
Mathematisch-Naturwissenschaftliche Fakultät

Martin Gebser | Benjamin Kaufmann | Torsten Schaub

Multi-threaded ASP solving with clasp

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 586
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-413977
DOI https://doi.org/10.25932/publishup-41397

Suggested citation referring to the original publication:
Theory and Practice of Logic Programming 12 (2012) 4–5, pp. 525–545
DOI https://doi.org/10.1017/S1471068412000166
ISSN (print) 1471-0684
ISSN (online) 1475-3081

TLP 12 (4–5): 525–545, 2012. C© Cambridge University Press 2012

doi:10.1017/S1471068412000166

525

Multi-threaded ASP solving with clasp

MARTIN GEBSER, BENJAMIN KAUFMANN

and TORSTEN SCHAUB�
Institut für Informatik, Universität Potsdam

Abstract

We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We

detail its component and communication architecture and illustrate how they support the

principal functionalities of clasp. Also, we provide some insights into the data representation

used for different constraint types handled by clasp. All this is accompanied by an extensive

experimental analysis of the major features related to multi-threading in clasp.

1 Introduction

The increasing availability of multi-core technology offers a great opportunity for

further improving the performance of solvers for Answer Set Programming (ASP;

Baral 2003). This paper describes how we redesigned and reimplemented the award-

winning1 ASP solver clasp (Gebser et al. 2007b) in order to leverage the power

of today’s multi-core shared memory machines by supporting parallel search. To

this end, we chose a coarse-grained, task-parallel approach via shared memory

multi-threading. This has led to the clasp 2 series supporting a single- and a multi-

threaded variant sharing a common code base. clasp allows for parallel solving

by search space splitting and/or competing strategies. While the former involves

dynamic load balancing in view of highly irregular search spaces, both modes aim

at running searches as independently as possible in order to take advantage of

enhanced sequential algorithms. In fact, a portfolio of solver configurations cannot

only be used for competing but also in splitting-based search. The latter is optionally

combined with global restarts to escape from uninformed initial splits.

For promoting the scalability of parallel search, all major routines of clasp 2

are lock-free. Also, we enforced a clear distinction between read-only, shared, and

thread-local data and incorporated accordingly optimized representations. This is

implemented by means of Intel’s Threading Building Blocks (TBB) for providing

platform-independent threads, atomics, and concurrent containers. Currently, clasp

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 The multi-threaded variant of clasp 2 won the first place in the Crafted/UNSAT and the second place

in the Crafted/SAT+UNSAT category, respectively, at the 2011 SAT competition in terms of number
of solved instances and wall-clock time. In addition, clasp 2 was among the three genuine parallel
solvers participating in the 32 cores track (restricted to benchmarks from the Application category; the
fourth solver used a portfolio, including clasp 1.3). Also, clasp 2 participated “out of competition” at
the 2011 ASP competition, which was dominated by the single-threaded variant of clasp 2.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

526 M. Gebser et al.

supports up to 64 configurable (non-hierarchic) threads. Apart from parallel search,

another major extension of previous versions of clasp regards the exchange of

recorded nogoods. While unary, binary, and ternary nogoods are always shared

among all threads, longer ones can optionally be exchanged, configurable at the

sender as well as at the receiver side. In fact, clasp provides different measures

estimating the quality of shared nogoods as well as various heuristics and filters for

controlling their integration. For instance, the sharing of a nogood can be subject

to the number of distinct decision levels associated with its literals. Conversely,

the integration of a nogood may depend on its satisfaction and/or scores in host

heuristics.

In view of the wide distribution of clasp, we put a lot of effort into transferring

the entire functionality from the sequential, viz. clasp series 1.3, to the parallel

setting. For one, this concerned clasp’s reasoning modes (cf. Gebser et al. 2011a),

including enumeration, projected enumeration, intersection and union of models,

and optimization. Moreover, we extended clasp’s language capacities by allowing

for solving weighted and/or partial MaxSAT (Li and Manyà 2009) as well as

Boolean optimization (Marques-Silva et al. 2011) problems. Finally, it goes without

saying that clasp’s basic infrastructure has also significantly evolved with the new

design; e.g. the preprocessing capacities of clasp were extended with blocked clause

elimination (Järvisalo et al. 2010), and its conflict analysis has been significantly

improved by on-the-fly subsumption (Han and Somenzi 2009).

In what follows, we focus on describing the multi-threaded variant of clasp 2. To

this end, the next section provides a high-level view on modern parallel ASP solving.

The general component and communication architecture of the new version of clasp

are presented in Sections 3 and 4. Section 5 details the design of data structures

underlying the implementation of clasp 2. Parallel search features of clasp 2 are

empirically assessed in Section 6. Finally, Sections 7 and 8 discuss related work and

the achieved results, respectively.

2 Parallel ASP solving

We presuppose some familiarity with search procedures for (Boolean) constraint

solving, that is, Davis-Putnam-Logemann-Loveland (DPLL; Davis and Putnam

1960; Davis et al. 1962) and Conflict-Driven Constraint Learning (CDCL; Marques-

Silva and Sakallah 1999; Zhang et al. 2001). In fact, (sequential) ASP solvers like

smodels (Simons et al. 2002) adopt the search pattern of DPLL based on systematic

chronological backtracking, or like clasp (series 1.3) apply lookback techniques from

CDCL, which include conflict-driven learning and non-chronological backjumping.

In what follows, we primarily concentrate on CDCL and principal points for its

parallelization in the clasp 2 series.

In order to solve the basic decision problem of solution existence, CDCL

first extends a given (partial) assignment via deterministic (unit) propagation.

Importantly, every derived literal is “forced” by some nogood (set of literals that

must not jointly be assigned), which would be violated if the literal’s complement

were assigned. Although propagation aims at forgoing nogood violations, assigning

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 527

while work available

while no (result) message to send
communicate // exchange information with other solver instances
propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution

else decide // non-deterministically assign some literal
else

if root-level conflict then send unsatisfiable

else if external conflict then send unsatisfiable

else
analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results with (and receive work from) other solver instances

Fig. 1. High-level algorithm for multi-threaded Conflict-Driven (Boolean) Constraint

Learning.

a literal forced by one nogood may lead to the violation of another nogood; this

situation is called conflict. If the conflict can be resolved (the violated nogood

contains backtrackable literals), it is analyzed to identify a conflict constraint. The

latter represents a “hidden” conflict reason that is recorded and guides backjumping

to an earlier stage such that the complement of some formerly assigned literal is

forced by the conflict constraint, thus triggering propagation. Only when propagation

finishes without conflict, a (heuristically chosen) literal can be assigned at a new

decision level, provided that the assignment at hand is partial, while a solution

(total assignment not violating any nogood) has been found otherwise. The eventual

termination of CDCL is guaranteed (cf. Zhang and Malik 2003; Ryan 2004), by

either returning a solution or encountering an unresolvable conflict (independent of

unforced decision literals).

Figure 1 provides a high-level view on the parallelization of CDCL-style search

in clasp. We first note that entering the inner search loop relies on the availability of

work. In fact, when search spaces to investigate in parallel are split up by means of

guiding paths (Zhang et al. 1996), a solver instance must acquire some spare guiding

path before it can start to search. In this case, all (decision) literals of the guiding

path are assigned up to the solver’s root level, precluding them from becoming

unassigned upon backtracking/backjumping. Apart from search space splitting,

parallelization of clasp can be based on algorithm portfolios (Gomes and Selman

2001), running different solving strategies competitively on the same search space.

Once a solver instance is working on some search task, it combines deterministic

propagation with communication. The latter includes nogood exchange with other

solver instances, work requests from idle solvers (asking for a guiding path), and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

528 M. Gebser et al.

external conflicts raised to abort the current search.2 An external conflict or an

(unresolvable) root-level conflict likewise make a solver instance stop its current

search, and the same applies when a solution is found. In such a case, the respective

result is communicated (in the last line of Fig. 1), and a new search task may be

received in turn.

As mentioned in the introductory section, the infrastructure of clasp also allows

for conducting sophisticated reasoning modes like enumeration and optimization in

parallel. This is accomplished via enriched message protocols, e.g. (upper) bounds are

exchanged in addition to nogoods when performing parallel optimization, while an

external conflict (raised upon finding the first solution) switches competing solvers

of an algorithm portfolio into enumeration mode based on guiding paths. In fact,

search space splitting and algorithm portfolios can be applied exclusively or be

combined to flexibly orchestrate parallel solvers.

In the following sections, we detail the parallel architecture and underlying

implementation techniques of clasp 2. Regarding data structures, it is worthwhile

to note that unit propagation over “long” nogoods (involving more than three

literals) relies on a two-watched-literals approach (Moskewicz et al. 2001), monitoring

two references to unassigned literals for triggering propagation once the second

last literal becomes assigned. We also presuppose basic familiarity with parallel

computing concepts, such as race conditions, atomic operations, (dead- and spin-)

locks, semaphores, etc. (cf. Herlihy and Shavit 2008).

3 Component architecture

To explain the architecture and functioning of the new version of clasp, let us follow

the workflow underlying its design. To this end, consider clasp’s architectural diagram

given in Figure 2. Although clasp also accepts other input formats, like (extended)

dimacs, opb, and wbo for describing Boolean satisfiability (SAT; Biere et al. 2009)

and optimization problems, we detail its functioning for computing answer sets of

(propositional) logic programs, as output by grounders like gringo (Gebser et al.

2011a) or lparse (Syrjänen). Similarly, we concentrate on the multi-threaded setting,

neglecting the single-threaded one.

At the start, only the main thread is active. Once the logic program is read in,

it is subject to several preprocessing stages, all conducted by the main thread. At

first, the program is (by default) simplified while identifying equivalences among

its constituents (Gebser et al. 2008). The simplified program is then transformed

into a compact representation in terms of Boolean constraints (whose core is

generated from the completion (Clark 1978) of the simplified program). After that,

the constraints are (optionally) subject to further, mostly SAT-based preprocessing

(Eén and Biere 2005; Järvisalo et al. 2010). Such techniques are more involved in our

ASP setting because variables relevant to unfounded-set checking, optimization, or

2 For instance, a solver instance may discover unconditional unsatisfiability (even when using guiding
paths; cf. Ellguth et al. 2009) and then inform others about the needlessness of performing further
work.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 529

Fig. 2. Multi-threading architecture of clasp 2.

part of complex (i.e. cardinality and weight) constraints cannot be simply eliminated.

Note that both preprocessing steps identify redundant variables that can be expressed

in terms of the relevant ones included in the resulting set of constraints.

The outcomes of the preprocessing phase are stored in a SharedContext object that

is initialized by the main thread and shared among all participating threads. Among

others, this object contains

• the set of relevant Boolean variables together with type information

(e.g. atom, body, aggregate, etc.),

• a symbol table, mapping (named) atoms from the program to internal variables,

• the positive atom-body dependency graph, restricted to its strongly connected

components,

• the set of Boolean constraints, among them nogoods, cardinality and weight

constraints, minimize constraints, and

• an implication graph capturing inferences from binary and ternary nogoods.3

The richness of this information is typical for ASP, and it is much sparser in a SAT

setting.

After its initialization in association with a “master solver,” further (solver) threads

are (concurrently) attached to the SharedContext, where its constraints are “cloned.”

Notably, each constraint is aware of how to clone itself efficiently (cf. Section 5 on

implementation details). Moreover, the Enumerator and NogoodDistributor objects are

used globally in order to coordinate various model enumeration modes and nogood

exchange among solver instances. We detail their functioning in Section 4.

3 ASP problems usually yield a large majority of binary nogoods due to program completion (Clark
1978). Also note that unary nogoods capture initial problem simplifications that need not be rechecked
during search.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

530 M. Gebser et al.

Each thread contains one Solver object, implementing the algorithm in Figure 1.

Each Solver stores

• local data, including assignment, watch lists, constraint database, etc.,

• local strategies, regarding heuristics, restarts, constraint deletion, etc.,

and it uses the NogoodDistributor to share recorded nogoods. A solver assigns

variables either by (deterministic) propagation or (non-deterministic) decisions.

Motivated by the nature of ASP problems,3 each solver propagates first binary

and ternary nogoods (shared through the aforementioned implication graph), then

longer nogoods and other constraints, before it finally applies any available post

propagators.

Post propagators constitute another important new feature of clasp 2, providing an

abstraction easing clasp’s extensibility with more elaborate propagation mechanisms.

For this, each solver maintains a list of post propagators that are consecutively pro-

cessed after unit propagation. For instance, failed-literal detection and unfounded-set

checking are implemented in clasp 2 as post propagators. Similarly, they are used

in the new version of clasp’s extension with constraint processing, clingcon (Gebser

et al. 2009), to realize theory propagation. Post propagators are assigned different

priorities and are called in priority order. Typically, we distinguish three priority

classes:

• single post propagators are deterministic and only extend the current decision

level.

Unfounded-set checking is a typical example.

• multi post propagators are deterministic and may add or remove decision

levels.

Failed-literal detection is a typical example.

• complex post propagators may or may not be deterministic.

Nogood exchange is an example for this (see below).

Moreover, parallelism is also handled by means of post propagators, as described

next.

ParallelSolve controls concurrent solving with up to 64 individually configurable

threads. When attaching a solver to the SharedContext, ParallelSolve associates a

thread with the solver and adds dedicated post propagators to it. One high-priority

post propagator is added for message handling and another, very low-priority post

propagator is supplied for integrating information stemming from models4 and/or

shared nogoods.

For controlling parallel search, ParallelSolve maintains a set of atomic message

flags:

• terminate signals the end of a computation,

• interrupt forces outside termination (e.g. when the user hits Ctrl+C),

4 This can regard an enumerated model to exclude, intersect, or union, as well as objective function
values.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 531

• sync indicates that all threads shall synchronize, and

• split is set during splitting-based search whenever at least one thread needs

work.

These flags are used to implement clasp’s two major search strategies:

• splitting-based search via distribution of guiding paths and dynamic load

balancing via a split-request and -response protocol, and

• competition-based search via freely configurable solver portfolios.

Notably, solver portfolios can also be used in splitting-based search, that is, different

guiding paths may be solved with different configurations.

4 Communication architecture

A salient transverse aspect of the architecture of clasp 2 is its communication

infrastructure, used for implementing advanced reasoning procedures. To begin with,

the ParallelSolve object keeps track of threads’ load, particularly in splitting-based

search. Moreover, the Enumerator controls enumeration-based reasoning modes,

while the NogoodDistributor handles the exchange of recorded nogoods among

solver threads. These communication-intense components along with fundamental

implementation techniques are detailed below in increasing order of complexness.

4.1 Thread coordination

The basic communication architecture of clasp relies on message passing, efficiently

implemented by lock-free atomic integers. On the one hand, globally shared atomic

counters are stored in ParallelSolve. For instance, all aforementioned control flags

are stored in a single shared atomic integer. On the other hand, each thread has a

local message counter hosted by the message handling post propagator (see above).

Message passing builds upon two basic methods: postMessage() and hasMessage().

Posting a message amounts to a Compare-And-Swap5 (CAS) on an atomic integer,

and checking for messages (via specialized post propagators) is equivalent to an

atomic read. Of particular interest is communication during splitting-based search.

This is accomplished via a lock-free work queue, an atomic work request counter,

and a work semaphore in ParallelSolve. Initially, the work queue only contains the

empty guiding path, and all threads “race” for this work package by issuing a work

request. A work request first tries to pop a guiding path from the work queue and

returns upon success. Otherwise, the work request counter is incremented and a split

request is posted, which results in raising the split flag. Afterwards, a wait() is tried

on the work semaphore.6 If wait() fails because the number of idle threads now

equals the total number of threads, the requesting thread posts a terminate message

and wakes up all waiting threads. Otherwise, the thread is blocked until new work

5 Conditional writing is performed as atomic CPU instruction to achieve synchronization in multi-
threading.

6 See http://en.wikipedia.org/wiki/Semaphore_(programming) in case of unfamiliarity with the
working of semaphores.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

532 M. Gebser et al.

arrives. On the receiver side, the message handling post propagator of each thread

checks whether the split flag has been set. If so, and provided that the thread at hand

has work to split, its message handler proceeds as follows. At first, it decrements the

work request counter. (Note that the message handler thus declares the request as

handled before actually serving it in order to minimize over-splitting.) If the work

request counter reached 0, the message handler also resets the split flag. Afterwards,

the search space is split and a (short) guiding path is pushed to the work queue in

ParallelSolve. At last, the message handler signals the work semaphore and hence

eventually wakes up a waiting thread.

Splitting-based search usually suffers from uninformed early splits of the search

space. To counterbalance this, ParallelSolve supports an advanced global restart

scheme based on a two-phase strategy. In the first phase, threads vote upon

effectuating a global restart based on some given criterion (currently, number of

conflicts); however, individual threads may veto a global restart. For instance, this

may happen in enumeration when a first model is found during this first restarting

phase. Once there are enough votes, a global restart is initiated in the second phase.

For this, a sync message is posted and threads wait until all solvers have reacted to

this message. The last reacting thread decides on how to continue. If no veto was

issued, the global restart is executed. That is, threads give up their guiding paths,

the work queue is cleared, and the initial (empty) guiding path is again added to the

work queue. Otherwise, the restart is abandoned, and the threads simply continue

with their current guiding paths.

If splitting-based search is not active (i.e. during competition-based search),

the work queue initially contains one (empty) guiding path for each thread, and

additional work requests simply result in the posting of a terminate message.

4.2 Nogood exchange

Given that each thread implements conflict-driven search involving nogood learning,

the corresponding solvers may benefit from a controlled exchange of their recorded

information. However, such an interchange must be handled with great care because

each individual solver may already learn exponentially many nogoods, so that their

additional sharing may significantly hamper the overall performance.

To differentiate which nogoods to share, clasp 2 pursues a hybrid approach

regarding both nogood exchange and storage. As described in Section 3, the binary

and ternary implication graph (as well as the positive atom-body dependency graph)

are shared among all solver threads. Otherwise, each solver maintains its own local

nogood database. The sharing of these nogoods is optional, as we detail next.

The actual exchange of nogoods is controlled in clasp by separate distribution

and integration components for carefully selecting the spread constraints. This is

supported by thread-local interfaces along with the global NogoodDistributor (see

Fig. 2). All components rely on interfaces abstracting from the specific sharing

mechanism used underneath.

The distribution of nogoods is configurable in two ways. First, the exported

nogoods can be filtered by their type, viz. conflict, loop, or short (i.e. binary and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 533

ternary), or be exhaustive or inhibited. The difference between globally sharing short

nogoods (via their implication graph) and additionally “distributing” them lies in

the proactiveness of the process. While the mere sharing leaves it to each solver to

discover nogoods added by others, their explicit distribution furthermore communi-

cates this information through the standard distribution process. Second, the export

of nogoods is subject to their respective number of distinct decision levels associated

with the contained literals, called the Literal Block Distance (LBD; Audemard and

Simon 2009). Fewer distinct decision levels are regarded as advantageous since they

are prone to prune larger parts of the search space. This criterion has empirically

shown to be rather effective and largely superior to a selection by length.

The integration of nogoods is likewise configurable in two ways. The first criterion

captures the relevance of a nogood to the local search process. First, the state of

a nogood is assessed by checking whether it is satisfied, violated, open (i.e. neither

satisfied nor violated), or unit w.r.t. the current (partial) assignment. While violated

and unit nogoods are always considered relevant, open nogoods are optionally

passed through a filter using the solver’s current heuristic values to discriminate the

relevance of the candidate nogood to the current solving process. Finally, satisfied

nogoods are either ignored or considered open depending on the configuration of

the corresponding filter and their state relative to the original guiding path. The

second integration criterion is expressed by a grace period influencing the size of the

local import queue and thereby the minimum time a nogood is stored. Once the local

import queue is full, the least recently added nogood is evicted and either transferred

to the thread’s nogood database (where it becomes subject to the thread’s nogood

deletion policy) or immediately discarded. Currently, two modes are distinguished.

The thread transfers either all or only “heuristically active” nogoods from its import

queue while discarding all others.

Both distribution and integration are implemented as dedicated (complex) post

propagators, based upon a global distribution scheme implemented via an efficient

lock-free Multi-Read-Multi-Write (MRMW) list situated in ParallelSolve.7 Distribu-

tion roughly works as follows. When the solver of Thread i records a nogood that is

a candidate for sharing, it is first integrated into the thread-local nogood database.

In addition, the nogood’s reference counter is set to the total number of threads

plus one, and its target mask to all threads except i. At last, Thread i appends the

shared nogood to the aforementioned MRMW list.

Conversely upon integration, Thread j traverses the MRMW list, thereby ignoring

all nogoods whose target mask excludes j. Depending on the state of a nogood,

the aforementioned filters decide whether a nogood is relevant or not. All relevant

nogoods are integrated into the search process of Thread j and added to its local

import queue. The reference counter of each nogood is decremented by each thread

moving its read pointer beyond it. In addition, the sharing thread i decrements

a nogood’s reference counter whenever it no longer uses it. Hence, the reference

7 This choice is motivated by the fact that we aim at optimizing clasp for desktop computers, still
mostly possessing few genuine processing units. Other strategies are possible and an active subject of
current research.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

534 M. Gebser et al.

counter of a shared nogood can only drop to zero once it is no longer addressed by

any read pointer. This makes it subject to deletion.

Notably, the shared representation of a nogood is only created when the nogood is

actually distributed. Otherwise, its optimized (single-threaded) representation is used.

Upon integration, the “best” representation is selected, for instance, short nogoods

are copied while longer ones are physically shared (see Section 5 for implementation

details).

4.3 Complex reasoning modes

In addition to model printing, all enumeration-based reasoning modes of clasp 2

are controlled by the global Enumerator (see Fig. 2). These reasoning modes include

regular and projected model enumeration, intersection and union of models, uniform

and hierarchical (multi-criteria) optimization as well as combinations thereof, like

computing the intersection of all optimal models.

As already mentioned, one global Enumerator is shared among all threads and

is protected by a lock. Whenever applicable, it hosts global constraints, like

minimize constraints, that are updated whenever a model is found. Additionally, the

Enumerator adds a local enumeration-specific constraint to each solver for storing

thread-local data, e.g. current optima (see below). Once a model is found, a dedicated

message update-model is send to all threads, but threads only react to the most recent

one.

In fact, enumeration is combinable with both search strategies described in

Section 3, either by applying dedicated enumeration algorithms taking advantage

of guiding paths or by using solution recording in a competitive setting. The

latter setting exploits the infrastructure for nogood exchange in order to distribute

solutions among solver threads. Once a solution is converted into a nogood, it can

be treated as usual, except that its integration is imperative and that it is exempt

from deletion. However, this approach suffers from exponential space complexity in

the worst case. Unlike this, splitting-based enumeration runs in polynomial space,

following a distributed version of the enumeration algorithm introduced in (Gebser

et al. 2007a). In order to avoid uninformed splits at the beginning, all solver threads

may optionally start in a competitive setting. Once the first model is found, the

Enumerator enforces splitting-based search among all solver threads and disables

global restarts. In addition to the distribution of disjoint guiding paths, backtrack

levels (see Gebser et al. 2007a) are dealt with locally in order to guarantee an

exhaustive and duplicate-free enumeration of all models.

In optimization, solver threads cooperate in enumerating one better model after

another until no better one is found, so that the last model is optimal. Whenever a

better model is found, its objective value is stored in the Enumerator. The threads react

upon the following update-model message by integrating the new value into their

local minimize constraint representation8 and thus into the search processes of their

8 While the literals of a minimize constraint are stored globally, corresponding upper bounds are local
to threads, and changes are communicated through the Enumerator.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 535

solvers. Minimize constraints provide methods for efficiently re-computing their state

after an update, so that restarting search is unnecessary in most cases. An innovative

feature of clasp 2 is hierarchical optimization (Gebser et al. 2011b), build on top

of uniform optimization. Hierarchical optimization allows for solving multi-criteria

optimization problems by considering criteria according to their respective priorities.

Such an approach is much more involved than standard branch-and-bound-based

optimization because it must recover from several unsatisfiable subproblems, one

for each criterion. This is accomplished by dynamic minimize constraints that may

be disabled and reinitialized during search. Accordingly, nogoods learned under

minimize constraints must be retracted once the constraint gets disabled. Another

benefit of such dynamic constraints is that we may decrease the (upper) bound in a

non-uniform way, and successively re-increase it upon unsatisfiability. Hierarchical

optimization allows for gaining an order of magnitude on multi-criteria problems,

as witnessed in Linux configuration (Gebser et al. 2011c).

Also, brave and cautious reasoning, computing the union and intersection of

all models, respectively, are implemented through a global constraint within the

Enumerator. Whenever a new model is found, the constraint is intersected with the

model (or its complement).

5 Implementation

A major design goal of clasp 2 was to leverage the power of today’s multi-core

shared memory machines, while keeping the resulting overhead low so that the

single-threaded variant does not suffer from a significant loss in performance. In

particular, we aimed at empowering physical sharing of constraints and data while

avoiding false sharing, locking, and communication overhead. To this end, our design

foresees a clear distinction between three types of data representations, viz.

• read-only data providing lock- and wait-free sharing (without deadlocks and

races),

• shared data being subject to concurrent updates via CAS or locks (admitting

races), and

• thread-local data being private to each thread and thus not sharable (avoiding

deadlocks and races).

Let us make this more precise by detailing the data representations of the various

types of constraints used in clasp. Constraints are typically separated into a thread-

local and a (possibly shared) read-only part. While the former usually contains

search-specific and thus dynamic data, the latter typically comprises static data not

being subject to change.

As mentioned above, the implication graph is shared among all threads and stores

inferences from binary and ternary nogoods. The corresponding data structure is

separated into two parts. On the one hand, a static read-only part is initialized

during preprocessing; it stores two vectors, bin(l) and tern(l), for each literal l.

The former contains literals being forced once l becomes true. Similarly, the latter

stores binary clauses being activated when l becomes true. For better data locality,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

536 M. Gebser et al.

bin(l) and tern(l) are actually stored in one memory block. On the other hand,

the dynamic part supports concurrent updates for storing and distributing short

recorded nogoods. To this end, it includes, for each literal l, an atomic pointer,

learnt(l), to a linked list of CACHE LINE SIZE-sized memory blocks. Each such

memory block contains a fixed-size array of binary and ternary nogoods. This setting

guarantees that propagation over learnt(l) is efficient and does not need any locks

(given that short clauses are never removed). Moreover, we rely on fine-grained

spinlocks to enable efficient updates of fixed-size arrays.

In analogy, longer nogoods are separated into two parts, called head and tail. The

head part is always thread-local and is referenced in the owning thread’s watch lists.

It stores two watched literals, one cache literal, and some extra dynamic data, like

nogood activity. The cache literal provides a (potential) spare watched literal, in

case one of the two original ones is assigned. That is, upon updating the watched

literals, the cache literal is inspected before a costly visit of the literals in the

(possibly shared) tail part is engaged.9 Further contents of the head part depend

on whether a nogood is shared. If not, the nogood stores its unshared tail part,

including the nogood’s size and remaining literals, together with the head in one

continuous memory block. Otherwise, the head points to a read-only shared tail

object containing the nogood’s literals, an (atomic) reference counter, and further

static data, like the size of the nogood. The separation into a dynamic thread-local

and a static read-only shared part is motivated by the fact that sharing only needs to

replicate the search-specific state of a nogood, like its watched literals and activity.

Notably, although a more local representation of shared nogoods would be possible,

it is important to avoid storing dynamic data of different threads in the same

coherence block (e.g. a cache line); otherwise, writes of one thread lead to (logically)

unnecessary coherence operations in other threads. Our separation of data ensures

that thread-local data of different threads is never stored together and thus avoids

such “false sharing.” Regarding representation, clasp employs the following policies.

Short nogoods of up to five literals are never physically shared, but completely

stored in thread-local head parts for improving access locality. Original problem

nogoods are physically shared in the presence of multiple threads, except if copying

(instead of sharing) of problem nogoods is enforced. Finally, recorded nogoods are

only shared on demand, as described in Section 4.

Analogously to nogoods, weight constraints have a thread-local part storing current

assignments (to enclosed literals) and the corresponding sum of weights as well as a

shared part storing size, literals, weights, and a reference counter. The shared part

of a minimize constraint (cf. Section 4) in addition includes priority levels of literals,

and thread-local parts contain current (upper) bounds.

Finally, unfounded-set checking also relies on a bipartite data representation.

As mentioned above, it is implemented as a dedicated post propagator utilizing

the (read-only) shared strongly connected components of a program’s positive

atom-body dependency graph (cf. Section 3). This is again counterbalanced by a

9 The Watched Literal Reference Lists of miraxt (Schubert et al. 2009) follow a similar approach.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 537

 20

 40

 60

 80

 100

 120

 1 10 100 1000

S
ol

ve
d

in
st

an
ce

s

Time in seconds

clasp-t1
 -t4
 -t8

cryptominisat-2.9.2-t4
 -t8
miraxt-2009-t4

 -t8
plingeling-587-t4

 -t8
manysat-1.1-t4

 -t8

Fig. 3. (Colour online) Number of solved instances per time for clasp 2 and other

multi-threaded SAT solvers.

thread-local part storing assignment-specific data, like source pointers (cf. Simons

et al. 2002).

6 Experiments

We conducted two series of experiments, the first comparing clasp 2 to other

multi-threaded CDCL-based (SAT) solvers and the second assessing the impact of

different parallel search features. In fact, efforts to parallelize CDCL have so far

concentrated on the area of SAT, and thus we compare clasp (version 2.0.5) to the

following multi-threaded SAT solvers: cryptominisat (version 2.9.2; Soos et al. 2009),

manysat (version 1.1; Hamadi et al. 2009b), miraxt (version 2009; Schubert et al.

2009), and plingeling (version 587f; Biere 2011). While miraxt performs search space

splitting via guiding paths, the three other solvers let different configurations of an

underlying sequential SAT solver compete with one another. Furthermore, nogood

exchange among individual threads is either confined to short nogoods, only unary

(plingeling) or binary ones as well (cryptominisat), performed adaptively (manysat;

cf. Hamadi et al. 2009a), or exhaustive in view of a shared nogood database (miraxt).

The solvers were run on a Linux machine with two Intel Quad-Core Xeon E5520

2.27GHz processors, imposing a limit of 1000 (or 1200) seconds wall-clock time per

solver and benchmark instance in the first (or second) series of experiments.10

Our first series of experiments evaluates the performance of clasp in comparison to

other multi-threaded SAT solvers. To this end, we ran the aforementioned solvers on

10 The benchmark suites are available at http://www.cs.uni-potsdam.de/clasp.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

538 M. Gebser et al.

160 benchmark instances from the Crafted category at the 2011 SAT competition.11

The plot in Figure 3 displays numbers of solved instances (on the y-axis) as a

function of time (in log scale on the x-axis). As (sequential) baseline, we include clasp

running one thread in the configuration submitted to the 2011 SAT competition. This

configuration is contrasted with four- and eight-threaded variants of the considered

parallel SAT solvers, using a prefabricated portfolio (clasp --create-template)

for competing threads of clasp. First of all, we observe in Figure 3 that all multi-

threaded solvers complete more instances than sequential clasp when given sufficient

time (more than 10 seconds). This is unsurprising because the available CPU time

roughly amounts to the product of wall-clock time and number of threads, given

that our benchmark machine offers sufficient computing resources for concurrent

thread execution. In fact, we further observe that each multi-threaded solver benefits

from running more (eight instead of four) threads. However, the increase in the

number of solved instances is solver-specific and rather small with manysat, which

mainly duplicates its fixed portfolio of four configurations in the transition to

eight threads (changing only the random seed used in the branching heuristics).

Unlike this, the other multi-threaded solvers complete between five (clasp) and eight

(cryptominisat, miraxt, and plingeling) more instances in the time limit when doubling

the number of threads. These improvements are significant because harnessing

additional computing resources for parallel search is justified when it makes instances

accessible that are hard (or unpredictable) to solve sequentially.12 Comparing the

performance of multi-threaded clasp to other SAT solvers shows that clasp is very

competitive, thus emphasizing the (low-level) efficiency of its parallel infrastructure.

But please take into account that Crafted benchmarks are closer to ASP problems,

which clasp is originally designed for, than those in SAT competitions’ Application

category, to which the other four SAT solvers are tailored. Finally, although solver

portfolios (as used in ppfolio) proved to be powerful at the 2011 SAT competition,

we do not include them in our experiments because their diverse members are run

in separation, thus not utilizing multi-threading for parallelization.

The second series of experiments assesses parallel search features of clasp on

a broad collection of 1435 benchmark instances, stemming from the 2009 ASP

and SAT competitions as well as the 2006 and 2008 SAT races. To begin with,

the plot in Figure 4 compares different parallel search strategies, viz. portfolio of

competing threads (PORT), search space splitting via guiding paths (GP), splitting-

based search with a portfolio of different configurations (PORT+GP), and the

previous setting augmented with global restarts (PORT+GP+GR). Note that the

PORT mode matches the clasp setup that has already been used above, and that up

11 From the whole collection of 300 competition benchmarks, the 160 selected instances could be solved
with ppfolio (Roussel 2011), the (wall-clock time) winner in the Crafted category at the 2011 SAT
competition, within 1000 seconds. Without this preselection, plenty (more) runs of the considered
solvers would not finish in the time limit, and running the experiments would have consumed an order
of magnitude more time.

12 The speedup (in terms of wall-clock time) of eight-threaded over single-threaded clasp is about 1.5,
which may seem low, but the eight-threaded variant completes 31 instances (with unknown sequential
solving time) more.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 539

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000

S
ol

ve
d

in
st

an
ce

s

Time in seconds

 t1
PORT-t2

 -t4
 -t8

GP-t2
 -t4
 -t8

PORT+GP-t2
 -t4
 -t8

 PORT+GP+GR-t2
 -t4
 -t8

Fig. 4. (Colour online) Number of solved instances per time for different parallel search

strategies of clasp 2.

to ten restarts (according to the geometric policy 500∗1.5i) are performed globally

with the PORT+GP+GR mode. As in our first experiments, we observe that

all multi-threaded clasp modes dominate the baseline of running a single thread.

Similarly, each mode benefits from more threads, where the transition from two

to four threads is particularly significant with portfolio approaches (e.g. 32 more

instances completed with PORT). In fact, the latter dominate the GP mode relying

on a uniform clasp (default) configuration, especially when the number of threads is

greater than two. This indicates the difficulty of making fair splits in view of irregular

search spaces, while running different configurations in parallel improves the chance

of success (cf. Hyvärinen et al. 2011). Although the robustness of splitting-based

search is somewhat enhanced by running different configurations (PORT+GP) and

additionally applying global restarts to refine uninformed splits (PORT+GP+GR),

its combinations with guiding paths could not improve over the plain PORT mode.

However, it would be interesting to scale this experiment further up (on a machine

with more than eight cores) in order to investigate whether a portfolio becomes

saturated at some point, so that combinations with search space splitting would be

natural to exploit greater parallelism.

Finally, Figure 5 plots the performances of clasp (PORT mode) w.r.t. nogood

exchange policies. Given that the binary and ternary implication graph is always

shared among all threads, the difference between the NO and SHORT modes is

that short nogoods are recorded “silently” with NO and proactively communicated

with SHORT (cf. Section 4.2). The LBD-2 and -4 modes further extend SHORT

by additionally distributing “long” nogoods whose LBD does not exceed 2 or 4,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

540 M. Gebser et al.

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000

S
ol

ve
d

in
st

an
ce

s

Time in seconds

 t1
 NO-t2

 -t4
 -t8

SHORT-t2
 -t4
 -t8

LBD-2-t2
 -t4
 -t8

LBD-4-t2
 -t4
 -t8

Fig. 5. (Colour online) Number of solved instances per time for different nogood exchange

policies of clasp 2.

respectively, independent of the nogood size in terms of literals. While the amount of

solved instances is primarily influenced by the number of threads, different nogood

exchange policies are responsible for gradual differences between clasp variants

running the same number of threads. With four and eight threads, the LBD modes

are more successful than NO and SHORT, especially in the time interval from 10 to

a few hundred seconds. This shows that the exchange of information helps to reduce

redundancies between the search processes of individual threads; it further supports

the conjecture in (Audemard and Simon 2009) that “our measure [LBD] will also

be very useful in the context of parallel SAT solvers.” Interestingly, even when

running eight threads, the performances of LBD-2 and -4 modes are close to each

other, with a slight tendency towards LBD-4. Our experiments do thus not exhibit

bottlenecks due to the additional exchange of nogoods with LBD 3 and 4. However,

more exhaustive experiments are required (and part of our ongoing work) to find a

good trade-off between number of threads and LBD limit for exchange. Ultimately,

dynamic measures like those suggested in (Hamadi et al. 2009a) are indispensable

for self-adapting nogood exchange to different problem characteristics, and adding

such measures to clasp is a subject to future work.

7 Related work

Parallel ASP solving was so far dominated by approaches distributing tree search

by extending the solver smodels in various ways (Finkel et al. 2001; Hirsimäki 2001;

Pontelli et al. 2003; Balduccini et al. 2005; Gressmann et al. 2005; Gressmann et al.

2006). While smodels applies systematic backtracking-based search, following the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 541

scheme of DPLL used in traditional SAT solving, clasp as well as modern SAT

solvers are based on CDCL, relying on conflict-driven learning and backjumping.

However, the clear edge of CDCL-based solvers over DPLL-based ones also brings

about more sophisticated search procedures that have to be accommodated in

a distributed setting. Apart from distributed constraint learning, this particularly

affects the coordination of model enumeration.

The approach taken with claspar (Ellguth et al. 2009; Gebser et al. 2011d)

can be regarded as a precursor to our present work. claspar is designed for a

cluster-oriented setting without any shared memory. It thus aims at large-scale

computing environments, where physical distribution necessitates data copying

rather than sharing. In fact, claspar can be understood as a wrapper controlling the

distribution of independent clasp instances via MPI (Gropp et al. 1999), thereby

taking advantage of clasp’s interfaces for data exchange. However, compared to

claspar, (quasi) instantaneous communication via shared memory enables a much

closer collaboration (e.g. rapid nogood exchange) among threads in clasp.

Although much work has also been carried out in the area of parallel logic

programming, among which or-parallelism (Chassin de Kergommeaux and Codognet

1994; Gupta et al. 2001) is similar to search space splitting, our work is more closely

related to parallel SAT solving, tracing back to (Zhang et al. 1996; Blochinger et al.

2003). Among modern approaches to multi-threaded SAT solving, the ones of miraxt

(Schubert et al. 2009) and manysat (Hamadi et al. 2009b) are of particular interest

due to their complementary treatment of recorded nogoods. miraxt is implemented

via pthreads and uses a globally shared nogood database. The advantage of this

is that each thread sees all nogoods and can integrate them with low latency.

However, given that multiple threads read and write on the database, it needs

readers-writer locks. Moreover, many nogoods are actually never used by more than

one thread, but still produce some maintenance overhead in each thread. manysat

is implemented via openmp and uses a copying approach to nogood exchange,

proscribing any physical sharing. That is, each among n solver threads has its own

nogood database, and nogood exchange is accomplished by copying via n∗(n−1)

pairwise distribution queues. While this approach performs well for a small number n

of solver threads, it does not scale up due to the quadratic number of queues and

excessive copying. Recent parallel SAT solvers further include plingeling (Biere 2011)

and the multi-threaded variant of cryptominisat (Soos et al. 2009). Finally, note that,

while knowledge exchange and (shared) memory access matter likewise in parallel

SAT and ASP solving, the scope of the latter also stretches out over enumeration

and optimization of answer sets.

8 Discussion

We have presented major design principles and key implementation techniques

underlying the clasp 2 series, thus providing the first CDCL-based ASP solver

supporting parallelization via multi-threading. While its multi-threaded variant

aims at leveraging the power of today’s multi-core shared memory machines in

parallel search, clasp 2 has also been designed with care not to sacrifice the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

542 M. Gebser et al.

(low-level) performance of its single-threaded variant, sharing a common code base.

In fact, the competitiveness of single- as well as multi-threaded clasp 2 variants

is, for instance, witnessed by their performances at the 2011 SAT competition.

Beyond powerful parallel search, multi-threaded clasp 2 allows for conducting the

various reasoning modes of its single-threaded sibling, including enumeration and

(hierarchical) optimization, in parallel. On the one hand, this makes the multi-

threaded variant of clasp 2 highly flexible, offering parallel solving capacities for

various reasoning tasks. On the other hand, the vast configuration space of a

CDCL-based solver becomes even more complex, as individual threads as well as

their interaction can be configured in manifold ways. In view of this, adaptive

solving strategies (e.g. regarding nogood exchange) and automatic parallel solver

configuration are important issues to future work.

Acknowledgements

We are grateful to Hannes Schröder for support with experiments and to the

anonymous referees for their comments. This work was partially funded by the

German Science Foundation (DFG) under grant SCHA 550/8-2.

References

Audemard, G. and Simon, L. 2009. Predicting learnt clauses quality in modern SAT solvers.

See Boutilier (2009), 399–404.

Balduccini, M., Pontelli, E., El-Khatib, O. and Le, H. 2005. Issues in parallel execution

of non-monotonic reasoning systems. Parallel Computing 31, 6, 608–647.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press.

Biere, A. 2011. Lingeling and Friends at the SAT Competition 2011. Technical Report FMV

11/1, Institute for Formal Models and Verification, Johannes Kepler University.

Biere, A., Heule, M., van Maaren, H. and Walsh, T., Eds. 2009. Handbook of Satisfiability.

Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.

Blochinger, W., Sinz, C. and Küchlin, W. 2003. Parallel propositional satisfiability checking

with distributed dynamic learning. Parallel Computing 29, 7, 969–994.

Boutilier, C., Ed. 2009. Proceedings of the Twenty-first International Joint Conference on

Artificial Intelligence (IJCAI’09). AAAI Press.

Chassin de Kergommeaux, J. and Codognet, P. 1994. Parallel logic programming systems.

ACM Computing Surveys 26, 3, 295–336.

Clark, K. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker,

Eds. Plenum Press, 293–322.

Davis, M., Logemann, G. and Loveland, D. 1962. A machine program for theorem-proving.

Communications of the ACM 5, 394–397.

Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory. Journal

of the ACM 7, 201–215.

Eén, N. and Biere, A. 2005. Effective preprocessing in SAT through variable and

clause elimination. In Proceedings of the Eighth International Conference on Theory and

Applications of Satisfiability Testing (SAT’05), F. Bacchus and T. Walsh, Eds. Lecture

Notes in Computer Science, vol. 3569. Springer-Verlag, 61–75.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 543

Ellguth, E., Gebser, M., Gusowski, M., Kaminski, R., Kaufmann, B., Liske, S., Schaub,

T., Schneidenbach, L. and Schnor, B. 2009. A simple distributed conflict-driven answer

set solver. In Proceedings of the Tenth International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR’09), E. Erdem, F. Lin and T. Schaub, Eds. Lecture

Notes in Artificial Intelligence, vol. 5753. Springer-Verlag, 490–495.

Finkel, R., Marek, V., Moore, N. and Truszczyński, M. 2001. Computing stable models

in parallel. In Proceedings of the First International Workshop on Answer Set Programming

(ASP’01), A. Provetti and T. Son, Eds. AAAI Press, 72–76.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Schneider, M.

2011a. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2,

105–124.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2011b. Multi-criteria optimization

in answer set programming. In Technical Communications of the Twenty-seventh International

Conference on Logic Programming (ICLP’11), J. Gallagher and M. Gelfond, Eds. Leibniz

International Proceedings in Informatics, vol. 11. Dagstuhl Publishing, 1–10.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2011c. Multi-criteria optimization

in ASP and its application to Linux package configuration. Available at http://www.cs.

uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T. and Schnor, B. 2011d. Cluster-based

ASP solving with claspar. In Proceedings of the Eleventh International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’11), J. Delgrande and W. Faber, Eds.

Lecture Notes in Artificial Intelligence, vol. 6645. Springer-Verlag, 364–369.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007a. Conflict-driven answer set

enumeration. In Proceedings of the Ninth International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR’07), C. Baral, G. Brewka and J. Schlipf, Eds.

Lecture Notes in Artificial Intelligence, vol. 4483. Springer-Verlag, 136–148.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007b. Conflict-driven answer

set solving. In Proceedings of the Twentieth International Joint Conference on Artificial

Intelligence (IJCAI’07), M. Veloso, Ed. AAAI Press, 386–392.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2008. Advanced preprocessing

for answer set solving. In Proceedings of the Eighteenth European Conference on Artificial

Intelligence (ECAI’08), M. Ghallab, C. Spyropoulos, N. Fakotakis and N. Avouris, Eds.

IOS Press, 15–19.

Gebser, M., Ostrowski, M. and Schaub, T. 2009. Constraint answer set solving. In

Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP’09),

P. Hill and D. Warren, Eds. Lecture Notes in Computer Science, vol. 5649. Springer-Verlag,

235–249.

Gomes, C. and Selman, B. 2001. Algorithm portfolios. Artificial Intelligence 126, 1–2,

43–62.

Gressmann, J., Janhunen, T., Mercer, R., Schaub, T., Thiele, S. and Tichy, R. 2005.

Platypus: A platform for distributed answer set solving. In Proceedings of the Eighth

International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05),

C. Baral, G. Greco, N. Leone and G. Terracina, Eds. Lecture Notes in Artificial Intelligence,

vol. 3662. Springer-Verlag, 227–239.

Gressmann, J., Janhunen, T., Mercer, R., Schaub, T., Thiele, S. and Tichy, R. 2006.

On probing and multi-threading in platypus. In Proceedings of the Seventeenth European

Conference on Artificial Intelligence (ECAI’06), G. Brewka, S. Coradeschi, A. Perini and

P. Traverso, Eds. IOS Press, 392–396.

Gropp, W., Lusk, E. and Thakur, R. 1999. Using MPI-2: Advanced Features of the Message-

Passing Interface. MIT Press.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

544 M. Gebser et al.

Gupta, G., Pontelli, E., Ali, K., Carlsson, M. and Hermenegildo, M. 2001. Parallel

execution of Prolog programs: A survey. ACM Transactions on Programming Languages

and Systems 23, 4, 472–602.

Hamadi, Y., Jabbour, S. and Sais, L. 2009a. Control-based clause sharing in parallel SAT

solving. See Boutilier (2009), 499–504.

Hamadi, Y., Jabbour, S. and Sais, L. 2009b. ManySAT: A parallel SAT solver. Journal on

Satisfiability, Boolean Modeling and Computation 6, 245–262.

Han, H. and Somenzi, F. 2009. On-the-fly clause improvement. See Kullmann (2009), 209–222.

Herlihy, M. and Shavit, N. 2008. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers.

Hirsimäki, T. 2001. Distributing Backtracking Search Trees. Technical Report, Helsinki

University of Technology.

Hyvärinen, A., Junttila, T. and Niemelä, I. 2011. Partitioning search spaces of a randomized

search. Fundamenta Informaticae 107, 2-3, 289–311.

Järvisalo, M., Biere, A. and Heule, M. 2010. Blocked clause elimination. In Proceedings

of the Sixteenth International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’10), J. Esparza and R. Majumdar, Eds. Lecture Notes in

Computer Science, vol. 6015. Springer-Verlag, 129–144.

Kullmann, O., Ed. 2009. Proceedings of the Twelfth International Conference on Theory and

Applications of Satisfiability Testing (SAT’09). Lecture Notes in Computer Science, vol.

5584. Springer-Verlag.

Li, C. and Manyà, F. 2009. MaxSAT. See Biere et al. (2009), Chapter 19, 613–631.

Marques-Silva, J., Argelich, J., Graça, A. and Lynce, I. 2011. Boolean lexicographic

optimization: Algorithms and applications. Annals of Mathematics and Artificial

Intelligence 62, 3-4, 317–343.

Marques-Silva, J. and Sakallah, K. 1999. GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers 48, 5, 506–521.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S. 2001. Chaff: Engineering

an efficient SAT solver. In Proceedings of the Thirty-eighth Conference on Design Automation

(DAC’01). ACM Press, 530–535.

Pontelli, E., Balduccini, M. and Bermudez, F. 2003. Non-monotonic reasoning on Beowulf

platforms. In Proceedings of the Fifth International Symposium on Practical Aspects of

Declarative Languages (PADL’03), V. Dahl and P. Wadler, Eds. Lecture Notes in Artificial

Intelligence, vol. 2562. Springer-Verlag, 37–57.

Roussel, O. 2011. Description of ppfolio. Available at http://www.cril.univ-artois.fr/

~roussel/ppfolio/solver1.pdf.

Ryan, L. 2004. Efficient Algorithms for Clause-learning SAT Solvers. Master’s Thesis, Simon

Fraser University.

Schubert, T., Lewis, M. and Becker, B. 2009. PaMiraXT: Parallel SAT solving with threads

and message passing. Journal on Satisfiability, Boolean Modeling and Computation 6, 203–

222.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable model

semantics. Artificial Intelligence 138, 1-2, 181–234.

Soos, M., Nohl, K. and Castelluccia, C. 2009. Extending SAT solvers to cryptographic

problems. See Kullmann (2009), 244–257.

Syrjänen, T. Lparse 1.0 user’s manual. Available at http://www.tcs.hut.fi/Software/

smodels/lparse.ps.gz.

Zhang, H., Bonacina, M. and Hsiang, J. 1996. PSATO: A distributed propositional prover

and its application to quasigroup problems. Journal of Symbolic Computation 21, 4, 543–560.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

Multi-threaded ASP solving with clasp 545

Zhang, L., Madigan, C., Moskewicz, M. and Malik, S. 2001. Efficient conflict driven

learning in a Boolean satisfiability solver. In Proceedings of the International Conference on

Computer-Aided Design (ICCAD’01). 279–285.

Zhang, L. and Malik, S. 2003. Validating SAT solvers using an independent resolution-

based checker: Practical implementations and other applications. In Proceedings of the

Sixth Conference on Design, Automation and Test in Europe (DATE’03). IEEE Computer

Society, 10880–10885.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068412000166
https://www.cambridge.org/core

	Title
	Abstract
	1 Introduction
	2 Parallel ASP solving
	3 Component architecture
	4 Communication architecture
	4.1 Thread coordination
	4.2 Nogood exchange
	4.3 Complex reasoning modes

	5 Implementation
	6 Experiments
	7 Related work
	8 Discussion
	References

