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Abstract

Data profiling is the act of extracting structural metadata from datasets.

Structural metadata, such as data dependencies and statistics, can support

data management operations, such as data integration and data cleaning.

Data management often is the most time-consuming activity in any data-

related project. Its support is extremely valuable in our data-driven world, so

that more time can be spent on the actual utilization of the data, e. g., build-

ing analytical models. In most scenarios, however, structural metadata is not

given and must be extracted first. Therefore, efficient data profiling methods

are highly desirable.

Data profiling is a computationally expensive problem; in fact, most depen-

dency discovery problems entail search spaces that grow exponentially in the

number of attributes. To this end, this thesis introduces novel discovery

algorithms for various types of data dependencies – namely inclusion depen-

dencies, conditional inclusion dependencies, partial functional dependencies,

and partial unique column combinations – that considerably improve over

state-of-the-art algorithms in terms of efficiency and that scale to datasets

that cannot be processed by existing algorithms. The key to those improve-

ments are not only algorithmic innovations, such as novel pruning rules or

traversal strategies, but also algorithm designs tailored for distributed execu-

tion. While distributed data profiling has been mostly neglected by previous

works, it is a logical consequence on the face of recent hardware trends and

the computational hardness of dependency discovery.

To demonstrate the utility of data profiling for data management, this thesis

furthermore presents Metacrate, a database for structural metadata. Its

salient features are its flexible data model, the capability to integrate various

kinds of structural metadata, and its rich metadata analytics library. We

show how to perform a data anamnesis of unknown, complex datasets based

on this technology. In particular, we describe in detail how to reconstruct

the schemata and assess their quality as part of the data anamnesis.

The data profiling algorithms and Metacrate have been carefully imple-

mented, integrated with the Metanome data profiling tool, and are avail-

able as free software. In that way, we intend to allow for easy repeatability

of our research results and also provide them for actual usage in real-world

data-related projects.



Zusammenfassung

Data Profiling bezeichnet das Extrahieren struktureller Metadaten aus Da-

tensätzen. Stukturelle Metadaten, z.B. Datenabhängigkeiten und Statistiken,

können bei der Datenverwaltung unterstützen. Tatsächlich beansprucht das

Verwalten von Daten, z.B. Datenreinigung und -integration, in vielen da-

tenbezogenen Projekten einen Großteil der Zeit. Die Unterstützung solcher

verwaltenden Aktivitäten ist in unserer datengetriebenen Welt insbesondere

deswegen sehr wertvoll, weil so mehr Zeit auf die eigentlich wertschöpfende

Arbeit mit den Daten verwendet werden kann, z.B. auf das Erstellen analyti-

scher Modelle. Allerdings sind strukturelle Metadaten in den meisten Fällen

nicht oder nur unvollständig vorhanden und müssen zunächst extahiert wer-

den. Somit sind effiziente Data-Profiling-Methoden erstrebenswert.

Probleme des Data Profiling sind in der Regel sehr berechnungsintensiv: Vie-

le Datenabhängigkeitstypen spannen einen exponentiell in der Anzahl der

Attribute wachsenden Suchraum auf. Aus diesem Grund beschreibt die vor-

liegende Arbeit neue Algorithmen zum Auffinden verschiedener Arten von

Datenabhängigkeiten – nämlich Inklusionsabhängigkeiten, bedingter Inklusi-

onsabhängigkeiten, partieller funktionaler Abhängigkeiten sowie partieller ein-

deutiger Spaltenkombinationen – die bekannte Algorithmen in Effizienz und

Skalierbarkeit deutlich übertreffen und somit Datensätze verarbeiten können,

an denen bisherige Algorithmen gescheitert sind.

Um die Nützlichkeit struktureller Metadaten für die Datenverwaltung zu de-

monstrieren, stellt diese Arbeit des Weiteren das System Metacrate vor,

eine Datenbank für strukturelle Metadaten. Deren besondere Merkmale sind

ein flexibles Datenmodell; die Fähigkeit, verschiedene Arten struktureller Me-

tadaten zu integrieren; und eine umfangreiche Bibliothek an Metadatenana-

lysen. Mithilfe dieser Technologien führen wir eine Datenanamnese unbe-

kannter, komplexer Datensätze durch. Insbesondere beschreiben wir dabei

ausführlicher, wie Schemata rekonstruiert und deren Qualität abgeschätzt

werden können.

Wir haben oben erwähnte Data-Profiling-Algorithmen sowie Metacrate

sorgfältig implementiert, mit dem Data-Profiling-Programm Metanome in-

tegriert und stellen beide als freie Software zur Verfügung. Dadurch wollen

wir nicht nur die Nachvollziehbarkeit unserer Forschungsergebnisse möglichst

einfach gestalten, sondern auch deren Einsatz in der Praxis ermöglichen.
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Chapter 1

Big Data: Amid Opportunity and

Challenge

Over the past years, data has been commonly referred to as “the new oil” [Palmer,

2006; Rotella, 2012; Toonders, 2014]. Indeed, data fuels industries: Not only does data

help to streamline business processes and personalize products in classical industries,

but also has the data become an industry itself [Pham, 2015]. What is more, data

even bears the potential to substantially change some scientific fields, replacing classical

theoretical models with statistically inferred ones [Anderson, 2008]. This “Big Data

era” has been made possible by the ever-increasing technological capabilities to collect,

store, and process ever-growing amounts of data. In fact, it has been reported that 16.1

zettabytes (1.61 × 1023 bytes) of data have been produced in 2016 and this number is

expected to increase by an order of magnitude by 2025 [Reinsel et al., 2017].

On the face of this enthusiasm, one may wonder, though: If data is the new oil, where

is its refinery? Data comes from all kinds of sources and in a variety of different formats, it

can be faulty, incomplete, and outdated. That is, data is initially raw; and it needs to be

refined and made fit for its intended use. Such data refinery is not only mission-critical,

it is also a very complex task. For instance, a recent survey reports that data scientists

spend 60% of their work time on cleaning and organizing data (and also perceive this as

their least enjoyable activity) and another 19% on selecting datasets [Press, 2016].

In the following, we refer to such and similar refinery tasks as data management. Typ-

ical data management scenarios encompass data reverse engineering [Davis and Alken,

2000; Hainaut et al., 2009], data cleaning [Ganti and Sarma, 2013; Rahm and Do, 2000],

data integration [Leser and Naumann, 2007; Rahm and Bernstein, 2001], and many more.

While those activities are complex in nature, structural metadata can help to (partially)

automate them. In a few words, structural metadata summarizes technical properties of

a dataset, e. g., the number of distinct values in a database column or the key candidates

of a database table. Such summaries support several concrete data management tasks,

such as reconstructing database schemata [Kruse et al., 2016b] or formulating data clean-

ing rules [Thirumuruganathan et al., 2017], hence allowing data practitioners to focus

more on their main tasks. Unfortunately, in the majority of cases datasets are annotated

with only little or no structural metadata at all.

1



1. BIG DATA: AMID OPPORTUNITY AND CHALLENGE

The research area of data profiling [Abedjan et al., 2015] investigates methods for the

automatic extraction of structural metadata (and we henceforth refer to structural meta-

data also with the simpler term data profiles). This is a notoriously difficult task, not

only because of the amounts of data to be analyzed but also because of its computational

complexity: Many data profiling problems are of exponential complexity [e. g., Gunop-

ulos et al., 2003; Liu et al., 2012]. As a result, state-of-the-art data profiling algorithms

are often applicable only to small datasets, so that the benefits of structural metadata for

data management are precluded in practical scenarios. Indeed, in many discussions with

industry representatives, we learned that only those types of data profiles are being em-

ployed for data management operations that can be easily calculated. This circumstance

is reflected in the limited capability of industry data profiling suites [Eschrig, 2016].

However, our dialog partners also expressed great interest in more advanced metadata

types. A sign of this development is IBM’s recently open-sourced Open Discovery Frame-

work [ODF 2017].

Given this context, we set out in this thesis to solve existing and well-known data

profiling problems in a more efficient and scalable manner than state-of-the-art methods.

In particular, we address this challenge with novel algorithmic approaches, but also by

designing our algorithms for distributed execution. Existing data profiling methods

rarely address this dimension, which is surprising given the hardness of the problem and

the shift towards computer clusters. In addition, we introduce the system Metacrate

to store and analyze the structural metadata produced by our data profiling algorithms.

We particularly show how to admit an unknown dataset into an organization and refer

to this data management scenario as data anamnesis. Ultimately, the work presented

in this thesis aims to contribute to the “Big Data era” by improving data refinery and,

thus, allowing data to be utilized more effectively and efficiently.

In the remainder of this introductory chapter, we give a more concrete motivation

for data profiling by explaining in more detail the steps and stumbling blocks of a data

anamnesis in Section 1.1. Then, we characterize the term data profiling in Section 1.2

and highlight its subarea of dependency discovery in Section 1.3. We then proceed to give

a more thorough explanation in Section 1.4 as to why this thesis focuses on distributed

data profiling. Finally, we give an overview of the structure of this thesis and highlight

our contributions in Section 1.5.

1.1 Data Anamnesis: A Motivating Example

Oil is not an end in itself. Its value is drawn from the products that can be created from

it, such as energy and synthetic materials. The same holds for data: Data is valuable

only as far as its owner can put it to its intended or to a novel use. However, while oil

is a fixed composition of matter, data is far more individual on a multitude of levels,

ranging from the syntactic over semantic to quality aspects. As we exemplify below, it

is that individuality that makes data a crop hard to harvest.

Imagine a video streaming service that wants to enrich its videos with discographic

information on the music that is being played in its videos. Having obtained a disco-

2



1.2 Data Profiling

graphical dataset for that purpose is only a very first step; the main challenges are yet

to come. For instance, it must be determined what kind of information is actually con-

tained in the dataset (genres? labels? artist biographies?), how to query the dataset

(references? implicit assumptions?), and how reliable the data is (completeness? cor-

rectness? duplicates?). This situation is very different from that of a synthetic material

manufacturer who gets the same kind of oil from all sources.

We refer to above scenario as data anamnesis [Kruse et al., 2016b]: Some organization

needs to understand a new dataset and assess its quality, so as to determine if, how, and

to what extent the data can be leveraged for its intended use. Data anamnesis is a prime

example for data management: It involves aspects of data exploration (what information

is stored in the database?), database reverse engineering (how is the data modeled? how

to query it?), and data cleaning (is the dataset subject to quality issues?).

In an ideal case, the dataset would be accompanied by a documentation to support

these tasks. Unfortunately, a documentation is often missing. And even if it existed, it

would unlikely address all raised questions. What is more, the documentation might be

outdated, imprecise or incorrect and is, hence, not a fully reliable source.

In consequence, a data anamnesis should generally employ structural metadata ex-

tracted with data profiling algorithms. Freshly extracted metadata accurately describes

the data, it is up-to-date, and one can extract exactly those metadata types that are

needed. To get an idea of how metadata is helpful for data anamnesis, consider the

following example: The dataset in question has neither primary keys (PKs) nor foreign

keys (FKs) annotated. In order to rediscover the PKs, we need to identify column com-

binations that do not contain duplicate values and are free of NULLs, both of which are

classical data profiling tasks. For the FKs, we need to find containment relationships

among columns, yet another classical data profiling task. Note, however, that data pro-

filing is only a preparatory step. After all, not every key in a relation can be the primary

key and not every containment relationship corresponds to a foreign key.

Near the end of this thesis, in Chapter 5, we demonstrate a metadata-driven data

anamnesis in much greater detail using our tool Metacrate, thereby reenacting the

workflow depicted in Figure 1.1: We profile a dataset to extract its structural metadata.

Then, based on those extracted data profiles, we extract its schema (schema discov-

ery), develop an understanding of the schema (conceptualization), and finally assess how

suitable the schema is for the data it contains (bottom-up assessment).

However, a precondition to a metadata-driven data anamnesis is the availability of

efficient and scalable data profiling algorithms. That is, it must be possible to extract

structural metadata of real-world datasets on a short-term basis. Achieving this goal is

a main concern of this thesis through the Chapters 2–4. Let us therefore have a closer

look on the actual problems and challenges of data profiling.

1.2 Data Profiling

The research area of data profiling deals with the question how structural metadata can

be extracted from datasets [Abedjan et al., 2015; Johnson, 2009; Naumann, 2014]. On a

3



1. BIG DATA: AMID OPPORTUNITY AND CHALLENGE

Figure 1.1: Possible workflow of a data anamnesis including follow-up use cases.

high level, structural metadata can be divided into data synopses and data dependencies,

both of which are subject to intensive ongoing research. While the former is associated

to the rather “traditional” profiling tasks, such as counting the number of distinct values

in database columns, inferring patterns to describe textual attributes, or calculating

the correlation of attributes, the latter deals with identifying related columns and also

bears many open problems, such as incremental dependency discovery and scalability

issues [Naumann, 2014].

Data profiling is furthermore closely related to the field of data mining. Literature

mentions following distinguishing characteristics:

• “Data profiling focusses on the instance analysis of individual attributes. It de-

rives information such as the data type, length, [. . . ], etc., providing an exact view

of various quality aspects of the attribute. [. . . ] Data mining helps discover spe-

cific data patterns in large data sets, e. g., relationships holding between several

attributes. This is the focus of so-called descriptive data mining models including

clustering, summarization, association discovery and sequence discovery.” [Rahm

and Do, 2000]

• “Data profiling gathers technical metadata to support data management, while

data mining and data analytics discovers non-obvious results to support business

management. In this way, data profiling results are information about columns

and column sets, while data mining results are information about rows or row sets

(clustering, summarization, association rules, etc.).” [Naumann, 2014]

As a matter of fact, the line between data profiling and data mining is blurry. While

this thesis aims at advancing the state-of-the-art in data profiling, we find that some of

4



1.3 Data Dependencies

our results are also valuable from a data mining perspective. For instance, conditional

inclusion dependencies on rdf data (Chapter 3) and partial functional dependencies on

relational data (Chapter 4) can help to establish new domain knowledge. Furthermore,

all dependency discovery problems investigated in this thesis are in some way related to

association rule mining, a fundamental data mining problem. In that sense, our data

profiling results might well be applicable to data mining by some means or other – and

vice versa, of course.

1.3 Data Dependencies

Let us now describe the data profiling subarea of dependency discovery, which is a

focus of this thesis, in more detail. We aim to give a brief overview over some of the

most relevant types of dependencies. In the field of database theory, a vast number of

basic dependencies, specializations of the same, and generalizing frameworks have been

conceived [e. g., Abiteboul et al., 1995; Kanellakis, 1989; Thalheim, 2013]. While many

theoretical problems, such as dependency implication and relation decomposition under

dependencies, have been extensively studied, automatic dependency discovery has been

dealt with for only few dependency types. Being aware of this large body of work, we

narrow down the following discussion to the most relevant dependency types of relational

databases [Gyssens, 2009].

Generally speaking, a data dependency is some logical statement on a database.

If the statement is true, then the dependency is said to hold on or to be satisfied by

the database. That is, we use the term dependency to describe some property of a

specific database instance. This in contrast to constraints that prescribe some intentional

property of databases. As such, constraints can be understood as part of a database

schema that restrict the set of all valid database instances. Note, however, that in

literature these two terms are often used synonymously.

Example 1.1 (Dependency vs. constraint). An inclusion dependency (ind, introduced

below) states that all values of one database column are also found in some other column:

In Figure 1.2, all values of the column Artists[ID] are also found in Records[ID]. A foreign

key (FK) constraint, in contrast, prescribes that all values of the referencing column must

be found in the referenced column. Furthermore, the FK constraint expresses a design

intention and usually some meaningful rule of the domain of the data. Thus, from a

FK perspective our example ind is not useful, while the ind Records[ArtistID] ⊆ Artists[ID]

corresponds to an actual FK constraint.

At this point, the reader might wonder, why different dependency types are needed in

the first place when first order logic (FOL) could be used instead. The answer is twofold:

The implication among two arbitrary statements is only semidecidable in FOL [Trakht-

enbrot, 1950]. Such theoretical properties, and implication in particular, are extremely

important, though, when discovering or reasoning about database properties. The differ-

ent dependency types, in contrast, are usually defined in a way that they have desirable

theoretical properties. The second point is that there is an infinite amount of true state-

ments one could conceive for a given database. However, only few are useful. The here

5



1. BIG DATA: AMID OPPORTUNITY AND CHALLENGE

Figure 1.2: Example dataset with some data dependencies highlighted.

described dependencies all have known applications, e. g., inds can be used to discover

FKs. Hence, focusing on certain dependency types is already a valuable preselection of

interesting statements among all the statements that are fulfilled by a database.

Among the most important dependency types are unique column combinations (UCCs),

functional dependencies (FDs), and inclusion dependencies (INDs) [Gyssens, 2009]. Those

dependencies are in the focus of the thesis. Let us therefore briefly introduce each of

them, including their various use cases.

Unique column combinations (UCCs)
Algorithms in this thesis: Pyro (Chapter 4)

Uccs, also known as uniques, uniqueness constraints, and candidate keys, are an integral

part of the relational model [Codd, 1970]. Codd introduced them as keys, which are

those sets of columns in a relation, that contain only unique values. Formally, for a

relational schema R and a corresponding instance r, U ⊆ R is said to be a ucc, if and

only if

∀t1, t2 ∈ r, t1 6= t2 : t1[U ] 6= t2[U ]

For instance, in Figure 1.2 Records[ID] and Records[Title, Year] form uccs. What is more,

from neither of them we could remove a column without breaking the ucc property.

Hence, we call them minimal uccs and in general, we are interested only in such minimal

uccs.

While, obviously, uccs are helpful to designate the primary key of a relation and

ensure entity integrity [Codd, 1979], they have further applications, e. g., in query opti-

mization [Paulley and Larson, 1993; Simmen et al., 1996] and instance matching [Rahm

and Do, 2000].

The discovery of only a single minimal ucc is already NP-complete [Lucchesi and

Osborn, 1978] and the discovery of all minimal uccs in a relation is NP-hard in the

number of attributes [Gunopulos et al., 2003]. For that matter, it follows from Sperner’s

theorem [Sperner, 1928] that a relation with n attributes can have
(

n
n

2

)

minimal uccs.

In consequence, we have to acknowledge that the discovery of even this seemingly simple

dependency type can already become extremely hard for relations with a large number

of columns.

6



1.3 Data Dependencies

Functional dependencies (FDs)
Algorithm in this thesis: Pyro (Chapter 4)

Among all dependencies, fds have probably attracted the greatest attention: Not only

have their theoretical properties been studied extensively, but also practical aspects, such

as discovery and use cases, have been actively researched for decades now. Fds were im-

plicitly introduced by Codd in the 1970s to define normalized relational databases [Codd,

1971a]. In few words, an fd X → Y for some attribute sets X and Y is said to hold, if

and only if the values in X functionally determine the values for all attributes in Y . More

formally, for a relational schema R with an instance r, and attribute sets X,Y ⊆ R, the
following condition must hold:

∀t1, t2 ∈ r : t1[X] = t2[X]⇒ t1[Y ] = t2[Y ]

In the Records table from Figure 1.2, ArtistID → Genre is a valid fd, because every artist

ID is associated to exactly one genre. Furthermore, every ucc functionally determines

all attributes in a relation.

The uses of fds are manifold and range from schema normalization [Papenbrock

and Naumann, 2017a], over data cleaning [Thirumuruganathan et al., 2017], to query

optimization [Gryz, 1998a, 1999; Hong et al., 2005]. It is also worth mentioning that a

considerable number of generalizations of fds have been conceived, e. g., multivalued de-

pendencies [Fagin, 1977; Zaniolo, 1976], join dependencies [Fagin, 1979; Rissanen, 1977],

order dependencies [Ginsburg and Hull, 1983], and matching dependencies [Fan, 2008].

Inclusion dependencies (INDs)
Algorithms in this thesis: Sindy (Chapter 2), RDFind (Chapter 3)

Although Codd was the first to introduce the closely related notion of foreign keys [Codd,

1970], the term “inclusion dependencies” was introduced by Fagin [1981]. Inds are rather

different from uccs and fds in both theoretical and practical regards. While the latter

(uccs and fds) belong to the class of equality-generating dependencies, inds are tuple-

generating dependencies. Furthermore, a single ind can span two relations. This has a

major impact on discovery algorithms, which must not treat relations independently of

each other as is the case for uccs and fds.

Concretely, an ind is given between two column combinations of one or two relations,

if and only if all value combinations from the one column combination are also found in

the other. Formally, we have two relation schemata R and S with instances r and s and

two (ordered) column combinations A = (Ri1 , . . . , Rin) and B = (Sj1 , . . . , Sjn). Then,

R[A]⊆S[B] is an ind if

∀t1 ∈ r : ∃t2 ∈ s : t1[A] = t2[B]

The most prominent use case for inds is the detection of foreign keys (FKs) [Rostin et al.,

2009; Zhang et al., 2010], but they are also valuable for data integration [Bauckmann,

2013], data cleaning [Bohannon et al., 2005], schema design [Levene and Vincent, 1999],

and query optimization [Gryz, 1998b, 1999].

* * *
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There a many more dependency types than the above – also for data models other

than the relational one. However, those traditional, exact dependencies are often too

strict for practical use. For instance, data is often erroneous so that actually meaning-

ful dependencies are violated. Therefore, various generalizations of dependencies have

been proposed that account for such circumstances. In the following, we present those

generalizations that are a focus of this thesis.

Partial dependencies

Algorithms in this thesis: Sindy (Chapter 2), Pyro (Chapter 4)

Generally speaking, a dependency is said to be partial or approximate1, if it does not

hold for the entirety of the data. Partial dependencies are applicable in use cases where

dependencies may or must not be exact, e. g., for data cleaning [Kolahi and Lakshmanan,

2009; Thirumuruganathan et al., 2017], query optimization [Ilyas et al., 2004], and data

integration [Bauckmann, 2013].

The degree to which a dependency is partial is usually quantified in terms of an error

measure. In general, there are various alternative error measures for each dependency

type. For instance, for fds well-known error measures are g1, g2, and g3, that focus on

either the number of tuples or tuple pairs violating a certain fd [Kivinen and Mannila,

1995].

As an example, consider the dataset in Figure 1.3 with the partial fd {ArtistID,Title} →
Album on the Songs relation. This fd seems reasonable at first glance, because when an

artist releases a new album, it should contain new songs. However, there are exceptions

to that, e. g., greatest hits compilations and live albums. Concretely, “Alabama Song”

by the The Doors appears on two different albums, causing the second and third tuple of

the Songs relation to violate our example fd. That being said, it is important to observe

the ambiguity of partial dependencies: Whether the example fd is considered a partial

fd depends on (i) the error measure (should we count the number of violating tuple

pairs? or the number of tuples involved in a violation?) and (ii) a user-defined error

threshold that has to be satisfied (is one violating tuple pair out of ten acceptable?).

Conditional dependencies

Algorithms in this thesis: RDFind (Chapter 3)

Whenever a dependency is satisfied only partially, it is interesting to characterize that

satisfying part of the data. Conditional dependencies do exactly that by amending

partial dependencies with conditions – usually expressed in terms of pattern tableaux –

that select those tuples that satisfy the partial dependency [e. g., Bravo et al., 2007]. As

a matter of fact, many discovery algorithms for conditional dependencies directly amend

partial dependencies with conditions [Bauckmann et al., 2012; Golab et al., 2008].

Arguably, the most popular application of conditional dependencies is data clean-

ing [Bohannon et al., 2007; Fan et al., 2008], but also data integration [Bauckmann

1We do not use the term “approximate dependencies” to avoid confusion with approximate depen-

dency discovery, which – as explained below – approximates the set of dependencies.
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Figure 1.3: Example dataset with some generalized data dependencies highlighted.

et al., 2012] and query optimization [Kruse et al., 2016a] benefit from conditional de-

pendencies. Furthermore, in Chapter 3 we show that conditional inds are particularly

useful on rdf data as a substitute for traditional inds.

As an example for a conditional ind, observe that in the dataset in Figure 1.3 the

column Songs[ArtistID] is partially included in Bands[ID]. We can refine this insight by

noting that this partial ind holds exactly for those tuples t in the Songs relation where

t[ArtistType] = ”Band”. The combination of this condition and the partial ind forms a

conditional ind.

Approximate dependency discovery

Algorithms (not in this thesis): Faida [Kruse et al., 2017b], Aid-FD [Bleifuß et al.,

2016]

Because dependency discovery is computationally very expensive, one might want to

trade correctness guarantees for performance gains – or put otherwise – one might want

to only approximate the dependencies in a dataset. Depending on the approximation

strategy, some of the discovered dependencies might then not be correct or the set of dis-

covered dependencies as a whole might not be complete. Although we have investigated

approximation strategies for (exact) inds and fds (see above), we do not elaborate on

them in this thesis. Still, we would like to make the reader explicitly aware of the distinc-

tion between partial/approximate dependencies and approximate dependency discovery,

as the ambiguity of approximation has, in our experience, often caused confusion.

1.4 Distributed Dependency Discovery

As stated already several times, a major problem of data profiling (and dependency dis-

covery in particular) is its computational hardness that is facing ever-growing amounts

of data. Most of the previous research has tackled this challenge with algorithmic inno-

vations, such as specific data structures and pruning rules. While efficient algorithmic

strategies are of paramount importance, it is also crucial to elaborate how those strategies

can be efficiently carried out on today’s computing hardware.
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As an example, an early ind discovery algorithm by De Marchi et al. does not thor-

oughly specify an implementation strategy [de Marchi et al., 2002]. In consequence,

straight-forward implementations of this algorithm run out of main memory on many

datasets and are not capable of profiling larger datasets. The more recent ind discovery

algorithm Spider employs the same algorithmic foundations as its predecessor. How-

ever, Spider explicitly addresses the question how to efficiently incorporate the hard

disk so as to cope with main memory limitations [Bauckmann et al., 2006]. As a result,

it scales to much larger datasets.

With the importance of aligning algorithms and hardware, it is worthwhile to have

a look at recent hardware trends. As far as CPUs are concerned, the performance of

individual cores has improved over the last year (e. g., completing CPU instructions in

fewer CPU cycles, larger caches, novel SIMD instructions), but not as remarkable as in

the time before. Instead, multi-core CPUs have become the standard. However, the

number of cores that fit in a single machine is limited: Moore’s law, which predicted

a two-fold increase of transistors per area on a chip every two years, is now said to

cease [Simonite, 2016]. Furthermore, the amount of other resources (main memory,

persistent storage, bus bandwidth etc.) that can fit in a single machine is limited, too.

To overcome this limitation, instead of replicating resources within a single machine,

the machines themselves can be replicated, forming computer clusters. A computer

cluster consists of multiple traditional computers, usually called workers2. Each worker

has its very own, dedicated resources, but interacts with the other workers through

a network, so as to accomplish some common task. Over the last years, computer

clusters have gained massive popularity. One reason is the sheer need for more processing

resources due to the ever growing numbers of users to be served and data to be processed.

A second reason might be found in the software support for distributed computing.

Lately, there has been a “Cambrian explosion” of distributed data processing tools, with

Map/Reduce [Dean and Ghemawat, 2008], Apache Spark [Zaharia et al., 2012], and

Apache Flink [Alexandrov et al., 2014] as notable representatives.

Given this situation, it is consequential to profile data in a distributed fashion on

computer clusters. This is not a trivial task, though: Not only is the implementation of

distributed applications much more challenging than it is for their single-machine coun-

terparts, but also the algorithmic engineering is much more complicated. For example,

powerful pruning and traversal strategies for data profiling search spaces are key to many

data profiling algorithms. If multiple workers simultaneously process a dataset, then they

need to exchange pruning information and also avoid traversing overlapping parts of the

search space. In a distributed processing environment, such coordination has to be done

via the network, which is often a scarce resource with relatively high latency. This issue

has to be actively addressed in the algorithm design, such as by Heise et al. [2013]. In

other words, there is no straight-forward procedure to let existing single-machine data

profiling algorithms exploit the computation resources of computer clusters; the problems

are not “embarrassingly parallelizable”.

2Note that many computer cluster frameworks designate one computer as a master that orchestrates

the workers. In terms of hardware, there is no necessity to have distinguished master computer, though.
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Figure 1.4: Distributed setting in which our profiling algorithms operate. The rela-

tions of the datasets are dispersed among a computer cluster and can be horizontally

partitioned. The workers in the cluster, which do the actual data profiling, can pair-

wise communicate over a network.

For this reason, all here proposed algorithms are designed with parallel and dis-

tributed execution as a first-class objective. We employ different distribution strategies

that fit well with the discovery problem at hand. This is crucial, because a good al-

gorithmic strategy is (in our experience) more important than massive exploitation of

resources. That is, we propose novel algorithmic strategies for various dependency dis-

covery problems aligned with execution strategies that effectively leverage resources in

computer clusters. The cluster environment is the same for all presented algorithms and

comprises a common hardware and software stack. With the help of Figure 1.4, let us

briefly outline the components of a cluster, where the data to profile is stored, and how

our algorithms can operate in this environment.

As mentioned above, a cluster consists of multiple computers, called workers. We

assume the relations that should potentially undergo data profiling to be dispersed among

the workers of the cluster. Furthermore, relations may be horizontally partitioned and

the individual partitions may be replicated within the cluster to provide fault tolerance.

For instance, in Figure 1.4 the two relations Records and Tracks are distributed in four

partitions over four workers. Note that each worker can in principle access all data,

although accesses to a non-local partition involve network traffic to a remote worker

that hosts that partition. In our experiments, we use the Apache Hadoop Filesystem

(HDFS) [Hadoop] to store datasets in the cluster in a distributed and redundant fashion.

As can be seen in Figure 1.4, the machine that initiates a data profiling task (“the

user”) can be physically separated from the cluster that does all the heavy work, i. e., stor-
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ing and profiling the data. How the cluster is utilized to profile the above described data

depends completely on the particular profiling algorithm. In general, each algorithm

employs some form of task parallelism (each worker performs a distinct task) or data

parallelism (all workers perform the same tasks but on a different share of the dataset).

In any case, the workers will have to communicate via network to exchange tasks and/or

data. The workers might further subdivide their tasks or data locally to exploit thread

parallelism, i. e., to distribute the work among their CPU cores. Eventually, the profiling

results are either stored within the cluster, e. g., with Metacrate, or directly shipped

to the user.

The research presented in this thesis has been carried out in the context of the Strato-

sphere project, which was financed by the German Research Foundation (DFG), grant

no. FOR 1306 [FOR 1306]. The Stratosphere project has particularly borne the dis-

tributed processing framework Apache Flink, which is the basis for some of the proposed

and distributed data profiling algorithms.

1.5 Thesis Structure and Contributions

Having laid out the motivation and goals of this thesis, let us give a brief overview of

the following chapters. In fact, this thesis is structured along four main contributions,

as we describe in the following.

Chapter 2 – IND discovery
We present a family of distributed ind discovery algorithms, Sindy [Kruse et al., 2015a],

Sandy, and Andy. Those algorithms are very easy to implement on Map/Reduce-

based platforms, such as Apache Flink, and are highly efficient when executed on single

machines or on computer clusters. In detail, Sindy discovers unary inds. Its capability

for parallel execution allows it to outperform existing ind algorithms on a single machine

already when profiling large datasets. In addition, in our experiments Sindy exhibits a

linear speed-up w. r. t. the number of workers when executed in a distributed setup. The

algorithm Sandy is a modification of Sindy to discover partial inds. Our experiments

show that this generalization comes with virtually no performance overhead. Last but

not least, Andy is a further extension of Sindy to discover n-ary inds and adopts a

novel strategy to refine inds into core inds and augmentation rules. This unprecedented

and yet unpublished approach can describe the discovered inds more concisely and at

the same time improve the efficiency and scalability of the discovery process: In our

evaluation, we find Andy to occasionally outperform existing ind discovery algorithms

by more than an order of magnitude – in addition to the improvements gained through

distributed execution. Sindy, Sandy, and Andy have been developed by Kruse, while

Papenbrock and Naumann contributed valuable discussions.

Chapter 3 – CIND discovery on RDF data
In this chapter, we propose a novel combination of dependency type and data model,

namely conditional inds (cinds) on rdf data, and show that it can serve multiple differ-
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ent use cases, such as query optimization and ontology reverse engineering. We develop

the algorithm RDFind to discover cinds on rdf data [Kruse et al., 2016a]. RDFind

builds upon algorithmic foundations of Sindy, but is tailored to the specific challenges

of cind discovery on rdf data. Our experimental evaluation shows that RDFind out-

performs state-of-the-art cind discovery algorithms by a factor of up to 419 and scales

to much larger datasets. As a matter of fact, RDFind can process datasets of hundreds

of gigabytes and is, thus, well applicable in real-word scenarios. Kaoudi and Quiané-

Ruiz initiated the idea to discover cinds on rdf data, Kruse developed and evaluated

RDFind, and Jentzsch, Papenbrock, and Naumann contributed valuable discussions.

Chapter 4 – Partial FD and UCC discovery

In this chapter, we develop the algorithm Pyro, which is capable of discovering both

partial fds and uccs [Kruse and Naumann, 2018]. The discovery of fds and uccs is very

different from ind discovery. However, fds and uccs are so closely related that we can

discover both using common algorithmic principles. Pyro exploits those commonalities

and proposes a unified discovery strategy that interleaves sampling-based error estima-

tions and column-based error calculations to determine the desired partial dependencies.

In contrast to Sindy and RDFind, Pyro does not rely on Apache Flink for distributed

execution but defines a custom distribution strategy. This is necessary because Flink’s

execution model is too rigid and abstract to express Pyro’s algorithmic intricacies. In

our experimental comparison to several state-of-the-art discovery algorithms, we observe

Pyro to outperform all of them. In fact, even when using only a single machine and a

single core, Pyro is up to 33 times faster than the best competitor (and up to 123 times

faster with parallel execution enabled). Pyro was developed by Kruse, while Naumann

contributed valuable discussions.

Chapter 5 – Data anamnesis with Metacrate

Having presented algorithms for the most important dependency discovery problems, we

proceed to showcase the value of the discovered dependencies. More concretely, we intro-

duce Metacrate, a system to store and analyze dependencies in a scalable, distributed

fashion [Kruse et al., 2017a]. In particular, Metacrate ships with a library of analytics

algorithms implemented on top of the execution engine and a choice of visualizations.

We use our profiling algorithms and Metacrate to demonstrate several steps of a data

anamnesis on a real-world dataset [Kruse et al., 2016b], including the technical recon-

struction of the dataset schema and an assessment of its quality. Metacrate has been

conceived and designed by Kruse and developed by Kruse and several student assistants,

namely Fabian Tschirschnitz, Susanne Buelow, Lawrence Benson, Marius Walter, and

David Hahn. The first data anamnesis was a joint effort of Papenbrock, Harmouch,

and Kruse. Papenbrock contributed profiling algorithms for fds and uccs, proposed a

detection of primary keys [Papenbrock and Naumann, 2017b], and analyzed potentials

for schema normalization; Harmouch profiled individual columns to propose data types

and NOT NULL constraints; Naumann contrasted the novel idea of data-driven schema as-

sessment to traditional, application-driven assessment techniques; Kruse developed the

general idea of data anamneses, contributed Sindy for ind discovery, proposed an algo-
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rithm for FK detection, proposed several metrics to assess schemata based on metadata,

and took care of the integration of the proposed techniques with Metacrate.

Finally, in Chapter 6, we draw conclusions from our work. In a more general setting,

we reason about potential implications of our research results on real-world scenarios.

Along these lines, we propose future directions for data profiling in terms of both research

and practical aspects.
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Chapter 2

Unary, N-ary, and Partial Inclu-

sion Dependency Discovery

Inclusion dependencies (inds) are one of the fundamental dependency types in relational

databases, in particular, because they generalize the fundamental concept of foreign

keys [Codd, 1970]. In few words, an ind states that every combination of values that

appears in a certain combination of columns of one table also exists in a certain other

combination of columns of a potentially distinct table. Let us formalize this notion.

Definition 2.1 (Inclusion dependency). Let r and s be two relational instances with

relation schemata R = (A1, ..., Ai) and S = (B1, ..., Bj), respectively. Then we call

R[Ai1 , ..., Ain ] ⊆ S[Bj1 , ..., Bjn ] an ind if and only if:1

∀tr ∈ r : ∃ts ∈ s : tr[Ai1 , ..., Ain ] = S[Bj1 , ..., Bjn ]

R[Ai1 , ..., Ain ] is called the dependent or left-hand side (LHS ) of the ind and S[Bj1 , ..., Bjn ]

is called the referenced or right-hand side (RHS ). Furthermore, we refer to n as the arity

of the ind. As a convention, we may omit the relation names from the ind wherever

those names are not relevant to the context.

Example 2.1. Consider the dataset in Figure 2.1. It contains the binary ind (of arity 2)

Tracks[ArtistID,AlbumID] ⊆ Records[ArtistID, ID]. Inds can also span only a single relation,

such as the (spurious) unary ind Tracks[Pos] ⊆ Tracks[AlbumID].

Arguably, the most prominent application of inds is database reverse engineering.

There, inds help to determine appropriate foreign keys in relational databases [Rostin

et al., 2009; Zhang et al., 2010]: In general, every value in a foreign key column should also

exist in the referenced column. Hence, inds can be interpreted as foreign key candidates.

However, inds can also be used for query rewriting [Cheng et al., 1999; Gryz, 1998b,

1999; Johnson and Klug, 1984] and improved schema design with less redundancy and

fewer update anomalies [Levene and Vincent, 1999; Ling and Goh, 1992; Mannila and

Raiha, 1986].

1In literature, one often encounters an additional restriction that the attributes in an ind be pairwise

independent. We discuss such pragmatic constraints in Section 2.4.1.
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Figure 2.1: An example dataset with discographical data.

Furthermore, partial inds (inds that are only partially fulfilled, cf. Section 1.3) are

of special interest. In the field of data integration, partial inds can help to determine

overlapping parts of distinct databases [Bauckmann, 2013]. These overlapping parts

can then be used as so-called value correspondences for data integration tasks [Miller

et al., 2001]. What is more, in data cleaning scenarios partial inds point to data errors.

Automatic repair algorithms can incorporate those when determining how to clean the

dataset [Bohannon et al., 2005].

On the face of these applications, it is desirable to automatically discover all inds in

a given (relational) dataset if they are not known in the first place. A peculiarity of inds

is that they can span two relations. In consequence, ind discovery algorithms have to

consider all relations in a database at the same time, thereby incurring a high data volume

to cope with. Therefore, it seems appropriate to tackle the discovery problem with a

distributed algorithm, so as to employ as many computing resources as possible. In this

chapter, we present a family of distributed ind discovery algorithms for the discovery

of unary, n-ary, and partial inds that outperform state-of-the-art discovery algorithms

when provided sufficient resources.

We start by discussing related work in Section 2.1. In particular, we show that ex-

isting ind discovery algorithms follow a common algorithmic approach that is highly

amenable for distributed processing. Based on this insight, we develop the distributed

algorithm Sindy for unary inds in Section 2.2. Due to the particular importance of par-

tial inds, we furthermore propose a corresponding adaptation of Sindy, called Sandy,

to relax the discovery in Section 2.3. In Section 2.4, we proceed to extend Sindy for the

discovery of n-ary inds. The resulting algorithm, Andy, employs a novel perspective

on inds that emerges from the interaction of inds and functional dependencies (fds).

Eventually, we evaluate all proposed algorithms with a particular focus on efficiency and

scalability in Section 2.5 and describe prospect research questions in Section 2.6.

2.1 Related Work

In 1970, Codd introduced the concept of foreign keys [Codd, 1970] as a means to preserve

data integrity. It was only later, that this concept was generalized to inds [e. g., Fagin,

1981] and referential integrity [Date, 1981]. While the theoretical properties of inds,

in particular the implication problem and the interaction of inds and fds, have been

studied thoroughly since the 1980s [e. g., Casanova et al., 1982; Chandra and Vardi,
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1985; Kanellakis et al., 1983], automatic discovery has been researched only a decade

later. In the following, we focus on data-driven discovery methods that determine all

valid inclusion dependencies in a given dataset. An orthogonal approach would be to

discover inds from SQL queries [e. g., Tan and Zhao, 2003], but this approach will not

discover all inds of a dataset and works only if a query log or application source code is

present.

Unary IND discovery

First foundations for the discovery of inds have been laid out by Kantola et al. [1992], who

acknowledge that the discovery of unary inds is of quadratic complexity in the number

of attributes and that a subproblem of n-ary ind discovery, namely finding only a single

high-arity ind, is already NP-complete. Furthermore, the authors recognize the potential

for pruning ind candidates by considering the datatypes of the involved columns and via

the projection rule [Casanova et al., 1982]: If R[Ai1 , ..., Ain ] ⊆ S[Bj1 , ..., Bjn ] is an ind,

so are R[Ai1 , ..., Ain−1] ⊆ S[Bj1 , ..., Bjn−1
], R[Ai1 , ..., Ain−2, Ain ] ⊆ S[Bj1 , ..., Bjn−2

, Bjn ],

..., and R[Ai2 , ..., Ain ] ⊆ S[Bj2 , ..., Bjn ].

A first concrete algorithm for the disovery of unary inds has been proposed by Bell

and Brockhausen [1995]. In their work, ind candidates are tested via SQL queries.

These checks are expensive and to reduce their number, the authors propose to exploit

the transitivity rule [Casanova et al., 1982], that is, if R[A] ⊆ S[B] and S[B] ⊆ T [C] are
inds, then R[A] ⊆ T [C] is an ind, too. Akin to this work, the NavLog’ algorithm uses

SQL statements to determine interesting partial inds, (inds whose LHS is almost, but

not completely included in the RHS) among a given set of columns [Lopes et al., 2002b].

Still, SQL-based approaches are rather inefficient as they require numerous passes

over the profiled dataset and repeat data processing operations among ind candidates

that share columns. To this end, de Marchi et al. [2002] proposed the ind discovery

algorithm Mind that passes over the dataset once, constructs an inverted index from it,

and then determines inds as exact association rules in this inverted index. The entries in

the inverted index are of the form v → Av, where v is a value from the profiled dataset

and Av is the set of all columns that contain v. While this algorithmic approach is also

used by many other algorithms, including Sindy, the original algorithm does not specify

an efficient and scalable execution strategy. In fact, this algorithm requires the inverted

index to fit in main memory.

The Spider algorithm proposes to sort all columns of the profiled dataset and then

synchronously iterate all the sorted columns, like in a sort-merge join [Bauckmann et al.,

2006]. Doing so, the algorithm implicitly creates above mentioned inverted index, as for

every value v of the original dataset it can determine all columns Av that contain v by

means of the synchronous iteration. Because Spider uses out-of-core (i. e., disk-based)

sorting and need not materialize the inverted index, it is more scalable than Mind. How-

ever, for datasets with several thousand columns it is prone to crash, because it has to

maintain an open file for each column. The rather similar algorithm S-indd [Shaabani

and Meinel, 2015] avoids this issue by merging sorted columns repeatedly, thereby main-

taining only k open files for some user-defined k. Neither Spider nor S-indd are capable
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to scale across cores or computers for further performance and scalability improvements,

though.

The algorithm Binder improves upon Spider by hash-partitioning the profiled data-

set rather than sorting it [Papenbrock et al., 2015c]. The partitions are dynamically

refined such that they fit into main memory. Once a partition fits into main memory,

Binder applies an improved version of Mind’s ind extraction procedure. The parti-

tions are processed one after another and in case the already processed partitions could

falsify all ind candidates for a certain attribute, that attribute need not be considered

in further partitions anymore. As we see in our evaluation, such pruning, which is not

applied in Sindy, does not improve performance substantially. Nonetheless, Binder is

scalable because of its out-of-core partitioning and because it materializes only slices of

the inverted index in main memory at once. In contrast to Sindy, Binder is also not

capable to scale across cores or computers, though. Still, it is to our knowledge the most

efficient single-machine ind discovery algorithm and thus serves us as baseline in our

experimental evaluation of Sindy.

Unlike the above algorithms, the recent algorithm Many has not been devised for

the discovery of inds in relational databases but among web tables [Tschirschnitz et al.,

2017]. Those are usually much smaller than database tables; however, they come in

much greater quantities, thereby spanning a huge search space. Many tackles this

specific problem by approximating the inds with a Bloom filter first, which has also

been considered in the context of Spider [Bauckmann et al., 2010]. In addition, Many

defines domain-specific filters to prune ind candidates that do not seem interesting. For

instance, a filter discards columns that contain numbers only. While Many defines a

parallelization strategy, it is not capable to scale across computer clusters.

Let us finally note that also algorithms for the approximate discovery of inds have

been developed that are based on data summaries rather than inverted indices. Con-

cretely, Dasu et al. [2002] propose to discover join paths using signatures of columns.

Those precomputed signatures comprise the minimum values of k independent hash func-

tions applied to the respective columns. In an orthogonal approach, Brown and Hass

[2003] seek to determine all columns A that reference a certain key column B by means of

an ind by sampling A and testing every sampled value for inclusion in B. Finally, Zhang

et al. [2010] propose to discover potential inds using bottom-k sketches. However, we

have shown that a combination of sampled inverted indices and HyperLogLog structures

yields more accurate results, in particular when the profiled database contains columns

with very few and very many distinct values [Kruse et al., 2017b]. Nevertheless, unlike

above described algorithms and Sindy, those algorithms cannot guarantee to find all

correct inds in the profiled dataset.

Partial IND discovery

Partial inds constitute a relaxation of (exact) inds that require the values of two columns

to overlap to some extent. A proper inclusion among the columns is not necessary,

though. A possible definition for the “partiality” of inds has been proposed by Lopes

et al. [2002b], namely the fraction of distinct values of the LHS of a partial ind that also
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exist in the RHS. This fraction amounts to 1 if the partial ind is exact, and to 0 if the

columns are disjoint. Our partial ind discovery algorithm Sandy is also based on this

measure.

Technically, the discovery of partial inds is closely related to the discovery of exact

inds. Partial inds can be determined by SQL statements [Koeller and Rundensteiner,

2006; Lopes et al., 2002b; Petit et al., 1996]. Furthermore, Spider proposes a simple

adaptation to also discover partial inds [Bauckmann et al., 2010]. This proceeding is,

again, more efficient than its SQL-based counterparts. Sandy adopts a scheme similar

to that of Spider. Additionally, we briefly reason on the applicability of partiality

measures to discover n-ary partial inds.

In a different line of work, Memari [2016, Chapter 8] deals with the specific issue of

discovering foreign keys on incomplete data, that is, data with NULL values. Particularly,

the author discerns three different interpretations of NULLs, namely simple, partial, and

full semantics. In this chapter, we propose to ignore NULLs as most relational database

systems do when enforcing foreign keys (FKs); this interpretation coincides with the

“simple” semantics. Furthermore, the author describes various algorithms to discover

(partial) foreign keys (FKs) – one for each interpretation of NULLs. Those algorithms

are very different from Sandy: At first, they check only such FK candidates (or ind

candidates, respectively) that reference a unique column combination. And second, the

algorithms only estimate whether a pair of columns or column combinations, respectively,

satisfy the ind property. Hence, the proposed algorithms are approximate according to

our classification scheme from Section 1.3. For that matter, the algorithms extend the

above mentioned work of Zhang et al. [2010].

n-ary IND discovery

The most common approach for n-ary ind discovery has been first proposed by de Marchi

et al. [2002] as part of the Mind algorithm. The general idea is to first determine the

unary inds with the above described inverted index. Then, all binary ind candidates are

generated that are still admissible by means of the unary inds and the projection rule.

The candidate generation is a modification of the broadly known AprioriGen algorithm

for frequent item set mining [Agrawal and Srikant, 1994]. Those binary ind candidates

are then checked with SQL statements, and the verified inds are used to create ternary

ind candidates. This procedure repeats until no ind candidates are generated anymore.

As stated above, testing ind candidates with SQL statements can be rather inefficient.

For that reason, Spider [Bauckmann et al., 2010] and Binder [Papenbrock et al., 2015c]

can apply their unary ind discovery approach also to verify n-ary ind candidates, just

by treating column combinations like single columns. Their candidate generation is

also AprioriGen-based.2 The here presented algorithm Andy follows this path, too.

However, it incorporates a further pruning rule based on functional dependencies that

can spare the generation of many ind candidates, let alone their discovery. To evaluate

2
Binder’s candidate generation does not embrace the full Apriori idea and might create futile can-

didates.
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the effectiveness of Andy’s pruning, we compare it to the basic candidate generation

procedures of Mind and Binder in our evaluation.

Another line of work specializes on the discovery of inds with a high arity. Concretely,

the algorithms Find2 [Koeller and Rundensteiner, 2002] and ZigZag [de Marchi and

Petit, 2003] initially discover inds until some user-defined arity k in an apriori-based

fashion, but then determine and check the maximum IND candidates, thereby skipping

potentially very many ind candidates. This approach has two major drawbacks, though:

At first, this approach works well only in the presence of inds of very high arity, which

are found rather rarely in our experience. Second, these optimistic search strategies are

formulated only for two tables and it is not clear how to generalize them to an arbitrary

number of tables. Andy, in contrast, operates on an arbitrary number of tables and its

pruning takes effect already after unary inds have been discovered.

A third approach for n-ary ind discovery is rather different from the two above

approaches: Instead of generating ind candidates and then testing them, unary inds are

merged to inds of higher arity. Concretely, de Marchi [2011] laid the foundations of how

inds can be merged without giving a concrete algorithm. The basic idea is that every

ind R[X] ⊆ S[Y ] connects tuples across R and S that agree in their values of attributes

X or Y , respectively. Two inds can be merged, if they pertain to the same tables and

connect more or less the same tuples across those tables. Shaabani and Meinel [2016]

then proposed Mind2, which fleshes out this basic idea with a concrete algorithm. As

is the case for ZigZag and Find2, Mind2’s search strategy applies to only two tables,

though. Furthermore, none of the mentioned algorithms is scalable across CPU cores or

computer clusters.

2.2 Validating Inclusion Dependency Candidates

Let us now describe how to discover all unary inds of a given dataset in a distributed

manner. As we show in Section 2.4, with only minor modifications the algorithm pre-

sented here can be reused to validate n-ary ind candidates as well – hence, the section

title. Concretely, this section presents the Sindy algorithm (Scalable Ind Discovery) as

it was described in [Kruse et al., 2015a]. To preserve the integrity of the name Sindy,

we will refer to the modified algorithms for partial and n-ary ind discovery as Sandy

and Andy, respectively.

2.2.1 Algorithmic foundations

As described in Section 2.1, Sindy builds upon the same algorithmic foundation as

Mind [de Marchi et al., 2002], Spider [Bauckmann et al., 2006], Binder [Papenbrock

et al., 2015c], and S-indd [Shaabani and Meinel, 2015]: Given a relational database r

with columns Ai, we build its inverted index that associates all values v in r with the

set of columns v appears in, denoted as Av. Hence, the inverted index consists of tuples

(v,Av). As we show in the following, any unary, exact association rule of attributes in

the Av sets corresponds to a unary ind. In other words, Am ⊆ An is a valid unary ind

if and only if every Av set that contains Am also contains An.
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Theorem 2.1. Let r be a relational database with columns Ai. Further, let ir =

{(v1,Av1), . . . } be its inverted index that associates every value vi in r with the set of

columns Avi that vi appears in. Then Am ⊆ An is a unary ind in r if and only if

∀(v,Av) ∈ ir : (Am ∈ Av ⇒ An ∈ Av)

Proof. By definition, we have Am ⊆ An if and only if any value v from column Am also

exists in column An. Hence, the corresponding Av contain Am and An. For any other

value v′ not contained in Am, the corresponding Av′ does not contain Am.

Note that Theorem 2.1 generalizes the original formulation by de Marchi et al. [2002,

Property 1]:

Am ⊆ An ⇔ An ∈
⋂

(v,Av)∈ir|Am∈Av

Av (2.1)

Both formulations are equivalent unless Am is not present at all in the inverted index.

This can occur (i) when the relation containing Am does not comprise any tuples or

(ii) when certain values should explicitly be excluded from the inclusion dependency. The

latter case is particularly sensible when one wants to treat NULL values as the absence of

a value. This view is consistent with the foreign key semantics of SQL and can be easily

achieved by disallowing an entry with the NULL value as key in the inverted index. It is

easy to see that, if Am comprises no or only excluded values, the intersection condition

in Equation 2.1 (Am ∈ Av) is not fulfilled by any entry in the inverted index: The n-ary

intersection becomes empty (i. e., n=0), which is usually defined to be the empty set.

Hence, for any other column An, Theorem 2.1 admits Am ⊆ An, while Equation 2.1 does

not. In the following, we denote such inds as void, as the involved columns do not share

any values.

Having settled the algorithmic foundations of unary ind discovery, we now proceed

to show how Sindy applies them in a distributed, scalable fashion. In particular, we

show how to build the inverted index (Section 2.2.2) and how to extract the inds from

it (Section 2.2.3). It is worth noting that these steps naturally fit with the Map/Reduce

paradigm and can thus be easily implemented several distributed data flow systems, such

as Apache Flink.

2.2.2 Convert tables into attribute sets

As described above, the first step of unary ind discovery is to convert a given relational

database into an inverted index. We refer to the Av in the inverted index as attribute

sets and, because we do not need the actual values v for the subsequent ind extraction

anymore, we are actually interested in those attribute sets only.

Recall from Section 1.4 that the relations to be profiled are dispersed among the

workers of the cluster and can be horizontally partitioned. As an example, Figure 2.2

displays a distribution of the Records relation from Figure 2.1 in a cluster with two

workers. Here, we consider only a single relation to not overload the example. The

proceeding with multiple relations is exactly the same, though. For that matter, Sindy

does not even need a notion of relations and operates only on columns.
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Figure 2.2: Creation of the inverted index for the data from Figure 2.1 with two

workers. For simplicity, we depict only the Tracks relation. The color of the boxes

indicates on which worker the contained value will be handled eventually.

In the first step towards the attribute sets, every worker creates cells from its local

share of the input relation. In fact, for each tuple with n fields a worker creates n

cells – one for each field. A cell itself comprises (i) the value of the respective field and

(ii) a singleton set of the column to which that field belongs. For instance in Figure 2.2,

Worker 1 creates the cell (1, {Pos}) for the Pos field of the first tuple in its local partition.

Next, cells with the same value that reside on the same worker are merged by

calculating the union of their attributes. For instance, Worker 2 can merge the cells

(2, {AlbumID}) and (2, {ArtistID}) to (2, {AlbumID,ArtistID}). Merging cells locally reduces

the network load in the final step: Cells with the same value are eventually merged

globally. For n workers, Sindy applies a partitioning function p : V → {1, ..., n} to the

value of each cell to determine to which worker that cell should be sent. Assume that in

our example p determines that cells with the value 1 should be sent to Worker 1. This

proceeding guarantees that all cells with the same value end up on the same worker,

which can then perform the global merging to create the final inverted index entries.

It is worth noting that the three above described steps (create cells, merge cells

locally, and merge cells globally) need not be executed one after another, but can be

pipelined instead. As soon as cells are created for an input tuple, they can immediately

be merged with locally existing cells. Furthermore, it is not necessary to merge local

cells exhaustively. Rather, it is sufficient to merge as many cells locally as is possible

in the light of available main memory on each worker. As soon as the main memory

22



2.2 Validating Inclusion Dependency Candidates

is fully occupied, the pre-merged cells can be forwarded to the workers that do the

global merging. Thus, Sindy avoids expensive out-of-core execution with disk accesses

in this step. However, the global merging of cells might involve out-of-core execution to

accommodate datasets that exceed the main memory capacity of the worker.

Eventually, each worker can strip the values from its final, merged cells to yield the

attribute sets for the input relations. Note that the attribute sets are again distributed

in the cluster and, hence, can be further processed in parallel by all workers.

2.2.3 Extract INDs from attribute sets

As per Theorem 2.1, the attribute sets are sufficient to determine the unary inds of a

dataset. Sindy performs the ind extraction in two phases. At first, it extracts the non-

void inds using Equation 2.1, which is particularly amenable to distributed computation.

Then, it determines all void inds.

Figure 2.3 continues the example from Section 2.2.2 and shows how to extract the

non-void inds from the attribute sets on two workers. At first, each attribute set A

is converted into a set of IND candidate sets A ⊆ A\A for all A ∈ A. For instance,

the attribute set {AlbumID,ArtistID,Pos} on Worker 1 yields, amongst others, the ind

candidate set AlbumID ⊆ {ArtistID,Pos}. Intuitively, it states that AlbumID ⊆ ArtistID

and AlbumID ⊆ Pos might be valid inds, but there cannot be any other valid inds with

AlbumID as LHS. The rationale for this interpretation is that there exists some value v in

the profiled database that yielded said attribute set (in this example, that value is v = 1;

cf. Figure 2.2). This implies that v exists only in the columns AlbumID, ArtistID, and Pos.

As a result, AlbumID (and also ArtistID and Pos, for that matter) cannot be included in

any other column.

To consolidate the ind candidate sets with the same LHS, we merely need to intersect

their RHSs. Sindy achieves this with the same two-phase approach as for the creation

of the attribute sets: Ind candidate sets are at first merged locally. Then, ind candidate

sets with the same LHS are brought to a single workers by means of a partition function.

Finally, that worker concludes the consolidation of those candidate sets and obtains the

final IND sets, which represent the actual non-void inds of the input dataset. As an

example, the ind set Pos ⊆ {ArtistID,AlbumID} represents the inds Pos ⊆ ArtistID and

Pos ⊆ AlbumID. As for the creation of the inverted index, the above described ind

extraction steps can be pipelined.

At this point, it remains to be shown how Sindy can determine the void inds. For

that purpose, it keeps track of which columns appeared as a LHS of any of the ind sets,

regardless of whether this ind set does not describe any ind, such as Title ⊆ {}. If a

column A does not appear as an LHS, that means that A did not cause the creation of

a cell as described in Section 2.2.2, which in turn means that A is empty or consists of

ignored values only (cf. Section 2.2.1). In that case, A is included in any other column

of the profiled dataset, so Sindy declares the ind A ⊆ B for all columns B 6= A.
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Figure 2.3: Extraction of the unary inds from attributes sets on two workers. The

color of the boxes indicates on which worker the contained ind candidates will be

handled eventually.

2.2.4 Implementation on Distributed data flow Systems

A practical advantage of Sindy is that it can be easily implemented on distributed data

flow systems, such as Apache Flink [Alexandrov et al., 2014; Flink], Apache Spark [Spark;

Zaharia et al., 2012], Rheem [Agrawal et al., 2016], and Apache Hadoop [Hadoop]. This

not only renders the implementation of Sindy per se very easy, but it also transparently

provides efficient data processing techniques to the ind discovery, such as distributed

computing, out-of-core execution, and cache-aware data structures.

Figure 2.4 outlines how Sindy can be expressed as a data flow that can be deployed

on the above mentioned systems. The creation of cells and ind candidate sets is done

using Flatmap operators, which can produce multiple output elements for every input

element. The merging of cells and ind candidate sets, respectively, can be expressed as

a chain of a Combine operator for the local merging and a Reduce operator for the global

merging. Note that the Combine operator can be omitted if it is not supported by the

underlying platform, although this might impair Sindy’s efficiency.

While the data flow defines the general outline of the algorithm, it is also important

to carefully model the data and the user-defined functions (UDFs), which run inside of

the operators. As far as data is concerned, it is important to keep the memory footprint

low whenever data is moved between workers. For that purpose, we encode attributes

as integers and represent attribute sets as sorted integer arrays. They are not only small

in size but also allow for efficient set union (to merge cells) and set intersection (to

consolidate ind candidate sets) operations: To union or intersect two arrays within a
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Figure 2.4: Implementation scheme of Sindy as a parallelizable data flow.

UDF, we iterate them synchronously as in a sort-merge join, thereby producing a new

result array.

2.3 Partial Inclusion Dependencies

Having laid out how to discover unary inds in a distributed fashion, let us now show the

necessary modifications to discover also partial unary inds. At first, however, we need

to define an error measure to quantify the “partiality” of inds (cf. Section 1.3). For that

purpose, we employ the g′3 error as defined by Lopes et al. [2002b]:

Definition 2.2 (Ind error g′3). Let r and s be two (possibly identical) relational instances

and let R[A] ⊆ S[B] be an ind candidate among them. Then its error is

g′3(R[A] ⊆ S[B]) :=
|{v | ∃tr : tr[A] = v ∧ ∄ts ∈ s : ts[B] = v}|

|{v | ∃tr : tr[A] = v}|

Example 2.2. Consider the ind candidate Records[ID] ⊆ Tracks[AlbumID] for the dataset

in Figure 2.1. Intuitively, the g′3 error describes the portion of values in Records[ID] that

are not included in Tracks[AlbumID]. Hence, the error of the candidate is 1
4 .

On the basis of Definition 2.2, we can now precisely describe the problem statement

for partial ind discovery: Given a relational dataset and user-defined error threshold

emax, we want to determine all partial inds in the dataset whose g′3 error is not greater

than emax. The definition above also hints on how to solve this discovery task: We

need to determine the number of distinct values of each column and the number of

overlapping distinct values of all column pairs. As we show in the following, this can be

done with very little overhead over exact ind discovery by amending Sindy. We refer to

the resulting algorithm as Sandy.

Just like Sindy, Sandy starts by creating sets of attributes for each value that

appears in the input dataset (cf. Section 2.2.2). On this data structure, the number of

distinct values of a column is simply the number of attribute sets containing that column;

and the number of overlapping distinct values of two columns is merely the number of

attribute sets containing both columns simultaneously.
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Figure 2.5: Determining the distinct value of columns and the overlapping distinct

values of column pairs from attributes sets on two workers. The color of the boxes

(gray/white) indicates on which worker the contained overlap sets will be handled

eventually.

As exemplified in Figure 2.5, the distinct and overlapping values can be calculated

in a single pass over the attribute sets. The basic idea is to create for every attribute

set A several overlap counters (A, 1) ⊆ {(A′
1, 1), (A

′
2, 1), ...} (A′

i ∈ A\{A}), one for each

attribute A ∈ A. Concretely, the “1” in (A, 1) is meant to count the distinct values of A

while the “1”s in the (A′
i, 1) count the distinct values of A′

i that overlap with A.

In the subsequent merge phase, Sandy merges the overlap counters with the same

LHS attribute, thereby adding the distinct value counts of matching columns in both

the LHS and RHS. Eventually, the overlap counters contain all information relevant

to determine the partial inds. For instance, the final overlap counter (AlbumID, 3) ⊆
{(ArtistID, 2), (Pos, 2)} in Figure 2.5 states that AlbumID has three distinct values of which

two also exist in ArtistID and two (potentially different) values exist in Pos. That is, we

get g′3(AlbumID ⊆ ArtistID) = g′3(AlbumID ⊆ Pos) = 1
3 and report them as partial inds

unless emax <
1
3 .

At this point, the reader might wonder why Sandy performs duplicate work: After

all, the number of overlapping values of AlbumID and ArtistID has also been calculated in

the overlap counter (ArtistID, 2) ⊆ {(AlbumID, 2), (Pos, 2)}, so we could have avoided one

of the two overlap calculations. However, the merging of overlap counters can usually

be done very quickly in comparison to the creation of the attribute sets. Furthermore, if

the overlap count between any two attributes were only present in one overlap counter,

Sandy would need to transfer that overlap count to the other overlap counter in an
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Figure 2.6: Implementation scheme of Sandy as a parallelizable data flow. Differ-

ences to Sindy are highlighted in blue.

additional network-based exchange. Because the expected efficiency gains of calculating

each overlap only once are so small, we waived this optimization for the sake of simplicity.

Finally, let us show how Sandy can be implemented on distributed data flow systems.

One may think of Sandy as a modification of Sindy that merges the ind candidate sets

with a multi-set union rather than an intersection. Therefore, their implementations are

quite similar, as can be seen in Figure 2.6. In fact, only the second half of Sandy’s

data flow plan is slightly different. A particular interesting point is the representation of

the overlap counters. As for Sindy, we use a sorted array to store the attributes of the

counters. In addition, we use a second array of the same length to store the counts of

each attribute. When Sandy merges two overlap counters, it can synchronously iterate

the attribute arrays (as in Sindy) and additionally add the counts in the counting arrays.

Hence, merging two overlap counters is of linear complexity in the sum of their sizes.

2.4 A hybrid cover for n-ary INDs

In the above sections, we limited the discussion to unary inds, i. e., inds among individual

columns. Nonetheless, n-ary inds among combinations of columns are of interest, too.

For instance, they can reveal composite foreign keys and uncover materialized views

that may, for instance, be found in a CSV export of a database. That being said, their

discovery is significantly harder: While a database with k columns entails k2 − k unary

ind candidates that need be verified, it can have up to
(

k
k

2

)

· k2 ! non-redundant k-ary
ind candidates. In fact, Bläsius et al. [2017] have shown n-ary ind discovery to be a

W[3]-hard problem, which distinguishes it even among the NP-hard problems.

Generally speaking, a set of n-ary ind candidates can be checked with the proceed-

ing described in Section 2.2 by substituting columns (and their values) with column

combinations (and their value combinations). However, besides the need to check po-

tentially many more n-ary than unary ind candidates, checking individual n-ary inds

is also computationally more expensive than is the case for their unary counterparts.

At first, checking n-ary ind candidates involves n-ary value combinations, which require

more memory and more CPU cycles to compare than individual values. Second, there
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are in general more n-ary value combinations for a column combination than there are

individual values in any of the involved columns. And third, each n-ary ind candidate

may involve column combinations distinct from those in the other n-ary ind candidates.

That is, for m n-ary ind candidates, we might need to create an inverted index for up

to 2m column combinations. In contrast, in a database with k columns, each of those

columns appears in 2k − 1 unary ind candidates, so that for the m′ = k2 − k unary ind

candidates, we need to create the inverted index for k ≈
√
m′ columns only.

Facing these challenges, we propose the novel algorithm Andy in this section, which

represents the set of n-ary inds in a concise cover consisting of core inds and augmen-

tation rules. Not only is this cover more informative than plain inds but it can also be

discovered more efficiently. In the following, we explain the search space for n-ary inds

in more detail, then describe our new ind cover, and finally explain how Andy efficiently

determines this cover.

2.4.1 The n-ary IND search space

As per Definition 2.1, an n-ary ind candidate spans arbitrary column combinations of

two tables. Because of the projection rule, which states that projecting corresponding

LHS and RHS attributes from an ind always yields a valid ind, the maximum inds

form a cover of all inds in a dataset, i. e., they constitute a subset of inds that logi-

cally implies all remainder inds [Casanova et al., 1982]. For instance, the binary ind

Tracks[ArtistID,AlbumID] ⊆ Records[ArtistID, ID] from Figure 2.1 can be projected to the

two unary inds Tracks[ArtistID] ⊆ Records[ArtistID] and Tracks[AlbumID] ⊆ Records[ID]. This

binary ind is also a maximum ind, because it is not a projection of any other ind in

the dataset. To discover the maximum inds in a dataset, virtually every ind discovery

algorithm reverses the projection rule to prune the candidate space: An n-ary ind can-

didate needs be checked only if its projections are known inds. Which projections are

considered before testing an ind candidate differs between the algorithms, though.

Figure 2.7: Two rela-

tions of which S con-

tains edge case inds.

Among all n-ary ind candidates, those with column rep-

etitions constitute edge cases. In principle, they are an

interesting subject to discovery: They are neither trivial

(i. e., there are relation instances that violate them) nor

can they be inferred from inds of lower arity. More con-

cretely, attributes can be repeated within the LHS, within

the RHS, and across LHS and RHS (even on corresponding

positions) without rendering the ind candidate uninterest-

ing from a logical point of view. Consider the tables R and S in Figure 2.7. Within

each table, all columns are mutually included in each other. However, S further satisfies

S[AA] ⊆ S[BC], S[BC] ⊆ S[AA], and S[BB] ⊆ S[BC], while their counterparts in R do

not hold. Nevertheless, due to pragmatic reasons such ind candidates are neglected in

related work: While considering those candidates may cause considerable computational

effort, the value of corresponding verified inds for practical applications is questionable.

Therefore, we also deliberately exclude ind candidates with repeated columns.
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Let us conclude our theoretical considerations of the n-ary search space with a dis-

cussion of NULL values. In Section 2.2.1, we propose to ignore NULL values for unary

ind discovery in accordance with the foreign key semantics as defined by the SQL stan-

dard. Transferring this argument to n-ary ind discovery means that we should ignore

any value combination that contains at least one NULL value. However, this extended ind

definition disables the projection rule as exemplified in Figure 2.8: This definition admits

R[AB] ⊆ S[AB] as an ind, although neither R[A] ⊆ S[A] nor R[B] ⊆ S[B] are inds.

Figure 2.8: Two rela-

tions of which R con-

tains NULL values.

As a result, all algorithms that use the projection rule (in-

cluding Andy) will not discover R[AB] ⊆ S[AB]. On the

other hand, waiving the projection rule for search space

pruning would have serious impact on the algorithm perfor-

mance and most likely render n-ary ind discovery completely

infeasible. We are not aware of any work that acknowledges

this problem (let alone solving it), but believe that it might

be addressed best by a dedicated foreign key discovery al-

gorithm with specific pruning rules. In the context of this

work, we admit the above proposed treatment of column combinations with NULL values

with the caveat that only those inds will be discovered whose projections are also valid

inds. In particular, regular inds without NULL values are not affected. This approach is

consistent with the above described exclusion of repeated attributes within a single ind:

To stave off tremendous performance penalties, we exclude edge case ind candidates with

a rather questionable utility.

2.4.2 A hybrid IND cover

As stated above, the maximal inds of a dataset form a cover of all inds. That is, all

(non-trivial) inds can be deduced from the maximal inds by means of the projection rule.

Therefore, existing ind discovery algorithms search for all maximal inds in a dataset.

Let us show that there is a different way to characterize all inds in a dataset.

Casanova et al. [1982] noted that inds interact with functional dependencies (fds)3:

Assume we know the inds R[XY ] ⊆ S[TU ] and R[XZ] ⊆ S[TV ] along with the fd

T → U , where R and S are tables, X and T are column lists of the same length

(i. e., |X| = |T |), and Y , U , V , and Z are single columns. Then we can conclude

that the ind R[XY Z] ⊆ S[TUV ] is also valid. In few words, the reason is that any

tuples tr from R and ts from S with tr[X] = ts[T ] also satisfy tr[Y ] = ts[U ] because

of R[XY ] ⊆ S[TU ] in conjunction with T → U ; therefore, R[XZ] ⊆ S[TV ] can be

augmented to R[XY Z] ⊆ S[TUV ]. This interaction is particularly interesting for two

reasons. First, it allows to deduce inds of higher arity from inds of lower arity. Hence,

if a bottom-up ind discovery algorithm knew the fds in the profiled tables, it could

spare work by logically deducing ind candidates rather than performing expensive ind

validations. Second, we note that the deduced inds are not “refining” the already known

inds.

3Recall from Section 1.3 that for two column combinations X and Y from the same relation r an fd

X → Y states that whenever two tuple from r agree in X, they also agree in Y .
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Corollary 2.2 (Ind refinement). Assume two relation schemata R and S with in-

stances r and s, respectively, along with the ind R[XY Z] ⊆ S[TUV ] (|X| = |T |,
|U | = |V |) and the fd T → U . Further, let match(R[A1, . . . , An] ⊆ S[B1, . . . , Bn]) :=

{(tr, ts) ∈ r × s | tr[A1, . . . , An] = ts[B1, . . . , Bn]} denote the tuple pairs across r and s

that have the same values for their respective ind projection attributes. Then we have

match(R[XY Z] ⊆ S[TUV ]) = match(R[XZ] ⊆ S[TV ]).

Proof. Let tr ∈ r and ts ∈ s be two tuples, such that tr[XY Z] = ts[TUV ]. It follows that

tr[XZ] = ts[TV ] and, thus, match(R[XY Z] ⊆ S[TUV ]) ⊆ match(R[XZ] ⊆ S[TV ]). We

show match(R[XZ] ⊆ S[TV ]) ⊆ match(R[XY Z] ⊆ S[TUV ]) by contradiction. Let

t′r ∈ r and t′s ∈ s be two tuples, such that t′r[XY Z] 6= t′s[TUV ]. Further assume

t′r[XZ] = t′s[TV ]. Because of R[XY Z] ⊆ S[TUV ], there must be a further tuple t′′s ∈ s,
such that t′r[XY Z] = t′′s [TUV ]. It follows that t′s[T ] = t′′s [T ] but t

′
s[U ] 6= t′′s [U ], which

contradicts the fd T → U .

In simple terms, an ind “connects” tuples across two relations whenever they share

the same value in the ind’s projection attributes. Corollary 2.2 states that, if we

augment an ind by means of an fd, both the original and the augmented ind con-

nect exactly the same tuples. This can be indeed of practical relevance. Consider

the ind Track[AlbumID,ArtistID] ⊆ Records[ID,ArtistID] from Figure 2.1 along with the fd

ID → ArtistID on the Records relation. Then the unary ind Track[AlbumID] ⊆ Records[ID]

connects the same tuples between the two relations as the binary ind. For instance

when reconstructing foreign keys from inds, one might therefore consider to promote the

unary ind to a foreign key and omit the ArtistID attributes because (i) they do not refine

the mapping from tracks to records and (ii) a unary foreign key is easier to enforce in a

production system.

We conclude that considering fds and inds simultaneously cannot only make the ind

discovery more efficient but also gives additional insights on the inds themselves. We

therefore introduce a hybrid cover formalism for inds that is based on IND augmentation

rules.

Definition 2.3 (Hybrid ind cover). A hybrid ind cover CI = (I,A) consists of a set

of inds I and a set of augmentation rules (ars) A. An ar A ∈ A is of the form

R[X]⊆S[Y ]⇒ R[A]⊆S[B] and states that any ind R[X+] ⊆ S[Y+] that can be projected

to R[X] ⊆ S[Y ] can also be augmented to R[X+A] ⊆ S[Y+B]. The hybrid ind cover

CI describes all inds that can be inferred from I with traditional ind inference rules

(see [Casanova et al., 1982]) in combination with the augmentation rules in A.

Example 2.3. In a hybrid ind cover for the data from Figure 2.1 we can replace the

maximal ind Track[AlbumID,ArtistID] ⊆ Records[ID,ArtistID] with the ind Track[AlbumID] ⊆
Records[ID] and the ar Track[AlbumID]⊆Records[ID]⇒ Track[ArtistID]⊆Records[ArtistID]. Now
assume that the example database would also model the specific countries, in which a

record has been released, thereby yielding the additional ind Track[AlbumID,Country] ⊆
Records[ID,Country]. Then the combination of this ind and the ar implies the ternary

ind Track[AlbumID,Country,ArtistID] ⊆ Records[ID,Country,ArtistID]
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The reader might wonder, why we introduce the notion of ars for hybrid ind covers

rather than using fds. The first reason is that fds are sufficient but not necessary to

formulate ars. The second reason is that ars allow to remove inds of higher arity from

the cover and are therefore more concise to read. For instance, if we chose a hybrid ind

cover representation with fds rather than ars, we would have to keep the binary ind

Track[AlbumID,ArtistID] ⊆ Records[ID,ArtistID] in the above example.

2.4.3 Augmentation rule discovery

Having motivated and defined the hybrid ind cover, it remains to be shown how our

n-ary ind discovery algorithm Andy can discover ars efficiently and use them to prune

the ind search space. Its main idea is as follows: We need to discover any fd X → A in

the profiled dataset whose attributes X and A all appear in the RHS of some n-ary ind.

The fd X → A holds on some relation instance r if and only if the projection of r on

X has as many distinct values as the projection of r on XA [Huhtala et al., 1999]. As

explained in Section 2.3, the calculation of distinct values can easily be piggy-backed on

Sindy’s ind validation procedure. Finally, if we traverse the ind search space in a strictly

apriori-like manner, i. e., if we check an ind R[XA] ⊆ S[Y B] only after having verified

the ind R[X] ⊆ S[Y ] (recall the projection rule), we can immediately discover any fd

within an ind’s RHS by keeping track of the number of distinct values and applying

above fd criterion.

To better explain the details of Andy, let us introduce a slightly altered example

dataset in Figure 2.9, which embeds the ar from Example 2.3 along with two additional

ars. Those latter ars are a consequence of missing data and can considerably increase

the number of n-ary inds in a dataset, thereby impairing the performance of discovery

algorithms. While those phenomena could be simply detected and treated by handcrafted

rules, they can instead be elegantly modeled as ars.

At first, we observe that the Year column in Records contains only NULL values. If we

ignore value combinations containing NULL values as proposed in Section 2.4.1, then any

combination of the column Year with other columns yields an empty column combination,

which in turn forms a void ind4 with any other column combination of the same arity.

Second, there are two Note columns that contain only the empty string. Real-world

schemata often comprise columns (or even tables) that are not filled with any actual data.

Such columns then contain only a default value. In our example, this phenomenon causes

the two inds Records[Note] ⊆ Tracks[Note] and, vice versa, Tracks[Note] ⊆ Records[Note]. In

particular, these inds can augment any other ind across Records and Tracks, thereby

increasing the number of n-ary inds and, hence, the number of ind candidates to check.

Let us now explain Andy’s overall workflow, which is outlined in Algorithm 2.1,

alongside our modified example data in Figure 2.9. Andy starts by initializing an empty

hybrid cover (Line 1). Then, it runs a modified version of Sindy (Line 2): Besides

discovering all unary inds in the input dataset, it also counts the distinct values of every

column, as explained in Section 2.3. These counts are used to discover the first ars

4Recall from Section 2.2.1 that we call an ind void if its LHS does not contain any values.
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Figure 2.9: Another example dataset with discographic data. The ⊥ represents NULL

values and blank cells represent empty strings.

(Lines 3–6). As described in the above paragraph, inds whose RHS comprises only a

single distinct value can be used to augment any other ind that spans the same two tables.

In our example we discover the ind Records[Note] ⊆ Tracks[Note], which can augment

any other ind between Records and Tracks, such as Records[ArtistID] ⊆ Tracks[AlbumID].

The reason is that the column Note in the relation Tracks functionally depends on any

other column of the same relation. Therefore, Andy exchanges said ind in the hybrid

cover with the “zero-ary” ar ∅ ⇒ Records[Note]⊆Tracks[Note]. The same is done when a

discovered ind is void, i. e., its LHS bears no values at all, as is the case for Tracks[Year] ⊆
Records[AlbumID]. Here, the rationale is that any augmentation of that ind will form

another void ind. Note that ars for void inds are not covered by an fd as explained in

Section 2.4.2 but nevertheless are compatible with Definition 2.3 of hybrid covers.

This concludes the unary ind discovery phase of Andy, which then starts iteratively

discovering inds of higher arities (Line 7). At first, ind candidates of the next higher

arity are generated from the already discovered inds (Line 9). This candidate generation

is handled by the GenNext algorithm as described by de Marchi et al. [2002]: An ind

candidate is generated if and only if all its projections are known inds. At this point,

it is important to note that Andy generates fewer candidates than other ind discovery

algorithms because some of the discovered inds have been converted into ars and do

therefore not participate in the candidate generation. In fact, all those omitted ind

candidates are actual inds and can be deduced from the cover. As an example, consider

the inds Tracks[ArtistID] ⊆ Records[ArtistID] and Tracks[Note] ⊆ Records[Note]. Together,

they yield the binary ind candidate Tracks[ArtistID,Note] ⊆ Records[ArtistID,Note], which

obviously holds on the dataset in Figure 2.9. However, because Andy removed the ind

Tracks[Note] ⊆ Records[Note] and replaced it with the ar ∅ ⇒ Tracks[Note]⊆Records[Note], it
will not generate a corresponding binary ind candidate. Instead the binary ind is already

included in the hybrid ind cover by means of the ind Tracks[ArtistID] ⊆ Records[ArtistID]

and the ar ∅ ⇒ Tracks[Note]⊆Records[Note].
Andy completes as soon as no more ind candidates are generated (Line 10). If there

are candidates, though, they are checked with the already mentioned modified Sindy

algorithm (Line 11). There are only two modifications necessary to check n-ary ind can-

didates. First, rather than creating cells for each field in each tuple (cf. Section 2.2.2),

Andy creates cells for value combinations that appear in any of the ind candidates.

For instance, for the ind candidate Tracks[Pos,ArtistID] ⊆ Records[ID,ArtistID] Andy needs

to create cells for the column combinations Tracks[Pos,ArtistID] and Tracks[Pos,ArtistID].
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Algorithm 2.1: Overall workflow of Andy.

Data: database schema S with database instance D

Result: hybrid ind cover CI

1 I← ∅;A← ∅;
2 I1, D1 ← run Sindy with distinct value counting on D;

3 foreach 〈A⊆B〉 ∈ I1 do

4 if D1[B] = 1 ∨D1[A] = 0 then

5 I1 ← I1 \ {A⊆B};
6 A← A ∪ {∅ ⇒ A⊆B};

7 for n← 2 to ∞ do

8 I← I ∪ In−1;

9 Icn ← GenNext(In−1);

10 if Icn = ∅ then break;

11 In, Dn ← run Sindy-like ind test for n-ary inds with distinct value counting

for Icn on D;

12 foreach 〈A1...An⊆B1...Bn〉 ∈ In do

13 if Dn[A1...An] = 0 then

14 In ← In \ {A1...An⊆B1...Bn};
15 for i← 1 to n do

16 A← A ∪ {A1...Ai−1Ai+1...An⊆B1...Bi−1Bi+1...Bn ⇒ Ai⊆Bi};

17 else

18 for i← 1 to n do

19 if Dn[B1...Bn] = Dn−1[B1...Bi−1Bi+1...Bn] then

20 In ← In \ {A1...An⊆B1...Bn};
21 A← A ∪ {A1...Ai−1Ai+1...An⊆B1...Bi−1Bi+1...Bn ⇒ Ai⊆Bi};

22 return CI = (I,A);

Second, for any discovered n-ary ind, Andy checks whether it is actually an ind candi-

date. When ignoring value combinations that comprise a NULL value, the ind test can

turn out positive for non-ind candidates because the downward closure property does

not hold then (cf. Section 2.4.1). To better control the ind discovery, we sieve out such

“pseudo-inds”.

Eventually, when the n-ary ind candidates have been verified and the distinct values

of their column combinations have been counted, Andy determines ars for void inds

(Lines 13–16). Additionally, Andy also checks for fds in the RHS of inds and, if such

fds exist, converts the ind to one or more corresponding ars (Lines 17–21). As an

example, the binary ind Tracks[AlbumID,ArtistID] ⊆ Records[ID,ArtistID] comprises the fd

ID→ ArtistID in its RHS, soAndy exchanges it with the ar Tracks[AlbumID]⊆Records[ID]⇒
Tracks[ArtistID]⊆Records[ArtistID]. When all candidates and ars have been discovered, they

form the hybrid ind cover of the input datset (Line 22).
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2.5 Evaluation

Having explained the algorithms Sindy, Sandy, and Andy, we now proceed to experi-

mentally evaluate them. In particular, we seek to answer following questions: (i) How do

the algorithms compare to existing ind discovery algorithms? (ii) How do our algorithms

scale as the profiled datasets grow in size? (iii) And how well do our algorithms scale out

across computer clusters? Before answering these questions, we outline our experimental

setup in Section 2.5.1. Then, in Section 2.5.2 we evaluate our algorithms for (partial)

unary ind discovery, Sindy and Sandy, and proceed to evaluate the n-ary ind discovery

algorithm Andy in Section 2.5.3.

2.5.1 Experimental setup

We have implemented Sindy, Sandy, and Andy in Java 8 and chose Apache Flink 1.3.1

as distributed data flow system to back up our algorithms. Our profiled datasets resided

in an Apache Hadoop HDFS 2.7.3. For our experiments with Binder, we used its original

implementation, which is also written in Java [Papenbrock et al., 2015c]. In terms of

hardware, we used a cluster consisting of a master node (IBM xServer x3500 with 2×
Xeon X5355 Quadcore (2.66GHz, 8MB L2 cache), 32GB RAM, CentOS 6.9) and four

workers (IBM PowerEdge R430 with Intel Xeon E5-2630 v4 (2.2GHz, 10 cores, 25MB

L2 cache), 32GB RAM, Ubuntu 16.04.3). For the distributed experiments, we granted

24GB of main memory to the driver, 1GB to the Flink job manager, and 24GB to

the Flink workers. For the non-distributed experiments, which were executed on only

one of the workers and required only a single operating system process each, we granted

24GB of main memory to those processes. An overview of all used datasets can be

found in Table 2.1. In addition, the algorithm source code and pointers to the sources of

the datasets are given on our repeatability page: https://hpi.de/naumann/projects/

repeatability/data-profiling/metanome-ind-algorithms.html

2.5.2 Unary discovery

Comparison of BINDER and SINDY

Let us begin with a comparison of Sindy with the state-of-the-art discovery algorithm

Binder. We limit our comparison to Binder because it has been shown to be most

efficient among the exact unary ind discovery algorithm [Papenbrock et al., 2015c] (ex-

cept for Sindy, to which it has not been compared). Although being even more efficient

than Binder, we do not include Faida in this comparison, because it is an ind approx-

imation algorithm that cannot guarantee the correctness of the discovered inds [Kruse

et al., 2017b].

Binder does not define a scale-out strategy, so to allow for a fair comparison with

Sindy both algorithms are executed on a single of our workers. Nevertheless, we consider

two configurations of Sindy. The first configuration limits it to a single CPU core and is

supposed to answer the question how Binder and Sindy compare when granted exactly
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Table 2.1: Overview of our evaluation datasets.

Name Size [MB] Tables [#] Columns [#] Tuples [#]

EMDE 2 11 161 3,379

SCOP 15 4 22 342,195

CENSUS 112 2 48 299,285

Spots 177 3 45 1,439,733

WIKIPEDIA 540 2 14 14,802,104

BIOSQLSP 567 29 148 8,306,268

WIKIRANK 696 7 29 5,994,972

LOD2 825 13 164 4,792,549

ENSEMBL 836 2 26 3,991,313

CATH 908 5 115 452,652

TESMA 1,112 2 114 600,000

RFAM 15,220 29 202 112,359,686

MusicBrainz 33,437 206 1,053 222,019,536

PDB 45,869 117 1,791 266,352,038

Plista 62,431 4 131 123,397,711

the same resources. In the second configuration, we allow Sindy to use all 10 cores of

the worker computer, thereby assuming a more pragmatic viewpoint: Both Binder and

Sindy use virtually all the worker’s main memory and disk I/O bandwidth. Therefore,

it is reasonable to assume that, when using only one CPU core, the other cores cannot

be effectively utilized by any other application due to the lack of main memory and I/O

bandwidth. Hence, the second configuration seeks to answer the question how Binder

and Sindy compare when granted one worker.

Figure 2.10 displays the results of the comparison. Let us first focus on the single-

core configuration of Sindy. As can be seen, Binder could profile all datasets more

efficiently than Sindy in this configuration. We can determine three reasons for that.

First, Sindy has start-up costs of approximately 12 seconds; these are due to Apache

Flink pre-allocating main memory. Second, Binder’s dynamic hash partitioning, which

is specifically tailored to ind discovery, has a higher efficiency than using Apache Flink’s

generic GroupReduce operator. In fact, an inspection of Flink’s physical execution strat-

egy for that operator reveals that it always performs a sorting-based aggregation of the

cells – however, Papenbrock et al. [2015c] have already shown that the hash-partitioning

of Binder works more efficiently than the sort-merge approach of the ind discovery

algorithm Spider. As of writing this thesis, Flink does not support hash-based aggre-

gation, but such a feature is planned5 and would make a repetition of this experiment

very interesting. Finally, Binder employs pruning rules when evaluating inds on the

hash-partitioned dataset, while Sindy does not define any equivalent functionality due

to the limited flexibility of the control flow on distributed data flow systems. However,

we suspect the lack of such pruning rules to exert only a small influence on the over-

all algorithm runtimes, because the hash-partitioning in Binder and the attribute set

creation in Sindy dominate the runtimes (usually around 75%–90% of the runtime).

5See https://issues.apache.org/jira/browse/FLINK-2237 (accessed September 12, 2017).
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Figure 2.10: Runtime comparison of Binder and Sindy on a single worker. While

“Sindy (1×)” utilized a single CPU core only, “Sindy (10×)” utilized all 10 cores.

The asterisk marks the fastest algorithm for each dataset.

When granting Sindy all 10 cores, we obtain a more differentiated comparison,

though. We observe a speed-up over the single-core configuration on all datasets, al-

though for the smallest datasets the efficiency gains are minor. The reason is that the

single-core and parallel configuration incur the same start-up costs. However, for larger

datasets we observe up to six-fold speed-ups, so that the parallel Sindy is indeed more ef-

ficient than Binder on some datasets. In summary, we conclude that in non-distributed

settings Sindy is not suited to profile small datasets, while it can be indeed the most

efficient algorithm if the profiled dataset is several gigabytes in size and the profiling

computer has a sufficient number of CPU cores.

Parallelization of SINDY

The above comparison regards Sindy in a non-distributed deployment only. However,

Sindy is actually designated to run on computer clusters. Therefore, we proceed to

analyze Sindy’s scale-out behavior. In other words, we determine how the provision

of additional CPU cores and computers influences the efficiency of the algorithm. Fig-

ure 2.11 depicts Sindy’s runtime on several datasets in several hardware configurations:

This experiments grants the algorithm between 1 and 4 workers (and all their cores).

Obviously, for smaller datasets scaling out increases the efficiency only slightly and can

even be counter-productive for very small datasets. The main reasons are the worker-

independent start-up costs and that distributed computing incurs additional overhead

for coordination and exchanging data across machines. For large datasets, in contrast,

we measured an even super-linear speed-up factor of up to 4.7× (for MusicBrainz) when
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Figure 2.11: Runtime behavior of Sindy as it is using an increasing number of

workers.

utilizing all 4 workers. A potential explanation for this observation are the increased

main memory capacities of 4 workers in comparison to a single one: The global main

memory capacities of 96GB might suffice to host all intermediate working data, thereby

avoiding costly out-of-core (i. e., disk-based) data processing.

Along these lines, it is an intriguing question how providing Sindy with more CPU

cores (scale-in) compares to providing Sindy with more worker computers (scale-out).

While the latter adds more resources, such as main memory and disk bandwidth, it also

adds network overhead. To answer this question, we executed Sindy with 10 cores on

a single worker as a baseline. The resulting runtime was compared to running Sindy

with 10 cores across n workers (n > 1). The measured speed-up over the baseline across

various datasets is presented in Figure 2.12. The results confirm our intuition w. r. t. the

scale-out experiment: For small datasets, a scale-out configuration only causes overhead.

For larger datasets, however, scale-out is effective because Sindy indeed profits from the

additional computing resources other than CPU cores. Again, these experiments show

that Sindy is particularly advancing the efficiency of ind discovery for large datasets

and sufficient hardware provisioning. In the following experiments, we therefore focus

on such scenarios.

Scalability to larger datasets

We seek to determine Sindy’s scalability behavior w. r. t. dataset size and compare it

to Binder. Concretely, we determine the behavior of both algorithms as the profiled

dataset grows in the number of columns or in the number of tuples. As mentioned in

the above paragraph, we run Sindy at full scale now, i. e., with all 4 workers and all

40 cores, while Binder is running on a single worker. After all, we are interested in the

scaling behavior of the two algorithms in their intended hardware setups.
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Figure 2.12: Speed up of Sindy when using four instead of only one worker, while

maintaining a parallelism of 10.

To determine the column scalability, we instrumented the two algorithms in such a

way that they would only consider the first k columns of each relation in the profiled

dataset for some user-specified value k. As an alternative, we could just consider the

“first” k tables of the profiled dataset. However, in most datasets the distribution of

tuples over the tables is strongly skewed. By considering a subset of columns from all

tables simultaneously, we attempt to mitigate the effects of the different table sizes in

our experiments.

As can be seen in Figure 2.13, both Binder and Sindy appear to scale linearly in

the number of considered columns. This observation is truly interesting, because unary

ind discovery has a worst case complexity of at least O(c2) (c being the number of

columns): After all, there are up to c2 − c non-trivial inds in a dataset and profiling

algorithms are bound to have a complexity at least linear in the output size. That

being said, the most expensive step of all ind algorithms, namely building the inverted

index, is not sensitive to the number of attributes but rather to the amount of input

data. Furthermore, typical relational datasets usually comprise only so many columns

and inds. For instance, PDB consists of 1,791 columns that entail 800,636 inds. Specific

datasets, such as web tables, can have many more columns and inds, though, and call

for specialized algorithms [Tschirschnitz et al., 2017]. In such scenarios, the suspected

quadratic complexity can actually be observed.

The other important scaling dimension, besides the number of columns, is the number

of tuples in a dataset. To experimentally determine the scaling behavior of Binder

and Sindy along this dimension, we had both algorithms profile systematic samples

of the input tables. For instance, for a sampling ratio of 75% the algorithms would

discard every fourth tuple of every table, but continue normal operation for the remainder

tuples. Again, we find both algorithms to exhibit a linear scaling behavior as shown in

Figure 2.14. For Binder, which creates the inverted index using hash-partitioning, this
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Figure 2.13: Scalability of Binder and Sindy as profiled datasets grow in the num-

ber of columns.

is the expected behavior. Sindy, in contrast, builds upon Apache Flink’s sorting-based

aggregation and might therefore expose a complexity of at least O(t · log t) (t being the

number of tuples). Hence, we conclude that Sindy’s runtime is not dominated by the

sorting per se: Disk-based sorting techniques, such as the two-phase multiway merge-

sort, usually have linear I/O complexity by writing every input element to disk only

once. It is indeed plausible, that the I/O time dominates the sorting; in particular,

because Flink’s sorting mechanisms are highly tuned and even employ cache-aware data

structures.6 In summary, in both experiments Sindy exhibits the same scaling behavior

as Binder, although its implementation on Apache Flink prohibits some of Binder’s

optimizations. At the same time, Sindy, which utilizes more computational resources

than Binder, achieves shorter absolute runtimes.

Partial IND discovery

The above experiments focus on Sindy but do not consider Sandy, the modification

of Sindy to discover partial inds. Indeed, we waive a repetition of above experiments

for Sandy– not only for the sake of space: Sindy and Sandy are technically so similar

that they entail basically identical runtimes on all the datasets. This observation is also

in accordance with our intuition that the attribute set creation, which is part of both

Sindy and Sandy, dominates the algorithms’ runtimes.

Nonetheless, it is intriguing to compare the results of both algorithms. For this pur-

pose, Figure 2.15 depicts the g′3 error of all partial ind candidates of several datasets.

Obviously, the vast majority of partial ind candidates across all datasets have a rather

high g′3 error and their columns mostly do not share any value at all. In consequence,

6See, e. g., https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html

(accessed September 15, 2017).
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Figure 2.14: Scalability of Binder and Sindy as profiled datasets grow in the num-

ber of tuples.

Figure 2.15: The g′3 error for all partial ind candidates among several datasets.

regarding partial instead of exact inds does significantly increase the number of discov-

erable dependencies – at least in the unary case.

We further observe a “gap” between exact and partial inds. In fact, there is not a

single partial, non-exact ind in all profiled datasets that has a g′3 error less than or equal

to 0.01; and only few with a g′3 error less than or equal to 0.1. An explanation for this

issue might be that our experiment datasets are not subject to foreign key violations.
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Hence, it would be interesting to investigate partial inds on other datasets that lack

foreign keys, e. g., on web tables or for integrating datasets.

Nevertheless, we could determine meaningful partial inds even in our rather “clean”

datasets. A specific example is the partial ind SG TERM[Start Pos] ⊆ SG TERM[End Pos]

with a g′3 error of less than 0.1, telling that most term start positions are also term

end positions. A user can conclude that these two fields are likely related and carry

out further investigations (for that matter, those attributes are used to form a hierarchy

among technical terms). Furthermore, we regularly observed partial inds (i) among

columns that contain the same kind of data, such as dates and auto-incremented IDs;

(ii) among columns that reference the same primary key column; and (iii) as the inverse

of foreign keys, i. e., if A ⊆ B is a foreign key, then B ⊆ A often is a partial ind.

We suppose that the former observation can be used for data discovery [cf. Fernandez

et al., 2016] and column classification while the latter two might support foreign key

detection [cf. Rostin et al., 2009; Zhang et al., 2010].

2.5.3 N-ary discovery

Comparison of MIND, BINDER, and ANDY

As for Sindy, let us begin our evaluation of Andy with a comparison to state-of-the-

art discovery techniques. As explained in Section 2.1, n-ary ind discovery algorithms

mostly differ with regard to which ind candidates they generate in which order, while

the checking mechanisms are either the same as for unary inds or based on SQL queries.

Hence, to focus the comparison on the candidate generation strategies, we integrated sev-

eral candidate generation strategies with Sindy’s (and Andy’s, for that matter) checking

procedure. Concretely, we considerMind’s basic apriori-based generation GenNext, upon

which Andy builds (Sindy+Mind); we consider Binder’s candidate generation, also

an apriori-based procedure that admits some futile ind candidates, though, and that

discards unary void inds (Sindy+Binder); and we consider an enhanced version of

Mind’s candidate generation that also discards void inds (Sindy+Mind-Void). For

pragmatic reasons, we stopped any algorithm that took more than 16 hours to complete.

The results of our comparison are displayed in Figure 2.16. At a first glance,

Sindy+Mind seems to be the least efficient strategy in almost all datasets. In fact, it is

the only strategy that includes void inds in the candidate generation. In consequence,

it has to cope with many more ind candidates in datasets with many empty columns,

such as BIOSQLSP and WIKIRANK. Hence, we focus on the other strategies below.

At a second glance, Sindy+Binder and Sindy+Mind-Void perform almost iden-

tical on most datasets. There are two particularly notable exceptions, though. Among

the two strategies, only Sindy+Mind-Void is capable to profile the very small EMDE

dataset and the larger MusicBrainz dataset within the given time and resource constraints.

Indeed, we observe Sindy+Binder to generate significantly more ind candidates. As an

example, while Sindy+Mind-Void generates 131,502 5-ary ind candidates from 96,475

4-ary inds, Sindy+Binder hypothesizes 528,817 candidates based on the same inds.

At this point, Sindy+Binder fails because Flink’s job manager is overloaded by that
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Figure 2.16: Comparison of Sindy in combination with several candidate generators

and Andy. The flash symbols mark algorithm failures or timeouts.

number of ind candidates. The reason for the greater number of ind candidates is that

Binder’s candidate generator does not fully leverage the projection rule, thereby creat-

ing futile ind candidates that cannot be actual inds. So, although Binder’s candidate

generation is slightly more efficient, this does not outweigh the effort for checking those

additional futile ind candidates.

Let us now consider Andy. Apparently, it is as efficient as Sindy+Mind-Void on 6

out of 15 datasets and outperforms all other candidate generation strategies on 7 datasets

(and the remaining 2 datasets, PDB and Plista, could not be processed by any strategy).

Furthermore, Andy’s speed-up differs among the datasets, depending on how many ars

it could identify and employ for pruning. For instance, Andy discovered no ars on

CENSUS and only 2 ars on CATH, but 3,427 ars on EMDE, 2,587 ars on LOD2, and even

75,596 ars on MusicBrainz. In fact, on MusicBrainz the number of discovered inds was

reduced from 120,569 (for Sindy+Mind-Void) to 52,441 and the number of checked

n-ary candidates was reduced from 5,740,344 to 79,730. When surveying a sample of

the discovered ars, we found most of them to be spurious, that is, they did not seem

to correspond to a semantic rule. However, that does not necessarily impair the utility

of the hybrid ind cover: After all, it still staves off the checking and materialization of

many uninteresting inds and ind candidates.

Scalability to larger datasets

As can be seen in Figure 2.16, Andy (and the other algorithms, for that matter) could

not fully profile the large datasets PDB and Plista. For the former, Andy ran out of

disk space while checking 1,654,313 binary ind candidates, even though it could reduce

the number of candidates by a factor of 6 compared to the other candidate generation
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Figure 2.17: Runtime behavior of Andy for different datasets and numbers of con-

sidered columns.

strategies. On the latter Plista dataset, Andy created as many binary ind candidates as

Sindy+Mind-Void, namely 15,586, and ran out of time while checking them. Having

shown that Andy is at least as efficient as state-of-the-art discovery strategies for n-ary

inds (and often more efficient), it is now useful to analyze Andy’s scaling behavior, so

as to understand its limitations.

The scalability of Andy w. r. t. the amounts of provided hardware resources and the

number of database tuples can be concluded from Section 2.5.2: The runtime of Andy is

clearly dominated by the checking of ind candidates; this checking procedure is simply

a slightly modified version of Sindy and therefore has the same scaling properties. That

being said, we present a dedicated evaluation of Andy’s scaling behavior in the number

of database columns. Generally speaking, the reason is that more columns entail more

inds. In consequence, Andy needs to check more ind candidates of higher arities, as

it considers more columns. That is, the influence of the number of columns has to be

regarded in conjunction with the candidate generation. To vary the number of considered

columns, we consider the first k columns of every table in a dataset, as done for Sindy’s

column scaling experiment. The maximum allowed runtime is limited to 2 hours. The

results are depicted in Figure 2.17.

Apparently, Andy’s runtime grows in a super-linear manner as the number of con-

sidered columns increases. Such behavior is expected, because the number of n-ary inds

potentially grows exponentially in the number of columns (cf. Section 2.4). Nevertheless,

the inclines of the scaling curves seem to correlate neither with the number of columns,

nor with the absolute dataset size, nor with the number of ind candidates to be checked:

While Andy does not manage to check 443 4-ary ind candidates of the Plista dataset

within 86 minutes, it can check all 79,730 candidates of the MusicBrainz dataset in about

25 minutes. As a matter of fact, these factors interact and must not be regarded in isola-
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tion. For instance, it is not sufficient to consider only the number of ind candidates, as

different ind candidates entail different computational effort depending on the number

of distinct values in their columns, the sizes of the individual values, and the numbers of

tuples in the columns’ tables. As a result, whether or not a dataset can be profiled by

Andy within reasonable resource constraints can hardly be predicted.

2.6 Summary

This chapter presented algorithms for various ind discovery problems on relational data:

Sindy discovers all unary ind candidates in a distributed and scalable fashion. As

shown with the algorithm Sandy, it can also be easily adapted to discover partial inds.

Furthermore, we showed that the n-ary inds of a dataset can be represented by a hybrid

cover consisting of “core” inds and ind augmentation rules. Not only is this hybrid

cover more informative than plain inds, but its discovery is also much more efficient on

many datasets, as we have shown with the algorithm Andy. All in all, the presented

algorithms improve over state-of-the-art methods in terms of efficiency and scalability,

especially when they are executed on computer clusters and applied to large datasets.

Let us describe potential future work in the area of ind discovery. An obvious

blank spot is the discovery of n-ary partial inds, which bears two particular issues.

The first problem is that the established g′3 measure is not monotonous, i. e., g′3(X ⊆
Y ) ≤ g′3(XA ⊆ Y B) does not necessarily hold for some column combinations X, Y and

columns A and B. As a result, apriori-like algorithms for partial ind discovery might miss

actual n-ary partial inds. This problem could be avoided by using a monotonous error

measure instead: For instance, g′3 could be based on tuples rather than distinct values to

establish the monotonicity. This leads to the second problem, though: There are more

partial than exact inds in a dataset. Even though we observed only a slight increase of

unary inds when including partial inds, the numbers of n-ary partial inds still might

increase drastically. Their discovery would then cause significantly more computational

effort. For that matter, it is not clear in how far augmentation rules could be applied

for pruning partial ind candidates. Hence, novel algorithmic strategies for n-ary partial

ind discovery might be necessary.

A second line of future work could deal with further improvements for the discovery

of exact n-ary inds; after all, our experiments comprised datasets that Andy could not

profile due to the lack of time or disk space. To cope with this problem, one might con-

sider using an approximate algorithm first, such as Faida [Kruse et al., 2017b], and then

verify those approximated inds using Sindy. This approach has two drawbacks, though.

At first, the number of (approximate) n-ary inds might be huge, so that the verification

step still fails; and second, Faida is not capable of detecting augmentation rules, so

that a combination of Faida and Sindy might turn out less scalable than Andy. To

this end, we are working on an algorithm that is centered around position list indices

(PLIs) [Heise et al., 2013; Huhtala et al., 1999]. PLIs are highly compact representations

of columns of a relation and are usually used for the discovery of functional dependencies

and unique column combinations. However, we discovered that they can also be used
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to verify ind candidates and offer two particular benefits. At first, PLIs do not contain

actual values, so they do not require as much disk space as Sindy’s verification mech-

anism. The second benefit is that PLIs can uncover more types of augmentation rules

than is possible for Andy, so that a more effective pruning of the search space is possible.

However, a downside of this approach is that it cannot be implemented on distributed

data flow systems, such as Apache Flink. Therefore, custom memory management and

distribution strategies are required.
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Chapter 3

Conditional Inclusion Dependency

Discovery on RDF data

In the above chapter, we presented discovery algorithms for inclusion dependencies

(inds), which form a fundamental data dependency on relational databases and sup-

port data management tasks, such as foreign key discovery and query optimization.

Given their importance and utility, it is an intriguing question if and how the notion of

inds can be transferred to other data models. Concretely, in this chapter we investigate

this question for rdf data and show that for this data model inds should be amended

with conditions. So called conditional inclusion dependencies (cinds), which restrict

their including and included parts of the data in terms of conditions, support various

data management tasks on rdf data, in particular ontology reverse engineering, knowl-

edge discovery, and query optimization, as we demonstrate in this chapter. However,

the addendum of conditions drastically adds to the computational complexity of cind

discovery.

To this end, this chapter describes the novel algorithm RDFind to discover the

cinds in rdf data, based on [Kruse et al., 2016a]. We start with a brief introduction

of the rdf data model in Section 3.1 along with a formalization of cinds and concrete

examples of how they can support rdf data management. Then, in Section 3.2, we

characterize pertinent cinds, a subset of potentially interesting cinds among all cinds,

and introduce RDFind’s general approach to discover all pertinent cinds in an rdf

dataset. The following Sections 3.3–3.5 explain RDFind’s three principal components

in detail. Then, we proceed to thoroughly evaluate our system in Section 3.6. Eventually,

we discuss related work in Section 3.7 and summarize our research results in Section 3.8.

3.1 Inclusions within RDF Datasets

The Resource Description Framework (rdf) is a flexible data model that shapes data

as a set of subject-predicate-object triples [Hayes and Patel-Schneider, 2014]. Rdf was

initially introduced for the Semantic Web. Due to its flexibility and simplicity, it is cur-

rently used in a much broader spectrum of applications ranging from databases [Bornea
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Figure 3.1: Example rdf dataset about university affiliates.

et al., 2013; Chong et al., 2005] and data integration systems [Calvanese et al., 2011] to

scientific applications [Marshall et al., 2012; Redaschi and UniProt Consortium, 2009].

As a result, very large volumes of rdf data are made available, in particular in the

context of the Linked (Open) Data movement [Bizer et al., 2009]. It is expected that

this expansion of rdf data will perpetuate, leading to enormous amounts of large het-

erogeneous datasets [Kaoudi and Manolescu, 2015].

A major particularity of rdf is that, in contrast to relational databases, its schema

(ontology) is not always available – in fact, Schmachtenberg et al. [2014] reported that

only 19.25% of the proprietary rdf vocabulary in the Linked Open Data cloud was

dereferencable. And even if a schema is available, the data may violate the schema

constraints. This impedes the use of rdf datasets. For instance, one might make

incorrect assumptions about the data and it gets harder to formulate sound queries. To

cope with such issues, we recognize a particular necessity to profile rdf data.

3.1.1 Refining inclusion dependencies with conditions

In the above chapter, we describe inclusion dependencies (inds)1, which are among the

most fundamental data dependencies on relational data, and they have proven to be

useful in various data management scenarios, such as foreign key and join path discov-

ery [Zhang et al., 2010], query optimization [Gryz, 1998b], and schema (re-)design [Levene

and Vincent, 1999].

Clearly, these data management operations are relevant to rdf data, too. However,

in contrast to the relational model, rdf datasets do not reflect the schema of their data

in terms of data structures. For that matter, rdf distinguishes only subjects, predicates,

and objects on the data structure level. These three sets are too coarse-grained to find

meaningful inds, as can be seen in the example dataset in Figure 3.1: No pair of columns

in the table constitutes an ind – and even if it would, a statement such as ”The subjects

are included in the objects.” is rather generic and not informative.

That being said, conditional inclusion dependencies (cinds) can be seen as refined

inds. Informally, a cind filters the including and included data of an ind with conditions

1Recall that a (unary) ind describes that the set of all values from one column is included in the set

of all values from a further column.
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and requires only these filtered sets to satisfy the ind. As a result, cinds allow to describe

meaningful inclusions within rdf data:

Example 3.1. Assume a cind stating that the set of subjects occurring in triples with

predicate rdf:type and object gradStudent is a subset of all subjects occurring in triples

with predicate undergradDegreeFrom. Figure 3.1 satisfies this cind, because the graduate

students patrick and mike form a subset of people with an undergraduate degree, namely

patrick, tim, and mike.

Before having a closer look on the various applications of cinds on rdf data, let

us formalize the notion of rdf data and their cinds. The rdf dataset in Figure 3.1

resembles a relation with three columns. However, the rows in that table do not con-

stitute (relational) tuples, which usually correspond to some entity, but triples, which

relate either two entities or an entity and a value. Formally, an rdf triple is a statement

of the form (s, p, o), where s is the subject, p is the predicate, and o is the object. The

subject and predicate are rdf resources (URIs), while the object can also be an rdf

literal, i. e., a typed value.2 A set of triples is an rdf dataset. For a triple t, we denote

with t.s, t.p, and t.o the projection of the triple on the subject, predicate, and object,

respectively. Note that we can interchangeably use the elements of triples, s, p, and o,

in most definitions and algorithms. Therefore, we use the symbols α, β, and γ to denote

any of these three elements.

Having formalized rdf data, we proceed to cinds. In the relational data model,

cinds are defined as a combination of an embedded ind and a pattern tableau [Ma et al.,

2014]. While the embedded ind is partially violated, the pattern tableau selects only such

tuples that do not violate the embedded ind. However, the notion of embedded inds

is not appropriate for rdf data, as inds without conditions are not meaningful here.

Instead, we introduce a novel and compact cind formalism that abandons embedded

inds and instead lifts conditions as first-class selectors for the including and included

sets of cinds. As the main advantage, our definition treats cinds similarly to inds,

which allows us to exploit algorithmic foundations of ind discovery from Chapter 2 for

the cind case. We define a cind based on a simple concept called capture. Intuitively,

a capture defines a projection of a triple element α over a set of triples that satisfy a

unary or binary condition on some of the other two elements β and/or γ.

Definition 3.1 (Condition). A unary condition is a predicate φ(t) :≡ t.β=v1 and a

binary condition is a predicate φ(t) :≡ t.β=v1 ∧ t.γ=v2 where t is an rdf triple and v1
and v2 are constants, i. e., either an rdf resource, or literal. For simplicity, we may omit

t and simply write φ ≡ β=v1 whenever it is clear.

Definition 3.2 (Capture). A capture c := (α, φ) combines the unary or binary condition

φ with a projection attribute α, which is not used in φ. The interpretation of c on an

rdf dataset T is I(T, c) := {t.α | t ∈ T ∧ φ(t)}.
2The rdf standard further admits so called blank nodes as subjects and objects of triples. Essentially,

blank nodes represent anonymous resources. Because the identifier of a blank node should be unique

within a single dataset, we treat them as URIs in this chapter.
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Example 3.2. The binary condition φ ≡ p=rdf:type∧ o=gradStudent holds for the triples

t1 and t2 from the example dataset in Figure 3.1. From it, we can define the capture

(s, φ) with the interpretation {patrick,mike}.

Having defined a capture, we can now define a cind in a similar fashion to a relational

ind. The only difference is that an ind describes the inclusion of relational attributes,

while a cind describes the inclusion of captures.

Definition 3.3 (Cind). A cind ψ is a statement c ⊆ c′, where c and c′ are captures.

Analogous to inds, we call c the dependent capture and c′ the referenced capture. An

rdf dataset T satisfies the cind if and only if I(T, c) ⊆ I(T, c′).

Example 3.3. The cind (s, p=rdf:type ∧ o=gradStudent) ⊆ (s, p=undergradDegreeFrom) is

satisfied by the dataset in Figure 3.1, because the interpretation of the dependent capture

{patrick,mike} is a subset of the referenced capture’s interpretation {patrick,mike, tim}.

3.1.2 Applications of conditional inclusion dependencies

As stated in the beginning of this chapter, inds enable various data management tasks

on relational databases, e. g., foreign key discovery and query optimization. We intend

to position cinds as their counter-part on rdf data. However, being almost 30 years

younger, there is by far not that much research regarding rdf data as there is for rela-

tional databases; let alone the utilization of inds or cinds. Therefore, let us elaborate on

three interesting opportunities to utilize cinds to manage rdf datasets, namely ontology

reverse engineering, knowledge discovery, and query optimization.

Ontology reverse engineering

Rdf data is not always accompanied by an ontology and even if it is, it does not always

adhere to that ontology’s constraints. Cinds can provide general insights and reveal

statements not reflected by the ontology (if there is one), as we demonstrate with actual

insights on the diverse real-world datasets. Note that explaining ontologies and the rdf

schema formalism is out of scope of this section; hence, we would like to refer the reader

to the rdf specification for reference [Hayes and Patel-Schneider, 2014].

Ontology engineers can utilize cinds to determine class and predicate relationships,

such as: (i) class hierarchies, (ii) predicate hierarchies, and (iii) the domain and range of

predicates. For instance, the cinds (s, p=associatedBand) ⊆ (s, p=associatedMusicalArtist)

and (o, p=associatedBand) ⊆ (o, p=associatedMusicalArtist) suggest that the associatedBand

predicate is a subproperty of associatedMusicalArtist. This is because, according to the

rdf semantics, if the predicate associatedBand is a subproperty of associatedMusicalArtist,

then the set of subjects and the set of objects of the predicate associatedBand are a subset

of the set of subjects and set of objects of associatedMusicalArtist, respectively.

Furthermore, the cind (s, p=rdf:type∧o=Leptodactylidae) ⊆ (s, p=rdf:type∧o=Frog) re-

veals that the class Leptodactylidae could be a subclass of the class Frog. Similarly, the cind
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(o, p=movieEditor) ⊆ (s, p=rdf:type∧o=foaf:Person) reveals that the range of the predicate

movieEditor can be the class foaf:Person.

Another interesting cind, namely (s, p=classificationFunction∧o=“hydrolase activity”) ⊆
(s, p=classificationFunction ∧ o=“catalytic activity”), suggests that everything that classifies

as hydrolase activity also classifies as catalytic activity. This gives hints to the ontology

engineer to promote these two activities from string literals to rdf classes that could

further be placed into a class hierarchy.

Our final example gives a peek ahead on the following contents of this chapter. As we

show in Section 3.2.1, association rules form a special case of cinds. As an example, the

association rule o=lmdb:performance → p=rdf:type states that every triple in the profiled

dataset, that has the object lmdb:performance, has the predicate rdf:type. This reveals that

the entity lmdb:performance is an rdf class. All the above examples show that cinds can

help to reconstruct a missing ontology for a given rdf dataset or to revise and amend

existing ontologies in a data-driven manner.

Knowledge discovery

Cinds can reveal unknown facts about individual data instances that cannot be in-

ferred from the ontology. As an example, the two cinds (s, p=writer∧ o=Angus Young) ⊆
(s, p=writer∧o=Malcolm Young) along with its inversion (s, p=writer∧o=Malcolm Young) ⊆
(s, p=writer ∧ o=Angus Young) reveal that the AC/DC members, Angus and Malcolm

Young, have written all their songs together. This fact is not explicitly stored in

the original rdf dataset. A second example is the cind (s, p=areaCode∧o=559) ⊆
(s, p=partOf∧o=California) meaning that cities with the area code 559 are located in Cal-

ifornia. A third example comes from a dataset about drugs: There, we discovered many

similar cinds, e. g., (o, s=drug00030∧p=target) ⊆ (o, s=drug00047∧p=target). This cind

in particular discloses that anything cured by drug00030 is also cured by drug00047.

Query optimization

Furthermore, cinds can be employed for SPARQL query optimization. SPARQL stands

for “SPARQL Protocol and RDF Query Language” and is the default language to query

rdf datasets [SPARQL 1.1]. SPARQL queries usually comprise a considerable number

of joins [Gallego et al., 2011], which negatively impacts performance. Knowing cinds

allows to remove useless query triples (i. e., query predicates) and hence to reduce the

number of joins that need to be evaluated (query minimization). For example, consider

the following 2-join SPARQL query on the data of Figure 3.1:

1 SELECT ?d ?u

2 WHERE {
3 ? s rd f : type gradStudent .

4 ? s memberOf ?d .

5 ? s undergradDegreeFrom ?u .

6 }
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Figure 3.2: Effect of query minimization using cinds.

Note that the data in Figure 3.1 satisfies the cind (s, p=memberOf) ⊆ (s, p=rdf:type ∧
o=gradStudent). This cind tells us that all department members are graduate students

and thus allows to remove the Line 3 from above query, thereby reducing its number of

joins from two to one without affecting the final results.

As a proof of concept for this query rewriting, we used the LUBM benchmark [Guo

et al., 2005] to generate rdf data and store it in an RDF-3X triple store [Neumann and

Weikum, 2010]. Then, we executed the benchmark Query 2 once in its original form and

once in its cind-optimized form. Query 2 originally contains six query triples; exploiting

cinds, we could reduce the query to three triples. This rewriting results in a speed up

of the query execution by a factor of 3 as depicted in Figure 3.2.

3.2 RDFind’s approach to CIND discovery

Despite the various interesting applications of cinds in rdf datasets, we are the first to

consider the problem of cind discovery for rdf data. A reason why this problem has not

been tackled yet might be its complexity: Because each cind involves two conditions,

the search space for cinds is (at least) quadratic in the number of possible conditions.

As per Definition 3.1, we consider conditions that compare one or two fields of an rdf

triple to one or two constants. As a result, the number of conditions that are satisfied

by at least one triple of a given dataset grows with the number of distinct values and

binary value combinations in said dataset.

Let us stress this point with two examples. In the tiny example data from Figure 3.1

with only 8 triples, we can already identify 35 conditions, from which we can form

48 captures, which in turn yield 2,256 cind candidates. And looking at our second

smallest evaluation dataset Diseasome with 72,445 triples, we face even over 50 billion

cind candidates – of which 1.3 billion (!) are actual cinds.

Arguably, such large sets of cinds do not form “small but informative summaries”, as

Johnson [2009] characterized data profiling results. Furthermore, such huge search spaces

pose two major technical problems. First, it is difficult to maintain and explore such a

large number of cind candidates. Second, the validation of a single cind candidate can

already be very costly, let alone billions or trillions of candidates. We acknowledge that

a few algorithms have been proposed for the discovery of cinds on relational data [e. g.,

Bauckmann et al., 2012] and we discuss those as related work in Section 3.7. However,

none of them is suited or could be easily adapted to efficiently discover cinds within rdf

datasets. Likewise, scalable ind algorithms, including Sindy, are not directly applicable
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to our problem: While they scale well to great numbers of tuples, they do not address

the problem of handling humongous numbers of ind candidates.

The here presented algorithm RDFind tackles these issues on two levels. At first, we

steer the discovery towards presumably informative cinds, thereby reducing the result

size considerably. Second, RDFind incorporates a lazy-pruning approach, which succes-

sively prunes the cind search space throughout its different phases. We explain both

measures in the following.

3.2.1 Taming the CIND search space

To cope with the utterly large cind search spaces and result sizes entailed by rdf

datasets, we narrow the search space to pertinent cinds only. In few words, we define

pertinent cinds in a way that excludes a great number of cinds (or cind candidates)

that are most likely not interesting or useful. Furthermore, we show that association

rules are a special class of cinds and help to further prune the cind search space.

Pertinent CINDs

Focusing on pertinent cinds is crucial to significantly reduce the search space and, hence,

make the cind discovery efficient. We consider a cind as pertinent if it is both minimal

and broad. Intuitively, minimal cinds form a non-redundant cover of all valid cinds and

broad cinds comprise a sufficiently large number of included elements. In the following,

we describe both types of cinds in more detail.

Let us begin with definining minimal cinds. As for many other integrity constraints,

we can infer certain cinds from other ones. Given a set of valid cinds, we call those

cinds minimal that cannot be inferred from any other cind. For example, the cind

(s, p=memberOf) ⊆ (s, p=rdf:type ∧ o=gradStudent) from Figure 3.1 is minimal and im-

plies various non-minimal cinds. Specifically, we consider two inference rules: the de-

pendent and referenced implications [Ma et al., 2014]. Intuitively, tightening the de-

pendent condition of a valid cind (by making a unary condition binary) or relaxing

the referenced condition (by making a binary condition unary) yields a new valid cind.

For instance, (s, p=memberOf ∧ o=csDepartment) ⊆ (s, p=rdf:type ∧ o=gradStudent) and

(s, p=memberOf) ⊆ (s, p=rdf:type) are also valid, but not minimal, because they can be

inferred from the above cind.

Formally, we denote with φ⇒ φ′ the fact that a binary condition φ implies a unary

condition φ′, i. e., the predicate of φ′ is one of the two predicates of φ. For instance, φ ≡
p=memberOf ∧ o=csDepartment implies φ′ ≡ p=memberOf. Consequently, (α, φ) ⊆ (α, φ′)

is a valid cind if φ ⇒ φ′. Therefore, if a cind (α, φ1) ⊆ (β, φ2) holds in a dataset T ,

then: (i) a dependent implication states that any cind (α, φ′1) ⊆ (β, φ2) with φ′1 ⇒ φ1
also holds in T , because (α, φ′1) ⊆ (α, φ1) ⊆ (β, φ2); and similarly (ii) a referenced

implication states that any cind (α, φ1) ⊆ (β, φ′2) with φ2 ⇒ φ′2 also holds in T , because

(α, φ1) ⊆ (β, φ2) ⊆ (β, φ′2). This allows us to define minimal cinds as follows:
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Definition 3.4 (Minimal cind). A cind (α, φ1) ⊆ (β, φ2) is minimal if and only if

(i) (α, φ′1) ⊆ (β, φ2) is not a valid cind for any condition φ′1 that implies φ1; and

(ii) (α, φ1) ⊆ (β, φ′2) is not a valid cind for any condition φ′2 that is implied by φ2.

Example 3.4. Figure 3.3 depicts four cinds for the dataset from Figure 3.1. The cind

ψ1 implies ψ2 and ψ3, which in turn imply ψ4, respectively. Hence, only ψ1 is minimal.

Figure 3.3: Extract from the cind search space for Figure 3.1. The nodes are cind

candidates and the arrows implications.

Having settled minimality, let us now proceed to explain broad cinds. Intuitively,

a broad cind describes the inclusion of a sufficient or large number of distinct values.

For instance, if we require the inclusion of at least two values, then (s, p=rdf:type ∧
o=gradStudent) ⊆ (s, p=undergradDegreeFrom) is broad. Focusing on broad cinds avoids

cinds that (i) embed void conditions, which do not match a single triple in a given rdf

dataset and which are infinite in number, (e. g., (s, p=memberOf ∧ o=geoDepartment) ⊆
(s, p=rdf:type ∧ o=professor)) and that (ii) pertain to very few distinct values, which are

neither useful to summarize nor to state the general properties of a given rdf dataset

(e. g., (o, s=patrick ∧ p=rdf:type) ⊆ (o, s=mike ∧ p=rdf:type)). Formally, we define this

number of distinct values as support, inspired from the widely adopted measure for

association rules [Agrawal and Srikant, 1994]:

Definition 3.5 (Support). Given an rdf dataset T , the support of a cind ψ = c⊆ c′ is
defined as supp(ψ) := |I(T, c)|.

Example 3.5. The cind (s, p=memberOf∧o=csDepartment) ⊆ (s, p=undergradDegreeFrom∧
o=hpi) has a support of 1 in the dataset from Figure 3.1. This is because its dependent

capture (s, p=memberOf ∧ o=csDepartment) selects a single value, namely patrick. Thus,

this cind describes a rather specific insight that pertains only to a single person.

Definition 3.6 (Broad cind). Given an rdf dataset T and a user-defined support

threshold smin, the cind ψ is considered broad if its support satisfies the support thresh-

old, i. e., supp(ψ) ≥ smin.

The choice of the support threshold depends on the use case and its dataset. In

our experience, h=1,000 is a reasonable choice for the query optimization and ontology

reverse engineering use cases, while h=25 works well for the knowledge discovery use
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case. That being said, we evaluate the impact of the support threshold in detail in the

evaluation in Section 3.6.4. Without any loss of generality, we assume this threshold

to be given. Usually, even small support thresholds bear great pruning power. In the

aforementioned Diseasome dataset, over 84% of its 219 million minimal cinds have a

support of 1 and from the other 34.9 million cinds, another 97.4% have a support

below 10.

CINDs as Association Rules

Cinds are natural extensions of regular inds, but they also share some properties with

exact association rules3 (ars4), i. e., those with confidence 1. By interpreting rdf triples

(e. g., (patrick, rdf:type, gradStudent)) as transactions ({s=patrick, p=rdf:type, o=gradStudent}),
we can find ars in rdf datasets, such as o=gradStudent→ p=rdf:type in Figure 3.1.

Every ar α=v1 → β=v2 implies the cind (γ, α=v1) ⊆ (γ, α=v1 ∧ β=v2), e. g., the
above example ar implies the cind (s, o=gradStudent) ⊆ (s, p=rdf:type ∧ o=gradStudent).

The reason is as follows: Every triple satisfying the condition o=gradStudent also satisfies

p=rdf:type. In other words, the triples that satisfy o=gradStudent are a subset of those

triples that satisfy p=rdf:type (and o=gradStudent, for that matter). It follows that the

projections of those triple sets to the subject s are also in a subset relationship.

Nevertheless, the inverse implication is not necessarily correct: For example, adding

the triple (patrick, status, gradStudent) to the rdf dataset in Figure 3.1 would invalidate

the ar but not the cind. Also, in our experience the vast majority of cinds is not

implied by any ar. In particular, all example cinds in Section 3.1 are not implied by

ars unless explicitly mentioned otherwise.

That being said, when profiling an rdf dataset for cinds, ars can replace some

those cinds, thereby enhancing the result’s understandability and enabling further ap-

plications, such as selectivity estimation [Ilyas et al., 2004]. Moreover, ar discovery is

less complex than cind discovery. We leverage this circumstance: We quickly discover

the ars in a dataset and use them to prune the cind search space, thereby improving

the efficiency of our cind discovery algorithm.

* * *

The above theoretical insights allow us to avoid a näıve, hardly tractable problem

statement (“Discover all cinds in a given dataset.”) and formulate a more elaborate one

instead: For a given dataset T and a user-defined cind support threshold smin, efficiently

discover all pertinent cinds that hold on T , that is, all cinds that are both minimal and

broad. Moreover, if a pertinent cind ψ is implied by an ar r, provide r instead of ψ due

to its stronger semantics.

3The association rules considered in this chapter are different from the ones used by Abedjan and

Naumann [2013]. See Section 3.7 for details.
4Note that association rules and augmentation rules (the latter being introduced in the context of

ind discovery in Definition 2.3) happen to share the abbreviation “ar”, but are unrelated concepts.
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Figure 3.4: The cind search space for the Diseasome dataset (72,445 triples) and a

support threshold of 10.

3.2.2 Algorithm Overview

Having defined a concrete cind discovery problem, we proceed to outline how our al-

gorithm RDFind solves it. Similar to Sindy, we formulate RDFind as a distributable

data flow (cf. Section 2.2.4). Furthermore, RDFind operates in the same environment

presented in Section 1.4, with one minor modification, though: RDFind operates on

rdf data instead of relational data. The triples of this dataset, however, may also be

distributed among the workers, e. g., by means of an HDFS or a triple store.

In order to efficiently discover all pertinent cinds in such a scenario, RDFind pro-

ceeds as explained in the following. In practice, the set of minimal cinds is often consid-

erably larger than the set of broad cinds. For example, the Diseasome dataset, which we

mentioned already in the above section, comprises approximately 219 million minimal

cinds but fewer than 1 million broad cinds for a support threshold of 10 (see Figure 3.4).

On the face of these numbers, it seems highly reasonable to reduce the search space to

broad cind candidates first and only then proceed to consider the minimality criterion.

To this end, we devise a lazy pruning strategy that reduces the search space in two

phases. Figure 3.5 illustrates the overall architecture of RDFind, which comprises three

main components: the Frequent Condition Detector (FCDetector), the Capture Groups

Creator (CGCreator), and the Cind Extractor (CINDExtractor). The first and third

component are responsible for specific steps in the lazy pruning employed by RDFind.

The second component reorganizes the input data in a manner that allows for efficient

cind extraction. We briefly discuss these components next and give the algorithmic

details in the following sections.

Before initiating the actual search for cinds, the FCDetector first narrows the

search space to a set of cind candidates having frequent conditions only, i. e., conditions

on the input dataset that are satisfied by a certain minimum number of triples. This

represents the first phase of the lazy pruning. This pruning works, because all broad

cinds embed only frequent conditions, as we prove in Section 3.3). RDFind also exploits

frequent conditions to easily derive association rules and, consequently, to further prune

the search space.
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Figure 3.5: Overview of the RDFind system.

Next, the CGCreator transforms all rdf triples in the previously pruned search

space into compact representations, called capture groups, from which it can efficiently

extract cinds. A capture group is a set of captures whose interpretations have a certain

value in common. For example, in the data from Figure 3.1 the value patrick spawns

a capture group containing, amongst others, the capture (s, p=rdf:type∧o=gradStudent).

We explain these steps in detail in Section 3.4.

Given the capture groups, the CINDExtractor reduces the search space of cind

candidates with frequent conditions to the set of broad cind candidates. This is the

second phase of our lazy pruning strategy. Subsequently, this third component extracts

the broad cinds and their support from the capture groups. As cind extraction is usually

the most expensive step, the CINDExtractor is equipped with several techniques, such

as load balancing, to perform this step efficiently. Finally, it mines for pertinent cinds,

i. e., it searches for minimal cinds among all discovered broad cinds. The details of this

component are given in Section 3.5.

3.3 Frequent Condition Discovery

As a start, RDFind executes the first phase of our lazy pruning strategy and reduces

the search space to the set of cind candidates whose conditions (cf. Definition 3.1) are

frequent. Knowing frequent conditions is crucial for two main reasons: First, they allow

RDFind to significantly reduce the search space and, thus, to achieve low execution

times and memory footprints. Second, they yield ars (cf. Section 3.2.1) at little cost,

which improve the output usefulness. In the following, we further explain why frequent

conditions (as well as ars) help us to reduce the search space towards finding broad

cinds. Then, we detail how we discover frequent conditions and ars.

3.3.1 Why Frequent Conditions?

A frequent condition is that condition whose number of satisfying triples (condition

frequency) is not below the user-defined support threshold (cf. Definition 3.5). The

support of a cind is tightly connected with the condition frequency of its dependent and

referenced captures, as we assert in the following, simple lemma.
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Lemma 3.1. Given a cind ψ := (α, φ) ⊆ (β, φ′) with support supp(ψ), the condition

frequencies of φ and φ′ are equal to or greater than supp(ψ).

Proof. From the support definition, we have that the interpretation of the dependent

capture (α, φ) contains supp(ψ) values. The referenced capture (β, φ′), which is a su-

perset, therefore contains at least supp(ψ) values. As each value in the interpretation of

a capture must be found in at least one triple and each triple yields exactly one value,

the capture’s embedded condition must satisfy at least as many triples as this number

of values. Thus, both φ and φ′ must have a condition frequency ≥ supp(ψ).

With Lemma 3.1 we do not need to validate cind candidates having conditions with a

frequency below a user-specified support. Indeed, finding frequent conditions drastically

reduces the cind search space. Figure 3.6 shows that, for real world-datasets, the vast

majority of the conditions are satisfied by only very few triples. For instance, in the

DB14-MPCE dataset, 86% of the conditions have a frequency of 1, i. e., they hold for a

single triple only, and 99% of the conditions have a frequency of less than 16. In practice,

however, most cind use cases require the conditions to have a high frequency.

Figure 3.6: Number of conditions by frequency in real-world datasets of varying size

from ∼72k (Diseasome) to ∼33M (DBP14-MPCE) triples.

In addition, frequent conditions allow RDFind to easily derive ars. As discussed in

Section 3.2.1, the system can use ars to further prune the cind search space. Recall

that the ar θ := β=v1→γ=v2 implies the cind ψ := (α, β=v1) ⊆ (α, β=v1 ∧ γ=v2).
For instance, the data in Figure 3.1 contains o=gradStudent → p=rdf:type, which implies

(s, p=rdf:type) ⊆ (s, p=rdf:type∧o=gradStudent). Therefore, RDFind can simply keep ars

and exclude all its implied cinds from the cind search.

Besides replacing cinds with ars, the latter further allow for equivalence pruning :

The reverse cind of ψ, i. e., (α, β=v1 ∧ γ=v2) ⊆ (α, β=v1), trivially holds, because its

dependent condition logically implies its referenced condition. In consequence, the ar θ
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implies that (the interpretations of) (α, β=v1) and (α, β=v1 ∧ γ=v2) are equal. Accord-

ingly, our above example captures (s, o=gradStudent) and (s, p=rdf:type∧o=gradStudent)

contain the exact same values, namely patrick and mike. Therefore, an ar β=v1 → γ=v2
allows RDFind to prune all cind candidates involving the capture (α, β=v1 ∧ γ=v2);
they are equivalent to the candidates involving the capture (α, β=v1).

3.3.2 Finding Frequent Conditions

We formulate the problem of finding frequent unary and binary conditions as a fre-

quent itemset discovery problem. As such, we interpret each triple (s1, p1, o1) as a

transaction {〈s=s1〉, 〈p=p1〉, 〈o=o1〉}5. Directly applying the state-of-the-art Apriori al-

gorithm [Agrawal and Srikant, 1994] to find all frequent unary and binary conditions,

however, would be inefficient as it was designed for single-node settings and itemsets

with arbitrarily many items. Furthermore, it does not scale to large amounts of frequent

itemset candidates, because it needs to keep all candidates in memory. Therefore, we

tailor the Apriori algorithm to our specific problem. The result is a fully distributed algo-

rithm that scales to arbitrary amounts of candidates by checking candidates on-demand

using space-efficient indices. Figure 3.7 depicts the data flow of our algorithm to discover

frequent conditions. Generally speaking, it consists of two passes over the data and an

ar detection phase that takes place on the fly. In more detail, it operates in the following

four main steps:

In the first step, we discover frequent unary conditions. For that purpose, we as-

sume that all triples are distributed among the RDFind workers of a cluster, e. g., by

means of a distributed triple store (cf. Figure 3.5). Each worker can then process an

independent horizontal partition of the input dataset. A worker reads each input rdf

triple in its data partition and creates three unary conditions with a condition counter

set to 1 (Step (1) in Figure 3.7). For instance, a worker creates the three unary con-

dition counters (〈s=patrick〉, 1), (〈p=rdf:type〉, 1), and (〈o=gradStudent〉, 1) for the triple

(patrick, rdf:type, gradStudent) from Figure 3.1. All workers then run a global GroupReduce6

on the conditions of the unary condition counters and add up the counters for each re-

sulting group (Step (2)). As this global GroupReduce requires shuffling data through

the network, RDFind runs early-aggregations on the counters before shuffling the data,

which significantly reduces the network load. After globally aggregating counters, the

workers discard all non-frequent conditions with a frequency less than the user-specified

support threshold.

In the second step, we compact the frequent unary conditions: Once all those condi-

tions are found, RDFind needs to index them for efficient containment tests both in the

frequent binary conditions discovery and the cinds pruning phase. RDFind tolerates

false positives in this index, so we use a Bloom filter to attain constant look-up time and

a small memory footprint (tens of MB for the largest datasets). Additionally, RDFind

can create this Bloom filter in a fully distributed manner: Each worker encodes all of its

5The 〈...〉 notation introduces its enclosed formulas as syntactical elements rather than their results.
6As in Chapter 2, GroupReduce refers to the grouping aggregation operation of distributed data flow

systems, such as Apache Flink [Flink].
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Figure 3.7: Data flow of the FCDetector.

locally residing frequent conditions in a Bloom filter (Step (3)). The workers then send

their local Bloom filter to a single worker that unions them by calculating a bit-wise OR

(Step (4)).

Finding frequent binary conditions constitutes the third step of the frequent con-

dition discovery. A binary condition can be frequent only if its two embedded unary

conditions are frequent [Agrawal and Srikant, 1994]. At this point, the original Apriori

algorithm would generate all possible frequent binary condition candidates and organize

them in a tree structure for subsequent counting. In rdf scenarios, however, this tree

structure easily becomes too large to fit into main memory. To overcome this challenge,

RDFind never materializes the candidates and, instead, introduces on-demand candi-

date checking. For this, it broadcasts the previously created Bloom filter to all workers

(Step (5)). Each worker runs Algorithm 3.1 to find the frequent binary condition candi-

dates. In detail, each worker reads the triples from its data partition (Line 1 & Step (6))

and performs the candidate check on demand: First, it probes each unary condition

embedded in the input triple against the Bloom filter (Line 2). Then, it generates all

possible frequent binary condition candidates using the frequent unary conditions of the

triple (Lines 3-5). For example, consider the triple (patrick,memberOf, csDepartment) from

Figure 3.1. Knowing by means of the Bloom filter that only the two embedded unary

conditions s=patrick and p=memberOf are frequent, the only candidate for a frequent bi-

nary condition is s=patrick∧ p=memberOf. It then creates a binary condition counter for

each frequent binary condition candidate (Line 6). As for frequent unary condition dis-

covery, RDFind globally aggregates the binary condition counters (Step (7)) and keeps

only the frequent binary conditions.

In the fourth and final step of the frequent condition discovery, RDFind encodes

all frequent binary conditions in a Bloom filter in order to speed up the cind pruning

phase (Steps (8) and (9)). This is basically the same procedure as the compaction of

the frequent unary conditions. As a result of this process, RDFind outputs the set of
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Algorithm 3.1: Create counters for binary conditions

Data: RDF triples T , unary condition Bloom filter Bu

1 foreach t ∈ T do

2 probe 〈s=t.s〉, 〈p=t.p〉, and 〈o=t.o〉 in Bu;

3 foreach (α, β) ∈ {(s, p), (s, o), (p, o)} do
4 vα ← t.α; vβ ← t.β;

5 if 〈α=vα〉 and 〈β=vβ〉 are frequent then

6 forward (〈α=vα ∧ β=vβ〉, 1);

frequent unary and binary conditions, which implicitly represent the pruned cind search

space (Step (10)).

3.3.3 Extracting Association Rules

As in [Agrawal and Srikant, 1994], our frequent conditions discovery algorithm also allows

RDFind to extract association rules at little extra cost. It simply performs a distributed

join of the frequent unary condition counters with the frequent binary condition counters

on their embedded unary conditions (Step (11)). For instance, (〈p=rdf:type〉, 3) and

(〈o=gradStudent〉, 2) both join with (〈p=rdf:type ∧ o=gradStudent〉, 2). Then each worker

checks for each pair in its partition of the join result, if the unary and binary condition

counters have the same counter value. In our example, this is true for (〈o=gradStudent〉, 2)
and (〈p=rdf:type∧o=gradStudent〉, 2), hence, the responsible worker derives the association
rule o=gradStudent→ p=rdf:type with a support of 2. RDFind uses the association rules

to further prune the cind search, as described in Section 3.3, and additionally includes

them in the final result for users (Step (12)), because they are a special class of cinds.

In particular, the association rule support is equal to the support of its implied cinds

according to the following lemma.

Lemma 3.2. The support s of the association rule α=v → β=v′ is equal to the support

of its implied cind (γ, α=v) ⊆ (γ, α=v ∧ β=v′).

Proof. Let s be equal to the support of α=v → β=v′. By definition, the frequencies

of the conditions φ1 := α=v ∧ β=v′ and φ2 := α=v are also s. Because all triples in

an rdf dataset are distinct, the s triples selected by φ1 (and hence by φ2) must have

pairwise distinct values in γ. Thus, the interpretation of capture (γ, α=v) contains s

elements.

3.4 Compact RDF Representation

After discovering the frequent unary and binary conditions, RDFind transforms the rdf

triples into a compact representation that allows it to efficiently create cind candidates.

We call this compact data structure capture group. A capture group is a set of captures
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Figure 3.8: Data flow of the CGExtractor.

(Definition 3.2) whose interpretations have a value in common. Captures having n values

in common co-occur in n capture groups. We first explain how the system creates

captures groups and then demonstrate that we can obtain all broad cind candidates

from capture groups only. Note that the component responsible for the creation of

capture groups, the CGExtractor, is algorithmically similar to (but more complex than)

Sindy’s attribute set creation described in Section 2.2.2.

3.4.1 Capture Groups

RDFind creates capture groups in two steps that are depicted in Figure 3.8. It first

outputs the evidence that a certain value belongs to a capture (capture evidence). For

this, it takes into consideration the previously found frequent conditions and ars. Then,

it groups and aggregates capture evidences with the same value, thereby creating the

capture groups. We detail these two steps in the following.

A capture evidence is a statement that a certain value exists in a capture (inter-

pretation). There are nine possible capture evidences per triple: For each of the three

values of a triple, we could create three capture evidences, of which one has a binary

condition and the other two have unary conditions (cf. Definitions 3.1 and 3.2). For

example, the triple (patrick,memberOf, csDepartment) entails, amongst others, the capture

evidences patrick ∈ (s, p=memberOf) and patrick ∈ (s, p=memberOf ∧ o=csDeparment). One

might think that this is an expensive task as it would increase the input data vol-

ume by a factor of nine. However, remember that at this point RDFind works on

a highly pruned search space containing only frequent conditions (see Section 3.3).

In addition, our system further reduces the number of capture evidences via impli-

cations between binary and unary conditions. For instance, consider again the triple

(patrick,memberOf, csDepartment) and its capture (s, p=memberOf ∧ o=csDepartment). The

resulting capture evidence patrick ∈ (s, p=memberOf ∧ o=csDepartment) subsumes both

patrick ∈ (s, p=memberOf) and patrick ∈ (s, o=csDepartment). Hence, it suffices to keep the

first binary capture evidence and discard the two unary ones.

Algorithm 3.2 shows in detail the capture evidence creation process. Prior to its exe-

cution, the frequent condition Bloom filters and the ars discovered by the FCDetector are

broadcast, so that they are available to every worker (cf. Figure 3.7). As for the frequent

condition discovery, each worker then processes its partition of the input triples. For

each triple, it first picks a projection attribute α (Line 3), e. g., α = s, and two condition

attributes β and γ (Line 4), e. g., β = p and γ = o. Then, for the two emerging unary con-

ditions (p=memberOf and o=csDepartment), it checks whether they might be frequent using
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the Bloom filter for frequent unary conditions (Lines 5–7). If so, it also checks whether

the emerging binary condition (p=memberOf∧o=csDepartment) is frequent, too7 (Line 8)

and does not embed a known ar (Lines 9–10). In this case, it creates a capture evidence

with the binary condition only (Line 11; (patrick ∈ (s, p=memberOf∧o=csDepartment)).

Otherwise, it creates the capture evidences for those of the two unary conditions that

are frequent (Lines 12–14). Finally, these steps are repeated for the remaining projection

attributes (p and o).

Algorithm 3.2: Creating capture evidences

Data: triples T , Bloom filter Bu for frequent unary conditions, Bloom filter Bb

for frequent binary conditions, ars AR

Result: Evidences of relevant captures C

1 foreach t ∈ T do

2 C ← ∅;
3 foreach α ∈ {s, p, o} do
4 {β, γ} ← {s, p, o} \ {α};
5 vα ← t.α; vβ ← t.β; vγ ← t.γ;

6 if 〈β = vβ〉 ∈ Bu then

7 if 〈γ = vγ〉 ∈ Bu then

8 if 〈β = vβ ∧ γ = vγ〉 ∈ Bb

9 ∧ 〈β=vβ → γ=vγ〉 6∈ AR
10 ∧ 〈γ=vγ → β=vβ〉 6∈ AR then

11 C ← C ∪ {〈vα ∈ (α, β=vβ∧γ=vγ ]〉};
12 else C ← C ∪ {〈vα ∈ (α, β=vβ)〉, 〈vα ∈ (α, γ=vγ)〉};
13 else C ← C ∪ {〈vα ∈ (α, β=vβ)〉};
14 else if 〈γ=vγ〉 ∈ Bu then C ← C ∪ {〈vα ∈ (α, γ=vγ)〉} ;

RDFind aggregates all capture evidences with the same value using a global Group-

Reduce and calculates the union of their captures in order to create capture groups.

Again, early aggregates are calculated whenever possible to reduce network and memory

pressure. Although each capture group corresponds to a certain value from the input rdf

dataset, the system discards the values as they are no longer needed. For instance, for the

dataset in Figure 3.1, a support threshold of 3 and the value patrick, we have the capture

evidences patrick ∈ (s, p=rdf:type) and patrick ∈ (s, p=undergradDegreeFrom). The aggrega-

tion combines them into the capture group {(s, o=rdf:type), (s, p=undergradDegreeFrom)}.
Note that the capture groups are distributed among the workers after this step and

can therefore be processed in a distributed manner by the following component, the

CINDExtractor.

7Notice that testing the unary conditions before the binary ones avoids some false positives from the

binary Bloom filter.
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3.4.2 From Capture Groups to Broad CINDs

Let us now show that it is possible to extract all broad cinds from a given rdf data-

set using capture groups. To this end, we exploit commonalities of the capture-based

cind definition (i. e., Definition 3.3) with our attribute set-based ind characterization

in Theorem 2.1. Intuitively, a cind is satisfied if each capture group that contains the

referenced capture also contains the dependent capture. Formally:

Lemma 3.3. Let T be an rdf dataset and G its capture groups. Then, a cind ψ := c ⊆ c′
is valid on T iff ∀G ∈ G : c ∈ G⇒ c′ ∈ G, with supp(ψ) = |{G ∈ G | c ∈ G}|.

Proof. By construction of the capture groups, for each value v in the interpretation of

a certain capture c, I(T, c), c is contained in a dedicated capture group Gv – and vice

versa. In other words, values and capture groups are in a one-to-one relationship. In

consequence, (the interpretation of) c′ contains all values of c if and only if c′ is member

of all capture groups in which c is a member. Moreover, the number of capture group

memberships of c is exactly the number of values in c and, hence, the support of ψ.

Because at this step RDFind operates in the search space of cind candidates having

frequent conditions, we infer from the above lemma that all broad cinds can be extracted

from capture groups.

Theorem 3.4. Given an rdf dataset T with its capture groups G and a support threshold

smin, any valid cind ψ with support supp(ψ) ≥ smin can be extracted from G.

Proof. This trivially holds from Lemmata 3.1 and 3.3.

3.5 Fast CIND Extraction

As a final step, RDFind’s CINDExtractor component (see Figure 3.9) extracts pertinent

cinds from the previously created capture groups. It proceeds in two main steps: It first

extracts broad cinds from capture groups and then finds the minimal cinds among

the broad ones. In the following, we first show that directly extracting broad cinds is

inadequate for rdf datasets (Section 3.5.1). We then show how RDFind extracts broad

cinds from capture groups efficiently (Section 3.5.2). We finally show how our system

extracts the pertinent cinds from broad cinds (Section 3.5.3).

3.5.1 Inadequacy of a Direct Extraction

RDFind’s broad cind extraction mechanism could be based on existing ind discovery

techniques, such as Sindy’s ind extraction as described in Section 2.2.3. It would work

as follows: Because a valid cind’s dependent capture is in the same capture groups as

its referenced capture (Lemma 3.3), all workers enumerate all cind candidates within

their capture groups. They also add a support counter (initially set to 1) to each cind

candidate as shown in Example 3.6.
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Figure 3.9: Data flow of the CINDExtractor.

Example 3.6. Consider a scenario with three capture groups: G1 = {ca, cb, cc, cd, ce},
G2 = {ca, cb}, and G3 = {cc, cd}. In this case, the näıve approach generates five cind

candidate sets for G1, e. g., (ca ⊑ {cb, cc, cd, ce}, 1), and two for G2 and G3.

The system then performs a global GroupReduce on the dependent capture of the

cind candidate sets and aggregates them by intersecting all their referenced captures

and summing up all its supports. The aggregated cind candidate sets represent all valid

cinds and the support count is used to retain only the broad cinds.

The performance of this approach suffers from capture groups with a large number of

captures (dominant capture groups). Processing a capture group with n captures yields

n cind candidate sets with up to n contained captures each, i. e., the overall number

of captures in cind candidate sets is quadratic in the size of the corresponding capture

group. Therefore, dominant capture groups entail enormous memory consumption and

CPU load as well as a highly skewed load distribution among workers, which severely

impacts performance. Formally, inspired by Kolb and Rahm [2012], we consider a capture

group G as dominant if its processing load, estimated by |G|2, is larger than the average

processing load among all w workers,

∑
Gi∈G

|Gi|
2

w
. For example, assuming two workers

(i. e., w = 2), we consider capture group G1 in Example 3.6 as dominant, because |G1|2 >
|G1|2+|G2|2+|G3|2

2 . In practice, rdf datasets lead to several very large capture groups that

emerge from frequently occurring values, such as rdf:type. This renders the above näıve

solution inadequate for rdf.

3.5.2 Cracking Dominant Capture Groups

To efficiently cope with dominant capture groups, we enhance in the following the above

simple extraction mechanism by (i) pruning the capture groups as much as possible,

(ii) load balancing, and (iii) a two-phase cind extraction strategy. Figure 3.9 depicts the

complete process.
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As the first step to deal with dominant capture groups, RDFind applies a novel

capture-support pruning technique, which is also the second phase of our lazy prun-

ing technique. The capture-support pruning reduces the size of all capture groups by

removing some of their captures. The first phase of our lazy pruning technique (see

Section 3.3) retains cind candidates whose captures embed frequent conditions only. In

general, however, these cind candidates are a proper superset of the broad cind candi-

dates, because the support of a capture can be smaller than the frequency of its embedded

condition. The capture-support pruning identifies and removes these captures from all

capture groups. Basically, our system first computes all capture supports by distribut-

edly counting their occurrences in the capture groups (Steps (1) & (2) in Figure 3.9),

then broadcasts the prunable captures with a support less than the user-defined support

threshold smin to each worker, and eventually each worker removes these captures from

its capture groups (Step (3)). For example, assuming that smin is set to 2, we can then

identify in Example 3.6 that ce appears only in G1, so its support is 1. We therefore

remove it from G1, resulting in the following smaller capture groups: G′
1 = {ca, cb, cc, cd},

G2 = {ca, cb}, and G3 = {cc, cd}.
While the capture-support pruning significantly reduces the size of capture groups,

some dominant capture groups remain and still severely impact performance. RDFind

now clears the skewed work distribution caused by them. For this purpose, each worker

estimates its current load by summing the squares of its capture groups’ sizes. These

loads are then summed up on a single worker (Step (5)), divided by the number of

workers, and the resulting average load is broadcast back to all workers (Step (6)).

Then, each worker identifies its dominant capture groups and divides them into w work

units, and uniformly redistributes them among all workers (Step (7)). Concretely, it

divides each dominant capture group G evenly into w subsets and constructs for each

such subset Ĝi the work unit (Ĝi, G), whereby Ĝi assigns dependent captures to consider

during the upcoming cind candidate generation. For instance, the work units for G′
1 are

({ca, cb}, {ca, cb, cc, cd}) and ({cc, cd}, {ca, cb, cc, cd}).
However, most of the cind candidates enumerated by dominant capture groups are

rather incidental and do not yield valid cinds. As stated above, dominant capture

groups emerge from frequent rdf-specific values, such as rdf:type. If two entities e1 and

e2 occur with rdf:type and, thus, (s, p=e1) and (s, p=e2) are both in the capture group that

corresponds to rdf:type, it is still unlikely that (p, s=e1) ⊆ (p, s=e2) is a valid cind. Our

system exploits this observation in an approximate-validate cind extraction approach

that avoids creating a large number of these unnecessary cind candidates. Each worker

creates all cind candidate sets for each of its capture groups and work units as discussed

earlier (see Example 3.6). For the work units, which emerge from dominant capture

groups, however, it encodes the referenced captures in a Bloom filter of constant size k

instead (Step (7)). This encoding reduces the space complexity of the cind candidate

sets from O(n2) to O(n · k) = O(n), where n is the number of captures in a work unit.

We experimentally observed that k = 64 bytes yields the best performance.

In Example 3.6, our system creates cind candidate sets as discussed before for G2

and G3. In contrast, for the work units derived from G′
1, it creates cind candidate sets

as follows: (ca ⊑ Bloom(cb, cc, cd), 1)
∗, where the mark ∗ indicates that this candidate
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comes from a dominant capture group and is approximate. This mark allows our system

to trace back all Bloom-filter-based cind candidates for further validation as Bloom

filters may generate false positives.

As in the basic extraction, our system then aggregates all the cind candidate sets

with the same dependent capture for validation (Step (8)). Algorithm 3.3 shows this

aggregation process, where Boolean functions f1, f2, and f3 mark whether a candidate

is approximate or not. Conceptually, the workers intersect the referenced captures, but

distinguish three cases: (i) If none of the two cind candidate sets are approximate, they

are intersected as in the basic extraction (Lines 1 & 2 in Algorithm 3.3). As a result,

the system obtains certain cinds (i. e., that do not require further validation). (ii) If

both candidates are approximate, we calculate the bitwise AND of the Bloom filters to

approximate the intersection of their elements (Lines 3 & 4). (iii) If only one of the

candidates is approximate, we probe the other candidate against the Bloom filter and

retain them on probing success (Lines 5–9). For instance, if we need to merge the above

mentioned cind candidate sets (ca ⊑ Bloom(cb, cc, cd), 1)
∗ and (ca ⊑ {cb}, 1), the result

will be (ca ⊑ {cb}, 2)∗.8 Such cind sets that have an approximate cind candidate set

lineage are uncertain and require further validation (unless the set of referenced captures

is empty (Line 10)).

Algorithm 3.3: Cind candidates validation

Data: cind candidate set (c ⊑ C1, count1)
f1 , (c ⊑ C2, count2)

f2

Result: merged cind candidate set (c ⊑ C3, count3)
f3

1 if ¬ hasBloomFilter(C1) ∧ ¬hasBloomFilter(C2) then

2 C3 ← C1 ∩ C2;

3 else if hasBloomFilter(C1) ∧ hasBloomFilter(C2) then

4 C3 ← C1 AND C2;

5 else

6 C ′
1 ← Ci where ¬isBloomFilter(Ci);

7 C ′
2 ← Cj where isBloomFilter(Cj);

8 C3 ← {c ∈ C ′
1 | c ∈ C ′

2};
9 count3 ← count1 + count2;

10 f3 ← (f1 ∧ f2) ∨ isEmpty(C3);

To validate these uncertain cinds, RDFind broadcasts the uncertain cind sets to

each worker (Step (9)) that organize them in a map m with the dependent capture as

key and referenced captures as value. Then, the workers iterate through their local work

units. If a dependent capture c in a work unit is a key inm, the worker intersects the cap-

tures of the work unit with the referenced captures in m[c] and issues the result as a new

cind validation set. For instance for the work unit ({ca, cb}, G′
1), the respective worker

finds that ca is a key in m and creates the validation set ca ⊑ (G′
1∩m[ca]), i. e., ca ⊑ {cb}.

Notice that the validation sets are in general much smaller in number and extent than

the above explained cind candidate sets. Finally, these validation sets are intersected as

8Note that in general, the result might be further aggregated with cind candidate sets, e. g., due to

early aggregation.
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in the basic extraction (Step (10)) and the resulting cinds complement the previously

found certain cinds, denoting then the complete set of broad cinds (Step (11)).

3.5.3 From Broad to Pertinent CINDs

Once all broad cinds are extracted, RDFind obtains the pertinent cinds by retaining

only the minimal ones. Recall that a minimal cind must not be implied by a further

cind: neither by dependent nor referenced implication (see Definition 3.5). RDFind

basically detects all implications among broad cinds in two steps. First, it removes

non-minimal cinds with a binary dependent and a unary referenced condition (Ψ2:1) by

consolidating them with cinds that either have only unary or only binary conditions

(Ψ1:1 and Ψ2:2). Then, in a second step, it removes non-minimal cinds from the latter

two by consolidating them with cinds that have a unary dependent condition and a

binary referenced condition (Ψ1:2).

Let us clarify the above described consolidation process by example for the cind

ψ = (s, p=memberOf)⊆(s, p=rdf:type) ∈ Ψ1:1 from Figure 3.1. Because cinds in Ψ1:1

might be subject to dependent implication with cinds in Ψ1:2, RDFind joins Ψ1:1 and

Ψ1:2 on their dependent captures and referenced project attribute. In our example, this

join matches ψ with ψ′ = (s, p=memberOf)⊆(s, p=rdf:type∧o=gradStudent). RDFind then

finds that ψ′ implies ψ and discards ψ. Altogether, RDFind needs to process four such

join operations; one for each type of implication, i. e., one for each edge in Figure 3.3 on

page 54.

3.6 Experiments

We implemented RDFind on top of Apache Flink 0.9.0 using Scala 2.10 and exhaus-

tively evaluate it using both real-world and synthetic datasets. We conducted our

experiments with five questions in mind: (i) How good is RDFind compared to the

state-of-the-art? (ii) How well does RDFind scale? (iii) How well does RDFind be-

have under different support thresholds? (iv) What efficiency do our pruning techniques

have? (v) Can we start from broad cinds to generate pertinent cind candidates? We

provide the implementation, pointers to the datasets, and the exact measurements for

repeatability purposes at https://hpi.de//naumann/projects/repeatability/data-

profiling/cind-discovery-on-rdf-data.html.

3.6.1 Experimental Setup

To gain comprehensive insights into RDFind and its results, we gathered a broad range

of datasets from different domains and of different sizes: seven real-world datasets and

a synthetic one, summarized in Table 3.1.

We compare RDFind to Cinderella [Bauckmann et al., 2012], the state-of-the-

art cind discovery algorithm for relational data. Cinderella assumes that partial

inds were previously discovered. It basically performs left-outer joins on these partial
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Table 3.1: Evaluation rdf datasets.

Name Size [MB] Triples

Countries 0.8 5,563

Diseasome 13 72,445

LUBM-1 17 103,104

DrugBank 102 517,023

LinkedMDB 870 6,148,121

DB14-MPCE 4,334 33,329,233

DB14-PLE 21,770 152,913,360

Freebase 398,100 3,000,673,968

inds using a database to generate conditions that match only the included tuples of

the partial ind. We used both MySQL 5.6 and PostgreSQL 9.3 with default settings as

underlying database. Additionally, we devised an optimized version Cinderella* that

performs more memory-efficient joins and avoids self-joins, allowing it to significantly

reduce its memory footprint. Notice that we do not compare RDFind to the Pli-

variant [Bauckmann et al., 2012], because Cinderella is shown to be faster. We also

do not compare RDFind to Data Auditor [Golab et al., 2011], because it discovers only

the broadest cind for a partial ind, which is not appropriate for the rdf case. However,

Pli and Data Auditor apply the same overall strategy as Cinderella and differ only

in the generation of conditions.

We conducted all experiments on a commodity hardware cluster consisting of a master

node (Dell PowerEdge R310 (Intel Xeon X3450 (4× 2.66GHz, 8MB Smart Cache), 8GB

RAM, Ubuntu 14.04.5) and 10 worker nodes (Dell OptiPlex 780 with an Intel Core 2 Duo

(2× 2.6GHz, 2MB L2 cache), 8GB RAM, Ubuntu 14.04.5). All nodes are interconnected

via Gigabit Ethernet in a star topology. Furthermore, our prototype reads rdf datasets

from NTriple files distributed in HDFS. In our experiments, Flink (and hence RDFind)

was granted 4GB of RAM on each worker node, leaving the remaining RAM to other

components, such as HDFS.

3.6.2 Comparison of Cinderella and RDFind

We first show that RDFind significantly prevails over the state-of-the-art when discov-

ering cinds in rdf data. For this purpose, we compare the runtimes of RDFind with

Cinderella [Bauckmann et al., 2012] on different datasets. As Cinderella is not

a distributed algorithm, we ran our experiments on only the master node of our clus-

ter, granting the algorithms 4GB of main memory. Furthermore, due to Cinderella’s

high main memory requirements, we use only our two smallest datasets, Countries and

Diseasome.

Figure 3.10 shows the results of this comparison with Cinderella. On the very

small Countries dataset, RDFind consistently outperforms the standard Cinderella by

a factor from 8 to 39. However, the optimized version on PostgreSQL is up to 20 seconds

faster, because RDFind’s runtime is dominated by a fix overhead, particularly Flink’s
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Figure 3.10: RDFind vs. standard and optimized Cinderella on MySQL and

PostgreSQL (PSQL). Flash symbols indicate algorithm failures and therefore present

lower bounds on the execution time.

start-up costs. For the larger (but still small) Diseasome dataset this overhead is already

redeemed, though. We observe that the regular version of Cinderella failed for each

execution and the optimized version for the support thresholds 5 and 10 due to their

high memory consumption. Our system, in contrast, handles all executions flawlessly

and outperforms Cinderella by a factor of up to 419 without considering the failed

runs. This is mainly because, in contrast to Cinderella, which performs a join for each

designated combination of projection attributes using a database (which also explains

the differences among PostgreSQL and MySQL), our system covers the complete cind

search space in a single execution using optimized data structures and algorithms. Note

that in contrast to RDFind, Cinderella does not consider referenced conditions, which

is a strong simplification of the cind discovery problem. This increased generality, the

higher efficiency, and the robustness w. r. t. main memory render RDFind superior to

Cinderella on rdf data. Therefore, we henceforth focus on evaluating only our system

for bigger datasets that Cinderella cannot (efficiently) handle.

3.6.3 Scalability

We proceed to study the scalability of RDFind in terms of both the number of input

triples and worker computers. At first, we analyze RDFind’s robustness by evaluating

its efficiency when varying the number of input triples. For this experiment, we consider

the Freebase dataset, which is among the largest rdf datasets: With 3 billion triples and

a total size of 400GB, it exceeds the amount of available memory in our cluster by a

factor of 10. We run our system over different sample sizes of the Freebase dataset using

a support threshold of 1, 000. Furthermore, we consider predicates only in conditions,

because the above experiments rarely showed meaningful cinds on predicates.

Figure 3.11 illustrates the runtime of RDFind and the number of cinds and ars

discovered for different numbers of input triples. We observe a slightly quadratic run-
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time behavior of our system. This is because the size of capture groups increases along

with the number of input triples, and the cind extraction runtime grows quadratically

with the capture group sizes. Nevertheless, RDFind can process the full dataset, which

demonstrates its high scalability, discovering more than 1 million pertinent cinds. In-

deed, including more triples leads to more pertinent cinds. In contrast, the number of

association rules (ars) grows to a peak at 1 billion triples and declines afterwards. Ars

have stricter semantics than cinds and hence they are more easily violated by adding

triples. Although this impairs the effectiveness of our pruning with ars, overall the

system shows to scale well with the number of input triples.

Figure 3.11: RDFind when increasing the number of input triples with a support

threshold of 1,000.

Next, we evaluate the scalability of our system when increasing the number of worker

computers. We consider the medium-size LinkedMDB dataset with a varying support

threshold smin and number of machines, each running a single thread. As Flink allows

for parallelism in a single node through multi-threading, we consider an additional case

with 10 workers, each running two threads. Figure 3.12 shows the measured runtimes

and the average speed-up w. r. t. a parallelism of 1. We observe that our system scales

almost linearly with the number of machines. In particular, when the support threshold

is low and very few capture groups dominate the runtime, the load balancing ensures

high resource utilization. On average, we measured a speed-up of 8.14 on 10 machines.

We also observe that the intra-node parallelism allows RDFind to gain an additional

speed-up of 1.38 on average. This shows that our system scales both with the number

of machines as well as with the number of cores per machine.

3.6.4 Impact of the support threshold

Having shown RDFind’s scalability, we now focus on evaluating the efficiency of our

system when the number of pertinent cinds increases. For that purpose, we run RDFind

on all our datasets with varying support thresholds. Concretely, let us first focus on how
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Figure 3.12: RDFind when increasing the number of machines on LinkedMDB with

varying support threshold smin.

the support threshold impacts RDFind’s runtime. Figure 3.13 shows the runtimes for

our system when discovering pertinent cinds on multiple datasets and different support

thresholds smin and reveals a pattern on all datasets: For large support thresholds,

RDFind is almost indifferent to the threshold setting and provides almost a constant

runtime. For instance, for LUBM1, this is the case for h ≥ 10. In contrast, the runtime

quickly rises when decreasing smin below 10. The reason for this is the distribution of

conditions w. r. t. their frequencies: As shown in Figure 3.6, most conditions in datasets

hold on only very few triples. Thus, for very small support thresholds our system can

prune only few conditions, which leads to more captures and, more importantly, to larger

capture groups. This agrees with our observation that the cind extraction becomes the

dominating component for small support thresholds because of its quadratic complexity

w. r. t. capture group sizes. However, as we show in the following experiments, low-

support cinds are also useful for specific applications.

Besides the runtime, we also evaluate how the support threshold impacts the result of

our system. Figure 3.14 displays the complete number of pertinent cinds (including ars)

that RDFind discovers for multiple support thresholds. We observe that the number

of pertinent cinds is to some extent inversely proportional to the support threshold.

Decreasing the support threshold by two orders of magnitude increases the number of

cinds by three orders of magnitude in the evaluation datasets (the ars behave similarly

and usually account for 10–50% of the cinds). In consequence, the majority of cinds

in rdf datasets have a small support, while there are only a few broad cinds, i. e., only

few cinds are supported by a large number of triples.

Still, these very broad cinds are of high importance as they state general properties

of their respective dataset. For example, we found that the DBpedia dataset (DB14-

MPCE) embeds the two cinds (o, p=associatedBand) ⊆ (o, p=associatedMusicalArtist) and

(s, p=associatedBand) ⊆ (s, p=associatedMusicalArtist) with supports of 41,300 and 33,296,

respectively. This suggests that the associatedBand predicate is a subproperty of associ-

atedMusicalArtist and hence it is a hint to revise the ontology. On the other side, low-
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Figure 3.13: RDFind with different datasets and support thresholds.

support cinds are also useful to some applications. For instance, DBpedia holds the

cinds (s, p=writer ∧ o=Angus Young) ⊆ (s, p=writer ∧ o=Malcolm Young) and, vice versa,

(s, p=writer ∧ o=Malcolm Young) ⊆ (s, p=writer ∧ o=Angus Young), both having a support

of 26. This reveals that the AC/DC members Angus and Malcolm Young have written

all their songs together: a new fact, that is not explicitly stated in DBpedia. These

results demonstrate the relation between cind support and cind semantics and justify

why users should set different support thresholds for different use cases.

Figure 3.14: Number of pertinent cinds for different datasets and supports.
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3.6.5 Pruning Effectiveness

To investigate the effectiveness of our pruning techniques and algorithmic choices, we

compare RDFind with two simplified versions: RDFind-DE (Direct Extraction) ex-

tracts cinds from capture groups without the capture-support pruning, load balancing,

and approximate-validate extraction (see Section 3.5.1). RDFind-NF (No Frequent

Conditions) additionally waives any operation related to frequent conditions (see Sec-

tion 3.3).

Figure 3.15 compares the three variants on our two smallest datasets. While RDFind

and RDFind-DE are similarly efficient, RDFind-NF exhibits drastically inferior perfor-

mance in all measurements. We conclude that the pruning techniques related to frequent

conditions are highly effective, even for small datasets and low support thresholds.

Figure 3.15: Runtimes of RDFind, RDFind-DE, and RDFind-NF for various

support thresholds.

We proceed to compare only RDFind and RDFind-DE on larger datasets in Fig-

ure 3.16. For the large support thresholds, RDFind-DE is slightly more efficient than

RDFind in four of five cases. In these scenarios, the overhead for coping with domi-

nant capture groups in RDFind is not redeemed. Still, RDFind’s accumulated runtime

is 4.6 minutes shorter than RDFind-DE’s runtime. For the small support thresholds,

RDFind is much more efficient and robust. On the three smaller dataset, it achieves

an average speed-up of 5.7 over RDFind-DE. Because small support thresholds entail

long runtimes, this is an absolute speed-up of 50.4 minutes. Furthermore, RDFind-DE

was not able to handle the larger DB14-MPCE and DB14-PLE due to main memory

requirements. These results show the improved robustness, overall higher efficiency, and

the low overhead of cracking dominant capture groups of RDFind.

3.6.6 Why not minimal CINDs first?

Recall that RDFind finds all broad cinds at first and then removes all non-minimal ones.

It is an intriguing idea to discover only minimal cinds at first by employing referenced

and dependent implication as explained in Section 3.2.1. We implemented this idea by
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Figure 3.16: Runtimes RDFind and RDFind-DE for small and large supports. The

longest run refers to the execution time of the slower algorithm, respectively. The

flash symbols mark algorithm failures.

doing multiple passes over the capture groups, extracting only certain kinds of cinds

in each pass, and generating a reduced candidate set for the next pass. This strategy

turned out to be up to 3 times slower even than RDFind-DE. Usually, broader cinds

are also minimal cinds as exemplified in Figure 3.4, so the overhead of this strategy is

greater than its savings. This clearly shows the efficiency of the strategy we follow in

RDFind.

3.7 Related Work

As we have pointed out throughout this chapter, RDFind incorporates and extends

concepts of Sindy, our algorithm for unary ind discovery on relational data. As such,

RDFind is also to some extent related to other relational ind discovery algorithms.

At this point, we omit a detailed discussion of works in that area, though, as we have

thoroughly surveyed those in Section 2.1. Instead, this section focuses particularly on

(i) rdf profiling in general, (ii) cind discovery algorithms, and (iii) on only a small

selection of relevant ind algorithms.

RDF profiling

Given the recent popularity of the LOD initiative [Bizer et al., 2009], a variety of sys-

tems for analyzing and profiling rdf data have been devised. Most of them focus on

either RDFS/OWL schema discovery [Khatchadourian and Consens, 2010; Li, 2012] or
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on gathering statistics of Linked Data [Auer et al., 2012; Käfer et al., 2013]. ProLOD++,

in contrast, comprises a wider variety of data profiling and mining tasks for rdf data,

such as schema discovery and key discovery [Abedjan et al., 2014a]. However, none of

these systems tackles the problem of discovering cinds.

In a more closely related line of research, Abedjan and Naumann [2013] propose to

profile association rules on rdf data, which can be used for schema analysis and cluster-

ing, amongst others. Those association rules are different from our ars9, though: While

our ars consider the rdf triples as transactions, the association rules are mined on trans-

actions that are formed by (i) grouping the triples on some rdf attribute (subject, predi-

cate, or object) and (ii) projecting each triple group on some other rdf attribute. For ex-

ample, they can group the data from Figure 3.1 by their subject and project the groups to

the predicate; then they obtain the transactions {rdf:type,memberOf, undergradDegreeFrom}
(for patrick), {rdf:type,memberOf, undergradDegreeFrom} (for mike), {rdf:type} (for john), and

{undergradDegreeFrom} (for tim).

As a matter of fact, the association rules are closely related to cinds. As an example,

the above transactions admit the association rule memberOf→ undergradDegreeFrom, which

corresponds to the cind (s, p=memberOf) ⊆ (s, p=undergradDegreeFrom). Therefore, the

use cases for association rules are also applicable to cinds to a certain extent. However,

neither of the two concepts, association rules and cinds, dominates the other. While

association rules allow for n-ary antecedants and admit non-exact rules, cinds are much

more expressive in the choice of their projection and condition attributes. For instance,

the cind (s, p=rdf:type ∧ o=gradStudent) ⊆ (s, p=undergradDegreeFrom) from Figure 3.1

cannot be expressed as an association rule.

As far as the discovery is concerned, Abedjan and Naumann [2013] employ the well-

known FP-growth algorithm to explore association rules in rdf data [Han et al., 2000].

In contrast, for the discovery of ars RDFind builds upon a distributed version of the

Apriori algorithm [Agrawal and Srikant, 1994], that is made robust through use of Bloom

filters. Furthermore, RDFind’s overall strategy borrows its algorithmic foundations from

ind discovery (especially from the Sindy algorithm) and is therefore different from the

work of Abedjan and Naumann [2013].

CIND discovery

While much research has been conducted regarding the discovery of data dependencies,

especially on relational data, the subarea of conditional dependency discovery has re-

ceived relatively little attention [Abedjan et al., 2015]. Initially, Bohannon et al. [2007]

proposed to amend functional dependencies with conditions to form data cleaning rules;

Bravo et al. [2007] transferred this idea to inds, thereby formalizing cinds for relational

data and studying their theoretical properties. Subsequently, also the discovery problem

for cinds has been tackled – at least for relational data. We are aware of only two main

lines of work in this area, though. A reason for this scarcity of research might be the

high computational complexity of cind discovery.

9To avoid confusion, we refer to our notion of association rules exclusively as ars in this discussion.

76



3.7 Related Work

Bauckmann et al. [2012] propose two algorithms, namely Cinderella and Pli, both

of which adopt the same basic approach: They accept a partial ind10 that has been

discovered by a partial ind discovery algorithm and then determine conditions that

exclude such tuples that violate the given partial ind. This proceeding vastly differs from

RDFind: At first, RDFind directly discovers all cinds in a dataset, while Cinderella

and Pli depend on a partial ind discovery algorithm and have to be applied to every

discovered partial ind individually. Furthermore, these two algorithms specify conditions

only on the dependent/LHS table of any given ind. As a result, the discovered cinds

might not be minimal in the sense of Section 3.2.1.

Golab et al. [2011] also pursue this approach of decorating a given partial ind with

conditions, but with a twist: their system Data Auditor seeks to determine the most

concise condition to restrict the partial ind to a cind. In doing so, Data Auditor

also supports disjunctions of conjunctive queries. However, because this system too

restricts only the dependent/LHS tables, such cinds can be split into sets of cinds with

purely conjunctive conditions. In other words, the cinds that RDFind discovers can be

assembled to cinds with conjunctions. For instance, the dataset in Figure 3.1 satisfies the

cinds (s, p=rdf:type∧o=gradStudent) ⊆ (s, p=undergradDegreeFrom) and (s, p=memberOf) ⊆
(s, p=undergradDegreeFrom), which could be assembled to (s, (p=rdf:type∧o=gradStudent)∨
p=memberOf) ⊆ (s, p=undergradDegreeFrom).

IND discovery

RDFind creates capture groups (see Section 3.4) and extracts cinds from them (see

Section 3.5). On a superficial level, this is RDFind’s equivalent of Sindy’s attribute

set creation (see Section 2.2.2) and its subsequent ind extraction (see Section 2.2.3),

which in turn is the algorithmic foundation of many other ind discovery algorithms. A

particularly notable algorithm among those is the recent Many algorithm [Tschirschnitz

et al., 2017].

Many was conceived specifically for the ind discovery among web tables. While

“traditional” relational databases usually contain only thousands of columns (cf. Sec-

tion 2.5) – perhaps sometimes tens of thousands – Tschirschnitz et al. [2017] consider

hundreds of thousands of columns. The resulting challenge is the huge number of ind

candidates, which grows quadratically in the number of columns. Many makes use of

the fact that the vast majority of ind candidates do not form actual inds. To this end,

it creates a Bloom filter-based signature matrix for the input data and then performs

bitwise AND operations on this matrix to quickly falsify the majority of non-inds.

RDFind faces more or less the same challenge, especially on low support thresholds,

because the number of cind candidates grows quadratically in the number of unpruned

captures. However, RDFind tackles this problem with different means: (i) Its lazy prun-

ing strategy successively prunes the number of captures; (ii) it detects dominant capture

groups and load-balances their processing; (iii) and for cind candidates from dominant

captures group, RDFind applies a two-step cind extraction process that approximates

10Recall from Section 2.3 that an ind A ⊆ B is partial whenever the set of values in column A are

almost a subset of the set of values in column B.
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cind first and only then verifies them. In contrast to Many, RDFind can further be

distributed on computer clusters.

3.8 Summary

This chapter introduced the novel concept of pertinent cinds on rdf datasets and pre-

sented the RDFind system for their discovery. In contrast to existing cind algorithms,

which find partial inds at first and then generate conditions for each partial ind individ-

ually, RDFind discovers all cinds in a single run employing efficient pruning techniques.

We showed experimentally that our algorithm outperforms the state-of-the-art algorithm

Cinderella by orders of magnitude (while considering a more general class of cinds)

and is robust and scalable enough to handle large rdf datasets that were not possible

to handle before.

For the future, it would be helpful to (inter-)actively aid users in determining an

appropriate support threshold to find the relevant cinds for their applications. Also, dis-

cerning meaningful and spurious cinds, e. g., using the local closed world assumption, is

an interesting aspect to investigate [Dong et al., 2014]. In any case, we have enabled new

research to incorporate cinds in many rdf data management scenarios, e. g., data inte-

gration, ontology re-engineering, knowledge extraction, and query optimization. Finally,

it would be intriguing to propagate RDFind’s novel algorithmic strategies to Sindy to

allow it to scale to greater numbers of columns.
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Chapter 4

Discovery of Partial Functional De-

pendencies and Partial Unique Col-

umn Combinations

The two previous chapters deal with the discovery of inds on relational data and cinds

on rdf data. As their names indicate, both dependency types are closely related and

the solutions we propose for their discovery share some algorithmic ideas. This chapter

returns to the relational terrain, but it deals with profoundly different, yet fundamental,

important types of dependencies and their discovery, namely partial1 unique column

combinations (puccs) and partial functional dependencies (pfds). In fact, inds belong

into the class of tuple-generating dependencies, while (exact) uccs and fds are instances

of the class of equality-generating dependencies [Abiteboul et al., 1995]. In consequence,

puccs and pfds have to be discovered with strategies that are completely distinct from

those presented in the previous chapters.

In this chapter, we present Pyro [Kruse and Naumann, 2018], a unified algorithm

to discover both puccs and pfds. At its core, Pyro uses a separate-and-conquer strat-

egy that uses sampling to quickly discover promising dependency candidates and then

applies a strategy that reduces the effort to validate those candidates. However, before

explaining our algorithm, we motivate the need for the efficient discovery of puccs and

pfds in Section 4.1 and discuss related work in Section 4.2. Then, Section 4.3 gives

an overview of how Pyro operates, followed by detailed descriptions of the algorithm’s

components: Section 4.4 lays out how Pyro estimates and calculates the error of pucc

and pfd candidates; Section 4.5 combines these operations in a separate-and-conquer

search strategy; and Section 4.6 shows how Pyro can employ multiple cores and even

multiple machines for its computation. Finally, Section 4.7 experimentally evaluates our

algorithm and compares it to the state of the art, before we summarize this chapter in

Section 4.8.

1Recall from Section 1.3 that partial dependencies allow for violations in the data.
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4.1 The Exception Proves the Rule

Functional dependencies (fds) and unique column combinations (uccs) are among the

most important dependencies for relational databases. Recall from Section 1.3 that an

fd states that some attributes in a relational instance functionally determine the value

of a further attribute. A ucc, in contrast, indicates that some columns uniquely identify

every tuple in a relational instance. More formally, for a relation r with the schema R

with attribute sets X,Y ⊆ R, we say that X → Y is an FD with left-hand side (LHS)

X and right-hand side (RHS) Y if we have t1[X]=t2[X] ⇒ t1[Y ]=t2[Y ] for all pairs of

distinct tuples t1, t2 ∈ r. Likewise, we say that X is a UCC if t1[X] 6= t2[X] for all such

tuple pairs. For instance, in a table with address data, the country and ZIP code in an

address might determine the city name and every address might be uniquely identified

by its ZIP code, street, and house number.

The applications of fds and uccs are manifold, ranging from schema discovery [Kruse

et al., 2016b] over data integration [Miller et al., 2001] to schema design [Köhler et al.,

2015], normalization [Papenbrock and Naumann, 2017b], and query relaxation [Nambiar

and Kambhampati, 2004]. However, in most scenarios neither the fds nor the uccs

are known. To this end, various algorithms have been devised over the last decades

to automatically discover these dependencies [Heise et al., 2013; Huhtala et al., 1999;

Papenbrock and Naumann, 2017b; Sismanis et al., 2006].

That being said, most existing algorithms discover only exact dependencies, which

are completely satisfied by the data – without even a single violation. Real-world depen-

dencies are all too often not exact, though. Let us exemplify why that is the case with

the help of Figure 4.1:

(1) Data errors: One might be interested to establish a primary key for the given data,

and {First name, Last name} seems to form a reasonable candidate. However, it is not a

ucc: tuple t4 is a duplicate of t1. For that matter, the table does not contain a single

exact ucc.

(2) Exceptions: Most English first names determine a person’s gender. There are excep-

tions, though. While Alex in tuple t1 is male, Alex in t5 is female. In consequence, the

fd First name→ Gender is violated.

(3) Ambiguities: In contrast to first names and genders, a ZIP code is defined to uniquely

determine its city. Still, we find that t3 violates ZIP→ Town, because it specifies a district

rather than the city.

Figure 4.1: Example table with person data.
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These few examples illustrate why relevant data dependencies in real-world datasets

are often not exact, so that most existing discovery algorithms fail to find them. To

cope with this problem, the definition of exact dependencies can be relaxed to allow

for a certain degree of violation (as described in Section 1.3 and applied for inclusion

dependencies in Section 2.3 in the context of the algorithm Sandy). We refer to such

relaxed uccs and fds as partial uccs (puccs) and partial fds (pfds). Puccs and

pfds can not only substitute their exact counterparts in many of the above mentioned

use cases, but they also reveal data inconsistencies and thus form an essential input to

data cleaning systems [Beskales et al., 2010; Geerts et al., 2013; Khayyat et al., 2015;

Kolahi and Lakshmanan, 2009; Thirumuruganathan et al., 2017]. Furthermore, they can

help to improve poor cardinality estimates of query optimizers by revealing correlating

column sets [Ilyas et al., 2004; Leis et al., 2015]; and they can support feature selection

for machine learning algorithms (especially for those assuming mutual independence of

features, such as Näıve Bayes) by exposing dependent feature sets.

Before giving any algorithmic details, let us formalize the problem of finding the

pfds and puccs in a dataset. As we mention in Section 1.3, when referring to partial

dependencies, we need to quantify the degree of “partiality”. In this work, we use a

slight adaptation of the established g1 error [Kivinen and Mannila, 1992] that ignores

reflexive tuple pairs, so that its values span the whole range from 0 (exact dependency)

to 1 (completely violated dependency).

Definition 4.1 (Pfd/pucc error). Given a dataset r and a pfd candidate X → A, we

define its error as

e(X → A, r) =
|{(t1, t2) ∈ r2 | t1[X]=t2[X] ∧ t1[A] 6=t2[A]}|

|r|2 − |r|

Analogously, the error of a pucc candidate X is defined as

e(X, r) =
|{(t1, t2) ∈ r2 | t1 6= t2 ∧ t1[X]=t2[X]}|

|r|2 − |r|

Example 4.1. Intuitively, these errors quantify the ratio of tuple pairs in a dataset that

violate the respective dependency. For the example from Figure 4.1, we can calculate

e(First name → Gender, r) = 4
52−5

= 0.2 (violated by (t1, t5), (t4, t5), and their inverses)

and e({First name, Last name}, r) = 2
52−5

= 0.1 (violated by (t1, t4) and its inverse).

These error measures lend themselves for Pyro for two reasons. First, and as we

demonstrate in Section 4.4, they can be easily calculated from different data structures.

This allows us to efficiently estimate and calculate errors. Second, and more importantly,

the error measures are monotonous. That is, for any pfd X → Y and an additional

attribute A we have e(X → Y ) ≥ e(XA → Y ). And analogously for a pucc X, we

have e(X) ≥ e(XA). In other words, adding an attribute to the LHS of a pfd or to

a pucc can only reduce the number of violating tuple pairs but never increase it. We

refer to those XA → Y and XA, respectively, as specializations and to X → Y and X,

respectively, as generalizations. With these observations, we can now precisely define

our problem statement.
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Problem statement 4.1. Given a relation r and error thresholds eφ and eυ, we want

to determine all minimal pfds with a single RHS attribute and all minimal puccs. A

minimal pfd has a pfd error less than or equal to eφ, while all its generalizations have

a pfd error greater than eφ. Analogously, a minimal pucc has a pucc error of at most

eυ, while all its generalizations have a pucc error greater than eυ.

Example 4.2. Assume we want to find all minimal puccs in Figure 4.1 with the error

threshold of eυ = 0.1. Amongst others, υ1 = {First name, Last name} and υ2 = {First name,

Last name, Gender} have a pucc error of 0.1 ≤ eυ. However, υ1 is a generalization of υ2,

so υ2 is not minimal and need not be discovered explicitly.

Note that Problem statement 4.1 explicitly excludes pfds with composite RHSs,

i. e., with more than one attribute – let us explain why. For exact dependency discovery,

this exclusion is sensible because the FD X → AB holds if and only if X → A and

X → B hold [Armstrong, 1974]. For pfds as defined in Definition 4.1, this is no longer

the case. However, considering composite RHSs potentially increases the number of pfds

drastically and might have serious performance implications. Furthermore, it is not clear

how the use cases mentioned above would benefit from such additional pfds, or whether

they would even be impaired by their huge number. Hence, we deliberately focus on

single RHSs for pragmatic reasons and do so in accordance with related work [Flach and

Savnik, 1999; Huhtala et al., 1999; Lopes et al., 2002a]. Nevertheless, it is easy to see that

the error of a pfd X → AB in a relation instance r is at least max{e(X → A, r), e(X →
B, r)}: Every tuple pair that violates X → A or X → B also violates X → AB, because

its tuples agree in their X values but do not agree in their AB values. Hence, pfds with

a single RHS can be used to prune pfd candidates with composite RHSs.

4.2 Related Work

Dependency discovery has been studied extensively in the field of data profiling [Abedjan

et al., 2015]. The efficient discovery of exact fds has gained particular interest [Papen-

brock et al., 2015b]. Further, many extensions and relaxations of fds have been pro-

posed [Caruccio et al., 2016], e. g., using similarity functions, aggregations, or multiple

data sources. Pyro focuses on partial dependencies (also often referred to as approxi-

mate dependencies in literature; see Section 1.3) that may be violated by a certain por-

tion of tuples or tuple pairs. Note that this is different from dependency approximation

algorithms [Bleifuß et al., 2016; Kivinen and Mannila, 1995], which trade correctness

guarantees of the discovered dependencies for performance improvements. In the fol-

lowing, we focus on those works that share goals or have technical commonalities with

Pyro.

Approximate dependency discovery

While there are many works studying the discovery of fds under various relaxations,

only relatively few of them consider pfds. To cope with the problem complexity, some
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discovery algorithms operate on samples of the profiled data and therefore cannot guar-

antee the correctness of their results [Ilyas et al., 2004; Kivinen and Mannila, 1995] (that

is, they only approximate the partial fds). This does not apply to Pyro. In addition,

Cords discovers only unary pfds, which is a much easier problem, as there are only

quadratically many unary but exponentially many n-ary pfd candidates) [Ilyas et al.,

2004].

Another approach to harness the complexity is to use heuristics to prune potentially

uninteresting pfd candidates [Sánchez et al., 2008]. Because the interestingness of a pfd

depends on the designated use case, this can cause the loss of relevant results. Therefore,

Pyro instead discovers all partial dependencies for some given error threshold and leaves

filtering or ranking of the dependencies to use case specific post-processing. This prevents

said loss and also frees users from the burden of selecting an appropriate interestingness

threshold.

Along these lines, exact approaches for the discovery of pfds and puccs have been

devised. Arguably, the most adapted one is Tane [Huhtala et al., 1999], which converts

the columns of a profiled relation into stripped partitions (also: position list indices,

PLIs) and exhaustively combines them until it has discovered the minimal pfds. Being

mainly designed for exact fd and ucc discovery, some of Tane’s pruning rules do not

work in the partial case, leading to degraded performance. In fact, before discovering

a partial dependency involving n columns, Tane tests 2n − 2 candidates corresponding

to subsets of these columns. Note that many works build upon Tane without changing

these foundations [Atoum, 2009; King and Legendre, 2003; Li et al., 2016]. Pyro avoids

these problems by estimating the position of minimal partial dependencies and then

immediately verifying them.

Further approaches to infer partial dependencies are based on the pairwise comparison

of all tuples. The Fdep algorithm proposes (i) to compare all tuple pairs in a database,

thereby counting any fd violation; (ii) to apply an error threshold to discard infrequent

violations; and (iii) to deduce the pfds from the residual violations [Flach and Savnik,

1999]. We found this algorithm to yield incorrect results, though: Unlike exact fds, pfds

can be violated by combinations of tuple pair-based violations, which Step (ii) neglects.

In consequence, Fdep is not aware of all dependency violations and infers incorrect

results. In addition to that, the quadratic load of comparing all tuple pairs does not

scale well to large relations [Papenbrock et al., 2015b]. In a related approach, Lopes et

al. propose to use tuple pair comparisons to determine the most specific non-FDs in a

given dataset whose error should then be calculated subsequently [Lopes et al., 2002a].

This approach is quite different from the aforementioned ones because it discovers only

a small subset of all pfds.

In a different line of work, an SQL-based algorithm for pfd discovery has been pro-

posed [Matos and Grasser, 2004]. As stated by the authors themselves, the focus of that

work lies on ease of implementation in practical scenarios rather than performance.

Last but not least, the discovery of dependencies under the presence of NULL values

has been studied [Köhler et al., 2015]. The proposed algorithm reasons on replacements

for the NULL values, such that exact dependencies emerge. This problem is very different

83



4. DISCOVERY OF PARTIAL FUNCTIONAL DEPENDENCIES AND
PARTIAL UNIQUE COLUMN COMBINATIONS

from that of Pyro, which does not incorporate a special treatment of NULL but considers

arbitrary dependency violations.

Exact dependency discovery

Many algorithms for the discovery of exact fds and uccs have been devised, e. g., [Heise

et al., 2013; Huhtala et al., 1999; Papenbrock and Naumann, 2017b; Sismanis et al.,

2006]. These algorithms can generally be divided into (i) those that are based on the

pairwise comparisons of tuples and scale well with the number of attributes and (ii) those

that are based on PLI intersection and scale well with the number of tuples [Papenbrock

et al., 2015b].

The algorithms Ducc [Heise et al., 2013] and the derived Dfd [Abedjan et al.,

2014b] belong to the latter and resemble Pyro in that they use a depth-first search

space traversal strategy. Still, both exhibit substantial differences: While Ducc and

Dfd perform a random walk through the search space, Pyro performs a sampling-

based best-first search along with other techniques to reduce the number of dependency

candidate tests. Interestingly, the authors of Dfd suggest that this algorithm could be

modified to discover pfds. We will therefore consider a modified version of this algorithm

(in combination with the Ducc algorithm) in our evaluation.

The recent HyFD and HyUCC algorithms manage to scale well with growing num-

bers of tuples and columns by combining tuple comparisons and PLI intersections [Pa-

penbrock and Naumann, 2016, 2017a]. Pyro also combines these two base techniques.

However, HyFD and HyUCC aggressively prune fds and uccs, respectively, as soon

as they discover a violation of the same. While this pruning is key to the algorithms’

efficiency, it is not applicable to partial dependencies.2 Instead, Pyro uses tuple com-

parisons to hypothesize dependency candidates rather than falsifying them and its search

space traversal is adaptive rather than bottom-up. Another optimization in HyFD and

HyUCC, that is not applicable in the partial case, is the verification of dependencies:

These algorithms stop a PLI-based validation of a dependency as soon as a violation

has been detected. In contrast, Pyro would have to detect many violations before stop-

ping a dependency validation. And because Pyro checks only promising dependency

candidates, such an optimization is not worthwhile.

Lattice search

In a broader sense, Pyro classifies nodes in a power set lattice, as we explain in the

following section. Apart from dependency discovery, several other problems, such as

frequent itemset mining [e. g., Agrawal and Srikant, 1994; Han et al., 2000], belong in

this category and can be tackled with the same algorithmic foundations [Mannila and

Toivonen, 1997]. For instance, pfd discovery can be modeled as an association rule

2
HyFD’s and HyUCC’s pruning is based on the above described deduction step of Fdep, which

deduces dependencies from non-dependencies. As explained, such deduction does not work for puccs

and pfds. This circumstance additionally prohibits the application of HyFD and HyUCC to pfd and

pucc discovery.
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mining problem; however, such adaptations require additional tailoring to be practically

usable [Sánchez et al., 2008].

4.3 Algorithm Overview

Let us now outline with the help of Algorithm 4.1 and Figure 4.2 how Pyro discovers all

minimal pfds and puccs for a given dataset and error thresholds eφ and eυ as defined

in Problem statement 4.1. For simplicity (but without loss of generality), we assume

eφ = eυ = emax for some user-defined emax. Furthermore, we refer to pfd and pucc

candidates with an error ≤ emax as dependencies and otherwise as non-dependencies.

Now, given a dataset with n attributes, Pyro spawns n+1 search spaces (Line 1):

one search space to discover the minimal puccs and one search space for each attribute

to discover the minimal pfds with that very attribute as RHS. A pucc search space

is a power set lattice of all attributes, where each attribute set directly forms a pucc

candidate. Similarly, a pfd search space is a power set lattice with all but the RHS

attribute A, where each attribute set X represents the pfd candidate X → A. In other

words, each attribute set in the power set lattices forms a unique dependency candi-

date. As a convention, we can therefore use attribute sets and dependency candidates

synonymously.

In a second preparatory step before the actual dependency discovery, Pyro builds

up two auxiliary data structures (called agree set sample (AS) cache and position list

index (PLI) cache; Lines 2–3), both of which support the discovery process for all search

spaces by estimating or calculating the error of dependency candidates. We explain these

data structures in Section 4.4.

Eventually, Pyro traverses each search space with a separate-and-conquer strategy to

discover their minimal dependencies (Lines 4–5). Said strategy employs computationally

inexpensive error estimates (via the AS cache) to quickly locate a promising minimal

dependency candidate and then efficiently checks it with only few error calculations (via

the PLI cache). As indicated in Figure 4.2, the verified (non-)dependencies are then used

to prune considerable parts of the search space and as a result Pyro needs to inspect

only the residual dependency candidates. Notice that our traversal strategy is sufficiently

abstract to accommodate both pfd and pucc discovery without any changes.

Figure 4.2: Intermediate state of Pyro while profiling a relation with the schema

R = (A,B,C,D).
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4.4 Error Assessment

As Pyro traverses a search space, it needs to estimate and calculate the error of depen-

dency candidates. This section explains the data structures and algorithms to perform

both operations efficiently.

4.4.1 PLI Cache

As we shall see in the following, both the error estimation and calculation involve position

list indices (PLIs) (also known as stripped partitions [Huhtala et al., 1999]):

Definition 4.2 (PLI). Let r be a relation with schema R and let X ⊆ R be a set of

attributes. A cluster is a set of all tuple indices in r that have the same value for X,

i. e.,c(t) = {i | ti[X] = t[X]}. The PLI of X is the set of all such clusters except for

singleton clusters:

π̄(X) := {c(t) | t ∈ r ∧ |c(t)| > 1}
We further define the size of a PLI as the number of included tuple indices, i. e.,‖π̄(X)‖ :=
∑

c∈π̄(X) |c|.

Example 4.3. Consider the attribute Last name in Figure 4.1. Its associated PLI consists

of the clusters {1, 4} for the value Smith and {3, 5} for the value Miller. The PLI does

not include the singleton cluster for the value Kramer, though.

Pyro (and many related works, for that matter) employ PLIs for various reasons.

First, and that is specific to Pyro, PLIs allow to create focused samples on the data,

thereby enabling precise error estimates of dependency candidates. Second, PLIs have

a low memory footprint because they store only tuple indices rather than actual values

and omit singleton clusters completely. Third, the g1 error can be directly calculated on

them, as we show in the next section. Finally, π̄(XY ) can be efficiently calculated from

π̄(X) and π̄(Y ) [Huhtala et al., 1999], denoted as intersecting PLIs. In consequence, we

can represent any combination of attributes as a PLI.

Algorithm 4.1: Pyro’s general workflow.

Data: Relation schema R with instance r, pfd error threshold eφ, pucc error

threshold eυ
⊲ Section 4.3

1 search-spaces ← {create-pucc-space(R, eυ)}∪
⋃

A∈R create-pfd-space(R \ {A}, A, eφ)
⊲ Section 4.4

2 pli-cache ← init-pli-cache(r)

3 as-cache ← init-as-cache(r, pli-cache)

⊲ Section 4.5

4 foreach space ∈ search-spaces do

5 traverse(space, pli-cache, as-cache)
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For clarity, let us briefly describe the PLI intersection. As an example, consider the

data from Figure 4.1 and assume we want to intersect the PLIs π̄(First name) = {{1, 4, 5}}
and π̄(Last name) = {{1, 4}, {2, 5}}. In the first step, we convert π̄(Last name) into the at-

tribute vector vLast name = (1, 0, 2, 1, 2), which simply is a dictionary-compressed array of

the attribute Last name with one peculiarity: All values that appear only once are encoded

as 0. This conversion is straight-forward: For each cluster in π̄(Last name), we simply de-

vise an arbitrary ID and write this ID into the positions contained in that cluster. In the

second step, the probing, we group the tuple indices within each cluster of π̄(First name).

Concretely, the grouping key for the tuple index i is the i-th value in vLast name unless that

value is 0: In that case the tuple index is dropped. For the cluster {1, 4, 5}, we obtain the

groups 1 → {1, 4} and 2 → {5}. Eventually, all groups with a size greater than 1 form

the clusters of the new PLI. In our example, we get π̄(First name, Last name) = {{1, 4}}.
Because t1 and t4 are the only tuples in Figure 4.1 that agree in both First name and Last

name, our calculated PLI indeed satisfies Definition 4.2.

That being said, intersecting PLIs is computationally expensive. Therefore, Pyro

puts calculated PLIs into a PLI cache (cf. Figure 4.2) for later reuse. Caching PLIs has

been proposed in context of the Ducc algorithm [Heise et al., 2013] (and was adopted by

Dfd [Abedjan et al., 2014b]), however, a description of the caching data structure has not

been given. It has been shown, however, that the set-trie of the Fdep algorithm [Flach

and Savnik, 1999] is suitable to index and look up PLIs [Zwiener, 2015].

As exemplified in Figure 4.3, Pyro’s PLI cache adopts a similar strategy: It is

essentially a trie (also: prefix tree) that associates attribute sets to their respective

cached PLI. Assume we have calculated π̄({C,E}). Then we convert this attribute set

into the list (C,E), which orders the attributes according to their order in the relation

schema. Then, we index π̄({C,E}) in the trie using (C,E) as key.

Figure 4.3: Example PLI cache.

However, when Pyro requests some PLI π̄(X), it may well not be in the cache. Still,

we can leverage the cache by addressing the following criteria:

(1) We want to obtain π̄(X) with only few PLI intersections.

(2) In every intersection π̄(Y ) ∩ π̄(Z), where we probe π̄(Y ) against vZ , we would like

‖π̄(Y )‖ to be small.

While Criterion 1 addresses the number of PLI intersections, Criterion 2 addresses

the efficiency of the individual intersections, because probing few, small PLI clusters

is beneficial performance-wise. Algorithm 4.2 considers both criteria to serve PLI re-
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Algorithm 4.2: Retrieve a PLI from the PLI cache.

Data: PLI cache cache, attribute set X

1 Π← lookup PLIs for subsets of X in cache

2 π̄(Y )← pick the smallest PLI indices from Π

3 Z← new list, C ← Y

4 while C ⊂ X do

5 π̄(Z)← pick PLI from Π that maximizes |Z \ C|
6 append π̄(Z) to Z

7 C ← C ∪ Z
8 sort Z by the PLIs’ sizes, C ← Y

9 foreach π̄(Z) ∈ Z do

10 π̄(C ∪ Z)← π̄(C) ∩ π̄(Z), C ← C ∪ Z
11 if coin flip shows head then put π̄(C) into cache

12 return π̄(C)

quests utilizing the PLI cache. As an example, assume we want to construct the PLI

π̄(ABCDE) with the PLI cache from Figure 4.3. At first, we look up all PLIs for subsets

of ABCDE in the cache (Line 1). This look-up can be done efficiently in tries. Among

the retrieved PLIs, we pick the one π̄(Y ) with the smallest size (Line 2). In our example,

this is the case for π̄(AD) with a size of 23. This smallest PLI shall be used for probing

in the first PLI intersection. The resulting PLI, which cannot be larger in size, will then

be used for the subsequent intersection’s probing and so on. This satisfies Criterion 2.

Next, we need to determine the remaining PLIs to probe against. Here, we follow

Criterion 1 and repeatedly pick whatever PLI provides the most new attributes to those

in the already picked PLIs (Lines 3–7). In our example, we thus pick π̄(CE), which

provides two new attributes, and then π̄(B). Finally, all attributes in ABCDE appear

in at least one of the three selected PLIs. Note that Pyro always maintains PLIs for

the single attributes in the PLI cache and can therefore serve any PLI request.

Having selected the PLIs, we intersect them using small PLIs as early as possible

due to Criterion 2 (Lines 8–10). For our example, this yields the intersection order

(π̄(AD) ∩ π̄(CE)) ∩ π̄(B). Compared to intersecting PLIs of single attributes, we save

two out of four intersection operations. Additionally, we can use the PLI π̄(AD), which

is much smaller than any single-attribute PLI. Hence, the PLI cache is useful to address

both Criteria 1 and 2.

Finally, we cache randomly selected PLIs (Line 11). We forego caching all calculated

PLIs, because it quickly fills the cache with redundant PLIs or those that will not be

needed again. Our random approach, in contrast, caches frequently needed PLIs with a

higher probability – with virtually no overhead.
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4.4.2 Evaluating Dependency Candidates

PLIs are vital to calculate the error of a pfd or pucc, respectively. Having shown how

to efficiently obtain the PLI for some attribute set X, let us show how to calculate the

g1 error (see Definition 4.1) from π̄(X) in Algorithm 4.3.

Algorithm 4.3: Error calculation for pfds and puccs.

1 Function e(X, r) = calc-pucc-error(π̄(X), r)

2 return
∑

c∈π̄(X)
|c|2−|c|
|r|2−|r|

3 Function e(X → A, r) = calc-pfd-error(π̄(X), vA, r)

4 e← 0

5 foreach c ∈ π̄(X) do

6 counter← dictionary with default value 0

7 foreach i ∈ c do
8 if vA[i] 6= 0 then increase counter[vA[i]]

9 e← e+
(

|c|2 − |c|
)

−∑

cA∈counter

(

c2A − cA
)

10 return e
|r|2−|r|

For a pucc candidate X, the error calculation given π̄(X) is trivial: We merely count

all tuple pairs inside of each cluster because these are exactly the violating tuple pairs

(Lines 1–2). In contrast, the error calculation of a pfd candidate X → A is a bit more

complex. According to Definition 4.1, those tuple pairs violate X → A that agree in X

and disagree in A. We do not count these tuple pairs directly. Instead, for each cluster

of π̄(X) we calculate the number of tuple pairs also agreeing in A (Lines 4–8) and then

subtract this number from all tuple pairs in the cluster (Lines 9–10). For this calculation,

we need the attribute vector vA of attribute A (cf. Section 4.4.1), in addition to π̄(X).

Note that we must not count zeros in vA, because they represent singleton values. By

summing the errors of all clusters in π̄(X), we finally obtain e(X → A, r).

4.4.3 Estimating Dependency Errors

A key idea of Pyro is to avoid costly PLI-based error calculations by estimating the

errors of dependency candidates and only then conduct a few targeted error calculations.

As a matter of fact, an error calculation can be orders of magnitudes slower than an

error estimation. Generally speaking, we can estimate dependency errors by comparing

a subset of tuples – or better: a subset of tuple pairs – and extrapolate the number of

encountered violations to the whole relation. Such error estimation is related to (but

far more efficient than) algorithms that exhaustively compare all tuple pairs to discover

dependencies [Flach and Savnik, 1999; Lopes et al., 2002a]. The basis for this approach

are agree set samples (AS samples).
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Definition 4.3 (AS sample). Given a relational instance r with schema R and two tuples

t1, t2 ∈ r, their agree set [Beeri et al., 1984] is ag(t1, t2) := {A ∈ R | t1[A] = t2[A]}.3
Further, let s ⊆ r2 be a sample of tuple pairs of the relational instance r. Then, s induces

the AS sample

AS := {(a, c(a)) | ∃(t1, t2) ∈ s : a = ag(t1, t2)}
where c(a) := |{(t1, t2) ∈ s | a = ag(t1, t2)}| counts the number of occurrences of each

agree set in s.

Example 4.4. Assume that we randomly sample three tuple pairs from Figure 4.1,

e. g., (t1, t3), (t1, t5), and (t2, t3). This gives us the AS sample AS = {({Gender,Town}, 1),
({First name,Town}, 1), ({Gender, ZIP}, 1)}.

Now to estimate pfd and pucc errors from an AS sample AS, we define a query that

reports the number of agree sets in AS that include some attribute set inc and do not

contain any attribute of a further attribute set exc:

count(AS, inc, exc) :=
∑

(a,c)∈AS

{

c if inc ⊆ a ∧ exc ∩ a = ∅
0 otherwise

Pyro stores agree sets efficiently as bit masks using one-hot encoding. This allows to

keep AS samples in memory and perform count efficiently with a full scan over the

AS sample. So, to estimate the error of a pfd candidate X → A, we could count its

numbers of violating agree sets in AS as count(AS, X, {A}) and divide the result by

‖AS‖. Likewise, for a pucc candidate X, we could count the violations count(AS, X, ∅)
and, again, divide by ‖AS‖:

Lemma 4.1. Let ê be the estimated error of a pfd or pucc candidate using the AS

sample AS. Further, let e denote the actual dependency error. Then ê is unbiased,

i. e., its expectation value is exactly e, and the probability that |e − ê| ≤ ε for some

user-defined ε is given by

Pε(AS, e) :=

⌊(e+ε)·‖AS‖⌋
∑

i=⌈(e−ε)·‖AS‖⌉

(‖AS‖
i

)

ei(1− e)‖AS‖−i

Proof. Sampling n tuple pairs and testing whether they violate an pucc or pfd candidate

follows a binomial distribution whose probability parameter is exactly the dependency

error as defined in Definition 4.1. The mean of this distribution, i. e., the expected

number of violations in AS, is e · ‖AS‖ (= E[ê] · ‖AS‖) and the above error bounds

can be immediately derived from the cumulative distribution function of the binomial

distribution.

Interestingly, the accuracy of our error estimates does not depend on the size of the

input relation, which makes it highly scalable. Instead, we observe an influence of the

3For improved memory and computation efficiency, we calculate agree sets from cached attribute

vectors (see Section 4.4.1) rather than the original input dataset.
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actual dependency error e. Indeed, the variance of the binomial distribution (and thus

the uncertainty of our estimator) is maximized for e = 0.5. However, for typical error

thresholds we need accurate estimates only when e approaches 0 to tell apart partial

dependencies and non-dependencies. For instance, for e = 0.01 and ‖AS‖ = 1, 000 our

error estimates are off by at most 0.006 with a probability of 0.96.

However, if we had only a single AS sample for the whole relation, this sample might

need to be huge to achieve high precision estimates when needed: The standard deviation

of our bionomially distributed error estimator,
√

e(1−e)
‖AS‖ , is inversely proportional to the

square root of the sample size. Intuitively, one might suspect that the above accuracy for

‖AS‖ = 1, 000 is sufficient to discover partial pfds and puccs with an error threshold

of 0.01, but that is not necessarily the case. As an example, assume a relation with n

attributes Ai (1 ≤ i ≤ n), each having a pucc error of 0.0101, while their combination

A1. . .An has an error of 0.0999. In this scenario, any set of two or more attributes might

be a minimal puccs and, for that matter, there are 2n − (n + 1) such sets. Obviously,

we would need samples with much more than the above 1,000 agree sets to reasonably

predict where the minimal puccs might be, which would come at a high cost.

To provide high precision error estimates from small AS samples, Pyro uses a focused

sampling technique. However, the resulting samples must still be random, so as to

preserve the above explained unbiasedness of our estimator. We solve this conflict as

follows: The main idea is to sample only such agree sets a that are supersets of some

given attribute set X, i.e. a ⊇ X. Such a sample can be created efficiently: We obtain the

PLI π̄(X) and then sample only such tuple pairs that co-occur in some cluster c ∈ π̄(X).

As an example, consider the PLI π̄({Zip}) = {{1, 4}, {2, 3, 5}} for Figure 4.1. This PLI

restricts the sampling to tuple pairs from {t1, t4} or {t2, t3, t5}.
In detail, to sample a tuple pair that agrees in X, we first select a cluster c′ ∈ π̄(X)

with a probability of |c′|2−|c′|
pairs(X) where pairs(X) :=

∑

c∈π̄(X) |c|2 − |c| denote the number of

overall tuple pairs agreeing in X. That is, the probability of picking c′ is proportional to

the number of its tuple pairs. Then, we randomly sample two distinct tuples from c′, so

that each tuple pair within c′ is sampled with the probability 1
|c′|2−|c′|

. In consequence,

any tuple pair with tuples agreeing in X from the input relation has the same probability
1

pairs(X) of being sampled. Finally, we calculate the agree sets for the sampled tuple pairs

and obtain a focused, yet random, AS sample, denoted ASX .

Based on ASX , we can now estimate the error of any pfd candidate Y → A and

pucc candidate Y if Y ⊇ X. In fact, the error of the pucc candidate Y in a relation r

can be estimated as

ê(Y, r) :=
count(ASX , Y, ∅)

‖ASX‖
· pairs(X)

|r|2 − |r|
and the error of the pfd candidate Y → A as

ê(Y → A, r) :=
count(ASX , Y, {A})

‖ASX‖
· pairs(X)

|r|2 − |r|

where ‖ASX‖ :=
∑

(a,c)∈ASX
c.
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Theorem 4.2. Given a pucc candidate Y or pfd candidate Y → A (Y ⊇ X), our

focused estimators based on sample ASX are unbiased and the probability that |e− ê| ≤ ε
for an actual dependency error e, error estimate ê, some user-defined ε is given by

Pε(ASX , e
|r|2−|r|
pairs(X)).

Proof. The first terms of the estimators estimate the ratio of the tuple pairs violating

the dependency candidate among all tuple pairs agreeing in X; Lemma 4.1 shows their

unbiasedness and error bounds. Because all violating tuple pairs must agree in X,

the additional terms exactly extrapolate this “focused” estimate to the whole relation,

thereby preserving the unbiasedness and shrinking the error bounds by a constant factor.

Theorem 4.2 explains why focused samples are effective. Consider again the ZIP

column in Figure 4.1: Out of all 10 tuple pairs, only 4 agree in their ZIP values, so that

a ZIP-focused estimator is 10
4 = 2.5× more precise than an unfocused estimator with

the same sample size and confidence level. This effect is even stronger in larger, real-

world data sets. For instance, a focused estimator for an attribute with 1,000 equally

distributed values shrinks the error bounds by a factor of 106. Hence, it is more efficient

to create and use multiple focused samples rather than one highly extensive one. In fact,

Pyro operates only on focused samples – initially one for each attribute.

Having explained focused AS samples and how to estimate pfd and pucc errors

with them, it remains to be shown how Pyro serves an actual request for an error

estimate of some dependency candidate. Without loss of generality, assume that the

dependency candidate in question is the pucc candidate Y . As for the PLIs, whenever

Pyro creates an AS sample, it caches it in a trie (cf. Figure 4.2 and Section 4.4.1).

Pyro first determines all AS samples with focus X for some X ⊆ Y , which can be done

efficiently because the AS cache is a trie. Recall that the focus of the AS sample must

be a subset of the dependency candidate to obtain an unbiased estimate. Then, Pyro

picks the AS sample with the highest sampling ratio, i. e.,the ratio of sampled agree sets

to the population; formally ‖ASX‖
pairs(X) . The reason is that larger AS samples and smaller

sampling foci yield more precise error estimates (see Theorem 4.2). What is more, when

the population for the sample ASX is very small (because X is almost a ucc), then the

sample can even be exhaustive and, hence, the error estimate is known to be exact and

need not be calculated with PLIs anymore.

4.5 Search Space Traversal

To discover dependencies, it is not only important to efficiently assess individual depen-

dency candidates as explained in the above section; it is also crucial to develop a search

space traversal strategy that combines efficient error estimations and final error calcu-

lations. In contrast to Tane, which systematically traverses large parts of the search

space, and in contrast to Ducc/Dfd, which perform a random walk through the search

space, Pyro employs a novel separate-and-conquer strategy: It separates a part of the

search space, estimates the position of the minimal dependencies within that subspace,
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Figure 4.4: Example of a search space traversal round.

and then validates this estimate. Afterwards, considerable parts of the search space can

be pruned without ever being visited.

Let us outline Pyro’s traversal strategy more concretely with the example in Fig-

ure 4.4 before elaborating on its individual phases in detail. The traversal can be thought

of as a firework display – which inspired the name Pyro. It consists of multiple rounds

starting from the single attributes, the launchpads. In our example, Pyro selects A as

launchpad4 and ascends (like a skyrocket) in the search space until it detects the depen-

dency ABCD (Step (1), Section 4.5.1). From this dependency, called peak, Pyro trickles

down (like an exploded skyrocket) and estimates the position of all minimal dependen-

cies that generalize the peak (Step (2), Section 4.5.2), which is the case for CD. Then,

it verifies the estimate by checking the complementary, untested dependency candidates,

namely ABD (Step (3), Section 4.5.3).

This completes the first search round and, as shown in Figure 4.4, Pyro uses both

discovered non-dependencies and dependencies to drastically narrow down the search

space for subsequent search rounds. In fact, discovered (non-)dependencies are stored in

a trie (cf. Section 4.4.1) to efficiently determine whether following dependency candidates

are already pruned. Finally, in the next search round, Pyro might pick up a pruned

launchpad; in Figure 4.4, we pick again A. In that case, Pyro escapes the launchpad

into the unpruned part of the search space (Step (4), Section 4.5.4).

4.5.1 Ascend

The goal of the ascend phase is to efficiently determine some dependency in a given

search space, which will then form the input to the subsequent trickle-down phase. Al-

gorithm 4.4 depicts how Pyro achieves that. Pyro begins this search at the launchpads.

4Recall from Section 4.3 that we use dependency candidates and attribute sets synonymously. A

can be an pucc candidate or an pfd candidate fdAR for some RHS R. As a result, Pyro’s traversal

algorithm can handle both dependency types.
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These are minimal dependency candidates with an unknown state. Hence, the single at-

tributes are the initial launchpads. Pyro estimates their error and picks the one with

the smallest error, e. g., attribute A as in Figure 4.4, assuming it to lead to a dependency

quickly (Line 1).

Algorithm 4.4: The ascend phase.

Data: launchpads L, maximum error emax

1 (X, êX)← pick launchpad with smallest error estimate êX from L

2 while True do

3 if êX ≤ emax then

4 if êX is not known to be exact then

5 êX ← calculate error of X

6 if êX ≤ emax then break

7 A← argminA∈R\X êXA with XA is not pruned

8 if no such A then break

9 X ← XA

10 estimate êX

11 if êX is not known to be exact then

12 êX ← calculate error of X

13 if êX ≤ emax then

14 trickle down from X

15 else

16 declare X a maxmimum non-dependency

Then, Pyro greedily adds that attribute to the launchpad that reduces the (esti-

mated) dependency error the most (Line 7) until either a dependency is met (Line 6) or

no attribute can be added anymore (Line 8). The latter case occurs when there simply is

no attribute left to add or when all possible candidates are already known dependencies

from previous search rounds. In this case, we declare it as a maximum non-dependency

for pruning purposes and cease the current search round (Line 16). However, if we meet

a dependency, as is the case for ABCD in Figure 4.4, we proceed with the trickle-down

phase starting from that dependency (Line 14).

4.5.2 Trickle down

Given a dependency from the ascend phase, called peak P , Pyro trickles down to esti-

mate the position of all minimal dependencies that generalize P . Algorithm 4.5 outlines

how Pyro performs this estimation. First, P is placed into a new priority queue that

orders peaks by their estimated dependency error (Line 2). Pyro then takes the smallest

element (which initially is P ) without removal (Line 4), checks whether it is pruned by

some already estimated minimal dependencies (Line 5) (which is initially not the case),

and then invokes the function trickle-down-from with P whose purpose is to estimate
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the position of exactly one minimal dependency that generalizes P or return ⊥ if P and

none of its generalizations are estimated to be a dependency (Line 12).

Algorithm 4.5: Estimate position of minimal dependencies.

Data: peak P , maximum error emax

1 M← new trie

2 P← new priority queue with P

3 while P is not empty do

4 P ′ ← peek from P

5 M′ ← look up subsets of P ′ in M

6 if M′ 6= ∅ then
7 remove P ′ from P

8 foreach H ∈ hitting-set(M′) do

9 if P ′ \H is not an (estimated) non-dependency then

10 add P ′ \H to P

11 else

12 M ← trickle-down-from(P ′, emax)

13 if M 6= ⊥ then add M to M else remove P ′ from P

14 Function trickle-down-from(P ′, emax)

15 if |P ′| > 1 then

16 G← error-based priority queue with generalizations of P ′

17 while G is not empty do

18 G, êG ← poll from G

19 if êG > emax then break

20 C ← trickle-down-from(G, emax)

21 if C 6= ⊥ then return C

22 eP ′ ← calculate error of P ′

23 if eP ′ ≤ emax then return P ′

24 create and cache AS sample with focus P ′

25 return ⊥

In our example, we initially invoke trickle-down-from with our peak P = ABCD.

It now creates a priority queue that orders the immediate generalizations of P , i. e., ABC,

ABD etc., by their estimated dependency error (Line 16). These generalizations are po-

tential minimal dependencies, therefore any of them with an estimated error of less than

emax is recursively trickled down from (Lines 17–21). If the recursion yields a minimal

dependency candidate, Pyro immediately reports it. In Figure 4.4, we recursively visit

BCD and then CD. Neither C nor D is estimated to be a dependency, so CD might

be a minimal dependency. Eventually, we calculate the error of CD to make sure that it

actually is a dependency and return it (Lines 22–23). If, in contrast, we had falsely as-

sumed CD to be a dependency, we would create a focused sample on CD so as to obtain
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better error estimates for dependency candidates between CD and the peak ABCD and

continue the search at BCD.

Finally, we add CD to the estimated minimal dependencies M (Line 13) and peek

again from the peak priority queue (Line 4), which still contains the original peak ABCD.

However, now there is the alleged minimal dependency CD, which explains ABCD.

Still, we must not simply discard this peak, because there might be further minimal

dependencies generalizing it. For this purpose, we identify all maximal dependency

candidates that are a subset of ABCD but not a superset of CD. As detailed in the

next paragraphs, Pyro determines those candidates by calculating the minimal hitting

sets of CD, namely C and D, and removing them from ABCD (Line 8–10), which

yields ABD and ABC. These form the new peaks from which the search for minimal

dependencies is continued. In our example, we estimate both to be non-dependencies

and remove them from the queue (Line 13).

Let us now explain the hitting set calculation in more detail. Formally, a set is

a hitting set of a set family S (here: a set of attribute sets) if it intersects every set

S ∈ S. It is minimal if none of its subsets is a hitting set. The calculation of minimal

hitting sets is employed in the following traversal steps, too, and furthermore constitutes

an NP-hard problem [Karp, 1972]. Facing this computational complexity, the problem

should be solved as efficiently as possible. Algorithm 4.6 displays how Pyro calculates

all minimal hitting sets for a set of attribute sets.

Algorithm 4.6: Calculate minimal hitting sets.

Data: attribute sets S, relation schema R

1 Function hitting-set(S)

2 T ← set trie initialized with ∅
3 LS ← list of elements in S

4 sort LS ascending by set size

5 foreach S ∈ LS do

6 S ← R \ S
7 V← remove all subsets of S from T

8 foreach V ∈ V do

9 foreach A ∈ S do

10 if no subset of V A is in T then

11 add V A to T

12 return T

First, we initialize a set trie (cf. Section 4.4.1) with the empty set as initial solution

(Line 2). Next, we order the attribute sets by size (Lines 3–4). If S contains two sets

A and B with A ⊆ B, we want to process A first. The rationale for this is that any

intermediate hitting set that intersects A will also intersect B. When processing B, we

do not need to update the intermediate solution. Then, we iterate the ordered input

attribute sets one after another (Line 5). Assume, we have S = CD as above. Then,

we remove all current hitting sets that do not intersect with S by looking up subsets of
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its inversion (Line 6–7); recall that we can perform subset lookups on tries efficiently.

In our example, the inversion of CD is ABE and the initial solution in T , the empty

set, is a subset of it. Eventually, we combine all removed sets with all attributes in S

to re-establish the hitting set property (Line 8–11). For instance, combining V = ∅ with
S = CD yields the two new hitting sets C and D. However, these new hitting sets might

not be minimal. Therefore, before adding a new hitting set H back to the trie, we check

if there is an existing minimal hitting set in the trie that is a subset of H. Again, subset

look-ups can be performed efficiently on tries. After all attributes from S have been

processed, the trie contains all minimal hitting sets.

4.5.3 Validate

While the estimated set of minimal dependencies M from the trickle-down phase contains

only verified dependencies, it is not known whether these dependencies are minimal

and whether M is complete. Pyro validates the completeness of M with as few error

calculations as possible. M is complete if and only if any dependency candidate X ⊆ P
is either a specialization of some allegedly minimal dependency Y ∈M, i. e., X ⊇ Y , or

X is a non-dependency.

To test this, it suffices to test the maximal alleged non-dependencies “beneath” the

peak, i. e., those dependency candidates that generalize P and whose specializations are

all known dependencies. If these maximal candidates are indeed non-dependencies, then

so are all their generalizations and M is complete. As in Algorithm 4.5, Pyro calculates

these candidates, denoted as M, by calculating the minimal hitting sets of all elements

in M and removing them from P . For our example, we have hitting-sets({CD}) =

{C,D} and thus need to check P\C = ABD and P\D = ABC.

Pyro checks all candidates in M with two possible outcomes. If those candidates are

non-dependencies, then M is indeed complete. If, however, M contains dependencies, M

is not complete. Nonetheless, we can use this result to narrow the focus our search.

Let D ⊆ M denote said dependencies in M and assume that ABD turned out to

be a dependency, i. e., D = {ABD}. Any dependency not covered by M must be a

generalization of some dependency in D, because any candidate X ⊆ P is either a

superset of some element in M or a subset of some element M.

Further, let N = M\D denote the non-dependencies in M. In our modified example,

we have N = {ABC}. These are maximal w. r. t. the peak P , i. e., all their supersets that

are also subsets of P are known dependencies. We can now determine the dependency

candidates that are not subsets of any such maximal non-dependency in N, denoted

as N: We invert all elements in N w. r. t. P and calculate their minimal hitting sets.

For N = {ABC}, we get N = {D}. It follows that any dependency not covered by

M is a specialization of some dependency candidate in N and a generalization of some

dependency in D, i. e., in our example the unknown minimal dependencies must be a

superset of D and a subset of ABD.

As a result, Pyro can create a search sub-space with exactly those dependency

candidates and recursively process it, including all steps presented in this section. In
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addition, Pyro boosts the size of AS samples while working in this sub-space so as to

decrease the probability of new mispredictions about the minimal dependencies. Still,

in the case of another misprediction Pyro can recursively create new sub-spaces. The

recursion is guaranteed to terminate, though, because the sub-spaces are continuously

shrinking. However, in our experiments we rarely saw a recursion depth of even 2. After

the recursion, Pyro eventually needs to check for which dependencies in M the recursion

has not yielded a generalizing minimal dependency. Those dependencies were minimal

all along and must be reported as such.

4.5.4 Escape

When a search round has been completed, it prunes great parts of the search space.

As can be seen in Figure 4.4, also the launchpads might now be in the pruned part.

Unless these launchpads have been found to be (minimal) dependencies, we must not

discard them, though: There might still be undiscovered minimal dependencies that are

supersets of that launchpad.

Whenever Pyro picks up a pruned launchpad, it needs to escape it out of the pruned

search space part by adding a minimum amount of attributes to it. Let us assume that

Pyro picks up the launchpad A once more. To determine whether it is pruned, Pyro

determines all previously visited peaks that are supersets of A, which is ABCD in our

case. Again, a hitting set calculation can now determine minimum attribute sets to add

to A, such that it is not a subset of ABCD anymore: Pyro calculates the hitting sets

of R \ ABCD = E, which is simply E. By adding E to A, we get the only minimal

escaping (cf. Step (4) in Figure 4.4). Note that this operation is the exact inverse of the

relocation of peaks in Algorithm 4.5. However, because we have the launchpad E, which

is a subset of AE, we finally have to discard AE and, as a matter of fact, all unknown

dependency candidates are indeed supersets of E.

Because Pyro maintains the launchpads, such that they form exactly the minimal

untested dependency candidates, a search space is completely processed when it contains

no more launchpads. As a result, Pyro will eventually terminate with the complete set

of dependencies of the search space.

4.6 Parallelization

In Section 1.4, we suggest that it might be appropriate for algorithms that solve com-

putationally hard problems to exploit as much hardware resources as possible through

parallel and distributed execution. Furthermore, it is interesting from a research perspec-

tive to determine under which circumstances and to what extent parallelization improves

the efficiency and scalability of an algorithm. As in the previous chapters, we propose a

parallelization scheme for the algorithm described in this chapter, Pyro.

Let us at first focus on parallelizing Pyro within a single computer. Obviously,

Pyro’s search spaces can be processed independently of each other. Only the access to

the PLI and AS cache has to be synchronized. This can be done via read-write-locks,
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which allow the more frequent reads to these data structures to take place simultaneously.

Only the less frequent writes need exclusive access.

However, in general, it is possible that we have more cores available than there are

search spaces – especially when the algorithm has fully processed the majority of search

spaces of a given dataset. For this reason, Pyro can also have two or more cores work

on a single search space, in which case it runs multiple search rounds in the same search

space (starting from different launchpads) in parallel.

Of course it is also possible that there are fewer available launchpads in a search

space than there are cores assigned to it. In this case, the first core that cannot retrieve

a launchpad from its search space searches for a different search space with a free launch-

pad. Only if there is no such search space, the core goes to sleep for a short time and

then again tries to pick up a launchpad from some search space. Notice that it is indeed

possible that the number of launchpads in a search space shrinks and grows throughout

the profiling process.

This parallelization scheme can be further extended to computer clusters: As depicted

in Figure 4.5, we can achieve this with a master that assigns search spaces to workers.

A worker runs on a dedicated machine with potentially multiple cores; it maintains its

own PLI and AS caches, uses them to profile any assigned search space, and reports

discovered dependencies back to the master. The master, in turn, continuously monitors

the workers and dynamically (re-)assigns search spaces among workers whenever some

worker has completed a search space.

Figure 4.5: Distributed architecture of Pyro.

An interesting question is how to profile a single search space on multiple workers

simultaneously. The key challenge is that synchronized access to data structures across

computers would impose severe network latency. Therefore, we suggest that each worker

maintain its very own set of discovered (non-)dependencies and regularly synchronize
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them with workers profiling the same search space. While this form of weak consistency

might cause duplicate work among workers, it also decouples them and thus enables

scalability. However, we leave a more thorough specification of this idea as well as its

evaluation to future work.

4.7 Evaluation

Pyro’s goal is to enable efficient and scalable discovery of partial dependencies in given

datasets. To evaluate in how far Pyro attains this goal, we particularly investigate how

Pyro compares to (modifications of) three state-of-the-art algorithms in terms of effi-

ciency and scalability and furthermore conduct several in-depth analyses of Pyro. Note

that we resort to an empirical evaluation: A theoretical comparison of the algorithms

would be of limited value, because in the worst case pucc/pfd discovery is of exponen-

tial complexity w. r. t. the number of profiled attributes due to the possibly exponential

numbers of dependencies [Abedjan et al., 2014b; Liu et al., 2012] – even a brute-force

algorithm that checks every dependency candidate would meet that complexity. An

average-case complexity analysis, on the other hand, would have to resort to strong,

perhaps unjustifiable, assumptions on the data due to the adaptivity of the algorithms.

That being said, we close the evaluation with an investigation of the interestingness of

puccs and pfds.

4.7.1 Experimental setup

We have carefully (re-)implemented Pyro, Tane, Fdep, andDucc/Dfd in Java, so that

their runtimes are comparable. For easy repeatability of our experiments, all algorithms

are integrated with the data profiling framework Metanome [Papenbrock et al., 2015a].

Pyro further monitors the memory usage of the PLI and AS caches and halves them

when running low on memory. Also, Pyro is integrated with Akka 2.5.25 to implement

the distribution scheme explained in Section 4.6. Additionally, we fixed a known issue

regarding Tane’s key-pruning [Papenbrock et al., 2015b] and extended both Tane and

Fdep to output also puccs. For Fdep and Ducc/Dfd specifically, we consulted the

original implementations whenever we found that their respective publications were not

specific enough. Eventually, we modified Ducc/Dfd to discover partial dependencies

as suggested in [Abedjan et al., 2014b]. To our knowledge, this modification was never

implemented or evaluated. Therefore, we believe that the respective experiments are

interesting in itself.

We conducted our experiments on a cluster that consists of a master node (IBM

xServer x3500 with two Intel Xeon X5355 Quadcore (2.66GHz, 8MB cache), 32GB

RAM, and a 2.7TB hard disk) and four workers (Dell PowerEdge R430 with an Intel

Xeon E5-2630 v4 (2.2GHz, 10 cores, 20 threads, 25MB cache), 32GB RAM, and 2

hard disks (7.2 kRPM, SATA)) running Ubuntu 16.04.1 and Oracle JDK 1.8.0 112 with

a maximum heap size of 24GB. Experiments that did not require distribution (which

5See https://akka.io/ (accessed January 15, 2018).
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actually applies to most experiments) were run on one of the workers only. Unless

specified otherwise, we considered an error threshold of 0.01 for both pfds and puccs

and used an initial AS sample size of 1,000 and a boost factor of 2 with Pyro. The

partition cache size for Ducc/Dfd was set to 1,000 in accordance to the suggested value

and our main memory size [Abedjan et al., 2014b]. Our datasets were stored as CSV

files on disk. Their sizes can be found in Table 4.1. For repeatability purposes, our

implementations and pointers to the datasets can be found on our webpage: https:

//hpi.de/naumann/projects/repeatability/data-profiling/fds.html.

Dataset Pfds + puccs

Name Cols. Rows emax = 0.01 emax = 0.05

School results 27 14,384 3,408 1,527

Adult 15 32,561 1,848 1,015

Classification 12 70,859 119 1311

Reflns 37 24,769 9,396 3,345

Atom sites 31 32,485 79 78

DB status 35 29,787 108,003 45,617

Entity source 46 26,139 (unknown) (unknown)

Bio entry 9 184,292 29 39

Voter 19 100,001 647 201

FDR-15 15 250,001 225 225

FDR-30 30 250,001 900 900

Atom 31 160,000 1,582 875

Census 42 199,524 (unknown) (unknown)

Wiki image 12 777,676 92 74

Spots 15 973,510 75 79

Struct sheet 32 664,128 1,096 1,458

Ditag feature 13 3,960,124 187 260

Table 4.1: Overview of the evaluation datasets sorted by their size (columns ×
tuples).

4.7.2 Efficiency

Let us begin with a broad comparison of all four algorithms to show in how far Pyro

advances the state of the art in pucc and pfd discovery. For that purpose, we ran all

algorithms on a single worker with the datasets from Table 4.1 and two different, typical

error thresholds. Note that we report runtimes for Pyro in a parallel version (to show

its best runtimes) and a non-parallel version (for comparison with the other algorithms).

We also report runtimes for the logically flawed Fdep algorithm (see Section 4.2) to

include an algorithm that is based on the comparison of all tuple pairs in a dataset. The

results are shown in Figure 4.6.

Obviously, Pyro is the most efficient among the correct algorithms: While the non-

parallel version is outperformed on some easy-to-process datasets by at most 0.6 seconds,

Pyro outperforms its competitors by at least a factor of 2 in 59% of the configurations.
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Figure 4.6: Runtime comparison of Pyro, Tane, Ducc/Dfd, and Fdep. The

crosses indicate that an algorithm either ran out of time or memory.

For that matter, for hard-to-process datasets we observe the greatest speed-ups. For

instance on the DB status dataset for emax = 0.05, Pyro outperforms the best competitor,

Ducc/Dfd, at least by a factor of 33 (or 7.7 h in absolute terms) – for the parallel version,

we even measured a speed-up factor of at least 123. The actual speed-up might even

be greater, because Ducc/Dfd did not complete the profiling within the 8 h time limit.

This shows that Pyro’s approach to estimate and verify dependency candidates is much

more efficient than Tane’s breadth-first search and Ducc/Dfd’s random walk search.

The above comparison omits Fdep, because it reports incorrect results (see Sec-

tion 4.2). Nonetheless, we find it to be regularly inferior in terms of performance. The

reason is that it compares all possible tuple pairs in a dataset, thereby incurring quadratic

load in the number of tuples, which is prohibitive on larger datasets. On the other hand,

the few scenarios where Fdep is faster than Pyro can be attributed to its logical flaw:

For instance on the DB status for emax = 0.01, Fdep reports only 15,138 supposed depen-

dencies – 7× fewer than there actually are. And what is more, 67% of these supposed

dependencies are incorrect. Correcting those results would require additional time. Note

that, although Pyro also compares tuple pairs, it does not run into the quadratic trap

because it requires only a constant number of comparisons (cf. Theorem 4.2) and re-

ports correct results because it does not deduce the final dependencies from those tuple

comparisons.

While Pyro is clearly the superior algorithm in terms of performance, no algorithm

could profile the complete Entity source and Census datasets within the time limit. The

next section shows the reason: These datasets entail tremendous dependency sets.
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Figure 4.7: Row scalability of Pyro, Ducc/Dfd, and Tane (emax = 0.01). Crosses

indicate that an algorithm ran out of memory.

4.7.3 Scalability

Our next experiment analyzes the algorithms’ scalability, i. e., how they compare as the

profiled datasets grow in the number of tuples and columns. Note that we again exclude

Fdep from these and following detail analyses.

To determine the row scalability of the algorithms, we execute them on various sam-

ples of the four datasets with the most rows; Figures 4.7(a–d) depict the results. Because

the number of dependencies is mainly stable across the samples, each algorithm tests

more or less the same dependency candidates, regardless of the sample size. While all

algorithms exhibit a somewhat linear scaling behavior, Ducc/Dfd is usually up to 20

times faster than Tane, and Pyro is up to 15 times faster than Ducc/Dfd. In both

cases, the speed-up increases as the sample size increases, which is because on larger

datasets the overhead, e. g., for initially loading the data and maintaining AS samples to

avoid PLI-based error calculations, is more effectively redeemed.

In our column scalability experiments on the four datasets with the most columns,

Pyro also shows the best scaling behavior, as can be seen in Figures 4.8(a–d): Ducc/

Dfd is up to 22 times faster than Tane and Pyro up to 12 times faster than Ducc/

Dfd – the more columns are considered, the greater is the speed-up. A particularly

interesting observation is that all algorithms’ runtime curves somewhat follow the number

of dependencies. Such behavior is optimal, in the sense that any algorithm has to be at

least of linear complexity in its output size; still the algorithms differ greatly in terms of
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Figure 4.8: Column scalability of Pyro, Ducc/Dfd, and Tane (emax = 0.01).

Crosses indicate that an algorithm ran out of memory and stopwatches mean that

the algorithm exceeded the 1 h time limit.

absolute runtimes. Also, the number of columns that can be processed by each algorithm

differs. Tane always fails first due to its high memory demand. In contrast, Pyro and

Ducc/Dfd fail only when they exceed the 1 h time limit of this experiment. They are

less susceptible to run out of main memory because of their dynamic caches. Still, Pyro

outperforms Ducc/Dfd because of its high efficiency and, as a result, scales further.

Nonetheless, Pyro can only mitigate, but not completely avoid the effects of the

exponential complexity of the dependency discovery problem, of course. Figure 4.9 breaks

down Pyro’s runtime from Figures 4.8(b–d), thereby showing that the growing number

of dependencies requires Pyro to calculate more dependency errors, which dominates

the runtime. Avoiding the exponential complexity altogether would require a relaxation

of the problem itself, which is not the goal of this work. However, the above experiments

demonstrate Pyro’s improved scalability, thereby making it an excellent basis for relaxed

algorithms.

4.7.4 Parallelization

Besides Pyro’s scaling behavior on growing datasets, it is also relevant to understand

how Pyro scales as it is provided with more hardware resources. For this purpose, we

investigate Pyro’s scale-in behavior (by varying the number of cores for its computation

on a single machine) as well as its scale-out behavior (by varying the number of machines

104



4.7 Evaluation

for its computation). To quantify these two properties, we consider the speed-up of Pyro

in different hardware configurations: Let ti be the runtime of Pyro using i cores or

workers, respectively. Then, we calculate the speed-up for using i cores or workers as t1
ti
.

Let us at first consider the scale-in behavior in Figure 4.10(a). We observe that the

actual speed-up is highly dependent on the dataset: While on easy-to-process datasets

the parallelization is virtually ineffective, datasets with many columns benefit the most

from parallelization. We never observe a linear speed-up when using all 10 cores, though.

The reasons for these observations are manifold. First, the initial loading of the data

is not parallelized in our implementation, so that according to Amdahl’s Law a linear

speed-up is precluded. And second, we often encounter situations where there is not

enough work to keep all cores busy. In fact, many datasets entail a few search spaces

that cause considerably more computational effort than the other search spaces. As a

result, after a short processing time Pyro is often left with only a few hard-to-process

search spaces and has to parallelize their traversal.

In contrast to the parallelization among search spaces, the parallelization within

search spaces does not break down the profiling into independent tasks. Therefore, this

mode of parallelization is often less effective depending on (i) how many launchpads are

available in the search space; (ii) how much duplicate work is performed by the cores

when two simultaneously processed launchpads are “close” to each other in the search

space; and (iii) how much synchronization overhead is incurred for managing classified

dependency candidates and launchpads of the search space. However, these issues are

mitigated for datasets with many columns that are in particular need of effective paral-

lelization (cf. Section 4.7.3): Such complex datasets tend to have more hard-to-process

search spaces; also each search space is much larger, so that it does not easily run out of

launchpads and duplicate work among cores is less likely.

Let us now proceed to Pyro’s scale-out behavior, depicted in Figure 4.10(b). In this

experiment, each worker is restricted to using only a single core. That way, the overhead

for the distribution in comparison to the number of available cores is maximized. Also,

Pyro cannot parallelize the traversal of a single search space, as our prototype can

process each search space on a single worker only. As for the scale-in experiment, we

observe that the scale-out speed-up is dependent on the complexity of the profiled dataset

– datasets with many columns tend to allow for higher speed-ups. In simple terms, the

Figure 4.9: Runtime breakdown of Pyro for varying numbers of profiled columns

(emax = 0.01).
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Figure 4.10: Scaling behavior of Pyro on different hardware deployments

(emax = 0.01).

reason is again that complex datasets entail more work, which can in turn be distributed

more evenly.

Apart from the similar scaling behaviors, the reader might notice that the DB status

dataset, which benefits a lot from parallelized profiling in Figure 4.10(a), is not present in

Figure 4.10(b). The reason is that in this configuration the workers send huge numbers

of dependencies so rapidly to the master, that it has to drop incoming messages. In

reaction, the Akka framework stalls the connection and Pyro fails. We are confident that

this issue can be overcome by some engineering effort, but did not consider a technical

solution in our implementation of Pyro.

Having discussed the effectiveness of scaling Pyro in and out, the question remains

how well the two approaches work together. In pursuit of this matter, we executed Pyro

with different numbers of workers, whereby each worker utilized all of its 10 cores. The

results are essentially similar to those in Figure 4.10(b), but the speed-ups are slightly

greater. In fact, we measured the highest speed-up for 4 workers with 10 cores compared

to 1 worker with 1 core on the Reflns dataset. This speed-up amounts to a factor of 4

and is thus only an improvement of factor 2 over the speed-up when using only 1 core

on each of the 4 machines (cf. Figure 4.10(a)). We conclude that Pyro’s demand for

computational resources is at some point saturated. As we explained above, that point

of saturation is dependent on the profiled dataset, though.

4.7.5 Memory requirements

A particular concern of data profiling algorithms is their memory requirement, because

computers vary greatly in the amount of available main memory. And after all, perfor-

mance improvements might be just an advantage gained by using the available main mem-
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ory more extensively. Thus, we compare Pyro’s, Ducc/Dfd’s, and Tane’s memory re-

quirements.

Figure 4.11: Memory requirements of Pyro,

Tane, and Ducc/Dfd (emax = 0.01).

In detail, we execute all three algorithms

with a maximum heap size of 32MB and

continuously double this value until the

respective algorithm is able to process

the given dataset. As can be seen in

Figure 4.11, Pyro always requires the

least amount of memory. In fact, we find

Pyro to run out of memory only while

loading the data. In contrast to Tane

and Ducc/Dfd, Pyro pins only very

few larger data structures in main memory, while managing PLIs and AS samples in

caches that dynamically adapt to the amount of available main memory. This renders

Pyro highly robust.

4.7.6 Sampling

Pyro’s principal idea is to save costly dependency error calculations by estimating the

error of dependency candidates. Even though Theorem 4.2 describes the accuracy of

Pyro’s estimator depending on the AS sample size, it is unknown, which accuracy

works best to find the minimal dependencies in real-world datasets. To investigate this

matter, we execute Pyro with different AS sample sizes on hard-to-profile datasets and

display the results in Figure 4.12.

Apparently, not using AS samples (and thus error estimations) is always the worst

option, while AS sample sizes of 1,000 and 10,000 work well on all tested datasets. That

being said, using a tiny sample is consistently better than not using sampling at all to

guide the search space traversal. For instance, on the Atom dataset, using a sample of

only 10 agree sets reduces the number of dependency error calculations from 15,708 to

7,920. A sample size of 10,000 further reduces this value to 4,562. Note that the latter

number leaves only little room for improvement: The Atom dataset has 1,582 minimal

dependencies and about as many maximal non-dependencies, all of which need to be

verified by an individual error calculation in the optimal case.

Figure 4.12: Comparison of Pyro’s sampling strategies (emax = 0.01).
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4.7.7 Exact dependency discovery

As we describe in Section 4.2, several techniques for the discovery of exact uccs and

fds are not applicable to the partial case – in particular, the pruning of dependencies

by counter-examples and the deduction of dependencies from individual dependency

violations. In other words, there is a price to pay for relaxing the discovery of exact to

partial dependencies and it is intriguing to determine that price.

To do so, we use Pyro to determine exact uccs and fds by setting emax = 0 (after

all, exact dependency discovery is a special case of partial dependency discovery) and

compare it to the competitors that are described in Section 4.7.1 and whose main focus is

exact dependency discovery. Indeed, Tane can use an additional pruning rule for exact

dependency discovery and Fdep’s flaw regarding partial dependency discovery does not

affect the exact case. Furthermore, we include HyFD [Papenbrock and Naumann, 2016]

and HyUCC [Papenbrock and Naumann, 2017a], which are not applicable for partial

dependency discovery. For those latter two algorithms, we use the original implementa-

tions in our experiments. Note that this comes with the caveat that HyFD and HyUCC

waive potential to do common operations only once. In particular, they have to read the

input data twice, which takes from about 1 second for small datasets to 30 seconds for

the largest dataset. Because HyFD and HyUCC define a parallelization strategy, we

report their runtimes for both the single-threaded and multi-thread mode of operation.

Figure 4.13 displays the results of this experiment. Interestingly, Pyro is a competi-

tive algorithm for exact dependency discovery: For most datasets, it is among the fastest

algorithm and in five cases Pyro is even the fastest algorithm. This is a remarkable

result, as Pyro was not designed to discover exact dependencies. Nonetheless, on the

datasets School results, Reflns, Atom sites, DB status, and Entity source, Pyro is outperformed

by several factors by at least one competitor, usually HyFD and HyUCC. As can be

seen in Table 4.1, these datasets have particularly many columns. Because HyFD’s

and HyUCC’s distinguishing features are the focused search for dependency violations

paired with a dependency deduction step and because they perform particularly well for

the five above mentioned datasets, we conclude that these two features greatly improve

the column scalability of exact fd and ucc discovery. Unfortunately, neither the focused

violation search nor the dependency deduction are applicable to the partial case.

A second difference between exact and partial dependency discovery becomes appar-

ent only when one compares the runtimes of Figure 4.13 to those in Figure 4.6: Observe

that Pyro’s runtimes for the dataset School results are orders of magnitudes faster in the

partial case than in the exact case. And, vice versa, Pyro’s runtimes for the datasets

DB status, Entity source, and Census are orders of magnitudes faster in the exact case than

in the partial case. These dramatic runtime differences can be explained by the loca-

tion of exact and partial dependencies in the search space. The search spaces for exact

and partial fds and uccs can be modeled as a power set lattice, such as in Figure 4.4

(page 93). Now we can color each node in this search space according to its dependency

error. Figure 4.14 depicts such a coloring in a highly abstract manner.

In this figure, there are two key points to notice: At first, dependency candidates

with a high error are “below” those with a low error due to the monotonicity of the error
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Figure 4.13: Comparison of Pyro, Tane, Ducc/Dfd, Fdep, as well as HyFD and

HyUCC for exact dependency discovery. Crosses signal that an algorithm ran out

of main memory or processing time (at most 8 hours).

Figure 4.14: Location of exact and partial dependencies in two different lattices.

measures from Definition 4.1. And second, the vast majority of dependency candidates

are situated in the middle layers of the search space, because the power set of an n-ary set

comprises
(

n
k

)

k-ary sets, which reaches its maximum for k =
⌊

n
2

⌋

. Depending on how a

search space is colored, it may have many more exact than partial minimal dependencies

(as indicated in Figure 4.14(a)) or other way around (as indicated in Figure 4.14(b)).

Indeed, for the above mentioned datasets we observe vastly different numbers of partial

and exact fds and uccs. Because any algorithm is bound to be at least of polynomial

time complexity in its output (and Pyro is indeed highly output sensitive as shown in

Section 4.7.3), discovering partial dependencies can be either more facile or more difficult

than exact dependency discovery – depending on the dataset.

4.7.8 Ranking

Table 4.1 suggests that certain datasets entail an unwieldy number of partial depen-

dencies. While some use cases, such as query optimization and feature selection (see

Section 4.1), can make use of all those dependencies regardless of their semantics, other

use cases, such as data cleaning, require semantically meaningful dependencies. This

raises the question whether users can be supported in finding relevant dependencies.
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At this point, ranking schemes can be a great help to order the discovered dependen-

cies by their estimated interestingness. Indeed, several measures have been described in

the literature, in particular for fds [e. g., Dalkilic and Roberston, 2000; Giannella and

Robertson, 2004; Pfahringer and Kramer, 1995; Piatetsky-Shapiro and Matheus, 1993;

Sánchez et al., 2008]. Each of these measures rates dependencies w. r. t. a certain char-

acteristic or application, such as the utility for data compression. To rank our pfds, we

developed a novel ranking scheme, specifically tailored to determine the interestingness

of pfds. This scheme takes into account how likely a pfd could have occurred just by

chance and how accurate that pfd is.

Concretely, for a pfd X → A our measure models the overlap in tuple pairs agreeing

in either X or A with the hypergeometric distribution and determines how many stan-

dard deviations the actual overlap and the mean overlap are apart – let h denote this

value. Intuitively, if h is large, X and A strongly correlate, because then the tuple pairs

agreeing in X and A coincide to a great extent. Additionally, we consider the conditional

probability that a tuple pair agrees in A given it agrees in X, which is similar to the

confidence of association rules – thus let c denote this probability. Now, we assign each

pfd c · sgnh · log |h| as ranking score, where sgn is the signum function.

We applied this ranking to the Voter dataset, for which we have column headers

and can thus understand the column semantics, and report the highest ranked pfds:

(1+2) The pfds voter id →voter reg num and voter reg num →voter id uncover that voter id

and voter reg num are equivalent voter identifications. Note that they are not keys, though.

(3) The pfd zip code →city reflects a rule of the data domain and lends itself to data

cleaning. (4) The pfd first name →gender also exposes a latent rule of the data domain,

thereby supporting knowledge discovery. These examples demonstrate that it is possible

to quickly draw relevant dependencies from large dependency sets. However, notice

that, although often only a small share of the discovered dependencies is meaningful, it

is nonetheless necessary to discover all dependencies: Ranking criteria, such as the one

presented above, do not possess the necessary monotonicity that would allow to leverage

them for pruning during the discovery process (cf. Section 4.1).

As a side note, the above proposed ranking scheme can also be adapted to n-ary

puccs for n ≥ 2: As an example, the ternary pucc ABC could be interpreted as three

“anti-pfds” AB 6→ C, AC 6→ B, and BC 6→ A. Each such anti-pfd basically states

that if a tuple pair agrees in its LHS, then it should not agree in its RHS.6 Now to rank

puccs, one can adapt the above described correlation and accuracy calculation of pfds

for anti-pfds and aggregate the resulting interestingness scores for all anti-pfds entailed

by a pucc, e. g., by taking the maximum interestingness score. Having said that, ranking

dependencies is not the focus of this work, so that we leave a thorough analysis of these

proposed methods as well as a comparison to related measures for future work.

4.8 Summary
This chapter introduced Pyro, an efficient and scalable algorithm to discover all pfds

and all puccs in a given dataset. Pyro uses a separate-and-conquer discovery strat-

egy that quickly approaches minimal dependencies via samples of agree sets, efficiently

6Interestingly, this view reconciles the error measures for puccs and pfds from Definition 4.1.
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verifies them, and effectively prunes the search spaces with the discovered dependencies.

Furthermore, Pyro has a small memory footprint and benefits from parallel execution.

In our evaluation with state-of-the-art dependency discovery algorithms, we found Pyro

to be up to 33× more efficient than the best competitor. Parallelization regularly allows

for even greater speed-ups.

As future work, it is particularly intriguing to investigate how dependency interest-

ingness measures, such as the one proposed in this chapter, could be leveraged by Pyro

to prune the search spaces of profiled datasets. Because oftentimes only a few among all

discovered puccs and pfds are really interesting, this might considerably improve the

efficiency and scalability of our algorithm, whose performance appears to depend on the

number of discovered dependencies in particular.
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Chapter 5

Data Anamnesis with Metacrate

In the above chapters, we present algorithms to profile datasets for several types of data

dependencies. While it is crucial to design efficient and scalable profiling algorithms, data

profiling is of course not an end in itself. Rather than that, the discovered structural

metadata is supposed to support various kinds of data management scenarios. There-

fore, we provided references to, as well as novel ideas for such management applications

throughout the previous chapters.

In particular, we proposed the notion of a data anamnesis [Kruse et al., 2016b] in Sec-

tion 1.1 as a data management problem and as a motivation as to why data profiling (and

dependency discovery in particular) should be considered in data-related projects. Recall

that in a data anamnesis a user seeks to obtain a basic understanding of an uncharted

dataset, which data it contains, how to query it, and whether it is useful for the project

at hand. The data anamnesis should be based on the data itself (or rather its structural

metadata) to avoid any dependence on external artifacts (e. g., a documentation), which

might be incomplete, incorrect, outdated, or simply not available. Structural metadata

lends itself to this task, not only because it can expose latent properties of a dataset,

but also it is usually much smaller than the original data, thereby potentially allowing

fast analyses for interactive workflows. In this chapter, we seek to substantiate this idea

of a data anamnesis with first-hand experiences and to investigate if and to what extent

a data anamnesis can be carried out with structural metadata collected by our data

profiling algorithms.

With this goal in mind, this chapter makes two principal contributions. At first, we

present our system Metacrate [Kruse et al., 2017a] along with the specific challenges,

that it tackles, in Section 5.1. In few words, Metacrate is a database system for

structural metadata. It allows to organize, analyze, and visualize data profiling results –

hence, it serves us well as technical basis for data anamneses. As a second contribution,

we describe a case study, in which we carry out actual steps of a data anamnesis on the

real-world dataset of the MusicBrainz project [Swartz, 2002]. In detail, we profile this

dataset to reconstruct its schema in Section 5.2; we explore ways to enable an easier

understanding of the dataset contents in Section 5.3; and we assess the quality of the

dataset schema in Section 5.4. Notice, it is not the intention of this chapter to develop

novel data anamnesis techniques. For that matter, our data anamnesis adopts and
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adapts existing algorithms and measures where applicable. Instead, we aim to establish

an understanding of the practical applicability of data profiling for data anamnesis – its

prospects and its limitations. This second contribution is based on [Kruse et al., 2016b].

Eventually, we summarize this chapter in Section 5.5.

5.1 A Database System for Structural Metadata

When discussing structural metadata (or data profiles1) in the previous chapters – in

particular data dependencies – we mostly regard them in the context of their search

spaces, i. e., we focus on their interaction with other dependency candidates. While this

point of view is the basis for many discovery algorithms, users in a data management

scenario might prefer a different approach: For them, it might be more appropriate

to regard data profiles as annotations to the original data, but also in the context of

other profiles describing the same portion of the data. Indeed, the key concerns of data

management practitioners are supposedly how to discover relevant metadata, how to

integrate different types of metadata, and – ultimately – how to refine and abstract

the metadata to insights that serve their very project, be it a data cleaning, a data

integration, or a reverse engineering project. Henceforth, we also assume this latter

viewpoint.

While there are several tools and approaches that incorporate data profiles for specific

data management scenarios [e. g., Andritsos et al., 2002; Dasu et al., 2002; Fernandez

et al., 2016], none of them offers a general solution for the management of metadata.

Instead, at their core all those tools need to solve the common problem of how to store,

organize, query, and integrate data profiles. Given the success of database systems to

solve these tasks for relational data, it seems worthwhile to devise a database system for

structural metadata that approaches above mentioned problems in a principled manner

and that can replace ad-hoc solutions in specific data management tools. In fact, data

management tools could then be easily written on top of such a “meta-database”.

5.1.1 Challenges

We identify three key challenges that a system for the management of structural metadata

needs to address, namely volume, variety, and integration. Let us outline each of these

challenges in the following.

Volume

Traditionally, one might think of metadata as tiny, especially in comparison to the orig-

inal data that is referenced by that metadata. Surprisingly, this is not necessarily the

case for structural metadata. For instance, Papenbrock and Naumann [2016] found a

specific dataset of only 2.4MB to entail over 2.5 million fds, which required already

1Recall from Chapter 1 that we use the terms “stuctural metadata” and “data profiles” synonymously.
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4GB of main memory in their experimental setup. Another example where data pro-

filing results become huge can be found in this thesis in Section 3.2, where we describe

that an rdf dataset of 72,445 triples entails 1.3 billion (non-pertinent) cinds. While

these are certainly extreme cases, they have a common cause: dependency search spaces

quickly surge, often exponentially, as the number of considered attributes grows (and

this issue further intensifies if the dependency type admits conditions, too). And larger

search spaces usually contain more dependencies. This is a general issue, even if the

outcome is not always as overwhelming as in the two above examples.

Another factor that potentially causes an abundance of data profiles is the size of the

base data, in particular its schema. In other words, if a database has a complex schema,

there are more structural entities that can be profiled. Complex (relational) schemata

can contain hundreds to thousands of tables, each with tens to hundreds of columns.

What is more, modern information systems often aggregate multiple databases – a trend

that is somewhat reflected in the popular notions of polyglot persistence and data lakes.

Nonetheless, the larger and the more unwieldy a data landscape is, the more pressing is

the need to profile it for data management purposes.

Last but not least, there is a vast array of different data profile types. For instance,

in a recent survey Caruccio et al. [2016] described 35 variations of (partial) fds. Further-

more, many types of structural metadata can be parameterized, such as the number of

buckets in a histogram or the error threshold for partial uccs. Hence, there is essentially

no limit on how many data profiles can be ascertained per schema element. On the

face of the many factors pertaining to the volume of structural metadata, it seems only

reasonable to assume that structural metadata cannot always be (efficiently) stored in

and queried from main memory or flat files.

Variety

The above discussed variety of data profile types does not only have implications on

the metadata volume, but also raises the question for a reasonable (logical) data model

as well as a query language for structural metadata. Not only must the data model

and query language be capable to serve a wide range of data profiles types (e. g., an

n-dimensional histogram and a cind are quite distinct in terms of their representations

as data structures and in terms of their applications for data management), but they

must also be extensible, as new data profile types or variations of existing types should

be supported. At this point, the reader might wonder whether a traditional relational

database provides the required flexibility. In our experience, it is possible but utterly

impractical: most data profile types require multiple tables; a universal schema to ac-

commodate all data profile types does not exist, so it must be continuously extended;

and querying the database with SQL is complex, tedious, and error-prone – let alone

performing complex analyses.
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Integration

Let us emphasize as a third point, that the various data profiles must be integrated. To

explain what that means, recall from above that a data management practitioner might

view data profiles as annotations to the base data. As a data profile usually characterizes

the underlying data w. r. t. one specific property, such as some statistic or relationship, it

is likely that the practitioner needs to combine several types of data profiles to accomplish

her task at hand. As an example, assume that this task is foreign key discovery. Rostin

et al. [2009] propose to approach this task by combining inds with several features (which

can be drawn from other data profiles) and apply a machine learning model to predict,

which inds instantiate foreign keys. Concretely, this means that inds need be combined

with other data profiles that describe the dependent and referenced columns of those inds

(e. g., the number of NULL values or whether those columns form uccs). What is more,

some relevant data profiles, such as the number of tuples, might annotate tables rather

than columns; it should be easily possible to include such data profiles, too. While this

is only one example, we find in our data anamnesis that virtually any metadata-driven

task requires a combination of various data profiles. In consequence, we consider the

integration of data profiles to be a first-class requirement.

5.1.2 Architecture

Having laid out the motivation for and challenges of devising a database for metadata,

let us describe our respective solution for relational databases: the open-source sys-

tem Metacrate.2 Generally speaking, Metacrate is a hub between data profiling

algorithms (which produce the data profiles) and metadata-driven algorithms (which

consume them). In addition to that, (i) we enable seamless storing of any kind of data

profile; (ii) we expose the data profiles in a well-organized, integrated fashion; (iii) we

provide a query layer to explore and exploit the contents of Metacrate; (iv) and we

provide a library of basic data management and analysis algorithms to quickly build

workflows on top of Metacrate and also as a proof of concept for our design. In sum-

mary, Metacrate not only seeks to answer the research question of whether it is pos-

sible to build a system that accommodates the above presented challenges; Metacrate

also intends to contribute to the community a basis to facilitate the research and de-

velopment of metadata-driven applications – especially w. r. t. advanced types of struc-

tural metadata, such as data dependencies, which is a particular blind spot of many

industry tools [Eschrig, 2016]. For this purpose, Metacrate is tightly integrated with

Metanome [Papenbrock et al., 2015a], which provides a wide host of cutting-edge algo-

rithms3 to discover data dependencies (including the algorithms presented in this thesis).

Let us now outline Metacrate’s architecture and present its principal components

and design decisions. Consider Figure 5.1 for that purpose. As can be seen, Metacrate

interacts with data profiling tools that produce data profiles and with metadata-driven

2See https://github.com/stratosphere/metadata-ms (accessed November 28, 2017).
3See https://hpi.de/naumann/projects/data-profiling-and-analytics/metanome-data-

profiling/algorithms.html (accessed November 28, 2017)
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Figure 5.1: Overview of Metacrate.

tools that need access to the data profiles to accomplish their various tasks. In this chap-

ter, we particularly focus on metadata-driven data management tools, e. g., for database

reverse engineering or data discovery tools. In this ecosystem, Metacrate acts as a bro-

ker between those two parties, thereby taking care of storing and organizing the profiles

(logical metadatabase) and offering them via a query interface (analytics engine).

Logical metadatabase

Metacrate’s logical data model governs the principal manner in which data profiles

are stored and organized. On the face of the variety of structural metadata, it aims

to strike a balance: On the one hand, it should be abstract enough to deal with all

kinds of data profiles and, on the other hand, it should be specific enough to be queried

in a meaningful way. Figure 5.2 depicts our choice of such a logical data model as an

entity-relationship diagram. On a high level, it can be separated into three parts parts,

the schema elements, the data profiles, and execution-related data. Let us briefly iterate

these parts.

The core entity to describe schema elements is called target, which is simply an ab-

straction for any kind of structural element in a relational database.4 Concretely, we

consider three types of targets. Of course, relational tables are targets. Those comprise

a number of columns, which are also targets. Finally, we consider as top-level targets

schemata as any collection of tables, which could be a complete relational database, a

table space or schema within the database, or just a directory with CSV files. Fur-

thermore, each target has a (not necessarily unique) name and an optional location. A

distinctive feature of targets is the ID attribute, which serves several purposes. At first,

4The idea behind the naming target is that these schema elements are referenced (or targeted) by data

profiles. The reader could also think of them as schema elements, but should beware of any confusion

with schemata.
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it resolves potential naming ambiguities among targets. Second, it is a highly compact

representation of targets, which allows a compact representation of data profiles (because

they employ those IDs when referencing a target), which in turn allows to analyze data

profiles more efficiently. As a third and final point, the IDs also embed the inclusion re-

lationship among schemata, tables, and columns that is depicted in Figure 5.2. Inspired

by the hierarchical structuring of IP addresses, the leading bits in a target ID identify

the schema, the middle bits identify the table, and the trailing bits identify the column.

As a result, we can tell (i) which type of target an ID describes (i. e., schema, table, or

column) and (ii) how the targets of two IDs relate (e. g., one includes the other), without

having to consult some mapping table, just by observing those IDs.

Figure 5.2: Metacrate’s logical data model.

Let us move on to the data profile and execution parts of the logical schema. As

shown in Figure 5.2, data profiles are organized in profile collections, thereby providing

a natural means of organizing data profiles. In addition to that, the profile collections

have various properties that users can use to discover them. In particular, each profile

collection stores a specific type of data profiles and has a scope that declares which

parts of the schema are described by those data profiles. These properties already allow

for user queries, such as: “Retrieve all profile collections with inds for schema R.”

Furthermore, a profile collection can be associated to a data profiling experiment that

can further describe the contents of that collection. For instance, when a user executed

the Sandy algorithm to discover partial inds (see Chapter 2.3), it is important to know

the configured error threshold in that execution of Sandy. As a further result, it is

possible to have different “versions” of data profiles, e. g., when comparing the results of

data profiling algorithms or when executing algorithms with different parameterizations.

Furthermore, the organization of data profiles in profile collections fulfills a second

important purpose: This approach allows to model the absence of a certain data profile,

which is particularly relevant for data dependencies. As an example, assume we have a

profile collection with uccs and a profile collection with fds, both having the same table

as scope. This allows us to reason, for which fds there is an implying ucc and for which

fds there is no such ucc. Amongst others, this is important to discover fds that might

be employed for schema normalization [Papenbrock and Naumann, 2017b]. Note that
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this would not be possible without scopes and profile collections, as otherwise it would

not be possible to tell whether a dependency is absent in Metacrate because it indeed

does not hold on the data, or simply because it has not been stored in Metacrate.

It remains to describe how we represent actual data profiles in our logical data model.

As indicated by the dashed line in Figure 5.2, we virtually do not make any restrictions

on the structure of the data profiles. In fact, Metacrate technically allows data profiles

to be any Java class; it is exactly this point, where we account for the great variety of

data profiles. There are only two requirements that Metacrate imposes on the data

profiles: (i) all data profiles within a profile collection should be of the same type; and

(ii) whenever a data profile references a target (i. e., a schema element), it must do so via

its ID. We impose these requirements, as it facilitates the development of applications

on top of Metacrate. Specifically, the above described integration of data profiles and

the declarative retrieval of profile collections are enabled by these design decisions.

Applications can interact with this logical data model via a management API, e. g., to

create new schemata or profile collections. Nonetheless, an actual storage backend is

needed to ultimately persist the inserted metadata. For this purpose, Metacrate im-

plements three default storage backends: (i) an in-memory backend for simple ad-hoc

tasks; (ii) a backend for relational databases as a persistent option; and (iii) a backend

for Apache Cassandra as a scalable option (recall that structural metadata can indeed

be voluminous).

Analytics engine

Metacrate complements its storage component with an analytics engine, which can be

seen as the counterpart of query engines in relational databases. However, Metacrate

does not adopt a closed algebra to formulate analytics, because we neither know the

various data profile types apriori (cf. Figure 5.2) nor the actual analytical tasks to be

performed by metadata-driven applications. And even if we knew all types of data profiles

in advance, we learned that formulating SQL queries, for instance, to analyze data profiles

is cumbersome and error-prone. Instead, Metacrate employs a Scala-based data flow

API that supports user-defined functions and whose operator set is extensible. As we

demonstrate in our data anamnesis in the following sections, this design choice allows

to formulate rich analytics in a concise manner. We further provide an analytics library

for structural metadata that offers common functionality for various data management

tasks ([e.,g., Andritsos et al., 2004; Dasu et al., 2002; Fernandez et al., 2016; Kruse et al.,

2016b; Rostin et al., 2009; Yang et al., 2009]). This library facilitates the development

of data management tools and allows for complex ad-hoc queries to Metacrate. In

fact, the library functionality is exposed via a Scala API that can be seamlessly weaved

in with regular queries. Note that we present several concrete examples for Metacrate

queries in the following sections.

Internally, Metacrate executes those queries on the cross-platform data processing

system Rheem [Agrawal et al., 2016; Kruse et al., 2018], which also is an open-source sys-

tem5 that we developed in a collabration with the Qatar Computing Research Institute.

5See https://github.com/rheem-ecosystem/rheem (accessed November 28, 2017).
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In detail, Metacrate feeds schema elements and profile collections to Rheem using

dedicated engine connectors. Rheem then selects an actual data processing platform to

execute the query on, e. g., Java Streams6 or Apache Spark7. In combination with the

various storage engines, Metacrate can therefore either employ light-weight compo-

nents for simple scenarios or make use of distributed components to scale to complex

scenarios with millions and more of data profiles.

5.1.3 Appliations

As described above and as shown in Figure 5.1, Metacrate is a backend system to sup-

port metadata-driven applications, such as data managment. In the following sections,

we employ Metacrate to carry out a data anamnesis. Although it is not our intention

to develop a dedicated, easily operated data anamnesis application, we are in need of

a concrete application to interact with the Metacrate backend. Therefore, we adopt

an approach that has been recently very popular among data scientists: we integrate

Metacrate with Jupyter notebooks.8

In few words, (Jupyter) notebooks are web-based applications that allow users to

write ad-hoc code, usually small snippets, to analyze a dataset. The code is then executed

on some remote, powerful computer and the results are reported back to the user, often

with some kind of visualization. This approach is a good fit for our data anamnesis: We

can write ad-hoc queries to Metacrate to perform simple tasks of the data anamnesis,

or use Metacrate’s analytics library for the more complex tasks. To complement this

idea, Metacrate’s integration with Jupyter provides a set of visualizations, many of

which are dedicated visualizations of data profiles. An example of what this Jupyter

integration looks like can be found in Figure 5.3. This screenshot depicts a Metacrate

query that simply aggregates the number of columns in each table of some schema. Such

queries and visualizations form the basis of our following data anamnesis.

5.2 Schema Discovery

Having conveyed an overview of Metacrate, we can now describe our data anamnesis

case study. Let us initially remark that all the queries and analyses of this case study

are captured in a Jupyter notebook that can be downloaded from the Metacrate

website along with several other artifacts, e. g., a demonstration video: https://hpi.

de/naumann/projects/data-profiling-and-analytics/metacrate.html

To make our study insightful, we chose a complex dataset, that cannot easily be

apprehended by eye-balling: The MusicBrainz dataset9 is an open, community-driven mu-

6See https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

(accessed November 28, 2017).
7See http://spark.apache.org/ (accessed November 28, 2017).
8See https://jupyter.org; (accessed November 28, 2017).
9The MusicBrainz dataset can be downloaded from ftp://ftp.eu.metabrainz.org/pub/

musicbrainz/data/fullexport/. However, this mirror regularly provides new versions of the data-

set, while older versions are removed. The here described case study is based on the dataset version

20171125-001448.
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Figure 5.3: Screenshot of Metacrate running in a Jupyter notebook.

sic encyclopedia that provides discographical data for a large number of musical works.

The database dump of the MusicBrainz dataset is fairly extensive: It comprises 260 tab-

separated files, which together account for 51GB of data. While we discovered an in-

complete schema description on the MusicBrainz website10 as well as several schema

definition SQL files in a source code repository11, the dump itself is not accompanied by

a schema. In fact, it is easy to imagine (and frequently the case), that such additional

artifacts are not available for a given dataset. And even in the presence of such artifacts,

there is no guarantee that they are correct, complete, sufficiently specific, and consis-

tent with the acquired data – especially if the data and the additional artifacts reside

in different repositories. In consequence, it is reasonable to assume that oftentimes the

understanding of the dataset has to be driven by that very dataset – which is the key

principle of data anamnesis (see Section 1.1).

As a starting point of our data anamnesis, we profiled the data with Metanome. We

used a cluster that consists of a master node (IBM xServer x3500 with two Intel Xeon

10See https://musicbrainz.org/doc/MusicBrainz_Database/Schema (accessed November 28, 2017).
11See https://github.com/metabrainz/musicbrainz-server/tree/master/admin/sql (accessed

November 28, 2017).
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X5355 Quadcore (2.66GHz, 8MB cache), 32GB RAM, and a 2.7TB hard disk) and four

PowerEdge R430 workers with an Intel Xeon E5-2630 v4 (2.2GHz, 10 cores, 20 threads,

25MB cache), 32GB RAM, and 2 hard disks (7.2 kRPM, SATA) running Ubuntu 16.04.1

and Oracle JDK 1.8.0 112 with a maximum heap size of 24GB. To control the overall

duration of the profiling, we limited each individual algorithm execution12 to a maximum

time of 8 hours.

Table 5.1 summarizes the profiling process: It lists the aggregated runtimes for each

algorithm (including failed runs); it reports the number of failed (and total) executions of

each algorithm; and it displays the number of discovered data profiles of each data profile

type. The algorithmsAndy and Pyro are described in the Chapters 2 and 4 of this thesis

and the algorithms HyFD [Papenbrock and Naumann, 2016], HyUCC [Papenbrock and

Naumann, 2017a], and Scdp are further algorithms from the Metanome project. Last

but not least, the reservoir sampling is provided by Metacrate. All these algorithms

yield a somewhat moderate number of data profiles.13 However, it is important to note

that, with the exception of Andy and the reservoir sampling, no algorithm could profile

the whole dataset, e. g., due to too long running times (HyFD) or exhausted main

memory (HyFD, HyUCC, Pyro, Scdp). In consequence, we have to carry out our

data anamnesis with incomplete structural metadata.

Data profile type Algorithm Runtime Failures Data profiles

Inds
Andy 0:16:06 0/1

74,010

Ars 123,194

Fds HyFD 33:14:58 35/260 4,328

Uccs HyUCC 3:52:05 2/260 538

Partial fds
Pyro 3:44:41 10/260

4,544

Partial uccs 789

Column statistics Scdp 3:30:50 1/260 1,564

Samples Reservoir sampling 0:23:29 0/260 260

All 45:02:09 48/1,301 209,227

Table 5.1: Insights on the profiling process of the MusicBrainz dataset.

Also notice that neither the number of failures nor the runtimes of the algorithms are

meant to be compared. As a matter of fact, every algorithm solves a distinct problem,

operates on different hardware resources, and fails on different input files. That being

said, we still provide these data points to convey an idea of how long it takes state-of-

the-art algorithms to profile a larger dataset and how robust they are.

Having comprehensively profiled the MusicBrainz dataset, we can now proceed to de-

scribe the reconstruction of its schema. Concretely, in our case study we attempted to

infer (i) data types, (ii) NOT NULL constraints, (iii) primary keys, and (iv) foreign keys.

12Apart from Andy, which profiles the complete dataset in a single execution, all other algorithms

conduct one execution per table.
13It shall be remarked that without Andy’s ars we would have to cope with millions of inds.
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To assess the quality of our results, we compared them to the constraints and data types

defined in the above mentioned SQL files. Unfortunately, those SQL files do not cover

all 260 tables, so that we restrict the comparison to the 209 covered tables only.

Column descriptions

To reconstruct the data types and NOT NULL constraints, we used straight-forward ap-

proaches. In fact, the Scdp algorithm mentioned in Table 5.1 outputs for each profiled

column the most specific data type that accommodates all values in that column, which

we directly proposed as data type. Furthermore, Scdp outputs the number of NULL

values for each column and we simply proposed a NOT NULL constraint for all columns

without any NULL values.

According to the definitions in the SQL files, our data type inference determined

the correct data type for 497 columns (37.0%) and determined a more specific data type

(e. g., SMALLINT instead of INT) or a closely related data type (e. g., VARCHAR(32) instead

of CHAR(32)) for 697 columns (51.9%). For the residual 150 columns (11.2%) we failed

to predict the data type mainly because 144 columns contain only NULL values or empty

strings. The other 6 failures can be attributed to rather rare data types (e. g., CUBE) that

are not supported by Scdp and to the algorithm failure shown in Table 5.1: Scdp only

failed on the edit data table, which alone comprises 29GB of data.

Furthermore, we proposed 1,112 NOT NULL constraints of which 836 are also declared

in the SQL files, yielding a precision of approximately 0.752. For that matter, we also

missed 2 NOT NULL constraints because of the one failure of Scdp on the edit table, so

that we obtained a recall value of 0.997.

In summary, we find that our simple data-driven constraint inference yielded similar,

but tighter constraint sets than those specified by the schema designers: Our proposed

data types approximate the originally specified data types quite well (with many of them

being even more specific) and the proposed NOT NULL constraints essentially form a

superset of the originally specified ones. This is completely fine if the inspected dataset

will not change anymore. In contrast, if the data is going to change, e. g., because

the user regularly downloads the latest version of the MusicBrainz database, then the

proposed constraints might need to be revised. This is because the data-driven approach

proposes constraints that accommodate one specific database instance, while a human

schema designer can also incorporate assumptions on all possible database instances

when declaring constraints.

Primary and foreign keys

Designating primary and foreign keys is rather different from designating data types and

NOT NULL constraints: Instead of processing every column of the dataset individually, we

need to consider additional restrictions. In fact, there can be only one primary key per

table and each column may at most reference one other column, which in turn needs to be
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a primary key.14 Furthermore, primary and foreign keys are highly critical in relational

datasets, as they essentially define how tables relate and can be joined meaningfully.

To accommodate these additional requirements, we approached the designation of

primary and foreign keys as machine learning problems: We assessed for each discovered

ucc and ind how likely it is to be a primary or a foreign key, respectively, based on

features of the dependencies themselves as well as other structural metadata. Access to

the original dataset was not required, though. We would then select mutually consistent

primary and foreign keys with a high assessed probability.

Concretely, to assess how likely a ucc constitutes a primary key, we adapted features

described by Papenbrock and Naumann [2017b] to build a logistic regression model.

Similarly, we used features adapted from Rostin et al. [2009] and Zhang et al. [2010]

along with logistic regression to determine potential foreign keys among the inds. The

concrete features are listed in Table 5.2. In addition, we narrowed our considerations only

to those inds whose referenced attributes constitute a primary key. In consequence, we

selected the primary keys before the foreign keys. In summary, we designated our primary

and foreign keys by (i) considering those candidates for which we assessed a probability of

at least 0.5 to constitute a key; (ii) sorting them by this probability in descending order;

and (iii) promoting one after another as a key unless it would conflict with a previously

designated key. Note that this classification algorithm is part of Metacrate’s analytics

library.

Our machine learning approach raises two questions. At first, it is important how

well our features and classifier (logistic regression) can fit the problem at hand in the

first place. And second, it is interesting to learn whether we could find a general model

that fits most datasets well. To find indications for these questions, we designated

the primary and foreign keys with two different models. One model was learned on a

completely unrelated, biological dataset with the BioSQL schema15 and is referred to as

foreign model ; the other model was learned on the MusicBrainz dataset directly and is

referred to as local model. Let us also remark that we used oversampling while learning

those models to even out the highly skewed distribution of keys and non-keys among all

uccs and inds.

The feature weights of both the local and foreign models are compared in Table 5.2.

A manual inspection shows that the primary key models are somewhat similar – their

cosine similarity amounts to 0.98. This suggests that the primary key models are indeed

general and not overfitted to a single dataset. In contrast, the two foreign key models

are quite different and have a cosine similarity of only 0.35. In particular, the feature

weights pertaining to table and column names are contradictory among the two models,

which might reflect different naming schemes on the respective training datasets.

These hypotheses are also confirmed when comparing the predicted primary and

foreign keys to those defined in the SQL files, as displayed in Table 5.3. Both the foreign

and the local model predict the primary keys pretty accurately (and in fact make the

14The SQL standard also admits foreign keys that reference columns with a UNIQUE constraint, but

in our experience such constructs are so rare that we decided to exclude them.
15See http://biosql.org/ (accessed December 12, 2017).
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Primary key assessment Weight

Feature Foreign model Local model

Fill status +7.3 +233.2

Arity -2.3 40.9

Maximum value length -51.6 -4,977.1

Columns to the left -8.8 -580.0

Gaps between attributes -8.8 -191.6

Offset -1.7 +221.2

Foreign key assessment Weight

Feature Foreign model Local model

Unorderedness of referenced columns +13.4 -12.9

Gaps between dependent columns -1.0 +7.0

Table name overlap (w/o equality) -430.6 +4,984.2

Column name overlap +395.3 -10,168.5

Distributional distance -337.6 -5,843.7

Value coverage of the referenced columns +126.4 +5,722.3

Offset -865.6 -12,204.4

Table 5.2: Features and weights for the primary and foreign key assessment.

Constraint type Inds/uccs Gold Model Precision Recall

Primary keys 445 209
Foreign 0.99 0.99

Local 0.99 0.99

Foreign keys 52,482 387
Foreign 0.50 0.00

Local 0.34 0.34

Table 5.3: Features and weights for the primary and foreign key assessment.

same three mispredictions and miss the same two primary keys) with the caveat that in

13 cases the selected uccs form a subset of the actual primary key. In fact, for those

tables the actual primary keys do not constitute minimal keys.

In contrast to that, the foreign key prediction appears to be a much more intricate

task. The foreign model proposes only two foreign keys of which one is not correct. The

local model performs much better, but still not as good as the primary key prediction.

This shows that the learned models underfit the problem and do not generalize very well

– even though we adopted state-of-the-art techniques. An investigation of other features

and classifiers is out of the scope of our case study, though. Also, as expected for a

large dataset, the ratio of foreign keys to inds is quite small (cf. Section 2.5.2), which

makes their discovery a search for the “needle in the haystack”. In fact, the MusicBrainz

dataset is much more extensive than the datasets analyzed in related work, thus our

findings question the scalability of current foreign key designation approaches.
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* * *

In summary, we find that many schema discovery tasks can be performed almost

automatically just by inspecting and combining various data profiling results. The cor-

responding analyses took at most a few seconds. An exception to that is the foreign

key discovery, which not only turned out to be a particularly hard task but also was

computationally most expensive. In fact, training a foreign key model took around 30

minutes, which can be attributed to the large number of inds for the most part. In

addition, we want to remark that there are many other interesting schema discovery

tasks that we have not considered, e. g., restoring table and column names or proposing

CHECK constraints. If and in how far data profiling results can support such tasks, e. g., in

combination with machine learning algorithms, is interesting and relevant future work.

5.3 Conceptualization

When analyzing an unknown dataset, it is not only important to obtain a technical

(relational) schema for that data. It is also crucial that users familiarize themselves with

the dataset, so as to put its contents to actual use. We refer to this process of building

up an understanding of the dataset as conceptualization. Clearly, this is a much less

clear-cut task than the reconstruction of technical schema features. What is more, the

conceptualization is for the largest part a cognitive process of the user rather than a

purely technical process – in consequence, conceptualization can hardly be measured.

To narrow down the discussion, we enacted three concrete conceptualization aids in

our data anamnesis: (i) As a beginning, we conduct a break-down analysis of the dataset

size. Then, we apply (ii) a table importance scoring and (iii) a table clustering algorithm

proposed by [Yang et al., 2009]. As a matter of fact, we adapted these algorithms to

operate exclusively on data profiles and implemented them as part of Metacrate’s

analytics library. Eventually, we used standard plots to visualize the results of these

algorithms. In the following, we present the outcomes of these conceptualization aids

and, where applicable, compare them to the documentation of the MusicBrainz dataset.

Dataset size

Before a user delves into the details of a dataset, such as the structure of individual tables,

it might be appropriate to gain an overview of how large a dataset is. An understanding of

the dataset’s extent allows, amongst others, to select an appropriate database deployment

for the data, to apprehend how rich the data is terms of instances and features, and to

estimate the time that is needed to adopt the new dataset [cf. Kruse et al., 2015b].

To this end, we broke down the number of the dataset’s columns and rows to the

table level and visualized the result in a scatter plot. To achieve this with Metacrate,

a simple query suffices that joins (via the coGroup operator) the number of columns

(obtained by counting) and rows (loaded from a profile collection) for each table and

feeds the outcome in the respective plotting function (namely plotScatterChart). The

complete query is as follows:
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1 // Global v a r i a b l e s : metacrate , schema

2 query { imp l i c i t eng ine =>

3 // Load rows and columns per t ab l e .

4 va l c o l s = metacrate . loadColumns ( schema )

5 .map( c o l => ( getTableId ( c o l . id ) , 1) )

6 . reduceByKey ( . 1 , ( cnt1 , cnt2 ) => ( cnt1 . 1 , cnt1 . 2+cnt2 . 2 ) )

7 va l rows = metacrate . l oadCons t ra in t s [ TupleCount ] ( schema )

8 // Join rows and columns .

9 c o l s . keyBy ( . 1 ) . coGroup ( rows . keyBy ( . getTableId ) )

10 .map { coGroup =>

11 va l ( co l s , rows ) = ( coGroup . f i e l d 0 , coGroup . f i e l d 1 )

12 ( c o l s . head . 2 , // columns

13 rows .map( . getNumTuples . t o In t ) . headOption getOrElse 0 , // rows

14 c o l s . head . 1 ) // tab l e ID

15 }

16 // Convert t ab l e ID to readab le name

17 . r e s o l v e I d s ( ( counts , r ) => ( counts . 1 , counts . 2 , r ( counts . 3 ) ) )

18 }

19 // Plot the r e s u l t i n g t r i p l e s in a s c a t t e r p l o t .

20 . p l o tSca t t e rChar t ( t i t l e = ”Number o f rows vs . number o f columns” ,

21 xax i sT i t l e = ”Columns [#] ” ,

22 yax i sT i t l e = ”Rows [#] ” )

Figure 5.4 depicts the result of this query and immediately conveys an intuition of

the dataset size: The tables of the MusicBrainz dataset comprise at most 19 columns,

but most contain fewer than 10. Also, there are many tables with millions of tuples

and a few with even tens of millions of tuples. Furthermore, this visualization reveals

a pattern between the number of row and columns in tables that we observed across

very many different datasets, too: While the majority of tables has (relatively) few rows

and columns, there are always some tables that contain either exceptionally many rows

or exceptionally many columns. The former ones typically are join tables, e. g., in our

dataset the upper left tables are called edit recording and edit artist. On the other

hand, the tables with many columns tend to model central entities of the dataset. In

Figure 5.4 the right-most tables are called artist and event.

Table importance scoring

The above dataset size breakdown gives a first clue as to which tables form the principal

entities in the dataset. Knowing those important tables can be very helpful for the

conceptualization: Usually, they represent easy-to-grasp concepts and summarize the

dataset. Therefore, those tables also support the understanding of the other tables; in

fact, other tables regularly are either join or dimension tables for those important tables

and can thus be understood more easily when put into perspective.

However, identifying important tables only by their number of columns is not a very

sophisticated approach. In particular, it ignores the structure of the schema, i. e., the for-

eign key relationships among tables, as an important criterion. To this end, we adapted a

well-known table importance scoring algorithm [Yang et al., 2009]. The algorithm’s basic

idea is to interpret the dataset’s schema as a graph, where the tables form the vertices

and foreign key relationships form the edges. Then each vertex is given an initial score
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Figure 5.4: Screenshot of breaking down the dataset size to the tables of the Mu-

sicBrainz dataset with Metacrate. Hovering over a data point displays additional

information, as exemplified for the track table.

based on the amount of information contained in its respective table; and each edge is

qualified by how strongly it bonds the two adjacent tables. Then, an adapted PageRank

algorithm [Brin and Page, 1998] is executed and the final “page ranks” serve as table

importance scores.

We assessed the table importances with this algorithm and visualized the result as a

schema graph, where vertices represent nodes, edges represent foreign key relationships,

and the size of the nodes corresponds to the assessed table importances. Figure 5.5

depicts an excerpt of this visualization. Arguably, the graph is rather complex and to

some extent overwhelming; however, the large vertices provide orientation and guidance

so that this visualization is clearly more valuable than a plain schema graph without

variable vertex sizes. That being said, further (schema) graph summarization techniques

could be used to additionally produce smaller, more abstract graph visualizations [e. g.,

Wang et al., 2012; Yu and Jagadish, 2006].

In order to make a qualitative statement on the importance scores, we compared the

top-ranked tables to the “primary entities” listed in the schema documentation of the

MusicBrainz.16 We find that those 11 primary entities are among the 14 top-ranked tables.

The other 3 top-ranked tables, edit, link, and annotation, apparently do not represent

entities from the discographical domain – in contrast to the primary entities. Instead,

these tables form central metadata entities, that are, amongst others, responsible for the

version management of the dataset. One might hence argue that these tables are also

of particular interest for several applications. However, regardless of these three latter

tables it is safe to say that the data profiling results indeed proved helpful to identify

important tables in the MusicBrainz dataset.

16See https://musicbrainz.org/doc/MusicBrainz_Database/Schema (accessed December 15, 2017).
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Figure 5.5: Screenshot of displaying the assessed table importances of the MusicBrainz

dataset as a schema graph with Metacrate (excerpt). For better exploration, users

can interact with the graph.

Table clustering

The above paragraph supposes that further summarization techniques might be helpful

for users to cope with complex schema graphs, such as the one depicted in Figure 5.5.

One such summarization technique is clustering: Clustering the tables in a schema can

support users in understanding the context of non-important tables and efficiently iden-

tify relevant parts of the schema for their task at hand.

In fact, Yang et al. [2009] propose a schema clustering algorithm that prefers impor-

tant tables as clustroids and uses a topology-based similarity measure to assign tables

to clusters. We implemented this approach as part of Metacrate’s analytics library,

too; again taking care to derive all the relevant clustering exclusively from metadata. In

consequence, the algorithm runs with sub-second performance. This is a great advan-

tage, because like k-means the clustering algorithm requires a user-defined number k of

clusters. We could easily test different k values and settled for k = 12, for which we

deemed the resulting clustering to be most appropriate in terms of the abstraction level

of its clusters.

To inspect the clustering result, we utilized two different visualizations. At first,

we extended the graph from Figure 5.5 by encoding cluster membership as vertex col-

ors. Second, we displayed the above mentioned similarity measure in a square matrix

whose rows and columns correspond to tables. Specifically, the opacity of each matrix

tile reflects the similarity of the tables that are associated with the corresponding row

and column. If row and column table are also in the same cluster, then the tile color

additionally encodes that cluster.

The colored schema graph is depicted in Figure 5.6. We found the coloring to be

highly valuable. By spotting important tables, we could get a grasp of the associated
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Figure 5.6: Screenshot of displaying the assessed table importances together with

the table clustering of the MusicBrainz dataset as a schema graph with Metacrate.

cluster’s contents. If that cluster appeared to be interesting, then we could quickly

explore it by identifying tables that are of the same color. For instance, the purple

vertices in Figure 5.6 obviously describe releases of musical works, as indicated by the

two important tables release and release group. If a user would be interested in release

data in particular, she could immediately identify many relevant tables, such as medium,

which apparently describes the physical medium of a release.

In contrast to the graph visualization, we found the matrix visualization in Figure 5.7

to convey completely different insights. This visualization is rather well-suited to identify

similar tables (w. r. t. the similarity measure proposed by Yang et al. [2009]). Therefore,

it was easy to see that many clusters are not very cohesive: Most clusters have one or

two tables that are similar to the majority of tables in the same cluster, but most tables

of a cluster are pairwise dissimilar. Furthermore, this visualization lends itself to spot

links between clusters: Whenever two tables are similar, but do not reside in the same

cluster, they form a bridge between the two clusters. In the matrix visualization, such

table pairs form outliers and are hence easy to spot. In fact, Figure 5.7 highlights such

an outlier between the release and the annotation cluster.

* * *

The three above explored conceptualization techniques can support users to get an

overview of an unknown dataset. When potentially interesting tables have been identi-

fied, the next logical step would be to inspect individual tables in more detail. While
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Figure 5.7: Screenshot of the visualization of the table clustering and the underlying

similarities of the MusicBrainz dataset as a tile matrix with Metacrate. Hovering

over a tile displays the tables associated to the respective row and column (note that

the cluster colors do not match those in Figure 5.6).

we did not consider such techniques in our case study, industry data profiling tools,

such as the IBM InfoSphere Information Analyzer17 or Talend Data Quality18, address

this problem. Typically, those tools provide a wide host of column summaries, such as

value distributions or textual patterns. As a future direction, it might be interesting to

complement the summaries with data dependencies, such as (approximate) functional

dependencies (see Chapter 4) or denial constraints [Bleifuß et al., 2017] to expose rela-

tionships among the individual columns.

17See https://www.ibm.com/us-en/marketplace/infosphere-information-analyzer (accessed on

December 19, 2017).
18See http://www.talend.com/products/data-quality (accessed on December 19, 2017).
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5.4 Schema Quality Assessment

The above two sections describe how to approach datasets with missing (relational)

schemata or documentation. An additional concern with the adoption of new datasets is

the question whether the data is actually “fit” for its intended use. One main considera-

tion of such a fitness check is whether the dataset provides sufficient entities and models

relevant features. Another major aspect is the quality of the dataset.

The research area of data cleaning investigates the methods to detect and repair

data quality issues [e. g., Ganti and Sarma, 2013; Ilyas and Chu, 2015; Rahm and Do,

2000]. In particular, instance-based data cleaning has been (and continues to be) in the

focus, i. e., methods to detect and correct erroneous or inconsistent tuples. Prominent

data cleaning problems are deduplication [e. g., Christen, 2012; Kolb and Rahm, 2012;

Whang et al., 2013] and constraint repairs [e. g., Bleifuß et al., 2017; Bohannon et al.,

2007; Rekatsinas et al., 2017]. For the latter problem, discovery algorithms for partial

dependencies as we describe them in this thesis form an invaluable asset, as they help to

find violated database constraints.

In contrast to these works, our case study dealt with the orthogonal aspect of de-

tecting quality problems at the schema level rather than at the instance level. Research

on this topic is rather scarce, although it is apparently a relevant issue: In a study with

numerous open-source software databases, Coelho et al. [2012] attested largely poor

schema quality to them. Arguably, Codd [1971b] pioneered the consideration of schema

quality by proposing integrity rules and database normal forms that give the database

desirable properties, such as reduced redundancy and diminished susceptibility to incon-

sistencies. Apart from such technical constraints, other works have focused on judging

schema quality from the application view point. As an example, Batini et al. [1991]

define completeness, extensibility, and readability, amongst others, as schema quality

dimensions.

In a data anamnesis scenario, such top-down approaches might be of limited applica-

bility; especially if the user is not knowledgeable of the underlying data domain. To this

end, we propose a bottom-up schema quality assessment – that is, we assessed the schema

quality from the viewpoint of the data. Such a bottom-up assessment also seems appli-

cable to revise initial assumptions made during the design of a schema, once a database

is in production. In our case study, we studied two data-driven schema quality aspects,

namely conciseness and normality, as we describe in the following.

Conciseness

While instance-based data cleaning methods treat missing values as a deficiency of the

data, one might as well attribute greater numbers of missing values as a consequence of an

overly complex or poorly designed schema. In fact, a schema might model properties that

apply to only few instances, that are exceptionally hard to ascertain, or that are simply

not relevant. Highly general and complex schemata are not only hard to understand

and to maintain; they also might come with increased storage costs, their transactions

and queries might become more complex and, in consequence, their execution could
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slow down. Hence, it would be desirable if the schema is only as complex as necessary,

i. e., concise. Given this, our proposed approach to determine the conciseness of a schema

is to look at the data and check whether we could also express it with a simpler schema.

To do so, we identified several metadata-based indicators for lacking conciseness.

One obvious indicator for a lack in schema conciseness are (mostly) unused schema

elements, i. e., empty tables and columns. Such schema elements might be pruned to

enhance the schema conciseness. Our database dump of the MusicBrainz dataset did not

contain any empty tables. However, the SQL files define 323 tables of which 114 were

not present in the dump, which provides an opportunity to greatly simplify the schema.

Besides empty tables, we also analyzed (almost) empty columns with the following

query:

1 // Global v a r i a b l e s : metacrate , schema

2 query { imp l i c i t eng ine =>

3 metacrate . l oadCons t ra in t s [ Co lumnStat i s t i c s ] ( schema )

4 .map( s t a t s => ( s t a t s . g e tF i l l S t a t u s , 1) )

5 . reduceByKey ( . 1 , { case ( ( f i l l , a ) , ( , b ) ) => ( f i l l , a+b) })

6 } . plotBarChart ( t i t l e = ” F i l l s t a tu s o f a l l columns” ,

7 xax i sT i t l e = ”Ratio o f non−nu l l va lue s ” ,

8 yax i sT i t l e = ”Columns [#] ” )

Figure 5.8: Screenshot of a bar chart summarizing the fill statuses of the MusicBrainz

dataset with Metacrate.

The resulting bar chart is displayed in Figure 5.8. Apparently, 60 columns are com-

pletely empty and another 62 columns have a fill status below 0.01. To list those empty

and sparse columns, we executed the following query:

1 // Global v a r i a b l e s : metacrate , schema

2 query { imp l i c i t eng ine =>

3 metacrate . l oadCons t ra in t s [ Co lumnStat i s t i c s ] ( ” scdp−column−s t a t s ” )

4 . f i l t e r ( . g e tF i l l S t a t u s <= 0 .01 )

5 . r e s o l v e I d s ( ( s t a t s , r ) => ( r ( s t a t s . getColumnId , withTable=true ) , s t a t s .

g e tF i l l S t a t u s ) )

6 } . p r intTable (

7 orde r ing = Ordering . by ( . 2 ) ,
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8 columns = Seq ( ”Table” −> ( e => e . 1 ) ,

9 ” F i l l s t a tu s ” −> ( e => f ”${e . 2 }%.2 f ” ) ) )

The list of resulting columns was indeed insightful. Most empty columns are named

either description or parent and belong to tables that have the name suffix type in common.

A closer look reveals that those tables are basically static tables that list types of certain

entities. Apparently, users of the database did not see a necessity to provide descriptions

for those types. Furthermore, the parent attribute allows to declare sub-types of other

types, but apparently many entity types do not form hierarchical relationships.

We also learned that the majority of non-empty but highly sparse columns contain

temporal data. As it seems, the MusicBrainz schema allows to specify time intervals

for all kinds of entities, e. g., when and how long an artist used a certain alias. The

majority of instances does not provide those time intervals, probably because it is very

hard to ascertain and not that relevant. In particular, times are represented as separate

year, month, and day attributes, of which the latter are particular susceptible to missing

values. Overall we found that from the 1,566 columns in the MusicBrainz dataset roughly

10% contain little or no data at all. A database administrator might consider whether

to prune them.

Besides superfluous schema elements, we also analyzed the schema for unnecessarily

complex relationships between entities. In relational databases, one-to-one relationships

between entities can be represented with only a single table, while one-to-many rela-

tionships can be modeled with a simple join, and many-to-many relationships require an

additional join table. To keep the schema as simple as possible, a concise schema should

express the relationship with the most specific relational representation.

In our case study, we discovered one-to-one relationships that are modeled as one-

to-many relationships by looking for foreign keys that embed a ucc. This can be done

with the following Metacrate query:

1 // Global v a r i a b l e s : metacrate , schema , r e s o l v eA l l ( . . . )

2 query { imp l i c i t eng ine =>

3 va l f k s = metacrate . l oadCons t ra in t s [ Inc lus ionDependency ] ( ” sq l−f o r e i gn−

keys ” )

4 va l uccs = metacrate . l oadCons t ra in t s [ UniqueColumnCombination ] ( ”hyucc−uccs

” )

5

6 f k s . keyBy ( . getDependentColumnIds . toSet ) . j o i n ( uccs . keyBy ( . getColumnIds .

toSet ) )

7 . assemble { case ( fk , ucc ) => fk }

8 . r e s o l v e I d s { ( fk , r ) =>

9 ( r e s o l v eA l l ( fk . getDependentColumnIds , r ) , r e s o l v eA l l ( fk .

getReferencedColumnIds , r ) )

10 }

11 } . p r i n tL i s t ( b e f o r e = ”FKs that implement 1 :1 r e l a t i o n s h i p s ” ,

12 format = { case ( dep , r e f ) => s ”$dep &ra r r ; $ r e f ” })

Indeed, we found 32 such unnecessary one-to-many relationships. Judging by the in-

volved table names (e. g., release and release meta, link type and orderable link type), it seems

reasonable to merge the table pairs into single tables.
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Furthermore, we detected unnecessary many-to-many relationships by searching join

tables that embed an fd between its foreign key attributes. In detail, we looked for

pairs of foreign keys, such that the referencing column of the one foreign key functionally

determines the referencing column of the other foreign key, which can be achieved by

two subsequent joins. The corresponding query looks as follows:

1 // Global v a r i a b l e s : metacrate , schema , r e s o l v eA l l ( . . . )

2 query { imp l i c i t eng ine =>

3 va l f k s = metacrate . l oadCons t ra in t s [ Inc lus ionDependency ] ( ” sq l−f o r e i gn−

keys ” )

4 . f i l t e r ( . ge tAr i ty == 1)

5 .map( fk => ( fk . getDependentColumnIds ( ) (0 ) , fk . getReferencedColumnIds ( )

(0 ) ) )

6 va l f d s = metacrate . l oadCons t ra in t s [ FunctionalDependency ] ( ”hyfd−f d s ” )

7 . f i l t e r ( . ge tAr i ty == 1)

8 .map( fd => ( fd . getLhsColumnIds ( ) (0 ) , fd . getRhsColumnId ) )

9

10 va l fksWithFds = fk s . keyBy ( . 1 ) . j o i n ( fd s . keyBy ( . 1 ) )

11 . assemble { case ( ( dep , r e f ) , ( lhs , rhs ) ) => ( dep , r e f , rhs ) }

12 . keyBy ( . 3 ) . j o i n ( f k s . keyBy ( . 1 ) )

13 . assemble { case ( ( dep1 , r e f1 , rhs ) , ( dep2 , r e f 2 ) ) => ( dep1 , r e f1 , dep2 ,

r e f 2 ) }

14

15 fksWithFds . r e s o l v e I d s { case ( ( dep1 , r e f1 , dep2 , r e f 2 ) , r ) =>

16 ( r e s o l v eA l l ( dep1 , r ) , r e s o l v eA l l ( r e f1 , r ) , r e s o l v eA l l ( dep2 , r ) ,

r e s o l v eA l l ( r e f2 , r ) )

17 }

18 } . p r i n tL i s t ( b e f o r e = ” Join t ab l e s that implement 1 : n r e l a t i o n s h i p s ” ,

19 format = { case ( dep1 , r e f1 , dep2 , r e f 2 ) => s ” $ r e f 1 &ra r r ;

$dep1 &ra r r ; $dep2 &ra r r ; $ r e f 2 ” })

This query reported 12 modeled many-to-many relationships, that are only instantiated

as one-to-many relationships by the data. As an example, we found that the within the

l instrument table the attribute entity0 (which references the table instrument) functionally

determines the attribute entity1 (which references the table label). In other words, the

join table associates at most one label with each instrument. As a result, one might

discard the join table and instead add a (nullable) foreign key in the instrument table that

references the label table.

Normality

As we point out in the beginning of this section, an often desired schema property is the

adherence to a normal form, in particular the Boyce-Codd normal form (BCNF) [Codd,

1974; Heath, 1971]. Normal forms are essentially best practices for data modeling that

provide schemata with useful properties, such as effective queryability or – in the case of

the BCNF – reduced redundancy. Concretely, the BCNF requires that schemata do not

embed any fd unless its left-hand side is a candidate key, i. e., a ucc.

Originally, schema designers had to specify those fds as rules of the associated data

domain. Of course, designers might miss some fds or deliberately (but perhaps incor-

rectly) omit them in anticipation of any exceptional cases that could violate certain fds.
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Figure 5.9: Screenshot of Metacrate’s FD sunburst plot summarizing all those

fds from the artist table that are not implied by a ucc. Each section of the inner-

most ring represents a right-hand side attribute of several fds, while the stacked

outer sections represent left-hand side attributes of fds. Hovering over a section

displays the associated fd as a breadcrumb (here: end date day, end data year, be-

gin date year→sort name).

However, when the data is already present, such as in our case study, it is possible to

efficiently and exactly determine the fds of a dataset with modern discovery algorithms

and use those fds to check or enforce adherence to the BCNF [Papenbrock and Nau-

mann, 2017a]. This comes with the caveat, though, that many fds occur spuriously and

should therefore not be considered as violations of the BCNF.

Separating non-spurious (partial) fds is a challenging task whenever the data entails

dependencies in abundance, as is the case for the artist table in the MusicBrainz dataset.

To visually emphasize this point, we queried from Metacrate all fds from the artist

table, whose left-hand side attributes do not form a ucc, and had them displayed as

a sunburst plot. The resulting chart, shown in Figure 5.9, gives an intuition of how

tedious it would be to manually inspect the 241 relevant fds. Note that this number is

still moderate: tables sometimes entail millions of (partial) fds or more.
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In our case study, we tried to experimentally overcome this issue and identify inter-

esting fds that potentially constitute BCNF violations. First of all, we did not use the

exact fds and uccs discovered by HyFD and HyUCC but the partial fds and uccs

discovered by Pyro. The rationale is as follows: If the schema had violated the BCNF,

then errors or inaccuracies might have sneaked into the data – those that the BCNF is

actually supposed to avoid. In other words, fds that violate the BCNF might be violated

themselves. If we would encounter such violated and violating fds, then we could use

them for data cleaning [Bohannon et al., 2005; Thirumuruganathan et al., 2017] before

normalizing the schema.

Second, we ranked the partial fds that are not implied by a partial ucc. As a

matter of fact, there are several measures to distinguish interesting from uninteresting

fds [e. g., Giannella and Robertson, 2004; Kruse and Naumann, 2018; Piatetsky-Shapiro

and Matheus, 1993]. In our case study, we selected the ranking values provided by Pyro

(see Section 4.7.8).

The ranking proved indeed useful and promoted several interesting dependencies.

For instance, in the release meta table, the attribute amazon asin partially determines the

info url attribute (with a g1 error of 0.006 according to Definition 4.1, page 81), which

is sensible as those URLs embed the ASIN identifier. In a way, this finding is also

representative of the other top-ranked partial fds: Although most of the top-ranked

rules reflect actual logical rules in the dataset, none of them seems to have sufficiently

strong semantics for schema normalization.

Another grain of salt is that the ranking scores are not necessarily suitable to compare

(partial) fds across tables. And to our knowledge, there is no ranking scheme that

overcomes this problem. As a result, one might instead resort to surveying the (partial)

fds for each table individually rather than just using one global ranking. However,

because we did not find BCNF violations in the MusicBrainz dataset, we are not able to

make any qualitative comparison of the global and local rankings within this case study.

In spite of these problem, we could still learn in a data-driven fashion that the

MusicBrainz dataset is well normalized. That is, there are no (partial) fds violating the

BCNF. As a side effect, we cannot conclude how good or bad our ranking approach

would have detected such violations, though.

* * *

The two analyzed aspects, conciseness and normality, already give an idea of the

quality of the MusicBrainz schema: This schema has been modeled with very many de-

tails. Also, it is highly normalized. While both aspects make the schema very general,

they also contribute to the complexity and extent of the schema, thereby hampering its

understandablity. That being said, other data-driven schema quality dimensions could

further complement this picture. For instance, one might use (partial) inds to expose

duplicate attributes and tables. Also, column summaries might expose columns with

heterogeneous data – a sign that the attribute is frequently misused, which can happen

when the schema is not extensive enough to model all the data it is supposed to store.
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5. DATA ANAMNESIS WITH METACRATE

5.5 Summary

This chapter exemplified the utility of structural metadata in two steps. At first, we

introduced Metacrate, a scalable system to store, refine, and visualize data profiles.

Second, we performed a case study, in which we employedMetacrate to reconstruct the

schema of the complex MusicBrainz dataset, familiarized ourselves with the dataset, and

detected some short-comings of the schema from the viewpoint of the data. Essentially,

each step in the data anamnesis benefited greatly from combining different types of

structural metadata to derive deeper insights into the datasets.

As we point out throughout this chapter, we adapted several data analysis techniques

from existing works to operate on structural metadata and additionally proposed several

new metadata-based analyses. Because almost all those analyses and queries completed

in less than a second, metadata-based algorithms lend themselves to data management

scenarios that require user interaction. Thus, this field provides a promising branch for

future research and we identify several challenges that could be solved using metadata,

e. g., proposing column names and identifying overly simple parts of a schema.

Furthermore, in discussions with data scientists, we learned that an adaptation of

Metacrate to unstructured data, such as texts or images, would be invaluable for their

respective application domains. Arguably, profiling and analyzing such data is far beyond

this thesis’ scope. Nevertheless, profiling such types of data (i. e., extracting informative

metadata) and use that metadata to perform a data anamnesis of the dataset, could be

a fruitful research topic.
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Chapter 6

Conclusions

It is almost a truism that data is a key enabler for many branches in science and industry.

However, all too often the fact remains unattended that it can be extremely challenging

to harness and overcome the size and complexity of datasets in order to properly leverage

their contents. Data profiling addresses this serious problem by extracting summaries and

structural properties from datasets that can then effectively support data management.

Along these lines, this thesis introduces several algorithms to discover various types

of data dependencies from relational and rdf data: Sindy, Sandy, and Andy discover

(partial) inclusion dependencies (Chapter 2), RDFind extracts conditional inclusion

dependencies (Chapter 3), and Pyro detects both partial unique column combinations

and partial functional dependencies (Chapter 4) in given datasets. The main objective of

these algorithms is to push the envelope of data profiling algorithms in terms of efficiency

and scalability. We attained this goal in a dual approach, in which we not only propose

novel algorithmic strategies, but also target modern hardware setups with (clusters of)

multi-core computers. Another eminent point of most of our algorithms is that they

consider partial dependencies – that is, they reckon and actively cope with quality issues

in the profiled datasets.

In addition to the discovery of data dependencies, we addressed the question of how to

leverage the results of our profiling algorithms in actual use cases (Chapter 5). This ques-

tion is a particularly relevant one, given that some datasets entail huge numbers of data

dependencies. Besides proposing several dependency-specific interestingness measures,

such as the support of conditional inclusion dependencies or a ranking score for partial

functional dependencies, we also introduced the system Metacrate, which constitutes

a principled approach to store, query, and analyze structural metadata.1 In a case study,

we demonstrated the applicability of Metacrate to data management by performing a

data anamnesis on a complex real-world dataset. With a mixture of well-known reverse

engineering algorithms as well as ad-hoc analyses, we were able to reconstruct interesting

aspects of that dataset, thereby also confirming the utility of structural metadata.

1As mentioned in Section 5.1.2, Metacrate’s analytics layer is based on the cross-platform data

analytics system Rheem [Agrawal et al., 2016; Kruse et al., 2018]. This system, which has been developed

by the author of this thesis to a great extent, is complex in itself. However, it has not been presented in

greater detail in this work, as it is not a dedicated data profiling system.
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6. CONCLUSIONS

Apart from these positive results, we would also like to critically reflect on the limi-

tations of our work and propose interesting future works. For that purpose, let us point

out two basic, related issues: Our data profiling problems are of exponential complexity

and their output sizes can also be exponential w. r. t. the number of profiled attributes.

We identify two important consequences arising from these issues.

The first consequence concerns the efficiency and scalability: Our proposed algo-

rithms clearly outperform previous state-of-the-art methods, sometimes by orders of

magnitudes. However, that does not imply that we could automatically scale to datasets

that are orders of magnitudes larger or solve every data profiling problem just by pro-

visioning enough computational power. In fact, the inherent computational complexity

of our data profiling problems essentially limits the scalability of all data profiling algo-

rithms. To this end, it might be reasonable to abandon the path of exact and complete

dependency discovery for further efficiency and scalability improvements.

One potential way to elude the above predicament could be to waive guarantees on

exactness and completeness of data profiling results. We proposed two dependency dis-

covery algorithms that approximate the exact and complete set of dependencies in a given

dataset [Bleifuß et al., 2016; Kruse et al., 2017b] (we did not discuss these algorithms

in this thesis, though). We found that approximation methods can indeed improve the

efficiency of data profiling results by several factors while relinquishing only little result

quality. However, the output of these algorithms can still be of exponential size and,

thus, approximation techniques are also condemned to be of exponential complexity.

This brings us to the second consequence of the exponential nature of dependency

discovery problems: The number of dependencies entailed by certain datasets is im-

mensely large. At the same time, most of these dependencies are spurious or at least

not relevant w. r. t. to the designated use case. In consequence, users need some form

of automated support to process data profiling results, i. e., to separate the wheat from

the chaff among thousands or even millions of discovered dependencies. We addressed

this problem, e. g., by proposing a ranking measure for partial functional dependencies

(Chapter 4) and studying several data anamnesis techniques (Chapter 5). The literature

offers a few other ranking measures for various dependencies, but this problem deserves

more attention. Inspiration could be drawn from the research on data mining that is

facing similar problems – very well known representatives are the support and confidence

measures for association rules.

That being said, these two issues – the theoretically limited algorithm scalability and

the huge profiling results – bear the potential for an elegant synthesis: Of course, any

profiling algorithm is bound to be of polynomial complexity in terms of its output size.

However, if future algorithms manage to identify the few interesting data dependencies in

profiled datasets already in the discovery process, then these algorithms might overcome

the inherent exponential complexity of exact and complete data profiling algorithms.

Essentially, such algorithms would kill two birds with one stone: They are not subject

to unwieldy result sets, but at the same time could bear unparalleled profiling efficiency

and scalability. The inherent drawback of such algorithms, on the other hand, would

be that they need be tailored to specific applications of their dependencies. That is,

such algorithms would incorporate some notion of dependency interestingness, thereby
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mixing application semantics into the data profiling. As a result, there might then be

multiple application-specific dependency discovery algorithms. In that case, there would

be no need to re-invent the wheel, though; instead our proposed algorithms provide a

sophisticated starting point towards specifically tailored derivatives.

Despite all this criticism, our exact and complete profiling algorithms still scale very

well to large datasets and their results are indeed of practical value, as we found in our

case study. And yet it is important to learn the lessons from our results and then look

ahead towards new challenges, because as Aristotle said:

“For the things we have to learn before we can do them, we learn by doing them.”
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