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Abstract: The emergence of the Sentinel-1A and 1B satellites now offers freely available and widely
accessible Synthetic Aperture Radar (SAR) data. Near-global coverage and rapid repeat time
(6–12 days) gives Sentinel-1 data the potential to be widely used for monitoring the Earth’s surface.
Subtle land-cover and land surface changes can affect the phase and amplitude of the C-band SAR
signal, and thus the coherence between two images collected before and after such changes. Analysis
of SAR coherence therefore serves as a rapidly deployable and powerful tool to track both seasonal
changes and rapid surface disturbances following natural disasters. An advantage of using Sentinel-1
C-band radar data is the ability to easily construct time series of coherence for a region of interest at low
cost. In this paper, we propose a new method for Potentially Affected Area (PAA) detection following
a natural hazard event. Based on the coherence time series, the proposed method (1) determines
the natural variability of coherence within each pixel in the region of interest, accounting for factors
such as seasonality and the inherent noise of variable surfaces; and (2) compares pixel-by-pixel
syn-event coherence to temporal coherence distributions to determine where statistically significant
coherence loss has occurred. The user can determine to what degree the syn-event coherence value
(e.g., 1st, 5th percentile of pre-event distribution) constitutes a PAA, and integrate pertinent regional
data, such as population density, to rank and prioritise PAAs. We apply the method to two case
studies, Sarpol-e, Iran following the 2017 Iran-Iraq earthquake, and a landslide-prone region of NW
Argentina, to demonstrate how rapid identification and interpretation of potentially affected areas
can be performed shortly following a natural hazard event.

Keywords: Sentinel-1; natural hazards; rapid damage mapping; coherence; potentially affected
areas (PAA)

1. Introduction

The emergence of synthetic aperture radar (SAR)-based Earth Observation (EO) satellites over
the last decades has led to the development of powerful new methods for monitoring the Earth’s
surface. This is particularly true in the case of monitoring and assessing the impacts of natural
hazards [1–3]. SAR satellites observe the Earth’s surface independent of weather conditions and
time of day, as the active radar signal does not depend on daylight and penetrates cloud cover with
minimal atmospheric interaction [4]. This is especially an advantage in assessing natural hazards
associated with heavy precipitation, such as flooding and rainfall-triggered landslides, debris flows,
and mudflows, when persistent cloud-cover may render optical satellite observations of limited use [2].
Interferometric SAR (InSAR) coherence, or the correlation between two images, is a widely used metric
derived from SAR images, e.g., [5]. Because coherence loss between two images with a similar spatial
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footprint collected at different times results from changes at the Earth’s surface, it is a particularly
useful metric to map where potential damage has occurred following natural hazard or meteorological
events [6–9].

Mapping potential damage following a natural hazard event is generally performed via a
comparison of pre-event and syn-event (i.e., comparison of one SAR image before and one image
after the event) coherence images. The resulting map of coherence loss provides a spatial estimate of
where damage may have occurred. Coherence studies using this approach for the purpose of surface
damage monitoring have typically used the longer-wavelength L-band radar systems (e.g., the Japanese
ALOS satellites) [6,10,11], which are less sensitive to surficial changes and partially penetrate through
ephemeral and variable surface features such as vegetation cover. The shorter wavelength X-band
radar systems (e.g., TerraSAR-X [12] or COSMO-SkyMed [13]) are sensitive SAR systems for urban
or vegetation-free areas. However, access to SAR data from current X- and L-band systems is limited
by availability and expense, restricting the applicability of SAR coherence estimates of areas affected
following a natural hazard and are not easily accessible for continuous monitoring. Furthermore,
relying on a single pre-event coherence estimate (i.e., from a single SAR pair) neglects the natural
variability in the SAR coherence signal through time for different land covers or climatic regions.
This is now changing following the launch in 2014 of the European Space Agency (ESA) Sentinel-1
satellites. The Sentinel-1 satellites are equipped with C-band radar and offer near global coverage
with a relatively high repeat time (6–12 days). Sentinel-1 data are freely available as part of the
ESA Copernicus program [14,15]. Despite these advantages, however, the C-band radar presents
potential challenges for Earth surface observation due to its higher sensitivity to surficial changes and
vegetation cover, which can provide a noisier signal, particularly in regions with high or seasonal
vegetation coverage.

In this study, we present a method that takes advantage of the high accessibility and high
frequency of repeated observations of Sentinel-1 radar for natural hazard monitoring and assessment,
while mitigating the inherent noisiness of the C-band radar system. Following previous methods for
potential damage mapping, such as the NASA Damage Proxy Map [6] and the Earthquake Damage
Visualisation method [11], we compare syn-event coherence related to a natural hazard event to
pre-event coherence. However, rather than relying on a single estimate of pre-event coherence, we take
advantage of the wealth of Sentinel-1 data to characterise the statistical character of pre-event coherence
through time for each pixel.

For the first time, the Sentinel-1 system allows for the construction of large time series and
databases of SAR data that may not be financially feasible with costlier commercial satellite
systems for many institutions. By constructing a time series of SAR coherence data for a region
of interest, we suggest a methodology that focuses on three critical objectives: (1) Deriving a
more complete distribution of coherence values through SAR time series analysis for each pixel
to decipher more accurately anomalous events; (2) Using this distribution, to identify time periods
or seasons most suitable for the detection of anomalous, landscape-changing events; (3) Based on
the distribution, to derive different significance levels of coherence thresholds to identify natural
hazards. Regions where coherence loss exceeds a given threshold are considered Potentially Affected
Areas (PAAs). The threshold for this determination is calculated dynamically from the time series;
for example, this can be set as the 5th percentile of the pixel’s coherence distribution.

We apply the method to two independent case studies: the 2017 Mw 7.2 earthquake on the
Iran-Iraq border, and in the landslide-prone Quebrada del Toro in the south-central Andes in
rural, northwestern Argentina. Additional data, such as settlement locations, population, and/or
infrastructure, can be included to assess potential human and economic impacts from natural hazard
events and prioritise potentially affected regions. Thus, we present a framework where users can
create a rapid assessment of potentially affected areas and employ case-specific information to filter,
rank, and interpret the potential damages following a natural hazard event.
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2. Methods

2.1. InSAR Coherence Measurements

SAR systems are active radar systems in the microwave spectrum that transmit and receive
reflected waves from the Earth’s surface. The SAR signal consists of an amplitude (i.e., return strength)
and phase (i.e., phase offset of a sinusoidal wave). Each pixel of a SAR image is a complex number,
where the wave is represented by a real and imaginary part corresponding to respective amplitude
and phase values, e.g., [16]. In order to compare two SAR scenes and calculate coherence, the scenes
need to be precisely aligned to each other, where the secondary scene (date 2) is usually resampled to
the primary scene (date 1). We rely on a zero-doppler scene-pair geometry and baselines of Sentinel-1
imagery are generally low (<200 m) and geared toward radar interferometry. The coherence between
two SAR images is the normalised complex correlation coefficient,

coherence =
〈s1s∗2〉√

(〈s1s∗1〉〈s2s∗2〉)
(1)

where s1, s2 are the complex pixel values at times t = 1 and t = 2; s* is the complex conjugate of s; and 〈〉
is the ensemble average [5,17]. Coherence is a normalised metric and values range from 0 to 1, where 1
represents perfect coherence, which in reality is rarely observed. Coherence is sensitive to changes to
either the phase or amplitude of a pixel. For example, change in surface elevation (e.g., destruction of
a building), backscattering properties (e.g., vegetation growth or removal), or the dielectric character
of the surface (e.g., wet versus dry soil) will result in coherence loss [17]. Therefore, it is important to
note that coherence values result in a spatial and temporal estimate of where and when change has
occurred, but cannot constrain the type or rate of change.

We calculated the physiographic coherence between two images using the InSAR Scientific
Computing Environment (ISCE) from the NASA Jet Propulsion Laboratory [18–20]. SAR images
were multi-looked to 30 × 30 m by 12 range, 2 azimuth multi-looking of ~3 × ~20 m data,
and topographically corrected using the Shuttle Radar Topography Radar Mission (SRTM) 1-arcsecond
(~30 m) global Digital Elevation Model (DEM) [21]. To create the database for a region, coherence was
calculated for every adjacent pair in a time series (e.g., date-1 & date-2, date-2 & date 3, . . . , date-n &
date-n + 1) to measure the coherence with the lowest possible temporal baseline.

2.2. Algorithm for Potentially Affected Area Detection

In order to identify Potentially Affected Areas (PAAs) related to a natural hazard event,
we construct a simple algorithm using a time series of coherence data, summarised in Figure 1.
SAR images for at minimum one year were obtained from the ESA Copernicus Open Access Hub [22]
and coherence was calculated using ISCE following the parameters outlined in Section 2.1 above.
The coherence values were then amalgamated into a spatially referenced x-by-y-by-n stack, where the
spatial dimension is given by x and y and the temporal component by n. This temporal coherence stack
is then the basis from which we characterise pixel-by-pixel reliability, as described below, and coherence
distributions through time.
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Figure 1. Diagram illustrating the workflow of the potentially affected area (PAA) detection. Data 
input is denoted by blue parallelograms; processes are shown as white rectangles, algorithm-generated 
geotiffs are shown as yellow documents; and the output PAA locations and statistics are shown in the 
red terminal rectangle. The generation of the coherence database and the reliability map can be 
completed before an event has occurred (left hand of flow chart). After an event has occurred, the pre- and 
post-event SAR images can be input into the algorithm, as well as any pertinent additional 
information (e.g., population count, infrastructure, resources), to detect and characterise PAAs. 

We generate a map of signal reliability derived from the standard deviation of coherence for 
each pixel to account for natural, non-event related coherence variability through time. In other 
words, a pixel that experiences considerable scatter throughout the course of a year, such as a forest 
or an agricultural field, will be considered less reliable when interpreting potentially affected areas 
than a pixel with little deviation through time, such as an urban structure. The reliability estimate is 
classified into three different categories: “least reliable”; “reliable”; and “most reliable”. For our case 
studies, we defined “most reliable” as having a standard deviation less than 0.1 (i.e., more than a 
~68% of the time series varies less than a value of 0.1 as compared to a mean value), “reliable” as a 
standard deviation of 0.1–0.3, and “unreliable” as pixels with a standard deviation greater than 0.3. 
Reliability maps can also be optionally filtered to reduce noise and smooth patterns, though we did 
not perform this step in our case study analysis. Once produced, the reliability maps provide a basis 
for rapid interpretation of where coherence loss is most likely to be associated with damage from a 
natural hazard as opposed to natural variability. 

The coherence for a single pixel is characterised over the time series in one of two ways: (1) using 
the entire data stack, including all times of year; or (2) using seasonally filtered stacks, depending on 
the timing of the event and the region of interest. If wet-dry seasonal cycles cause significant 

Figure 1. Diagram illustrating the workflow of the potentially affected area (PAA) detection. Data input
is denoted by blue parallelograms; processes are shown as white rectangles, algorithm-generated
geotiffs are shown as yellow documents; and the output PAA locations and statistics are shown in
the red terminal rectangle. The generation of the coherence database and the reliability map can
be completed before an event has occurred (left hand of flow chart). After an event has occurred,
the pre- and post-event SAR images can be input into the algorithm, as well as any pertinent additional
information (e.g., population count, infrastructure, resources), to detect and characterise PAAs.

We generate a map of signal reliability derived from the standard deviation of coherence for each
pixel to account for natural, non-event related coherence variability through time. In other words,
a pixel that experiences considerable scatter throughout the course of a year, such as a forest or an
agricultural field, will be considered less reliable when interpreting potentially affected areas than a
pixel with little deviation through time, such as an urban structure. The reliability estimate is classified
into three different categories: “least reliable”; “reliable”; and “most reliable”. For our case studies,
we defined “most reliable” as having a standard deviation less than 0.1 (i.e., more than a ~68% of
the time series varies less than a value of 0.1 as compared to a mean value), “reliable” as a standard
deviation of 0.1–0.3, and “unreliable” as pixels with a standard deviation greater than 0.3. Reliability
maps can also be optionally filtered to reduce noise and smooth patterns, though we did not perform
this step in our case study analysis. Once produced, the reliability maps provide a basis for rapid
interpretation of where coherence loss is most likely to be associated with damage from a natural
hazard as opposed to natural variability.

The coherence for a single pixel is characterised over the time series in one of two ways: (1) using
the entire data stack, including all times of year; or (2) using seasonally filtered stacks, depending
on the timing of the event and the region of interest. If wet-dry seasonal cycles cause significant
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coherence variations in a time series, filtered coherence stacks, where only pre-event coherence from
the wet or dry season is used, may be more appropriate for estimating PAAs (see Section 4.3 below).
Ideally, the stack should not include dates containing known events of the type that the user wishes
to detect. After the coherence stack is generated, potentially affected areas (PAAs) are identified by
comparing syn-event coherence from a known or possible natural hazard event to the distribution of
pre-event coherence values from the coherence data stack. To characterise where coherence values are
abnormally low in the syn-event coherence image, each pixel of the syn-event image is compared to
the temporal distribution (either annual or seasonal) of coherence values for that pixel and the inverse
percentile of the syn-event coherence is calculated and assigned. The resulting map gives the percentile
for each pixel compared to the distribution of past coherence values (e.g., 1st, 10th, 70th percentile).
Regions that are below a user-defined critical threshold (e.g., 5th percentile) are considered potentially
affected areas.

The inverse percentile map is binarised using a critical threshold value (e.g., 1st, 5th,
10th percentile) to determine PAAs. In regions with large areas of natural variability of coherence
values (e.g., agricultural fields, forests), the reliability map can be used to filter the PAA estimation.
The binary image is then amalgamated into connected components, providing a single numerical
designation to each contiguous PAA region. Depending on the application, regions with few
connected components can be filtered out. Using the map of PAA numerical identifications, PAAs can
now be characterised in terms of user-specified properties, such as size, topography, population,
and infrastructure statistics, and ranked accordingly. The method can also be used as a form of possible
event detection and assessment in remote areas with minimal land-based monitoring infrastructure,
by creating a background stack and reliability map, then feeding new SAR images as potential events
to see if PAAs are detected.

3. Case Studies and Results

We implement our method in two independent case studies: (1) the 12 November 2017 Iran-Iraq
earthquake near Sarpol-e, Iran, which caused significant damage to infrastructure and livelihood;
and (2) the remote Quebrada del Toro in the Salta Province of Argentina in the south-central Andes,
where we employ the method to detect possible, unrecorded events.

3.1. Case Study 1: 2017 Iran-Iraq Earthquake

On 12 November 2017, an oblique thrust-fault caused a 7.3 Mw earthquake at ~25 km depth on
the border of Iran and Iraq that was one of the deadliest earthquakes of 2017. The earthquake caused
significant damage to urban infrastructure, most of which was non-ductile concrete [23]. For our
case study, we focus our region of interest around Sarpol-e Zahab, a city of ~45,000 inhabitants,
located 50 km south-southwest of the earthquake epicentre, which was significantly damaged by
the earthquake. We used approximately one year of Sentinel-1 data, including 28 SAR images from
7 October 2016 to 26 October 2016, to create the pre-event coherence stack (n = 27) for the Sarpol-e
region of Iran (cf. Table 1, Supplemental Materials Table S1). The global Gridded Population of the
World, v. 4 [24] is used to characterise population density (people per square kilometre) of the region.
Figure 2A shows a Sentinel-2 false colour image of the Sarpol-e region, highlighting the extensive
agriculture surrounding the urbanised region. Coherence values over the recorded time period are
generally consistently high for urban structures (Figure 3A), but vary significantly in agricultural fields
(Figure 3B). This is reflected in the reliability map, shown in Figure 2B, where agricultural areas are
classified as “least reliable” due to the high natural variability of coherence.
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Table 1. Summary of data used in case studies, date ranges, application, and sources.

Dataset Dates Application Track, Orientation Source Website

Sentinel-1 Iran: 28 SAR
images

7 October 2016 through 19
November 2017 Coherence Measurements Descending, Track 6 ESA [22] https://scihub.copernicus.eu/

Sentinel-1 Argentina: 58
SAR images

18 October 2014 through
30 December 2017 Coherence Measurements Descending, Track 10 ESA [22] https://scihub.copernicus.eu/

Sentinel-2 2017 minimum value
composite False colour composite ESA/Google Earth

Engine [25] https://code.earthengine.google.com/

SRTM-C 1 arc second
global DEM February 2000 SAR topographic

correction NASA/USGS [21] https://lta.cr.usgs.gov/SRTM1Arc

Gridded Population of the
World, Version 4 (GPWv4) 2015 Risk analysis

Center for International
Earth Science Information
Network—CIESIN [24]

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4

Global Precipitation
Mission

5 January 2017 through 7
December 2017 Risk analysis JAXA/NASA [26,27] https://www.nasa.gov/mission_pages/GPM/main/index.html

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://code.earthengine.google.com/
https://lta.cr.usgs.gov/SRTM1Arc
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://www.nasa.gov/mission_pages/GPM/main/index.html
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Figure 2. Results of the PAA-detection algorithm following the 12 November 2017 earthquake near Sarpol-e, Iran. (A) False-colour Sentinel-2 composite (R = Near
Infrared, G = Red, B = Green) of the region, highlighting the presence of agricultural fields outside of the city of Sarpol-e (shown in red in the false colour composite).
Location of coherence time series shown in Figure 3A is denoted by a yellow triangle and Figure 3B. by a white triangle; (B) Reliability map of the Sarpol-e region,
based on the variability of coherence data in the year preceding the earthquake. Note that the vegetated agricultural fields visible in (A) are classified as “least reliable”
due to the high noise associated with vegetated surfaces using C-band radar; (C) All regions (shown in blue) where the coherence of the pre- and post-event pair were
less than the 5th percentile of the annual coherence distribution, before connected components and filtering are performed; (D) The five largest, most populous PAAs
detected in relation to the 12 November 2017 earthquake (cf. Table 2). Inset map data: Google Maps.
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Sarpol-e (Figure 2D), while PAA 7532 and 5318 overlap with other nearby settlements likely impacted 
by the earthquake. Sub-district estimates of population density, where available, will improve this 
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filter the estimate of potentially affected areas.   

Figure 3. Time series of coherence preceding the 12 November 2017 earthquake for (A) An urban
structure (yellow triangle in Figure 2A); and (B) Agricultural field (white inverted triangle in Figure 2A)
in the region of Sarpol-e, Iran. Coherence was calculated for each adjacent date (e.g., date-1 & date-2;
date-2 & date-3) and averaged over a 10 × 10 pixel window. This highlights the differences between
coherence over time in regions classified as “most reliable” (A) and “least reliable” (B).

Coherence was calculated for SAR images from 7 November and 19 November 2017.
The syn-event coherence was then compared to the stack of 28 SAR scenes from the preceding year
to calculate potentially affected areas. We identify 734 potentially affected areas with a total area of
~300 km2 in the event coherence image after we filter out the least reliable regions and PAAs with a
contiguous area of less than 10 pixels (300 m2). Of the identified PAAs, 32% of them are in regions
with population density higher than 50 people per square kilometre (cf. Table 2). PAA 4980 covers
the region of Sarpol-e (Figure 2D), while PAA 7532 and 5318 overlap with other nearby settlements
likely impacted by the earthquake. Sub-district estimates of population density, where available,
will improve this ranking and easily differentiate PAAs that are highly populated (e.g., Sarpol-e;
cf. Figure 2D) and those that are in a populated district, but do not overlap with developed areas
(e.g., 4304; cf. Figure 2D). We rank PAAs by size and population density as an example that allows for
easy prioritisation by decision makers and response teams; however, any user-defined criteria could
be used to rank and filter the estimate of potentially affected areas.
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Table 2. Iran-Iraq Mw 7.3 PAA statistics for five most populous and largest detected PAAs
(cf. Figure 2D).

PAA ID Location (Lat, Lon)
(Decimal Degrees) Area (km2)

Population Density
(people/km2)

Average
Coherence

Minimum
Coherence Municipalities

4980 34.4120, 45.8635 6.5808 96.75 0.495 0.195 Sarpol-e

7532 34.3061, 45.9976 5.0859 96.75 0.439 0.192 Abuzar Garrison

5318 34.4137, 45.8702 1.1097 96.75 0.671 0.201 Gheitek, Moshkenar

8014 34.2908, 46.0157 0.8739 96.75 0.658 0.235 Neghare Kub

4304 34.4576, 45.8181 0.8208 96.74 0.481 0.206 NA

Figure 4 highlights specific damage within the PAA (4980) covering Sarpol-e. Upon visual
inspection using Google Earth historical imagery, several buildings within the PAA that were standing
on 2 July 2017 (Figure 4A) have collapsed since the earthquake (Figure 4B). It is noteworthy that the
individually damaged buildings fall within one PAA, due to the spatial resolution of the multilooked
SAR coherence data. For example, if one building within a multilooked pixel has collapsed, and the
neighbouring building within the same pixel has not, the entire pixel is marked as “potentially affected”
and amalgamated with connected affected pixels into one contiguous PAA. Hence, a PAA may contain
a mix of affected and unaffected pixels, making the identification of false positives difficult. To test the
propensity for the method to create false positives, the PAA detection framework was additionally run
for the dates directly preceding the 12 November earthquake, 26 October 2017 and 7 November 2017.
During this quiescent time, we use the same PAA detection criteria as the time period covering the
earthquake; however, no PAAs were detected in the Sarpol-e region. Hence, when there was not a
corresponding natural hazard event triggering regional damage and surface change, no potentially
false positives were detected by the PAA framework.
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Figure 4. Detail of damage to buildings in Sarpol-e, Iran using Google Earth historical imagery.
Collapsed buildings are highlighted in red. All damage is within PAA 4980 covering the city of Sarpol-e.
The PAA detection using Sentinel-1 imagery does not identify damage to specific buildings, but detects
areas containing damage.

3.2. Case Study 2: Hillslope Activity and Landslide-Event Detection in the South-Central Andes

The Quebrada del Toro is an intermontane basin in the Salta district of northwestern
Argentina, where several faults of the eastern margin of the Central Andes are tectonically
active [28,29]. This valley provides the main transport route of mineral resources (REE, Lithium,
Borate) from the central Andes (Puna de Atacama) to foreland factories and further processing.
Remote communities and infrastructure in the Quebrada del Toro are vulnerable to sudden landslides,
floods, and mudslides caused by at times isolated and remote rainfall events and seismically triggered
hillslope instabilities [30–33]. As ground monitoring is limited in the Quebrada del Toro, it is an ideal
location in which satellite monitoring may help identify such isolated events.

We employ approximately two years of Sentinel-1 data; 58 SAR scenes (mosaicked from 179
individual images to cover the entire region of interest) from 18 October 2014 to 30 December 2017
(cf. Table 1, Supplemental Materials Table S2). A series of SAR images from 2017 is used for potential
event detection. The Global Precipitation Mission [26,27] data are used to evaluate precipitation in the
Quebrada del Toro as a potential mass movement trigger.

We perform PAA identification for every image from the region for 2017 (5 January–7 December
2017) and compare the 2017 coherence values to the database of background coherence constructed
from 18 October 2014 to 12 December 2016 to identify potential hazards that may impact communities
or infrastructure. Because this region experiences a strongly seasonal precipitation regime, with a
wet austral summer (November to April) and dry austral winter (May to October), we filter the
coherence stacks by wet and dry seasons according to the first date of the syn-event coherence [30,31].
When detecting PAAs, we compared the pixel coherence to the background coherence from the filtered
wet or dry stack. Figure 5 shows the results of the PAA detection for the interval between 18 March
and 30 March 2017. This interval occurs during the wet season and following an interval of heightened
precipitation (cf. Figure 6B). Here we focus on a steep-sided region of the valley hosting the main
transit route between the Puna de Atacama and the city of Salta. Signal reliability decreases in the
steepest sections of the valley (Figure 5A), but remains moderately to highly reliable along the valley
floor where transport infrastructure is located.
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Figure 5. Example of the potentially affected area algorithm in use for event detection in the Quebrada del Toro, Argentina. (A) Reliability map for region.
This highlights that in very steep areas, such as the highlighted section of the valley, coherence values are noisier and more complicated to interpret; (B) False-colour
Sentinel-2 composite the region of interest with the results of the PAA algorithm for the period between 18 March and 30 March 2017, following a period of intensified
rainfall (cf. Figure 6). All regions below the 5th percentile of coherence values 2014–2016 are shown in blue. PAAs (<1st percentile) are shown in white. PAAs detected
in steep sections of the valley such as this may pose a threat to critical transport infrastructure between the Puna de Atacama plateau and the Andean foreland. Inset
map data: Google Maps.
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by dense cloud cover; therefore, validation with visual inspection of satellite imagery was not 
possible. However, inspection of the detected PAAs intersecting with the main highway shows that 
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Figure 6. Comparison of the number of potentially affected areas detected in the Quebrada del Toro
(A) to regional rainfall as recorded by the Global Precipitation Mission (B). (A) The number of PAAs
detected per time interval, with symbol sizes scaled linearly to the largest contiguous PAA for a given
date (dates with no PAAs detected were given an arbitrarily small symbol size). We hypothesise that
large contiguous PAAs are likely the result of soil moisture changes rather than potential land surface
movements (e.g., debris flows, mudflows). The change in amplitude between scenes is used as a proxy
for changes in soil moisture, where negative δAmplitude suggests increased soil moisture. Dates with
smaller maximum PAA area and δAmplitude ≈ 0 are more likely to contain PAAs unrelated to soil
moisture change.

After filtering for size (minimum 10 pixels or 300 m2) and reliability (discarding PAAs in “least
reliable” classification), the algorithm detected eight possible PAAs that potentially intersect with
transport lines along the valley floor (Figure 4B). No Google Earth historical imagery was available
for March 2017 or later and both Landsat-8 and Sentinel-2 images from the time period are obscured
by dense cloud cover; therefore, validation with visual inspection of satellite imagery was not
possible. However, inspection of the detected PAAs intersecting with the main highway shows
that the potentially affected regions are predominantly downslope of scree slopes and high-relief
gullying (Figure 7), making them likely candidates for mudflows or landslides that are typical of
the region.



Remote Sens. 2018, 10, 1272 13 of 19
Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 19 

 

 

Figure 7. Details of PAA overlap with highway infrastructure. Satellite optical images from this time 
are obscured by cloud cover, but detected PAAs are located downslope of scree slopes and gullying 
(A) and high-relief surfaces (B) with potential for landslides or mudflows. Satellite imagery from 
Google Earth Pro, CNES/Airbus, and Digital Globe. 

4. Discussion 

4.1. Advancements and Improvements Using Time Series of Coherence Data 

Weather- and daylight-independent, with near-global coverage and free accessibility, Sentinel-1 SAR 
data allows users to create robust databases of SAR values in regions of interest for natural hazard 
event detection and response. Using case studies from the region of Sarpol-e, Iran following the Mw 
7.3 earthquake on 12 November 2017 and a major infrastructural hub for mineral resources in 
northwestern Argentina, we demonstrate how such databases can provide valuable insights into 
detecting potentially affected areas following natural hazard events. 

The most important advancement of this method is the ability to create a pixel-by-pixel time 
series of coherence values over seasonal and meteorological cycles for a given region of interest. 
Variability of SAR coherence occurs due to natural cycles, such as wet-dry seasonal regional climatic 
patterns, but also due to anthropogenic causes, such as ploughing and growing seasons in 
agricultural areas. By constructing time series of each pixel’s coherence over these cycles, we 
determine where coherence loss is likely to be meaningful via the construction of reliability maps. 
These maps serve to guide user interpretation of detected PAAs. Constructing pixel-by-pixel time 
series of coherence allows the user to determine what magnitude of coherence loss is necessary for a 
given pixel in the region. For example, for a syn-event coherence value to fall below the, e.g., first 
percentile threshold for PAA detection, a lower coherence value will be required in regions with more 
inherent noise (e.g., a field or forest) than regions with less inherent noise (e.g., urban areas). This 
provides the user considerably more insight than a simple calculation of the coherence loss between 
syn-event coherence and a single pre-event coherence calculation. It also removes the need to alter 
the coherence data by means such as histogram matching to compare individual coherence estimates. 
The variability of coherence caused by atmospheric and other effects will be incorporated into the 
time series.  

In regions where seasonal differences are important, the coherence stack can be filtered by 
season and the event compared directly to the range of coherence values in the appropriate season. 
Filtering the coherence values by season is particularly useful in regions with marked differences, 
e.g., rainy and dry seasons, or agricultural growing seasons. For example, meaningful coherence loss 
in the non-growing season may be encompassed by the inherent noisiness of the data if the growing 

Figure 7. Details of PAA overlap with highway infrastructure. Satellite optical images from this time
are obscured by cloud cover, but detected PAAs are located downslope of scree slopes and gullying (A)
and high-relief surfaces (B) with potential for landslides or mudflows. Satellite imagery from Google
Earth Pro, CNES/Airbus, and Digital Globe.

4. Discussion

4.1. Advancements and Improvements Using Time Series of Coherence Data

Weather- and daylight-independent, with near-global coverage and free accessibility, Sentinel-1
SAR data allows users to create robust databases of SAR values in regions of interest for natural
hazard event detection and response. Using case studies from the region of Sarpol-e, Iran following
the Mw 7.3 earthquake on 12 November 2017 and a major infrastructural hub for mineral resources
in northwestern Argentina, we demonstrate how such databases can provide valuable insights into
detecting potentially affected areas following natural hazard events.

The most important advancement of this method is the ability to create a pixel-by-pixel time series
of coherence values over seasonal and meteorological cycles for a given region of interest. Variability
of SAR coherence occurs due to natural cycles, such as wet-dry seasonal regional climatic patterns,
but also due to anthropogenic causes, such as ploughing and growing seasons in agricultural areas.
By constructing time series of each pixel’s coherence over these cycles, we determine where coherence
loss is likely to be meaningful via the construction of reliability maps. These maps serve to guide
user interpretation of detected PAAs. Constructing pixel-by-pixel time series of coherence allows
the user to determine what magnitude of coherence loss is necessary for a given pixel in the region.
For example, for a syn-event coherence value to fall below the, e.g., first percentile threshold for PAA
detection, a lower coherence value will be required in regions with more inherent noise (e.g., a field or
forest) than regions with less inherent noise (e.g., urban areas). This provides the user considerably
more insight than a simple calculation of the coherence loss between syn-event coherence and a single
pre-event coherence calculation. It also removes the need to alter the coherence data by means such as
histogram matching to compare individual coherence estimates. The variability of coherence caused
by atmospheric and other effects will be incorporated into the time series.

In regions where seasonal differences are important, the coherence stack can be filtered by
season and the event compared directly to the range of coherence values in the appropriate season.
Filtering the coherence values by season is particularly useful in regions with marked differences, e.g.,
rainy and dry seasons, or agricultural growing seasons. For example, meaningful coherence loss in
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the non-growing season may be encompassed by the inherent noisiness of the data if the growing
season is included. To this end, a greater degree of coherence loss will be required during the growing
season or the wet season than during times when coherence is more stable (e.g., dry season, outside of
the growing season). This reduces the amount of noise during seasons with lower or more variable
coherence, and ensures that event-related coherence loss during stable or high-coherence times is
not missed because of a lower threshold when using the entire years’ coherence data. These subtler
analyses of the syn-event coherence change are only possible by exploiting time series of pre-event
coherence and cannot be gleaned from a single pre-event coherence estimate.

Multitemporal InSAR processing has been employed with high accuracy in other studies.
For example, the use of persistent scatterers to track surface deformation and associated damage
in urban environments, e.g., [34]. While a multitemporal InSAR approach using methods such as
persistent scatterers provides insightful and accurate results, it requires that data collection and
processing be performed after the event has occurred. This makes it poorly suited to rapid damage
assessment. Pre-event coherence stacks and reliability maps in our proposed method can be calculated
and maintained for a region of interest before a natural hazard event has occurred, meaning that the
syn-event coherence is the only interferometric processing that needs to be performed after an event.
Furthermore, coherence is a relatively simple calculation (compared to multitemporal interferometric
processing with phase unwrapping or persistent scatterers analysis) that can be performed on a suite of
different software platforms. Therefore, while our method does not provide the quantitative estimates
of damage, it is a tool that can be rapidly generated following an event to aid user interpretation of
potential damages.

4.2. Challenges of Mapping Potentially Affected Areas with Radar

Though the described processes offer a powerful and robust method to estimate regions potentially
affected by natural hazard events, there are nonetheless inherent limitations to the method and
the use of C-band radar. Most prominent of these is the applicability of C-band radar to highly
vegetated regions. Because the wavelength of the C-band radar signal interacts with the vegetation
canopy, e.g., [35,36], the coherence values of these regions may be too inherently noisy for meaningful
assessment of affected areas using this method. To test the applicability of the method to densely
vegetated regions, we used one year of SAR images of Freetown, Sierra Leone leading up to the large
mudslides that devastated the densely populated city on 14 August 2017. No discernible patterns
associated with the mudflow were detected in the event coherence image using this method. However,
the launch of the Sentinel-1B satellite has increased the repeat time to 6–12 days, resulting in higher
and more consistent coherence estimates between images with low temporal baseline (Figure 8). Thus,
as more data are collected and the databases become increasingly robust to allow for better estimates
of natural coherence variability, this problem may be constrained in the future.

In addition to vegetation, soil moisture or standing water directly impacts the coherence of
two SAR images [37–39]. This may prove beneficial in the case of flood extent mapping [40],
for example, but could result in extensive regions being flagged as potentially affected areas that
have not experienced a triggering natural hazard event. This is of greater concern when the method
is employed to detect potential events in remote regions, such as in our case study in the Quebrada
del Toro. Figure 6 shows the number of PAAs detected in each coherence image and the size of
the largest detected PAA compared to two indicators of potential soil moisture or standing water.
The Global Precipitation Mission (GPM) precipitation records half-hour estimations of precipitation,
but cannot always be directly linked to soil moisture. Therefore, we also use the change in Sentinel-1
amplitude (δAmplitude) between adjoining pairs as an additional proxy for soil moisture change.
Though a limited number of independent soil moisture estimates exist (e.g., SMAP, CCI), they have
proven unreliable in ground tests [41,42]. Because the presence of soil moisture, and particularly
standing water, will result in a decrease in received radar amplitude, a negative change in amplitude
(δAmplitude) between adjacent images may indicate an increase in soil moisture. Comparing these
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three time series, we observe that the largest and most extensive occurrences of PAAs in this region are
associated with time intervals where changes soil moisture are likely to be impacting large areas of the
scene. We observe order-of-magnitude larger contiguous PAA area in time intervals with negative
δAmplitude compared to, e.g., during the March 2017 example highlighted in Section 3.2. While this
does not provide a quantitative estimate of soil moisture, incorporating additional data constraints,
such as GPM and soil moisture proxies, can aid in the interpretation of large and extensive PAAs to
determine if a detected event is likely to be hazardous or resulting from soil moisture change.
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Figure 8. Coherence values averaged over the entire region of interest for all date combinations used
in the Quebrada del Toro case study. Though interferometric coherence in images where the temporal
spacing is larger, coherence values since the launch of Sentinel1-B have been generally high and will,
going forward, result in more robust time series than presently available.

4.3. Length and Temporal Spacing of Coherence Database

There are two main considerations when determining how large the database of coherence values
should be for a given region of interest. Though larger databases will result in more robust estimates,
due to storage and computing capacity issues, users may want to use the minimum database size
reasonable. Therefore, users should consider: (1) how coherent a region is likely to be; and (2) are there
important seasonal cycles in the region of interest? For example, in the case study in Sarpol-e, Iran,
we expect generally high coherence values due to the arid nature of the region. A temperate region
will require a longer time series to get accurate estimates of coherence variability. However, even in
regions that are semi-arid, seasonal cycles may cause large variation in coherence values between dry
and wet seasons. If the region requires separate seasonal coherence databases, a longer time series will
be desirable to ensure that each seasonal database remains robust.

Another consideration is the temporal spacing of SAR scenes in the database. After the launch
of Sentinel-1B (April 2016), the recurrence interval of SAR data collection of a region has regularised.
However, users who desire longer time series may encounter the problem that the recurrence interval
was longer during the period where only Sentinel-1A is available. A natural deterioration of coherence
occurs with increasing temporal baseline between SAR images, even for regions that are coherent.
Figure 9 shows the decrease in coherence for a coherent urban region of Sarpol-e, Iran. Though a
gradual decrease in coherence (~0.0014/week, R = −0.608) is observed with time, approximately
six months are required before the coherence drops below 0.9. We therefore infer that the inherent
coherence loss between two- and four-week temporal baselines should be minimal. In the case that the
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inherent decrease in coherence is high, a simple normalisation of values in the pre-event coherence
stack by temporal baseline can be implemented. However, when possible, it is always desirable to use
as consistent of temporal baseline as possible.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 19 
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Figure 9. Coherence loss with a decrease of ~0.0014/week (R = −0.608) from a primary date (7 October
2016) to all subsequent secondary dates for a stable, coherent region (urban building) in Sarpol-e,
Iran (see Figure 2A for location), demonstrating the protracted decrease in interferometric coherence
with time. Because the low rate of decay of the coherence signal in stable areas, we deem it acceptable
to compare the ~4-week recurrence interval Sentinel-1A SAR images to the ~2-week recurrence interval
Sentinel-1A/B images.

5. Conclusions

The open accessibility, near-global coverage, and high repeat time of Sentinel-1 C-band radar
allows for new advances in monitoring natural hazards on the Earth’s surface. By constructing a
database of SAR coherence values for regions of interest, where seismic or climatically triggered
natural hazards are likely to occur, we can now determine where coherence loss is meaningful,
and what magnitude of coherence loss related to an event is necessary to determine potentially affected
areas. Though the construction of a large coherence database may be computationally expensive and
time-consuming, this step can be done pre-emptively for regions of interest and maintained as new
data becomes available. The temporal database of coherence values can then be rapidly employed
to estimate damage following a natural hazard event. By using a time series of coherence values to
characterise the pre-event coherence, we account for the natural variability of coherence inherent to
different land covers across a region of interest. Furthermore, the method can be used not only for
rapid response following known events (e.g., earthquakes, heavy precipitation), but as a detection
tool in remote regions where events may go undetected by traditional monitoring means. Though we
focus our study on C-band radar provided by ESA’s Sentinel-1 mission, due to its high accessibility,
we point out that it could also improve potential damage mapping using other radar bands provided
a long enough time series is acquired. This is particularly true for X-band radar systems such as
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COSMO-SkyMed or TerraSAR-X, where different acquisition modes have a much higher spatial
resolution, but are also highly sensitive to surficial changes.

The estimation of potentially affected areas following this method, combined with pertinent local
data (e.g., population, infrastructure) creates a valuable tool for identifying and interpreting regions
that may be damaged following a natural hazard event. By understanding, quantifying, and mapping
the natural variability of coherence in a region of interest, both scientists and response teams will be
able to more effectively respond to the growing number of natural hazards posed by our increasingly
changing and volatile global system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/8/1272/
s1. Table S1: Sentinel-1 data used for the Iran database and event analysis, Table S2: Sentinel-1 data used for the
Quebrada del Toro database and event detection.
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