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A b s t r ac t

Carrying out business processes successfully is closely linked to the quality of the data inven-
tory in an organization. Lacks in data quality lead to problems: Incorrect address data prevents
(timely) shipments to customers. Erroneous orders lead to returns and thus to unnecessary effort.
Wrong pricing forces companies to miss out on revenues or to impair customer satisfaction [104].
If orders or customer records cannot be retrieved, complaint management takes longer. Due to
erroneous inventories, too few or too much supplies might be reordered.

A special problem with data quality and the reason for many of the issues mentioned above
are duplicates in databases. Duplicates are different representations of same real-world objects
in a dataset. However, these representations differ from each other and are for that reason hard
to match by a computer. Moreover, the number of required comparisons to find those duplicates
grows with the square of the dataset size. To cleanse the data, these duplicates must be detected
and removed. Duplicate detection is a very laborious process. To achieve satisfactory results,
appropriate software must be created and configured (similarity measures, partitioning keys,
thresholds, etc.). Both requires much manual effort and experience.

This thesis addresses automation of parameter selection for duplicate detection and presents
several novel approaches that eliminate the need for human experience in parts of the duplicate
detection process.

A pre-processing step is introduced that analyzes the datasets in question and classifies their
attributes semantically. Not only do these annotations help understanding the respective datasets,
but they also facilitate subsequent steps, for example, by selecting appropriate similarity mea-
sures or normalizing the data upfront. This approach works without schema information.

Following that, we show a partitioning technique that strongly reduces the number of pair
comparisons for the duplicate detection process. The approach automatically finds particularly
suitable partitioning keys that simultaneously allow for effective and efficient duplicate retrieval.
By means of a user study, we demonstrate that this technique finds partitioning keys that outper-
form expert suggestions and additionally does not need manual configuration. Furthermore, this
approach can be applied independently of the attribute types.

To measure the success of a duplicate detection process and to execute the described partition-
ing approach, a gold standard is required that provides information about the actual duplicates
in a training dataset. This thesis presents a technique that uses existing duplicate detection re-
sults and crowdsourcing to create a near gold standard that can be used for the purposes above.
Another part of the thesis describes and evaluates strategies how to reduce these crowdsourcing
costs and to achieve a consensus with less effort.
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Z u s amm e n f a s s u n g

Die erfolgreiche Ausführung von Geschäftsprozessen ist eng an die Datenqualität der Datenbe-
stände in einer Organisation geknüpft. Bestehen Mängel in der Datenqualität, kann es zu Proble-
men kommen: Unkorrekte Adressdaten verhindern, dass Kunden (rechtzeitig) beliefert werden.
Fehlerhafte Bestellungen führen zu Reklamationen und somit zu unnötigem Aufwand. Falsche
Preisauszeichnungen zwingen Unternehmen, auf Einnahmen zu verzichten oder gefährden die
Kundenzufriedenheit [104]. Können Bestellungen oder Kundendaten nicht gefunden werden,
verlängert sich die Abarbeitung von Beschwerden. Durch fehlerhafte Inventarisierung wird zu
wenig oder zu viel Nachschub bestellt.

Ein spezielles Datenqualitätsproblem und der Grund für viele der genannten Datenqualitäts-
probleme sind Duplikate in Datenbanken. Duplikate sind verschiedene Repräsentationen der-
selben Realweltobjekte im Datenbestand. Allerdings unterscheiden sich diese Repräsentationen
voneinander und sind so für den Computer nur schwer als zusammengehörig zu erkennen. Au-
ßerdem wächst die Anzahl der zur Aufdeckung der Duplikate benötigten Vergleiche quadratisch
mit der Datensatzgröße. Zum Zwecke der Datenreinigung müssen diese Duplikate erkannt und
beseitigt werden. Diese Duplikaterkennung ist ein sehr aufwändiger Prozess. Um gute Ergeb-
nisse zu erzielen, ist die Erstellung von entsprechender Software und das Konfigurieren vieler
Parameter (Ähnlichkeitsmaße, Partitionierungsschlüssel, Schwellwerte usw.) nötig. Beides er-
fordert viel manuellen Aufwand und Erfahrung.

Diese Dissertation befasst sich mit dem Automatisieren der Parameterwahl für die Duplika-
terkennung und stellt verschiedene neuartige Verfahren vor, durch die Teile des Duplikaterken-
nungsprozesses ohne menschliche Erfahrung gestaltet werden können.

Es wird ein Vorverarbeitungsschritt vorgestellt, der die betreffenden Datensätze analysiert und
deren Attribute automatisch semantisch klassifiziert. Durch diese Annotationen wird nicht nur
das Verständnis des Datensatzes verbessert, sondern es werden darüber hinaus die folgenden
Schritte erleichtert, zum Beispiel können so geeignete Ähnlichkeitsmaße ausgewählt oder die
Daten normalisiert werden. Dabei kommt der Ansatz ohne Schemainformationen aus.

Anschließend wird ein Partitionierungsverfahren gezeigt, das die Anzahl der für die Duplika-
terkennung benötigten Vergleiche stark reduziert. Das Verfahren findet automatisch besonders
geeignete Partitionierungsschlüssel, die eine gleichzeitig effektive und effiziente Duplikatsuche
ermöglichen. Anhand einer Nutzerstudie wird gezeigt, dass die so gefundenen Partitionierungs-
schlüssel Expertenvorschlägen überlegen sind und zudem keine menschliche Konfiguration be-
nötigen. Außerdem lässt sich das Verfahren unabhängig von den Attributtypen anwenden.

Zum Messen des Erfolges eines Duplikaterkennungsverfahrens und für das zuvor beschrie-
bene Partitionierungsverfahren ist ein Goldstandard nötig, der Auskunft über die zu findenden
Duplikate gibt. Die Dissertation stellt ein Verfahren vor, das anhand mehrerer vorhandener Du-
plikaterkennungsergebnisse und dem Einsatz von Crowdsourcing einen Nahezu-Goldstandard
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erzeugt, der für die beschriebenen Zwecke eingesetzt werden kann. Ein weiterer Teil der Arbeit
beschreibt und evaluiert Strategien, wie die Kosten dieses Crowdsourcingeinsatzes reduziert wer-
den können und mit geringerem Aufwand ein Konsens erreicht wird.
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1
T h e N e e d f o r Data Qua l i t y

Throughout the centuries, economies, governments, and eventually even the peoples’ daily lives
depended on accurate data. These data were (and still are) important for any kind of decision-
making. Questions of interest were, for example, “How much hay is necessary to nourish the
cattle over the winter season?”, “What is a good place to build a school/hospital/aqueduct?”, or
“Which route through the forest is the quickest and most secure? Which mushrooms are edible?”

With the rise of computers, the amount of data has grown and the problems have undergone
a slight shift. Nowadays, there might be outdated addresses, duplicate orders, or unreadable
shipment directions (now perhaps due to character encoding issues instead of unreadable hand-
writing). Data are often captured by humans. Ignoring the correct spelling, insufficient audio
quality on a phone line, stress-induced typographical errors, and poor OCR are severe problems
for the overall correctness of data in customer relationship management (CRM) systems.

In fact, incorrectness comes in various guises. A particular example for data quality problems
is the place of writing of this thesis itself. Throughout Potsdam, there are several bike stands
provided by Nextbike1, a bike sharing provider. Customers rent bikes using a mobile app which
gives advice on the availability of bikes at the different locations. Unfortunately, the usage is
regularly impeded by different issues that are related to data quality. The app shows that a spe-
cific bike stand is populated with a couple of bikes, but it is empty (falseness). Occasionally,
a bike is present, but it should be somewhere else, according to the app (contradiction). The
availability check in the app is not available sometimes (unavailability), contains outdated val-
ues (obsolescence), or is available, but not within the app, but just via their hotline on the phone
(accessibility). When users recognize a malfunction with the bikes, they can file a maintenance
request, but because these bikes only rarely undergo maintenance, not every report is handled
immediately and multiple maintenance requests for the same issue might get filed (duplicates).
Improper merging of the maintenance requests could lead to either long durations of unresolved
bike problems or unnecessary collection tours of the maintenance personnel.

Apart from these anecdotal observations, a Gartner study [45] about more than 140 companies
estimated that each company on average loses 8 million dollars annually due to poor data quality.
4 % of those companies even have a loss of more than 100 million dollar.

Most of these incorrect data points can be corrected by hand, with experience and common
sense. However, this clearance process requires human effort (i. e., money) and the necessary
inquiries and delays might upset the client. Even worse, manual clearance does not scale well
over larger numbers of clients or business objects.

1 https://www.nextbike.de/
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2 the need for data quality

Eventually, poor data quality impedes organizations and individuals in making proper deci-
sions. Additionally, maintaining this data also costs money in terms of backups, processing time,
and other real-world processes attached to it.

To increase data quality, there is a wide range of commercial products and customized self-
coded software. These programs can be quite expensive, not only in acquisition and configura-
tion, but also in maintenance. Setting up and tuning all necessary parameters in these programs
requires much manual configuration effort.

The motivation for our work presented in this thesis is to leverage duplicate detection (as one
aspect of data quality) so that it requires less manual configuration effort and therefore can be
used by non-experts, too.

1.1 From Increasing Data Quality to Duplicate Detection

According to Redman, “Data are of high quality if they are fit for their intended use, [that is]
they are free of defects and possess desired features.” [90] Admittedly, this definition remains
rough. There are several taxonomies to tackle the term data quality down to different dimensions.
For example, Wang and Strong [112] define this “fitness for use” in four categories according
to which data should be accessible, representative, relevant, and accurate and spread those cat-
egories into 20 dimensions. Batini and Scannapieco [7] present a survey on different definitions
of the individual (sub-)categories and give an overview for different taxonomies on data quality.
Loshin [67] separates 6 data quality dimensions which also comprise the absence of duplicates.

One important manifestation of poor data quality is the existence of duplicate records in
a dataset. Duplicates are multiple (and different) representations of a single real-world entity.
These entities can be virtually any business object – customers, clients, invoices, orders, inven-
tory, etc., whatever is stored in an organization’s databases. In this thesis, we focus our examples
on enterprise data, but the approaches are generally applicable.

Similarity is a crucial concept in the field of duplicate detection. The similarity of two records
or two strings is a characteristic which is hard to assess both for humans but even more for
computers. Yet, it is necessary to do so when it comes to developing similarity measures or
partitioning the dataset (see Section 1.3). One reason for this difficulty is the variety of data
corruptions that should be considered. Rahm and Do [87] provide a classification of data quality
problems. We illustrate some of the (according to Rahm and Do) single-source, instance-level
problems here, that – even worse – might arise in combination.

spelling errors Misspellings might be the most frequent and most general errors. Due to typ-
ing errors, mishearings, or just poor optical character recognition, attribute values contain
superfluous, ill-placed, or missing characters.

default values When entering the data, some details might be undisclosed or unknown, but
the fields still obtain some input. Alternatively, values might get lost or do not fit into
the target format. Consequently, misleading default values (01.01.1970, null, or empty
strings) arise.
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wrong fields Stress or poor user interfaces might cause people to fill in data into the wrong
fields. These defects might be easy to repair by humans, but in cases when the inter-
changed attribute values still make sense (such as Jordan/Scott for given/family name)
it is impossible to correct the fields just basing on this record.

different granularity Sometimes, values may be saved with different levels of abstraction.
Thus, a duplicate could have Manhattan and New York as valid values for the place
attribute or 4 Euro instead of 4.0041 Euro as values for the price attribute.

invalid values A general error in data are simply invalid values. For example, for phone
numbers invalid values could be unknown, 999-999999, or a number with the suffix
 (answering machine only). Humans can handle these situations, for example, by
just ignoring the invalid parts of the attributes.

inconsistencies Attribute values are not independent from each other. The gender should
match the given name and the ZIP code should match the city and vice versa. Inconsisten-
cies probably indicate an error.

different formattings Data may be differently formatted regarding capitalization or format-
ting of geographical coordinates or phone numbers. Consequently, these values are com-
pletely equivalent, but look different, character-wise.

Another reason for the difficulties of assessing the similarity of two values is that similarity
is a subjective characteristic and even human experts might have different opinions about how
similar two values are or whether two records should be seen as duplicates.

Duplicate records lead to several problems that stretch over multiple data quality dimensions.
For example, duplicate records hamper accessibility. It might be necessary to identify and read
several records to collect all known details of the real-world object. Furthermore, if the same
information is present in several latently related records, they are likely to be represented dif-
ferently, for example, in different formats, languages, or units. Finally, different records might
contain contradictory information because the records have different ages, that is, they are up to
date respective to different points in time.

Companies affected by duplication issues will face problems finding the correct record when
trying to solve a postal delivery issue. Furthermore, it is impossible to calculate key performance
indicators correctly, such as the correct number of customers or the average revenue per customer.
Also, the expenses for advertisement mailings are unnecessarily high due to sending multiple
shipments to the same customer.

Relying on low-quality data may clearly lead to profound consequences. There are many real-
world examples for the effects of duplicate records, some published in the press, although not
necessarily under this headline. For instance, a survey conducted for the urban area of Min-
neapolis/St. Paul [72] substantiated the danger of unintentionally distributing patient’s medical
information over several database records. Not only does this distribution cause superfluous lab



4 the need for data quality

tests and wrong calculation of hospital bed capacity, impairing other patients to use the hospi-
tal, but “with the existence of multiple records for a single patient, it is likely that healthcare
providers will miss critical information because it is located in the duplicate.”

But also the opposite – unjustified merging of records – can cause problems. For example, the
small town Schwerin located south of Berlin (800 inhabitants as of December 2013), is missing
130,000 Euro of state funds allocation each year (15 % of the total yearly budget), because of a
duplication problem in the state census data [70]. The reason is that the much larger capital of
the federal state of Mecklenburg-West Pomerania has the same name and whenever somebody
moves away from the capital, he or she is wrongly subtracted from the inhabitants of the smaller
town causing an overvalued inhabitant drain.

The challenges to come by the duplication problem are many-fold. Usually, there are a lot
of records to search through to find duplicates, thus a large search space arises. Then, there is
usually no agreed and shared concept of what a duplicate is. While it might be easy for humans
to judge two records being duplicates or not, for automated processes (i. e., computer programs)
even this plain judgement is hard. There are reports about 20 % duplicate records in company
databases [35], but due to the fuzzy nature of duplicates the number is hard to come up with and
depends on factors such as the particular business processes involved or the database age.

Redman [90] pinpoints two measures to settle data quality problems like the existence of dupli-
cates, (a) “finding and fixing errors (clean-up)” and (b) “preventing errors”. Preserving databases
to fill with duplicates is very specific for the use-case and the involved business processes. It is
out of the scope of this thesis. Instead, we focus on errors that already reside in a database.

We prefer to call this searching Duplicate Detection. The area of duplicate detection has
been investigated for 50 years, ranging back to the late 1960s [40] and was driven by many
different groups, organizations, and purposes. Ironically and unfortunately, there are plenty of
names for the same research area (which are themselves duplicates). Some examples are Copy
Detection [98], Coreference Resolution [102], Entity Resolution [47], Semantic Integration [30],
and Object Consolidation [19]. Elmagarmid [36], Naumann and Herschel [78], and Christen [22]
give overviews about the topic and present the fundamental steps and approaches.

Duplicate detection is usually executed in a broader context, which also comprises the fixing
part, that is, duplicates are not only identified but also resolved. The next section describes the
accompanying steps.

1.2 Duplicate detection in a bigger picture

In a data cleansing process, duplicate detection is enclosed by two other, typically computation-
ally less complex activities, normalization and fusion, respectively.

In the normalization phase, an algorithm iterates over the records in the dataset and prepares
them for the subsequent duplicate detection step. Several normalization measures are possible,
such as adding missing values (for example, the country code of a phone number or the gender
for a person), aligning values to a generic format (for example, rd. becomes Road, national
bank account numbers are replaced by IBANs, or product names are harmonized), or collecting
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meta-information for the records. Meta-information could be the lineage or age of each record
or semantic annotations for the attributes (see Chapter 2). If not already present (or not unique),
record identifiers are introduced.

The actual duplicate detection phase detects duplicates among the records and eventually cre-
ates a list of record clusters each representing a single real-world entity. To create such a list,
all (or all promising) record pairs are inspected using a variety of similarity measures and are
judged for their duplicity. This – in the naive approach pair-wise – comparison is the most com-
putationally complex task in the whole cleansing process. If the normalization phase has been
skipped, the similarity measures involved in the duplicate detection phase can compensate the
missing normalization by normalizing on the fly. However, this would be done for each com-
pared record repeatedly, a more time-consuming effort than doing it once upfront. Technically,
duplicate detection involves more steps (pair selection, classification, transitive closure calcula-
tion, evaluation). Those steps are explained in more detail in the next section.

Finally, the cleansing process is concluded with the actual consolidation of the found dupli-
cates. To accomplish this, each record cluster is merged into a single remaining record. This
process is called data fusion. There are several measures to decide for the attribute values of
the resulting record in case of contradictions, for example, taking the most frequent value, the
longest value, a concatenation of the values, or the most recent value. More resolution strategies
and a comprehensive survey on data fusion was written by Bleiholder and Naumann [15].

1.3 Building Blocks for Duplicate Detection

Duplicate detection is a composite process and consists of several sub-tasks. Figure 1 illustrates
the basic building blocks of this process as used in this thesis. This section serves as an outline
for the thesis.

Analysis
(Data Types)

Classifi-
cation

Multiple 
Results

Duplicates

Experts

Multiple 
Partitionings

Dataset

Blocking

Evaluation

Gold-
Standard

Annealing 
Standard

Consensus 
Clustering

Similarity
Measures

Figure 1: The workflow for duplicate detection
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The duplicate detection process starts with a dataset that is expected to contain duplicates
(top left). Before duplicate detection can commence, the dataset is analyzed and profiled. If not
already done during the normalization phase or there was no normalization, it is done here. Profil-
ing the dataset eases the later handling of the data by generating meta-information about the data,
for example, their distribution, internal relations, or even semantics. In particular, the attributes’
semantic data types can be estimated and are helpful for further processing. Its generation is
described in Chapter 2.

Following the analysis, the dataset is divided into several partitions (the so-called blocking
process) to reduce the search space, that is, the number of pair-wise comparisons. In a duplicate
detection workflow, each record can be a potential duplicate of any other record and thus lead
to a pair comparison. With a dataset of n records, this requires n · (n − 1) comparisons. Because
duplicity is a symmetric relation, the comparison function should be resistant to the order of
the two provided records and each two records should be compared only once. This symmetry
property reduces the number of comparisons further down to n·(n−1)

2 . Even with this reasonable
reduction the duplicate detection problem still has a squared time complexity (considering only
the pure comparisons). With that, a dataset holding all 83 million inhabitants in Germany still
requires 3 quintillion comparisons. Blocking circumvents vain comparisons of two totally dif-
ferent records that have little to nothing in common and therefore save significant amounts of
computation time. Each partition then contains records that have a good chance to be duplicates,
because they share common properties. For example, they represent shipments with the same
ZIP code or products with similar names. To overcome unforeseeable unfortunate partitioning
choices, usually several different partitionings are created, based on different partitioning crite-
ria. Having data types helps for choosing appropriate criteria. The blocking process is described
in Chapter 3.

Next, the core of the duplicate detection takes place. Several similarity measures are applied to
the records in the partitionings. These measures estimate the similarity of the individual attribute
values of two records. With the help of a threshold, certain duplicates or non-duplicates are
told apart. In some applications, two thresholds – an upper and a lower – are used, creating an
intermediate level with hard-to-decide cases and humans are consulted to assist the computer
in those cases between the thresholds. Other similarity measures do not produce those overall
similarity numbers, for example, rule-based approaches [56, 111].

To qualitatively estimate the success of the duplicate detection process and to improve the
enclosed sub-tasks, an evaluation can be performed. The evaluation result gives advice about
whether to execute further runs or to change its configuration. In the context of duplicate detec-
tion, a dataset contains a set of (actual) duplicates and the duplicate detection process tries to find
all those duplicates and produces a set of declared duplicates. The actual duplicates are unknown
to the duplicate detection algorithm, but for evaluation, a ground truth – the so-called gold stan-
dard – is required which comprises the duplicates the duplicate detection algorithm is expected
to find. Informally, such a duplicate detection process is regarded to be successful if both sets
(i. e., actual and declared duplicates) have a high overlap. To formally assess duplicate detection
results, the following three measures are usually applied: precision, recall, and F-measure.
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They all ground on the following four base sets of record pairs and are illustrated in Figure 2.

• the set of correctly identified duplicates, true positives TP,

• the set of correctly identified non-duplicates, true negatives TN ,

• the set of accidentally mis-classified non-duplicates which are actually duplicates, false
negatives FN , and

• the set of accidentally mis-classified duplicates which are actually non-duplicates, false
positives FP.

Actual
duplicates

Declared
duplicates

All pairs

TN

FN TP FP

Figure 2: Declared and actual duplicates as Venn diagram

In the evaluation of a duplicate detection process, we are more interested in the number of
duplicates that are (mis-)classified than in the actual duplicates themselves. Moreover, the key
evaluation measures are derived from certain ratios between those base sets. Therefore and for
brevity, we leave out the absolute value bars in the following and formulate |TP| as TP and so
on. We define the three measures here.

precision The precision (short: Pr) is a measure for the correctness of a duplicate detection
result. It is defined as the ratio of correct duplicates among the declared duplicates.

Pr =
Correct duplicates

Declared duplicates
=

TP

TP+ FP
(1)

recall The recall (short: Re) is a measure for the completeness of a duplicate detection result.
It is defined as the ratio of correct duplicates among all duplicates.

Re =
Correct duplicates
Actual duplicates

=
TP

TP+ FN
(2)

f-measure The F-measure (short: Fm) finally combines both measures as the harmonic mean.
It is usually used to express the overall success of a duplicate detection process in a sin-
gle comprehensive number. Due to the harmonic mean, F-measure is only good if both,
precision and recall are good as well.

Fm =
2 · Pr · Re
Pr + Re

(3)
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If the evaluation measure should emphasize precision or recall, a more general form can
be used: Fm = (1 + β2) · Pr·Re

(β2·Pr)+Re where β > 0 can be used to emphasize precision or
recall. The default, β = 1, is briefly called F-measure.

All three measures have a range between 0 and 1, where 1 represents the best value.
Apart from the measures precision, recall, and F-measure, many other measures are possible

by combining TN , FN , etc. differently (e. g., fallout, accuracy) or by measuring other charac-
teristics (e. g., duration, throughput, memory consumption). However, literature usually utilizes
exactly the measures defined above.

In such an evaluation, the expected result is already known from the gold standard. The gold
standard is compared to the results produced by the process using information retrieval mea-
sures, gauging its correctness and the completeness. It lies in the nature of real-world use-cases
that such a gold standard is not available, but the duplicate detection process shall still be eval-
uated, for example, to compare different duplicate detection tools or settings or to evaluate the
quality of the data in different departments of an organization. As an alternative, a so-called an-
nealing standard can be created incorporating different duplicate detection results and the use of
humans. With that, an evaluation can be performed. The creation of such an annealing standard
is presented in Chapter 4.

Because there can be different partitionings and different similarity measures, several (con-
tradictory) duplicate detection results can emerge that are exploited for the annealing standard.
Yet, their contradictions must be resolved, for example, manually. Using a consensus clustering
means reduces this diversity to a single, final result, which can be used for data fusion, subse-
quently. The quality of this result can be increased when human users are incorporated into the
consensus clustering process. This is described in Chapter 5.

1.4 Use Case and Focus on Self-Adaptiveness

In this thesis we concentrate on duplicate detection on relational data and assume only a sin-
gle dataset. In particular, we do not focus on related techniques, such as record linkage, which
requires two different datasets and tries to find duplicates between them. Record linkage is rel-
evant for use cases like, for example, a disaster scenario where links between a dataset with
patients and a dataset with missing persons must be found or projects like Lost Art2, where
search requests and discovery reports for lost cultural objects are matched. However, record
linkage usually additionally requires a previous matching of the two dataset schemas and addi-
tionally assumes that there are no duplicates within each dataset. We cover the more general case
with just one dataset. Duplicate detection can act as record linkage by merging two datasets into
one and preserving the lineage, such that no duplicate can be found between records from the
same source. By not considering record linkage problems, we also bypass the need for schema
matching.

2 http://lostart.de

http://lostart.de
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Data subject of duplicate detection can come in various guises. Often, they are in relational
format. This means they can be represented as a table with rows identifying objects (records)
and columns identifying attributes. Usually, all values are alphanumerical strings. Each dataset
corresponds to an individual table and contains a fixed schema. In opposition to Codd’s relational
model [24], this schema might contain unlabeled attributes. Albeit the challenge in duplicate
detection is to find fuzzy or non-exact duplicates, the tables might additionally contain exact
duplicates. These are common relaxations which can also be found in SQL implementations. A
common file format for these datasets is CSV.

Datasets that do not fit into this model can generally be converted, as long as they have distin-
guishable objects and can be characterized using a common fixed set of attributes with alphanu-
merical values. For example, XML documents may share these properties, but can be nested and
need to be converted first by flattening their nesting. We do not consider semi- or unstructured
data (e. g., image or audio data). We further assume that the datasets are already de-normalized,
that is, all information is already at hand and does not need to be read/joined from other sources.

In this thesis, we will stick to the relational model nomenclature, that is, datasets are relations;
objects are called rows, tuples, or records; and attributes are columns.

Duplicate detection is a composite process that has a large number of parameters to tune and
decisions to make. This diversity renders such a process expensive, error-prone, and cumber-
some. In particular, successfully running data cleansing processes is hard for people that are no
experts in the field of data cleansing.

While large organizations have enough man- and financial power to afford data quality pro-
cesses, the much larger number of smaller and medium-sized companies, the “long tail”, might
not be able to pay for industry-scale or consulting-heavy data quality solutions. Yet, they may
also have bad quality data, but lack the means to improve their data quality. The methods we de-
vise can be integrated into a configuration-free, self-adaptive tool for duplicate detection. With
such a tool, even non-data-quality-experts can easily improve data quality without prior data
cleansing knowledge. In other words, our measure of success is the minimization of the num-
ber of configuration parameters and the effort required for non-experts to perform a duplicate
detection run. With this thesis, we tackle these challenges by proposing algorithms that are as
configuration-free as possible.

1.5 Contributions and structure of this thesis

The contributions of this thesis primarily align to the tasks displayed in Figure 1 and were pub-
lished and presented at venues related to data quality. Each chapter has its own related work and
evaluation.

Chapter 2 is based on our technique to automate the annotation of semantic information for a
dataset and generate data type meta-data [106]. This analysis does not require user interaction.
The user can accept the automatically generated mapping or adjust it to his needs. Automatic
classification relieves the user from the cumbersome and error-prone process of manually assign-
ing similarity measures to dataset attributes.



10 the need for data quality

In Chapter 3 we show our approach of how to use this meta-data to generate efficient blocking
keys for unknown datasets [107]. Partitioning helps to perform the duplicate detection process
in reasonable time but needs to have partitioning keys specified upfront. Our blocking process is
self-adaptive as the blocking keys are automatically selected.

To evaluate the results of a duplicate detection process, our annealing standard [109] can be
used. Traditionally, evaluation of the success of a duplicate detection process is hardly possible
without a gold standard for reference. An annealing standard bypasses this lack and exploits the
similarities of different duplicate detection runs in combination with crowdsourcing. We provide
definitions, evaluation metrics and a workflow for an annealing standard as shown in Chapter 4.

Usually, contradictory clusterings arise during the creation of an annealing standard which still
must be resolved manually. Chapter 5, based on [108], proposes methods to efficiently create a
semi-supervised consensus clustering from those contradictory clusterings. These techniques re-
duce the number of remaining manual inspections even further and thus make duplicate detection
evaluation without a gold standard affordable.

Finally, the thesis concludes with a summary and an outlook for further research directions in
Chapter 6.



2
At t r i b u t e P ro f i l i n g f o r S i m i l a r i t y M e a s u r e A s s i g n m e n t

The initial situation for a data cleansing process can be very diverse. Data that are to be de-
duplicated may come in various guises and from various sources, ranging from a noisy web
crawl to (structured) database access. Duplicate detection relies on knowledge about which parts
of the records to compare and how to compare them. Consequently, result quality degrades as
less information is available. In this chapter, we describe and propose a solution for the problem
of how to assign an appropriate similarity measure to each attribute of a dataset.

Depending on the actual case, the provided data might differ in the amount of details that
are given. Input to a duplicate detection process might lack a schema, lack data types, etc. We
systemize the missing pieces of information and concentrate on how to compensate for the most
common missing information bit, the attribute semantics. The systematization is represented as
a tree and depicted in Figure 3.

(1) Documents
with unknown
structure

(2) Documents
with heterogeneous
structure

(3) Documents
with homogeneous
structure or known
mapping

(4) Semantically
enriched document

Attribute separator?

Attribute mapping?

Attribute semantics?

yesno

yes

no

yes

no

Figure 3: Four different classes of input data for a duplicate detection process are illustrated in a tree
structure.

The most difficult case occurs when not even the individual attributes can be identified in
the input data, for example, as a result of a web crawl of unstructured text or for unknown
data formats (1). This situation arises when the dataset consists of several files where each file
represents a single object, but the files contain different schemas and formats (for example, due
to different means of data export). Because of the diverse ways of data formalization, it is unclear

11
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what the attributes values are. Before duplicate detection can take place, these attribute values
must be identified and separated from each other and the accompanying syntactical elements.

In the next easier case, the attributes are separated, but it remains unclear which attributes
belong together and should be compared during a duplicate detection process. That is, the cor-
respondences between attributes belonging together are missing (2). This usually occurs when
datasets with known, but different schemas are present, for example, because different datasets
have been merged. Before duplicate detection can take place, the attribute mapping has to be
established by a preceding schema matching process. An overview on many semi-automatic
methods is given by Euzenat and Shvaiko [38] that use data types, attribute names, or values.

In a more typical case, attributes are identifiable and a mapping between them is given (3). A
common example are CSV files. Unfortunately, duplicate detection is impeded by not knowing
how to compare the attribute values, that is, the semantics for the attributes are still missing. A
semantic annotation attached to an attribute enables a human (or a program) to select appropriate
similarity measures, such that, for instance, first names are compared using the Jaccard similarity
measure. Humans might be able to carry out this semantics-assignment on-the-fly and can decide
for similarity measures directly, but computers need a special profiling process for that step,
which in turn can be applied on much larger scale. This profiling process is the topic of this
chapter and is elaborated on later.

Optimal conditions in our sense are present if attributes can be told apart, are mutually matched
and are semantically annotated (4). Appropriate comparison functions can be derived from these
annotations. Consequently, parts of the duplicate detection run can be performed more automat-
ically.

Other combinations of the availability of three pieces of information are of theoretical nature.
For example, attribute semantics cannot be available if the attributes are not identifiable.

With our profiling approach that generates meta-information which can be used for automat-
ically determining suitable similarity measures, we can transform class 3 problems to class 4
problems. It is an instance of single-source, single-column “Patterns and data types” analysis
according to Naumann’s classification for data profiling tasks [77]. The next section gives more
application examples.

This work was published at CoopIS [106].

2.1 Similarity Measures for Duplicate Detection

While many similarity measures technically can be applied to nearly every attribute in a re-
lational data source, the similarity between two records can be estimated especially precise
when using appropriate similarity measures. For example, the Levenshtein edit distance [66]
is a general-purpose similarity measure that works well in a general case, but will likely produce
non-intuitive and misleading similarity scores when used on dates or phone numbers: compar-
ing the two strings 1960/12/24 and Dec 24th 1960 yields a Levenshtein distance of 15, but
a similarity measure specific for dates detects that both values mean the same date. There is al-
ready a large body of (base) similarity and distance measures, where some of them work partic-
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ularly well on specific domains, for example, Jaro-Winkler [117] for “first or last names” [25] or
Soundex [16] for spoken words such as cities or names. Instead of these base similarity measures,
one could use specialized similarity measures that, for example, incorporate domain knowledge.
For instance, a similarity measure for given names could encode that Bill is a common (but
character-wise quite distant) variant of William; or a measure for phone numbers could make
use of the fact that the country prefix +49 is the same as 0049 and that non-digits can be ignored;
or a location-aware measure would consider that New York and Manhattan may be the same
place.

The assignment of similarity scores to attributes is usually done manually. On the one hand,
this is time-consuming and tedious, especially for data sources with many attributes. On the other
hand, it is also difficult when the user does not know for which values each similarity measure is
appropriate. Furthermore, the user might not be able to oversee the set of values for an attribute,
the attribute has no or a foreign language label, or just consists of incomprehensible abbrevia-
tions [3]. Attribute contents, however, are always available and serve as a foundation for such
an assignment. Essentially, the assignment process is an instance-based schema matching [85]
process between the attributes and a taxonomy of semantic annotations.

Note that the use of semantic meta-data is not restricted to the duplicate detection step itself or
the similarity measure assignment, respectively. As shown later in the thesis, the blocking phase
can also benefit from this meta-data. Furthermore, a large part of the mentioned domain knowl-
edge can be externalized into the normalization phase allowing for simpler similarity measures.
For example, a normalization could sanitize phone numbers from non-digits and add country-
codes upfront, could replace all occurrences of nicknames with their traditional form, or expand
st. into Street in addresses. Consequently, similarity measures could be designed less sophis-
ticated and at the same time, the similarity estimation would be sped up, because normalization
is executed only once per record rather than twice per pair comparison.

The remainder of this chapter is structured as follows. We describe the retrieval of the semantic
meta-data in Section 2.2. In Section 2.2.6 we show the novel 1:k assignment problem, which
occurs when assigning the semantics mentioned above to the dataset’s attributes, and how we can
solve it with known matching algorihms. The approach is evaluated on ten datasets in Section 2.3.
Section 2.4 presents related work and a brief summary.

2.2 Attribute Classification

The similarity score relevance can be increased when using tailored similarity measures for
each attribute. These measures still base on one or more fundamental similarity measures, but
additionally contain domain knowledge that helps them to interpret the attribute values better
and makes them particularly robust against typical errors in the respective domain.

A similarity measure can consider several different base similarity measures and aggregate
them, returning, for example, the highest individual similarity as the final similarity. Even more
general similarity measures are possible. For example, a similarity measure for full names could
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exchange given and family names in a record when comparing it with another record to cure
accidental swaps.

However, for all of these mentioned applications, the dataset’s attributes have to be annotated
appropriately. We call those semantic annotations classes and organize them in a hierarchical
order which is illustrated in Figure 4.

Default

Numeric

Currency

Number
Decimal

Decimal EN

Decimal DE
Integer

Phone

Date Birthdate

String-based

Address
Address EN

Address DE
City

Street

Email

Gender

Figure 4: Excerpt of an example class hierarchy to annotate attributes

This hierarchy can be arbitrary and does not need to be balanced. Different languages can be
supported as well, for example, for different house number placements in addresses or decimal
separators.

With these annotations, a corresponding similarity measure can be easily chosen automati-
cally. Figure 5 shows an example for such an annotation process. The first column contains all
attributes of a source dataset. The second column contains a set of assigned classes (drawn from
the hierarchy shown in Figure 4). Each attribute is mapped to exactly one class. The third col-
umn finally contains similarity measures that make use of base similarity measures illustrated
in column four. The designer implementing the similarity measure is responsible for the small
extra effort of attaching each similarity measure to a class from the hierarchy. Hence, similarity
measures and the mappings to them are out of scope of the actual attribute profiling process
and are illustrated with dashed strokes, the profiling phase covers only the similarity measure
assignment.
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Attributes Classes
Similarity
Measures

Base Similarity
Measures

City City simcity . . .

Sex Gender simgender . . .

First Name Given Name simgiven

Last Name Family Name sim f amily

sim f ullname Jaro-Winkler

Office 

Phone

Fax

Phone simphone . . .

Licence 

Plate
Default simde f ault Edit Distance

DOB Birthdate simbirthdate . . .

Enroll-

ment Date
Date simdate . . .

Figure 5: Different semantic annotations for a dataset and their prospective use for similarity measures

Note that we do not require a bijective mapping. For example, in case there is no class for
fax numbers, the semantically nearest alternative should be chosen: phone. For the attribute
Licence Plate, the nearest class is the default class. Further note that the semantics can be
arbitrarily fine-grained (Figure 4), therefore there are different mappings for the two date-based
attributes at the bottom.

2.2.1 Manual classification

Traditionally, in a manual process, the user assigns the actual (base) similarity measures to the
attributes in one immediate step. However, with our approach, the attributes can be automatically
annotated with semantics and subsequently the similarity measures can be assigned in a straight-
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forward fashion. The degree of automation in the duplicate detection process increases when
those assignments are generated automatically.

Figure 6 shows a real-world example for such an assignment process as used by AddressDoc-
tor3. The dataset’s attributes are enumerated on the left-hand side, the classes are to be chosen
from the drop-down lists on the right hand side. Note the substantial number of options to choose
from that are not even visible at once, especially when leaving the address domain, the difficulty
to decide for a specific option (“line 2” vs. “line 3”), the effort to do that for each dataset attribute,
even for obvious matches, and the missing assignment options (occupation, middle initial).

Figure 6: Screenshot of assigning semantics to attributes of uploaded input data (by kind permission of
addressdoctor.com); highlighting from the authors

3 http://www.addressdoctor.com

addressdoctor.com
http://www.addressdoctor.com
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Figure 7 shows another instance of a similar assignment process used in IBM InfoSphere. In-
stead of assigning semantics to the attributes, the desired similarity measures must be assigned
directly (as described above). Apart from the effort, this requires also a deep understanding of
the similarity measures by the user. Additionally, the user must give weights to each attribute ac-
cording to the attribute’s relevance to the overall record similarity. While IBM InfoSphere is not
intended for the end-user, also data engineers would profit from an automatic class assignment.

Figure 7: Screenshot of assigning similarity measures and weights to attributes of uploaded input data
(IBM InfoSphere)

2.2.2 Automatic classification

Given a repository of classes (possibly in a class hierarchy) with each class attached with ex-
ample or reference data, which we more generally call domain data, we propose a technique to
assign these classes to attributes of an input dataset without the need for schema information.
We do not pose restrictions to the set of classes. The domain data have to be provisioned only
once upfront and need to be updated only rarely. This data can be readily bought, for example,
from data providers such as Deutsche Post4.

Note that our approach is mostly domain- and language-independent. We do not need to know,
for example, the language or topic used in the dataset, as long as there are reference and example

4 https://www.deutschepost.de/de/a/adressleistungen/beschaffung.html

https://www.deutschepost.de/de/a/adressleistungen/beschaffung.html
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data for the respective classes. However, we provide a large variety of classes for the address
domain with different abstraction, for example, German street names vs. general street names
as well as multi-lingual reference and example sets. We trust the algorithm to find the most
appropriate class and thereby identify the language. Furthermore, for some classes, language is
irrelevant, such as email addresses.

The assumption to have a known set of classes is reasonable and realistic, because many
datasets for deduplication share common classes or these shared classes are the relevant por-
tion for the deduplication process, respectively. The Web Data Commons Crawl5 lists common
attribute labels in the Web. Among the top 19 are labels such as name, date, or title. The
address domain specific attributes we cover with our domain data, match 13 of these 19. Two
thirds of the attribute values are strings, another quarter is numeric. There are several millions of
tables with more than ten attributes. Though these data do not necessarily undergo a duplicate
detection process, they still reflect real-world data, that is potentially useful for or belonging to
some organization that needs them to be cleansed.

Classification is performed in two phases. First, for each attribute, the dataset’s values are
compared against a set of reference data for different classes, the dictionary-based classifica-
tion. The relative size of the overlap is used as indicator for the certainty of a correspondence
(see Section 2.2.3). Second, another classification is performed with the help of feature vectors,
the example-based classification. These vectors are created for example data whose classes are
known and for the aforementioned input data whose classes have to be found. Both sets of fea-
ture vectors are then compared through machine learning techniques (see Section 2.2.4). Each
of the phases returns a set of possible correspondences represented as a correspondence matrix.
See Figure 8 for an overview on the whole classification workflow.

Section 2.2.5 describes how to distill the final assignment from those matrices with the help
of a maximum bipartite graph matching and how to apply the 1:k constraint to the assignment:
For this matching we take into account that some classes might be more frequent (e. g., postal
addresses) than others (e. g., birthday) and modify the matching algorithm into a so-called 1:k as-
signment or one-to-some-assignment (Section 2.2.6).

5 http://webdatacommons.org/webtables/

http://webdatacommons.org/webtables/
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Overall Attribute Classification
Input

Data

Profiling

Process

Data

Example-based Classification

Dictionary-based Classification

Final 1:k Assignment

Input

Records
Overlap-Analysis

Reference

Data

K con-

straints,

thresholds

Preliminary 1:k Assignment

Classification

Feature Creation

Feature Vectors

Correspondence Matrix

1:k Matcher

Correspondence Matrix

1:k Matcher

Example

Data
Feature Creation

Feature Vectors

Figure 8: Attribute classification phase at a glance (including the actual classification (Sec-
tion 2.2.3, 2.2.4), correspondence matrices (Section 2.2.5) and the 1:k assignment (Sec-
tion 2.2.6).)



20 attribute profiling for similarity measure assignment

2.2.3 Dictionary-based classification

Some classes have a rather fixed domain or value range, for example, month, gender, or the list
of countries in the world. The overlap of the values in one of the dataset’s attributes with those
classes’ ranges is expected to be large, even when there are mistakes in some of the values. We
treat those sets of fixed values as reliable dictionaries and call them reference datasets and this
classification step dictionary-based classification.

To calculate the similarity between an attribute of the input data and a class, we determine the
ratio of the attribute’s distinct values T that also appear in the class’ reference dataset R divided
by the total number of (non-NULL) attribute values T :

|T ∩ R|
|T |

Ratios below a certain class-specific threshold (0.8 was a good threshold for most of the
classes) are set to zero. We derive a preliminary assignment from these ratios with a maximum
bipartite graph matcher, described in detail in Section 2.2.6. All matches in this assignment are
considered to be correct and are not questioned in the second phase, described in the next section.
See the upper part of Figure 8 for an overview on this phase.

2.2.4 Example-based classification

Not all classes can be identified using a (finite) reference dataset, for example, phone numbers or
email addresses. Therefore, we use a comparatively small number of example values available
for those classes to learn the characteristics of those classes for classification. The lower part of
Figure 8 describes this classification process.

We define a set of boolean features, which are applied to each single attribute value, thus
creating feature vectors. We use the common heuristic that there is a high probability that fea-
ture vectors for values from the same attribute/domain are similar. Email addresses contain an
@, street names contain letters, spaces and a higher frequency of road, rd., or similar, and
phone numbers contain digits and a small set of special characters. Once input and example data
are represented by feature vectors, the input data can be classified based on the example data,
therefore this classification step is called example-based Classification. We use the Naive Bayes
classifier of Weka [52] and classify each attribute value separately.

We define four different types of features and describe how we used them:

1. Single character features check for occurrence of letters, digits, or special characters, for
example, a, B, 3, or #. We used 73 of the ASCII characters above position 31.

2. Bi-gram features cover all 262 = 676 (case-insensitive) combinations of two letters.
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3. Complex features check for more advanced patterns, for example, whether a string begins
with a lowercase letter, contains a separated 4-digit number, or has a length between 20
and 29. We developed 19 of those features.

4. Lookup features use different web services to check whether the values are known by
those services. We used 5 services for 8 features, namely DBpedia6, behindthename.com7,
NameWiki8, verwandt.de9, and gofeminin.de10, to look for given and family names. Not
all services can distinguish between given and family names. Lookups can be a bottleneck,
but because we just use a small number of values for feature creation, we can do it upfront
for the domain data and we can cache lookups.

2.2.5 Correspondence matrix

The dictionary-based and the example-based classification each result in a correspondence ma-
trix. A correspondence matrix contains n attributes and m classes, that are all possible correspon-
dences between attributes and classes.

Based on such a matrix, it is not trivial to determine which attribute to assign to which class.
Conceptually, the problem corresponds to the weighted bipartite matching problem: Given the
correspondence matrix with assignment weights, assign a class to each attribute such that no
class participates in more than one assignment and the sum of weights is maximized. Yet, our
specific problem introduces several twists to this problem:

• Thresholded assignment: To avoid matching “left-over” attributes with low similarity we
introduce a threshold.

• One-to-many assignment: Several attributes in a schema might correspond to the same
class, which should be reflected in our solution.

• One-to-some assignment: Domain knowledge allows us to restrict the number of matches
to certain classes. For instance, we might want to encode that a person has no more than
two given names. Thus, we redefine the matching problem in Section 2.2.6.

A simple 1:1 assignment would assign each attribute to a single class as long as there are
unused classes left. A downside of this approach is that each attribute is forcefully matched, even
if there is no correct matching partner. To solve this, we introduce a threshold: Correspondences
below this threshold are not taken in the final assignment.

In addition, the 1:1 matching is too restrictive. Typical database schemas contain attributes
with same or very similar semantics: For instance, Phone and fax numbers can be compared

6 http://dbpedia.org/
7 http://www.behindthename.com/
8 http://wiki.name.com/
9 http://verwandt.de/karten

10 http://gofeminin.de

http://dbpedia.org/
http://www.behindthename.com/
http://wiki.name.com/
http://verwandt.de/karten
http://gofeminin.de
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using the same similarity measure. Thus, we want to allow the assignment of different attributes
to the same class. To this end, we allow a 1:n assignment.

In further addition, knowledge about classes comprises also information about how often such
a specific class may appear in the source schema: While it is possible that a schema contains sev-
eral attributes similar to phone numbers, it would be very unusual that the gender is represented
in a record several times and instead should be able to take part only once in the final assign-
ment. This constraint is driven by the observation that attributes occur in common frequencies,
for example, in Microsoft Outlook/Exchange, there are three postal and three email addresses
and there are two dates as well, a birthday and an anniversary. To incorporate such restrictions in
the matching problem, we propose the 1:k assignment which is basically a 1:n assignment, but
with varying n for each class.

2.2.6 1:k Assignment

Let an acyclic, weighted, bipartite graph G = (S , T , E) contain a set S of source nodes si, i ∈
[1, n], a set T of target nodes t j, j ∈ [1, m], and a set E of edges ei j, i ∈ [1, n], j ∈ [1, m] with |E| =
n · m. Such a graph is depicted in Figure 9. In our application, source nodes are the attributes,
target nodes are the semantic classes, and the edges are the correspondences between them.
Further, let C be a correspondence matrix with entries ci j quantifying the similarity between
source node si and target node t j. These similarities serve as the edge weights. An example is
given in Table 1.

n sources S m targets T m k-constraints K

s1 t1 k1 = 1

s2 t2 k2 = 7

s3 t3 k3 = 2

s4 t4 k4 = 1

...
...

sn tm km = 2

Figure 9: Sample 1:k assignment with given K (only black edges)

Let K be a set of k-constraints k j, j ∈ [1, m] where each k j represents the number of assign-
ments that are allowed for target node t j. These constraints are also illustrated in Figure 9 on the
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Target

Source Firstname Lastname Phone Address City

Fullname 0.8 0.6 0.1 0.2 0.3

Telephone 0.0 0.0 0.9 0.2 0.1

Street 0.2 0.4 0.1 0.9 0.7

House Number 0.0 0.0 0.7 0.7 0.2

Table 1: Correspondence matrix C for attributes (first column) and classes (first row) with illustrative yet
sound values

right. Given the input stated above, the 1:k assignment problem is to find a mapping matrix A
with entries

ai j =

0 if ei j does not take part in the mapping

1 if ei j takes part in the mapping

where
n∑

i=1

ai j ≤ k j (∀ j ∈ [1, m])

that maximizes the overall similarity of the selected participating nodes in the mapping:

max

∑
∀i j

ci j · ai j


A possible assignment is illustrated in Figure 9, where n attributes are matched to m classes.

Each attribute si is matched at most once, and each class t j is assigned at most k j times.
The 1:k assignment problem is a more general case of the bipartite weighted matching prob-

lem or assignment problem [82] where all k constraints are set to 1. There are several algorithms
to solve that problem which have different optimization goals. The most prominent is the Hun-
garian Algorithm [76], which minimizes the weights of the edges in the final mapping. This
algorithm solves the traditional assignment problem for |S | = |T | (that is, a squared correspon-
dence matrix) in O(|S |3) operations. It is easy to convert our problem from a maximization
to a minimization problem (suitable for the Hungarian Algorithm) by just replacing all ci j by
clarge − ci j with clarge >

∑
∀i j ci j, that is a constant that is larger than all weights from C. Another

way of creating a mapping A is to use Gale and Shapely’s Stable Marriage algorithm [46]. For
that, the correspondences have to be transformed into preference lists. The resulting mapping
does not necessarily find an optimal set of weights, but for each attribute it selects the most ap-
propriate available class. The opposite case, k = n, can be solved trivially, because there is no
restriction of the cardinality of inbound edges of T .
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After all, the mapping A is calculated using a global matching algorithm on the correspon-
dence matrix, but the algorithms are not capable of solving our more general problem with
k constraints different to 1. We show how to circumvent this limitation and use matching algo-
rithms as described above using both, a padding and a pruning step, as shown in Figure 10.

C

C′ A′

A
Extended MA

Pa
dd

in
g

Original MA

Pruning

Figure 10: Extended matching algorithm (MA) accomplished by padding and pruning

The main idea is to pad the original C with additional columns and/or rows to incorporate
the k-constraints and the squareness condition, creating C′. An original matching algorithm then
creates a mapping A′ that has to be pruned to come to the final mapping A.

In case that n < m – there are more classes than attributes – C has to be padded with (m − n)
additional dummy rows must be added to C, representing non-existing source nodes: c′i′ j =

0 ∀n < i′ ≤ m. Dummy rows contain only zeros to not interfere with the matching process.
Thus, they take all the otherwise unmatched source/target combinations.

The k-constraints are incorporated by duplicating (i. e., padding) columns of C. The value of k j

determines the total number of additional copies of the column. Note that this column duplication
requires

∑
k·∈K k j = a additional padding rows, since the matrix becomes broader, but still has

to comply to the squareness condition. In total, (m − n) + a rows have to be added to generate
a squared correspondence matrix with duplicated columns. See Table 2 for an example C′ with
K = {k1 = 3, k3 = 2, ...}. It does not matter where the additional columns or rows are inserted.
ki is also allowed to be infinite for classes that may appear arbitrarily often (for example, boolean
flags may be assigned unlimitedly). Since ki cannot be set to infinity, it is sufficient to set ki to
the number of source attributes n. This gives every attribute the chance to get matched to this
respective class. In case there are too few classes for the attributes (n > m), the default class
column must be replicated often enough, such that the final C′ is again squared.

With this squared correspondence matrix C′, a traditional matching algorithm can be used
to create an 1:k assignment A′. A′ contains exactly one 1 in each column/row, representing the
class assignment. This assignment also covers dummy source attributes for which the respective
rows/columns have to be removed from A′ to finally obtain A.

(ai j) = (a′i′ j) i, i′ ∈ [1, n]; j ∈ [1, m]
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Target

Source First-
name

First-
name

First-
name

Last-
name

Phone Phone Ad-
dress

City

Fullname 0.8 0.8 0.8 0.6 0.1 0.1 0.2 0.3

Telephone 0.0 0.0 0.0 0.0 0.9 0.9 0.2 0.1

Street 0.2 0.2 0.2 0.4 0.1 0.1 0.9 0.7

House Number 0.0 0.0 0.0 0.0 0.7 0.7 0.7 0.2

dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Extended correspondence matrix, now squared

2.3 Evaluation

To evaluate the classification results, we established ten test datasets with address data from vari-
ous sources, available at https://hpi.de/naumann/projects/repeatability/datasets.
html. This page contains further information concerning the sources and properties of the data.
They are listed in Table 3 in the first column. The second column shows the number of attributes
in each dataset.

Fakenames and Corporate are generated datasets derived by obfuscating existing addresses.
Corporate is a confidential dataset used by an industry partner’s own data cleansing evaluations
and not published. Crawl1 to Crawl4 are crawled datasets from Wikipedia and IMDB. ListB
and ListC are datasets from an assignment of the University of Arkansas, which are artificially
obfuscated. Voters comprises a list of registered voters of Clermont county, Ohio. Finally, Mines
contains the addresses of coal and ore mines in the USA.

For classification we need instance data. The datasets contain 14 attributes on average, each
dataset providing at least 50,000 tuples. Unfortunately, most of the used datasets contain at-
tributes that are only sparsely filled. For training, we randomly selected 500 among the best-filled
tuples in each dataset leaving up to three attributes with null values, but on different attributes
over multiple records. Attributes that were empty in all records were ignored a-priori. The train-
ing dataset bases on the Fakename dataset. Additional attributes are taken from the Crawl1,
Crawl3, and Voters dataset or – in case of numbers – were randomly generated. We ensured that
the contents of the training dataset do not overlap with the test datasets.

The results of the complete classification process using a Naive Bayes classifier are shown
in Table 3. As proposed by Euzenat and Shvaiko [38] we use F-measure to describe the over-

https://hpi.de/naumann/projects/repeatability/datasets.html
https://hpi.de/naumann/projects/repeatability/datasets.html
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all matching compliance to the manually defined gold standard. Columns 3 and 4 display the
number of correctly classified attributes and the corresponding F-measure, respectively.

Dataset Number of
attributes

Correct
Matches

F-measure Close
Matches

Close Match
F-measure

Fakenames 21 15 0.71 +3 0.86

Corporate 11 9 0.81 +1 0.91

Crawl1 (KT) 10 8 0.80 +0 0.80

Crawl2 (LN) 13 6 0.46 +2 0.62

Crawl3 (Po) 8 8 1.00 +0 1.00

Crawl4 (RW) 16 8 0.50 +3 0.69

ListB 9 5 0.56 +1 0.67

ListC 7 4 0.57 +1 0.71

Voters 23 12 0.52 +3 0.65

Mines 18 10 0.56 +2 0.67

Table 3: Combined classification results (dictionary-based and example-based learning with Naive Bayes)

In most cases, the majority of attributes has been successfully classified. The misses occur on
more unusual attributes, such as credit card verification codes, UPS tracking numbers, religion,
or occupation. We do not deem them to be of utmost importance for the duplicate detection
process. The example in Table 4 shows that mismatches (indicated with →) can also be non-
severe as, for example, phone is misclassified as number and ID is misclassified as ZIP code.
The derived similarity measure might not accurately make use of all the special characteristics
of phone numbers, but might still achieve sound results.

Therefore, we additionally counted “close matches”, such as weight/housenumber, place-of-
birth/city-state-country-combination, or number of children/month (numeric). They are added to
the strict matches and presented in column 5 in Table 3 with a corresponding F-measure column,
increasing the average F-measure from 0.61 by 20 % to 0.73.

Each classification ran on a 3 GHz, 8 GB RAM Ubuntu Maverick 64 Bit non-dedicated ma-
chine in Java (default heap space size, single thread) within about 6/50/400 seconds with Naive
Bayes/Bagging/Ensemble of Nested Dichotomies (END) classifiers. The creation of features
took additional time, which depends on the number of datasets, records, and attributes. For train-
ing data, this has to be done only once. The duration for processing the attribute value yielded a
total duration of 5 hours for all datasets. This only reflects computational effort and disk I/O, as
we cached the HTTP requests for lookup features from earlier runs. Without caching, the feature
creation time rises to 1.25 seconds per value or 25 hours in total. Thus, caching is recommend-
able so that only one HTTP lookup is necessary for each attribute value.
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Dataset’s Attribute Classified as class Similarity correct?

housenr HOUSENUMBER 1.00 correct

honorific HONORIFIC_DE 1.00 correct

title TITLE 1.00 correct

id ZIP 0.98 → NUMBER

ZIP ZIP_DE 0.96 correct

Street STREET_DE 0.88 correct

City CITY_DE 0.83 correct

Family Name FAMILYNAME 0.72 correct

Date BIRTHDAY 0.64 correct

First Name GIVENNAME 0.62 correct

Phone Number NUMBER_INTEGER 0.53 → PHONE_DE/PHONE

Table 4: Result with 11 attributes for the corporate dataset (only strict matches)

We also compared 1:k matching results against (unbounded) 1:n matching. With the chosen
set of k-constraints, 1:k assignments are never worse than 1:n assignments. There are cases
in which 1:k yields better results, especially when the classifier itself is more simplistic. This
is positive, because in general, it cannot be assumed that the classes are always known and
that example data is available. Such a lack results in reduced classification quality and the 1:k
assignment raises the F-measure of the final assignment.

Finally, Figure 11 shows a comparison of different machine learning algorithms and the
achieved F-measure on all datasets. Naive Bayes provides the best cost-benefit tradeoff and was
used for all the experiments. The figure’s legend shows the average F-measure and the average
classification time for each dataset and each classifier.

2.4 Related Work

Schema matching is not a new problem and we highlight existing approaches from this field.
Schema matching is the technique of creating and selecting correspondences between two sets

of elements, typically attributes of relations. Rahm and Bernstein give a survey on different meth-
ods for schema matching [85]; a more elaborate survey was written by Euzenat and Shvaiko [38].
A matching approach that inspired this paper, was the classification algorithm in [79]. It uses a
rich feature set to create an instance-based mapping between two schemas. Instance mappings
are also used in iFuice [105], where knowledge about explicit connections between different
schemas is exploited. However, in the use case of customer data, those hyperlink connections
are not available. Finally, Bilke and Naumann [14] combine duplicate detection and schema
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Figure 11: The influence of different classifiers on the result is small, however, the Naive Bayes classifier
is one order of magnitude faster than the others. The used classifiers are Naive Bayes, Bagging,
and Ensemble of Nested Dichotomies (END).

matching and utilize known duplicates for schema matching. This approach does the opposite
and uses schema matching to eventually improve duplicate detection.

Berlin and Motro [9] follow a similar matching approach where they match whole schemas
to already known schemas, rather than single attributes. They employ decision trees as machine
learning model and do not use reference data. Unfortunately, the do not reveal the features used
for the classification. Doan et al. [29] propose LSD, a system for schema mediation. In a real-
estate setting, they create 1:1 mappings between two schemas given in XML format. They use
different learners, for example, a Naive Bayes learner basing on whole words or a country-name
organizer. In our approach, we cover 1:k mappings, do not make assumptions on the format of the
input data, are more diverse in the set of features and position our dictionary based classification
as an independent classification step. Other approaches, not mentioned here, work similarly and
use different machine learning approaches, but restrict to 1:1 matches.

Faruquie et al. [39] present a data cleansing service with an optional duplicate detection com-
ponent. However, proper thresholds for the pairwise attribute comparison part of the duplicate
detection process must be selected manually. Furthermore, they concentrate on arguing for data
cleansing in general and omit details about how to actually perform the duplicate detection. They
present different proposals for how to transfer the data to the service provider.

There are also some existing web applications that offer data cleansing. Mostly, this comprises
only data verification and enrichment. Nevertheless, AddressDoctor11, AdressExpert12, and Uni-
serv13 are commercial offers that perform duplicate detection, but only with considerable manual
configuration effort.

11 http://www.addressdoctor.com/
12 http://www.adressexpert.de/
13 http://www.uniserv.com

http://www.addressdoctor.com/
http://www.adressexpert.de/
http://www.uniserv.com
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2.5 Conclusion and Outlook

We presented a technique for the automatic assignment of semantic classes to attributes of a
given dataset. The only prerequisite is the availability of training data for the desired domain
in form of examples and/or reference data. The matching can be further improved by providing
k-constraints for the 1:k matching. With this matching approach, the most relevant attributes can
be identified and appropriate similarity measures can be derived.

For future work, we plan to extend the knowledge connected with the semantic classes. For
example, the weighting of attributes should be different (family name vs. country) and some
attributes might even be ignored, because they do not carry beneficial information for the simi-
larity measure, for example, IDs. This can be achieved by another learning phase with the use of
known duplicate records.

The attribute classification may be improved using frequent item set mining techniques, where
the items are the attributes in question. The individual schemas can be treated as transactions,
consequently. Finding co-occurring attributes (the frequent item sets) would reveal attributes that
belong together, for example, street and housenumber, or given and family name. This could be
used to improve the semantic mapping by boosting corresponding entries in the confusion ma-
trix to be selected as the final semantic annotation. Further, it would help to avoid misclassifica-
tions regarding wrong languages because mixed-language schemas (for example, German street
names and French house numbers) are uncommon and English street, city, and state names imply
the presence of English ZIP codes (and the ZIP code attribute in general, too). Additionally, cor-
responding attributes in the input data could be joined together (merging their values) to match
a composite semantic annotation (e. g., “street with housenumber” or “full name”). Further in-
vestigation is necessary on how to define the minimum support for the item sets to be treated
as frequent, how many schemas are needed to ensure reliable item sets, and how to precisely
integrate these insights into the classification process.

Furthermore, it might also be rewarding to let the number of rows that undergo classification
be determined by the (intermediate) classification result. If the mapping is confident enough, it
is treated as the final mapping, otherwise additional data has to be classified. This incremental
approach could speed up the profiling phase due to the reduced effort for feature computation
and data transfer and would also reduce the amount of possibly confidential data provided to the
profiling system, especially when relatively few data is used for the initial classification. Main
questions are how many rows should be considered in the first place and how many additional
rows should be requested. Should this depend on the uncertainty of the current mapping? How
can these parameters be determined autonomously?

Finally, privacy aspects can be incorporated by not using the original values but transforming
them into a metric space on client side [93].

In the next chapter, we show how to further improve the automatic duplicate detection process.
To prevent futile comparisons, only worthwhile comparisons should be executed. The selection
of those comparisons traditionally also needs human involvement.





3
B l o c k i n g K e y S e l e c t i o n ba s e d o n U n i g r am C om b i nat i o n s

Blocking is a well-known technique to avoid many unnecessary comparisons in a duplicate
detection process. However, blocking keys are usually hand-crafted, which is tedious and error-
prone: the keys are often poorly chosen.

We propose a technique to find optimal blocking keys under some constraints automatically
for a dataset equipped with a gold standard. We then show how to re-use those blocking keys
for datasets from similar domains lacking a gold standard. Blocking keys are created based on
unigrams, which we extend with length hints for further improvement. Blocking key creation is
evaluated in several comprehensive experiments on large artificial and real-world datasets.

This approach has been published as [107].

3.1 Efficient Duplicate Detection

In a duplicate detection process, the safe way to ensure not to miss any potential duplicate is
to inspect each possible pair of records. Despite this approach being obviously effective, it si-
multaneously is computationally expensive, and it is also pointless, because the clear majority
of comparisons is performed on two totally different records that have little to nothing in com-
mon. Thus, efficient duplicate detection relies on a good pair selection algorithm that anticipates
promising comparisons upfront and chooses only those pairs for similarity measure calculation.
The precision of a duplicate detection run is driven by the ability of the similarity measure to tell
non-duplicate records apart. On the other hand, recall is determined by both, the mentioned sim-
ilarity measure and the pair selection algorithm. In this chapter, we abstract from similarity mea-
sures and instead consider only pair-selection-algorithm-induced effectiveness and efficiency for
which we give formal notions in Section 3.3.2. Therefore, we do not base our evaluation on
precision and recall, but on effectiveness and efficiency.

In general, pair selection divides the comparison space into either overlapping or non-over-
lapping partitions and performs the comparisons only within those partitions. One well-known,
non-overlapping technique for pair selection is blocking [8]. Usually, an expert selects one or
more attributes that he expects to have common values amid similar records, the blocking key.
The relation is partitioned according to each record’s value, the blocking key value, for these
attributes. In an address data scenario, a blocking key could be, for instance, the ZIP code or the
family name (or the concatenation of both). It is probable that two records identifying the same
person have the same ZIP code or the same family name. Other attributes, such as social security
number, gender, or middle initial do not serve well, because the partitions would become either
too small, separating duplicate records over multiple partitions and thus decreasing effectiveness,
or too large, leading to very many unnecessary comparisons and tamper efficiency. Usually,

31
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blocking keys consist of attribute combinations which lead to more delicate partitions and with
that, higher efficiency.

A refinement of that blocking approach is to consider only parts of attribute values instead
of their full value: First, mistakes in the unconsidered parts of the attribute are ignored and
thus smoothed out, and second, partitions might become too small if the entire attribute was
considered. Instead, only parts of the attributes, for instance, the first n characters or the first
m vowels are used. A more advanced method is to apply hash functions on the values, such as
calculating the Soundex [16] code for a value. However, they may not be applicable on all data
types. Furthermore, selecting a proper value for n or m, or deciding whether and which functions
make sense, requires domain-experience and considerable manual effort.

Additionally, several passes with different blocking keys may be performed to overcome data
defects in exactly those attributes. Since blocking saves significant computation time, multiple
passes can be afforded which keeps the overall effectiveness considerably high.

We have observed that different positions in attributes serve differently well as blocking crite-
rion. For example, in an address scenario, a blocking key might use the first two characters of
both the ZIP code and the city attribute. This works well for addresses from smaller cities: De-
spite they might have the same ZIP code beginning, the different city names serve for an efficient
partitioning. In contrast, however, addresses of people in large cities have ZIP codes that are the
same in the first few characters14 and the city name is not of any help in these cases, because it is
the same for all addresses from that city. This observation is especially relevant, because larger
cities have more inhabitants than smaller ones and thus, records representing addresses within
these cities are more frequent in typical address datasets and might even give more possibilities
for duplicates [65]. Consequently, large partitions arise with the consequences described in Sec-
tion 1.3. The city name and the beginning of ZIP codes are correlated and contain redundant
information.

Hence, this blocking key fails in separating dissimilar records into different partitions. Instead,
the blocking key might become more efficient if other portions of the ZIP code were used. In con-
trast, the third character in a ZIP code might be a better choice, because it changes for different
districts of a (large) city.

As another example consider a product relation containing Apple items (iPod, iPhone, iPad,
iMac, etc.). Nearly every article starts with an i and often a P follows, making the first positions
not appropriate as blocking keys. Our approach identifies those relevant parts of attributes and
proposes them for blocking keys.

We make the following contributions:

1. A technique to automatically choose blocking keys that are a good estimation of the record
similarity and do not create too large partitions

2. A comprehensive evaluation on a large dataset showing high recall on related datasets

3. For our example domain, address data, a list of the top general-purpose blocking keys

14 For example, Stuttgart (Germany) has ZIP codes ranging from 70173 to 70619.



3.2 related work 33

The remainder of this chapter is structured as follows: Section 3.2 presents related work. Sec-
tion 3.3 describes the general idea of unigram-based blocking, gives formalized notions of ef-
fectiveness, efficiency, and the blocking key quality, and depicts the overall workflow. It further
introduces a novel technique to integrate attribute length hints into unigrams. Section 3.4 con-
tains evaluations on the presented techniques, and finally Section 3.5 gives a short summary of
this chapter.

3.2 Related Work

This section describes related work regarding partitioning approaches and automation of parti-
tioning in particular.

partitioning in general Christen [21] compares several partitioning techniques (tradi-
tional blocking, Sorted Neighborhood [56], q-grams [41], String-Map [59], Suffix-array [2], and
canopy clustering [71]). They all need blocking keys and – except for traditional blocking – re-
quire further parameters to be set, for example, thresholds, centroids for clustering, or a window
size. Christen concludes that they all achieve similar results on the same dataset and identifies
the key definition as the most crucial decision.

automatic blocking Bilenko et al. propose to take the two orthogonal steps at the same
time [11]. Not only do they decide which attributes to consider, but they also decide on the
very information taken from those attributes as feature, for example, a three-character-prefix
or whether an integer is at most off by one against another integer. Using those features, they
create disjunctive normal forms (DNFs) of different lengths and evaluate them against a gold
standard. The DNFs determine the records that are compared, for example, those that contain a
common token in attribute 1; or match exactly in attribute 2 and at the same time have the same
three-character-prefix in attribute 3 etc. However, these features need to be manually selected
and their applicability may differ over several domains and attribute types.

Michelson and Knoblock [74] also use different DNFs that were greedily aggregated via a
training dataset. They consider similarity measures from a small pool of methods combined
with all the attributes from the dataset as atomic features and optimize the DNFs regarding
efficiency and effectiveness (see Section 3.3.2). Due to the greedy approach, they only find sub-
optimal blocking keys and they also treat attribute values as a whole and rely on the availability
of similarity measures.

Kenig and Gal [61] propose another technique that clusters tuples according to their overlap
of common attributes. However, this approach relies on knowledge about the estimated size of
the duplicate clusters and considers only full attributes. We promote a more general approach
using unigrams instead of n-grams: With unigrams, we do not need to specify n and we do not
require the characters to be adjacent to each other.
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3.3 Partitioning

This section explains partitioning and blocking in general and how blocking keys are created.
It defines terms for later evaluation and especially blocking key quality. It then describes the
workflow and how to reuse blocking keys for other datasets. Finally, it presents an approach to
incorporate attribute length hints into the blocking keys.

3.3.1 Foundations of Blocking and Blocking Keys

Partitioning is the key to efficiency when carrying out a duplicate detection process. Without
partitioning, each record has to be compared pairwise with each other record, causing the com-
parison effort to be squared regarding the number of records in the dataset (see Figure 12a). To
reduce this effort, only records within the same partition are compared (intra-partition compar-
isons), eliminating all inter-partition comparisons. Ideally, each partition contains few enough
elements to eventually ensure a relatively quick execution of the duplicate detection run and the
total number of comparisons decreases dramatically.

There are overlapping and non-overlapping partitioning approaches. Our approach addresses
non-overlapping partitioning, called blocking. Figure 12b shows a possible blocking of the com-
parison space, where the blocks are highlighted with dashed strokes. In this small example
the number of comparisons drops by 73 % from 55 to 15. In other words, the partitioning pre-
classifies clusters of duplicates so that the duplicate detection run remains effective.
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(b) Intra-Partition Comparisons

Figure 12: Comparison of computation effort for exhaustive comparisons (a) and blocking (b). Compar-
isons are illustrated as shaded boxes.

The crucial parameter for blocking is the blocking key, the criterion for partitioning records
into blocks. When using attribute values to create blocking keys, the smallest possible unit are
the individual unigrams of attribute values. We specify a chosen unigram by so-called unikeys.
A unikey is defined by an attribute and a position within, for example, the third character of the
familyname attribute, written as familyname-215. Hence, the value of a unikey for a given

15 By convention, we start indexing at 0.
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attribute value is a single character, the unigram. For instance, the aforementioned unikey and
the family name attribute value Sørensen yield the unigram r. A blocking key is then a list
of m unikeys, for example, [city-3, date-2, familyname-2, familyname-4]16; a corre-
sponding blocking key value could look like s2rh.

There are two objective functions, effectiveness and efficiency, that the blocking key selection
could be optimized for. A perfect blocking key would create partitions exactly according to the
records’ duplicity relations, thus no unnecessary comparisons are performed and all duplicates
are found. In the opposite, a trivial (i. e., empty) blocking key would put every tuple into a
giant single partition, achieving perfect effectiveness, too, but disrupting efficiency by many
unnecessary comparisons. The notion of blocking key quality is explained in more detail in
the next section. In this chapter, we formally present a (configurable) trade-off between both
objective functions and optimize this trade-off.

3.3.2 Definitions and Problem Statement

validity Blocking keys can be used to partition a dataset if all of the blocking key’s unikeys
can be applied on the corresponding dataset. A unikey is applicable if the dataset’s schema
contains the unikey’s attribute and the attribute’s length allows for the attribute position encoded
in the unikey. The attribute length is defined by the schema (e. g., a CHAR(100) in SQL) or is
infinite for other data sources (e. g., CSV files). The attributes do not necessarily need to have
the same name (or a name at all). Chapter 2 describes how to identify an attribute’s class based
on its content. We call a blocking key valid on a dataset if all its unikeys are applicable on that
dataset.

effectiveness The effectiveness of a blocking key measures how successful a duplicate
detection run with that blocking key is. Due to our flawless similarity measure, effectiveness
is only determined by the partitioning process and hence by the blocking key. Consequently,
effectiveness corresponds to recall as defined in Equation 2 in Section 1.3.

Effectiveness = Re =
Correct duplicates
Actual duplicates

=
TP

TP+ FN

For evaluating blocking approaches, the measure pairs completeness (PC) is used in the liter-
ature [50, 74]. It is calculated as the ratio of the number of (true) duplicates found with the cur-
rent blocking approach to the number of (true) duplicates found with the naive approach, PC =
TPblocking
TPnaive

. In our case with a flawless similarity measure, however, the number of found duplicates
under the naive approach is exactly the number of all duplicates in the dataset (TP+ FN), see
Equation 2 in Section 1.3. Consequently, pairs completeness and recall are equivalent and we
use recall as measure for effectiveness.

16 Note that the order of unikeys is irrelevant. We always state them in alphabetical order.
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3.3.3 Efficiency

A blocking key is efficient if it uses relatively few comparisons to achieve its result. In practice,
however, the total number of comparisons should not exceed a fixed threshold θ. To bypass the
need for a human assignment of θ, we chose to use the number of comparisons that would arise
when using the Sorted Neighborhood method [56].

Eventually, we express efficiency by normalizing the total number of comparisons c according
to θ. Further, we subtract it from 1 to make it comparable to the effectiveness measure. Thus,
efficiency is defined as follows:

Efficiency = 1 −
(c
θ

)
Efficiency ∈ [0, 1], assuming c ≤ θ. For c > θ, we discard the blocking key.
Instead of measuring efficiency as the average number of performed comparisons per found

duplicate, literature uses a notion called Reduction Ratio, the ratio of the number of performed
comparisons in the applied partitioning method to the number of performed comparisons in the
naive approach. Gu and Baxter observed that due to the large denominator the resulting ratio
is usually close to zero. We developed our efficiency measure inspired by their notion Filtered
Reduction Ratio [50] when using the number of comparisons issued by a baseline method as
defined above.

3.3.4 Blocking Key Quality (BQ)

A good blocking key should be effective and efficient. Therefore, we define the Blocking Key
Quality BQ as the harmonic mean of effectiveness and efficiency:

BQ =
2 · Effectiveness · Efficiency
Effectiveness + Efficiency

following the F-measure (see Section 1.3). The harmonic mean requires blocking keys to excel
in both, effectiveness and efficiency to be good blocking keys.

All three measures have values between 0 and 1. We will interpret them as percentage values.

3.3.5 Problem Statement

With the terms defined above, we can now give the problem statement: Given a dataset and its
schema, find a ranked list of k valid blocking keys.

3.3.6 Reusing Blocking Keys on other Datasets

Once optimal blocking keys are determined for a training dataset (that has a gold standard), this
knowledge can be used for other (test) datasets from a similar domain (where no gold standard
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is available). Two datasets are of the same or similar domain if both schemas overlap to a cer-
tain degree; the higher the overlap, the higher the domain-similarity. The required overlap ratio
depends on the actual application, user preferences (if available), value distribution (especially
language), error characteristics, and the used blocking keys. We give no formal overlap measure-
ment.

To successfully re-use blocking keys in such a test dataset, blocking keys still have to be good
(i. e., effective and efficient), but also valid. This means, their unikeys must be available in the
schema of the test dataset.

The set of good blocking keys for training datasets can be applied to production datasets
automatically without any human interaction. See the next section for the overall workflow. Sec-
tion 3.3.10 describes the integration of length hints for unigrams.

3.3.7 Key Generation Workflow

Automatic blocking key generation is performed in two phases. First, for a training dataset with
a gold standard17, all combinatorially possible blocking keys are evaluated. This is expensive,
but must be done only once upfront. See below for early abortion criteria that reduce the effort
even further. Second, for a test dataset, typically lacking a gold standard, the previously created
list of blocking keys is iterated to find the best valid blocking key.

Both for finding good blocking keys as well as for using those blocking keys on the test dataset
to eventually find duplicates, several abortion criteria are possible which stop the processing of
blocking keys before all keys are evaluated. Most criteria are parametrized by a threshold k. k
and the criteria may be different for the training and the production phase.

• The desired number of k blocking keys have been processed. During the training phase,
this number should be relatively high for not to miss good blocking keys, see below. For
the testing phase, this corresponds to the common practice to use several passes with
different blocking keys as described in Section 3.1.

• The total number of actually performed comparisons over all runs exceeds a threshold k.

• A sufficient number of k (distinct) duplicates have been found.

While the first two criteria are time-based, the third criterion is based on the result quality.
In the following, we give details for the training and production phases and which criteria we

chose for the later evaluation.

3.3.8 Training Phase

As the first step, good blocking keys are identified. In general, blocking key candidates are all
unikey combinations with arbitrary length and arbitrary selections of unikeys. To avoid a too

17 The frequent case of lacking a gold standard is covered in Chapter 4.
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large candidate set, the number of unikeys or their attribute positions can be restricted. Further
it is possible to apply specific constraints, for example, pre-defining some unikeys to impose a
shared prefix or specifying a minimal or maximal number of different attributes that should be
used for the unikeys. The unikey attribute position is can be restricted by the schema as described
in Section 3.3.10. In Section 3.4 we describe which restrictions we chose.

After the set of candidate blocking keys is specified, each blocking key is used to perform a
duplicate detection run on the training dataset to gauge its quality. If the number of comparisons
implied by the resulting partitioning exceeds the threshold θ, this blocking key is discarded.
Otherwise, the achieved blocking key quality (BQ) is calculated. To avoid the time-consuming
creation of vain partitionings that lead to too many comparisons, blocking keys may be pruned
before the actual partitioning takes place.

Finally, all the non-discarded blocking keys are ranked descendingly according to their BQ.
Blocking keys that were ruled out may be included in this ranking, but will most likely not be
used in the production phase.

3.3.9 Production Phase

The ranked keys from the training phase can subsequently be used to find duplicates in produc-
tion datasets of similar domains. Starting with the best-ranked blocking key, the blocking keys
are iterated until an abortion criterion as described above is met.

First of all, each iterated blocking key is checked for validity. Invalid keys are ignored in
the production phase for this dataset. Subsequently, the dataset is partitioned according to the
blocking key. Note that the pruning rules depicted above can be applied here, too, because they
do not rely on the availability of a gold standard, but on meta-information that are easy to come
by also for a test dataset. Thus, actually partitioning the dataset can be subject of these pruning
rules. Moreover, since pruning rules are sufficient, but not necessary, inadequate partitionings
might still arise that lead to too many comparisons. Similar to the training phase, partitionings
that require a number of comparisons that exceed a threshold θ are not investigated further. This
is especially important, as the record pair similarity has actually to be calculated, because no
gold standard lookup is available for the production phase.

An abortion criterion finishes the iteration of blocking keys. Subsequently, all the duplicates
found by the different blocking keys are put together and represent the result of the duplicate
detection process on the test dataset.

3.3.10 Incorporate Attribute Value Lengths into Unigrams

Many attributes allow for different lengths of their values, for example, cities, names, or phone
numbers. Thus, the higher the unikey position in an attribute, the higher the probability of read-
ing an empty character. In blocking key values, empty characters are indistinguishable, no mat-
ter whether they appear just after the last non-empty character or far behind it. Unigrams do not
carry information about the attribute value’s length, they just contain a single character from a
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specified position. This section shows a technique to enhance unigram information by length
hints.

In the upper part of Figure 13, some strings with different string lengths are shown. On the
right-hand side, their respective unigrams for the unikey givenname-8 are shown. They all
consist of the empty character (represented as ⊥). Hence, this unikey does not add any further
refinement to a blocking key for those attribute values. We call this the traditional approach.

0 1 2 3 4 5 6 7 8 9 givenname-8

Tr
ad
it
io
n
al
ap
p
ro
ac
h J i m ⊥

J o h n ⊥

J o h n ⊥

C a r l ⊥

W o l f g a n g ⊥

Le
n
gt
h
h
in
ts
ap
p
ro
ac
h J i m ①②③④⑤⑥⑦ ⑥

J o h n ①②③④⑤⑥ ⑤

J o h n ①②③④⑤⑥ ⑤

C a r l ①②③④⑤⑥ ⑤

W o l f g a n g ①② ①

Figure 13: Replacing empty characters to allow more fine-grained partitions

We propose to replace the missing positions (empty characters) with special characters up to
the highest unikey position. Using single characters keeps this approach compatible with the
unigram concept. The characters must be mutually different and must not occur in the attributes
used in the blocking key. The Unicode standard contains a large enough alphabet to satisfy these
requirements.

In the experiments and for illustration in this chapter, we selected circled numbers (see Fig-
ure 13, lower part), because they indeed do not occur in any of our datasets. Moreover, they have
an inherent, human-readable order. Taking the same unikey as before (givenname-8) we can
see that there are more different unigrams than in the traditional variant above and they capture
similarity more closely. In the example, 3 blocks would have been created instead of 1. We call
this the length hints approach.

This extension enables the partitioning to make use of higher attribute positions. This is es-
pecially necessary since the blocking keys do not use only positions in the beginning of the
attributes. The evaluation in Section 3.4.4 shows that the length hints approach outperforms the
traditional approach in terms of BQ due to better refinement capabilities.
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3.4 Evaluation

Section 3.4.1 presents the datasets and settings used for evaluation. Section 3.4.2 shows and
discusses the blocking keys’ quality on the test dataset while Section 3.4.4 evaluates the length
hints approach. Finally, Section 3.4.3 gives details on the blocking keys and shows that blocking
keys can be used for other datasets.

3.4.1 Datasets and Settings

For evaluation, we chose a 10 % random sample of the corporate dataset, a generated confiden-
tial dataset used by an industry partner’s own data cleansing evaluations (“Corporate-1”) with
100,000 tuples. This sample contains 804 pairwise disjoint duplicates, roughly 1 % of all dupli-
cates in the whole dataset.

Further, we took unikeys for all 12 attributes and selected the first five positions, a generally
sound value according to our experience. In total, this yields 12 · 5 = 60 unikeys. We further
created blocking keys consisting of unikey combinations of sizes 3 to 5. This creates (60

3 ) +

(60
4 ) + (60

5 ) = 5,983,367 unikey combinations.
To come up with a comparison threshold θ used for the efficiency measure, we took the tra-

ditional Sorted Neighborhood pair selection algorithm on this dataset with a window size of
100. Such an algorithm performs exactly 9,895,050 comparisons, independent of the sorting key.
Thus, we use this number as θ when evaluating the six million blocking keys. The similarity
measure for the corporate dataset was a perfect lookup in the gold standard, that is, the similarity
measure always achieves a precision of 100 %. Therefore, we do not report on precision, but on
effectiveness, efficiency, and blocking quality as defined in Section 3.3.2. In all the experiments,
we employed the length hints replacement strategy.

We chose two datasets as test datasets, one was another (disjoint) 100,000 sample from the
corporate address dataset (called Corporate-2), the second was a 100,000 sample of a places
dataset, integrated data from Facebook, Gowalla, and Foursquare about places such as shops,
restaurants, etc. throughout the world (called Places).

The experiments were performed on a many-core Linux CentOS (64 bit) machine. The multi-
threaded implementation was written in Java using 30 threads.

All possible unikey combinations are used for blocking keys with the following restrictions.
The training dataset did not have an upper limit of the attribute lengths (see Section 3.3.10) and
we used the first five attribute positions, because they reasonably covered the value lengths in all
attributes.

3.4.2 Blocking Key Quality

During the experiment, all 5,983,367 blocking keys were used for a duplicate detection run on
Corporate-1. Because of being used on the training dataset, all blocking keys were valid. Due
to the brute-force nature of generating the blocking key candidate set, naturally, a reasonable
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fraction of 2,451,529 blocking keys performed too poor to pass the efficiency threshold θ. All
other 3,531,838 blocking keys passed and we call them successful. In this sense, success is
independent from the number of found duplicates, instead it refers only to feasibility according
to θ. The average processing duration for each (successful and unsuccessful) blocking key was
one second leading to a total processing time of 2.5 days in the 30-thread implementation.

Table 5 shows the number of blocking keys for each blocking key size and the ratio of suc-
cessful blocking keys among them, respectively. Short blocking keys have the smallest ratio
of successful blocking keys, because there was fewer opportunity to create diverse partitions,
leading to relatively many comparisons. Moreover, the overall number of short blocking keys is
generally smaller simply due to combinatorial reasons.

Blocking key size 3 4 5 Totals

Successful blocking keys 5075 187,518 3,339,245 3,531,838

Ratio 15 % 38 % 61 % 59 %

Unsuccessful blocking keys 29,145 300,117 2,122,267 2,451,529

Ratio 85 % 62 % 39 % 41 %

Total number of blocking keys 34,220 487,635 54,615,120 5,983,367

Table 5: Overview on blocking key sizes

To get an impression about effectiveness and efficiency of the successful blocking keys for the
training dataset, we display these blocking keys in a scatter plot in Figure 14. The figure shows
each blocking key with its effectiveness (number of found duplicates) and efficiency (number
of required comparisons) as a colored dot, where the color encodes the blocking key size. The
number of comparisons are cut off at θ; the number of found duplicates at 804, the number of
duplicates contained in the sample. To avoid hiding the relatively few blocking keys of size 3,
blocking keys of size 5 (blue) are plotted first, then size 4 (green), and finally size 3 (red).

Several observations can be made. No blocking key could find more than 697 duplicates. Up
to this, nearly each number of duplicates can be found by blocking keys of all sizes. We observed
that also blocking keys of size 3 can be very effective.

Regarding efficiency, for each blocking key size, there is a lower bound for the number of
comparisons. The smaller this lower bound is, the longer is the blocking key. Blocking keys of
size 3 require at least 0.9 million comparisons, blocking keys of size 5 lead to at least 5780 com-
parisons. This gives longer blocking keys a better chance to be efficient due to more (and more
balanced) partitions. However, to find close to 700 duplicates, also blocking keys of size 5 require
partitionings that cause more comparisons. This “asymptotic” behavior is repeated for less effi-
cient blocking keys several times above, visible as “radiant gaps” from about 350 to 600 found
duplicates.

The two gaps around 10 and 78 duplicates are artifacts of the dataset creation process. The
actual process is unknown to us, but looking at the actual data indicates that a clean dataset has
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Figure 14: Performed comparisons against number of found duplicates.

been damaged according to a set of errors. There seem to be classes of errors that damage some
records in a way such that many blocking keys have problems putting them into shared partitions.
Consequently, many blocking keys are unable to find more than 78 duplicates. But if they do,
they overcome these classes of defects and immediately find way more than 78 duplicates. In a
real-world setting, using several different blocking keys would overcome these difficulties, but
the effectiveness measures shown in Figure 14 result from only a single blocking key, each.

Optimal (i. e., effective and efficient) blocking keys can be found on the bottom right of the
scatter plot. To allow a closer inspection of this area, Figure 15 shows all the 824 blocking
keys that found more than 650 duplicates. Since the maximum number of duplicates does not
surpass 700, we limit the scatterplot to 720 duplicates.

The figure shows two clusters of blocking keys around 654 and 670 found duplicates that all
use less than 2 million comparisons and comprise four or five unikeys, each. These blocking keys
are effective and especially efficient. More blocking keys, including also those of size 3, can be
found that use more comparisons. Interestingly, among the most effective blocking keys (more
than 684 found duplicates), no blocking keys of size 5 can be found. The reason is that longer
blocking keys lead to smaller partitions and thus, some duplicates are separated into different
partitions. Though blocking keys of size 3 suffer from requiring more comparisons, some of
those blocking keys still are efficient enough to not be discarded due to the threshold θ. Another
blocking key of length 4 finds just as many duplicates, but uses only around a third comparisons.

Furthermore, the figure shows that more duplicates can be found at the cost of more com-
parisons. The lower bound of comparisons for each blocking key size resembles a parabola, as
described before. Regarding blocking key quality, at some point, finding a couple of additional
duplicates is not worth the increased effort of using many comparisons more.
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Figure 15: Performed comparisons against each number of found duplicates (showing results with only
at least 650 found duplicates (81 % effectiveness)).

Figure 16 shows the corresponding BQ values for the 824 blocking keys from Figure 15. The
best blocking keys start at 90 % BQ. Blocking keys of size 3 start with a significantly lower BQ.
This is reflected by the 500 best-ranked18 blocking keys: No blocking key of size 3 is among
them. (The rank of the first blocking key of size 3 is over 9000!)

Figure 17 shows those 500 blocking keys using the same range of found duplicates as Fig-
ure 14. In particular, the majority of the top 500 blocking keys are of size 5. The most effective
blocking key finds 672 duplicates. Consequently, all of the more effective blocking keys from
Figure 15 are too inefficient to be part of the top 500.

3.4.3 Detailed Experiment Results

Table 6 shows the most successful blocking keys referring to effectiveness, efficiency, and BQ,
respectively. The most effective blocking key found 86.7 % of the duplicates (697), but used
8.7 million comparisons in total (12,521 comparisons for each duplicate, 11.8 % efficiency). In
contrast, the most efficient blocking key performed only 27 comparisons per duplicate (99.9 % ef-
ficiency) revealing only a small fraction of all the duplicates, 214. Finally, the blocking key with
the highest BQ was both, effective and efficient, and found 672 duplicates with 407,000 compar-
isons. The respective maximum values in the table are highlighted.

For comparison, we present the blocking keys and the corresponding results of two groups
of experts. The first group were participants of the venue where this work was presented. They

18 Best is always used in the sense of best blocking key quality.
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Figure 16: Blocking key quality (BQ) for the blocking keys from Figure 15, sorted by BQ.

can be assumed to be experts in data quality and were instructed to define blocking keys of
size 3 to 5 that they expected to be optimal. Only the schema but no instance data was given
to the experts. Their results are presented in Table 7, ordered by BQ. Only one of the blocking
keys caused too many comparisons (more than ten times as many as all other blocking keys
together) and surpassed the threshold θ by 49 %. However, regarding effectiveness, it ranks 2
among the dataset agnostic experts and, interestingly, it resembles the most effective blocking
key (see Table 6) in 3 of 5 unikeys. Unfortunately, the redundancy in the expert’s blocking key
(city and ZIP code) made the blocking key computationally too expensive to use for the dataset.

In general, all other blocking keys have a very high efficiency and differ solely in the number
of found duplicates. In terms of effectiveness, no expert blocking key can compete with the
most effective blocking key shown in Table 6, however, the results are comparable regarding
efficiency. Some experts developed even more effective blocking keys that are nearly as efficient
as the most efficient computer-generated blocking key while they did not know anything about
the actual values nor the gold standard. Furthermore, the experts’ blocking keys do not reach the
blocking quality of the overall best blocking key due to lacks in their effectiveness.

Next to experts at the conference, the dataset was also used in the assignments of a lecture
on data cleansing. The students were to find duplicates in the (full) corporate dataset. They used
different partitioning methods. Most of them used partitioning keys. There were no restrictions
regarding their properties. Often, whole attributes were used, sometimes aggregate functions
such as Soundex [16] or Cologne Phonetic [84] were applied on parts of the blocking keys.
Yet we could distill blocking keys out of their partitioning criteria, occasionally truncating the
original blocking keys. The results of these blocking keys (used on the corporate-1 sample) are
shown in Table 8.
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Figure 17: Performed comparisons against each number of found duplicates (showing only the 500 best-
ranked blocking keys)

Three blocking keys resulted in too many comparisons. We used them anyway to determine
the number of duplicates they would have been able to find. The results differ more than those
of the dataset-agnostic experts. While the effectiveness is generally larger, the efficiency is much
more versatile. The resulting BQ values are comparable. The best blocking key is nearly as good
as the best expert blocking key. Many blocking keys just rely on a single attribute, however, the
outcome can be very good or unfeasibly bad, depending on the attribute. Very diverse blocking
keys that use unikeys belonging to different attributes usually have the poorest outcome among
all evaluated manually-defined blocking keys.

The comparison of the two sets of manually defined blocking keys indicates that designing
good blocking keys requires a lot of experience. Even having been trained in the field and inten-
sively analyzing the data cannot compensate that. However, the blocking keys generated using
the gold standard as training set outperform even the experts. This demonstrates that automatic
blocking is not only cheaper (no experts are required) but also achieves better results and did not
require human knowledge or tuning. Section 3.4.5 shows that the blocking keys determined by
this approach are not overfitted to the dataset. Furthermore, the top 10 blocking keys are shown
in Table 11.

Apart from the actual blocking keys, we take a look at the predominant unikeys. Table 9 shows
a histogram of the unikeys used in the 5329 blocking keys that achieved at least 80 % BQ.

The table shows the most frequently used unikeys in some of the best blocking keys. Sev-
eral observations can be made. The unikey frequencies show a power law distribution where
the more frequent unikeys (up to rank 13) appear to be relatively mixed compared to the later
unikeys which seem to be more regular (unikeys of an attribute occur together and have similar
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Blocking key Effec-
tive-
ness

Found
Dupli-
cates

Effi-
ciency

Comparisons BQ

[zip-0, zip-1, zip-2,

zip-3]

86.7 % 697 11.8 % 8,727,009 20.8 %

[city-0, familyname-0,

familyname-3, givenname-3,

street-3]

26.6 % 214 99.9 % 5781 42.0 %

[familyname-0,

familyname-1, zip-0, zip-1,

zip-2]

83.6 % 672 95.9 % 407,232 89.3 %

Table 6: Selected outstanding blocking keys

frequencies). This regularity is due to the fact that some unikeys are not really important for their
respective blocking keys and they are just incidentally added, for example, postbox or salutation
and perform nearly as well as their counterparts without the respective unikeys. Consequently,
these regular unikeys occur with (nearly) equal frequency.

The unikeys at the top of the list reveal the attributes that are generally good candidates for
(unigram-based) blocking keys, because they reflect the objects’ similarities and prevent too
large partitions, for example, family name, street, ZIP code, and given name. Note that city is not
among them. Preferring ZIP codes over city names makes sense, because the people’s locations
are mapped more uniformly to ZIP codes than to the first five characters in the corresponding
city names and efficiency benefits from the resulting, more balanced partitionings.

Furthermore, the unikeys’ frequencies are not aligned with their positions in the attributes.
Additionally, the first attribute position is only rarely mentioned first in the list. This contradicts
the intuition employed for many of the manually defined blocking keys about which attribute
positions to select.

To answer the question, whether these unikeys can also serve as building blocks for blocking
keys, we ignore the best blocking keys and instead generate three blocking keys. Following our
constraints, we select the first three, four, and five unikeys from the frequency ranking (Table 9).
The generated blocking keys and their ranks in the original list of the best blocking keys are

• [familyname-0, street-1, street-4, zip-1, zip-2] (rank 120),

• [familyname-0, street-1, zip-1, zip-2] (rank 113), and

• [street-1, zip-1, zip-2] (rank 5458).

Table 10 shows those blocking keys. The two longer blocking keys are very efficient and
additionally find three quarters of the duplicates, achieving a very good BQ of 85.6 %. The third
blocking key just contains three unikeys and consequently finds more duplicates at the cost of
efficiency. It achieves only 46.5 % BQ.
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Blocking key Effec-
tive-
ness

Found
Dupli-
cates

Effi-
ciency

Comparisons BQ

[family-0, family-1,

given-0, zip-0, zip-1]

57.7 % 464 99.0 % 100,077 72.9 %

[family-0, family-1,

given-0, zip-2, zip-4]

45.3 % 364 99.5 % 53,271 62.2 %

[given-0, given-1,

housenumber-0,

housenumber-1, zip-0]

37.3 % 300 97.2 % 274,439 53.9 %

[city-0, family-0, given-0,

housenumber-0, street-4]

28.6 % 230 99.8 % 22,860 44.5 %

[city-1, family-0,

family-2, given-2,

street-1]

20.4 % 164 99.5 % 50,423 33.9 %

[city-1, family-2,

given-3, housenumber-4,

salutation-4]

11.3 % 91 94.8 % 513,331 20.2 %

[family-2, given-3, id-2,

zip-1]

4.5 % 36 98.0 % 202,942 8.6 %

[city-0, family-0, given-0,

housenumber-1, id-4]

3.2 % 26 99.8 % 17,686 6.3 %

[city-0, city-1, zip-0,

zip-1, zip-2]

47.3 % 380 n/a 14,770,290 n/a

Table 7: Selected outstanding blocking keys (dataset-agnostic experts)
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Blocking key Effec-
tive-
ness

Found
Dupli-
cates

Effi-
ciency

Comparisons BQ

[street-0, street-1,

street-2, street-3,

street-4]

83.2 % 669 64.4 % 6,377,227 72.6 %

[zip-0, zip-1, zip-2,

zip-3, zip-4]

75.5 % 607 31.9 % 3,159,787 44.9 %

[familyname-0,

familyname-1, familyname-2,

familyname-3, familyname-4]

69.8 % 561 29.9 % 2,961,690 41.9 %

[familyname-0,

familyname-1, zip-0, zip-1]

83.8 % 674 17.1 % 1,690,163 28.4 %

[familyname-0,

familyname-0, familyname-1,

givenname-0, givenname-1]

45.4 % 365 14.0 % 1,381,743 21.4 %

[city-0, city-1,

familyname-0, familyname-1]

41.2 % 331 11.6 % 1,152,112 18.2 %

[street-0, street-1,

street-2, zip-0, zip-1]

79.1 % 636 8.9 % 879,508 16.0 %

[familyname-0,

familyname-1, familyname-2,

zip-0, zip-1]

71.3 % 573 7.7 % 764,612 13.9 %

[familyname-0,

familyname-1, familyname-2,

street-0, street-1]

64.8 % 521 4.5 % 441,604 8.4 %

[familyname-0,

familyname-1, zip-0, zip-1,

zip-2]

83.6 % 672 4.1 % 407,232 7.8 %

[familyname-0,

familyname-1, givenname-0,

givenname-1, zip-0]

42.7 % 343 2.0 % 196,810 3.8 %

[city-0, familyname-0,

givenname-0, street-0,

zip-0]

30.2 % 243 0.2 % 16,410 0.3 %

[phone-0, phone-1, phone-2,

phone-3, phone-4]

85.1 % 684 n/a 4,232,292,612 n/a

[givenname-0, givenname-1,

givenname-2, givenname-3,

givenname-4]

44.9 % 361 n/a 23,354,907 n/a

[city-0, city-1, city-2,

city-3, city-4]

44.5 % 358 n/a 23,437,186 n/a

Table 8: Selected outstanding blocking keys (dataset aware experts)
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Rank Unikey Frequency Rank Unikey Frequency

1 zip-2 2344 18 postbox-2 340

2 zip-1 2164 19 salutation-0 333

3 street-1 2070 20 salutation-1 333

4 familyname-0 1995 21 salutation-2 333

5 street-4 1973 22 salutation-3 333

6 street-0 1972 23 salutation-4 333

7 zip-0 1755 24 housenumber-4 210

8 street-3 1750 25 housenumber-2 205

9 street-2 1465 26 housenumber-3 201

10 housenumber-0 1422 27 familyname-4 64

11 familyname-1 1381 28 familyname-2 6

12 housenumber-1 1044 29 familyname-3 4

13 zip-3 813 30 zip-4 4

14 postbox-1 341 31 phone-1 2

15 postbox-3 341 32 phone-0 1

16 postbox-4 341 33 phone-2 1

17 postbox-0 340 34 phone-3 1

Table 9: A histogram showing the number of occurrences of unikeys present in the 5329 blocking keys
that achieved ≥ 80 % BQ.

Blocking key Effec-
tive-
ness

Found
Dupli-
cates

Effi-
ciency

Comparisons BQ

[familyname-0, street-1,

street-4, zip-1, zip-2]

75.1 % 604 99.3 % 64,962 85.6 %

[familyname-0, street-1,

zip-1, zip-2]

77.7 % 625 95.2 % 474,479 85.6 %

[street-1, zip-1, zip-2] 86.1 % 692 31.9 % 6,742,741 46.5 %

Table 10: Blocking keys generated from top unikeys and applied on the training dataset.
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3.4.4 Attribute Lengths in Unigrams

The traditional replacement strategy creates equal-sized or larger partitions compared to the
length hints replacement strategy, because the character diversity is smaller. Since in practice,
the number of allowed comparisons must be limited, some blocking keys cannot be considered
when using the traditional approach while the length hints replacement strategy still allows those
blocking keys. The best blocking key that causes too many comparisons when using the tradi-
tional approach has a BQ of 62.7 % and finds 74.4 % of the duplicates.

The outstanding blocking keys in Table 6 were evaluated with the length hints replacement
strategy. Under the traditional replacement strategy, these blocking keys are exactly the same
for maximal effectiveness and maximal BQ, respectively. However, when it comes to efficiency,
the length hints replacement strategy clearly outperforms the traditional replacement strategy:
Achieving a comparable efficiency (99.9 %) is possible with the traditional replacement strategy,
but at the expense of an order of magnitude fewer found duplicates. Instead of 214 duplicates
(26.6 % effectiveness), only 23 duplicates (2.9 % effectiveness) are found by the blocking key
[city-0, familyname-3, givenname-0, id-4, street-3], dwarfing BQ down to 5.6 %
compared to 42.0 % of the corresponding most efficient blocking key under the length hints
replacement strategy. This confirms the intuition behind the length hints replacement strategy of
promoting efficiency.

In general, the length hints approach provides 3.5 million successful blocking keys, while
the traditional approach only results in 3.3 million successful blocking keys. This difference
is relatively small which is due to our restrictive unikey constraints of using only the first five
attribute positions. Under these constraints, the character replacement was only rarely necessary.
However, with higher attribute positions employed in the blocking keys, the benefits of the length
hints replacement strategy become more distinguished.

We take advantage of the additional successful blocking keys and use the length hints replace-
ment strategy throughout the evaluation.

3.4.5 Domain Transfer

To evaluate whether blocking keys can be successfully applied on another dataset from the
same domain and the approach is not affected by over-fitting, we used the Corporate-2 dataset.
Since both samples (Corporate-1 and Corporate-2) have been derived from the same dataset,
the schema is the same and thus all blocking keys are valid. To allow a wide range of blocking
keys and for runtime reasons we chose the 300 best blocking keys from the training dataset and
performed duplicate detection runs on them.

The absolute number of found duplicates marginally increased, because there are a few more
duplicates in the second sample. However, all the relative measures (effectiveness, efficiency,
and BQ) remained nearly stable. The average blocking key quality among the top 300 blocking
keys decreased slightly from 85.5 % to 85.2 %, while BQ even improved for nearly a third (that
is 89) blocking keys. Table 11 shows key figures for the first 10 blocking keys.



3.5 conclusion and outlook 51

In another experiment, we applied the 300 blocking keys from before on the Places dataset
(7151 duplicates to be found) which has a different schema (and value distribution), but a similar
domain. Here, only 131 of the 300 blocking keys are valid, however, the first invalid blocking
key had rank 50. The average blocking key quality is 94.3 % due to a generally higher effective-
ness. This means that the duplicate characteristics resemble the blocking keys very well. This
is remarkable, because the places dataset contains English language addresses. Table 12 shows
key figures for the first 10 blocking keys.

Finally, we repeated the unikey selection analysis that led to the results from Table 10 also for
Corporate-2 and Places. Table 13 shows that the results are comparable. With growing blocking
key size, efficiency increases, too, but effectiveness decreases. Again there is a big efficiency gap
between the blocking key that uses only three unikeys and the other blocking keys. Remarkable
is the result of [street-1, zip-1, zip-2] on the Places dataset. This blocking key finds
exactly same number of duplicates as the same blocking key prepended by familyname-0.
This indicates that all duplicates have no (or shared) mistakes in the first character of the family
name and this unikey helps to reduce the number of vain comparisons. This can also be seen as
an encouragement to prefer more long blocking keys over few short blocking keys.

3.5 Conclusion and Outlook

We presented a technique to discover high quality blocking keys on a given training dataset. The
blocking keys were evaluated regarding effectiveness and efficiency; both measures are joined
in the notion of the blocking key quality. The experiments showed that it is possible to find
high quality blocking keys for other datasets from similar domains lacking a gold standard by
selecting them from the results of the training dataset. Length hints provide useful help and even
allow otherwise discarded blocking keys to be considered.

With our proposed automatic duplicate detection technique and the training dataset’s gold
standard, a ranking of good blocking keys can be compiled in beforehand. This list is subse-
quently searched for the best valid blocking key for each training dataset.

As a future research direction, the restrictions for blocking keys could be relaxed. Block-
ing keys could feature other tokenizations, such as n-grams, word boundaries, or aggregation
functions (e. g., SoundEx), they could be extended in length and the attributes could be eval-
uated up to higher positions. Opening the blocking key feature set dramatically increases the
computational complexity in the training phase. Several counter measures could approach those
difficulties: A good heuristics is needed to estimate the number of comparisons upfront without
performing the whole partitioning. Moreover, the attribute positions for the blocking key compo-
nents should depend on the attribute. For gender, 1 might be enough, but dates or names might
benefit from higher positions than the currently used 5. This could be derived directly from the
attribute classification (Chapter 2).

Further measures to handle the large set of blocking key candidates could be aggressive prun-
ing. The corresponding pruning rules can be borrowed from the field of unique column combina-
tion (UCC) detection [55]. UCCs are sets of columns of a relational table whose rows mutually
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differ in at least one attribute value. UCCs are useful for many purposes, for example, finding
unknown or lost unique constraints in databases or – applied on biological databases – detecting
unknown principles between proteins and illness origins [64]. To bypass the evaluation of vast
numbers of possible uniqueness constraints, pruning rules are applied on the candidate column
combinations.

These rules require meta-information, for example, the amount of unique values in each col-
umn. Such meta-information can be created in a one-time effort or is already available from
previous steps (see Section 1.3 and Chapter 2). Note that in our unigram blocking approach, we
target unikey combinations (for blocking keys) instead of column combinations. Still, the prun-
ing rules are similar. In contrast to UCC detection, we are looking for blocking keys that create
“quite” unique partitions, the sweet spot between too large and too small partitions. Therefore,
the applied techniques have to differ from those used for UCC detection.

An example pruning rule could identify blocking keys containing at least one unikey that has
different values for all of the records19. As a result, only single-record partitions would arise.
The blocking key would not be able to find any duplicates and would have zero effectiveness
and hence a BQ of zero. Another pruning rule could identify blocking keys where all employed
unikeys are not unique at all and instead have the same value, respectively. In this case, all
records would end up in the same large partition, most probably deeming the blocking key as
being too inefficient. Blocking keys that trigger one of the rules should not be used to actually
partition the dataset and can be evaluated with zero effectiveness or efficiency, respectively, right
away. Moreover, blocking keys might already be negligible if the pruning rules are only almost
(approximately) satisfied, for example, all unikeys of a blocking key do nearly have the same
values and consequently, most records end up in a common large partition, even if there are some
other smaller partitions, too. These rules can be borrowed from approximate unique column
combination detection [58]. With the time saved by not using near-catastrophic blocking keys,
more sound blocking keys can be evaluated.

Many of the best blocking keys resemble each other and only differ in one or two unikeys.
Multiple passes with different blocking keys might be more effective if the blocking keys are
more diverse. The trade-off between effectiveness (for example, by having a larger diversity)
and efficiency (for example, by saving comparisons due to quite similar blocking keys) should
incorporate this. Instead of returning a ranking of individual blocking keys, the result of the
training phase could then be a ranking of sets of blocking keys that together find many duplicates
efficiently. This means, instead of returning the k top blocking keys, the best set of k blocking
keys could be detected.

The BQ treats effectiveness and efficiency equally. It is possible to put more weight on the
effectiveness to achieve better results, while using more computation power, enabling different
cost models, for example, find as many duplicates as possible using not more than a specified
number of comparisons, as illustrated in the discussion of the abortion criteria in Section 3.3.7.
Furthermore, test datasets usually offer attributes which are currently ignored, but might provide
good unikeys. Finally, overlapping partitioning techniques (windowing) are not yet considered

19 Admittedly, this is an unlikely scenario or the dataset is very small.
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by the blocking key creation technique, but have the potential to give even better results. Using
windowing instead of blocking provides a fixed (and foresee-able) number of comparisons, but
on the downside, requires defining a window size. This can be remedied using a hybrid approach
such as Sorted Blocks [34].



54 blocking key selection based on unigram combinations

C
or

po
ra

te
1

C
or

po
ra

te
2

B
lo

ck
in

g
ke

y
E

ff
ec

-
tiv

en
es

s
Fo

un
d

D
up

li-
ca

te
s

E
ffi

-
ci

en
cy

C
om

pa
-

ri
so

ns
B

Q
E

ff
ec

-
tiv

en
es

s
Fo

un
d

D
up

li-
ca

te
s

E
ffi

-
ci

en
cy

C
om

pa
-

ri
so

ns
B

Q

[
f
a
m
i
l
y
n
a
m
e
-
0
,
f
a
m
i
l
y
n
a
m
e
-
1
,

z
i
p
-
0
,
z
i
p
-
1
,
z
i
p
-
2
]

83
.6

%
67

2
95

.9
%

40
7,

23
2

89
.3

%
83

.2
%

72
9

96
.0

%
40

1,
12

9
89

.1
%

[
s
t
r
e
e
t
-
1
,
s
t
r
e
e
t
-
4
,
z
i
p
-
0
,

z
i
p
-
1
,
z
i
p
-
2
]

83
.3

%
67

0
96

.0
%

39
6,

56
7

89
.2

%
83

.6
%

73
2

96
.0

%
39

6,
33

3
89

.3
%

[
s
t
r
e
e
t
-
0
,
s
t
r
e
e
t
-
1
,
z
i
p
-
0
,

z
i
p
-
1
,
z
i
p
-
2
]

83
.1

%
66

8
95

.4
%

45
5,

23
0

88
.8

%
82

.9
%

72
6

95
.5

%
44

4,
37

3
88

.7
%

[
s
t
r
e
e
t
-
1
,
s
t
r
e
e
t
-
4
,
z
i
p
-
1
,

z
i
p
-
2
]

83
.3

%
67

0
90

.8
%

91
4,

68
2

86
.9

%
82

.2
%

72
0

97
.3

%
26

2,
80

8
89

.1
%

[
f
a
m
i
l
y
n
a
m
e
-
0
,
f
a
m
i
l
y
n
a
m
e
-
1
,

z
i
p
-
1
,
z
i
p
-
2
]

83
.6

%
67

2
89

.1
%

1,
08

2,
54

3
86

.2
%

82
.7

%
72

4
97

.1
%

28
9,

01
0

89
.3

%

[
s
t
r
e
e
t
-
0
,
s
t
r
e
e
t
-
1
,
z
i
p
-
1
,

z
i
p
-
2
]

83
.1

%
66

8
89

.3
%

1,
06

0,
00

6
86

.1
%

82
.2

%
72

0
96

.7
%

32
8,

68
5

88
.8

%

[
s
t
r
e
e
t
-
1
,
s
t
r
e
e
t
-
4
,
z
i
p
-
0
,

z
i
p
-
2
]

83
.3

%
67

0
88

.6
%

1,
12

9,
84

3
85

.9
%

78
.9

%
69

1
97

.1
%

28
4,

00
9

87
.1

%

[
f
a
m
i
l
y
n
a
m
e
-
0
,
f
a
m
i
l
y
n
a
m
e
-
1
,

t
i
t
l
e
-
3
,
z
i
p
-
1
,
z
i
p
-
2
]

82
.2

%
66

1
89

.3
%

1,
06

0,
66

3
85

.6
%

78
.9

%
69

1
97

.1
%

29
0,

54
9

87
.0

%

[
f
a
m
i
l
y
n
a
m
e
-
0
,
f
a
m
i
l
y
n
a
m
e
-
1
,

t
i
t
l
e
-
2
,
z
i
p
-
1
,
z
i
p
-
2
]

82
.2

%
66

1
89

.3
%

1,
06

0,
66

6
85

.6
%

78
.9

%
69

1
97

.1
%

29
1,

24
4

87
.0

%

[
f
a
m
i
l
y
n
a
m
e
-
0
,
f
a
m
i
l
y
n
a
m
e
-
1
,

t
i
t
l
e
-
4
,
z
i
p
-
1
,
z
i
p
-
2
]

82
.2

%
66

1
89

.3
%

1,
06

0,
66

8
85

.6
%

82
.3

%
72

1
95

.6
%

43
1,

86
1

88
.5

%

Table 11: Comparison of the key figures for the first 10 best blocking keys in Corporate-1 (training) ap-
plied on Corporate-2.
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Table 12: Comparison of the key figures for the first 10 best blocking keys in Corporate-1 (training) ap-
plied on Places.
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Blocking key Effec-
tive-
ness

Found
Dupli-
cates

Effi-
ciency

Comparisons BQ

Corporate-2

[familyname-0, street-1,

street-4, zip-1, zip-2]

74.2 % 650 99.3 % 65,662 84.9 %

[familyname-0, street-1,

zip-1, zip-2]

75.0 % 657 95.2 % 474,645 83.9 %

[street-1, zip-1, zip-2] 84.4 % 739 31.7 % 6,761,178 46.1 %

Places

[familyname-0, street-1,

street-4, zip-1, zip-2]

94.0 % 6721 99.3 % 64,361 96.6 %

[familyname-0, street-1,

zip-1, zip-2]

94.8 % 6781 96.2 % 374,248 95.6 %

[street-1, zip-1, zip-2] 94.8 % 6781 38.5 % 6,087,179 54.7 %

Table 13: Blocking keys generated from top unikeys for Corporate-2 and Places.



4
A n A n n e a l i n g S ta n da r d t o E va l uat e D u p l i c at e D e t e c t i o n R e s u lt s

To evaluate the success of a duplicate detection run on a specific dataset, usually pre-classified
results are employed. Such a gold standard contains information about all the duplicate pairs
(or clusters) hidden in the dataset. The individual duplicate decisions by a classifier can then
be judged as correct or incorrect and the default measures (precision, recall, F-measure) can be
computed. Unfortunately, gold standards are often expensive to come by (much manual classi-
fication is necessary), not representative (too small or too synthetic), and proprietary and thus
preclude repetition (company-internal data).

The proposed annealing standard is a structured set of duplicate detection results, some of
which are manually verified and some of which are merely validated by many classifiers. As
more and more classifiers are evaluated against the annealing standard, more and more results are
verified and validation becomes more and more confident. We formally define gold, silver, and
the annealing standard and their maintenance. Experiments show how quickly an annealing stan-
dard converges to a gold standard. Finally, we provide an annealing standard for 750,000 CDs
to the duplicate detection community.

This joint work was developed by Uwe Draisbach, Arvid Heise, Dustin Lange, and Felix
Naumann with the author of this thesis as the main author [109].

4.1 The Lack of Gold Standards for Data Quality

All duplicate detection algorithms have in common that they cannot guarantee finding all dupli-
cates and that declared duplicates might be incorrect. Performance measures are necessary to
evaluate these algorithms. There is a variety of these measures, and they all require a gold stan-
dard to determine the correctness and completeness of duplicate detection results. A generally
accepted dataset and a corresponding gold standard result in a duplicate detection benchmark
that makes the repeatability of experiments and the comparability of different methods possible.
Unfortunately, there is no single large, available, and non-synthetic dataset with a corresponding
gold standard in the duplicate detection community; this makes it difficult both to evaluate and
to compare different results.

To reduce costs associated with creating gold standards, we propose the novel annealing stan-
dard. “Annealing” means that the corresponding standard iteratively gets better and better and
thus “converges” against the not available, yet desirable gold standard.20 The annealing standard
exploits inter-classifier agreement and requires manual work only in cases of doubt. In this chap-
ter, we consider the classification algorithms and manual decision process as black boxes and

20 We use the term “annealing” in the same sense as the well-known “simulated annealing” optimization method,
namely, cooling-down or solidifying.

57
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focus on describing the workflow to generate a standard for a dataset with the results of several
classifiers. It is worth mentioning that all concepts and definitions in the chapter can also be
applied to other classification tasks. Because the duplicate detection problem is the focus of this
thesis and has a strong need for an annealing standard, we concentrate on duplicate detection in
the remainder.

4.1.1 Available Gold Standards

For duplicate detection, there is no single dataset that is used for benchmarking. In [33], Drais-
bach and Naumann describe three datasets that are often used for evaluation and which all have
a gold standard.

The CORA Citation Matching dataset contains 1879 references representing different papers
and is used in several approaches to evaluate duplicate detection [12, 32, 100]. As described by
Draisbach and Naumann [33], the reference ID (the BibTeX key) is not always faultless, but a
manually verified gold standard can be downloaded from the DuDe toolkit website.21

The restaurant dataset comprises only 864 records, which makes it difficult to evaluate par-
titioning algorithms. Additionally, it contains only clusters with a maximum size of 2, and this
makes it not useful for algorithms that, for example, rely on transitivity to reduce the number of
comparisons.

The third dataset comprises 9763 randomly extracted CD records from freedb.22 Each record
comprises information about the disc title, artist, duration, number of tracks, year of publication,
genre, and a track list, containing artist, title, and duration. The gold standard contains 299 du-
plicates which were detected in a manual inspection.

All three datasets have in common that they comprise only a small number of records. The
reason being that a manual inspection of all possible record pairs is very time consuming. An
alternative to the manual inspection is using a dataset generator, such as the UIS Database Gen-
erator23 or the FEBRL Generator.24 Such artificially generated data seems to be an attractive
alternative to the manual inspection of real-world data, as the number of duplicates and the er-
ror types, such as missing values or typographical errors, can be controlled. On the other hand,
generated data needs to reflect issues of real-world data, including the frequency distribution of
attribute values and error types. Only real-world data contain the surprising types of errors that
one cannot foresee but that one hopes to detect anyway. Synthetically inserting errors into data
and then re-discovering them is not sufficiently convincing, therefore, real-world data is gener-
ally preferred. An overview about data generation for deduplication and record linkage is given
by Christen [20].

21 https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-detection.

html
22 http://www.freedb.org/
23 http://www.cs.utexas.edu/users/ml/riddle/data.html
24 http://sourceforge.net/projects/febrl/

https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-detection.html
https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-detection.html
http://www.freedb.org/
http://www.cs.utexas.edu/users/ml/riddle/data.html
http://sourceforge.net/projects/febrl/


4.2 related work 59

4.1.2 An Ever-Improving Standard

The core idea of the annealing standard is to create a standard that comprises all duplicates
and non-duplicates that can be detected with state-of-the-art algorithms. With any of these algo-
rithms, a first baseline is created and with more algorithms, the standard is refined. This refine-
ment is based on a manual inspection of the differences between the current annealing standard
and the newer results. It is not as perfect as a gold standard, but due to the iterative improvement,
it becomes nearly as good as a gold standard after enough iterations. This makes it possible to
create a standard even for large datasets with limited manual effort, because obvious duplicates
or non-duplicates are classified correctly by all state-of-the-art algorithms, and therefore manual
inspection is mainly necessary in the gray and particularly difficult area of possible matches.

The annealing standard aims to reduce the manual work needed from the domain expert sim-
ilarly to active learning in the machine learning community. Here, the two principle approaches
either exploit a confidence score of one classifier [92] or employ the disagreement of a commit-
tee of classifiers [44, 95] to present a small number of pairs with a high uncertainty to a domain
expert and feed the labeled pairs back to the classifiers in several iterations. Since especially
difficult pairs with a high uncertainty are in the training set, the classifiers achieve good per-
formance with comparably few pairs. In contrast, the annealing standard operates on classifier
results. The main goal is to directly improve the standard (not the classifiers) and to eliminate
all uncertainties regarding the results. Consequently, while they both reduce the manual effort
by avoiding manual inspection of trivial pairs, the metric and the goal to find difficult pairs are
different in both approaches.

The next section covers different directions of related work. In Section 4.3, we define gold,
silver, and annealing standard and explain their usefulness for evaluating a classifier. Then, Sec-
tion 4.4 describes the workflow to create an annealing standard, and Section 4.5 evaluates the
annealing standard using a real-world scenario. Finally, Section 4.6 concludes the chapter and
gives an outlook on interesting research directions for the future.

4.2 Related Work

Five areas are related to our proposal of a classification standard: (i) the area of (database) bench-
marking in general, (ii) classification frameworks, which usually comprise multiple algorithms
and datasets and are thus useful to perform benchmarking, (iii) iterative approaches for clas-
sification, (iv) ensemble learning techniques to incorporate results from several classifiers, and
(v) duplicate detection measures, which evaluate the quality of a duplicate detection result.
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4.2.1 Benchmarking

Benchmarks are domain-specific and they should be relevant, portable, scalable, and simple [48].
The Transaction Processing Performance Council25 has published several benchmarks for data-
bases, such as TPC-C and TPC-E, as online transactional processing (OLTP) benchmarks, as
well as TPC-H as an ad-hoc, decision support (OLAP) benchmark. For the XML data model,
there are benchmarks, such as XOO7 [18], XMark [94], and XMach [86]. Benchmarks usually
comprise a dataset or dataset generator, a query workload, and some concrete and objective
comparison measures, such as transactions per second (tps), price/tps, or Watts/tps. Because
these measures do not depend on the semantics of the generated data or the queries, it is fairly
simple to generate appropriate datasets and some corresponding query workload. In addition, the
queries follow a well-defined and widely accepted semantics, so the query results are predefined
and can be verified with ease.

When creating a benchmark for less well-defined tasks, such as duplicate detection or infor-
mation retrieval tasks, query results follow a less well-defined semantics. Even among human
experts, there is usually some disagreement whether some record pair is in fact a duplicate or
whether some website is in fact relevant to a search query [62]. It is far more costly to create an
appropriate dataset, corresponding query results, and expected query results. Each query result
must be carefully crafted, preferably double-checked by further human experts. In the domain
of information retrieval, the TREC conference and its specific tracks and tasks are well accepted
as standard evaluation procedures.26 In the field of schema matching, the Ontology Alignment
Evaluation Initiative fosters ontology matching techniques by providing several datasets and a
framework for automatic evaluation of the matching quality.27 For duplicate detection however,
there is no such well-accepted benchmark or evaluation set. The proposed annealing standard is
a means to fill this gap.

4.2.2 Classification Frameworks

There are various tasks that can be addressed by classification, including spam detection, news
article categorization, and part-of-speech tagging. A popular framework for classification in gen-
eral is Weka [52], which offers implementations of the most relevant classification algorithms.

Since duplicate detection serves as our main target, we discuss frameworks developed specif-
ically for this task in more detail. Köpcke and Rahm have compared different frameworks for
entity matching [63]. In their summary, they criticize the frameworks for using different method-
ologies, measures, and datasets, which makes it difficult to assess the performance of each single
system. Furthermore, they mention that the used datasets were mostly quite small, making it im-
possible to make predictions of the scalability of the approaches. For the future, they see a strong
need for standardized benchmarks for entity matching. This observation agrees with Neiling et

25 http://www.tpc.org/
26 http://trec.nist.gov/
27 http://oaei.ontologymatching.org/

http://www.tpc.org/
http://trec.nist.gov/
http://oaei.ontologymatching.org/
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al. who discuss the properties of an object identification test database and recommend quality
criteria [80]. A duplicate detection benchmark for XML (and potentially relational) data is pro-
posed by Weis et al. [113]. All three papers have in common that they emphasize the necessity
of publicly available datasets that can be used for evaluation and thus make the comparison of
results possible. Hassanzadeh et al. use the Stringer framework to compare different duplicate-
clustering algorithms, and they use generated datasets, because for a thorough evaluation, it is
necessary to have datasets for which the actual truth is known [53]. An annealing standard meets
this requirement even for real-world datasets.

4.2.3 Iterative Classification

There is a variety of techniques and systems that manage changes in classification and disagree-
ment among annotators. These systems share traits of the approach presented here. Supervised
information retrieval and machine learning algorithms rely on a feedback loop [91]. The clas-
sification result in one stage is evaluated and influences classification in further stages. In the
annealing standard, feedback (manual inspection) is also used, but it is not employed to improve
further classification (a classifier is assumed as given and fixed) but to increase the quality of the
annealing standard itself.

Learn++ is an algorithm that allows the introduction of new classes during classification
without the need for catastrophic forgetting of the model built up to this point [83]. In the field
of ontology annotation, the classification of more and more items from a corpus implies/requires
the change of the ontology [37, 99]. Some concepts are left out, others are refined, and new sub
concepts are introduced. The result is a “hardened” ontology.

In terms of minimizing the (costly) manual effort, Forman proposes incremental re-training
after each manual inspection [42]. This procedure is hoped to ensure that only the most promis-
ing elements are classified. However, in our approach, all classification is already done when it
comes to evaluating the results and constructing the annealing standard.

All mentioned contributions have in common that they improve classification efficiency, ef-
fectiveness, and capabilities. This chapter aims to efficiently create a near gold standard that can
be used for benchmarking existing classifiers. Of course, a benchmark and gold standard may
indirectly improve new classifiers by serving as a training set for humans and computers.

4.2.4 Ensemble Learning

In the case of using several classifiers for a static dataset – in contrast to iterative classification –
ensemble techniques combine the classifiers/their models to create a new, improved classifier.

With bootstrap aggregation (bagging), several classification models are trained on different
subsets of the data [17]. These models are then combined to create a model that is not prone
to overfitting on the dataset. Boosting is a supervised technique to run another classifier on the
items misclassified by a former classifier [43]. In contrast, we let several classifiers run on the
entire dataset at the same time; misclassifications are identified afterwards.
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RISE is a rule generalization algorithm that takes a set of rules and subsequently merges them
as long as these merges do not reduce the overall accuracy [31]. To perform these generalization
operations, RISE relies on a training set with correct classification, that is, it is a supervised
approach.

We, however, do not aim for manipulating the classifiers or their models. We treat them as
black boxes and do not make any assumptions on which algorithm was used; the classifiers
might even employ unsupervised methods. In particular, we do not need to know their precision
or recall; boosting is thus not applicable. Instead, we solely operate on the classification result.
Consequently, we do not have any models to merge and we cannot rerun the classifiers on subsets
of the dataset. Finally, our overall goal is not to build or improve classifiers, but to create a
standard to benchmark these classifiers.

4.2.5 Duplicate Detection Evaluation Measures

Christen and Goiser give an overview of quality measures for data linkage [23]. The measures,
for example, precision, recall, and F1-measure (in this thesis just called F-measure), are calcu-
lated based on classified record pairs that are compared with the real-world. Besides the pairwise
comparison approach, there is also the cluster-level approach, which uses the similarity of clus-
ters to evaluate duplicate detection results. Cluster F1 (cF1) is the harmonic mean of cluster
precision cP (ratio of completely correct clusters and the total number of retrieved clusters) and
cluster recall cR (portion of true clusters retrieved) [57]. Another metric is the K measure, which
is the geometric mean between the Average Cluster Purity (that is, purity of the generated clus-
ters with respect to the reference clusters) and the Average Author Purity28 (that is, reflects how
fragmented the generated clusters are in comparison to the reference clusters) [27]. Another mea-
sure, proposed by Menestrina et al. [73], is the Generalized Merge Distance (GMD) that can be
configured with different cost functions for split and merge steps.

All these measures, regardless of whether they are a pairwise comparison or cluster-level
approach, have in common the necessity for a gold standard that defines which records represent
same real-world entities.

4.3 Different Types of Standards

In this section, we give an overview of the different standards to evaluate duplicate detection
results and define the new annealing standard. The standards differ regarding the completeness
and correctness of the duplicates and the required manual effort.

28 In this case, “author” complies with a cluster in the gold standard.
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4.3.1 Gold Standard

In a gold standard, all duplicates are known, and thus, we also know all real-world entities that
are represented by only a single record.

Definition 1 (Duplicates) A duplicate is a pair of distinct records that represent the same real-
world entity. All other pairs of distinct records are non-duplicates.

We assume for all duplicates and non-duplicates 〈r j, rk〉 that j < k. This serves two purposes:
First, we do not want to reward algorithms for finding the tautology 〈r j, r j〉. Second, we do not
want to reward algorithms for finding both 〈r j, rk〉 and 〈rk, r j〉. In addition, this constraint reduces
the size of the gold and silver standards and serves notational simplicity.

Given a set of duplicates, we can calculate the transitive closure to create clusters with records
that represent the same real-world entity.

Definition 2 (Cluster) A cluster c is a set of records r j ∈ R that are pairwise duplicates, that is,
all records in c represent the same real-world entity.

With these definitions, a set of records R can be clustered into a set of disjoint clusters C =

{c1, . . . , cm}. Note that a cluster resulting from an actual classifier does not necessarily contain
all records that represent a particular real-world entity (duplicates might be missing in the set of
duplicates). In particular, several separate clusters could contain records that represent the same
real-world entity, but the algorithm was unable to find the connecting duplicate relations 〈r j, rk〉

(r j ∈ cx , cy 3 rk) between them.
We define gold and silver standards using sets of duplicates and non-duplicates. In general, a

set D contains all (known) duplicates, and a set N contains all (known) non-duplicates. D and
N are always disjoint and together contain all possible pairs of records in R. Usually,N is much
larger thanD.

Definition 3 (Gold Standard) A gold standard G for a set R of records is defined as G =

{DG,NG}, where the set DG contains all duplicates and the set NG contains all non-duplicates.
The setsDG and NG are disjoint, and each pair of records in R appears in one of the sets.

According to this definition, all duplicates are known and correct. Thus, using the transitivity
property of duplicity finds no additional duplicates. As mentioned in Section 4.2, some evalu-
ation measures require a gold standard that consists of record pairs and some require clusters.
Both representations are equivalent: clusters can be used to generate record pairs, and vice versa
record pairs can be used to generate clusters. Thus, it does not matter whether a gold standard is
given as sets of record pairs or as sets of clusters. This definition also agrees with Bilenko and
Mooney [13], who describe a gold standard as a set of equivalence classes, where each equiva-
lence class contains the records of a particular entity and all duplicate records are identified.

Table 14 shows the acronyms and abbreviations used throughout the chapter for reference.
Some terms are introduced later.
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Acronym Meaning

〈r j, rk〉 A pair of records that might be either a declared duplicate or
non-duplicate. We assume j < k.

G A gold standard consists of duplicates DG and non-
duplicates NG and is correct and complete.

S A silver standard is a subset of a gold standard and consists of
duplicatesDS and non-duplicatesNS. Therefore, it is correct
but maybe not complete. In our case, those pairs are manually
inspected.

A An annealing standard consists of undisputed duplicatesDA
and non-duplicates NA and a silver standard S.

D{G|S|A} All duplicates that are in the gold/silver/annealing standard.

N{G|S|A} All non-duplicates that are in the gold/silver/annealing stan-
dard.

TP{G|S|A} True Positive: A declared duplicate that is correctly classified
(according to the gold/silver/annealing standard).

TN {G|S|A} True Negative: A declared non-duplicate that is correctly
classified (according to the gold/silver/annealing standard).

FN {G|S|A} False Negative: A declared non-duplicate that is actually a
duplicate (according to the gold/silver/annealing standard).

FP{G|S|A} False Positive: A declared duplicate that is actually a non-
duplicate (according to the gold/silver/annealing standard).

Table 14: Acronyms and Abbreviations
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For real-world datasets, a gold standard is created by manually inspecting all possible record
pairs. As the complexity for this inspection is quadratic, it is only feasible for smaller datasets.
For synthetic data, the duplicates and the gold standard can be generated, often by polluting
records. However, this approach raises the problem that two polluted records might be so similar
that even domain experts would classify this pair as duplicates although they are not. Thus, the
generated gold standard would not be complete. For the evaluation of algorithms that select
candidate pairs for comparison, Whang et al. use an exhaustive comparison with a classifier
to define a “gold standard” [116]. As there is a high probability that some pairs are classified
incorrectly, such a “gold standard” does not comply with our definition.

evaluation with gold standard Having a gold standard, it is possible to measure key
figures, such as precision (Formula 4) and recall (Formula 5), because we know the duplicates
and all of them are correct, see Section 1.3.

Precision =
TPG

TPG ∪FPG
(4)

Recall =
TPG

TPG ∪FNG
(5)

Figure 18 shows the evaluation as a Venn-diagram.

Gold
duplicates

Classifier
duplicates

Gold standard

All pairs

TNG

FNG TPG FPG

DG = TPG ∪FNG NG = TNG ∪FPG

Figure 18: Evaluation based on a gold standard.

4.3.2 Silver Standard

A silver standard is a subset of a gold standard. Some duplicates are known and correctly clas-
sified, but there might still be additional duplicates that are (yet) unknown. In particular, there
might be smaller or fewer clusters of duplicates in a silver standard. Additionally, a silver stan-
dard may include correctly classified non-duplicates, which is helpful, for example, for machine
learning algorithms that need positive and negative examples.

Definition 4 (Silver Standard) A silver standard S for a set R of records is defined as S =

{DS,NS}, whereDS ⊆ DG and NS ⊆ NG.
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Hence, a silver standard is correct, but usually not complete. All classified pairs (duplicates
and non-duplicates) are in accordance with the gold standard, but for some (most) pairs, a silver
standard does not state anything.

A silver standard can be created by a domain expert who manually labels a subset of the
record pairs as duplicate or non-duplicate. These pairs can be, for example, randomly sampled
or – to find rather hard-to-classify pairs – retrieved by applying any known duplicate detection
algorithm to produce a set of candidate pairs. If metadata about the silver standard size in pro-
portion to the expected number of duplicates is available, it is possible to estimate the overall
recall of a deduplication process.

Figure 19 shows the relationship between the silver and the gold standard. In absence of a
known gold standard, a comparison with a silver standard classifies only a subset of record
pairs, because a silver standard is not necessarily complete. If a declared duplicate is within the
true duplicates or within the true non-duplicates of the silver standard, then it can be classified
as either a true positive (TPS) or as a false positive (FPS). Vice versa, if a declared non-
duplicate is within the true duplicates or within the true non-duplicates of the silver standard, it
can be classified to be either a false negative (FNS) or true negative (TNS). For all declared
duplicates and declared non-duplicates that are not within the silver standard, we cannot make a
statement whether they are classified correctly. Thus, these record pairs should not be considered
to evaluate the duplicate detection results based on this silver standard.

Silver
duplicates

Classifier
duplicates

Gold standard

All pairs

TNG ⊇ TNS

FNS

⊆

F NG

TPS

⊆

TPG

FPS

⊆

F PG

DS = TPS ∪FNS NS = TNS ∪FPS

Silver standard

Figure 19: The silver standard is a subset of the gold standard.

Note that Figure 19 does not state that a silver standard contains false negatives (FNS). In-
stead, some classifier has declared a particular pair as non-duplicate, but it is a duplicate accord-
ing to the silver standard and thus this pair is a false negative.

Other definitions for a silver standard also exist in the literature: the CALBC initiative [89]
provides a large-scale biomedical text corpus for tagged named entities. The authors name the
corpus itself a silver standard, containing annotations from different automatic annotation sys-
tems. The information is added to the silver standard if at least two annotation systems agree on
it, but there is no manual inspection.

Another example is the BioCreative III Gene Normalization task that refers to identifying and
linking gene mentions in free text to standard gene database identifiers [68]. While the gold stan-
dard consists of only 50 manually annotated documents, the so-called silver standard comprises
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507 documents with automatically detected identifiers. Only identifiers with a probability of at
least 50 % were added to the silver standard (no manual inspection). The authors report that the
produced results of the task gain better results when evaluated with the silver standard than with
the gold standard, but that the relative rankings tend to be largely preserved.

evaluation with silver standard To evaluate a classifier based only on a silver standard,
we extrapolate from the silver to the gold standard. We can calculate precision and recall similar
to the gold standard if we assume that the distribution of duplicates and non-duplicates in the sil-
ver standard is similar to that of the gold standard. Since this assumption does not always hold,
we provide a better estimation for differing duplicate distributions in the silver and gold stan-
dards. To estimate precision and recall for the silver standard, we need to estimate the following
parameters.

• Overall Number of Duplicates. We need an estimation of the assumed number of dupli-
cates in the complete dataset as the parameter π ≈ |DG|. This parameter can be used to
calculate the completeness of the silver standard regarding the number of duplicates. An
estimation needs to take into account knowledge about the creation of the silver standard
as well as the overall quality of the dataset. Heise et al. [54] describe a sampling-based
method to determine an approximate number of duplicates in a dataset.

• Correctness of Missing (Non-)Duplicates. Since the silver standard may be an arbitrary
subset of the overall set of pairs, we cannot infer the correctness of the missing pairs
from the silver standard. Thus, we estimate the classifier’s correctness regarding missing
duplicates with the parameter φD and the correctness regarding missing non-duplicates
with the parameter φN . Usually, we expect φN to be much higher than φD, since in general,
non-duplicates are much easier to classify than duplicates. The correctness of the classifier
on the silver standard’s pairs may be a helpful indicator for estimating φD and φN .

With these parameters, we can calculate estimated numbers of correctly or wrongly detected
duplicates as follows:

˜|TPG| = |TPS|+ φD(π − |DS|), (6)
˜|F PG| = |F PS|+ (1 − φN )(|R|2 − π − |NS|), (7)
˜|FNG| = |FNS|+ (1 − φD)(π − |DS|). (8)

We can use these estimations to calculate precision and recall on the complete dataset using
Formulas (4) and (5) in Section 4.3.1.

While the creation of a smaller silver standard requires fewer resources than the gold standard,
the parameter estimations make the application of the silver standard non-trivial. Thus, in the
next section, we describe our novel annealing standard, which is inexpensive to create and can
be applied almost as easily as a gold standard.
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4.3.3 The Annealing Standard

In many cases, neither a silver nor a gold standard are available. What is known are the best
effort results of a duplicate detection experiment. We call this the baseline. It consists of pairs
of records where each pair is declared either as duplicate or as non-duplicate. All pairs that
are not explicitly classified are implicitly non-duplicates. Most likely, precision and recall are
not perfect. Yet the idea of the annealing standard is to establish those results as a baseline
against which other experiments (different algorithm/different similarity-measure) can evaluate
and which other experiments can improve upon.

Definition 5 (Annealing Standard) The annealing standardA for a set R of records is defined
as A = S ∪ {DA,NA}, where S is the silver standard just defined, DA is a set of potential
duplicates, and NA is a set of potential non-duplicates. All four sets (DS, NS, DA, NA) of A
are mutually disjoint.

The set DA of potential duplicates contains all pairs that are classified as duplicates within
a duplicate detection experiment, but have not yet been manually inspected. Vice versa, the set
NA of potential non-duplicates contains all pairs that are classified as non-duplicates within a
duplicate detection experiment. Pairs that underwent a manual inspection are contained either in
DS or NS if the expert labeled them as duplicates or as non-duplicates, respectively. Figure 20
shows the role of the annealing standard as a replacement of the gold standard.
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duplicates
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All pairs

TNA ⊇ TNS
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⊆
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⊆
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DA = (FNA \ FNS) ∪ (TPA \ TPS) NA = (TNA \ TNS) ∪ (FPA \ FPS)

Silver standard

Figure 20: In absence of a gold standard, the annealing standard takes its role.

example Let a dataset R = {a, b, c, d, e, f , g, h} and two classification results with the de-
clared duplicates {〈a, b〉, 〈c, d〉} and {〈a, b〉, 〈e, f 〉}, where manual inspection reveals that 〈c, d〉 is
a duplicate and 〈e, f 〉 is a non-duplicate. The pair 〈a, b〉 is undisputed among the two classifiers
and thus located in DA. 〈c, d〉 is member of DS and 〈e, f 〉 is contained in NS. See Section 4.4
for an extended explanation of this example, including the devised workflow.

Note that DA is transitively closed, because it is directly derived from the undisputed deci-
sions within the (transitively closed) classification results.DS is not transitively closed, because
it contains only genuinely manually inspected pairs. With respect to the files we provide (see
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Section 4.5.4) we leave it to the user to create transitive closures and to tag inferred edges. All
inferred edges have then neither been manually inspected nor did all classifiers agree on them
being duplicates.

evaluation with annealing standard To calculate precision and recall with the anneal-
ing standard, we assume that the sets DA and NA contain correctly classified duplicates and
non-duplicates, respectively. Thus, we can use the Formulas (4) and (5) in Section 4.3.1 using
the following estimations, which estimate not only the size of the three estimates, but also their
prospective contents.

T̃PG = TPS ∪TPA (9)

F̃ PG = FPS ∪FPA (10)

F̃ NG = FNS ∪FNA (11)

data model An annealing standard is incrementally improved in the course of time. With
each new classification result, an updated version of the annealing standard is created. The dif-
ferences between the previous annealing standard and the results must be inspected manually.
Thus, each version is an improvement of the previous one until all possible pairs are inspected
manually. In this case, the annealing standard has been converted into a gold standard. To make
differences between different annealing standards traceable, all pairs in the annealing standard
are tagged with a version label, indicating the annealing standard version of the last change for
this pair.

Tables 15a and 15b describe the data model of the annealing standard. Table 15a shows the
classified record pairs with {id1, id2} as primary key. Additionally, we need a constraint id1
< id2 to ensure that a record pair is not inserted twice with swapped IDs. All record pairs are
classified as duplicate or non-duplicate, and the attribute version contains information when a
record pair was inserted or its duplicity information was updated the last time.

In the beginning, we have a probably high number of non-duplicates that have not yet been
inspected, and thus to save storage space, we do not save the pairs NA explicitly. All record
pairs with version = 1 are duplicates of the baseline classifier. In the following iterations, the
annealing standard is refined (see Section 4.4). In each iteration, the differences between the cur-
rent classification result and the baseline (all inserted records and updated records) are manually
checked. Thus, all records with version ≥ 2 are the silver standard, with duplicate = true forDS
and duplicate = false for NS. As mentioned before, the potential duplicates DA are all records
with version = 1 ∧ duplicate = true, and the potential non-duplicates NA are all not included
record pairs.

Next to the table with the record pairs, there is optionally also a table with metadata (see Ta-
ble 15b). This table contains the change history of an annealing standard, with the creation date
and the responsible person for each version. Furthermore, it contains the number of explicitly
added record pairs, the number of manually inspected record pairs, and the number of changed
record pairs (only for changes in a pair’s duplicity, not in its version). This metadata helps to
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ID1 ID2 Duplicate Version

1 2 True 1

7 10 False 2

. . . . . . . . . . . .

(a) Classified Record Pairs

Version Date Author #Added pairs #Inspected pairs #Changed pairs

1 2013-05-30 John 100 0 0

2 2014-05-10 Peter 30 50 15

. . . . . . . . . . . . . . . . . .

(b) Data Model Metadata

Table 15: Data and meta model for an annealing standard

explain differences between duplicate detection experiments conducted with different versions
of the same annealing standard. In the example (Table 15b), version 2 could have been created
by merging in a 60-pair classification result (already transitively closed), where 10 pairs confirm
the current annealing standard. The remaining 50 pairs create conflicts (are inspected), from
which 30 pairs are new (added) and 20 pairs are already known, but with the opposite duplicity
statement. From these 20 pairs, 15 pairs were correct in the classification result (according to
the manual inspection and in contradiction to the previous annealing standard) and hence, their
duplicity was changed.

4.4 Workflow for the Annealing Standard

Figure 21 shows the proposed workflow for the creation and maintenance of the annealing stan-
dard. Given a dataset, preferably from a real-world setting, a baseline classifier Cl0 creates an ini-
tial set of duplicate pairs. Of course, this result set may harbor false positives and false negatives;
nevertheless, after copying its transitive closure it constitutes the initial annealing standardA0.
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Figure 21: Workflow to create silver and annealing standards.
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Following the idea of annealing, results from additional classifiers are added either sequen-
tially or in batches to improve the current standard. Each new classifier Cli, which can be a
different configuration of a previous classifier or an entirely new classifier, produces a new set
of result pairs (see lower path of Figure 21). The transitive closure is created for these pairs, too.

4.4.1 Incorporating New Results into the Annealing Standard

For now we focus on sequential addition of classification results and discuss batches in Sec-
tion 4.4.3. The pair 〈r j, rk〉 declared as duplicate by Cli can be distinguished into four types
with respect to their membership in different parts of the annealing standard Ai−1. Definition 5
defines an annealing standard asA = {DS,NS,DA,NA}.

1. 〈r j, rk〉 ∈ DS. These pairs are certain true positives; their duplicity has been manually
confirmed in the past.

2. 〈r j, rk〉 ∈ DA. These pairs are probable true positives; they serve as further confirmation
that they in fact are duplicates, but a manual check has not been performed.

3. 〈r j, rk〉 ∈ NS. These pairs are certain false positives; they are clear errors, because their
non-duplicate status has been manually confirmed in the past.

4. 〈r j, rk〉 ∈ NA. These pairs are probably false positives; no previous classifier has yet
declared this pair to be a duplicate.

The same distinction can be made for pairs that were not declared to be duplicates by Cli, that
is, were declared non-duplicates.

5. 〈r j, rk〉 ∈ DS. These pairs are certain false negatives; they are clear errors and should have
been declared as duplicates by classifier Cli.

6. 〈r j, rk〉 ∈ DA. These pairs are probable false negatives; all previous classifiers have de-
clared this pair to be a duplicate.

7. 〈r j, rk〉 ∈ NS. These pairs are certain true negatives; their non-duplicity has been manually
confirmed in the past.

8. 〈r j, rk〉 ∈ NA. These pairs are probable true negatives; they serve as further confirmation
that they in fact are not duplicates, but a manual check has not been performed.

Pairs of types 1, 2, 7, and 8 can be ignored for now. Either they have been manually verified as
being correct (1 and 7) or as more and more classifiers are tested against the annealing standard,
the certainty of their correctness increases (2 and 8). All other pairs (3, 4, 5, 6) represent a
conflict between the annealing standard so far and the last classifier. Pairs of type 3 and 5 are
certain classifications that reside in the silver standard. They can also be ignored for now – they
constitute certain errors of the classifier. Finally, pairs of types 4 and 6 constitute supposed
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errors, labeled as delta pairs in Figure 21, and shall be manually inspected. These are the pairs
that contradict previous automated classifications and that have not yet been manually checked.
The expectation is that for a good current annealing standard and a good classifier the amount of
work for manual inspection is reasonable.

Any pair from DA or NA that is manually inspected and classified as duplicate or non-
duplicate is “promoted” to the silver standard, that is, either to DS or NS depending on the
expert decision. The result of this process is a new annealing standard Ai, which typically con-
tains a slightly expanded silver standard. The result of Cli is finally evaluated againstAi in terms
of precision, recall, and other measures.

As more and more experiments are performed, the set of manually inspected pairs grows.
It is the nature of this workflow that precisely the difficult-to-classify pairs are those that at
some point undergo a manual inspection. Those pairs that are never manually inspected but
survive their initial classification, whether as duplicates or as non-duplicates, even after many
experiments can be considered stable. In the worst case, all pairs are manually inspected at some
point.

continued example We can now discuss a potential workflow that leads to the creation of
the exemplary annealing standard of Section 4.3.3. Let a dataset R = {a, b, c, d, e, f , g, h}. In
total, there are |R|·(|R|−1)

2 = 28 pairs, each of them ending up in one of the four sets (DS, NS,
DA, or NA) at the end of the workflow.

A first classifier declares 〈a, b〉 and 〈c, d〉 as duplicates. This is the baseline, and since there
cannot be any disputes at this point, both pairs are inserted into DA. All the other 26 possi-
ble pairs, for example, 〈e, f 〉, are (implicitly) declared non-duplicates and reside in the non-
duplicates of the annealing standard NA until further review is performed.

Subsequently, another classifier declares 〈a, b〉 and 〈e, f 〉 as duplicates. While 〈a, b〉 is con-
firmed (regarding the current annealing standard) and remains in DA, 〈c, d〉 and 〈e, f 〉 are not
supported by all (two) classifiers and undergo a manual inspection. In this example, manual
inspection of both pairs reveals that 〈c, d〉 is actually a duplicate and 〈e, f 〉 is actually a non-
duplicate. Thus, 〈c, d〉 is “promoted” from DA to DS, because its duplicity has just been con-
firmed. In contrast, 〈e, f 〉 is moved to NS.

Finally, DA, DS, and NS contain one pair each, whereas all the other 25 pairs are in NA. In
total, only two manual inspections were performed instead of 28.

4.4.2 Convergence and Manual Inspections

With each new experiment, the annealing standard converges to a gold standard, in the meantime
providing an ever-growing silver standard. Solely pairs that are so difficult to classify that no
classifier has yet performed correctly remain as errors in the annealing standard. Please note
that each classifier result must be transitively closed before further processing (as previously
described).



4.4 workflow for the annealing standard 73

The manual inspection of duplicates is a key step to creating the annealing standard, in partic-
ular because we assume manual classifications to always be correct. Thus, only experts should
perform this classification or at least clear instructions should help the users in their classifica-
tion. In general, manual classification is performed only for the cases with differing classifier
results (to reduce manual effort).

In some cases, manual decisions may differ depending on the interviewed expert. For example,
a news article on economic crisis may be considered as politics article or as business article; two
records from a person table with differing family names can be regarded as duplicate or non-
duplicate – both with good reasons. To resolve these problems, two- or more-fold validation can
be employed. There are elaborate approaches to determine the needed number of classifiers and
how to combine manual decisions [96]. In this chapter, we consider the manual decision process
as black box, that is, it is irrelevant how many manual classifiers have been employed and how
the decision process works. We consider only the decision at the end of this process and store it
in the silver standard part of the annealing standard (see also Figure 20 and Table 15a). Similarly,
we treat both the first classifier as well as the consecutive classifiers as black boxes and process
only their results.

4.4.3 Saving Manual Work with Quorums and Batches

The basic workflow can be extended by adding pairs meeting a given duplicate quorum and
non-duplicate quorum directly to the annealing standard to defer and possibly save some man-
ual inspections. Each automatically declared duplicate is further annotated by the number of
classifiers that agree on the declaration. If the duplicate quorum is met, the pair is considered a
duplicate, even if not all classifiers agree. Analogously, if a pair is not labeled as duplicate by
enough classifiers to meet the non-duplicate quorum, the pair is considered as non-duplicate.

The quorum can be absolute or relative and is trivially met for non-conflicting pairs. Obvi-
ously, a pair that meets a quorum at any given time, may later still require manual inspection.
For example, consider a duplicate quorum of 80 %, where it is sufficient that four out of five clas-
sifiers label a pair as duplicate. During the integration of the first four classifiers, this quorum
can be met only trivially if all classifiers agree. When integrating the fifth classifier, no manual
assessments for duplicate candidates are necessary, because either a pair has already been man-
ually assessed before or all four previous classifier agreed. Thus, independent of whether the
fifth classifier has declared the pair as a duplicate or not, it is still considered a duplicate without
further manual inspection. Nevertheless, the addition of a sixth classifier might further decrease
the support of the declared duplicate, so that only four out of six classifiers agree and thus trigger
a manual inspection.

Up to this point, we considered only the sequential addition of new classification results. How-
ever, when multiple new classification results are to be integrated at once, new opportunities to
reduce the manual effort arise. In a batch, the results of the classifiers and the current annealing
standard are first merged to count each declared duplicate and then the quorums are applied. In
contrast to the sequential addition, we can defer manual inspections from pairs of all new clas-



74 an annealing standard to evaluate duplicate detection results

sification results likewise and not only from the last classification result. For instance, if we use
a non-duplicate quorum of 80 % and integrate the first five classification results in a batch, we
do not need to manually assess any pair that was found by only one classifier. As can be seen in
the evaluation in Section 4.5.3 especially, the non-duplicate quorum helps greatly to reduce the
number of manual inspections.

4.5 Implementation and Evaluation

In this section, we evaluate our method with respect to two important questions: (1) How well do
evaluation results against the annealing standard converge to results against the gold standard,
that is, is an annealing standard a suitable substitute for a gold standard? (2) How expensive
is it to create a good annealing standard, that is, how many manual classifications are needed?
Section 4.5.1 describes the overall experimental setup, the used dataset, and explains how our
annealing standard was created. The experimental results to answer the two questions are shown
and interpreted in Section 4.5.2. Section 4.5.3 reveals the potential to save manual inspections
when using quorums and finally Section 4.5.4 describes the creation of an annealing standard
for a real-world dataset.

4.5.1 Data and Settings

To evaluate the idea of growing an annealing standard and creating a silver standard as a by-
product, we use the Corporate dataset. It contains about 1 million address records with 12 at-
tributes. The data was artificially polluted with duplicates by a large industry partner who uses
this dataset as internal duplicate detection benchmark. This gives us reason to believe that the
degree and form of those duplicates is realistic. The dataset contains about 90,000 pairwise du-
plicates.

The gold standard is known, so our “manual inspection” was in fact a look-up in the gold
standard. To demonstrate the applicability of an annealing standard in a real-world setting, we
additionally use the freedb dataset described in Section 4.1.1.

Over the past few years, this dataset was used several times for a three-day data cleansing and
duplicate detection workshop with different student teams. The task of the student teams was to
competitively find duplicates within the dataset. Using the gold standard, precision, recall, and F-
measure were calculated and compared among the different teams. We ran this workshop several
times, yielding 35 classification results in total. The results are very precision-oriented in general
with an average precision of 83 % and an average recall of only 40 %. The resulting average
F-measure is 52 % and the best F-measure is 76 % (see Figure 22 for the distribution). Thus,
the quality of the classifiers are below typical classification results in the duplicate detection
area. Nevertheless, we believe they are sufficient to evaluate the feasibility and usefulness of the
annealing standard.

We use these 35 independently created results as our classifiers. Since in real-life the order of
the duplicate detection runs is unpredictable with regard to the monotonicity of the F-measure,
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Figure 22: Histogram of the quantized F-measures of the 35 different duplicate detection classifiers (trun-
cated to one decimal place).

we used randomizations to order the 35 classifiers. Note that the order of the classification results
does not influence the number of conflicts, but just the behavior of the F-measure. To bypass the
effects of accidentally selecting a poor order, we took 1000 distinct random permutations of the
35 classifiers and present the average in the following figures and descriptions. The following
paragraphs distinguish individual classifiers – in reality these are the averages over the 1000 per-
mutations. Referring to Figure 21, we consider the first classification result as the baseline and
the 34 following as additional classification results.

There are several different metrics for evaluating such a process for creating an annealing
standard. The precision and recall of the annealing standard compared to the gold standard
describe whether and how the annealing standard evolves towards the gold standard over time.
The number of manually inspected pairs determines the amount of manual effort, directly derived
from the size of the delta between the current result and the annealing standard so far (that is,
how many pairs must be manually inspected). We also show the silver and annealing standards
with regard to their respective number of duplicates and non-duplicates.

4.5.2 Evaluation Results

convergence of precision and recall Figure 23 shows that both precision and recall of
the annealing standard converge. In the second iteration, precision already achieves a value of
nearly 1.0: all classified duplicates are true duplicates with regard to the gold standard. After
the first iteration, the annealing standard’s precision is necessarily the precision of the baseline
classification result. The figure further shows that any combination of two classification results
is enough to make the annealing standard’s precision nearly perfect. Recall does not grow as
fast as precision, surpassing 0.9 in iteration 17. Up to the last iteration, the 4 % hard-to-detect
duplicates still remain unrevealed.

This convergence comes with the price of a relatively high number of pairs that have to be
manually inspected as described later. In scenarios where only precision needs to be evaluated
and where the annealing standard is created with precision-oriented classifiers, a few iterations
suffice.
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The recall continuously grows much slower and does not reach a level of 1.0 within the 35 it-
erations. This is because the particular classifiers were all quite conservative and found (over all
classification results) only 86,000 of the 90,000 duplicates in the gold standard. Obviously, the
missing 4000 duplicates are especially hard to find – not a single classifier succeeded.
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Figure 23: Precision and recall in the annealing standard.

Figure 24 shows the absolute number of pairs contained in the annealing standard classified as
true/false positives as well as true/false negatives with regard to the gold standard. The baseline
(the first iteration) is successively improved towards the gold standard with more and more
manually verified pairs and a decreasing delta. The last bar in the figure shows the convergence’s
target: the gold standard.
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Figure 24: Absolute numbers of pairs in the annealing standard with regard to the gold standard. The last
bar shows the gold standard.

Furthermore, the growth of the recall in Figure 23 corresponds to the growth of the number
of true positives and the reduction of the false negatives in Figure 24. Precision in Figure 23
reaches 1.0, as soon as all false positives (red) are removed after the second iteration.

number of manually inspected pairs Figure 25 shows the delta size for the iterations,
representing the number of manually inspected pairs per iteration in linear and in logarithmic
scale, separated in pairs that would be manually classified as duplicates and non-duplicates.
In the first iterations, the classifiers find different duplicates, causing a large number of man-
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ual inspections. After a few iterations, no new duplicates are declared, but the amount of non-
duplicates remains large, compared to the number of duplicates. Every classifier generates a
delta of at least 4500 new pairs that have never been manually inspected before. The ratio of
non-duplicates to duplicates is strongly skewed towards the non-duplicates over time.

The absolute number of necessary manual inspections is quite high for this experiment: The
first two classifiers disagree on about 45,000 pairs (on average); over the course of the experi-
ment altogether 283,000 manual inspections were needed. Please note that the set of classifiers
are the result of a three-day workshop with students – not those of experienced research or in-
dustry teams. Moreover, the number is dwarfed by the overall number of candidate pairs, which
is n·(n−1)

2 ≈ 5.4 · 1011.
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(b) Delta size in logarithmic scale.

Figure 25: Delta sizes in linear/logarithmic scale.

We reran the evaluation process with the ten best classification results in terms of precision.
The number of manual inspections significantly decreases up to 50 % for classification results
with a high precision. Nevertheless, the second iteration still required 30,000 inspections on
average, because the classifiers with a high precision are mostly quite conservative with a small
recall and found very different pairs. However, the number of non-duplicates that need to be
inspected in each iteration is 3 to 4 times lower compared to the evaluation with all classifiers.

The silver standard is an accumulation of the manually inspected pairs (i. e., the delta) and
thus, grows monotonically (Figure 26). It continuously grows while the number of found true
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duplicates does not change much (Figure 25). Thus, after a while mostly non-duplicates are
inserted into the silver standard and one could stop the iterations earlier and save manual inspec-
tions.
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Figure 26: Size of the silver standard over the iterations.

Figure 27 shows the size of the conflicts (the difference between the current classifier and the
annealing standard so far) against the size of the deltas. The size of the classification results is
also included for comparison. The set of pairs in the delta is a subset of the set of pairs in the
conflict. Due to the random order and their independence, the classification result size fluctuates
and no trend can be observed.

The number of conflicting pairs slowly increases, because the silver standard incorporates
more and more hard-to-classify pairs over time. These pairs are misclassified by most of the
classifiers and can be detected only as soon as one classifier decides correctly and the manual
inspection confirms the new classification. This manually confirmed classification improves the
quality of the silver standard: from now on, this common misclassification is detected and thus,
the conflict size of the following classifiers is increased.

Since the silver standard is empty in the beginning, the conflict size equals the delta size in the
second iteration. Beginning with the third iteration, only misclassifications of the new classifier
and misclassifications that all previous classifiers have done, are in the set of conflicts.

The delta is smaller, since it does not comprise those pairs (type 3 and 5) that contradict with
the silver standard but only those that contradict the baseline prediction (type 4 and 6) and must
be classified manually, subsequently.

Figure 28 shows the changes of the sizes of the three sets DS, NS, and DA. The size of DS
and NS after the first iteration is zero, because at this point no pairs can have been manually
checked.

The number of duplicates in the annealing standard (DA) starts with the number of duplicates
declared by the baseline classifier. Consecutively, some of these decisions are revoked by further
classifiers and thus, pairs move into the silver standard (DS or NS). Only a few pairs in DA
survive all iterations and are never questioned. These duplicates seem to be found very easily.
Note that no statement is made about whether those pairs actually are duplicates.

The non-duplicates in the annealing standard (NA) initially start with about 540 billion, but
some pairs are actually duplicates or different classifiers disagree upon their correct classification.
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Figure 27: Number of pairs in the classification result vs. conflict vs. delta.
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Figure 28: Number of duplicates and non-duplicates for silver standard and number of duplicates for
annealing standard.

They are consequently removed from NA and fed into DS or NS. Nevertheless, the size of NA
remains almost constant in respect to its size and would be out of range of Figure 28 and is
therefore omitted.

As a substantial portion of duplicates according to the gold standard are found,DS converges
against the total number of duplicates. NS also steadily increases but achieves a larger mo-
mentum than DS in the end as the deltas of the classification results contain more and more
non-duplicates (Figure 25).

As a conclusion, an annealing standard can be created, but the manual effort is still large,
because even a single poor classifier can boost the amount of manual work. In the following, we
alleviated such effects with quorums.

4.5.3 Quorums and Batch Updates

In an additional experiment, we first examined how many classifiers declared the same duplicates
and how many of these duplicates are indeed true positives. Second, we evaluated how duplicate
and non-duplicate quorums (see Section 4.4.3) impact the amount of manual work needed.

Figure 29 shows that most declared duplicates have very little support: 57 % of the overall
283,000 declared duplicates have been found by only one classifier. Similarly, most of the re-
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maining declared duplicates were found by two and three classifiers. Additionally, there are only
≈5000 real duplicates among these seldom found declared duplicates; most of them were false
positives.
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Figure 29: Number of duplicate declarations for the same pair and classification correctness.

Consequently, with a non-duplicate quorum, we can greatly reduce the number of compar-
isons. A quorum of 35 represents the baseline and results in 283,000 comparisons. By reducing
the quorum to 34, we already save 166,000 comparisons (57 %). A quorum of 33 yields in a total
of 90,000 and a quorum of 32 in 78,000 comparisons. The majority of these comparisons are
false positives; however, we also lose roughly 5000 true positives for each step that we decrease
the quorum.

We thus measured the impact of absolute non-duplicate quorums on the overall quality of
the annealing standard in Figure 30. Obviously, the recall monotonously drops if we increase
the non-duplicate quorum, because fewer pairs are even considered to be duplicates altogether.
However, at the same time, fewer false positives need to be manually assessed and corrected.
Thus, depending on the domain, recall and precision need to be traded, which we did with the
well-established F-measure.

A non-duplicate quorum of 35 represents the baseline: the declaration of one classifier is
already enough for a pair to be a potential duplicate causing manual assessment. However, only
33 % of the declared duplicates are true positives with a recall of 96 %. A non-duplicate quorum
of 34 would ignore all declared duplicates with a support of one and significantly improve the
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precision to 71 % and yield a recall of 90 %. Using F-measure, the sweet spot for this dataset
and the given classifiers is a non-duplicate quorum of 2 (precision 85 %, recall 84 %).

Similarly, a duplicate quorum could help save some manual work. All 18,072 pairs that were
labeled by at least 26 classifiers as duplicates have indeed been true positives. Even if only 17 of
the 35 classifiers agreed, only 30 of the 41,487 declared positives were false, yielding a high
precision of 99.93 %.

Finally, this mechanism could also be employed to tell poor classifiers apart: For each pair
that bypasses the manual inspection due to only few disagreeing classifiers, we can note the
classifiers that disagree and eventually identify poor-performing classifiers.

4.5.4 Real-World Annealing Standard

We ran the annealing standard workflow in a real-world setting using a larger sample of CD
information from the freedb project (see Section 4.1.1): 750,000 CD entries comprising infor-
mation about artist, title, genre, release year, track lists, etc. Four of the authors of [109] each
developed a classifier to identify duplicates.

Together, the classifiers found about 134,000 duplicate clusters with 366,000 nodes. Next to
the manual inspections to decide on disputed edges, we additionally manually falsified the clus-
ters that contained “unknown artist” or “unknown title” CDs. In total, we performed 1648 man-
ual inspections. We present a consistent, reasonably-sized set of files: an annealing standard
(containing all agreed pairs), a silver standard (containing all manually inspected pairs), the
dataset, and the four classifications.

4.6 Conclusion and Outlook

With the proposed annealing standard, we provide an approach for creating a valuable, high
quality standard for even large datasets that can be used as a classification benchmark. We have
discussed and experimentally evaluated this approach for the duplicate detection domain.

With each new evaluated classifier, an updated version of the annealing standard is created.
Thus, it is not possible to compare results like precision, recall, and F-measure with classifiers
that used a previous version of the annealing standard. To use an annealing standard as a bench-
mark dataset, it must be frozen at some point in time. As we could see from the experimen-
tal evaluation, the annealing standard is highly developed after a certain number of iterations.
Freezing an annealing standard does not mean that there is no more manual inspection neces-
sary. While the frozen annealing standard can be used as benchmarking dataset, the annealing
standard can be further improved to obtain a better benchmarking dataset at a later point in time.

A critical step in the creation of an annealing standard is the (black box) manual inspection,
which faces two challenges.

quality of manual inspection Although manual inspection should be conducted by a
domain expert, there is still the chance of an incorrectly inspected pair. As the inspected pairs are
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part of the silver standard and thus no longer part of the delta, they will not be checked again and
might indicate incorrect results for future classifiers. This is not only a problem of the annealing
or silver standard, but concerns also existing gold standards. A solution might be the requirement
that within each iteration the delta must be inspected by more than one domain expert. This
helps to increase the confidence in the inspected pairs. A second solution is to resubmit pairs
for manual inspection if after a manual inspection several classifiers return a contrary result. A
straight-forward implementation would treat human inspections as an additional classifier with
higher weight and form a feedback loop that resubmits pairs if they do not meet the duplicate
and non-duplicate quorums.

workload for manual inspection Especially for the first iterations, a relatively high num-
ber of manual inspections is necessary. For this task crowdsourcing services, such as Amazon
Mechanical Turk29, are an alternative for reducing the required time [81, 114]. This has already
been evaluated for annotation tasks, but raises again the question of how trustworthy the results
are [101]. A high workload is expected if the results of a poor quality classifier are evaluated with
the annealing standard. To allow only useful classifiers to contribute to the annealing standard,
there could be a restriction that only classifiers with a score > 95 % F-measure with the silver
standard (or some other a-priori knowledge of their quality) are accepted to avoid unworthy man-
ual inspections. Finally, a more sophisticated approach beyond our current quorum-technique
(possibly weighted by dynamically determined classifier quality) could further reduce the num-
ber of manual inspections. The next chapter investigates on how to alleviate the considerable
number of manual inspections by finding a good sequence of manual inspections to hand over
to a crowdsourcing platform.

An interesting direction of future research would be to merge the annealing standard with ac-
tive learning methods. Both approaches aim to reduce manual effort. A unified approach would
require manual classification decisions for both objects that were classified with low confidence
(active learning) and objects that were classified differently by at least two classifiers (annealing
standard). We expect the labeled data to be of higher quality for both training and evaluating
classifiers. Note that while the annealing standard is a black box approach regarding the classi-
fiers, active learning (and thus a unified approach, too) depends on internals of the classifiers to
determine which objects to label next.

For the future, we also plan to evaluate our approach with more real-world datasets and for
other classification domains, such as classifying spam emails. Another research topic is the de-
termination of parameters φD and φN as described in Section 4.3.2, to estimate the correctness
of missing duplicates and missing non-duplicates within the silver standard. To reduce the work-
load for the manual inspection for classifier developer, we are planning to evaluate crowdsourc-
ing possibilities and configurations. Finally, we would like to provide an annealing standard sys-
tem that allows the administration of different annealing standard versions for different datasets
or corpora.

29 http://www.mturk.com

http://www.mturk.com


5
S u p e rv i s e d C o n s e n s u s C l u s t e r i n g : R e d u c i n g H um a n E f f o rt

Machine-based clustering yields fuzzy results. For example, when detecting duplicates in a
dataset, different algorithms might end up with different clusterings. Eventually, a decision needs
to be made, defining which records are in the same cluster, and thus, are duplicates. Such a
definitive result is called a Consensus Clustering and can be created by evaluating the clustering
attempts against each other and resolving only the disagreements by human experts.

Yet, there can be different consensus clusterings, depending on the choice of disagreements
presented to the human expert and each different consensus cluster may require a different num-
ber of manual inspections. We present a set of strategies to find the smallest set of manual
inspections to arrive at a consensus clustering and evaluate their efficiency on a set of real-world
and synthetic datasets. This work has been published as [108].

5.1 Handling Contradictory Clusterings

Clustering a dataset into partitions is a fundamental problem in computer science. It has appli-
cations in diverse areas, such as network analysis, business intelligence, or duplicate detection.
There is also a plethora of different clustering algorithms that can be tweaked and tuned in differ-
ent ways. Consequently, different clusterings may arise for the same dataset, created by different
parties.

For example, a company might want to launch an advertisement campaign and needs to sep-
arate their customers into groups of different revenue. The different enterprise divisions (sales,
marketing, claims, research) have different ideas of how to cluster the set of customers. They
do not necessarily need to apply computer-based clustering techniques and may use personal
experience, instead. Another example could be an information retrieval challenge run by student
teams, which competitively try to cluster a given dataset using their preferred algorithms. For
further processing, the different clustering results must be aligned in a way that further decisions
(which advertisement campaign to run/whether or not the students’ joint clustering quality was
better than last year’s) can be made. Such an alignment of multiple clustering results is called
consensus clustering [75].

A third example is the area of duplicate detection, and is the driver of our research: With a vast
number of possible algorithms to efficiently and effectively detect multiple, different represen-
tations of same real-world entities, it is easily possible to execute multiple duplicate detection
runs, each with different similarity measures and other parameter settings. A consensus cluster-
ing can merge the different results, and if done effectively, minimize the manual effort to resolve
the conflicts among the different results. We follow a similar goal by merging multiple results to
create a near-gold standard [109], see Chapter 4.
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Figure 31 shows an example for these different individual clusterings. All four clusterers agree
that A is in a cluster of its own (called a singleton), but have some disagreement on everything
else. While B and C are separated by most clusterers, C and D are clustered together by most
clusterers. To achieve a consensus clustering, the transitive closure could be applied, ending
up in a large cluster {B, C, D, E, F}. Other automatic clustering approaches might, for example,
consider the confidences of the individual clusters and propose {A}, {B}, {C, D, E}, and {F} as
consensus clustering, when the pair (B, C) has low confidence and (C, D) has high confidence.

Clustering 1 A B C D E F

Clustering 2 A B C D E F

Clustering 3 A B C D E F

Clustering 4 A B C D E F

Figure 31: Different clusterings on the same dataset

We follow a semi-supervised approach to use human experts to decide about the clusters,
based on the results of automatic clusterers. In this way, individual clustering decisions are
manually reviewed and the resulting consensus clustering is expected to have a higher quality
than automatic approaches. Because human effort is expensive, we strive for finding strategies
that primarily minimize the number of questions to the human expert when creating a consensus
clustering. As a secondary goal, we like to have a consensus clustering that resembles the truth
as much as possible.

The typical workflow for semi-supervised consensus clustering is depicted in Figure 32. The
set of clusterings C is collected from the different clusterers. The set S contains all disagreeing
pairs of elements. These pairs are candidates for a manual inspection. A pair selection compo-
nent chooses one pair for manual inspection and presents it to the human expert. His/her verdict
is then sent to a change propagation component, which in turn updates the clusterings them-
selves, including inferred changes due to transitivity. This loop is repeated until S is empty and
thus a consensus clustering C̃ is found: the final result. This workflow comprises calculation of
the transitive closure, but only based on manual inspections, not completely.

The selection of pairs for manual inspection and the selection order is crucial for the number
of performed manual inspections until a consensus clustering is reached and for the resulting
consensus clustering itself. Figure 33 shows an initial set of four clusterings C marked with (a)
and four consensus clusterings (b) to (e) which mutually differ in the clusters they contain. To
come to a consensus clustering, manual inspections are performed, that is, a human expert is
asked for a verdict on the correctness of the queried pair. The expert’s verdicts are consistent to
a (hidden) gold standard (top left).

There are one or several different sequences of verdicts, leading to each consensus clustering,
illustrated with the dashed arrows. The arrow labels are examples of verdict sequences and their
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Figure 32: The workflow for semi-supervised consensus clustering
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Figure 33: Different consensus clusterings for the same input

lengths. The sequences can differ in both their lengths and/or the consensus clustering they create.
In this example, the following four cases occur.

• It is possible to reach the same consensus clustering (b) using different verdict sequences
that cause the same effort.

• The two different consensus clusterings (b) and (e) are the result of same-length sequences
representing the same effort.

• The same consensus clustering (e) can be reached with different effort using sequences of
four or five verdicts.

• Finally, different consensus clusterings can be reached with different effort, for example,
by the minimal verdict sequence leading to consensus clustering (c) compared to the much
longer sequences leading to consensus clustering (e).
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Please note that consensus clustering (c) is achieved via only a single manual inspection,
but does not resemble the gold standard much. In contrast, consensus clustering (d) has a higher
effort, but matches the gold standard exactly. For settings with four clusterings and four elements,
clustering configurations can be found that lead to up to seven different consensus clusterings.
In Section 5.6.1 we define a quality measure for consensus clusterings.

As the clustering task, we focus on the duplicate detection problem. In summary, our approach
has the following features.

• The input to consensus clustering is a set of clusterings. We treat those clusterings as black
boxes. We do not assume to know how they were created.

• Our approach for consensus clustering does not require similarities of the elements nor
their attribute values, because we directly start with a set of clusterings.

• The number of clusters is a natural consequence of the algorithm, rather than an a-priori
parameter.

Our contributions are in particular:

• A formalization of semi-supervised consensus clustering

• Four different strategies to choose clusters to be examined by a human expert, while re-
ducing the manual effort

• An extensive evaluation of all four strategies on several artificial and three real-world
datasets.

In Section 5.2 we show related work concerning consensus clustering. Section 5.3 defines
Semi-Supervised Consensus Clustering formally and Section 5.4 presents four strategies for pair
selection. For the implementation, several optimizations were developed which are described
in Section 5.5. The experimental evaluation is presented in Section 5.6. Finally, Section 5.7
concludes this chapter.

5.2 Related Work

There are different fields of research that serve as a source of related work. Semi-supervised con-
sensus clustering shares characteristics with fuzzy clustering (uncertainty about whether two re-
cords belong to the same cluster), with semi-supervised clustering (relying on human judgements
to verify or falsify decisions), graph cutting (a sparse graph structure where some connections
are to be refined), and ensemble clustering (create agreed clusterings using (semi-)autonomous
means).
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clustering Aggarwal defines clustering as follows: “Given a set of data points, partition
them into a set of groups which are as similar as possible.” [1] There is a large variety of
clustering methods, flat or hierarchical, distance-based or probabilistic, continuously-spaced or
discrete-spaced, unsupervised or semi-supervised, hard or soft. In our case, we already have a
set of clusterings and want to solve a meta-clustering problem.

Joint entity resolution [115] by Whang and García-Molina is a duplicate detection approach
with the specialty that due to a normalization of the relational schema not only a single dataset
(relation) but several related (via foreign keys) datasets are deduplicated. This brings the pos-
sibility to look for duplicates in the different relations in a random-access manner. Duplicate
decisions might influence the comparison result of records pairs in other relations. To this end,
Whang and García-Molina propose a scheduler that creates an execution plan. This is related to
the problem of consensus clustering, because human expert verdicts might influence other pairs
as well, due to transitivity. However, we do not need to make use of any similarities between the
records.

fuzzyness in clustering Fuzzy C-means is an extension of the traditional K-means clus-
tering algorithm where an additional membership coefficient is introduced [10]. This coefficient
describes how much each element is part of each cluster and thus influences the objective func-
tion when re-calculating the centroid positions. Akin to K-means, fuzzy C-means relies on the
initialization of centroids and the choice of the number of clusters C. In contrast, we do not need
to know C and the centroids.

Kaymak and Setner [60] extend fuzzy C-means with an agglomerative approach. They bypass
choosing a good value for C by over-estimating the number of clusters and then merging them.
Nevertheless, the centroid selection problem remains and it is still not applicable to our problem,
because of the lack of pairwise similarities.

(semi-)supervised clustering The user can be used to support a clustering process. He
can help at various steps, for example, when selecting an appropriate number of clusters or
finding good initial centroids (seeding [6]). Apart from this point-wise supervision, pairwise
supervision is performed when individual possible cluster members are compared. Supervising
users can merge/split pairs [5] or define must-link/cannot-link constraints [28] on them. Cohn
et al. [26] employ user feedback on some pairs to “steer” an already complete clustering into a
new direction. Users are invited to criticize arbitrary, self-chosen, suspicious-seeming clustering
decisions with a fixed set of statements and these constraints are respected in the next iteration of
the clustering. Unfortunately, this approach assumes that re-clustering can be done. Furthermore,
our strategies choose which pairs to present to the human expert, rather than the expert himself.

graph cutting Cutting is another approach for graph-based clustering. A cut is a set of
removed edges between nodes in a graph such that the resulting graph is separated into k dis-
joint subgraphs, that is, clusters. The goal is to find the cut that minimizes the weights of the
removed edges. To circumvent trivial, unwanted solutions (separating one node from the remain-
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ing nodes), normalized versions are used, the normalized cut [97] or the ratio cut [51]. Shi and
Malik propose an adaption for k > 2, that relies on K-means and thus, the problem of find-
ing a good k arises, again. Von Luxburg [69] describes several heuristics for coming up with a
good k in her section on practical details. In our approach, the number of clusters is a natural
consequence of the input data.

ensemble/consensus clustering Combining a set (ensemble) of clusterings to a joint
clustering, all clusterers to some degree agree on, is called Consensus Clustering. There are
unsupervised [49] and also semi-supervised approaches, for example, using voting or training a
clusterer to perform better upon re-clustering. Stehl and Ghosh [103] use hypergraphs.

However, our approach does not rely on any training, because we assume that the clusterings
are final and need not to be re-created with improved clusterers. We also do not rely on voting,
but instead use a human expert that gives consistent answers. This also means that at most a
single vote is sufficient per pair, reducing the overall manual effort. Due to transitivity, some
pairs do not even undergo manual inspection.

data cleansing and crowdsourcing Wang et al. [110] use crowdsourcing for duplicate
detection and employ humans to verify or falsify potential duplicates. These duplicate candidates
have been previously computed using a computer-based similarity measure and have a similarity
that is above a certain threshold. The authors propose to present clusters of size k to the crowd
workers and show an algorithm that splits the graph of candidate pairs in a way that most of the
clusters are of this maximal size. However, all clusters are generated upfront and contradictory
verdicts may arise over several clusters. Our approach iteratively generates clusters of size 2
(i. e., pairs) and exploits the transitivity of the duplicate relation. Using transitivity avoids both
superfluous human verdicts and contradictions among them. Further, we do not need similarity
measures and thresholds and base only on clusterings.

5.3 Formalism for Consensus Clustering

We formally define consensus clustering and the required terms. These formalisms are used in
the next section to describe the pair selection strategies, which reduce the number of verdicts.

Definition 6 (Dataset and set of pairs) A dataset D is a set of n records {r1, . . . , rn}. We define
the set of pairs PD ⊂ D × D as all pairs of records in D where PD = {pi j := 〈ri, r j〉| ri, r j ∈

D, i < j}. Therefore, |PD| =
|D|·(|D|−1)

2 .

Definition 7 (Clusterer, clustering, and clusters) A clusterer is a function that partitions D
into disjoint subsets, the clusters c1, . . . , ck. We call such a set of clusters a clustering C =

{c1, . . . , ck}. Each cluster contains at least one record. In a duplicate detection use case, many
clusters will contain exactly one record, that is, are singleton clusters.
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Since different clusterers use different features of the records or apply different clustering
strategies, different clusterings arise that in particular may contain different numbers of clusters.
We denote the set of m clusterings C = {C1, . . . , Cm}.

We further denote the set of pairs contained in a cluster c as Pc = {pi j := 〈ri, r j〉| ri, r j ∈ c, i <
j}, analogously to PD. For example, a cluster c = {ra, rb, rc} would lead to Pc = {pab, pac, pbc}.
Similarly, the set of pairs PC for a clustering C is defined as the union of the set of pairs of its
individual clusters: PC =

⋃k
r=1 Pcr . Note that in general, |PC | � |PD|, because |PC | just contains

the intra-cluster pairs for clustering C, while PD contains all possible pairs in the dataset and for
singleton clusters, Pc is empty.

Definition 8 (Support) The support of a pair is the number of clusters that contain that pair.
Pairs with a support of m or 0 are called agreed: all or none of the clusterers concordantly
declare that pair. We call all other pairs disagreed and say that they are in the set of disagreed
pairs S which are candidates for a manual inspection.

sup(p) = |{Cw| p ∈ PCw , Cw ∈ C}|

Definition 9 (Manual inspection) A manual inspection is the review activity by a human expert
concerning a pair p. The expert either verifies or falsifies the pair (verification/falsification). The
result of a manual inspection is a verdict v: a pair p of which we know whether it is verified
or falsified by the human expert. We denote the sequence of all pairs that underwent manual
inspection as M. Because a manual inspection directly corresponds to a verdict and vice versa,
we use both terms interchangeably.

Each possible verdict might lead to different modifications of the clusterings. Figure 34 shows
two possible clusters ci and c j for a clustering Cw. In case of a verification of pab (for whatever
reason), the two clusters ci and c j containing ra and rb, respectively, are merged in Cw and all
other clusterings in C, usually inducing additional pairs due to transitivity.

Clustering Cw

Cluster ci Cluster c j

c
a

f
d

b

e

g

Figure 34: Example illustration of clusters ci and c j of a single clustering Cw with intra-cluster edges
(bold) and inter-cluster edges (thin)
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In case of a falsification of p f d, the cluster containing the inspected pair p f d is split in Cw

and all other clusterings in C, usually discarding additional pairs. Due to the split, r f and rd are
separated into two fresh clusters ci and c j, one containing r f , the other rd. All other nodes of the
original cluster are placed individually into ci, c j, or a third cluster, see below.

Although a merge/split does place the two records from the manual inspection into one (or
separate) clusters, the other records do not necessarily share this cluster (or those clusters). For
example, assume that pae in Figure 34 has already been falsified via a previous manual inspec-
tion. When merging ci and c j due to the manually verified pair pab, pae must not be re-merged,
because this would contradict the previous manual inspection. Instead, re has to go into a third
cluster. The same holds analogously for falsifications/splits.

Regardless of whether or not a clustering has been changed due to a manual inspection, we
keep track of each state of a clustering. We denote a clustering after the s-th manual inspection
as C(s)

w with C(0)
w = Cw for brevity. Thus, we can refer to the original clusterings.

For the strategies, we need additional notions that we introduce below.

Definition 10 (Impact) When applying a verdict of a pair p to a clustering C, this clustering
might be modified. We call the modified clustering C′. The impact impC(v) of the verdict v of a
pair p on a single clustering C is the number of new or discarded pairs in PC′ .

impC(v) =
∣∣∣ |PC | − |PC′ |

∣∣∣
In the example in Figure 34 all thin edges represent the new/discarded pairs in case of a

verification/falsification, that is, a merge of/split into clusters ci and c j, respectively. In two
special cases, the impact is zero and nothing happens: If the manually inspected pair p was
already “known” to the clusterer (i = j, p ∈ PC) and the pair is verified; or the manually
inspected pair has never been declared by the clusterer (i , j, p < PC) and the pair is falsified.

If we want to estimate the impact for a pair, rather than a verdict, we cannot tell the exact
impact in advance, because we do not know the expert’s verdict. Instead, we simulate the modi-
fication of C with a positive verdict (v+) verifying p and with a negative verdict (v−) falsifying
p and define the impact as the average of the respective impacts.

impC(p) =
impC(v+) + impC(v−)

2

The overall impact impC(v) on all clusterings for a verdict v is simply the sum of all impacts
on the individual clusterings. With the sum, we might add the same pair several times. This is
intended, because a verdict may have the same effect on several clusterings. The overall impact
for a pair is calculated analogously.

impC(v) =
m∑

w=1

impCw(v)

Table 16 shows the different impacts on a set of three clusterings. For example, let pad be
selected for manual inspection. In case of a verification (a merge), pad connects the two clusters



5.3 formalism for consensus clustering 91

of C1 (adding 4 pairs), for C2 nothing changes because pad was already contained in PC
2 and

creates a triangle for C3, inducing the two new pairs pab and pbd. C3 then resembles C2, which
would not be affected by any clustering modification. The individual impacts are noted in the
fourth column. Vice versa, in case of a falsification (a split), C1 and C3 are not influenced and
C2 loses two pairs: pad and either of pab or pbd (assuming no previous manual inspections).
These impacts (0, 2, and 0 for C1, C2, and C3) are shown in the fifth column. In total, the impact
impC(pad) is either 6 or 2 and averages in 4. pac and pbc are no candidates, because all clusterers
agree on them. As the table indicates, the merge impact is usually larger than the split impact,
due to transitivity.

Impact for

Merge Split

Illustration Pair Candidate? C+
1 + C+

2 + C+
3 C−1 + C−2 + C−3 Average Impact

a b

c d

ab yes 0 + 0 + 2 = 2 1 + 2 + 0 = 3 2.5

ac no 4 + 3 + 1 = 8 0 + 0 + 0 = 0 4.0

ad yes 4 + 0 + 2 = 6 0 + 2 + 0 = 2 4.0

bc no 4 + 3 + 2 = 9 0 + 0 + 0 = 0 4.5

bd yes 4 + 0 + 0 = 4 0 + 2 + 1 = 3 3.5

cd yes 0 + 3 + 2 = 5 1 + 0 + 0 = 1 3.0

Table 16: Positive and negative impacts for Clustering C1 (dashed), Clustering C2 (solid), and Cluster-
ing C3 (dash-dotted)

agreement While the number of pairs |PD| (agreed and disagreed) remains constant during
consensus finding, the ratio between agreed and disagreed pairs may change with each manual
inspection. Eventually, the number of agreed pairs reaches |PD|, a consensus clustering is found.
We call the number of agreed pairs in a set of clusterings C agreeC.

agreeC = |{p|sup(p) ∈ {0, m}, p ∈ PD}|

The agreement of a pair can be calculated by simulating C after a verification (C+)/falsification
(C−) of that pair and calculating the average of the agreements on the modified clusterings.

agreeC(p) =
agreeC+ + agreeC−

2

Table 17 shows the average agreements for the same example as in Table 16. There are four
records and therefore six pairs. Initially, two pairs are agreed (pac and pbc), the other pairs
are disagreed. For example, let pab undergo a manual inspection. In case of a verification, pab

achieves a support of m (= 3) and pac and pbc keep their support of 0, summing up to an
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agreement of 3. The other three pairs stay disagreed. In case of a falsification, pab is not disagreed
anymore as well as pad. The formerly agreed pairs pac and pbc are not changed, yielding an
agreement of 4. As a result, the average agreement is 3.5.

Agreement for

Illustration Pair Candidate? C+ C− Average Agreement

a b

c d

ab yes 3 4 3.5

ac no 2 2 2.0

ad yes 3 3 3.0

bc no 3 2 2.5

bd yes 1 4 2.5

cd yes 1 3 2.0

Table 17: Average agreements for different pairs based on a set of clusterings with an agreement of 2

clustering difference We can calculate the difference between two clusterings using the
Generalized Merge Distance (GMD) [73]. The GMD is a generalization of different measures
(e. g., pairwise precision, pairwise recall, and normalized mutual information) and works similar
to the string edit distance, but on clusterings. Instead of character deletions, replacements, and
insertions, clusters can be merged and split. The costs for merging or splitting two clusters with
sizes x = |ci| and y = |c j| are given by two customizable functions fm(x, y) and fs(x, y). For
our semi-supervised approach, we chose fm(x, y) = 1 and fs(x, y) = x · y, as suggested by
Menestrina et al. for cases where the goal is to “minimize human effort”. The intuition is that for
a human, merging two clusters requires nearly no effort, but splitting is much more complicated,
because the human has to decide which record ends up in the same cluster with which other
record.

Definition 11 (Consensus clustering) In the course of manipulating the individual clusterings
as a consequence of the manual inspections, they all converge towards the same clustering,
which is called consensus clustering C̃ = C(|M|)

1 = . . . = C(|M|)
m .

We can now define the overall goal: Given a set C of clusterings , find a minimal sequence M
of manual inspections to modify the clusterings in C to achieve a consensus clustering.

Note that the achieved consensus clustering is not necessarily the same clustering that would
be generated when manually inspecting all pairs in PD.
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5.4 Pair Selection Strategies

The crucial step for saving manual inspections when creating a consensus clustering lies in a
good selection strategy for the pairs that are presented to the human expert. We propose four
different pair selection strategies based on the measures of the previous section. They all base
on the application of different precedence functions f that assign a precedence value to each
candidate pair in S . The pair with the highest precedence value is chosen for the next manual
inspection. In case of a tie, we chose a candidate arbitrarily. We have tried different tie resolution
strategies, but without significant improvements. Depending on the pair selection strategy, this
precedence value is updated after each manual inspection.

maxsupport The MaxSupport pair selection strategy prefers pairs that have a high support,
hoping for a verification. The rationale is that highly supported pairs are more likely to be in the
same cluster and they also tend to have duplicate pairs in their neighborhood that are affected by
the manual inspection and thus do not need to be manually inspected separately. Analogously,
pairs with very low support have a good indication for falsification, but as this does not induce
pairs, this strategy targets highly supported pairs.

fMaxS upport(p) = sup(p)

maxaverageimpact The MaxAverageImpact pair selection strategy prefers pairs with large
average impacts, that is, pairs potentially merging/splitting large or many clusters. In Table 16,
the candidate pair with the largest average impact is pad.

fMaxAverageImpact(p) = impC(p)

maxaverageagree The MaxAverageAgree pair selection strategy prefers pairs with a large
average number of agreements. In Table 17, the candidate pair with the highest average agree is
pab.

This is different from MaxSupport because MaxSupport aims for increasing the support, while
MaxAverageAgree aims for setting the support of a maximal set of pairs to m or 0, neglecting
pairs whose support is only slightly changed and leaving them disagreed.

fMaxAverageAgree(p) = agreeC(p)

random The Random pair selection strategy serves as a baseline of the other strategies for
evaluation. It randomly selects a pair for manual inspection from the set of candidates.

5.5 Pruning and Splitting

For speedup, we made design decisions that we briefly want to mention. It is sufficient (and
more efficient) to work on individual connected components, instead of the graph as a whole.
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A connected component contains all pairs between which there is an arbitrary path, regardless
of the clustering that declared the respective pair. With this divide and conquer strategy, the
number of candidate pairs to be sorted is heavily reduced and the strategies must sort much
fewer elements.

It is easy to prove that handling the connected components individually does not change the
result. The isolation between two connected components would be violated if a manual inspec-
tion between them resulted in a positive verdict, a merge. To initiate this manual inspection, at
least one clusterer had to declare this pair. In this case, however, the two connected components
had not been separated and would belong together: a contradiction.

Splitting the whole graph into connected components has several advantages. First, the whole
consensus finding process can be easily parallelized based on connected components. Second,
connected components reveal the potential for purging. Usually, many clusters are singletons,
especially singletons in all clusterings. Consequently, there are also many connected components
containing just a single record. These connected components can be discarded as well as any
other connected components that do not contain any disagreed pairs.

Like pair selection, cluster splitting is also prone to ties. When there is a choice on how to
perform a cluster split (and no alternative contradicts any previous verdicts), we have a tie. We try
to resolve this tie by choosing the alternative that is most frequent regarding the other clusterings
that have already been modified or that were not affected by the verdict. Ties that remain are
resolved arbitrarily. With that tie resolution heuristics, we promote faster convergence towards a
consensus clustering.

5.6 Evaluation

In this section we describe the evaluation metrics, the datasets, and finally show how well the
different strategies perform.

5.6.1 Evaluation metrics

With the following metrics, we can quantitatively and qualitatively rate a consensus clustering
and differentiate between the different pair selection strategies concerning their suitability for
finding a consensus clustering with as few manual inspections as possible.

We measure the number of manual inspections |M| issued to the human expert. This number
describes the manual effort required to find a consensus for C.

Furthermore, we measure the average GMD between each original clustering C(0) and the
consensus clustering C̃. This measure indicates how much the clusterings had to be changed to
eventually converge. There can be different consensus clusterings that have the same manual
effort (|M|), but caused cluster operations with a larger impact, this is, larger GMD. We call this
measure C-GMD (for consensus GMD).
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We also measure the GMD between the consensus clustering and the gold standard. This
measure indicates the quality of the consensus clustering. We call this measure briefly G-GMD
(for gold standard GMD).

5.6.2 Datasets

For evaluation, we need a dataset, a gold standard (as a cheaper and faster substitute for a human
expert during evaluation), and a set of at least two clusterings. Unfortunately, these three assets
together are not available for any real-world dataset we know. Either we have the dataset and
a gold standard, but no reasonable clusterings or we have a dataset and a set of sophisticated
clusterer results, but no gold standard. Therefore, we generated the missing artifacts, as described
below.

We use a modified Chinese Restaurant Process [4] for the generation of gold standards and
clusterings, respectively. With a given singleton probability sp, each record in the dataset is
placed in a singleton cluster. With the remaining probability (1 − sp), it is placed into an (ran-
domly selected) existing cluster. We use exactly this procedure to generate a gold standard where
none is available.

Where clusterings are not available, we derive them from the (generated or available) gold
standard. This is reasonable, because decent clusterings will likely resemble the gold standard to
some degree. To create such a derived clustering, we iterate over the gold standard with a slightly
modified procedure: We go over each record in the gold standard and with a (small) cluster
change probability ccp, we extract the record from the cluster it is currently in and continue to
place it somewhere as described above. We call the singleton probabilities for the gold standard –
the truth – tsp and for the clusterings csp, respectively.

For all our datasets, the actual contents are irrelevant; just the distributions of the records into
the clusters are of interest. In the following, we describe the scenarios (combination of dataset,
gold standard, and clusterings) that are used for the evaluation.

freedb The freedb dataset contains information about 750,000 CDs. For the clusterings, we
use the results of four sophisticated, hand-crafted duplicate detection algorithms declaring about
127,000 duplicate pairs in connected components up to size 266. The gold standard was created
by a crowd using the CrowdFlower platform. The clusterings are sampled from a larger dataset
(see freedb-full below) and resemble each other to a high degree.

freedb-full The original freedb dataset contains several million CD albums. We filtered
out all those entries that did not contain readable characters. 1.9 million CDs remain and we
have the full results of the duplicate detection algorithms also on this dataset. They range from
200,000 to 350,000 declared duplicates. As the gold standard, we used the same data as in the
freedb scenario above.
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ncvoter This is a voter directory of North Carolina30. Ramadan et al. [88] applied extensive
duplicate detection techniques on this dataset and provided the results as a gold standard. There
are clusters of records up to the size of 5. We used a subset including all 5-, 4-, and some 3-
clusters and padded them with the same number of singleton records. Finally, the dataset has a
size of about 10,000 records. The cluster change probability ccp is 0.3 and the cluster singleton
probability csp is 0.666. We have created 3 clusterings.

generated We use a synthetic scenario where the gold standard as well as the clusterings
were entirely generated. This generated scenario has the advantage that all parameters can
be set deliberately. We vary the respective parameters, but for the default scenario, we chose
tsp = 0.6, csp = 0.8, ccp = 0.1, a dataset size ds of 1000 and 3 clusterings (|C|). We call
this scenario Generated-Default. For each of these five different dimensions, we chose four dif-
ferent values: tsp ∈ {0.5, 0.6, 0.7, 0.8}, csp ∈ {0.6, 0.7, 0.8, 0.9}, ccp ∈ {0.05, 0.1, 0.15, 0.2},
ds ∈ {1000, 10,000, 50,000, 100,000}, and |C| ∈ {2, 3, 4, 7}. We did not explore every possible
combination, but ran experiments with the default values and one changed parameter each. This
changed parameter determines the scenario’s name. Table 18 gives an overview on the settings
for the synthetic scenarios.

To overcome poor random choices when generating the assets, we always state average values
over 5 runs. However, the freedb scenarios just had a single run, because there was no random
data generation involved.

For the default generated scenario, we give an overview of the cluster size distribution. Fig-
ure 35 contains the histogram of the cluster sizes for the first run of the default scenario (first
row in Table 18). The first bar, printed solid, is the gold standard, the other three bars are the
clusterings. One can see that the clusterings differ from each other but adhere quite closely to
the gold standard. As in practice, it is a long-tail distribution: The majority of records resides in
singleton clusters (in this case about 600 of the 1000 records) and there are only very few large
clusters. The gold standard contains a cluster of size 23, while the clusterings’ largest clusters
contain 22 or 19 records, respectively. It is highly likely that those clusters have a high overlap,
but the third clustering became more diverged in the derived random generation process.

30 http://www.ncsbe.gov/ncsbe/data-statistics

http://www.ncsbe.gov/ncsbe/data-statistics
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Scenario Name tsp csp ccp ds |C|

Generated-Default 0.6 0.8 0.1 1000 3

Generated-tsp-0.5 0.5 0.8 0.1 1000 3

Generated-tsp-0.7 0.7 0.8 0.1 1000 3

Generated-tsp-0.8 0.8 0.8 0.1 1000 3

Generated-csp-0.6 0.6 0.6 0.1 1000 3

Generated-csp-0.7 0.6 0.7 0.1 1000 3

Generated-csp-0.9 0.6 0.9 0.1 1000 3

Generated-ccp-0.05 0.6 0.8 0.05 1000 3

Generated-ccp-0.15 0.6 0.8 0.15 1000 3

Generated-ccp-0.2 0.6 0.8 0.2 1000 3

Generated-ds-10,000 0.6 0.8 0.1 10,000 3

Generated-ds-50,000 0.6 0.8 0.1 50,000 3

Generated-ds-100,000 0.6 0.8 0.1 100,000 3

Generated-|C|-2 0.6 0.8 0.1 1000 2

Generated-|C|-4 0.6 0.8 0.1 1000 4

Generated-|C|-7 0.6 0.8 0.1 1000 7

Table 18: Properties of the different synthetic scenarios
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Figure 35: Histogram of cluster sizes for the default scenario (first instance), cut off at 100, first bars reach
500
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5.6.3 Results for the Generated Scenarios

Table 19 shows the results for the consensus finding in the generated default scenario. There are
four rows, each for a different pair selection strategy. The respective optimal value is printed
in bold face. The numbers of manual inspections are comparable, except for the MaxAverage-
Impact strategy, which stands out and uses the fewest manual inspections. C-GMD and G-GMD
are nearly equal for all strategies. The MaxAverageAgree strategy finds consensus clusterings
that reflect the gold standards and the original clusterings most, respectively. This is remarkable,
because MaxAverageImpact uses fewer manual inspections and still finds consensus clusterings
that differ more from each other. Therefore, the intuition leading to the MaxAverageImpact strat-
egy (choosing pairs that have a high (average) impact) seems to hold: the (relatively few) manual
inspections actually have a higher impact.

Scenario Strategy |M| C-GMD G-GMD

Generated-Default MaxSupport 197.8 115.0 1.4

Generated-Default MaxAverageImpact 185.6 115.0 1.2

Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2

Table 19: Key figures for the default generated scenario

Overall, the manual effort caused by the different strategies is quite similar. Unfortunately, the
combinatorial complexity prevents the extensive calculation of optimal (i. e., smallest) M’s. We
therefore empirically determined an approximate optimum by taking the random pair selection
strategy and iterating very many times with different random initializations for this strategy.
Again, we did this on several instances of the default scenario.

Table 20 shows |M| for five different instances of the default scenario (one per row). The first
four columns describe the manual inspection effort generated by the four strategies. Additionally,
in the fifth column, we show |M| for the most successful random strategy among 300,000 itera-
tions, that is, the random run that produced the smallest number of manual inspections. Note that
this is just an approximate minimum: In general, other strategies might find even smaller M’s,
which is indeed the case for the MaxAverageImpact strategy. It is regularly far away from the
other strategies and very similar to the anticipated optimum. In other words: there is not much
room for the strategies to differ, but the MaxAverageImpact strategy usually hits the (empirically
determined) optimum.
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Max Support Max Average
Impact

Max Average
Agree

Random after 1
iteration

Min(Random) after
300,000 iterations

202 191 201 197 190

191 179 187 189 180

180 167 176 179 167

214 203 209 211 202

202 188 197 202 191

Table 20: Empirically determined minimal numbers of manual inspections on the default scenario with
1000 records

Table 21 shows the results of many variations on the default scenario parameters. The table is
divided in five groups for the five varied parameters, each group covering four different scenarios
and each scenario contains four rows for the four pair selection strategies. For each of the four
strategies, the respective minimum values are printed in bold face. Each group contains the
default scenario, aligned according to its parameter value in the numerical order of the varied
parameter.
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Scenario Strategy |M| C-GMD G-GMD

Generated-tsp-0.5 MaxSupport 219.2 178.4 2.2

Generated-tsp-0.5 MaxAverageImpact 203.4 180.8 2.6

Generated-tsp-0.5 MaxAverageAgree 216.6 178.2 1.2
Generated-tsp-0.5 Random 216.2 181.6 1.8

Generated-Default MaxSupport 197.8 115.0 1.4

Generated-Default MaxAverageImpact 185.6 115.0 1.2

Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2

Generated-tsp-0.7 MaxSupport 172.8 81.4 1.0

Generated-tsp-0.7 MaxAverageImpact 166.6 81.4 0.8
Generated-tsp-0.7 MaxAverageAgree 170.4 81.8 1.0

Generated-tsp-0.7 Random 171.2 81.8 0.8

Generated-tsp-0.8 MaxSupport 131.4 58.2 1.2

Generated-tsp-0.8 MaxAverageImpact 126.4 58.0 0.8
Generated-tsp-0.8 MaxAverageAgree 129.2 58.0 0.8
Generated-tsp-0.8 Random 130.6 58.2 1.0

Generated-csp-0.6 MaxSupport 243.4 171.8 2.6
Generated-csp-0.6 MaxAverageImpact 235.4 173.0 2.6
Generated-csp-0.6 MaxAverageAgree 246.4 173.8 2.8

Generated-csp-0.6 Random 244.4 176.2 3.6

Generated-csp-0.7 MaxSupport 225.4 148.0 3.0

Generated-csp-0.7 MaxAverageImpact 213.8 147.4 3.6

Generated-csp-0.7 MaxAverageAgree 224.6 147.4 2.2
Generated-csp-0.7 Random 226.6 145.8 2.2

Generated-Default MaxSupport 197.8 115.0 1.4

Generated-Default MaxAverageImpact 185.6 115.0 1.2

Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2



102 supervised consensus clustering: reducing human effort

Scenario Strategy |M| C-GMD G-GMD

Generated-csp-0.9 MaxSupport 181.0 90.4 0.2
Generated-csp-0.9 MaxAverageImpact 165.2 90.4 0.4

Generated-csp-0.9 MaxAverageAgree 169.6 90.2 0.2
Generated-csp-0.9 Random 177.0 93.0 0.8

Generated-ccp-0.05 MaxSupport 100.0 55.4 0.0
Generated-ccp-0.05 MaxAverageImpact 95.0 55.4 0.0
Generated-ccp-0.05 MaxAverageAgree 97.6 55.4 0.0
Generated-ccp-0.05 Random 99.0 58.0 0.2

Generated-Default MaxSupport 197.8 115.0 1.4

Generated-Default MaxAverageImpact 185.6 115.0 1.2

Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2

Generated-ccp-0.15 MaxSupport 267.4 167.4 3.0

Generated-ccp-0.15 MaxAverageImpact 250.2 166.0 3.4

Generated-ccp-0.15 MaxAverageAgree 261.4 167.4 2.4
Generated-ccp-0.15 Random 263.4 168.0 3.8

Generated-ccp-0.2 MaxSupport 342.4 216.4 11.4

Generated-ccp-0.2 MaxAverageImpact 324.4 221.8 12.4

Generated-ccp-0.2 MaxAverageAgree 338.8 219.0 9.2
Generated-ccp-0.2 Random 339.4 221.2 9.2

Generated-Default MaxSupport 197.8 115.0 1.4

Generated-Default MaxAverageImpact 185.6 115.0 1.2

Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2

Generated-ds-10,000 MaxSupport 1927.0 1225.2 18.4

Generated-ds-10,000 MaxAverageImpact 1803.4 1228.6 18.4

Generated-ds-10,000 MaxAverageAgree 1884.2 1212.0 9.6
Generated-ds-10,000 Random 1908.2 1223.0 15.4
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Scenario Strategy |M| C-GMD G-GMD

Generated-ds-50,000 MaxSupport 9830.4 6707.2 92.6

Generated-ds-50,000 MaxAverageImpact timeout exceeded (> 6 h)

Generated-ds-50,000 MaxAverageAgree timeout exceeded (> 6 h)

Generated-ds-50,000 Random 9725.6 6788.4 75.8

Generated-ds-100,000 MaxSupport 19,692.0 13,410.8 200.0

Generated-ds-100,000 MaxAverageImpact timeout exceeded (> 6 h)

Generated-ds-100,000 MaxAverageAgree timeout exceeded (> 6 h)

Generated-ds-100,000 Random 19,504.2 13,369.8 157.0

Generated-|C|-2 MaxSupport 124.6 128.4 5.2

Generated-|C|-2 MaxAverageImpact 121.8 134.4 8.8

Generated-|C|-2 MaxAverageAgree 125.4 128.2 4.4
Generated-|C|-2 Random 124.6 123.4 5.2

Generated-Default MaxSupport 197.8 115.0 1.4

Generated-Default MaxAverageImpact 185.6 115.0 1.2

Generated-Default MaxAverageAgree 194.0 113.4 0.8
Generated-Default Random 195.6 116.4 1.2

Generated-|C|-4 MaxSupport 259.4 115.8 0.2

Generated-|C|-4 MaxAverageImpact 239.6 117.4 0.6

Generated-|C|-4 MaxAverageAgree 253.4 115.8 0.0
Generated-|C|-4 Random 255.4 116.8 0.2

Generated-|C|-7 MaxSupport 396.0 115.4 0.0
Generated-|C|-7 MaxAverageImpact 353.8 115.2 0.0
Generated-|C|-7 MaxAverageAgree 386.0 115.4 0.0
Generated-|C|-7 Random 382.0 115.4 0.0

Table 21: Key figures for all generated scenarios

Table 21 allows several observations. The most relevant insight is that the MaxAverageImpact
pair selection strategy always yields the smallest number of manual inspections |M| (except for
the experiments which timed out). The order of the other strategies, concerning to |M|, changes
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from scenario to scenario. We therefore calculated the normalized rankings31 over all 14 different
scenarios and calculated the average. This is presented in Table 22.

Strategy |M| Rank C-GMD Rank G-GMD Rank

MaxSupport 3.68 2.29 2.79

MaxAverageImpact 1.00 2.54 2.82

MaxAverageAgree 2.43 1.89 1.57

Random 2.89 3.00 2.68

Table 22: Normalized ranks of the strategies for the 14 different scenarios

The MaxAverageAgree strategy has an average ranking of 2.43 and is closely followed by the
Random strategy with an average ranking of 2.89. Finally, the MaxSupport strategy performs
worst and achieves an average ranking of 3.68. This strategy usually results in the largest |M|.
Only with very large clusters (csp ∈ {0.6, 0.7}) or very few clusterers (C = 2), it does not use the
most manual inspections. The reason is that only in those settings the support has a beneficial
influence on the pair selection and consequently the number of manual inspections is reduced.

Concerning C-GMD and G-GMD, there is no strategy that finds consensus clusterings with
minimal values for these metrics in all scenarios. However, MaxAverageAgree most frequently
finds the smallest C-GMD (7 times) and G-GMD (12 times). This indicates that MaxAverage-
Agree tends to produce consensus clusterings of (slightly) higher quality in contrast to Max-
AverageImpact that rather finds less expensive consensus clusterings.

We calculated Spearman’s rank correlation coefficient for the three metrics for each scenario.
|M|/C-GMD as well as |M|/G-GMD have a coefficient of 0.09 and 0.11, respectively, and are
thus not very correlated. This confirms the findings described above: strategies that are good
regarding |M| (MaxAverageImpact) do not necessarily perform well for C-GMD or G-GMD and
vice versa (MaxAverageAgree). Because the correlation is small, the bare number of manual
inspections used for a consensus clustering has nearly no influence on the GMDs, but the GMDs
depend on the actually selected candidate pairs. On the other hand, the correlation coefficient
for C-GMD/G-GMD is 0.66, again confirming the observation described in the last paragraph.

For the different varied parameters, the effort grows or decreases monotonously. For exam-
ple, with rising singleton probabilities, the number of (trivial) singleton clusters increases, and
consequently, there is less disagreement among the clusterers and the manual effort decreases.
Analogously, with increasing cluster change probability, the clusterings diverge more and more,
which leads to larger |M|’s. Even a slight increase of this probability has a high influence on
|M|. The increase of the dataset size has the largest impact on |M|: the number of manual inspec-
tions increases proportional to the increase of the dataset size. For the increase of the number
of clusterings |C|, the result is similar: when doubling the number of clusterings, the number

31 Ranking ties are resolved by assigning the average rank for all tied strategies.
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of manual inspections nearly exactly doubles (Generated-|C|-2 vs. Generated-|C|-7), although
under-linearly.

The G-GMD reacts less predictably on the variations of the parameters. In case of Generated-
|C|-7, there are so many clusterings that eventually the exact gold standard is always reached,
even in each of the five runs and for each strategy, although the resulting effort strongly differs
between the strategies. For Generated-|C|-7, MaxSupport uses 10 % more manual inspections
than MaxAverageImpact.

The MaxAverageImpact strategy and the MaxAverageAgree strategy are the most advanced
pair selection strategies. However, because the target is to get a cheap yet sound consensus
clustering, the MaxAverageImpact strategy should be selected. It is both more suitable and more
reliable in its performance. The degree of differences between the strategies is quite constant 5 %
between the baseline (Random pair selection strategy) and the MaxAverageImpact strategy.

The performance differences between the strategies were higher if we would not count the
manual inspections from situations, where there was no choice between different pairs to man-
ually inspect. This case always occurs for connected components of size 2 that are disputed. In
these cases, all strategies necessarily performed equally. Because we show the actual count of
all manual inspections (which is the actual effort), the differences are a bit leveled out. For ex-
ample, for Generated-|C|-7, the MaxAverageImpact strategy yielded 300 manual inspections and
the Random strategy 330, a difference of 10 %.

For both Generated-ds-50,000 and Generated-ds-100,000, the MaxAverage strategies exceed-
ed a timeout of 6 hours of runtime. However, because |M| for the two simpler strategies follows
a linear scale, we expect the missing results to be in the same region. For more comments on the
runtime, see the end of this section.

5.6.4 Results for Freedb

The results for the freedb scenario are shown in Table 23. In this scenario, the clusterings are
already very similar. Therefore, the number of manual inspections is relatively low, compared
to the results of generated scenarios of the same size. The manually curated gold standard was
created inspecting more than 1000 pairs manually. With our presented strategies, a quarter of the
manual inspections could have been saved.

The freedb-full scenario on the other hand uses much more diverse clusterings. Therefore,
the number of manual inspections is vastly increased. The gold standard does not have a high
share on the total number of manual inspections in |M|. While it is relatively small, it can still
return verdicts for all the selected candidate pairs (being a falsification in most cases). A larger
gold standard would have caused more verifications (and inferred pairs), but the number of
manual inspections would not have been much smaller. In fact, the number of manual inspections
is much smaller than even the smallest clustering: for a large number of pairs, there were no
disagreements among the clusterings and the corresponding connected components could just
be adopted for the consensus clustering.
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Scenario Strategy |M| C-GMD G-GMD

Freedb MaxSupport 783 1614 379
Freedb MaxAverageImpact 783 1614 379
Freedb MaxAverageAgree 783 1614 379
Freedb Random 784 1,614 379

Freedb-full MaxSupport 125,788 159,630 7087

Freedb-full MaxAverageImpact timeout exceeded (> 16 h)

Freedb-full MaxAverageAgree timeout exceeded (> 16 h)

Freedb-full Random 136,970 159,419 7119

Table 23: Freedb results

5.6.5 Results for NCVoter

In the NCVoter scenario (Table 24), many more manual inspections than in the freedb scenario
were performed, but eventually, the situation is similar to the experiments before: MaxAverage-
Impact outperforms the other strategies, even though the differences are not large. Compared to
the Generated-ds-10,000 scenario, the number of manual inspection is similarly high, but the
G-GMD is much higher in the NCVoter scenario.

Scenario Strategy |M| C-GMD G-GMD

NCVoter MaxSupport 2631.6 1207.2 42.4

NCVoter MaxAverageImpact 2594.8 1206.8 37.4
NCVoter MaxAverageAgree 2631.4 1207.8 42.6

NCVoter Random 2626.6 1207.8 42.6

Table 24: NCVoter results

In this scenario, a relatively high number of records is distributed over a (larger) number of
smaller clusters with a size up to 5, which makes it different from the larger generated scenarios.
This difference has caused the consensus clusterings to deviate more from the gold standard. The
MaxAverageImpact strategy causes the smallest G-GMD, while for the Generated Scenarios, the
minimal G-GMD was usually achieved by the MaxAverageAgree strategy.
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5.6.6 General Remarks

It is difficult to obtain real-world data. We therefore amended the available real world data with
generated data and also used a variety of completely synthetic scenarios. In all performed exper-
iments, MaxAverageImpact outperformed the other strategies. Depending on the five described
parameters, the differences may be smaller or larger. The experiments indicate that the Max-
AverageImpact strategy is generally recommendable. We also tried to use the maximum instead
of the average for the impact and agreement strategies, but the results were slightly worse.

We do not report on the runtime, because the dominant factor is the human expert. As shown
in the workflow (see Figure 32), expert inquiries, calls of the pair selector, and propagating
changes back to the clusterings are alternating. Nevertheless, there are differences in the run-
times for the strategies (including repeated pair selection and verdict lookup). Unsurprisingly,
the Random strategy is the fastest, because it does not do any computation besides shuffling the
candidate pairs. For the default scenario, consensus finding (including pair selection and verdict
lookup, but not data loading) took 0.1 seconds with the Random strategy and 0.5 seconds with
the MaxSupport strategy. MaxAverageImpact and MaxAverageAgree took 12.9 and 11.0 sec-
onds, respectively (all values are averages over the repetitions). Both MaxAverage strategies are
considerably more complex and take longer, because for each pair both possible verdicts must be
simulated. MaxSupport does not need to simulate anything, but still must calculate the support
which causes a slightly larger duration than the Random strategy. The actual durations depend
on the parameters, but the order remains similar.

For example, for Generated-ds-10,000 the average durations for the consensus finding process
are 75.6 seconds (MaxSupport), 1,462.2 seconds (MaxAverageImpact), 1,362.8 seconds (Max-
AverageAgree), and 10.5 seconds (Random). The runtime grows to the square of the growth of
the dataset size which is a general, rather than a strategy-specific problem. With more and more
records, the clusters get larger, there are more pairs in the clusters, and finally more candidate
pairs to check.

Because the duration grows faster than the savings of manual effort regarding a quick and a
sophisticated pair selection strategy, there is a break-even point. Beyond that point, choosing a
simpler strategy may cause more manual inspections but a smaller overall runtime. However, this
break-even point is hard to reach; a connected component must be quite large to better choose
an arbitrary pair instead of waiting for MaxAverageImpact to select a candidate pair. According
to our subjective impression, finding M for connected components started to take a significant
amount of time when the connected component contained 50 records or more.

Additionally, the pair selection strategy can be changed in each iteration. In particular, a time-
out could be set. When it is expired, the proposed pair of a quicker strategy (executed in parallel)
could be used as a best guess for the next manual inspection. Moreover, in a real application,
this timeout could be defined dynamically by the time the human expert is busy with manual
inspections of other connected components.
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In our experiments, we did the pair selection in parallel for separate connected components.
It should be easy to also parallelize the pair selection within a connected component, causing a
higher overall speed-up.

5.7 Conclusion and Outlook

Consensus clustering is one way to negotiate between different, contradicting clusterings. Semi-
supervised consensus clustering promises a high quality of the resulting clustering, but has high
costs due to expensive human effort. Therefore, it is crucial to identify those disputed candidate
pairs that serve rapid convergence. We presented four pair selection strategies and evaluated
them in different scenarios.

The MaxAverageImpact strategy regularly outperforms the baseline (Random) strategy and
saves up to 10 % manual inspections. It is close to an empirically determined optimum. Please
note that even a 10 % drop in the number of manual inspections already saves a large amount of
money in a real-world setting.

Users might still feel the need for a good trade-off between quality and price. Semi- or fully
automated consensus processes can create faster and cheaper consensus clusterings, but when
the application needs a high-quality consensus clustering, human experts are indispensable. As
the evaluation shows, the consensus clusterings are close to the (latent) gold standards.

The strategies provide some room for improvement. For example, initial clusterings are differ-
ently close to the later consensus clustering. The closer they are, the better the clustering must
have been in the first place. This observation could be utilized by continuously measuring each
clustering’s confidence by regarding the expert verdicts. The confidence should be increased if a
manual inspection has no effect on a clustering (that is, the clusterer was correct) and decreased
if the impact is high. Having such a confidence score for each clustering allows a weighted
support.

Another direction for future research is the restriction of manual inspections to a fixed budget.
Which pairs should be selected first if not necessarily all manual inspections can be afforded?
Further, more records could be presented to the human user, be it to give the user more context
or even to obtain several verdicts at once.
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C o n c l u s i o n a n d O u t l o o k

Finding all sets of records in a database that represent the same real-world entity remains a
challenging problem. Duplicity is difficult to formalize and therefore hard to be determined by
a computer program. Additionally, the process of duplicate detection needs to be performed
efficiently. Human experts are good in identifying duplicates and in inventing shortcuts to find
promising record pairs quickly. Yet, it is hard to implant this knowledge into a computer program
and requires a lot of configuration and tuning, which is cumbersome for experts and practically
impossible for non-experts.

The method presented in this thesis strive to alleviate the burden of this configuration effort
to make duplicate detection a process that can be commanded by non-experts, too. We made
several contributions towards this goal to accompany the non-expert user along the duplicate
detection workflow.

Section 6.1 recapitulates the individual contributions of this thesis. They are combined in
Section 6.2, describing a comprehensive tool for duplicate detection. Finally, Section 6.3 gives
an outlook on possible subsequent research based on the groundwork of this thesis.

6.1 Duplicate detection for non-experts

Here we describe how the contributions of this thesis reduce manual configuration effort. We
describe only the manual (one-time) effort that should be done by experts.

The better the data is known a-priori, the easier it is to clean. Thus, in Chapter 2, we presented
a technique to semantically annotate the data that is to be deduplicated without user interaction.
These annotations are the foundation for several further steps. For example, with the help of these
annotations, the attribute values can be normalized, allowing for simpler similarity measures that
do not need to cope with standardizing values before comparison. Applying similarity measures
on more adjusted data leads to more realistic similarity values. As a general one-time effort
independent of any dataset seen by the system, experts must prepare and set up the domain
datasets and the annotations (classes, similarity measures, k-constraints, etc.) attached to them.
Additionally, they may extend the machine learning feature sets accordingly, to better recognize
those attributes.

Efficiency can be increased for duplicate detection by skipping futile comparisons. In Chap-
ter 3, we described a blocking approach that avoids those unwanted comparisons using blocking
keys to separate the data into partitions that likely contain duplicates. Our proposed blocking
key generation technique does not require the user to define blocking keys, but instead operates
solely on existing data and autonomously finds good (i. e., effective and efficient) blocking keys.
This blocking approach grounds on the availability of datasets and gold standards for the domain
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of the current data and benefits from the semantic annotations described above. These annota-
tions serve as a means to match the schema of the current dataset with that of the available gold
standards to determine good blocking keys.

Unfortunately, reasonable gold standards are only rarely available, which impedes the pro-
posed blocking process. Additionally, a wide diversity of available gold standards would facili-
tate the improvement of existing similarity measures and the development of new ones, because
their quality can be evaluated. In Chapter 4 we described how to compensate the absence of a
gold standard and use an annealing standard instead. Such an annealing standard exploits the
agreements between different duplicate detection tools and does not require manual inspections
for pairs that are easy to classify automatically. This exploitation results in a huge reduction
of the effort compared to the manual creation of traditional gold standards. Note that the hu-
man judgements eventually serve to improve similarity measures and are run independently of
the current deduplication process. Furthermore, they are not intended to actually perform the
deduplication itself, although this is a possible application, too.

In Chapter 5 we presented a technique to reduce this comparably small fraction of manual
inspections in a deduplication task even further. Human judgements of record pairs are brought
into an order that utilizes the transitivity of the duplicate relation to skip redundant manual
inspections.

6.2 An integrated data quality service

Up to this point, we have described how non-expert users can be relieved from the configuration
effort in their deduplication processes. In this section, we describe how to create a comprehensive
tool for detecting duplicates in the provided data using the building blocks presented in this
thesis. This tool does not require configuration effort by the end-user.

We provide only some parts of this prospective tool and take other components for granted.
For example, we supply the blocking keys, but require the actual blocking logic to be available.
This and other glue code could be provided by existing toolkits such as DuDe [33]. Furthermore,
we give insights into the possible future development of such a tool.

We envision a Data Quality Service (DAQS), that is, a web service rather than a standalone
application for the following reasons: First, a service meets the idea of minimizing the config-
uration effort, because a service does not have to be installed on premise and if implemented
as a web application, does not require more than a web browser on the client’s side. Second, a
service benefits from the multi-client environment as we elaborate below.

Figure 36 shows a comprehensive view of the complete duplicate detection application. Dedu-
plicating a dataset does not require expert knowledge. Instead, a non-expert provides the input
data to the system and is never required to interact with DAQS later-on. The shaded boxes rep-
resent components that have been proposed in this thesis. White boxes are off-the-shelf compo-
nents provided by existing toolkits. Tasks that are performed only once per domain are shown on
the right-hand side of the dashed swim lane whereas tasks that are executed once per dataset are
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located left of the swim lane. Note that the user’s only interaction with DAQS is the provisioning
of the dataset. Afterwards, the user is never required to interact with DAQS any further.

The phases mentioned in the upcoming explanation follow the workflow shown in Figure 1
on page 5.

The duplicate detection process starts with the profiling phase. The non-expert user provides
DAQS with the data to be deduplicated. It is then analyzed by the profiling component that uses
the available domain data as well as the 1:k constraints to find a suitable class for each attribute
in the input data. This semantic meta-information is attached to the otherwise unchanged input
dataset and returned.

An expert user provides the initial set of domain data upfront and attaches the semantic classes
to them. This set might be extended with (non-confidential parts of) the current input data if
the non-expert allows it. Further, for each class, the expert specifies the k-value as well as an
appropriate normalization function, similarity measure, and decision criteria. These links are
illustrated with dashed arrows in the figure.

The attribute profiling can benefit from having several users in a service scenario. The initially
defined values for k may change over time when other datasets are provided to the profiling
component. Additionally, caching the results of some of the costlier feature calculations might
speed up the profiling process, especially when more similar datasets need to be profiled.

Afterwards, the input data is normalized. The normalization component takes the semantic
metadata to select the corresponding normalization function from a normalization function repos-
itory for each attribute. Normalization functions can, for example, remove all non-digits from
phone numbers or replace abbreviated terms with their full-length counterparts. Such normaliza-
tion functions in the repository have been designed by an expert in advance.

The next phase is the blocking phase, which heavily reduces the search space. A blocking key
selection component compiles a set of blocking keys from a ranking list of previously evaluated
blocking keys consisting of so-called unikeys. The component checks their validity and estimates
their schema overlap with the current dataset’s schema using the semantic annotations. The
blocking key evaluation grounds on experiments of the same or similar domain that were run in
beforehand. Those experiments need a dataset with a (near) gold standard. Because it is hard to
come by a gold standard, an annealing standard can be used instead.

An annealing standard component creates and updates an annealing standard and needs ac-
cess to a dataset and some classifier results. Due to DAQS being a webservice, previously sup-
plied datasets could be used if permitted by the end user. The duplicate detection results can be
obtained by applying different versions of the similarity functions and blocking key definitions
on the data or can be supplied directly by the expert.

The annealing standard creation and update process usually requires human verdicts for those
pairs that are hard to classify. The consensus clustering approach described in Chapter 5 reduces
the number of human verdicts that are used for this task. To make use of that, the human verdict
requests are routed through a corresponding consensus clustering component which schedules
the manual inspections to achieve a quick convergence.
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The blocking key evaluation component uses these standards to create the blocking key rank-
ings. Eventually, the blocking key selection component returns a set of blocking keys. The block-
ing component applies these blocking keys on the normalized dataset and returns a correspond-
ing set of partitionings.

Subsequently, a similarity calculation component performs the pairwise similarity compar-
isons. For each partitioning, it derives all intra-partition comparisons. The union of all compar-
isons then undergoes the similarity calculation. The component draws the respective similarity
functions from its repository as determined by the metadata. An expert must provide the sim-
ilarity functions before the profiling phase takes place as described above. The result of the
similarity computation are detailed attribute-based similarities between all record pairs.

Finally, the similarities are aggregated to conclude, which pairs DAQS classifies as duplicates.
A duplicity decision component takes the individual similarities and applies various decision
criteria on them. These criteria can make use of the semantical annotations, too. Such criteria
could be arithmetic expressions such as weighted sums or rules, for example, “If the email
addresses are equal or both, given and family name each have a similarity of 90 percent, then it
is a duplicate.” Of course, similarities that are not used here do not need to be calculated in the
previous phase. An expert sets up these criteria a-priori, using a gold or annealing standard if
one is available.

The output of the duplicity decision component is the deduplication result. The non-expert
now has a list of record pairs that DAQS identified to be duplicates. The system could be ex-
tended in such a way that it computes the transitive closure on the result. Additionally, a data
fusion step could follow which actually merges the duplicates into a single record, such that the
resulting dataset would be free of duplicates. However, this is beyond the scope of this thesis.

Note that no expert is needed for the actual deduplication of a specific dataset. An expert is
used only for the purposes described above. Apart from the initial system setup, this includes
maintaining the mentioned function repositories and specifying certain parameters, such as the
number of partitionings to create. This does not contradict the configuration-freeness promise,
because the parameters do not need to be changed afterwards, but may be. Moreover, the repos-
itories’ contents are expected to be stable after a small number of datasets have been processed
by the system due to the concentration on a single domain and the multi-user capability.

6.3 Outlook on duplicate detection

This thesis paves the way for autonomous duplicate detection. The proposed components reduce
the manual effort for a duplicate detection run. For fully-automated deduplication, the other com-
ponents presented in Section 6.2 need to be considered, too. Thus, with the proposed approach,
we already have a deduplication “cruise control”. For the “auto pilot” of duplicate detection,
more research needs to be done.

Specific future work is proposed and elaborated on at the end of the corresponding chapters.
We briefly highlight some selected approaches here.
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detecting co-occurring attributes and incremental classification
Applying data profiling techniques on existing schemas reveals relations between attributes (e. g.,
city and ZIP code). This information can be used to improve the classification process, untangle
clutter of mixed-language attributes, and even merge attributes together to conjointly match a
semantic class (for example, given and family name instead of full name).

Apart from that, the classification result could be further improved by applying an incremen-
tal classification approach: Upon a certain amount of uncertainty regarding a specific attribute,
more values of this attribute undergo classification hoping to find more evidence for one or an-
other possible semantic class. This procedure allows for quick classification, because at least for
some attributes, few rows might already suffice (e. g., gender). For attributes with more diverse
values (e. g., names), more attribute values are needed for classification. To achieve an overall
reduction in computation effort and transferred data, the choice of the respective thresholds and
parameters is expected to be critical, especially if these are to be selected autonomously. Finally,
both approaches might be combined.

pruning blocking key candidates Searching the candidate space for blocking keys that
produce effective and efficient partitionings is a computation-intensive process. Much effort can
be saved if inadequate blocking keys are eliminated a-priori using a pruning mechanism. In
the field of unique column combination (UCC) discovery, the objective is to find subsets of
attributes of a database relation that contain only distinct tuples. UCC detection uses pruning
rules to identify certainly unique or non-unique column combinations that, for example, exploit
knowledge about the uniqueness of the individual columns. Approximate UCCs [58] relax the
uniqueness constraint of the column combinations in question and require them to be unique only
to a certain degree. In turn, this is what is needed for blocking keys, too. Exactly those unikey
combinations are promising for further inspection, whose unikey values are unique enough to
avoid unnecessary large partitions (i. e., efficiency) and diverse enough to allow for duplicates
being contained in the partitions (i. e., effectiveness). Approximate UCC detection pruning rules
promise to help identifying good blocking keys.

It is open to further investigation, whether the UCC pruning techniques can be applied for
(unikey) blocking, too, and whether these can rely on meta-data that has already been collected
in the profiling phase. Moreover, it should be studied, how the relaxed uniqueness impacts the
blocking key quality, how the uniqueness must be defined, and what it depends on to be eventu-
ally set autonomously.

confidence scores for classifications During the creation of an annealing standard
(Chapter 4) and during finding a consensus clustering (Chapter 5), many record pairs are clas-
sified for duplicity. This classification is performed by machine and manual classifiers. During
classification, machine and manual classifiers are treated equally, respectively. All machine clas-
sifiers have the same weight and manual classifiers supersede their machine counterparts when
evaluating the same pair.
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Introducing confidence scores as classifier reliability rating relaxes that strict setting and sug-
gests reducing effort and lead to improved results. This relaxation is the concession that manual
classification is not always perfect and that any classifier decision may be overridden by (groups
of) other classifiers, be it machine or manual.

To make a silver standard and thus, an annealing standard, more robust against mis-classifi-
cations by an individual manual classifier, several independent manual inspections can be per-
formed on the same pair. A manual classification would be challenged explicitly if its classifier’s
confidence score is smaller than the joint certainty of a group of classifiers. Consequently, an-
other manual inspection is triggered. Manual inspections can even be saved if a group of classi-
fiers is highly confident about a verdict. This can lead to skipping a manual inspection.

When finding a consensus clustering, the support could be weighted according to the clus-
terers’ confidence scores. A weighted support would help breaking ties, hopefully deciding for
manual inspections that lead to quicker convergence or a consensus clustering that is closer to
the real world.

Confidence scores of a classifier/clusterer are calculated by comparing its classification results
against known classifications, for example, from a silver standard or manual inspection verdicts.
The higher the rate of matched verdicts is, the higher the confidence score should be and vice
versa. A typical problem is that reference verdicts are not available. At least for manual inspec-
tions, which are requested on demand in our scenarios, this can be overcome by performing
additional manual inspections just for the sake of generating a classification overlap that can
then be used to evaluate the manual classifier’s confidence score.

Of course, performing multiple manual inspections or discarding them in favor of machine
classification makes the classification process more expensive, thus the confidence score and
the heuristics when to acquire additional manual classifications should be designed and adjusted
with a cost-quality trade-off in mind. Another interesting research question is how to aggregate
the confidence scores of groups of classifiers.

domain While the address domain, that was in focus of this work, is ubiquitous and an easy-
to-use deduplication mechanism is strongly appreciated, other domains also demand for simple
duplicate detection, for example, databases containing products or spatial information. Espe-
cially non-commercial projects working on user-generated data32 might lack the financial and
organizational power to ensure good data quality. Therefore, it is desirable to improve the pre-
sented techniques to become domain independent and to broaden the set of building blocks that
do not require an intricate and, therefore, costly configuration.

Apart from supporting different domains, support of different natural languages is desirable.
This has impact on the profiling phase, where more domain data must be provided. Optionally,
more semantic classes can be defined, for example, English or German ZIP codes and so on. In
this case, the repositories from Figure 36 can be filled with more normalization functions etc.
and the blocking key rankings may be extended.

32 for example, wheelmap.org, mundraub.org, toiletfinder.org, openstreetmap.org, or freedb.org

wheelmap.org
mundraub.org
toiletfinder.org
openstreetmap.org
freedb.org
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In the meantime, Nextbike, the local bicycle-by-call company, chose a non-technical solution.
They increase their data quality by crowdsourcing: users can now update the bicycle locations
manually.
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