mu|Γ 1
2−γ

the weighted Mellin transform for the weight γ. It can be proved that

Mγ : C∞0 (R+) −→ S(Γ 1
2
−γ)

extends by continuity to an isomorphism

Mγ : rγL2(R+) −→ L2(Γ 1
2
−γ),

with the inverse

M−1
γ g(r) =

∫
Γ 1

2−γ

r−vg(v) d̄v,

d̄v := (2πi)−1dv, g(v) ∈ L2(Γ 1
2
−γ) .

Let us now turn to pseudo-differential operators based on the Mellin transform. In order to
give a motivation we first observe that

−r ∂
∂r

= M−1vM

when M is interpreted as M0, or, more generally, (−r ∂
∂r

)j = M−1vjM , for every j ∈ N, cf.,
analogously, relation (1.1.1). Considering Mellin amplitude functions f(r, r′, v) ∈ C∞(R+ ×
R+, S

µ
(cl)(Γ 1

2
−γ)), cf. , analogously, relation (1.1.10), pseudo-differential operators with respect

to the weighted Mellin transform are defined as

OpγM(f)u(r) =

∫∫ (
r

r′

)−( 1
2
−γ+iρ)

f(r, r′,
1

2
− γ + iρ)u(r′)

dr′

r′
d̄ρ, (3.3.7)

d̄ρ = (2πi)−1dρ. From (
r

r′

)−( 1
2
−γ+iρ)

= e−iρ(log r−log r′)

(
r

r′

)− 1
2

+γ

and comparing the substitution in Theorem 1.1.11 of coordinates we see that Mellin pseudo-
differential operators are standard pseudo-differential operators, however, with another phase
function, here −ρ(log r − log r′), i.e., OpγM(f) ∈ Lµ(cl)(R+). This is associated with the diffeo-
morphism

χ−1 : R+ −→ R, χ−1 : r −→ − log r.
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Let us now define Sobolev spaces based on the Mellin transform on R+ × X. First consider
Hs,γ(R+ × Rn) for s, γ ∈ R, defined as the completion of C∞0 (R+ × Rn) with respect to the
norm

‖u‖Hs,γ(R+×Rn) :=

{∫
Rn

∫
Γn+1

2 −γ

〈v, ξ〉2s|(Mr→vFx→ξu)(v, ξ)|2 d̄v d̄ξ
} 1

2

. (3.3.8)

Moreover, for a smooth closed manifold X we define Hs,γ(X∧) for X∧ = R+ ×X in terms of
localizations and charts χj : Uj −→ Rn on X, where (U1, . . . , UN) is an open covering of X
by coordinate neighbourhoods. Let (ϕ1, . . . , ϕN) is a subordinate partition of unity we form

‖u‖Hs,γ(X∧) :=

{ N∑
j=1

‖ϕju ◦ (idR+ × χ−1
j )‖2

Hs,γ(R+×Rn)

}1/2

. (3.3.9)

The spaces Hs,γ(X∧) have natural properties such as

rβHs,γ(X∧) = Hs,γ+β(X∧) (3.3.10)

for arbitrary γ, β ∈ R.

For the edge calculus we need a modification of Hs,γ(X∧) for large r. To this end we first
formulate spaces Hs

cone(X
∧) for s ∈ R, defined as the set of all

u ∈ Hs
loc(R×X)|R+×X

such that for any cut-off function ω on the r half-axis and any ϕ ∈ C∞0 (U) for a coordinate
neighbourhood U on X and a diffeomorphism

κ : R+ × U −→ ΓV ⊂ R1+n (3.3.11)

induced by a diffeomorphism χ : U −→ V for a coordinate neighbourhood V on Sn (the unit
sphere in R1+n) and

κ(r, x) := rχ(x)

we have
κ∗(1− ω)ϕu ∈ Hs(R1+n) (3.3.12)

with κ∗ = (κ−1)∗ being the push forward under κ. Then Hs
cone(X

∧) is a Hilbert space as well,
and we then define the weighted Kegel space Ks,γ(X∧) as

Ks,γ(X∧) := {ωu0 + (1− ω)u∞ : u0 ∈ Hs,γ(X∧), u∞ ∈ Hs
cone(X

∧)} (3.3.13)

for any cut-off function ω. The space (3.3.13) is well-defined, i.e., independent of the choice
of ω. For purposes below we also form spaces with weight e ∈ R at ∞, namely,

Ks,γ;e(X∧) := [r]−eKs,γ(X∧).

The spaces Hs,γ(X∧) and Hs
cone(X

∧) are Hilbert spaces, and also (3.3.13) can be equipped
with the Hilbert space structure of a non-direct sum cf. Subsection 1.7.
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Applying this to E0 = Hs,γ(X∧), E1 = Hs
cone(X

∧), we have the Hilbert spaces

[ω]Hs,γ(X∧), [1− ω]Hs
cone(X

∧), (3.3.14)

and
Ks,γ(X∧) = [ω]Hs,γ(X∧) + [1− ω]Hs

cone(X
∧) (3.3.15)

as the non-direct sum is a Hilbert space. Setting

(κδu)(r, x) := δ(n+1)/2u(δr, x) (3.3.16)

for δ ∈ R+, u ∈ Ks,γ(X∧), n = dimX, the space Ks,γ(X∧) turns to a Hilbert space with group
action, cf. the terminology at the beginning of Section 1.4.

3.4 Kernel cut-off and Mellin quantization

The operator functions (3.2.1), (3.2.2) give rise to symbols in the sense of Definition 1.4.4. In
this context we apply a Mellin quantization, i.e., we turn the action (3.2.4) which employs
the Fourier transform in r to an action based on the Mellin transform. To this end we first
introduce suitable spaces of operator-valued Mellin symbols.

Definition 3.4.1. For µ ∈ R by
Mµ
O(X;Rl

λ) (3.4.1)

we denote the set of all
h(v, λ) ∈ A(C, Lµcl(X;Rl

λ)) (3.4.2)

such that
h(β + iρ, λ) ∈ Lµcl(X;R1+l

ρ,λ ) (3.4.3)

for every β ∈ R, uniformly in compact β-intervals.

Note that the class (3.4.1) admits a natural notion of ellipticity which means that (3.4.3) for
some fixed β ∈ R is parameter-dependent elliptic of order µ, i.e., its parameter-dependent
homogeneous principal symbol never vanishes for (ρ, λ) 6= 0. This condition is independent of
β.

In (3.4.2) we employ the fact that Lµcl(X;Rl
λ) is a Fréchet space. Concerning holomorphic

functions with values in a Fréchet space, see also the monograph of Jarchow [26].

We write Mµ
O(X) when l = 0. In addition let

M−∞
O (X;Rl) :=

⋂
µ∈R

Mµ
O(X;Rl). (3.4.4)

In the special case dimX = 0 we simply write Mµ
O(Rl) for (3.4.1) and Mm

O . For l > 0 we talk
about classical symbols with the covariable λ ∈ Rl rather than parameter-dependent operator
functions. Let us give an impression on how reach the spaces of Mellin symbols of (3.4.1).
Here we apply a process, called kernel cut-off, which produces symbols which are holomorphic
in covariables.
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In order to give a transparent description we first consider symbols with constant coefficients

a(ξ) ∈ Sµ(cl)(R
n
ξ ). (3.4.5)

Because of Sµ(cl)(R
n
ξ ) ⊂ S ′(Rn

ξ ) we can restrict the Fourier transform

F : S ′(Rn) −→ S ′(Rn)

to Sµ(cl)(R
n). Thus, setting

k(a)(ζ) :=

∫
eiζξa(ξ) d̄ξ (3.4.6)

for (3.4.5) we obtain an element of S ′(Rn
ζ ).

Lemma 3.4.2. For (3.4.5) we have

sing supp k(a)(ζ) ⊆ {0} (3.4.7)

and for any excision function χ(ζ) in Rn (i.e., χ ∈ C∞(Rn), χ(ζ) = 0, for|ζ| < ε0, χ(ζ) = 1 for
|ζ| > ε1, for some 0 < ε0 < ε1) we have

χ(ζ)k(a)(ζ) ∈ S(Rn
ζ ). (3.4.8)

Proof. Applying Dα
ξ e

iζξ = (iζ)αeiζξ for α ∈ Nn in (3.4.6) we obtain for ζ 6= 0

k(a)(ζ) = −|ζ|−2N

∫
∆N
ξ e

iζξa(ξ) d̄ξ (3.4.9)

with ∆ξ being the Laplace operator in the variable ξ. Integration by parts on the right-hand
side of (3.4.9) yields

k(a)(ζ) = −|ζ|−2N

∫
eiζξ∆N

ξ a(ξ) d̄ξ. (3.4.10)

By taking N ∈ N large enough we see that k(a)(ζ) ∈ C∞(Rn \ {0}). Applying now Dβ
ζ eiζξ =

ξβeiζξ for any β ∈ Nn we obtain

(1−∆ζ)
Meiζξ = (1 + |ξ|2)Meiζξ (3.4.11)

for any M ∈ N. Thus

(1−∆ζ)
Mk(a)(ζ) =

∫
eiζξ(1 + |ξ|2)Ma(ξ) d̄ξ

= −|ζ|−2N

∫
eiζξ∆N

ξ (1 + |ξ|2)Ma(ξ) d̄ξ.

(3.4.12)

Here we choose again N so large that the integral on the right converges. At the same time
we see that

sup
|ζ|≥c
|(1−∆ζ)

M |ζ|2Nk(a)(ζ)| <∞ (3.4.13)

for any c > 0.
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By using Lemma 3.4.2 we can write

k(a)(ζ) = χ(ζ)k(a)(ζ) + ψ(ζ)k(a)(ζ) (3.4.14)

for ψ ∈ C∞0 (Rn) and χ := 1− ψ which is a cut-off function, and then

a(ξ) = Fζ→ξ
(
χ(ζ)k(a)(ζ)

)
+ Fζ→ξ

(
ψ(ζ)k(a)(ζ)

)
= c(ξ) + h(ξ)

(3.4.15)

where
c(ξ) ∈ S−∞(Rn) = S(Rn), (3.4.16)

while h(ξ) ∈ Sµ(cl)(R
n
ξ ). Since supp

(
ψ(ζ)k(a)(ζ)

)
is compact we have h(ξ) ∈ A(Cn

ξ ). Since

ψ(ζ) := 1− χ(ζ)

which is a cut-off function, i.e., ψ ∈ C∞0 (Rn), ψ(ζ) ≡ 1 in a neighbourhood of ζ = 0. we call

VF (ψ)a(ξ) := Fζ→ξ(ψk(a))(ξ) (3.4.17)

a kernel cut-off operator and VF (χ) a kernel excision operator.

Proposition 3.4.3. The operator (3.4.17) induces a continuous map

VF (ψ) : Sµ(cl)(R
n) −→ Sµ(cl)(R

n), (3.4.18)

where
VF (ψ)a(ξ) = a(ξ) modS−∞(Rn). (3.4.19)

Proof. We have
k(a)(ζ) = ψ(ζ)k(a)(ζ) + χ(ζ)k(a)(ζ). (3.4.20)

Then (3.4.19) follows from (3.4.8). Because of

a(ξ) = VF (ψ)a(ξ) + VF (χ)a(ξ)

and the continuity of VF (χ) : Sµ(cl)(R
n) −→ S−∞(Rn) which is a consequence of Lemma 3.4.2

we obtain the continuity of (3.4.18).

We have ψ(ζ)k(a)(ζ) ∈ S ′(Rn) and

supp (ψk(a)) compact. (3.4.21)

Thus VF (ψ)a(ξ) admits the interpretation of an operator VF (ψ) : Sµ(cl)(R
n) −→ A(Cn

θ ) for

θ := ξ + iδ ∈ Cn, such that VF (ψ)a|Im θ=0 = VF (ψ)a(ξ). We shall see below that

VF (ψ)a(ξ + iδ) ∈ Sµ(cl)(R
n
ξ ) and VF (ψ)a(ξ + iδ) = a(ξ)modSµ−1

(cl) (Rn) (3.4.22)

for every fixed δ ∈ Rn, uniformly in compact sets in Rn
δ . It is desirable to extend the definition

of VF (·) to arbitrary ϕ ∈ C∞0 (Rn) and even to ϕ in the space

C∞(Rn)b := {ϕ ∈ C∞(Rn) : sup
ζ∈Rn
|Dα

ζ ϕ(ζ)| <∞ for all α ∈ Nn}.
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Later on we also employ spaces C∞(R, E)b for a Fréchet space E, defined in a similar manner.
Clearly, for ϕ ∈ C∞(Rn)b in general we lose the existence of holomorphic extensions to the
complex space Cn.

Observe that VF (ϕ)a(ξ) = Fζ→ξ(ϕ)k(a))(ξ), can be written as an oscillatory integral

VF (ϕ)a(ξ) =

∫
e−iζξϕ(ζ)

{∫
eiζξ

′
a(ξ′) d̄ξ′

}
d̄ζ =

∫∫
e−iζξ̃ϕ(ζ)a(ξ − ξ̃) dζd̄ξ̃. (3.4.23)

Concerning oscillatory integral techniques, see, e.g., Shubinś book [69], or, with other methods,
Kumano-go [34]. In order to unify the terminology we call VF (ϕ) a kernel cut-off operators
also when ϕ is more general than a cut-off function. This concerns again an extension of
VF (ϕ)a(ξ) for ϕ ∈ C∞0 (Rn) into the complex space θ ∈ Cn, θ := ξ + iρ which defines an
operator

VF (ϕ) : Sµ(cl)(R
n
ξ ) −→ A(Cn

θ ) (3.4.24)

such that VF (ϕ)a|Im θ=0 = VF (ϕ)a(ξ).

Note that the kernel cut-off process also makes sense for parameter-dependent symbols

a(ξ, λ) ∈ Sµcl(R
n+l
ξ,λ ),

l ∈ N. For k(a)(ζ, λ) :=
∫

eiζξa(ξ, λ) d̄ξ, then we have

k(a)(ζ, λ) ∈ S ′(Rn+l
ξ,λ ), and χ(ζ)k(a)(ζ, λ) ∈ S(Rn+l

ξ,λ ), (3.4.25)

i.e., for an excision function χ(ζ)

VF (χ)a(ξ, λ) = Fζ→ξ(χ(ζ)k(a))(ξ, λ) ∈ S(Rn+l
ξ,λ ) = S−∞(Rn+l

ξ,λ ). (3.4.26)

Then the kernel cut-off operator in the parameter-dependent is

VF (ψ)a(ξ, λ) = a(ξ, λ) modS−∞(Rn+l). (3.4.27)

For ϕ ∈ C∞(Rn)b we form

VF (ϕ)a(ξ, λ) =

∫∫
e−iζξ̃ϕ(ζ)a(ξ − ξ̃, λ) dθd̄ξ̃ (3.4.28)

when ϕ ∈ C∞0 (Rn) it follows that VF (ϕ)a(ξ, λ) extends to a function VF (ϕ)a(θ, λ) which is
holomorphic in θ ∈ Cn, as we shall show

VF (ϕ)a(ξ + iδ, λ) = VF (ϕ)a(ξ, λ) modSµ−1
(cl) (Rn+l),

for every δ ∈ Rn. Our main application concerns the case n = 1. This will be assumed from
now on.

Theorem 3.4.4. The kernel cut-off operator VF : (ϕ, a) −→ VF (ϕ)a defines a bilinear conti-
nuous mapping

VF : C∞(R)b × Sµ(cl)(R
1+l
ξ,λ ) −→ Sµ(cl)(R

1+l
ξ,λ ), (3.4.29)

and VF (ϕ)a(ξ, λ) admits an asymptotic expansion

VF (ϕ)a(ξ, λ) ∼
∞∑
k=0

(−1)k

k!
Dk
ζϕ(0)∂kξ a(ξ, λ). (3.4.30)
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Proof. The mapping C∞(Rζ)b × Sµ(cl)(R
1+l
ξ,λ ) −→ C∞(R1+l

ξ,λ , S
µ
(cl)(Rζ × Rξ̃)b) for Sµ(cl)(Rζ ×

Rξ̃)b := C∞(Rζ , S
µ
(cl)(Rξ̃))b, defined by (ϕ, a) → ϕ(ζ)a(η − ξ̃, λ), is bilinear and continuous.

In order to show the continuity of (3.4.29) it suffices to verify that VF (ϕ)a ∈ Sµ(cl)(R
1+l
ξ,λ )

and to apply the closed graph theorem. Since Dβ
ξ,λVF (ϕ)a(ξ, λ) = VF (ϕ)(Dβ

ξ,λa(ξ, λ)) for any

β ∈ N1+l, it suffices to show

|VF (ϕ)a(ξ, λ)| ≤ c〈ξ, λ〉µ (3.4.31)

for all (µ, λ) ∈ R1+l, for a constant c > 0. We regularise the oscillatory integral (3.4.28) as
follows:

VF (ϕ)a(η, λ) =

∫∫
e−iζξ̃〈ζ〉−2{(1− ∂2

ζ )
Nϕ(ζ)}aN(ξ, ξ̃, λ) dζd̄ξ̃,

where

aN(ξ, ξ̃, λ) = (1− ∂2
ξ̃
){〈ξ̃〉−2N

a(ξ − ξ̃, λ)} (3.4.32)

for N ∈ N sufficiently large. The function (3.4.32) is a linear combination of terms
(∂j
ξ̃
〈ξ̃〉−2N)(∂kξ a)(ξ − ξ̃, λ) for 0 ≤ j, k ≤ 2. For the following conclusions we recall Peetre’s

inequality 〈ξ′ + ξ′′〉s ≤ c|s|〈ξ′〉|s|〈ξ′′〉s for all ξ′, ξ′′ ∈ R, s ∈ R. We have

〈ξ − ξ̃, λ〉µ ≤ C〈ξ̃〉|µ|〈ξ, λ〉µ, (3.4.33)

when we write (ξ − ξ̃, λ) = (ξ, λ)− (ξ̃, 0). It follows that

|∂j
ξ̃
〈ξ̃〉−2N

(∂kξ a)(ξ − ξ̃, λ)| ≤ |∂j
ξ̃
〈ξ̃〉−2N‖(∂kξ a)(ξ − ξ̃, λ)‖

≤ c〈ξ̃〉−2N〈(ξ − ξ̃, λ)µ ≤ c〈ξ̃〉|µ|−2N〈ξ, λ〉µ

for some c > 0. This implies analogous estimates for the function (3.4.32). For N so large that
µ− 2N ≤ 0 we obtain the estimate (3.4.31). In order to show (3.4.30) we employ the Taylor
expansion

ϕ(ζ) =
N∑
k=0

1

k!
(∂kζϕ)(0)ζk + ζN+1ϕN+1(ζ),

for

ϕN+1(ζ) =
1

N !

∫ 1

0

(1− t)N(∂N+1
ζ ϕ)(tζ) dt. (3.4.34)

The function ϕN+1(ζ) belongs to C∞(R)b.

Corollary 3.4.5. Let ψ(ζ) ∈ C∞0 (R) be a cut-off function on R (i.e., ψ ≡ 1 in a neighbourhood
of 0), and set ψε(ζ) = ψ(εζ) for 0 < ε ≤ 1. Then for every a(ξ, λ) ∈ Sµ(cl)(R

1+l) we have

lim
ε→0

VF (ψε)a(ξ, λ) = a(ξ, λ) (3.4.35)

in the topology of Sµ(cl)(R
1+l).

In fact, we have limε→0 ψε = 1 in the topology of C∞(R)b; then (3.4.35) is a consequence of
the continuity of (3.4.29) for a fixed symbol on the left hand side of (3.4.29).
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The kernel cut-off process can be extended from symbols in Sµ(cl)(R
1+l
ξ,λ ) to other situations,

e.g., operator families
f(v, λ) ∈ Lµcl(X; Γβ × Rl

λ)

for some fixed β ∈ R. Here the covariable ξ is substituted by Im v for v ∈ Γβ. We then have
the kernel cut-off operator as a map

VF (ψ) : Lµcl(X; Γβ × Rl
λ) −→Mµ

O(X;Rl
λ) (3.4.36)

with analogous properties as before, in particular, setting

h(v, λ) := (VF (ψ)f)(v, λ)

for f(v, λ) ∈ Lµcl(X; Γβ × Rl) we have

h(v, λ)|Γβ×Rl − f(v, λ) ∈ L−∞(X; Γβ × Rl).

This shows that the space Mµ
O(X;Rl) is “nearly” as rich as the space Lµcl(X; Γβ × Rl) itself.

The Mellin kernel cut-off is also involved in the Mellin quantization, that turns Fourier-based
pseudo-differential actions connected with edge-degenerate families (3.2.1) to Mellin-based
actions with holomorphic Mellin symbols of the kind (3.4.1). There are different variants of
such Mellin quantizations. The basic information is contained in the following theorem.

Theorem 3.4.6. For every edge-degenerate operator family (3.2.1) with the property (3.2.2)
there is an

h̃(r, y, v, η̃) ∈ C∞(R+ × Ω,Mµ
O(X;Rq

η̃))

such that for
h(r, y, v, η) := h̃(r, y, v, rη) (3.4.37)

we have
Opr(p)(y, η) = OpγM(h)(y, η) mod C∞(Ω, L−∞(X∧;Rq

η)) (3.4.38)

for any γ and h̃(r, y, v, η̃) is uniquely determined modulo C∞(R+ × Ω,M−∞
O (X;Rq

η̃)).

Similar constructions in the sense of kernel cut-off work when we replace the Fourier transform
by the Mellin transform. In this context we also have weights but a translation in the complex
Mellin plane allows us to focus on the weight γ = 1

2
where the weight line is Γ0. As we saw in

the context of the Fourier transform the kernel cut-off operators only act on covariables, i.e.,
the symbols may depend on variables or on extra parameters. Thus, the Mellin- analogue of
(3.4.6) may be started at once for symbols a(r, r′, v) with variable coefficients. The symbol
may also be operator-valued, e.g., a(r, r′, v) ∈ C∞(R+ ×R+, L

µ(X; Γ0)), and then, instead of
(3.4.6) we look at

k(a)(r, r′, v) =

∫
Γ0

e−va(r, r′, v) d̄v

= (M−1
1
2
,v→ρa)(r, r′, ρ).

(3.4.39)

The Mellin-distributional kernel of Op
1/2
M (a) is just related to the expression

Op
1/2
M (a) =

∫ ∞
0

k(a)(r, r′,
r

r′
)u(r′)

dr′

r′
, (3.4.40)
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i.e., k(a)(r, r′, r
r′

) is the operator-valued kernel. If we consider for the moment the case with
constant coefficients and look at the symbol a(v) ∈ Lµcl(X; Γ0), i.e., the Mellin covariable v is
varying on Γ0, then the Mellin kernel cut-off operator acting on a(v) (for the weight γ = 0)
takes the form

(H(ψ)a)(v) = M 1
2
,θ→v(ψ(θ)k(a)(θ)) (3.4.41)

for a cut-off function ψ(θ) on the positive θ half-axis which is of compact support and ≡ 1
in a neighbourhood of θ = 1. Here we take into account that the singular support of k(v)
as an operator-valued distribution lies at θ = 1, which corresponds to r/r′, i.e., the diagonal
r = r′. We do not recall here all properties of the kernel cut-off in the Mellin variant but
tacitly employ the relevant properties. More details may be found in [53, Subsection 2.2.2].

3.5 The edge algebra

Let us first recall that Mk means the category of spaces of singularity of order k, cf. Section
3.1. We understand a topological space M which is stratified, i.e., has a stratification indicated
by a sequence of subspaces

s(M) = (s0(M), s1(M), . . . , sk(M)) (3.5.1)

cf. formula (3.1.19).

The analysis of pseudo-differential operators on an M ∈ Mk is induced by fixing a class of
typical differential operators A with a hierarchy of symbols

σ(A) = (σ0(A), σ1(A), . . . , σk(A)) (3.5.2)

associated with the stratification (3.5.1) which determines ellipticity such that elliptic elements
have parametrices in our operator class. A classical example is the case of a manifold M with
smooth boundary ∂M . In this case M ∈M1 and

s0(M) = intM, s1(M) = ∂M.

Concerning differential operators and symbols the notation is as follows.

For M ∈ Mk for fixed k ∈ N, k > 0, by Diffµdeg(M) we denote the space of all differential
operators over s0(M) which are close to sj(M), 1 ≤ j ≤ k, of the form in the “stretched”
splitting (r, x, y) ∈ B∧j−1 × sj(M) of the form

A = r−µ
∑

l+|α|≤µ

alα(r, y)

(
− r ∂

∂r

)l
(rDy)

α (3.5.3)

when dim sj(M) > 0 for coefficients

alα(r, y) ∈ C∞(R+ × Ωj,Diff
µ−(l+|α|)
deg (Bj−1)) (3.5.4)

for some Bj−1 ∈Mj−1,Ωj ⊆ Rqj open, and where qj = dim sj(M)

A = r−µ
∑
l≤µ

al(r)

(
− r ∂

∂r

)l
(3.5.5)
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when dim sj(M) = 0 (which only may the case if j = k), where M is locally close to sk(M) a
cone BMk−1 for some Bk−1 ∈Mk−1 for coefficients

al(r) ∈ C∞(R+,Diffµ−ldeg (Bk−1)). (3.5.6)

This definition it iterative, and it suffices to make the definition for j = k, then to make it for
j = k − 1, etc., where Diffµdeg(M) := Diffµ(M) for M ∈ M0. Then, because of the hierarchy
of typical differential operators we can successively define the hierarchy of principal symbols,
beginning with σk(A) as

σk(A)(y, η) = r−µ
∑

j+|α|≤µ

ajα(0, y)

(
− r ∂

∂r

)j
(rη)α, η 6= 0, (3.5.7)

continuous in so-called weighted Kegel-spaces

σk(A)(y, η) : Ks,γ(B∧k−1) −→ Ks−µ,γ−µ(B∧k−1) (3.5.8)

for s ∈ R, γ = (γ1, . . . , γk) ∈ Rk, when dim sk(M) > 0 and

σk(A)(v) =

µ∑
l=0

al(0)vl (3.5.9)

when dim sk(M) = 0 for the above-mentioned coefficients, frozen at r = 0. The variable v is the
complex covariable from the Mellin transform but it will be often regarded for v ∈ Γ(b+1)/2−γ
for b := dimBk−1.

Let us turn to the edge calculus when the dimension of the edge is > 0 and k = 1; this case
is typical in mixed boundary value problems to be interpreted in terms of the edge calculus
of boundary value problems. Then Bk−1 is simply a smooth compact manifold X. The main
motivation of the edge calculus is to express parametrices of edge-degenerate differential ope-
rators in the framework of a corresponding pseudo-differential calculus. Differential operators
can be written both in terms of the Fourier and the Mellin transform. For parametrices with
a control up to r = 0 it is more convenient to employ the Mellin representation in r-direction.
However, in the pseudo-differential case the way from the Fourier to the Mellin representa-
tion is not so obvious and referred to as a Mellin quantization. The Fourier representation of
edge-degenerate operators concerns operators

r−µOpyOpr(p) =: D (3.5.10)

for p(r, y, ρ, η) := p̃(r, y, rρ, rη) and

p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X;R1+q
ρ̃,η̃ )).

Then we can pass to an amplitude function

r−µωOpr(p)(y, η)ω′ (3.5.11)

for some cut-off functions ω ≺ ω′. It is convenient to modify (3.5.11) as follows. We write
(3.5.11) in the form

r−µω{ω̃ηOpFr(p)(y, η)ω̃′η + (1− ω̃η)OpFr(p)(y, η)(1− ω̃′′η)}ω′ (3.5.12)
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for ω̃η(r) := ω̃(r[η]), etc., and cut-off functions ω′′ ≺ ω̃ ≺ ω̃′. Then we obtain (3.5.11)=
(3.5.12) modulo an (y, η)-dependent smoothing remainder which we do not specify. Applying
kernel cut-off there is an h(r, y, v, η) for h(r, y, v, η) := h̃(r, y, v, rη), h̃(r, y, v, η̃) ∈ C∞(R+ ×
Rq,Mµ

Ov(X;Rq
η̃)) such that

Op
γ−n/2
M (h)(y, η)−OpFr(p)(y, η) ∈ C∞(Ω, L−∞(X;Rq

η)) (3.5.13)

for every (y, η). Thus, forming

r−µω{ω̃ηOp
γ−n/2
M (h)(y, η)ω̃′η + (1− ω̃η)OpFr(p)(y, η)(1− ω̃′′η)}ω′ (3.5.14)

where for u ∈ C∞0 (R+)

OpFr(p)(y, η)u(r) := Opr(p)(y, η)u(r) =

∫∫
ei(r−r

′)ρp(r, r′, y, ρ, η)u(r′) dr′d̄ρ, (3.5.15)

we have (3.5.11)− (3.5.14) ∈ C∞(Ω, L−∞(X;Rq
η)) for every (y, η), and assuming without loss

of generality that p is of bounded support in r then

a(y, η) := r−µω{ω̃ηOp
γ−n/2
M (h)ω̃′η + (1− ω̃η)OpFr(p)(1− ω̃

′′
η)}ω′ (3.5.16)

induces a family of maps

a(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (3.5.17)

for every s ∈ R, n = dimX is involved in the convention of weights for normalization reasons.
The weighted Kegel spaces involved in (3.5.17) for a smooth closed manifold X and any real
r can be defined as

Ks,γ(X∧) ={u ∈ Hs
loc(R+ ×X) : u = ωu0 + (1− ω)u∞

foru0 ∈ Hs,γ(X∧), u∞ ∈ Hs
cone(X

∧)},
(3.5.18)

cf. also relation (3.3.13). Here Hs,γ(X∧) is the weighted Mellin Sobolev space of smoothness
s ∈ R and weight γ ∈ R, according to formulas (3.3.9), (3.3.10), and Hs

cone(X
∧) is defined by

(3.3.11), (3.3.12). If is an easy task to verify that the group of transformations κ = {κδ}δ∈R+ ,

(κδu)(r, x) := δ(n+1)/2u(δr, x), δ ∈ R+, (3.5.19)

induces a group action on the Hilbert space Ks,γ(X∧) which is unitary for s = γ = 0. In this
case we have

K0,0(X∧) = H0,0(X∧) = r−n/2L2(R+ ×X)drdx. (3.5.20)

Proposition 3.5.1. We have a(y, η) ∈ Sµ(Ω× Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)).

Proof. Let χ(η) be an exision function, and write

a(y, η) = χ(η)a(y, η) + (1− χ(η))a(y, η).

For convenience, we assume a(y, η) to be independent of y. The generalization is straightfor-
word. Then, since

χ(η)a(η) ∈ C∞0 (Rq,L(Ks,γ(X∧),Ks−µ,γ−µ(X∧)))
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we have χ(η)a(η) ∈ S−∞(Rq,Ks,γ(X∧),Ks−µ,γ−µ(X∧)) which is contained in the claimed sym-
bol space for any s ∈ R. Thus it suffices to look at (1− χ(η))a(η) which has the property to
vanish in a neighbourhood of η = 0. Then the assertion can be verified by applying tensor
product representations

h(r, v, η) =
∞∑
j=1

λjϕj(r)hj(v, η), hj(v, η) = h̃(v, η̃),

for h̃(v, rη) ∈Mµ
Ov(X;Rq

η̃)),

p̃(r, ρ̃, η̃) ∼
∞∑
j=1

λjψj(r)p̃(ρ̃, η̃) (3.5.21)

where ϕj ∈ C∞(R+) tends to zero in this space for j → ∞, h̃(v, η̃) ∈ Mµ
Ov(X;Rq

η̃)) tends to

zero as j → ∞, ψj(r) ∈ C∞0 (R+), ψj(r) → 0 and p̃j(ρ̃, η̃) ∈ Lµcl(X;Rq+1
ρ̃,η̃ ), p̃j → 0 as j → ∞.

Setting h0(r, v, η) := h̃(0, v, rη),

p0(r, ρ, η) := p̃(0, rρ, rη)

then we have smoothing Mellin and pseudo-differential objects, where r is only involved in
combination with covariables.

Thus, when we define the edge symbol

σ1(a)(y, η) := r−µ{ω̃|η|Op
γ−n/2
M (h0)(y, η)ω̃′|η| + (1− ω̃|η|)OpFr(p0)(y, η)(1− ω̃′′|η|)}. (3.5.22)

for η 6= 0, ω|η| := ω(r|η|), etc., and we obtain homogeneity

σ1(a)(y, δη) = δµκδσ1(a)(y, η)κ−1
δ (3.5.23)

as an operator function

σ1(a)(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧). (3.5.24)

Relation (3.5.23) is also-called twisted homogeneity of order µ. Expression (3.5.22) is moti-
vated by relation

σ1(a)(y, η) = lim
δ→∞

δ−µκ−1
δ a(y, δη)κδ (3.5.25)

for the amplitude function (3.5.16). By virtue of

a(y, η) ∈ C∞(Ω, Lµcl(X;Rq)) (3.5.26)

we have parameter-dependent homogeneous principal symbol, namely,
σ0(a)(r, x, y, ξ, ρ, η) of standard homogeneity of order µ for (ξ, ρ, η) 6= 0. In addition we define
a subordinate symbol comming from the interpretation of (3.5.24) as an operator in the cone
algebra over X∧, called the principal conormal symbol

σc(σ1(a)(y, η))(v) := h0,0(y, v) := h̃(0, y, v, 0).
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Let us give some further comment on the Mellin-edge quantization of operator families
(3.5.11). The point is that, besides the degenerate behaviour of symbols there is no straight-
forward control up to r = 0 of the associated mapping property in Sobolev spaces (the nature
of which also belong to the results of the edge calculus, see material below). The situation
reminds of the transmission property which ensures via truncation quantization (i.e., in terms
of operators e+, r+) which entails continuity of operators in standard Sobolev spaces. Note
that a smooth manifold with boundary is a special case of a manifold with edge. The inner
normal R+ may be regarded as a cone, also referred to as the model cone of local wedges.
The edge case is geometrically characterized by model cones XM rather than R+ where X
is a smooth closed manifold of dimension n > 0. Moreover, the edge case is dealing with
edge-degenerate symbols. If turned out (from the “early” formulations of edge calculus on)
that the method of truncation quantization does not work and “usual” Sobolev spaces with a
control up to r = 0 are not the right choice. So there was to be invented another quantization,
i.e., a replacement of (3.5.10) in r-direction (modulo smoothing remainders) which works in
alternative adequate scales of spaces. The answer is given in stretched variables where the
cone XM was blown up to X∧ = R+ ×X (the open stretched cone) and the quantization in
r-direction is formulated by the Mellin transform on R+. This is just the motivation of Mellin
quantization in the cone calculus, i.e., over X∧, which is organized by a suitable replacement
of the (degenerate) Fourier-symbol p by a Mellin symbol h such that relation (3.5.13) holds,
where the edge-calculus also contributes dependence on (y, η). Expression (3.5.14) is now an-
other modification which is a mix between Mellin action close to r = 0 and the Fourier action
far from r = 0 which once again leaves smoothing remainders compared with what we have
on the left hand side of (3.5.13). In this case the decision was to employ η-depending cut-offs
because of some twisted homogeneity properties of the involved operator functions. At the
same time the operator functions (3.5.15) became operator-valued symbols, see Proposition
3.5.1, with Kegel spaces Ks,γ(X∧) which are important for this approach. Let us postpone for
the moment the role of those spaces for the future wedge spaces. In any case, at this point we
see that the spaces Hs(R+) from the boundary symbolic calculus of Chapter 2 are replaced in
the edge symbolic calculus by weighted Sobolev spaces Ks,γ(X∧), where the choice of weights
γ ∈ R is a consequence of requiring invertibility of conormal symbols in ellipticity of the cone
calculus over XM. Now another step in the development was established in the paper [18],
where the Mellin-edge quantization (3.5.14) was replaced by

r−µOp
γ−n/2
M (h)(y, η),

at least, what concerned the edge symbolic calculus, where the complicated expressions
(3.5.22) could be replaced by

σ1(a)(y, η) = r−µOp
γ−n/2
M (h0)(y, η) (3.5.27)

with the same h0 as before. The surprising aspect here is that (3.5.27) is a family of continuous
maps like (3.5.24) although the Mellin action is containing a weight shift from γ to γ − µ up
to r = ∞, which seems to be a contradiction to the nature of Kegel spaces which are equal
to Hs

cone(X
∧), and the latter ones do not refer to any weight. The explanation in this case is

that different ingredients are interplaying in the right way, namely, the holomorphy of Mellin
symbols in v, the edge-degenerate parameter rη, where η 6= 0, and the weight factor r−µ. All
this together shows as is done in [18], that the Fourier-part of (3.5.14) and a similar operator

function which replaces r−µOpFr(p)(y, η) (together with the cut-offs) by r−µOp
γ−n/2
M (h)(y, η)
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only causes a difference by a Green symbol which is flat at r = 0 of infinite order. This
explains why the weight effect at r = ∞ is ignored by (3.5.27) since Green symbols are
Schwartz functions in r at infinity. These constructions were helpful also in the proof of the
algebra property of the edge calculus. Nevertheless the role of r−µOpFr(p)(y, η) played an
important role since a pure Mellin description of operators did not suggest at once that (and
why) weight effects at r =∞ could be ignored.

Subsequent applications in the context of parabolicity, where the η-dependent cut-offs were
a really irritating point, showed together with the above-mentioned insight, that another
edge-quantization is easier manageable, namely, after Mellin-quantization which produces
h(r, y, v, η) = h̃(r, y, v, rη) for

h̃(r, y, v, η̃) ∈ C∞(R+ × Rq,Mµ
Ov(X;Rq

η̃)) (3.5.28)

from p(r, y, ρ, η) = p̃(r, y, rρ, rη) and

p̃(r, y, ρ̃, η̃) ∈ C∞(R+ × Rq, Lµcl(X;R1+q
ρ̃,η̃ ))

we may replace (3.5.14) by

r−µ{ωOp
γ−n/2
M (h)(y, η)ω′ + (1− ω)Opr(p)(y, η)(1− ω′′)}, (3.5.29)

see, [40] concerning parabolicity in the edge calculus, which deals with anisotropic versions
of the symbol class of Proposition 3.5.1 and which reflects the original operator modulo a
smoothing one over X∧.

3.6 The principal symbolic hierarchy and the edge cal-

culus

As we noted before the amplitude function (3.5.16) as well as other variants which we discussed
are the result of a so-called Mellin-edge quantization of the operator function (3.5.11), moti-
vated by the shape of edge-degenerate differential operators of the form (3.5.3) for M = M1

for dim s1(M) = q > 0, and X ∈M0 and by the program to express parametrices of elliptic
elements within the edge calculus. We systematically refer to the Mellin-edge quantization,
simpler than (3.5.16), namely, we write

r−µωOp
γ−n/2
M (h)(y, η)ω′ (3.6.1)

for h(r, y, v, η) := h̃(r, y, v, rη) for some h̃(r, y, v, η̃) ∈ C∞(R+ × Ω,Mµ
Ov(X;Rq

η̃)). Let us now
generate step by step the remaining ingredients of the operators of the edge calculus.

Remark 3.6.1. Similarly as Proposition 3.5.1 we have for the operator function (3.6.1) the
relation

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)). (3.6.2)

Definition 3.6.2. Let M be a manifold with edge Y = s1(M), fix cut-off function ω′′ ≺ ω ≺
ω′, and set, as usual s0(M) = M \ s1(M). The edge pseudo-differential algebra is furnished
by spaces

Lµ(M, g) (3.6.3)
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for weight data g := (γ, γ − µ,Θ) with Θ := (−(l + 1), 0] being a weight interval. The space
(3.6.3) for any µ ∈ R is defined as the set of operators

A := H +M +G+ Aint + C (3.6.4)

where M +G are so-called smoothing Mellin plus Green operators, belonging to LµM+G(M, g)
and C ∈ L−∞(M, g), to be defined below, moreover, Aint ∈ (1− ω)Lµcl(s0(M))(1− ω′′) and H
is a sum over ϕ, ϕ′ of operators of the form

ϕOpy{r−µωOp
γ−n/2
Mr

(h)(y, η)ω′}ϕ′ (3.6.5)

for ϕ, ϕ′ ∈ C∞0 (Rq), referring to an open covering of Y by coordinate neighbourhoods U ∼= Rq

and functions ϕ from a subordinate partition of unity and other localizing functions ϕ′ of
compact support, where ϕ ≺ ϕ′, and h(r, y, v, η) = h̃(r, y, v, rη) for elements h̃(r, y, v, η̃) ∈
C∞(R+ × Rq,Mµ

Ov(X;Rq
η̃)).

Definition 3.6.2 implies
Lµ(M, g) ⊂ Lµcl(s0(M)).

Therefore, for every A ∈ (3.6.3) we have a homogeneous principal symbol in the standard
sense σ0(A) as an invariantly defined function T ∗(s0(M)) \ 0, and the so-called edge symbol

σ1(A)(y, η) = σ1(H)(y, η) + σ1(M +G)(y, η) (3.6.6)

for h0(r, y, v, η) := h̃(0, y, v, rη)

σ1(H)(y, η) = r−µOp
γ−n/2
M (h0)(y, η) (3.6.7)

for η 6= 0 and the Mellin plus Green contribution M + G contained in (3.6.4). We easily see
that (3.6.7) satisfies the homogeneity relation

σ1(A)(y, δη) = δµκδσ1(A)(y, η)κ−1
δ (3.6.8)

for all δ ∈ R+.

Summing up operators A ∈ Lµ(M, g) have a pair of principal symbols

σ(A) := (σ0(A), σ1(A)) (3.6.9)

where σ0(A) is the scalar homogeneous principal symbol over M \ Y , mentioned before, and

σ1(A)(y, η) ∈ S(µ)(Ω× (Rq \ {0});Ks,γ(X∧),Ks−µ,γ−µ(X∧)) (3.6.10)

defined by (3.6.2). Summing up the operator H + M + G may be locally in Rq written
as Opy(a) modulo a smoothing remainder for an amplitude function a(y, η) ∈ Sµ(Rq ×
Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) with principal part (3.6.10) in the sense of relation (3.6.1). The
symbol property for a(y, η) gives rise to continuity of operators Opy(a) in weighted edge
Sobolev spaces.

Let us first recall that if H is a separable Hilbert space with group action we have the space

Ws(Rq, H)
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with the norm

||u||Ws(Rq ,H) =

{∫
〈η〉2s||κ−1

〈η〉(Fu)(η)||2H d̄η
}1/2

. (3.6.11)

For H := Ks,γ(X∧) this gives rise to the spaces Ws(Rq,Ks,γ(X∧)) for any s, γ ∈ R. Using
coordinate invariance in variables y and a partition of unity on Y we can introduce spaces

Ws(Y,Ks,γ(X∧)).

Those have the property

ϕWs(Y,Ks,γ(X∧)) ⊂ Hs
loc(M \ Y ),

for any ϕ ∈ C∞0 (M \ Y ) see [53, Proposition 3.1.21]. Thus it makes sense to define for any
compact manifold M with edge Y the spaces

Hs,γ(M) := {ωu+ (1− ω)v : u ∈ Ws(Y,Ks,γ(X∧)), v ∈ Hs
loc(M \ Y )} (3.6.12)

where ω is any smooth function on M \ Y which is identically to 1 close to Y and vanishes
outside some neighbourhood of Y . In the non-compact case we have comp/loc-analogues of
the spaces (3.6.12).

Theorem 3.6.3. Any A ∈ Lµ(M, g) for g = (γ, γ−µ,Θ) and compact M induces continuous
operators

A : Hs,γ(M) −→ Hs−µ,γ−µ(M) (3.6.13)

for any s ∈ R. In the non-compact case we have analogues of such mapping properties between
corresponding comp/loc-spaces.

Theorem 3.6.4. Let A ∈ Lµ(M,a), B ∈ Lν(M, b) for a compact space M with edge, where

a = (γ, γ − µ,Θ), b = (γ − µ, γ − (µ+ ν),Θ). (3.6.14)

Then we have AB ∈ Lµ+ν(M,a ◦ b) for a ◦ b = (γ, γ − (µ+ ν),Θ), where

σi(AB) = σi(A)σi(B) (3.6.15)

for i = 0, 1. Moreover, if A or B belongs to the corresponding LµG- or LµM+G-subclass then the
product has this property as well.

We can (and will) also employ an alternative definition of Kegel spaces, namely

Ks,γ(X∧) = rsOp
−n/2
M (h)(η)

(
K0,γ−s(X∧)

)
(3.6.16)

η 6= 0, fixed where K0,γ−s(X∧) = Kγ−sK0,0(X∧) for any strictly positive function on R+ which
is equal to rγ−s for 0 < r < ε0 and 1 for r > ε1, for some 0 < ε0 < ε1, where h(r, v, η) =
h̃(v, rη) is defined by a suitable parameter-dependent elliptic element h̃(v, η̃) ∈ Mµ

O(X;Rq
η̃)

of the restriction of Γβ with respect to v, which is an element of Lµcl(X; Γβ × Rq) cf. formula
(3.4.3) and the comment after Definition 3.4.1. It is independent of β ∈ R, i.e., the above-
mentioned notion of ellipticity of h(v, η̃) is independent of β. Applying this procedure to
h(v, η̃) := h̃(0, y, v, η̃) for some fixed y ∈ Y we obtain a notion of ellipticity of the operator
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σ1(A)(y, η) for any fixed y, and η 6= 0. The y-independent Mellin symbol in relation (3.6.16)
is defined by h0(r, v, η) := h̃(0, v, rη). The function

σc(σ1(A))(y, v) ∈ Lµcl(X; Γβ)

for v ∈ Γn+1
2
−γ is called the principal conormal symbol of the operator A, and

σ1(A)(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (3.6.17)

is Fredholm if and only if the above-mentioned h̃(y, v, η̃) is elliptic in Mµ
O(X;Rq

η̃) and

σc(σ1(A))(y, v) : Hs(X) −→ Hs−µ(X) (3.6.18)

for v ∈ Γn+1
2
−γ is bijective for |Im v| sufficiently large. The principal conormal symbols are y-

dependent holomorphic operator functions with values in Lµcl(X). For instance, if our operator
A is edge-degenerate, i.e.,

A = r−µ
∑

j+|α|≤µ

ajα(r, y)

(
− r ∂

∂r

)j
(rDy)

α (3.6.19)

then the amplitude function (3.6.1) which is producing A by A = Opy→η(a) contains the
Mellin symbol

h(r, y, v, η) = h̃(r, y, v, rη)

for h̃(r, y, v, η̃) ∈ C∞(R+ × Rq,Mµ
Ov(X;Rq

η̃)) where

h̃(r, y, v, rη) =
∑

j+|α|≤µ

ajα(r, y)vj(rη)α. (3.6.20)

In the context of ellipticity we have invertiblity of (3.6.18) for large |Im v| and for any fixed
y ∈ Rq, and Re v = β ∈ R uniformly in compact intervals. In the present case we have

σc(σ1(·))(y, v) =

µ∑
j=0

aj0(0, y)vj. (3.6.21)

Applying kernel cut-off to σc(σ1(·))−1(y, v) gives us a holomorphic family again, modulo y-
dependent meromorphic remainders which are smoothing, i.e., take values in M−∞

R (X) for
some pattern of y-dependent poles rj including multiplicities mj + 1 see Definition 3.7.4 (i)
below for

R = {(rj,mj)}j∈I ⊂ C× N. (3.6.22)

In the simplest case we assume in this construction that the non-bijectivity points of (3.6.18)
including their multiplicities are y-independent. Then the components of (3.6.22) are y-
independent as well. We then call (3.6.22) a constant discrete Mellin asymptotic type.
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3.7 The asymptotic part of the edge calculus

In order to explain the global smoothing operators C in formula (3.6.4) of the edge alge-
bra we establish weighted spaces with asymptotics, for the moment with constant discrete
asymptotics, i.e., constant with respect to the variable y along the edge.

Definition 3.7.1. A sequence

P := {(pj,mj)}j∈J ⊂ C× N (3.7.1)

for an index set J ⊆ N∪{+∞} is said to be a discrete asymptotic type associated with weight
data (γ,Θ) for a weight γ ∈ R and a weight interval Θ = (ϑ, 0], for some ϑ ∈ R− ∪ {−∞}, if

πCP = {pj}j∈J (3.7.2)

is finite for ϑ > −∞ and

πCP ⊂ {v ∈ C :
n+ 1

2
− γ + ϑ < Re v <

n+ 1

2
− γ} (3.7.3)

for n = dimX while for ϑ = −∞ we ask Re pj → −∞ as j →∞, when πCP is infinite.

A P as in Definition 3.7.1 is said to satisfy the shadow condition if (p,m) ∈ P implies
(p− l,m) ∈ P for every l ∈ N such that

Re p− l > n+ 1

2
− γ + ϑ.

Later on, in applications, our asymptotic types will automatically satisfy the shadow con-
dition. Therefore, in order to simplify the formalism, from now on we impose the shadow
condition as an assumption. Then πCP will be infinite for Θ = (−∞, 0], while for finite Θ it
suffices to take Θ = (−(θ + 1), 0] for some θ ∈ N. Singular functions on X∧ for finite Θ will
be formulated in terms of the space

EP(X∧) := {ω(r)
∑
j∈J

mj∑
l=0

cjl(x)r−pj logl r : cjl ∈ C∞(X)} (3.7.4)

for some cut-off function ω on the R+ half-axis. We consider (3.7.4) in its natural Fréchet
topology of finitely many copies of C∞(X). We may and will replace

∑
j∈J in (3.7.4) by

∑N
j=0

for some N ∈ N ∩ {+∞}. Note that

EP(X∧) ⊂ Ks,γ(X∧)

for every s ∈ R, i.e.,
EP(X∧) ⊂ K∞,γ(X∧).

Also
Ks,γΘ (X∧) := lim←−

ε>0

Ks,γ+θ+1−ε(X∧) (3.7.5)

is Fréchet as a projective limit of Fréchet spaces, and (3.7.5) is direct to (3.7.4). Then

Ks,γP (X∧) := Ks,γΘ (X∧) + EP(X∧) (3.7.6)
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is Fréchet in the topology of the direct sum. For Θ = (−∞, 0] and P associated with (γ,Θ)
we first form

Pk := {(p,m) ∈ P :
n+ 1

2
− γ − (k + 1) < Re p <

n+ 1

2
− γ} (3.7.7)

which is finite. Therefore, we have the spaces Ks,γPk (X∧) and we set

Ks,γP (X∧) = lim←−
k∈N
Ks,γPk (X∧).

For any e ∈ R we set

Ks,γ;e(X∧) := [r]−eKs,γ(X∧),
Ks,γ;e
P (X∧) := [r]−eKs,γP (X∧).

(3.7.8)

, Given P we form weighted edge spaces

Ws(Rq,Ks,γP (X∧))

using the fact that Ks,γP (X∧) is a Fréchet space with group action. The space EP(X∧) is not
group invariant. Nevertheless we can form spaces

Hs(Rq, EP(X∧))

and, because of
T :Ws(Rq,Ks,γP (X∧)) −→ Hs(Rq,Ks,γP (X∧)) (3.7.9)

for the operator T (η) := F−1κ−1
[η]F , generated by a reformulation of norms

{∫
[η]2s||κ−1

[η] (Fu)(η)||2H d̄η
}1/2

=

{∫
[η]2s||F (F−1κ−1

[η]F )u||2H d̄η
}1/2

, (3.7.10)

cf. Remark 1.5.3, we obtain Ws(Rq, EP(X∧)) as a Fréchet subspace of
Ws(Rq,Ks,γ(X∧)) for any s ∈ R. Thus we can define Ws(Rq,Ks,γP (X∧)) also as a non-direct
sum

Ws(Rq,Ks,γP (X∧)) =Ws(Rq,Ks,γΘ (X∧)) +Ws(Rq, EP(X∧)). (3.7.11)

Both summands refer to the group action κ = {κδ}δ∈R+ which is on the right-hand side of
(3.7.11) we have a representation of any u ∈ Ws(Rq,Ks,γP (X∧)) into

u = uΘ + uP (3.7.12)

where uΘ ∈ Ws(Rq,Ks,γΘ (X∧)) is the flat part of u with respect to the weight γ ∈ R
and uP ∈ Ws(Rq, EP(X∧)) are the singular functions of constant T−1Hs(Rq, EP(X∧)) di-
screte edge asymptotics. In other words the elements uP ∈ F−1κ[η]FH

s(Rq, EP(X∧)) =
F−1κ[η]FH

s(Rq)⊗̂πEP(X∧) take the form of

uP(r, y) = F−1ω(r[η])[η]
n+1
2

N∑
j=0

mj∑
l=0

cjl(x)(r[η])−pj logl(r[η])v̂(η) (3.7.13)
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for v ∈ Hs(Rq). Thus the asymptotic terms of the edge calculus are specific classical pseudo-
differential operators of potential type

KP : Hs(Rq) −→Ws(Rq,Ks,γP (X∧)) (3.7.14)

KP = F−1
η→yf(η)Fy→η with f(η) being a linear combination of symbols of

f(η)jl := κ[η](ω(r)cjl(x)r−pj logl r) = Opy(f) (3.7.15)

for

f(η) : c −→
∑∑

ω(r[η])[η]
n+1
2 cjl(x)(r[η])−pj logl(r[η])c. (3.7.16)

for c ∈ C. Remember that Hs(Rq) =Ws(Rq,C). An alternative definition of
Ws(Rq,Ks,γP (X∧)) is also

Ws(Rq,Ks,γP (X∧)) =Ws(Rq,Ks,γΘ (X∧)) +Ws(Rq,K∞,γP (X∧)) (3.7.17)

as a non-direct sum, using the group action (3.5.19) on

K∞,γP (X∧) = K∞,γΘ (X∧) + EP(X∧). (3.7.18)

The definition of spaces Ws(Rq,Ks,γP (X∧)) has also a global meaning on a compact smooth
manifold Y , locally modeled on Rq. In other words we obtain the spaces Ws(Y,Ks,γP (X∧))
and Ws(Y,Ks,γ(X∧)), using a partition of unity on Y and corresponding charts to Rq. On a
manifold M with edge Y we also have the spaces Hs

loc(M \Y ) and the definition of the spaces
Ks,γ(X∧) shows that

ϕWs(Y,Ks,γ(X∧)) = ϕHs
loc(M \ Y ) (3.7.19)

for any ϕ ∈ C∞0 (M \ Y ). Thus for any cut-off function ω on M it makes sense to define the
spaces

Hs,γ(M) := ωWs(Y,Ks,γ(X∧)) + (1− ω)Hs
loc(M \ Y ) (3.7.20)

as a non-direct sum which is independent of the choice of ω. Analogously we set

Hs,γ
P (M) := ωWs(Y,Ks,γP (X∧)) + (1− ω)Hs

loc(M \ Y ) (3.7.21)

for any discrete asymptotic type P .

Definition 3.7.2. An operator C belong to L−∞(M, g) if C induces continuous operators

C : Hs,γ(M) −→ H∞,γ−µP (M),

C∗ : Hs,−γ+µ(M) −→ H∞,−γQ (M)
(3.7.22)

for C-depending asymptotic types P and Q, associated with (γ − µ,Θ) and (−γ,Θ), respec-
tively.

Let us now pass to smoothing Mellin plus Green operators of the edge calculus by introducing
corresponding operator-valued symbols.
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Definition 3.7.3. A g(y, η) ∈ Sνcl(Ω× Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) for some s ∈ R is called
a Green symbol if

g(y, η) ∈
⋂
s,e∈R

Sνcl(Ω× Rq;Ks,γ;e(X∧),K∞,γ−µ;∞
P (X∧)),

g∗(y, η) ∈
⋂
s,e∈R

Sνcl(Ω× Rq;Ks,−γ+µ;e(X∧),K∞,−γ;∞
Q (X∧))

(3.7.23)

for every s ∈ R, and asymptotic types P ,Q associated with (γ−µ,Θ) and (−γ,Θ), respectively.

Let
Rν

G(Rq × Rq, g) (3.7.24)

denote the space of all g(y, η) with the indicated properties. Those are called Green amplitude
functions of order ν. The weight shift µ is not affected by ν.

Green symbols allow us to define Green operators of the class LνG(M, g) for any ν ∈ R while
µ in g is given independently. Such an operator G has a kernel in C∞(s0(M)× s0(M)) such
that for any open covering of Y by coordinate neighbourhoods (U1, . . . , UN) and “charts”

χj : Uj ×X∧ −→ Rq ×X∧

a subordinate partition of unity (ϕ1, . . . , ϕN) and a system of functions (ϕ′1, . . . , ϕ
′
N), ϕj ≺

ϕ′j ∈ C∞0 (Uj) we have

G =
N∑
j=1

ϕj(χ
−1
j )∗Opy(gj)ϕ

′
j + C (3.7.25)

for some Green symbols gj(y, η), j = 1, . . . , N , and a C ∈ L−∞(M, g).

Let us now introduce smoothing Mellin operators of the edge calculus. For this and we first
define the space M−∞

R (X) for some Mellin asymptotic type R which is a sequence of pairs

R := {(rj, nj)}j∈I ⊂ C× N (3.7.26)

for any index set I ⊆ Z ∪ {−∞} ∪ {+∞} such that πCR := {rj}j∈I intersect every strip

{v ∈ C : |Re v| ≤ C}

in a finite set, for any C > 0.

Definition 3.7.4. (i) The space M−∞
R (X) is defined as the set of all meromorphic func-

tions
f(v) ∈ A(C \ πCR, L−∞(X))

which have poles at rj ∈ πCR of multiplicity mj + 1, where the Laurent coefficients
at rj are operators of finite rank, and for any πCR-excision function χ (i.e., χ(v) ∈
C∞(C), χ(v) = 0 for dist (v, πCR) < ε0, χ(v) = 1 for dist (v, πCR) > ε1 for some
0 < ε0 < ε1 <∞) we have

χ(v)f(v)|Γβ ∈ S(Γβ, L
−∞(X)) (3.7.27)

for every β ∈ R, uniformly in compact β-intervals.
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(ii) The space Mµ
R(X) is defined as the non-direct sum

Mµ
O(X) +M−∞

R (X) (3.7.28)

for any Mellin asymptotic type R and µ ∈ R, cf. Definition 3.4.1

Note that (3.7.28) is non-direct; since

Mµ
O(X) ∩M−∞

R (X) = M−∞
O (X).

Smoothing Mellin symbols are the raw material of some operator-valued symbols of the kind

m(y, η) := r−µωη

θ∑
j=0

rj
∑
|α|≤j

Op
γjα−n/2
M (fjα)(y)ηαω′η (3.7.29)

where Θ = ((−θ + 1), 0] for a sequence of Mellin symbols fjα(y, v) ∈ C∞(Ω,M−∞
Rjα(X)) and

ωη(r) = ω([η]r), ω′η(r) = ω′([η]r) for some cut-off functions ω, ω′. In order that (3.7.29) is
well-defined as a family of continuous operators

m(y, η) : Ks,γ(X∧) −→ K∞,γ−µ(X∧) (3.7.30)

we assume that the weights γjα ∈ R satisfy the conditions γ − j ≤ γjα ≤ γ and πCRjα ∩
Γn+1

2
−γjα = ∅ for all j ∈ N, α ∈ Nq. Then

r−µrjOp
γjα−n/2
M : Ks,γ(X∧) −→ rjK∞,γjα−µ(X∧) ↪→ K∞,γjα+j−µ(X∧) ↪→ K∞,γ−µ(X∧).

(3.7.31)
Note that when m̃(y, η) is another expression like (3.7.29) but for modified γ̃jα satisfying the
above conditions and unchanged Mellin symbols fjα(y) or alternative cut-off functions ω̃, ω̃′,
then

m(y, η)− m̃(y, η)

is Green symbol in the sense of the above definition. In any case we have

m(y, η) ∈ Sµcl(Ω× Rq;Ks,γ(X∧),K∞,γ−µ(X∧)) (3.7.32)

or
m(y, η) ∈ Sµcl(Ω× Rq;Ks,γP (X∧),K∞,γ−µQ (X∧)) (3.7.33)

for every asymptotic type P and some resulting Q. The reason for the latter relations is the
rule

κδOp
γ−n/2
M (f)κ−1

δ = Op
γ−n/2
M (f) (3.7.34)

for any δ ∈ R+ and
κδr
−µκ−1

δ = δ−µr−µ. (3.7.35)

Let us come back to Definition 3.6.2 and add more details on the operator classes LµM+G(M, g)
which can be characterized close to Y := s1(M) in local variables y ∈ Rq by amplitude
functions

m(y, η) + g(y, η) ∈ Rµ
M+G(Rq × Rq, g), (3.7.36)

cf. formula (3.7.24), and m(y, η) is of the form (3.7.29). Definition 3.7.3 and relations (3.7.32)
show that for any fixed (y, η) the operators in (3.7.36) take values in smoothing Mellin plus
Green operators of the cone calculus over the infinite stretched cone X∧, cf. the considerations
below which are to some extent devoted to a special case of edge calculus when dim s1(M) = 0.
In this case s1(M) represents a conical singularity. It is important to emphasize this case, in
order to illustrate more features of the edge calculus.
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3.8 Ellipticity, parametrices, Fredholm property

Let us introduce the full spaces
Rµ(Rq × Rq, g) (3.8.1)

of the edge amplitude functions, containing (3.7.36) together with non-smoothing Mellin am-
plitude functions belonging to operators H in (3.6.4) which are up to globalization contained
in (3.6.5), namely,

k(y, η) := r−µωOp
γ−n/2
M (h)(y, η)ω′. (3.8.2)

In other words, (3.8.1) is furnished by operator functions

k(y, η) +m(y, η) + g(y, η) (3.8.3)

for such k(y, η) defined by arbitrary h(r, y, v, η) = h̃(r, y, v, rη) with h̃ being given in (3.5.28)
and m(y, η)+g(y, η) defined as before. These ingrediants come from the parts of the operators
(3.6.4) close to the edge s1(M) and, as we indicated, determine the twisted homogeneous
principal symbol σ1(A)(y, η), η 6= 0.

For purposes below we make some further comment about LµM+G-spaces and their symbolic
structure. As noted before the edge calculus Lµ(M, g), cf. Definition 3.6.2, contains the sub-
classes LµG and LµM+G, and the corresponding amplitude functions (3.7.36) take values in ope-
rators on X∧, acting between Ks,γ-spaces and subspaces with asymptotics. (y, η)-wise they are
also closed under algebraic operations, and in particular, there are composition rules. In ad-
dition, there are operations with the symbols, themselves, e.g., asymptotic summations. This
material will tacitly be used; details may be found in [53]. For understanding parametrices it
is instructive to realize operators of order zero of the form

1 +M +G ∈ 1 + L0
M+G(M, g) (3.8.4)

as a subcalculus of L0(M, g). Similarly as Theorem 3.6.4 we observe the following specializa-
tion.

Theorem 3.8.1. Given operators A ∈ 1 +L0
M+G(M,a), B ∈ 1 +L0

M+G(M, b) over a compact
space M with edge where a, b are defined as in (3.6.14), then we have AB ∈ 1+L0

M+G(M,a◦b),
and we can express

σ1(AB) = σ1(A)σ1(B)

in terms of the Mellin expressions involved in A and B, respectively. If A ∈ 1 + L0
G or

B ∈ 1 + L0
G, then the same is true of the composition.

The latter aspect has been mentioned already in Theorem 3.6.4, i.e., LG- or LM+G-classes
form subideals in the full edge calculus and hence also in LM+G. According to the width Θ
of the weight interval smoothing Mellin operators also may play the role of Green operators.
When we diminish Θ = ((−θ + 1), 0] to Θ′ := ((−θ′ + 1), 0] for θ′ < θ, then we can split up
the sum (3.7.29) into

m(y, η) = m′(y, η) +m′′(y, η) (3.8.5)

where m′ indicates the sum up to θ′ and m′′ the one from θ′ + 1 to θ. The remark is then
that m′′(y, η) ∈ Rµ

G(Rq × Rq, g). In other words the smoothing Mellin part turns to a Green
symbol when in the involved factors (r′)j j becomes large enough. Also other observations
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are interesting, e.g., the classes (3.7.36) are closed under differentiations with respect to y or
η, where

Dα
yD

β
ηR

µ
M+G(Rq × Rq, g) ⊆ R

µ−|β|
M+G(Rq × Rq, g) (3.8.6)

and we have
Dβ
ηR

µ
G(Rq × Rq, g) ⊆ R

µ−|β|
G (Rq × Rq, g) (3.8.7)

when |β| is large enough. Another important point is to consider the conormal symbolic
structure of Mellin plus Green symbols. We set

σ−µ+j
c (m)(y, v, η) :=

∑
|α|=j

fjα(y, v)ηα, j = 0, . . . , θ. (3.8.8)

The conormal symbols (3.8.8) are polynomials in η of order j, and hence they are independent
of η for j = 0. σ−µc (m)(y, v) is called the principal conormal symbol of m(y, η) in the sense of
the subordinate cone calculus over X∧. We do not list all properties in this connection, but
we keep in mind that m(y, η) is uniquely determined by the sequence of conormal symbols
for j = 0, . . . , θ, modulo Green symbols, despite of the presence of cut-off factors ωη(r), ω

′
η(r)

or the choice of γjα with the properties after relation (3.7.30).

Later on in parametrix constructions in the edge calculus for elliptic edge operators, locally
close to the edge written Opy(a) for a ∈ Rµ(Rq ×Rq, g), cf. (3.8.1), we separately look at the
subalgebra of operators (3.8.4).

Definition 3.8.2. An operator (3.8.4) in 1 + L0
M+G(M, g) is called elliptic if

1 + σ0
c (m)(y, v) 6= 0 (3.8.9)

for all v ∈ Γn+1
2
−γ and all y.

Another aspect are then parametrices within

1 +R0
M+G(Rq × Rq, g) (3.8.10)

where we need the composition result of Theorem 3.8.1 and the typical Mellin-Leibniz trans-
lation product. This will enable us below to establish Neumann series arguments for some
step in parametrix constructions for the full edge calculus.

Since (y, η)-wise the operators in (3.8.1) are cone operators we can also fix (y, η) and formulate
ellipticity of such operators of the form 1 + m + g in the sense of operators over X∧. The
corresponding cone algebra will be denoted by Lµ(X∧, g), LµM+G(X∧, g), etc., and in this
particular situation below we also employ notation A,M,G when the objects in that sense
are interpreted as cone operators, cf. notation (3.8.15) below. In particular, ellipticity of
1 +M +G ∈ 1 + L0

M+G(X∧, g) is again given by Definition 3.8.2.

Let us formulate more details from this program. Roughly speaking, similarly as in parametrix
constructions of standard elliptic pseudo-differential operators on a smooth manifold, cf. Sec-
tion 1.1, here we refer to the symbolic structure of operators in 1 + L0

M+G(M, g) which is
here equipped with some “floors”, the one for the model cone and then for the associated
wedge with cone-operator-valued symbols in (y, η) ∈ Rq×Rq, cf. (3.8.10). A general insight in
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all contexts which are discussed in the parametrix construction set-up is that the structures
in consideration are closed under multiplication and formal adjoint. In other words we need
algebras, and our composition rules are doing exactly this. What concerns the level of cones,
one composition observation is that the system of spaces M−∞

R (X) of Definition 3.7.4 is closed
under composition of the corresponding meromorphic operator functions, i.e.,

f(v) ∈M−∞
R (X), h(v) ∈M−∞

Q (X) (3.8.11)

for arbitrary Mellin asymptotic types implies

f(v)h(v) ∈M−∞
S (X) (3.8.12)

for some resulting Mellin asymptotic type S. A similar relation is true of operator functions
containing the identity 1 as a summand, i.e.,

(1 + f(v))(1 + h(v)) = 1 + p(v) (3.8.13)

for some p(v) ∈M−∞
P (X) in obvious notation. There is a remarkable result as follows.

Proposition 3.8.3. For every f(v) ∈M−∞
R (X) there is an l(v) ∈M−∞

Q (X) such that

1 + l(v) = (1 + f(v))−1 (3.8.14)

in the sense of the multiplications.

A proof may be found in [53], and also in the Ph-D thesis of Krainer [33]. Another important
ingredient of constructing a parametrix in 1 +L0

M+G(M, g) is the so-called Mellin translation
product which can be formulated for compositions mentioned in Theorem 3.6.4. In this con-
nection we introduce the sequence of conormal symbols of operators in Lµ(M, g) in general.
If we forget for the moment the edge then the amplitude functions (3.7.36) take values in the
cone calculus, here over X∧. The corresponding cone operators are of similar form as (3.6.4).
Those form space Lµ(X∧, g) of operators

A = H +M +G, (3.8.15)

where in this case
H = r−µωOp

γ−n
2

M (h)ω′ (3.8.16)

for an h(r, v) ∈ C∞(R+,M
µ
O(X)), and cut-off functions ω(r), ω′(r) and M is a sum

M = r−µω

θ∑
j=0

rjOp
γj−n2
M (fj)ω

′ (3.8.17)

for Mellin symbols fj(v) ∈ M−∞
Rj (X), j = 1, . . . , θ, with the same conditions on γj as in

(3.7.29) and Green operators G in this case satisfy the conditions

G ∈
⋂
s,e∈R

L(Ks,γ;e(X∧),K∞,γ−µ;∞
P (X∧))

G∗ ∈
⋂
s,e∈R

L(Ks,−γ+µ;e(X∧),K∞,−γ;∞
Q (X∧))

(3.8.18)
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for G-dependent asymptotic types P ,Q, similarly as in Definition 3.7.3. The operator Aint in
this case may be dropped and also the smoothing operators C which are included in the class
of Green operators.

Now we have the conormal symbols

σµ−jc (A)(v) :=
∂j

∂rj
h(r, v)|r=0 + fj(v) (3.8.19)

for j = 0, . . . , θ, and those, under compositions of cone operators satisfy the announced Mellin
translation product.

Theorem 3.8.4 ([52]). The sequences of conormal symbols of operators A and Ã in the
above-mentioned cone algebras,

σc(A)(v) := (σµ−jc (A)(v))j=0,...,θ (3.8.20)

and
σc(Ã)(v) := (σµ̃−kc (Ã)(v))k=0,...,θ (3.8.21)

satisfy under compositions the following Mellin translation product:

σ(µ+µ̃)−i
c (AÃ)(v) =

∑
j+k=i

T−(µ̃−k)(σµ−jc (A)(v))σµ̃−kc (Ã)(v) (3.8.22)

where (T βf)(v) := f(v + β) is the Mellin translation in the complex plane, such that

σc(AÃ)(v) = (σ(µ+µ̃)−i
c (AÃ)(v))i=0,...,θ. (3.8.23)

Let us apply the conormal symbolic structure in the algebra 1 + L0
M+G(X∧, g) where the

conormal symbols (3.8.19) have the special form

σ−jc (A)(v) := 1 + fj(v), j = 0, . . . , θ. (3.8.24)

For j = 0 the respective Mellin term only consist of a single f0. As noted before ellipticity in
1 + L0

M+G(X∧, g) means 1 + f0(v) 6= 0 for all v ∈ Γn+1
2
−γ.

Theorem 3.8.5. Let 1 +A ∈ 1 +L0
M+G(X∧, g) be elliptic then there is a parametrix 1 +P ∈

1 + L0
M+G(X∧, g−1) such that

(1 + P )(1 + A) = 1−GL (3.8.25)

for a Green operator GL ∈ LG(X∧, gL), and

(1 + A)(1 + P ) = 1−GR (3.8.26)

for a GR ∈ LG(X∧, gR).

Proof. Since f0(v) ∈M−∞
R0

(X) for some Mellin asymptotic typeR0 we can apply Proposition
3.8.3, and we find an l0(v) ∈M−∞

Q0
(X) such that

(1 + l0(v))(1 + f0(v)) = 1. (3.8.27)
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Then the Mellin translation product allows us to formally invert the sequence (3.8.24), i.e.,
knowing l0(v) we can successively determine all components for a parametrix 1+P , i.e., except
for (3.8.27) we compute

li(v) := σ−ic (1 + P )(v), i = 1, . . . , θ (3.8.28)

using the rules (3.8.22), namely,

σ0
c (1 + P )(v + 1)σ−1

c (A)(v) + σ−1
c (P )(v)σ0

c (1 + A)(v) (3.8.29)

which means
−σ0

c (1 + P )(v + 1)σ−1
c (A)(v) = σ−1

c (P )(v)σ0
c (1 + A)(v) (3.8.30)

i.e.,
σ−1

c (P )(v) = −σ0
c (1 + P )(v + 1)σ−1

c (A)(v)(σ0
c (1 + A)(v))−1. (3.8.31)

Clearly we can replace P in all those relations by 1 + P . This process can be continued. The
next step comes from (3.8.22) for i = 2 and by the known conormal symbols of 1+P for i = 0, 1
we can express σ−2

c (1 +P )(v) by terms which are computed before. In this process we employ
that the operator functions in M−∞

R (X) for any Mellin asymptotic type R can be translated
by shifts in the complex Mellin plane, and then πCR is also translated by the corresponding
shift, but the quality of spaces remains preserved. In addition we employ relation (3.8.11),
i.e., v-wise compositions (3.8.11) yield analogous classes (3.8.12). After finitely (namely, θ)
steps we can determine the full sequence (3.8.28) i.e., we can form

P :=
θ∑
i=0

riOp
γi−n2
M (li) (3.8.32)

where 1 + P is a left parametrix of 1 + A in the sense

(1 + P )(1 + A) = 1−G (3.8.33)

for a Green operator in the cone calculus, cf. relations (3.8.18). As noted before this result
just provides the final step in constructing parametrices in the cone calculus, modulo 1−G for
Green remainders. Another part inversion procedure has to be activated for the corresponding
Mellin-edge calculus.

Summing up the amplitude functions a(y, η) in (3.8.1) describe the specific edge part of
operators in (3.6.3). In other words we mainly look at the contributions which are new in
this calculus and localized close to the edge, except for the smoothing operator C, cf. formula
(3.6.4), which are defined globally on M . The interior part Aint is also a global information
but non-smoothing and belonging to the pseudo-differential calculus on s0(B) as a smooth
manifold. The situation is analogous to boundary value problems, where the boundary plays
the role of the edge, and R+ is the model cone of the wedge which describes in this case a collar
neighbourhood of the boundary. Also for boundary value problems, in general without the
transmission property Definition 3.6.2 is valid, but when the transmission property is satisfied,
as in Boutet de Monvel’s algebra, then the amplitude functions in (3.8.1) do not contain any
Mellin terms. Those operators M + G are only G appear in parametrix constructions, also
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when the original elliptic operators do not contain such terms, like in (degenerate) differential
operators.

Let us briefly comment the interplay between edge symbolic calculus which takes place on the
(infinite stretched) cone, and the edge calculus itself. As we observed in the case of Boutet
de Monvel’s calculus the edge symbols (analogous of boundary symbols) are operator-valued
and form themselves a calculus, here the cone calculus over X∧. In this case it is essential
to look at the infinite cone with control up to r = ∞, which we recognize as a conical exit
of the model cone to infinity, partly motivated by twisted homogeneity with respect to the
rescaling group κ = {κδ}δ∈R+ . On the other hand cone calculus is often considered on a
compact manifold M with conical singularity s1(M). So there are different versions of cone
algebras, the one on X∧ where upper ∧ indicates stretched variables, and another one on
compact M . Let us focus on the X∧-case. Here the motivation is similar as in the edge case
for a higher-dimensional edge, namely, to create an operator calculus which contains all Fuchs
type differential operators together with parametrices of elliptic elements, also controlled by a
principal symbolic hierarchy, in this case, again with two components, the interior symbol and
the principal conormal symbol, cf. the discussion around formula (3.6.18). However, over X∧

we also have to take care of the conical exit to infinity which incorporates a quite independent
symbolic structure with its own conditions of ellipticity, cf. the material of [30].

Let us stop here the discussion of the cone calculus, since we mainly focus on the higher-
dimensional edges. However, we tacitly employ the properties of the cone algebra over X∧,
similarly as the boundary symbolic calculus in Chapter 2. Let us finally develop the concept
of ellipticity in the edge calculus.

Definition 3.8.6. An A ∈ Lµ(M, g) for g = (γ, γ − µ,Θ) is called elliptic if

(i) A as an element of Lµcl(s0(M)) is elliptic in the standard sense,

(ii) close to s1(M), the edge, in the local splitting of variables into (r, x, y) ∈ X∧ × Rq and
covariables (ρ, ξ, η) the reduced interior symbol

σ̃0(A)(r, x, y, ρ, ξ, η)

is asked to be non-vanishing for all (ρ, ξ, η) 6= 0 and all (r, x, y) including r = 0,

(iii) the twisted homogeneous principal edge symbol

σ1(A)(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (3.8.34)

defines a family of isomorphisms for all s ∈ R, and η 6= 0.

Remark 3.8.7. Condition (iii) in Definition 3.8.6 can be generalized to the property that
(3.8.34) is only Fredholm rather than to be bijective which is the case in both cases for all
s ∈ R at the same time and is satisfied when it holds for one s ∈ R. In the non-bijective
case the associated operators in the edge calculus have to be equipped with extra conditions
of trace and potential type; similarly as in Boutet de Monvel’s calculus. However, in the
present exposition we try to keep the formalism as concise as possible and ignore the case of
Fredholm families. Concerning more information of K-theoretic character in this context, see
the monograph [20].

Moreover, observe that both ellipticity and later on parametrices of A do not require the
assumption of compactness of M , though X is always assumed to be compact.
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Definition 3.8.8. Let A ∈ Lµ(M, g) for g = (γ, γ−µ,Θ). An operator P ∈ L−µ(M, g−1) for
g−1 := (γ − µ, γ,Θ) is called a parametrix of A if relations

PA = 1− CL, AP = 1− CR (3.8.35)

hold for remainders CL ∈ L−∞(M, gL) and CR ∈ L−∞(M, gR), for gL = (γ, γ,Θ) and gR =
(γ − µ, γ − µ,Θ), respectively.

Theorem 3.8.9. An elliptic A ∈ Lµ(M, g), g = (γ, γ − µ,Θ) has a parametrix P ∈
L−µ(M, g−1), g−1 := (γ − µ, γ,Θ).

Remark 3.8.10. In Theorem 3.8.9 we tacitly assumed that asymptotic data involved in A are
constant under varying y along the edge. By that we mean the Mellin asymptotic types in the
smoothing Mellin symbols fjα in (3.7.29), the asymptotic types P , Q in the Green symbols of
Definition 3.7.3 as well as those in the smoothing operators in Definition 3.7.2 and finally those
which appear by the inverses of non-smoothing Mellin symbols h0(r, y, v, η) = h̃(0, y, v, rη) oc-
curring in formula (3.6.7). There are different ways to get rid of these assumptions. One of
the methods is to observe the asymptotic effects only in a small neighbourhood of the reference
weight lines Γn+1

2
−γ and Γn+1

2
−(γ−µ) in the complex Mellin plane; this was systematically in

Seiler’s thesis [68]. Another method is to generalize discrete to continuous asymptotics, as is
done, e.g., in [52] or [53], see also the special sections of [30]. In both cases we obtain para-
metrices in the respective operator classes, and also the Fredholm property of elliptic operators
(3.6.13). In any case the Fredholm property requires compactness M , and the theorem is as
follow.

Proof of Theorem 3.8.9. Let us sketch the main steps of the proof of Theorem 3.8.9. First
it is clear that the ellipticity condition (i) entails the existence of a parametrix Pint of Aint :=
A|s0(M), where without loss of generality we may assume Aint to be properly supported on
the open manifold s0(M). The idea of constructing P is to cover the stretched manifold M
associated with M by open sets

U0 ∪ U1

where U0 can be taken as s0(M) and U1 is a kind of caller neighbourhood of ∂M, in local
coordinates described by splitting of variables into (r, x, y) ∈ R+ × X × Rq. If (ϕ0, ϕ1) is a
subordinate partition of unity with respect to (U0, U1) and if P∂M is a parametrix over U1

then P itself may be found in the form

P = ϕ0 Pint ϕ
′
0 + ϕ1 P∂M ϕ

′
1 (3.8.36)

for other functions ϕ0 ≺ ϕ′0 in C∞0 (U0) and ϕ1 ≺ ϕ′1 in C∞0 (U1) (clearly the support close to
∂M ∩ U1) goes up to r = 0 as is the case for global cut-off functions. Similarly as in other
cases (3.8.36) does not depend on the auxiliary data ϕ0, ϕ1, etc., modulo smoothing operators
in the edge calculus. The bijectivity condition in (ii) for reduced symbols is covered by the
condition that the Mellin symbols

h̃(r, y, v, η̃) ∈ C∞(R+ × Rq,Mµ
Ov(X;Rq

η̃)) (3.8.37)

in Definition 3.6.2 are parameter-dependent elliptic with respect to the parameter η̃, for all
r, y, uniformly up to r = 0. Then, as we see how operator-valued symbols in (y, η) are involved



3.8 Ellipticity, parametrices, Fredholm property 129

in (3.6.5) we first establish the symbol inverses in terms of the Leibniz inversion which yield
an operator function

h(−1)(r, y, v, η) = h̃(−1)(r, y, v, rη) (3.8.38)

for an
h̃(−1)(r, y, v, η̃) ∈ C∞(R+ × Rq,M−µ

Ov (X;Rq
η̃)) (3.8.39)

and then we construct a preliminary parametrix P 0
∂M of A∂M := H, cf. notation of formula

(3.6.4). Before we establish P 0
∂M, we first sketch the last step of the parametrix construction.

Similarly as (3.8.36) we can form

P 0 := ϕ0 Pint ϕ
′
0 + ϕ1 P∂M ϕ

′
1 ∈ L−µ(M, g), (3.8.40)

and then, since P 0 coincides with the non-smoothing part of the desired parametrix, we obtain

P 0A = 1− C (3.8.41)

for a remainder C ∈ L0
M+G(M, gL). Then in another step of the full parametrix we can find a

D ∈ L0
M+G(M, gL) such that

(1−D)(1− C) = 1 mod L0
G(M, gL). (3.8.42)

In constructing 1 − D we can employ results of Theorem 3.8.5, i.e., we may focus on the
smoothing Mellin plus Green structure of the operators near the edge, because off some
neighbourhood of the edge the occurring remainders have smooth kernels. At the present step
we still have in the remainders full Mellin plus Green amplitude functions. Those belong to
(3.7.36) for g := gL. Since all our manipulations before took place with different kinds of
elliptic operators within the edge calculus. We now observe that the twisted homogeneous
principal edge symbols of P 0 and A are multiplicative. The one of A just occurs in the
ellipticity condition (3.8.34) and is bijective. The one of P 0 is generated automatically and is
not necessary bijective. However, we have

σ1(P 0A)(y, η) = σ1(P 0)(y, η) #y σ1(A)(y, η) (3.8.43)

with # being the Leibniz multiplication of the respective symbols; note that in this operator-
valued set-up the covariable η = 0 is not excluded, although ellipticity of these symbols only
concerns η 6= 0. Under (3.8.43) the principal conormal symbols are y-wise multiplicative, up
to the translation indicated in Theorem 3.8.4. Applying Proposition 3.8.3 y-wise we find an
element l00(y, v) ∈ C∞(Rq,M−∞

Q (X)) such that

(1− T µl00(y, v))(1− f00(y, v)) = 1 (3.8.44)

where f00 is by notation the principal conormal symbol of the Mellin plus Green part of
σ1(P 0A)(y, η). Let us set

P 1 := (1−OpM(l00)(y))P 0.

Then the principal conormal symbol of (1− OpM(l00)(y))P 0 is just the inverse of the one of
σ1(A)(y, η), and hence we found a modification of P 0 to P 1 such that

P 1A = 1− C1
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where
C1 ∈ L−1

M+G(M, gL) + L0
G(M, gL).

We now can apply Theorem 3.8.4 to remove by multiplying from the left an element 1−(M1 +
G1) ∈ L−1

M+G + L0
G to P 1 to get a P 2 such that

σ1(P 2)(y, η) = σ−1
1 (A)(y, η)

for all (y, η). Thus we obtain altogether an operator P 3 such that

P 3A = 1− C

holds where C belong to L0
G(M, gL). In order to improve P 3 to the desired parametrix PL with

remainder in L−∞G (M, gL) we can add to σ1(C)(y, η) a finite rank Green symbol to obtain a
bijective operator family 1− σ1(C)(y, η). Then the Leibniz inverse of this gives by

PL := Opy(1− σ1(C)(y, η)#−1)P 3.

In a similar manner we can construct PR as asserted.

Theorem 3.8.11. Let M be a compact manifold with edge. For an operator A ∈ Lµ(M, g),
g = (γ, γ − µ,Θ), the following conditions are equivalent:

(i) A is elliptic

(ii)
A : Hs,γ(M) −→ Hs−µ,γ−µ(M) (3.8.45)

is a Fredholm operator for some s = s0 ∈ R. This is equivalent with the Fredholm
property of (3.8.45) for all s ∈ R.

In addition parametrices in (3.8.35) can be chosen in such a way that CL and CR are projec-
tions to finite dimensional subspaces of H∞,γ(M) and H∞,γ−µ(M), respectively.

Proof. The proof of (ii)⇒ (i) is complicated and we will drop it, cf. [6]. This assertion just
means that ellipticity is a necessary condition for the Fredholm property. Relation (i)⇒ (ii),
i.e., that ellipticity is sufficient, is a consequence of Theorem 3.8.9. In fact the operators CL

and CR are compact in the respective weighted Sobolev spaces and then relations (3.8.35)
are equivalent for the Fredholm property for any s. This is a general functional analytic fact,
see any text book, say, [69]. In particular, kerA ⊂ H∞,γ(M) is of finite dimension, where
A is interpreted as (3.8.45) for some s0, where kerA in that sense is independent of s0, and
cokerA can be represented by a finite-dimensional subspace W ⊂ H∞,γ−µ(M) complementary
to ImA, i.e.,

ImA⊕W = Hs−µ,γ−µ(M)

for all s = s0; in other words W is independent of s0. The properties concerning projections
can be obtained by the following abstract arguments.

Consider scales of Hilbert spaces, briefly denoted by (Hs)s∈R and (H̃s)s∈R, and

A : Hs −→ H̃s−µ
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a Fredholm operator for all s, then there are operators of finite rank

K : Cn− −→ W, T : kerA −→ Cn+ (3.8.46)

which are bijections between Cn− to a W ⊂ H∞ of A which is of dimension n− and an
isomorphism of kerA to Cn+ such that

A :=

(
A K
T 0

)
:
Hs H̃s−µ

⊕ −→ ⊕
Cn− Cn+

(3.8.47)

is an isomorphism. For the parametrix of A which is of order µ and denoted in this substract by
P (and in our concrete application also belongs to the calculus of order −µ) we can construct
an isomorphism

P :=

(
P C
B 0

)
:
H̃s−µ Hs

⊕ −→ ⊕
Cm− Cm+

(3.8.48)

of a similar structure such that m− −m+ = −(n+ − n−) since

n+ − n− = indA = −indP,

in other words m− − n− = m+ − n+ := k for some k ∈ Z. Then we can modify P ⊕ I
where I is a bijection between k-dimensional subspaces W̃ ⊂ H̃∞ and W ⊂ H∞. Such that
kerP ∩ W̃ = {0} and cokerP ∩ W = {0}. If k ≤ 0 then we replace P by P ⊕ N where
N is a k × k-block matrix with entries ≡ 0, representing the zero map W̃ −→ W . These
modifications do not destroy the property of a parametrix of A in the upper left corner but
after this modification of P which we (now without loss of generality) denote by the same
letter, we have in new notation of m± that n− = m+, n+ = m−. We then obtain in new
notation

P :=

(
P C
B 0

)
:
H̃s−µ Hs

⊕ −→ ⊕
Cn+ Cn−

. (3.8.49)

Since our 2× 2-block matrix operators are isomorphisms we have A−1 = P i.e.,

P :=

(
P C
B 0

)(
A K
T 0

)
=

(
1 0
0 1

)
which means PA+ CT = 1 and similarly,(

A K
T 0

)(
P C
B 0

)
=

(
1 0
0 1

)
i.e., AP + KB = 1. Since CT is projection Hs −→ kerA and KB a projection H̃s−µ −→
kerP ∼= cokerA we proved that our remainders are just projections, namely,

CL = CT, CR = KB.



Chapter 4

Edge Boundary Value Problems

4.1 The approach via the Mellin transform

In the present Chapter N is a manifold with edge Y and boundary ∂N . We do not necessarily
assume that N is compact, i.e., when we consider an infinite cone XM or an infinite wedge
XM×Rq for a manifold X with boundary. Those spaces are examples of singular spaces with
boundary, and they are smooth but non-compact off the respective singularities (i.e., the tip
of the cone XM or the edge Rq of XM × Rq). When we remove those singularities s1(XM) or
s1(XM × Rq) we get smooth non-compact manifolds with boundary, and the operator classes
from Chapter 2 are equipped with some bundle information v = (E,F ; J−, J+). Looking
at the above singular spaces themselves we have to explain the nature of the bundles close
to s1(XM) or s1(XM × Rq). The canonical answer would be that they are coming from the
respective stretched manifolds which are defined for any singular manifold. In this case the
stretched manifold for XM is equal to the closed cylinder R+×X and for XM×Rq the Cartesian
product R+ ×X × Rq. The ellipticity condition (apart from the parameter-dependence) will
contain bijectivities of operator functions in variables/covariables on the respective stretched
manifolds, depending (according to a notation of Melrose [43]) on compressed coordinates on
the cotangent bundles of the corresponding stretched manifolds. In other words the bundles
E,F are basically living on the respective stretched manifolds and deserve notation like E,F,
etc. Compared with [43] the situation here is slightly more complicated, since X in our case
is a smooth manifold with boundary and the stretched manifolds require a careful definition,
because they already have corners which can be easily demonstrated by cutting away from a
manifold with smooth boundary like a cylinder R × X (where X just has a boundary) the
negative half cylinder R− ×X. Then there remains R+ ×X which is a manifold with corner,
i.e., we have an independent half-axis variables, one from R+, the other one from the inner
normal to ∂X. Under such circumstances it becomes complicated to alwayes indicate precise
definitions of the involved vector bundles, and to keep in mind various liftings, etc. Therefore,
from now on we drastically simplify notation and indicate everywhere trivial bundles of fiber
dimension 1, both on X as well as on ∂X, and also on the liftings to R+×X and R+×X×Rq

with respect to canonical projections R+ ×X −→ X and R+ ×X × Rq −→ X, respectively.
So when we employ Boutet de Monvel’s calculus from Chapter 2 the bundles E,F are both
replaced by X × C, whereas J−, J+ are both replaced by ∂X × C. The problem left to the
reader is to imagine to what extent bundles on cylinders like R+×X or R+×X×Rq are pull
backs of bundles on the respective bottoms. In addition we mainly talk about R+×X rather

132
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than R+ × X, since main attention concerns the open half axis and the use of the Mellin
transform, but some weight data close to r = 0 in operators of Boutet de Monvel’s calculus
remain under control.

Our manifoldN with edge and boundary is locally close to Y modeled onXM×Rq. The analysis
will be formulated on N \ Y , represented by the splitting of variables (r, x, y), referring to a
chart U → Rq on Y and a stretched singular chart mapping N \ Y close to points (·, y0) to
X∧ = R+ ×X for any fixed y0. On the open stretched cone we have weighted Kegel spaces

Ks,γ(X∧) (4.1.1)

of smoothness s ∈ R and weight γ ∈ R. Since X has a smooth boundary we often consider
the double 2X obtained by gluing together two copies X := X+ and X− of X along the
common boundary ∂X, and (4.1.1) is defined as Ks,γ(2X)∧|(intX)∧ , using a known definition
of such spaces Ks,γ(B∧) for a closed smooth manifold B. For the Mellin approach it is impor-
tant to employ a definition of such spaces purely based on Mellin operators taking values in
(classical) parameter-dependent pseudo-differential operators in Lµ(B;Rd

ζ) which have been
used in Chapter 2. Recall cf. formula (3.3.13), that Ks,γ(B∧) can be written in the form

Ks,γ(B∧) = {ωu0 + (1− ω)u∞ : u0 ∈ Hs,γ(B∧), u∞ ∈ Hs
cone(B

∧)} (4.1.2)

where ω = ω(r) is a cut-off function on the r half axis and Hs,γ(B∧) is defined via local
Fourier-Mellin Sobolev spaces with the norm

||u||Hs,γ(R+×Rn) =

{∫
Rn

∫
Γn+1

2 −γ

〈ξ, v〉2s|(Fx→ξMr→vu)(ξ, v)|2 d̄ξd̄v
}1/2

(4.1.3)

for

Γβ := {v ∈ C : Re v = β}

for any real β, d̄ξ = (2π)−ndξ, d̄v := (2πi)−1dv and complex integration along Γn+1
2
−γ from

Im v = −∞ to Im v = +∞. The space Hs
cone(B

∧) is a Fourier-based Sobolev space which
corresponds to Hs(R1+n

x̃ ) in Euclidean variables x̃ up to∞ when B = Sn is the unit sphere in
R1+n. For B in general there is an invariant definition with such an “Euclidean” behavior at∞
on conical subsets V defined by {x̃ ∈ R1+n \ {0} : x̃

|x̃| ∈ V1} for some coordinate neighborhood
V1 on Sn. The Mellin transform gives rise to weighted Mellin pseudo-differential operators
locally in R+ × Rn given by

Op
γ−n/2
M (f)u(r, x) :=∫

Γn+1
2 −γ

∫ ∞
0

∫
Rn

∫
Rn

(
r

r′

)v
ei(x−x

′)ξf(r, r′, x, x′, v, ξ)u(r′, x′) dx′d̄ξ
dr′

r′
d̄v

(4.1.4)

for some Mellin-Fourier symbols f(r, r′, x, x′, v, ξ) ∈ C∞(R+ × R+ × Rn × Rn, SµOv(R
n
ξ )). Ex-

pression (4.1.4) can be seen as a weighted Mellin operator, similarly as (3.3.7), here with
operator-valued symbol, acting on the base of the cone. Here SµOv(R

n
ξ ) is the space of all

A(Cv, S
µ
cl(Rn

ξ )) such that f(λ + iρ, ξ) ∈ Sµcl(Rρ × Rn
ξ ) for every λ ∈ R, uniformly in compact

λ-intervals.



134 Edge Boundary Value Problems

Globally along B we can also define spaces of Mellin symbols of order µ

Mµ
Ov(B)

as the set of all f(v) ∈ A(Cv, L
µ
cl(B)) such that f(λ + iρ) ∈ Lµcl(B; Γλ) for every λ ∈ R,

uniformly in compact λ-intervals. Here the parameter space Γλ is identified with {ρ ∈ R :
Im v = ρ}. It is also very instructive to define all those symbol and operator classes including
a parameter ζ ∈ Rd. Then we obtain the space Mµ

Ov(B;Rζ). The edge calculus, concerning
degenerate operators requires r-dependent Mellin symbols with involved parameters ζ

f(r, v, ζ) := f̃(r, v, rζ)

for f̃(r, v, ζ̃) ∈ C∞(R+,M
µ
Ov(B;Rd

ζ̃
)). We then employ a result of the boundary edge calculus,

namely, that for any f(r, v, ζ) of that kind the weighted Mellin operator

r−µOp
γ−n/2
M (f)(ζ) : Ks,γ(B∧) −→ Ks−µ,γ−µ(B∧) (4.1.5)

is continuous for every s ∈ R and weights γ ∈ R, varying in any finite weight interval and
that we find elements f such that (4.1.5) induces isomorphisms for sufficiently large |ζ|. It is
essential in this context that such Mellin symbols f of order −s induce an isomorphism

r−sOp
γ−s−n/2
M (f)(ζ) : K0,γ−s(B∧) −→ Ks,γ(B∧). (4.1.6)

This allows us, starting from the simple space K0,γ−s(B∧) to define Ks,γ(B∧) in an intrinsic
manner by Mellin operators, though the original definition of weighted Kegel spaces employ
the Fourier transform at ∞. In the case with boundary we set

Ks,γ(X∧) := Ks,γ(B∧)|(int X)∧ . (4.1.7)

4.2 The asymptotic content of the edge calculus

We now formulate the asymptotic part (M + G)(ζ) of the edge-calculus of boundary value
problems ζ ∈ Rd. The approach is similar to the case without boundary cf. Section 3.7. We
employ discrete asymptotic types associated with weight data (γ,Θ) for Θ = (−(θ + 1), 0],
θ ∈ N \ {0},

P = {(pj,mj)}j=0,...,N ⊂ C× N (4.2.1)

for an N ∈ N∪ {+∞}, where πCP := (pj)j=0,...,N is finite, otherwise πCP may be infinite and
then Re pj → −∞ as j →∞. In any case we require that

πCP ⊂ {v ∈ C :
n+ 1

2
− γ + (θ + 1) < Re v <

n+ 1

2
− γ}. (4.2.2)

If Θ is finite, the space EP(X∧) of singular functions of discrete asymptotics of type P on the
open stretched cone is defined as

EP(X∧) =

{ N∑
j=0

mj∑
k=0

cjk(x)r−pj logk r : cjk ∈ C∞(X)

}
(4.2.3)
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which is Fréchet in topology of a corresponding direct sum of copies of C∞(X), where the
number of copies is determined by the number of elements of πCP including the multiplicities
mj + 1.
For convenience we assume that asymptotic type P satisfies the shadow condition, cf. Section
3.7. The notation in (4.2.3) is valid for a smooth compact manifold X of dimension n with
boundary. We intend to apply it in analogous form for ∂X, and then denote corresponding
asymptotic types by P∂. However, for some normalizing reasons we adapt the dependence on
dimensions in relation (4.2.2). We will use the same rule on the position of points pj both for

P and P∂. Later on, we fix the normalizing factor δ
n+1
2 in the rescaling group in spaces (4.1.7)

, i.e.,

κδu(r, x) = δ
n+1
2 u(δr, x) (4.2.4)

when x varies on X. Moreover, we use a modified group action κ′δ when x varies on ∂X where

only the normalizing factor δ
n+1
2 is shifted, according to the order of trace operators.

We define flat functions relative to the weight γ as

Ks,γΘ (X∧) = lim←−
ε>0

Ks,γ−θ−1−ε(X∧) (4.2.5)

which is a Fréchet space as well, where

EP(X∧) ∩ Ks,γΘ (X∧) = {0}.

Such a relation is valid also when the boundary of X is empty. It comes from the fact that
the coefficients cjk in (4.2.3) are uniquely determined by the functions themselves. We then
set

Ks,γP (X∧) := EP(X∧) +Ks,γΘ (X∧) (4.2.6)

in the Fréchet topology of the direct sum. If Θ is infinite we form

Pl := {(p,m) ∈ P : Re p > γ − l}

for any l ∈ N. Then we have the spaces Ks,γPl (X∧), and we set

Ks,γP (X∧) := lim←−
l∈N
Ks,γPl (X∧). (4.2.7)

There are some other notations, derived from this kind of spaces. In particular, we set

Ks,γ;g(X∧) := [r]−gKs,γ(X∧), Ks,γ;g
P (X∧) := [r]−gKs,γP (X∧) (4.2.8)

for any fixed strictly positive function [r] such that [r] = r for |r| ≥ c for some c > 0.

Definition 4.2.1. A family of operators

g(y, η, ζ) ∈ C∞(Rq × Rq+d
η,ζ ,L

( Ks,γ;g(X∧)
⊕

Ks,γ;g((∂X)∧)
⊕
C

,

Ks−µ,γ−µ;g(X∧)
⊕

Ks−µ,γ−µ;g((∂X)∧)
⊕
C

)
), (4.2.9)
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continuous for all s, g ∈ R, is called a (local) Green symbol of order µ, first of type 0,
associated with weight data g = (γ, γ − µ,Θ), in the edge calculus of BVPs with constant
discrete asymptotics (constant with respect to y) if

g(y, η, ζ) ∈ Sµcl

(
Rq × Rq+d

η,ζ ;

Ks,γ;g(X∧)
⊕

Ks,γ;g((∂X)∧)
⊕
C

,

K∞,γ−µ;∞
P (X∧)
⊕

K∞,γ−µ;∞
P∂ ((∂X)∧)

⊕
C

)
(4.2.10)

and

g∗(y, η, ζ) ∈ Sµcl

(
Rq × Rq+d

η,ζ ;

Ks,−γ+µ;g(X∧)
⊕

Ks,−γ+µ;g((∂X)∧)
⊕
C

,

K∞,−γ;∞
Q (X∧)
⊕

K∞,−γ;∞
Q∂ ((∂X)∧)

⊕
C

)
(4.2.11)

Recall that the 3×3 diagonal matrix of group actions in (4.2.10) or (4.2.11), which determine
twisted orders in the block matrices of symbols correspond to diag(κδ, κ

′
δ, κ
′′
δ) for suitable

powers of δ, similarly as in (4.2.4). Examples for such effects may be found also in [20, page
276].

A Green symbol of order µ and type e ∈ N is defined as

g(y, η, ζ) = g0(y, η, ζ) +
e∑
j=1

gj(y, η, ζ)diag(∂jxn , 0, 0) (4.2.12)

for Green symbols gj(y, η, ζ) in the former sense, j = 0, . . . , e. Here diag (∂jxn , 0, 0) means the
diagonal matrix with corresponding entries, where xn indicates a global normal variable to
the boundary ∂X. Let Rµ,e

G (Rq
y × Rq+d

η,ζ , g) denote the space of such Green symbols.

Remark 4.2.2. Let us point out once again the meaning of notation in Definition 4.2.1.
As noted at the beginning of Section 4.1, the occurring Kegel spaces over X∧ and (∂X)∧,
respectively, are spaces of distributional sections over the respective spaces. In elliptic theories
we assume the fibre dimension of bundles in the upper left corners of operator block matrices
to be equal. However, in the operator algebra itself those dimensions may be arbitrary, but
also zero. The same is true for the other entries, including those in lower right corners. E.g.,
the components C represent fibres of vector bundles on Y . In precise descriptions one of those
or both may also vanish. Phenomena are similar to what we know from Boutet de Monvel’s
calculus over X, outlined in Chapter 2.

Similarly as (4.2.1) we now formulate discrete asymptotic types for Mellin symbols. Those are
defined as sequences

R = {(rj, nj)}j∈I ⊂ C× N (4.2.13)

for some index set I ⊆ Z ∪ {−∞} ∪ {+∞} such that πCR = {rj}j∈I intersects every finite
strip

{v ∈ C : c ≤ Re v ≤ c′}
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in a finite set. We now introduce the space

B−∞,eR

 X
×
∂X

 (4.2.14)

of smoothing Mellin symbols f(v) := (fij(v))i,j=1,2 with asymptotics of typesR := (Rij)i,j=1,2.
The elements f(v) of (4.2.14) are assumed to belongs to

A(Cv \ πCR,B−∞,e
 X
×
∂X

) (4.2.15)

such that f(v) is meromorphic with poles at rl ∈ πCR, more precisely, the respective entry
fij has poles at rl,ij of multiplicity nl,ij + 1, with finite rank Laurent coefficients belonging to

the ij-entry of B−∞,e
 X
×
∂X

, and for any πCR-excision function χ(v) we have

χf |Γλ ∈ S(Γλ,B−∞,e
 X
×
∂X

).

Clearly these formulations contain some abbreviations. We could speak about the entries
separately and refer to the individual Mellin asymptotic types, including rl,ij and nl,ij +
1. However, as far we have several asymptotic types there is always a larger one, in fact,
more crude, which contains the given ones in an evident way. Corresponding refinements of
formulations are left to the reader. In the following definition we employ such a simplified
style of notions.

Definition 4.2.3. An operator function

m(y, η, ζ) = ωη,ζr
−µ

θ∑
j=0

rj
∑
|α|≤j

Op
γjα−n/2
M (fjα)(y)(η, ζ)αω′η,ζ (4.2.16)

for elements fjα(y, v) ∈ C∞(Rq,B−∞,eRjα

 X
×
∂X

) and weights γ − j ≤ γjα ≤ γ such that

Γn+1
2
−γjα ∩ πCRjα = ∅

for all j = 0, . . . , θ, |α| ≤ j is called a smoothing Mellin operator family of the cone calculus.

Remark 4.2.4. The notation Green operators is inherited by a similar notion in Boutet de
Monvel’s calculus, where we have R+ rather than X∧ and more specific asymptotic types,
namely, coming from Taylor expansions of smooth functions. The associated Green operators
are related to Green’s function of boundary value problems.
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Let Rµ,e
M+G(Rq

y×R
q+d
η,ζ , g) denote the space of all so-called smoothing Mellin plus Green symbols

(m + g)(y, η, ζ) of the parameter-dependent edge calculus of boundary value problems. By
construction they are 2×2-block matrix functions of operators, where the various entries have
the interpretation either of upper left corner or of operators of trace and potential type.

We can specialize the definition to the case of (y, η)-independent operator functions, where
only ζ ∈ Rd remains. Then we obtain operators of the calculus over the infinite (stretched)

cone. The corresponding operator class will be denoted by LµM+G

 X
×
∂X

, and we treat the

elements as operators rather than amplitude functions.

Example 4.2.5. A family of 2 × 2-block matrices of operators hG(r, y, η, ζ) ∈ C∞(R+ ×

Rq
y,B

µ,0
Ov,G

 X

× ;Rq+d

η̃,ζ̃

∂X

) determines Green and smoothing Mellin edge symbols if

ωη,ζr
−µOp

γ−n/2
Mr

(hG)(y, η, ζ)ω′η,ζ :
Ks,γ;g(X∧) K∞,γ−µ;∞

P (X∧)
⊕ ⊕

Ks,γ;g((∂X)∧) −→ K∞,γ−µ;∞
P∂ ((∂X)∧)

(4.2.17)

and the (y, η, ζ)-wise formal adjoint with respect to the K0,0(X∧)⊕K0,0((∂X)∧)-scalar products

ω′η,ζr
−µOp

γ−n/2
Mr

(h∗G)(y, η, ζ)ω′′η,ζ :
Ks,−γ+µ;g(X∧) K∞,−γ;∞

Q (X∧)
⊕ −→ ⊕

Ks,−γ+µ;g((∂X)∧) K∞,−γ;∞
Q∂ ((∂X)∧)

(4.2.18)

are continuous for all s, g ∈ R, for Green symbol h∗G pointwise coming from Boutet de Monvel’s
calculus and for some discrete asymptotic types (P ,P∂) and (Q,Q∂), respectively.

Recall that in symbolic estimates of corresponding classical symbols we work with diag(κδ, κ
′
δ)

as group actions for suitably modified powers of δ.
The relationship between (4.2.17) and the form of smoothing Mellin plus Green operators
which has been introduced before can be illustrated by applying a Taylor expansion of
h(r, y, η, ζ) at r = 0. In fact, writing

hG(r, y, η, ζ) =
θ∑
j=0

rj
∂j

∂rj
hG(r, y, η, ζ)|r=0 +R(r, y, η, ζ) (4.2.19)

where the differentiation on the right-hand side of (4.2.19) is to be applied to the variable
r ∈ R+ from the assumed smooth dependence and by the chain rule to r which is involved in
the arguments rη, rζ. In the latter case we produce powers of various components of η and ζ.
Thus, when we multiply by r−µ and by the cut-off functions ωη,ζ and ω′η,ζ we exactly produce
an expression as in (4.2.16). The remainder R(r, y, η, ζ) contains an r- power of exponent> θ
and then we obtain a Green symbol in the edge framework on our manifold with edge, which
is at the same time Green operator-valued in close to the boundary of N .

In other words, Example 4.2.5 shows that the expression (4.2.17) belongs to Rµ,g
M+G(Ry ×

Rq+d
η,ζ , g) for any g, i.e., for g = (γ, γ − µ,Θ) for Θ of arbitrary length. In the example
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we discussed the 2 × 2 operator matrix case. Components in third rows and columns are
automatically contained in Definition 4.2.1. This class of examples can also be extended

to functions hG(r, y, η, ζ) taking values in B−∞,eR

 X

× ;Rq+d

η̃,ζ̃

∂X

∣∣∣∣
η̃=rη,ζ̃=rζ

for some constant

Mellin asymptotic type R. Then the same procedure with Taylor expansions gives us more
general examples of smoothing Mellin plus Green symbols in the edge calculus of boundary
value problems.

Note that Green operators admit alternative descriptions in terms of kernels, see analogously
the paper of Seiler [67] in the case without boundary.

With amplitude functions

(m+ g)(y, η, ζ) ∈ Rµ,e
M+G(Rq

y × Rq+d
η,ζ , g) (4.2.20)

we can associate a similar analysis as in the boundaryless case, cf. [53]. For instance, when we
change the cut-off functions involved in (4.2.16) or the weights γjα under preserving the fjα,
we only obtain Green remainders. Another typical observation is that the summand for j = 0
is independent of (η, ζ), except for the dependence of the cut-off functions on (η, ζ). Another
important aspect is that (4.2.20) is contained in

Sµcl

(
Rq × Rq+d

η,ζ ;

Ks,γ(X∧)
⊕

Ks,γ((∂X)∧)
⊕
C

,

K∞,γ−µ(X∧)
⊕

K∞,γ−µ((∂X)∧)
⊕
C

)
(4.2.21)

for s > max {µ, e} − 1
2

and similarly, when we insert in both spaces on the right-hand side
subspaces with asymptotics. The latter relations allow us to pass to continuous operators
Opy(m+ g) between corresponding weighted edge spaces and subspaces with asymptotics.

Proposition 4.2.6. Let a(y, η, ζ) in (4.2.21) be a sequence of smoothing Mellin plus Green
symbols, j ∈ N, and assume that the asymptotic types contained in Green parts are independent
of j. Moreover, let aj(y, η, ζ) be of order µ − j. Then there is an a(y, η, ζ) in (4.2.21) such
that for every N we have

a(y, η, ζ) =
N∑
j=0

χ(η, ζ)aj(y, η, ζ) + r(y, η, ζ) (4.2.22)

for some smoothing Mellin plus Green symbol of order µ − (N + 1) and a(y, η, ζ) is unique
modulo a corresponding symbol of that kind of order −∞ and type e.

The proof is similar to the case of Mellin plus Green operators on manifolds with edge without
boundary, see, [53, Proposition 3.3.11]. In fact, smoothing Mellin symbols become Green as
soon as their orders are ≤ N for some suitable finite N . Therefore, there are only finitely
many aj in Proposition 4.2.6 not Green, which proves the statement.



140 Edge Boundary Value Problems

4.3 Composition of smoothing Mellin plus Green ope-

rators

The property (4.2.21) also allows us to form homogeneous components with respect to twisted
homogeneity. We mainly consider the case of (y, η, ζ)-dependent symbols. (y, η)-independent
families are an obvious special case. If g(y, η, ζ) belonging to (4.2.21) is Green, then the main
symbolic information is g(µ)(y, η, ζ), the homogeneous principal symbol of order µ which is
also of 3× 3-block matrix form.

concerning (4.2.16) we form the homogeneous principal part of order µ by

m(µ)(y, η, ζ) := ω|η,ζ|r
−µ

θ∑
j=0

rj
∑
|α|=j

Op
γjα−n/2
M (fjα)(y)(η, ζ)αω′|η,ζ|. (4.3.1)

Theorem 4.3.1. Let (m+g)(y, η, ζ), (l+h)(y, η, ζ) be two elements in the class of smoothing
Mellin plus Green symbols of order µ and ν, and with weight data (−ν, γ − (µ + ν),Θ) and
(γ, γ−ν,Θ), respectively. Then the composition (m+g)(l+h)(y, η, ζ) is again smoothing Mellin
plus Green, of order µ + ν, and with weight data (γ, γ − (µ + ν),Θ), and the homogeneous
principal symbols multiplicatively. If one of the factors is Green, then so is the composition.

Remark 4.3.2. The composition of smoothing Mellin plus Green symbols also entails a com-
position between the sequences of associated conormal symbols, via an analogoue of the Mellin
translation product, known from the calculus in the case without boundary.

4.4 The edge algebra of BVPs

In the preceding subsections we introduce the material on smoothing Mellin plus Green ope-
rators in 3× 3-block matrix form

Lµ,eM+G(N , g;Rd) (4.4.1)

for N is a manifold N with edge Y and boundary, with weight data g = (γ, γ − µ,Θ). The
definition of (4.4.1) is based on locally near Y representing operators on X∧×Rq in terms of
Mellin plus Green symbols, while far from Y we define

L−∞,eM+G

 N
× , g ;Rd

ζ

∂N

∣∣∣∣
N\Y

= B−∞,e
 N \ Y

× , g ;Rd
ζ

∂N \ Y

 . (4.4.2)

By definition we have similarly as (4.4.2) the property

Lµ,e

 N
× , g ;Rd

ζ

∂N

∣∣∣∣
N\Y

= Bµ,e
 N \ Y

× , g ;Rd
ζ

∂N \ Y

 . (4.4.3)

Since extra entries corresponding to matrix elements (m+ g)13, (m+ g)23, (m+ g)33 or (m+
g)31, (m + g)32 only concern the smoothing Mellin plus Green part, in the consideration of
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non-smoothing elements of the full calculus it suffices to look at 2× 2-upper left corners. Let
us now pass to defining the block matrix spaces

Lµ,e

 N
× , g ;Rd

ζ

∂N

 , Lµ,e(N , g;Rd
ζ) (4.4.4)

for N × ∂N × Y of edge BVPs on N with non-smoothing ingredients. The elements of the
space on the right-hand side of (4.4.4) formally have the form

A(ζ) = (Aij(ζ))i,j=1,2,3

where the 2 × 2-upper left corners (Aij)i,j=1,2 are just (by definition) constituted by the
operator space on the left of (4.4.4), the ingredient of which have the structure as the set of
all operator functions

A(ζ) = H(ζ) + (M +G)(ζ) + Aint(ζ) + C(ζ) (4.4.5)

where C(ζ) ∈ L−∞,e
 N
× , g ;Rd

ζ

∂N

 are smoothing operators, Aint(ζ) in Bµ,e
 N
× ;Rd

ζ

∂N

,

up to some cut-off factors (1 − ω) from the left, (1 − ω′′) from the right, and (M + G)(ζ) ∈

Lµ,eM+G

 N
× , g ;Rd

ζ

∂N

 in 2×2-block matrix form. The elements referring to Y with entries in

the third row or column are defined by the corresponding rows and columns of G+C, where G
is a 3×3-block matrix with symbols as in Definition 4.2.1, namely Green, and C is a smoothing
operator of the calculus, defined at the end of Section 4.5. Since it makes sense to formulate
contributions close to Y and to refere to local coordinates Rq on Y we focus on corresponding
local expressions. The operators H(ζ) are based on holomorphic Mellin symbols, according
to the following notation. By

Bµ,eOv

 X

× ;Rq+d
η,ζ

∂X

 (4.4.6)

denote the space of all h(v, η, ζ) ∈ A(Cv,Bµ,e
 X

× ;Rq+d
η,ζ

∂X

) such that

h(v, η, ζ)|Γλ×Rdζ ∈ B
µ,e

 X

× ; Γλ × Rq+d
η,ζ

∂X


for every λ ∈ R, uniformly in compact λ intervals. The space (4.4.6) is Fréchet in a natural
way. This allows us to define the space of all h(r, y, v, η, ζ) = h̃(r, y, v, rη, rζ) for

h̃(r, y, v, η̃, ζ̃) ∈ C∞(R+ × Rq,Bµ,eOv

 X

× ;Rq+d

η̃,ζ̃

∂X

). (4.4.7)



142 Edge Boundary Value Problems

We then form for any such h the operator

H(ζ) = Opy{r−µωOp
γ−n/2
Mr

(h)(y, η, ζ)ω′} (4.4.8)

for cut-off functions ω ≺ ω′. The representation (4.4.5) of operators in Boutet de Monvel’s
calculus on a manifold with edge and parameters ζ is justified by the results of [29] which
extends corresponding results of [18] to the present situation of boundary value problems.
According to this viewpoint we also define an edge symbol

σ1(H(·))(y, η, ζ) := r−µOp
γ−n/2
Mr

(h0)(y, η, ζ) (4.4.9)

for h0(r, y, v, η, ζ) := h̃(0, y, v, rη, rζ), and (η, ζ) 6= 0. Then

σ1(H(·))(y, η, ζ) :
Ks,γ(X∧) Ks−µ,γ−µ(X∧)
⊕ −→ ⊕

Ks,γ((∂X)∧) Ks−µ,γ−µ((∂X)∧)
. (4.4.10)

Moreover, for

(M +G)(ζ) ∈ Lµ,eM+G

 N
× , g ;Rd

ζ

∂N

 , (4.4.11)

locally close to Y represented by Opy(m+ g)(ζ). In other words, up to smoothing operators,
to be defined below, we introduced the 3 × 3-block matrix operator space, i.e., the second
space in formula (4.4.4). This will be often abbreviated by Lµ,e(N , g;Rd

ζ).

For elements of smoothing Mellin plus Green type, using charts and a partition of unity, etc.,
we define

σ1((M +G)(·))(y, η, ζ) := m(µ)(y, η, ζ) + g(µ)(y, η, ζ) (4.4.12)

for (η, ζ) 6= 0, where m(µ) is defined by (4.3.1) and g(µ) is the homogeneous principal symbol
of g(y, η, ζ), cf. Definition 4.2.1. Both m(µ) and g(µ) may be interpreted as 3 × 3 matrices
by filling up the 2 × 2 matrix m(µ) by zeros in the entries contained in the third row or
column. A similar interpretation holds for the operator matrices themselves. The remaining
summands on the right-hand side of (4.4.5), namely, Aint(ζ) and C(ζ) do not contribute to
σ1(A(·))(y, η, ζ). However, we have a 2-component principal symbolic hierarchy

σ(A(·)) = (σ0(A(·)), σ1(A(·))) (4.4.13)

where σ0(A(·)) splits up to the interior part

σ0,ψ(A(·))(x, ξ; r, y, ρ, η, ζ) (4.4.14)

which is the parameter-dependent homogeneous principal symbol containing all variables
x, r, y and covariables ξ, ρ, η, ζ only depending on the upper left corner A11(ζ) of the 3 × 3-
operator block matrix

A(ζ) =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (ζ) (4.4.15)

and
σ0,∂(A(·))(x′, ξ′; r, y, ρ, η, ζ), (4.4.16)
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the boundary part which only depends on the upper left 2 × 2-corner of A(ζ). Note that
both σ0,ψ(A(·))(x, ξ; r, y, ρ, η, ζ) and σ0,∂(A(·))(x′, ξ′; r, y, ρ, η, ζ), contain the weight factor
r−µ. Moreover, we have a variant of so-called reduced symbol without this factor, namely, by

σ̃0,ψ(A(·))(x, ξ; r, y, ρ, η, ζ) := rµσ0,ψ(A(·))(x, ξ; r, y, r−1ρ, r−1η, r−1ζ) (4.4.17)

and

σ̃0,∂(A(·))(x′, ξ′; r, y, ρ, η, ζ) := rµσ0,∂(A(·))(x′, ξ′; r, y, r−1ρ, r−1η, r−1ζ) (4.4.18)

which are both smooth in r up to r = 0. Similarly as (4.4.14) and (4.4.16) the reduced symbols
only depend on A11 and on the upper left 2× 2-corner of (4.4.15).

Remark 4.4.1. As is standard in symbolic hierarchies we have natural compatibility relations
between the components of (4.4.13), including between the ψ-and the ∂-part of σ0.

4.5 Continuity in weighted spaces

Similarly as in the edge calculus without boundary we have weighted spaces on N and ∂N ,
respectively, which are defined by local spaces of the kind

Ws(Rq, H) (4.5.1)

where H is a Hilbert or Fréchet space with group action. In our application those spaces are
Kegel spaces Ks,γ(X∧) and Ks,γP (X∧) with asymptotics of type P as well as corresponding
spaces referring to the boundary. Spaces over Y which are involved in operators of lower right
corners are simply standard Sobolev spaces Hs(Y ), s ∈ R. Recall that (4.5.1) is equipped with
the norm

||u||Ws(Rq ,H) =

{∫
Rq

[η]2s||κ−1
[η] (Fu)(η)||2H d̄η

}1/2

(4.5.2)

where a group action κ = {κδ}δ∈R+ on the Hilbert space H is determined as a family of
isomorphisms

κδ : H −→ H,

δ ∈ R+, such that κδκδ′ = κδδ′ , κ1 = idH , and δ → κδh an element in C(R+, H) for every
h ∈ H. Such a definition extends to any Frèchet space E written as a projective limit of

E = lim←−
j∈N

Ej

embedded in E0 for all j such that E0 is equipped with a group action κ in the former sense,
and the group action on Ej is the restriction of κ from E0 to Ej. Our spaces Ks,γP (X∧) with
asymptotics are of this kind. In the present situation N ∈ N1 is a manifold with edge Y ,
with boundary. We employ notation as at the beginning of Section 4.1, namely, the process
of doubling up a given space with boundary. In other words , for two copies of our compact
manifold N = N+ with edge and boundary and its negative counterpart N− we form 2N :=
N−∪∂ N+ where ∪∂ indicates gluing together N+ and N− along the common boundary. Then
B := 2N is a manifold with edge Y and without boundary, and B allows us to form a stretched
manifold B which is locally close to Y modeled on R+× 2X ×Rq. Then the double 2B of B is
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locally identified with R×2X×Rq with, i.e., by identifying the boundary of R+×2X×Rq with
that of the negative counterpart R−×2X×Rq along {0}×2X×Rq. This common boundary is
in turn corresponds to a locally trivial 2X-bundle over Y . Now concerning concrete weighted
edge spaces we first form

Ws(Rq,Ks,γ((2X)∧))

with respect to the group action κ on H = Ks,γ((2X)∧)) defined by

(κδu)(r, x) := δ(n+1)/2u(δr, x). (4.5.3)

Globally on Y by using a convenient atlas of charts Uj → Rq, j ∈ N, and a subordinate
partition of unity we form the spaces

Ws(Y,Ks,γ((2X)∧)),

which are subspaces of Hs
loc(s0(2N)). Thus, using a cut-off function ω on 2N (≡ 1 close to Y ,

≡ 0 off some small neighbourhood of Y ) it makes sense to set

Hs,γ(2N) :=Ws(Y,Ks,γ((2X)∧)) + (1− ω)Hs
loc(s0(2N)). (4.5.4)

We can restrict the spaces to intN+, by using that 2N = N− ∪∂ N+. This gives us

Hs,γ(N) := ωWs(Y,Ks,γ(X∧+)) + (1− ω)Hs
loc(s0(N+)). (4.5.5)

The spaceWs(Y,Ks,γ(X∧)) can also be understood in terms ofWs(Rq,Ks,γ(X∧)) in the sense
of (4.5.2) for H = Ks,γ(X∧) endowed with the group action (4.5.3) induced in an obvious
manner from the case over (2X)∧. The reason for the definition via doubles is that X∧ has a
second order corner, and operators have to be controlled close to such a singularity, which is
done here thanks to the transmission property of our pseudo-differential operators with the
r+/e+ convention close to the boundary. So the calculus in different singular directions, first
xn ∈ R+, the inner normal to the boundary and r ∈ R+, the cone axis variable for the open
stretched cone X∧ with the “right” Mellin operator convention will be possible, since formally
we pretend X or N to behave like a boundaryless configuration. This will be done first in
local terms on

R+ × Rn

+ × Rq 3 (r, x, y), (4.5.6)

for x = (x′, xn) and then globally on N , using a natural transition behaviour between repre-
sentations for different charts. Recall from Chapter 2 , given a symbol a(x, ξ) on Rn with the
transmission property at xn = 0 we define

Op+(a)(x′, ξ′) = r+Op(a)(x′, ξ′)e+ (4.5.7)

and then
Op+

x (a) = Opx′(Op+(a)(x′, ξ′)) (4.5.8)

with (4.5.7) being interpreted as an operator-valued symbol in variables x′ ∈ Rn−1 and co-
variables ξ′. We envoke the concept of sleeping variables and covariables which are contained
in the symbol a, namely, we have for the cone theory over X∧ for x = (x′, xn), cf. (4.5.6),

a(r, x, ρ, ξ) = r−µa(r, x, rρ, ξ) (4.5.9)
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or, more generally, in variables of (4.5.6)

a(r, x, y, ρ, ξ, η) = r−µa(r, x, rρ, ξ, rη) (4.5.10)

for
ã(r, x, y, ρ̃, ξ, η̃) ∈ C∞(R+ × Rn

+ × Rq, Sµtr(Rρ̃ × Rn
ξ × Rq

η̃)). (4.5.11)

The operator convention (4.5.10), (4.5.11), for edge-degenerate symbols with transmission
property will be combined with other elements of the edge calculus, namely, the kernel cut-off
in Mellin terms, denoted by

Vψ : Sµtr(Rρ̃ × Rn
ξ × Rq

η̃) −→ SµOv ,tr(R
n
ξ × Rq

η̃) (4.5.12)

or, more generally,

Vψ : C∞(R+×Rn

+×Rq, Sµtr(Rρ̃×Rn
ξ ×Rq

η̃)) −→ C∞(R+×Rn

+×Rq, SµOv ,tr(R
n
ξ ×Rq

η̃)). (4.5.13)

Applying these maps to symbols (4.5.11) gives us Mellin symbols

h̃11(r, x, y, v, ξ, η̃) ∈ A(Cv, C
∞(R+ × Rn

+ × Rq, Sµtr(Rn
ξ × Rq

η̃))), (4.5.14)

and our local r+/e+ operator convention combined with the Mellin convention gives rise to
(y, η)-dependent families of operators

h̃11(r, x, y, v, ξ, rη) := h11(r, x, y, v, ξ, η) (4.5.15)

ωr−µOp
γ−n/2
Mr

(Op+
x (h11))(y, η)ω′ : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧), (4.5.16)

for cut-off functions ω ≺ ω′ in the axial variable r. Expression (4.5.16) contains some assump-
tions on how we interpret notation. From the construction on a manifold N with edge and
boundary it is, up to an expression of local representatives interpreted in terms of (stretched)
wedges Rq×X∧ where because of subsequent summations we may assume that our functions
in (4.5.14) have compact support in coordinate neighbourhoods on Y and X, respectively, and
the functions are expressed in local coordinates in Rn

+ or Rq. Clearly, up to some diffeomor-

phisms of the respective local representations in x ∈ Rn

+ and y ∈ Rq to X and Y , respectively,
and multiplications by localizing factors ψj ≺ ψ′j, in y and ϕl ≺ ϕ′l in x (expressed either on

Y (Rq) or on X (Rn

+)), where (ψj)j=1,...,J represents a partition of unity on Y subordinate
to the chosen charts, and similarly, (ϕl)l=1,...,L on X, where the supports of ψ′j and ϕ′l are
compact as well, the operators (4.5.16) contain ψjϕl · · ·ϕ′iψ′j, and finally the global operators
are obtained by taking sums over j = 1, . . . , J and l = 1, . . . , L. For brevity we omit this com-
plicated notation but only preserve the cut-off functions ω, ω′ multiplied from the respective
sides which is a typical effect in our degenerate operators close to the edge. Possible problems
with the pseudo-locality of operators will be cutted away by using a partition of unity for
corresponding global actions on X∧. In other words, in globalized form the Mellin operator
families on X∧ are mappings

ωr−µOp
γ−n/2
Mr

(f)(y, η)ω′ : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (4.5.17)

for f(r, y, v, η) = f̃(r, y, v, rη),

f̃(r, y, v, η̃) = (Op+
x (h11))(r, y, v, η)
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belongs to C∞(R+ × Rq,Bµ,eOv (X;Rq
η̃)). The operator families (4.5.16) can be generalized to

the ζ-dependent case, assuming

h̃11(r, x, y, v, ξ, η̃, ζ̃) ∈ A(Cv, C
∞(R+ × Rn

+ × Rq, Sµtr(Rn
ξ × Rq

η̃ × Rd
ζ̃
))), (4.5.18)

rather than (4.5.14). Other details on ζ-dependence are straightforward and then the context

agrees with the one of the preceding section. When we write h11 instead of r−µOp
γ−n/2
Mr

, then
the globalized operator (4.5.17) represents an element

r−µh11(y, η, ζ) = r−µOp
γ−n/2
Mr

(f)(y, η, ζ) ∈ Sµ(Rq × Rq+d;Ks,γ(X∧),Ks−µ,γ−µ(X∧)). (4.5.19)

Recall that the order µ is induced by the weight factor r−µ. Another argument for (4.5.19) is
a standard tensor product argument. From this property we deduce the following.

Theorem 4.5.1. The operator

ϕOpy{r−µOp
γ−n/2
Mr

(h11)(y, η, ζ)ω′}ϕ′ (4.5.20)

induces a continuous operator

H11(ζ) : Hs,γ(N) −→ Hs−µ,γ−µ(N) (4.5.21)

for every s ∈ R.

Proof. The result is a consequence of (4.5.19), i.e., the continuity of pseudo-differential ope-
rators with symbols of twisted homogeneity µ.

Similar continuity results hold for the remaining entries of (4.4.8) as well as for the con-
tributions from (4.4.11), which yield, together with Aint(ζ) and C(ζ). In fact, the entries
(Hij(ζ))i,j=1,2 are determined by complete symbols hij(y, η, ζ), more precisely,

hij(y, η, ζ)i,j=1,2(y, η, ζ) ∈ Sµ
(
Rq × Rq+d;

Ks,γ(X∧)
⊕

Ks,γ((∂X)∧)
,
Ks−µ,γ−µ(X∧))

⊕
Ks−µ,γ−µ((∂X)∧)

)
, (4.5.22)

then we obtain the following result.

Theorem 4.5.2. The 2×2-upper left corners of operators (4.4.5) induce continuous operators

Hs,γ(N) Hs−µ,γ−µ(N)
⊕ −→ ⊕

Hs,γ(∂N) Hs−µ,γ−µ(∂N)
(4.5.23)

for every s ∈ R. The other entries of (4.4.5) referring to the third components are completing
the operators to continuous maps

Hs,γ(N) Hs−µ,γ−µ(N)
⊕ ⊕

Hs,γ(∂N) −→ Hs−µ,γ−µ(∂N)
⊕ ⊕

Hs(Y ) Hs−µ(Y )

(4.5.24)
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Proof. A similar result holds with respect to subspaces with asymptotics. The main contri-
bution comes from a description of operators in terms of symbols in

Sµ
(
Rq × Rq+d;

Ks,γ(X∧)
⊕

Ks,γ((∂X)∧)
⊕
C

,

Ks−µ,γ−µ(X∧))
⊕

Ks−µ,γ−µ((∂X)∧)
⊕
C

)
. (4.5.25)

The smoothing operator C(ζ) is continuous by definition, given below, and the interior part
yields continuity in the 2× 2-upper left corner, known from the boundaryless case.

Remark 4.5.3. Recall that all spaces contain general abbreviations in the sense that we
consider spaces of distributional sections in vector bundles cf. the remarks at the beginning of
Section 4.1. This holds both for the symbols and for the final operators. Although the meaning
is straightforward, details require some voluminous notation.

Remark 4.5.4. There is an analogue of Theorem 4.5.2 which states continuity between cor-
responding subspaces with (discrete) asymptotics. This is employed later on for establishing
elliptic regularity with asymptotics. In this framework we also employ continuity of a Green
operators in our calculus from a space without asymptotics to someone with asymptotics.

It remains to define the space
L−∞,e(N , g;Rd

ζ) (4.5.26)

of smoothing operators. Those can be defined, first for e = 0, starting with continuous ope-
rators

Hs,γ(B) H∞,γ−µP (B)
⊕ ⊕

Hs,γ(∂N) −→ H∞,γ−µP∂ (∂N)
⊕ ⊕

Hs(Y ) H∞(Y )

(4.5.27)

consisting of vectors over different manifolds B and ∂N with edge plus a smooth manifold Y .
Here we have a natural local scalar product (·, ·)0

H0,0(B)⊕H0,0(∂N)⊕H0(Y ).

For compact B, ∂N, Y this allows us to define a non-degenerate sesquilinear pairing

(·, ·)0 : Hs,γ(B)⊕Hs,γ(∂N)⊕Hs(Y )×H−s,−γ(B)⊕H−s,−γ(∂N)⊕H−s(Y ) −→ C (4.5.28)

which gives rise to formal adjoints C∗(ζ) of continuous operators like (4.5.27). Then we first
obtain

L−∞,0


B
×
∂N , g
×
Y

 (4.5.29)

as the set of all C of the kind (4.5.27) for all s ∈ R and for suitable asymptotic types P ,P∂,
such that C∗ is of analogous structure, with other asymptotic types Q,Q∂, depending on C.
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Such operators are well-known from the edge calculus without boundary, and those operator
can be understood in terms of kernels. Concerning the ζ-dependent case we simply form

L−∞,0


B
×
∂N , g ;Rd

ζ

×
Y

 := S(Rd
ζ , L

−∞,0


B
×
∂N , g
×
Y

). (4.5.30)

In order to get spaces of smoothing operators over N × ∂N × Y we restrict the kernels
associated with (4.5.30) from B = 2N to intN where N = N+ is the positive part of N
contained in the double. This gives us the modification for

L−∞,0(N , g;Rd
ζ) (4.5.31)

non-trivial e ∈ N is similar to (4.2.12). We form sums

C(ζ) = C0(ζ) +
e∑
j=1

Cj(ζ)diag (∂jxn , 0, 0) (4.5.32)

for C0(ζ) and Cj(ζ) belonging to (4.5.31).

All operators in Lµ,e(N , g;Rd
ζ) which are defined so far, except for L−∞,e(N , g;Rd

ζ) can be
defined in terms of locally finite sums of local expressions, compactly supported in coordinate
neighborhoods on the respective manifolds. Such operators are called properly supported. In
other words, we have

Proposition 4.5.5. Every A(ζ) ∈ Lµ,e(N , g;Rd
ζ) can be written in the form

A(ζ) = A0(ζ) + C(ζ) (4.5.33)

for a properly supported A0(ζ) ∈ Lµ,e(N , g;Rd
ζ) and some C(ζ) ∈ L−∞,e(N , g;Rd

ζ).

4.6 Compositions

Similarly as Boutet de Monvel’s calculus on a smooth manifold with boundary we have the
algebra property in which the symbols are multiplicative. This requires to note that the space
Σµ,e(N , g;Rd) of parameter-dependnet symbols belonging to elements in Lµ,e(N , g;Rd

ζ) itself
has a rich structure. In particular, the components of

σ(A(·)) = (σ0(A(·)), σ1(A(·))) (4.6.1)

satisfy natural compatibility conditions. Moreover, the map

σ : Lµ,e(N , g;Rd
ζ) −→ Σµ,e(N , g;Rd) (4.6.2)

is well-defined by a reproducing process of symbols when the elements A(ζ) are given. For
instance, if G(ζ) ∈ Lµ,eG (N , g;Rd

ζ) we find the associated twisted homogeneous principal symbol
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by a limit

g(µ)(y, η, ζ) = σµ(G(·))(y, η, ζ) =

lim
δ→∞

κδ 0
κ′δ

0 δ
n+1
2

−1

δ−µg(y, δη, δζ)

κδ 0
κ′δ

0 δ
n+1
2

 (4.6.3)

for the above-mentioned meaning of κ′δ, where we apply a symbolic map G(ζ) → g(y, η, ζ)
according to the general rule to producing from a properly supported representative of G(ζ)
such that G(ζ) = Opy(g)(ζ) modulo L−∞,e(N , g;Rd

ζ).

Thus, setting
Lµ−1,e(N , g;Rd

ζ) := {A ∈ Lµ,e(N , g;Rd
ζ) : σµ(A) = 0}

we have an exact sequence

0 −→ Lµ−1,e(N , g;Rd
ζ)

ι−→ Lµ,e(N , g;Rd
ζ)

σ−→ Σµ,e(N , g;Rd) (4.6.4)

with ι being the canonical embedding, and the sequence splits, similarly as in the standard
scalar pseudo-differential calculus.

For Lµ,eM+G and Lµ,e itself we have other adequate rules of the relationship between operators
and principal symbols. Similarly as the above notation we successively form

Lµ−2,e(N , g;Rd
ζ) := {A ∈ Lµ−1,e(N , g;Rd

ζ) : σµ−1(A) = 0}
using the fact that Lµ−1,e(N , g;Rd

ζ) has a principal symbol of order µ− 1, denoted by σµ−1.
By continuity this process we define

Lµ−(N+1),e(N , g;Rd
ζ) := {A ∈ Lµ−N,e(N , g;Rd

ζ) : σµ−N(A) = 0}. (4.6.5)

Theorem 4.6.1. Let Aj(ζ) ∈ Lµ−j,e(N , g;Rd
ζ), j ∈ N, be an arbitrary sequence where the

involved asymptotic types in Green operators as well as the Boutet de Monvel types e are
independent of j. Then there is an A(ζ) ∈ Lµ−j,e(N , g;Rd

ζ) such that for every N ∈ N

A(ζ)−
N∑
j=0

Aj(ζ) ∈ Lµ−(N+1),e(N , g;Rd
ζ), (4.6.6)

and A(ζ) is unique modulo L−∞,e(N , g;Rd
ζ).

The proof is a straightforward consequence of the definition.

Theorem 4.6.2. Given operators families A(ζ) ∈ (4.5.26) for g1 := (γ − ν, ν − (µ + ν),Θ)
and B(ζ) of analogous structure, of order ν and type ẽ with weight data g2 := (γ, γ− ν,Θ) we
have

A(ζ)B(ζ) ∈ Lµ+ν,l(N , g̃;Rd
ζ) (4.6.7)

and
σ(A(·))σ(B(·)) = σ(A(·)B(·)) (4.6.8)

for g̃ = (γ, γ − (µ+ ν),Θ) and l = max{ν + e, ẽ}, with component-wise composition. If A(ζ)
or B(ζ) belongs to the respective operator spaces with subscript M + G or G, then the same
is true of the composition. In such compositions we either assume that N, Y are compact, or
localized by compactly supported functions, or properly supported.

The proof is a generalization of the composition behaviour in edge algebras of the standard
edge calculus, see, the methods of [18], [68].
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4.7 Ellipticity

Ellipticity of operators in A(ζ) in the space

Lµ,e(N , g;Rd
ζ) (4.7.1)

is defined in terms of the symbols (4.6.1). First we have the symbols (including their reduced
variants) σ0, σ̃0, σ1, σ̃1 from the parameter-dependent Boutet de Monvel’s calculus, where for
the moment we treat σ0 and σ̃0 as scalar symbols

σ0(A(·))(x, ξ, ζ) (4.7.2)

where x is the variable running over intN and ξ the associated covariable. Close to ∂N we
have a splitting x = (x′,xn) with covariables ξ = (ξ′, ξn, ζ) which gives us the operator-valued
boundary symbol

σ0,∂(A(·))(x′,xn, ξ′, ξn) :
Hs(R+) Hs−µ(R+)
⊕ −→ ⊕
C C

. (4.7.3)

Close to the edge Y we have a splitting of variables and covariables into x = (r, xint, y) and
covariables ξ = (ρ, ξint, η) for variables/covariables (xint, ξint, ζ) globally over X, which gives
us

σ0,int(A(·))(r, xint, y, ρ, ξint, η, ζ), (4.7.4)

and the reduced version

σ̃0,int(A(·))(r, xint, y, ρ, ξint, η, ζ) = rµσ0,int(A(·))(r, xint, y, r
−1ρ, r−1ξint, r

−1η, r−1ζ). (4.7.5)

Close to the edge Y and close to the boundary we can replace (xint, ξint) by (x′, xn, ξ
′, ξn)

which gives us

σ̃0,∂(A(·))(r, x′, y, ρ, ξ′, η, ζ) = rµσ0,∂(A(·))(r, x′, y, r−1ρ, r−1ξ′, r−1η, r−1ζ). (4.7.6)

Concerning the σ1-level we may focus on a neighbourhood of Y and represent symbols by
charts on the edge to Rq which gives us, using the splitting of variables/covariables into

(x, ξ, ζ) = (r, x, y, ρ, ξ, η, ζ)

σ1(A(·))(y, η, ζ) which is a 3 × 3-block matrix with 2 × 2-upper left corner taking values in

Bµ,e
 X
× ;Rd

ζ

∂X

-valued operator families. We extend this 2× 2-family to a 3× 3- family by

adding zeros at all entries in the third row and column. Let us denote this “artificial” symbol
by

σB(A(·))(y, η, ζ) (4.7.7)

we then form

σ1(A(·))(y, η, ζ) =σB1 (A(·))(y, η, ζ) + g(µ)(y, η, ζ)

:

Ks,γ(X∧) Ks−µ,γ−µ(X∧)
⊕ ⊕

Ks,γ((∂X)∧) −→ Ks−µ,γ−µ((∂X)∧)
⊕ ⊕
C C

.
(4.7.8)

Remember that all these constructions for symbols are valid for covariables 6= 0.
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Definition 4.7.1. An operator family

A(ζ) ∈ Lµ,e(N , g;Rd
ζ) (4.7.9)

is called elliptic if it is firstly

(i) σ0- elliptic, i.e., σ0,ψ is non-vanishing for all (ξ, ζ) 6= 0 and the reduced interior symbol
σ̃0,ψ is asked to be non-vanishing for all covectors 6= 0 and all variables including r = 0,
Moreover, σ0,∂ as well as σ̃0,∂ are families of bijections for all (ρ, ξ′, η, ζ) 6= 0, in the
reduced case also up to r = 0.

(ii) Secondly σ1- elliptic, i.e., (4.7.8) is a family of bijections between the respective spaces
for all (η, ζ) 6= 0 and all s > max{µ, e} − 1

2
.

Theorem 4.7.2. An (parameter-dependent) elliptic operator A(ζ) in (4.7.1) has a
(parameter-dependent) properly supported parametrix P(ζ) in L−µ,h over N = N × ∂N × Y
with weight data g−1 = (γ − µ, γ,Θ), and h = max{e− µ, 0}, i.e.,

P(ζ)A(ζ) = I − CL(ζ), A(ζ)P(ζ) = I − CR(ζ) (4.7.10)

for smoothing families CL(ζ) and CR(ζ), associated with the weight data gL = (γ, γ,Θ) and
gR = (γ − µ, γ − µ,Θ).

Proof. Ellipticity of A(ζ) guarantees invertibility or bijectivity of σ(A). Thus Theorem 4.6.2
combined with (4.6.4) gives us a properly supported P1(ζ) = Op(σ−1) such that

P1(ζ)A(ζ) = I −R(ζ)

where R(ζ) ∈ L−1,el over N , for el = max{µ, e} with weight data gL = (γ, γ,Θ). Applying a
finite analogoue of the Neumann series gives us an M(ζ) ∈ L−1,el and a refined parametrix
BM(ζ) ∈ L−µ,el such that

BM(ζ)A(ζ) = I +M(ζ).

We also can apply an infinite formal Neumann series, using Theorem 4.6.1 such that we find
a properly supported D(ζ) ∈ L−1,el such that

(I +D(ζ))(I −R(ζ)) = I + CL(ζ)

for some CL ∈ L−∞,el . Then we may set P(ζ) = (I +D(ζ))P1(ζ). In a similar manner we can
proceed from the right and a standard algebraic argument shows that P(ζ) is at the same
time a right parametrix.

4.8 Fredholm property and invertibility

The following consideration refers to the case that N is compact.

Theorem 4.8.1. An elliptic element A(ζ) ∈ Lµ,e(N , g;Rd
ζ) induces a family of Fredholm

operators

A(ζ) :

Hs,γ(N) Hs−µ,γ−µ(N)
⊕ ⊕

Hs,γ(∂N) −→ Hs−µ,γ−µ(∂N)
⊕ ⊕

Hs(Y ) Hs−µ(Y )

, (4.8.1)
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for all s ∈ R. This holds including d = 0, i.e., the case without parameters. For d > 0
there is a constant C > 0 independent of s such that for |ζ| > C the operators (4.8.1) are
isomorphisms. There is then a family P(ζ) ∈ L−µ,h(N , g−1;Rd

ζ), for h = max{e− µ, 0}, such
that for any fixed |ζ| > C we have P(ζ) = A−1(ζ).

Remark 4.8.2. The invertibility within our operator algebra also holds without parameters.
In the “simplest form” it holds when A(ζ) ∈ Lµ,e(N ;Rd

ζ) is elliptic. Then, if A is invertible
between the spaces in (4.8.1) for some fixed s0 ∈ R, then A(ζ) is invertible for all s ∈ R,
and we have A−1(ζ) ∈ L−µ,h(N ;Rd

ζ). This property is also-called a “strong form” such a
property holds without explicitly requiring ellipticity. In this frame ellipticity is a necessary
consequence of the Fredholm property or invertibility. It is highly likely that this is true in the
present context, though a proof might be voluminous.

Proof of Theorem 4.8.1. First, from Theorem 4.7.2 we know that there is a parameter-
dependnet parametrix L−µ,h(N , g−1;Rd

ζ). That means we have relations (4.7.10). In the com-
pact case the respective operator families represent families of continuous operator in the
weighted spaces occurring in (4.8.1) , cf. the second statement of Theorem 4.5.2, for any
s ∈ R which is suitable in Boutet de Monvel’s framework. Since the remainders in (4.7.10)
are compact, the general criterion for the Fredholm property works, i.e., A(ζ) is Fredholm
for every ζ. At the same time, since the operator norms both of CL and CR tend to zero as
|ζ| → ∞, we can invert I − CL and I − CR and from (4.7.10) we obtain

(I − CL)−1P(ζ)A(ζ) = I,

and similarly from the other side. Thus

A−1(ζ) = (I − CL)−1P(ζ) (4.8.2)

left inverse of A(ζ) and Theorem 4.6.2 tells us that this belongs to L−µ,h(N , g−1;Rd
ζ), when

|ζ| is sufficiently large. In a similar way we find a right inverse. Thus (4.8.2) is a two-sided
inverse, by virtue of a standard algebraic argument.

4.9 Examples and applications

These final notes indicate the context where BVPs on a manifold with edge appear in con-
crete examples. Let us mention in this connection the monographs [20] and [30] with numerous
models on mixed, transmission and crack problems, see also other references to investigations
in more classical context, see also [24], [25]. Another investigation [9] concerns a characteri-
zation of the well-known Zaremba problem in connection with the edge calculus on a specific,
relatively simple, manifold with edge and boundary. The latter references show how concrete
examples may open specific voluminous investigations.
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Birkhäuser Verlag, Boston, 1996.

[20] G. Harutyunyan and B.-W. Schulze, Elliptic mixed, transmission and singular crack prob-
lems, European Mathematical Soc., Zürich, 2008.
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