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Zusammenfassung

Erdbeben können starke Bodenbewegungen erzeugen und es ist wichtig, die-
se in einer seismischen Gefährdungsanalyse korrekt vorherzusagen. Üblicherweise
werden dazu empirisch ermittelte Bodenbewegungsmodelle (GMPE) in einem lo-
gischen Baum zusammengefügt. Wenn jedoch die Bodenbewegung in einem Ge-
biet mit geringer Seismizität bestimmen werden soll, dann fehlen in der Regel die
Daten, um regionsspezifische GMPEs zu entwickeln. In diesen Fällen ist es not-
wendig, auf Modelle aus anderen Gebieten mit guter Datengrundlage zurückzu-
greifen und diese an die Zielregion anzupassen. Zur korrekten Anpassung werden
seismologische Informationen aus der Zielregion wie beispielsweise die standorts-
pezifische Dämpfung κ0 benötigt. Diese Parameter lassen sich jedoch ebenfalls nur
unzuverlässig bestimmen, wenn die Datengrundlage schlecht ist.

In meiner Dissertation beschäftige ich mich daher mit der Auswahl von GM-
PEs für den logischen Baum beziehungsweise deren Anpassung an Regionen mit
geringer Seismizität. Ich folge dabei zwei verschiedenen Strategien.

Im ersten Ansatz geht es um das Aufstellen eines logischen Baumes, falls kein
regionsspezifisches Modell vorhanden ist. Ich stelle eine Methode vor, in der meh-
rere regionsfremde Modelle zu einem Mixmodell zusammengefügt werden. Die
Modelle werden dabei je nach ihrer Eignung gewichtet und die Gewichte mittels
der wenigen verfügbaren Daten aus der Zielregion ermittelt. Ein solches Mixmo-
dell kann als sogenanntes ’Backbone’-Modell verwendet werden, welches in der
Lage ist, mittlere Bodenbewegungen in der Zielregion korrekt vorherzusagen. Ich
teste diesen Ansatz für Nordchile und acht GMPEs, die für verschiedene Subdukti-
onszonen auf der Welt entwickelt wurden. Die Resultate zeigen, dass das Mixmo-
dell bessere Ergebnisse liefert als die einzelnen GMPEs, die zu seiner Erzeugung
genutzt wurden. Es ist außerdem ebenso gut in der Vorhersage von Bodenbewe-
gungen wie ein Regressionsmodell, welches extra für Nordchile entwickelt wurde.

Im zweiten Ansatz beschäftige ich mich mit der Bestimmung der standorts-
pezifischen Dämpfung κ0. κ0 ist einer der wichtigsten Parameter zur Anpassung
eines GMPEs an eine andere Region. Mein Ziel ist es, κ0 aus seismischer Boden-
unruhe anstelle von Erdbeben zu ermitteln, da diese kontinuierlich aufgezeichnet
wird. Mithilfe von Interferometrie kann die Geschwindigkeit und Dämpfung von
seismischen Wellen im Untergrund bestimmt werden. Dazu werden lange Auf-
zeichnungsreihen seismischer Bodenunruhe entweder kreuzkorreliert oder entfaltet
(Dekonvolution). Die Bestimmung der Dämpfung aus Bodenunruhe bei Frequen-
zen über 1 Hz und in geringen Tiefen ist jedoch nicht trivial. Ich zeige in meiner
Dissertation die Ergebnisse von zwei Studien. In der ersten Studie wird die Dämp-
fung von Love-Wellen zwischen 1-4 Hz für ein kleines Testarray in Griechenland
ermittelt. In der zweiten Studie verwende ich die Daten einer Bohrloch und einer
Oberflächenstation aus dem Vogtland, um die Dämpfung von S-Wellen zwischen
5-15 Hz zu bestimmen. Diese beiden Studien stellen jedoch nur den Ausgangs-
punkt für zukünftige Untersuchungen dar, in denen κ0 direkt aus der seismischer
Bodenunruhe hergeleitet werden soll.





Abstract

The prediction of the ground shaking that can occur at a site of interest due to an
earthquake is crucial in any seismic hazard analysis. Usually, empirically derived
ground-motion prediction equations (GMPEs) are employed within a logic-tree
framework to account for this step. This is, however, challenging if the area un-
der consideration has only low seismicity and lacks enough recordings to develop
a region-specific GMPE. It is then usual practice to adapt GMPEs from data-rich
regions (host area) to the area with insufficient ground-motion recordings (target
area). Host GMPEs must be adjusted in such a way that they will capture the
specific ground-motion characteristics of the target area. In order to do so, seis-
mological parameters of the target region have to be provided as, for example, the
site-specific attenuation factor κ0. This is again an intricate task if data amount is
too sparse to derive these parameters.

In this thesis, I explore methods that can facilitate the selection of non-endemic
GMPEs in a logic-tree analysis or their adjustment to a data-poor region. I follow
two different strategies towards this goal.

The first approach addresses the setup of a ground-motion logic tree if no in-
digenous GMPE is available. In particular, I propose a method to derive an op-
timized backbone model that captures the median ground-motion characteristics
in the region of interest. This is done by aggregating several foreign GMPEs as
weighted components of a mixture model in which the weights are inferred from
observed data. The approach is applied to Northern Chile, a region for which no
indigenous GMPE existed at the time of the study. Mixture models are derived for
interface and intraslab type events using eight subduction zone GMPEs originating
from different parts of the world. The derived mixtures provide satisfying results
in terms of average residuals and average sample log-likelihoods. They outperform
all individual non-endemic GMPEs and are comparable to a regression model that
was specifically derived for that area.

The second approach is concerned with the derivation of the site-specific at-
tenuation factor κ0. κ0 is one of the key parameters in host-to-target adjustments
of GMPEs but is hard to derive if data amount is sparse. I explore methods to es-
timate κ0 from ambient seismic noise. Seismic noise is, in contrast to earthquake
recordings, continuously available. The rapidly emerging field of seismic inter-
ferometry gives the possibility to infer velocity and attenuation information from
the cross-correlation or deconvolution of long noise recordings. The extraction of
attenuation parameters from diffuse wavefields is, however, not straightforward es-
pecially not for frequencies above 1 Hz and at shallow depth. In this thesis, I show
the results of two studies. In the first one, data of a small-scale array experiment in
Greece are used to derive Love wave quality factors in the frequency range 1-4 Hz.
In a second study, frequency dependent quality factors of S-waves (5-15 Hz) are
estimated by deconvolving noise recorded in a borehole and at a co-located surface
station in West Bohemia/Vogtland. These two studies can be seen as preliminary
steps towards the estimation of κ0 from seismic noise.
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1 | Introduction

Earth’s population is increasing vastly and more and more people are living in
earthquake prone regions and cities (Bilham, 2009). Most fatalities are caused by
collapsing buildings and structures exposed to strong ground shaking. It is there-
fore necessary to assess the ground motions that can be expected due to an earth-
quake at a certain site in order to develop building codes for earthquake resistant
design.

Todays most widely used tool for the quantification of the earthquake shaking
hazard is probabilistic seismic hazard analysis (PSHA) as introduced by Cornell
(1968). PSHA takes into account the whole randomness and uncertainty associated
with ground-motion generation. The outcome of a PSHA is a hazard curve which
gives the rate at which a certain level of ground motion is exceeded at a particular
site. The two main ingredients of a PSHA are (Bommer et al., 2010; Cornell,
1968):

1. A model for the occurrence of future earthquakes that incorporates all po-
tentially relevant earthquake sources together with their locations in space,
their sizes and activity rates.

2. A model for the propagation of generated seismic waves between the place
where the earthquake occurs and the site where the hazard should be cal-
culated. The model can either be a stochastic model (Boore, 1983, 2003),
an empirical model (e.g Campbell, 2003b) or a physical model which is
based on numerical simulations (e.g. Beresnev & Atkinson, 1997; Graves
& Pitarka, 2010; Hartzell et al., 1999).

In the second step, empirical derived ground-motion prediction equations (GM-
PEs) are generally used to estimate the ground motion for a specific region. GM-
PEs are mathematical expressions that relate ground-shaking parameters (e.g. peak
ground acceleration [PGA] or response spectral acceleration [SA]) to seismolog-
ical parameters such as earthquake size and mechanism, distance from source to
site, and geological structure directly below the site of interest (Campbell, 2003b).
SA describes the response of a single-degree of freedom oscillator with a certain
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1. Introduction

natural frequency to an input ground-motion. GMPEs are derived by regression
analysis of recordings obtained from past earthquakes. A multitude of different
models exists that were either generated for specific regions or by combining data
from several areas. Douglas (2011, 2017) gives an overview of models that have
been published so far but the number of GMPEs is still growing. GMPEs are prob-
abilistic models that provide estimates of the median and the logarithmic standard
deviation (sigma) of ground-motion parameters. The sigma of a GMPE is related
to aleatory variability which describes the intrinsic randomness of ground-motion
generation. Not knowing which GMPE to consider as the true one, results in epis-
temic uncertainty (lack of knowledge). Hazard analysts usually combine a whole
set of GMPEs within a logic tree framework (e.g. Bommer et al., 2005) to capture
epistemic uncertainty. Thereby, alternative models occupy the branches of such
a tree while the branch weights express the degree-of-belief of an expert into the
corresponding models. The proper selection of GMPEs for a logic tree analysis
has been recognized to be a crucial step in any seismic hazard study (e.g. Bommer
et al., 2005; Scherbaum et al., 2005). The set of GMPEs has to reflect the whole
range of possible ground motions that can occur in a region (e.g. Budnitz et al.,
1997; Hanks et al., 2009) which, in reality, is not possible as GMPEs are derived
from limited datasets. An additional problem arises for regions that are seismically
active but where recorded data are sparse, either due a paucity in seismicity or due
to a lack of instrumentation. Data amount is then insufficient to generate endemic
empirical GMPEs. In order to perform a seismic hazard study in such a region the
usual practice is to consider GMPEs from other areas of the world and to adjust
them to the target area (Al Atik et al., 2014; Atkinson, 2008; Campbell, 2003a).

1.1 GMPE adjustment techniques

Several techniques have been proposed to adjust an empirical GMPE that was de-
rived for a data-rich region (host region) to an area with insufficient ground-motion
recordings (target region). In order to perform the adjustment, regional differences
in seismological parameters between the host and the target area have to be taken
into account. Seismological parameters with regard to the earthquake source (e.g.
stress drop [∆σ]), the propagation path (e.g. intrinsic attenuation modeled by the
quality factor Q) and the site (e.g. shear-wave velocity of the upper 30 m [vs30] and
site attenuation [κ0]) have to be considered. Global sensitivity studies conducted
by Molkenthin et al. (2017) revealed that the computed hazard is most sensitive
to changes in ∆σ and κ0. In the context of site-specific hazard evaluations and
GMPE adaptions from soft soil to rock sites, v30-κ adjustments turned out to be
one of the key factors having a large impact on the hazard results (Biro & Renault,
2012; Laurendeau et al., 2013).

The parameter κ describes the spectral fall-off that is observed in the Fourier
amplitude acceleration spectrum A(f) of earthquakes at high frequencies (Ander-
son & Hough, 1984). The decay can be described as:

18



1.1. GMPE adjustment techniques

A(f) = A0 · exp (−πκf) f > fe (1.1)

where fe is the corner frequency above which the decay of the spectrum is
approximately linear in log-linear space. κ is associated with the intrinsic attenua-
tion of S-waves on the travel path from source to site (Anderson & Hough, 1984).
The path-independent component of κ (κ0) is obtained at epicentral distance zero
(Hough & Anderson, 1988). κ0 is considered to represent the site-specific S-wave
damping in the very shallow crust (several 100 m to a few kilometers; Anderson &
Hough, 1984; Campbell, 2009) directly below the site. κ is usually not a predictive
parameter in GMPEs. Nevertheless, it can have a significant impact when comput-
ing the hazard of critical facilities like nuclear power plants and bridges that are
sensitive to the shaking at high frequencies (Ktenidou & Abrahamson, 2016). It
is therefore important to consider κ when adjusting a GMPE from one region to
another.

The hybrid empirical adjustment method (HEM) of Campbell (2003a) utilizes
the point source stochastic approach (Boore, 1983, 2003) to address regional dif-
ferences in seismological parameters. In the stochastic approach, ground-motion is
modeled as Gaussian band-limited white noise with a random phase and an ampli-
tude that is modified by multiplication factors to account for source, path and site
characteristics of a region. Adjustment factors in HEM can be calculated from the
ratio of stochastically simulated response spectra of the host and the target area.
Ground-motion parameters from the target area are adapted to the host region by
multiplication with the adjustment factor.

Atkinson (2008) introduced the referenced empirical approach (REA) as an
alternative to the method proposed by Campbell (2003a). In HEM, adjustment
factors are based on stochastic simulations and seismological models. In con-
trast to HEM, REA derives adjustment factors for GMPEs directly from empiri-
cal data recorded in the target area. Modification factors are estimated by fitting
the observed residuals between host GMPEs and the target-region ground-motion
database. The applied adjustments modify the overall level of the attenuation
curves to account, for example, for differences in stress drop or event type, and
the shape of the curves to accommodate differences in regional attenuation.

Another adjustment approach introduced by Al Atik et al. (2014) uses inverse
random vibration theory (IRVT, Rathje et al.(2005)) for the computation of κ scal-
ing factors for GMPEs that do not include κ as input parameter. (Note that these
authors work with the whole-path κ and not only the site-specific component κ0.)
In the forward mode (Cartwright & Longuet-Higgins, 1956), random vibration the-
ory (RVT) is utilized to convert a theoretical Fourier amplitude spectrum in combi-
nation with a model for the duration of ground motion into response spectral ordi-
nates. The inverse mode (IRVT) is less straightforward. It employs extreme value
statistics, properties of single-degree-of-freedom oscillator transfer functions, and
spectral ratio correction to estimate Fourier amplitude spectra from response spec-
tra. The κ adjustment in the IRVT approach of Al Atik et al. (2014) is achieved by
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1. Introduction

first converting the host response spectrum to a Fourier spectrum using IRVT. The
host κ is derived from the Fourier spectral slope at high frequencies as described
in Anderson & Hough (1984). The adjustment to the target area is obtained by
multiplying the spectrum with e−πf(κtarget−κhost). Finally, the adjusted Fourier
spectrum is converted back to response spectral space using RVT.

The adjustment methods presented above come with several limitations as the
relationship between Fourier spectra and response spectra is not linear (Bora et al.,
2016). Bora et al. (2014) therefore proposed to develop GMPEs from an empirical
model of the Fourier amplitude spectrum. In combination with a model for the
duration of ground-motion and by using RVT, response spectral GMPEs can be
calculated. This opposes the traditional technique where GMPEs are directly de-
rived by regression analysis from response spectral ordinates. The main advantage
of the method proposed by Bora et al. (2014) is that the adjustment of a Fourier
amplitude spectrum to different seismological conditions is physically consistent
and can easily be performed.

One of the main problems of most of the existing GMPE adjustment techniques
is that they require a sufficient number of seismological data in the target area to
constrain local site conditions (vs30 and κ0). This is generally not given in low
seismicity regions which is especially disadvantageous if not a regional but a site-
specific hazard study should be performed. In practice, when site-specific data is
not available κ0 is estimated from an ensemble of sites in an area as has been done
by Ktenidou et al. (2017b) in southern Arizona. A more common approach is to
infer κ0 from existing vs30-κ0 relations (e.g. Ktenidou et al., 2014; Van Houtte
et al., 2011). Yet, the scatter in vs30-κ0 relations is large owing to differences in
the measurement techniques of vs30 and κ0, to the heterogeneity of regions from
which the relations are inferred, to the frequency band that is considered in the de-
viation of κ0 or simply to the fact that κ0 also relates to parameters other than vs30
(Edwards et al., 2015; Ktenidou et al., 2014). Often the adjustment of GMPEs has
to be performed from active regions with soft rock to less active regions with hard
rock (Biro & Renault, 2012; Ktenidou et al., 2017b). The situation is then even
more complex. vs30 and κ0 data pairs are too sparse for vs30 > 1000 m/s to esti-
mate a clear relationship between the two parameters. Thus, there is a special need
to derive local site parameters for target areas with few ground-motion recordings
and sites with hard rock conditions.

1.2 Purpose of the thesis

In this thesis, I explore methods that facilitate the selection of GMPE or their ad-
justment from one region to another. The special focus is thereby on areas where
seismological information and strong-motion recordings are sparse.

I follow two different strategies towards this goal which I will introduce in the
following two subsections.
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1.2.1 Mixture model approach

The first method is targeted to aid the setup of a ground-motion logic tree for ar-
eas without an indigenous GMPE and without a sufficient number of recordings
to develop one. The most popular approach (Fig. 1.1a) is to select several models
from other parts of the world and to adapt them to the new region. The choice
for appropriate GMPEs and the assignment of tree weights for each of the models
can be either achieved by the judgment of experts and/or by data-driven proce-
dures (Arroyo et al., 2014; Azarbakht et al., 2014; Kale & Akkar, 2013; Mak et al.,
2017; Roselli et al., 2016; Scherbaum et al., 2004a, 2009). This approach was, for
example, also adopted in some large ground-motion projects like the Global Earth-
quake Model (GEM) Global GMPEs project (Stewart et al., 2015) and the Seismic
Hazard Harmonization in Europe (SHARE) project (Delavaud et al., 2012).

In some recent hazard studies (e.g. Bommer et al., 2013; Rodriguez-Marek
et al., 2014), few high-quality GMPEs were chosen to serve as backbone models in
the logic tree. A backbone model is assumed to give good estimates of the median
ground-motions in an area from which the upper and lower limits of the ground-
motion distribution can be obtained by scaling the model up or down. Backbone
GMPEs are, for example, modified by applying vs-κ0 adjustments and by account-
ing for possible differences in stress drop. This procedure was adopted by Bommer
et al. (2013) for the Thyspunt site in South Africa leading to a set of site-specific
GMPEs. The concept of the backbone model in a ground-motion logic tree is il-
lustrated in Fig. 1.1b.

(w=0.1)

(w=0.2)

(w=0.35)

(w=0.05)

(w=0.3)
GMPE 5

GMPE 4

GMPE 3

GMPE 2

GMPE 1

Median ground motions

(a)
(w=0.2)

(w=0.5)

(w=0.3) Scale by 
0.75

Scale by 
1.0

Scale by 
1.25

Backbone 
GMPE

Mixture 
Model

(b)

Figure 1.1: (a) Ground-motion logic tree using several GMPEs to predict the median ground motion
in the area of interest. (b) Logic tree with a single high-quality backbone model that is scaled up and
down to capture the body and range of median ground-motions. A mixture model can be used as an
optimized backbone model.

In this thesis, I present a method in which an optimized backbone model is
found for a region by combining several GMPEs as weighted components of a so
called mixture model. As mentioned above, GMPEs are probabilistic models that
provide estimates of the median and the logarithmic standard deviation of the log-
normally distributed ground motion. The mixture is derived as a linear combination
of these distributions where all weights are non-negative and sum up to one. The
weights are inferred from observed data of the target area and the mixture model

21
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is tuned to give an optimal performance for the region under study. The proposed
method benefits from the large amount of observational data and expertise that has
been used to generate the GMPEs that are combined in the mixture. Relevant in-
formation regarding, for example, the generation mechanisms of ground motion is
thus transferred from the different host regions to the study area. At the same time,
mixture weights for the GMPEs are derived in such a way that the new aggregated
model captures the specific ground-motion characteristics of the target region.

The mixture model approach is especially helpful to generate backbone models
in situations in which some ground-motion observations exist, but in which the
number of data is still insufficient to generate a region-specific GMPE.

1.2.2 Estimation of κ0 from seismic noise

The second approach is aimed at site-specific hazard evaluations for which it is
especially important to know local site conditions to correctly adapt GMPEs from
other regions. In this context, I put the focus on the estimation of the site-specific
attenuation factor κ0 as this parameter is one of the most important ones for GMPE
adjustments having the largest effect on high frequency ground-motions (compare
to Section 1.1).

In this thesis, I explore methods to derive κ0 from ambient seismic noise. Seis-
mic noise is quasi omnipresent and its use circumvents the problem of missing
earthquake ground-motion recordings. By using noise it is in principle possible
to determine κ0 everywhere on Earth. After Bonnefoy-Claudet et al. (2006) noise
below 0.5 Hz is mainly generated by natural sources as tides, interaction of the
oceanic swell with the solid Earth and large-scale meteorological conditions. At
frequencies around 1 Hz noise originates from local meteorological processes like
wind effects. Above 1 Hz seismic noise generation is controlled by human activity
as, for example, traffic or industrial production. Similar to earthquake generated
waves, seismic noise wavefields travel through the ground and should thus contain
information of the volume through which they propagate.

The use of seismic noise for the derivation of deterministic information about
Earth’s structure goes back to the pioneering works of Aki (1957) and Claerbout
(1968). However, it was not until 2001 that ambient noise techniques became a
widely used tool in seismology and other disciplines. Several authors have shown
theoretically and experimentally that it is possible to estimate the time domain
Green’s function between a pair of receivers from the cross correlation of a diffuse
wavefield (e.g. Lobkis & Weaver, 2001; Roux et al., 2005b; Sabra et al., 2005;
Snieder, 2004; Wapenaar, 2004; Weaver & Lobkis, 2004). The Green’s function is
equivalent to the impulse response of the medium. It gives the signal at one receiver
as if the other receiver was acting like a source. In recent years, many studies
have shown that not only the elastic but also the anelastic Earth response can be
extracted from seismic noise (e.g. Lawrence & Prieto, 2011; Lawrence et al., 2013;
Lin et al., 2011; Liu et al., 2015; Prieto et al., 2011, 2009; Weaver, 2011, 2013;
Weemstra et al., 2013; Zhang & Yang, 2013). The estimation of amplitude and,
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hence, attenuation information from noise cross correlations is not straightforward.
This is due to the fact that the amplitude of cross correlations is not only dependent
on the anelastic structure of the Earth but also on the strength of the ambient field
both in space and time and also on data pre-processing techniques (e.g Weaver,
2011).

Most of the studies listed above infer attenuation in the whole crust or upper
mantle and within the ocean microseism band. The objective of this thesis is to
estimate attenuation on a very local scale and at frequencies above 1 Hz. In par-
ticular, I am focusing on the extraction of the quality factor Q within the upper
hundreds of meter below the surface as this is thought to be equivalent to the range
where the site-dependent κ0 originates from (Anderson & Hough, 1984; Campbell,
2009). Chapter 3 of this thesis presents estimates of Love-wave Q (QL) between
several surface stations while Chapter 4 shows the derivation of S-waves quality
factors (Qs) between a borehole and a surface sensor. According to Hough & An-
derson (1988), κ0 can be regarded as a t* of vertically upward propagating S-waves
through the local geological structure directly below the study site. Hence, κ0 can
be related to Qs with a path integral over depth z or as a sum over N layers with
thickness H (Ktenidou et al., 2015):

κ0 = t∗ =
∫
path

dz

vs(z)Qs(z)
=

N∑
i=1

Hi

vsiQsi
. (1.2)

Unfortunately, no earthquake-based κ0 measurements are available for the stud-
ied site in order to compare our Qs measurements via equation 1.2 with these val-
ues.

As will be shown in this thesis, the estimation of κ0 values from ambient noise
is very challenging. The presented applications may be seen as preliminary steps
towards this goal that need further investigation in the future.

1.3 Outline of the thesis

The two research questions presented in the previous section guide my studies and
are the basis for three publications. The following three chapters of this thesis
are thus manuscripts from which the first and second one are already published
while the third one is in review. The first publication introduces the mixture model
concept and applies it to Northern Chile. The second and third manuscript are con-
cerned with the estimation of attenuation parameters from seismic noise. Chapter
5 and a 6 of the thesis contain a discussion and conclusion of the proposed methods
in the larger context of seismic hazard evaluation and ground-motion prediction.

The research documented in all three publications was carried out by the author
of this thesis. Prof. Dr. Frank Scherbaum, Dr. Matthias Ohrnberger, apl. Prof. Dr.
Frank Krüger and Dr. Nico Kühn provided ideas and suggestions and assisted in
an advisory role. Sebastian Specht implemented the processing tool for ground-
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motion recordings and helped to build the strong-motion database that is presented
in the first publication.

Publication 1: Mixtures of ground-motion prediction equations as backbone mod-
els for a logic tree: an application to the subduction zone in Northern Chile

The paper introduces the aggregation of several GMPEs into a mixture model.
The method is applied to Northern Chile, a region for which no indigenous GMPE
existed by the time of the publication of this study. A new data set of strong-motion
recordings obtained within the Integrated Plate Boundary Observatory Chile project
serves as data basis. Eight subduction zone GMPEs are used to obtain mixture
models either for interface- or intraslab-type events and for different oscillator pe-
riods. In addition to the mixture, a region-specific GMPE is derived by regression
analysis. The performance of the GMPEs, the mixture and the regression model
is evaluated using residual analysis and averaged sample log-likelihoods as pro-
posed by Scherbaum et al. (2009). We show that the mixture model predicts the
ground-motions in the target region better than any of the single GMPEs. It is
also comparable in its performance to the regression model. We thus suggest that
a mixture model might serve as a backbone model in a ground-motion logic tree
analysis if data are too sparse to develop a region-specific GMPE.

Publication 2: Extracting near-surfaceQL between 1-4 Hz from higher-order noise
correlations in the Euroseistest area, Greece

The second publication presents higher-order noise correlations (C3 correla-
tions) as introduced by Zhang & Yang (2013) for the derivation of near-surface
attenuation parameters. To test the approach, we use data from a small-scale array
experiment (station spacings <2 km) that was carried out in the Euroseistest area
in Greece in 2011. The array was installed in the northern part of a sedimentary
basin and stations were thus partly situated on weathered rock or on soft soil. As
all receivers are surface stations only the surface wave response of the Green’s
function can be reconstructed. We estimate Love wave quality factors QL from the
relative amplitude decay of Love waves in C3 correlations with distance. QL is
obtained between stations situated either purely on weathered rock or on soft soil
and for frequencies between 1-4 Hz. As expected, attenuation is higher on soft soil
than on weathered rock. The estimated quality factors are furthermore mainly in
conformance with theoretical values derived from 1-D vs and Qs profiles from the
Euroseistest area.

Publication 3: Frequency dependent quality factors from the deconvolution of am-
bient noise recordings in a borehole in West Bohemia/Vogtland

The last publication evaluates the retrieval of attenuation parameters from seis-
mic noise that was recorded simultaneously in a borehole and at a surface station.
We use a deconvolution procedure instead of cross correlations. Deconvolution
interferometry effectively separates incoming and surface-reflected waves in the
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1.3. Outline of the thesis

wavefield. Attenuation can be inferred from the amplitude difference between
these separated waves. The method is applied to a 87 m deep borehole in West
Bohemia/Vogtland in Germany that is situated at a hard rock site. We employ the
approach of Fukushima et al. (2016) to compute a transfer function of incoming
and surface-reflected wave in the frequency domain. From the transfer function
frequency dependent quality factors of S-waves (Qs) can be obtained between
5-15 Hz. The retrieval of Qs is compared for recordings of ambient noise and
earthquakes. We can show that the deconvolution of ambient noise in a borehole
provides a fast and valuable tool for the derivation of body wave quality factors in
low-seismicity regions.
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2. Mixture model approach

Abstract In probabilistic seismic hazard analysis, different ground-motion prediction
equations (GMPEs) are commonly combined within a logic tree framework. The selec-
tion of appropriate GMPEs, however, is a non-trivial task, especially for regions where
strong motion data are sparse and where no indigenous GMPE exists because the set of
models needs to capture the whole range of ground-motion uncertainty. In this study we
investigate the aggregation of GMPEs into a mixture model with the aim to infer a back-
bone model that is able to represent the center of the ground-motion distribution in a logic
tree analysis. This central model can be scaled up and down to obtain the full range of
ground-motion uncertainty. The combination of models into a mixture is inferred from
observed ground-motion data. We tested the new approach for Northern Chile, a region
for which no indigenous GMPE exists. Mixture models were calculated for interface and
intraslab type events individually. For each source type we aggregated eight subduction
zone GMPEs using mainly new strong-motion data that were recorded within the Plate
Boundary Observatory Chile project and that were processed within this study. We can
show that the mixture performs better than any of its component GMPEs, and that it per-
forms comparable to a regression model that was derived for the same dataset. The mixture
model seems to represent the median ground motions in that region fairly well. It is thus
able to serve as a backbone model for the logic tree.

Keywords Mixture model · Backbone model ·Ground-motion prediction equation · Logic
tree · Chile subduction zone

2.1 Introduction

The goal of probabilistic seismic hazard analysis (PSHA) is to quantify the proba-
bility that certain levels of ground shaking are exceeded at a particular site during
a specified time period. The two main components of a PSHA are models for the
space-time distribution, size and activity of relevant seismic sources, and secondly
for the propagation of generated seismic waves to the point of interest at Earth’s
surface. The most common way to assess the latter one is the use of empirically
derived ground-motion prediction equations (GMPEs), which give ground-shaking
parameters [usually peak ground acceleration (PGA) or spectral acceleration (SA)]
as a function of source-, path- and site-related predictor variables.

A major issue in PSHA is the correct quantification of uncertainty. Follow-
ing the guidelines of the Senior Seismic Hazard Analysis Committee (SSHAC;
Budnitz et al., 1997; Hanks et al., 2009; USNRC, 2012), GMPEs have to capture
the center, the body, and the range (in SSHAC language) of the expected future
ground-motion distribution in the area of interest. Because GMPEs are derived
from limited datasets, often comprising data from more than one region, a single
model is not assumed to capture the epistemic uncertainty of ground motion for
a region of interest. This is especially the case for areas that lack an indigenous
GMPE so that models from other regions have to be adopted. The hazard commu-
nity therefore usually resorts to using sets of GMPEs, commonly combined within
a logic tree framework as, for example, described in Bommer et al. (2005), where
alternative models occupy the branches of the tree and where the branch weights
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2.1. Introduction

express the degree-of-belief of an expert into the corresponding models. The se-
lection, ranking and weighting of appropriate GMPEs for a particular target area
in a transparent and reproducible way becomes in this context the major challenge.
The chosen set of models should on one hand be sufficiently small in order to
keep the logic tree manageable, but needs to cover at the same time ground-motion
uncertainty.

To narrow down the large number of published GMPEs (listed e.g. in Douglas,
2011), quality criteria as proposed by Cotton et al. (2006) and updated by Bommer
et al. (2010) can be applied to pre-select appropriate models. A model should,
for example, be excluded if it belongs to an irrelevant tectonic regime or if the
documentation of the model is incomplete. In the past, the final set of GMPEs
and the corresponding tree-weights have been achieved purely by the judgment
of experts. Recently data-driven procedures (Kale & Akkar, 2013; Scherbaum
et al., 2004a, 2009) have been proposed to test the appropriateness of a model for a
particular target area in a more consistent and reproducible way, aiding experts in
the assignment of logic tree weights.

In practice the handling of logic trees can be rather challenging. Inconsisten-
cies in the assignment of branch weights (for example treating branch weights as
normalized degree-of-belief values rather than probabilities) can lead to the over-
or under-estimation of epistemic uncertainty and hence to a too large or too narrow
spread of the corresponding hazard curves (Scherbaum & Kuehn, 2011; Scherbaum
et al., 2010). In addition, GMPEs are in general not equally appropriate for all mag-
nitudes, distances and oscillator frequencies so that weighting factors may need to
be defined separately for different magnitude-distance-frequency bins. When many
models need to be considered, the logic tree very fast becomes highly complex,
making it impossible to directly deduce how uncertainty related to the ground-
motion part of the logic tree is transferred to the hazard curves.

In some recent hazard studies (Bommer et al., 2013; Rodriguez-Marek et al.,
2014), single high-quality GMPEs have been used as so called backbone models to
represent the center of the ground-motion (median values) distribution in the area
of interest. From these models (for the medians of ground motion), the full ground-
motion uncertainty for use in the logic tree was subsequently obtained by scaling
the GMPE predictions up or down. In general, however, a single non-indigenous
ground-motion model will rarely be able to perfectly represent the center of the
ground-motion distribution (at least not for all magnitude and distance ranges),
since this model may only capture some (but not all) aspects relevant for ground-
motion generation in the region of interest.

In the present study, we propose a new method in which an optimized backbone
model for median ground motion is generated by combining different GMPEs as
weighted components of a mixture model. The most likely combination of mod-
els is inferred from observed ground-motion data from the region of interest. In
this process, information is partially transferred from other regions to the region
where the observations have been produced. It is thus possible to infer a model
that can deliver predictions for a region for which no dedicated GMPE has been
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developed. None of the component GMPEs is considered as true or false within the
mixture model approach. Instead, each model is assumed to reflect the generation
mechanism of a part of the possible ground motions in the target area. A mixture
combines the prediction strength of several GMPEs in contrast to a traditional logic
tree where only one GMPE can always be considered as the true model within a
single hazard realization. Since the mixture is calibrated against observations of
the target area, it can be regarded as a good estimate of the median ground motion
in that region. It is thus better able to serve as a backbone reference model for the
logic tree. Up and down scaling of the new backbone model should provide better
estimates of the true ground-motion uncertainty compared to the up and down scal-
ing of a single non-indigenous GMPE. As the uncertainty related to ground-motion
prediction can now directly be read from the logic-tree, simple translation can be
applied to directly deduce how this uncertainty is transferred into the final hazard
curves.

The new method is used to generate a backbone reference model for Northern
Chile, a region for which no indigenous GMPE, which covers a sufficiently wide
magnitude range to capture all hazard-relevant earthquakes in the region, exists.
Seismic data from a dense seismic network deployed as part of the Integrated Plate
Boundary Observatory Chile (IPOC; Schurr et al., 2009) and additional strong-
motion recordings collected by Arango et al. (2011) provide a unique new dataset
to study the aggregation of different subduction zone GMPEs. To handle the large
amount of IPOC data, we developed a semi-automatic tool in Matlab (and C) that
cuts and processes recordings from the continuous station data streams from events
with magnitude 5 or larger, and derives earthquake and record related information,
which are needed as GMPE input parameters. Backbone models are then inferred
for interface and intraslab type events from a set of 8 GMPEs each and for different
oscillator frequencies. We assess the performance of the mixture compared to that
of its component models in terms of average residuals and the average sample
log-likelihood as proposed by Scherbaum et al. (2009). Additionally, we evaluate
whether the mixture is able to predict new observations by applying the model to
a testing dataset that was drawn from the complete dataset before the calculation
of the mixture weights. The performance of the mixture is finally compared to
that of a regression model that we specifically estimated for the Chilean dataset in
order to understand if a mixture is equally appropriate to represent the center of the
ground-motion distribution in that area.

2.2 Mixture models

GMPEs are probabilistic models that provide estimates of the median and the log-
arithmic standard deviation (sigma) of the ground-motion parameter of interest (or
ground-motion intensity measure, GMIM) Z. Z is conditioned on various param-
eters, such as magnitude and distance, denoted here by x. A common choice for Z
is, for example, spectral acceleration. Z is generally assumed to be log-normally
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distributed but for simplicity we will use Y = ln(Z) instead, which is a normal
distribution of the form N (Y |µ(x), σ2(x)) with mean µ(x) and variance σ2(x).

Rather than using a single attenuation relation it is possible to employ an en-
semble of models (Riggelsen et al., 2011) by combining several GMPEs as com-
ponents of a standard mixture model. Thereby, we assume that observations from
an unknown, true ground-motion distribution (nature) can be modeled by a convex
combination of several probability distributions (GMPEs), where each observa-
tion is supposed to be drawn from only one of the models/mixture components.
The term convex refers to a linear combination of models where all coefficients
or weights are non-negative and sum up to one. The standard mixture distribution
(Frühwirth-Schnatter, 2006; Titterington et al., 1985) of J normal distributions
with weights wj is given by

p(Y |x) =
J∑
j=1

wjN (Y |µj(x), σ2
j (x)) (2.1)

where
∑J
j=1wj = 1 and 0 ≤ wj ≤ 1. The weights contain information on

how important a single model is for the mixture given this particular set of models.
The mixture itself is a new probability distribution, which in general will not have
the form of a normal distribution (which is not an issue in the present context since
we focus on median predictions) but can have any shape, for example, that of a
multimodal distribution.

Mixture weights can be inferred from observed ground-motion data by em-
ploying, for example, the Expectation Maximization (EM) algorithm (Dempster
et al., 1977). The EM algorithm is an iterative method that attempts to compute the
maximum likelihood estimate of parameters (here weights wj) in the presence of
missing data. The missing information in the context of mixture model estimation
is the membership of an observation i to one of the models j. EM always increases
the likelihood within each step; in order to guarantee that a global and not a lo-
cal optimum is reached, we ran the EM algorithm 50 times using different random
starting weights. We subsequently computed the mean of all runs to obtain the final
mixture weights. It should be noted that in our experiments the weights obtained in
50 runs were always almost identical. An example mixture distribution that is ob-
tained with EM for a given set of predictor variables is shown in Fig. 2.1 (left). The
right hand site of Fig. 2.1 shows median PGA predictions of the mixture and of the
component GMPEs against distance for magnitude Mw 6. The standard deviation
of the inferred mixture is not shown and should only be handled with care since it
is not purely aleatory but inherits epistemic uncertainty due to the combination of
different GMPEs into one model.

In general, the weights of the individual models depend on their standard de-
viation, since this determines the value of the likelihood function. We have tested
the approach using both the indigenous value of the standard deviation for each
model as well as a common value of sigma for each model, and the results were
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Figure 2.1: PGA predictions of the mixture (dashed) and the GMPEs (solid) for an Mw 6 event in
35 km depth and for NEHRP B. Left: Probability distributions in 120 km distance. Right: Median
PGA versus distance. Compare to Fig. 2.3 for individual component weights and to Tab. 2.1 for
GMPE abbreviations.

very similar. However, this can change for different applications, depending on the
component GMPEs and the data set.

The mixture model is often able to predict ground motions that cannot be de-
scribed by any of the component models alone (Riggelsen et al., 2011). However,
the GMPEs are combined in a convex combination and a mixture model can only
provide predictions within the range of its component distributions. If, for exam-
ple, all models used for the derivation of the mixture over- or underpredict the
observed ground motion in the area of interest the obtained mixture will also over-
or underpredict the ground shaking. The same is true if the data used to derive the
mixture weights are not representative samples of the ground-motion distribution
in the target area. The mixture will then give incomplete predictions, covering only
parts of the whole range of ground motion that is possible in that region. It is thus
essential to use a diverse set of models and enough data in order to construct a
reliable mixture model.

We remark that there are other possible methods to infer the most likely com-
bination of models into a mixture besides the EM algorithm such as, for example,
Bayesian inference. While the EM algorithm only returns point estimates (mean
weights), the Bayesian approach provides the whole a posteriori distribution of
weights.

2.3 Regression model

Parallel to the mixture, we also derive a new prediction equation that is obtained
from the Chilean dataset by regression. The functional form is based on the GMPE
of Zhao et al. (2006b), which we slightly modified. The coefficients of the model
were estimated with the random effects algorithm of Abrahamson & Youngs (1992):
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2.3. Regression model

lnZ =aMw + brrup − (c+ dMw) ln rrup + e

{
h, h ≤ 125 km
125, h > 125 km

+
{
qi(Mw − 6.3)2 + si, Interface
qs(Mw − 6.5)2 + ss + ssl · ln rrup, Intraslab

+
{
x, NEHRP 6= B
0, NEHRP = B

+ ε+ η

(2.2)

Here Z is PGA in cm/s2, Mw is moment magnitude, rrup is rupture distance
and h is focal depth. a, b, c, d, e, qi, qs, si, ss, ssl, and x are the coefficients
of the model that were derived through regression, where subscripts i and s equal
interface and intraslab type events, respectively. qi and qs are the coefficients of
the magnitude-squared term of the equation. The parameters si and ss are used to
describe ground-motion differences between interface and intraslab earthquakes,
and ssl is a magnitude-independent term to account for the more complex travel
path of intraslab events. The coefficient x is a site class term. ε and η denote the
within-event and between-event residuals, respectively, and are assumed to be nor-
mal distributed with zero mean and standard deviations φ and τ . The total standard
deviation can be computed as σtot =

√
φ2 + τ2. The regression coefficients and

the values for the standard deviation of within- and between-event residuals are
listed in Online Resource 2.

We excluded the reverse-faulting parameter from the original functional form
since it only applies to crustal events. As in Zhao et al. (2006b), we cap the depth
term at 125 km, but we dropped the depth coefficient hc = 15 km of their equa-
tion because only two events are shallower than 15 km in the Chilean database. The
original term ln rrup+cedMw did not provide stable results using random effects re-
gression; we therefore replaced the term by the equivalent form (c+dMw) ln rrup.
Instead of individual site terms for each class of the Zhao et al. (2006a) scheme, we
used a very simple term which is zero for NEHRP B condition (majority of all the
Chilean records) and takes the same value x for all other site conditions. Following
equation 5 in Zhao et al. (2006b), we introduced a magnitude-correction term in
our equation. However, this term was not derived from the between-event residuals
of each source type but was obtained within the random effects regression itself.
Due to trade-offs we had to exclude the linear and constant term in their correction
function and only retained the magnitude-squared term. We did not change the co-
efficientsMc = 6.3 and 6.5 for interface and intraslab events, respectively, because
the derived model provided sufficiently good results for the purpose of this study.
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2. Mixture model approach

2.4 Processing of Chilean recordings

In this study we use accelerograms recorded within the Integrated Plate Boundary
Observatory Chile (IPOC) project to infer the backbone GMPE for Northern Chile,
a unique new dataset that forms the ideal basis to test the mixture model approach
for a region for which no indigenous GMPE exists. Since 2006, the IPOC members
(details e.g. in Schurr et al., 2009) operate a variety of geophysical stations to
monitor the plate boundary segment in Northern Chile, which is assumed to be at
the terminal stage of an interseismic seismic cycle (e.g. Comte & Pardo, 1991). In
fact, on the 1st of April, during the review process of this manuscript, this seismic
gap was partially ruptured by an Mw 8.1 offshore earthquake near the town of
Pisagua. The key components of IPOC are 20 permanent, multi-parameter stations,
which are installed throughout Northern Chile. Of special interest for this study
are the continuously recording accelerometers that are operated at these sites. We
also had access to eight triggered strong-motion instruments that are installed at
different locations in the area. We refer to Online Resource 1 for details on the
IPOC project and how the data were retrieved.

From 2006 until May 2012, more than 300 earthquakes with magnitude larger
than five occurred along the subduction zone in Northern Chile and in Southern
Peru. In order to be able to process the large number of recordings (more than
3,000) obtained from these events, we developed a semi-automatic tool in Matlab
(currently translated into C) that queries earthquake information from seismologi-
cal online platforms and subsequently cuts the corresponding recordings from the
continuous station datastreams for processing. Earthquake metadata information
was manually reviewed in order to deduce event (for example type of subduction
zone earthquake) and record (for example rupture distance) related information.
The next two subsections provide details on the processing tool and how metadata
were obtained.

2.4.1 Earthquake and record related information

Earthquake metadata information was retrieved from different seismological data
centers and publications. Only events with moment magnitudes (Mw) larger than
5.0 were considered as the majority of the GMPEs are calibrated against large
magnitudes. Furthermore, we just took into account earthquakes with available
focal mechanisms that are listed in the Harvard Centroid Moment Tensor (CMT)
database (see Data and Resources section) in order to ensure that all relevant input
information can be deduced for the models. Event locations coming from local
agencies were preferred to those determined from teleseismic recordings. Date,
time, epicentral location and focal depth of Chilean events were extracted automat-
ically from the online catalog of the Geophysical Department of the University of
Chile (GUC, see Online Resource 1). If no information could be obtained from the
GUC database, the CMT solutions were used instead. For the Mw 7.7 Tocopilla
earthquake and three of its aftershocks, improved event locations, focal mecha-
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2.4. Processing of Chilean recordings

nisms and Mw measures were available from the study of Peyrat et al. (2010),
which we substituted manually in our metadata list.

Subduction zone GMPEs generally differentiate between interface type events
occurring at the coupled interface of the subducting and the overriding plate, and
intraslab type events that take place within the downgoing slab. The classification
into different source types was guided by the work of Delouis et al. (1996) for the
Chilean earthquakes of this study. Delouis et al. (1996) identified different zones of
geometry and stress regime in the Andean subduction zone between 22°S and 25°S
that can be associated with interface and intraslab activity, respectively. We also
used the definitions of Delouis et al. (1996) to discriminate the actual rupture fault
plane from the auxiliary plane. The nodal plane of the focal solution dipping to the
east was generally considered to be the true fault plane, but some cases remained
ambiguous. Style-of-faulting was then assigned according to the rake angle of the
rupture plane following the definitions of Wells & Coppersmith (1994). The final
classification into interface and intraslab type events was performed manually and
was based on the depth of an event, the distance to the trench, style-of-faulting and
dip angle of the fault plane. We plotted vertical cross sections perpendicular to
the trench using reported EHB events (Centennial Earthquake Catalog, see Online
Resource 1) between 1960 and 2010 to visualize the downgoing Nazca plate, and
to display the relative position of earthquakes in comparison to the slab. In doing
so, crustal and other spurious events could be detected and removed from the final
database. Earthquakes that could not clearly be classified as either interface or
intraslab events were also excluded from the dataset.

Rupture and hypocentral distance were calculated automatically for each station-
event pair. The rupture dimension of an earthquake was estimated following the
work of Strasser et al. (2010) who developed empirical relations between rupture
length and width and moment magnitude for subduction zone events. We preferred
the relations of Strasser et al. (2010) to those of Blaser et al. (2010) because they
provide relations for interface and intraslab type events rather than for different
styles-of-faulting, an information which was missing for events for which the true
fault plane could not be identified. The rupture plane of a Chilean event was first
modeled in spherical coordinates using earthquake depth, rupture length, rupture
width, strike and dip of the preferred focal plane, with the hypocenter lying in the
center of the fault plane. We decided to determine the rupture plane first in spher-
ical coordinates because it assures that the fault plane is slightly curved and that
it does not come to lie outside of the seismogenic zone. Rupture plane and sta-
tion coordinates were then converted to Cartesian coordinates and an iterative grid
search was applied to find the shortest distance between the fault plane and the
station. Two iterations were performed whereby the second one used a finer grid
in the solution grid cell of the first iteration.

We used the relations of Scherbaum et al. (2004b) to determine rupture distance
directly from hypocentral distance for recordings from those events for which the
decision for the correct fault plane remained ambiguous. However, we modified
the original distance conversion relations, which were derived for shallow crustal
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2. Mixture model approach

activity, to make them applicable to subduction type events. We used, for example,
the rupture dimension-Mw relations of Strasser et al. (2010) instead of the ones
from Wells & Coppersmith (1994). Furthermore, the upper and lower depths lim-
its of the simulated fault planes were set to 3 and 80 km for interface, and to 3 and
300 km for intraslab events. New dip angle distributions (truncated normal distri-
butions) were chosen according to the dip angles observed for the Chilean events.
For interface earthquakes, the angle was allowed to vary between 10° and 40° with
a mean value of 25° and a standard deviation of 20°. For intraslab events, the mean
and standard deviation of the dip distribution were set to 65° and 20°, respectively,
and the distribution was confined to the range between 35° and 90°. 20.000 fault
planes were constructed to determine the new distance conversion relations.

All continuously recording stations of the IPOC project (approximately 95 %
of all records) are built on rock sites. Geological or geotechnical information for
most of the eight triggered IPOC accelerographs are however missing. We only
received site estimates for two of the sensors given in personal communication by
Ruben Boroschek. Records from all other triggered stations were excluded from
the database.

2.4.2 Record processing

The processing procedure implemented in our tool follows mainly the guidelines
of Converse & Brady (1992) and the recommendations of the COSMOS strong-
motion record processing workshop, which took place in 2004 (results described
and summarized e.g. in Boore & Bommer, 2005; Shakal et al., 2005). First, we
used the event times collected within the previous step to cut recordings from the
continuous station datastreams. Thereby, we only extracted signals from stations
lying within a circle with 500 km radius around an earthquake for processing. A
record was cut 7,200 s before and 3,600 s after the reported event time and then
stored. The relevant seismic signal was assumed to end 600 s after the reported
earthquake origin time.

No instrument correction was applied to the recordings of this study, as the
transfer functions of modern digital strong-motion instruments is usually flat in
the frequency range that is of interest for engineers (up to 100 Hz or higher). The
records were simply divided by the sensors absolute sensitivity at direct current
to achieve acceleration units. An initial zeroth-order baseline correction was per-
formed on the raw accelerograms. The mean of the pre-event part of a record was
calculated and subtracted from the whole trace. We integrated some of our zeroth-
order corrected records to velocity and displacement to check for long period drifts
that would indicate changes of the reference baseline itself, which can occur due to
strong shaking. The observed offsets were usually small or could be removed by
high-pass filtering so that no further baseline adjustments schemes (as e.g. the one
by Wang et al., 2011) were applied to the records of this study.

The accelerograms were then filtered using two passes of a 4th order Butter-
worth band- or high-pass filter, with one pass in forward and one pass in reverse
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2.4. Processing of Chilean recordings

direction. The signals were padded with zeros prior to filtering in order to ac-
commodate for transients that are introduced at both ends of the trace during the
filtering process. The number of zeros Tzpad (in seconds) that needs to be added
to a time series was calculated using the formula of Converse & Brady (1992),
Tzpad = 1.5n/fc , where n is the order and fc is the corner frequency of the
Butterworth filter. Half of the computed zeros was added at the beginning of the
record, half of it at the end. In order to avoid sharp offsets between the padded
section and the original trace, we replaced the parts of the signal lying before its
first and after its last zero crossing with zeros.

We determined optimal filter corner frequencies for each record by comparing
the Fourier amplitude spectrum (FAS) of the whole trace (containing signal and
noise) with the FAS of the pre-event noise part. Discrete FAS’s were computed for
log-spaced frequencies and smoothed in the spectral domain by convolving them
with a log-Gaussian function (σ = 0.2). Only signal parts with a signal-plus-
noise to noise ratio (SNNR) of at least 3 (corresponding to a signal-to-noise ratio
of 2) were accepted, and corner frequencies for a high- or band-pass filter were
set accordingly. It was automatically checked how often the SNNR level of 3 was
crossed. If no crossings were observed and the ratio was always larger than 3, a
high-pass filter with fixed corner frequency of fc = 0.05 Hz was applied. A high-
or a band-pass filter was used if one or two crossings occurred above 0.05 Hz. The
filter corners were then set to the corresponding frequencies of the SNNR level
crossings. We visually inspected records where more than two crossings were de-
tected. In general, those signals were of very low quality and the SNNR was barely
larger than 3 over the whole frequency range. Such records were therefore rejected
from the database. The final filtering results were randomly checked through vi-
sual inspection of the velocity and displacement curves, which are obtained by
integrating the filtered accelerograms.

We decided to use the same filter parameters for all components of a triaxial
recording to guarantee consistency in the frequency content between the channels.
The choice of the filter corners was based on the horizontals since most GMPEs
model horizontal ground motions. The SNNR was calculated for the geometrical
mean of both horizontal FAS’s to ensure that the final corner frequencies would not
rely on the results of only one of the horizontal components.

Finally, PGA and peak ground velocity (PGV) were determined. Spectral ac-
celerations for 5 % damping of critical were estimated using the method of We-
ber (2002). Following the suggestions of Akkar & Bommer (2006), Akkar et al.
(2011), Boore (2005) and Douglas & Boore (2011), we did not use response or-
dinates below the high-pass corner frequency because the shape of the response
spectrum strongly depends on the chosen filter parameters. In consistency with
Abrahamson & Silva (1997), we set the lower bandwidth of the response spectrum
to 1.25 times the high-pass corner frequency. The high frequency part of the re-
sponse spectrum, on the other hand, is less affected by the choice of the low-pass
filter corner. Douglas & Boore (2011) found that high frequency response ordinates
are often dominated by signal frequencies much lower than the corner frequency of
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2. Mixture model approach

the low-pass filter. We followed their conclusion that response spectral values can
be used up to the Nyquist frequency, irrespective of the chosen filter parameters.

2.4.3 Final Chilean database

In order to extend the IPOC database to higher magnitudes, we included data from
the work of Arango et al. (2011). The authors of this study collected and processed
98 accelerograms from 15 major subduction zone earthquakes that occurred in the
Peru–Chile region between 1966 and 2007. Due to, for example, distance con-
strains we only used 47 records from 11 earthquakes recorded on 40 stations. We
refer to their paper for details on the record processing, the stations or the collection
of metadata.

Based on the applicability ranges of the used GMPEs, we only considered sig-
nals within a rupture distance range of 40–300 km and from earthquakes with mag-
nitudes between Mw 5 and 8.1. All records where site conditions, source type in-
formation or other crucial predictor variables were missing were excluded from our
database. The combined dataset used in this study consists of 1,094 triaxial record-
ings (interface: 374, intraslab: 720) from 138 events (interface: 48, intraslab: 90).
The magnitude-distance distribution of the recordings is shown in Fig. 2.2.
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Figure 2.2: Magnitude-distance distribution of the Chilean recordings.

We extracted response spectral values for resonator frequencies between 0.3
and 30 Hz and for PGA, and computed the geometrical mean of two horizontal
components for each record and for each frequency. The final list of earthquakes, a
list of records and the computed spectral values for the different oscillator frequen-
cies and for PGA can be found in the Online Resources 3–5.
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2. Mixture model approach

2.5 Subduction zone GMPEs

We use the same set of subduction zone models that has been pre-selected within
the framework of the Global Earthquake Model (GEM) GMPEs Project (Douglas
et al., 2012). Tab. 2.1 lists the models and their characteristics. The equations of
García et al. (2005) and Arroyo et al. (2010) are only valid for intraslab and in-
terface type events, respectively. All other candidate GMPEs provide either differ-
ent sets of coefficients for interface and intraslab earthquakes (Atkinson & Boore,
2003), or account for the difference in source type by a switchable additive term in
their equation (BC Hydro, 2012; Lin & Lee, 2008; McVerry et al., 2006; Youngs
et al., 1997; Zhao et al., 2006b). The model of Kanno et al. (2006), however,
discriminates between events shallower than 30 km (mainly interface and crustal
earthquakes) and events deeper than 30 km (mainly intraslab), rather than between
interface and intraslab type events.

The selected GMPEs combine the horizontal components in different ways. We
adopt the geometrical mean of the two horizontals as the reference definition and
adjust all other definitions. The correlations derived by (Beyer & Bommer, 2006)
were used to convert random vector components to the geometrical mean. We note
that these equations were derived for crustal motions and that it is unclear whether
they are applicable to subduction zone regimes. The correction of the Kanno et al.
(2006) model, which uses the time domain decomposition of the two horizontal
components, was based on the work of Bragato & Slejko (2005), who reported that
median ground motions computed with this definition are on average 27% higher
than those using the geometrical mean.

Nearly all candidate models employ a different site classification scheme in
their equation. We decided to transfer all schemes to the one of the National Earth-
quake Hazard Reduction Program (NEHRP). We did this by evaluating the models
for rock conditions and then adding the NEHRP site term of the Atkinson & Boore
(2003) model (which is zero for NEHRP B conditions) without the non-linearity
term. The model of Lin & Lee (2008) already uses NEHRP classification, so no
changes needed to be applied.

We are aware that Contreras & Boroschek (2012) established new equations for
the prediction of spectral acceleration generated by large Chilean interface earth-
quakes. Their equations are, however, based on a very limited number of strong
motion data (117 accelerograms from 13 interface type earthquakes), and are only
valid for earthquakes with magnitudes larger than Mw 6.5. As can be seen in Fig.
2.2, the majority of the observations of this study is below Mw 6.5. We therefore
think it is inappropriate to use the new model in the formation of the mixture.

2.6 Mixtures for Northern Chile

In this section we present the mixtures that are obtained for Northern Chile when
aggregating the set of models introduced in the last paragraph. We computed mix-
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2.6. Mixtures for Northern Chile

ture weights individually for interface and intraslab type events and for different
oscillator frequencies. The performance of each mixture is evaluated using

• average residuals, which show the difference between the mean predictions
µj(x) of a model j and the observed data Yobs for N observations: AvResj :=∑N
i=1(Yobs,i − µj(xi))

• the negative average sample log-likelihood (LLH) proposed by Scherbaum
et al. (2009): LLHj := − 1

N

∑N
i=1 log2(pj(xi)), where pj(xi) is the like-

lihood that observation xi was produced by the probability distribution of
model j. Small LLH values indicate that a model is successful in describ-
ing the data, whereas the LLH value increases for models that mostly fail to
predict the observations.
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Figure 2.3: Mixture weights that are obtained for different oscillator frequencies when using the
complete dataset of this study. The oscillator frequency of 100 Hz corresponds to PGA. We refer to
Tab. 2.1 for GMPE abbreviations. Model a10 and g05 are only considered for interface and intraslab
type events, respectively.

Fig. 2.3 shows the mixture weights that are obtained for different oscillator
frequencies when applying EM on the complete interface and intraslab datasets
of this study. As can be seen, the mixture is often only made up from a set of 3
or 4 models receiving high weights, whereas the other models are given weights
close to zero. However, no single model contributes equally to the mixture over
all spectral frequencies. Instead, some models receive, for example, high weights
for low oscillator frequencies but not for high frequencies where instead another
model is more important. Some GMPEs (y97, ll08 and ab03 for interface and y97,
ll08 and mv06 for intraslab events) do not contribute at all to any of the mixtures
and have zero weights (or very close to zero) over all oscillator frequencies.

In order to assess the predictive performance of the mixture for new data, we
randomly selected 100 recordings from interface type and 100 recordings from in-
traslab type events from the database. These recordings were removed from the
complete database and stored as testing dataset. Mixture weights and the coef-
ficients of the regression model were then derived for the remaining number of
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Figure 2.4: Mixture weights (top) that are obtained when inferring the mixture from the original
dataset minus a test datasets (each 100 interface and intraslab records), and the regression model esti-
mated for the same dataset. The performance of the mixture, the regression model and the individual
GMPEs for the testing dataset is assessed in terms of average residuals (middle) and LLH values
(bottom).
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2.6. Mixtures for Northern Chile

recordings (Fig. 2.4 left). We compared the model predictions of the resulting mix-
ture (black, dashed line), the regression model (gray, dotted line) and the individual
GMPEs with the extracted test observations in terms of residuals (Fig. 2.4 middle)
and LLH values (Fig. 2.4 right). Both the mixture and the regression model always
show average residuals very close to zero and LLH values that are smaller than the
ones from the component GMPEs (which indicates a better fit). The inferred mix-
ture and the derived regression model are comparable in terms of average residuals
and LLH values for interface events. The regression model performs only slightly
better for intraslab events when looking at LLH values, but still both the mixture
and regression model have average residuals very close to zero. The results of
the mixture and regression model, when estimated and applied for the complete
dataset, look very similar to the test dataset case so that they are not shown here.
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Figure 2.5: Residuals of the regression model and of the derived mixture as a function of magnitude
and distance for both interface (left) and intraslab (right) type events estimated for the complete
Chilean dataset. PGA: two upper panels, SA 1 Hz: two bottom panels.

Fig. 2.5 shows the residuals of the mixture and the regression model for PGA
and 1 Hz as a function of magnitude and distance for both interface and intraslab
type events. Neither the mixture nor the regression model shows a trend with
magnitude or distance for interface events. However, for intraslab events especially
at 1 Hz the mixture seems to underpredict ground motions at high magnitudes and
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small distances, and to overpredict ground motions at small magnitudes and large
distances.
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Figure 2.6: Mixture weights for intraslab type events (top left) that are obtained when aggregating
only two GMPEs. The resulting residuals (top right) and LLH values (bottom) of the mixture and the
two component GMPEs are shown in comparison to the performance of the mixture that was inferred
for all eight GMPEs of this study.

We finally tested the performance of the mixture when aggregating only two
GMPEs that are very different in terms of their average residual. We used the
model ab03, which underpredicts the intraslab ground motions for all oscillator
frequencies, and the model bch12, which generally overpredicts the ground shak-
ing, and inferred a mixture made from both models. The weights, residuals and
LLH values of the mixture and both component GMPEs are shown in Fig. 2.6. The
performance of the two-component mixture is nearly as good as the one from the
mixture obtained when aggregating all eight GMPEs (Fig. 2.6 grey dashed line).

2.7 Discussion

The results of the previous section show that a mixture performs better than any
of the single GMPEs in terms of average residuals and LLH values. Only model
a10 for interface and model g05 for intraslab event at low oscillator frequencies
are close in their performance to the mixture. The mixture is even comparable to
a model that was obtained by regression from the same dataset. The full potential
of the mixture emerges for intraslab events at high oscillator frequencies, where
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2.7. Discussion

all GMPEs either under- or overpredict the Chilean observations and show quite
large LLH values. The mixture performs then considerably better compared to all
individual models.

As Fig. 2.6 shows, even two models might suffice to derive a good mixture
model. However, both models need to cover different ranges of possible ground
motions in order to derive a mixture that is able to represent the median ground
motion in the area of interest. It has to be assured over the complete frequency
range that not both models have either positive or negative average residuals. In
practical applications and in situations where the hazard calculation should be au-
tomated, it is easier to employ a set of diverse models from which the essential
ones will be picked within the mixture weight calculation step.

The lack of fit of the mixture for some magnitudes and distances (shown in
Fig. 2.5) is not surprising, since we infer a single mixture for the whole dataset.
It would be possible to allow the mixture weights to vary with magnitude and
distance. However, as we propose to use the mixture approach in situations were
strong-motion data are sparse, it would be hard to retain a sufficient number of
recordings after splitting the dataset into different magnitude-distance bins, and this
might lead to over-fitting. Furthermore, the idea is to keep the logic tree simple,
using only a single model, which can easily be adjusted, for example, with respect
to stress drop by applying scaling factors in the logic tree.

One could also derive a regression model if the available dataset of the target
area is sufficiently large to do so. In general, however, more data are needed to
derive a regression model compared to the combination of existing models into
a mixture. Additionally, the hazard analyst needs to decide upon an appropriate
functional form first, before running the regression, which is not always a trivial
task. The mixture, on the other hand, is easier to handle and can give fast and
reliable predictions. It is nevertheless dependent on the quality of the component
GMPEs, but as long as the applied models span a wide range of possible ground-
motion predictions the mixture will give adequate results.

Even though mixture weights are calibrated against observations of the target
area and sum up to one, they should not be equated with logic tree weights. Logic
tree weights give a notion on how good a single model is to describe observed
and future ground motions in the area of interest. The combination of models into
the mixture, on the contrary, is tuned to give an optimal overall performance of
the mixture, sometimes irrespective of single model performances. In this context,
it is possible that even bad performing models (in terms of average residuals and
LLH values) are given high mixture weights because they provide an indispensable
contribution to the mixture. When looking, for example, at Fig. 2.4 for intraslab
events, model ab03 receives high weights for oscillator frequencies of 5 and 10 Hz.
However, the model shows large positive average residuals and very large LLH
values for the same frequencies and would most probably not receive high logic
tree weights. But when combining different GMPEs into a mixture, the model is
important to drag the aggregated model into the direction of positive residuals as
nearly all other component GMPEs show negative residuals. The resulting mixture
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then has residuals very close to zero. On the contrary, the model k06 performs very
well for interface events at 1 Hz. Nevertheless, the model receives zero weight and
does not contribute to the mixture. In general, however, performance in terms of
average residuals and LLH values is often reflected in the mixture weights.

The median of the computed mixture can be used as backbone model for the
logic tree of median ground motions. The standard deviation of the mixture, on the
other hand, should not be regarded as a reliable (median) measure of the intrinsic
ground-motion variability, because it inherits not only the randomness of ground
motion but also epistemic uncertainty due to the combination of different GMPEs
into one model. A median sigma model based, for example, on the single-station
sigma concept (Atkinson, 2006) could be used instead, from which a full sigma
logic-tree (to capture the epistemic uncertainty of sigma) could then be build as,
for example, described in Rodriguez-Marek et al. (2014).

2.8 Conclusion and outlook

We have presented a new method that allows to aggregate existing GMPEs into a
mixture model using observed data. The new approach was tested on a Chilean
dataset, using eight subduction zone GMPEs for the prediction of interface and
eight subduction zone GMPEs for the prediction of intraslab event ground mo-
tions. The derived model performs better than any of its component GMPEs, and
performs comparable to a regression model that was also estimated on the basis
of the Chilean dataset. We therefore conclude that the mixture model is a good
estimate of the center of the ground-motion distribution in that area, and that the
model could consequently be used as backbone model for the logic tree. The body
and range of the ground-motion distribution can be obtained by scaling the mixture
model up or down.

We believe that the mixture model approach might be helpful to generate back-
bone models in situations were some ground-motion observations exist, but in
which the number of data is still insufficient to generate a region-specific GMPE.
In areas where observations are extremely sparse or are known to be not representa-
tive, the generation of the mixture could be done within a Bayesian framework that
allows the joining of experts’ prior knowledge with data. Following this approach,
mixture weights are distributed according to an a priori distribution (defined by ex-
perts believes), which is subsequently updated with observed data, leading to the a
posteriori distribution of weights.

The mixture model is very flexible in that it allows the updating of existing
mixture weights (estimated either purely data-driven or by the combination of ex-
pert knowledge and data) in a Bayesian framework as new earthquakes happen and
new observations become available. The adjustment can be done fully automatic,
making it possible to not only keep the ground- motion part of the logic tree up to
date, but also the resulting hazard maps.
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Data and Resources Accelerograms of this study were recorded within the Integrated
Plate Boundary Observatory Chile (IPOC) project (Schurr et al., 2009, http://www.
ipoc-network.org). IPOC data can be obtained from the Geofon Data Centre (http:
//geofon.gfz-potsdam.de/), but access to recordings of some of the instruments is
restricted. We received the continuous data files from the multi-parameter sites upon re-
quest from the GFZ German Research Centre (contact person Bernd Schurr), and the ac-
celerograms from the triggered sensors from the University of Chile (contact person Ruben
Boroschek).

Recordings from the work of Arango et al. (2011) were received after contacting the
authors of the study, but the accelerograms can now also be obtained from the COSMOS
Strong-Motion Virtual Data Center (http://www.cosmos-eq.org/VDC/index.html).

The Global Centroid Moment Tensor Project (CMT) database was searched using
www.globalcmt.org/CMTsearch.html (accessed 3 August 2012). Metadata informa-
tion from the online catalog of the Geophysical Department of the University of Chile
(GUC) were obtained from http://ssn.dgf.uchile.cl/ (accessed 10 August 2012),
the website now moved to http://www.sismologia.cl/. Events from the Centennial
Earthquake Catalog were downloaded from http://www.isc.ac.uk/ehbbulletin/ (ac-
cessed 21 February 2012).

Online resources of this manuscript can be dowloaded from https://link.springer.
com/article/10.1007%2Fs10518-014-9636-7 and contain:

• Online Resource 2: List of regression coefficients

• Online Resource 3: List of earthquakes used in the study

• Online Resource 4: Final list of recordings used in this study

• Online Resource 5: Response spectral values computed for each record

Online resource 2 is also shown in Appendix A of this thesis.
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3. Near-surface QL from higher-order noise correlations

Abstract Knowledge of the quality factor of near-surface materials is of fundamental
interest in various applications. Attenuation can be very strong close to the surface and
thus needs to be properly assessed. In recent years, several researchers have studied the
retrieval of attenuation coefficients from the cross correlation of ambient seismic noise.
Yet, the determination of exact amplitude information from noise-correlation functions
is, in contrast to the extraction of travel times, not trivial. Most of the studies estimated
attenuation coefficients on the regional scale and within the microseism band. In this pa-
per, we investigate the possibility to derive attenuation coefficients from seismic noise at
much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern
Greece offers ideal conditions to study quality factor retrieval from ambient noise for dif-
ferent rock types. Correlations are computed between the stations of a small scale array
experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011.
We employ the correlation of the coda of the correlation (C3) method instead of simple
cross correlations to mitigate the effect of uneven noise source distributions on the corre-
lation amplitude. Transient removal and temporal flattening are applied instead of 1-bit
normalization in order to retain relative amplitudes. The C3 method leads to improved
correlation results (higher signal-to-noise ratio and improved time symmetry) compared to
simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system
and we focus on Love wave arrivals on the transverse component and on Love wave quality
factorsQL. The analysis is performed for selected stations being either situated on soft soil
or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenua-
tion parameters are inferred by inspecting the relative amplitude decay of Love waves with
increasing interstation distance. We observe that the attenuation coefficient γ and QL can
be reliably extracted for stations situated on soft soil whereas the derivation of attenuation
parameters is more problematic for stations that are located on weathered rock. The results
are in acceptable conformance with theoretical Love wave attenuation curves that were
computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest
area.

Keywords Seismic attenuation · Interferometry · Coda waves

3.1 Introduction

Attenuation is an important ingredient of the propagation of seismic waves in
Earth’s interior for understanding and describing the spectral decay and the phase
distortion of signals at high frequencies. Its knowledge is, for example, essential
for ground-motion prediction in seismic hazard analysis (e.g. Campbell, 2009) or
for the correction of path and site effects when investigating seismic sources (e.g.
Hough, 1997; Müller, 1985).

Both, body and surface wave recordings from local or regional earthquakes
(e.g. Sato et al., 2012) or from active source experiments (e.g. Langston et al.,
2005; Xia et al., 2013) are used to study the attenuation structure in the crust.
In seismic hazard analysis, near-surface attenuation (described by the parameter
κ0) is estimated from the spectral decay of S-waves traveling almost vertically
through the uppermost layers of the ground to the surface (Anderson & Hough,
1984). Several studies, some of which employed downhole sensors to obtain at-
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tenuation parameters as a function of depth, show that attenuation is very strong
close to the surface but becomes less important at depth (e.g. Abercrombie, 1997;
Anderson & Hough, 1984; Cranswick, 1988; Hanks, 1982, and references therein).
Abercrombie (1997) and Aster & Shearer (1991), for example, reported that, for
frequencies between ∼3-25 Hz and ∼20-80 Hz, respectively, up to 90 per cent of
the total energy absorption of the crust occurs in the upper 3 km and 50 per cent
in the upper 300 m. Attenuation studies from borehole experiments are rare due to
cost of drilling and earthquake data is mainly available in regions of high seismic
activity. Thus, we focus on quality factor Q estimation from ambient seismic noise
as a potential low cost method for low seismicity regions.

In recent years, several researchers have studied the retrieval of attenuation
properties from the cross correlation of seismic noise (e.g. Lawrence et al., 2013;
Lin et al., 2011; Prieto et al., 2009; Weaver, 2011; Weemstra et al., 2013). The
time derivative of the long term cross correlation of noise between two sensors
converges to the Green’s function between these sensors (Gouédard et al., 2008).
It can be used to infer subsurface information using the same analysis techniques
that are traditionally applied in earthquake studies or active source experiments.
For example, the extraction of seismic velocities from seismic noise has been suc-
cessful in many applications (e.g. Ekström et al., 2009; Hannemann et al., 2014;
Pilz et al., 2012; Shapiro et al., 2005).

The retrieval of reliable amplitude information and based on that attenuation
parameters is more difficult. Several factors contribute to the amplitude informa-
tion of a seismic record like, for example, geometrical spreading, intrinsic attenu-
ation, scattering, site amplification or focusing and defocusing effects. Noise CC
amplitudes are additionally affected by variations of the ambient seismic field both
in space and time and by the data pre-processing itself (e.g Weaver, 2011). Never-
theless, multiple studies demonstrated that seismic noise carries information about
the anelastic structure of the Earth and that it can be reliably extracted. Prieto et al.
(2009) fitted the real part of the azimuthally averaged coherency of the ambient
seismic wavefield to a damped Bessel function to measure frequency dependent
phase velocity and attenuation coefficients. This method was further investigated
numerically by Lawrence et al. (2013) and successfully applied for imaging 3-D
variations of the quality factor on the reservoir (∼1-20 km, Weemstra et al., 2013)
and the regional scale (∼30-200 km, Lawrence & Prieto, 2011; Prieto et al., 2011).
Lin et al. (2011) found that the spatially averaged amplitude decay of time-domain
CCs is in good conformance with attenuation measurements from regional seis-
mic events at the USArray. Weaver (2011, 2013) modelled noise source intensity
by a radiative transfer equation and then simultaneously fitted the CC amplitudes
from synthetic linear arrays for spatially varying attenuation coefficients and site
amplification factors. Liu et al. (2015) developed an inversion algorithm to derive
interstation attenuation from three-element linear arrays (station triplets).

Studies by Cupillard & Capdeville (2010) and Tsai (2011), on the other hand,
showed that non-uniform distributions of noise sources can severely bias CC am-
plitudes and hence attenuation results. Zhang & Yang (2013) tried to overcome
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3. Near-surface QL from higher-order noise correlations

these difficulties by computing higher order noise correlations (C3) as was origi-
nally proposed by Stehly et al. (2008). Higher order correlations make use of the
scattered coda portion of the first correlation step that is assumed to represent a
more homogeneous source distribution than the original seismic noise field. Zhang
& Yang (2013) successfully inferred the attenuation structure below the western
United States for the seismic wave period of 18 s by applying C3 to data of the US-
Array. Their results were comparable with attenuation coefficients derived from
earthquakes that were recorded at the same stations.

Most of the studies listed above focus on the retrieval of crustal and upper
mantle attenuation parameters within the ocean microseism band. Our motivation
lies in the estimation of Love wave phase slowness and quality factor Q in the
very shallow subsurface (0-∼500 m) and for frequencies closer to the frequency
range of interest for seismic hazard and engineering applications (>1 Hz). We
use in this study the notation QL for the apparent quality factor of Love waves.
For a homogeneous half space, QL would be equivalent to the shear-wave quality
factorQs. In stratified mediaQL is dependent on the eigenfunctions of Love waves
and is therefore a function of frequency. The emphasis of this study is on the
estimation of QL rather than the quality factor of Rayleigh waves because only
then a direct relation with Qs (and not also Qp as for Rayleigh waves) is given. Qs
on the other hand is important for seismic hazard studies which generally utilize
horizontal ground motions and shear wave attenuation factors in their analysis.

We adopt the method of Zhang & Yang (2013) and compute CCs between
stations of a small scale array experiment (interstation distances <2 km) that was
carried out in the Euroseistest area in northern Greece in 2011 (Hannemann et al.,
2014). The correlograms are rotated to the ZRT system and we focus on the T-
component and Love waves only. As the chosen test site has a complex surface
geology, we estimate frequency dependent QL from the amplitude decay of Love
waves for stations located either on soft soil or on weathered rock. One of our
objectives is to test whether the chosen method is able to resolve attenuation dif-
ferences between both rock types. The outcomes are compared with theoretical
QL curves that are based on 1-D shear-wave velocity (vs) and Qs profiles that are
reported for the Euroseistest valley below the stations. We furthermore test the
applied methods by recovering the theoretical phase slowness and QL curves from
synthetic seismograms that were computed for the same 1-D profiles.

3.2 Study Area and Data

We apply noise interferometry in the Mygdonia sedimentary basin in Northern
Greece (Fig. 3.1) that is situated between lakes Lagada and Volvi and lies approxi-
mately 30 km to the northeast of the city of Thessaloniki. The Mygdonia basin is an
European experimental test site (Euroseistest; Pitilakis et al., 2013) for integrated
studies in earthquake engineering, engineering seismology, seismology and soil
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Figure 3.1: Euroseistest area in Northern Greece. Geological map of the study area and array
configuration. The description of the geological units is taken from Hannemann et al. (2014) and
Ktenidou et al. (2015). The positions of different permanent stations and boreholes are marked.

dynamics. Several geophysical and geotechnical experiments have been conducted
in this area within the last 20 yr.

We use data from an array experiment that was carried out in August and
September 2011 in the northern part of the Mygdonia basin. The array consisted
in total of 27 instruments from which 19 stations were placed on fixed positions
on an outer circle with a diameter of approximately 1.8 km, running for a period of
two weeks. Eight mobile units were installed on an inner circle with a diameter of
around 700 m. These stations were moved throughout investigation, running either
for several hours during day or night time before being moved to a new position on
the circle. Interstation distances range from a few tens of meters to approximately
2 km. All stations recorded with a sampling frequency of 100 Hz. We refer to Han-
nemann et al. (2014) for further details on the array and on the instrumentation.

Table 3.1: vs and Qs for the formations shown in Fig. 3.2. Qs,lab stems from laboratory testing
as reported in Pitilakis et al. (1999). vs and Qs,geo were determined in geophysical experiments by
Jongmans et al. (1998).

Formation A B C D E F G* G
vs (m/s) 130 200 300 450 650 800 1250 2600
Qs,geo 15 20 30
Qs,lab 15 20 30 40 60 70 100 200

The Mygdonia valley is mainly a 2-D structure (compare to Fig. 3.1 and the
NNW-SSE cross-section in Fig. 3.2). Site conditions range from weathered rock
formations at the basin edge right below the northernmost stations of the array
to around 200 m deep sediments at the basin center where the southeasternmost
stations of the array are situated. We thus expect significant variations in velocity
and attenuation estimates when performing noise CCs between stations located at
different parts of the array.
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Qs estimates of the Mygdonia valley are available from the studies of Jong-
mans et al. (1998) and Pitilakis et al. (1999) and are listed in Table 3.1. Jongmans
et al. (1998) derived Qs down to 40 m depth (formations A-C in Fig. 3.2 and Ta-
ble 3.1) from attenuation measurements of Rayleigh waves. The authors assumed
a frequency independent Qs and analyzed their data between 1-4 Hz, the same
frequency range as in our study. They performed their inversion for six profiles
oriented parallel to the graben valley axis that were measured in different parts of
the basin, and computed a mean Qs profile from all curves. They observed that
Qs in the shallow layers is very similar for all profiles irrespective of the position
within the basin (Qs ∼ 15− 30 in the upper 15 m). Pitilakis et al. (1999) extracted
damping parameters in the laboratory from samples of the TST borehole that is lo-
cated in the center of the valley and penetrates down to the bedrock in 200 m depth
(Figs 3.1 and 3.2 and Table 3.1). The laboratory values are in good agreement
with the Qs measurements of Jongmans et al. (1998) for formation A-C. Pitilakis
et al. (1999) inferred a Qs of 200 for formation G, the bedrock at the bottom of the
borehole (see also Table 3.1).

The positions of the two permanent accelerometric stations GRA and PRR are
shown in Figs 3.1 and 3.2. 1-D vs and Qs information below these stations are
used in the following to compute theoretical phase slowness and QL curves for
comparison with the noise based estimates of this study.

54



3.3. Noise correlation and C3

3.3 Noise correlation and C3

It is well established that the time derivative of the CC of an equipartitioned ran-
dom wavefield recorded at two positions converges to the Green’s function. This
in turn is equivalent to the impulse response obtained from an active source exper-
iment (e.g. Lobkis & Weaver, 2001; Wapenaar, 2004). In theory, reconstruction
of the full Green’s function requires noise source energy to be emitted from all
directions with equal strength (Snieder et al., 2007)—a condition that is generally
not fulfilled in practice. In this context, scatterers play an important role, espe-
cially for sensor pairs oriented oblique or perpendicular to the predominant noise
propagation direction, by acting as secondary sources.

Several authors used the homogenizing effect of scattering and computed cor-
relations of earthquake coda recorded at two receivers (e.g. Campillo & Paul, 2003;
Paul et al., 2005). Seismic coda at long lapse times is assumed to be at least par-
tially diffuse and equipartitioned (Colombi et al., 2014; Paul et al., 2005) being
thus better suited to converge to an accurate CC based Green’s function. However,
earthquake coda recordings are sparse while ambient noise is omnipresent.

 S
R2

R1

Step 1. Noise Correlation

Step 1 turns 
receiver S into 
virtual source

R1

S

R2

Step 1 Step 2

 S
R2

R1

Step 2. Coda Correlation

Figure 3.3: Illustration of C3 procedure. Top: by correlating seismic noise recorded at two receivers
R1 and R2 with noise recorded at a third station (coda station) S (step 1), a virtual source is placed
at the position of station S. The virtual earthquake recording can be used to compute the coda corre-
lation between R1 and R2 (step 2) that leads to C3

R1×R2. Bottom, from left to right: original noise
recordings, the obtained cross-correlation results after step 1 and the final C3 correlation trace after
step 2.

Stehly et al. (2008) proposed to correlate the coda of noise CCs to obtain an
improved CC function (CCF). The basic idea is that noise correlations also con-
tain the coda part of the Green’s function and that this coda is less sensitive to the
source anisotropy of the original ambient field (Colombi et al., 2014). The correla-
tion of the coda of the correlation procedure, in short C3, is illustrated in Fig. 3.3.
To extract the C3 function between two receivers R1 and R2 one has to first cal-
culate the correlation between a third station S (also termed coda station) and R1

55



3. Near-surface QL from higher-order noise correlations

and R2, which leads to CCS×R1 and CCS×R2, respectively. The obtained correla-
tions represent the time series recorded at R1 and R2 that would be obtained for a
virtual source placed at the position of sensor S. Correlation of the coda segments
of CCS×R1 and CCS×R2 then gives C3

R1×R2. Different stations of the network can
be chosen as coda station to obtain the same correlation C3

R1×R2. Averaging over
time windows and coda stations leads to the final C3

R1×R2 function. The C3 method
combines the advantages of both using long noise time series for the computation
of correlations and the diffuse character of the seismic coda. As a consequence,
C3 functions generally show improved time symmetry even if the original noise
sources are not well distributed (Stehly et al., 2008).

Cupillard & Capdeville (2010) proved numerically that amplitudes of simple
CCs are strongly dependent on the distribution of noise sources. The C3 method,
on the other hand, does not suffer from noise source anisotropy as has been shown
empirically by Zhang & Yang (2013). Zhang & Yang (2013) were able to retrieve
surface wave attenuation properties using the C3 approach within the ocean micro-
seism band. They demonstrated that C3 based attenuation coefficients are much
closer to attenuation coefficients retrieved from earthquakes than the ones obtained
with conventional noise correlations. We therefore decided to adapt the C3 method
and apply it to our dataset. We focus in our work on the frequency band between
1-4 Hz and interstation distances much smaller than those by Zhang & Yang (2013)
in order to obtain attenuation parameters within the uppermost layers of the sub-
surface.

3.4 Data Processing

The pre-processing of the array data was based on the works of Bensen et al. (2007)
and Seats et al. (2012) and followed mainly the pre-processing steps of Hannemann
et al. (2014) for the same array. We split the records into one hr data windows, re-
moved the offset and applied a 5 per cent cosine taper at the edges of each window.
The original response of each instrument was removed because different sensor
types were used within the array. The data were then bandpass filtered between
0.5-30 Hz to minimize the impact of low-frequency signals on the frequency range
of interest (>1 Hz). We did not apply 1-bit pre-processing to the recordings be-
cause it has been shown theoretically and numerically (Cupillard & Capdeville,
2010; Cupillard et al., 2011; Weaver, 2011) that relative amplitudes are not re-
tained for non-uniform distributions of noise sources if such a strong non-linear
operation is applied. Instead, we utilized the same pre-processing method as in the
C3 study of Zhang & Yang (2013) to reduce the influence of earthquake signals
and temporal fluctuations of the noise field.

First, transient signals were removed by identifying signal windows with an
amplitude larger than an hourly median amplitude level. To do so, we computed
the envelope mean of each 5 min long data window and compared it to the median
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of the envelope amplitudes of the whole hour data trace. The signal of a window
was replaced with zeros if it exceeded two times the hourly amplitude level.

Second, we employed the temporal flattening technique that was originally pro-
posed by Weaver (2011) to remove temporal fluctuations in the noise source inten-
sity. For our data set, we expect fluctuations due to different day-night activity
on the streets and cities surrounding the array or due to short-lived weather phe-
nomena (e.g. wind gusts). Seasonal variations are not expected in the data given
the short deployment time of two weeks. Temporal flattening was performed by
normalizing each 1 hr data recording by the global noise amplitude level obtained
for the whole array during this hour. The global noise amplitude level was defined
as the quadratic mean (RMS value) of noise standard deviations obtained for all
receiver and coda stations of the array (Weaver, 2011).

To finalize the processing steps of the first correlation, spectral whitening was
applied and CCs were computed between all possible station pairs of the array for
1 hr long non-overlapping time windows resulting in noise CC’s with a coda tail of
1800 s length. The CC results were not further stacked.

CC coda was then extracted between 20 and 1800 s for each of the original 1
hr noise windows. The beginning of the coda window was set to two times of the
longest direct S-wave traveltime that can be observed in the array which in our
case estimates to 20 s [minimum observed shear-wave velocity vs,min ∼ 200 m s−1,
maximum interstation distance rmax ∼ 2 km; Hannemann et al. (2014)]. We tested
different coda window lengths in the analysis. The signal-to-noise ratio (SNR) of
the C3 function improved with increasing window length. We compared increasing
coda window lengths up to very large lapse times after the direct wave arrival (max.
1800 s time lag on the CCF). As interesting observation we found a continuously
increasing SNR with lapse time. In order to validate these findings, we checked
whether the C3 function can be retrieved from coda windows on the CC traces
between 1000 and 1800 s. The C3 functions are almost identical (despite a lower
SNR) to those obtained from CC coda windows between 20 and 1800 s. It follows
that multiple scattered energy is present at very large lapse times in the CCF. We
therefore use the whole coda tail starting from 20 s up to 1800 s for the computation
of the C3 function.

Following Zhang & Yang (2013), we added the coda from the positive lag CCF
and the coda from the time-reversed negative lag CCF (mirror stacking) as this
approach yielded the best C3 results. A similar good result is obtained when com-
puting C3 individually for the positive and negative lag arm and summing them
afterwards (Froment et al., 2011). Yet, this approach is computationally more ex-
pensive as the C3 calculation step has to be performed twice.

The CC coda segments were split into 100 s long time windows with an overlap
of 50 per cent (Welch’s method, Seats et al., 2012; Welch, 1967). The offset was
removed for each individual time window and spectral whitening was applied. For
each station pair in the array, we then computed C3 using several selected coda
stations (selection criteria are described in section 3.5). C3 was only obtained from
the coda segments of receiver and coda station pairs that have been computed for
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the same time instance of data recordings. For each hour, C3 results of 25 s length
were then written to disk.

Averaging over time windows and coda stations led to the final C3 functions.
Time averaging was performed after the C3 step. Time stacking right after the CC
computation leads to fewer coda time series and therefore lower C3 SNR’s as the
SNR of a correlation function increases with the square root of data length (e.g.
Bensen et al., 2007; Sabra et al., 2005). For example, for a receiver pair of the
outer circle, that was recording for approximately two weeks, roughly 330 hr of
data were used to compute the first correlation. The length of the selected coda
window (1780 s) and the number of coda stations results in about 2900 hr of data
for the computation of C3. Only 9 hr of data remain if time averaging is performed
directly after the CC step.

We rotate the C3 functions derived for the ZNE components into the ZRT sys-
tem and focus only on the transverse (T-) component. The rotation into a new
coordinate system is usually performed on the raw noise or coda traces and corre-
lations are then computed between Z-Z, R-R, T-T or between mixed components
(e.g. Campillo & Paul, 2003; Paul et al., 2005; Poli et al., 2012). Yet, CC and ro-
tation are linear operations and can be interchanged. We rotate the final C3 instead
of the raw traces because between-receiver and coda station-receiver azimuths are
different for each combination of stations.

3.5 Quality of C3

We evaluate the quality of C3 depending on the chosen set of coda stations and
C3 performance in comparison to CC. For this reason, we compute the SNR of
each trace by dividing the envelope maximum of a window around the theoretical
signal arrival by the standard deviation derived for 6 s long coda taken from the end
of the correlation trace. The choice of the signal window is based on the slowest
(150 m s-1) and fastest (2500 m s-1) observed velocities within the array. The SNR
is calculated on the T-component that is bandpass filtered between 1-4 Hz.

First, we test if coda stations that are far from the chosen receiver pair should
be excluded from the final C3 stack. Hannemann et al. (2014) excluded station
pairs with an interstation distance larger than 1000 m from their analysis because
they observed a group velocity change above this distance that they related to the
propagation of higher mode surface waves. We therefore compute C3 SNR for a
receiver pair (T08 and T09; see Fig. 3.4a and Fig. 3.7a for the location of of the
stations) and plot the results as a function of distance between each of the two
receiver stations and the coda station. We expect that the C3 SNR decreases with
increasing receiver-coda station separation but both close and far distances lead to
comparable SNRs. No distance penalty for far coda stations is thus employed.

The type of the chosen coda station (either a receiver of the inner circle or one
of the outer circle), on the other hand, has a much larger influence on the SNR.
Stations of the inner array circle (W stations) were only running for some hours
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Figure 3.4: (a) C3 SNR for receiver pair T08xT09 computed for single coda stations (see Fig. 3.7a
for the respective station locations). The horizontal axis shows the distance between receiver T08
and the coda station (S-T08) or receiver T09 and the coda station (S-T09). T=coda station of outer
circle running for two weeks. W=coda station of inner circle running only for some hours. (b) C3

SNR (normalized to the maximum SNR) for several receiver combinations of the outer array circle
when adding successively new coda stations to the C3 stack. The solid line is the median of the data
points.

while those of the outer circle (T stations) were in operation for several days. If
two T stations are used as receiver pair, a T station as coda station will lead to a
higher SNR as if a W station would be used that has a much shorter recording time.
We exclude therefore all W stations as coda stations. Fig. 3.4(b) shows the SNR
when adding successively new coda stations (only T stations) to the C3 stack of
several outer circle receiver pairs. The SNR increases rapidly for the first 5 stacked
coda stations. Adding more coda stations to the stack improves the SNR to much
lesser extent. A small number of coda stations is thus sufficient to obtain good C3

SNRs.
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Figure 3.5: Comparison of CC and C3 SNR for all possible receiver combinations of the array.

Fig. 3.5 compares CC and C3 SNRs computed for the same receiver pairs. The
C3 SNR is on average 30 per cent higher than the CC SNR. We also investigate
the time symmetry of CC and C3 functions. We derive the correlation coefficient
ρ between the positive and reversed negative lag arm of all computed CC and C3’s
as a function of receiver azimuth. A value of ρ = 1 corresponds to high symmetry
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Figure 3.6: Correlation coefficient ρ between the positive and reversed negative lag arm of CC
and C3 as a function of receiver azimuth. The distance between the receivers is colour coded. The
correlation coefficient is plotted as 1-ρ so that a value close to the center corresponds to high sym-
metry between positive and negative lag of a correlation function. Values close to two represent pure
anticorrelation and values around one show asymmetry between the lag arms.

between positive and negative lag time. Fig. 3.6 shows for illustration purposes
1-ρ instead. Small values of 1-ρ that plot close to the center of the circle then
correspond to high symmetry while higher values that scatter over larger parts of
the circle indicate asymmetry. A value of two corresponds to pure anticorrelation.
As can be expected, receivers with large separation have a stronger time asymmetry
due to their low SNR and plot closer to the value of 1 in the circle.

In addition to the correlation coefficient, we directly check the symmetry of CC
amplitudes. For each trace, we take the difference between maximum and mini-
mum amplitude on the negative lag and divide this value by the same amplitude
difference that is taken from the positive lag. CC amplitudes differ up to a factor
of 2-3 between both lag arms while the deviation factor observed for C3 functions
is always less than 1.5. This confirms the results of Stehly et al. (2008) who noted
that C3 functions show a much stronger time symmetry than simple CCFs. The
additional correlation step and the stacking over several coda stations, thus, greatly
improves correlation quality for the Euroseistest array dataset.

3.6 Results

We estimate mean phase slowness and QL curves as a function of frequency for
stations being situated either mainly on soft soil above the valley center in the
southern part of the array or on weathered rock in the northern part of the array
(Fig. 3.7a). Stations being located roughly parallel to the strike of the graben are
chosen to ensure that the subsurface can be regarded as 1-D for stations being
assigned to the same rock type. Throughout this paper, results that are associated
with stations on soft soil are shown in gray whereas those on weathered rock are
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Figure 3.7: (a) Array configuration and chosen set of stations on soft soil (gray/red) and on weath-
ered rock (black/blue). (b) Virtual shot gathers obtained from C3 correlations for stations situated on
soft soil and on weathered rock. Shown are the T-components filtered between 1-4 Hz.

colored in black (electronic version: soft soil in red and weathered rock in blue).
We exclude the receivers T08 and T18 from the analysis of soft soil stations as they
are situated on much softer ground than the adjacent receivers (s.a. Fig. 3.1). The
waveforms recorded at T08 and T18 show much stronger dispersion and including
both receivers in the analysis hampers the extraction of slowness and QL curves on
soft soil. Furthermore, we exclude station pairs on weathered rock with distances
smaller than 400 m because the Love wave arrivals on the positive and negative lag
arm partly overlap at zero lag time. This is especially important for the analysis at
lower frequencies.

We obtain virtual shot gathers for soft soil and for weathered rock stations
(Fig. 3.7b) when plotting the T-component of the C3 correlations as a function of
distance. Love wave arrivals can be clearly identified in both cases propagating
with much higher group velocity on weathered rock than on soft soil. As the C3

results are symmetric (Stehly et al., 2008, and Fig. 3.6), we work in the following
with the symmetric component of the CCFs (sum of positive and reversed negative
lag arm) for deriving phase slowness and QL.

We cannot directly compare the vs and Qs measurements of Jongmans et al.
(1998) and Pitilakis et al. (1999) with our phase slowness and QL estimates. De-
pendent on their wavelength, Love waves penetrate more or less deep into the
ground. In order to make the observed results comparable with the reported struc-
ture of the Euroseistest valley we therefore compute theoretical phase slowness and
QL dispersion curves that are based on selected 1-D profiles (Fig. 3.8).

Profiles GRA and PRO-1 are from Pitilakis et al. (1999) and correspond to the
profiles S4 and S7 of their fig. 6, respectively. These profiles were taken along the
NNW-SSE cross-section of the valley and formed the basis for the 2-D profile that
is shown in Fig. 3.2. Profile S4 (here GRA) roughly coincides with the location of
the permanent accelerometric station GRA and, taking the sensor locations of the
test array into account, is considered to be representative for the structure below
the soft soil stations. Profile S7 (in this study PRO-1) is located just south of the
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Figure 3.8: (a) Shear wave velocity and (b) shear wave quality factor as a function of depth for
different 1-D profiles that represent the ground below the chosen soft soil (GRA) and weathered rock
stations (PRR and PRO-1), respectively.

permanent station PRO and can be used to model the ground below the weathered
rock type stations.

The vs information of the profile below the permanent accelerometric station
PRR shown in Fig. 3.8 is taken from the Euroseistest website and is based on the
surface wave inversion results reported in Raptakis et al. (2000). Its location more
or less coincides with the one of profile PRO-1. Nevertheless, reported velocities
are slightly higher for layers above the bedrock and the bedrock velocity itself is
lower than for profile PRO-1. No Qs information is given for PRR, we therefore
use the same Qs profile as for PRO-1, changing only the Qs value of the topmost
layer from 30 to 40 as the shear-wave velocity of 400 m s-1 is more representative
of layer D in Fig. 3.2 and Table 3.1. The position of both permanent stations GRA
and PRR are shown in Figs 3.1 and 3.2.

3.6.1 Phase slowness estimation

We employ the slant stack method, a beamforming process, to derive phase slow-
ness dispersion curves from the data (e.g. Yilmaz, 1987). The plane wavefield is
transformed from the offset-time domain to the slowness-frequency domain. The
transformation is achieved by correcting each correlation trace for a linear moveout
time that is dependent on slowness and sensor offset and summing the amplitudes
of all traces over the offset axis. Constructive interference occurs only if the correct
phase slowness for a certain frequency is met so that the beampower maximizes.
Gouédard et al. (2008) could show that the noise correlation slant stack method
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provides very accurate phase velocity dispersion curves for Rayleigh and Love
waves given that the medium is horizontally stratified.

We apply this method to the chosen set of stations on soft soil and weathered
rock. A 10 and 5 s long window containing the Love wave arrival is cut for the
analysis of soft soil and weathered rock stations, respectively, with a cosine ta-
per of 2 per cent applied at the edges of each window. In a first step, amplitude
offsets are removed from the records and each correlation trace is normalized to
its maximum amplitude to account for amplitude differences due to different re-
ceiver separations. Moveout correction is then performed in the frequency domain
for the specified slowness range. For each slowness and frequency, the semblance
or normalized beampower (Neidell & Taner, 1971) of the phase shifted spectra is
calculated using:

S(ω, s) =
| 1
N

∑N
i=1Xi(ω, τs)|2

1
N

∑N
i=1 |Xi(ω, τs)|2

(3.1)

with τs = s·r the linear moveout time, s the slowness, r the sensor offset, ω the
angular frequency and N the number of spectra over which is totalled. Xi(ω, τs)
corresponds to the ith phase shifted correlation spectrum.

Slant stacks for soft soil and weathered rock stations are shown in Fig. 3.9.
Phase slowness dispersion curves are automatically extracted by fitting Gaussians
to the slowness-semblance slices at every frequency. The estimated mean and stan-
dard deviations are exported and used as slowness mean and error estimate for
the calculation of quality factor QL. Phase slowness on weathered rock could be
extracted between 1.6-4.0 Hz. Phase velocity is around 2300 m s-1 at 1.6 Hz and
1550 m s-1 at 4.0 Hz. On soft soil, the usable frequency range lies between 1.1-
2.6 Hz, where phase velocity is 550 m s-1 at 1.1 Hz and 330 m s-1 at 2.6 Hz.

The theoretical dispersion curves obtained for the fundamental and the first
higher mode of the 1-D profiles PRO-1, PRR and GRA are shown as dashed-dotted
and dotted lines in Fig. 3.9. The fundamental mode on soft soil coincides well with
the dispersion curve that is obtained with the slant-stack method. Higher mode
energy, on the contrary, cannot be identified in the frequency-slowness plot for
soft soil indicating that the energy that is present in the correlograms is from the
fundamental Love wave only. The dispersion curve on weathered rock fits better
with the theoretical curve of profile PRR than PRO-1.

3.6.2 Attenuation retrieval

Love wave amplitude measurements inferred from C3 correlations are used to re-
trieve QL information. The amplitude of a plane wave, single mode Love wave in
the far-field travelling in a specific direction can be written as (e.g. Aki & Richards,
2002; Udias, 1999):

Ai(f, ri) = A0(f) · 1
√
ri
· e

−πfri
c(f)QL(f) (3.2)
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3. Near-surface QL from higher-order noise correlations

Figure 3.9: Frequency-slowness plots obtained for (a) weathered rock and (b) soft soil using the
slant-stack method. The mean and standard deviation of the picked phase slowness curves are shown
as white error bars. Dashed-dotted lines (PRO-10, PRR0, GRA0) are theoretical dispersion curves of
the fundamental mode derived using the 1-D profiles shown in Fig. 3.8. The dotted line in the lower
panel (GRA1) is the theoretical dispersion curve for the first higher mode of profile GRA.

where A0 is the unknown source term, c is phase velocity, QL is Love wave
quality factor, r is distance and f is frequency. The term 1/

√
r accounts for ge-

ometrical spreading of surface waves, the exponential term describes material at-
tenuation and scattering of the medium. We are working with amplitude ratios in
order to get rid of the unknown amplitude term A0 at the focus. Amplitudes are
corrected for geometrical spreading before taking the ratio

R(f,∆r) =
√
r1A1(f, r1)
√
r2A2(f, r2) = e

−πf∆r
c(f)QL(f) (3.3)

where ∆r = r1 − r2.
The theoretical arrival window for Love wave amplitude picking is computed

for each trace individually. Window starting times are based on sensor offsets and
the maximum derived phase velocity from the slowness analysis. Taking into ac-
count the slowest observed phase velocity, a window length of 6.0 s is chosen for
stations on soft soil and a 3.0 s long window is selected for stations on weathered
rock. We visually checked if the Love wave is fully contained in the chosen sig-
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nal windows. Each trace is then Fourier transformed and amplitudes are directly
picked in frequency domain. The amplitude spectra are smoothed prior to pick-
ing using a Gaussian narrow band-pass filter. The Gaussian filter has the form
exp [−(2π(f − fc))2/(4b2)] where fc and b are the center frequency and band-
width of the filter. After testing we decided to employ a bandwidth b of 1 Hz in
the analysis because this value represents a good compromise between smooth QL
curves while preserving the mean frequency dependence of QL.

The attenuation coefficient γ can be obtained by plotting the natural logarithm
of the geometrical spreading corrected amplitude ratios against relative distance
∆r:

lnR(f,∆r) = −πf∆r
c(f)QL(f) = −γ(f) ·∆r (3.4)

The slope is estimated by a least-square linear regression and corresponds to
γ from which QL at a given frequency can be computed using the corresponding
phase slowness value. From the available C3 station combinations, 21 pairs on
soft soil and 15 combinations on weathered rock are used for the estimation of the
amplitude decay. As we are working with amplitude ratios, we always compute
the amplitude of one C3 station pair relative to another one. The station pairs are
selected in such a way that they share the same ’virtual source’ station and that part
of their paths are overlapping. In doing so, 70 and 40 relative amplitude values can
be formed between soft soil and weathered rock C3 pairs, respectively, for use in
the regression.
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Figure 3.10: Amplitude decay with distance for different frequencies. Gray/red: stations on soft
soil. Black/blue: stations on weathered rock. Fitted curves are shown as solid lines. The estimated
slope corresponding to the attenuation coefficient γ along with its error is given at the bottom of each
panel.

Fig. 3.10 shows the decay curves for different frequencies. The estimated
attenuation coefficient γ and the corresponding standard deviation are given at the
bottom of each panel. Although the scatter is large, it is clearly visible that the
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3. Near-surface QL from higher-order noise correlations

amplitudes measured on soft soil decay faster with distance (almost constant γ
of 1.0 km-1) compared to those on weathered rock (γ ∼ 0.2 km-1 at 1.7 Hz and
0.9 km-1 at 3.6 Hz).
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Figure 3.11: Top (a,c): γ and bottom (b,d): QL as a function of frequency. Left (a,b): solid lines
show γ andQL computed from the C3 correlations obtained in the Euroseistest area. Right(c,d): solid
lines show the reconstruction of γ and QL for profiles GRA and PRR from synthetic seismograms.
Standard deviation of the estimates (±1σ) are indicated as shadowed areas and include, in the case
of QL for real data (b), the slowness error. Curves for weathered rock below 3.4 Hz (synthetics)
or 2.5 Hz (data) are plotted as thinner lines because values below this frequency are not reliable.
Theoretical QL and γ curves obtained from 1-D profiles in the Euroseistest area (GRA, PRR, PRO-
1, Fig. 3.8) are shown for comparison as dashed-dotted lines (fundamental mode) or dotted line (first
higher mode). PRP-10, PRR0, GRA0 denote the theoretical fundamental and GRA1 the first higher
mode of the corresponding profiles.

Figs 3.11(a) and (b) show γ and QL as a function of frequency for weathered
rock and soft soil (solid lines) as obtained from the data. We measure γ and QL
only for frequencies were phase slowness values are available. QL for soft soil
stations is in the range of 5.5-23 for frequencies between 1.2-2.6 Hz. For stations
situated on weathered rock, QL lies between 10-50 for frequencies between 1.6-
4 Hz. The shaded areas indicate the range of ±1 standard deviation that takes
into account the slope errors of the amplitude decay regression and, in the case of
QL, also the estimated slowness errors. The theoretically derived γ and QL curves
from the 1-D Euroseistest profiles are shown for comparison as dashed-dotted lines
for the fundamental mode (PRO-10, PRR0, GRA0) and as dotted line for the first
higher mode (GRA1). The theoretical curves approach the QL or γ value of the
uppermost layer at high frequencies and the value of the bedrock halfspace at low
frequencies (this happens for soft soil below 1 Hz). For frequencies in between,
QL and γ are influenced by the Love wave eigenfunction at the given frequency.
The Love wave eigenfunction at a certain frequency is dependent on Qs, vs and the
derivative of phase velocity with respect to vs of not only one but several subsurface
layers (Anderson et al., 1965).
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3.7 Discussion

Before we discuss the observed attenuation curves we want to check if the applied
methods (slant stack and amplitude decay) are suitable for the derivation of phase
slowness, γ and QL within the frequency range that is considered in this study.
We test this by performing forward calculations using the profiles GRA and PRR
and computing synthetic seismograms for the same distance range as given by the
data. A horizontal single force source emitting a dirac delta impulse is placed at
the surface. We then use the same parameter settings and methods as applied to the
C3 functions to reproduce the theoretical phase slowness, γ and QL curves from
the synthetic seismograms (Figs 3.11c and d).

The fundamental mode phase slownesses can be retrieved accurately both for
soft soil and weathered rock profiles (not shown here). The same is true for γ and
QL for soft soil profile GRA if only the fundamental mode Love wave is present in
the synthetics. Slight deviations from the model curve occur if higher mode energy
is allowed in the synthetic seismograms but these differences are very small and
occur only above 2.3 Hz.

Major problems arise for the weathered rock profile PRR that shows deviations
from the model curves within the complete frequency range that we investigate.
These discrepancies are small for frequencies above 3.4 Hz but become larger for
lower frequencies. The largest QL that is reached on weathered rock is 50 before
it declines for decreasing frequencies. If we increase the distance range for the
computation of weathered rock synthetics up to 30 km, γ andQL can be reproduced
if at the same time a narrower Gaussian band pass filter is used (not shown). Only
extremely small γ values and a QL above 150 remain troublesome. The very small
γ values correspond to amplitude decay curves with a slope of almost zero. Tiny
errors in the γ estimation then lead to large QL errors.

The γ and QL values that we derive from C3 correlations for our dataset are
given in Figs 3.11(a) and (b). The results are obtained using the assumption of a
horizontally stratified medium without the effect of any station specific site ampli-
fication. The γ and QL values are mostly of the same order as the model values
of GRA0, PRR0 and PRO-10 but some major differences in their frequency depen-
dence can be observed.

For soft soil stations, the theoretical curve for the fundamental mode of profile
GRA predicts an increase of γ with frequency. Using the C3 dataset we observe
the same frequency dependence between 1.7-2.2 Hz although the slope is different.
At frequencies below 1.7 Hz or above 2.2 Hz γ values decrease with increasing
frequency. Nevertheless, the resulting QL curve is roughly comparable with the
QL curve of GRA0 for all frequencies that we consider. Only the slope is slightly
different from the model curve.

On weathered rock, γ is small at low frequencies and raises as the frequency
increases. PRR0 and PRO-10 share the same frequency dependence, yet, the fre-
quency where the observed curve starts to bend upward is much lower. The re-
sulting QL values are hence small above 3 Hz and only start to increase below this
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frequency. As for the synthetics, the observed QL is always smaller than 50 and
never reaches the bedrock Qs of 200 at the lowest frequencies. We note that the
derived γ curve for weathered rock shows errors that are of the same order or even
larger than the γ value itself at frequencies below 2.5 Hz. As for the synthetic
curves, γ at these frequencies is relatively small (below 0.2 km-1) and even tiny
errors in its value will lead to larger deviations in the QL estimate. That is why
we plotted the γ and QL curves for weathered rock stations thinner for frequencies
below 2.5 Hz. γ at these frequencies may be still close to the true value but the QL
estimates are certainly not realistic. The shaded error ranges illustrate that much
larger QL values are also possible.

The differences between the observations and the curves that are computed
from the Euroseistest profiles can have several reasons. First, some of the assump-
tions that we make for the computation of attenuation parameters may not be met.
We consider the ground below the soft soil and weathered rock stations as 1-D.
Yet, the stations are not perfectly oriented parallel to the graben structure and the
Euroseistest area has a rather complex geology. 2-D or even 3-D effects thus might
affect the attenuation estimates. In addition, site effects have been observed in the
valley and could be different for stations that we assigned to the same rock type.
But this should mainly result in a larger scatter of the amplitude ratios. Mean am-
plitude decays with distance and, hence, the γ value itself should not be affected.

Second, we do not exclude higher mode Love waves from the C3 correlograms
and can therefore not rule out the possibility that they might influence the results.
Yet, we do not observe any higher mode energy in the frequency-slowness plots
constructed from the data. It is therefore unlikely that higher modes have a large
influence on the results. Furthermore, problems with higher mode energy in the
soft soil synthetics did only occur for frequencies above 2.3 Hz. The decrease of
γ with frequency above 2.2 Hz that we observe in the data could thus maybe be
attributed to this effect.

Third, amplitudes decrease only very slowly on weathered rock. We already
noted in the synthetic tests that larger array apertures would be necessary to reliably
extract γ and QL on weathered rock. Deviations from the model curves could
thus also be effected by the limited distance range that we consider in this study.
This could also be the case for γ values on soft soil at low frequencies where the
frequency dependence is very different from the model curve GRA0.

Finally, profiles GRA, PRR and PRO-1 might not be fully representative for
the ground below the soft soil and weathered rock stations. While vs in the Euro-
seistest area is rather well constrained, Qs estimates are more uncertain, especially
at depths below 30 m. Fig. 3.2 is a simplified model for the Euroseistest area but
the real structure is more complex. Jongmans et al. (1998), for example, noted that,
what is summarized as formation D in Fig. 3.2 could be composed of sediments
in the center of the valley but could at the same time correspond to slope deposits
or weathered bedrock at the edges of the basin. Different Qs estimates must then
be expected for the same formation but only a single value is given that was deter-
mined in the center of the valley at borehole TST. The Qs values given in Table 3.1
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for the deeper formations D-G were derived in the laboratory. These measurements
are usually performed on small rock samples and at very high frequencies so that
Qs that one would observe at seismic frequencies and length scales might differ
from the laboratory values. Attenuation estimates from the laboratory are gener-
ally a measure of intrinsic damping alone (e.g. Pujol & Smithson, 1991) and do
not include scattering attenuation caused by material inhomogeneities. What we
measure with C3 correlations, on the other hand, is an effective Q that is made up
from a combination of intrinsic and scattering attenuation. Scattering attenuation
in the Euroseistest area could, for example, be caused by the deflection of surface
waves from the valley borders or by small heterogeneities within single formations.
Pitilakis et al. (1999) described the main geological features of each formation. He
summarized that the upper formations contain several thin sublayers and mixtures
of material fragments while some of the deeper formations are characterized by
thick, alternating sublayers and fragments of stones and gravels. Such a geology
will certainly lead to scattering attenuation. Ktenidou et al. (2015) compared their
κ0 estimates with the Qs values given for the Euroseistest area. They noted that
their κ0 observations cannot be explained by the intrinsic Qs values alone but that
there is very likely a scattering contribution.

It would be possible to slightly modify the profiles GRA, PRO-1 and PRR to
see if a better fit with the observed γ and QL curves is possible. Varying only
the Qs values and keeping vs of each formation constant, an inverse Qs profile
(higher Qs at the surface and lower values above bedrock) would be necessary to
obtain the flat γ curve on soft soil. The bending of the γ curves on weathered
rock, on the other hand, can only be shifted to lower frequencies if also vs or the
thickness of formations is varied. Changes in vs or layer thicknesses, however,
will also lead to differences in the predicted phase slowness curves shown in Fig.
3.9. A simultaneous fit to the observed phase slowness and γ curves would thus be
necessary but is beyond the scope of this study.

3.8 Conclusion

In this work, we utilized higher order noise CCs to infer the attenuation structure
of the shallow sub-surface in the Euroseistest area in Greece. We show that the C3

method is successful in mitigating the effect of uneven noise source distributions
and that it leads to correlation functions with a higher SNR than simple noise CCs.
The employed procedure allows to extract mean phase slowness, the attenuation
coefficient γ and quality factor QL of Love waves as a function of frequency on
soft soil. The recovery of attenuation parameters from correlations obtained on
weathered rock is more troublesome, especially for lower frequencies. This is
mainly due to the fact that the amplitude decay with increasing interstation distance
is very small at weathered rock conditions and that larger interstation distances
would be necessary to reliably observe the amplitude decrease.
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We are aware that the QL measurements could contain several sources of error
like the negligence of site effects or focusing and defocusing that can be expected in
a complex geological structure like the Euroseistest valley and that lead to a larger
scatter in the amplitude decay curves. Yet, the attenuation coefficient estimates for
Love waves are mainly in conformance with theoretical values derived from 1-D
vs and Qs profiles from the Euroseistest area. The Qs values that are used to model
QL curves are purely intrinsic and do not include any scattering attenuation. Some
differences between the observations and the theoretical γ and QL curves may thus
be attributed to scattering in the Euroseistest valley or simply to the fact that the
chosen profiles are not fully representative for the structure below the stations.

The measurement of near-surface attenuation is up to now bounded to regions
of high seismicity or it requires the application of active source or VSP experi-
ments. Our study moves a step further by extracting this information from ambient
seismic noise. The only other study to our knowledge computing attenuation from
seismic noise at similar distances and at frequencies above 1 Hz is the one of Liu
et al. (2015). The authors infer Q from Rayleigh waves between triplets of sta-
tions in the San Jacinto fault zone. More research is needed to proof the reliability
of these methods at shallow depths and for different subsurface conditions. The
outcomes could then be utilized in seismic hazard analysis where near-surface at-
tenuation (the parameter κ0) is very important to successfully predict future ground
motions.
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4. Qs from noise deconvolution in a borehole

Abstract The correct estimation of site-specific attenuation is crucial for the assessment of
seismic hazard. Downhole instruments provide in this context valuable information to con-
strain attenuation directly from data. In this study, we apply an interferometric approach
to this problem by deconvolving seismic motions recorded at depth with those recorded at
the surface. In doing so, incident and surface-reflected waves can be separated. We apply
this technique not only to earthquake data but also to recordings of ambient vibrations. We
compute the transfer function between incident and surface-reflected waves in order to in-
fer frequency dependent quality factors for S-waves. The method is applied to a 87 m deep
borehole sensor and a co-located surface instrument situated at a hard-rock site in West
Bohemia/Vogtland, Germany. We show that the described method provides comparable
attenuation estimates using either earthquake data or ambient noise for frequencies be-
tween 5-15 Hz. Moreover, a single hour of noise recordings seems to be sufficient to yield
stable deconvolution traces and quality factors, thus, offering a fast and easy way to derive
attenuation estimates from borehole recordings even in low to mid seismicity regions.

Keywords Seismic attenuation · Seismic interferometry · Seismic noise ·Downhole meth-
ods

4.1 Introduction

Seismic waves undergo strong changes when propagating through the Earth and
before reaching the surface. Of special importance are local site effects that are
independent of the distance traveled from the source and can severely alter the ap-
pearance and frequency content of the seismic signal (Boore, 2003). The effects of
local site geology are known to influence the signal significantly, for example, by
basin effects, resonance effects or seismic wave attenuation. Attenuation is gener-
ally stronger close to the surface than in depth (e.g. Abercrombie, 1997) and acts
as a low pass filter on the seismic signal. For site specific seismic hazard analysis
there is often a lack of attenuation information at hard rock sites in particular for
low seismicity regions (Ktenidou & Abrahamson, 2016). High risk facilities like
nuclear power plants or dams are, however, usually constructed at hard-rock sites
and it is thus especially important to assess the attenuation response under these
conditions in order to compute the site-specific hazard.

Observations of seismic waves that are made both at the surface and within a
co-located borehole can provide direct evidence for site specific seismic attenua-
tion structure. Tonn (1991) gives an overview of several techniques to derive site
attenuation from borehole records either in frequency or time domain. Taking the
spectral ratio between borehole and surface is probably the most widely used ap-
proach (e.g. Abercrombie, 1997; Aster & Shearer, 1991; Bethmann et al., 2012).
For shallow boreholes or at sites with fast wave velocities (hard rock sites) the
spectral ratio method often fails due to the reflection of waves at the free surface.
Incoming and surface-reflected waves overlay each other in the borehole recording
leading to band-limited destructive interference in the amplitude spectrum which
can complicate attenuation estimation (Shearer & Orcutt, 1987).
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Several authors have therefore made use of an interferometric approach to sep-
arate incident and surface-reflected waves from earthquakes. The separation is
achieved by deconvolving recordings obtained at depths with those obtained at the
surface. Deconvolution interferometry (DCI) has been used to measure seismic ve-
locities (Nakata & Snieder, 2012a; Parolai et al., 2009), to capture seismic velocity
changes (Sawazaki et al., 2009), for imaging (Vasconcelos & Snieder, 2008), to
study shear-wave splitting (Nakata & Snieder, 2012b), to constrain the input mo-
tion at the bottom of a borehole (Bindi et al., 2010) or to determine the response of
a building (Bindi et al., 2015; Nakata & Snieder, 2014; Newton & Snieder, 2012;
Snieder & Şafak, 2006).

There have been several efforts to derive the site-specific quality factorQ using
DCI. Working in time domain, Trampert et al. (1993) derived attenuation factors for
a 500 m deep borehole by inverting the SH propagator matrix. Following up on this
work, Mehta et al. (2007) studied the same approach for the P-SV case. Raub et al.
(2016) forward modeled the deconvolved wavefield in time domain to estimate
seismic velocities and attenuation for P- and S-waves at the Tuzla vertical array
in Turkey. In frequency domain, Parolai et al. (2010) fitted the Fourier transform
of the deconvolved wavefield (the modulus and the acausal part) to a theoretical
transfer function and estimated travel times and Q using a grid search procedure.
Parolai et al. (2010) applied their method to the 140 m deep Ataköy vertical array
with 4 downhole sensors. Following up on this work, Parolai et al. (2012) estimated
attenuation by performing a full inversion of the spectrum. Fukushima et al. (2016)
computed the transfer function of incident and surface-reflected wave in the decon-
volved wavefield and derived frequency dependent quality factors for SH waves for
several Kik-net stations in Japan. Finally, Snieder & Şafak (2006) and Newton &
Snieder (2012) estimated Q for multiple-story buildings using earthquake records.
Prieto et al. (2010), Nakata & Snieder (2014) and Bindi et al. (2015) applied DCI
to ambient vibrations to study the Q retrieval in buildings.

Almost all studies listed above perform DCI using earthquake recordings or
active sources to obtain attenuation information from a building or in a borehole.
To our knowledge, there has been no study that adapts the deconvolution technique
to borehole recordings of ambient vibrations for obtaining seismic attenuation in-
formation of the subsurface. Here, we deconvolve both ambient seismic noise and
the signals of local earthquakes recorded at a pair of a 3-component borehole and
a surface station to infer the inverse of the quality factor for S-waves (Q−1

s ). We
use the method of Fukushima et al. (2016) to derive frequency dependent Q−1

s

from the transfer function of incident and surface-reflected waves in a deconvolved
record. The data used were recorded at a 87 m deep borehole located at a hard-
rock site in West Bohemia/Vogtland, Germany. We show that deconvolution of
ambient vibrations provides equally good attenuation results as the deconvolution
of earthquake recordings. Only a short duration of ambient vibration recordings
is needed to obtain stable results. This is very promising because seismic noise is
quasi-continuously available. The approach therefore may provide fast and reliable
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4. Qs from noise deconvolution in a borehole

site attenuation responses from borehole recordings even in mid to low seismicity
regions.

4.2 Study Area

The study site is located in West Bohemia/Vogtland close to the village of Rohrbach
at the Czech-German border. The borehole was originally planned for mineral
water extraction by Bad Brambacher Mineralquellen GmbH & Co Betriebs KG
(BBM) but was never used for production. With permission of BBM, a Lennartz
borehole seismometer type LE-3D-BH (f0=1 Hz, h=0.707) was placed at 87 m
depth by the University of Potsdam and the GFZ German Research Centre for
Geosciences in 2013. The borehole is drilled in a hard-rock site made up mainly
from phyllite and mica schist that is weathered up to 40 m depth (personal commu-
nication with BBM). A Lennartz Electronic LE-3D-1s with the same instrument
characteristics as the borehole sensor was installed at the surface next to the bore-
hole. Data were digitized with Omnirecs data-cube3 loggers. In this study we
only analyze data that were recorded from June to August 2014. Data from both
instruments were digitized with 400 Hz during this time period. The horizontal
orientation of the borehole sensor has been derived from the data as described in
Section 4.5.

12.3˚ 12.4˚ 12.5˚
50.1˚

50.15˚

50.2˚

50.25˚

50.3˚
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Germany

Czech Republic

0 5 10
Depth (km)

Figure 4.1: Map of the West Bohemia/Vogtland area at the Czech-German border. Shown is the
position of the borehole (triangle). Locations of earthquakes from June to August 2014 with 0 ≤
ML ≤ 1 are plotted as gray dots. A latitude-depth section of the earthquakes is shown on the right.

74



4.3. Deconvolution interferometry

The West Bohemia/Vogtland region is well known for its repeating intra-con-
tinental earthquake swarm activity (Fischer et al., 2014). The seismic activity oc-
curring in 2014 is unusual because it showed 3 typical mainshock-aftershock se-
quences triggered by ML 3.5, 4.4 and 3.5 events on 24 May, 31 May and 3 August,
respectively (Hainzl et al., 2016).

Fig. 4.1 shows the location of the borehole and of the earthquakes that were
selected for deconvolution. We analyze both, ambient vibrations and earthquake
recordings, in the following analysis.

4.3 Deconvolution interferometry

We use an interferometric approach that applies deconvolution analysis to either
earthquake or seismic noise recordings to decompose the wavefield into up- and
downgoing wavefields. DCI is preferred over the more commonly used cross-
correlation interferometry (CCI). Newton & Snieder (2012) showed that CCI gives
the correct phase but incorrect Fourier amplitudes which results in wrong attenu-
ation estimates. DCI, on the other hand, allows for correct phase and amplitude
estimation. Furthermore, as the source spectrum cancels in DCI it is generally
preferable over CCI when measuring attenuation.

U(0,ω)

U(h,ω)

S(ω)

Gu(ω) Gd(ω)

h

z

0

Figure 4.2: Motions recorded in a borehole due to a vertically incident plane wavefield S(ω) coming
from below. U(0, ω) and U(h, ω) are the motions recorded at the surface and within the borehole at
depth h. Gu(ω) and Gd(ω) denote Green’s function response due to up- and downward propagating
waves, respectively.
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4. Qs from noise deconvolution in a borehole

Figure 4.2 depicts the setup of the borehole configuration. A plane wavefield
S(ω) is assumed to approach the borehole sensor with zero incidence angle. S(ω)
includes the source function and all effects that occur between the source and the
borehole instrument. The motion recorded by a sensor at the surface can be written
in frequency domain as

U(0, ω) = 2S(ω)Gu(ω). (4.1)

Gu(ω) is the plane wave Green’s function (propagation factor) between the
sensor in the borehole and the one at the surface for a vertically upward propagating
wave. The factor 2 accounts for the free surface effect.

The sensor at depth h records a superposition of the incoming wavefield S(ω)
and the downward propagating wave that was reflected at the surface:

U(h, ω) = S(ω) + S(ω)Gu(ω)RGd(ω). (4.2)

Here, Gd(ω) represents the Green’s function between borehole and surface
sensor for a downward propagating wave. R is the reflection coefficient observed
at the free surface for a wavefield that is approaching the free surface from below.
R=1 for vertical incidence.

Deconvolving the motion at depth with the motion at the surface yields

U(ω) = U(h, ω)
U(0, ω) = S(ω) + S(ω)Gu(ω)Gd(ω)R

2S(ω)Gu(ω) . (4.3)

S(ω) cancels and the resulting signal is the one that would be obtained for a
source located at top of the borehole emitting a bandpass filtered delta impulse at
τ = 0:

U(ω) = 1
2Gu(ω) + Gd(ω)

2 R

= U1(ω) + U2(ω).
(4.4)

The first termU1(ω) describes an incoming, upward propagating wavefield that
can be observed at negative lag times (acausal arrival). The second term U2(ω)
is the surface-reflected phase arriving at positive lag times (causal arrival). The
deconvolved wavefield is nonzero for negative times because the real incoming
wavefield approaches the borehole from below. In order to generate a delta impulse
at the top of the borehole at τ = 0, a wave has to travel upward at negative times
(Snieder, 2009).

Gu(ω) and Gd(ω) for an anelastic medium are given as (e.g. Aki & Richards,
2002)

Gu,d(ω) = e−iω(h/c(ω)−t)e−ωh/(2c(ω)Q(ω)) (4.5)
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where τ(ω) = h/c(ω) is the 1-way travel time between the bottom and the
surface sensor. The first term in Eq. 4.5 describes the phase shift due to propagation
with reference velocity c(ω). The second term gives the amplitude reduction due
to the quality factor Q(ω). The two arrivals that are observed in the deconvolved
wavefield according to Eq. 4.4 are thus separated in time by the 2-way travel time
(2τ ) between surface and borehole instruments. The amplitude difference of the
pulses is related to the attenuation that the wave encounters on its path upwards
from the borehole to the surface and back again. It is thus possible to derive the
quality factor Q by comparing the amplitudes of the acausal and causal arrivals of
the deconvolved trace.

The deconvolution process is due to spectral division potentially unstable. In
order to prevent numerical instability a water-level stabilization (Clayton & Wig-
gins, 1976) is used:

U(ω) = U(h, ω)
U(0, ω) ≈

U(h, ω)U(0, ω)∗

|U(0, ω)|2 + ε < |U(0, ω)|2 >. (4.6)

The asterisk indicates complex conjugation. < |U(0, ω)|2 > is the mean power
spectrum of the surface record, and ε is a water-level constant that is chosen to keep
the division stable. After testing, we set ε = 10−5 in our analysis.

4.4 Estimation of Q−1(f)

We adopt the method of Fukushima et al. (2016) to estimate frequency dependent
Q−1
s from deconvolution. Fukushima et al. (2016) computed the transfer function

between incident U1(ω) (input) and surface-reflected wave U2(ω) (output):

T (ω) = U2(ω)
U1(ω) = U2(ω)U∗1 (ω)

|U1(ω)|2 = U12(ω)
U11(ω) . (4.7)

U1(ω) and U2(ω) correspond to the acausal and causal wave arrivals as given
in Eq. 4.4. U12(ω) is the cross-spectrum between the incident and the surface-
reflected wave and U11(ω) is the power spectrum of the incident wavefield.

Inserting Eqs 4.4 and 4.5 into Eq. 4.7 and taking only the amplitude part gives

|T (ω)| = e−ωτ/Q(ω) (4.8)

from which the frequency dependent Q−1 can be computed using

Q−1(f) = − ln |T (f)|
2πfτ . (4.9)

Q−1 is derived for different one hour long noise windows and for each earth-
quake record individually. In the following, we describe the processing steps for
different noise windows but the procedure is similar for earthquakes. Following
Fukushima et al. (2016), a mean Q−1 curve is calculated by taking the arithmetic
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4. Qs from noise deconvolution in a borehole

mean of the N number of logarithmized transfer functions that are obtained from
different one hour long noise deconvolutions:

〈ln |T (f)|〉 = 1
N

N∑
i=1

ln |Ti(f)|. (4.10)

These curves will be denoted as log-mean curves within this publication.
The standard deviation of 〈ln |T (f)|〉 is computed as

σlnT (f) =

√√√√ 1
N

N∑
i=1

(ln |Ti(f)| − 〈ln |T (f)|〉)2 (4.11)

From Eqs 4.10 and 4.11 the mean and standard deviation of Q−1 can be esti-
mated as

〈Q−1(f)〉 ± σQ−1(f) = −(〈ln |T (f)|〉 ∓ σlnT (f))
2πf〈τ〉 . (4.12)

with 〈τ〉 = 1
N

∑N
i=1 τi being the mean travel time between the borehole and

the surface sensor.

4.5 Data Analysis

In a first step, the correct horizontal orientation of the borehole instruments was
estimated. The orientation was determined by analyzing 4 teleseismic earthquakes
that were recorded at the borehole and the surface station. After the application
of a 1 Hz lowpass filter the borehole traces were sequentially rotated until the best
fit with the surface records was obtained. The borehole sensor turned out to be
54.0°±0.2° off the horizontal orientation off the surface sensor. In addition, the
orientation of the surface instrument was verified with a Gyroscope. A horizontal
error of 6.8° was detected. The horizontal components of the surface sensor were,
thus, rotated by an azimuth of -6.8° while the borehole instrument was corrected
by 47.2°.

No instrument correction was applied to the data because the borehole and the
surface sensor have equivalent responses.

4.5.1 Intersensor travel-time differences

Travel times between the borehole and the surface sensor have to be known in
order to compute the quality factor according to Eq. 4.9. For earthquake signals,
intersensor travel times were estimated for each event by picking P- and S-wave ar-
rivals within the borehole and at the surface. Intersensor travel times vary between
0.034 sec and 0.055 sec for P- and between 0.068 sec and 0.134 sec for S-waves.
Computing the arithmetic mean of all values gives 0.043 sec and 0.085 sec for P-
and S-waves, respectively. This leads to a vp of around 2000 m/s (ranging between
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1580 m/s to 2560 m/s) and a vs of around 1000 m/s (ranging between 650 m/s to
1280 m/s) between borehole and surface sensor. The mean intersensor travel time
〈τ〉 of S-waves is used for the computation of log-mean Q−1

s curves (Eq. 4.12).

Seismic waves should reach the borehole instrument with vertical incidence
in order for Eqs 4.1 to 4.4 to be fully valid. We randomly selected earthquakes
from the dataset that took place at different distances and at different depths. The
incidence angles that are deduced from the particle motion of the P-arrivals are
28-42° within the borehole and 14-25° at the surface.

For noise recordings, we estimated S-wave intersensor travel times directly
from the mean noise deconvolution time traces in Fig. 4.3, left. The two arrivals
that are observed in the deconvolved wavefields on the acausal and the causal part
of the trace should be separated in time by 2τ . However, it is not immediately
apparent where to set travel time picks in the deconvolutions. We simply picked
the maxima of the acausal and the causal signal arrivals and find a S-wave travel
time of 0.091 sec. A similar value is obtained when correcting the mean inter-
nensor travel time 〈τ〉 obtained from the earthquake recordings to zero incidence
angle. Dividing the 〈τ〉 value by the cosine of a mean incidence angle between
borehole and surface station of approximately 27° leads to 0.095 sec for S-waves.
This indicates the presence of body waves in the incoming noise wavefield that
impinge at the borehole sensor with almost zero incidence angle. Individual one
hour long noise deconvolutions are very similar to the stacked noise deconvolution
time series (see Fig. 4.5). We therefore use the same S-wave intersensor travel time
of 0.095 sec for the computation of individual 1 hour and log-mean noise quality
factors.

4.5.2 Ambient noise processing

We selected 9 full days of data (14-22 May 2014) for the computation of ambi-
ent noise deconvolution. These days lie before the start of the Bohemian earth-
quake activity on 24 May 2014. One hour long noise data were pre-processed by
first removing the offset of each trace. Possible transient signals were eliminated
by excluding signal windows from the data that have amplitudes larger than an
hourly median amplitude level (Zhang & Yang, 2013). To do so, we computed for
each 5 min long data window the envelope mean. The signal in this window was
replaced with zeros if it exceeded two times the median envelope amplitude com-
puted for the whole hour. The traces were then split into 100 sec long time windows
with an overlap of 50 per cent (Welch’s method, Seats et al., 2012; Welch, 1967).
Windows were tapered at the edges with a 5 per cent cosine taper. The deconvolu-
tion was computed following Eq. 4.6. All deconvolved sequences originating from
the same one hour long data window were stacked.
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4.5.3 Earthquake data processing

We selected earthquakes from the 2014 relocated Webnet catalog that was used in
Hainzl et al. (2016). Only events with 0 ≤ ML ≤ 1 were chosen to avoid complex
source time functions and non-linear site responses of the ground. We visually
checked each event and removed records if, for example, earthquakes overlapped
or if data quality was too bad. All earthquakes occurring in the time span from 24
May 2014 to 3 June 2014 had to be omitted due to datalogger malfunction of the
surface station after a thunderstorm. In total, 194 earthquakes were selected. All
earthquakes occurred approximately east of the borehole and close to each other
(compare to Fig. 4.1) at distances between 5-12 km (average distance of 10.6 km)
and at depths of 6-12 km (average depth of 8.8 km).

We took the whole 4 sec long earthquake signal (starting at the P-wave arrival
time) for DCI calculation instead of selecting P- and S-wave windows. Mehta et al.
(2007) and Parolai et al. (2009) showed that the deconvolutions are insensitive to
the chosen signal window and only depend on the component of ground motion
that is analyzed. P-wave energy is always observed on the deconvolved Z compo-
nent and S-wave energy on the deconvolved horizontals irrespective of the chosen
signal window. We tested this for all earthquakes and made the same observa-
tions. Deconvolution results and also Q−1 estimates are similar for selected P- and
S-wave windows and for whole earthquake data segments.

The records were processed similar to noise recordings. First, signal offset was
removed. The data windows were tapered at the edges with a 5 per cent cosine
taper and the deconvolution was computed in frequency domain.

4.5.4 Deconvolution time series processing

The time-window length for cutting incident and surface-reflected waves from de-
convolutions has to be chosen carefully. Very short time windows cut off important
parts of the signal and lead to lower frequency resolution while windows that are
too long include not only signal but also too much noise. We decided to use the
same time-window length for noise and earthquakes in order to make the atten-
uation results better comparable. After testing, a time window length of 0.3 sec
(starting or ending at zero lag time for causal and acausal wave arrivals, respec-
tively) was chosen. Cut traces were tapered with a 5 per cent cosine taper before
taking the Fourier transform. Q−1

s was computed from the N and E components
and the mean curves were estimated using Eqs 4.9 and 4.12.

4.6 Results

Fig. 4.3 shows the deconvolution results obtained from seismic noise and from
earthquake records after stacking over all available one hour long noise deconvolu-
tions or single earthquake deconvolutions, respectively. The Z components display
P-wave energy traveling with faster velocity than the S-waves that are visible on
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Figure 4.3: DCI results between borehole and surface sensor computed from ambient noise (red)
and from earthquake records (blue) for all three components. Left: Deconvolved time traces filtered
with a Butterworth lowpass filter of 150 Hz and order 3. Right: Traces filtered with a 10 Hz lowpass
Butterworth filter of order 3. Note the similarity of noise and earthquake deconvolutions for low
frequencies. The color version of this figure is available only in the electronic version.
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Figure 4.4: Fourier amplitude spectra of the deconvolution results shown in Fig. 4.3, left. Back-
ground noise spectra were taken from the first and last 1 sec of the in total ±10 sec long noise decon-
volution time series’. The color version of this figure is available only in the electronic version.
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N and E. Deconvolution from earthquake records is richer in higher frequencies
which is also visible in the deconvolution amplitude spectra of Fig. 4.4. Ampli-
tudes of noise deconvolutions start to decrease above 6 Hz while the amplitude of
earthquake deconvolutions remains high. Deconvolution results derived from noise
and earthquakes are very similar for low frequencies as is shown in Fig. 4.3, right.
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Figure 4.5: Deconvolution results for seismic noise (left) and earthquake recordings (right) for all
three components of motion ZNE. Thin traces show the results of each of the one hour long noise
segment or of each of the 194 events, respectively. Black lines are stacked results. Traces are filtered
with an acausal Butterworth lowpass filter of 10 Hz and order 3. Each trace is normalized to its
maximum.

Fig. 4.5 summarizes the lowpass filtered deconvolutions of each of the one hour
long noise segments and each of the 194 earthquake records, respectively. The
results are very similar for different noise windows. There are larger variations
between individual event deconvolutions.

Up- and downgoing P-waves are badly separated in the deconvolution traces of
the Z component. We therefore do not use the Z component in the further analysis
and focus on the estimation of Q−1

s from horizontal motions only. Fig. 4.6 shows
the transfer functions computed with Eq. 4.7 from noise DCI (left) and earthquake
DCI (right). Thin gray lines are transfer functions derived for different one hour
long noise windows or different earthquakes, respectively. The thick solid and
dashed blue lines represent the log-mean ±1 standard deviation of all gray T (f)
curves computed according to Eqs 4.10 and 4.11. Individual one hour long noise
T (f) responses are fairly consistent below approximately 15 Hz. Above 15 Hz the
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Figure 4.6: Transfer functions computed from noise DCI (left) and earthquake DCI (right). N
components are displayed at the bottom and E at the top. Thin gray lines are transfer functions
for individual one hour long noise windows or single earthquakes. The blue line is the logarithmic
average of all transfer functions. Blue dashed lines show +/-1 standard deviation. Red lines of the
bottom of each panel show the percentage of transfer functions with T (f) > 1. The color version of
this figure is available only in the electronic version.

results show larger variations. This behavior is represented by small standard de-
viations of the log-mean curves below 15 Hz and larger standard deviations above
this frequency. The differences between single earthquake T (f) curves are gener-
ally high as is the standard deviation of the log-mean.

The red line at the bottom of Fig. 4.6 displays the percentage of data points
with T (f) > 1. A value of T (f) > 1 will lead to a Q−1

s < 0 and therefore to an
amplitude increase instead of attenuation. Most of the noise transfer functions are
smaller than one at frequencies below 15 Hz. The amount of curves with T (f) > 1
is around 50% at higher frequencies. On the contrary, many transfer functions
derived from earthquakes have values larger than one irrespective of the chosen
frequency range.

Fig. 4.7 showsQ−1
s (f). As in Fig. 4.6, thin gray lines are computed for individ-

ual one hour long noise windows or different earthquake recordings, respectively.
The blue lines are computed from the log-mean T (f)′s. Because axes are plotted
logarithmically curves are interrupted or not shown if Q−1

s < 0.

The log-mean curves of Q−1
s (all blue curves in Fig. 4.7) are summarized in

Fig. 4.8 for the frequency range 5-20 Hz. Q−1
s obtained from the E component of
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Figure 4.7: Frequency dependent Q−1
s computed from noise DCI (left) and earthquake DCI (right).

Q−1
s derived from N and E components are shown at the bottom and at the top, respectively. Thin

gray lines are Q−1
s estimates calculated for individual one hour long noise windows or single earth-

quakes. The blue line is computed from the log-mean transfer function shown in Fig. 4.6. Blue
dashed lines show +/-1 standard deviation. Curves are interrupted if Q−1
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this figure is available only in the electronic version.
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Abbreviation: EQ=earthquake. The color version of this figure is available only in the electronic
version.
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earthquakes are negative within this frequency range and are therefore not shown.
Noise and earthquake basedQ−1

s estimates are within the same order of magnitude.

4.7 Discussion

With DCI it is possible to observe the separation of the wavefield into incident and
surface-reflected P- and S-waves in the West Bohemia/Vogtland area. This is not
only possible with earthquake recordings but also with seismic noise. The stack in
Fig. 4.3 was performed over 9 full days of noise data. However, deconvolution of
only a single one hour long noise trace is sufficient to obtain a clear result (com-
pare to Fig. 4.5). The situation is different for earthquake recordings. Earthquake
deconvolutions have a higher frequency content than noise deconvolutions and the
separation into incident and surface-reflected waves is not as clearly visible as for
seismic noise without low pass filtering. Furthermore, up- and downgoing waves
are only stable visible in the deconvolved earthquake traces when stacking over a
sufficient number of events.

The transfer functions shown in Fig. 4.6 reveal a very similar pattern. The
transfer function computed from a single one hour long noise deconvolution re-
sembles the mean T (f) of all noise segments very well at frequencies below 15 Hz.
At higher frequencies, noise T (f) curves are very different because the amplitude
level of the noise deconvolution is almost at the same level as the amplitude of the
background noise (Fig. 4.4). Transfer functions of earthquake recordings, on the
contrast, vary strongly. This overall behavior of curves can also be observed for
noise and earthquake derived Q−1

s measures shown in Fig. 4.7.
The red percentage line in Fig. 4.6 can be regarded as a quality measure for the

interpretation of log-mean transfer functions andQ−1
s estimates. MeanQ−1

s curves
will be reliable for frequencies where only a small percentage of transfer functions
is above one. This is the case for seismic noise below 15 Hz. Mean earthquake
Q−1
s measurements have to be taken with more care as many single event Q−1

s

estimates are below zero and therefore drag the log-mean curve to smaller Q−1
s

values. This is especially true for the E component below 15 Hz where the red line
in Fig. 4.6 shows that more than 50 % of the curves have values of T (f) > 1. As
a consequence, Q−1

s cannot be recovered from the E component of earthquakes at
low frequencies (compare to Figs 4.7 and 4.8).

One possible reason of the inferior performance of earthquake compared to
noise recordings may be attributed to the non-zero incidence of earthquake waves.
The assumption that the reflection coefficient at the free surface is one and that the
free-surface factor is 2 is violated for waves that do not arrive steeply from below.
This will affect the amplitudes of the causal and acausal wave arrivals in the de-
convolved seismograms. In addition, SV-P conversions occur at non-zero incidence
between the P- and the S-wave arrival and can further influence the amplitude of
the downward reflected wave in the radial direction of motion. All earthquakes are
located approximately east of the borehole so that the E component corresponds
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roughly to the radial direction whereas the N component coincides with the trans-
verse direction. SV-P conversions are thus expected to affect mainly the ampli-
tudes of the reflection on the E component. This may be the reason why we are
not able to recover Q−1

s for the E component of earthquakes at frequencies below
15 Hz. Mean DCI results, T (f) and Q−1

s curves estimated from the N component
of earthquakes are, however, very similar to noise derived curves.

Up- and downward propagating waves partly overlap in the deconvolution
traces obtained from seismic noise or from earthquakes. We performed numeri-
cal simulations (see appendix) in order to evaluate the influence of the insufficient
signal separation on the estimation of Qs−1. The results reveal that Qs−1 can also
be recovered for shallow depths and for partially overlapping incident and surface-
reflected waves in the deconvolution traces. Problems arise only at low frequencies
were Qs−1 is overestimated. In addition, the scatter around the true value of Qs−1

is larger for shallower borehole recordings and improves as the sensor depth in-
creases. The fluctuation of Qs−1 observed in Fig. 4.8 thus might be an effect of
shallow borehole depth.

The deconvolution of noise recordings leads to very clear body wave signa-
tures. Seismic noise is considered to be dominated by surface waves below 1 Hz
while at higher frequencies the noise wavefield is suspected to be a mix of body
waves and surface waves (Bonnefoy-Claudet et al., 2006). According to theory,
the coherent noise sources contributing to the deconvolution have to be situated
along the inter-station direction of the sensors, the so called end-fire lobes (Roux
& Kuperman, 2004; Snieder, 2004). Sources outside the end-fire lobes interfere
destructively if distributed homogeneously. Due to the strong impedance contrast
at the free surface no significant amount of noise energy is assumed to enter the
ground from above. This is confirmed by the observation that the deconvolved
time series’ are acausal and two-sided which is only the case if the incoming noise
wavefield approaches the borehole from below (Snieder, 2009). Part of the seis-
mic noise therefore needs to come from below the borehole station and cannot
be explained by surface waves in the noise field. The amplitude spectra obtained
from noise and earthquake deconvolutions as shown in Fig. 4.4 have a very dif-
ferent frequency content. Local events of very small or negative magnitude that
may be present in the noise wavefield can therefore be ruled out as possible source
of the body waves. One possible explanation for the presence of body waves in
the noise wavefield might be scattering conversions at subsurface heterogeneities.
Body waves could also be generated by local surface sources (e.g. close-by cities
or roads) and arrive at the borehole sensor as diving waves from below. This was,
for example, observed in a noise cross-correlation study of Hillers et al. (2012) at
the TCDP borehole in Taiwan. Hillers et al. (2012) identified a cultural origin of
body wave noise that follows the trajectory of a ballistic wave through the subsur-
face and enters at the borehole as coherent upward propagating body wave noise
between 1-16 Hz. The origin of body wave noise in the West Bohemia/Vogtland
may be a topic for future research.
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The quality factors that are estimated within this study can be interpreted as ef-
fective ones including both, intrinsic and scattering attenuation. Eulenfeld & We-
gler (2016) separated intrinsic and scattering attenuation of seismic shear waves
by envelope inversion of local earthquakes in the Vogtland area. They found a
scattering Qs of 166-3000, an intrinsic Qs of 100-2500 and a total Qs of 67-1600
between 1-50 Hz. The Qs values reported by Eulenfeld & Wegler (2016) were ob-
tained for the whole travel path between source and site and are therefore higher
than the near-surface values computed in this study. Nevertheless, their results
reveal that scattering attenuation cannot be neglected in the Vogtland area. A su-
perposition of intrinsic and scattering mechanism thus might explain the amplitude
decay between incident and surface-reflected wave.

Qs varies around a value of 20 between 5-20 Hz with a minimum value of 5
and a maximum value of 100. Typical Q values in the lithosphere are reported
to be of the order of 102-103 in the frequency range 5-20 Hz (Sato et al., 2012,
figure 5.1). Our results are, however, in conformance with attenuation measure-
ments conducted at the KTB (Continental Deep Drilling Project) that is situated
approximately 50 km to the southwest of the study site and that was drilled in a
very similar crystalline environment down to a depth of about 9000 m. Li & Rich-
walski (1996) found Qs to be between 8-25 at depth of 3-6 km and for frequencies
between 11-22 Hz. Müller & Shapiro (2001) concluded that scattering attenuation
plays an important role at the KTB site and might explain the low effective Q esti-
mates. Several other borehole studies conducted at different rock sites of the world
reported similarly high effective attenuations for depths shallower than 3 km (e.g.
Abercrombie, 1997; Aster & Shearer, 1991, and references therein).

A comparison of our results with studies that employ the DCI method to earth-
quake recordings is only partly possible because these studies are usually con-
ducted at sedimentary sites. Raub et al. (2016) obtain a Qs of 20 between 0-288 m
depth and at frequencies of 0.1-40 Hz in a limestone formation. Parolai et al. (2010)
derive an average Qs of about 30, 46 and 99 for the 0-50, 0-70, 0-140 m depth
ranges, respectively, between 1-20 Hz for a site structure that is composed of lime-
stone, clayey sand and sandstone layers.

The low Qs estimates of our study are supported by slow P- and S-wave ve-
locities that we observe between 0-87 m depth (compare to Section 4.5.1). The
phyllites and mica schists are reported to be weathered up to at least 40 m depth
(personal communication with BBM) which can certainly lead to low seismic ve-
locities and high attenuation. As to our knowledge, there are no other studies in
the area that investigate attenuation at similar depths and at similar frequencies as
in our study.

4.8 Conclusion

We apply DCI to seismic noise recorded in a borehole configuration. We show
that up- and downgoing waves are well observed in the deconvolved traces de-
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spite the fact that noise recordings are usually assumed to be mainly composed of
surface waves. Only short noise segments are necessary to obtain stable decon-
volution results. DCI with ambient noise is thereby advantageous over DCI using
earthquake recordings where several events are required to obtain a stable decon-
volution. In addition, earthquake deconvolutions suffer from the non-zero inci-
dence of earthquake waves so that Q−1

s can only be recovered for the transverse
component of motion due to P-SV conversion. On the contrary, Q−1

s estimation
from the deconvolution of seismic noise is limited to frequencies below 15 Hz in
the West Bohemia/Vogtland area whereas earthquake deconvolutions are richer in
higher frequencies. More research is needed to prove that DCI using ambient noise
recorded in a borehole is also applicable to other areas or if the presented method
is only valid if, for example, scattering attenuation is high. Furthermore, the origin
of body waves in the noise wavefield needs to be investigated.

We are able to extract frequency dependent quality factors for S-waves between
5-15 Hz. The obtained quality factors are very small (Qs ≈ 20) but are in agree-
ment with the results of other borehole studies conducted throughout the world.
Available borehole logging information tells that the rock at the study location is
weathered down to 40 m depth. This is probably the main reason for the low ve-
locities and the high attenuation that we observe.

The presented method has the ability to provide an easy tool for the extraction
of quality factors in the near surface if borehole recordings are available. This is
especially the case for low- and mid-seismicity regions where earthquake record-
ings are sparse but where subsurface information is needed to assess, for example,
the seismic hazard. The procedure may also be useful for continuous time-lapse
monitoring of seismic velocity given the fact that a very short duration of ambi-
ent noise seems to suffice to obtain stable deconvolution results. Ambient noise
interferometry thus provides a suitable alternative to earthquake-based borehole
methods.
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5 | Discussion

In this thesis I presented two different approaches to tackle the question of GMPE
selection and adjustment for regions of low to mid seismicity. In the following, I
will summarize and discuss these two approaches separately and put them in the
larger context of ground-motion prediction and seismic hazard assessment.

5.1 Mixture model approach

Chapter 2 introduces the mixture model concept where GMPEs coming from dif-
ferent regions are scored and merged in order to provide an optimized ensemble
model. The aggregated model is able to deliver predictions in areas where no
region-specific GMPE exists due to the scarcity of data. We tested the perfor-
mance of the mixture for Northern Chile in terms of average residuals and average
sample log-likelihoods on an independent dataset. We show that the mixture model
outperforms all single GMPEs used for its construction. It is also comparable to a
regression model specifically derived for that area.

Roselli et al. (2016) proposes an alternative method using a Bayesian informa-
tion criterion (BIC) approximation to weight and combine GMPEs in an ensemble
approach. They use BIC instead of the log-likelihood because part of the data that
are taken to weight the models may have been also used in the construction of some
of the GMPEs. Roselli et al. (2016) applied the approach to the Italian territory and
to five selected GMPEs. They evaluated the performance of the uncombined and
the merged GMPEs in BIC and they also found that the performance of the aggre-
gated model is superior to those of single GMPEs. This is in conformance with
our own findings. Yet, it is not clear whether the testing dataset that was used to
evaluate the performance of the models in Roselli et al. (2016) is independent from
the data that were employed to derive the weights in the ensemble approach. If
the independence is not guaranteed it is not surprising that the aggregated model
outperforms the other GMPEs that were derived from at least partially different
datasets. Nevertheless, Roselli et al. (2016) argue that the choice of the scheme
according to which GMPEs are merged (e.g. BIC or log-likelihood) may not be
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of primary importance and that the ensemble approach will almost always give
superior results compared to uncombined GMPEs.

A profuse number of new data has become available in Northern Chile since
the publication of the mixture study in 2014. For example, on the 1st of April 2014
the Mw 8.2 Iquique earthquake ruptured parts of the Northern Chile seismic gap
and triggered several large aftershocks with Mw>6. Two of the largest aftershocks
occurred two days after the mainshock with Mw 6.5 and Mw 7.6. These events
provide an important dataset to test the predictive power of the mixture model es-
pecially for large magnitudes for which data are less abundant. We extracted 45
records from the Iquique mainshock and the two largest aftershocks and evaluated
the performance of the mixture, the regression model and the component GMPEs
for this dataset (Fig. 5.1). The mixture model is not the best performing model
but still among the best models to predict the new data. This is the case although
the mixture model was mainly calibrated for events with Mw<6.5. All recordings
with Mw>6.5 come from the catalog of Arango et al. (2011) and from earthquakes
that occurred south of the study area. Incorporating these new data in the devel-
opment of the mixture could improve its predictive power for future large events.
Additional large magnitude events occurring in other parts of the Chile subduction
zone like the Mw 8.3 Illapel in 2015 could possibly further augment the database
in the high magnitude range.

æ y97 à z06 ì k06 ò ab03 ô ll08 ç bch12 á mv06 í a10 regression mixture

ææ
æ

æææ
æ

ææ
æ

àà
àà

àààà
à

à

ìì

ì
ì

ììì

ì

ì

ì

òò
ò

òò
ò

òò
òò

ôô
ô

ô
ô

ô
ôô

ô

ô çççç

ç
ç

ççç

ç
áá

áá

ááá
á

áá

íí
í

íí
í

íí

í
í óó

ó
ó

óó
ó

óó

ó

0.5 1 10 1002 5 20 50
-2

-1

0

1

2

fosc @HzD

A
v
R

e
s

æ
æææ

æ

æ
æ

æ

ææ

à
à

àà
à

ààà

àà

ì
ì

ì

ì

ììì

ì

ì
ì

ò

ò
ò

òò

ò

ò
òò

ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô ç
çç

ç

çç

ç

ç
ç

ç

á

á

á

á

á

á
áá

á
á

í

í
í

í
í

í

í

íí

í

ó

ó
ó

ó

ó

ó

ó
ó

ó

ó

0.5 1 10 1002 5 20 50
1.

2.

3.

fosc @HzD

L
L

H

Figure 5.1: The performance of the mixture, the regression model and the individual GMPEs for the
Iquique mainshock and the two largest aftershocks. The performance is assessed in terms of average
residuals (left) and LLH values (right). Compare to Tab. 2.1 for GMPE abbreviations.

New GMPEs were developed for the Chilean subduction zone during the last
years. Idini et al. (2017) and Montalva et al. (2017) derived regression models
for interface and intraslab earthquakes for the distance range of around 30-400 km
and for magnitudes up to Mw 7.8 (intraslab) and Mw 8.8 (interface). Both models
predict spectral acceleration for oscillator periods between 0.01-10 Hz. It would
be important to compare the mixture model to these local models in order to see if
it is similarly able to predict ground-motions in Chile. However, it should always
be kept in mind that the mixture is intended to give predictions in situations where
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5.1. Mixture model approach

only little data are available. We used a rather large dataset for the calibration
of the mixture (1094 records from 138 events) but data availability will certainly
be different for other areas. Nevertheless, even if data amount is insufficient, a
mixture model can still be derived by combining observed data with experts prior
knowledge that can be incorporated into the mixture approach using a Bayesian
framework.

Runge et al. (2013a) experimented with prior distributions that represent vari-
ous expert beliefs regarding the appropriateness of different GMPEs in the forma-
tion of mixture models. Using Bayes theorem, these prior distributions are subse-
quently updated using observed data leading to the a posteriori distributions of the
mixture weights. Runge et al. (2013a) applied their approach to Northern Chile
and to the same set of data and GMPEs that was used in the study presented in
Chapter 2 of this thesis. They found that expert beliefs and observed data can be
combined but that it strongly matters how subjective expert knowledge is elicited
and transferred into prior distributions (see also Runge et al., 2013b). The method
proposed by Runge et al. (2013a) could be used to not only include expert beliefs
in the construction of the mixture model but to subsequently update the mixture as
new data become available with time.

The aim in setting up a ground-motion logic tree is to capture the epistemic
uncertainty. If branch weights are interpreted as probabilities the Kolmogoroff
axioms have to be followed. This implies that the set of models that occupies the
branches of the tree must be mutually exclusive and collectively exhaustive (e.g.
Bommer & Scherbaum, 2008). As mentioned in the introduction of this manuscript
and as shown in Fig. 1.1 there are two main approaches to populate the branches
of a ground-motion logic tree (Atkinson et al., 2014). In the first one, multiple
GMPEs are used and weights are assigned to each model based on the judgment
of experts in combination with data-driven selection procedures (Kale & Akkar,
2013; Scherbaum et al., 2009). Yet, using multiple GMPEs comes along with
some issues. Many models that are used in a logic-tree analysis are derived from
similar datasets (like the Next Generation (NGA)-West 2 GMPEs, Bozorgnia et al.,
2014) or share a similar functional form. Models can then not be regarded as
mutually exclusive. Secondly, the chosen set of models may not correctly represent
the underlaying epistemic uncertainty of median ground motions (Atkinson et al.,
2014). In fact, many models are too close in their predictions which leads to an
underestimation of epistemic uncertainty (Douglas & Edwards, 2016). The set of
GMPEs can then not be regarded as collectively exhaustive.

These difficulties can partially be overcome by using a single or a small set of
GMPEs (backbone GMPEs) that represent the center of the ground-motion distri-
bution in the area of interest (Atkinson et al., 2014). Adjustments applied to these
GMPEs (e.g. using HEM) lead to alternative models that account for the upper and
lower limits of the ground-motion distribution. Populating the logic tree with a
representative suit of models and their scaled versions is assumed to better capture
the underlaying epistemic uncertainty. In the case of a single backbone GMPE, the
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branches of the tree become mutually exclusive and, if scaled properly, collectively
exhaustive (Atkinson et al., 2014).

It is in the hands of experts to decide which GMPEs should be considered
as backbone models and how they should be modified and scaled to capture the
center, body and range of expected ground motions at the site of interest. The
mixture model approach could provide in this context a valuable data-driven tool
to find an optimal median backbone model. Mixture weights are inferred in such a
way as to improve the ensemble prediction of the models. Thereby, GMPEs may
be favored (in terms of high mixture weights) even if they perform bad for that
area (in terms of average residuals and average sample log-likelihoods). On the
contrary, it is possible that a good performing model receives zero mixture weights
because information is not counted twice in the mixture model approach. If two
models are very similar and would contribute the same informational content into
the ensemble of models then only one GMPE obtains high mixture weights (or
the weight is split between the two models). Thereby, mutually exclusiveness is
guaranteed. A single central model like the mixture may thus be favorable over a
set of backbone GMPEs that is not necessarily mutually exclusive. If data amount
is sufficient, a mixture model captures the center of the ground-motions distribution
in the target area sufficiently well. It may be easier for experts to assign scaling
factors to this model (in order to define the upper and lower limits of the expected
ground-motion) instead of scaling several GMPEs. Finally, a single central model
which is scaled up and down results in a minimum number of branches and makes
hazard calculations very efficient.

The epistemic uncertainty can be captured, as described above, by applying
appropriate scaling factors to the mixture model. The standard deviation (sigma)
of GMPEs describes the aleatory variability that is associated with ground-motion
generation. The standard deviation of a mixture is, in contrast to uncombined GM-
PEs, not a good representative of the aleatory variability because the mixture is
not necessarily normally distributed. If models that are combined into the mixture
and that obtain high mixture weights, have, for example, distributions that do not
overlap then the mixture distribution will be multimodal. In addition, epistemic
uncertainty may map into the standard deviation of the aggregated model due to
the combination of GMPEs. Several studies (e.g. Anderson & Brune, 1999) have
suggested that sigma of GMPEs should not be interpreted as aleatory variability
anyway. Some components of sigma at a single site may be repeatable path and site
effects and should not be considered as random (e.g. Al Atik et al., 2010). These
components need to be removed from the aleatory description of uncertainty and
transferred to the epistemic uncertainty captured in the logic tree. The remaining
variability of strong motion at a specific site is referred to as single-station sigma
(e.g. Atkinson, 2006; Rodriguez-Marek et al., 2014) which is usually smaller than
the total sigma of GMPEs. The mixture model approach can thus be used in com-
bination with a sigma logic tree as described in Rodriguez-Marek et al. (2014).
Ktenidou et al. (2017a) proposed a method that estimates a single-station sigma
from existing GMPEs rather than from a newly created local GMPE. This is of
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special importance for areas with insufficient data amount and therefore also for
studies where a mixture model approach may be considered due to the lack of data.

In recent years, numerical simulations of earthquake shaking (physic-based
models) have become popular (e.g. Beresnev & Atkinson, 1997; Graves & Pitarka,
2010; Hartzell et al., 1999). Yet, numerical simulations require a full understanding
of the physical system so that GMPEs will stay important for some time (Douglas
& Edwards, 2016). However, when considering, for example, near-source ground
motions of large earthquakes where data coverage is poor or in cases where the haz-
ard is dominated by a certain fault, physical-based simulations can augment GMPE
predictions (e.g. Atkinson & Goda, 2011). The mixture model concept could pro-
vide in this context a suitable framework to combine simulated and empirically
derived model predictions. Another possibility would be to use physical-based
predictions as ’observed’ data in the construction of the mixture. Available data
seldom cover all situations of practical interest which is especially the case in low-
seismicity regions. Simulations could be conducted for all those scenarios where
data are missing giving rise to a more complete picture of possible ground motions
in the area of interest. Using such an ’augmented’ dataset for the derivation of mix-
ture weights could enhance the predictive power of the mixture model for possible
future scenarios.

5.2 Estimation of κ0 from seismic noise

The second part of the thesis is concerned with the derivation of the near-surface
attenuation parameter κ0 from ambient vibrations. I presented two preliminary
studies towards this goal using interferometric approaches. In the study shown in
Chapter 3, we estimated Love wave quality factors QL between 1-4 Hz close to the
center and at the edge of a sedimentary basin from higher order noise correlations.
Chapter 4 presents the derivation of Qs between 5-15 Hz from the deconvolution
of noise recorded simultaneously at a surface and at a borehole station in a hard
rock site environment.

The initial goal of this thesis was to derive κ0 directly from noise measure-
ments. Yet, it proved to be very difficult to infer this parameter from diffuse wave-
fields. Seismic interferometry provides an excellent tool to derive virtual earth-
quake signals in the absence of real ones (e.g. Denolle et al., 2014). These can
subsequently be used to investigate the subsurface structure of the Earth using tra-
ditional imaging techniques and, hence, also to estimate attenuation. With regard
to κ0 there are, however, some issues. κ0 is associated with the attenuation of
S-waves propagating vertically upwards through the geological structure directly
below a site. The following factors hamper the successful extraction of κ0 from
seismic noise:

• Seismic noise is usually generated at Earth’s surface by oceanic or meteo-
rological processes or by human activity (Bonnefoy-Claudet et al., 2006).
According to Forghani & Snieder (2010) noise sources can be distributed
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anywhere along the receiver line for the retrieval of surface waves from
cross correlations. Yet for the reconstruction of body waves, sources must
be present also at depth below the receivers. In addition, for large receiver
separations the coherent propagating noise energy is generally dominated by
surface waves due to smaller geometrical loss even if body waves were ex-
cited (Roux et al., 2005a). As a result, Green’s functions reconstructed from
the cross correlation of seismic noise often only contain the surface wave
component of the full impulse response (Shapiro et al., 2005).

• A large portion of the noise source energy is generated within the microseism
band (5-20 sec, e.g. Friedrich et al., 1998) that travels coherently over long
distances. Considerably less coherent noise energy is observed at large re-
ceiver separations and at higher frequencies where κ0 is typically estimated
(> 10 Hz). Interferometric experiments are therefore usually conducted at
frequencies below 1 Hz.

• The estimation of subsurface parameters from ambient noise depends on the
chosen pre-processing techniques and on the noise source distribution. If
travel times and velocities should be extracted, only the phase information of
the cross correlation is required and constraints on the pre-processing are less
strict. This is not the case for the retrieval of attenuation parameters where
the amplitude information of the cross correlation needs to be retained dur-
ing pre-processing (e.g Cupillard & Capdeville, 2010; Tsai, 2011; Weaver,
2011).

I will discuss each of these points in the following and give possible solutions
that might facilitate the extraction of κ0 from ambient noise in the future.

With regard to the retrieval of body waves using seismic interferometry there
has been some progress in recent years. Roux et al. (2005a) were the first to prove
that P-waves can be extracted from noise cross correlations for closely-spaced re-
ceiver pairs and at frequencies between 0.1-1.3 Hz. Draganov et al. (2009) success-
fully obtained P-wave reflection images by correlating noise recorded along several
receiver lines (distances smaller than 20 km) in Lybia between 6-24 Hz. Shirzad &
Shomali (2015) recovered clear P- and S-wave arrivals at distances smaller than
35 km and at frequencies between 0.3-3 Hz using noise interferometry in combi-
nation with a rms-stacking method. Nakata et al. (2015) isolated P-waves between
3-15 Hz in a dense receiver network (8x4 km2) at Long Beach, California by apply-
ing additional signal processing techniques to the cross-correlated signals. Mosher
& Audet (2017) extracted P-waves at a network of borehole seismometers in Park-
field, California between 1-2 Hz. On a regional scale, Zhan et al. (2010) and Poli
et al. (2012) revealed the retrieval of Moho reflections (SmS, PmP) from noise
recordings. Using teleseismic interferometry, Boué et al. (2013), Lin et al. (2013)
and Nishida (2013) could extract global body wave phases traveling through deep
parts of the Earth like the inner and outer core.
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Local interferometric body wave studies are especially important for the pur-
pose of this thesis as they are conducted at frequencies similar to those that are
usually applied to extract κ0 from earthquake recordings. The studies listed above
show that body waves can be extracted from seismic noise if, for example, addi-
tional signal processing techniques are applied (e.g. Nakata et al., 2015; Shirzad
& Shomali, 2015). Takagi et al. (2014) proposed a new procedure to effectively
separate body and Rayleigh waves using the cross terms of the cross-correlation
tensor. They derived their concept for isotropic and homogeneous media but note
that it might also be applicable to more realistic structures. Using this method,
Takagi et al. (2014) successfully separated body and Rayleigh waves at the Tono
array in Japan in the frequency range 0.5-2 Hz and at distances between 2.4-18 km.
Procedures, as the ones of Takagi et al. (2014), may facilitate the retrieval of body
waves from noise cross correlations in the future. However, the applicability of
such methods with regard to amplitude extraction and, hence, attenuation parame-
ter retrieval still needs to be appraised.

According to Bonnefoy-Claudet et al. (2006) seismic noise is dominated by
surface waves below 1 Hz but has been observed to be a mix of body and surface
waves at higher frequencies. Koper et al. (2010) analyzed seismic noise recorded at
18 arrays around the globe between 0.4-4 Hz. They found that the noise wavefield
is dominated by Love waves within this frequency range but that, on average, 28%
of the energy comes from P-waves. Yet, the origin of body waves in the ambient
seismic field is still under debate, especially at frequencies above 1 Hz. Roux et al.
(2005a) argue that a fraction of the dominant Rayleigh wave energy in the noise
field might be locally converted into body waves by scattering at heterogeneities
in the upper crust. Gerstoft et al. (2008) and Zhang et al. (2009) show that P-
waves can be generated in the ocean by distant storms and can be observed up to
frequencies of 2 Hz. Hillers et al. (2012) identified a cultural origin of body wave
noise at the TCDP borehole in Taiwan that follows the trajectory of a ballistic wave
through the subsurface. It is obvious that no consensus is reached upon the origin
and strength of body waves in high-frequency seismic noise until now. It can also
be assumed that body wave noise strongly varies from area to area depending on
the available noise sources and the local geological structure.

If body waves are present in the ambient seismic field, it is easier to extract
them by applying interferometry to vertically deployed stations instead of surface
sensors. According to theory, a seismic wave can only be extracted from the cross
correlation of noise between two stations if there is a physically wave in the noise
field that propagates between these receivers (e.g. Snieder et al., 2009). In the con-
text of body wave retrieval from surface sensors this implies that body wave noise
must be incident at just the right angle in order to obtain body waves that are re-
flected at one receiver and then recorded at the other receiver (Snieder & Larose,
2013). All other incident waves will not contribute to the extraction of body waves.
For downhole stations the constrains are less stringent. Diving body waves in the
noise field coming from different directions and distances can contribute to the ex-
traction of body waves between borehole receivers. This is probably the reason
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why we do observe clear body waves in Chapter 4 of this thesis when applying
deconvolution interferometry to a borehole and a surface sensor in the Vogtland.
However, the origin of body waves in the noise field of the Vogtland is not yet
clear. It is possible that the deconvolution approach applied to noise recorded in
boreholes might not work for other areas if body wave noise is not sufficiently
generated. The only other study that reports the extraction of body waves from
the cross correlation of noise recorded between several downhole sensors is the
one of Hillers et al. (2012). Hillers et al. (2012) observed coherent upward prop-
agating body wave noise at the TCDP borehole in Taiwan at frequencies between
1-16 Hz. Beamforming and polarization analysis of noise correlations reveal that
these waves are probably generated in the populated lowlands of western Taiwan
that arrive at the vertical array as diving waves from below. Further studies need to
be conducted in different areas in order to verify the finding that the deconvolution
of noise recordings at vertically deployed sensors leads to the extraction of body
waves.

We do not observe body waves in Chapter 3 of this thesis when applying
higher-order noise correlations to surface stations. Yet, procedures as the one
of Takagi et al. (2014) might enhance the extraction of body waves that are usu-
ally hidden in the surface wave signal of cross correlations given that body waves
are present in the noise field and satisfy the origin constrains given by Snieder &
Larose (2013).

As mentioned above, care has to be taken with regard to certain pre-processing
techniques when extracting attenuation from seismic noise. For example, Cupillard
& Capdeville (2010) and Tsai (2011) investigated numerically and theoretically
how correlation amplitudes depend on the noise source distribution in combination
with typical non-linear pre-processing operations like one-bit normalization and
spectral whitening (Bensen et al., 2007). They observed that, if such pre-processing
techniques are applied, attenuation parameters can only be retrieved accurately if
the noise distribution is homogeneous. This is hardly the case in the real world.
We overcame this difficulty by using higher-order noise correlations in Chapter 3
of this thesis. Higher-order correlations are less sensitive to the source anisotropy
of the original ambient field so that unbiased attenuation estimates can be extracted
(Zhang & Yang, 2013). In addition, we refrained from using pre-processing tech-
niques like one-bit normalization in our analysis to ensure that the true amplitude
information is retained. In Chapter 4, we used a deconvolution approach in combi-
nation with very basic pre-processing operations like offset removal and transient
signal removal by muting. Changes in the amplitude content of the deconvolved
signals due to nonlinear pre-processing procedures should therefore be insignifi-
cant in this case.

This thesis presents the estimation of quality factors for Love and S-waves
within the shallow subsurface from ambient noise recordings. Using the relation-
ship between κ0 and Qs that is presented in equation 1.2 it is easily possible to
compare Qs estimates obtained, for example, with deconvolution interferometry in
a borehole with κ0 values derived from earthquakes. Unfortunately, there are no

96



5.2. Estimation of κ0 from seismic noise

earthquake-based κ0 values available for the Vogtland area for comparison. Even
if earthquake-based κ0 values were available, there is a multitude of measurement
techniques for κ0 (Ktenidou et al., 2014). To complicate the matter even more,
there is until now no consensus upon the depth range and the physical mechanisms
causing the high-frequency fall-off of the spectrum that leads to the observation
of κ0 (Ktenidou et al., 2014). κ0 is mainly assumed to be an intrinsic (frequency
independent) site attenuation parameter because of the linear decay of the acceler-
ation spectrum in log-linear space. Recent studies (Ktenidou et al., 2015; Parolai
et al., 2015; Pilz & Fäh, 2017) have provided evidence that κ0 cannot be described
by intrinsic attenuation alone but that scattering effects also contribute to the ob-
served spectral fall-off. If attenuation estimation in low-seismicity regions is based
on laboratory tests of small soil samples, which capture only the intrinsic material
damping, then κ0 is typically underestimated (Cabas et al., 2017). Noise-based κ0
measurements may provide in this context a valuable source of information as they
also include the scattering component of attenuation. In low-seismicity regions,
noise measurements are then favorable over laboratory tests if no earthquake based
estimation of κ0 is possible.

Finally, recent site-specific hazard studies typically compute the ground-motion
for a reference rock condition (e.g. Douglas & Edwards, 2016; Edwards et al.,
2015). Site amplification and attenuation factors representative for the soil column
above the rock are applied to these predictions to adapt the ground-motion to the
specific site. It is necessary to give accurate κ0 values for the rock reference site
which is often critical due to the limited number of recordings on rock. This issue
could be solved if κ0 could be inferred from seismic noise.
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This thesis addresses the issue of GMPE selection and adjustment in low- to mid-
seismicity regions. I presented two concepts to facilitate the adaption of foreign
GMPEs if strong-motion recordings are too sparse to develop a region-specific
model.

In the first approach, several non-indigenous GMPEs are combined in a mixture
model using observed data from the target area. The mixture is aimed to serve
as a backbone model for the region under study for use in a logic-tree analysis.
Populating the logic tree with such an optimized median backbone model and its
scaled versions can help to make the branches of the tree mutually exclusive and
collectively exhaustive and, hence, to better capture the epistemic uncertainty of
the GMPE selection process. The aleatory variability of ground-motion generation
can be accounted for by using the mixture approach in combination with a single-
station sigma logic tree as described in Rodriguez-Marek et al. (2014). The mixture
model concept is very flexible in that it allows to incorporate new data as soon as
they become available by using a Bayesian framework. In addition, it is possible
to not only combine the predictions of empirically derived models but also from
stochastic or numerical simulations. This is of special value if data coverage is poor
in certain magnitude-distance ranges or if a site-specific hazard evaluation should
be performed.

In the second approach, I explored techniques to extract the near-surface atten-
uation parameter κ0 from ambient vibrations. I presented two studies where the
quality factors of Love and S-waves could be derived from noise recordings. The
direct estimation of κ0 from seismic noise is very challenging. Borehole recordings
will certainly provide the most easiest source of information to study the extrac-
tion of κ0 from ambient noise as the constrains for body wave retrieval are less
strict. Yet, the sources of body waves in seismic noise needs further investigation.
Boreholes, as the 200 m deep borehole in the sedimentary basin of the Euroseistest
area or the ICDP project in the hard rock environment of the Vogtland area, may
be suitable candidates to compute κ0 from noise and, if successful, to compare it
with κ0 values derived from earthquakes. It is a longer way to go to extract κ0
from surface sensors only. Body waves at high frequencies are hardly observed in

99



6. Conclusion

cross-correlation traces. Advanced signal processing procedures as the one of Tak-
agi et al. (2014) may facilitate the separation of body and surface waves in noise
correlation in the future and therefore the derivation of κ0.

The selection and adjustment of GMPEs in low- to mid-seismicity regions re-
mains a challenge. Luckily, the number of strong-motion data is increasing fast
so that it will be easier to develop region-specific GMPEs or site-specific physical
models in the future. Yet, data of large magnitude events recorded at close dis-
tances will continue to be lacking in certain areas if the corresponding faults have
not been active during the recording history of seismology. It will then still be
necessary to resort to the information provided by foreign GMPEs or to physical
simulations which need to be combined with local information.

The vastly emerging field of seismic interferometry has the potential to further
aid the adjustment or development of GMPEs. An increasing number of studies
deals with the derivation of the regional or local velocity and attenuation structure
from ambient seismic noise. This additional source of information can be used to
tune, for example, physically-based models or to derive parameters like κ0. The
studies shown in this thesis are only the first steps into this directions. Newly
developed procedures will certainly enhance the extraction of GMPE adjustment
parameters in the future.
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A | Appendix: Supplementary ma-
terial mixture model approach

A.1 List of regression coefficients

Table A.1: List of regression coefficients

Period[s] a b c d e si ss

0.00 0.7401 -0.0098 1.0273 -0.1099 0.0071 0.2841 4.1648
0.03 0.6705 -0.0091 1.2395 -0.1161 0.0082 1.4474 5.1601
0.05 0.7702 -0.0090 1.3255 -0.1055 0.0083 1.7109 5.0176
0.10 1.1981 -0.0128 0.3231 -0.0171 0.0066 -2.0628 0.4953
0.20 1.1514 -0.0115 0.2009 -0.0197 0.0063 -2.3766 0.8320
0.30 1.1851 -0.0108 0.1132 -0.0253 0.0033 -3.2995 0.7593
0.50 0.9312 -0.0084 0.6730 -0.0937 0.0026 -1.6475 2.7501
1.00 1.0526 -0.0047 1.0174 -0.1027 0.0027 -2.3731 3.0927
2.00 1.2670 -0.0040 1.0513 -0.0900 0.0031 -4.4886 0.5335
3.00 1.1306 -0.0043 1.3145 -0.1383 0.0040 -4.3997 0.2381

Period[s] ssl x qi qs Φ τ σtot

0.00 -0.6199 0.4998 -0.0662 -0.1807 0.3745 0.1568 0.7289
0.03 -0.5782 0.6268 -0.0688 -0.1934 0.3708 0.1720 0.7367
0.05 -0.4598 0.3452 -0.0059 -0.1294 0.4131 0.1870 0.7746
0.10 -0.2977 0.3238 -0.0243 -0.1352 0.4413 0.1854 0.7916
0.20 -0.5038 0.6891 -0.1150 -0.2745 0.4019 0.1424 0.7378
0.30 -0.6676 0.7220 -0.1294 -0.3320 0.4073 0.1392 0.7392
0.50 -0.7935 0.7786 -0.2236 -0.3403 0.3807 0.1418 0.7229
1.00 -1.0475 0.6917 -0.2363 -0.3231 0.2995 0.1105 0.6403
2.00 -0.9444 0.7777 -0.2641 -0.3362 0.2660 0.0938 0.5999
3.00 -0.9130 0.8795 -0.3722 -0.3407 0.2436 0.0884 0.5762
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B | Appendix: Supplementary ma-
terial deconvolution approach

B.1 Numerical tests

The causal and acausal signal components partially overlap in the deconvolution
traces. We conducted numerical tests in order to study the influence that this over-
lap can have on the estimation of Q−1

s .
We used QSEIS (Wang, 1999), a code that employs the orthonormal propagator

algorithm, to compute synthetic seismograms for a viscoelastic 1-D subsurface
model. According to the results obtained for the West Bohemia/Vogtland area
within the present study (Subsection 4.5.1), vp and vs were set to 2000 m/s and
1000 m/s, respectively, andQs was chosen to be 20. A source was placed at 4.2 km
depth on an arbitrarily chosen fault plane with a strike, dip and rake of 170°, 75°
and -30°, respectively. Synthetic seismograms were calculated for receivers that are
placed at the surface and at different depths (50-500 m) directly above the source.
White noise with 10% of the maximum amplitude was added to the synthetics. We
applied the same procedure to the synthetics as to the real data by first computing
the deconvolution with respect to the surface sensor according to Eq. 4.6. Epsilon
had to be set to 0.1 in order to obtain stable deconvolutions. Q−1

s was then derived
using Eq. 4.9. The results are shown for the transverse component of motion.

Fig. B.1 shows the deconvolutions obtained for borehole receivers at depths
of 50 m, 87 m, 100 m, 200 m and 500 m. At shallow depths, the causal and signal
components partially overlap.

Fig. B.2 summarizes the Q−1
s results that are obtained for different sensor

depths. The input Q−1
s of 0.05 can be recovered for frequencies between 1-12 Hz.

The result is most clear for the deepest sensor at 500 m. For shallow receivers
the results tend to fluctuate around the true Q−1

s value. Q−1
s is overestimated at

frequencies below 6 Hz for the receiver at 50 m depth. This might be caused by
the insufficient causal and acausal signal separation at shallow depth which will be
most prominent at low frequencies.
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Figure B.1: Deconvolution traces obtained from synthetic seismograms that were computed using
QSEIS. Shown is the transverse component and the results for different sensor depths after deconvo-
lution with the motion recorded at a surface sensor.
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Figure B.2: Q−1
s that is obtained from the deconvolution traces shown in Fig. B.1. The sensor depth

is color coded.
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