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Many previous studies have shown that the turbulent mixing layer under periodic
forcing tends to adopt a lock-on state, where the major portion of the fluctuations
in the flow are synchronized at the forcing frequency. The goal of this experimental
study is to apply closed-loop control in order to provoke the lock-on state, using
information from the flow itself. We aim to determine the range of frequencies
for which the closed-loop control can establish the lock-on, and what mechanisms
are contributing to the selection of a feedback frequency. In order to expand the
solution space for optimal closed-loop control laws, we use the genetic programming
control (GPC) framework. The best closed-loop control laws obtained by GPC are
analysed along with the associated physical mechanisms in the mixing layer flow.
The resulting closed-loop control significantly outperforms open-loop forcing in terms
of robustness to changes in the free-stream velocities. In addition, the selection of
feedback frequencies is not locked to the most amplified local mode, but rather a
range of frequencies around it.
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248 V. Parezanović and others

1. Introduction
In the last two decades, feedback control of turbulent shear flows has become a

grand challenge problem due to its important impact on technological applications
(Brunton & Noack 2015). Closed-loop control has been shown to be necessary for
changing operating conditions and can even improve on a working open-loop control
at design conditions (King 2010). Feedback controllers can reduce sensitivity to
changing parameters in the system being controlled and to external perturbations,
thus improving the robustness of the control (Aström & Murray 2010). A plethora of
model-based feedback control have been tested both numerically and experimentally
with different flow configurations. For example, linear feedback control has been
successfully employed in numerical studies to control the backward-facing step flow
(Hervé et al. 2012) and the laminar flat plate boundary layer (Bagheri, Brandt &
Henningson 2009).

However, the application of closed-loop flow control to experiments dealing with
transitional and turbulent flows focuses on slow variations of the operating conditions
or in-time phasor control of oscillations. Indeed, physics-based linear models used
by Rowley et al. (2006) or Galerkin-based reduced-order models by Samimy et al.
(2007) led to effective closed-loop control of the cavity modes. Pastoor et al. (2008)
achieved significant pressure drag reduction of bluff bodies using low-dimensional
vortex models. Both the cavity and bluff body wake flows are dominated by an
absolute instability and behave, therefore, as oscillators. Such oscillator flows are
less sensitive to stochastic perturbations and their inherent global mode can be well
identified for the purpose of control, as illustrated by the above-mentioned examples.

In contrast, free shear layers are dominated by convective instabilities and, therefore,
behave as pure noise amplifiers. Consequently, each measurable property of the flow
(characteristic frequencies, mixing layer thickness, etc.) continuously evolves along the
streamwise direction and can only be interpreted locally. In addition, in case of a
turbulent shear layer, the spatial evolution of dominant frequencies with respect to the
locations of a sensor is the result of highly nonlinear mechanisms. The challenges are
substantial for model-based control design in experiments (Cordier et al. 2013) and
the flow control community frequently turns to model-free control methods.

Due to their conceptual simplicity, proportional–integral–derivative (PID) controllers
were the first to be implemented. For example, Wiltse & Glezer (2011) obtained a
successful feedback control of the mixing rate in a fully developed mixing layer
using a proportional–derivative (PD) controller. The feedback sensor was located just
downstream of the splitter plate generating the mixing layer, and registered the initial
Kelvin–Helmholtz (K–H) frequency of the flow. The PD control was then tuned to
actuate in- or out-of-phase of the initial instability, and the effects on the mixing
rate further downstream were explored. In Pinier et al. (2007), the proper orthogonal
decomposition (POD) modes of the flow field of a separated shear layer were used
as feedback information in order to reattach the flow to the surface of an airfoil. A
mode which contained the relevant amplitude and frequency information was selected
and a simple proportional control was applied to generate the actuation signal. Both
of these cases required some tuning of the controller coefficients. In the former case,
the control was locked at the natural frequency and the tuning was used to select
the phase relationship, while in the latter, the frequency was given by a selection
of the POD mode and the proportional control coefficient was tuned manually for
an optimal amplitude response of the controller. Similar to Pinier et al. (2007), the
POD mode feedback approach was successfully implemented in the control of a
free shear layer by Parezanović et al. (2014). The POD modes of the unactuated
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Frequency selection by feedback control 249

flow which exhibited clear periodic behaviour were selected as the candidates for the
feedback signal. This feedback approach modified the mixing layer by reinforcing
flow synchronisation at the frequency of the selected POD mode, very similar to
what is observed with periodic forcing at the same frequency.

These examples show that in the simplest cases the optimal parameters can be
determined by a gradient search strategy. However, in more complex configurations,
where multiple sensors and actuators of the plant are available, or when a specific
objective should be achieved, it becomes hard to guess the appropriate parameters
or feedback laws. In this case, the questions arise of how to automatically select
the relevant flow sensors and how to automatically optimize the coefficients of the
control law given a specific objective? One common way is to exploit the information
contained in training data obtained by running the experiment with different control
laws.

The question of inferring a function, here the feedback law, from training data
can be reformulated as a symbolic regression problem. Symbolic regression extends
classical regression techniques in the sense that no prespecified function structure is
imposed in the identification. Instead, both model structure (analogous to selecting
the best sensors or POD modes, and their combinations) and model parameters
(analogous to tuning the coefficients of a PID controller) are sought. Since there is
no assumption on the structure that best fits the data, symbolic regression is well
suited to discover the hidden functional relationship between variables without the
presence of a human expert. This relationship can be used to gain insight into the
data-generating process and even to identify analytical laws that underlie physical
phenomena in nature as in Schmidt & Lipson (2009). Symbolic regression problems
enter into the supervised learning subclass of the machine learning techniques
(Murphy 2012). Genetic programming (GP), first introduced by Koza (1992) to train
computers to solve problems without being explicitly programmed, is generally used
for symbolic regression. GP belongs to the same family of evolutionary algorithms as
the more familiar genetic algorithms (GA). Both techniques are biologically inspired
heuristic optimization algorithms, imitating the process of natural evolution (Wahde
2008). An initial set of randomly created, suboptimal solutions undergoes an iterative
process of improvement through genetic operations (elitism, replication, mutation and
cross-over) in order to converge, after several generations, to the optimal solution. The
optimization principles of evolutionary algorithms have been proved very successful in
engineering problems such as aerodynamic shape optimization by Rechenberg (1971).
They are also well suited for turbulent flows and multiple-input, multiple-output
(MIMO) control problems (Fleming & Purshouse 2002) since they can handle noisy
objective functions and are easily implemented in optimization of multiple variables.
Although GP and GA operate in a similar manner, they should not be confused.
While for GP the search space corresponds to functions of variables, only parameters
are optimized in GA. In that sense, GP can be interpreted as a generalization of
GA. In the domain of flow control, Milano & Koumoutsakos (2002) were among the
first to use GA for the optimization of actuation parameters in order to minimize the
drag of a cylinder. More general applications for system identification and control of
nonlinear systems related to engineering applications can be found in Chang (2007).

In the case of a turbulent mixing layer, Parezanović et al. (2014) employed GP to
determine the analytical expression for the best feedback control law, maximizing the
turbulent kinetic energy. While the POD mode feedback approach relies on a specific
selection of a particular POD mode, the GP process takes advantage of many sensor
signals and their mutual phase and frequency differences to obtain an optimal closed-
loop control law. The resulting closed-loop frequency was situated very close to the
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250 V. Parezanović and others

best open-loop frequency. Furthermore, due to the parameter optimization contained
in the GP search process, the actuation signal became more periodic compared to the
POD feedback. This type of closed-loop control has also been successfully applied by
Gautier et al. (2015) in a single-input, single-output (SISO) experiment to minimize
the recirculation zone of a backward-facing step.

This experimental study extends the preceding work implicating the use of
closed-loop control in a turbulent mixing layer. The main objective is to explore
what feedback frequencies can be established, when the control is based on sensors
situated far downstream of the origin of a convective instability. In order to draw
the most general conclusions, we decide to enlarge the solution space by using a
model-free GP method for the design of the control laws. By analysing the actuated
flow states, we aim to better understand the physical mechanisms which are exploited
by the closed-loop control. This allows us to propose some general conditions for
successfully establishing a feedback control in a convective mixing layer flow.

This paper is organized as follows. In § 2 we present the experimental set-up and
outline the GP methodology. The performance and the robustness of the closed-loop
control laws obtained by GP are evaluated in § 3. The composition of the control laws
is analysed in § 4, to distil the main features of the optimization process performed
by GP. In § 5 we discuss the physical mechanisms that are stimulated by forcing the
mixing layer. Finally in § 6 the main findings are summarized and conclusions are
drawn. In appendix A we give supplementary information on the influence of the
streamwise position on the performance of both open- and closed-loop control, and the
impact on feedback frequency selection. Appendix B details the GP procedure used
in the experiments.

2. Experimental set-up and methodology

The mixing layer is created in a dual stream wind tunnel specifically designed for
flow control. At the inlet of the test section, the wall between the two streams ends
in a splitter plate, with a 3 mm thick trailing edge. Two speed configurations of the
mixing layer are used: a low-speed (LS) configuration (figure 1a) with a laminar
upper boundary layer at separation, and a high-speed (HS) configuration (figure 1b)
featuring a turbulent upper boundary layer. The properties of these configurations
and their upper boundary layers are given in the appropriate tables in figure 1. For
characterizing the top boundary layer a single hot-wire probe was placed at the
end of the splitter plate (x = 0) and displaced in the vertical y direction in steps
of 0.1 mm. The addition of a head loss device (foam) in the low-velocity stream
reduced the maximum operational velocity for the lower stream in such a way that
hot-wire measurements close to the lower boundary of the trailing edge were not
sensitive enough. Additional information on the wind tunnel installation is available
in Parezanović et al. (2014).

The actuator system comprises 96 microvalves (MATRIX 820 Series) which pilot
the opening of the 96 exit nozzles along the entire span of the trailing edge. The
microjets produced by these nozzles are aligned with the horizontal x axis to inject
their momentum into the streamwise flow direction at the origin of the mixing layer
(figure 1c). Although the actuators are distributed discretely they are always activated
unisonous, creating a continuous two-dimensional (2-D) spanwise disturbance. Since
the actuators operate in a binary manner (open or closed), any input from the
controller must be in a binary form. The highest frequency of actuation available to
the microvalves is up to 800 Hz. The average amplitude of actuation is regulated by

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
 P

ot
sd

am
, o

n 
19

 Ju
l 2

01
8 

at
 0

8:
43

:5
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

6.
26

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.261


Frequency selection by feedback control 251

Hot-wire rake

200 mm

x

y

0

0 0.5
1

19

i

K

WHot-wire rake

Jet nozzle

Low speed (LS) High speed (HS)(a)

(b)

(c) (d)

FIGURE 1. Mixing layer experiment. Visualization of the natural flow for: (a) LS and
(b) HS configurations. (c) Close-up view of the splitter plate trailing edge and the actuator
nozzle orientation. (d) Estimation of objective functions W and K using the velocity
fluctuations profile.

the pressure in the plenum chamber of the actuator system, which is kept constant. In
this study, the average nozzle velocity of the jets was fixed to about Ujet ≈ 3 m s−1,
which is of the same order of magnitude as the convective speed of the mixing
layer. The actuation amplitude can be characterized by a mass flow rate coefficient
Cq = ṁa/ṁθ where ṁa is the average mass flow rate of compressed air entering the
plenum (measured by a Brooks 5863S mass flow meter) and ṁθ is the mean mass
flow rate through the upper boundary layer.

With the exception of appendix A, where some results are presented at x= 500 mm
from the origin of the mixing layer and the actuators, all the feedback experiments
discussed in the text are done with the sensors placed at x= 200 mm. This distance
corresponds to more than 450 × θ0, where θ0 is the momentum thickness of the
upper stream boundary layer before detachment, for the LS configuration. The sensor
system comprises a rake of 19 hot-wire probes, and furnishes both the feedback
signals to the controller and the evaluation data for the objective function in the GP
process. Discussion on the impact of the dual use of the sensors (both feedback and
performance evaluation) is provided in appendix A.
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252 V. Parezanović and others

The sensors are equally spaced every 8 mm and cover a vertical range between
−88 mm 6 y 6 +56 mm with respect to the trailing edge centre (y = 0). This
is equivalent to almost five times the local vorticity thickness (δω ≈ 30 mm) of the
natural LS mixing layer as deduced from the hot-wire measurements. The downstream
distance of the sensors implies a time delay which depends on the average convective
velocity Uc = (UA + UB)/2, where UA and UB are the mean velocities of the upper
and lower streams. The role of this convection effect in terms of frequency selection
will be discussed in § 5.3. The reference values of Uc and Reθ for both mixing
layer configurations in the self-similar region at x = 200 mm are also given in the
tables in figure 1. Here, the local Reynolds number of the mixing layer is defined as
Reθ = θUc/ν and the velocity ratio of the two streams as r=UB/UA.

The hot-wire probes are of the classic single-wire design. Sensor signals used for
feedback are acquired at a rate of 1 kHz, which corresponds also to the refresh
rate of the real-time controller (Concurrent iHawk). The same sensor signals are
simultaneously acquired by a second acquisition board at 5 kHz. These high-resolution
data are used for a posteriori performance evaluation. The time delay caused by the
controller hardware can be neglected compared with the dominant time scales of the
flow configuration. In a plane turbulent mixing layer, the mean streamwise velocity
is always larger than the two other mean velocity components. A wire perpendicular
to the streamwise direction and aligned along the spanwise direction z is then mainly
sensitive to the streamwise component of the velocity (Bradshaw 1971; Delville 1995).
Hence, each sensor i of the hot-wire rake measures the streamwise component of
velocity. Fluctuations u′i are obtained using the mean streamwise velocity Ui averaged
on a period of 2 s, which corresponds to around 180–240 K–H vortices (depending
on the mixing layer speed configuration).

In this study, we use the so-called genetic programming control (GPC) framework
to obtain optimal closed-loop control laws. This approach consists of using GP to
determine the function of ns sensors si (i=1, . . . ,ns) which leads to a maximization of
an imposed (arbitrary) objective function J. Let b(si) be such a determined feedback
control law, then the optimization is equivalent to the determination of a regression
model F GP such that b(t) =F GP(s1(t), . . . , sns(t)) for which J is maximized. The
closed-loop control laws obtained by GP are then continuous functions, based on the
sensor signals as variables. However, the actuation system used in our experiments
requires a binary command in order to operate. Therefore, the Heaviside function H
must be applied to the control law F GP, so that the actuation signal is given by
b(t)=H (F GP(t)). As a consequence, all amplitude information in the control laws
is lost, and there is an infinite number of control law expressions leading to the same
actuation signal b(t) =H (F GP) =H (λF GP), for any λ. With these considerations
in mind, only the zero-crossings of the continuous functions F GP are meaningful in
terms of optimization. The decision of choosing GP to solve the symbolic regression
problem was guided by the possibility of employing the same optimization algorithm
independently of the actuators’ characteristics.

The control system schematically shown in figure 2 can be described as a multiple-
input, single-output (MISO) system, considering that all actuators follow one control
output b(t) and we use multiple hot-wires as the sensor input si = u′i.

For the GP maximization, we consider two different objective functions defined as

K =
ns∑

i=1

〈u′i2(t)〉T and W = 2K

maxi∈[1,ns]〈u′i2(t)〉T
, (2.1a,b)
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Single-output
(actuation)

Multiple-input
(sensors)Plant

(mixing layer flow)

Real-time control

Feedback data

Learning phase

Performance evaluation data
GP Objective function

J

b(t)

1

2

3

4

5

FIGURE 2. Schematic representation of GPC framework in the experiment. The learning
process starts with an initial set of randomly generated control laws F GP 1 . These are
evaluated by the controller 2 using the real-time sensor signals si as input. Since in
our case, the actuator command of microjets is restricted to on/off signals, the controller
output F GP has to be binarized by the Heaviside function H 3 before it can be used
as actuation signal b(t). The flow data from the mixing layer plant 4 are recorded by
the multiple sensors and sent back to the controller for continuous real-time evaluation
of F GP. The efficiency of the control law is estimated during the learning phase by
computing the objective function J 5 . Based on the values of this objective function,
the GP decides whether to keep, optimize or discard the tested control law. This learning
process is repeated until the optimal control law is selected (subject to preimposed criteria).
The learning phase is then completed and the controller continues to provide actuation
based on the optimal control law and the real-time sensor data.

where ns= 19 is the number of hot-wire probes and T= 10 s is the averaging time for
obtaining velocity variances 〈u′i2〉T . This averaging interval corresponds to a typical
evaluation time of open-loop actuation or a closed-loop control law candidate. The
objective function K is proportional to an estimation of the turbulent kinetic energy
in the mixing layer. The objective function W is based on the local thickness of the
mixing layer inferred from the velocity fluctuation profile shape, as represented on
a sample profile shown in figure 1(d). The control effectiveness of both open-loop
actuation and closed-loop control laws is presented in a non-dimensional form as
JK = K/Ku and JW =W/Wu, where Ku and Wu are reference values of the objective
functions for the unactuated mixing layer. Using all 19 hot-wires improves the
resolution of the velocity fluctuations profiles and, therefore, the estimation of the
objective function. To simplify the optimization problem, only every third hot-wire
is available for the GP learning process. Hence, only the sensors s1, s4, s7, s10, s13,
s16 and s19 can be used as variables by the GP, in any control law. Preliminary test
showed that the spectral content of these sensors gives a good representation of the
variety of physical scales present at a given streamwise location in the mixing layer.

The GP learning phase is completed by reaching either the imposed criterion
on the value of the objective function, or the predetermined final generation of
individuals. The best performing individual of the final generation is selected as the
closed-loop control law, and the GP module is disconnected to engage autonomous
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FIGURE 3. (Colour online) PSD of the selected hot-wire sensors of the unactuated mixing
layer at x = 200 mm, for (a) Reθ = 850 (LS) and (b) Reθ = 1400 (HS) flow speed
configurations. The PSD plots are in log–log scale with amplitudes offset by a decade,
for clarity. The dashed line corresponds to a Strouhal number Stθ ≈ 0.032.

real-time control. The specific aspects of implementing GPC in the mixing layer
experiment are discussed in appendix B. Further details on the GPC framework can
be found in Duriez et al. (2014).

3. Closed-loop control performance
In this section we evaluate the impact of the GP-optimized control laws on the

mixing layer. We first characterize the spectral content of the unactuated baseline
flow, in § 3.1. The performance of the best closed-loop control laws is compared with
the reference open-loop forcing, in § 3.2. Finally, in § 3.3, we test the robustness of
both open- and closed-loop control, with respect to the changes of the free-stream
velocities.

3.1. The unactuated mixing layer
Analysing the temporal evolution of the different hot-wire signals at x = 200 mm
provides indications on the naturally present frequencies at this location. Figure 3
shows the power spectral density (PSD) of each sensor signal (used in closed-loop
control) for the two flow configurations. With the exception of the sensor signals at
the centre of the mixing layer, s10 and s13, all the spectra of the sensors show
a distinct local maximum. In accordance with previous findings of Winant &
Browand (1974) and Morris & Foss (2003), this ‘hump’ points to the existence
of a preferred mode of the flow, which occupies a narrow band of frequencies.
Following Ho & Huerre (1984), the natural Strouhal number in a laminar mixing
layer is Stθ = ( fnθ)/Uc = 0.032, where θ is the local momentum thickness. The
frequencies corresponding to this Strouhal number are estimated using the values of
θ and Uc given in the tables of figure 1. The estimation yields 12 and 25 Hz for the
LS and HS configurations, respectively. As indicated in figure 3, these values are well
inside the frequency range of the humps, visible in the spectra of the sensors outside
the centre of the mixing layer. Hot-wire sensors s10 and s13, close to the centre of
the mixing layer are less sensitive to vortex shedding due to a vanishing mean value
of the vertical velocity component. For comparison, the PSD measured near the
trailing edge of the splitter plate at x= 50 mm (not shown here) feature much more
clearly defined peaks around 90 Hz (LS) and 120 Hz (HS). These higher frequencies
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FIGURE 4. (Colour online) Mapping of objective functions JW and JK , for a range of
open-loop actuation frequencies 0 Hz< fa < 100 Hz, and four different duty cycles (15 %,
30 %, 50 %, 70 %), in (a,c) Reθ = 850 (LS) and (b,d) Reθ = 1400 (HS) configurations of
the mixing layer (sensors located at x= 200 mm). Red vertical line (colour online only)
in each case represents the obtained frequency and the associated duty cycle of open-loop
control for which the corresponding objective function is maximized. These values are
noted as value pairs ( fa, dc) in the text, for each case.

are related to the K–H instability caused by the boundary conditions imposed at
the trailing edge of the splitter plate (Morris & Foss 2003). The lower frequencies
measured at x = 200 mm (shown in figure 3) correspond to the amplifier dynamics
of the mixing layer in the self-similarity region, which is no longer influenced by the
local formation conditions of the shear layer.

3.2. Periodic forcing and closed-loop control
In order to set a reference for the closed-loop control, the mixing layer response
to periodic forcing has been mapped for the entire range of available actuation
frequencies ( fa), up to 500 Hz and for several values of duty cycles (dc). The
mapping results for the LS and HS configurations are shown in further text up to
fa = 100 Hz, since this is the most interesting actuation range with respect to the
defined objective functions.

From the open-loop mapping we find the optimal settings of ( fa, dc)W(LS) =
(21 Hz, 50 %) for maximization of the objective function JW in the LS configuration
(figure 4a). The maximum of JK is obtained for ( fa, dc)K(LS) = (12 Hz, 70 %)
(figure 4c). The open-loop mapping experiment in the HS configuration of the mixing
layer is shown in the right column of the figure 4. In the this configuration, open-loop
mapping yields ( f , dc)W(HS) = (35 Hz, 50 %) as the best periodic actuation parameter
pair for the maximization of JW (figure 4b), and ( fa, dc)K(HS) = (24 Hz, 70 %) for the
maximization of JK (figure 4d).
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We can conclude that the two objective functions are maximized for two different
actuation frequencies. Also, the mapping experiments in LS and HS configurations
show that the optimal actuation frequency depends on the free-stream velocities
of the mixing layer. In both mixing layer configurations, the objective function JK
is maximized when the actuation frequencies are around the estimated local natural
frequency. Objective function JW reaches a maximum when the actuation is performed
around 1.45–1.75 times the optimal frequency for JK .

The duty cycle of actuation apparently plays a significant role only around the
actuation frequency where a given objective function is maximized. This means that
by choosing an arbitrary objective function, we may not see the effect of the duty
cycle outside of the actuation range corresponding to the optimal parameters for this
objective function.

These results show that a maximization of an arbitrary objective function might
require a frequency of actuation which is not necessarily the local natural frequency,
nor its multiple. Such an actuation frequency can be easily imposed by an open-
loop control, but the question is: can we build a closed-loop controller which will
be able to find and use such frequency automatically, taking into account that such a
hypothetical frequency may not be a dominant natural mode?

The GP search process has been performed for the maximization of the two
objective functions JW and JK , yielding control laws F GP

W(LS) and F GP
K(LS) for the LS

mixing layer configuration:

F GP
W(LS) = sin(exp(s19 × exp(s2

1)− s16)− cos(exp(s13)× s2
1 × s19 × s16)) (3.1)

and

F GP
K(LS) = s19 + s19 + sin(sin(sin(sin(s16 − s1)))). (3.2)

The index K or W denotes that the control law F GP is the optimal solution for the
maximization of the respective objective function. Index (LS) or (HS) indicates in
which flow configuration has the control law been trained by the GP.

The results of both open- and closed-loop control on the velocity fluctuation
profiles can be seen in figure 5(a). When maximizing the cost function JW , the
resulting fluctuation profiles are a near match for both controls. However, their shape
is significantly different compared to the natural flow; we observe a larger spread
of fluctuations across the mixing layer and a lower maximum amplitude around the
middle. Maximization of JK leads to an increase in fluctuation amplitude across the
entire profile, while the general shape is similar to the natural case.

Figure 5(b) shows the pseudovisualizations of the natural LS flow, followed by open-
and closed-loop control cases for the two objective functions. The closed-loop control
laws F GP

W(LS) and F GP
K(LS) feature almost perfectly periodic actuation, although time is

not an explicit variable in the control laws. Clearly, in both cases, the feedback control
has caused a resonance close to the specific frequency which was found the most
effective for open-loop control; around 20 Hz for JW and around 12 Hz for JK . The
actuation stripes in figure 5(b) indicate that the duty cycles are also similar to the
open-loop reference case. Corresponding pseudovisualizations reveal that the mixing
layer flow is well ordered on the scales of actuation. The cost function values of open-
and closed-loop control are comparable to within 5 %.

The whole process of the GP search for the best control law was repeated five
times for each of the objective functions, and in all cases the control laws produced

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ita

et
 P

ot
sd

am
, o

n 
19

 Ju
l 2

01
8 

at
 0

8:
43

:5
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

6.
26

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.261


Frequency selection by feedback control 257

1

19

i

1

19

i

0 0.5 1.0 10

(a) (b)
Unactuated

FIGURE 5. Resulting 〈u′i2〉T profiles (a) and pseudovisualizations (b) for maximization of
JW and JK experiments in LS configuration of the mixing layer. The best open- and closed-
loop control are compared. Actuator system input is marked using black and white stripes
above each case (black stands for active). The pseudovisualizations are constructed from
u′i in a range of −1.5 to 1.5 (m s−1) and are based on Taylor’s hypothesis of frozen
turbulence.

identical frequency selection. The resulting values of the objective function were
reproducible for any given control law. The standard deviation of the maximum
values of both objective functions, measured over all experiments (typically more than
20 evaluations), lies in the range 0.08 < Jrms < 0.2 for both open- and closed-loop
control.

3.3. Robustness of closed-loop control
In this section, we test and compare the robustness of both open- and closed-loop
control strategies with respect to changes of the mixing layer stream velocities. The
best solutions presented in § 3.2 for the closed-loop control have been trained by the
GP in the LS mixing layer configuration. Using the GP search, we find the best closed-
loop control law optimized specifically for the HS configuration:

F GP
W(HS) = s7 × exp(s4 − s1)+ s4. (3.3)

For this control law, as well as for the open-loop actuation ( f , dc)W(HS) = (35 Hz,
50 %), the HS configuration of the mixing layer is the design point. To test their
robustness, we apply both of them to off-design conditions. For this purpose, the
LS configuration, studied in more detail in the previous section, is selected as the
off-design condition. We emphasize that the HS design condition comprises a fully
turbulent mixing layer, from the onset. The off-design LS configuration with a laminar
origin of the mixing layer is therefore the most different flow configuration available
in our experiments, without significantly changing stream velocity ratio r. Other
stream velocities between the LS and HS configurations represent comparatively
minor modifications of the flow conditions.

Figure 6 compares best open- and closed-loop control when applied to (a) design
and (b) off-design flow conditions. The values of the objective function JW and
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FIGURE 6. (Colour online) Comparative tests of the best open-loop actuation ( fa, dc)W(HS)

and the best closed-loop control law F GP
W(HS) applied at the design point HS and the off-

design point LS. In the upper row, the objective function JW and the corresponding mass
flow rate coefficient Cq values are represented. In the middle row, the PSD of every third
hot-wire probe are shown in log–log scale, shifted by a decade for clarity. The PSD of the
binary actuation signal is shown in a linear-log scale in the bottom of each window (line
‘b’). In the lower row, pseudovisualizations are shown on a time duration of t = 0.25 s.
The associated grey-scale map depicts u′ in a range of −1.5 to 1.5 (m s−1). Black and
white stripes depict the associated actuation (black for active).

the actuation cost Cq are comparable for the two controls in the design case (bar
diagrams in figure 6a), with a slight advantage for the open loop. However, the
corresponding diagrams in the LS off-design case (figure 6b) show a drastic decrease
in performance when the open-loop actuation for the HS configuration is applied,
while the best closed-loop control for HS maintains its effectiveness.

Under design conditions the spectral analysis shown in figure 6(a) shows for both
types of control the fluctuation energy concentrated around the actuation frequency.
In figure 6(b) when the best HS closed-loop control law F GP

W(HS) is applied under
the LS off-design conditions, the closed-loop control selects the correct optimal
actuation frequency and synchronizes the mixing layer in a similar way as in
figure 5. Furthermore, when the best HS open-loop ( fa, dc)W(HS) is applied in the
off-design case (LS), we observe a significant reduction in the energy content at
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the actuation frequency. In the LS mixing layer, the frequency of 35 Hz no longer
corresponds to the optimal frequency, and the pseudovisualization reveals only weakly
defined structures inside the mixing layer. The closed-loop control adapted itself to
a nearly periodic 21 Hz actuation regime, in agreement with the optimal open-loop
control for this flow configuration. Although the spectra for this case show other
frequencies present, the most energetic peak is at this optimal frequency, and appears
to be as well amplified as in the design case. The corresponding imposed periodic
structures inside the mixing layer, visible in the pseudovisualization are very similar
to the optimum for the LS case (see figure 5b).

For these off-design conditions, the comparison between open- and closed-loop
control clearly favours the closed loop. The reference control for the LS configuration
is the optimal open-loop actuation ( fa, dc)W(LS), which achieves JW = 2.49 (see
figure 4a). Using the optimal HS actuation ( fa, dc)W(HS) in the LS off-design
configuration results in JW = 1.4. This is a reduction of 44 % with respect to the
reference objective function value. The closed-loop control F GP

W(HS) adapts to off-design
conditions much more efficiently: objective function value of JW = 1.91 is obtained,
yielding only 22 % of reduction in effectiveness compared with the reference value.
A reverse robustness test reveals similar results, when optimal closed- and open-loop
actuation signals for the LS case are applied to the HS configuration as the off-design
condition.

A priori, closed-loop control can perform either better or worse than the open-loop
control in design and off-design conditions. Here, the robustness property of the GP
process can be partially attributed (see the survey of Beyer & Sendhoff (2007)) to the
stochastic nature of evolutionary algorithms for which the optimal solution is obtained
after many generations of evolution by operating on a large population of potential
solutions. In § 5.1, we propose another explanation of this particular robustness result
based on the anatomy of the best control laws found by GP in the HS configuration
(§ 4.1) and on the frequency response to periodic forcing at the sensor location. It
may be noted that like in H∞-control problems (Burl 1999), GP can, in principle,
take into account the robustness to external perturbations if the operating conditions
are taken into consideration in the cost function during the learning phase. In addition,
GP can combine periodic forcing and sensor feedback or even choose between open-
and closed-loop control, depending on which performs better. These generalizations
shall be part of future publications.

4. Analysis of closed-loop control laws
In § 4.1, the best control laws obtained by GP are analysed in detail in order to

provide more understanding of how a specific feedback frequency is obtained. In
§ 4.2, we show that closed-loop control laws exist, which synchronize the mixing
layer at frequencies other than optimal frequencies for the maximization of the
imposed objective functions. In § 4.3, we discuss the observed periodicity of the
feedback control and propose mechanisms which could enable it.

4.1. The anatomy of the best control laws
The probabilistic manner in which the GP constructs and manipulates the expressions
of the control laws (see appendix B) means that there may be multiple control laws
with different analytical expressions, but which perform the same action. For example,
we can consider a simple hypothetical situation where two control laws F GP

n = s19
and F GP

m = s19+ s1− s1 are produced during the GP process. At a first glance we can
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immediately acknowledge that these two control laws are identical, but the GP process
treats them as different individuals. In addition to this, the actuator system design
requires that the Heaviside function is applied on the control law (see § 2), which
is another reason why control laws of different analytical expressions may produce a
similar result b(t).

With this in mind, an efficient way to classify the solutions obtained by GP is
to compare the spectra of the actuation signals b(t). If the actuation spectra of two
control laws match, we consider that the two control laws are equivalent, regardless
of their analytical expressions. The matching is computed as a linear correlation
coefficient rc between spectral amplitudes and needs to be better than rc > 0.95. If
we examine the analytical expressions of control laws matched in this way, we can
obtain a statistical image of participation of different sensors in their expressions.
Only a single occurrence of any given sensor is counted, regardless of how many
times this sensor was repeated in the control law expression. A histogram is then
computed with bins corresponding to the different sensor labels si.

We consider the best HS control law F GP
W(HS) (3.3) as reference for the matching of

actuation spectra. The reference spectrum of the control law actuation signal PSD(b)
is shown in figure 7(a). The search for equivalent control laws yields 1151 matches
of the actuation spectrum within the whole GP experiment. The histogram of the
participating sensors, in the control laws acting similarly as F GP

W(HS), is shown in
figure 7(b). We can see that sensor s7 is present 100 % of the time, while other
sensors appear less often in relatively equal proportions. We can conjecture that
this sensor is necessary to enable a nearly periodic actuation at 35 Hz. But do the
remaining sensors play a role, or are they just artefacts of the GP optimization
process?

It turns out that the best control laws obtained by GP (3.1)–(3.3) can all be
represented by a linear expression. We have used linear regression to reconstruct
the actuation signal b(t) by representing the control laws as a linear combination of
the sensors si, with associated weighting coefficients αi. This is further illustrated
in figure 7(c–e) for the HS configuration. The three hot-wire sensors used (s1, s4
and s7) are all located on the lower part of the sensor rake, inside the low-velocity
region of the mixing layer. As shown in figure 7(c), the closer the sensor is to
the centre of the mixing layer, the larger are the recorded velocity fluctuations.
All these data were obtained for the actuated state and all three sensors show
fluctuations principally caused by actuation. However, significant differences exist
between each of the signals; sensor s7 recorded a much noisier signal than the other
two. The transient events observed in this signal appear to be stochastic perturbations
caused by the evolution of small-scale structures inside the core of the mixing layer.
Nevertheless, the linear regression weighting shown in figure 7(d) further highlights
that sensor s7 represents the main sensor input, in accordance with its domination in
the histogram 7(b). Here s4 is scaled up to roughly the same amplitude level as s7 but
s1 is significantly reduced. The corresponding linear approximation of the control law
F lin

W(HS) in figure 7(e) suggests that the dominant (but noisy) signal of s7 is smoothed
out by its combination with s4.

The apparently non-essential sensors contribute to the efficiency of a control
law by a modification of the duty cycle. As shown in figure 4, the objective
functions are highly sensitive to the values of the duty cycle around the optimal
open-loop parameters. In our experiment, the duty cycle is the only way to modify
the amplitude of actuation, taking into account that the actuator system works with
a fixed level of pressure, and that the Heaviside function must be applied to binarize
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FIGURE 7. (Colour online) Analysis of the best control law F GP
W(HS): (a) power spectral

density of the square wave actuation signal bW(HS)(t), (b) histogram of sensor occurrence
in all individuals matching the actuation spectra of F GP

W(HS), (c) recorded sensor signals si,
(d) sensor signals with linear regression weighting applied (αisi) and (e) linear regression
reconstruction corresponding to F lin

W(HS) =−0.34× s1 + 1.266× s4 + 0.943× s7, plotted for
comparison with F GP

W(HS) and bW(HS)(t) for reference. Label #ind indicates the number of
individuals matching the reference actuation spectrum.

the control signal. If we use only a single weighted sensor signal αisi at a time,
for the linear approximation, we can estimate what duty cycle would each sensor
produce. The results for F lin

W(HS) are: 48 % using s1, 54 % with s4 and 60 % with s7
only. The measured duty cycle of this control law is 55 %.

This implies that combining the signals contributes to the optimization of the duty
cycle. However, there is no reason why scaling the ‘dominant’ sensor signal with
an appropriate constant generated randomly by GP could not perform the same task.
Genetic programming can generate random constants in a range of −1.00 to 1.00 (see
appendix B), but in our experience, the GP seems to be more efficient in using other
variables as scaling instead of constants. Moreover, from the histogram of the sensor
participation in this control law, it appears that all of the other ‘supporting’ sensors
can be used equally often, and that there is no obvious pattern for their selection.
Therefore, in the case of F GP

W(HS), the use of other sensors can be considered as an
idiosyncrasy of genetic programming.

The control laws F GP
W(LS) (3.1) and F GP

K(LS) (3.2), which are trained to maximize the
two objective functions in the LS flow configuration, similarly have a single sensor
which is always present in the control law expression. In the case of F GP

W(LS), only the
sensor s16 appears all the time, and the flow is synchronized around 20 Hz in the LS
configuration. For F GP

K(LS), the dominant sensor is s19 which produces synchronization
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around 12 Hz. We will further discuss some aspects of the vertical location of the
dominant sensor in § 5.3.

4.2. Diversity of the feedback frequency selection
The chosen objective functions JK and JW are arbitrary, but physics based. Each is
maximized by causing a lock-on state of the mixing layer at a different optimal
frequency. The GP successfully designed closed-loop control laws which are based
on those frequencies (see § 3.3). If the feedback control can be designed to use these
two frequencies, can we then expect that there are other frequencies, on which the
feedback can be established?

The GP process, in its learning phase, creates a multitude of control law individuals
which are discarded because they do not maximize the imposed objective function.
This does not mean, however, that all of them are meaningless and that such control
laws would not maximize some other arbitrary objective function. The results in
§ 3 suggest that the most efficient control laws produce near-periodic actuation. In
these cases, the spectrum of the actuation signal features a well-defined energy peak
around a single frequency. If the spectrum of actuation features a badly defined peak
or a broadband energy distribution, such a control law usually performs badly. In
the experiments performed, non-periodic or stochastic actuation does not appear to
produce any remarkable effects within the observed portion of the mixing layer. We
therefore assume that any existing alternative solution of the feedback control will
feature a nearly periodic actuation signal based on a frequency, other than what was
observed so far. The control laws deemed as suboptimal and discarded by the GP
process, can provide a large sample base in which alternative synchronized states of
the mixing layer might be found. Instead of designing many new objective functions
which would enable us to find these alternative solutions, we can simply browse
through the already existing, but apparently suboptimal solutions.

After a short search through all the individuals produced within one GP experiment
in the HS mixing layer configuration, we can find at least five control laws which
feature an actuation spectrum with a well-defined peak around a suboptimal frequency
(with respect to JW). The matching of the actuation spectra (as in the § 4.1) allows
us to discover all of the individuals which produce these alternative actuation spectra,
and to analyse the sensor participation histograms. Since these control laws do not
maximize JW , we identify them using the number of the individual, in the first
generation of the experiment, for which this type of actuation spectrum has been first
observed.

The actuation spectra of these alternative solutions are shown in figure 8, with
their associated histograms of sensor participation. Of particular interest is the case
(figure 8a,b) where the control law F GP

191(HS) provokes a well-defined actuation at
45 Hz. From its histogram, it appears that the hot-wire s7 (same as in F GP

W(HS)
discussed earlier in § 4.1) is the only essential sensor. It follows that the selection
of a dominant sensor is not the only condition to obtain a given feedback frequency.
The scaling in the control law or the combination with another sensor(s) also plays
an important part in determining the behaviour of the solution. The control law
F GP

203(HS) (figure 8c,d) selects 23 Hz as the dominant actuation frequency, which is
very close to the open-loop frequency which maximizes JK in the HS configuration
(see figure 4d). We have not performed a dedicated GP search to maximize JK in
the HS flow, but this individual appears as a candidate to fulfil this objective. The
other solutions found include well-defined peaks at actuation frequencies very close,
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FIGURE 8. (Colour online) Examples of suboptimal control laws found in the GP
experiment for the maximization of W in HS mixing layer configuration. Shown on the
left are power spectral densities of different actuation signals b(t) used for the matching
analysis. The corresponding histograms of occurrence of specific sensors are shown on
the right. The numbering in the control law name denotes the number of the individual
in the first generation of the experiment. Label #ind indicates the number of individuals
matching the reference actuation spectrum.

yet distinctly different from the optimal actuation (35 Hz) for maximizing W: F GP
231(HS)

37 Hz (figure 8e, f ) and F GP
238(HS) 32 Hz (figure 8g,h). This confirms that an automatic

selection of the sensor and an optimized scaling of the signal(s) within the control
law can tune a mixing layer synchronisation frequency with high precision.

Finally, in spite of the MISO design of the control system in this experiment, and
the ability to impose only a single actuation frequency in the open-loop case, the
closed-loop control F GP

230(HS) might even be able to produce some kind of frequency
cross-talk effect, as evidenced in the spectra in figure 8(i,j), where two well-defined
peaks can be observed. Here, the first peak is a low-frequency modulation of the
actuation frequency based around the second peak. This case, however, does not
appear in sufficient number of samples to provide a solid base for further discussion
of the dynamics involved. Finally, all of these examples represent control laws
either created randomly in the first GP generation or created by modification of
later individuals by random mutations. This means that they have not undergone the
optimization process and might still be improved if an objective function would target
them.
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4.3. The periodicity of feedback control
The linear approximation of the GP control law expression has been performed using
the data from the actuated flow, i.e. where the controlled state of the mixing layer
is fully established. Hence, the synchronization mechanism found by GP greatly
simplifies the dynamics of the actuated mixing layer in comparison to the natural
flow, presented in § 3.1. For both open- and closed-loop control, the input frequency
of the actuation system was recovered by the sensor system, as shown in the spectra
in figure 6. It seems therefore that this phenomenon called the lock-on flow in
the literature (Baek & Sung 2000) is a crucial lead for understanding the potential
capabilities of the frequency selection by the feedback control. In our experiments,
the amplitude of actuation is large and the energy of perturbations inserted into the
mixing layer is of the same order of magnitude as the energy of the unactuated flow
(Ujet ≈Uc). In this case it is expected (Oster & Wygnanski 1982; Fiedler & Mensing
1985) that the mixing layer will be well organized at the frequency of actuation in
the streamwise region where these perturbations are amplified (see also figure 9).

For closed-loop control this means that once the first perturbation created by the
actuators reaches the sensor array, every consequent cycle of actuation might be
triggered by the perturbations created by one of the previous cycles. This is also the
reason, why the observed closed-loop actuation becomes so periodic; establishing a
controlled state means triggering a perturbation of specific properties. The controller
then just acts on the perturbation and the cycle is self-repeating. Therefore, the basic
requirement is that the perturbation created by actuation is amplified sufficiently to be
captured by the sensor array. Here, the well-known mechanism of wave amplification
by a shear flow (Michalke 1965; Ho & Huerre 1984) contributes to the determination
of which types of perturbations can be used for feedback synchronization at a given
location of the sensor array.

Nonlinear mechanisms present in the turbulent mixing layer can sometimes affect
a cycle in unpredicted ways. This is why the closed-loop control can never be as
periodic as the open-loop, i.e. the next cycle depends on how the previous cycle was
registered by the sensors. Clearly, the control law must be designed in such a way as
to minimize the negative effects of random flow perturbations on the repeated creation
of an optimal actuation pulse.

5. Physical mechanisms in the forced mixing layer
We have previously proposed that a perturbation created by actuation needs to be

amplified by the mixing layer in order to cause a successful self-repeating cycle. In
§ 5.1, we examine, based on open-loop actuation, what types of perturbations can
potentially fulfil this condition. In § 5.2, we explore different physical mechanisms that
can be observed in the actuated mixing layer flow, which lead to the maximization of
the imposed objective functions. Finally, in § 5.3, we discuss the possible influence of
the convection speed of coherent structures on the frequency selection by the feedback
control.

5.1. Frequency response to periodic forcing
The optimal closed-loop control laws presented in § 3 (see figures 5 and 6),
demonstrate a significant ordering of the flow, which corresponds to the dominant
frequency of the actuation signal. This is confirmed by the spectra of the sensor
signals in figure 6. In the case of the closed-loop control, these frequencies are
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FIGURE 9. Frequency response to periodic forcing at fa with respect to individual hot-wire
probes at x = 200 mm, for the (a) Reθ = 850 (LS) and (b) Reθ = 1400 (HS) flow
configurations. Duty cycle used is 50 %. Measurements are taken from the spectra of the
flow actuated by open-loop in the range of 1 Hz < fa < 100 Hz. The horizontal axis
denotes the range of actuation frequencies employed. The vertical axis represents the
normalized amplitude of power spectral density at the frequency fa. Here PSD(si; fa)[ f ]
denotes the amplitude of the power spectral density of sensor signal si measured at the
frequency of actuation fa and P(si; fa) represents the power of the signal. Values of the
vertical axis are shifted by m for clarity (where m = 0, 1, 2, 3, 4, 5, 6). The symbols
(see legend) mark the frequencies and the sensors which are selected by the different
closed-loop control laws.

not fixed; they are continuously established by the control law as a function of
the signals from the selected sensors. Yet, in both open- and closed-loop controlled
flow, the achieved lock-on states appear very similar when we observe the flow
pseudovisualizations. Therefore, we consider that a synchronized state of the flow,
obtained either by open- or closed-loop, is identical as long as the dominant
frequencies measured in the flow are the same. For this reason, open-loop experiments
are used to analyse the actuated flow dynamics for a range of discrete forcing
frequencies. The open-loop experiments provide a more complete sample base where
we can track the physical phenomena, not only on the few known closed-loop
solutions, but rather on many different open-loop actuation frequencies in between.

Figure 9 shows amplitudes of power spectral density of the mixing layer flow as
a function of the frequency of open-loop actuation PSD(si; fa), for the LS and HS
configurations. The amplitude is normalized by the power of the signal. This serves
as an estimation of the amplitude of the fluctuations appearing at the frequency of
actuation, with respect to the combined amplitudes of fluctuations on all other resolved
frequencies.

In figure 9(b), the hot-wires s1, s4 and s7 are used by the control law F GP
W(HS)

(3.3). From figure 7 we can see that probe s7 is dominant in building the actuation
signal. In figure 9(b) we note that the most amplified signal that this probe can
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register, corresponds to the actuation frequency of 35 Hz (see legend); exactly what
the closed-loop control law selects as the dominant feedback frequency. Moreover,
in figure 9(a), we observe that the PSD of the sensor s7 is maximized for an
actuation frequency approximately equal to 21 Hz, precisely the frequency found by
using the GP control law F GP

W(HS) (trained in the HS configuration) in the off-design
LS configuration (figure 6b). This observation suggests that the robust behaviour
presented in § 3.3 may result from the dominant role of s7, and from the perturbation
amplification properties of the actuated mixing layer that makes s7 sensitive to 35 Hz
in HS and 21 Hz in LS configurations, respectively. Hot-wire probes s10 to s19 were
not used in the optimal HS control law, but are shown here to illustrate what kind
of actuation frequencies they detect. For example, if the control law could be based
on s10, one might expect a feedback on a frequency from 10 to 30 Hz, since these
actuation frequencies appear most amplified at this probe’s location (figure 9).

The symbols in figure 9 denote the selected feedback frequencies and the dominant
sensors for the closed-loop control laws presented in figures 5, 6 and 8. We can
conclude that the frequency selected by using the dominant sensor in the control law
is always well amplified. The control law F GP

K(LS) (3.2), for example, has sensor s19
as the dominant sensor and this control always selects a frequency around 12 Hz.
In figure 9(a), we see that the signature of the open-loop actuation at 12 Hz is the
most amplified for the sensor s19 (filled circle). We can make similar statements for
the rest of the closed-loop control laws marked on the diagram. In some cases the
selected frequency was the most amplified for the sensor in question, but in other
cases it was not a maximum. An example is the control law F GP

191(HS) (empty circle)
in figure 9(b). The frequency selected by this feedback is amplified, but it is not
the maximum amplification for this sensor. We can therefore conclude that not only
the most amplified, but also sufficiently amplified perturbations can be periodically
returned by the feedback control.

The amplification envelopes shown in figure 9 resemble the universal amplification
curve, proposed by Fiedler & Mensing (1985), which follows a nonlinear growth until
saturation, then a linear decay. In the case of sensor s10, the decay is interrupted by
a sudden extinction of amplitude much earlier than for other sensors. This occurs
for both LS and HS configurations, albeit for different frequency ranges. As we will
discuss in the following § 5.2, this is a consequence of the mean flow modifications
induced by the forcing.

We can conclude that the feedback control created by the search process of GP can
potentially be based on any frequency fa, if the growth rate of the created perturbation
estimated for the lock-on condition ( f = fa) is strictly positive and significant up to
and including the location of the feedback sensors.

5.2. Vortex interactions
In this section, we analyse the influence of the actuation frequency fa on the structure
organization of the forced mixing layer and more precisely on the vortex interactions
between the vortices created by the actuator system and those issued from the natural
mixing layer. We first turn our attention to the evolution of the velocity variance
profiles with respect to a range of open-loop actuation frequencies. The velocity
variance profiles for actuation frequencies from 0 to 100 Hz are shown in figure 10,
for the LS (a) and the HS (b) flow configurations. In both flow configurations, the
respective natural profiles feature a single maximum, located between sensors s10 and
s13. As the actuation is applied with a progressively higher frequency, the vertical
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FIGURE 10. (Colour online) Mean velocity variance profiles (at x = 200 mm) in
(a) Reθ = 850 (LS) and (b) Reθ = 1400 (HS) mixing layer configurations, for different
open-loop actuation frequencies (0 Hz< fa < 100 Hz, dc= 50 %). Fluctuation magnitudes
are scaled and shifted by the value of actuation frequency for clarity. Black dots denote
the maximum value of 〈u′i2(t)〉T . Variance profiles at open-loop frequencies 12 and 20 Hz,
for the LS case, and 35 Hz in the HS case are highlighted in red (colour online only),
as being the closest to the best closed-loop solutions presented in § 3.

position of the maximum of variance is shifted vertically downwards. The single
maximum of fluctuations achieves the lowest vertical position for relatively low
frequencies of actuation: 8–10 Hz for LS and around 15 Hz for HS. The downward
shift of the maximum of fluctuations indicates that the entrainment of the mixing
layer is increased and the mixing layer is vectored towards the low-speed side. If
the actuation frequency is still increased past this range, we observe a return of the
maximum upwards, and a first appearance of a second, smaller velocity variance
maximum. This second maximum starts to be visible from 10 to 12 Hz for the LS
case in figure 10(a), and fully emerges as an equal to the first maximum for actuation
at approximately 20 Hz. This significant discontinuity in the shape of the profiles
appears around the actuation frequencies which maximize objective function W. For
both flow configurations, this change in the profile shape also corresponds to the
abrupt extinction of the normalised PSD amplitude for the sensor s10, clearly visible
in figure 9(a,b). The variance profiles featuring two maxima of velocity variance
can be interpreted as representing the vortex pairing in the mixing layer (Winant &
Browand 1974; Ho & Huang 1982). The sensor s10 is the closest to the middle of the
mixing layer and can find itself between two vortices if vortex pairing occurs (one
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 11. Receding location (indicated by the arrow) of vortex pairing for various
open-loop frequencies (from unactuated to 65 Hz) in the HS flow configuration. The
approximate streamwise location of the sensor rake is indicated with white crosses. Flow
snapshots correspond to: unactuated (a), fa = 15 Hz (b), 5 Hz (c), 30 Hz (d), 10 Hz (e),
65 Hz ( f ).

vortex on top of the other, with the hot-wire vertically in between). For the HS case
(figure 10b) this discontinuity is much less pronounced, but is still quite discernible.

It follows that by actuating in a given frequency range, we can promote vortex
pairing to occur at the sensor location, while for other actuation frequencies no pairing
is observed by the sensors. Smoke visualizations of the flow for several actuation
frequencies are shown in figure 11. The selected snapshots all show a typical location
of vortex pairing and the associated actuation frequency. We can clearly observe that
this location is changing with the actuation frequency and for a certain case it simply
coincides with the sensor location. The objective function W is designed to select a
thick velocity variance profile, and so the optimal control laws aim to cause the vortex
pairing which dominates the sensors.

The observed phenomena are in general accordance with the criterion of Moore &
Saffman (1975) which guarantees a stable vortex arrangement in a turbulent mixing
layer. The criterion is `& 3.5× δω, where ` is the spacing between two vortices, for a
single vortex to be stable. In the case of actuated mixing layer, the distance between
two vortices is approximated as `=Uc/fopt, where fopt is the dominant frequency in the
flow resulting from optimal open-loop actuation and the best GP closed-loop control
laws. Resulting values are given for reference in table 1 for closed-loop control laws
F GP

W(LS) (3.1), F GP
K(LS) (3.2) and F GP

W(HS) (3.3). In the case of maximization of K for
the LS configuration, the control law produced coherent vortices at a frequency of
approximately 12 Hz. In the velocity variance profile (bK(LS) in figure 5a) no sign of
vortex pairing is evident, i.e. a single maximum is observed. The corresponding values
of ` and δω in table 1 show that the criterion for a stable single vortex has been
achieved. In contrast, the values of vortex spacing for control laws which maximize
W are just below the local vorticity thickness criterion. Such values confirm that the
vortices have begun to deteriorate due to interaction with the neighbouring vortices,
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Initalization of pairing Vortex pairing
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FIGURE 12. Example of the streamwise evolution of the LS mixing layer actuated with
fa = 10 Hz. The profiles of averaged streamwise velocity fluctuations 〈u′2〉T obtained by
particle image velocimetry (PIV) are superimposed over an instantaneous snapshot of
smoke visualization of the flow. The profiles which exhibit two peaks correspond to
streamwise location where vortex pairing is clearly evident. Upstream of this location, the
resurgence of the natural instability (a) can be observed between two cycles of actuation.
Vortex (b) is another K–H vortex, already starting to be influenced by the vortex created
by actuation (c). The vortex pairing observed at the right-hand side of the frame appears to
involve a large vortex (e), created by the previous actuation cycle, as well as several older
K–H vortices (d) coalescing around it. The PIV results were obtained using a commercial
Dantec system, with a spatial resolution of 3.45 mm between vectors.

F GP
K(LS) F GP

W(LS) F GP
W(HS)

Uc (m s−1) 2.4 2.4 4.5
fopt (Hz) 12 21 35
` (m) 0.200 0.114 0.128
3.5× δω (m) 0.138 0.166 0.14

TABLE 1. Comparison of vortex spacing ` and vorticity thickness δω values for the best
GP control laws in LS and HS mixing layer configurations. These values are used for
estimation of the criterion of stability of a vortex in a turbulent mixing layer `& 3.5× δω,
as given by Moore & Saffman (1975).

as one would expect when vortex pairing commences. Therefore, the two objective
functions are maximized when the controller is triggered either by a large coherent
vortex (in the case of K) or by a pair of vortices close together (in the case of W).

In addition to vortex pairing, the actuated state can also feature very complex
interactions of actuation and natural Kelvin–Helmholtz vortices, as illustrated in
figure 12. The visualization shown here, along with the statistically converged data
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from PIV acquisitions, allow us to shift the analysis from a fixed framework of the
hot-wire sensors and explore the spatial development of an actuated mixing layer,
albeit for only one frequency of actuation. This example is a typical case of what
can be expected to occur when the LS mixing layer is actuated at a low frequency
( fa = 10 Hz). The wavelength of actuation is so large that it allows a resurgence
of the natural instability between two cycles of actuation. In figure 12, several
K–H vortices (a) are observed appearing in the wake of the last known actuation
vortex (c). Vortex (b) directly in the trail of the actuation vortex (c) is another K–H
vortex already starting to be destabilized by the influence of the bigger, turbulent
actuation vortex. Further downstream, we can observe older K–H vortices (d) being
entrained by a large vortex (e) which is a product of the previous cycle of actuation.
The corresponding profiles of 〈u′2〉T show a typical shape associated with vortex
pairing: two peaks of comparable amplitudes. In this case, the pairing occurs around
350 mm < x < 450 mm in the streamwise direction. However, the process visible
in this example corresponds to the ‘collective interaction’ (Ho & Nosseir 1981),
where the K–H vortices are entrained around a much larger vortex created by a large
amplitude actuation.

5.3. The impact of convection speed on the frequency selection
Since the perturbations produced by actuation dominate the flow, one might expect
that the frequency of their repetition by feedback would be locked to a frequency
based on the convective time. This does appear to be true for the closed-loop control
which maximizes objective function K. For the LS configuration, the frequency based
on the convective time would be fc(LS)≈12 Hz, with respect to Uc given in the table of
figure 1. In § 3.2, the frequency of the closed-loop control law F GP

K(LS) is found equal to
12 Hz, in agreement with the convective frequency. In the HS case, the corresponding
frequency would be fc(HS) ≈ 24 Hz. Although the GP was not applied to maximize K
in the HS configuration, the open-loop mapping in figure 4(d) confirms a maximum
of JK at ( fa, dc)K(HS) = (24 Hz, 70 %), which corresponds to the aforementioned
frequency.

However, the speed at which the velocity fluctuations of different length scales are
convected is not uniform across the vertical extent of a turbulent mixing layer. Studies
by Wills (1964) and most recently by Buxton, de Kat & Ganapathisubramani (2013)
show that a ‘global’ convection velocity, containing all the length scales present in
the flow, is similar to the mean velocity profile U(y) of the mixing layer, and that
fluctuations on the low-speed side convect on average at speeds greater than the mean
and fluctuations on the high-speed side are observed to convect at speeds less than the
mean. If the local convection characteristics are the only parameters which determine
the frequency of feedback, then the vertical location of the sensor might be directly
linked with the frequency that the closed-loop control based on that sensor will select.

In order to check this hypothesis, we can plot a summary of all of the closed-loop
control laws in figure 13. Here we plot the participating sensors in each control law
presented so far, versus the lock-on frequency they produce (see § 4). The sensors
appearing in all of the matching individuals are referred to as the ‘dominant’ sensors
(filled circles). The other sensors which appear in the reference control law are called
the ‘supporting’ sensors (empty circles), and they do not appear in all the individuals
which match the feedback frequency of the reference control law.

We can immediately recall that the control laws F GP
W(HS) and F GP

191(HS) share the same
dominant sensor s7 (see § 4.2), but produce different lock-on states (35 and 45 Hz).
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FIGURE 13. (Colour online) Participation of hot-wire sensors in various control laws and
the resulting lock-on frequencies. The filled circles correspond to the sensors appearing
in all the individuals matching a particular lock-on frequency. Sensors depicted with
empty circles are not dominant, but appear in the control law from which the PSD of
the actuation signal has been presented (see figure 8), or whose expression is given in
the article (see § 3). The vertical dashed line differentiates between results obtained by
tests in the LS configuration, from the results obtained in the HS configuration. Note
that the control law F GP

W(HS) appears two times, since it was tested in both LS and HS
configurations yielding a different selected frequency (see figure 6).

This already shows that the vertical location of that sensor does not impose a unique
feedback frequency, based on the local convection speed.

Furthermore, there appears not to be a link between selecting a sensor on the
high-speed side of the mixing layer and obtaining a high-frequency feedback. An
obvious example is the control law F GP

238(HS) which achieves a lock-on frequency of
32 Hz using only the high-speed side sensor s16, whereas F GP

W(HS) achieves 35 Hz
using always the low-speed side sensor s7.

We can conclude that some lock-on states produced by closed-loop control may
be related to the convection speed, but certainly not all of them. In addition, the
outermost sensors (s1 and s19) are effectively in the far field of the mixing layer for
both LS and HS configurations. In their case, the local convection speed observations
from Buxton et al. (2013) probably do not apply. From these results, there is no
clear and direct link to be made between the vertical location of the sensors and the
selected frequency of feedback. If the feedback control was directly proportional to
only one sensor, perhaps the vertical location would be the only parameter. This type
of configuration is worth examining in future studies.

In the reported experiment, the transitional stage from the unactuated flow to the
fully established actuated lock-on state is not elucidated. It is, however, this transitory
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period which must be studied in order to fully understand the selected lock-on
frequency. It is also worth noting that the selection of the lock-on frequency is very
robust. Every time the closed-loop control is activated using the same control law,
the resulting lock-on frequency is the same, provided that there is no sensor drift
between attempts. In other words, the lock-on state is independent of the unsteady
conditions of the flow at the moment the control is activated.

6. Summary and conclusions

The objective of this experimental study was to examine what kind of control laws
are physically eligible when closed-loop control of a feedback type is applied in a
turbulent mixing layer. In the search for the optimal closed-loop control, the solution
space was enlarged by using a model-free GP search/optimization method. GP allows
us to search for the possible optimal solutions, without a priori knowledge of what
these solutions look like. A critical step is to design an objective function with a
unique maximum, which is representative of a distinctive flow state. The GP process
will attempt to maximize the imposed objective function by creating and testing many
different control laws, to find the most promising candidate.

In our experiments, the actuators are placed at the mixing layer origin, while
the sensors are far downstream, in a dominantly convective flow. This arrangement
does not allow in-time actuation of the flow dynamics at the sensor location. The
instantaneous sensor signals measure the passage of flow structures, which are already
far downstream and thus out of reach of the actuator system. However, the closed-loop
control can still use the temporal dynamics captured by the sensors to modify the
mean flow properties. At the same time, the convective nature of the mixing layer
instability requires continual actuation; if the actuation ceases, the mixing layer relaxes
into its natural state. Consequently, the mixing layer is continually actuated and the
dynamics, captured by the sensors, can be significantly influenced by the signature
of the actuation. This leads to a self-repeating feedback cycle, which the closed-loop
control laws use to produce a quasiperiodic actuation. The control laws mimic the
features of the best open-loop control, without using a fixed time constant. Moreover,
the closed loop manages to select the optimal feedback frequency with a high degree
of reliability; every time a specific control law is applied to the flow, it produces
a synchronized state of the mixing layer with statistically identical properties. This
remains true provided the sensor signals do not drift in time, and the flow conditions
in the wind tunnel do not change between two tests of the control law.

For each of the two objective functions considered, GP has found distinctly different
optimal flow states. When the fluctuation energy K is maximized, the optimal flow
state features periodic shedding of large coherent vortices at the sensor location.
These structures induce an increase of the fluctuation energy across the entire sensor
rake, which maximizes the objective function. If the width W of the mixing layer
has to be maximized, vortex pairing is generated at the sensor location. Thereby, the
velocity variance is distributed over a wider range of sensors to satisfy the objective
function. The open-loop experiments show that vortex pairing induced by forcing
can be observed at different streamwise locations in the mixing layer, depending on
the forcing frequency. It is quite remarkable that the closed loop is able to select a
feedback frequency which induces the vortex pairing process precisely at the location
of the sensors.

At the design point, the objective function values of the optimal periodic
forcing and the best GP control laws are identical to within a few per cent.
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However, under off-design conditions, when the stream velocities are intentionally
doubled, the closed-loop control is much more effective compared with the fixed
open-loop forcing. The closed loop remains robust by selecting a new feedback
frequency to satisfy the objective function. The GP process in our experiments does
not use robustness to free-stream velocity changes as a criterion. Nevertheless, the
nature of the GP selection process favours control laws which perform well over a
large number of tests. This robustness with respect to stochastic fluctuations of the
mixing layer flow might also play a role in the observed robustness of the feedback
frequency selection when the global conditions change.

By examining the flow under periodic forcing in § 5, we have understood which
synchronized states are possible to obtain thanks to the amplification mechanisms
of the mixing layer instability. In the case of open-loop control, these states are
established by external periodic forcing of our choice. In the case of the closed
loop, such states need to be established by the feedback cycle. The closed-loop
control permits a limited selection of different feedback frequencies, in spite of being
‘slaved’ to a single streamwise location. In the case of closed-loop control, the desired
frequency must be amplified by the mixing layer, otherwise no synchronization is
possible. The more the perturbation is amplified, the easier it will be for the feedback
controller to produce a periodic signal for actuation. However, the most amplified
frequency is not the only one eligible for feedback; other frequencies which are
sufficiently amplified can be selected as well. Analyses in the appendix A indicate
that the range of obtainable feedback frequencies is inversely proportional to the
streamwise location of the sensors.

In order to understand how the closed-loop control synchronizes the mixing layer
at different frequencies, the GP control laws functions were analysed with respect to
their zero-crossings. Most of the control laws were based around one dominant sensor.
However, some control laws were based on the same sensor, yet provoked different
feedback frequencies. It therefore follows that the selection of the sensor may have a
crucial role, but is not the only factor in the determination of the feedback frequency.
The apparently non-essential sensors also contribute by modifying the dominant duty
cycle. In this study, there is no observable pattern to the selection of these ‘supporting’
sensors (see § 4.1). Even if we take for granted that the same dominant sensor can
provoke a different feedback frequency due to the different scaling imposed by the
control law, there is still no clear connection between the vertical location of the
selected sensor and the feedback frequency. As we discuss in § 5.3, the different
convective speeds of coherent structures, across the vertical domain of the turbulent
mixing layer, do not seem to be correlated with the sensor selection.

Finally, a crucial missing link is the process of transition from the unactuated flow
to the established feedback state. It is likely that the transition is strongly related
with the dynamic response of the mixing layer and the coupling of such response
with the location of both the dominant and the supporting sensors. We can only
hypothesize that the supporting sensors are used to trigger the initial and several
subsequent actuations, leading the perturbations to the dominant sensor, which can
then establish the desired feedback cycle. One way to clarify this process would be to
model the instantaneous response of the mixing layer to single actuation pulses with
specific duty cycles. Our attempts to build such a model, by applying a linear system
identification method (ERA/OKID) to the sensor data, have not been successful. From
the experimental side a more detailed investigation of the transition phase would need
both temporally and spatially resolved flow data, which are out of reach in this study
(for example, by time-resolved PIV measurements).
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As illustrated by our experiments, the importance of flow control goes beyond
obtaining a desired flow state; it also becomes an interesting tool in furthering our
knowledge of the flow physics. Model-free control design frameworks such as genetic
programming control can prove particularly helpful in this role, since by definition
they do not require an a priori knowledge of the flow mechanisms to operate. Such
methods can be applied to an unknown plant to extract an optimized control law,
which can be analysed to reveal the governing physical mechanisms.

For the improvement of genetic programming and its use for feedback flow control,
further efforts should be devoted to introduce methods that automatically balance
accuracy and parsimony in the control law. Indeed, the use of arbitrary length
representations in GP slows down the evolutionary search process, consumes memory,
and even more important for flow control, complicates the understanding of the
selection process. In the example of our experiment, some control laws use multiple
sensors, and a large number of GP-created individuals are necessary to discover which
sensors are crucial to achieve the desired performance. This is much like pinpointing
the single gene in a gene sequence, responsible for a specific genetic trait, like
the colour of the eyes. Only when a genetic aberration is found for one or few
individuals, is it possible to establish the general rule which governs the bulk of the
population. A manual selection of the models is generally not feasible. An alternative
option is to direct the evolution toward simple models with sufficient accuracy by
multiobjective optimization. A recent example is a special version of GP, called
Pareto-front GP (Smits & Kotanchek 2005), which has significantly improved the
efficiency of symbolic regression model development. The multiobjective optimization
framework is, therefore, an appealing approach to determine sparse and robust control
laws.
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Appendix A. Impact of the streamwise sensor position
The results presented in the main text are all obtained for a single sensor location

at x = 200 mm. In this appendix, we show how does the sensor location affect the
possibility of establishing a periodic feedback control. In addition, we discuss what
would happen if the feedback sensors were at a different streamwise location with
respect to the performance evaluation sensors.

Experiments of open-loop mapping and GP-based closed-loop control are performed
at x = 500 mm, only for the LS mixing layer configuration. The methodology and
the general flow conditions are identical as in the main text, except that the vertical
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FIGURE 14. (Colour online) Mapping of objective functions JW and JK for open-loop
mapping at x= 200 mm (a,c) and x= 500 mm (b,d), and four different duty cycles (15 %,
30 %, 50 %, 70 %), in the LS mixing layer configuration.

position of the sensor rake now covers −104 mm < y < 40 mm with respect to the
coordinate system origin at the trailing edge.

The receptivity of the mixing layer at this location is tested with open-loop mapping
in figure 14, compared to the results obtained previously at x= 200 mm. The resulting
objective function values follow the expected trends and the maxima are obtained
for a lower actuation frequency: ( fa, dc)W(LS,500) = (9 Hz, 50 %) and ( fa, dc)K(LS,500) =
(5 Hz, 70 %). The exception is an appearance of a second peak of JK for fa≈ 30 Hz.
For both objective functions, the authority of actuation is lower at this streamwise
location, compared with the results presented in the main text for x= 200 mm.

Figure 15 shows velocity fluctuation profiles and the pseudovisualizations of
the natural LS flow, followed by open- and closed-loop control cases for the two
objective functions. From visual inspection, the closed-loop control laws F GP

W(LS,500)

and F GP
K(LS,500) appear less periodic than their counterparts from x= 200 mm (figure 5).

However, the selected dominant frequencies are very close to the open-loop results. In
the case of JW this is around 9 Hz and around 4.5 Hz for JK . In both cases, the duty
cycles are not very well optimized. In the JW experiment the closed loop uses a very
small duty cycle, while the control law in the JK experiment has a larger duty cycle
than expected. We can conclude that sensors placement further downstream poses
a harder problem to solve for the GP. This is not so surprising since the flow at
this streamwise distance is much more unsteady with higher broadband noise levels.
This increases the difficulty of obtaining a smooth feedback signal without dedicated
filtering. Filtering can be implemented as a feature in GP, but was not available to us
at this stage. Regardless of these optimization problems, we can still observe that the
closed-loop control managed to perform a good selection of the desired frequencies,
even in very adverse conditions.
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FIGURE 15. Resulting 〈u′i2〉T profiles (a) and pseudovisualizations (b) for maximization
of JW and JK experiments in LS configuration of the mixing layer at x= 500 mm. The
best open- and closed-loop control are compared. Actuator system input is marked using
black and white stripes above each case (black stands for active). The pseudovisualizations
are constructed from u′i in a range of −1.5 to 1.5 (m s−1) and are based on Taylor’s
hypothesis of frozen turbulence.
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FIGURE 16. Frequency response to periodic forcing at fa with respect to individual hot-
wire probes at (a) x= 200 mm and (b) x= 500 mm for the LS flow configuration. See
figure 9 for the notation.

Figure 16 shows a comparison of the frequency response to periodic forcing at the
sensor locations (a) x = 200 mm and (b) x = 500 mm. In the latter case this range
is severely truncated, and we can expect that a feedback control could select only
frequencies lower than 15 Hz. Therefore, we can surmise that the second maximum
of JK observable in figure 14 at approximately 30 Hz would not be obtainable by the
closed-loop control.
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FIGURE 17. (Colour online) Mean velocity variance profiles for open-loop actuation
frequencies in (a) Reθ = 850 (LS) at x = 200 mm, (b) Reθ = 1400 (HS) at x = 200 mm
and (c) Reθ = 850 (LS) at x= 500 mm. The values on the horizontal axis are normalized
by the local natural frequency fn estimated from Stθ ≈ 0.032 based on the measured local
momentum thickness θ for each case.

In figure 17 we show mean velocity variance profiles for different open-loop
actuation frequencies for three experiments. This figure is similar to figure 10 except
for the addition of the LS experiment performed at x= 500 mm and the normalization
of the values on the horizontal axis. Now, the horizontal axis is normalized by an
estimated local frequency fn based on the measured θ at the sensor location. We
can observe that in all three cases the vortex pairing at the location of the sensors
is achieved when the actuation frequency is approaching twice the value of the
estimated local natural frequency, i.e. fa/fn≈ 2. If, on the other hand, the actuation is
near the local natural frequency fa/fn≈ 1, we obtain a maximum of fluctuation energy
K. However, since we cannot really observe a single, well-defined, natural frequency
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(see § 3.1), we caution the reader that this scaling is presented only as a guideline to
the general similarity of the mean flow modifications for the cases shown.

The combined results (for the LS flow configuration) for the two studied locations
of the sensor array allow us to discuss how would the closed-loop control work if
the feedback sensors and the performance evaluation sensors were placed at different
streamwise locations. For example, if the effects on the objective function would
be estimated at x = 500 mm, the control targets would be 5 and 9 Hz for the
JK and JW , respectively (after the data in figure 14). According to the frequency
response to periodic forcing at x = 200 mm (figure 16a), these low frequencies
should be obtainable by the closed-loop control. At this upstream location, 5 Hz
seems to be amplified well for the sensor s7, while 9 Hz should be obtainable
through several sensors, especially those farther from the middle of the mixing layer.
Therefore, a closed-loop control receiving information from an upstream sensor could
be constructed to maximize an objective function at a given downstream location.

Can this work in the opposite case, i.e. can we pick up information on the
feedback sensor which is placed far downstream and optimize an objective function
for an upstream location? Objective function JW is maximized by a 21 Hz actuation
at x = 200 mm (figure 14a), which does not appear as an amplified frequency to
any of the hot-wire sensors at x = 500 mm in figure 16(b). In other words, such a
frequency cannot be filtered from the sensors at this streamwise length and a feedback
cycle will not be established. On the other hand, the optimal actuation frequency of
12 Hz for the maximization of JK at x= 200 mm is still very visible by the sensors
at x = 500 mm. In this case, we could expect a working closed-loop control to be
established.

To conclude, a closed-loop feedback control based on two arrays of sensors at
different streamwise locations can obtain a lock-on state only for the actuation
frequencies which are amplified on both locations. The target frequency must be
amplified at the location of the feedback sensors in order to establish a periodic
feedback. At the same time, it must also be amplified at the location of the
performance evaluation sensors, otherwise it would not be able to modify the flow
toward a desired lock-on state.

Appendix B. Genetic programming in the experiment

This appendix provides more information about the GPC framework. We also
discuss specific aspects of implementation of GP in the mixing layer experiment.

GP is a biologically inspired algorithm where the genetic operators (replication,
mutation and cross-over) operate on a set of operations, elementary functions,
variables and constants. When GP is used for symbolic regression, it combines
automatically these elements to search for a symbolic expression that constitutes
the best solution to a given optimization problem. Proposed symbolic expressions
(examples shown in figure 18) are built as tree-like structures (Koza 1992) which can
be easily evaluated in a recursive manner and described by a Lisp expression. These
trees are called individuals, while a population of individuals is a generation. GP is
implemented as an iterative procedure in which a population of candidate solutions
evolves toward better solutions by repeatedly undergoing genetic modifications based
on their fitness.

The first generation of individuals is created in a random manner. All individuals
are evaluated and a fitness value is attributed based on how well they minimize or
maximize the objective function. A second generation of individuals is then created
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FIGURE 18. Biologically inspired operations performed by GP on the tree-like functions:
(a) replication, (b) mutation and (c) cross-over. The tree represented in (a) corresponds
to the function b(t) = C × s1(t) + exp(s2(t)) where C is a constant to be determined by
GP. For the mutation (b), the operation consists of selecting a node, erasing its subtree
and replacing it by another one created randomly. Part of the information contained in
the individual is kept while new information is allowed to enter the population. Mutation
increases the diversity and is responsible for exploring the search space with large steps.
For the cross-over (c), one node in each of the two individuals selected for the cross-over
is randomly chosen, the nodes and their subtrees are then exchanged. The cross-over is
responsible for exploring the search space around well-performing individuals.

using three principal genetic operations: replication, mutation and cross-over. Each
of the genetic operations occurs with a predetermined probability. If replication is
selected as an operation to be performed, the candidate individual will simply be
copied into the next generation (figure 18a). Mutation causes a part of the individual’s
tree to be replaced by a newly created random subtree as shown in figure 18(b). A
cross-over operation involves a pair of individuals, which will exchange a randomly
selected subtree between each other and two new individuals created in such a manner
will become a part of the next generation (figure 18c).

The selection process of candidate individuals uses the tournament method; few
random individuals are chosen to compete in a tournament and the winner (based on
its evaluated fitness) is selected for one of the genetic operations to be performed
on it. The tournament is an efficient way of controlling the selectiveness of the GP
evolutionary process. Usually, the size of the tournament is small compared with the
size of the population. The bigger the tournament size Nt is, the more probable it
is to include the overall best individuals as participants, leading to a more selective
process. The selection ranges from a random individual for Nt= 1, to selection of the
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best individual of the generation if Nt equals the size of the population of the current
generation.

An additional operation available is elitism, which copies the single or few best
individuals of one generation directly into the next generation, while avoiding the
tournament process. This operation is generally used to ensure that the best individuals
of one generation are not lost and remain available for further improvements in the
future generations.

When all the individuals of the next generation are created, they are evaluated and
the selection process begins anew in order to build a subsequent generation. This
iterative process continues for a desired number of generations. A rule of thumb is
that given a sufficient number of individuals in each generation, a solution should
be obtained in less than Ng = 50 generations. There is no mathematical proof of
convergence, but the method has been successful in many applications (Lewis, Fagg
& Solidum 1992; Nordin & Banzhaf 1997).

The genetic programming part of GPC code is developed in-house based on
an open-source code ECJ (Luke et al. 1993). Genetic programming codes using
numerical simulations as evaluation data do not need to evaluate the same individual
more than once. In the experiment, however, one is faced with uncertainties and
stochasticity created by natural perturbations in the flow and the actuator system,
measurement precision, etc. In order to be better adapted to experimental conditions,
our GPC code contains crucial new features.

(1) An individual is evaluated every time it appears in the genetic programming
process.

(2) The cost of an individual is averaged with the values recorded previously for the
same individual, resulting in a cumulative moving average being used as the cost
function value.

(3) A predetermined number of best individuals in each generation is re-evaluated
several more times (five in our case) to ensure a stable sample size for the
averaging process.

(4) No duplicate individuals are allowed during the creation of the first generation.

The GP learning module thus assigns a cumulative average cost function value
(fitness) to an individual. The objective is to choose as the best individual, one
which has a continuously good performance, rather than one with strongly varying
performance due to external perturbations. Such perturbations may cause an
undeserved high fitness value to be attributed to an otherwise unremarkable individual,
which is the only real danger to the convergence process. The averaged cost approach
is designed to promote robustness and prevent such events from having an influence,
but at a price of being much more conservative in the selection of individuals. As
a consequence, the control laws which are attributed with high values of fitness are
those which also perform consistently well, which also means that the control laws
themselves are selected to be more robust to stochastic perturbations.

Operations and elementary functions used in the experiment are: +, −, ×, /, sin,
cos, exp, tanh and log. Sensitive operations such as / and log are protected so that any
value in R can be used as arguments. The variables available to GP are instantaneous
values of velocity fluctuations from the hot-wire sensors i.e. si(t)≡ u′i(t). Every third
sensor in the rake is used as a variable since more would only carry redundant
information for the sensor-based controller. Hence, ns = 19 for the evaluation of the
cost functions (2.1a,b), while only 7 sensors across the shear layer are employed in
the construction of the control laws F GP. Finally, constants used are in a range of
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[−1, 1] with a precision up to a second decimal. The range and precision are adapted
to be of the same order of magnitude as the typical velocity fluctuation information
given by the sensors.

In the experiment, the standard rates for the genetic programming operations are
0 % for replication, 65 % for mutation and 35 % for cross-over. Elitism is set to Ne=
5, meaning that five best individuals in a generation are sent directly to the next
generation. An experiment consists of Ng = 25 generations, where each generation is
composed of Ni = 50 individuals. An individual is limited to a minimum tree depth
of 2 and a maximum tree depth of 10 levels.

At the start of each generation, the unactuated flow and the best open-loop actuation
are retested in order to keep track of these reference values. Hence, each individual’s
cost (JK or JW) is calculated using the reference baseline flow values (Ku or Wu)
obtained at the beginning of its own generation.

The evaluation time of every individual in the experiment is T = 10 s, while there
is up to 6 s of various delays in order to facilitate communication between the
learning module, the controller and the data recording system. Also, a few seconds
must be allowed for the mixing layer to register the effects of each new actuation
when changing individuals during the learning process. Taking this into account, a
single evaluation of an individual takes around 20 s to complete. A standard GPC
experiment of 25 generations is completed in approximately 10 h. However, depending
on the parameters of the genetic operations, the optimal solution in our experiments
emerges even after four to six generations. This is equivalent to approximately 2.5 h
of wind tunnel time. With some experience and knowledge of the controlled plant,
quick optimization tests can be performed without too much time investment.
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