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Abstract

In this thesis, we treat the extreme Newman-Penrose components of both the
Maxwell field (s = ±1) and the linearized gravitational perturbations (or ”lin-
earized gravity” for short) (s = ±2) in the exterior of a slowly rotating Kerr black
hole. Upon different rescalings, we can obtain spin s components which satisfy the
separable Teukolsky master equation (TME). For each of these spin s components
defined in Kinnersley tetrad, the resulting equations by performing some first-order
differential operator on it once and twice (twice only for s = ±2), together with
the TME, are in the form of an ”inhomogeneous spin-weighted wave equation”
(ISWWE) with different potentials and constitute a linear spin-weighted wave
system. We then prove energy and integrated local energy decay (Morawetz) esti-
mates for this type of ISWWE, and utilize them to achieve both a uniform bound
of a positive definite energy and a Morawetz estimate for the regular extreme
Newman-Penrose components defined in the regular Hawking-Hartle tetrad.

We also present some brief discussions on mode stability for TME for the case of
real frequencies. This says that in a fixed subextremal Kerr spacetime, there is no
nontrivial separated mode solutions to TME which are purely ingoing at horizon
and purely outgoing at infinity. This yields a representation formula for solutions
to inhomogeneous Teukolsky equations, and will play a crucial role in generalizing
the above energy and Morawetz estimates results to the full subextremal Kerr
case.
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1. Introduction and overview

The stability conjecture of Kerr black holes says that metrics of the subextremal
Kerr family of spacetimes (M, g = gM,a) (|a| < M) are (expected to be) stable
against small perturbations of initial data as solutions to the vacuum Einstein
equations (VEE)

Ric[g]µν = 0, (1.1)

Ric[g]µν being the Ricci curvature tensor of the metric. Before approaching this
fully nonlinear problem, the null geodesic equations, the scalar wave equation, the
Maxwell equations and then some proper linearization of VEE are a sequence of
models with increasing accuracy for the nonlinear dynamics.

In the main part of this thesis, we consider the Maxwell equations for a real two-
form Fαβ:

∇αFαβ = 0 ∇[γFαβ] = 0 (1.2)

and solutions to some proper linearization of VEE–linearized gravitational pertur-
bations (linearized gravity)–on a slowly rotating Kerr background. Following the
Newman-Penrose (N-P) formalim Newman and Penrose (1962, 1963) to perform
tetrad perturbations, Teukolsky Teukolsky (1972) showed that some components of
Maxwell field and linearized gravity–the gauge invariant extreme spin components–
satisfy a single master equation, the Teukolsky master equation (TME). Each ex-
treme spin component and the quantities constructed by applying some differ-
ential operators up to certain times on it satisfy an inhomogeneous, linear wave
system. By treating these linear wave systems, we follow the author’s own works
Ma (2017a,b) to prove in this work the uniform boundedness of a positive definite
energy and an integrated local energy decay (Morawetz) estimate for each extreme
spin component. The pointwise decay estimates, which enjoy their own interests,
can be obtained in a standard way from these results. Moreover, from the work of
Dafermos et al. (2014), it is likely that we can generalize it to the full subextremal
Kerr case with our mode stability result Andersson et al. (2017b) for general spin
fields. On the other hand, these estimates for gauge invariant extreme spin compo-
nents are also crucial for linear stability of Kerr spacetimes. The aforementioned
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1. Introduction and overview

mode stability result for general spin fields on full subextremal Kerr spacetimes is
reviewed in the last part in this thesis.

We here give an overview of this thesis. Chapter 2 is devoted to introductory mate-
rials about the Kerr spacetimes, the extreme spin components and their governing
inhomogeneous, linear wave systems, the main results and a short summary of the
relevant results. We prove some red-shift estimates near horizon and Morawetz
estimates near infinity for different extreme spin components in Chapter 3, and
give a proof of the main results Theorem 2.4.2 in Chapter 4 under assumptions of
some estimates. These assumed estimates are then proved in Chapters 5 and 7 for
Schwarzschild case and slowly rotating Kerr case respectively, based on a version of
energy and Morawetz estimates (i.e. Theorem 2.4.1) for the wave systems proved
in Chapter 5 and Chapter 6 in Schwarzschild and slowly rotating Kerr spacetimes.
In Chapter 8, we briefly review our mode stability result for general spin fields on
subextremal Kerr backgrounds.

2



2. Preliminaries and main results

Contents
2.1. Kerr metric . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Teukolsky master equation for spin s components . . . 6

2.3. Coupled systems . . . . . . . . . . . . . . . . . . . . . . . 8

2.4. Main theorems . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5. Relevant results . . . . . . . . . . . . . . . . . . . . . . . 15

2.6. Further Preliminaries and Notations . . . . . . . . . . . 18

2.6.1. Well-posedness theorem . . . . . . . . . . . . . . . . . . 18

2.6.2. regular and integrable . . . . . . . . . . . . . . . . . . . 18

2.6.3. Generic constants and general rules . . . . . . . . . . . 19

2.1. Kerr metric

The subextremal Kerr Kerr (1963) family of spacetimes (M, gM,a) (|a| < M), in
Boyer-Lindquist (B-L) coordinates (t, r, θ, φ) Boyer and Lindquist (1967), has the
metric

gM,a =−
(
1− 2Mr

Σ

)
dt2 − 2Mar sin2 θ

Σ
(dtdφ+ dφdt)

+ Σ
∆
dr2 + Σdθ2 + sin2 θ

Σ

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2, (2.1)

where

∆(r) = r2 − 2Mr + a2 and Σ(r, θ) = r2 + a2 cos2 θ. (2.2)

A Kerr spacetime is parameterized by its mass M and angular momentum per
mass a, and describes a rotating, stationary (with ∂t Killing), axisymmetric (with
∂φ Killing), asymptotically flat vacuum black hole. Setting a = 0 recovers the

3



2. Preliminaries and main results

spherically symmetric Schwarzschild metric Schwarzschild (1916). The function
∆(r) has two zeros

r+ = M +
√
M2 − a2 and r− = M −

√
M2 − a2, (2.3)

which correspond to the locations of event horizon H and Cauchy horizon, respec-
tively. We will constrain our considerations in the closure of the exterior region
of a Kerr black hole, or in another way, in the domain of outer communication
(DOC) D. As mentioned below in Section 2.4, we will focus only on the future
development by symmetry, hence only the future part H+ of the event horizon
will be of interest for us. In what follows, whenever we say ”in a slowly rotating
Kerr spacetime”, it should always be understood as the DOC of a Kerr spacetime
(M, gM,a) with |a|/M ≤ a0/M � 1 sufficiently small.

Introduce the tortoise coordinate system (t, r∗, θ, φ)1, with r∗ defined by:

dr∗

dr
= r2+a2

∆
, r∗(3M) = 0. (2.4)

The B-L coordinate system fails to extend across the future event horizon H+

due to the singularity in the metric coefficients in (2.1). Instead, we define an
ingoing Eddington-Finkelstein (E-F) coordinate system (v, r, θ, φ̃) which is regular
on H+: {

dv = dt+ dr∗,

dφ̃ = dφ+ a(r2 + a2)−1dr∗.
(2.5)

We finally define a global Kerr coordinate system (t∗, r, θ, φ∗), via gluing the co-
ordinate system (ϑ = v − r, r, θ, φ̃) near horizon with the B-L coordinate system
(t, r, θ, φ) away from horizon smoothly, by{

t∗ = t+ χ1(r) (r∗(r)− r − r∗(r0) + r0) ,

φ∗ = φ+ χ1(r)φ́(r) mod 2π, dφ́/dr = a/∆.
(2.6)

Here, the smooth cutoff function χ1(r), which equals to 1 in [r+,M + r0/2] and
identically vanishes for r ≥ r0 with r0(M) fixed in Chapter 3, is chosen such that
the initial hypersurface2

Σ0 = {(t∗, r, θ, φ∗)|t∗ = 0} ∩ D (2.7)

1This is called as Regge-Wheeler Regge and Wheeler (1957) coordinate system when on
Schwarzschild.

2Here the initial hypersurface could be taken as {t∗ = D} hypersurface for any real value D,
but for convenience, we take it as in (2.7).
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2.1. Kerr metric

Figure 2.1.: Penrose diagram

is a spacelike hypersurface with

c(M) ≤ −g(∇t∗,∇t∗)|Σ0 ≤ C(M), (2.8)

c(M) and C(M) being two universal positive constants. We notice that

∂t∗ = ∂t , T and ∂φ∗ = ∂φ̃ = ∂φ, (2.9)

and denote ϕτ to be the 1-parameter family of diffeomorphisms generated by T .
Define constant time hypersurfaces

Στ = ϕτ (Σ0) = {(t∗, r, θ, φ∗)|t∗ = τ} ∩ D. (2.10)

They are spacelike hypersurfaces satisfying (2.8), and in particular, for r ≤ M +
r0/2, we have

1 ≤ −g(∇t∗,∇t∗)|Στ = 1 + 2Mr/Σ ≤ 3. (2.11)

For any 0 ≤ τ1 < τ2, we use the notations

D(τ1, τ2) =
⋃

τ∈[τ1,τ2]

Στ , H+(τ1, τ2) = ∂D(τ1, τ2) ∩H+. (2.12)

The reader may find the Penrose diagram Figure 2.1 useful.

The volume form of the spacetime manifold is

dVolM =

{
Σdtdr sin θdθdφ in B-L coordinates,
Σdt∗dr sin θdθdφ∗ in global Kerr coordinates,

(2.13)

and the volume form of the hypersurface Στ (τ ≥ 0) is

dVolΣτ = Σdr sin θdθdφ∗ in global Kerr coordinates. (2.14)

Unless otherwise specified, we will always suppress these volume forms in this
paper when the integral is over a spacetime region or a 3-dimensional submanifold
of Στ .
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2. Preliminaries and main results

2.2. Teukolsky master equation for spin s

components

Following the Newman-Penrose (N-P) formalim Newman and Penrose (1962, 1963),
we obtain N-P components of electromagnetic field

Ψ0 = Fµνl
µmν , Ψ1 = 1

2
Fµν(l

µnν +mµmν), Ψ2 = Fµνm
µnν , (2.15)

and the complete five N-P components of Weyl tensor

Φ0 =−Wlmlm, Φ1 = −Wlnlm, Φ2 = −Wlmmn,

Φ3 = −Wlnmn, Φ4 = −Wnmnm, (2.16)

by projecting the Maxwell tensor Fαβ and the Weyl tensor Wαβγδ onto the Kin-
nersley null tetrad (l, n,m,m) Kinnersley (1969):

lµ = 1
∆

(r2 + a2,∆, 0, a),

nν = 1
2Σ

(r2 + a2,−∆, 0, a),

mµ = 1√
2ρ̄

(
ia sin θ, 0, 1, i

sin θ

)
, (2.17)

and mµ and ρ̄ being the complex conjugate of mµ and ρ = r− ia cos θ respectively.
The Maxwell equations, and the full set of N-P equations comprising the com-
mutation relations, the Ricci identities, the eliminant relations and the Bianchi
identities in (Chandrasekhar, 1998, Chapter 1.8), are both coupled first–order dif-
ferential systems, with the later one linking the tetrad, the spin coefficients and
these five N-P components of Weyl tensor.

The background N-P components on Kerr for Weyl tensor are

ΦB
0 = ΦB

1 = ΦB
3 = ΦB

4 = 0, ΦB
2 = −Mρ̄−3. (2.18)

We perturb in the N-P equations the tetrad, the spin coefficients and the five N-P
components by lT = lB + lP , κT = κB +κP ,3 ΦT

0 = ΦB
0 +ΦP

0 , etc, and the complete
set of equations for linearized gravity is then obtained from the N-P equations
by keeping the perturbation terms (with superscript P ) only to first order. The
total parts of the perturbed extreme N-P components ΦT

0 and ΦT
4 (equal to the

perturbation parts ΦP
0 and ΦP

4 ) for linearized gravity are the ”ingoing and outgoing
radiative parts”, and are invariant under gauge transformations and infinitesimal
tetrad rotations. From now on, we will drop the superscript T and still denote
these perturbed extreme N-P components as Φ0 and Φ4. Similarly, we can also

3κB is one of the background spin coefficients used in (Chandrasekhar, 1998, Chapter 1.8).
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2.2. Teukolsky master equation for spin s components

perturb the N-P components of Maxwell field, and define the perturbed, gauge
invariant extreme N-P components ΨT

0 and ΨT
2 , or simply Ψ0 and Ψ2.

Teukolsky Teukolsky (1972) derived the decoupled equations on Kerr backgrounds
for the spin s components ψ[s] (s = ±2 for linearized gravity and s = ±1 for
Maxwell field)

ψ[+1] = ∆Ψ0, ψ[−1] = ∆−1ρ2Ψ2, (2.19a)

ψ[+2] = ∆2Φ0, ψ[−2] = ∆−2ρ4Φ4, (2.19b)

and showed that these decoupled equations are in fact separable and governed by
a single master equation–the celebrated Teukolsky Master Equation (TME)–given
in B-L coordinates by4

−
[

(r2+a2)2

∆
− a2 sin2 θ

]
∂2ψ[s]

∂t2
− 4Mar

∆

∂2ψ[s]

∂t∂φ
−
[
a2

∆
− 1

sin2 θ

]
∂2ψ[s]

∂φ2

+ ∆s ∂
∂r

(
∆−s+1 ∂ψ[s]

∂r

)
+ 1

sin θ
∂
∂θ

(
sin θ

∂ψ[s]

∂θ

)
+ 2s

[
a(r−M)

∆
+ i cos θ

sin2 θ

]
∂ψ[s]

∂φ

+ 2s
[
M(r2−a2)

∆
− r − ia cos θ

]
∂ψ[s]

∂t
− (s2 cot2 θ + s)ψ[s] = 0.

(2.20)

The Kinnersley tetrad is, however, singular on H+ in ingoing E-F coordinates,
suggesting that the perturbed N-P components are not all regular there. We
perform a null rotation by  l→ l̃ = ∆/(2Σ) · l,

n→ ñ = (2Σ)/∆ · n,
m→ m,

(2.21)

and the resulting tetrad (l̃, ñ,m,m), namely the Hawking-Hartle (H-H) tetrad
Hawking and Hartle (1972), is in fact regular up to and on H+ in global Kerr
coordinates. The regular extreme N-P components of Maxwell field and linearized
gravity in regular H-H tetrad are then

Ψ̃0(F) = Fµν l̃
µmν = 1

2Σ
ψ[+1], Ψ̃2(F) = Fµνm

µñν = 2Σ
ρ2
ψ[−1], (2.22)

Φ̃0(W) = −Wl̃ml̃m = 1
4Σ2ψ[+2], Φ̃4(W) = −Wñmñm = 4Σ2

ρ4
ψ[−2], (2.23)

respectively. The results in this paper will be with respect to complex scalars Φ̃0

and Φ̃4, and Ψ̃0 and Ψ̃2.

4These scalars differ with the ones used in Teukolsky (1972) by a rescaling of ∆s.
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2. Preliminaries and main results

2.3. Coupled systems

Denote the future-directed ingoing and outgoing principal null vector fields in B-L
coordinates

Y =
(r2+a2)∂t+a∂φ

∆
− ∂r, V =

(r2+a2)∂t+a∂φ
∆

+ ∂r. (2.24a)

From TME (2.20), the equation for ψ[s] is(
Σ2g + 2is

(
cos θ
sin2 θ

∂φ − a cos θ∂t
)
− (s2 cot2 θ + s)

)
ψ[s] = − 2sZψ[s], (2.25)

with 2g being the scalar wave operator for the metric g, and

Z = (r −M)Y − 2r∂t. (2.26)

Construct the quantities

φ0
+1 = ψ[+1]/r

2, φ1
+1 = rY (rφ0

+1), (2.27a)

φ0
−1 = ∆/r2ψ[−1], φ1

−1 = rV (rφ0
−1). (2.27b)

for spin ±1 components, and

φ0
+2 = ψ[+2]/r

4, φ1
+2 = rY (rφ0

+2), φ2
+2 = rY (rφ1

+2), (2.28a)

φ0
−2 = ∆2/r4ψ[−2], φ1

−2 = −rV (rφ0
−2), φ2

−2 = −rV (rφ1
−2), (2.28b)

for spin ±2 components. The upper index here denotes the number of times the
differential operator rY r or −(rV r) is performed. We should notice that though it
is ∆/(r2 +a2)V but not V which is a regular vector field on H+, the variables {φis}
are indeed smooth up to and on future horizon if the regular N-P scalars Ψ̃2 and
Φ̃4 are. In global Kerr coordinates, the regular vector field Y equals to −∂r + ∂t∗
in [r+,M + r0/2] and is r2+a2

∆
∂t∗ + a

∆
∂φ∗ − ∂r for r ≥ r0.

The governing equations for these quantities are5

L1
+1φ

0
+1 = F 0

+1 = 2(r2−3Mr+2a2)
r3

φ1
+1 −

4(a2∂t+a∂φ)φ0+1

r
, (2.29a)

L1
+1φ

1
+1 = F 1

+1 = −2(a2∂t + a∂φ)φ0
+1, (2.29b)

L1
−1φ

0
−1 = F 0

−1 = −2(r2−3Mr+2a2)
r3

φ1
−1 +

4(a2∂t+a∂φ)φ0−1

r
, (2.30a)

5There exists a different set for variables of which the governing wave systems contain no ∂t
derivative terms on the right hand side (RHS). See Appendix A.
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2.3. Coupled systems

L1
−1φ

1
−1 = F 1

−1 = −2(a2∂t + a∂φ)φ0
−1, (2.30b)

L0
+2φ

0
+2 = F 0

+2 = 4(r2−3Mr+2a2)
r3

φ1
+2 −

8(a2∂t+a∂φ)φ0+2

r
, (2.31a)

L1
+2φ

1
+2 = F 1

+2 = 2(r2−3Mr+2a2)
r3

φ2
+2 + 6Mr−12a2

r
φ0

+2

− 4(a2∂t+a∂φ)φ1+2

r
− 6(a2∂t + a∂φ)φ0

+2, (2.31b)

L1
+2φ

2
+2 = F 2

+2 = − 8(a2∂t + a∂φ)φ1
+2 − 12a2φ0

+2, (2.31c)

and

L0
−2φ

0
−2 = F 0

−2 = 4(r2−3Mr+2a2)
r3

φ1
−2 +

8(a2∂t+a∂φ)φ0−2

r
, (2.32a)

L1
−2φ

1
−2 = F 1

−2 = 2(r2−3Mr+2a2)
r3

φ2
−2 + 6Mr−12a2

r
φ0
−2

+
4(a2∂t+a∂φ)φ1−2

r
+ 6(a2∂t + a∂φ)φ0

−2, (2.32b)

L1
−2φ

2
−2 = F 2

−2 = 8(a2∂t + a∂φ)φ1
−2 − 12a2φ0

−2, (2.32c)

respectively. The subscript here indicates the spin weight s = ±1, ±2, and the
operators L0

s and L1
s, given by

L0
s = Σ2g + 2is

(
cos θ
sin2 θ

∂φ − a cos θ∂t
)
− s2

(
cot2 θ + r2+2Mr−2a2

2r2

)
, (2.33a)

L1
s = Σ2g + 2is

(
cos θ
sin2 θ

∂φ − a cos θ∂t
)
− s2

(
cot2 θ + r2−2Mr+2a2

r2

)
, (2.33b)

are both called as ”spin-weighted wave operators”, but with different potentials.

Remark 2.3.1. The underlying reason for applying |s| times the first-order dif-
ferential operators to the spin s components is to make the nonzero boost weight
vanishing. This is closely related to Chandrasekhar transformation Chandrasekhar
(1975) on Schwarzschild as well.

The equations (2.29)–(2.32) for φis are in either of the following forms:

L0
sψ = F ; (2.34a)

L1
sψ = F, (2.34b)

which are called as ”inhomogeneous spin-weighted wave equations” (ISWWE) in
this thesis. When there is no confusion of which spin component we are treating,
we may suppress the subscript of φis and simply write as φi.

9



2. Preliminaries and main results

Remark 2.3.2. After making the substitutions ∂t ↔ −iω, ∂φ ↔ im, and separat-
ing the operators Lk

s (k = 0, 1), the angular parts are the spin-weighted spheroidal
harmonic operator of angular Teukolsky equation. The radial operator of L1

s is
the sum of the radial part of the rescaled scalar wave operator Σ2g and a po-
tential s2(r2 − ∆ − a2)/r2, and reduces to the radial operator for Fackerell-Ipser
(F-I) equation Fackerell and Ipser (1972) or Regge-Wheeler equation Regge and
Wheeler (1957) when on Schwarzschild background (a = 0), while the one of L0

s

is the sum of the radial part of Σ2g and another potential s2(∆ + a2)/(2r2). See
more details in Section 5.2 for Schwarzschild case and Section 6.2 for Kerr case.

We also note that in the non-static Kerr case (a 6= 0), the classical F-I operator in
Fackerell and Ipser (1972) for Maxwell field has an imaginary zeroth order term
in the potential, thus being quite different from the operator L1

s here in which the
imaginary coefficients are accompanied by first order ∂t and ∂φ derivatives. This
is the main difference which enables us in this paper to not introduce fractional
derivative operators as in Andersson and Blue (2015a) which treats the classical
F-I equation.

2.4. Main theorems

The TME admits a symmetry that ∆sψ[−s](−t, r, θ,−φ) and ψ[s](t, r, θ, φ) satisfy
the same equation, hence we focus only on the future time development in this
paper, and one could easily obtain the analogous estimates in the past time direc-
tion.

For any complex-valued smooth function ψ :M→ C with spin weight s, we define
in global Kerr coordinates for any τ ≥ 0 that

|∂ψ(t∗, r, θ, φ∗)|2 = |∂t∗ψ|2 + |∂rψ|2 + |∇/ψ|2, (2.35)

Eτ (ψ) =

∫
Στ

|∂ψ|2, (2.36)

and in ingoing E-F coordinates for any τ2 > τ1 ≥ 0 that

EH+(τ1,τ2)(ψ) =

∫
H+(τ1,τ2)

(|∂vψ|2 + |∇/ψ|2)r2dv sin θdθdφ̃. (2.37)

The ∇/ used here are not the standard covariant angular derivatives ∇̌/ on sphere
S2(t∗, r), but the spin-weighted version of them, and we take ∇/ to be any one of

10



2.4. Main theorems

∇/ j (j = 1, 2, 3) defined by
r∇/ 1 = r∇̌/ 1 −

is cosφ
sin θ

= (− sinφ∂θ − cosφ
sin θ

cos θ∂φ∗)− is cosφ
sin θ

,

r∇/ 2 = r∇̌/ 2 −
is sinφ
sin θ

= (cosφ∂θ − sinφ
sin θ

cos θ∂φ∗)− is sinφ
sin θ

,

r∇/ 3 = r∇̌/ 3 = ∂φ∗ .

(2.38)

In global Kerr coordinates, we can express the modulus square of ∇/ψ as

|∇/ψ|2 =
∑
i=1,2,3

|∇/ψ|2 = 1
r2

(
|∂θψ|2 +

∣∣∣ cos θ∂φ∗ψ+isψ

sin θ

∣∣∣2 + |∂φ∗ψ|2
)

= 1
r2

(
|∂θψ|2 +

∣∣∣∂φ∗ψ+is cos θψ

sin θ

∣∣∣2 + s2|ψ|2
)
. (2.39)

In particular, note from (2.39) that |∇/ψ|2, and thus |∂ψ|2, already have control
over r−2|ψ|2. The same expressions (2.38) and (2.39) hold true in B-L coordinates
and ingoing E-F coordinates due to (2.9). For convenience of calculations, we may
always refer to these expressions with ∂φ in place of ∂φ∗ without confusion.

For any smooth function ψ with spin weight s, we define for any multi-index
i = (i1, i2, i3, i4, i5) with ik ≥ 0 (k = 1, 2, 3, 4, 5)

∂iψ = ∂i1t∗∂
i2
r ∇/

i3
1 ∇/

i4
2 ∇/

i5
3 ψ. (2.40)

Denote a few Morawetz densities by6

Mdeg(ψ) = r−1−δ|∂rψ|2 + χtrap(r)(r−1−δ|∂t∗ψ|2 + r−1|∇/ψ|2), (2.41a)

M(ψ) = r−1−δ(|∂rψ|2 + |∂t∗ψ|2) + r−1|∇/ψ|2, (2.41b)

M̃deg(ψ) = r−1|∂rψ|2 + χtrap(r)r−1(|∂t∗ψ|2 + |∇/ψ|2), (2.41c)

M̃(ψ) = r−1|∂ψ|2. (2.41d)

Here, χtrap(r) = (1 − 3M/r)2(1 − η[r−trap,r
+
trap](r)), η[r−trap,r

+
trap](r) is the indicator

function in the radius region bounded by minimal and maximal trapped radii
r±trap(ε0,M) with ε0 chosen in Theorem 2.4.1 below, and δ ∈ (0, 1/2) is an arbi-
trary constant. Note that when ε0 → 0, r±trap(ε0,M)→ rtrap(0,M) = 3M .

Theorem 2.4.1. (Energy and Morawetz estimate for the inhomogeneous spin-
weighted wave systems) In the DOC of a slowly rotating Kerr spacetime (M, g =
gM,a), given any regular Maxwell field7 Fαβ to the Maxwell equations (1.2) or

6We should distinguish among these different notations that one with a tilde means there is no
extra r−δ power in the coefficients of r- or t∗- derivative terms and one with the subscript
deg means there is the trapping degeneracy in the trapped region, and vice versa.

7”regular Maxwell field” is defined in Definition 2.6.1.
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2. Preliminaries and main results

any smooth8 regular extreme N-P components as in Section 2.2 which vanish near
spatial infinity, ψ = φjs defined as in (2.27) and (2.28) satisfies an ”inhomogeneous
spin-weighted wave equation” (ISWWE)

Li
sψ = F, (2.42)

which takes the form of the corresponding subequation in the linear wave system
(2.29)–(2.32) with s = ±1 or ±2 being the spin weight and Li

s defined as in (2.33),
and let ϕis be any one of{

r4−δφ0
+2, r

2−δφ1
+2, φ

2
+2, φ̃

0
−2, φ̃

1
−2, φ

2
−2

}
(2.43)

with the same upper and lower indexes. Then, for any 0 < δ < 1/2, there exist
universal constants ε0 = ε0(M) and C = C(M, δ,Σ0) = C(M, δ,Στ ) such that for
all |a|/M ≤ a0/M ≤ ε0 and any τ ≥ 0, the following estimates hold true:

• for |s| = 1,

Eτ (ψ) + EH+(0,τ)(ψ) +

∫
D(0,τ)

Mdeg(ψ) ≤ C

|s|∑
j=0

E0(φjs) + CE(F ). (2.44)

Here, the error term E(F ) coming from the source F takes the form of

E(F ) =

∣∣∣∣∫
D(0,τ)

1
Σ
<
(
F∂tψ̄

)∣∣∣∣+

∫
D(0,τ)

r−3+δ|F |2 (2.45)

with <(·) denoting the real part;

• for (s, i) = (+2, 0) or (+2, 1),

Eτ (ϕ
i
s) + EH+(0,τ)(ϕ

i
s) +

∫
D(0,τ)

M̃deg(ϕis) ≤ C
(
Etotal

0 (s) + E is
)

; (2.46a)

• for other combinations of (s, i) with |s| = 2,

Eτ (ϕ
i
s) + EH+(0,τ)(ϕ

i
s) +

∫
D(0,τ)

Mdeg(ϕis) ≤ C
(
Etotal

0 (s) + E is
)
. (2.46b)

8In fact, the N-P components should be viewed as sections of a complex line bundle. Therefore,
”smooth” means that these components and their derivatives to any order with respect to
(∂t∗ , ∂r,∇/ 1,∇/ 2,∇/ 3) are continous.

12
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The expressions of Etotal
0 (s) are given in (6.25), and the error terms here are

E is = E imain,s + E iex,s, (2.47)

with

E imain,+2 =

∣∣∣∣∫
D(0,τ)

Σ−1<
(
F i

+2∂tφ
i
+2

)∣∣∣∣
+ |a|

M

∫
D(0,τ)

(
M̃(r4−δφ0

+2) + M̃(r2−δφ1
+2) + Mdeg(φ2

+2)
)
, (2.48a)

E imain,−2 =

∣∣∣∣∫
D(0,τ)

Σ−1<
(
F i
−2∂tφ

i
−2

)∣∣∣∣
+ |a|

M

∫
D(0,τ)

(
M(φ̃0) + M(φ̃1) + Mdeg(φ2

−2) + |∇/ φ̃0|2 + |∇/ φ̃1|2
)
,

(2.48b)

and

E0
ex,+2 =ε0

∫
D(0,τ)

M̃(r4−δφ0
+2) + 1

ε0

∫
D(0,τ)

r−3|φ1
+2|2, (2.49a)

E1
ex,+2 = ε1

∫
D(0,τ)

M̃(r2−δφ1
+2) + 1

ε1

∫
D(0,τ)

(
M̃deg(r4−δφ0

+2) +
|φ2+2|2

r3

)
, (2.49b)

E2
ex,+2 = 0, (2.49c)

E0
ex,−2 = ε0

∫
D(0,τ)

M(φ̃0) + 1
ε0

∫
D(0,τ)

r−3|φ̃1
−2|2, (2.49d)

E1
ex,−2 = ε1

∫
D(0,τ)

M(φ̃1) + 1
ε1

∫
D(0,τ)

(
r−3|φ2

−2|2 + r−2|φ̃0
−2|2

)
, (2.49e)

E2
ex,−2 = 0. (2.49f)

Theorem 2.4.2. Under the same assumptions of Theorem 2.4.1, for any 0 < δ <
1/2 and nonnegative integer n, there exist universal constants ε0 = ε0(M) and
C = C(M, δ,Σ0, n) = C(M, δ,Στ , n) such that for all |a|/M ≤ a0/M ≤ ε0 and any
τ ≥ 0, it holds true for regular extreme N-P components:∑

|k|≤n

∫
D(0,τ)

(
M̃(∂kΦ

(0)
0 ) + M̃(∂kΦ

(1)
0 ) + Mdeg(∂kΦ

(2)
0 )
)

+
∑
|k|≤n

2∑
i=0

(
Eτ (∂

kΦ
(i)
0 ) + EH+(0,τ)(∂

kΦ
(i)
0 )
)
≤ C

∑
|k|≤n

2∑
i=0

E0(∂kΦ
(i)
0 ), (2.50a)

∑
|k|≤n

∫
D(0,τ)

(
M(∂kΦ

(0)
4 ) + M(∂kΦ

(1)
4 ) + Mdeg(∂kΦ

(2)
4 )
)

13
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+
∑
|k|≤n

2∑
i=0

(
Eτ (∂

kΦ
(i)
4 ) + EH+(0,τ)(∂

kΦ
(i)
4 )
)
≤ C

∑
|k|≤n

2∑
i=0

E0(∂kΦ
(i)
4 ), (2.50b)

and∑
|i|≤n

∫
D(0,τ)

(
M̃(∂iΨ

(0)
0 ) + Mdeg(∂iΨ

(1)
0 )
)

+
∑
|i|≤n

∑
k=0,1

(
Eτ (∂

iΨ
(k)
0 ) + EH+(0,τ)(∂

iΨ
(k)
0 )
)
≤ C

∑
|i|≤n

∑
k=0,1

E0(∂iΨ
(k)
0 ), (2.50c)

∑
|i|≤n

∫
D(0,τ)

(
M(∂iΨ

(0)
2 ) + Mdeg(∂iΨ

(1)
2 )
)

+
∑
|i|≤n

∑
k=0,1

(
Eτ (∂

iΨ
(k)
2 ) + EH+(0,τ)(∂

iΨ
(k)
2 )
)
≤ C

∑
|i|≤n

∑
k=0,1

E0(∂iΨ
(k)
2 ). (2.50d)

Here,

Φ
(0)
0 = r4−δΦ̃0, Φ

(1)
0 = r4−δY Φ̃0, Φ

(2)
0 = r4Y Y Φ̃0; (2.51a)

Φ
(0)
4 = Φ̃4, Φ

(1)
4 = r∆

r2+a2
V (rΦ

(0)
4 ), Φ

(2)
4 = r∆

r2+a2
V (rΦ

(1)
4 ), (2.51b)

and

Ψ
(0)
0 = r2−δΨ̃0, Ψ

(1)
0 = r2Y Ψ̃0, (2.51c)

Ψ
(0)
2 = Ψ̃2, Ψ

(1)
2 = r∆

r2+a2
V (rΨ̃2). (2.51d)

Let us give a few remarks before going further.

Remark 2.4.1. The trapping degeneracy for the Morawetz densities Mdeg(∂kΦ
(2)
0 ),

Mdeg(∂kΦ
(2)
4 ), Mdeg(∂kΨ

(1)
0 ) and Mdeg(∂kΨ

(1)
2 ) with |k| ≤ n − 1 can be manifestly

removed. We shall only focus on the n = 0 case, since as shown in Section 4.1, the
n ≥ 1 cases follow straightforwardly from the n = 0 case.

Remark 2.4.2. The energy and Morawetz estimate (2.50a) or (2.50b) for the spin-
2 case is obtained by treating the system (2.31) or (2.32) for φis, and is a single
estimate at three levels of regularity for each extreme spin component, since φ2

s in-
volves at most second-order derivatives of φ0

s. Therefore, in spite of the well-known
trapping phenomenon, we prove Morawetz estimates which bound spacetime in-
tegrals of nondegenerate Morawetz densities of φ0

s and φ1
s in the trapped region.

However, the three levels of regularity must be treated simultaneously. One one
hand, to estimate the inhomogeneous terms on the RHS of (2.31) and (2.32), it
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is necessary to eliminate the trapping degeneracy in the Morawetz estimates for
φ0
s and φ1

s by considering one more order of derivative; on the other hand, it is
possible to close the three estimates simultaneously, because the RHS of (2.31)
and (2.32) are at two levels of regularity at most, involving no derivatives of φ2

s

and at most one of φ0
s and φ1

s. Similar phenomenon holds for the spin-1 case.

Remark 2.4.3. In the spin-1 case, we find that the equation (2.29b) and (2.30b)
for φ1

s is coupled to φ0
s. When |a|/M ≤ a0/M � 1 is sufficiently small, however, the

coupling effect with φ0
s in (2.29b) and (2.30b) is weak. This is the main observation

suggesting that one may be able to run through the approach from Schwarzschild
case to slowly rotating Kerr case. In the spin-2 case, note that the systems (2.31)
and (2.32) are, however, neither weakly coupled, a fact caused by the presence
of the φ1

s term in (2.31a) and (2.32a), or the φ0
s term in (2.31b) and (2.32b).

This is an essential difference compared to the Maxwell (s = ±1) case. Take the
system (2.31) for s = +2 for example. Our approach here relies on an estimate
bounding φ1

+2 from φ2
+2 by employing the differential relation (2.28a) between

them, which facilitates the treatment for the system in a rough (but accurate in
the Schwarzschild case) sense that the error term in the Morawetz estimate for
(2.31a) arising from the inhomogeneous term can be controlled by adding a large
amount of Morawetz estimate of (2.31c) to the Morawetz estimate of (2.31a); see
Chapter 4.

Remark 2.4.4. There remain some difficulties when estimating the error terms
E(F ) and E is in the trapped region and in the large radius region. We also take
the system (2.31) for s = +2 as an example to illustrate these difficulties. It is

obvious that the term
∣∣∣∫D(0,τ)

1
Σ
<
(
F 2

+2∂tφ
2
+2

)∣∣∣ in E2
+2 can not be estimated directly

because of the trapping degeneracy present in the t∗- and angular derivatives terms
in the Morawetz density Mdeg(φ2

+2). In the large radius region, since there is an r−δ

power loss in Mdeg(φ1
+2) and Mdeg(φ0

+2), the error term
∫
D(0,τ)

r−3+δ|F 2
+2|2 would

not be bounded by C(Mdeg(φ1
+2) +Mdeg(φ0

+2)). There are other error terms where
these two difficulties in different regions are present as well, and we will show how
to treat them in the main proof Chapters 5 and 7.

2.5. Relevant results

The scalar wave equation in the DOC of vacuum black holes has been studied
extensively in the last 15 years. On a Schwarzschild background, uniform bound-
edness of scalar wave was first obtained in Kay and Wald (1987), while a Morawetz
Morawetz (1968) type multiplier, which is first introduced to black hole background
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in Blue and Soffer (2003), has been utilized in many works, such as Blue and Sof-
fer (2009), Dafermos and Rodnianski (2009), to achieve Morawetz estimate. In
non-static (a 6= 0) Kerr spacetimes, the fact that the Killing vector field ∂t fails to
be globally timelike as in Schwarzschild case raises a difficulty in constructing a
uniformly bounded positive energy or a nonnegative conserved energy. Moreover,
the location where the null geodesics can be trapped is enlarged from r = 3M in
Schwarzschild to a radius region in Kerr case. Both of the two facts that there
is a lack of Killing vector fields (the ∂t and ∂φ) to commute with the scalar wave
operator and these two Killing vector fields do not span a globally timelike direc-
tion in the DOC render one to obtain the uniform boundedness or decay estimates
for the field itself. However, three independent, different approaches Tataru and
Tohaneanu (2011), Andersson and Blue (2015b), Dafermos and Rodnianski (2010)
have been developed on slowly rotating Kerr background to achieve uniform bound
of a positive definite energy (albeit not conserved) and Morawetz estimate. Differ-
ent pointwise decay estimates are also proved there. In particular, the separability
of the wave equation or the complete integrability of the geodesic flow first found
in Carter (1968) is a point of crucial importance in these works.

Decay behaviours for Maxwell field have been proved in Blue (2008) outside a
Schwarzschild black hole, and on some spherically symmetric backgrounds in Ster-
benz and Tataru (2015). The works above focus on estimating the middle com-
ponent which satisfies a decoupled, separable Fackerell-Ipser equation Fackerell
and Ipser (1972) in a form similar to scalar wave equation, and then make use
of these estimates to achieve Morawetz estimates and decay estimates for the ex-
treme components. In contrast with these works, Pasqualotto (2016) treats the
extreme components satisfying the TME by applying some first-order differential
operators to the extreme components, which then also satisfy the Fackerell-Ipser
equation, while a superenergy tensor is constructed in Andersson et al. (2016) to
yield a conserved energy current when contracted with ∂t. In particular, the con-
structed superenergy tensor vanishes for the non-radiating Coulomb field. A decay
estimate is also obtained in Ghanem (2014) under the assumption of a Morawetz
estimate. We refer to the recent paper Andersson et al. (2016) for a more complete
description of the literature in Maxwell equations on Schwarzschild background.

The method of linearizing VEE subject to metric perturbations was carried out
for the Schwarzschild metric in Regge and Wheeler (1957), Vishveshwara (1970),
Zerilli (1970). In these papers, the time and angular dependence can be easily
separated out from the equations due to the metric being static and spherically
symmetric. The resulting radial equations can be reduced to Regge-Wheeler equa-
tion governing the odd-parity perturbations and Zerilli equation governing the
even-parity perturbations. In particular, these equations were derived later in
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Moncrief (1974) without assuming any gauge conditions. The linear stability of
Schwarzschild metric has been resolved recently in Dafermos et al. (2016), Hung
et al. (2017), with the former one starting from a Regge-Wheeler type equation
satisfied by some scalar constructed from Chandrasekhar transformation Chan-
drasekhar (1975) by applying some second order differential operator to the ex-
treme component and the later one treating Regge-Wheeler-Zerilli-Moncrief sys-
tem. The energy and Morawetz estimates, as well as decay estimates, for this
system are also obtained in Andersson et al. (2017a).

For nonzero integer spin fields in the DOC of a Kerr spacetime, only a few results
about stability issue can be found in the literature. The only result for Maxwell
field we are aware of is given in Andersson and Blue (2015a) on slowly rotating Kerr
background, in which energy and Morawetz estimates for both the full Maxwell
equations and the Fackerel-Ipser equation for the middle component are proved by
introducing fractional derivative operators to treat the presence of an imaginary
potential term in Fackerel-Ipser equation. The estimates therein enable the au-
thors to prove a uniform bound of a positive definite energy and the convergence
property of the Maxwell field to a stationary Coulomb field. Turning to the ex-
treme components, as mentioned already, they satisfy decoupled, separable TME
(2.20). Differential relations between the radial parts of the modes with opposite
extreme spin weights, as well as similar relations between the angular parts, are
derived in Starobinsky and Churilov (1973), Teukolsky and Press (1974), known as
”Teukolsky-Starobinsky Identities”. In Whiting (1989), it is shown that by assum-
ing some proper boundary conditions the TME admits no modes with frequency
having positive imaginary part, or in another way, no exponentially growing mode
solutions exist. This mode stability result is recently generalized to the case of
real frequencies in Shlapentokh-Rothman (2015) for scalar field and in our paper
Andersson et al. (2017b) for general spin fields. We mention here the papers Fin-
ster and Smoller (2016) which discusses the stability problem for each azimuthal
mode solution to TME, Klainerman and Szeftel (2017) which proves the nonlinear
stability of Schwarzschild spacetimes under axially symmetric polarized perturba-
tions and Dafermos et al. (2017) in which part of this thesis, that is, the energy
and Morawetz estimates for spin ±2 components are also proved but with different
techniques.
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2.6. Further Preliminaries and Notations

2.6.1. Well-posedness theorem

We state here a well-posedness (WP) theorem for a general system of linear wave
equations, cf. (Bär et al., 2007, Chapter 3.2). Due to the fact that smooth initial
data which vanish near spatial infinity can be approached by smooth, compactly
supported data, we restrict our considerations on initial data which are smooth
and of compact support on initial hypersurface Σ0.

Proposition 2.6.1. For any 1 ≤ n ∈ N+ and 0 ≤ |a| < M , let Σ0 be an initial
spacelike hypersurface defined as in (2.10) in the DOC D of a Kerr spacetime
(M, gM,a), and let ϕi0, ϕi1 be compactly supported smooth sections in a vector
bundle E over the manifold D, i = 1, 2, · · · , n. Then there exists a unique solution
ϕ = (ϕi)i=1,2,··· ,n, with ϕi ∈ C∞(D+(Σ0) ∩ D,E), to the system of linear wave
equations {

Lϕϕ = 0
ϕi|Σ0 = ϕi0, nµΣ0

∂µϕ
i|Σ0 = ϕi1, ∀i = 1, 2, · · · , n. (2.52)

Here, D+(Σ0) is the future domain of dependence of Σ0, Lϕ is a linear wave
operator for ϕ and nΣ0 = nµΣ0

∂µ is the future-directed unit normal vector field of
initial hypersurface Σ0. Moreover, ϕ is continuously dependent on the initial data
(ϕ0, ϕ1) and C∞-dependent on the parameter a, i.e. the map

(ϕ0, ϕ1)× a 7→ ϕ (2.53)

is a C0 × C∞ map. By finite speed of propagation, the solution ϕ will be smooth
and compactly supported on each Στ for τ ≥ 0.

We apply this WP theorem to the linear wave systems (2.29)–(2.32) of ϕ =

(φ0
s, φ

1
s, · · · , φ

|s|
s ), and ensure the existence and uniqueness of the solution for any

given compactly supported smooth initial data.

2.6.2. regular and integrable

Definition 2.6.1. • A two-form Fαβ to the Maxwell equations (1.2), with all
components in global Kerr coordinates being smooth in the exterior region
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of the Kerr spacetime, admitting a smooth extension to the closure of the
exterior region in the maximal analytic extension and vanishing near spa-
tial infinity up to a charged stationary Coulomb part, is called a regular
Maxwell field. In particular, Coulomb part is supported in the middle N-P
component Ψ1, cf. Andersson and Blue (2015a).

• Let Fαβ be a regular Maxwell field and the smooth regular extreme N-P
components of the linearized gravity be vanishing near spatial infinity. A
solution ψ = φis defined as in (2.27) or (2.28) is called an integrable solution
to the ISWWE (2.42), if for every integer n ≥ 0, every multi-index 0 ≤ |i| ≤ n
and any ř0 > r+, we have∑

0≤|i|≤n

∫
D(−∞,∞)∩{r=ř0}

(∣∣∂iψ∣∣2 +
∣∣∂iF ∣∣2) <∞. (2.54)

Here, we recall in (2.40) the definition of ∂iψ and ∂iF ..

2.6.3. Generic constants and general rules

Constants C and c, depending only on a0, M , δ and Σ0, are always understood
as large constants and small constants respectively, and may change line to line
throughout this thesis based on the algebraic rules: C+C = C, CC = C, Cc = C,
etc. When there is no confusion, the dependence on M , a0, δ and Σ0 may always
be suppressed. Once the constants ε0(M) and 0 < δ < 1/2 in Theorems 2.4.1 and
2.4.2 are chosen and the choice of function χ1(r) in (2.6) defining the global Kerr
coordinates is made, these constants can be made to be only dependent on M .

For any two functions F and G, F . G means that there exists a constant C such
that F ≤ CG holds everywhere. F ∼ G indicates that F . G and G . F , and we
say that F is equivalent to G.

The standard Laplacian on unit 2-sphere is denoted as 4S2 , and the volume form
dσS2 on unit 2-sphere is sin θdθdφ∗ or sin θdθdφ depending on which coordinate
system is used.

Some cutoff functions will be used in this paper. Denote χR(r) to be a smooth
cutoff function utilized in Section 3.1 which is 1 for r ≥ R and vanishes identically
for r ≤ R − 1, and χ0(r) a smooth cutoff function which equals to 1 for r ≤ r0

and is identically zero for r ≥ r1; see Chapter 3 for the choices of r0 and r1. The
function χ is a smooth cutoff both to the future time and to the past time, which
will be applied to the solution in the proof of Theorem 2.4.1.
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2. Preliminaries and main results

An overline or a bar will always denote the complex conjugate, <(·) denotes the
real part, and ”left hand side(s)” and ”right hand side(s)” are short for ”LHS”
and ”RHS” respectively.

Throughout this paper, whenever we talk about ”choosing some multiplier for
some equation”, it should always be understood as multiplying the equation by
the multiplier, performing integration by parts, taking the real part and finally
integrating in the spacetime region D(0, τ) (or D(τ1, τ2)) in global Kerr coordinate
system with respect to the measure Σ sin θdt∗drdθdφ∗.
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3. Estimates near horizon and near
infinity

Contents
3.1. Morawetz estimates near infinity . . . . . . . . . . . . . 21

3.2. Red-shift estimates near horizon . . . . . . . . . . . . . 27

3.2.1. Red-shift estimates for spin-1 case . . . . . . . . . . . . 27

3.2.2. Red-shift estimates for spin-2 case . . . . . . . . . . . . 29

Morawetz estimates in large radius r region and red-shift estimates near horizon
for different quantities are proved in this chapter. We emphasize that all the R0

in the estimates in this whole chapter can be a priori different, so do all the r0

and the r1, but we will take the minimal r0, the maximal r1 and the maximal R0

among them such that the estimates hold true uniformly with the constants C do
not depend on them, and still denote them as r0, r1 and R0.

3.1. Morawetz estimates near infinity

We put the equations (2.29), (2.30), (2.31b), (2.31c), (2.32b) and (2.32c) into the
general form (2.34b), or equivalently, in an expanded form

Σ2̃gψ ,

{
∂r(∆∂r)−

((r2+a2)∂t+a∂φ)
2

∆

+ 1
sin θ

d
dθ

(
sin θ d

dθ

)
+
(
∂φ+is cos θ

sin θ
+ a sin θ∂t

)2
}
ψ

=
(

4ias cos θ∂t + s2 ∆+a2

r2

)
ψ + F, (3.1)

such that Σ2̃g is the same as the rescaled scalar wave operator Σ2g except for

(
∂φ+is cos θ

sin θ
+ a sin θ∂t)

2 in place of the operator (
∂φ

sin θ
+ a sin θ∂t)

2 in the expansion
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3. Estimates near horizon and near infinity

of Σ2g. Analogously, the equations (2.31a) and (2.32a) can be put into the form
of (2.34a), or

Σ2̃gψ ,

{
∂r(∆∂r)−

((r2+a2)∂t+a∂φ)
2

∆

+ 1
sin θ

d
dθ

(
sin θ d

dθ

)
+
(
∂φ+is cos θ

sin θ
+ a sin θ∂t

)2
}
ψ

=
(

4ias cos θ∂t + s2 r2+2Mr−2a2

2r2

)
ψ + F. (3.2)

Recall (see e.g. Dafermos and Rodnianski (2010)) that for each 0 < δ < 1/2 there
exist constants R0 � 4M and C = C(δ) such that for all R ≥ R0, one can choose
a multiplier

Xwψ̄ = − 1
Σ

(
f(r)∂r∗ + 1

4
w(r)

)
ψ̄ (3.3)

for the rescaled inhomogeneous scalar wave equation

Σ2gψ = G (3.4)

on any subextremal Kerr background, and achieve the following Morawetz estimate
in large r region for any τ2 > τ1:∫

D(τ1,τ2)∩{r≥R}

{
|∂r∗ψ|2

r1+δ
+
|∂tψ|2

r1+δ
+
|∇̌/ψ|2

r
+
|ψ|2

r3+δ

}
. Ěτ1(ψ) + Ěτ2(ψ) +

∫
D(τ1,τ2)∩{R−1≤r≤R}

(
|∂̌ψ|2 + |ψ|2

)
+

∫
D(τ1,τ2)

<
(
G ·Xwψ̄

)
. (3.5)

Here,

f = χR(r) · (1− r−δ), (3.6a)

w = 2∂r∗f + 41−2M/r
r

f − 2δ 1−2M/r
r1+δ

f, (3.6b)

∇̌/ are the standard covariant angular derivatives on sphere S2(t, r) as in (2.38),
and

Ěτ (ψ) =

∫
Στ

|∂̌ψ|2 =

∫
Στ

(|∂t∗ψ|2 + |∂rψ|2 + |∇̌/ψ|2). (3.7)

Since the difference between the operator ( 1
sin θ

∂φ+ is cot θ+a sin θ∂t)
2 in Σ2̃g and

( 1
sin θ

∂φ+a sin θ∂t)
2 in the expansion of Σ2g is terms with coefficients independent of
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3.1. Morawetz estimates near infinity

r, and the terms containing φ-derivative in ∆−1((r2 +a2)∂t+a∂φ)2 have coefficients
which are of lower order in r, we will achieve the same type of Morawetz estimate
in large r region by utilizing the same multiplier Xwψ̄, with |∇/ψ|2 and |∂ψ|2 −
|s||ψ|2/r2 in place of |∇̌/ψ|2 and |∂̌ψ|2, E(ψ) replacing Ě(ψ), and a substitution of

G =
(

4ias cos θ∂t + s2 ∆+a2

r2

)
ψ + F (3.8a)

for (3.1) or

G =
(

4ias cos θ∂t + s2 r2+2Mr−2a2

2r2

)
ψ + F (3.8b)

for (3.2) respectively in (3.5). The bulk term coming from the source term (3.8)
in (3.5) is then

C

∫
D(τ1,τ2)

− 1
Σ
<
(((

4ias cos θ∂t + s2 ∆+a2

r2

)
ψ + F

)
(f∂r∗ + 1

4
w)ψ̄

)
(3.9)

or

C

∫
D(τ1,τ2)

− 1
Σ
<
(((

4ias cos θ∂t + s2 r2+2Mr−2a2

2r2

)
ψ + F

)
(f∂r∗ + 1

4
w)ψ̄

)
, (3.10)

which is bounded for R large enough in both cases by∫
D(τ1,τ2)∩[R,∞)

−C|ψ|2
r3

+

∫
D(τ1,τ2)∩[R−1,R]

|∂ψ|2

+

∫
D(τ1,τ2)∩[R−1,∞)

{
C|a|
r2
|∂ψ|2 + C<

(
FXwψ̄

)}
. (3.11)

Therefore, for any fixed 0 < δ < 1
2
, we choose the same multiplier Xwψ̄ =

−Σ−1
(
f(r)∂r∗ + 1

4
w(r)

)
ψ̄ with f(r) and w(r) defined in (3.6) for both (3.1) and

(3.2), and easily obtain the following result.

Proposition 3.1.1. In a subextremal Kerr spacetime (M, gM,a) (|a| ≤ a0 < M),
for any fixed 0 < δ < 1

2
, and for any solution ψ solving any subequation in the

linear systems (2.29)–(2.32), there exists constant R0(M) and universal constant
C such that for all R ≥ R0, the following estimate holds for any τ2 > τ1:∫

D(τ1,τ2)∩{r≥R}
Mdeg(ψ) ≤C

(
Eτ1(ψ) + Eτ2(ψ) +

∫
D(τ1,τ2)∩{R−1≤r≤R}

|∂ψ|2
)

+ C

∣∣∣∣∫
D(τ1,τ2)∩{r≥R−1}

<
(
FXwψ̄

)∣∣∣∣ . (3.12)

Remark 3.1.1. Recall in (2.41) the definition of the Morawetz density Mdeg(ψ).
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3. Estimates near horizon and near infinity

In fact, we can obtain an improved Morawetz estimate in the large radius region
for spin +1 component for Maxwell field and spin +2 component for linearized
gravity due to the damping ∂t term on RHS of (2.25) for large r.

Proposition 3.1.2. In a subextremal Kerr spacetime (M, gM,a) (|a| ≤ a0 < M),
let 0 < δ < 1/2 be given. Then there exists constant R0(M) and universal constant
C such that for all R ≥ R0 and any τ2 > τ1, it holds for φ0

+1 that∫
Στ2∩[R,+∞)

∣∣∂(r2−δφ0
+1)
∣∣2 +

∫
D(τ1,τ2)∩[R,∞)

r−1
∣∣∂(r2−δφ0

+1)
∣∣2

.
∫

Στ2∩[R−1,R)

∣∣∂(r2−δφ0
+1)
∣∣2 +

∫
Στ1∩[R−1,+∞)

∣∣∂(r2−δφ0
+1)
∣∣2 , (3.13)

and the following estimates hold for φ0
+2 and φ1

+2 respectively:∫
Στ2∩[R,+∞)

∣∣∂ (r4−δφ0
+2

)∣∣2 +

∫
D(τ1,τ2)∩[R,∞)

r−1
∣∣∂ (r4−δφ0

+2

)∣∣2
.
∫

Στ2∩[R−1,R)

∣∣∂ (r4−δφ0
+2

)∣∣2 +

∫
Στ1∩[R−1,+∞)

∣∣∂ (r4−δφ0
+2

)∣∣2 , (3.14a)∫
Στ2∩[R,+∞)

∣∣∂ (r2−δφ1
+2

)∣∣2 +

∫
D(τ1,τ2)∩[R,∞)

r−1
∣∣∂ (r2−δφ1

+2

)∣∣2
.
∫

Στ2∩[R−1,R)

∣∣∂ (r2−δφ1
+2

)∣∣2 +

∫
Στ1∩[R−1,+∞)

∣∣∂ (r2−δφ1
+2

)∣∣2
+

∫
D(τ1,τ2)∩[R−1,∞)

|∂(r4−δφ0+2)|2
r2

. (3.14b)

Proof. We start with the spin +1 component. The equation for φ̀0
+1 = r2(r2+a2)1−δ/2

∆
φ0

+1

is (
Σ2g + 2i cos θ

sin2 θ
∂φ − cot2 θ + (1− 3δ

2
+ δ2

4
)
)
φ̀0

+1

= (r3−3Mr2+a2r+a2M)
r2+a2

(
(2−δ)V (

√
r2+a2φ̀0+1)

√
r2+a2

+ δ
(
r2+a2

∆
∂t + a

∆
∂φ

)
φ̀0

+1

)
+

P 5(r)

∆(r2+a2)2
φ̀0

+1 +
(
2ia cos θ∂t − 4ar

r2+a2
∂φ
)
φ̀0

+1. (3.15)

P 5(r) here is a polynomial in r with powers no larger than 5 and coefficients
depending only on a,M and δ. The coefficients can be calculated explicitly. We
make use of the following expansion for any smooth complex scalar ψ of spin weight
s (

Σ2g + 2is cos θ
sin2 θ

∂φ − s2 cot2 θ + |s| − 3δ
2

+ δ2

4
)
)
ψ
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3.1. Morawetz estimates near infinity

=
(

1
sin θ

∂θ(sin θ∂θ) + 1
sin2 θ

∂2
φφ + 2is cos θ

sin2 θ
∂φ − s2 cot2 θ + |s| − 3δ

2
+ δ2

4

)
ψ

−
√
r2 + a2Y

(
∆

r2+a2
V
(√

r2 + a2ψ
))

+ 2ar
r2+a2

∂φψ

+
(
2a∂2

tφ + a2 sin2 θ∂2
tt

)
ψ − 2Mr3+a2r2−4a2Mr+a4

(r2+a2)2
ψ, (3.16)

and notice that the eigenvalues of the operator in the first line on RHS of (3.16)
are not larger than δ2/4−3δ/2 which is negative. Hence if we choose the multiplier

− 1
Σ
χRX0φ̀0

+1

, − 1
Σ
χR

∆
r2+a2

(
(2−δ)V (

√
r2+a2φ̀0+1)

√
r2+a2

+ δ
(
r2+a2

∆
∂t + a

∆
∂φ

)
φ̀0

+1

)
(3.17)

for the equation (3.15), we have∫
Στ2∩[R,+∞)

|∂φ̀0
+1|2 +

∫
D(τ1,τ2)∩[R,∞)

r−1
(
|X0φ̀

0
+1|2 + |∇/ φ̀0

+1|2
)

.
(∫

Στ2∩[R−1,R)

+

∫
Στ1∩[R−1,+∞)

)
|∂φ̀0

+1|2 +

∫
D(τ1,τ2)∩[R−1,∞)

|∂φ̀0+1|2

r2
. (3.18)

Moreover, we choose the multiplier −χRr−3(1− 2M/r)φ̀0
+1 for (3.15) and arrive at∫

D(τ1,τ2)∩[R,∞)

r−1
(
|∂rφ̀0

+1|2 + |∇/ φ̀0
+1|2

)
.
∫

Στ2∩[R−1,+∞)

|∂φ̀0
+1|2 +

∫
Στ1∩[R−1,+∞)

|∂φ̀0
+1|2

+

∫
D(τ1,τ2)∩[R−1,∞)

(
r−1|∂t∗φ̀0

+1|2 + r−2|∂φ̀0
+1|2

)
. (3.19)

The estimate (3.13) follows from adding a sufficiently large multiple of (3.18) to
(3.19) and taking R sufficiently large.

For the spin +2 component, we define the variables

φ0,4−δ
+2 =

(
r2+a2√

∆

)4−δ
·
(
ψ[+2]/(r

2 + a2)2
)
, (3.20a)

φ1,2−δ
+2 =

(
r2+a2√

∆

)2−δ
·
(√

r2 + a2Y
(
ψ[+2]/(r

2 + a2)3/2
))
, (3.20b)

and derive the governing equations of them as follows(
Σ2g + 4i cos θ

sin2 θ
∂φ − 4 cot2 θ + (2 + δ2 − 5δ)

)
φ0,4−δ

+2
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3. Estimates near horizon and near infinity

= (r3−3Mr2+a2r+a2M)
r2+a2

(
(4−2δ)V (

√
r2+a2φ0,4−δ+2 )

√
r2+a2

+ 2δ
(
r2+a2

∆
∂t + a

∆
∂φ

)
φ0,4−δ

+2

)
+
(
4ia cos θ∂t − 8ar

r2+a2
∂φ
)
φ0,4−δ

+2 + P5(r)
∆(r2+a2)2

φ0,4−δ
+2 , (3.21a)(

Σ2g + 4i cos θ
sin2 θ

∂φ − 4 cot2 θ + (2 + δ2 − 5δ)
)
φ1,2−δ

+2

= (r3−3Mr2+a2r+a2M)
r2+a2

(
(2−2δ)V (

√
r2+a2φ1,2−δ+2 )

√
r2+a2

+ 2δ
(
r2+a2

∆
∂t + a

∆
∂φ

)
φ1,2−δ

+2

)
+

P 5(r)

∆(r2+a2)2
φ1,2−δ

+2 +
(
4ia cos θ∂t − 4ar

r2+a2
∂φ
)
φ1,2−δ

+2

+ 6a∆(a2−r2)
(r2+a2)3

∂φφ
0,4−δ
+2 + 6r∆(Mr3−a2r2−3Ma2r−a4)

(r2+a2)4
φ0,4−δ

+2 . (3.21b)

Here, P5(r) and P 5(r) are both polynomials in r with powers no larger than 5,
and the coefficients of these two polynomials depend only on a,M and δ and can
be calculated explicitly. Similar to (3.16), we have for any smooth complex scalar
ψ of spin weight s that(

Σ2g + 2is cos θ
sin2 θ

∂φ − s2 cot2 θ + |s|+ δ2 − 5δ)
)
ψ

=
(

1
sin θ

∂θ(sin θ∂θ) + 1
sin2 θ

∂2
φφ + 2is cos θ

sin2 θ
∂φ − s2 cot2 θ + |s|+ δ2 − 5δ

)
ψ

−
√
r2 + a2Y

(
∆

r2+a2
V
(√

r2 + a2ψ
))

+ 2ar
r2+a2

∂φψ

+
(
2a∂2

tφ + a2 sin2 θ∂2
tt

)
ψ − 2Mr3+a2r2−4a2Mr+a4

(r2+a2)2
ψ. (3.22)

Notice that the eigenvalues of the operator in the first line on RHS of (3.22) are
not greater than δ2 − 5δ which is negative, hence if we choose the multiplier

− 1
Σ
χRX0φ

0,4−δ
+2

, − 1
Σ
χR

∆
r2+a2

(
(4−2δ)V (

√
r2+a2φ0,4−δ+2 )

√
r2+a2

+ 2δ
(
r2+a2

∆
∂t + a

∆
∂φ

)
φ0,4−δ

+2

)
(3.23)

for (3.21a), it then follows∫
Στ2∩[R,+∞)

|∂φ0,4−δ
+2 |2 +

∫
D(τ1,τ2)∩[R,∞)

r−1
(
|X0φ

0,4−δ
+2 |2 + |∇/ φ0,4−δ

+2 |2
)

.

(∫
Στ2∩[R−1,R)

+

∫
Στ1∩[R−1,+∞)

)
|∂φ0,4−δ

+2 |2 +

∫
D(τ1,τ2)∩[R−1,∞)

|∂φ0,4−δ+2 |2

r2
. (3.24)

Moreover, by choosing the multiplier−χRr−3(1−2M/r)φ0,4−δ
+2 for (3.21a), we arrive

at ∫
D(τ1,τ2)∩[R,∞)

r−1
(
|∂rφ0,4−δ

+2 |2 + |∇/ φ0,4−δ
+2 |2

)
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3.2. Red-shift estimates near horizon

.
∫

Στ2∩[R−1,+∞)

|∂φ0,4−δ
+2 |2 +

∫
Στ1∩[R−1,+∞)

|∂φ0,4−δ
+2 |2

+

∫
D(τ1,τ2)∩[R−1,∞)

(
r−1|∂t∗φ0,4−δ

+2 |2 + r−2|∂φ0,4−δ
+2 |2

)
. (3.25)

Adding a sufficiently large multiple of (3.24) to (3.25) and taking R sufficiently
large, we conclude the inequality (3.14a). The estimate (3.14b) follows in the same
way by treating (3.21b).

3.2. Red-shift estimates near horizon

3.2.1. Red-shift estimates for spin-1 case

The following red-shift estimate near H+ for rescaled inhomogeneous scalar wave
equation (3.4) is taken from (Dafermos and Rodnianski, 2011, Sect.5.2) and Dafer-
mos and Rodnianski (2010).

Lemma 3.2.1. In a slowly rotating Kerr spacetime (M, gM,a), there exist con-
stants ε0(M), r+ ≤ 2M < r0(M) < r1(M) < (1 +

√
2)M and C = C(Στ1 ,M) =

C(Στ2 ,M), two smooth real functions y1(r) and y2(r) on [r+,∞) with y1(r) → 1
and y2(r)→ 0 as r → r+, and a ϕτ -invariant timelike vector field

N = T + χ0(r) (y1(r)Y + y2(r)T ) (3.26)

such that for all |a|/M ≤ a0/M ≤ ε0, by choosing a multiplier

−Nχ0ψ̄ = −χ0(r)Σ−1Nψ̄, (3.27)

the following estimate holds for any solution ψ to the rescaled inhomogeneous
scalar wave equation (3.4) for any τ2 > τ1:∫

Στ2∩{r≤r0}

∣∣∂̌ψ∣∣2 + ĚH+(τ1,τ2)(ψ)

+

∫
D(τ1,τ2)∩{r≤r0}

(∣∣∂̌ψ∣∣2 + | log(r − r+)|−2|r − r+|−1ψ2
)

≤ C

∫
Στ1∩{r≤r1}

∣∣∂̌ψ∣∣2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

∣∣∂̌ψ∣∣2
+ C

∫
D(τ1,τ2)∩{r≤r1}

<
(
G ·Nχ0ψ̄

)
. (3.28)
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3. Estimates near horizon and near infinity

Here,

ĚH+(τ1,τ2)(ψ) =

∫
H+(τ1,τ2)

(|∂vψ|2 + |∇̌/ψ|2)r2dv sin θdθdφ̃ (3.29)

in ingoing E-F coordinates.

As in the last section, we refer to the rewritten form (3.1) of the ISWWE (2.42).

The difference between the operator (
∂φ

sin θ
+ is cot θ+a sin θ∂t)

2 in Σ2̃g and (
∂φ

sin θ
+

a sin θ∂t)
2 in the expansion of Σ2g involves only terms with coefficients indepen-

dent of t, φ and r, and the term a∂φ in (r2 +a2)∂t+a∂φ has coefficient proportional
to a, therefore we could use the same multiplier −Nχ0 to achieve the same estimate
for sufficient small |a|/M with the same replacements as in the last section. On
RHS, we are left with

C

∫
D(τ1,τ2)∩{r≤r1}

−<
(((

4ias cos θ∂t + ∆+a2

r2

)
ψ + F

)
Nχ0ψ̄

)
, (3.30)

which in turn is bounded by∫
D(τ1,τ2)∩{r≤r0}

(
−CN

(
∆+a2

r2
|ψ|2

)
− C r+−r−

r2
|ψ|2

)
+ C

∫
D(τ1,τ2)∩{r≤r1}

(
|a||∂ψ|2 + |F |2

)
+ C

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂ψ|2. (3.31)

In conclusion, we have the following red-shift estimate for the ISWWE (2.42).

Proposition 3.2.1. In a slowly rotating Kerr spacetime (M, gM,a), there exist
constants ε0(M), r+ ≤ 2M < r0(M) < r1(M) < (1 +

√
2)M and a universal

constant C, and a ϕτ -invariant vector field N defined as in (3.27) such that for
all |a|/M ≤ a0/M ≤ ε0, the following estimate holds for any solution ψ to the
ISWWE (2.42) for any τ2 > τ1:

EH+(τ1,τ2)(ψ) +

∫
Στ2∩{r≤r0}

|∂ψ|2

+

∫
D(τ1,τ2)∩{r≤r0}

(
|∂ψ|2 + | log(r − r+)|−2|r − r+|−1ψ2

)
≤ C

∫
Στ1∩{r≤r1}

|∂ψ|2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂ψ|2 + C

∫
D(τ1,τ2)∩[r+,r1]

|F |2. (3.32)

Moreover, we can obtain a red-shift estimate near horizon for ψ[−1].
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3.2. Red-shift estimates near horizon

Proposition 3.2.2. Under the same assumptions in Proposition 3.2.1, we have

EH+(τ1,τ2)(ψ[−1]) +

∫
Στ2∩{r≤r0}

∣∣∂ψ[−1]

∣∣2 +

∫
D(τ1,τ2)∩{r≤r0}

∣∣∂ψ[−1]

∣∣2
≤ C

∫
Στ1∩{r≤r1}

∣∣∂ψ[−1]

∣∣2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

∣∣∂ψ[−1]

∣∣2
+ C

∫
D(τ1,τ2)∩{r+≤r≤r1}

∣∣φ1
−1

∣∣2 . (3.33)

Proof. We have from (2.27b) that

φ1
−1 =rV

(
r−1∆ψ[−1]

)
=−∆Y ψ[−1] + 2

[
(r2 + a2)∂t + a∂φ

]
ψ[−1] + r2−a2

r
ψ[−1]. (3.34)

Hence, from (2.25), the equation for ψ[−1] can be rewritten as(
Σ2g − 2i

(
cos θ
sin2 θ

∂φ − a cos θ∂t
)
− cot2 θ

)
ψ[−1]

= 3r2−5a2

2r2
ψ[−1] +

(
4(r−M)r−5∆

2r
Y + r∂t

)
ψ[−1] + 5

r

(
a2∂t + a∂φ

)
ψ[−1] − 5

2r
φ1
−1.

(3.35)

For small enough |a|/M , the coefficient of ψ[−1] term on the RHS is positive near
horizon and its derivative with respect to r is nonnegative, and the term ((4(r −
M)r − 5∆)/(2r)Y + r∂t)ψ[−1] is close to a positive multiple of Nχ0ψ[−1] when r
is sufficiently close to r+ from the choice of Nχ0 in Proposition 3.2.1. Therefore,
arguing the same as in the proof of Proposition 3.2.1, there exists a radius constant
r0 close to r+ such that the red-shift estimate (3.33) near H+ holds for ψ[−1]

holds.

3.2.2. Red-shift estimates for spin-2 case

Proposition 3.2.3. In a slowly rotating Kerr spacetime (M, gM,a), there exist
constants ε0(M), r+ < 2M < r0(M) < r1(M) < (1+

√
2)M and C = C(Στ1 ,M) =

C(Στ2 ,M), two smooth functions y1(r) and y2(r) on [r+,∞) with y1(r) → 1,
y2(r) → 0 as r → r+, and a ϕτ -invariant timelike vector field N as defined in
(3.26) with χ0(r) a smooth cutoff function which equals to 1 for r ≤ r0 and is
identically zero for r ≥ r1, such that for all |a|/M ≤ a0/M ≤ ε0,
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3. Estimates near horizon and near infinity

• for ψ ∈ {φ1
+2, φ

2
+2, φ

2
−2} whose governing equations (2.31b), (2.31c) and

(2.32c) can be put into the form of (2.34b) with the relevant inhomogeneous
term F , the following estimate holds for any τ2 > τ1:

EH+(τ1,τ2)(ψ) +

∫
Στ2∩{r≤r0}

|∂ψ|2

+

∫
D(τ1,τ2)∩{r≤r0}

(
|∂ψ|2 + | log(r − r+)|−2|r − r+|−1ψ2

)
≤C

∫
Στ1∩{r≤r1}

|∂ψ|2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂ψ|2 + C

∫
D(τ1,τ2)∩[r+,r1]

|F |2;

(3.36)

• for the equation (2.31a) of φ0
+2, the following estimate near horizon holds for

any τ2 > τ1:

EH+(τ1,τ2)(φ
0
+2) +

∫
Στ2∩{r≤r0}

|∂φ0
+2|2

+

∫
D(τ1,τ2)∩{r≤r0}

(
|∂φ0

+2|2 + | log(r − r+)|−2|r − r+|−1|φ0
+2|2

)
≤C

∫
Στ1∩{r≤r1}

|∂φ0
+2|2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂φ0
+2|2 + C

∫
D(τ1,τ2)∩[r+,r1]

|φ1
+2|2.

(3.37)

Proof. Following the discussions in Section 3.2.1, the estimate (3.36) manifestly
holds true.

For φ0
+2, we also make use of the following equivalent form of equation (2.31a):

Σ2̃g(φ
0
+2) =2(r2+2Mr−2a2)

r
Y φ0

+2 + 2r2−8Mr+12a2

r3
φ1

+2

− 8(a2∂t+a∂φ)φ0+2

r
+ 8ia cos θ∂t(φ

0
+2). (3.38)

Then the estimate (3.37) follows easily.

It is convenient to introduce the variables which are not degenerate at H+

φ̃0
−2 = ∆−2r4φ0

−2, φ̃1
−2 = ∆−1r2φ1

−2, (3.39)

and we may suppress the subindex and simply write as φ̃0 and φ̃1. The equation
for φ̃0 = ψ[−2] reads

Σ2̃gφ̃0 =8r2−10a2

r2
φ̃0 +

(
4(r−M)r−5∆

r
Y + 2r∂t

)
φ̃0 − 5∆

r2
φ̃0
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3.2. Red-shift estimates near horizon

+ 10
r

(
a2∂t + a∂φ

)
φ̃0 + 5

r
φ̃1 − 8ia cos θ∂tφ̃0, (3.40)

and the governing equation for r2φ̃1 is

Σ2̃g(r
2φ̃1) =7r2−3a2

2r2
(r2φ̃1) +

(
4(r−M)r−9∆

2r
Y + r∂t

)
(r2φ̃1) + r

2
φ2

+ 6∆
r

(
(Mr − 2a2)φ̃0 + r

(
a2∂t + a∂φ

)
φ̃0
)

+ 5
r

(
a2∂t + a∂φ

)
(r2φ̃1)− 8ia cos θ∂t(r

2φ̃1). (3.41)

One could easily adapt the proof in Section 3.2.1 to obtain:

Proposition 3.2.4. In a slowly rotating Kerr spacetime (M, gM,a), there exist
constants ε0(M), r+ < 2M < r0(M) < r1(M) < (1+

√
2)M and C = C(Στ1 ,M) =

C(Στ2 ,M), and a ϕτ -invariant timelike vector field N defined as in (3.26) for two
smooth functions y1(r) and y2(r) on [r+,∞) with y1(r)→ 1, y2(r)→ 0 as r → r+,
such that for all |a|/M ≤ a0/M ≤ ε0, the following red-shift estimates hold for

φ̃0
−2 and φ̃1

−2 for any τ2 > τ1:

EH+(τ1,τ2)(φ̃0) +

∫
Στ2∩{r≤r0}

|∂φ̃0|2

+

∫
D(τ1,τ2)∩{r≤r0}

(
|∂φ̃0|2 + | log(r − r+)|−2|r − r+|−1|φ̃0|2

)
≤C

∫
Στ1∩{r≤r1}

|∂φ̃0|2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂φ̃0|2 + C

∫
D(τ1,τ2)∩[r+,r1]

|φ̃1|2, (3.42)

EH+(τ1,τ2)(φ̃1) +

∫
Στ2∩{r≤r0}

|∂φ̃1|2

+

∫
D(τ1,τ2)∩{r≤r0}

(
|∂φ̃1|2 + | log(r − r+)|−2|r − r+|−1|φ̃1|2

)
≤C

∫
Στ1∩{r≤r1}

|∂φ̃1|2 + C

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂φ̃1|2

+ C

∫
D(τ1,τ2)∩[r+,r1]

(
|φ2
−2|2 + |a|

M
|∂φ̃0|2 + |φ̃0|2

)
. (3.43)
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4.1. Proof of Theorem 2.4.2 for n ≥ 1 based on
n = 0 estimates

Assume the n = 0 case of Theorem 2.4.2 is true. To prove the inequality (2.50)
with integer n ≥ 1, one just needs to consider the case n = 1 by induction. In
the spin-2 case, we commute χ0Y with (2.31b), (2.31c), (2.32c), (3.38), (3.40) and
(3.41), then it follows easily from the red-shift commutation property (Dafermos
and Rodnianski, 2010, Prop.5.4.1), elliptic estimates and the fact that T and ∂φ∗
are Killing vector fields that the estimate (2.50) for n = 1 is valid. Similarly, for the
spin-1 case, by commuting the Killing vector field T with (2.42), χ0Y with (2.42)
for spin +1 component and (3.35) for spin −1 component, it can be analogously
argued that Theorem 2.4.2 holds for n ≥ 1.
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4. Outline of Proof

4.2. Estimates for spacetime integrals of φ0
s and φ1

s

We derive in this section some estimates for φ0
s and φ1

s which are used in Section
4.3.

4.2.1. Spin-1

We state a lemma controlling
∣∣∇/ φ0

−1

∣∣ by
∣∣∇/ φ1

−1

∣∣.
Lemma 4.2.1. In a fixed subextremal Kerr spacetime (M, gM,a) (|a| ≤ a0 < M),
the following estimate holds for spin −1 component:∫

D(0,τ)∩[R,∞)

|∇/ φ0|2 +

∫
Στ∩[R,∞)

r|∇/ φ0|2

.
∫
D(0,τ)∩[R−1,∞)

|∇/ φ1|2

r
+

∫
Σ0∩[R−1,∞)

r|∇/ φ0|2 +

∫
D(0,τ)∩[R−1,R)

|∇/ φ0|2

r
. (4.1)

Proof. We start with an identity that for the cutoff function χR(r), any real value
β and ∇/ i (i = 1, 2, 3) as defined in (2.38):

V
(
χRr

β|r2∇/ iφ
0|2
)
− βχRrβ−1|r2∇/ iφ

0|2 − ∂rχRrβ|r2∇/ iφ
0|2

= 2χRr
2+β<

(
∇/ iφ

0∇/ iφ1
)
. (4.2)

Integrating (4.2) over D(0, τ) with the measure

dV̌ = r−2dV = drdt∗ sin θdθdφ∗ (4.3)

for β = −1, and applying Cauchy-Schwarz to the last term, it is manifest that the
estimate (4.1) follows from summing over i = 1, 2, 3.

4.2.2. Spin-2

4.2.2.1. Spin +2 component

Proposition 4.2.1. In a fixed subextremal Kerr spacetime (M, gM,a) (|a| ≤ a0 <
M), the following estimate holds for φ1

+2 defined as in (2.28a) from the spin +2
component: ∫

D(0,τ)

|φ1|2
r2

. ε̂1

∫
D(0,τ)

|rφ1|2
r3

+ ε̂−1
1

∫
D(0,τ)

|φ2|2
r3

+

∫
Σ0

|rφ1|2
r2

. (4.4)
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4.2. Estimates for spacetime integrals of φ0
s and φ1

s

Proof. We start with a simple identity for any smooth real function f+2(r) and
any real value α:

Y
(
f+2r

α|rφ1|2
)

+ f+2αr
α−1|rφ1|2 − Y (f+2)rα|rφ1|2 = 2f+2r

α<(φ1φ2). (4.5)

Integrate (4.5) over D(0, τ) with the measure dV̌ as in (4.3) for α = 0 and f+2 =
∆

r2+a2
. Then, since

− Y (f+2) = ∂rf+2 = 2M(r2−a2)
(r2+a2)2

≥ c
r2
, (4.6)

an application of Cauchy-Schwarz inequality to the term
∫
D(0,τ)

f+2<(φ1φ2)dV̌

proves the estimate (4.4).

4.2.2.2. Spin −2 component

Proposition 4.2.2. In a fixed subextremal Kerr spacetime (M, gM,a) (|a| ≤ a0 <
M), it holds for φ0

−2 and φ1
−2 defined as in (2.28b) from the spin −2 component

that ∫
D(0,τ)

|φ̃0|2
r2

.
∫
D(0,τ)

|φ2|2
r3

+

∫
Σ0

(
|φ̃0|2
r

+ |φ̃1|2
r

)
, (4.7a)∫

D(0,τ)

|φ̃1|2
r2

.
∫
D(0,τ)

|φ2|2
r3

+

∫
Σ0

|φ̃1|2
r
. (4.7b)

Moreover, for the angular derivatives of them, we have∫
D(0,τ)∩[6M,∞)

|∇/ φ̃0|2 +

∫
Στ∩[6M,∞)

r|∇/ φ̃0|2

.
∫
D(0,τ)∩[5M,∞)

|∇/ φ̃1|2

r
+

∫
Σ0∩[5M,∞)

r|∇/ φ̃0|2 +

∫
D(0,τ)∩[5M,6M ]

|∇/ φ̃0|2

r
, (4.8a)∫

D(0,τ)∩[6M,∞)

|∇/ φ̃1|2 +

∫
Στ∩[6M,∞)

r|∇/ φ̃1|2

.
∫
D(0,τ)∩[5M,∞)

|∇/ φ2|2

r
+

∫
Σ0∩[5M,∞)

r|∇/ φ̃1|2 +

∫
D(0,τ)∩[5M,6M ]

|∇/ φ̃1|2

r
(4.8b)

Proof. We derive for any real function f−2(r) and any real value β that

V (f−2r
β|rφ1|2)− f−2βr

β−1|rφ1|2 − ∂rf−2r
β|rφ1|2 = − 2rβf−2<(φ1φ2). (4.9)
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4. Outline of Proof

By choosing β = −1 and f−2 = r2+a2

∆
, since ∂rf−2 = −2M(r2−a2)

∆2 , the estimate

(4.7b) then follows from integrating (4.9) over D(0, τ) with the measure dV̌ in
(4.3) and applying Cauchy-Schwarz to the integral of the RHS of (4.9).

Similarly, for φ0, we have∫
D(0,τ)

|φ̃0|2
r2

.
∫
D(0,τ)

|φ̃1|2
r3

+

∫
Σ0

|φ̃0|2
r
. (4.10)

Combining (4.7b) with (4.10) proves the estimate (4.7a).

We prove the inequality (4.8a) below, the proof for (4.8b) being analogous. For
a smooth cutoff function χ2(r) which is equal to 1 in [6M,∞) and vanishes in
[r+, 5M ], any real value β and ∇/ j (j = 1, 2, 3) as defined in (2.38), it holds

V (f−2χ2r
β|r2∇/ jφ

0|2)− χ2∂rf−2r
β|r2∇/ jφ

0|2

− (βχ2f−2 + ∂rχ2f−2r) r
β−1|r2∇/ jφ

0|2 = − 2χ2f−2r
2+β<(∇/ jφ

0∇/ jφ1). (4.11)

Choosing β = −1 and f−2 = (r2+a2)3

∆3 , integrating (4.11) over D(0, τ) with the

measure dV̌ in (4.3), and applying Cauchy-Schwarz to the last term, the estimate
(4.8a) for i = 0 follows manifestly from summing over j = 1, 2, 3.

4.3. Proof of n = 0 case

Define two quantities for spin ±1 components respectively

Ξ+1(0, τ) =E0(r2−δφ0
+1) + E0(φ1

+1) + |a|
M

(
EH+(0,τ)(r

2−δφ0
+1) + EH+(0,τ)(φ

1
+1)
)

+ |a|
M

[
Eτ (r

2−δφ0
+1) + Eτ (φ

1
+1) +

∫
D(0,τ)

(M̃(r2−δφ0
+1) + Mdeg(φ1

+1))

]
,

(4.12a)

Ξ−1(0, τ) =E0(φ0) + E0(φ1) +

∫
Σ0

r|∇/ φ0|2

+ |a|
M

[∑
i=0,1

(
Eτ (φ

i) + EH+(0,τ)(φ
i)
)

+

∫
D(0,τ)

(
Mdeg(φ1

−1) + M(φ0)
)]
.

(4.12b)

Moreover, recalling the definition in (3.39), we define two quantities for spin ±2
components respectively that

Ξ+2(0, τ) =E0(r4−δφ0
+2) + E0(r2−δφ1

+2) + E0(φ2
+2)
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+ |a|
M

(
Eτ (r

4−δφ0
+2) + Eτ (r

2−δφ1
+2) + Eτ (φ

2
+2)
)

+ |a|
M

(
EH+(0,τ)(r

4−δφ0
+2) + EH+(0,τ)(r

2−δφ1
+2) + EH+(0,τ)(φ

2
+2)
)

+ |a|
M

∫
D(0,τ)

(
M̃(r4−δφ0

+2) + M̃(r2−δφ1
+2) + Mdeg(φ2

+2)
)
, (4.13a)

Ξ−2(0, τ) =E0(φ̃0) + E0(φ̃1) + E0(φ2
−2) +

∫
Σ0

r
(
|∇/ φ̃0|2 + |∇/ φ̃1|2

)
+ |a|

M

(
1∑
i=0

(
Eτ (φ̃i) + EH+(0,τ)(φ̃i)

)
+ Eτ (φ

2
−2) + EH+(0,τ)(φ

2
−2)

)
+ |a|

M

∫
D(0,τ)

(
Mdeg(φ2

−2) + M(φ̃1) + M(φ̃0)
)
. (4.13b)

We say F1 .a F2 for two functions in the region D(0, τ) if there exists a universal
constant C = C(a0,M, δ,Σ0) such that

F1 ≤ CF2 + CΞs(0, τ) (4.14)

depending on which spin component we are considering. We now give the outline
of the proof of the estimates (2.50) for different spin components separately.

4.3.1. Spin +1 component

We will first show in Chapters 5–7 that

Eτ (r
2−δφ0) + EH+(0,τ)(r

2−δφ0) +

∫
D(0,τ)

M̃deg(r2−δφ0)

.a

∫
D(0,τ)

(
ε0M̃(r2−δφ0) + ε−1

0
|φ1|2
r3

)
, (4.15a)

Eτ (φ
1) + EH+(0,τ)(φ

1) +

∫
D(0,τ)

Mdeg(φ1) .a 0. (4.15b)

By adding an A0 multiple of estimate (4.15b) to (4.15a) and from the fact that∫
D(0,τ)

(
M̃deg(r2−δφ0) + Mdeg(φ1)

)
∼
∫
D(0,τ)

(
M̃(r2−δφ0) + Mdeg(φ1)

)
, (4.16)

we can choose ε0 sufficiently small and a sufficiently large constant A0 such that
the RHS of the added inequality can be absorbed by the LHS for sufficiently small
|a|/M ≤ a0/M . This completes the proof of Theorem 2.4.2 for spin +1 component
for n = 0.
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4.3.2. Spin −1 component

For spin −1 component, the following estimates will be justified in Chapters 5–7

Eτ (φ
0) + EH+(0,τ)(φ

0) +

∫
D(0,τ)

Mdeg(φ0) .a

∫
D(0,τ)

(
ε0M(φ0) + 1

ε0

|φ1|2
r3

)
, (4.17a)

Eτ (φ
1) + EH+(0,τ)(φ

1) +

∫
D(0,τ)

Mdeg(φ1) .a
|a|
M

∫
D(0,τ)

|∇/ φ0|2. (4.17b)

We add an A0 multiple of (4.17b) to (4.17a), and similar to the discussions for
spin +1 component it holds that∫

D(0,τ)

(
Mdeg(φ0) + Mdeg(φ1)

)
∼
∫
D(0,τ)

(
M(φ0) + Mdeg(φ1)

)
. (4.18)

Then we can use the estimate (4.1) to bound the RHS of the gained inequality,
and by choosing ε0 sufficiently small and A0 sufficiently large, Theorem 2.4.2 for
n = 0 case is proved by taking into account the red-shift estimate (3.33) and the
following fact.

Proposition 4.3.1. For the spin −1 component, it holds for any τ ≥ 0 that∫
Σ0

r|∇/ φ0|2 . E0(φ0) + E0(φ1). (4.19)

Proof. Notice from the equation (2.30a) of φ0
−1 that

∆
r2
Y φ1 = 4S2φ

0 − 2i
(

cos θ
sin2 θ

∂φ − a cos θ∂t
)
φ0 − 1

sin2 θ
φ0 + ∆

r3
φ1

+ a2 cos2 θ∂2
ttφ

0 + 2a∂2
tφφ

0 +
6(a2∂t+a∂φ)

r
φ0 + 2ar

r2+a2
∂φφ

0. (4.20)

By multiplying r−1φ0 on both sides, taking the real part and integrating over
Στ ∩ {r ≥ R4} (τ ≥ 0) with large R4 to be fixed, it follows∫

Στ

r
∣∣∇/ φ0

∣∣2 . Eτ (φ
0) + Eτ (φ

1) + a2

∣∣∣∣∫
Στ∩{r≥R4}

r−1<(∂2
ttφ

0φ0)

∣∣∣∣ . (4.21)

We substitute into the last integral the following relation

∂2
tt =

(
∆

r2+a2
V − a

r2+a2
∂φ − ∂r∗

) (
∆

r2+a2
V − a

r2+a2
∂φ − ∂r∗

)
, (4.22)

use the replacement V φ0 = r−2φ1−r−1φ0, and perform integration by parts, finally
ending with∣∣∣∣∫

Στ∩{r≥R4}

1
r
<(∂2

ttφ
0φ0)

∣∣∣∣ . Eτ (φ
0) + Eτ (φ

1) +

∫
Στ∩{r=R4}

∣∣∂φ0
∣∣2 . (4.23)

We can appropriately choose R4 such that the last term is bounded by CEτ (φ
0).
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4.3.3. Spin +2 component

We will first obtain in Chapters 5–7 the following energy and Morawetz estimates
for φ0, φ1 and φ2 defined from the spin +2 component:

Eτ (r
4−δφ0) + EH+(0,τ)(r

4−δφ0) +

∫
D(0,τ)

M̃deg(r4−δφ0)

.a

∫
D(0,τ)

(
ε0M̃(r4−δφ0) + ε−1

0
|φ1|2
r3

)
, (4.24a)

Eτ (r
2−δφ1) + EH+(0,τ)(r

2−δφ1) +

∫
D(0,τ)

M̃deg(r2−δφ1)

.a

∫
D(0,τ)

(
ε1M̃(r2−δφ1) + ε−1

1 M̃deg(r4−δφ0) + ε−1
1 Mdeg(φ2)

)
, (4.24b)

Eτ (φ
2) + EH+(0,τ)(φ

2) +

∫
D(0,τ)

Mdeg(φ2) .a 0. (4.24c)

In addition, the estimate (4.4) for φ1 in Section 4.2 can be used to bound the last
term in (4.24a). The parameters ε0 and ε1 in (4.24), and ε̂1 in (4.4), are small
constants to be fixed. Substituting (4.4) into (4.24a) gives

Eτ (r
4−δφ0) + EH+(0,τ)(r

4−δφ0) +

∫
D(0,τ)

M̃deg(r4−δφ0)

.aε0

∫
D(0,τ)

M̃(r4−δφ0) + ε−1
0 ε̂1

∫
D(0,τ)

M̃(rφ1) + ε−1
0 ε̂−1

1

∫
D(0,τ)

Mdeg(φ2). (4.25)

We add A0 multiple of estimate (4.25) and A1 multiple of (4.24c) to the estimate
(4.24b), and fix the parameters one by one to satisfy

ε1 � 1, A0 � ε−1
1 , ε0 � A−1

0 , ε̂1 � A−1
0 ε0, A1 � A0 (ε0ε̂1)−1 + ε−1

1 , (4.26)

then for sufficiently small |a|/M ≤ a0/M all the spacetime integrals on the RHS
of the gained estimate can be absorbed by the LHS, arriving at:

Eτ (r
4−δφ0

+2) + Eτ (r
2−δφ1

+2) + Eτ (φ
2)

+
(
EH+(0,τ)(r

4−δφ0
+2) + EH+(0,τ)(r

2−δφ1
+2) + EH+(0,τ)(φ

2)
)

+

∫
D(0,τ)

(
M̃(r4−δφ0

+2) + M̃(r2−δφ1
+2) + Mdeg(φ2

+2)
)

. E0(r4−δφ0
+2) + E0(r2−δφ1

+2) + E0(φ2
+2). (4.27)

Here, we have utilized the facts that∫
D(0,τ)

(
M̃deg(r4−δφ0) + M̃deg(r2−δφ1)

)
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4. Outline of Proof

∼
∫
D(0,τ)

(
M̃(r4−δφ0) + M̃deg(r2−δφ1)

)
, (4.28a)∫

D(0,τ)

(
M̃deg(r4−δφ0) + M̃deg(r2−δφ1) + Mdeg(φ2)

)
∼
∫
D(0,τ)

(
M̃(r4−δφ0) + M̃(r2−δφ1) + Mdeg(φ2)

)
. (4.28b)

In the trapped region, M̃deg(r4−δφ0) + M̃deg(r2−δφ1) bounds over |Y φ0|2, |∂r∗φ0|2
and |φ0|2 and then over |φ0|2 and |Hφ0|2, H = ∂t + a/(r2 + a2)∂φ being a globally
timelike vector field in the interior of D with −g(H,H) = ∆Σ/(r2 + a2)2. Hence,
(4.28a) follows from elliptic estimates. The inequality (4.28b) can be similarly
justified. The estimate (2.50a) with n = 0 then follows from (4.27).

4.3.4. Spin −2 component

Similarly as above, ε0 and ε1 are small constants to be fixed and we will prove
in Chapters 5–7 the following energy and Morawetz estimates for φ̃0, φ̃1 and φ2

constructed from the spin −2 component:

Eτ (φ̃0) + EH+(0,τ)(φ̃0) +

∫
D(0,τ)

Mdeg(φ̃0) .a

∫
D(0,τ)

(
ε0M(φ̃0) + 1

ε0

|φ̃1|2
r3

)
,

(4.29a)

Eτ (φ̃1) + EH+(0,τ)(φ̃1) +

∫
D(0,τ)

Mdeg(φ̃1)

.a

∫
D(0,τ)

(
ε1M(φ̃1) + 1

ε1

(
Mdeg(φ2) + |a|

M
|∇/ φ̃0|2 + |φ̃0|2

r2

))
, (4.29b)

Eτ (φ
2) + EH+(0,τ)(φ

2) +

∫
D(0,τ)

Mdeg(φ2) .a
|a|
M

∫
D(0,τ)

(
|∇/ φ̃1|2 + |φ̃0|2

r2

)
.

(4.29c)

By substituting (4.7b) into (4.29a), (4.7a) and (4.8a) into (4.29b), (4.7a) and (4.8b)
into (4.29c), respectively, it follows that

Eτ (φ̃0) + EH+(0,τ)(φ̃0) +

∫
D(0,τ)

Mdeg(φ̃0)

.a ε0

∫
D(0,τ)

M̃(φ̃0) + 1
ε0

∫
D(0,τ)

Mdeg(φ2), (4.30)

Eτ (φ̃1) + EH+(0,τ)(φ̃1) +

∫
D(0,τ)

Mdeg(φ̃1)
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4.3. Proof of n = 0 case

.a

∫
D(0,τ)

(
ε1 + |a|

ε1M

)
M(φ̃1) + 1

ε1

(
Mdeg(φ2) + |a|

M
M(φ0)

)
, (4.31)

Eτ (φ
2) + EH+(0,τ)(φ

2) +

∫
D(0,τ)

Mdeg(φ2) .a 0. (4.32)

We add an A0 multiple of estimate (4.30) and an A1 multiple of (4.32) to the
estimate (4.31), and fix the parameters in an order such that

A0 � 1, ε1 � 1, ε0 � A−1
0 , A1 � A0ε

−1
0 + ε−1

1 , (4.33)

then for sufficiently small |a|/M ≤ a0/M , all the spacetime integrals on RHS can
be absorbed by the LHS, and it holds true that:∑

i=0,1

(
Eτ (φ̃i) + EH+(0,τ)(φ̃i)

)
+
(
Eτ (φ

2) + EH+(0,τ)(φ
2)
)

+

∫
D(0,τ)

(
M̃(φ̃0) + M̃(φ̃1) + Mdeg(φ2)

)
.
∑
i=0,1

E0(φ̃i) + E0

(
φ2
)

+

∫
Σ0

r
(
|∇/ φ̃0|2 + |∇/ φ̃1|2

)
.
∑
i=0,1

E0(φ̃i) + E0

(
φ2
)
. (4.34)

The inference is as follows. It can be argued in the same way as in the rela-
tions (4.28) for the spin +2 component that the trapping degeneracy in the terms
Mdeg(φ0) and Mdeg(φ1) can be removed, and in the last step we have used the the
following Proposition.

Proposition 4.3.2. For the spin −2 component, it holds for any τ ≥ 0 that∫
Σ0

r(|∇/ φ̃0|2 + |∇/ φ̃1|2) . E0(φ̃0) + E0(φ̃1) + E0(φ2
−2). (4.35)

Proof. Rewrite the equations (2.32a) and (2.32b) as

0 = ∆
r2
Y φ1 +4S2φ

0 − 4i
(

cos θ
sin2 θ

∂φ − a cos θ∂t
)
φ0 − 4

sin2 θ
φ0 + 2r2−6Mr+6a2

r2
φ0

+ a2 cos2 θ∂2
ttφ

0 +
2(a2∂t+a∂φ)

r
φ0 + 2a∂2

tφφ
0 + 2ar

r2+a2
∂φφ

0 − 3∆+a2

r3
φ1, (4.36a)

0 = ∆
r2
Y φ2 +4S2φ

1 − 4i
(

cos θ
sin2 θ

∂φ − a cos θ∂t
)
φ1 − 4

sin2 θ
φ1

+ a2 cos2 θ∂2
ttφ

1 + 2a∂2
tφφ

1 +
6(a2∂t+a∂φ)

r
φ1 + 2ar

r2+a2
∂φφ

1

− 6(a2∂t + a∂φ)φ0 − ∆
r3
φ2 + 6Mr−6a2

r2
φ1 + 12a2−6Mr

r
φ0. (4.36b)
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4. Outline of Proof

By multiplying r−1φ0 on both sides of (4.36a), taking the real part and integrating
over Στ ∩ {r ≥ R3} (τ ≥ 0) with R3 ≥ 5M to be fixed, it follows∫

Στ

r|∇/ φ̃0|2 . Eτ (φ̃0) + Eτ (φ̃1) + a2

∣∣∣∣∫
Στ∩{r≥R3}

r−1<(∂2
ttφ

0φ0)

∣∣∣∣ . (4.37)

We substitute into the last integral the relation

∂2
tt =

(
∆

r2+a2
V − a

r2+a2
∂φ − ∂r∗

) (
∆

r2+a2
V − a

r2+a2
∂φ − ∂r∗

)
, (4.38)

make the replacement V φ0 = −r−2φ1 − r−1φ0, and perform integration by parts,
arriving at∣∣∣∣∫

Στ∩{r≥R3}

1
r
<(∂2

ttφ
0φ0)

∣∣∣∣ . Eτ (φ
0) + Eτ (φ

1) +

∫
Στ∩{r=R3}

∣∣∂φ0
∣∣2 . (4.39)

We can appropriately choose R3 such that the last term is bounded by CEτ (φ
0),

and conclude ∫
Στ

r|∇/ φ̃0|2 . Eτ (φ̃0) + Eτ (φ̃1). (4.40)

Similarly, we can obtain from (4.36b) that∫
Στ

r|∇/ φ̃1|2 . Eτ (φ̃0) + Eτ (φ̃1) + Eτ (φ̃2) +

∫
Στ

r|∇/ φ̃0|2. (4.41)

The inequality (4.35) then follows from (4.40) and (4.41).

From the estimate (4.34), the estimate (2.50) is proved for the other regular N-P

component Φ̃4 for n = 0.
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5. Proof of Theorems 2.4.1 and
2.4.2 on Schwarzschild

Contents
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5.5.2. Spin ±2 components . . . . . . . . . . . . . . . . . . . . 48

We prove the Theorem 2.4.1 and derive the estimates (4.15), (4.17), (4.24) and
(4.29) on Schwarzschild backgrounds, thus finishing the proof of Theorem 2.4.2 on
Schwarzschild for n = 0 from the discussions in Chapter 4. The n ≥ 1 cases follow
from Section 4.1.

5.1. Coupled system on Schwarzschild

In Schwarzschild spacetime, the governing equations in the systems (2.29) and
(2.30) for φis with s = ±1 are

L1
sφ

0
s =F 0

s = 2s(r−3M)
r2

φ1
s, (5.1a)

L1
sφ

1
s =F 1

s = 0, (5.1b)

while for s = ±2, the subequations in systems (2.31) and (2.32) can be written in
a unified form:

L0
sφ

0
s =F 0

s = 4(r−3M)
r2

φ1
s, (5.2a)

L1
sφ

1
s =F 1

s = 2(r−3M)
r2

φ2
s + 6Mφ0

s, (5.2b)
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5. Proof of Theorems 2.4.1 and 2.4.2 on Schwarzschild

L1
sφ

2
s =F 2

s = 0, (5.2c)

with the operators simplified to

L0
s =Σ2g + 2is cos θ

sin2 θ
∂φ − s2

(
cot2 θ + r+2M

2r

)
, (5.3a)

L1
s =Σ2g + 2is cos θ

sin2 θ
∂φ − s2

(
cot2 θ + r−2M

r

)
. (5.3b)

5.2. Decomposition

The equations (5.1), (5.2b) and (5.2c) are all in the form of an ISWWE

L1
sϕ

(1) = Σ2gϕ
(1) + 2is cos θ

sin2 θ
∂φϕ

(1) − s2
(
cot2 θ + r−2M

r

)
ϕ(1) = G(1). (5.4)

Decompose the solution ϕ(1) and the inhomogeneous term G(1) into

ϕ(1) =
∑
m,`

ϕ
(1)
m`(t, r)Y

s
m`(cos θ)eimφ,m ∈ Z, (5.5)

G(1) =
∑
m,`

G
(1)
m`(t, r)Y

s
m`(cos θ)eimφ,m ∈ Z. (5.6)

Here, for each m, {Y s
m`(cos θ)}` with min {`} = max (|m|, |s|) ≥ |s| are the eigen-

functions of the self-adjoint operator

Sm = 1
sin θ

∂θ sin θ∂θ − m2+2ms cos θ+s2

sin2 θ
(5.7)

on L2(sin θdθ). These eigenfunctions, called as ”spin-weighted spherical harmon-
ics”, form a complete orthonormal basis on L2(sin θdθ) and have eigenvalues
−Λm` = −`(`+ 1) defined by

SmY
s
m`(cos θ) = −Λm`Y

s
m`(cos θ). (5.8)

An integration by parts, together with a usage of Plancherel lemma and the or-
thonormality property of the basis

{
Y s
m`(cos θ)eimφ

}
m`

, gives

∑
m,`

`(`+ 1)
∣∣∣ϕ(1)

m`(t, r)
∣∣∣2 =

∫ π

0

∫ 2π

0

∣∣∇/ϕ(1)(t, r)
∣∣2 r2 sin θdφdθ. (5.9)

The equation for ϕ
(1)
m` is now

r4∆−1∂2
ttϕ

(1)
m` − ∂r(∆∂r)ϕ

(1)
m` + `(`+ 1)ϕ

(1)
m` − 2s2M/rϕ

(1)
m` +G

(1)
m` = 0. (5.10)
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5.3. Energy estimate

In the case that the inhomogeneous term G(1) = 0, this is exactly the equation one
obtains after decomposing into spherical harmonics the solution to the classical
Regge-Wheeler equation Regge and Wheeler (1957) or Fackerell-Ipser equation
Fackerell and Ipser (1972) on Schwarzschild.

The equation (5.2a), while, is in a form of an ISWWE with another potential:

L0
sϕ

(0) = Σ2gϕ
(0) + 2is cos θ

sin2 θ
∂φϕ

(0) − 4
(
cot2 θ + r+2M

2r

)
ϕ(0) = G(0). (5.11)

After the decomposition into spin-weighted spherical harmonics as above, the equa-
tion for ϕ

(0)
m` reads

r4∆−1∂2
ttϕ

(0)
m` − ∂r(∆∂r)ϕ

(0)
m` + `(`+ 1)ϕ

(0)
m` − (2− 4M/r)ϕ

(0)
m` +G

(0)
m` = 0, (5.12)

with min {`} = max (|m|, |s|) ≥ 2. The identity (5.9) holds for ϕ(0) as well.

We now consider the general form of the equations (5.10) and (5.12):

r4∆−1∂2
ttϕ− ∂r(∆∂r)ϕ+ `(`+ 1)ϕ+ V (r)ϕ+G = 0, (5.13)

with the potential

V (r) =

{
−2s2M/r for (5.10),
−2 + 4M/r for (5.12).

(5.14)

5.3. Energy estimate

Multiplying (5.13) by Tϕ = ∂tϕ and taking the real part, we arrive at an identity:

1
2
∂t

(
r4

∆
|∂tϕ|2 + ∆|∂rϕ|2 + `(`+ 1)|ϕ|2 + V |ϕ|2

)
− ∂r (<(∆∂rϕ∂tϕ))

= −<(G∂tϕ). (5.15)

Since ` ≥ |s|, the inequality

`(`+ 1) + V (r) ≥ 1
3
`(`+ 1) (5.16)

holds for both potentials in (5.14). Summing over m and `, applying the identity
(5.9) for ϕ(1) and ϕ(0), and finally integrating with respect to the measure dt∗dr
over {(t∗, r)|0 ≤ t∗ ≤ τ, 2M ≤ r <∞}, we have the following energy estimate for
ψi (i = 0, 1):

ET
τ (ϕ(i)) ≤ C

(
ET

0 (ϕ(i)) +

∫
D(0,τ)

1
r2

∣∣∣<(G(i)∂tϕ(i))
∣∣∣) . (5.17)

In global Kerr coordinates, for any τ ≥ 0,

ET
τ (ϕ(i)) ∼

∫
Στ

(
|∂t∗ϕ(i)|2 + |∇/ϕ(i)|2 + ∆

r2
|∂rϕ(i)|2

)
. (5.18)
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5. Proof of Theorems 2.4.1 and 2.4.2 on Schwarzschild

5.4. Morawetz estimate

In this section, taking the choices of the multipliers in Andersson and Blue (2015b),
Andersson et al. (2017a), we prove the Morawetz estimate for the separated equa-
tions (5.10) and (5.12), which are both in the form of (5.13) with potential as in
(5.14), and then derive the Morawetz estimate for (5.4) and (5.11).

We multiply (5.13) by

X(ϕ̄) = f̂∂rϕ̄+ q̂ϕ̄ = 2(r−2M)(r−3M)
r2

∂rϕ̄+ (2r−3M)∆
r4

ϕ̄, (5.19)

take the real part and arrive at

∂t

(
<
(
r4

∆
X(ϕ)∂tϕ̄

))
+ 1

2
∂r

(
f̂
[
`(`+ 1)|ϕ|2 − r4

∆
|∂tϕ|2 −∆|∂rϕ|2 + V |ϕ|2

])
+ 1

2
∂r
(
<(∂r(∆q̂)|ϕ|2 − 2∆q̂ϕ̄∂rϕ− 2q̂(r −M)|ϕ|2 − r−1Br(r)|ϕ|2)

)
+B(ϕ)

= −<(X(ϕ)G). (5.20)

Here, the bulk term

B(ϕ) = Bt(r)|∂tϕ|2 + r−2Br(r)|∂r(rϕ)|2 +B`(r)
(
`(`+ 1)|ϕ|2

)
+B0(r)|ϕ|2,

(5.21)

with

Bt(r) =
1

2
∂r

(
r4

∆
f̂

)
− q̂ r

4

∆

Br(r) =
1

2
∂r

(
∆f̂
)
− 2f̂(r −M) + ∆q̂

B`(r) = − 1

2
∂r(f̂) + q̂

B0(r) = ∂r (q̂(r −M))− 1

2
∂2
rr(∆q̂) + V q̂ − 1

2
∂r

(
V f̂
)

+ r2(∂r(r
−3Br(r)) + r−4Br(r)).

With the choices of f̂ and q̂ as in (5.19),

Bt(r) = 0, Br(r) = 6M∆2

r4
, B`(r) = 2(r−3M)2

r3
, (5.22)

and

B0(r) =


−27Mr−2 + 162M2r−3 − 234M3r−4 for (5.10) and |s| = 2,
−9Mr−2 + 60M2r−3 − 90M3r−4 for (5.10) and |s| = 1,
−4r−1 + 33Mr−2 − 78M2r−3 + 54M3r−4 for (5.12).

(5.23)
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5.4. Morawetz estimate

We first treat (5.10) by calculating V 1
|s|(r) = B0(r) + |s|(|s|+ 1)B`(r) that

V 1
|s|=2(r) = 3r−4(4r3 − 33Mr2 + 90M2r − 78M3), (5.24a)

V 1
|s|=1(r) = r−4(4r3 − 33Mr2 + 96M2r − 90M3). (5.24b)

Clearly, it holds that

B(ϕ) ≥ r−2Br(r)|∂r(rϕ)|2 + V 1
|s|(r)|ϕ|2 +B`(r) (`(`+ 1)− |s|(|s|+ 1)) |ϕ|2.

(5.25)

Using Mathematica to calculate the roots of the the third order polynomial 1
3
r4V 1

|s|(r),
we find there exists only one real root for this polynomial in both |s| = 1 and
|s| = 2, and the roots in both cases are less that 2M . Hence, in both |s| = 1 and
|s| = 2 cases, there exists a universal constant c > 0 such that for any r ≥ 2M ,

B(ϕ) ≥ c
(

∆2

r4
|∂rϕ|2 + 1

r
|ϕ|2 + (r−3M)2

r3
`(`+ 1)|ϕ|2

)
. (5.26)

Instead, if multiplying (5.13) by hϕ̄ with

h = −∆(r−3M)2

r7
, (5.27)

and take the real part, we arrive at

1
2
∂r
(
<(∂r(∆h)|ϕ|2 − 2∆hϕ̄∂rϕ− 2h(r −M)|ϕ|2)

)
+ h

(
`(`+ 1)|ϕ|2

)
+ ∂t

(
<
(
r4

∆
hϕ∂tϕ̄

))
− h r4

2∆
|∂tϕ|2 + ∆h|∂rϕ|2

+
(
∂r (h(r −M))− 1

2
∂2
rr(∆h) + hV

)
|ϕ|2

= −<(hϕG). (5.28)

After integration, this allows us to control the bulk integral of |∂tϕ|2 part by the
bulk integral of the RHS of (5.26). We sum over m and ` for (5.20) and (5.28)
with ϕ = ϕ(1) and G = G(1), apply the identity (5.9), integrate with respect to the
measure dt∗dr over {(t∗, r)|0 ≤ t∗ ≤ τ, 2M ≤ r <∞} and take (5.26) into account,
then we obtain a Morawetz estimate for (5.4) in global Kerr coordinates:∫

D(0,τ)

(
∆2

r6
|∂rϕ(1)|2 + 1

r4
|ϕ(1)|2 + (r−3M)2

r2

(
1
r3
|∂t∗ϕ(1)|2 + 1

r
|∇/ϕ(1)|2

))
. ET

τ (ϕ(1)) + ET
0 (ϕ(1)) +

∫
D(0,τ)

1
r2

(∣∣∣<(X(ϕ(1))G(1)
)∣∣∣+

∣∣∣<(hϕ(1)G(1)
)∣∣∣) .

(5.29)
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Turning now to (5.12), similarly as above, we calculate

V 0(r) = B0(r) + 6B`(r)

= r−4(8r3 − 39Mr2 + 30M2r + 54M3). (5.30)

One can check the roots of this third order polynomial r4V 0(r) by Mathematica
and find the only one real root is negative, hence r4V 0(r) is positive for r ≥ 2M ,
which yields

B(ϕ) ≥ r−2Br(r)|∂r(rϕ)|2 + V 0(r)|ϕ|2 +B`(r) (`(`+ 1)− 6) |ϕ|2

≥ c
(

∆2

r4
|∂rϕ|2 + 1

r
|ϕ|2 + (r−3M)2

r3
`(`+ 1)|ϕ|2

)
. (5.31)

Following the argument above for (5.10), it is straightforward to obtain the fol-
lowing Morawetz estimate for equation (5.11) in global Kerr coordinates:∫

D(0,τ)

(
∆2

r6
|∂rϕ(0)|2 + 1

r4
|ϕ(0)|2 + (r−3M)2

r2

(
1
r3
|∂t∗ϕ(0)|2 + 1

r
|∇/ϕ(0)|2

))
. ET

τ (ϕ(0)) + ET
0 (ϕ(0)) +

∫
D(0,τ)

1
r2

(∣∣∣<(X(ϕ(0))G(0)
)∣∣∣+

∣∣∣<(hϕ(0)G(0)
)∣∣∣) .

(5.32)

5.5. Proof of Theorems 2.4.1 and 2.4.2 on
Schwarzschild

5.5.1. Spin ±1 components

From the red-shift estimate Proposition 3.2.3, the Morawetz estimates in the large
radius region (3.13) and the estimate (5.29) applied to each individual equation in
the system (5.1), Theorem 2.4.1 for s = ±1 is proved. The inequalities (4.15) and
(4.17) are obviously valid from the Proposition 3.1.1 and Theorem 2.4.1 for spin
±1 components.

5.5.2. Spin ±2 components

We prove the Theorem 2.4.1, as well as the estimates (4.15), (4.17), (4.24) and
(4.29) for spin ±2 components separately.
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5.5.2.1. Spin +2 component

Applying the Morawetz estimates (5.29) to (5.2b) and (5.2c), and (5.32) to (5.2a),
then together with the Morawetz estimates in large r region for r4−δφ0 and r2−δφ1

in Proposition 3.1.2 and red-shift estimates near horizon in Section 3.2, it holds
for φi (i = 0, 1, 2) that

Eτ (r
4−δφ0) + EH+(0,τ)(r

4−δφ0) +

∫
D(0,τ)

M̃deg(r4−δφ0)

. E0(r4−δφ0) + Eschw(φ0
+2), (5.33)

Eτ (r
2−δφ1) + EH+(0,τ)(r

2−δφ1) +

∫
D(0,τ)

M̃deg(r2−δφ1)

. E0(r2−δφ1) + Eschw(φ1
+2) +

∫
D(0,τ)∩[R−1,∞)

|∂(r4−δφ0+2)|2
r2

, (5.34)

Eτ (φ
2) + EH+(0,τ)(φ

2) +

∫
D(0,τ)

Mdeg(φ2) . E0(φ2). (5.35)

The error term Eschw(φ0
+2) is bounded by∫

D(0,τ)

1
r2

(∣∣∣<(X(φ0)F 0
+2

)∣∣∣+
∣∣∣<(hφ0F 0

+2

)∣∣∣)+

∫
D(0,τ)

1
r2
|F 0

+2||∂tφ0|

+

∫
D(τ1,τ2)∩{r≥R−1}

(∣∣∣<(F 0
+2Xwφ0

)∣∣∣+ |φ1|2
r3

)
. ε0

∫
D(0,τ)

M̃(rφ0) + ε−1
0

∫
D(0,τ)

r−3|φ1|2, (5.36)

and Eschw(φ1
+2) is easily controlled from Cauchy-Schwarz inequality by

Cε1

∫
D(0,τ)

M̃(rφ1) + Cε−1
1

∫
D(0,τ)

(
|φ2|2
r3

+ |rφ0|2
r3

)
. (5.37)

Hence, this completes the proof of Theorem 2.4.1 and (4.24).

5.5.2.2. Spin −2 component

The Morawetz estimate (5.29) applied to (5.2b) and (5.2c), estimate (5.32) applied
to (5.2a), the Morawetz estimates in large r region for {φi−2}|i=0,1,2 in Proposition
3.1.1 and red-shift estimates near horizon in Section 3.2 together imply

Eτ (φ̃0) + EH+(0,τ)(φ̃0) +

∫
D(0,τ)

Mdeg(φ̃0) . E0(φ̃0) + Eschw(φ̃0), (5.38)

49



5. Proof of Theorems 2.4.1 and 2.4.2 on Schwarzschild

Eτ (φ̃1) + EH+(0,τ)(φ̃1) +

∫
D(0,τ)

Mdeg(φ̃1) . E0(φ̃1) + Eschw(φ̃1), (5.39)

Eτ (φ
2) + EH+(0,τ)(φ

2) +

∫
D(0,τ)

Mdeg(φ2) . E0(φ2). (5.40)

Easy to see the Theorem 2.4.1 and the estimates (4.29) hold from the inequality
that

Eschw(φ̃0) .
∫
D(0,τ)

1
r2

(∣∣∣<(X(φ0)F 0
−2

)∣∣∣+
∣∣∣<(hφ0F 0

−2

)∣∣∣+ |F 0
−2||∂tφ0|

)
+

∫
D(τ1,τ2)∩{r≥R−1}

|F 0
−2||Xwφ0|+

∫
D(τ1,τ2)∩[r+,r1]

|φ̃1|2

. ε0

∫
D(0,τ)

M(φ̃0) + ε−1
0

∫
D(0,τ)

r−3|φ̃1|2 (5.41)

and the following estimate obtained analogously

Eschw(φ̃1) . ε1

∫
D(0,τ)

M(φ̃1) + ε−1
1

∫
D(0,τ)

(
|φ2|2
r3

+ |φ̃0|2
r2

)
. (5.42)
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6.1. Energy estimate

We start by choosing a multiplier −2Σ−1∂tψ̄ for (2.34b), which gives an identity
for any τ2 > τ1 ≥ 0 that∫

Στ2

e1
τ2

(ψ) =

∫
Στ1

e1
τ1

(ψ)−
∫
D(τ1,τ2)

<
(

2F
Σ
∂tψ̄
)
. (6.1)

Here, the energy density in r ≥ r0 equals to

e1
τ (ψ) = 1

Σ

(
|∂θψ|2 +

∣∣∣∂φψ+is cos θψ

sin θ

∣∣∣2 − a2

∆
|∂φψ|2 + s2(∆+a2)

r2
|ψ|2

)
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+ (r2+a2)2−a2 sin2 θ∆
∆Σ

|∂tψ|2 + (r2+a2)2

∆Σ
|∂r∗ψ|2. (6.2)

From (5.9), we have for r ≥ r0 that∫
S2

(
|∂θψ|2 +

∣∣∣∂φψ+is cos θψ

sin θ

∣∣∣2 + s2|ψ|2
)
dσS2

≥
∫ π

0

∑
m∈Z

(
max{s2 + |s|,m2 + |m|}|ψm|2

)
sin θdθ, (6.3)

with

ψm(t, r, θ) = 1√
2π

∫ 2π

0

e−imφψ(t, r, θ, φ)dφ. (6.4)

It follows then that∫
S2

(
|∂θψ|2 +

∣∣∣∂φψ+is cos θψ

sin θ

∣∣∣2 − a2

∆
|∂φψ|2 + s2(∆+a2)

r2
|ψ|2

)
dσS2

≥
∫ π

0

∑
m∈Z

(
max{s2 + |s|,m2 + |m|} − a2m2

∆
+ s2 ∆+a2−r2

r2

)
|ψm|2 sin θdθ. (6.5)

Denote

A1
m,s = max{s2 + |s|,m2 + |m|} − a2m2

∆
+ s2 ∆+a2−r2

r2
. (6.6)

In the case that |s| = 2, if |m| = 0 or 1, then clearly

A1
m,s ≥ 2− a2m2

∆
+ 4(∆+a2)

r2
, (6.7)

which is nonnegative when r ≥ 2M . If |m| ≥ 4, then

A1
m,s ≥ m2

(
1− a2

∆

)
+ 4(∆+a2)

r2
, (6.8)

which is again nonnegative when r ≥ 2M . For |m| = 2 (or 3),

A1
m,s ≥ 2∆−4a2

∆
+ 4(∆+a2)

r2

(
or 8∆−9a2

∆
+ 4(∆+a2)

r2

)
, (6.9)

with the RHS being nonnegative when r2−2Mr−a2 ≥ 0, i.e. r ≥M+
√
M2 + a2.

While in the case that |s| = 1, obviously we have

A1
m,s ≥ m2 − a2m2

∆
+ ∆+a2

r2
, (6.10)

which is positive for r > 2M .
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6.1. Energy estimate

One can similarly choose the multiplier −2Σ−1∂tψ̄ for (2.34a) satisfied by φ0
s (s =

±2), and arrive at an energy identity for any τ2 > τ1 ≥ 0:∫
Στ2

e0
τ2

(ψ) =

∫
Στ1

e0
τ1

(ψ)−
∫
D(τ1,τ2)

<
(

2F
Σ
· ∂tψ̄

)
. (6.11)

Here, the energy density in r ≥ r0 is

e0
τ (ψ) = 1

Σ

(
|∂θψ|2 +

∣∣∣∂φψ+is cos θψ

sin θ

∣∣∣2 − a2

∆
|∂φψ|2 + s2(r2+2Mr−2a2)

2r2
|ψ|2

)
+ (r2+a2)2−a2 sin2 θ∆

∆Σ
|∂tψ|2 + (r2+a2)2

∆Σ
|∂r∗ψ|2. (6.12)

It follows from (6.3) that for r ≥ r0,∫
S2

(
|∂θψ|2 +

∣∣∣∂φψ+is cos θψ

sin θ

∣∣∣2 − a2

∆
|∂φψ|2 + s2(r2+2Mr−2a2)

2r2
|ψ|2

)
dσS2

≥
∫ π

0

∑
m∈Z

(
max{s2 + |s|,m2 + |m|} − a2m2

∆
− s2 ∆+a2

2r2

)
|ψm|2 sin θdθ. (6.13)

Denote
A0
m,s = max{|s|(|s|+ 1), |m|(|m|+ 1)} − a2m2

∆
− s2 ∆+a2

2r2
. (6.14)

Note that |s| = 2 here. If |m| = 0 or 1,

A0
m,s ≥ 2− a2m2

∆
+ 2(r2+2Mr−2a2)

r2
, (6.15)

and when |m| ≥ 4,

A0
m,s ≥ m2

(
1− a2

∆

)
+ 2(r2+2Mr−2a2)

r2
. (6.16)

The RHS of these inequalities are clearly nonnegative when r ≥ 2M . For the
remaining case that |m| = 2 (or 3),

A0
m,s ≥ 2∆−4a2

∆
+ 2(r2+2Mr−2a2)

r2

(
or 8∆−9a2

∆
+ 2(r2+2Mr−2a2)

r2

)
, (6.17)

which is nonnegative when r2 − 2Mr − a2 ≥ 0, i.e., when r ≥M +
√
M2 + a2.

Hence, we arrive at the conclusion that for |a|/M sufficiently small and r ≥ r0, the
energy densities ekτ (ψ) (k = 0, 1) above for both (2.34b) and (2.34a) are strictly
positive and satisfy ekτ (ψ) ≥ c|∂ψ|2.

Since the energy densities ekτ (ψ) are both nonnegative in Schwarzschild case (a =
0), it holds true in [r+, r0] that for sufficiently small |a|/M ≤ a0/M � 1 and any
τ ≥ 0,

−ekτ (ψ) ≤ Ca2

M2 |∂ψ|2. (6.18)
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Therefore, the above discussions imply the following energy estimate for both
(2.34a) and (2.34b):∫

Στ2∩[r0,∞)

|∂ψ|2 .
∫

Στ1

ekτ1(ψ) + a2

M2

∫
Στ2∩[r+,r0]

|∂ψ|2 +

∣∣∣∣∫
D(τ1,τ2)

<
(
F
Σ
T ψ̄
)∣∣∣∣ .
(6.19)

From now on, we will suppress the superscript k in the energy density and simply
write it as eτ1(ψ).

Clearly, there exists an ε0 = ε0(M) ≥ 0 and a nonnegative differential function
e0(ε0) with e0(0) = 0 such that for all |a|/M ≤ ε0 and any ẽ > e0, by adding
to this energy estimate ẽ times the redshift estimate in Proposition 3.2.3 for ψ ∈
{φ0

+2, φ
1
+2, φ

2
+2, φ

2
−2} and in Proposition 3.2.4 for φ̃0 and φ̃1, we obtain the following

result analogous to (Dafermos and Rodnianski, 2010, Prop.5.3.1) for sufficiently
small |a|/M ≤ a0/M .

Proposition 6.1.1. For ψ = φis (i = 0, 1, · · · , |s|), and F = F i
s in (2.29) and

(2.30) for s = ±1 and (2.31) and (2.32) for s = ±2 with the same superscript and
subscript as ψ = φis, define

ψ̃ =


φ̃j−2, if ψ = φj−2 (j = 0, 1);
ψ, if ψ = φ0

+2, φ
1
+2, φ

2
+2 or φ2

−2.
ψ, if ψ = φis with |s| = 1.

(6.20)

It then holds that∫
Στ2

|eτ2(ψ̃)|+ ẽEτ2(ψ̃)

.
∫

Στ1

|eτ1(ψ̃)|+ ẽEτ1(ψ̃) + ẽ

∫
D(τ1,τ2)∩{r0≤r≤r1}

|∂ψ̃|2

+

(
ẽ

∫
D(τ1,τ2)∩[r+,r1]

B(ψ̃, F ) +

∣∣∣∣∫
D(τ1,τ2)

<
(
F
Σ
T ψ̄
)∣∣∣∣) . (6.21)

Here,

B(ψ̃, F ) =



|F |2, for ψ̃ = φ1
+2, φ

2
+2 or φ2

−2;

|φ1
+2|2, for ψ̃ = φ0

+2;

|φ̃1|2, for ψ̃ = φ̃0
−2;

|φ2
−2|2 + |φ̃0|2 + |a|

M
|∂φ̃0|2, for ψ̃ = φ̃1

−2;

|F |2, for ψ̃ = φis with |s| = 1.

(6.22)
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We here state a finite in time energy estimate for the inhomogeneous SWFIE
(2.34a) and (2.34b) based on the above discussions, which is an analogue of (Dafer-
mos and Rodnianski, 2010, Prop.5.3.2).

Proposition 6.1.2. (Finite in time energy estimate) Given an arbitrary ε >
0, there exists an a0 > 0 depending on ε and a universal constant C such that for
|a| ≤ a0, 1 ≥ ẽ ≥ e0(a) and for any τ0 ≥ 0 and all 0 ≤ τ ≤ ε−1, the following
results hold true: For ψ = φis (i = 0, 1, · · · , |s|), ψ̃ in (6.20) and the corresponding
inhomogeneous function F = F i

s in (2.29) and (2.30) for s = ±1 and (2.31) and
(2.32) for s = ±2, we have

∫
Στ0+τ

|eτ0+τ (ψ̃)|+ ẽEτ0+τ (ψ̃)

. (1 + Cẽ)

(∫
Στ0

|eτ0(ψ̃)|+ ẽEtotal
τ0+τ (s)

)

+ C

(
ẽ

∫
D(τ0,τ0+τ)∩[r+,r1]

B(ψ̃, F ) +

∣∣∣∣∫
D(τ0,τ0+τ)

<
(
F
Σ
· T ψ̄

)∣∣∣∣) , (6.23)

and, depending on the spin weight s,∫
D(τ0,τ0+τ)∩[r0,r1]

|∂ψ̃|2 ≤ CEtotal
τ (s). (6.24)

Here, B(ψ̃, F ) is already defined in (6.22) and, for any τ ≥ 0,

Etotal
τ (s) =


Eτ (r

4−δφ0
+2) + Eτ (r

2−δφ1
+2) + Eτ (φ

2
+2), for s = +2;

Eτ (φ̃0
−2) + Eτ (φ̃0

−2) + Eτ (φ
2
−2), for s = −2;

Eτ (φ
0
+1) + Eτ (φ

1
+1), for s = +1;

Eτ (φ
0
−1) + Eτ (φ

1
−1), for s = −1.

(6.25)

Proof. The first estimate follows easily from the previous proposition together
with the second estimate, while the second estimate follows from the fact that it
holds for Schwarzschild case for all ε from the discussions in Chapters 5 and 4 and
the well-posedness property in Section 2.6.1 applied to the linear wave systems of{
φi+1

}
i=0,1

,
{
φi−1

}
i=0,1

,
{
φi+2

}
i=0,1,2

and {φ̃0
−2, φ̃

1
−2, φ

2
−2}.
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6. Proof of Theorem 2.4.1 on slowly rotating Kerr

6.2. Separated angular and radial equations

In the exterior of a subextremal Kerr black hole, if the solution ψ to the equation
(2.34b) is integrable, it then holds in L2(dt) that

ψ = 1√
2π

∫ ∞
−∞

e−iωtψω(r, θ, φ)dω, (6.26)

where ψω is defined as the Fourier transform of ψ:

ψω = 1√
2π

∫ ∞
−∞

eiωtψ(t, r, θ, φ)dt. (6.27)

We further decompose ψω in L2(sin θdθdφ) into

ψω =
∑
m,`

ψ
(aω)
m` (r)Y s

m`(aω, cos θ)eimφ, m ∈ Z. (6.28)

Here, for each m, {Y s
m`(aω, cos θ)}`, with min {`} = max{|m|, |s|}, are the eigen-

functions of the self-adjoint operator

Sm = 1
sin θ

∂θ sin θ∂θ − m2+2ms cos θ+s2

sin2 θ
+ a2ω2 cos2 θ − 2aωs cos θ (6.29)

on L2(sin θdθ). These eigenfunctions, called as ”spin-weighted spheroidal harmon-
ics”, form a complete orthonormal basis on L2(sin θdθ), and have eigenvalues

−Λ
(aω)
m`,s defined by

SmY
s
m`(aω, cos θ) = −Λ

(aω)
m`,sY

s
m`(aω, cos θ). (6.30)

One could similarly define Fω and F
(aω)
m` .

An integration by parts, together with a usage of Plancherel lemma and the or-
thonormality property of the basis {Y s

m`(aω, cos θ)eimφ}m`, gives∫ +∞

−∞

∑
m,`

Λ
(aω)
m`,s|ψ

(aω)
m` |

2dω

=

∫ ∞
−∞

∫
S2
dσS2dt

{
|∂θψ|2 +

∣∣∣∂φψ+is cos θψ

sin θ

∣∣∣2 − |a cos θ∂tψ + isψ|2 + 2s2|ψ|2
}
.

(6.31a)

The radial equation for ψ
(aω)
m` is then{

∂r(∆∂r) + (V1)
(aω)
m`,s(r)

}
ψ

(aω)
m` = F

(aω)
m` , (6.32)
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with the potential

(V1)
(aω)
m`,s(r) = (r2+a2)2ω2+a2m2−4aMrmω

∆
−
(
λ

(aω)
m`,s,1(r) + a2ω2

)
. (6.33)

We utilized here a substitution of

λ
(aω)
m`,s,1(r) = Λ

(aω)
m`,s −

s2(2Mr−2a2)
r2

, (6.34)

by which the above radial equation (6.32) is the same as the radial equation (Dafer-
mos and Rodnianski, 2010, Eq.(33))1 for the scalar field.

One could obtain for (2.34a) the same angular equation and the following radial

equation for ψ
(aω)
m` after decomposition:{

∂r(∆∂r) + (V0)
(aω)
m`,s(r)

}
ψ

(aω)
m` = F

(aω)
m` , (6.35)

with the potential

(V0)
(aω)
m`,s(r) = (r2+a2)2ω2+a2m2−4aMrmω

∆
−
(
λ

(aω)
m`,s,0(r) + a2ω2

)
, (6.36)

and a substitution of

λ
(aω)
m`,s,0(r) = Λ

(aω)
m`,s −

s2(∆+a2)
2r2

. (6.37)

We state here some basic identities for any r > r+ from properties of Fourier
transform and Plancherel lemma:∫ ∞

−∞

∫ 2π

0

∫ π

0

|ψ(t, r, θ, φ)|2 sin θdθdφdt =

∫ ∞
−∞

∑
m,`

∣∣∣ψ(aω)
m` (r)

∣∣∣2 dω,∫ ∞
−∞

∫ 2π

0

∫ π

0

|∂rψ(t, r, θ, φ)|2 sin θdθdφdt =

∫ ∞
−∞

∑
m,`

∣∣∣∂rψ(aω)
m` (r)

∣∣∣2 dω,∫ ∞
−∞

∫ 2π

0

∫ π

0

|∂tψ(t, r, θ, φ)|2 sin θdθdφdt =

∫ ∞
−∞

∑
m,`

ω2
∣∣∣ψ(aω)

m` (r)
∣∣∣2 dω.

1The authors in Dafermos and Rodnianski (2010) missed one term −4aMrmω/∆ in the Equa-
tion (33), but what is used thereafter is the Schrödinger equation (34) in Section 9 which is
correct. Therefore, the validity of the proof will not be influenced by the missing term.
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6.3. Proof of Theorem 2.4.1 for spin-1 case

6.3.1. Cutoff in time

To justify the separation procedures in Section 6.2, one would need the assumption
that the solution ψ(r) is integrable2, which is a priori unknown. Therefore, we
apply cutoff to the solution both to the future and to the past, and then do
separation for the wave equation which the gained function satisfies.

Let χ2(x) be a smooth cutoff function which equals to 0 for x ≤ 0 and is identically
1 when x ≥ 1. Choosing ε > 0 and a fixed τ ′ ≥ 2ε−1, we define

χ = χτ ′,ε(t
∗) = χ2(εt∗)χ2(ε(τ ′ − t∗)) (6.38)

and

ψχ = χψ (6.39)

in coordinate system (t∗, r, θ, φ∗). The cutoff function ψχ is now a smooth function
supported in 0 ≤ t∗ ≤ τ ′, and ψχ = ψ in ε−1 ≤ t∗ ≤ τ ′− ε−1. Moreover, it satisfies
the following inhomogeneous equation

Lk
sψχ = Fχ

= χF + Σ (2∇µχ∇µψ + (2gχ)ψ)− 2isa cos θ∂tχψ. (6.40)

k = 0 or 1 depends on the equation (2.34a) or (2.34b) we are treating. The fact
that the aforedefined χ is φ∗-independent is utilized here.

Note the fact that the functions ψχ and Fχ are compactly supported in 0 ≤ t∗ ≤ τ ′

at each fixed r > r+, and the assumption that ψ is a compactly supported smooth
section solving one subequation of a linear wave system, hence ψχ is an integrable
solution to (6.40) from Proposition 2.6.1. In the following discussions, we apply the
mode decompositions in Section 6.2 to ψχ and Fχ, and separate the wave equation
(6.40) into the angular equation (6.30) and radial equation (6.32) (or (6.35)), with

the radial parts R
(aω)
m` = (ψχ)

(aω)
m` and (Fχ)(aω)

m` of ψχ and Fχ in place of ψ
(aω)
m` and

F
(aω)
m` respectively.

Before introducing the microlocal currents, we give some estimates for the inho-
mogeneous term Fχ here. Due to the fact that ∇χ and 2gχ are supported in{

0 ≤ t∗ ≤ ε−1
}
∪
{
τ ′ − ε−1 ≤ t∗ ≤ τ ′

}
, (6.41)

2Recall it in Definition 2.6.1
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it holds in the coordinate system (t∗, r, θ, φ∗) that

|∂t∗χ| ≤ Cε, |2gχ| ≤ Cε2, (6.42a)

|∇µχ∇µψ|2 +
∣∣ ias cos θ∂tχψ

Σ

∣∣2 ≤ Cε2
(
|∂ψ|2 + a2

M2

∣∣ψ
r

∣∣2) . (6.42b)

6.3.2. Currents in phase space

In what follows, we will suppress the dependence on a, ω, m, ` and s of the func-
tions R

(aω)
m` (r), F

(aω)
m` (r), Λ

(aω)
m`,s, λ

(aω)
m`,s,k(r), (Vk)

(aω)
m`,s(r) and other functions defined

by them, k = 0, 1. When there is no confusion, the dependence on r may always
be implicit (except for the radial part R(r) to avoid misunderstanding with the
radius parameter R). Moreover, in the spin-1 case, k always takes the value 1.
Thus we may drop the subscript k as well, and write simply as R(r), F , Λ, λ and
V .

We transform the radial equation (6.32) and (6.35) into a Schrödinger form, which
will be of great use to define the microlocal currents below, by setting

u(r) =
√
r2 + a2R(r), H(r) = ∆Fχ(r)

(r2+a2)3/2
. (6.43)

The Schrödinger equation for u(r) reads after some calculations

u′′(r) +
(
ω2 − V (r)

)
u(r) = H(r), (6.44)

where

V =ω2 − ∆
(r2+a2)2

V + 1
(r2+a2)

d2

dr∗2
(r2 + a2)1/2

=
4Mramω−a2m2+∆(λ+a2ω2)

(r2+a2)2
+ ∆

(r2+a2)4

(
a2∆ + 2Mr(r2 − a2)

)
, (6.45)

and a prime ′ denotes a partial derivative with respect to r∗ in tortoise coordi-
nates.

Given any real, smooth functions y, h and f , define the microlocal currents

Qy = y
(
|u′|2 +

(
ω2 − V

)
|u|2
)
, (6.46a)

Qh = h< (u′u)− 1
2
h′|u|2, (6.46b)

Qf = Qh=f ′ +Qy=f = f ′< (u′u)−
(

1
2
f ′′ − f

(
ω2 − V

))
|u|2 + f |u′|2 . (6.46c)
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6. Proof of Theorem 2.4.1 on slowly rotating Kerr

The currents Qy and Qh are constructed via multiplying the equation (6.44) by
yū′/2 and hū respectively. We calculate the derivatives of the above currents as
follows

(Qy)′ = y′
(
|u′|2 +

(
ω2 − V

)
|u|2
)
− yV ′|u|2 + 2y<

(
u′H

)
, (6.47a)(

Qh
)′

= h
(
|u′|2 +

(
V − ω2

)
|u|2
)
− 1

2
h′′|u|2 + h<

(
uH
)
, (6.47b)(

Qf
)′

= 2f ′ |u′|2 − fV ′|u|2 + <
(
2fHu′ + f ′Hu

)
− 1

2
f ′′′|u|2. (6.47c)

6.3.3. Frequency regimes

Let us start to define the separated frequency regimes, in which we will obtain a
phase-space version of Morawetz estimate by choosing different functions y, h and
f separately. Let ω3, λ3 be (potentially large) parameters and λ2 be a (potentially
small) parameter, all to be determined in the proof below. The frequency space is
divided into

• FT = {(ω,m, `) : |ω| ≥ ω3, λ < λ2ω
2};

• FTr = {(ω,m, `) : |ω| ≥ ω3, λ ≥ λ2ω
2};

• FA = {(ω,m, `) : |ω| ≤ ω3,Λ > λ3};

• FB = {(ω,m, `) : |ω| ≤ ω3,Λ ≤ λ3}.

We fix an arbitrary 2M < rc < r0, with r0 fixed in Proposition 3.2.3.

Remark 6.3.1. We note here a fact that for all |a| < M and all frequency triplets
(ω,m, `), V ′(r) < 0 for r ≥ R5, with R5 ≥ R sufficiently large.

6.3.4. FT regime (time-dominated frequency regime)

We here follow the proof in (Dafermos and Rodnianski, 2010, Sect.9.6).

For |a| ≤ a0 �M , by choosing small enough λ2 and large enough ω3, there exists
a constant c < 1 such that we have in FT that

ω2 − V ≥ 1−c
2
ω2 in [r+,∞). (6.48)

As to the potential V , apart from the fact in Remark 6.3.1, it holds true that for
all r∗,

|V ′| ≤ C∆/r5
(
(λ+ a2

0ω
2) + 1

)
. (6.49)

We choose function y to satisfy the following properties:
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1. y ≥ 0, y′ ≥ c∆/r4 in (r+, R5],

2. y ≥ 0, y′ ≥ 0 in [R5, R5 + 1],

3. y = 1 in [R5 + 1,∞).

Then, we have

Lemma 6.3.1. Fix a small constant λ2 as above. Then for large enough ω3, for
arbitrary r∗∞ > (R5 + 1)∗ > R∗ and r∗−∞ < r∗c , we have in FT frequency regime the
following estimate

c

∫ R∗

r∗c

∆
r4

(
|u′|2 +

(
ω2 + (λ+ a2ω2) + 1

)
|u|2
)

≤
∫ r∗∞

r∗−∞

2y<
(
u′H

)
+Qy (r∗∞)−Qy

(
r∗−∞

)
. (6.50)

6.3.5. FTr regime (trapped frequency regime)

Here, we have fixed λ2 as in Section 6.3.4, and will fix ω3. This is the only
frequency regime where trapping phenomenon could happen. We remark without
proof that the potential V here shares the same properties as in (Dafermos and
Rodnianski, 2010, Sect.9.5). In particular, for ω3 sufficiently large and |a|/M ≤
a0/M sufficiently small, V ′(r) has a unique zero point r

(aω)
m` depending smoothly on

the frequency triplets (ω,m, `) and parameter a for any (ω,m, `) in FTr. Choose
a function f associated with Qf current to satisfy the following properties:

1. f ′ ≥ 0 for all r∗, and f ′ ≥ c∆/r4 for rc ≤ r ≤ R,

2. f changes sign from negative to positive at r = r
(aω)
m` , lim

r∗→−∞
f = −1, and

f = 1 for some large R4,

3. −fV ′ − 1
2
f ′′′ ≥ c(ω1)((λ+ a2ω2) + ω2)(r − r(aω)

m` )2∆/r7 for all r∗.

Therefore, we arrive at the following conclusion.

Lemma 6.3.2. Choosing ω3 sufficiently large and |a|/M sufficiently small, for
arbitrary r∗∞ > R∗4 ≥ R∗ and r∗−∞ < r∗c , we have in FTr frequency regime the
following estimate

c

∫ R∗

r∗c

(
∆/r4

(
|u′|2 + |u|2

)
+ ∆/r5(1− r−1r

(aω)
m` )2

(
ω2 + (λ+ a2ω2)

)
|u|2
)

≤
∫ r∗∞

r∗−∞

(
2f<

(
u′H

)
+ f ′<

(
uH
))

+Qf (r∗∞)−Qf
(
r∗−∞

)
. (6.51)
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6.3.6. FA regime (angular-dominated frequency regime)

Here, we fix ω3 as in Section 6.3.5, and will choose λ3 to be sufficiently large.
This regime is contained in {(ω,m, `) : |ω| ≤ ω3, λ ≥ λ3 − 1}. In this regime, for
sufficiently small |a|/M , the zero points of V ′(r) in [r+,∞) are located in a small
neighborhood of r = 3M . The Qf current is utilized to achieve the positivity of
the bulk term outside this small neighborhood, while hV |u|2 in (Qh)′ is used to
compensate the potentially negative bulk term in (Qf )′ with h(r) being a positive
constant in this small neighborhood. We will constrain ourselves here not to give
the explicit constructions of the functions f and h, but refer to (Dafermos and
Rodnianski, 2010, Sect.9.4). We restate the conclusion here.

Lemma 6.3.3. Fix ω3 as in Section 6.3.5, and choose λ3 to be sufficiently large
and |a|/M sufficiently small, then for arbitrary r∗∞ > R∗ and r∗−∞ < r∗c , we have
in FA frequency regime the following estimate

c

∫ R∗

r∗c

(
|u′|2 + ∆/r5

(
ω2 + (λ+ a2ω2) + 1

)
|u|2
)

≤
∫ r∗∞

r∗−∞

(
2f<

(
u′H

)
+ (f ′ + h)<

(
uH
))

+
(
Qf +Qh

)
(r∗∞)−Qf

(
r∗−∞

)
. (6.52)

6.3.7. FB regime (bounded frequency regime)

We fix ω3 and λ3 as above. This bounded frequency regime is contained in
{(ω,m, `) : |ω| ≤ ω3, λ ≤ λ3}. In this regime, a key fact is that the minimum value
of eigenvalues Λ for the separated angular equation (6.30) is close to max{s2 +
|s|,m2 + |m|} due to smallness of |aω|. The function λ then satisfies

λ ≥ max{s2 + |s|,m2 + |m|} − (2Mr − 2a2)/r2 −
(
Ca2ω2

3 + cs2
)

≥ 3/4− Ca2ω2
3. (6.53)

Therefore, there exists a sufficiently small ε0 = ε0(ω3) > 0 and B0 = B0(ε0) ≥ 1/2
such that for all |a|/M ≤ ε0,

λ+ a2ω2 ≥ B0

(
1 + (m2 + |m|) + ε2

0ω
2
3

)
. (6.54)

It is easy to check that the estimates (Dafermos and Rodnianski, 2010, Eq.(41)–
(44)) also hold true in this regime.

We split furthermore this regime into two sub-regimes, depending on the magni-
tude of |ω| compared to a suitably small parameter ω4 to be chosen.
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1. Sub-regime |ω| ≤ ω4 (near-stationary case). We will fix a suitably small
ω4 > 0 in this case. One could follow the proof in (Dafermos and Rodnianski,
2010, Sect.9.3.1) and obtain the following result.
Lemma 6.3.4. Fix a suitably small ω4 > 0. For arbitrary r∗∞ > R∗ and
r∗−∞ < r∗c , we have in the sub-regime |ω| ≤ ω4 of FB frequency regime the
following estimate

c

∫ R∗

r∗c

(
∆/r2 |u′|2 + ∆/r5

(
ω2 + (λ+ a2ω2) + 1

)
|u|2
)

≤
∫ r∗c

r∗−∞

q|r∗|−2|u|2dr∗ +

∫ r∗∞

r∗−∞

(
2y<

(
u′H

)
+ h<

(
uH
))

+Qy (r∗∞)−
(
Qy +Qh

) (
r∗−∞

)
. (6.55)

Here, q > 0 is an arbitrarily constant, which will be chosen to be sufficiently
small in Section 6.3.8.3. In particular, ω4 is already chosen in the proof of
this lemma.

2. Sub-regime |ω| ≥ ω4 (non-stationary case). Fix an ω4 as above. One could
argue in the same way as in (Dafermos and Rodnianski, 2010, Sect.9.3.2) to
establish the following conclusion.
Lemma 6.3.5. Fix an ω4 as in Lemma 6.3.4. For arbitrary r∗∞ > R∗ and
r∗−∞ < r∗c , we have in the sub-regime |ω| ≥ ω4 of FB frequency regime the
following estimate

c

∫ R∗

r∗c

(
∆/r2 |u′|2 + ∆/r5

(
ω2 + (λ+ a2ω2) + 1

)
|u|2
)

≤
∫ r∗c

r∗−∞

Ba0(∆/r2)|u|2dr∗ +

∫ (ε−1
2 R2)∗

R∗2

B
(
ε2r
−2 + r−3

)
ω2|u|2

+

∫ r∗∞

r∗−∞

(
2y<

(
u′H

)
+ h<

(
uH
))

+Qy (r∗∞)−Qy
(
r∗−∞

)
. (6.56)

Here again, ε2 > 0 (suitably small) and R2 ≥ R are arbitrary constants,
which will be chosen to be sufficiently small in Section 6.3.8.3.

6.3.8. Summing up

We apply Cauchy-Schwarz inequality to the term |a cos θ∂tψχ + isψχ|2 in (6.31a),
it then easily follows from the estimate (6.3) that for any r > rc∫ ∞

−∞

∑
m,`

λ(r)|u(r)|2dω
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≥
∫ ∞
−∞

∫
S2

(
r2 + a2

) (
c(rc)r

2 |∇/ψχ|2 − C(rc)a
2 |∂tψχ|2

)
dσS2dt. (6.57)

6.3.8.1. Error terms

The error terms, compared to the ones in Dafermos and Rodnianski (2010), have
two additional terms coming from the source term and from the cutoff. We consider
first the term arising from the cutoff∫ ∞
−∞

∫ r∗∞

r∗−∞

∑
m,`

−2as∆
(r2+a2)3/2

<
(

(i cos θ∂tχψ)
(aω)
m` (c(r)ū(r) + d(r)ū′(r))

)
dr∗dω, (6.58)

and split it into two parts integrated over r∗−∞ ≤ r∗ ≤ R∗7 and R∗7 ≤ r∗ ≤ r∗∞
respectively. Here, R7 ≥ R is fixed such that the functions y = f = 1 in the
above chosen currents are satisfied for all frequencies in r ≥ R7. The integral
over r∗−∞ ≤ r ≤ R∗7, after applying Cauchy-Schwarz and Plancherel lemma, is
dominated by

Cε−1
3 a2

∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

|∂tχ · (ψ/r)|2 ∆dr∗dσS2dt
∗

+ Cε3

∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

r−1
(
|∂r∗ψχ|2 + |ψχ/r|2

)
∆dr∗dσS2dt

∗

≤C
(
ε−1

3 a2 + ε3

) ∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

r−1
(
|∂r∗ψ|2 + |ψ/r|2

)
∆dr∗dσS2dt

∗. (6.59)

In view of the fact that f(r) = 1 (and y(r) = 1) in R7 ≤ r ≤ r∞ is independent
of the frequency parameters (ω,m, `) , the integral over this radius region equals
to ∫ τ ′

0

∫
S2

∫ r∞

R7

<
(
∂r(
√
r2 + a2χψ̄) −2as∆

(r2+a2)3/2
i cos θ∂tχψ

)
drdσS2dt

∗ (6.60)

by Plancherel lemma. Note that ∂r∗χ = 0 for sufficiently large r and this integral
is supported in {0 ≤ t∗ ≤ τ ′ − ε−1}∪{τ ′ − ε−1 ≤ t∗ ≤ τ ′}, then the integral (6.60)
is ∫ τ ′

0

∫
S2

∫ r∞

R7

−2as cos θ∆
r2+a2

(
<
(
i∂r(χψ̄)∂t(χψ)

)
− χ2<

(
i∂rψ̄∂tψ

))
drdσS2dt

∗

≤C|a|

(∫ τ ′

0

∫
S2

∫ r∞

R7

|∂ψ|2
r2
r2drdσS2dt

∗ +

∫
D(0,τ ′)∩{r=R7}

|∂ψ|2
)
, (6.61)
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with the second integral in the second line arising from estimating the second term
in the first line of (6.61). This is further controlled, via an average of integration,
by

C|a|
∫ τ ′

0

∫
S2

∫ r∞

R7−1

|∂ψ|2
r2
r2drdσS2dt

∗. (6.62)

The additional term coming from the source term F is∫ τ ′

0

∫
S2

∫ r∗∞

r∗−∞

∑
m,`

∆
(r2+a2)3/2

<
(

(χF )
(aω)
m,` (c(r)ū(r) + d(r)ū′(r))

)
dr∗dσS2dt

∗. (6.63)

As discussed above, we consider this integral over r∗−∞ ≤ r ≤ R∗7 and R∗7 ≤ r ≤ r∗∞
separately. The integral over r∗−∞ ≤ r ≤ R∗7 can be treated in the same way as
above and thus be estimated by

Cε−1
3

∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

|χF |2 ∆dr∗dσS2dt
∗

+ Cε3

∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

r−1
(
|∂r∗ψχ|2 + |ψχ/r|2

)
∆dr∗dσS2dt

∗

≤Cε−1
3

∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

|F |2 ∆dr∗dσS2dt
∗

+ Cε3

∫ τ ′

0

∫
S2

∫ R∗7

r∗−∞

r−1
(
|∂r∗ψ|2 + |ψ/r|2

)
∆dr∗dσS2dt

∗, (6.64)

while the integral over R∗7 ≤ r ≤ r∗∞ equals to∫ τ ′

0

∫
S2

∫ r∞

R7

<
(
∂r(
√
r2 + a2χψ̄) ∆

(r2+a2)3/2
χF
)
drdσS2dt

∗

=

∫ τ ′

0

∫
S2

∫ r∞

R7

χ2<
(
∂r(
√
r2 + a2ψ̄) ∆

(r2+a2)3/2
F
)
drdσS2dt

∗ (6.65)

and is furthermore bounded by

C

∫ τ ′

0

∫
Σt∗

(
ε−1r1+δ|F/Σ|2 + εr−1−δ(|∂r∗ψ|2 + |ψ/r|2)

)
dVolΣt∗dt

∗. (6.66)

The other error terms, being the same as in (Dafermos and Rodnianski, 2010,
Sect.10.2-10.3), can be treated in the same way there.
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6.3.8.2. Boundary terms

Turning to the boundary terms, they are controlled in the same way as in (Dafer-
mos and Rodnianski, 2010, Sect.10.4) and we will omit the discussions here. In
particular, the boundary terms at r∞ vanish for sufficiently large r∞ from the
reduction in Section 2.6.1.

6.3.8.3. Summing and finishing the proof

Given the above estimates, we need to make some replacements to finish the proof
along the line in (Dafermos and Rodnianski, 2010, Sect.10.5). The energy estimate
associated with the multiplier ∂tψ̄, Morawetz estimate in large r region, red-shift
estimate, propositions 5.3.1 and 5.3.2 in Dafermos and Rodnianski (2010) for the
scalar wave equation should be replaced by the estimates (6.19), (3.12), (3.32),
Propositions 6.1.1 and 6.1.2 in this paper, respectively. Upon these replacements,
the spin-1 case in the Theorem 2.4.1 is proved.

6.4. Proof of Theorem 2.4.1 for spin-2 case

Following the procedures in Sections 6.3.1 and 6.3.2, we choose ε > 0 and any
fixed τ ′ ≥ 2ε−1, and apply in global Kerr coordinate system the cutoff

χ = χτ ′,ε(t
∗) = χ2(εt∗)χ2(ε(τ ′ − t∗)) (6.67)

to the solution ψ:

φis,χ = χφis, (6.68)

with χ2(x) being a smooth cutoff function which equals to 0 for x ≤ 0 and is iden-
tically 1 for x ≥ 1. Moreover, it satisfies the following inhomogeneous equation

Lk
sφ

i
s,χ = F i

s,χ

= χF i
s + Σ

(
2∇µχ∇µφ

i
s + (2gχ)φis

)
− 2isa cos θ∂tχ · φis. (6.69)

k = 0 or 1 depends on the equation (2.34a) or (2.34b) we are treating.

From the assumptions in Theorem 2.4.2 and the reduction in Section 2.6.1, Φ̃j(j =
0, 4), and hence Φj, φ

i
s and F i

s , are smooth and compactly supported. As a result,
we can apply the mode decompositions in Section 6.2 to ψ = φis,χ and F = F i

s,χ,
and separate the wave equation (6.69) into the angular equation (6.30) and radial
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equation (6.32) or radial equation (6.35), with (Ri
s)

(aω)
m` , (φis,χ)

(aω)
m` and (F i

s,χ)
(aω)
m`

in place of ψ
(aω)
m` and F

(aω)
m` respectively.

We suppress the dependence on a, ω, m and ` in the functions (Ri
s)

(aω)
m` (r), (F i

s,χ)
(aω)
m` (r),

Λ
(aω)
m`,s,k, λ

(aω)
m`,s,k(r), (Vk)

(aω)
m`,s(r) and other functions defined by them, and when there

is no confusion, the dependence on r may always be implicit. Define

uis(r) =
√
r2 + a2Ri

s(r), H i
s(r) =

∆F is,χ(r)

(r2+a2)3/2
(6.70)

to transform the radial equation into an equation of Schrödinger form, which is the
same as (6.44) with the same potential. One could adapt easily the proof in Section
6.3 to obtain frequency localised Morawetz estimates and sum up these estimates,
with corresponding replacements of spin 1 statements in Propositions 3.1.1, 3.1.2,
6.1.1 and 6.1.2 by the spin 2 statements, the red-shift estimate Proposition 3.2.3
for spin 1 case in Section 3.2.1 by the red-shift estimates in Section 3.2.2.

Then we arrive at the estimates (2.46) with all the error terms divided into three
categories:

1. error terms by choosing the multipliers ∂tφis to obtain energy estimate, Xwφis
to obtain Morawetz estimates for φis in large r region, and N to obtain
redshift estimates for φi+2 (i = 0, 1, 2) and φ2

−2;

2. error terms arising in the currents estimates;

3. extra error terms arising from Morawetz estimates in large radius region in
Proposition 3.1.2 for r4−δφ0

+2 and r2−δφ1
+2 and red-shift estimates in Propo-

sition 3.2.4 for φ̃0
−2 and φ̃1

−2.

It is obvious from the application of Cauchy-Schwarz inequality that all these three
categories are bounded by CE is.
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7.1. Maxwell field

7.1.1. Spin +1 component

The estimate (2.44) applied to ψ = φ0
+1 and F = F 0

+1 and the estimate (3.13)
together imply

Eτ (r
2−δφ0) + EH+(0,τ)(r

2−δφ0) +

∫
D(0,τ)

M̃deg(r2−δφ0)

. E0(r2−δφ0) + E0(φ1) + E(F 0
+1). (7.1)

Instead, if we apply the estimate (2.44) for ψ = φ1
+1 and F = F 1

+1, then we arrive
at

Eτ (φ
1) + EH+(0,τ)(φ

1) +

∫
D(0,τ)

Mdeg(φ1) . E0(φ0) + E0(φ1) + E(F 1
+1). (7.2)

It is manifest that

E(F 0
+1) . ε0

∫
D(0,τ)

Mdeg(φ1) + ε−1
0

∫
D(0,τ)

M̃(r2−δφ0), (7.3)
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and all terms in E(F 1
+1) are bounded by Ca

M

∫
D(0,τ)

(M̃(r2−δφ0) + Mdeg(φ1)) except

for the term ∣∣∣∣∫
D(0,τ)

<
(

Σ−1F 1
+1∂t∗φ

1
)∣∣∣∣ (7.4)

because of the trapping degeneracy in Mdeg(φ1). We have for (7.4) that∣∣∣∣∫
D(0,τ)

1
Σ
<
(
F 1

+1∂tφ
1
)∣∣∣∣

≤
∣∣∣∣∫
D(0,τ)

2a2

Σ
<
(
∂tφ

0∂tφ1
)∣∣∣∣+

∣∣∣∣∫
D(0,τ)

2a
Σ
<
(
∂φφ

0∂tφ1
)∣∣∣∣ , (7.5)

and ∣∣∣∣∫
D(0,τ)

2a2

Σ
<
(
∂tφ

0∂tφ1
)∣∣∣∣ =

∣∣∣∣∫
D(0,τ)

a2

Σ
Y
(
r2|∂tφ0|2

)∣∣∣∣ .a 0. (7.6)

As to the other term
∣∣∣∫D(0,τ)

2a
Σ
<(∂φφ

0∂tφ1)
∣∣∣, we split it into three sub-integrals

with r+ < ř2 < r−trap ≤ r+
trap < R1 <∞ to be chosen:∣∣∣∣(∫

D(0,τ)∩[r+,ř2]

+

∫
D(0,τ)∩[R1,∞)

+

∫
D(0,τ)∩[ř2,R1]

)
2a
Σ
<
(
∂φφ

0∂tφ1
)∣∣∣∣ ,

with the first two sub-integrals controlled by Ca
M

∫
D(0,τ)

(M̃(r2−δφ0) + Mdeg(φ1))

directly. We substitute the expression

∂tφ
1 = (r2 + a2)−1

(
∆Y φ1 − a∂φφ1 + ∆∂rφ

1
)
, (7.7)

and find the third sub-integral is bounded by∣∣∣∣∫
D(0,τ)∩[ř2,R1]

(
2a∆

rΣ(r2+a2)
<
(
∂φ(rφ0)Y φ1

)
− a2

Σ(r2+a2)
Y
(∣∣∂φ(rφ0)

∣∣2))∣∣∣∣
+

∣∣∣∣∫
D(0,τ)∩[ř2,R1]

2a∆
Σ(r2+a2)

<
(
∂φ(φ0)∂rφ

1
)∣∣∣∣ .a 0. (7.8)

In the last step, we applied integration by parts to the first line and controlled the
boundary terms at R1 and ř2 by appropriately choosing these two radius parame-
ters such that these boundary terms are bounded via an average of integration by
Ca
M

∫
D(0,τ)

(M̃(r2−δφ0) + Mdeg(φ1)). These then imply the estimates (4.15).
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7.1. Maxwell field

7.1.2. Spin −1 component

Apply the estimate (2.44) to equation (2.30a) of φ0 and equation (2.30b) of φ1.
Manifestly, we have

E(F 0
−1) .a

∫
D(0,τ)

(
ε0M(φ0) + 1

ε0

|φ1|2
r3

)
, (7.9)

and for the term
∫
D(0,τ)

r−3+δ|F 1
−1|2 in E(F 1

−1),∫
D(0,τ)

r−3+δ|F 1
−1|2 .

|a|
M

∫
D(0,τ)

(
M(φ0) + |∇/ φ0|2

)
. (7.10)

For the remaining term
∣∣∣∫D(0,τ)

1
Σ
<
(
F 1
−1∂tφ

1
)∣∣∣ in E(F 1

−1), we have∣∣∣∣∫
D(0,τ)

1
Σ
<
(
F 1
−1∂tφ

1
)∣∣∣∣

≤
∣∣∣∣∫
D(0,τ)

2a2

Σ
<
(
∂tφ

0∂tφ1
)∣∣∣∣+

∣∣∣∣∫
D(0,τ)

2a
Σ
<
(
∂φφ

0∂tφ1
)∣∣∣∣ . (7.11)

We first split the first integral on RHS into two sub-integrals over [r+, ř1] and
[ř1,∞), with ř1 ∈ (r1, r

−
trap) to be fixed, and it follows∣∣∣∣∫

D(0,τ)

2a2

Σ
<
{
∂tφ

0∂tφ1
}∣∣∣∣

≤
∣∣∣∣∫
D(0,τ)∩[ř1,∞)

a2

Σ
V
(
r2|∂tφ0|2

)∣∣∣∣+

∣∣∣∣∫
D(0,τ)∩[r+,ř1]

2a2

Σ
<
(
∂tφ

0∂tφ1
)∣∣∣∣

.a
|a|
M

∫
D(0,τ)∩{r=ř1}

∣∣∂φ0
∣∣2 . (7.12)

We can choose a ř1 such that the last term in (7.12) can be bounded, via an
average of integration, by∫

D(0,τ)∩{r=ř1}

∣∣∂φ0
∣∣2 ≤ C

∫
D(0,τ)

M(φ0). (7.13)

As to the second integral term
∣∣∣∫D(0,τ)

2aΣ−1<(∂φφ
0∂tφ1)

∣∣∣, we split it into two

sub-integrals with r+ < ř3 < r−trap to be chosen:∣∣∣∣(∫
D(0,τ)∩[r+,ř3]

+

∫
D(0,τ)∩[ř3,∞)

)
2a
Σ
<
(
∂φφ

0∂tφ1
)∣∣∣∣ , (7.14)
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where the first sub-integral is clearly bounded by C|a|
M

∫
D(0,τ)

(M(φ0) + Mdeg(φ1)).

We substitute the expression

∂tφ
1 = (r2 + a2)−1

(
∆V φ1 − a∂φφ1 −∆∂rφ

1
)

(7.15)

into the second sub-integral and find it is bounded by∣∣∣∣∫
D(0,τ)∩[ř3,∞]

2a∆
rΣ(r2+a2)

<
(
∂φ(rφ0)V φ1

)∣∣∣∣
+

∣∣∣∣∫
D(0,τ)∩[ř3,∞]

a2

Σ(r2+a2)
V
(∣∣∂φ(rφ0)

∣∣2)∣∣∣∣
+

∣∣∣∣∫
D(0,τ)∩[ř3,∞]

2a∆
Σ(r2+a2)

<
(
∂φ(φ0)∂rφ

1
)∣∣∣∣ . (7.16)

Integrating by parts for the first two lines then shows that for sufficiently small
|a|/M ∣∣∣∣∫

D(0,τ)∩[ř2,∞)

2aΣ−1<
(
∂φφ

0∂tφ1
)∣∣∣∣ .a

|a|
M

∫
D(0,τ)

|∇/ φ0|2. (7.17)

Then the estimates (4.17) are valid.

7.2. Linearized gravity

The estimates (4.24) for spin +2 component and (4.29) for spin −2 component are
proved on slowly rotating Kerr background in this section.

7.2.1. Spin +2 component

Let us treat the error terms E i+2 in the energy and Morawetz estimate (2.46).
Manifestly,∣∣∣∣∫

D(0,τ)

1
Σ
<
(
F 0

+2∂tφ
0
)∣∣∣∣ .a ε0

∫
D(0,τ)

M̃(r4−δφ0) + 1
ε0

∫
D(0,τ)

r−3
∣∣φ1

+2

∣∣2 , (7.18)∣∣∣∣∫
D(0,τ)

1
Σ
<
(
F 1

+2∂tφ
1
)∣∣∣∣ .a

∫
D(0,τ)

(
ε1M̃(r2−δφ1) + 1

ε1

(
|φ0+2|2

r2
+
|φ2+2|2

r3

))
. (7.19)
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For the term
∣∣∣∫D(0,τ)

1
Σ
<(F 2

+2∂tφ
2)
∣∣∣, which a prior can not be controlled in the

trapped region due to the trapping degeneracy, we control it by∣∣∣∣∫
D(0,τ)

1
Σ
<
(
F 2

+2∂tφ
2
)∣∣∣∣ . ∣∣∣∣∫

D(0,τ)

a2

Σ
<
(
∂tφ

1∂tφ2
)∣∣∣∣

+

∣∣∣∣∫
D(0,τ)

a2

Σ
<
(
φ0∂tφ2

)∣∣∣∣+

∣∣∣∣∫
D(0,τ)

a
Σ
<
(
∂φφ

1∂tφ2
)∣∣∣∣ . (7.20)

The sum of the first two integrals on RHS is∣∣∣∣∫
D(0,τ)

a2

2Σ
Y
(
r2|∂tφ1|2

)∣∣∣∣+

∣∣∣∣∫
D(0,τ)

a2

Σ

(
∂t∗
(
<(φ0φ2)

)
−<(∂tφ

0φ2)
)∣∣∣∣ .a 0. (7.21)

As to the third integral term, we choose ř1 ∈ (r0, r
−
trap) and Ř1 > r+

trap, and split the

integral in radius into three sub-integrals over [r+, ř1], [ř1, Ř1] and [Ř1,∞), respec-
tively. The sum of the sub-integrals over [r+, ř1] and [Ř1,∞) is manifestly bounded
by CΞ+2(0, τ). For the left sub-integral over [ř1, Ř1], we utilize the expression

∂tφ
2 = (r2 + a2)−1

(
∆Y φ2 − a∂φφ2 + ∆∂rφ

2
)
, (7.22)

and find this left sub-integral is bounded by∣∣∣∣∫
D(0,τ)∩[ř2,R1]

(
2a∆

rΣ(r2+a2)
<
(
∂φ(rφ1)Y φ2

)
− a2

Σ(r2+a2)
Y
(∣∣∂φ(rφ1)

∣∣2))∣∣∣∣
+

∣∣∣∣∫
D(0,τ)∩[ř2,R1]

2a∆
Σ(r2+a2)

<
(
∂φ(φ1)∂rφ

2
)∣∣∣∣ .a 0. (7.23)

In the last step, integration by parts is applied to the first line and two radius
parameters ř1 and Ř1 are appropriately chosen such that the boundary terms at
ř1 and Ř1 are bounded via an average of integration by C|a|

M

∫
D(0,τ)

(M̃(r4−δφ0) +

M̃(r2−δφ1) + Mdeg(φ2)). Therefore, it holds that∣∣∣∣∫
D(0,τ)∩[ř1,Ř1]

a
Σ
<
(
∂φφ

1∂tφ2
)∣∣∣∣ .a 0, (7.24)

which further implies together with the above discussions that∣∣∣∣∫
D(0,τ)

Σ−1<
(
F 2

+2∂tφ
2
)∣∣∣∣ .a 0. (7.25)

The estimates (4.24) are then proved.
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7.2.2. Spin −2 component

We shall now bound the error terms E i−2 in the energy and Morawetz estimate
(2.46). Notice that∣∣∣∣∫

D(0,τ)

1
Σ
<
(
F 0
−2∂tφ

0
)∣∣∣∣

.a ε0

∫
D(0,τ)

M(φ0) + ε−1
0

∫
D(0,τ)

r−3|φ1|2, (7.26)∣∣∣∣∫
D(0,τ)

1
Σ
<
(
F 1
−2∂tφ

1
)∣∣∣∣

.a

∫
D(0,τ)

(
ε1M(φ1) + 1

ε1

(
|φ̃0|2
r2

+ |φ2|2
r3

+ |a|
M
|∇/ φ̃0|2

))
. (7.27)

For the term
∣∣∣∫D(0,τ)

1
Σ
<
(
F 2
−2∂tφ

2
)∣∣∣, we have∣∣∣∣∫

D(0,τ)

1
Σ
<
(
F 2
−2∂tφ

2
)∣∣∣∣ . ∣∣∣∣∫

D(0,τ)

a2

Σ
<
(
∂tφ

1∂tφ2
)∣∣∣∣

+

∣∣∣∣∫
D(0,τ)

a2

Σ
<
(
φ0∂tφ2

)∣∣∣∣+

∣∣∣∣∫
D(0,τ)

a
Σ
<
(
∂φφ

1∂tφ2
)∣∣∣∣ . (7.28)

We split the first integral into two sub-integrals over [r+, ř2] and [ř2,∞), with
ř2 ∈ (r1, r

−
trap) to be fixed, and obtain∣∣∣∣∫

D(0,τ)

a2

Σ
<
(
∂tφ

1∂tφ2
)∣∣∣∣

≤
∣∣∣∣∫
D(0,τ)∩[ř2,∞)

a2

2Σ
V
(
r2|∂tφ1|2

)∣∣∣∣+

∣∣∣∣∫
D(0,τ)∩[r+,ř2]

a2

Σ
<
(
∂tφ

1∂tφ2
)∣∣∣∣

.a
|a|
M

∫
D(0,τ)∩{r=ř2}

∣∣∂φ1
∣∣2 . (7.29)

We can choose a ř2 such that the last term in (7.29) can be bounded, via an
average of integration, by

|a|
M

∫
D(0,τ)∩{r=ř2}

∣∣∂φ1
∣∣2 . |a|

M

∫
D(0,τ)

M(φ1) . |a|
M

∫
D(0,τ)

M(φ̃1). (7.30)

We split the integral region of the second line of (7.28) into two subregions [r+, ř3]
and (ř3,∞) with ř3 ∈ (r0, r

−
trap) to be fixed. The terms integrated over [r+, ř3] are
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7.2. Linearized gravity

clearly bounded by CΞ−2(0, τ). While, for the integrals over (ř3,∞), we use the
substitution

∂tφ
2 = (r2 + a2)−1

(
∆V φ2 − a∂φφ2 −∆∂rφ

2
)
, (7.31)

and find they are dominated by∣∣∣∣∫
D(0,τ)∩[ř3,∞)

(
a∆

rΣ(r2+a2)
<
(
∂φ(rφ1)V φ2

)
− a2

2Σ(r2+a2)
V
(∣∣∂φ(rφ1)

∣∣2))∣∣∣∣
+

∣∣∣∣∫
D(0,τ)∩[ř3,∞)

a2∆
rΣ(r2+a2)

<
(

(rφ0)V φ2
)∣∣∣∣

+

∣∣∣∣∫
D(0,τ)∩[ř3,∞)

∆
Σ(r2+a2)

(
<
(
a∂φφ1∂rφ

2
)

+ <
(
a2φ0∂rφ

2
))∣∣∣∣

+

∣∣∣∣∫
D(0,τ)∩[ř3,∞)

a2

Σ(r2+a2)

(
∂φ

(
<
(
φ0φ2

))
−<

(
∂φφ

0φ2
))∣∣∣∣

.a

∫
D(0,τ)

|a|
M

(
|∇/ φ̃1|2 + |φ̃0|2

r2

)
. (7.32)

Here, we applied integration by parts to the first two lines and utilized the defini-
tion (2.28b) and similar estimates as (7.13) to control the boundary terms at Ř3

and ř3 by appropriately choosing these two radius parameters. In summary, we
have ∣∣∣∣∫

D(0,τ)

Σ−1<
(
F 2
−2∂tφ

2
)∣∣∣∣ .a

∫
D(0,τ)

|a|
M

(
|∇/ φ̃1|2 + |φ̃0|2

r2

)
. (7.33)

It is manifest from the estimates (2.46), (7.26), (7.27) and (7.33) that the estimates
(4.29) hold true.
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8. Brief overview of mode stability
result

We briefly review our mode stability result Andersson et al. (2017b), which is a
joint work with Lars Andersson, Claudio Paganini and Bernard F Whiting.

In Boyer-Lindquist coordinates (t, r, θ, φ), let

L = ∂r∆∂r −
1

∆

{
(r2 + a2)∂t + a∂φ − (r −M)s

}2

− 4s(r + ia cos θ)∂t +
1

sin θ
∂θ sin θ∂θ

+
1

sin2 θ

{
a sin2 θ∂t + ∂φ + is cos θ

}2
. (8.1)

Then the spin s component Φ solves a separable, spin-weighted wave equation–
TME Teukolsky (1973), given by

LΦ = 0 (8.2)

We should note here that this TME is different from the TME (8.2) since the field
Φ = ∆−s/2ψ[s].

The TME admits separated solutions (or modes for simplicity) of the form

Φ = e−iωteimφS(θ)R(r), (8.3)

where ω,m are the frequencies corresponding to the Killing vector fields (∂t)
a,

(∂φ)a. Let
K = (r2 + a2)ω − am. (8.4)

Then with

R = ∂r∆∂r +
K2 − 2iK(r −M)s− (r −M)2s2

∆
+ 4sirω − Λ (8.5)

S =
1

sin θ
∂θ sin θ∂θ −

m2

sin2 θ
+ a2 cos θ2ω2 − 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ
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+ Λ + 2aωm− a2ω2, (8.6)

where Λ is a separation constant, which can be assumed to be real for real ω, we
have after making the substitutions ∂t ↔ −iω, ∂φ ↔ im,

L = R + S, (8.7)

and

[R,S] = 0. (8.8)

In particular, R,S are commuting symmetry operators for L. It follows from the
above that for modes of the form (8.3), (8.2) is equivalent to the equations RR = 0,
SS = 0. We shall refer to the equations

RR = 0 (8.9a)

SS = 0 (8.9b)

as the radial and angular Teukolsky equations, respectively. As for the treatment of
the real frequency case by Shlapentokh-Rothman (2015), we shall not be concerned
with the analysis of the angular Teukolsky equation here, but point out that S is
formally self-adjoint on [0, π] with respect to sin θdθ. Imposing the condition that
the solutions correspond to regular spin-weighted functions fixes the boundary
conditions at θ = 0, π and equation (8.9b) becomes a Sturm-Liouville problem
which has a discrete, real spectrum; see Leaver (1986) for more details. The
separation constant used here is related to that used in Teukolsky and Press (1974)
by Λ+2aωm−a2ω2 = E−s2, and to the one used in Whiting (1989) and Teukolsky
(1972) by Λ + 2aωm− a2ω2 = A+ s.

For fields of non-zero spin, the TME does not admit a real action, and hence
standard arguments do not yield energy conservation and dispersive estimates.
This is an obstacle to proving stability for the test fields with non-zero spin on the
Kerr exterior spacetime.

A proof of mode stability is given in Whiting (1989). It shows that the TME has no
modes which are such that the frequency ω has positive imaginary part, and which
have no incoming radiation in the sense that the wave is outgoing at infinity, and
ingoing at the horizon. To be concise, the main result of Whiting (1989) states that
the TME admits no exponentially growing solutions without incoming radiation.
In the case of =ω > 0, the condition of no incoming radiation can be restated as
saying that the solution has support only on the future horizon and null infinity.
On the other hand, there do exist mode solutions with no incoming radiation for
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certain frequencies with negative imaginary part. This case corresponds to quasi-
normal modes (Kokkotas and Schmidt, 1999), which are exponentially decaying in
time.

It is known that exponentially growing modes must arise by quasi-normal fre-
quencies passing from the lower half plane through the real axis into the upper
half plane as a is changed from zero. This was argued heuristically by Press and
Teukolsky (Press and Teukolsky, 1973, p. 651) and later shown by Hartle and
Wilkins Hartle and Wilkins (1974), see also (Teukolsky and Press, 1974, p. 452).
For this reason, the mode stability problem can be reduced to considering the case
of real frequencies.

Recently, the mode stability argument has been revisited for the case of real fre-
quencies, restricting to the spin-0 case (Shlapentokh-Rothman, 2015). In the case
of real frequencies, the mode stability result states that restricting to modes with
no incoming radiation in the above sense, the radial Teukolsky equation has no
non-trivial solutions. This has the consequence that there are linearly independent
solutions Rhor, Rout which are purely ingoing at the horizon and outgoing at infin-
ity, respectively, a fact which plays a central role in the proof of boundedness and
decay for scalar waves on subextremal Kerr exterior spacetimes (Dafermos et al.,
2014), in particular it is used to treat the superradiant range of frequencies.

Motivated by the relevance of the TME for the black hole stability problem we
give a proof of mode stability on the real axis for fields with arbitrary spin. Our
main result in Andersson et al. (2017b) is the following.

Theorem 8.0.1 (Mode stability on the real axis). Let Φ be a mode to the
TME with ω ∈ R for the subextremal Kerr black hole. Assume that Φ has purely
ingoing radiation at the horizon and purely outgoing radiation at infinity. Then
Φ = 0.

Remark 8.0.1. A classical scattering argument can be used to show mode stability
on the real axis for half-integer spins, or for frequences outside of the superradiant
range ω(ω − am/(2Mr+)) < 0. The proof of mode stability on the real axis
presented in this paper is independent of that scattering argument.

The fact that there are no modes to the TME with no incoming radiation has the
important consequence that the radial Teukolsky equation has two fundamental
solutions Rhor and Rout which are ingoing at the horizon, and outgoing at infinity,
respectively, and are linearly independent, with non-vanishing Wronskian. This
implies that one can construct solutions of the inhomogenous Teukolsky equation
using the method of variation of the parameter. The properties of the solutions
Rhor and Rout can be used to estimate the solution of the inhomogenous Teukolsky
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8. Brief overview of mode stability result

equation, and will be crucial in generalizing the results in the previous chapters
from slowly rotating Kerr backgrounds to full subextremal Kerr backgrounds.

80



A. Another set of variables

We here introduce another set of variables φ̂is (i = 0, 1, · · · , |s|) constructed from
the spin s components, with their governing equations containing no ∂t derivative
terms on the RHS. This fact is in particular useful when we consider the case
of axisymmetric perturbations where the ∂φ derivative terms are identically zero,
since the systems (A.4), (A.5), (A.7) and (A.8) will see no derivative terms on the
RHS.

Define two first order differential operators

Y(·) =
√
r2 + a2Y (

√
r2 + a2·), V(·) = −

√
r2 + a2V (

√
r2 + a2·), (A.1)

and the wave operators L̂0
s and L̂1

s

L̂1
s = Σ2g + 2is

(
cos θ
sin2 θ

∂φ − a cos θ∂t
)
− s2

(
cot2 θ + r4−2Mr3+6a2Mr−a4

(r2+a2)2

)
, (A.2a)

L̂0
s = Σ2g + 2is

(
cos θ
sin2 θ

∂φ − a cos θ∂t
)
− s2

(
cot2 θ + r2+2Mr−a2

2(r2+a2)

)
. (A.2b)

A.1. Spin-1

Define

φ̂0
+1 = ψ[+1]/(r

2 + a2), φ̂1
+1 = Y(φ̂0

+1), (A.3a)

φ̂0
−1 = ∆ψ[−1]/(r

2 + a2), φ̂1
−1 = V(φ̂0

−1). (A.3b)

These variables will satisfy the following equations

L̂1
+1φ̂

0
+1 = 2(r3−3Mr2+a2r+a2M)

(r2+a2)2
φ̂1

+1 − 4ar
r2+a2

∂φφ̂
0
+1, (A.4a)

L̂1
+1φ̂

1
+1 = −2a2(r3−3Mr2+a2r+a2M)

(r2+a2)2
φ̂0

+1 + 2a(a4−r4)
(r2+a2)2

∂φφ̂
0
+1, (A.4b)

and

L̂1
−1φ̂

0
−1 =2(r3−3Mr2+a2r+a2M)

(r2+a2)2
φ̂1
−1 + 4ar

r2+a2
∂φφ̂

0
−1, (A.5a)

L̂1
−1φ̂

1
−1 =−2a2(r3−3Mr2+a2r+a2M)

(r2+a2)2
φ̂0
−1 −

2a(a4−r4)
(r2+a2)2

∂φφ̂
0
−1, (A.5b)

respectively.
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A. Another set of variables

A.2. Spin-2

Define the variables

φ̂0
+2 = ψ[+2]/(r

2 + a2)2, φ̂1
+2 = Y(φ̂0

+2), φ̂2
+2 = Y(φ̂1

+2), (A.6a)

φ̂0
−2 = ∆2ψ[−2]/(r

2 + a2)2, φ̂1
−2 = V(φ̂0

−2), φ̂2
−2 = V(φ̂1

−2). (A.6b)

These variables will satisfy the following equations

L̂0
+2φ̂

0
+2 =F̂ 0

+2 = 4(r3−3Mr2+a2r+a2M)
(r2+a2)2

φ̂1
+2 − 8ar

r2+a2
∂φφ̂

0
+2, (A.7a)

L̂1
+2φ̂

1
+2 =F̂ 1

+2 = 2(r3−3Mr2+a2r+a2M)
(r2+a2)2

φ̂2
+2 − 4ar

r2+a2
∂φφ̂

1
+2

+ 6r(Mr3−a2r2−3Ma2r−a4)
(r2+a2)2

φ̂0
+2 + 6a(a2−r2)

r2+a2
∂φφ̂

0
+2, (A.7b)

L̂1
+2φ̂

2
+2 =F̂ 2

+2 = −20a2(r3−3Mr2+a2r+a2M)
(r2+a2)2

φ̂1
+2 + 8a(a2−r2)

r2+a2
∂φφ̂

1
+2

+ 6a2(a4+6a2Mr−10Mr3−r4)
(r2+a2)2

φ̂0
+2 + 24a3r

r2+a2
∂φφ̂

0
+2, (A.7c)

and

L̂0
−2φ̂

0
−2 =F̂ 0

−2 = 4(r3−3Mr2+a2r+a2M)
(r2+a2)2

φ̂1
−2 + 8ar

r2+a2
∂φφ̂

0
−2, (A.8a)

L̂1
−2φ̂

1
−2 =F̂ 1

−2 = 2(r3−3Mr2+a2r+a2M)
(r2+a2)2

φ̂2
−2 + 4ar

r2+a2
∂φφ̂

1
−2

+ 6r(Mr3−a2r2−3a2Mr−a4)
(r2+a2)2

φ̂0
−2 −

6a(a2−r2)
r2+a2

∂φφ̂
0
−2, (A.8b)

L̂1
−2φ̂

2
−2 =F̂ 2

−2 = −20a2(r3−3Mr2+a2r+a2M)
(r2+a2)2

φ̂1
−2 −

8a(a2−r2)
r2+a2

∂φφ̂
1
−2

+ 6a2(a4+6a2Mr−10Mr3−r4)
(r2+a2)2

φ̂0
−2 − 24a3r

r2+a2
∂φφ̂

0
−2, (A.8c)

respectively.
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