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Abstract

Time-dependent correlation function based methods to study optical spectroscopy
involving electronic transitions can be traced back to the work of Heller and coworkers.
This intuitive methodology can be expected to be computationally efficient and is applied
in the current work to study the vibronic absorption, emission, and resonance Raman
spectra of selected organic molecules. Besides, the “non-standard” application of this
approach to photoionization processes is also explored. The application section consists
of four chapters as described below.

In Chapter 4, the molar absorptivities and vibronic absorption/emission spectra of
perylene and several of its N-substituted derivatives are investigated. By systematically
varying the number and position of N atoms, it is shown that the presence of nitrogen
heteroatoms has a negligible effect on the molecular structure and geometric distortions
upon electronic transitions, while spectral properties are more sensitive: In particular the
number of N atoms is important while their position is less decisive. Thus, N-substitution
can be used to fine-tune the optical properties of perylene-based molecules.

In Chapter 5, the same methods are applied to study the vibronic absorption/emission
and resonance Raman spectra of a newly synthesized donor-acceptor type molecule. The
simulated absorption/emission spectra agree fairly well with experimental data, with dis-
crepancies being attributed to solvent effects. Possible modes which may dominate the
fine-structure in the vibronic spectra are proposed by analyzing the correlation function
with the aid of Raman and resonance Raman spectra.

In the next two chapters, besides the above types of spectra, the methods are extended
to study photoelectron spectra of several small diamondoid-related systems (molecules,
radicals, and cations). Comparison of the photoelectron spectra with available experi-
mental data suggests that the correlation function based approach can describe ionization
processes reasonably well. Some of these systems, cationic species in particular, exhibit
somewhat peculiar optical behavior, which presents them as possible candidates for func-
tional devices.

Correlation function based methods in a more general sense can be very versatile.
In fact, besides the above radiative processes, formulas for non-radiative processes such
as internal conversion have been derived in literature. Further implementation of the
available methods is among our next goals.



Zusammenfassung

Molekiilsysteme bestehen aus Kernen und Elektronen, deren viel kleinere Masse sie in die
Lage versetzten, sich der Bewegung des ersteren augenblicklich anzupassen. Daher ist die
Bewegung der Elektronen und Kerne in einer guten ersten Anndherung ”"unabhéngig”, und
die Energie der Elektronen kann zuerst berechnet werden, vorausgesetzt, die Kerne sind
stationar. Die so gewonnene elektronische Energie wird zur Abstofungsenergie zwischen
den Kernen addiert, um ein Potential zu erhalten, das die Bewegung der Kerne bestimmt.

Quantenmechanisch kénnen sowohl die Elektronen als auch die Kerne nur bestimmte
Energieniveaus haben. Die molekulare vibronische (= Schwingung + Elektronik) Absorp-
tionsspektroskopie beinhaltet den Ubergang der Elektronen und Kerne von ihrem Anfangs-
in ihren Endzustand durch Photonenabsorption. Die groBere elektronische Ubergangsen-
ergie bestimmt die Position des Absorptionsmaximums, wahrend die kleinere nukleare
Schwingungsiibergangsenergie (ohne Beriicksichtigung von Translation und Rotation) die
Position der Teilmaxima innerhalb des Absorptionsbereichs bestimmt, wodurch die vibro-
nische Feinstruktur entsteht. Ahnliche Ideen gelten auch fiir die vibronische Emission-
sspektroskopie.

Die Resonanz-Raman-Spektroskopie untersucht die Energiednderung des einfallenden
Photons (dessen Energie ausreichend ist, um die Elektronen in einen héheren elektronis-
chen Zustand anzuregen), nachdem es mit dem Molekiil wechselwirkt. Der Energiegewinn
oder -verlust des einfallenden Photons bewirkt eine Anderung des Schwingungszustandes.

Die Photoelektronenspektroskopie ist dhnlich wie die vibronische Absorption, bendtigt
aber in der Regel mehr Energie des einfallenden Photons, da neben der Anregung des
Molekiils in einen hoheren vibronischen Zustand zusétzliche Energie bendtigt wird, um
ein Elektron aus dem Molekiil zu entfernen.

Diese spektroskopischen Techniken liefern wertvolle Informationen iiber die elektron-
ische und nukleare Bewegung des Molekiils. Theoretisch kénnen wir eine zeitabhingige
Korrelationsfunktion verwenden, um die Spektren zu simulieren. Die Korrelationsfunktion
fiir die Absorption ist beispielsweise eine Funktion der Zeit, deren Entwicklung Informa-
tionen iiber die elektronischen Energien und die nukleare Bewegung enthalt. Um das
Absorptionsspektrum in Form von Energie zu erhalten, wird ein mathematisches Ver-
fahren, die so genannte Fourier-Transformation, auf die zeitabhangige Korrelationsfunk-
tion angewendet, um ein energieabhéngiges Spektrum zu erhalten.

Diese Methode wird auf ausgewahlte organische Molekiile, darunter einige Radikale
und Kationen, angewandt, um deren elektronisches und optisches Verhalten unter dem
Einfluss von einfallendem Licht zu untersuchen und Einblicke in das Design neuer op-
toelektronischer Bauelemente zu gewinnen. Bei einigen Molekiilen/Systemen wird die vi-
bronische Feinstruktur durch Faktoren wie molekulare Zusammensetzung und Umgebung
wie Losungsmittel beeinflusst, was darauf hindeutet, dass diese Systeme zur Feinabstim-
mung der gewiinschten Eigenschaften verwendet werden konnen. Fiir andere Systeme
gibt es fast keine sichtbare vibronische Feinstruktur, was bedeutet, dass sich die nuk-
leare Bewegung solcher Systeme im Allgemeinen von derjenigen der vorherigen Kategorie
unterscheidet.
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Chapter 1

Introduction

1.1 Vibrationally resolved spectroscopy involving two elec-
tronic states

Vibrationally resolved electronic absorption, emission, and resonance Raman (rR) spectra
provide important information on the structure and dynamics of molecules. Methods to
simulate them are available in both the time-independent and the time-dependent ap-
proaches. The former is based on Fermi’s golden rule (for absorption and emission) and
the Kramers-Heisenberg-Dirac (KHD) equation [1, 2] (for resonance Raman spectra), and
boils down to the calculation of Franck-Condon (FC) factors (for absorption and emission
spectra), and coupling matrix elements (for components of the transition dipole moment)
between relevant vibrational states (for resonance Raman spectra). This approach is
straightforward, but suffers from the problem of computational scaling with respect to
molecular size. In the latter, developed by Heller and co-workers [3, 4] and referred to
as the Heller formalism, the computation of the Franck-Condon factors is performed in
the time domain by projecting the initial wave-packet to the final electronic state, propa-
gating it with the final state nuclear Hamiltonian, and evaluating the overlap of the new
wave-packet as a function of time with the initial wave-packet. This overlap, known as
the time-dependent correlation function, can be Fourier transformed to generate the vi-
bronic absorption and/or emission spectra. The Heller formalism can be expected to be
more efficient for calculations involving medium-large sized molecules like biomolecules.
If the potential energy surfaces for both electronic states are assumed to be harmonic,
a set of vibrational normal modes for each state can be obtained. The way the two
sets of normal modes are related distinguishes three models (Section 2.4.2). Resonance
Raman spectroscopy involves the (resonant) excitation of a molecule from the electronic
ground to a real electronically excited state and return to the ground state. Thus the
signals of resonance Raman spectra can be enhanced by a factor of up to six orders of
magnitude, compared with Raman spectra [5]. This allows for measurement of resonance
Raman spectra with a much lower sample concentration. One such example is the de-
tection and analysis of environmental pollutants using resonance Raman techniques [6].



Besides, resonance Raman spectroscopy usually selectively enhances Raman signals asso-
ciated with chromophores in the analyte, and is thus particularly useful for the analysis of
large biomolecules [7]. Photoelectron spectroscopy (PES) involves ionization of a molecule
from its electronic ground state to the electronic ground or an electronically excited state
of its cation, depending on the excitation energy. This process is similar to that of the
absorption, with the difference being that the final state has one less electron. This leaves
open the possibility of extending the Heller formalism for vibronic absorption to vibronic
photoelectron spectroscopy.

The optical processes studied in this work are depicted in Fig. 1.1.

electronically electronic
excited state ground/excited state
v =3
v =2 .
molecule / cation
V=1 ———
V=0 ——
virtual state
v=3 —r—
v=2 —F——
molecule molecule
v = e E—
v=0 ———
absorption emission Raman resonance ionization
Raman
electronic electronic
ground state ground state

Figure 1.1: A schematic diagram of the vibronic absorption, emission, Raman, resonance
Raman, and photoionization processes.

1.2 Objects of study in this work

Here we outline the topics to be covered in later chapters.

Chapter 2 lays the theoretical and computational foundation for each type of the
spectroscopy mentioned above.

Chapter 3 explains the implementation of the models covered in Chapter 2 using
our home-built program in combination with the quantum chemical package Gaussian 09



(G09) [8].

Chapter 4 focuses on the simulation of molar absorptivities, vibronic absorption and
emission spectra of perylene and its N-substituted derivatives (azaperylenes). Spectral
trends and features are discussed in reference to experimental data. An explanation of
peculiarity for one azaperylene is proposed.

Chapter 5 applies the Heller formalism to simulate the vibronic absorption, emission,
and resonance Raman spectra of [2](1,3)adamantano|[2](2,7)pyrenophane, a medium-sized
molecule consisting of the smallest diamondoid, adamantane, bridged to pyrene. The goal
is to provide theoretical support for experimental observations and gain insight into the
design of novel diamondoid-containing materials.

Chapter 6 extends the Heller formalism for vibronic absorption to study the photo-
electron spectroscopy of a few lower diamondoids. The validity of this methodology will
be evaluated by comparison of simulated with experimental spectra.

Chapter 7 studies the vibronic and resonance Raman spectra of two adamantane
derivatives: l-adamantyl and 2-adamantyl cations. Besides, the vibronic photoelectron
spectra of the associated 1-adamantyl and 2-adamantyl radicals are calculated. Some
spectra do not have experimental counterpart and can be used for predicative purposes.

Chapter 8 summarizes the work and proposes problems for future consideration.

The appendices contain additional formulas and data needed for the theories and
discussions in the previous chapters.



Chapter 2

Theoretical and computational

foundations

2.1 The molecular Schrodinger equation

In quantum mechanics, the state of a system is described by a wavefunction, which is a
complex-valued function of the spatial and spin coordinates of the system and time. The
wavefunction contains all the information about the dynamical observables and its absolute
square is interpreted as the probability density of finding the system in a particular spatial
and spin coordinate at a particular time. The fundamental dynamical equation for the
wavefunction is the time-dependent Schrodinger equation [9]. When the potential energy
of the system is independent of time, it is possible to factor out the time dependence of
the wavefunction, where the time-independent part, the time-independent wavefunction,
satisfies the time-independent Schrédinger equation.

From now on, we will work exclusively in atomic units, unless otherwise stated.

The time-independent molecular Schrédinger equation is
HY(r, R) = E¥(r, R), (2.1)

where ¥(r, R) is the molecular wavefunction (with spin coordinates neglected for the
moment), and F is the total energy of the molecule. The (column) vectors r and R
stand for the spatial coordinates of the electrons and nuclei, respectively. The molecular
Hamiltonian H can be written as

H_—§Z—AA+ZZZAZB—72A+sz*22 (22)

R r r
A=1 A=1B>A AB i=1 j>i Y A=1i=1 IA




where M is for nuclear mass, Z represents nuclear charge, A and B are nuclear indices, 4
and j label electrons, » and R are distances between particles specified by the associated
indices, and n and N are the number of electrons and nuclei of the molecule, respectively.
The spatial coordinates of electrons and nuclei will be denoted by lower and upper case
letters, respectively. Thus the Laplacians for a nucleus A and an electron i are

0? 0? 0?

Ay = + + (2.3)
0X% oYy: 0Z3%
and o o e
Al=—+——+ =, 2.4
Ox? + oy} + 022 (24)

respectively. The five terms on the right hand side of Eq. (2.2) are operators for the kinetic
energy of the nuclei (Tnuc), inter-nuclear repulsion potential energy (VNN), kinetic energy
of the electrons (Tel), inter-electronic repulsion potential energy (Vee), and electron-nucleus
attraction potential energy (VeN), respectively. The terms To1, Vee, and Vox constitute the
purely electronic Hamiltonian:

. 1 n n n 1 N n ZA
H61:—2Z;Ai+zzw—zz. (2.5)

-
i—1 j>i A=l i=1 A

Usually, the inter-nuclear repulsion term Vin is added to ﬁel, giving rise to the operator
for the electronic Hamiltonian including nuclear repulsion:

f{elec = ﬁel + VNN- (2.6)

The solution to Eq. (2.1) is greatly simplified by taking into account the fact that
nuclei move much slower than electrons due to the much larger masses of the former.
Thus the motion of electrons can be thought of as being in the field of a stationary nu-
clear frame, and the molecular wavefunction can be separated into a nuclear part and an
electronic part. This is the basic idea of the Born-Oppenheimer approximation [10] and
it will be used throughout this work.

Within the above approximation, Eq. (2.1) separates into the electronic Schrodinger
equation

~

HeeeWel (E B) = Eelec(ﬁ) \I’el(f; E) (27)

and the nuclear Schrédinger equation
[Tnuc + Eelec(E)]\Ilnuc(E) - E\Ilnuc (E) (28)

The electronic wavefunction Wei(r; R) depends parametrically on the nuclear coordinates,
and the energy FEe.(R) is the sum of the nuclear repulsion energy Vyn = Van and the
purely electronic energy F.j(R) which satisfies the purely electronic Schrodinger equation

Helqlel(f; E) = Eel(B)\Ilel(f; E) (29)



Note that Egs. (2.7) and (2.9) are equivalent in the sense that their solutions are the same,
only that the corresponding eigenvalues differ by a constant Vyn. Since the nuclei move in
the potential described by the function Fejec(R), it is known as the potential energy surface
and will also be denoted U(R). For each electronic state, there is a potential energy surface.

The solution of Egs. (2.7) and (2.8) will be discussed in Sections 2.2 and 2.4, respec-
tively.

2.2 Electronic structure theories [11]

2.2.1 Wavefunction based methods

The variational principle

Due to the complexity of the purely electronic Hamiltonian (Eq. (2.5)), the electronic
Schrodinger equation can not be solved exactly in most problems of chemical interest.
However, methods of finding approximate solutions in a systematic way exist. One such
category is based on the variational principle, which states that the expectation value of
energy for a system with a time-independent Hamiltonian H calculated from any well-
behaved trial wavefunction Wy, of spatial and spin coordinates is always greater than or
equal to the true ground state energy Ejy:

EO < E[\Iltrial} - <\Iltrial’f{’q/trial>7 (210)

where E[W,i,1] is the variational energy calculated from the normalized trial wavefunction.
An approximate wavefunction is typically found by devising a trial wavefunction dependent
on some parameters and minimizing the variational energy functional with respect to the
parameters.

Hartree-Fock theory

The starting point of almost all modern quantum chemical calculations based on the
variational principle is the Hartree-Fock (HF) method [12, 13]. The trial ground state
wavefunction is built as an (antisymmetrized) Slater determinant Wgp from a set of n
orthonormal one-electron spin-orbitals y;, each of which is a product of a spatial orbital
1; and a spin function (« or f):

xi(zy) xe(zy) - xalzy)
Uy = Usp — 1n' Xl(:$2) Xz(:952) Xn(:xz) | 2.11)



Taking the spatial orbitals as the variational parameters, minimizing the energy leads to
a set of one-electron equations known as the Hartree-Fock equations:

A~

FWxi(1) = eaxa(1), (2.12)

where f(1) is the one-electron Fock operator, y;(1) is the i occupied HF orbital with
orbital energy ;. The Fock operator is given as

F1) = hee@) + Y151 - Kj(1)], (2.13)

where the effective one-electron core Hamiltonian operator ﬁcore(l) accounts for the kinetic
energy and attraction of an electron to all the nuclei:

. 1 N
o) = oA - D0 A (2.14)

the Coulomb operator jj(l) represents the classical Coulomb interaction energy of an
electron with a charge distribution described by the spin-orbital x;(2):

31 = (6 @) o (2) (2.15)

and the exchange operator arising from the antisymmetry requirement of the electronic
wavefunction is defined as

B (D6(1) = (6 @) @), (2.16)

The HF electronic energy is

EYY = (Usp|Ha|¥sp) = To + Ven + J + B, (2.17)

where Tg) and Ven are the electronic kinetic energy and the potential energy of interaction
between the electrons and the nuclei, respectively, and are related to the one-electron core
Hamiltonian operators by

n

Ta+ Vex = (¥sp| Y h(0)|¥sp) = Y (xi(1)IA“ (1) (1), (2.18)
i=1 i=1

J is the classical Coulomb repulsion energy between the electrons:

7= 5 Y 0@l ha @), (219)
i5=1

and ENY is the HF exchange energy:

n

B = =2 3 e @ o W(@) (220)
ij=1



Since the Fock operator depends on all the occupied orbitals to be solved for, the HF
equations must be solved by a self-consistent field (SCF) method. Briefly, an initial guess
of the set of orbitals is used to calculate the Fock operator and a new set of orbitals,
which in turn are used in the next iteration to find a set of improved orbitals, and so on,
until two consecutive sets of orbitals differ by less than a given threshold. In practice,
the analytical HF equations are usually transformed to the so-called Roothaan equations
that can be written in a matrix form, through introduction of a (finite) basis set (to be
discussed below), and solved in the context of matrix algebra.

The HF theory is an independent-particle model. The inter-electronic interactions
are considered only in an average way. In reality, motion of electrons is correlated in the
sense that each electron’s motion is affected by the instantaneous position of each other
electron. The correlation energy, defined as the difference between the exact solution of
the non-relativistic Schrodinger equation and the HF limit, can be recovered (at least
partially) from various approaches collectively known as post-HF methods. These include
14]

1. Mgller-Plesset perturbation (MP) theory: a non-variational method treating the
correlation energy as a perturbation to the HF energy;

2. Configuration interaction (CI) method: a variational method in which the wave-
function is expressed as a linear combination of two or more Slater determinants
(" configurations” ), the coefficients being determined variationally;

3. Coupled-cluster (CC) theory: a non-variational method in which excited determi-
nants are generated by a cluster operator, usually from the HF determinant.

Besides, the non-wavefunction based density functional theory (DFT) (Section 2.2.2) can
handle the problem of correlation energy.

Basis sets

The spatial molecular orbitals used in the Slater determinant as well as in other contexts
can conveniently be expressed as a linear combination of a chosen set of basis functions
conventionally known as atomic orbitals (AOs), although they are not necessarily solutions
to an atomic Schrodinger equation. A minimal basis set consists of one basis function for
each core and valence AO of each atom. The size of a minimal basis set can be extended
by replacing each basis function by two or three basis functions, leading to a double-zeta
(DZ) or triple-zeta (TZ) basis set, respectively [15]. Even larger basis sets can be obtained
similarly. The number of basis functions for each AO need not be the same. A split-valence
(SV) basis set differs from a minimal basis set only in the number of basis functions used
for valence AOs. In other words, an SV basis set is minimal for core AOs and double zeta
or triple zeta (and so on) for valence AOs. Higher angular momentum functions known



as polarization functions can be added to the basis set to account for bonding more prop-
erly. Moreover, basis sets can be augmented with functions with small exponents known
as diffuse functions to account for loosely bonded electrons in such systems as anions or
excited states.

For electronic structure calculations, two types of basis functions are commonly used,
namely Slater-type orbitals (STOs) [16] and Gaussian-type orbitals (GTOs). STOs have
the advantage of bearing a greater resemblance to hydrogen-like orbitals, resulting in a
better accuracy, while GTOs are more efficient for the manipulation of required integrals.
A balance can be achieved by approximating each STO with a linear combination of k
primitive GTOs, k typically being 3, a scheme known as STO-kG. This is an example of
a Pople style (minimal) basis set. Another Pople’s (split-valence double-zeta) basis set
is denoted k-lmG@G, where the core orbitals are described by k primitive GTOs, and the
inner and outer parts of the valence orbitals by [ and m primitive GTOs, respectively [17].
Diffuse functions are denoted by + or ++ between m and G, and polarization functions
by the number and type of functions added in brackets after G. The group of Ahlrichs
have developed their own split-valence basis sets with such straightforward nomenclatures
as TZV (Triple Zeta Valence) and TZVP (TZV with Polarization functions) [18].

In this work, the majority of calculations are performed with the TZVP basis set,
which produces results of comparable quality to those produced by Pople’s split valence
triple-zeta polarized basis set 6-311G(d,p).

2.2.2 Density functional theory

The electronic wavefunction is a function of 3n spatial and n spin coordinates. Attempts
have been made to replace it with a simpler quantity, the electron density, defined as

pov::71J/|w<m,x2wn,xnn2dadx2~--dxn, (2.21)

where o denotes the spin coordinate. The electron density is positive and normalized to
n:

p(r) >0, /mmw:n (2.22)

If the n-electron wavefunction is represented by a single Slater determinant constructed
from a set of n orbitals 1;, the electron density is given by

p(r) = Ii(r) . (2.23)
=1

In density functional theory, the potential resulting from the nuclei is known as the
external potential:

Uext([) = — Z ZA (224)



The foundation of DFT is two theorems from Hohenberg and Kohn (HK) [19]. The first
HK theorem states that the external potential is uniquely determined by the ground state
electron density pg. The ground state electronic energy Ey, therefore, is a functional of

the ground state density:
Ey = E[po]. (2.25)

The second HK theorem guarantees that the energy obtained from a trial density satisfying
condition (2.22) can not be lower than the true ground state electronic energy:

Ey < E[ptrial]- (2.26)

The ground state electronic energy functional can be separated into terms as
Elp] = T[p] + Vex[p] + J[p] + Exc[p]- (2.27)

Although the second (electron-nucleus attraction energy) term Vex|[p] and the third (clas-
sical Coulomb repulsion energy) term J[p] are known to be

Ve [P] :/P(T)Uext(T) dr (228)
and
T = [ AR gy, (2.20)

respectively, the first (kinetic energy) term T'[p] and the fourth (non-classical exchange-
correlation energy) term FEy.[p] are unknown, and finding approximate functionals of rea-
sonably good quality for both (especially the kinetic energy) is a major challenge for
orbital-free, pure DFT.

To overcome these difficulties, Kohn and Sham (KS) suggested an alternative method
in which orbitals are reintroduced. Consider a hypothetical reference system of non-
interacting electrons whose external potential vg(r) is chosen such that the ground state
electron density ps(r) of the system is the same as the exact ground state electron density
po(r) of the molecule of interest. The Hamiltonian of the reference system is

n
Hy=> hfS, (2.30)
i=1
where the one-electron KS Hamiltonian IAﬁ(S is

A 1
WS = =5 A + (1), (2.31)

The n-electron KS wavefunction is a Slater determinant ¥ constructed from the n KS
orbitals X5 satisfying the KS equations:

RS (1)piS(1) = P05 (). (2.32)

10



The electronic energy in the KS approach is expressed as

Elp] = Ty[p] + Vexlpl + Jlp] + Exc[p], (2.33)

where the KS kinetic energy is

n

Tlo] =~ (0 30 Adfws) = —3 SISOl aelS(). (231
i=1

=1

Note that here the KS exchange-correlation functional Ex.[p] also includes the difference
between the exact kinetic energy and the KS kinetic energy. Also note that the func-
tional Fx.[p] can be expressed as the sum of an exchange-energy functional Fy[p] and a
correlation-energy functional E.[p]:

Exc[p] = Ex[p] + E¢|p]. (2.35)

In KS theory, the expression for Ey is the same as for the exchange energy ENF in the
HF theory, except that the KS orbitals are used instead of the HF orbitals. Minimization
of the KS electronic energy with respect to the KS orbitals leads to the following form of
the KS potential:

0J
0n(r) = vess() + 1 ), (2.30)
where the KS exchange-correlation potential vy (r) is
EXC
ch(f) = 0 5p[p] . (237)

Similar to the HF equations, the KS equations must be solved self-consistently.

In a sense, KS-DFT is all about making approximations to the unknown exchange-
correlation functional. The simplest one in the hierarchy of approximation schemes is the
local density approximation (LDA) [20, 21], where the functional ELPA is derived from for-
mulas for a uniform electron gas, and is dependent only on the density p(r). Improvements
can be obtained by using functionals which also depend on the gradients (the generalized
gradient approximation, GGA) [22] and even higher order derivatives (meta-GGA) of p(r).

Alternatively, hybrid exchange-correlation functionals mix HF-like exact exchange en-
ergies with DFT functionals. An example that is widely used in quantum chemistry is the
B3LYP hybrid GGA functional

EQWYY = (1 - a)EYPY + aBJT + 0(EF® — ELPY) + (1— o) EYWN 4+ cELYP, (2.38)

where a = 0.20, b = 0.72, and ¢ = 0.81. ELPA is the LDA exchange functional, EHY is
the HF-like exact exchange functional calculated from KS orbitals, E28 is the Becke 88
exchange functional [23] in the generalized gradient approximation, FYWN is the VWN
correlation functional of Vosko, Wilk, and Nusair [24] in the local density approximation,
and EXYP is the correlation functional of Lee, Yang and Parr [25].
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2.2.3 Time-dependent density functional theory

DFT based on the Hohenberg-Kohn theorems is a ground state theory and is generally not
suitable for calculations involving excited states. For the purpose of obtaining excitation
energies, a time-dependent version of DFT (TD-DFT) is developed, based on the Runge-
Gross theorem (a counterpart for the first HK theorem) [26]. Briefly, this theorem states
that there is a one-to-one correspondence between the set of all time-dependent external
potentials vext(r,t) (up to a time-dependent function ¢(¢)) and the set of time-dependent
densities p(r,t). Moreover, an analogous principle to the second HK theorem exists, with
the role played by the energy F[p] replaced by the quantum mechanical action

AV = /(\I/(t)|i88t — H(t)|¥(t)) dt. (2.39)

Using the same technique of introducing a hypothetical reference system of non-
interacting electrons as in the stationary KS theory, the time-dependent one-electron KS
equations can be derived:

WS (r, )it S(T,t)ziaat 15(r, 1), (2.40)

where the time-dependent one-electron KS Hamiltonian 2XS (r,t) is
P KS 1
h™>(r,t) = —§A + vs(r, t). (2.41)

Here, the time-dependent KS potential vs(r, t) is similar to the stationary one (Eq. (2.36)):

6J[p(t)]

Vs (f» t) = Vext (fa t) + 5p(t)

+ 'ch(fa t)7 (242)

except that now the relevant quantities are time-dependent, and the time-dependent KS
exchange-correlation potential vy (r,t) is

0 Axclp(r, t)]
op(r,t)

with Ayc[p(r,t)], the unknown exchange-correlation action functional, playing the role
of Exc[p(r,t)]. Formally, v.(r,t) depends on the density p(r,t) as well as the initial
wavefunction Wy(r) := W(r,ty). The latter dependence is usually neglected, however,
within the adiabatic approximation, and Ey.[p(r,t)] is used instead of Ay.[p(r,t)]:

0 Exc[p(r,t)]
op(r,t)

The exchange-correlation functionals used in the ground state KS-DFT are applicable in
the time-dependent KS-DFT accordingly.

(2.43)

Uxc (fa t) =

Uxe(T, ) = (2.44)
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The excitation energies can be obtained in the linear response (LR) theory. The
response of the time-dependent density p(r,t) to a small time-dependent perturbation
dv(r,t) introduced by a weak time-dependent electric field is

dp(r,t)
P, ) = polz /ﬁt/d/‘o’#

where vy(r) is the time-independent unperturbed potential, and pg(r) is the ground state
density of the unperturbed system. The quantity

op(r,t)
dv(r!,t')

v’ t) + -+, (2.45)

v=1vg

x(r ;1! ') = (2.46)

v=1vg

is known as the time-dependent linear response function. Switching to the frequency space
and introducing the dipole polarizability

aij(w) = / rix(r,r’,w)ry drdr’, (2.47)

where r;,7; = x,y,z and x(r,r’,w) is the frequency dependent linear response function,
it can be shown that the poles of the mean polarizability @(w) are the vertical excitation
energies [27]

wp = AEyertn = Ep — Ey (2.48)

from the ground state to the n'" excited state with energy E,, and the residues are the
corresponding oscillator strengths

2

swnido, (2.49)

where fi,0 is the transition dipole moment (Eq. (2.86)) from the ground state to the n'®
excited state.

fn:

By exploiting a fundamental relation between the linear response function and its
Kohn-Sham version (which can be expressed in terms of KS orbitals) known as the Dyson
equation of TD-DFT, one can show that the excitation energies are eigenvalues of the

Casida’s equations:
0 X
)(y); (2.50)

A B X .
(5 2 )(5) =28
Aurps = Oapdrs(er —eq) + (ar|bs) — car(ablrs) + (1 — cur)(ar| fxc|bs),

where (for global hybrid functionals)
Barps = (ar|sb) — cur(as|rb) + (1 — cur)(ar] fxc|sb). (2.51)
Here, a, b are indices for occupied and r, s for unoccupied KS orbitals, cgr is the contri-

bution of exact exchange [28], and fy. is the exchange-correlation kernel defined as

5ch (fa t)
op(r!,t')”

=3
|
—_

fxc(fat§fl,t/) = (2.52)
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The Mulliken notation has been used for the two-electron integrals:

(ijlkl) = / O3 () b 7 (', (2.53)

lr — 1|

(1] frel K1) = / V7 ()5 (1) fre (1 w) i ()47 () dredr! (2.54)

where fxc(r,r’,w) is the Fourier transform of the exchange-correlation kernel and is frequency-
independent in the adiabatic approximation.

2.2.4 Solvent effects

In some cases, calculations for molecules are performed in solvents. Ideally, solvent ef-
fects should be dealt with by carrying out quantum-mechanical calculations on a solute
molecule surrounded by a number of solvent molecules. This explicit solvent model, how-
ever, is usually impractical. A more popular way to include solvent effects is to use the
polarizable continuum model (PCM), where the solvent is modeled as a polarizable con-
tinuous dielectric surrounding a cavity holding the solute, with the value of the dielectric
constant determined by experiment [29]. The interaction of the solute molecule with the
surrounding dielectric continuum, when treated quantum mechanically, serves as a per-
turbation term to the unperturbed Hamiltonian of the solute in vacuum, and the new
Hamiltonian is used for subsequent calculations.

In this work, two variants of the PCM in the framework of TD-DFT are employed:
the “ordinary” linear-response PCM (LR-PCM) [30, 31] gives the general order of vertical
excitation energies for various excited states, and the state-specific PCM (SS-PCM) [32, 33]
yields a more accurate excitation energy for a particular state of interest.

Equilibrium and non-equilibrium solvation

Before elaborating on the individual PCM methods, it is worthwhile to distinguish between
two extreme regimes: the equilibrium solvation and the non-equilibrium solvation. In
the former case, all the solvent degrees of freedom are in equilibrium with the solute
electron density for the state under consideration. The dielectric constant of the solvent
is the static dielectric constant e. In the latter, only the fast degree of freedom, i.e.
the electronic polarization, of the solvent is in equilibrium with the solute excited state
electron density, whereas the slow degrees of freedom such as rotation of the solvent remain
in equilibrium with the solute ground state electron density. This corresponds to a “fast”
dielectric constant ef. In the case of photon absorption inducing electronic transitions,
it is usually assumed that €; = €opr = n?, where €opt 1s called the dielectric constant at
optical frequency, defined as the square of the solvent refractive index n [31].
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Linear-response PCM [30, 31]

The electrostatic potential ¢(r) generated by the solute polarizes the solvent dielectric
outside the cavity. To a good approximation, the solvent reaction field can be modeled by
an effective surface charge density o’(s), which can be expressed as

o'(s) = /F Q(s, s")p(s') ds’, (2.55)

where s and s’ are coordinate vectors of points on the surface I' of the cavity, Q(g, s)isa
response operator which is dependent on the solvent dielectric constant and the shape of
the cavity. The solute-solvent interaction free energy can subsequently be computed as

//¢ (5,5")¢(s") dsds’, (2.56)

where the operator Q(s, s') is related to Q(s, s') by

110(s,8) + (s, )] (2.57)

Q(s,s') = 5

The solvation introduces a new term in the Kohn-Sham operator:
hKS = hKS + PCM, (2.58)

where ﬁ%s is the Kohn-Sham operator for the solute molecule in the gas phase, and the
PCM operator v7“M takes the following form:

/ / (s ,\ dsds’. (2.59)

In the presence of a time-dependent external potential, one needs to solve the time-
dependent Kohn-Sham equation (Eq. (2.40)), but now the KS operator has a PCM term
as in Eq. (2.58) and all terms involved are time-dependent:

PCM(

his(r,t) = his(r, t) + vPM(r, 1). (2.60)

It turns out that the PCM operator (when switching to the frequency domain) depends
on the variation of the electron density:

1
oPM5) //5¢3 w)Q(€eopt; 8 ,§)| ] dsds’, (2.61)

in the regime of non-equilibrium solvation. In the case of equilibrium solvation, Q depends
on the static dielectric constant € instead of €opt. The term d¢(s’,w) in Eq. (2.61) is
computed as
/ op(r’,w) .,
0p(s,w)= | ———dr (2.62)

E
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where the density variation is used instead of the electron density. The coupling matrix
K (used in Egs. (2.68) and (2.69)) for an isolated solute molecule has elements

K = [[ 00 deay
02 Fye , , ,
//ﬂ) r)Yu(r 6p( 1op( )1/1 W (1) Yo (r) drdr’, (2.63)

where the 1)’s are KS orbitals. For non-equilibrium solvation, the coupling matrix becomes

K, = —787& w //¢st Q(eopt; 8y 8)Puv(s) ds'ds, (2.64)

where

Pst(s /w L . (1) dr. (2.65)

In the case of equilibrium solvation, €,p¢ in Eq. (2.64) should be replaced by the static
dielectric constant €. The electronic excitation energies can be shown to be the values of
AFEert,» which lead to zero eigenvalues of the matrix

(22) smm(t (2) o

where the matrix elements of JP are given as coefficients in the following expansion in
terms of the time-independent KS orbitals:

=Nl

w) = 6Put(w)hs(r)tn(r). (2.67)
st
The elements of matrices é and B are
Agibi = 0apdij(€a — €i) + Kaipj (2.68)
and
Baivi = Kai jb, (2.69)

respectively. Here, 4, j indicate the occupied and a, b the unoccupied KS orbitals, &’s the
orbital energies.

State-specific PCM [32, 33]

The SS-PCM differs from the LR-PCM in how the solvation free energy is computed. In
the equilibrium case, the free energy is dependent on the excited state (2) density:

=1 Z (2) (2) Zf w+ Zq@) _ (2.70)
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In the non-equilibrium case, the free energy is dependent on both the excited state (2)
and the ground state (1) densities:

1 1
(2 _ 72 : (2)1,(2) } : W2 7} : (1)1 ,(1)
Gneq ) 9, f Vi,p + < i, Vi,p 9 Qi Vi,p )

1 (1)1 ,(2) (1)1 (1)
+2< : qi,s V;,f _Zqi,s VYi,f . (271)

In Egs. (2.70) and (2.71), we have used summations instead of integrations. This amounts
to treating the polarization charges as point charges located at various surface elements
labeled by i, qf/qs are the polarization charges relative to the fast/slow degrees of free-

dom of the solvent, V}/V, are the corresponding potentials, and Vp(n) are the potentials
generated by the electron density of the state (n).

The energies obtained from the above two equations can then be used to make cor-
rections to the excited state energy from the TD-DFT calculation to compute the final
equilibrium and non-equilibrium energies.

2.3 Vertical absorption spectra

The oscillator strengths f,, from Eq. (2.49) and vertical excitation energies wy, from solution
of Eq. (2.50) can be used to obtain a stick spectrum, which can further be broadened using
a Lorentzian factor v (half width at half maximum, HWHM) to account for homogeneous
broadening according to

- fi 0
I= El: P RS o (2.72)

where [ is the intensity for the broadened spectrum.

2.4 Vibronic spectroscopy

2.4.1 Normal mode analysis

For a bound state of a molecular system, the potential energy U(R) attains its minimum
at a particular (equilibrium) geometry which in the following will usually be denoted sym-
bolically as (the subscript, superscript, etc., as appropriate) 0. Introducing the 3N x 3N
diagonal matrix \/M whose diagonal elements are the square roots of nuclear masses

VM, VM1, /M1, \/Ms, -+, v/ Mp, and defining the mass-weighted Cartesian displace-

ment vector:
q=/M(R - Ry), (2.73)
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the potential U(R) becomes a function U(q) of ¢, where the same letter U has been used
for simplicity. Expanding U(q) in a Taylor series

3N ouU 3N 3N
U(g) = U(0) +; <aqi>0% 520 (6%3%) qig; + - (2.74)

'Ll]l

at the equilibrium geometry 0 = 4y setting the first partial derivatives to zero, and neglect-
ing terms after the second partial derivatives, we obtain a potential with only quadratic
terms (the harmonic oscillator approximation). The coefficients of the quadratic terms in
Eq. (2.74) constitute the symmetric Hessian matrix k, whose eigenvectors (chosen to be
orthogonal) are known as the normal modes and the ‘corresponding eigenvalues ); satisfy
Vi = w;, where w; is the angular frequency with which the molecule oscillates in the "
normal mode. Six (five for linear molecules, similar considerations apply hereafter) of the
eigenvalues \; can be shown to be zero, corresponding to translation and rotation. Denote
as L the matrix consisting of the normal mode column vectors, the normal coordinate
vector Q is defined as

Q=L"q, (2.75)

where the superscript T means matrix transposition. In the following, however, we will
use the symbol L to refer to the 3N x (3N — 6) matrix with the six column vectors of
L for translation and rotation deleted. Correspondingly, the symbol @ will be a 3N — 6
dimensional vector for the vibrational normal coordinates.

The classical mechanical Hamiltonian for vibrations in normal coordinates takes the

decoupled form:
| 3N=6 dQ 1 3N=6
Hyp = 5 Z ( ) Z Am Qs (2.76)

where the potential reference has been chosen to be at the equilibrium geometry, i.e. U(0)
has been set to zero. The quantum mechanical Hamiltonian can therefore be constructed

as
3N—-6

V1b - Z v1b7 (277)

where each one-dimensional operator HVlb is

. 1 9

1 2 N2
vib — —5@ + §wQO. (2.78)

The eigenfunctions ®;, (Q) of flvib are products of the form

3N—6

v1b H ¢m Qm (279)
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where each one-dimensional wavefunction ¢;'(Q,,) is an eigenfunction of the operator H."
with eigenvalue

1
B = (v+§)wm, v=0,1,2,.... (2.80)

When the vibrational quantum number v for all modes are zero, the molecule has the
lowest vibrational energy, the zero-point energy (ZPE).

2.4.2 Electronic absorption spectroscopy

Vibronic spectroscopy deals with transitions between two vibronic states, for which both
the electronic and vibrational quantum numbers are involved. In the following, we will
use upright letters i and f to refer to initial and final states, respectively. The subscripts
el for W and vib for ®.;, will be dropped in this section for clarity.

The Duschinsky rotation

Since the normal coordinates Q' and Qf for the initial and final vibrational states (with
their respective electronic statgs) are defined with respect to their respective equilibrium
geometries Qlo and Qg and in the context of their respective harmonic potentials, the way
Q' and Qf are related is crucial in the further development of the theory of vibronic spec-
troscopy and gives rise to the following three models in increasing completeness.

In the independent mode displaced harmonic oscillator (IMDHO) model, it is assumed
that the harmonic potential energy functions of the two electronic states take the same
form, the only difference being the equilibrium geometries. Thus the normal modes and
vibrational frequencies for both electronic states are the same, and the normal coordinates
differ by a constant vector, corresponding to the two sets of normal coordinate axes being
parallel.

In the IMDHOFA (IMDHO with frequency alteration) model, the normal mode anal-
ysis is performed for both electronic states, thus the vibrational frequencies of the initial
and final electronic states are calculated explicitly, but the normal coordinate axes are
still being assumed to be parallel.

In the IMDHOFAD (IMDHOFA with Duschinsky rotation) model, the above parallel
axes assumption is dropped. The general expression for the relation between Q' and Qf
is given by B B

Q'=J, @+ A, (2.81)
where the (3N —6) X (3N — 6) Duschinsky matrix J, . accounts for the rotation between
the normal coordinate axes of the initial and final electronic states, and A;, ; represents
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the shift between the coordinate origins. The subscript f < i will usually be omitted if no
confusion arises. The Duschinsky matrix %H can be calculated as

Loy = %Téi’ (2.82)

and the origin shift vector Ag, ; is expressed as
Apy=L; @(ﬂb — Ryp). (2.83)

In some applications, we need to use the frequency-adapted dimensionless form of
Ag, ; defined as

1 i
Ap = ﬁ\/%é?\/ M(R;) - Ry), (2.84)

where | /@ is a (3N —6) X (3N —6) diagonal matrix whose diagonal elements are the square
roots of vibrational frequencies of the final electronic state. In this work the dimensionless
form of the origin shift is used.

The time-independent approach

The transition probability between two vibronic states ¥;®; and ¥¢®; induced by a photon
is proportional to the absolute square of the transition moment

tg = (O[]0 ®5) = (el (Q)|®), (2.85)

where i is the electric dipole moment operator for the molecule, and the coordinate-
dependent quantity
(@) = (el | W) (2.86)

will be referred to as the electric transition dipole moment. Note that ﬁe | Is the elec-
tric dipole moment operator for the electrons. To a first approximation, the coordinate
dependence of the electric transition dipole moment p (@) can be ignored (the Condon
approximation). Therefore, we can use its value at the initial state equilibrium geometry
for relevant calculations. When this is done, Eq. (2.85) reduces to

pe = by (Q)) (D[ Ps). (2.87)

Note that ¢ and ®; depend on normal coordinates of the initial and final states, re-
spectively. Thus we can use any of the models, IMDHO, IMDHOFA, or IMDHOFAD as
discussed before, to calculate the Franck-Condon factors |(®¢]®;)|*.

7

—e€

In a one-dimensional case, Fermi’s golden rule gives the absorption cross-section at
T=0K as

Tabs o< wilpr (Q0)* D (DL (Q)|6(Q))[*3 (wr — w), (2.88)

where wy is the frequency of the incident photon.
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The time-dependent approach

Now we need to transform Eq. (2.88) to a time-dependent form. This can be achieved by
expressing the Dirac delta function as an integral and making use of the relation

(| exp(—iflst) = (dy] exp(—iwyt), (2.89)
where _E[f is the field-free nuclear Hamiltonian for the final electronic state. The final
expression for the absorption cross-section is [4, 34]

4w - i .

Tavs = T2 g Q) [ (Ghloh (o) expint)at, (290)
—00

where c is the speed of light, and the quantity
(0b|0(1)) = (95| exp(—iHyt)|¢p) (2.91)

is known as the time-dependent absorption auto-correlation function. Taking the adiabatic
minimum separation energy AFE,q and the zero-point energy wiZ of the initial state into
account, and also introducing a Lorentzian broadening factor I" to simulate homogeneous
spectral broadening, the expression for the absorption cross-section reads

Tabs = ?)cluel(Qb)lz/ (¢01¢0(1)) expli(wr — AEaq + wyz)t]exp(—Tt)dt.  (2.92)
— 0
Relevant excitation energies, and different types of ionization potentials (IPs) for later
reference, are defined in Fig. 2.1.

The generalization of the above expression to multidimensional, polyatomic cases is
summarized in Appendix A.

2.4.3 Fluorescence emission spectroscopy

The treatment of fluorescence emission spectroscopy is similar to that of absorption, bear-
ing in mind that the initial and final states have opposite orders of energy compared to
those for absorption.

The time-independent approach

Making the same approximations as in the case of absorption, we have in a one-dimensional
case, according to Fermi’s golden rule, the emission cross-section

Temi o Wit (Q0)1* D [(64,(Q)0h(@))*3(wr — wy), (2.93)
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Figure 2.1: A schematic diagram of (left) the vibronic absorption process with definitions
of relevant excitation energies and (right) the photoionization process with definitions
of different types of ionization potentials. M stands for molecule, while M™ means the
corresponding cation.

where wg is the frequency of the emitted photon. It should be noted that, contrary
to absorption, now the initial state i is the electronically excited state, and the final
state f is the electronic ground state. Thus, qﬁb is the vibrational ground state of the
electronically excited state, and (ﬁf, a vibrational state of the electronic ground state. The
IMDHO, IMDHOFA, and IMDHOFAD models are also applicable in the evaluation of
Frank-Condon factors in multidimensional cases.

The time-dependent approach

Following the same procedure as described in the time-dependent approach for absorption,
an analogous equation to Eq. (2.92) for the emission cross-section in a one-dimensional
case can be obtained:

47er ’

Oemi =

(Qo)\Z/ (60160 (t)) expli(wp + AEaq +wp)tlexp(~Tt)dt.  (2.94)

Relevant quantities have similar meanings to those for absorption (Fig. 2.1), bearing in
mind that now wiZ is the ZPE of the electronically excited state.

The generalization of the above expression to multidimensional, polyatomic cases is
summarized in Appendix A.
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2.4.4 Resonance Raman spectroscopy

The time-independent approach

The discussion of Raman scattering is based on the KHD equation, which consists of a
resonance term and a non-resonance term. Under resonance conditions, the resonance term
dominates and the KHD equation for the polarizability components in a one-dimensional
case at T'= 0K is simplified to

g q e e q g
o (o) =3 (03(Q) |1 (Q)|95(Q)) (95 (Q) e (Q)|95(Q))

: (2.95)

Wl — Wy

where ¢ and ¢’ denote z, y, or z, ¢ is an (intermediary) vibrational state (with quantum
number v) in the electronically excited state e to which the molecule may be excited, (ﬁfc is
the final vibrational state (with quantum number f) and ¢§ is the initial vibrational state
(with quantum number i = 0 for 7" = 0 K) in the electronic ground state g. The resonance
Raman cross-section G}P}_O(wl, ws) is obtained from the polarizability components:

STwiws
af&o(wl,ws o S Z |O‘fe0 wi) %, (2.96)

where wg is the frequency of the scattered photon.

In this work, we will only consider the 1 +— 0 resonance Raman scattering, i.e. f = 1.

The time-dependent approach

To obtain a time-dependent equation for the resonance Raman cross-section in a one-
dimensional case, we proceed similarly as in Section 2.4.2. We apply the Condon approx-
imation, rewrite Eq. (2.95) as an integral and use a similar relation to Eq. (2.89), then
arrive at the desired equation

o o(wn) = (@ (@Y) | (SFI05(0) expliat) at, (2.97)

where the quantity R
(63105(t)) = (0| exp(—iHet)|dF) (2.98)

is the time-dependent resonance Raman cross-correlation function. The operator H, is
the field-free nuclear Hamiltonian for the electronically excited state. When the adiabatic
minimum separation energy, zero-point energy of the initial state, and spectral broadening
are taken into account, Eq. (2.97) becomes analogous to Eq. (2.92):

o4 (wr) = p Q) (@) /0 (05165 (1)) expli(wr — AFaq + w§)t] exp(~Tt) dt. (2.99)
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The generalization of the above expression to multidimensional, polyatomic cases is
summarized in Appendix A.

In the multidimensional case, the resonance Raman cross-section depends on two
variables, wr and wg (or effectively, wy and wr — wg), thus there are two ways to visualize
it in a two-dimensional plot. We can plot o}®,(wr,ws) as a function of the Raman shift
wr — ws, keeping wy fixed. This gives a stick spectrum (which can be broadened using
a different parameter T’ from the one in Eq. (2.99)) of the resonance Raman intensities
versus vibrational frequencies for the modes in the initial electronic state, i.e. the electronic
ground state. Alternatively, we can fix w; — wg corresponding to a particular mode and
obtain a plot of resonance Raman intensities versus excitation frequencies wy, the so-called
Raman excitaton profile (REP).

2.4.5 Photoelectron spectroscopy

Vibrationally resolved photoelectron spectroscopy can be treated in a similar fashion to
vibronic absorption spectroscopy in the Heller formalism. For a neutral molecule ionized
to the lowest electronic state of its cation, the initial state is the electronic ground state of
the molecule, the final state is the electronic ground state of the cation, and the excitation
energy is the corresponding ionization energy. The spectrum obtained corresponds to the
lowest-energy PES band of the molecule. This approach neglects the kinetic-energy contin-
uum of the emitted electron. It is further based on the harmonic and Born-Oppenheimer
approximations. Higher bands can be treated similarly by taking relevant electronically
excited states as the final states.

2.4.6 Calculation of accurate vertical ionization potentials

Related to the PES simulations, it is desirable to directly compare the simulated vertical
ionization potential (IPy), which we calculate as the difference between the electronic
SCF energies of cationic and neutral states at the optimized geometry of the neutral
species, without ZPE corrections, with experimental data. The latter, however, is usually
determined from the position of the 0-0 peak maximum in the experimental spectrum
and should be interpreted as the ZPE-corrected adiabatic ionization potential (IPZFE).
For this purpose, we note that the adiabatic energy separation AFE,q between the neutral
and cationic molecules can be used to determine the ZPE-corrected adiabatic ionization
potential IPZPE:

IPZPE = AE,q + AZPE . (2.100)

Here, AZPE = ZPE, — ZPE,, is the difference between ZPEs of cationic (+) and neutral
(n) molecules. The vertical ionization potential IPy, on the other hand, can be written as

1Py, = AFE.q + Era (2101)
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where F,q is the relaxation energy, obtained from the SCF energy difference between
cationic state at the optimized geometry of the neutral species, and of the cation. There-
fore, the following relation holds:

IPZPE = 1P, — B, + AZPE . (2.102)

Depending on the approximation used for the exchange-correlation functional, A
Kohn-Sham calculations of IPs can be prone to significant errors. Semilocal and stan-
dard global hybrid functionals, for example, typically underestimate vertical IPs by several
tenths of an eV [35]. An alternative and supposedly more accurate approach to predict
vertical IPs is provided by many-body perturbation theory (MBPT) in the GW approxi-
mation [36], where the self-energy ¥ is approximated by the first term in its formal Taylor
expansion in terms of the screened Coulomb interaction W, or symbolically,

5 = iGW, (2.103)

where G is the one-particle Green’s function. In principle, ¥ should be computed itera-
tively until self-consistency is reached. However, owing to the high computational cost of
fully or partially self-consistent GW, one mostly employs a non-self-consistent implemen-
tation, hereafter referred to as GoWy [37], where the Green’s function G and the screened
interaction W are constructed from orbitals and eigenvalues obtained from Kohn-Sham
DFT, and the quasiparticle energies 5?P are obtained from a “one-shot” first-order cor-
rection to the KS eigenvalues EZKSZ

e = XS 1 (RSB (R’) — v 9ES), (2.104)

where 1/JZKS are the KS orbitals, X is the self-energy in the GW approximation calculated
from the KS orbitals and eigenvalues, and vy is the exchange-correlation potential. Con-
sequently, the quality of the GoWj results depends on the starting point, i.e., functional
and/or basis set, used. A GoWj calculation using a specific starting point will be de-
noted as GoWy@method where necessary. For example, GoWj used in combination with
B3LYP/TZVP will be referred to as GoWp@(B3LYP/TZVP), or GoW,@B3LYP if the basis
set is not the primary consideration.

To find a favorable hybrid functional as the starting point for GoWj calculation,
one can use an IP-tuning procedure for long-range corrected (LC) hybrid functionals as
described in Ref. [38]. The basic idea is to separate the Coulomb operator into short-range
(SR) and long-range (LR) components via the standard error function:

1 1—erf(wr) erf(wr)

i + , (2.105)
r hr,_/ HT,_/
SR LR

where w is a range separation parameter. This makes it possible to combine the short-range
interactions in the hybrid description with the correct asymptotics of full HF exchange in
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the long range. Take the LC-hybrid functional LC-wPBE as an example, where PBE is
the semilocal functional of Perdew, Burke, and Ernzerhof [39]. The exchange-correlation
functional takes the following form:

where E<PBESR is the short-range wPBE functional [40, 41], B g the long-range HF
exchange and EFBE is the semilocal PBE correlation [39]. According to the IP theorem
[42, 43], the negative of the HOMO eigenvalue of exact KS theory equals the first vertical
IP. However, this theorem is not obeyed by standard hybrid functionals. The best possible
value for w can thus be found by tuning such that the IP theorem is obeyed.

In this work, we will focus on the error introduced by the insufficiency of the basis
set known as the basis set incompleteness error (BSIE). In practice, a complete basis set
calculation can never be achieved. However, the correlation-consistent basis sets, denoted
as cc-pVXZ where“cc-p” means “correlation-consistent polarized” and X is the number of
linear combinations of primitive GTOs to describe each valence orbital [44, 45, 46, 47, 48],
are designed to achieve smooth convergence to the complete basis set (CBS) limit. Various
CBS extrapolations have been proposed, and no single one is found to be the best in all
cases [49, 50]. However, it appears that any extrapolation produces higher quality results
than the unextrapolated counterpart.
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Chapter 3

Use of Programs

This work is centered around the calculation of vibronic absorption, emission, resonance
Raman, and photoelectron spectra of the molecules of interest. Current codes exist for
such purposes: FCclasses [51] and VIBES [52] for the calculation of vibronic absorption
and emission spectra, in the time-independent and time-dependent regimes, respectively;
ORCA [34] for resonance Raman spectra (limited to the IMDHOFA model). To calcu-
late all these kinds of spectra in all models (IMDHO, IMDHOFA, and IMDHOFAD), the
home-built Zzzap package has been developed, evolving from a prototype written in FOR-
TRAN 77. Tt has been rewritten in FORTRAN 90 and Python 2.7 with known bugs fixed
and efficiency improved.

The program Zzzap works in the following way:

1. Reading in the optimized geometries of the ground and excited state in Cartesian
coordinates from G09 output files;

Reading in the normal modes and vibrational frequencies for both states;

Calculating the Duschinsky matrix and the dimensionless origin shift;

= 0N

Calculating the auto/cross-correlation function in the Heller formalism;

5. Invoking the Fast Fourier Transform (FFT) package for Fourier transformation of
the correlation function to generate the spectra.

The above procedure is automated, provided that the user specifies the following key
parameters when running the program:

1. The type of spectrum (absorption, emission, resonance Raman or REP);

2. Models for the harmonic oscillator approximation (IMDHO, IMDHOFA, or IMD-
HOFAD);
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3. Time step and grid size for the correlation function;
4. Broadening factor(s);

5. Files from which data should be input from.

The above procedure is depicted in Fig. 3.1.

Start
Zzzap: user specification
(1) type of the spectrum G09: geometry optimization
(2) level of approximation and normal mode analysis
(3) time step and grid size

for propagation
(4) broadening factors
(5) files containing the
optimized geometry
and normal modes

Zzzap: calculation of
the Duschinsky matrix
and origin shift

Zzzap: wavefunction propagation
to obtain the correlation function

FFT: Fourier transformation
of the correlation function
to generate the spectrum

End

Figure 3.1: A flowchart of the way Zzzap works in combination with the external program

Gaussian 09.

The program has been tested against VIBES and ORCA for trans-1,2,3-hexatriene
and a few other molecules.

28



Chapter 4

Vibrationally resolved absorption
and fluorescence spectra of
perylene and N-substituted

derivatives [53]

4.1 Overview

Carbon based materials are promising future materials for electronics, optoelectronics and
other applications [54]. In this respect, poly(peri-naphthalene) (PPN, Fig. 4.1, upper
panel), a graphene nanoribbon, is one of the materials of particular interest [55, 56, 57].
PPN has high thermal and chemical stability, relatively high electrical conductivity, and
a narrow bandgap which is tunable by the preparation conditions [57].

As the basic “building block” of PPN, perylene (Fig. 4.1) serves as an excellent object
of study for a better understanding of PPN itself. In particular, the relatively small size of
perylene makes it a perfect system for theoretical investigations. In recent years, nitrogen
analogues of perylene have attracted considerable attention. Various azaperylenes have
been synthesized and characterized [58, 59, 60, 61]. A systematic experimental study of
the nitrogen dependence of the optical and photophysical properties of azaperylenes in a
solvent, acetonitrile (MeCN), is currently underway [62, 63]. In this chapter we investigate
the optical absorption and emission spectra of perylene (P) and selected N-derivatives as
shown in Fig. 4.1 (lower panel), namely l-azaperylene (1-A), 1,6-diazaperylene (1,6-

29



A), 1,7-diazaperylene (1,7-A), 1,12-diazaperylene (1,12-A), 1,6,7-triazaperylene (1,6,7-
A), and 1,6,7,12-tetraazaperylene (1,6,7,12-A). This series is the same as the one being
studied in the mentioned forthcoming work [63]. Here we explore by quantum chemistry
trends in optical spectra of these species with respect to the number and position of N
atoms. Further, our studies could also be of relevance for other promising, unsaturated,
C and N containing materials for photocatalysis, such as graphitic carbon nitride [64, 65].

LA
PPN

N AN N N R S I RN

OO ‘ AN N| AN ‘ AN O AN r\! AN AN
Selosleclecioetoe]os
= = A N

P 1-A 1,6-A 1,7-A 1,12-A 1,6,7-A 1,6,7,12-A

Figure 4.1: Upper panel: Chemical structure of poly(peri-naphthalene) (PPN).
Lower panel: Chemical structures of molecules studied here (left to right): pery-
lene (P); l-azaperylene (1-A); 1,6-diazaperylene (1,6-A); 1,7-diazaperylene (1,7-A);
1,12-diazaperylene (1,12-A); 1,6,7-triazaperylene (1,6,7-A); 1,6,7,12-tetraazaperylene
(1,6,7,12-A).

4.2 Methods

The following calculations were done with the quantum chemical package Gaussian 09
within DFT (for ground states) and linear-response TD-DFT (for excited states). The
B3LYP functional and the TZVP basis set were adopted in all cases. Atomic positions in
the ground and excited states of interest of the respective molecules were relaxed until the
forces were smaller than 4.5 x 107* E}, /ag and the maximum density matrix change was
smaller than 1075, Harmonic vibrational frequencies and normal modes for the ground
state were obtained by using analytic second derivatives for the Hessian, while for the
excited states the central finite difference method with 0.1 pm displacement of atoms in
each Cartesian direction was applied.

In a first step, we calculated vertical, broadened absorption spectra in the form of
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molecular absorptivities from

fil g
e(w) zi:’iﬂ(w_wiw. (4.1)
Here, the sum goes over all considered excited singlet states with oscillator strength f;
and wvertical excitation energy w;, Kk = mejv‘i# =4.319 x 107%mol - m~!, and v is a
Lorentzian broadening factor [66]. In this study, ¥ = 1000cm™! is chosen. These calcu-
lations were performed in the gas phase as well as in the PCM using the solvent MeCN
(dielectric constant = 36.6) to simulate the effects of the solvent studied in experiments
[62, 63]. Besides the “ordinary” LR-PCM, the SS-PCM solvation method was used as
well, for vertical transitions to the lowest bright singlet states of each molecule. In most
cases single molecules with or without embedding environment were considered. For one
example (1,6-A), also the effects of a possible dimer formation were studied, by consider-
ing various m-stacked dimer models. In this case we added a semiempirical correction to
include the dispersion forces (B3LYP+D3) for the ground state optimization [67].

For allowed, lowest-energy transitions we also calculated the vibrationally resolved
absorption and emission spectra. For this purpose, we applied the time-dependent corre-
lation function method together with the IMDHOFAD model as mentioned in Section 2.4.
For the calculations reported here, we applied a At = 0.1fs time grid spacing for the
evaluation of the time-integrals, a total propagation time of about 1 ps, and a Lorentzian
damping factor of I' = 250 cm ™.

4.3 Results and discussion

4.3.1 Structure

For (aza)perylene molecules in Fig. 4.1, ground state geometry optimizations were per-
formed on the level of theory outlined above. Our gas phase calculations yield perfectly
planar ground state structures. For perylene, the C-C bond lengths are in the range of
1.37 ~ 1.47 A, and the C-C-C bond angles are between 118° and 122°, in agreement with
X-ray diffraction data [68]. Substitution of carbon atoms with nitrogen has only small
and local effects on the structural parameters, limited to the respective subrings. For the
azaperylenes, typical C-N bond lengths are between 1.32 and 1.35 A, and C-N-C angles
around 119°. Application of implicit solvent models (PCM) has virtually no effect on the
geometries.

4.3.2 Vertical absorption spectra

For all gas phase simulations, the first bright transition is dominated, in an orbital picture,
by the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital
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(LUMO) contribution (Fig. 4.2), an optically allowed 7 — 7* transition. In the case of

HOMO-1 HOMO LUMO
B 8
1-A % g

1,6-A

1,7-A

1,12-A g
1,6,7-A @
1,6,7,12-Ag

Figure 4.2: HOMO-1, HOMO and LUMO orbitals of the molecules studied in this work,
calculated in the gas phase. Grey balls = C, white balls = H, blue balls = N. HOMO —

&6 66 8§86 86 88
tiireed
FEHREEREET

LUMO transitions dominate the lowest-energy absorption bands in these molecules.

perylene, for example, with point group symmetry Doy, the HOMO is of a,, symmetry and
the LUMO is of b3y symmetry. In state (rather than orbital) notation, this corresponds
to a X'A4, —! Bs, transition. The transition dipole moment is oriented along the long
molecular axis z ~ bs,,. The direct product of initial and final states/orbitals and the tran-
sition dipole is totally symmetric, A4. This transition changes the bonding/antibonding
character of several C-C (or C-N) interactions in particular in the vicinity of the cen-
tral aryl ring. For example, for perylene the two central C-C bonds are 1.47 A long
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on the B3LYP/TZVP level of theory in the ground state. Upon excitation to S;, the
non-bonding interaction of the HOMO between two center C atoms converts into a C-C
bonding character. Similarly, the four nearby C-C bonds which are bonding in the HOMO
are antibonding in the LUMO, resulting in a bond lengthening (from 1.39 to 1.42 A) for
these upon electronic excitation. In other words, in the excited state the bond alternation
in neighboring C-C (or C-N) bonds reduces, a well-known effect for conjugated polyenes
[69]. As a consequence, vibrational motion will set in upon absorption (and conversely
also after fluorescence), which will show up in vibrational fine-structure (see below). Our
calculations show that the presence of nitrogen heteroatoms has only a small effect on the
characters of the HOMO and LUMO orbitals, both of which have w-character. In contrast
the HOMO-1 orbitals strongly depend on the number and spatial distribution of nitrogen
atoms (Fig. 4.2). For P the HOMO-1 orbital is of m-character delocalized over the whole
molecule. Although for 1-A, which contains one nitrogen atom, the HOMO-1 orbital is
still of m-character, it is spatially localized on only half of the molecule. The HOMO-1 or-
bitals obtained for all molecules that contain at least two nitrogen atoms are of n-character
and are located in the vicinity of nitrogen atoms. These orbitals are involved in low-lying
n — 7" transitions which are usually dark but may play a role in photophysics through
non-radiative transitions.

In the gas phase, the first bright state for all investigated molecules is the first ex-
cited state Sy, except for the molecule with the largest number of nitrogen atoms, namely
1,6,7,12-A. For this particular molecule, the first bright state is the second excited state,
Ss. The vertical excitation energies for the first bright state together with the respective
oscillator strengths are presented in Table 4.1 (left part). The vertical excitation energies
are between 440 nm (for P) and 406 nm (for 1,6,7,12-A). Higher excited states, many of
which are dark, are tabulated in Appendix B, Table B.1.

Analogous calculations were performed for the molecules in a MeCN solvent using
PCM in two variants: LR-PCM and SS-PCM. Resulting vertical excitation energies for
the first bright state and corresponding oscillator strengths are also given in Table 4.1
(right part). Higher excited states are tabulated in Appendix A, Table B.2. Also in PCM,
the first bright state is dominated by a HOMO-LUMO transition. The solvent has little
effect on the shape and character of HOMO and LUMO within the PCM models. The first
bright state for all molecules, now also including 1,6,7,12-A is the first excited state S;.
For the LR-PCM model, we note that the solvent is predicted to red-shift the lowest bright
excitation, by between 11 nm (for P) and 19 nm (for 1,12-A). Also, oscillator strengths
become larger. The LR-PCM seems to overestimate the solvent-induced red-shift, as the
improved, non-equilibrium SS-PCM model partially reduces this shift again. However,
an overall red-shift induced by the solvent remains for all molecules except perylene, for
which almost no solvent effect is found within that model.

Simulated, broadened vertical absorption spectra are shown for the LR-PCM model
in Fig. 4.3. They have been calculated from Eq. (4.1) by taking 20 excited states into
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Table 4.1: The vertical excitation energy AF.et and oscillator strength f for the first
bright state of each molecule of the perylene series. Left: Gas phase calculations. Right:
In MeCN solvent, treated by the LR-PCM (left part of right half), or by a non-equilibrium,
SS-PCM (right part of right half). For the LR-PCM calculation, also the adiabatic energy
separation AFE,q and the 0-0 transition energy AFEjy_¢ are shown, obtained from geometry
optimization in the excited state and normal mode analysis. The energies are in eV (nm

in brackets).

Gas phase In MeCN solvent
Linear-response PCM State-specific PCM

Molecule AFEert f AFEert f AFE.q AFEy—_o AFyert f
P 2.82 (440) 0.35 | 2.75 (451) 0.45 2.39 (519) 2.35(528) | 2.83 (438)  0.35
1-A 2.86 (434) 0.36 | 2.77 (447) 0.45 2.41 (514) 2.37 (523) | 2.83 (438)  0.35
1,6-A 2.93 (423) 0.36 | 2.84 (436) 0.46 2.48 (500) 2.42 (512) | 2.90 (428) 0.36
1,7-A 2.89 (429) 0.36 | 2.80 (443) 0.46 2.42 (512) 2.36 (525) | 2.85 (435) 0.36
1,12-A 2.91 (426) 0.36 | 2.78 (445) 0.44 2.41 (514) 2.35(528) | 2.78 (446)  0.34
1,6,7-A | 2.97 (417) 0.37 | 2.86 (434) 0.45 2.47 (502) 2.41 (514) | 2.88 (431)  0.36
1,6,7,12-A | 3.05 (406) 0.37 | 2.93 (423) 0.46 2.52 (492) 2.45 (506) | 2.95 (420)  0.36

account for each molecule. All simulated molar absorptivities reveal two main features,
one at ~ 420-450 nm, and one below ~ 280 nm. The latter contains two main subfeatures,
one at longer wavelengths than ~ 240 nm, one at shorter ones. From Fig. 4.3 and Table
4.1, the following general trends emerge:

(i) Upon increasing the number of nitrogen atoms, the low-energy peak gradually blue-
shifts from ~ 450nm for P to ~ 420 nm for 1,6,7,12-A.

(ii) Upon increasing the number of nitrogen atoms, the separation between the subfea-
tures of the higher energy peak decreases.

(iii) Also the relative intensity of the higher energy peak subfeatures and the lower energy
peak subfeatures are influenced by the degree of substitution. Namely, the increase
in the number of N atoms causes the higher energy peak subfeatures to become
relatively more intense compared to the lower energy peak subfeatures.

(iv) Molar absorptivities of low-energy peaks are virtually identical for all molecules.
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Figure 4.3: The molar absorptivity for the perylene series simulated for vertical excitation

and with an implicit MeCN solvent, modelled by LR-PCM.

At this point it is worthwhile to compare to experimental data as far as available to us.
Hasobe and coworkers have measured absorption and emission spectra of the (aza)perylene
series of Fig. 4.1 in MeCN, showing the following main features [62, 63]:

(i)

The experimental absorption spectra show a strong signal around ~ 400-440 nm,
ca. 100 nm wide, corresponding to the lowest-energy So — S; transitions. This band
is separated by a gap ~ 100 nm wide from higher-energy absorptions at < 270 nm.

The lower-energy absorption bands exhibit a clear vibrational fine-structure, with
at least two, sometimes three or more resolved peaks.

Both the Sy — Sy and Sg — S, transitions (n > 1) show a rough trend comparable to
theory: Higher nitrogen content shifts the bands to the blue. The shift is particularly
large for 1,6,7,12-A and comparable to what we find here. No clear trends, however,
emerge regarding the position of the N atoms.

Also, the fluorescence (emission) spectra for the band corresponding to S; — Sp show
a clear vibronic fine-structure. The emission bands are centered around ~ 440-470
nm and are again, ~ 100 nm wide.

A special case seems to be 1,6-A, for which absorption and emission spectra are
qualitatively different from all other species of Fig. 4.1: The experimental spectra
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[62, 63] are broader and strongly red-shifted. These latter features are characteristic
for formation of an excimer state and have already been reported for perylene [70, 71]
and derivatives of it [72]. They will also be investigated for 1,6-A further below.

Apart from the last observation and also apart from the missing vibrational fine-structure,
the vertical absorption spectra roughly resemble the absorption spectra found in experi-
ment [62, 63]. The missing fine-structure and also the emission spectra will be addressed
in Section 4.3.4.

4.3.3 Possible dimer formation

To study effects of dimer formation and excitonic effects on vertical (absorption) spectra,
we considered, for 1,6-A as an example, also dimer models. Specifically, we optimized
the ground state structures for three different dimer arrangements as shown in Fig. 4.4.
The three structures resulted from three different starting geometries in which the sec-
ond monomer was either (a) slipped parallel or (c¢) anti-parallel along the long molecular
axis, or (b) rotated relative to the first one. Note that at the B3LYP level, the inter-
action potential between two monomers is found to be repulsive, which is in agreement
with simulations performed, e.g. for P in Ref. [73]. Thus, for the optimizations of stable
dimeric species, we applied the BSLYP+D3 methodology that allows us to account for the
dispersion interaction. Test calculations performed for the 1,6-A monomer show virtu-
ally no influence of this semiempirical correction scheme on the chemical structure of the
monomer.

Figure 4.4: A schematic diagram of the three conformers of the 1,6-A dimer obtained
from B3LYP+D3/TZVP optimizations (see text).
In all cases presented in Fig. 4.4, the monomers are virtually planar and parallel,

and the geometrical centers of monomers are shifted with respect to each other. In case
(a), the monomers are simply slip-stacked (with the angle between dipole moments of the
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monomers being only 1.7°), and the perpendicular distance between the two molecules is
3.45 A; In case (b), the monomers form an angle of 44.2° with a distance of 3.40 A; In
case (c), the monomers are arranged almost anti-parallel (171.4°) at a distance of 3.46
A. Apart from the three optimized structures shown, most likely further minima exist.
On the B3LYP+D3/TZVP level of theory, dimer (b) is the most stable species, closely
followed by dimer (c), which is 0.03 eV higher in energy and (a), at an energy 0.04 eV
above (b). Due to the small energy differences, at ambient temperatures most likely all
(and probably further) dimers will coexist: the relative Boltzmann populations (evaluated
with the above relative electronic energies) at 300 K are 0.21:1.00:0.31 for a:b:c.

Table 4.2: The vertical excitation energy A Fye and oscillator strength f (from the ground
state Sp) for the four lowest excited states of the three conformers of the 1,6-A dimer.
Energies are in eV (nm in brackets). Also shown are the energies E of the dimers relative
to the most stable species, b) (in €V), and the distance between molecular planes in the

dimer, R (in A). All on the (TD-)B3LYP+D3/TZVP level of theory.

S1 Sg 83 S4 SO
Dimer
AE}vert f Alavert f Avaert f Avaert f E R
a | 245 (507) 0.04 | 2.49 (498) 0.02 | 2.84 (436) 0.00 | 3.07 (404) 0.47 | 0.04 3.45
b 2.54 (489) 0.00 | 2.56 (485) 0.00 | 2.81 (441) 0.07 | 2.93 (422) 0.40 | 0.00 3.40
c 2.46 (505) 0.06 | 2.48 (500) 0.00 | 2.82 (439) 0.00 | 3.06 (405) 0.47 | 0.03 3.46

Relevant vertical excitation energies and the corresponding oscillator strengths calcu-
lated for the gas phase dimeric species are presented in Table 4.2. Excitation energies to
higher excited states are tabulated in Appendix B, Table B.3. For all simulated dimers,
the S4 state is the first bright state with high oscillator strength. The vertical absorption
energy for this state is blue-shifted by ~ 0.14eV (19 nm) for (a), not shifted for (b), and
blue-shifted for (c¢) by 0.13 eV (18 nm), with respect to the first bright state of the 1,6-A
monomer at 423 nm (Table 4.2). In addition for dimers (a) and (c), the first excited state
carries a small, nonzero oscillator strength. In both cases, this state is strongly red-shifted
by 0.5eV or 80 nm, with respect to the first bright state of the 1,6- A monomer. Further,
for dimers (a) and (b) also states in between S; and Sy (S2 or Sgz) exhibit small oscillator
strengths and are red-shifted with respect to the monomer. Therefore, we have a broader
distribution (~ 400-500 nm) of states for the dimer, compared to a single transition at
423 nm for the monomer. This may be helpful in interpreting the broader, lowest-energy
absorption and emission bands in experiment for that molecule [62, 63]. Note that accord-
ing to a simple point dipole/point dipole coupling model, the so-called Davydov (exciton)
splitting of an excited state of a monomer in a dimer is § ~ p?/R? for two monomers
with parallel transition dipoles (of magnitude p) being a distance R apart from each other
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[74, 75]. For monomeric 1,6-A, we find pu = 2.242 eag (oriented along the principle axis
of the molecule). With a distance R ~ 3.50 A, we then get § ~ 0.5 eV. This is the order
of magnitude obtained for the splitting between various states as shown in Table 4.2.

4.3.4 Vibrationally resolved spectra

For deeper analysis, the vibrational fine-structure of absorption corresponding to the
lowest-energy transition for each of the seven (aza)perylene molecules is of interest and
computed, with the results shown in Fig. 4.5.
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Figure 4.5: The vibronic absorption (black) and emission (red) spectra of the molecules
studied in the gas phase (left) and in MeCN solvent (PCM, right) according to calculations.
(1,6,7-A gas phase spectra are missing, because geometry optimization of the S; state

failed in this case.)
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In the same figure, the corresponding (S; — Sp) vibronically resolved emission spec-
tra are also presented. Both the vibronic absorption and emission spectra are computed
using the IMDHOFAD model, in the gas phase and the LR-PCM (MeCN) solvent envi-
ronment. For all molecules simulated in the gas phase, we obtain four distinctive peaks
characterized by a vibrational progression of ~ 0.18 eV. The progression is largely in-
dependent of molecule but translates into a range of 26-31 nm on the wavelength scale
depending on molecule, due to different excitation energies. In experiment, a clear vi-
bronic fine-structure is found for the (aza)perylene molecules [62, 63] as outlined above.
The experimental vibrational progression is quite comparable [62, 63]. The energy spacing
of 0.18 eV corresponds to autocorrelation functions in Eq. (2.92) with recurrences having a
period of 23 fs (not shown). This feature is the fingerprint of the excited state vibrational
modes of frequencies around 1450 cm™'. We find typically several excited state normal
vibrations around this frequency, among them coupled C-C and C-N stretching modes
which reflect the expected geometry changes in the central part of the molecules upon ex-
citation as outlined above. For all molecules, the PCM solvent has no large impact on the
general appearance of vibronic spectra, however, there are some quantitative differences:
There is a systematic red-shift of between 52 nm (for 1,6-A) and 60 nm (for 1,7-A and
1,6,7,12-A), and a slight increase of the relative intensities of the subpeaks at higher ener-
gies (shorter wavelengths). Further, the splitting between the two lowest-energy vibronic
peaks, i.e. the vibrational progression A, apparently becomes larger in wavelengths, but
is essentially unchanged in energy (eV), indicating a negligible effect of the solvent on the
bond strengths. We denote the lowest-energy peaks as A and B, respectively, and show
them in Table 4.3 together with the splitting parameter A, both for the gas phase and for
PCM calculations. A similar analysis can be done for emission spectra. On the energy

Table 4.3: Lowest two vibronic peaks A and B of the absorption spectra for the perylene
series from simulations. Numbers in bold denote the most intense vibronic peaks. Left:

gas phase; Right: in MeCN (PCM).

Gas phase In MeCN (PCM)
Molecule
Peak A (nm) Peak B (nm) A (nm) | Peak A (nm) Peak B (nm) A (nm)

P 473 442 31 528 490 38
1-A 468 438 30 522 486 36
1,6-A 460 432 28 512 477 35
1,7-A 465 436 29 5925 489 36
1,12-A 467 438 29 526 489 37
1,6,7-A _a _a a 513 479 34
1,6,7,12-A 445 419 26 506 472 34

% Geometry optimization for the S; state was not successful for 1,6,7-A.
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scale, the progression in this case is also 0.18 eV, suggesting that similar vibrations are
excited upon return from the excited to the ground state.

From the absorption and emission spectra, we observe two general trends: (i) There is
a gradual blue-shift of the spectra with increasing number of N atoms, similar to what was
found for vertical spectra. For each molecule, the peak of overlap between the absorption
and emission spectra is the 0-0 peak (peak A in Table 4.3). In our PCM simulations, this
peak occurs at 2.35eV (528 nm) for P, and at 2.45eV (506 nm) for 1,6,7,12-A. For all
other molecules, see Table 4.3. In the gas phase the 0-0 peak is at 2.62eV (473nm) for
P, and at 2.78 eV (445nm) for 1,6,7,12-A. (ii) With increasing number of N atoms, the
intensity of peak B increases with respect to that of peak A.
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Chapter 5

Vibrationally resolved absorption,
emission and resonance Raman
spectra of [2](1,3)adaman-
tano|2](2,7)pyrenophane

5.1 Overview

Diamondoids are saturated hydrocarbons formed from interconnected cyclohexane units
(more details in Chapter 6). One of their desirable properties is the flexibility of being
functionalized, providing a repertoire of diamondoid building blocks tailored to various
needs. In this regard, one such example is the combination of diamondoids (acting as
electron-donors) with fullerenes (as electron-acceptors) to produce a hydrocarbon rec-
tifier, 2-(diamantan-4-yl)-1,3-butadiene-Cgo adduct [76]. The use of this molecule as a
self-assembled diode material, however, suffers from the drawback of a small fullerene-
metal contact area as well as the unstability due to retro-Diels-Alder reaction. Fur-
thermore, the dipole moment is off the center of the fullerene subunit. Attempts have
been made in the search for better hydrocarbon models. Inspired by studies on a simple
model, [2](1,3)adamantano[2](1,4)benzenophane [77], consisting primarily of adamantane
(the simplest diamondoid) and benzene, Kahl et al. recently synthesized a similar but
larger molecule, [2](1,3)adamantano-[2](2,7)pyrenophane (abbreviated to Ada-py in the
following, Fig. 5.1), by fusion of the sp3-hybridized adamantane (electron-donor) with the
sp2-hybridized pyrene (electron-acceptor), and measured its electronic and optical prop-
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erties [78]. This molecule possesses a large dipole moment resulting predominantly from
the bending of the pyrene moiety and the electron-donating nature of adamantane.

In this chapter, we will study the vibronic absorption, emission and resonance Ra-
man spectra of Ada-py, compare theoretical findings with experimental observations, at-
tempting to gain insight into the design of novel diamondoid containing molecules for
optoelectronic applications.

Figure 5.1: The ground state molecular structure of Ada-py, obtained on the
B3LYP/TZVP level of theory without symmetry constraints.

5.2 Methods

The procedure used here to optimize the structure and perform normal mode analysis of
Ada-py is similar to that in Section 4.2. The calculations were done on the B3LYP/TZVP
DFT and TD-DFT level of theory.

First, the vertical absorption spectrum broadened with a Lorentzian factor v =
2000 cm ™! was computed according to Eq. (2.72). The ground state and first bright
excited state were then used to calculate the vibronic absorption, emission and resonance
Raman spectra according to the Heller formalism (Section 2.4). Correlation functions are
computed on time grids with timesteps At = 0.02fs, for a total propagation time of about
2 ps to make sure that the correlation functions converge to zero. The Lorentzian broad-
ening factor I' = 200cm ™! was chosen for absorption and emission, and another factor
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I = 10cm™ for resonance Raman spectra. All spectra were treated in the IMDHOFAD
model.

5.3 Results and discussion

The optimized geometry on the B3LYP/TZVP level shows that the symmetry of the
molecule is Cg (Fig. 5.1). The vertical excitation energies and oscillator strengths for the
first ten excited states are calculated and presented in Table 5.1. The oscillator strength
sticks and the broadened vertical absorption spectrum are shown in Fig. 5.2

For Ada-py, the first absorption occurs for the weakly allowed first excited state, at
3.46 eV. This is followed by three states (states 2, 3, and 5) of increasing intensity. At
4.49 eV (state 5), the absorption reaches its maximum. Two higher states (states 7 and
8) are also allowed transitions, with intensity comparable to that of the first excited state.
The symmetry of Ada-py (Cs) is significantly reduced with respect to adamantane (Ty),
consequently, the degeneracies are completely removed and much less states are transition
forbidden by symmetry.

The dipole moments in eag of the electronic ground state Sg and the lowest three
excited states S1, Sg and S3 at the optimized ground state geometry of Ada-py are 0.9453,
1.1176, 1.0101 and 0.9958, respectively. The angles between the three excited state dipole
moments and the ground state value are 0.5°, 1.0° and 3.2°, and their relative change in
magnitude with respect to the ground state dipole moment are 18.22%, 6.85% and 5.34%,
respectively. The nontrivial increase and the little change in direction of the dipole moment
when the molecule is excited to S; might be of interest in designing new optoelectronic
devices.

5.3.1 Vibronic spectra

Now we consider the vibronic effects on absorption and emission for the lowest allowed
transition (state 1). We give different measures of transition energies in Table 5.2.

The simulated absorption and emission spectra are roughly mirror images relative to
each other (Fig. 5.3). The maximum vibronic peak of each spectrum appears at essentially
the same value as AFy_g, so we assign this peak to the 0-0 transition. Each spectrum
has a pattern of vibrational progressions. For the absorption spectrum, the vibronic peak
spacing is about 0.164 eV, which stems from the recurrence time 25.21 fs of the absorp-
tion correlation function. Similary, the 0.163 eV vibronic peak spacing of the emission
spectrum originates from the emission correlation function recurrence time 25.33 fs.
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Table 5.1: Vertical excitation energies AE, . in eV and oscillator strengths f of Ada-py,
calculated on the B3LYP/TZVP level of theory, for the first ten excited states.

State  AFEert I

1 3.4623 0.0034
2 3.6718  0.0503
3 4.2282  0.1860
4 4.2665 0.0010
5 4.4876  0.5266
6 4.5342  0.0003
7 4.6957  0.0097
8 4.7109  0.0095
9 4.7982  0.0000
10 5.2066  0.0002

Table 5.2: Different measures of transition energies in eV, i.e. the vertical transition energy
A FEyert, adiabatic transition energy AFE,q, and 0-0 transition energy AEy_g, for the first
excited state of Ada-py obtained on the BBLYP/TZVP level. The characteristic recurrence
time 7 in fs and corresponding vibrational frequency w in cm ™! for absorption and emission
autocorrelation functions are also given.

AEyert AFJ‘ad AFy_g Tabs Wabs Temi Wemi

3.46 3.22 3.23 2521 1323 25.33 1317
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Figure 5.2: The vertical excitation spectrum (broadened with a Lorentzian factor v =
2000 cm~1) and oscillator strengths (sticks) of Ada-py on the (TD-)B3LYP/TZVP level.

The vibronic peaks of the absorption spectrum are dominated by vibrations in the
excited state, while for emission, they are determined by ground state vibrations. To
assign possible modes to these peaks, we note that the vibronic peak spacing 0.164 eV
for absorption translates to a wavenumber of 1323 cm ™", and the vibronic emission peak
spacing 0.163 eV is equivalent to 1317cm™'. Further, we observe that the excited state
geometry changes little in the adamantane cage compared with the pyrene structure. For
example, the C-C bond lengths of the adamantane cage change less than 0.01 A, and for C-
C-C bond angles, the changes in value are less than 0.1°. For the pyrene structure, however,
whereas most of the C-C bonds in the two “wings” (the two side subrings connected to the
adamantane cage via sp® carbon atoms) are elongated by about 0.01 A, the C-C bonds
of the two middle subrings are shortened or elongated by 0.02 ~ 0.04 A; furthermore, the
C-C-C bond angles can change by up to 2°. In the neighborhood of 1323 cm™!, we found
4 modes in the excited state with wavenumbers 1226cm™!, 1314cm™', 1318 cm™!, and
1340 cm ™!, respectively, which feature significant C-C stretching and C-H bending in the
pyrene subrings. These modes or some of them should dominate the vibronic structure in
the absorption spectrum. In the vicinity of 1317 cm™!, the modes in the ground state with
wavenumber 1313 cm ™!, 1317cm ™!, 1321 cm ™', and 1323 cm™!, respectively, are closest to
1317cm™ !, and they involve C-C stretching, CHy and CH vibrations in the adamantane
cage and the connection units joining adamantane and the pyrene. These seem to dominate
the vibronic emission spectrum. However, since the recurrences in the absorption (and
emission, not shown) correlation function are not as well separated as they are in the case
of pristine lower diamondoids, and the vibronic peaks are not sharply defined as they are
in the vibronic spectra of pristine lower diamondoids [79], there could be a relatively large
error when reading the recurrence time and vibronic peak spacing, therefore we cannot tell
with equal confidence that these modes dominate the vibronic absorption (and emission)
spectrum. In fact, there are many other modes in the region which could also contribute.
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Figure 5.3: Left: Vibronic absorption and emission spectra for the first excited state of
Ada-py using BSLYP/TZVP/IMDHOFAD. The maximal intensities are normalized to 1.
A Lorentzian broadening factor I' = 200cm~! was included. Right: The real part and
absolute value of the absorption correlation function.

To get more insight into this problem, we seek information provided by resonance Raman
spectra.

5.3.2 Raman and resonance Raman spectra

The (off-resonance) normal Raman spectrum of Ada-py was calculated using Gaussian 09
(Fig. 5.4, upper panel). Most signals of frequencies lower than 1200 cm™! are quite weak.
The maximal intensity is found at 1300 cm™!, and a few more medium signals are located
between 1400 cm ™! and 1700 cm 1.

The resonance Raman spectra of Ada-py calculated at three different excitation en-
ergies, 3.23 eV, 3.37 eV, and 3.81 eV, are shown in Fig. 5.4, lower panel. At excitation
energy 3.23 eV, which is roughly the 0-0 transition energy, all modes in principle start to
be in resonance. At 3.37 and 3.81 eV, the relative intensities are blue shifted to modes
of frequencies higher than 1200 cm ™!, or more specifically, the ones at around 1318 cm ™!,
1344cm™!, and 1472cm™!.

For the rR spectrum (excitation energy 3.81 eV), the signal at 1472cm™! is signifi-
cantly enhanced, whereas almost all the others are quenched with respect to the normal
Raman spectrum. Based on the theoretical observation that resonance Raman spectra
often give strong signals for modes contributing most to the vibronic emission spectra,
and the signals are likely to be enhanced with respect to normal Raman spectra, at least
for pristine lower diamondoids [79], we also attribute the 1344 cm~! and 1472 cm~! modes
among the most probable contributors for the vibronic emission spectrum. A careful ex-
amination of the vibrations suggests that the latter should actually be the mode with
vibrational frequency 1454 cm ™! that involves mainly the stretching of the three “horizon-
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Figure 5.4: Upper: The (off-resonance) normal Raman spectrum of Ada-py calcu-
lated with Gaussian 09. Lower: The resonance Raman spectra of Ada-py using
B3LYP/TZVP/IMDHOFAD for different excitation energies. A Lorentzian broadening
factor I' = 10 cm™! was included.

tal” C-C bonds (parallel to the paper) in the two middle subrings of the pyrene moiety,
and these C-C stretching vibrations conform to the major changes in geometry when the
molecule is excited to the Sy state. The former should be the mode with vibrational fre-
quency 1341 cm™!, which involves mainly the stretching of the rest eight C-C bonds in the
same two subrings of pyrene.

5.3.3 Comparision with experiment [78, 80]

The experimental vibronic absorption and emission spectra [78] for Ada-py in cyclohexane
solvent are given in Fig. 5.5. The absorption spectrum shown there corresponds to the Sy
— Sy transition. In experiment, much more intense absorption peaks are also found in
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the region below 350 nm (not shown), indicating transitions to higher states than S; as
also expected from our analysis in Table 5.1.

The experimental absorption maximum for the Sg — S; transition occurs at 383 nm
(3.237 eV) and the vibrational progression is about 0.082 eV (661cm™!), which is one
half of the theoretical value 0.164 eV. There is a mode of vibrational frequency 669 cm ™!
which features C-C-C scissoring and C-H bending in the pyrene subrings, consistent with
the geometrical changes upon excitation to S;. This mode which “accidentally” has half
of the frequency for the theoretical vibrational progression 0.164 eV is not resolved in
the theoretical spectrum. The 0-0 peak appears to be at 406 nm (3.054 eV) where the
absorption and emission spectral curves cross. However, it is more appropriate to assign
the peak at 403 nm (3.077 eV, which is only 0.023 eV away from 3.054 eV) to the 0-0
transition, because the gap between this peak and the maximum peak is almost 0.164 eV,
i.e. twice the experimental vibrational progression.

Considering we were simulating the gas phase spectra, the experimental absorption
spectrum is probably red-shifted by about 0.16 eV. The “0-2” peak, i.e. the maximum
absorption peak, in the experiment now coincides with the 0-0 peak at 3.23 eV in the
simulated absorption spectrum, and the maximal intensity is shifted from the 0-0 to the
higher energy “0-2” peak due to solvent effect, similar to what we have observed for the
simulated absorption spectra of the (aza)perylene molecules (Fig. 4.5).

The experimental emission profile is somewhat similar to absorption, but the vibronic
structure is not well resolved.

— abs
— emi

| IS T S TR SR S S TR T S S S U S S S ST S |
320 360 400 440 480 520 560
A/nm

Figure 5.5: The vibronic absorption and emission spectra of Ada-py measured in cyclo-
hexane, adapted from Ref. [78]. The intensities are in arbitrary units.

48



Intensity (arb. units)

200 400 600 800 1000 1200 1400 1600 1800 2000

Raman shift (cm™)

Figure 5.6: The (off-resonance, excitation wavelength A = 633nm or 1.96eV) normal
Raman and resonance (excitation wavelength A = 325nm or 3.81eV) Raman spectra of
Ada-py measured in crystal [80]. The intensities are in arbitrary units.

The experimental (off-resonance) normal Raman spectrum excited at wavelength 633
nm (1.96 eV) and resonance Raman spectrum excited at 325 nm (3.81 eV) are shown in
Fig. 5.6. The former features a series of medium to strong signals from low frequency
modes, and strong signals at about 1280cm ™' and 1400cm ™! are observed. Also, three
medium signals at 1550 cm™! ~ 1600 cm ™! are found. For the latter most signals in the
lower frequency region extending to 1500 cm™' are quenched with respect to the normal
Raman spectrum, but notably, the modes centered around 1600 cm ™! are significantly en-
hanced.

For the simulated (off-resonance) normal Raman spectrum, the strong signals are
mostly in the region 1200 ~ 1700 cm™!, in qualitative agreement with the experimental
Raman spectrum. For the simulated rR spectrum (excitation energy 3.81 eV), almost all
observable signals except one is quenched with respect to the normal Raman spectrum
as is the case for the experiment, but instead of the 1600 cm™' modes in the experimen-
tal rR spectrum, it is the mode around 1472cm~! that is significantly enhanced. This
mode should be the mode with vibrational frequency 1454 cm ™!, as we mentioned in Sec-
tion 5.3.2. The frequency difference between the most enhanced modes in simulation
and experiment might have something to do with the crystal environment of the Ada-py
molecules.
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Chapter 6

Vibrationally resolved

photoelectron spectra of lower

diamondoids [81]

6.1 Overview

Diamondoids form a family of H-terminated, saturated diamond-like molecules [82, 83, 84].
The simplest member is adamantane (Ci9Hig, see Fig. 6.1 below, left), followed by the
next homologues, diamantane (C14Hgg, Fig. 6.1, middle), triamantane, tetramantane, and
so forth, formally with two, three, four ... adamantane cage units. Many diamondoids can
be extracted from petroleum or are obtained from chemical synthesis [85]. Diamondoids
can also be chemically modified by “doping” or functionalization [86, 87, 88], e.g. N-
substitution of the four CH groups of adamantane leads to urotropine (C¢N4Hi2, Fig. 6.1,
right).

Diamondoids are mechanically hard, chemically stable but versatile, and thermally
conductive species, similar to their parent material diamond [89]. They are wide band gap
semiconductors with negative electron affinity [90] as well as strong UV absorption and
emission bands [91, 92], and are also monochromatic photoelectron emitters [90]. Because
of these physico-chemical, optical and electronic properties on the one hand, and their
chemical flexibility on the other (which can be used to tune properties), diamondoids and
their derivatives are interesting not only for applications [83, 88, 89], but also as subjects
of basic research [91, 92, 93, 79]. In contrast, diamondoid cations are much less studied,
although small diamond-like molecules and their cations have been discussed as possible
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species in interstellar media. Therefore, diamondoid cations are of significance for astro-
physics [94], and possibly as reactive intermediates in general.

Molecular spectroscopies involving electronically excited states, i.e. absorption and
fluorescence, have been shown to be powerful tools to characterize neutral and, for a
few examples, also cationic diamondoids. Often (but not always) a rich vibrational fine-
structure can be observed, serving as vibrational fingerprints. For instance, Méller and
co-workers reported vibrationally resolved absorption and luminescence spectra of various
neutral diamondoids (including urotropine [91, 92, 93]) and partially interpreted them on
the basis of DFT in combination with normal mode analysis and stationary Franck-Condon
methodology [92]. A time-dependent approach employing correlation functions [3, 4] was
used in Refs. [79, 95] instead, for absorption, luminescence and resonance Raman spectra
of pristine and artificially functionalized diamondoids, respectively.

Experimentally, also for photoelectron spectra of diamondoids vibrational fine-structure
has been observed. A “classical” example is vibrational progressions in PES spectra of
adamantane found by Schmidt [96]. More recent examples covering a wider range of
natural and artificial diamondoids can be found in Ref. [97]. In recent theoretical work,
PES spectra of adamantane, diamantane and urotropine were determined by Gali et al.
[98]. They convincingly emphasized the role of electron-vibration coupling beyond the
Born-Oppenheimer approximation, to explain satellite peaks in the high-energy portions
of PES bands of these molecules. However, almost no account of the purely vibrational
(Born-Oppenheimer related) fine-structure was made in their work.

In this chapter we present theoretical simulations of vibrationally resolved PES spectra
of adamantane, diamantane and urotropine. Our focus is on the vibrational fine-structure
of the lowest-energy bands of the PES spectra. The analysis rests on the time-dependent
correlation function approach within the Born-Oppenheimer and harmonic approximations
(Section 2.4).

6.2 Methods

The time-dependent correlation function method to calculate vibrationally resolved ab-
sorption spectra (Eq. (2.92)) hinges on the calculation of an autocorrelation function,
which is the overlap between the initial state ¢§ and its time evolution under the influ-
ence of the field-free, final excited state nuclear Hamiltonian, Hy = H, (Eq. (2.91)). In
previous work on diamondoids [79, 99], this expression was used within the IMDHOFAD
model, given that the ground and excited state molecular structures and the correspond-
ing vibrational frequencies are computed using DFT and TD-DFT in the linear response
formalism, respectively, to obtain vibrationally resolved optical absorption spectra [79, 99].
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Now we employ an analogous approach for the calculation of vibrationally resolved
photoelectron spectra, focusing on the lowest-lying ionized states. In this case, the initial
state is the electronic ground state of the neutral molecule, the final state is the elec-
tronic ground state of the cation, and w; becomes the corresponding ionization energy
(Eq. (2.92)). This approach neglects the kinetic-energy continuum of the emitted electron
and transitions to higher PES bands (which could be included if desired) and is further
based on the harmonic and Born-Oppenheimer approximations.

Neutral and cationic ground states are determined by the B3LYP functional with
the TZVP basis set, using the quantum chemical package Gaussian09. Neutral adaman-
tane, diamantane, and urotropine were treated by ordinary (restricted) B3LYP, and the
open-shell (doublet) cations by the unrestricted B3LYP (UB3LYP) scheme. The adiabatic
energy separation AF,q is calculated by the A B3LYP method, as the difference between
the energies of geometry-optimized cationic and neutral states, respectively. The Gaus-
sian09 output of the B3LYP/TZVP calculations is imported to the home-built program
Zzzap to calculate correlation functions and spectra. The correlation functions are com-
puted on time grids with timesteps At = 0.02fs, for a total propagation time of about 4
ps. A damping factor I' = 300 cm™! is used to account for homogeneous broadening.

For diamondoids, several GoWj calculations for ionization potentials have been re-
ported in the literature [100, 101], however, with conflicting results as further discussed
below. Therefore, in this work, we demonstrate that the IPs of diamondoids as derived
from GoWy depend strongly on the size of the employed basis set as well as the DFT
starting point. For these calculations, the FHIaims code has been used [102].

6.3 Results and discussion

We consider the lowest-energy bands in the photoelectron spectra of adamantane, dia-
mantane and urotropine, obtained with the methods just mentioned and compared to
experimental data [96, 97, 98]. The ground state geometry of the three molecules, opti-
mized on the B3LYP/TZVP level of theory, are shown in Fig. 6.1. Selected bondlengths
and angles are denoted in the figure for later reference.

6.3.1 Adamantane

Geometries

Considering adamantane (henceforth also denoted as Ada) first, several geometric param-
eters (as defined in Fig. 6.1) are provided in Table 6.1. There we also give the analo-
gous information for the adamantane radical cation (henceforth Ada™), optimized on the
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UB3LYP/TZVP level of theory. For adamantane, all C-H bondlengths of the CH units
(r1, r3) are 1.094 A, and those of the CHy units (r2, 4, 75) are 1.095 A. All C-C bonds
(R1, Ry, R3) have the same bondlength, 1.540 A. Each C-C-C angle with a tertiary C
atom in the center (aw, ay) makes an angle of about 109.4°, while those C-C-C angles
with secondary C atoms in the middle (a3, as) have an angle of about 109.7°. These
results are consistent with the well-known tetrahedral symmetry (T4) of adamantane and
experimental bondlengths and angles [103, 104].

Figure 6.1: The ground state molecular structures of (left to right) adamantane, diaman-
tane, and urotropine, obtained on the B3LYP/TZVP level of theory without symmetry
constraints. r, R, and « refer to C-H bonds, C-C bonds, and bond angles, respectively.
C3 and Cy denote relevant symmetry axes (see the text for details).

Figure 6.2: The HOMO of (left to right) adamantane and diamantane, obtained on the
B3LYP/TZVP level of theory. Both orbitals are of bonding character in the region of the
“vertical” C-C bonds.

For Ada*, the symmetry equivalence of geometric parameters is partially removed
with respect to the neutral molecule. The geometry changes upon ionization make previ-
ously equivalent bondlengths, e.g. 1 and r3, and Ry and R3, unequal. Most changes are
small, with one notable exception: From the relative changes of geometric parameters k,
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Table 6.1: Selected bond distances  (C-H) and R (C-C) (in A) and angles o (in degrees) of
neutral and cationic adamantane. A denotes the difference of the respective coordinates,
and values in brackets the relative percentage change after ionization.

Bond parameters | Ada (Tq) Ada™ (Csy) A
71 1.094 1.125 +0.031  (+2.8 %)
72 1.095 1.090 -0.005  (-0.5 %)
rs 1.094 1.092 0.002 (0.2 %)
T4 1.095 1.092 -0.003  (-0.3 %)
rs 1.095 1100 | +0.005 (+0.5 %)
Ry 1.540 1.513 -0.027  (-1.8 %)
Ry 1.540 1.612 +0.072  (+4.7 %)
Rs3 1.540 1.522 -0.018  (-1.2 %)
a 109.6 105.7 39 (-3.6 %)
a 109.4 113.0 +3.6 (+3.3 %)
as 109.7 105.4 43 (-39 %)
Qy 109.4 107.2 22 (-2.0 %)
as 109.7 111.1 14 (+1.3 %)

defined as (k(Ada™) — k(Ada))/k(Ada), we see that in particular the three “vertical” C-C
bondlengths of the adamantane cage (those parallel to the indicated C3 axis), denoted
as Ry are substantially elongated, to 1.612 A, or by close to 5 %. These results are con-
sistent with the symmetry of the cation being reduced to Csy, caused by the removal of
an electron from the fully occupied triply degenerate HOMO of adamantane (t3 symme-
try). The HOMOs (Fig. 6.2) are bonding with respect to the mentioned three “vertical”
C-C bonds, which explains the bond elongation. Altogether, the symmetry reduction is
a manifestation of the Jahn-Teller effect, as recently directly verified by infrared spec-
troscopy in Ref. [104]. Despite the distortion, a pictorial representation of Ada™ is hardly
distinguishable from the geometry of the neutral molecule shown in Fig. 6.1. The same
is true for diamantane and urotropine cations. While apparently small, the geometry dis-
tortion plays a crucial role in the explanation of both the Born-Oppenheimer related and
of non-Born-Oppenheimer related vibronic fine-structure of the PES band to be presented
below.
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Table 6.2:

Tonization potentials and contributions to them, computed for different

molecules and with different methods. Also, experimental values for the adiabatic IP,

are given, and errors of the theoretical I

ZPE
Pa

quantities are in eV.

values with respect to experiment.

Property (method) Ada  Dia  Uro

IP, (exp.%) 9.24 880 8.26

E.q (B3LYP/TZVP) 040  0.51 0.34
AZPE (B3LYP/TZVP) -0.23  -0.18 -0.03
IP, (A B3LYP/TZVP) 9.47  9.08 8.13
IPZPE (A B3LYP/TZVP)® 884 839 17.76
error (IP,) (A B3LYP/TZVP) | -0.40 -0.41 -0.50
P, (GoW@B3LYP)* 10.13  9.56  8.49
IPZPE (GoWoeB3LYP)? 950 887 8.12
error (IP,) (GoWo@B3LYP) | +0.26 +0.07 -0.14
P, (GoW,@PBE)® 9.86 928 8.17
IPZPE (GoWoePBE)/ 923 899 7.80
error (IP,) (GoWy@PBE) -0.01  +0.19 -0.46

All

® From Ref. [97]. ® From Eq. (2.102). © 2-point CBS-extrapolated value, at B3LYP/TZVP geometry

(see text). ¢ From Eq. (2.102), with IP, taken from extrapolated GoWo@B3LYP and E. and AZPE

from B3LYP/TZVP. ¢ 3-point CBS-extrapolated value, at B3LYP/TZVP geometry (see text). / From

Eq. (2.102), with IP, taken from extrapolated GoWy@PBE and E. and AZPE from B3LYP/TZVP.

Ionization potentials

For the discussion of ionization potentials, it may be helpful to refer to Egs. (2.100)-(2.102).

As shown in Table 6.2, second column, the ZPE-corrected, adiabatic ionization po-
tential IPZPF of adamantane is 8.84eV on the A B3LYP/TZVP level of theory. In the
table, also the vertical ionization potential IP, (without ZPE corrections), as well as the
relaxation energies and ZPE corrections in Eq. (2.102) are listed. The theoretical value
for IPZPE is in accord with previous A B3LYP calculations (with different basis sets)
[94, 105], and somewhat different from results obtained with a different functional (MO06-
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2X/cc-pVDZ), 9.32eV, however without ZPE corrections [97]. According to experiment,
the (ZPE-corrected) adiabatic ionization potential IPZFF of adamantane is 9.24 eV [97]. In
the literature, also vertical ionization potentials IP, for adamantane have been reported,
most of them clustered around 9.75eV [106]. Using A B3LYP/TZVP, we find a value
1P, = 9.46 eV without zero-point corrections. In summary, when we accept the experi-
mental value for the adiabatic IP2PE = 9.24eV, the respective A B3LYP/TZVP result
derived from Eq. (2.102) is redshifted by ~ 0.4 eV (Table 6.2).

The significant underestimation of the vertical IP derived by A B3LYP is in line with
previous results for the calculation of IPs using global hybrid functionals [35]. In an at-
tempt to go beyond the single-particle picture, Yin et al. [100] recently used GoWj at
a PBE reference together with a double-zeta basis with polarization and an extra set of
diffuse functions, finding an ionization potential of 9.17 eV for adamantane. Since no
relaxation effects and ZPE corrections were reported in that paper, this should be the
vertical ionization potential IP,. Compared to the experimental reference of ~ 9.75 eV,
this value is too low by more than half an eV. On the other hand, Demjan et al. reported
for the adiabatic IP of adamantane already a rather accurate value of IP, = 9.11 eV, when
using GoW, for a LDA Kohn-Sham reference and by including relaxation and ZPE effects
as in Eq. (2.102) [101].

In order to shed more light on these somewhat conflicting GW results, we have cal-
culated the vertical IPs of adamantane, diamantane, and urotropine using two different
DFT starting points, i.e. the semilocal functional PBE [39] and the global hybrid func-
tional B3LYP. In addition, we tested the convergence of the GoWj derived IP with the
size of the basis set. First of all, it turns out that GoWj calculations depend strongly on
the basis set, in contrast to ordinary KS-DFT (SCF) calculations. This is demonstrated
in Fig. 6.3, where we show the HOMO energy as well as the vertical IP of adamantane,
as a function of basis set for GoWy@PBE. The HOMO energy results from the respective
KS calculation, whereas for the IP, values the GyW} correction was applied. In all cases,
the geometry of the neutral molecule obtained from B3LYP/TZVP (Fig. 6.1, left) was
adopted for simplicity.

From the figure, it can be seen that the GW-derived ionization potentials converge
comparatively slowly with basis set size, while the HOMO energies are much less dependent
on the basis set, at least for bases better than DZVP. The DZVP basis (a double-zeta
valence split basis with polarization functions [107]) is the smallest basis set used here
and gives IP,(DZVP) = 9.05eV, while with the best basis, cc-pV6Z+diff (a correlation-
consistent hextuple-valence split basis [48] with an extra set of diffuse functions [100]),
we get 1Py (cc-pV6Z+diff) = 9.80 eV. This large basis set effect could explain the too low
ionization potential in Ref. [100], where a basis comparable to DZVP+diff was used for
GoWy@PBE analogous to here. Note that according to Fig. 6.3, the extra diffuse functions
have only a small effect on IPs (in contrast to excitation energies and electron affinities),
and the largest angular momentum in the basis set is more decisive. Using cc-pVTZ+diff,
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Figure 6.3: PBE HOMO energies (blue, left scale), as well as vertical ionization potentials
(red, right scale) of adamantane obtained on the GoWp@PBE level, as a function of basis
set. In all cases, the BSLYP/TZVP optimized geometry of the neutral species was used.
DZVP=Double Zeta Valence with Polarization functions [107], TZVP=Triple Zeta Valence
with Polarization [18], cc-pVXZ = correlation consistent polarized Valence X Zeta (X= T
(Triple) [45], Q (Quadruple) [46], 5 (Quintuple) [47], 6 (Hextuple) [48]). “diff” denotes a
set of diffuse Gaussian functions added at the center of the molecule as in Ref. [100].

cc-pVQZA+diff, and cc-pVSZ+diff GoWp@PBE values, we did a basis set extrapolation of
the vertical IP values according to Ref. [108]

IP,(X)=1P,(CBS)+ A4 X3 | (6.1)

where X is the cardinal number in the respective cc-pVXZ basis set (X=3, 4, 5 for T, Q, 5),
and CBS denotes the complete basis set limit. A fit of the data gives A = 7.49+0.25 eV and
an extrapolated, complete basis set value of IP,(CBS)= 9.86 eV for GoW,@PBE. Adding to
this value relaxation energies and ZPE corrections approximated from our B3LYP/TZVP
normal mode analyses (Table 6.2), on this level of theory we obtain IPZP¥ (G, W,@PBE) =
9.23 eV, in quantitative agreement with experiment (Table 6.2)

It is a well known fact that, due to its non-SCF implementation, the GoWy ap-
proach leads to a significant dependence of the derived IPs from the DFT starting point
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[109, 110, 111, 112, 113]. The dependence of GoW} calculations on the DFT starting point
is a well-known problem, and a number of solutions to this problem have been proposed,
among them the quasiparticle self-consistent GW method [114]. For the IPs of molecular
systems, one typically finds a significant underestimation by several tenths of an eV when
using a semilocal starting point such as PBE for GoW, [109, 113, 35, 38|. Therefore, the
very nice agreement of the calculated adiabatic IP (9.23 eV) with the experiment (9.24
eV) is unexpected and may well be caused by a cancellation of errors in both experiment
and theory. Generally speaking, hybrid functionals such as BSLYP have been found to
yield better starting points for GoWj calculations [109, 113, 35, 38|, which is why we also
employed the GoWy@B3LYP approach for comparison. Due to the additional computation
costs when using a hybrid functional starting point, we in this case only used a 2-point basis
set extrapolation with cc-pVTZ+diff and cc-pVQZ+diff basis sets, when extrapolating the
GoWy@B3LYP IP to the basis set limit. Doing this, we obtain from GoW3@B3LYP a verti-
cal IP of 10.13 eV at the CBS limit for adamantane. This is in very good agreement with
Quantum Monte Carlo calculations [98], which found a vertical IP of 10.15 eV. Again, the
adiabatic IP can be calculated from Eq. (2.102) by taking into account the B3LYP/TZPV
relaxation energy and ZPE corrections, leading to IPZF¥(GW@B3LYP) = 9.50eV.

In summary, the GoWy IPs are in slightly better agreement with experiment than those
derived from A Kohn-Sham calculations. The A B3LYP values are red-, the GqWWp@B3LYP
slightly blueshifted, while GoWy@PBE probably accidentally, is right on top of experiment.
We could use the many-body corrected IP values for the calculation of PES spectra,
however, for simplicity we empirically shift the theoretical spectra to energies fitting the
measured spectrum below as needed. In this context, one should also note that in Ref. [98]
it has been found that the renormalization of the quasi-particle energy levels by electron-
vibration interaction, which is neglected here, can give a lower-energy correction of the
IPs in the order of about two tenths of an eV for small diamondoids.

Lowest-energy band of the photoelectron spectrum

The simulated first PES band of Ada is shown in Fig. 6.4, left panel. This band corre-
sponds to ionization from the electronic ground state of the neutral molecule (A1, Tyq)
to the electronic ground state of the corresponding cation (?4;, Cs,). To allow for a
better visual comparison, the experimental and theoretical spectra are aligned along the
first peak, which is found at 9.27 eV in the experiment. We identify this peak as the 0-0
transition between the neutral and cationic states. The center of the lowest experimental
PES band has been given as 9.75 eV in Ref. [96], being close to the vertical IP,. Inten-
sities in the figure have been arbitrarily adjusted in both data sets to coincide with each
other in their maximal values. The theoretical spectrum has a FWHM of about 0.56 eV,
and shows significant vibronic effects. A vibrational progression is found with a vibronic
peak separation of about 0.159eV. This separation stems from equidistant recurrences
with a 26.1 fs recurrence time of the correlation function: On the scale of Fig. 6.4, middle
panel, three such recurrences are seen. Assuming a single vibration to dominate, this
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behaviour corresponds to an energy of 1280 cm™!. The vibrational progression is a mani-
festation of vibrational energy levels in the final state [79]. Three normal modes are found
in close vicinity of 1280cm™!, with wavenumbers of 1275cm™' and 1284cm™! (doubly
degenerate), respectively. These modes are combinations of C-C stretching, C-H bending,
CHs wagging and/or twisting in the cation, which seem to dominate the vibrational fine-
structure of the simulated photoemission band. It should be noted that the vibrational
mode with wavenumber 1275cm~! (Fig. 6.4, right) features besides vibrations involving
large hydrogen movements, intense C-C stretching, all oriented along the principal axis
C3 (Fig. 6.1) of the cation. The corresponding C-C distance was identified above as the
most affected geometric parameter of adamantane, when ionizing the neutral molecule
(R2, Table 6.1). The role of a very similar (albeit shifted ground state) mode with about
the same frequency, had already been discussed in Ref. [98] in the contexts of the dynamic
Jahn-Teller nature of Adat and the main (non-satellite) signal in the PES of Ada.
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Figure 6.4: Left: The lowest-energy band of the simulated and experimental PES for
adamantane. The experimental information is adapted from Ref. [96]. Middle: The ab-
solute value and real part of the corresponding correlation function for the simulated
band, showing recurrences. One of the recurrences is enlarged, exhibiting an underlying
high-frequency oscillation which reflects the energy difference between cation and neu-
tral molecule. Right: The vibrational mode of the adamantane cation with wavenumber
1275 cm ™! featuring by arrows, intense “vertical” C-C stretching — besides H motion which
dominates due to its low atomic mass. This mode is suggested to make a major contribu-
tion to the vibrational progression in the first PES band of adamantane.

In general, the theoretical spectrum reproduces most of the fine-structure in the first
photoemission band. However, the experimental spectrum appears to be broader: The
intensity of the experimental spectrum at energies above 9.8eV decreases much slower
than in the simulation, and most notably an experimentally observed feature around
9.9eV is not reproduced within our current model. As said, this has been claimed to be
a consequence of the neglect of the coupling between the electrons and nuclei due to the
Born-Oppenheimer approximation [98]. Indeed, a treatment of the PES of adamantane
beyond the Born-Oppenheimer approximation which accounts for the electron-nuclear
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coupling, produces satellite-type structures in the high-energy region of the band which
help to better describe the spectrum around and above energies of 10 eV [98]. To be
more specific, it was shown that the satellite peak at about 10 eV mainly originates from
the coupling of the HOMO of Ada to a low-frequency (78.2 meV, 630 cm~!) vibration.
In passing we note that temperature effects on PES spectra seem to be minor: A test
calculation, using a time-independent appraoch based on the IMDHO model at 300 K
shows only small differences to a spectrum computed at 0 K (not shown).

6.3.2 Diamantane

The ground state geometry of diamantane (Dia) is shown in Fig. 6.1, middle, and relevant
geometric parameters are listed both for Dia and the cation, Dia™, in Table 6.3. For
diamantane, the C-H bondlengths (1, 72, r3) fall in the range of 1.094 ~ 1.096 A. The
C-C bonds (R, R2, R3) are 1.538 A, 1.536 A and 1.547 A long. Relevant bond angles (a1,
a9, ag, ay, ag) are 107.7°, 111.2°, 107.6°, 108.9° and 110.1°, respectively. All of this is
consistent with the D3gq point group symmetry of the molecule [79].

Variations of geometric parameters of the diamantane radical cation with respect to
the neutral molecule (Table 6.3) show a similar trend to what was found for adamantane
(Table 6.1). Namely, the corresponding parameters (with the same labels) change in the
same direction, e.g. the “vertical” C-H (r1) and C-C (R2) bonds are elongated for both
cations, while C-H (72, r3) and C-C (R;, R3) bonds are shortened. Similar to adamantane,
the most significant geometric parameter change of Dia™ in comparison with neutral dia-
mantane occurs for the six “vertical” C-C (Rz) bonds, which are elongated by 0.050 A (or
3.2 %). While the elongation of the vertical C-C bonds of the adamantane radical cation
reduces the high symmetry Ty of adamantane to Csy, in the diamantane radical cation the
point group symmetry Dsq is preserved [79]. Contrary to adamantane, the diamantane
radical cation is not subject to a Jahn-Teller effect because the HOMO of neutral Dia is
nondegenerate [105], a14. Instead, the similar geometry distortion to that of adamantane
is due to a so-called pseudo Jahn-Teller effect [98]. The dominant C-C bond elongations
are a consequence of the C-C bonding character of that orbital (Fig. 6.2).

The vertical IP for diamantane using the A B3LYP method is 9.08eV as shown in
Table 6.2, third column. The ZPE-corrected, adiabatic IP is IPgPE = 8.39eV on the same
level of theory. On this level, the adiabatic IPZF® is 0.41 eV lower than the experimental
value of 8.80 eV [97] — similar to what was found for adamantane. Also for diamantane
we carried out GoWy@B3LYP calculations at the B3LYP/TZVP geometry of the neutral
molecule, and performed a 2-point CBS-extrapolation based on cc-pVTZ+diff and cc-
pVQZ+diff IP, values. Using Eq. (2.102) and BSLYP/TZVP relaxation energies and ZPE
correction, we end up with IPEPE = 8.87¢€V, in excellent agreement with experiment: The
theoretical value is blueshifted by only 0.07 eV. The corresponding GoWp@PBE, 3-point
extrapolated ionization potential IPZPF = 8.99eV is now in slightly less good agreement
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Table 6.3: Selected bond distances 7 (C-H) and R (C-C) (in A) and angles « (in degrees)
of neutral and cationic diamantane. A denotes the difference of the respective coordinates,
and values in brackets the relative percentage change after ionization.

Bond parameters | Dia (D3q) Dia™ (Dsq) A
71 1.094 1.108 +0.014  (+1.3 %)
72 1.095 1.091 -0.004  (-0.4 %)
rs 1.096 1.093 20.003  (-0.3 %)
Ry 1.538 1.520 -0.018  (+1.3 %)
Rs 1.536 1.586 +0.050 (+3.2 %)
Ry 1.547 1.526 0021 (-1.4 %)
o 109.7 107.7 2.0 (-1.9 %)
s 109.2 111.2 2.0 (+1.8 %)
as 109.8 107.6 22 (2.0 %)
o4 110.5 108.9 1.6 (1.5 %)
as 108.4 110.1 +1.7 (+1.5 %)

with experiment: the error is 4+0.19 eV in this case. On every level, theory also confirms
that the larger diamondoid(s) show(s) the well-known trend of decreasing IP with increas-
ing size of the molecule [97].

The simulated first PES band of diamantane is shown in Fig. 6.5, left panel. Similar as
for adamantane, the experimental and theoretical spectra are aligned along the first peak
at 8.84 eV, which again can be identified as the 0-0 transition. Also here, a clear vibra-
tional progression is observed: The vibronic peak separation of about 0.164 eV stems from
a 25.1fs recurrence time of the correlation function (Fig. 6.5, middle), and corresponds
to a ~ 1330cm~! wavenumber. Six normal modes are found around that wavenumber
(from 1315cm ™! to 1345cm™!) and can be described as a combination of C-C stretching,
C-H bending and CHy wagging and/or twisting. They are most probably the dominating
modes for the first photoemission band. In particular, a vibrational mode of wavenumber
1315ecm~! (Fig. 6.5, right panel) features intense C-C stretching along the principal axis
C3 (Fig. 6.1) of the diamantane cation. This conforms to the most significant geometric
parameter change of Dia' with respect to neutral diamantane that occurs for the C-C
bonds Ry (Table 6.3), which are also along the principal axis Cs. All of this is quite analo-
gous to adamantane. An analog of the 1315 cm ™! mode has also been found and analyzed
in Ref. [98] in terms of the pseudo Jahn-Teller effect and for its role in the PES of diaman-
tane. We note that compared to adamantane, however, the recurrences of diamantane are
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more pronounced: four of them are seen on the scale of Fig. 6.5, rather than three. As a
consequence, the vibrational fine-structure of diamantane shows a stronger contrast and
more vibrational peaks become visible. We attribute this behaviour to the fact that the
overall geometric changes in diamantane are less pronounced than in admantane, giving
rise to a correlation function with more recurrences.
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Figure 6.5: Left: The lowest-energy band of the simulated and experimental PES for
diamantane. The experimental information is adapted from Ref. [97]. Middle: The abso-
lute value and real part of the corresponding correlation function for the simulated band,
showing recurrences. Right: The vibrational mode of diamantane cation with wavenumber
1315cm™!, which features intense vertical C-C stretching (besides the dominating H mo-
tions). This mode is suggested to make a major contribution to the vibrational progression
in the first PES band of diamantane.

The overall agreement between theoretical and experimental PES spectra of diaman-
tane is reasonably good. It should be noted that, as for adamantane, features at the
high-energy wing of diamantane’s PES are not reproduced either. Again, attempts have
been made to remedy this discrepancy by going beyond the Born-Oppenheimer picture
[98].

6.3.3 Urotropine

Finally, we analyze the lowest-energy PES peak of urotropine. The ground state geometry
of neutral urotropine (Uro) is shown in Fig. 6.1, right, and relevant geometric parameters
for both Uro and Uro™ are given in Table 6.4. For urotropine, all C-H bonds (72, 74
and r5) are about 1.092 A, and all C-N bonds (R;, R3, R4 and Rj) are about 1.470 A on
the B3LYP/TZVP level. All N-C-N angles (a3, a5, a7) are about 112.4°, and all C-N-C
angles (ag, oy, ag) are about 108.0°. Substitution of tertiary C-H units of adamantane
by N does not break the T4 symmetry.

Upon ionization, C-H bonds (r2, r4, 5, 7¢) are shortened by about 0.003 ~ 0.005 A.
The C-N bonds R; and R4 are elongated, while the C-N bonds R3 and Rj5 are shortened,
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Table 6.4: Selected bond distances r (C-H) and R (N-C) (in A) and angles a (in degrees)
of neutral and cationic urotropine. A denotes the difference of the respective coordinates,
and values in brackets the relative percentage change after ionization.

Bond parameters | Uro (Tq) Urot (Cayy) A
ro 1.092 1.089 -0.003  (-0.3 %)
T4 1.092 1.089 -0.003  (-0.3 %)
rs 1.092 1.089 0.003 (0.3 %)
rg 1.092 1.087 -0.005 (+0.5 %)
R 1.474 1.479 +0.005 (4+0.3 %)
Ry 1.474 1.470 0.004  (-0.3 %)
Ry 1.474 1.481 +0.007  (4+0.5 %)
Rs 1.475 1.469 -0.006 (0.4 %)
as 108.0 105.9 21 (-1.9 %)
as 112.4 112.2 0.2 (-0.2 %)
Qy 108.0 109.2 +1.2  (+1.1 %)
as 112.4 100.5 119 (-10.6 %)
g 108.0 110.5 +2.5  (+2.3 %)
ar 112.4 109.0 34 (-3.0 %)

the change (absolute value) in bond length being in the range of 0.004 ~ 0.007 A. Al-
together, compared to adamantane and diamantane, the bondlength changes are small,
never exceeding 0.5 %. The most significant changes are in bond angles. In particular,
one of the N-C-N angles («5) decreases by about 11.9° (or close to 11 %). As in the case
of the adamantane radical cation, the Jahn-Teller distortion is also in effect, resulting in
a Coy, geometry due to the removal of an electron from the HOMO of ¢2 symmetry.

The vertical IP for urotropine using A B3LYP is 8.13eV according to Table 6.2, last
column, and the corresponding ZPE-corrected, adiabatic IP is IPEPE = 7.76eV. On this
level, the adiabatic IPZPE is now 0.50 eV lower than the experimental value of 8.26 eV
[97]. For urotropine, the 2-point basis set extrapolated GoW,@B3LYP calculations predict
a vertical IP of 8.49 eV. With the help of Eq. (2.102), this translates to an adiabatic IP of
8.12 eV, which is in very good agreement with experiment, showing only a small redshift
of 0.14 eV. With a PBE reference (GoWy@PBE), the corresponding 3-point extrapolation
gives IPZPF = 7.80 eV, with an error of -0.46 eV compared to experiment. All of this shows
that generally, a good reference (e.g. BSLYP) is needed in combination with a good basis
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set, to arrive at accurate ionization potentials for diamondoids. In passing we note that a
GoWy@LDA approach with a smaller basis set used in Ref. [101] resulted in an adiabatic
IP of 8.18 eV — a (probably accidentally) very good value compared to experiment.
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Figure 6.6: Left: The lowest-energy bands of the simulated and experimental PES for
urotropine. The experimental information is adapted from Ref. [96]. Right: The absolute
value and real part of the corresponding correlation function for the simulated band,
showing only very weak recurrences.

The simulated and experimental first PES band of urotropine are shown in Fig. 6.6
(left). Again, the experimental and theoretical spectra have been aligned. Unlike for
adamantane and diamantane, no vibrational fine-structure is present in the simulated first
photoemission band, and also not in experiment. The lack of vibrational fine-structure
is a consequence of the rapid decay of the recurrence pattern and the relatively long
recurrence time, 32.0fs. In fact, only two very weak recurrences are seen at Fig. 6.6,
right, at t ~ 32 and 64 fs, respectively. Similar phenomena have also been observed in the
experimental and theoretical UV absorption spectra of neutral urotropine, which are also
unstructured [93, 95]. Note that upon ionization there is no significant elongation of the
“vertical” C-N bonds in contrast to the elongated “vertical” C-C bonds for adamantane
and diamantane. Instead, the N-C-N angle a5 is decreased by about 12° as mentioned
above. A recurrence time of 32 fs corresponds to a vibrational energy of about 1040
cm™', and indeed there are several “soft” vibrational motions around this energy that
involve the N-C-N (as) scissoring. Such “soft” vibrations are also found in Ref. [98§],
one of which is a fully symmetric A; 0.129 eV (1140 cm~!) mode, in agreement with
our findings here. However, this N-C-N (as) scissoring motion is strongly mixed with
other components (not shown). Further, the vibrational density of states around 1000
cm ™! and below is found to be comparatively large. This suggest that several modes with
some N-C-N scissoring components could be excited after ionization, and these modes
may (beyond the normal mode picture) efficiently couple to other, energetically nearby
modes. Tentatively, we therefore attribute the lack of a clear vibrational progression
in the PES of urotropine, to the fact that not a single, isolated mode is excited after
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ionization. As a consequence, the correlation function decays rapidly and no vibrational
fine-structure is seen. Generally, the substitution of the four CH units by N atoms has
a considerable impact on the electronic structure of the urotropine cation, which in turn
alters its vibrational motion and ultimately also in the PES of urotropine.
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Chapter 7

Vibrationally resolved absorption,
emission, resonance Raman and
photoelectron spectra of radicals
and cations derived from

adamantane

7.1 Overview

As mentioned in Section 6.1, diamondoids have been intriguing subjects of study for
decades due to their favorable properties for the design of optical and electronic devices.
Various species of the diamondoid family, pristine and modified, naturally occurring and
artificial, have been prepared and measured optically. Theoretical investigations from the
perspective of molecular spectroscopy involving electronic transitions also constitute an
area of continued research. Publications on derivatives such as radicals and cations of
diamondoids, however, are relatively less available, probably because of the more difficult
conditions to prepare them. On the other hand, these diamond-like materials are expected
to abound in the interstellar medium and contribute to interstellar absorption bands. In
regions of space where radiation is strong, small diamondoid cations may be efficiently
produced from their neutral parent molecules [94]. Thus study of these cationic species is
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helpful for the interpretation of absorption under astrophysical conditions.

In this chapter, we focus on the investigation of the vibronic absorption, emission,
resonance Raman and photoelectron spectra involving a few radicals and cations derived
from adamantane (Ada): l-adamantyl and 2-adamantyl radicals (1-Ada’ and 2-Ada’)
and cations (1-Ada™ and 2-Ada™). Following Ref. [94], we show in Fig. 7.1 a diagram
illustrating the ((U)B3LYP/TZVP) energetics for the formation of radical and cationic
species to be considered in this work. The prefix “1” or “2” is in accord with whether
the hydrogen atom involved is removed from a CH or CHy group. In the following, the
radical/formal charge site will be denoted as C*/C™, carbon atoms next to or still further
away from C°/CT will be referred to as Cq, Cg, C,, ..., and so on.

1—Ada’ 2 — Ada’

+

@ IP, = 6.97¢eV

— 6.74eV
IPZPE 6.17 eV IPZPE — 6,640V
1—Ada’ 2 — Ada®
: 1P, = 947¢V ,
@ | IPZPE — 8840V @
—H —H
AE, = 18176V rda AE,q = 18.19eV

AFEy_o = 17.80eV , i AEy_o = 17.79eV

Figure 7.1: A schematic diagram of adamantane (Ada), 1-adamantyl and 2-adamantyl
radicals (1-Ada’ and 2-Ada’) and cations (1-Ada™ and 2-Ada™). The numbers “1” and
“2” in red attached to adamantane label the two types of carbon atoms, from which hy-
drogen atoms can be removed, leading to the corresponding 1-adamantyl and 2-adamantyl
structures, respectively. AF,q4 is the adiabatic energy difference between species differing
in one hydrogen atom, AFy_qg the corresponding 0-0 energy difference; IP, is the verti-
cal ionization potential and IP%PE the ZPE-corrected adiabatic ionization potential, for
ionization processes. The energies are obtained on the B3LYP/TZVP (for closed-shell
species) or UB3LYP/TZVP (for open-shell species) level of theory.
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7.2 Methods

Geometry optimization and normal mode analysis were performed for the ground state
and relevant excited states on the (U)B3LYP/TZVP DFT and TD-DFT levels following
the standard procedure as described in previous chapters. The data for the ground and
excited states of the cations were used as input for the program Zzzap to generate the
corresponding spectra. For PES, the data for the ground state of the neutral radicals
and the ground or excited states of the corresponding cations were used instead. All
calculations were done within the IMDHOFAD model. For vertical absorption spectra,
the Lorentzian broadening factor 7 = 3000 cm™' was chosen. For vibronic absorption
and emission spectra I' = 200 cm ™!, for resonance Raman spectra I = 10cm™!, for REP
I' =200cm™!, and for PES T' = 200 cm ™.

7.3 Results and discussion

7.3.1 Geometries

The optimized ground state structures of 1-Ada’” and 2-Ada’ radicals are shown in Fig. 7.2,
with the optimized structural parameters given in Tables 7.1 and 7.2, respectively. 1-Ada’
and 2-Ada’ possess Csy and Cg symmetry, respectively. For the former, the Cs principal
axis is in the “vertical” direction; and for the latter, the o symmetry plane bisects the
Co-C'-C,, angle, and is also in the “vertical” direction.

ce/C+

Figure 7.2: The ground state molecular structures of (left) l-adamantyl and (right) 2-
adamantyl radicals/cations, obtained on the (U)B3LYP/TZVP level of theory without
symmetry constraints. r and 8 refer to bond lengths and bond angles, respectively. The
radical /formal charge site is denoted C*/C™, carbon atoms one atom away from (i.e. next
to) C*/C™ are referred to as Cy,, those two atoms away Cg, ..., and so on, in the text.
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Compared with adamantane, the most noticeable structural changes of 1-Ada’ occur
at/near the radical site. The C'-C, bonds 71 are shortened by 0.038 A, the “vertical”
Ca-Cp bonds ry are elongated by 0.021 A, the C,-C"-C, angles 6; are increased by 3.6°,
and the C'-C,-Cg angles 0> are decreased by 3.6°. The other bond lengths change by
about 0.001 A, and the other bond angles by less than 0.5°.

Table 7.1: Selected bond distances 7 (in A) and angles 6 (in degrees) of neutral 1-Ada" and
cationic 1-Ada™ for the specified electronic states, obtained on the (TD-)B3LYP/TZVP

level of theory.

bond 1-Ada’ 1-Ada™
parameter ground state So St Ss
r1 1.502 1.453 1.491 1.506
79 1.561 1.628 1.558 1.540
T3 1.541 1.531 1.552 1.536
T4 1.094 1.088 1.097 1.092
rs 1.095 1.090 1.090 1.091
01 113.0 117.8 114.2 109.4
0y 106.1 98.9 104.9 106.8
03 108.9 108.1 110.2 109.7
0,4 109.6 111.5 107.0 109.1
05 110.1 109.8 108.4 109.4

For 2-Ada’, the situation is quite similar, i.e., the most significant geometric changes
in comparison with adamantane occur at the radical site: the C'-C, bonds r; are short-
ened by 0.043 A, and the C,-C"-C,, angle 6; is increased by 4.5°. The changes of the other
parameters are relatively small.

The optimized ground and relevant excited states structural parameters of 1-Ada™
and 2-Ada™ cations are given in Tables 7.1 and 7.2, respectively. The labeling for the
bond parameters is the same as that for the corresponding radicals (Fig. 7.2). The ground
state of 1-Ada™ is of C3, symmetry, the first (S;) and third (S3) excited singlet states
possess C; and Cg symmetry, respectively. The ground, first (S;) and third (S3) excited
singlet states of 2-Ada™ are all of Cg symmetry.

Consider the ground state Sy of 1-Ada™ and 2-Ada™. The most significant geomet-
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ric changes of 1-Ada™ with respect to 1-Ada’ are found at/near the formal charge site,
hereafter referred to as CT, which is the radical site before ionization. The C*-C, bonds
r1 are shortened by 0.049 A, and the C,-Cg bonds ry are elongated by 0.067 A; the Cg,-
C*t-C, angle 6; is increased by 4.8°, and the C*-C,-Cg angles 0y are decreased by 7.2°.
For 2-Ada™, the general trend is quite similar, i.e. C* is the location at/near which the
geometry changes most. The C*-C, bonds r; are shortened by 0.062 A, and the Ca-Cp
bonds 7o are elongated by 0.087 A; the C,-C*-C, angle 6; is increased by 5.8°, and the
C*—CQ-C/B angles 65 are decreased by 10.5°.

Table 7.2: Selected bond distances r (in A) and angles @ (in degrees) of neutral 2-Ada’ and
cationic 2-Ada™ for the specified electronic states, obtained on the (TD-)(U)B3LYP/TZVP

level of theory.

bond 2-Ada’ 2-Ada™
parameter ground state So St Ss
71 1.497 1.435 1.508 1.508
79 1.556 1.643 1.525 1.534
73 1.541 1.523 1.519 1.546
T4 1.540 1.539 1.771 1.539
5 1.540 1.539 1.499 1.772
76 1.540 1.536 1.546 1.518
7 1.549 1.542 1.534 1.525
r8 1.083 1.089 1.080 1.080
01 114.2 120.0 113.9 113.9
0 108.3 97.8 106.7 110.6
03 109.0 114.8 110.6 106.7
0,4 109.4 108.1 112.3 108.8
05 109.4 111.1  102.6 111.3
O 109.6 109.8 107.0 107.0
07 109.4 109.8 111.2 115.1
O 109.6 109.9 108.8 112.3

The above results are in reasonable agreement with previous theoretical data obtained
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by Yan et al. [115] with the same functional, B3LYP, but a different basis set, DZP++.

Now we consider the excited states of 1-Ada™ and 2-Ada™. The S; state of 1-Ada™,
in comparison to its ground state Sy, deforms substantially, as the symmetry is totally
lost. The C*-C, bonds, r; in Table 7.1 and the other two not shown in the table, are
elongated by at least 0.038 A, the C,-Ct-C, angles are decreased by at least 3.6°, and the
CT-C,-Cp angles are increased by at least 6°, resulting in a less flat bridgehead “pyrami-
dal” top (C3C™). Furthermore, one of the C-C, bonds in the bottom ring is elongated
by an unusual 0.314 A. The Ss state of 1-Ada™ changes slightly less in geometry than the
S state, but the “pyramidal” top (C3C™) is also less flat.

For 2-Ada™, the changes in the geometry of the excited states S; and S3 relative to
the ground state Sy are also large (Table 7.2). The C*-C, bond length r; is elongated
by 0.073 A and the C,-CT-C, angle 6; is decreased by 6.1° for both excited states. The
bond length 75 is decreased by about 0.11 A, and r4 (r5) increased by 0.23 A for S; (S3).
The bond angle s is increased by 8.9° (12.8°) for Sy (S3).

A comparison can also be made between the geometries of the S; state of the cation
and the ground state of the corresponding neutral radical. It is found that for 1-Ada’ the
bond r3 and bond angle 8, change the most upon ionization to Sy, by 0.011 A and —2.6°,
respectively, and similarly for 2-Ada’ the geometric parameters (with the largest values of
change) are the bond 74 (0.231 A) and the bond angle 65 (—6.6°).

7.3.2 Vertical absorption spectra

The vertical excitation energies of the first 20 excited states of 1-Ada™ and 2-Ada™ are
presented in Table 7.3, and the broadened vertical absorption spectra with a Lorentzian
width of 3000 cm™~! are shown in Fig. 7.3. It is easily observed that several (nearly) degen-
erate states occur in the case of 1-Ada™, in contrast to 2-Ada™. This is due to the higher
symmetry of 1-Ada™, giving rise to more degenerate excited states. Both cations feature a
weakly allowed transition at about 4 eV, followed by several relatively intense transitions
at higher energies. The absorption peaks of 2-Ada™ are overall red shifted with respect to
those of 1-Ada™ by about 1 eV.

The qualitative features of the spectra are in quite good agreement with simula-
tions performed in Ref. [94], where they also measured the spectrum of FUV-irradiated
adamantane in Ne matrix. Under experimental conditions, both cations were produced
and estimated to be about 1:1 in ratio. In the experiment, besides a strong peak at 223.5
nm (5.55 eV), three weak features extending from 250 to 350 nm (4.96 to 3.54 €V) were
also observed. The former was assigned to the Sy — Sy transition (transition from Sy to
the doubly degenerate Sg in our calculation) for 1-Ada™, and the latter were assumed to
be contributions from the So — S; transition for 1-Ada™ and transitions to the first four
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Table 7.3: Vertical excitation energies AFE, ¢ and oscillator strengths f of 1-Ada™ and
2-Ada™, for the first 20 transitions, on the TD-B3LYP/TZVP level of theory. Energies

are in eV.
1-Ada™ 2-Ada™
State
AEver f AFEyert S
1 4.3480 0.0012 3.7390 0.0082
2 4.3488 0.0012 3.9190 0.0001
3 5.1987 0.0463 3.9636 0.0145
4 5.1991 0.0463 4.6950 0.0304
5 5.5990  0.0000 4.9375 0.0125
6 5.9392  0.0058 5.0853 0.0045
7 5.9399 0.0058 5.3522  0.0006
8 6.2410 0.0921 6.2371 0.0598
9 7.2560 0.0580 6.6141 0.0186
10 7.2565 0.0579 6.7974 0.0013
11 7.4932  0.0000 6.9007 0.0421
12 7.5377 0.0009 6.9615 0.0033
13 7.5381 0.0009 7.4783 0.0224
14 8.4878 0.0349 8.0229 0.0006
15 8.6928 0.0023 8.2215 0.0585
16 8.6938 0.0023 8.2728 0.0007
17 8.9254 0.0235 8.3369 0.0080
18  9.0034 0.0025 8.3871 0.0156
19 9.0035 0.0025 8.5352 0.0046
20 9.2684 0.0000 8.5809 0.0115
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excited states for 2-Ada™ (transitions to the doubly degenerate first two excited states
for 1-Ada™ and transitions to the first three excited states for 2-Ada™ in our case). The
quantitative differences in energies and oscillator strengths between our results and those
in Ref. [94] can be attributed to the theoretical models used. The evaluation of the ratio of
both cations produced can possibly also be facilitated by their resonance Raman spectra,
which will be discussed in Section 7.3.4.

0.4 - -
50% 1-Ada” + 50% 2-Ada
L — 1-Ada’
— 2-Ada’
0.3 -

Intensity (arb. u.)
o
[\
T

0.1

0 . “I ‘\'| .I‘ " I| |'

2 4 6 8 10
Energy (eV)

Figure 7.3: The vertical absorption spectra broadened with a Lorentzian width of
3000 cm~! for 1-Ada™t and 2-Ada™, and corresponding oscillator strength sticks.

7.3.3 Vibronic absorption and emission spectra

The vibronic spectra for the first excited state S; of 1-Ada™ and 2-Ada™ are shown in
Fig. 7.4, together with their absorption correlation functions. A common feature is that
these spectra are broad peaks without clear vibrational structure. This phenomenon is
often observed if the structure of the excited state involved is largely different from the
ground state geometry. This is indeed the case, as the difference between the geometry
of the S; and the ground states for each cation is nontrivial. For instance, the bond 7o
decreases by 0.07 A(4.3%) and the bond angle 5 increases by 6° (6.1%), with respect to
the ground state of 1-Ada™. For 2-Ada™, the observation is similar.

From the perspective of the absorption correlation function, we can get more insight
into the broad and smooth feature of the vibronic spectra of the cations. The correlation
functions decay very fast initially, with no obvious recurrences. The fast initial decay
determines the overall width of the spectrum according to the relation AE ~ 1/7 (up to
a constant), i.e. the faster it takes for the absolute value of the correlation function to
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Figure 7.4: Upper left: vibronic absorption and emission spectra of 1-Ada™ for S; state.
Upper right: absorption correlation function for upper left. Lower left: vibronic absorption
and emission spectra of 2-Ada™ for Sy state. Lower right: absorption correlation function
for lower left.

decrease to 1/e for the first time, the larger the width of the envelop of the spectrum. The
period of fast oscillations in the correlation functions reflects the energy difference between
the ground and excited states, which determines the main peak position. For example, the
period of fast oscillations for S; of 1-Ada™ is about 0.90 fs, which corresponds to about
4.6 eV where the main peak lies. The vertical transition energy for the first excited state
S1 (Table 7.3) is 0.25 eV lower than the maximum peak position. In principle, the period
of recurrences determines the spacing of the vibrational fine structures in the spectrum.
Since there are no obvious fine structures in the spectra of both the cations, we do not
analyse them further. The emission spectra can be analysed similarly, and they are nearly
mirror images of the absorption spectra with respect to the point of overlap.

When the absorption correlation functions are locally enlarged in the region near the
z-axis, recurrences which do not show up in Fig. 7.4 do appear but with complicated
patterns. For example, in the absroption correlation function of 1-Ada™ (Fig. 7.5), it
seems that there are more than one pattern of recurrences, i.e. recurrences with different
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periods occur which corresponds to different modes. This means there is not only one
single mode contributing to the absorption spectrum, but several modes make somewhat
balanced contributions to the spectrum, explaining the smoothness of the spectrum.
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Figure 7.5: A close-up of the absorption correlation function for the S; state of 1-Ada™.

7.3.4 Resonance Raman spectra

The resonance Raman spectra involving Sp and S; states for 1-Ada™ and 2-Ada™ are shown
in Fig. 7.6. The peaks for 1-Ada™ are overall red-shifted with respect to 2-Ada™. The
spectra of both cations show little dependence on the excitation energy, i.e. the relative
intensities of the peaks do not change as the excitation energy changes, although the
absolute intensities do change. This observation is also clearly seen in the REP (Fig. 7.6).
For 1-Ada™, modes 1, 36 and 41 increase or decrease “at the same pace” and all attain the
maximum intensity at around 4.65 eV. Other modes behave similarly. Similar statements
hold for 2-Ada™. Therefore, the resonance Raman spectra of 1-Ada™ and 2-Ada™ can be
considered as their “fingerprints” and used to distinguish them or determine their ratio if
they exist in a mixture.

7.3.5 Photoelectron spectra

The simulated lowest-energy band of the PES spectra for 1-Ada” and 2-Ada’ are shown
in Fig. 7.7, along with the corresponding experimental spectra [116]. For 1-Ada’, the
simulated ZPE-corrected adiabatic IP is 6.17 €V, which is 0.04 eV smaller than the exper-
imentally determined value of 6.21 eV. For comparison both the spectra have been aligned
at the experimental adiabatic IP. The simulated vertical IP, however, is 6.74 eV and larger
than the experimental value of 6.36 eV by 0.38 eV. For 2-Ada’, both the IPZP¥ (6.64 eV)
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Figure 7.6: The resonance Raman spectra for three different excitation energies involving
the Sy state of (upper left) 1-Ada™ and (lower left) 2-Ada™, broadened with a Lorentzian
factor of 10cm™!, and the Raman excitation profile for three different modes involving the

S state of (upper right) 1-Ada™t and (lower right) 2-Ada™, broadened with a Lorentzian
factor of 200 cm ™.
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Figure 7.7: The lowest-energy PES band of (left) 1-Ada’ and (right) 2-Ada’. The experi-
mental data is adapted from Ref. [116].
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and IP, (6.97 eV) agree quite well with the corresponding experimental values, 6.73 eV
and 6.99 eV, respectively, with an underestimation of less than 0.1 eV. The first PES band
for both radicals is rather structureless. It should be noted that under the experimental
conditions, a portion of the 1-Ada’ radicals decomposes to smaller radicals which have
slightly higher adiabatic ionization potentials [116]. The higher energy portion (> 6.5¢eV)
of the experimental PES band may be complicated by these thermal decomposition prod-
uct radicals.
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Figure 7.8: Upper left: the simulated second PES band of 1-Ada’; Upper right: the
corresponding correlation function of 1-Ada’. Lower left: the simulated second PES band
of 2-Ada’; Lower right: the corresponding correlation function of 2-Ada’.

Now consider the second PES band for 1-Ada’ and 2-Ada’ in Fig. 7.8. The ZPE-
corrected adiabatic IP is determined to be 9.21 eV for 1-Ada’ and 9.07 eV for 2-Ada’, and
the vertical IP is 9.81 eV for 1-Ada’ and 9.63 eV for 2-Ada’. For the second PES band,
there is a clear vibrational progression, ~ 1323.67 cm~! for 1-Ada’ and ~ 1338.01 cm™!
for 2-Ada’, corresponding to a recurrence time of ~ 25.20 fs and ~ 24.93 fs, respectively.
Relevant normal modes can be found in the region ~ 1323.67 & 100 cm~! for 1-Ada™
(S1) and ~ 1338.01 4100 cm ! for 2-Ada™ (S;) that facilitate the geometric deformation.
In particular, in the regions mention above, the modes with frequencies 1226.53 cm™!
(featuring C*-C,, i.e. 71, bond stretching, and the 64 bond angle scissoring), 1308.08
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cm~! (featuring the r; and r3 bond stretching), and 1363.44 cm~! (featuring the r; bond
stretching and the 6, bond angle scissoring) conform to the geometric change for 1-Ada’,

while the modes with frequencies 1221.06 cm™! (the CT—4 C7E C asymmetric stretching) and
1240.26 cm ™! (a vibration involving the angle 65 changing) play a major role in inducing
the geometric change for 2-Ada’.
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Chapter 8

Summary and outlook

8.1 Summary

The Heller-type time-dependent correlation function approach in combination with linear-
response, time-dependent density functional theory, within the framework of the harmonic
and Condon approximations, was applied to investigate the vibrationally resolved absorp-
tion, emission, resonance Raman, and photoelectron spectra of selected organic molecules,
associated radicals and cations. A two-state model was also adopted to simplify the calcu-
lations. Two sets of normal modes can be obtained, one for the electronic ground and the
other for the electronically excited state. Three models within the harmonic approximation
exist to related both sets of normal modes. The most complete of them, the IMDHOFAD
model was used throughout this work. A home-built program, Zzzap, was developed to
facilitate the calculations of spectra from the optimized geometries of molecules and the
corresponding normal modes obtained from Gaussian 09.

This approach was used to study the molar absorptivities and vibronic absorption and
emission spectra of perylene and several of its N-derivatives (azaperylenes). Lowest-energy
absorption and emission bands are due to allowed 7 <> 7* transitions, which change the
bonding/antibonding character between C-C and C-N bonds in the center of the molecule.
The corresponding geometric changes cause prominent vibronic fine-structures in absorp-
tion and emission bands, which can be traced back to C-C (C-N) vibrations in the molec-
ular centers. It was found that the presence of nitrogen atom(s) has a negligible impact
on the structure of the molecules, while the spectra are influenced by, in particular, the
number of nitrogen atoms rather than their position. This implies that N-substitution
can be used to fine-tune the optical properties of these perylene-based molecules. Sol-
vent effects were studied by comparing gas phase to solvent (MeCN) calculations, using
linear-response and state-specific PCM models. The polar solvent is predicted to red-shift
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the lowest bright excitation by a value in the order of 10 nm for all molecules, except for
perylene, which is largely unaffected. Furthermore, for one azaperylene, 1,6-A (for which
experiment hints at a clear red-shift /broadening of spectra [62, 63]), the effect of a possi-
ble dimer formation on spectral features was studied. Using simple dispersion-corrected
TD-DFT methods, several stacked dimers of similar energy were found whose vertical
absorption spectra are red-shifted in their onset with respect to the monomer, and also
broadened, due to excitonic effects. We expect dimer formation to be important when the
concentration of chromophores in solution is high.

The same approach was used to simulate the gas phase vibronic absorption, emission
and resonance Raman spectra of a novel molecule (denoted Ada-py for convenience) con-
sisting of adamantane bridged to pyrene, for the lowest bright transition Sg — S;. The
absorption and emission spectral forms are in fairly good agreement with experimental
data obtained in cyclohexane solvent, though in experiment the absorption and emission
peaks are red-shifted and the maximum intensity for absorption is shifted from the 0-0 to
a higher-energy subpeak, which were attributed to solvent effects. Raman and resonance
Raman spectra were calculated. The former is in very good agreement with the experi-
mental spectrum. For the latter, the intensities of simulated peaks in the low frequency
region closely resemble the experimental data, however, the peak which is predicted to be
enhanced most is red-shifted by ~ 100 cm ™! with respect to the experimental counterpart.
The difference was attributed to the possible influence of the crystal environment for the
experiment.

Then the approach for vibronic absorption spectra was extended to study ionization
processes for three lower (pristine and modified) diamondoids. The simulated lowest-
energy band of the vibronic photoelectron spectra for these species agree quite well with
experimental spectra, except for some high-energy satellite peaks, which were attributed
to the many body effects beyond the Born-Oppenheimer approximation in Ref. [98]. The
relation between the geometric distortions and Jahn-Teller effect was also discussed. The
Heller-type correlation function approach to photoelectron spectroscopy was shown to be
promising.

Finally, all of the above procedures were applied to investigate the optical properties of
a few adamantane-derived radicals and cations. In particular, we simulated higher-energy
bands of the vibronic photoelectron spectra for the radicals. It was found that the vibronic
absorption and emission of the cations are structureless. The lowest-energy bands for the
photoelectron spectra of the radicals are rather smooth, in qualitative agreement with
experimental data, though the ionization potentials differ by a few tenths of an eV. The
second bands in the photoelectron spectra are much more “regular”, and the contributing
modes are discussed. The study can be used for predicative purposes.

The work presented in Chapters 5 and 7 are being prepared for possible publication.
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8.2 Outlook

Though the Heller formalism has been shown to be quite reliable in most cases, it has
more capabilities than was shown. For example, the nonradiative intersystem crossing
(ISC) processes can be conveniently treated in the time-dependent correlation function
approach [117]. Another type of radiationless processes, internal conversion (IC), can be
dealt with similarly [118]. More specifically, the IC rate coupling two electronic states in
the Condon approximation and in the IMDHOFAD model is expressed as

3N—6
Fie = Y ik, (8.1)
k=1
where . -
Kic ki = hQsz/ [exp(iAEaqt) Z;, picu(t, T)] dt. (8.2)

The indices k, [ denote normal modes, Ry; are the non-adiabatic coupling matrix elements
between the initial and final electronic states, AF,q is the adiabatic minimum energy sep-
aration, Z;, is the thermal partition function, and pjc 4; is the thermal vibration correlation
function. The expressions for all these quantities can be found in Ref. [118] and references
therein. In the future, it is desirable to implement both of these processes in Zzzap. In
fact, the IC implementation is already done for diatomic molecules, and generalization to
polyatomic molecules is under way.

Besides, the approximations we have made in this work are quite ideal, i.e. we have
neglected the temperature effects, the anharmonicity, and the coordinate dependence of
the transition dipole moment. Our toolkit can be improved by, for example, including the
linear term in the Taylor expansion of the transition dipole moment with respect to the
coordinate, which is known as the Herzberg-Teller term.

81



Acknowledgement

This PhD work is finished under the supervision of Prof. Peter Saalfrank and Dr. Thomas
Korzdorfer. I am sincerely thankful for the knowledge and patience of Prof. Saalfrank in
guiding me in research, and much more beyond work. Dr. Korzdorfer did constructive
collaboration with me. Also, this work could not have finished without the help of and
discussion with other members from the Saalfrank group. Dr. Foudhil Bouakline is always
a good choice for fruitful discussions, and the PhD students are willing to share their
knowledge and help each other out.

I also appreciate the financial support from Deutsche Forschungsgemeinschaft (DFG)
through the Cluster of Excellence 314 Unifying Concepts in Catalysis, coordinated by the
Technical University of Berlin.

Last but not least, my family is a constant source of support. No words can describe
my gratitude.

82



Appendix A

Analytical expressions for
absorption, emission and
resonance Raman correlation

functions in the IMDHOFAD

model

A.1 Absorption auto-correlation function

The absorption auto-correlation function in the IMDHOFAD model at T = 0K can be
expressed as

N2 [ 1
IMDHOFAD T —1 .
— (= —pt - (A71/4) . Al
Cabs (t) <2> Totd exp[—p~ - (A" /4) - plexp(iv), (A1)
where
A=A +A4, (A.2)
p=p,— 24, -q, (A3)
'y:iqT-A-q —pT-q + Y (A4)
¢ =t =t 2t 2t ’
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ét = Zgz g_ ’ (A5)

A = 1 A
=0 9’ (A.6)
p,= "5 J7"A, (A7)
4, =—J-C-J " -A+A, (A.8)

) 1

N =gIn(detZ) + 5p; - (g, — A), (A.9)
Z=J@S-J'+C- ). (A.10)

Here C and S are diagonal matrices with diagonal elements cos(w?,t) and sin(w!,t),

h

respectively, andiwfn is the vibrational frequency of the m!" normal mode in the final

electronic state, J is the Duschinsky matrix, A is the dimensionless origin shift.

A.2 Emission auto-correlation function

The expressions for emission are similar to those for absorption in Section A.1, but it
should be noted that the initial and final electronic states now are the excited state and
the ground state, respectively, opposite to absorption.

A.3 Resonance Raman cross-correlation function

The cross-correlation function for the 0 — 1 resonance Raman scattering in the IMDHO-
FAD model is

AL

1/2
ciErome) = (1) [qageslr™ @) gesinE 0, ()

where all the necessary quantities have been defined in Section A.1.

As in the case of absorption, we have assumed that the temperature is absolute zero,
and the final vibrational state after photon scattering is higher in energy than the vi-
brational ground state by one quantum, i.e. we are treating the 0102 ---0,,---03n_g —
0102+ -1,, ---03n_g scattering, where m denotes the mode scattering the photon. It

should be noted that due to the presence of the vector 4 - 2 in the above expression,
the resonance Raman cross-correlation function is actually a vector. Therefore, resonance
Raman scattering intensity is not only a function of the incident light frequency, but also
depends on the frequency of the modes (or equivalently, the frequency of the scattered
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light). Keeping the excitation frequency fixed, we can compute the resonance Raman spec-
trum, i.e. the Raman intensity as a function of vibrational mode. Alternatively, Fourier
transforming the components of the vector Q%DHOFAD (t) gives rise to the Raman excita-
tion profile, i.e. a collection of spectra, one for each mode as a function of the excitation
frequency.
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Appendix B

Higher vertical excitation energies

for the perylene series

In what follows, we list higher excitation energies for the perylene series in gas phase and
in MeCN (LR-PCM), and for the 1,6-A dimers.
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Table B.1: Vertical excitation energies AFye+ and oscillator strengths f of the perylene
series in the gas phase, for the first 20 transitions, on the TD-B3LYP/TZVP level of

theory. Energies are in eV.

P 1-A 1,6-A 1,7-A 1,12-A 1,6,7-A 1,6,7,12-A
M NBuw  f ABwn  f ABwn [ ABun f ABun  f ABen [ ABwn

1 2.82 0.35 2.86 0.36 2.93 0.36 2.89 0.36 2.91 0.36 2.97 0.37 2.80 0.00
2 3.62 0.00 3.69 0.01 3.41 0.00 3.53 0.00 3.16 0.00 3.05 0.00 3.05 0.37
3 3.96 0.00 3.70 0.00 3.69 0.02 3.74 0.00 3.53 0.00 3.41 0.00 3.18 0.00
4 4.01 0.01 3.96 0.00 3.93 0.00 3.75 0.00 3.76 0.00 3.72 0.00 3.49 0.00
5 4.05 0.00 4.05 0.01 4.03 0.02 3.98 0.00 3.99 0.00 3.85 0.00 3.66 0.00
6 4.20 0.00 4.12 0.00 4.05 0.00 4.14 0.00 4.11 0.00 4.04 0.00 3.72 0.00
7 4.51 0.00 4.20 0.00 4.21 0.00 4.15 0.00 4.18 0.00 4.11 0.00 4.07 0.00
8 4.53 0.00 4.58 0.00 4.29 0.01 4.24 0.00 4.25 0.00 4.19 0.00 4.17 0.00
9 4.84 0.31 4.65 0.02 4.63 0.00 4.65 0.00 4.65 0.00 4.43 0.00 4.28 0.00
10 5.37 0.01 4.90 0.25 4.70 0.00 4.73 0.00 4.66 0.00 4.48 0.00 4.35 0.00
11 5.52 0.08 5.02 0.00 4.82 0.08 4.91 0.26 4.74 0.00 4.78 0.01 4.58 0.00
12 5.56 0.04 5.38 0.07 5.01 0.11 5.01 0.00 4.90 0.00 4.87 0.00 4.60 0.00
13 5.69 0.00 5.46 0.00 5.23 0.05 5.16 0.00 4.94 0.25 4.90 0.02 4.93 0.00
14 5.70 0.00 5.47 0.00 5.27 0.00 5.40 0.00 5.07 0.00 5.00 0.18 4.95 0.00
15 5.74 0.00 5.58 0.08 5.31 0.00 5.42 0.13 5.25 0.00 5.06 0.00 5.02 0.00
16 5.74 0.00 5.68 0.10 5.37 0.06 5.56 0.00 5.35 0.00 5.16 0.00 5.02 0.00
17 5.75 0.00 5.69 0.00 5.56 0.00 5.58 0.13 5.42 0.14 5.24 0.00 5.04 0.00
18 5.77 0.00 5.75 0.00 5.61 0.10 5.65 0.00 5.47 0.00 5.30 0.00 5.04 0.19
19 5.84 0.08 5.75 0.00 5.61 0.09 5.66 0.00 5.60 0.01 5.36 0.17 5.04 0.00
20 5.92 0.00 5.86 0.00 5.70 0.00 5.71 0.00 5.60 0.12 5.44 0.00 5.27 0.00

87



Table B.2: Vertical excitation energies AFye+ and oscillator strengths f of the perylene
series in MeCN (LR-PCM), for the first 20 transitions, on the TD-B3LYP/TZVP level of

theory. Energies are in eV.

P 1-A 1,6-A 1,7-A 1,12-A 1,6,7-A 1,6,7,12-A
M NBuw  f ABwn  f ABwn [ ABun f ABun  f ABen [ ABwn

1 2.82 0.35 2.85 0.35 2.92 0.36 2.87 0.36 2.85 0.34 2.93 0.36 3.00 0.36
2 3.61 0.00 3.69 0.01 3.50 0.00 3.62 0.00 3.42 0.00 3.22 0.00 2.96 0.00
3 3.94 0.00 3.83 0.00 3.68 0.02 3.74 0.00 3.74 0.00 3.63 0.00 3.37 0.00
4 4.02 0.01 3.96 0.00 3.92 0.00 3.84 0.00 3.83 0.00 3.69 0.00 3.61 0.00
5 4.07 0.00 4.05 0.01 4.03 0.02 3.96 0.00 3.98 0.00 3.96 0.00 3.66 0.00
6 4.20 0.00 4.11 0.00 4.13 0.00 4.13 0.00 4.12 0.00 4.01 0.01 3.90 0.00
7 4.52 0.00 4.20 0.00 4.19 0.00 4.15 0.00 4.14 0.00 4.09 0.00 4.01 0.00
8 4.53 0.00 4.58 0.00 4.29 0.01 4.24 0.00 4.25 0.02 417 0.00 4.14 0.00
9 4.84 0.31 4.64 0.02 4.71 0.00 4.65 0.00 4.64 0.01 4.42 0.01 4.28 0.00
10 5.37 0.00 4.89 0.25 4.71 0.00 4.74 0.00 4.73 0.00 4.64 0.00 4.52 0.00
11 5.52 0.08 5.15 0.00 4.81 0.09 4.90 0.26 4.91 0.26 4.77 0.02 4.61 0.00
12 5.56 0.04 5.38 0.07 5.01 0.09 5.09 0.00 4.93 0.00 4.89 0.03 4.77 0.00
13 5.68 0.00 5.46 0.00 5.21 0.05 5.25 0.00 5.20 0.00 4.98 0.16 4.95 0.00
14 5.69 0.00 5.59 0.09 5.35 0.00 5.40 0.15 5.39 0.00 5.10 0.00 5.00 0.00
15 5.71 0.00 5.61 0.00 5.35 0.06 5.49 0.00 5.42 0.15 5.26 0.00 5.01 0.18
16 5.73 0.00 5.66 0.00 5.40 0.00 5.57 0.14 5.55 0.00 5.31 0.00 5.14 0.00
17 5.75 0.00 5.68 0.10 5.60 0.11 5.60 0.00 5.60 0.13 5.33 0.18 5.21 0.00
18 5.83 0.08 5.75 0.00 5.61 0.09 5.67 0.00 5.65 0.00 5.44 0.00 5.22 0.00
19 5.93 0.00 5.89 0.00 5.66 0.00 5.72 0.01 5.71 0.00 5.49 0.00 5.23 0.00
20 5.93 0.00 5.90 0.00 5.68 0.00 5.76 0.00 5.73 0.01 5.56 0.13 5.32 0.23
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Table B.3: Vertical excitation energies AF, e+ and oscillator strengths f of the dimers
of 1,6-A in the gas phase, for the first 20 transitions, on the TD-B3LYP/TZVP level of

theory. Energies are in eV (nm).

Dimer a Dimer b Dimer ¢
State
AFEyert f AFEyert S AFEyert S
1 2.4472 (506.63) 0.0432 2.5373 (488.65) 0.0021 2.4562 (504.77) 0.0612
2 2.4872 (498.49) 0.0229 2.5582 (484.65) 0.0008 2.4779 (500.36) 0.0002
3 2.8410 (436.42) 0.0008 2.8086 (441.45) 0.0725 2.8249 (438.90) 0.0015
4 3.0657 (404.43) 0.4713 2.9322 (422.83) 0.3967 3.0642 (404.62) 0.4708
5 3.3008 (375.62) 0.0026 3.3923 (365.49) 0.0016 3.3632 (368.65) 0.0000
6 3.3571 (369.32) 0.0010 3.4319 (361.27) 0.0010 3.3668 (368.25) 0.0023
7 3.3844 (366.34) 0.0002 3.6189 (342.60) 0.0161 3.4739 (356.90) 0.0017
8 3.6313 (341.43) 0.0086 3.6217 (342.34) 0.0063 3.5305 (351.18) 0.0100
9 3.7415 (331.37) 0.0065 3.7462 (330.96) 0.0034 3.6869 (336.28) 0.0006
10 3.7822 (327.81) 0.0006 3.7563 (330.07) 0.0034 3.7760 (328.34) 0.0004
11 3.8047 (325.87) 0.0060 3.7964 (326.58) 0.0014 3.7913 (327.02) 0.0137
12 3.8300 (323.72) 0.0019 3.8582 (321.35) 0.0002 3.8440 (322.54) 0.0034
13 3.8898 (318.74) 0.0010 3.8739 (320.05) 0.0002 3.8663 (320.68) 0.0005
14 3.8940 (318.40) 0.0034 3.8888 (318.83) 0.0042 3.8686 (320.49) 0.0001
15 3.9046 (317.53) 0.0036 3.9059 (317.43) 0.0045 3.8999 (317.91) 0.0000
16 3.9252 (315.87) 0.0038 3.9324 (315.29) 0.0014 3.9192 (316.35) 0.0007
17 3.9343 (315.14) 0.0011 3.9523 (313.70) 0.0089 3.9485 (314.01) 0.0016
18  3.9572 (313.31) 0.0017 4.0032 (309.71) 0.0111 3.9921 (310.58) 0.0010
19 3.9948 (310.37) 0.0001 4.0359 (307.20) 0.0015 3.9924 (310.55) 0.0108
20 4.0072 (309.41) 0.0028 4.0394 (306.94) 0.0047 4.0276 (307.83) 0.0006
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